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Clear overview

Introduce the chapter to give students a feel for 
the topics covered.

Guided tour

● Scores can be described or summarised numerically– for example the average of a sample 
of scores can be given.

● There are several measures of central tendency – the most typical or most likely score or value.

● The mean score is simply the average score assessed by the total of the scores divided by 
the number of scores.

● The mode is the numerical value of the most frequently occurring score.

● The median is the score in the middle if the scores are ordered from smallest to largest.

● The spread of scores can be expressed as the range (which is the di�erence between the 
largest and the smallest score).

● Variance (an indicator of variability around the average) indicates the spread of scores in 
the data. Unlike the range, variance takes into account all of the scores. It is a ubiquitous 
statistical concept.

● Nominal data can only be described in terms of the numbers of cases falling in each category. 
The mode is the only measure of central tendency that can be applied to nominal (categori-
cal) data.

● Outliers are unusually large or small values in your data which are very atypical of your data. 
They can create the impression of trends in your analysis which are not really present. Iden-
tifying such outliers and dealing with them e�ectively can have an important impact on the 
quality of your analysis.

Describing variables 
numerically
Averages, variation and spread

CHAPTER 4

Overview

Preparation

Revise the meaning of nominal (category) data and numerical score data.

 8.2 PRINCIPLES OF THE CORRELATION COEFFICIENT 113

indicates that your correlation, etc. is unlikely to be a fortuitous or fluke finding. That is, the correlation is large enough 
that it is unlikely to come from a population in which there is really a zero correlation. So you assume that your finding 
reflects a relationship that truly exists. If it is unlikely that your correlation is a fluke then the correlation is said to be 
statistically significant. This probability is usually set at .05 (i.e. 5%) or lower. However, the important point for now is 

We would write something like: ‘It was found that musical ability was inversely related to mathematical ability. The 
Pearson correlation coe�cient was - .90 which is statistically significant at the 5% level with a sample size of 10.’ The 

If we follow the advice of the 2010 Publication Manual of the American Psychological Association (APA) we could 
write: ‘Musical ability was significantly inversely related to mathematical ability, r(8) = - .90, p6 .05. The number in 
brackets after r is the sample size minus 2. This number is called the degrees of freedom and is explained in detail in 

significance is usually reported as a proportion rather than a percentage. Computer packages like SPSS give the exact 
significance level. The APA Publications Manual recommends that researchers give this exact significance rather than 
simply to indicate significance at the 5% or .05 level.

Covariance
Many of the basic concepts taught in introductory statistics 
are relevant even at the advanced level. The concept of 
covariance is one of these. As we have seen, covariance is 
based on the deviation from the mean for the variable X 
multiplied by the deviation of the variable Y for each pair 
of scores. In other words, it is the top part of the Pearson 
correlation formula. The correlation coe�cient is simply 
the ratio of the covariance over the largest value that the 
covariance could take for a particular pair of variables. 
That makes the correlation coe�cient a standardised meas-
ure of covariance. But the term covariance crops up 
throughout this book in a number of di�erent contexts. It 
is involved in ANOVA (especially the analysis of covari-
ance) and regression, for example – lots of places, some of 
them unexpected.

Box 8.1 Key concepts

One phrase that might cause some consternation when 
you first come across it is that of the ‘variance–covariance’ 
matrix. This is simply a table (matrix) which includes the 
variances of each variable in the diagonal and their covari-
ances o� the diagonal. This is illustrated for variables X, Y 
and Z
the other numbers are the covariances – each of these is 
presented twice because the covariance of X with Z is the 
same as the covariance of Z with X.

Similar matrices are produced for correlation coe� -
cients. However, in this case the diagonal consist of 1.00s 
(the correlation of a variable with itself is always 1) and the 
o�-diagonals have the correlation coe�cients of each vari -
able with the other variables.

Variable X Variable Y Variable Z

Variable X 2.400 1.533 1.244

Variable Y 1.533 4.933 3.733

Variable Z 1.244 3.733 5.156

 Table 8.3 Variance–covariance matrix for three variables

Key concepts

Offer guidance on the important concepts and 
issues discussed in the text.
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 11.4 PEARSON’S CORRELATION COEFFICIENT AGAIN 155

 11.4 Pearson’s correlation coe�cient again

Computer programs such as SPSS give exact significance levels for your correlation coef-
ficient. Nevertheless, originally one would have used tables of the distribution of the 
correlation coe�cient to find the significance level. Occasionally you still might need to 
consult such a table:

● For example, imagine that you are reviewing the research literature and find that one 
old study reports a correlation of .66 between two variables but fails to give the sig-
nificance level, then what do you do? This sort of situation can occasionally happen 
since not every research paper is exemplary in its statistical analysis. Or you wish to 
check that there is not a typographical error for the given significance level then what 
do you do? SPSS will not be of help in these situations.

● What if you wanted to know the size of correlation which would be statistically sig-
nificant for a given sample size? If, for example, you are expecting a small correlation 
of say .2 then how big a sample would be needed for this to be statistically significant? 
The only way to find out is to consult tables.

SPSS will not help you deal with these situations. So in this section we will explain 
how significance levels may be obtained from tables so long as you know the size of the 
correlation coe�cient and the sample size (or in some tables the degrees of freedom) 
involved.

The null hypothesis for research involving the correlation coe�cient is that there is no 
relationship between the two variables. In other words, the null hypothesis states that the 
correlation coe�cient between the two variables is .00 in the population (defined by the 
null hypothesis). So what if, in a sample of 10 pairs of scores, the correlation is .94 as for 

Do correlations di�er?
Notice that throughout this chapter we are comparing a 
particular correlation coe�cient obtained from our data 
with the correlation coe�cient that we would expect to 
obtain if there were no relationship between the two vari-
ables at all. In other words, we are calculating the likeli-
hood of obtaining the correlation coe�cient based on our 
sample of data if, in fact, the correlation between these two 
variables in the population from which the sample was 
taken is actually .0. However, there are circumstances in 
which the researcher might wish to assess whether two cor-
relations obtained in their research are significantly di�er-
ent from each other. Imagine, for example, that the 
researcher is investigating the relationship between satisfac-
tion with one’s marriage and the length of time that 

individuals have been married. The researcher notes that 
the correlation between satisfaction and length of marriage 
is .25 for male participants but .53 for female participants. 
There is clearly a di�erence here, but is it a statistically 
significant one? So essentially the researcher needs to know 
whether a correlation of .53 is significantly di�erent from 
a correlation of .25 (the researcher has probably already 
tested the significance of each of these correlations sepa-
rately but, of course, this does not answer the question of 
whether the two correlation coe�cients di�er from each 
other). It is a relatively simple matter to do this calculation. 
It has to be done by hand, unfortunately. The procedure 

study with a previous study.

Box 11.1 Focus on

168 CHAPTER 12 STANDARD ERROR

How the estimated standard error works

Explaining statistics 12.1

Using this information we can estimate the standard error of samples of size 6 taken from 
the same population. Taking our six scores (X N = 6.

Substitute these values in the standard error formula:

 (estimated) standard error =

CaX2 -
(aX)2

N
N - 1

4N
=

C160 - 302

6
6 - 1

26
=

A160 - 900
6

5
2.449

 =

2160 - 150
5

2.449
=
A

10
5

2.449

 =
22

2.449
=

1.414
2.449

= 0.58

Note that this is the same value as that given by SPSS in Screenshot 12.5.

Interpreting the results

concept to make concrete. Very roughly speaking, we could say that the standard deviation is the typical amount by 
which sample means deviate from the population mean. Some statisticians (e.g. Huck, 2009) dislike this sort of 

mathematical distribution, the t-distribution, to indicate the proportions of sample means which lie between the 
population mean and any number of standard errors away from it. This is discussed in the following two chapters.

Step 1

Step 2

Step 3

X (scores) X2 (squared scores)

5 25

7 49

3 9

6 36

4 16

5 25

 Table 12.3 Steps in calculating the standard error

Focus on

Explore particular concepts in more detail.

Explaining statistics

Take students through a statistical test with a 
detailed step-by-step explanation.
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358 CHAPTER 26 MULTIPLE COMPARISONS WITHIN ANOVA

Multiple comparison tests

Ivancevich (1976) conducted a field experiment in which sales personnel were assigned to various goal setting 
groups. One was a participative goal-setting situation, another was an assigned goal group, and a third group 
served as a comparison group. Various measures of performance and satisfaction were collected at various data 
collection points which included a before training baseline, then 6 months, 9 months and 12 months after train-
ing. ANOVA was used together with the Duncan’s multiple range test to examine where the significant di�er-
ences were to be found between the experimental and control conditions. The results suggested that for up to 
nine months both the participative and assigned goal setting groups had higher performance and satisfaction 
levels. At 12 months, this advantage no longer applied.

Touliatos and Lindholm (1981) compared the ratings on the Behavior Problem Checklist for parents and teach-
ers. Some of the children rated were in counselling and others were not in counselling. Using ANOVA, it was 
found that the youngsters in counselling were more likely to exhibit deviant behaviour. The independent variables 
for the ANOVA were counselling versus not in counselling and ratings by mothers versus fathers versus teachers. 
The researchers wanted to know just where in their data the di�erences lay. So they used Duncan’s Multiple 
Range Test which showed that more behavioural problems were seen by parents than by the children’s 
teachers.

Yildirim (2008) investigated the relationship between occupational burnout and the availability of various 
sources of social support among school counsellors in Turkey. The analysis included other sociodemographic 
variables. There was a significant negative relationship between burnout and sources of social support. How-
ever, burnout was not related to age, gender or marital status in this study. Some of the subdimensions of 
burnout were related to some of these variables. The Sche�é test was employed to make finer comparisons 
between the conditions of the ANOVA. For example, it was found that counsellors with only up to three years 
of experience had higher levels of depersonalisation of burnout than those with more experience in this sort 
of counselling.

Research examples

● If you have more than two sets of scores in the analysis of variance (or any other test for that matter), it is 
important to employ one of the procedures for multiple comparisons.

● Even simple procedures such as multiple t-tests are better than nothing, especially if the proper adjustment 
is made for the number of t-tests being carried out and you adjust the critical values accordingly.

● Modern computer packages, especially SPSS, have a range of multiple comparison tests. It is a fine art to 
know which is the most appropriate for your particular circumstances. Usually it is expedient to compare the 
results from several tests; often they will give much the same results, especially where the trends in the data 
are clear.

Key points

 13.5 CAUTIONARY NOTE 183

● The related or correlated t-test is merely a special case of the one-way analysis of variance for related samples 
Although it is frequently used in psychological research it tells us nothing more than the equiva-

lent analysis of variance would do. Since the analysis of variance is generally a more flexible statistic, allowing 
any number of groups of scores to be compared, it might be your preferred statistic. However, the common 
occurrence of the t-test in psychological research means that you need to have some idea about what it is.

● The related t-test assumes that the distribution of the di�erence scores is not markedly skewed. If it is then 
the test may be unacceptably inaccurate. Appendix A explains how to test for skewness.

● If you compare many pairs of samples with each other in the same study using the t-test, you should consult 
-

parisons, as they are called, but with appropriate adjustment to the critical values for significance, multiple 
t-tests can be justified.

● If you find that your related t-test is not significant, it could be that your two samples of scores are not cor-
related, thus not meeting the assumptions of the related t-test.

● 

a sample. However, if we had actually known the population standard deviation and consequently the stand-
ard error was the actual standard error and not an estimate, we should not use the t-distribution table. In 
these rare (virtually unknown) circumstances, the distribution of the t-score formula is that for the z-scores.

● Although the correlated t-test can be used to compare any pairs of scores, it does not always make sense to 
do so. For example, you could use the correlated t-test to compare the weights and heights of people to see 
if the weight mean and the height mean di�er. Unfortunately, it is a rather stupid thing to do since the numeri-
cal values involved relate to radically di�erent things which are not comparable with each other. It is the 
comparison which is nonsensical in this case. The statistical test is not to blame. On the other hand, one could 
compare a sample of people’s weights at di�erent points in time quite meaningfully.

Key points

Research examples

Demonstrate how the statistical tests have been 
used in real research.

Key points

Each chapter concludes with a set of the key 
points to provide a useful reminder when revising 
a topic.
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376 CHAPTER 27 N ANOVA: RELATED AND UNRELATED VARIABLES TOGETHER

● Research designs which require complex statistics such as the above ANOVAs are di�cult and cumbersome 
to implement. Use them only after careful deliberation about what it is you really need from your research.

● Avoid the temptation to include basic demographic variables such as age and gender routinely as independ-
ent variables in the analysis of variance. If they are key factors then they should be included, otherwise they 
can merely lead to complex interactions which may be hard to interpret and not profitable when you have 
done so.

Key points

COMPUTER ANALYSIS

Mixed design analysis of variance using SPSS

 FIGURE 27.3 SPSS steps for a mixed ANOVA

 27.2 MIXED DESIGNS AND REPEATED MEASURES 377

Interpreting and reporting the output

● The post-test mean for the experimental condition is higher than the other means in the Descriptive 
Statistics output suggesting an interaction. This is confirmed in the Tests of Within Subjects 
Contrasts table. Both the main e�ect of order and the interaction between order and condition are 
statistically significant. It is important that Box’s Test of Equality of Covariance Matrices and Levene’s 
Test of Equality of Error Variances are non-significant.

● In line with APA (2010) conventions and after carrying out some t-tests to determine which means 
of the interaction di�er, the results could be written as follows: ‘The interaction between the two 
conditions and the change over time was statistically significant, F(1, 4) = 7.68, p 6 .05, hp

 2 = .66. 
While the pre-test means did not di�er significantly, t(4) = 0.76, two-tailed p 6 .492, the post-test 
mean for the experimental condition (M = 11.00, SD = 1.00) was significantly higher, t(4) = 6.12, 
two-tailed p 6 .004, than that for the control condition (M = 6.00, SD = 1.00). The increase from 
pre-test (M = 5.67, SD = 1.15) to post-test (M = 11.00, SD = 1.00) was significant for the 
experimental condition, t(2) = 4.44, two-tailed p 6 .047, but not for the control condition, 
t(2) = 1.00, two-tailed p 6 .423.’

 SCREENSHOT 27.1 Data in ‘Data View’

 SCREENSHOT 27.2 On ‘Analyze’ select ‘Repeated 

 SCREENSHOT 27.3 Enter the ‘Number of Levels:’ or 
occasions for the repeated measures  SCREENSHOT 27.4 Select the variables

Computer analysis

Step-by-step advice and instruction on analysing 
data using SPSS Statistics is provided at the end of 
each chapter.

SPSS screenshots

The guidance on how to use SPSS for each 
statistical test is accompanied by screenshots, so 
the processes can be easily followed.
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Our hope is that this seventh edition of what has been retitled Understanding Statistics 
in Psychology with SPSS will contribute even more to the student learning experience. A 
number of changes have been made to this end. One thing that has not changed which 
sets this book apart from others aimed at students: it continues to provide an accessible 
introduction to the wide range of statistics that are employed by professional researchers. 
Students using earlier editions of the book will by now often be well into teaching and 
research careers of their own. We hope that these further enhancements may encourage 
them to keep Statistics in psychology using SPSS permanently on their desks while they 
instruct their students how to do statistics properly. The abbreviation SPSS initially stood 
for Statistical Software for the Social Sciences. Although the official name of the latest 
release at the time of publication is IBM SPSS Statistics 23.0 we shall refer to it throughout 
this book as SPSS because it is shorter, most users refer to it this way and the first letter 
of the original acronym actually refers to Statistical and so to add Statistics again seems 
repetitive. For most users of SPSS, SPSS versions have changed little since SPSS 13 came 
out in 2005, so this book will also be suitable for those using these earlier releases.

We have considered very carefully the need for instruction into how to compute sta-
tistics using SPSS and other computer programs. Our approach in this book is to provide 
the basic steps needed for the computation but we have added a number of screenshots 
to help the reader with the analysis. Students of today are very familiar with computers 
and many do not need overly detailed instructions. Too much detailed step-by-step 
instruction tends to inhibit exploration of the program – trying things out simply to see 
what happens and using one’s intelligence and a bit of knowledge to work out what things 
mean. Students can become fixated on the individual steps and fail to learn the complete 
picture of doing statistics using SPSS or other computer programs. In the end, learning to 
use a computer program is quicker if the user takes some responsibility for their 
learning.

Much of our daily use of computers in general is on a trial and error basis (we don’t 
need step-by-step instructions to use Facebook or eBay) so why should this be different 
for statistics programs? How many of us read instructions for the iPhone in detail before 
trying things out? Of course, there is nothing unusual about tying statistics textbooks to 
computer packages such as SPSS. Indeed, our Introduction to SPSS in Psychology is a 
good example of this approach. It provides just about the speediest and most thorough 
introduction to doing psychological statistics on SPSS. Unfortunately, SPSS is not the 
complete answer to the statistical needs of psychologists. It simply does not do everything 
that students (and professionals for that matter) need to know. Some of these things are 
very simple and easily computed by hand if instructions are provided. Other things do 
require computer programs other than SPSS when procedures are not available on SPSS. 
We think that ideally psychologists should know the statistics which their discipline needs 
and not simply those that SPSS provides.

Introduction
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xxvi	 Introduction

SPSS is very good at what it does but there are times when additional help is needed. 
This is why we introduce students to other programs which will be helpful to them when 
necessary. One of the most important features of SPSS is that it is virtually universally 
available to students for little or no cost thanks to site licensing agreements. Unfortu-
nately, this is not true of other commercial statistics software. For that reason we have 
suggested and recommended programs which are essentially free for the user. The Web 
has a surprisingly large amount of such software to carry out a wide range of statistical 
routines. A few minutes using Google or some other search engine will often be bounti-
fully productive. Some of these programs are there to be downloaded but others, applets, 
are instantly available for calculations. We have added, at the end of each chapter, advice 
on the use of software.

This does not mean that we have abandoned responsibility for teaching how statistics 
works in favour of explaining how to press keys on a computer keyboard. Although we 
think it best that statistics are computed using statistics programs because the risk of 
simple calculation errors is reduced, it seems to us that knowing how to go about doing 
the calculations that computer programs will do for you leads to an understanding of 
statistics which relying on computers alone does not. So we have included sections entitled 
‘Explaining statistics’ which are based on hand calculation methods which should help 
students understand better what the computer program does (more or less) when it is used 
to do that calculation. Statistical techniques, after all, are little more than the mathemati-
cal steps involved in their calculation. Of course, they may be ignored where this level of 
knowledge is not required.

The basic concept of the book remains the same – a modular statistics package that is 
accessible throughout to a wide ability range of students. We have attempted to achieve 
this while being as rigorous as possible where rigour is crucial. Ultimately this is a book 
for students, though its emphasis on statistics in practice means that it should be valuable 
to anyone seeking to familiarise themselves with the vast majority of common statistical 
techniques employed in modern psychology and related disciplines. Not all chapters will 
be useful to everyone but the book, taken as a whole, provides a sound basis for learning 
the statistics which professional psychologists use. In this sense, it eases the transition 
from being a student to being a professional.
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●	 Students do not generally approach learning statistics positively. Everyone knows this but it 
is demonstrated by research too. More importantly, this poor attitude towards statistics leads 
to poor learning. Student culture tends to reinforce what is bad in the learning environment 
for statistics.

●	 A student’s experience within the school environment especially determines their attitudes to 
mathematics, which in its turn impacts on their expectations concerning learning statistics.

●	 There is a mistaken belief among students that statistics is not central to professional work 
in psychology and other related careers. Why study something that is unnecessary for a 
career in psychology? The truth is quite different. Professional psychologists rely on research 
based on quantitative methods and statistics in their work.

●	 Furthermore, psychologists in all fields are often expected to do relevant psychological 
research as part of their work role.

●	 Many of the professions outside psychology entered by students use knowledge based on 
quantitative methods and statistics. So a good working knowledge of statistics puts psychol-
ogy students at an advantage in the employment market.

●	 Learning statistics can be made hard because psychologists often employ old and outmoded 
statistical ideas. Some of these ideas are not only unhelpful but also unworkable. This helps 
contribute to the fog of confusion surrounding statistics. Textbook writers are frequently 
guilty of perpetuating these counterproductive ideas.

●	 Too much emphasis is placed on significance testing. Worthwhile as this is, statistics can 
contribute much more to research than just that. It is important to have an overview of the 
extensive contribution that statistics makes to psychological knowledge.

●	 Not many mathematical skills are needed to develop a good working understanding of the role 
of statistics in psychological research. All but a few students have these skills. Even where these 
skills have got a little rusty, they can be quickly relearnt by motivated students.

Why statistics?

Chapter 1

Overview
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2	 CHAPTER 1â•‡ Why statistics?

	 1.1	 Introduction

For many psychology students the formula is simple: statistics = punishment. Statistics 
is ‘sadistics’. Most would avoid statistics given the choice. This makes a very unpromis-
ing learning environment. And what about the poor soul teaching statistics to reluctant 
students? Student ratings of statistics modules can bring tears to the eyes of all but the 
most classroom weary and hardened of professors and lecturers. All round, what could 
be more unsatisfactory? Couldn’t statistics simply be left out of psychology degrees? 
Well yes, but it is unlikely to happen. Statistics is central to quantitative research in 
psychology and the creation of psychological knowledge. Surely there are many prac-
titioners who do a great deal of good without needing statistics? Even if this were true 
in the past it is not so nowadays. The rigid distinction between researcher and practi-
tioner no longer applies. Modern practitioners combine practice with research. Psy-
chologists working in the prison service, in clinical psychology, in education and so 
forth are usually expected to do some research. This is also true for many of the other 
professions that psychology graduates may enter. We are living in an information-based 
society and a great deal of this comes from statistically based research. The bottom line 
is that some knowledge of statistics is professionally important.

However, statistics (along with mathematics) is generally negatively evaluated. The 
average person has an attitude to statistics without knowing much about what it 
involves. They may groan at the very mention of the word. Hackneyed old phrases such 
as ‘you can prove anything with statistics’ and ‘lies, damned lies and statistics’ will be 
trotted out to dismiss its achievements. Statistics can be used misleadingly but that  
is not generally the objective. We all know that minor adjustments to a graph can  
distort the truth. A modest growth or decline in a graph may be dramatically  
changed to seem miraculous or calamitous. Statistics deserves greater respect than its 
reputation suggests.

The word statistics comes from the Latin for state (as in nation). Statistics originally 
was the information collected by the State to help Government in its decision-making. 
The Government’s appetite for statistical information is prodigious as we all know. All 
areas of the Government’s planning and decision making are guided by statistical data – 
pay, pensions, taxes, health services, prisons, the police and so forth. Big supermarkets 
use it, charities use it, the health service uses it, industrialists use it – you name it and they 
probably use statistics.

Sound statistical knowledge is fundamental to understanding, planning and analysing 
research. Nevertheless, students study psychology to know about psychology – not to 
study statistics. They may not realise that the psychology that they will learn is very 
dependent upon statistics. Of course there is qualitative research in psychology which 
does not involve statistics almost by definition but qualitative research is very much in 
the minority. For the foreseeable future, quantitative methods are likely to have a strong 
grip on the bulk of psychological research. Statistics and psychology are intertwined.

Statistics isn’t taught just to punish students – no matter if it feels that way. It is 
central to the whole enterprise of psychology. So why not try to see statistics as a sort 
of cuddly friend which will help you in all sorts of ways? We are serious here. Criticisms 
of the dominance of statistics in psychology are common, of course. As much as anyone 
else, we are as against the mindless application of statistics in psychology for its own 
sake. Psychology may seem obsessed with a few limited statistical topics such as signifi-
cance testing but this is to overlook the myriad of more far-reaching positive benefits 
to be gained from the proper application of modern statistical ideas. Statistics provides 
a means of finding order in otherwise vast sets of confusing data. Some of this variety 
of use is illustrated in Figure 1.1.
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	 1.2	 Research on learning statistics

Our culturally endemic negative view of statistics ensures that the research on psychology 
students and statistics is generally depressing reading. Trepidation and anxiety just about 
sum up the initial response of students to learning statistics. Gordon (2004) surveyed a 
large number of Australian psychology students about their experience of statistics classes. 
Three-quarters would not have studied it except it was compulsory. They saw statistics 
as boring and difficult and felt that psychology and psychologists do not need statistics. 
Their approach was to treat statistics like it was a few mechanical procedures to be 
applied without understanding why. One student put it this way to Gordon (1995):

I have a very pragmatic approach to university, I give them what they want. . .  I really 
do like knowledge for knowledge’s sake, but my main motivation is to pass the course. 
(paragraph numbered 18)

Those students who tried to master the methods and concepts of statistics nevertheless had 
difficulty in understanding its importance. Students who saw statistics as being more person-
ally meaningful in their studies would say things like ‘It would probably be useful in whatever 
job I do’ (Gordon, 1995). As might be expected, these more positively orientated students 
performed a little better in their statistics tests and examinations than the more negative group. 
The negative group were not generally less able students and did not generally do worse than 
other students on other modules. But not seeing the point of statistics did have a negative 
impact on their studies. Figure 1.2 provides a broad classification of students in terms of how 
they see the relevance of statistics and their personal assessment of the discipline.

	 Figure 1.1	 Some things statistics can do for the researcher
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	 1.3	 What makes learning statistics difficult?

It is usually recognised by university staff that teaching statistics involves dealing with the 
anxieties, beliefs and negative attitudes concerning the subject (Schau, 2003). Background 
issues like these may be the most important things in the learning process. University can 
be an experience full of emotion, and emotion affects learning. This is perhaps most true 
for a topic such as statistics. Real tears are shed. One student told Gordon (1995), ‘I was 
drowning in statistics’ – words which are both emotive and extreme but real. Being at 
university and studying statistics follows a long period of personal development through 
schooling (and for some at work). Personal histories, experiences, needs and goals are 
reflected in our strategies for coping with statistics (Gordon, 2004). These influence the 
way that we think about our learning processes and education more generally. Beliefs 
such as ‘I’m no good at maths’ will impact on our response to statistics.

In other words, a student can bring to learning statistics baggage which may seriously 
interfere with studying. Issues to do with one’s mathematical ability are high on the list. 
Some students may (incorrectly) assume that their low maths skills make statistics too 
hard for them. This is reinforced by those departments which require good maths grades 
for admission. With other time pressures, such students may adopt avoidance tactics such 
as skipping lectures rather than putting the time into studying statistics. Furthermore, 
every statistics class has its own culture in which students influence each other’s attitudes 
to learning statistics. A class dominated by students antagonistic to statistics is not a good 
learning environment. Acting silly, talking in class or plagiarising the work of other stu-
dents just does not help.

Whether mathematical ability is important to making a good statistics student is doubt-
ful. Research strongly indicates that three factors – anxiety, attitudes and ability (see  
Figure 1.3) are involved in learning statistics and other somewhat unpopular activities such 
as learning second languages (Lalonde and Gardner, 1993). A negative attitude towards 
statistics is associated with poorer performances in statistics to some extent. Anxiety plays 
its part primarily through a specific form of anxiety known as mathematics (math) anxiety. 

	 Figure 1.2	 Responses of students to statistics according to Gordon (1995)
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This is more important in this context than trait or general anxiety such as where someone 
has a generally anxious personality in all sorts of situations. Mathematics anxiety is com-
mon among psychology students. Those with higher levels of mathematics anxiety tend to 
do worse in statistics. To be sure, mathematical ability is associated with better test and 
examination results, but not to a major extent. Poor mathematical ability has its influence 
largely because it is associated with increased levels of mathematical anxiety. That is, in 
itself, poor mathematical ability is not primarily a cause of worse results.

If more research evidence is needed, using a formal measure known as the Survey of 
Attitudes toward Statistics, Zimprich (2012) showed that attitudes towards statistics are 
made up of four components:

●	 Affect: How positive or negative a student is about statistics (e.g. ‘I will like 
statistics’).

●	 Cognitive competence: A student’s beliefs about their ability and competence to do 
statistics (e.g. ‘I will make a lot of maths errors in statistics’).

●	 Value: Attitudes concerning the relevance and usefulness of statistics (e.g. ‘I use statis-
tics in my everyday life’).

●	 Difficulty: The student’s views about how difficult or easy statistics is (e.g. ‘Statistics 
is a complicated subject’).

All of these were interrelated, as one might expect. They also correlated with actual 
achievement in statistics. These attitudes were much more important than actual maths 
ability in terms of how well students do in statistics. In other words, how a student feels 
about statistics has a far more tangible effect on their performance on statistical tests and 
examinations than their mathematical ability.

Along with others, we would argue that the level of mathematical ability needed to 
cope with the mathematical part of statistics is not great – fairly minimal in fact. Generally 
speaking, there are few occasions when it is necessary to do calculations by hand and then 
these are usually simple. Often you will find websites which will calculate the things which 
SPSS does not do. Mostly, though, the statistical analyses you need are available on SPSS 
and other statistics programs. So long as you have entered your data correctly and chosen 
an appropriate statistical analysis you do not have to worry about the calculation. Some 
basic mathematics is helpful, of course, when learning about statistics since numbers and 
symbols won’t be quite so daunting. Statistics is a maths-based discipline and its concepts 
are generally defined by formulae rather than in words. So if you are good at understand-
ing mathematical formulae then this is an advantage, though far from necessary. Even 
researchers differ widely in their mathematical skills and many would not see themselves 
as mathematical at all. Yet they have learnt to use statistics appropriately and intelligently, 
which is very much the task facing students. You need to understand the purpose of a 
statistical test and why it was developed, understand a little about how it works, know 
when to use it and most of all be able to make sense of the computer output. Maths is 
peripheral for the most part.

	 Figure 1.3	 Formula for doing well in statistics based on research findings
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Just what mathematical knowledge does one need to achieve a working knowledge of 
statistical analysis? By and large if you understand the concepts of addition, subtraction, 
multiplication and division then you have the basics. You may not always get the right 
answer but the important thing is that you understand what these mathematical opera-
tions are about. What might you need beyond this? Probably just the following:

●	 You need to understand the concept of squaring (that is multiplying a number by itself).

●	 You need to understand the concept of square root (the square root of a number is that 
number which when multiplied by itself gives the original number).

●	 It is good too if you understand negative numbers – such as that when multiplying two 
negative numbers you get a positive number but when you multiply a positive number by 
a negative number then the result is a negative number. A short time spent trying out positive 
and negative calculations on a calculator is a good way to refresh yourself of these basics.

●	 It is preferable if you understand the underlying principles or ‘rules’ governing mathematical 
formulae as these are used in statistical formulae, but if you don’t, your computer does.

Not much else is necessary – if you know what a logarithm is then you are in the ultra-
advanced class. All in all, the requirements are not very demanding. Anything that has 
been forgotten or never learnt will be quickly picked up by a motivated student. Not all 
lecturers will share this opinion. Nevertheless, the overwhelming majority know that 
students can really struggle with statistics for any number of reasons. So they provide 
teaching which serves the needs of all students taking the psychology programme, not just 
the maths-able ones.

Irrespective of how mathematical statistics is or isn’t, it has to be acknowledged that 
statistics is a unique and distinctive way of thinking (Ben-Zvi and Garfield, 2004; Ruggeri, 
Dempster and Hanna, 2011). It has its own language and concepts. Grasping the statisti-
cal way of thinking and learning to speak statistical language takes some effort. Students 
in all sorts of disciplines struggle somewhat with statistics, it is not just psychology stu-
dents. Statistical thinking is a different way of thinking.

Broadly speaking, different research designs require different statistical techniques. So 
you really need to understand the different kinds of research design before statistical 
analysis makes sense. Statistical problems in research are often research design problems. 
You really do have to formulate your research question, your hypotheses and your 
research design carefully for the statistical analysis to fall into place. Every degree course 
will give you a grounding in research methods and how research is done. But such knowl-
edge will not translate directly into an ability to do research. This is developed through 
practical or lab classes in which you experience the process of doing research. Although 
research skills build up quite slowly over the course of your degree these skills are little 
or nothing to do with mathematics. They are about the application of logic and thought 
to the research process. Statistical analysis takes a minor role compared to the more gen-
eral research skills involved in a quantitative study. If you are confused about your 
research question, your hypotheses and your research design, it follows that you will be 
confused about the appropriate statistical analysis.

	 1.4	 Positive about statistics

So how does one go about having a more positive attitude towards statistics? Part of the 
answer lies in having an appreciation of what statistics does prior to being exposed to the 
nitty-gritty or detail taught in the stats lecture room. Just why did statistics become so 
important in modern research when for centuries people did experiments and other research 
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without significance testing and the like? One of the most well-known statistical techniques 
used by psychologists is the t-test (see Chapters 13 and 14) or the Student t-test as it is also 
known. For decades, psychology students have learnt to do a t-test. Student was the pen 
name of William Gosset who had studied chemistry and mathematics at university. He was 
employed by the Guinness Brewery in Dublin as a ‘bright young thing’ in the 1890s.

One issue that was important to the company was quality control. There are obvious 
practical problems if every bottle or barrel of beer had to be tested, for example, in order 
to see if the alcoholic strength was constant throughout all batches. Gosset worked on 
the problem of the extent of error that is likely to occur when small samples were being 
used in quality control. He developed a mathematical way of calculating the likely error 
which can occur when testing samples compared to the entire output. If you decided to 
take a sample of just 10 bottles, to what extent is the sample likely to mislead you about 
the alcoholic strength of the product in general?

Of course, you will never know from a sample exactly what the error will be but Gosset 
was able to estimate its likely extent from the variability within the sample. Put into a for-
mula, this is the idea of standard error which plagues many students on introductory sta-
tistics courses. The t-test is based on standard error. By developing this, Gosset had laid the 
systematic basis for doing research on samples rather than on everything. Think about it: 
if it had not been for Gosset’s innovation then you would spend your lifetime carrying out 
your first research study simply because you need to test everyone or everything (the popula-
tion). So rather than considering William Gosset as some sort of alien, it would be best to 
regard him as one of the statistical cuddly friends we mentioned earlier!

	 ■	 Is it statistically significant?

The point of Gosset’s revolutionary ideas is probably easy to see when explained in this 
way. But instead students are introduced to what to them are rather complex formulae and 
the question ‘Are your findings statistically significant?’ The question ‘Is it significant?’ is 
one of the fixations of many psychologists – the question probably sounds like a mantra to 
students when they first begin to study psychology. So intrusive is the question that for most 
students, statistics in psychology is about knowing what test of statistical significance to 
apply in what setting. A test of statistical significance addresses the possibility that a trend 
that we find in our sample could simply have occurred by chance when there is no trend in 
reality. That is, how likely is it that the trend could simply be the result of a fortuitous selec-
tion of a sample in which there appears to be a trend? (A trend might be, say, athletes 
scoring more highly on a measure of personal ambition than non-athletes or a relationship 
between a measure of ability to speak foreign languages and a measure of sociability.) But 
significance testing is only a small part of statistics, which provides a whole range of tools 
to help researchers (and students) address the practical problems of data analysis. Research 
data can be very simple but also very complex. Statistics helps sort out the complexity and 
uncertainty involved in understanding your data.

	 ■	 What sample size do I need?

Gosset’s focus on small samples begs the question of how small a sample can be used. 
There would be something perverse about planning research which involved a sample size 
so small that our findings could never be statistically significant. But that is done inadvert-
ently all of the time simply because researchers (including students) do not address the 
question of sample size properly. Often the advice given to those asking what sample size 
to use is that they should get as big a sample as they can. But this is a crude way of going 
about deciding sample size. Even the smallest trend will be statistically significant if the 
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sample size is large enough. However, there is little point in using large samples when 
smaller ones would be adequate. The optimum sample size depends on the size of the 
effect the researcher thinks is worthwhile investigating, the statistical significance level 
required and the risk of not supporting the hypothesis when it is in fact true that the 
researcher is prepared to take. There are conventional values for the latter two but the 
researcher may wish to vary these.

There are no objective criteria which tell us what potential size of effect is worth study-
ing which apply irrespective of circumstances. It might appear obvious that research 
should prioritise large trends but it is not as simple as that. In medical research, for 
instance, there are examples of very small trends which nevertheless save lives. Taking 
aspirin has a small effect on reducing the risk of heart attacks but saves lives in aspirin 
takers compared with a control group. The size of a trend worth the research effort there-
fore depends on what is being considered. A pill which prevents cancer in 10% of people 
would be of more interest than a pill which prevents flatulence in 10% of people, for 
example. So if a researcher designs a study which has a sample size too low to establish 
a statistically significant trend then this would be more worrisome in the case of the cancer 
cure than in the case of the flatulence cure. Chapter 40 explains how to go about deciding 
sample size in a considered, rational way. This area of statistics is known as statistical 
power analysis. So the apparently simple question of the sample size needed is rather more 
complex than at first appears.

This is not the place to give a full overview of the role of statistics in psychological 
research. It is important, though, to stress that statistics can help you with your research 
in many ways. This is hardly surprising since statisticians seek to address many of the 
problems which researchers face in their quantitative research. Now this book is just 
about as comprehensive as understandable statistics texts get but not everything that 
statistics can do is represented. Nevertheless, you will find a great deal which goes far 
beyond the issue of statistical significance. Take, for example, factor analysis  
(Chapter 33). This is not at all about statistical significance but a way of finding or iden-
tifying the basic dimensions in your data. So, for example, many famous theories of 
personality and theories of intelligence have emerged out of factor analysis – for instance, 
that of Hans Eysenck (Eysenck and Eysenck, 1976) which suggests that extraversion,  
neuroticism and psychoticism are the major underlying dimensions or components of 
personality on which people differ. There is no way that a researcher can simply look at 
their data, which can be enormously complex, and decide what its underlying structure 
is. It is not possible to identify extraversion, neuroticism and psychoticism simply by 
looking at the data from a 50-item questionnaire that has been completed by 2000  
participants. But statisticians (and psychologists with a strong interest in statistics) devel-
oped methods of doing just that and computers make this as simple as it can be.

Statistics also has a very important role in model building. This sounds complicated but 
it isn’t too difficult. A model is simply a proposed set of relationships between variables. So, 
for instance, the relationships shown in Figure 1.3 between various characteristics of stu-
dents studying statistics and their achievement in tests and examinations is a sort of model. 
Statistics addresses just how well the data fits the proposed model – there may be other 
characteristics of the student that need to be considered in addition to those in Figure 1.3 
in order to account fully for how well students do in statistics. The researcher may propose 
models but, equally, statistical techniques also help identify potential models.

Some of the other things which statistics can help you with include:

●	 Is the trend that I have just found in my data big or small?

●	 Does this line of research show potential for further development?

●	 Are the measures that I am using sufficiently reliable and valid to detect a trend that  
I am interested in?
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●	 Is it possible to amalgamate a number of variables into a single, more readily under-
stood one?

●	 Can I eliminate competing explanations of my findings so as to give more credence to 
my hypothesis?

●	 How best can I present my data graphically in order to visually present my findings to 
an audience at a conference?

●	 Can I combine the findings of different studies so as to have a good idea of the typical 
findings of past research?

Statistics is just one aspect of the decision-making process which underlies research in 
psychology. It should not dominate a researcher’s thinking exclusively. It is not even the 
most important part of research. But without it your decision-making may not be 
optimal.

	 1.5	 What statistics doesn’t do

Years of experience teaching statistics means, of course, that we were the statistics doctors 
whom students having problems with analysing their data came to – or even got sent to. 
These encounters vary widely. Some students simply do not have a clue about statistics 
and cannot relate what they learnt in statistics lectures with their own research. Other 
students appear to want help but really they are seeking confirmation that their ideas for 
their analysis are correct or that they have understood their data correctly. Yet others have 
designed their research so badly that either it is difficult to analyse at all or it is difficult 
to analyse using the statistics that the student knows at this point.

You should not blame your lack of statistical knowledge when your research does not 
allow you to answer the question that you set about addressing in the research plan. It is 
essential to think carefully about what your research design achieves prior to collecting 
data. While planning your research, ask yourself just how you will answer your research 
questions using the data you are collecting. The less clear you are about your research 
questions then the more difficult this is to do. And your lack of statistical knowledge will 
rarely be the problem.

It is surprising the number of students who stumble early on in the research process 
like this. Deadlines for research proposal submissions can result in the writing of a 
research plan which is not as good or clear as it should be. You should be in a position 
to plan your analysis in advance of collecting your data. Just how will you go about doing 
your analysis? This implies that you could insert more or less random numbers, etc. into 
your analysis and go on to perform the analysis based on these before you collect your 
actual data. What tables would you need? What statistical techniques would be employed? 
Such questions ought to be thought about very early in the planning of one’s research. 
But the temptation is to leave the statistical issues to last in the hope that something or 
someone will come to your rescue. Such pre-planning is a hard thing to do as a beginner 
but if you cannot detail your analysis early on then why do you expect to be hit by a wave 
of insight after you have collected your data?

So sometimes students do not have a clear grasp of the research that they are proposing 
to do. Confusion can be caused by trying to achieve too much in one study, but insuffi-
cient preparation may also be responsible. It is difficult for any of us to be clear about 
our ideas without investing the time to think carefully. You should talk to anyone pre-
pared to listen. There is no quicker way of recognising problems with your research 
proposals than finding yourself unable to explain clearly to someone else just what you 
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intend to do or how the data you collect will help answer the research question. The point 
is that you should not blame statistics for problems which are due to poor understanding 
and planning of one’s own research.

In research, few of us are trailblazers who generate ideas and methods which have 
no bearing on what has gone before. What this means is that there usually is a wealth 
of research into a particular topic already. Read this research as you will find answers 
to many of the questions that you need to ask yourself. Just how is it possible to measure 
‘love’, religious beliefs, preferences and so forth? The likelihood is that others have 
thought long and hard about this. Why not pay attention to what they have to say? Ask 
yourself just what is an appropriate research design to address research questions like 
mine? Similarly, what statistical techniques did other researchers use to analyse their 
data when studying a topic like yours? Surely they provide strong clues about a suitable 
analysis? This is not to suggest that you slavishly follow what other people have done 
but that you learn from them and possibly improve on their work. All of this requires 
that you read the work of other researchers in copious amounts. This can be hard, and 
it can take a long time. And when we say read we mean try to understand each aspect 
of what the researcher did and why they did it. Don’t gloss over the hard bits as these 
may tell you what you need to know. In the end, thorough reading of research in the 
field that you are interested in will provide you with many of the answers you need. 
Simply concocting a research proposal on the back of an envelope without doing the 
necessary spade work is far more difficult and risky than building your ideas on the 
basis of what others have done.

	 1.6	 Easing the way

Is there an easy way of learning statistics? Yes and no is the answer – we are psychologists 
after all. It clearly would take a lot of effort to become a statistician developing statistical 
knowledge and theory. But a psychologist wishing to use statistics effectively only needs 
a working knowledge of statistics, which is a very different thing from statistical expertise. 
That is, using statistics correctly and effectively in our work, but no more than that, is a 
realistic target for most of us. The hard work has been done by many statisticians over 
the years but we do not need to know all of the details of how they developed their tech-
nique. We simply need to know enough to use the technique properly. This is not cheating 
in any way. You don’t need to know all of the intricacies of a car’s mechanics to be able 
to drive it and nor do you need to know the intricacies of the electronics of your iPad in 
order to use it. It is much the same with statistics – you need to work out what statistics 
are appropriate to your problem and apply them appropriately. Perhaps this is a slight 
understatement, but the basic principle is that you are a user of statistics and limited 
knowledge will get you a long way.

One of the problems in learning statistics is that the advice of those around you can be 
misleading or unhelpful. This is not because of anything malicious on their part but simply 
because there is some false or incomplete knowledge about statistics around. Many psy-
chologists learnt most of what they know about statistics when they were students. This 
may have been state-of-the-art then (though we suspect not) and has not been brought 
up to date since by some of them. Examples of old ideas which are no longer regarded as 
adequate are the following:

●	 Many statistical tests require that your data are normally distributedâ•‡ This means that 
your data should follow a bell-shaped distribution curve (known as the normal curve). 
The problem is that this assumption was built into developing the statistical technique 
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by its inventor. Even though this assumption may not be met, the test may still do an 
adequate job. Few psychologists know the extent to which assumptions may be vio-
lated without materially altering the value of the test. Furthermore, many of the statisti-
cal techniques used by psychologists were invented long before computers came along. 
Their inventors had to rely on theoretical mathematical distributions such as the  
t-distribution, the z-distribution, the F-distribution and the chi-square distribution. 
They then had to develop statistical formulae which corresponded with these distribu-
tions. Even if your data violate a test’s assumptions there are ways of dealing with this. 
For example, you could use something known as bootstrapping which is only possible 
because of computers (see Chapter 21). In bootstrapping, many random samples are 
taken from your data and the distribution of samples is based on these, not on a theo-
retical distribution. The only trick is that in order to do this your sample is in effect 
made huge by repeating or replicating your data numerous times. Bootstrapping does 
not require that your data are bell-shaped or follow any particular distribution. Hence 
there are few circumstances where violating a test’s assumptions cannot be dealt with. 
SPSS will calculate statistical tests using bootstrapping if you request it.

●	 There are three types of scores – ordinal (rankable), interval and ratio These can be 
differentiated conceptually (see Chapter 2) but rarely if ever can a psychologist say in 
which category their scores belong. Students struggle to differentiate the three and, not 
surprisingly, they fail but see the failing as being their inadequacy rather than the futil-
ity of the task. This old-fashioned conceptualisation still has a strong hold on the 
statistical thinking of psychologists and is practically ubiquitous in statistics textbooks. 
However, for nearly every purpose these three different types of data can be analysed 
using the same statistics. If you read the research literature, you will find little or no 
discussion of which type of data is employed. Nominal data are separate and consist 
basically of frequencies of cases in different named categories. The categories are not 
numbers. Worrying too much about the sort of scores you have can be counterproduc-
tive given that there is little practical consequence in terms of the analysis.

●	 If your data do not meet the assumptions that the data are normally distributed, then 
you need a distribution free (or nonparametric) test There are a number of problems 
with this. One is that nonparametric tests are not as versatile and effective as the para-
metric tests which assume the data are bell-shaped in distribution overall. That is, there 
may be no substitute to use when your data do not meet the parametric assumptions. 
The second problem is that it is not necessarily true that a nonparametric test works 
better than a parametric test when the latter’s requirements are not met. The nonpara-
metric technique is built on its own assumptions. Thirdly, as explained above, there 
are now ways of getting around the problems of the bell-shaped distribution such as 
the bootstrapping methods. What is confusing, in addition, is that if one reads psycho-
logical research journals the statistics employed are nearly all parametric in nature and 
little attention is paid to whether or not the data are normally distributed. Indeed, tests 
of normality of the distribution are frequently missing. We explain how these tests can 
be done in Chapter 5, however.

These are just examples and they will become clearer when you read the appropriate sec-
tion of this book. There are other problems of the reverse nature. Some psychologists fail 
to apply the same level of caution that is applied in the examples above in circumstances 
where they should. A good example of this is the analysis of variance (especially Chap-
ter 25). In this, things called main effects and interactions are often identified. But great 
care is needed because the technique gives priority to finding main effects and looks for 
interactions secondarily. What this means is that interactions may be subsumed by main 
effects when a little common sense would show that the main effects are really interac-
tions. Details are in Chapter 25.
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12	 CHAPTER 1â•‡ Why statistics?

The point is that the statistical environment in which many students learn their statis-
tics is an intrinsically confusing one. There is a good chance that you will be exposed to 
mixed messages about statistics. This is made more difficult by the fact that in research 
there may be numerous (appropriate) ways of analysing the same data. So the student 
may find it difficult to know which statistical test to apply but not realise that more than 
one may be appropriate. Some of these techniques superficially seem so different that the 
student has problems believing that they could all be correct. But they may well be. So 
when we explain that the t-test and the correlation coefficient yield fundamentally the 
same answer when they are applied to the same data, we are giving an example of this 
problem (see Chapter 37).

	 1.7	 What do I need to know to be an effective user of statistics?

So what do you really need to know in order to be an effective user of statistics? The essen-
tial things have nothing to do with mathematics: they are to do with basic concepts in 
research. If you can apply these key ideas to your data then the statistical analysis follows 
from that. Any statistical procedure has limits to where and when it can be applied. These 
limitations are often largely to do with the nature of the research design or the data. There 
are statistical techniques which are used for related designs and statistical techniques which 
are used for nominal data. So the appropriate statistical analysis depends on your recognis-
ing what the features of your research design are – what sort of research design you have. 
The things that you need to know are probably covered by the following list:

●	 The difference between a score and a category variable. Overwhelmingly psychologists 
use score variables.

●	 Score variables are ones which imply a quantity of something. An IQ of 120 implies 
something quantitatively different from an IQ of 80. Most psychological tests give 
quantitative scores.

●	 Categorical variables (category variables or nominal variables) are ones where the 
categories have no quantitative implications. For example, male versus female is a 
category variable which we would refer to as gender. Similarly, Manchester United 
Football Supporter, Liverpool Football Supporter and Chelsea Football Supporter 
is also a category variable which we might refer to as football team supporter. This 
sort of data usually consists of the frequency (total number) of people (or things) 
which fall into each category. So the data might be 50 Manchester United support-
ers, 23 Liverpool supporters and 70 Chelsea supporters, for example.

●	 It is important to classify each of your variables as scores or category (categorical) 
variables. This allows you to decide the possible statistical techniques. Some statisti-
cal techniques work only for scores, some work only for category variables, and 
others use both. (Very occasionally, a category variable may be treated as a score 
variable but for now that is too sophisticated – it is explained in Chapter 42.)

●	 Almost without exception, score variables in psychology simply indicate increasing 
quantities of something. Although many psychology students have anguished over 
whether their variables are on what they call a ratio or equal interval scale, it is almost 
always impossible to say things like ‘Jean is twice as intelligent as John’ which implies 
a ratio scale. (This is discussed more in Chapter 2.) Statistically, these issues do not 
matter. As we pointed out earlier, the problem is that these varieties of scales can confuse 
students when they try to apply them to their variables. It is a total conundrum which 
will only perplex students and is not altogether necessary in the first place. The most 
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So, there we are, statistics is almost certain to be a challenge for most students but it 
should be less of a challenge than it first appears to be. If we take the analogy that learn-
ing statistics has a lot in common with learning a foreign language then a few things 
become more clear. We do not expect to learn a foreign language well in just a few lessons. 
However, we do expect that we can do some basic communication very quickly. We also 
may think that we recognise some of the words in the foreign language which is statistics 
but we should be careful as their meaning may not be the same as in our everyday lan-
guage. We will not learn a foreign language unless we use it as much as possible – so do 
not be shy about talking about your statistical analyses to other people. When we know 

important thing to remember, though, is that for virtually every psychological variable 
imaginable it is impossible to make comments that imply that one person is twice as, 
three times as, half as, etc. intelligent, sociable, withdrawn or whatever as another 
person. So simply do not make such claims and you won’t go far wrong.

●	 The difference between a related and an unrelated research design (see Photo 1.1). 
Related designs tend to be more efficient in terms of data but are less common in psy-
chology. In a related design, people are measured twice (or more) using a particular 
measure or alternative versions of the same measure. So studies where people are 
measured at two or more different points in time are related designs. There is one slight 
complication. When groups are matched by having pairs of people who are similar on 
a measure or measures this is also a related design. In unrelated designs, each person 
is measured just once on each variable and no matching is attempted. Some designs are 
mixed related and unrelated designs (e.g. see Chapter 27). If you get this wrong then 
your analysis of your research design may not be as efficient as it could be. This is a 
key matter of psychological methodology and does not involve statistics as such but 
your understanding of research designs.

	 PHOTO 1.1	 To what extent would people at a wedding reception be considered a related sample?
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14	 CHAPTER 1â•‡ Why statistics?

something of a foreign language then we can understand a lot more than we can actually 
speak. In statistics, we can understand the elements of new techniques even though they 
are very advanced. This may be enough for most psychologists in most circumstances.

	 1.8	 A few words about SPSS

This is a computerised world and we use computers for many tasks. Research has been 
transformed by the digital revolution. Students arrive at university with computer skills. 
So it is generally good news about SPSS and students. The Windows system of drop-down 
menus, etc. is instantly recognisable. Most students are well used to using computers 
without needing detailed instruction manuals. If you get it wrong then no harm is done 
and you can quickly try alternatives to see what button pressing works and what does 
not. For this reason, we could encourage everyone to adopt an exploratory approach to 
computing statistics with SPSS. Competence will quickly build up and you will automati-
cally know what button does what. Although we have provided step-by-step instructions 
for many statistical procedures along with a number of screenshots, we have kept these 
down to a reasonable and manageable number. Explore to see what SPSS has available 
and where to find it. There are numerous drop-down menus which give you many options. 
Choose a different option just to see what happens. Of course, there are times when you 
need to be pointed in the right direction. Sometimes it is not obvious where a particular 
procedure is to be found on SPSS. So step-by-step instructions save a lot of frustration on 
occasion. But mechanically following step-by-step instructions all of the time slows down 
becoming a skilled user of SPSS and understanding what its output means yourself. At 
some stage the tightrope walker needs to abandon the safety net. As a psychology student, 
you will use only a fraction of what is available on SPSS.

All statistics teaching in psychology involves the use of SPSS or some other statistical 
package. SPSS is very widely available in universities and many other places. Yet it does 
have some weak points and does not always provide the statistics that you need. Quite 
often, though, SPSS provides the important steps which you just substitute into a formula. 
Since this book is about learning a practical working knowledge of statistics, the statistical 
technique is the primary thing for us. So we include some procedures that are not available 
on SPSS. Sometimes there is alternative software available from the web and other times 
you will find websites which will do the calculation for you. Use your favourite search 
engine to track these down – for example, try t-test calculator and see what you come up 
with. We found lots.

The major downside of statistics programs like SPSS is that although they have almost 
eliminated the labour and frustration of hand-calculations, they have raised the stakes in 
terms of the demands on the statistical analysis. They have made it possible for almost 
anyone to use statistical techniques which were scarcely considered by researchers in the 
past. So the researcher has to understand a wider range of statistical techniques and ideas 
than ever. As a consequence, students have more to learn about. This does mean facing up 
to one’s statistics demons, though these probably will not be too scary if you only just try.

	 1.9	 Quick guide to the book’s procedures and statistical tests

Table 1.1 provides you with an overview of procedures and statistical tests covered in this 
book should you want to skip to the chapter or chapters that you think are most relevant 
to your needs or interests.
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Type/purpose of analysis Suggested procedures Chapter SPSS options

1. Descriptive statistics

Displaying data for a single variable in 
tables and diagrams

Frequency table

Pie chart, bar chart, histogram

Crosstabulation or 
contingency table

Graph, compound clustered 
and stacked bar chart and 
histogram

Scattergram

3, pp. 36–38

3, pp. 38–41

Analyze, Descriptive Statistics, 
Frequencies. . . , pp. 45–46

Displaying data for two or more 
variables in tables and diagrams

7, pp. 93–104

 

 
8, pp. 105–114

Analyze, Tables, Custom Tables. . . ,  
pp. 103–104

Graphs, Chart Builder. . .  or Legacy 
Dialogs, pp. 103–104  

 
Graphs, Chart Builder. . . ,  
pp. 124–125 

Displaying distribution shape of scores Frequency table

Histogram

5, pp. 64–76 Analyze, Descriptive Statistics, 
Frequencies. . . , pp. 75–76

Graphs, Chart Builder. . .  or Legacy 
Dialogs, pp. 75–76

Determining central tendency and 
dispersion

Means, medians, mode, range, 
interquartile range, variance

4, pp. 48–63 Analyze, Descriptive Statistics, 
Frequencies. . . , pp. 62–63 

Determining standard deviation Standard deviation of score 
variable

6, pp. 77–92 Analyze, Descriptive Statistics, 
Descriptives. . . , pp. 90–92

Determining standard error Standard error of score 
variable

12, pp. 164–171 Analyze, Descriptive Statistics, 
Descriptives. . . , pp. 170–171 

Standardising scores Standardised or z-scores 6, pp. 77–92 Analyze, Descriptive Statistics, 
Descriptives. . . , pp. 90–92

2. Frequency variables

Comparing frequencies for one 
unrelated categorical variable

One-way chi-square 18, pp. 243–244 Analyze, Nonparametric Tests, Legacy 
Dialogs, Chi-square. . . , pp. 248–250 

Comparing frequencies for two 
unrelated categorical variables

Chi-square 18, pp. 231–241 Analyze, Descriptive Statistics, 
Crosstabs. . . , pp. 248–250

Comparing frequencies for two 
unrelated categorical variables with 
some low expected frequencies

Fisher test 18, pp. 242–243 Analyze, Descriptive Statistics, 
Crosstabs. . . , pp. 248–250 

Comparing frequencies for two related 
categorical variables

McNemar chi-square test 18, pp. 245 Analyze, Nonparametric Tests, Legacy 
Dialogs, 2 Related Samples. . . , 
pp. 248–250

Comparing frequencies for three or 
more unrelated categorical variables

Loglinear analysis 41, pp. 603–627 Analyze, Loglinear, Model 
Selection. . . , pp. 626–627

Finding predictors for a category 
variable with two categories

Binomial logistic regression 43, pp. 646–690 Analyze, Regression, Binary 
Logistic. . . , pp. 689–690

Finding predictors for a category 
variable with more than two categories

Multinomial logistic regression 42, pp. 628–645 Analyze, Regression, Multinomial 
Logistic. . . , pp. 644–645

3. Score variables

3.1.1 Determining agreement among 
two or more raters

Kappa coefficient 38, pp. 547–550 Analyze, Descriptive Statistics, 
Crosstabs. . . , pp. 552–553

3.1.2 Determining the internal 
reliability of a measure:

of all components of a measure Cronbach’s alpha reliability 38, pp. 544–546 Analyze, Scale, Reliability Analysis. . . , 
pp. 552–553 

of all components when split into two 
halves

Split-half reliability 38, pp 543–544 Analyze, Scale, Reliability Analysis. . . ,  
pp. 552–553

3.1.3 Determining the factorial structure 
or dimensionality of a measure

Principal components analysis 33, pp. 451–472 Analyze, Dimension Reduction, 
Factor. . . , pp. 471–472

	 Table 1.1	 Major types of analysis and suggested SPSS procedures

➜
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Type/purpose of analysis Suggested procedures Chapter SPSS options

3.2. Correlating score and/or 
dichotomous variables

Assessing the linear relationship 
between two score variable, one score 
variable and one binary variables or 
two binary variables

Pearson correlation 
coefficient

8, pp. 105–116

11, pp. 150–163

Analyze, Correlate, Bivariate. . . ,  
pp. 122–123; 162–163

Assessing the linear relationship 
between two ranked score variables

Spearman correlation 
coefficient

8, pp., 116–119 

11, pp. 150–163

Analyze, Correlate, Bivariate. . . ,  
pp. 122–123; 162–163

Eliminating one or more variables from 
a Pearson correlation coefficient

Partial correlation 32, pp. 439–450 Analyze, Correlate, Partial. . . ,  
pp. 449–450

3.3. Predicting one score from 
another score

Simple regression 9, pp. 126–139 Analyze, Regression, Linear. . . ,  
pp. 137–139

3.4. Determining variance in one 
score variable accounted for by two 
or more predictor variables

Finding the smallest number of 
predictors which best predict a score 
variable

Stepwise multiple regression 34, pp. 482–484 Analyze, Regression, Linear. . . ,  
pp. 489–490

Finding which of a number of 
predictors best predict a score variable

Standard or simultaneous 
multiple regression

34, pp. 474–479 Analyze, Regression, Linear. . . ,  
pp. 489–490

Finding if one predictor mediates the 
relation between one predictor and a 
score variable

Standard or simultaneous 
multiple regression

34, pp. 474–479 Analyze, Regression, Linear. . . ,  
pp. 489–490 

Finding whether the prediction of the 
score variable is affected by the order 
in which the predictors are placed

Hierarchical multiple 
regression

34, p. 479 Analyze, Regression, Linear. . . ,  
pp. 505–506 

Testing interaction or moderator 
effects for continuous predictors of a 
score variable

Hierarchical multiple 
regression

39, pp. 554–569 Analyze, Regression, Linear. . . ,  
pp. 574–575

3.5. Determining differences in one 
score variable between two groups

Comparing non-normally distributed 
data for two unrelated groups

Mann–Whitney U-test 21, pp. 271–273 Analyze, Nonparametric Tests, Legacy 
Dialogs, 2 Independent Samples. . . , 
pp. 275–277

Comparing non-normally distributed 
data for two related groups

Sign test 21, pp. 267–268 Analyze, Nonparametric Tests, Legacy 
Dialogs, 2 Related Samples. . . ,  
pp. 275–277

Wilcoxon matched pairs test 21, pp. 269–271 Analyze, Nonparametric Tests, Legacy 
Dialogs, 2 Related Samples. . . ,  
pp. 275–277

Comparing two unrelated sets of 
scores for differences

Unrelated t-test 14, pp. 186–202 Analyze, Compare Means, 
Independent-Samples T Test. . . ,  
pp. 201–202

Comparing two related sets of scores 
for differences

Related t-test 13, pp. 172–185 Analyze, Compare Means, Paired-
Samples T Test. . . , pp. 184–185.

Comparing two variances F-ratio test 22, pp. 281–289 Analyze, Compare Means, Means. . . , 
pp. 288–289

3.6. Determining differences in one 
score variable between two or more 
groups

Comparing non-normally distributed 
data for three or more unrelated groups

Kruskal–Wallis Appendix B2,  
pp. 668–670

Analyze, Nonparametric Tests, Legacy 
Dialogs, K Independent Samples. . . , 
pp. 672–673  

Comparing non-normally distributed 
data for three or more related groups

Friedman’s test Appendix B2,  
pp. 670–671

Analyze, Nonparametric Tests, Legacy 
Dialogs, K Related Samples. . . , 
pp. 672–673
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Type/purpose of analysis Suggested procedures Chapter SPSS options

Comparing one dependent variable in 
three or more unrelated groups

Unrelated one-way analysis of 
variance (ANOVA)

23, pp. 290–307 Analyze, Compare Means, One-Way 
ANOVA. . . , pp. 306–307

Comparing means of two unrelated 
groups when more than two groups

Multiple comparisons 26, pp. 351–361 Analyze, General Linear Model and 
Univariate. . . , pp. 359–361

Comparing one dependent variable in 
three or more related groups

Related one-way analysis of 
variance (ANOVA) or repeated 
measures

24, pp. 308–323 Analyze, General Linear Model, 
Repeated Measures. . . ,  
pp. 322–323

Comparing one dependent variable in 
two or more unrelated variables

Unrelated two-way analysis of 
variance (ANOVA)

25, pp. 324–350 Analyze, General Linear Model, 
Univariate. . . , pp. 348–350

Comparing one dependent variable in 
one related and one unrelated 
variable

Mixed two-way analysis of 
variance (ANOVA)

27, pp. 362–378 Analyze, General Linear Model, 
Repeated Measures. . . ,  
pp. 376–378.

Comparing one dependent variable in 
one or more unrelated variables while 
controlling for one or more related 
variables

One-way analysis of 
covariance (ANCOVA)

28, pp. 379–394 Analyze, General Linear Model, 
Univariate. . . , pp. 392–394.

3.7. Determining differences in two 
or more score variables between two 
or more groups

Comparing two or more dependent 
variables on two or more independent 
variables

Multivariate analysis of 
variance (MANOVA)

29, pp. 395–410 Analyze, General Linear Model, 
Multivariate. . . , pp. 408–410

Determining variables best 
discriminating two or more groups

Discriminant function analysis 30, pp. 411–423 Analyze, Classify, Discriminant. . . ,  
pp. 422–423

4. Determining sample size Power analysis 40, pp. 576–599

5. Averaging effect sizes Meta-analysis 37, pp. 521–539

6. Recoding groups for multiple 
comparison tests

31, p. 434 File, New, Syntax, p. 434

7. Recoding values Recoding old values into new 
values

3, pp. 38, 40–42 Transform, Recode into Different 
Variables. . . , pp. 46–47

8. Selecting subsamples Selecting if 31, pp. 432–433 Data, Select Cases. . . ,  
pp. 432–433

9. Adding and averaging components 
of a measure

Computing new values 36, pp. 515–518 Transform, Compute Variable. . . ,  
pp. 516–518

10. Selecting a random sample 10, pp. 143–149 Data, Select Cases. . . ,  
pp. 148–149

●	 Statistics is a difficult topic for most students but an essential part of psychological research.

●	 The difficulties in learning statistics are more to do with attitudes towards the subject and beliefs about one’s 
own mathematical abilities than actual ability levels. So a basic understanding of the positive contribution 
that statistics makes to psychological research is helpful as is a realistically low expectation of the mathemati-
cal demands that learning statistics imposes.

●	 A sound working knowledge of statistics involves a basic understanding of the workings of the statistical 
technique in question together with the computational skills needed to execute this technique. Ignoring the 
first of these components will not help you to become competent in statistics.

Key points

M01 Introduction to Statistics in Psychology with SPSS 29099.indd   17 05/01/2017   14:53



18	 CHAPTER 1â•‡ Why statistics?

	 Screenshot 1.1	 ‘Analyze’ drop-down menu

Computer Analysis

SPSS Analyze Graphs and Transform drop-down menus

Options for conducting statistics are initially selected from the ‘Analyze’ drop-down menu (Screenshot  1.1). The 
first option on this menu is ‘Reports’ and the last option is ‘Spatial and Temporal Modeling. . . ’. The right-pointing 
arrowheads on the right of options indicate further options on sub-menus. So, for ‘Compare Means’ the first 
option on the sub-menu is ‘Means. . . ’ and the last one is ‘One-Way ANOVA. . . ’ (Screenshot  1.1). Options for 
graphs are at first selected from the ‘Graphs’ drop-down menu (Screenshot  1.2). The first option on this list is 
‘Chart Builder. . . ’ and the last one is ‘Legacy Dialogs’ (see Chapters 8 and 5, respectively). Options for changing 
or transforming data are firstly selected from the ‘Transform’ drop-down menu (Screenshot   1.3). The first 
option on this list is ‘Compute Variable. . . ’ and the last option is ‘Random Number Generators. . . ’. The options 
you are most likely to use on this menu are ‘Compute Variable. . . ’ and ‘Recode into Different Variables. . . ’ (see 
Chapters 36 and 3, respectively).
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	 Screenshot 1.2	 ‘Graphs’ drop-down menu

	 Screenshot 1.3	 ‘Transform’ drop-down menu
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Part 1

Descriptive statistics
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●	 Statistics are used to describe our data but also assess what reliance we can place on infor-
mation based on samples.

●	 A variable is any concept that we can measure and that varies between individuals or cases.

●	 Variables should be identified as score (also known as numerical) variables or nominal (also 
known as category, categorical and qualitative) variables.

●	 Formal measurement theory holds that there are more types of variable – nominal, ordinal, 
interval and ratio. It is difficult to distinguish ordinal, interval and ratio measurement in 
practice in psychology.

●	 Nominal variables consist of named categories whereas score variables are measured in the 
form of a numerical scale which indicates the quantity of the variable.

Some basics 
Variability and measurement

Chapter 2

Overview
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	 2.1	 Introduction

Imagine a world in which everything is the same: people are identical in all respects. They 
wear identical clothes; they eat the same meals; they are all the same height from birth; 
they all go to the same school with identical teachers, identical lessons and identical facili-
ties; they all go on holiday in the same month; they all do the same job; they all live in 
identical houses; and the sun shines every day. They do not have sex as we know it since 
there are no sexes so everyone self-reproduces at the age of 30; their gardens have the 
same plants and the soil is exactly the same no matter whose garden; they all die on their 
85th birthdays and are all buried in the same wooden boxes in identical plots of land. 
They are all equally clever and they all have identical personalities. Their genetic make-up 
never varies. Mathematically speaking all of these characteristics are constants. If this 
world seems less than realistic then have we got news for you – you need statistics! Only 
in a world of standardisation would you not need statistics – in a richly varying world 
statistics is essential.

If nothing varies, then everything that is to be known about people could be guessed 
from information obtained from a single person. No problems would arise in generalising 
since what is true of Sandra Green is true of everyone else – they’re all called Sandra Green 
after all. Fortunately, the world is not like that. Variability is an essential characteristic 
of life and the social world in which we exist. The sheer quantity of variability has to be 
tamed when trying to make statements about the real world. Statistics is largely about 
making sense of variability.

Statistical techniques perform three main functions:

1.	They provide ways of summarising the information that we collect from a multitude 
of sources. Statistics is partly about tabulating your research information or data as 
clearly and effectively as possible. As such, it merely describes the information col-
lected. This is achieved using tables and diagrams to summarise data, and simple for-
mulae which turn fairly complex data into simple indexes that describe numerically 
the main features of the data. This branch of statistics is called descriptive statistics for 
very obvious reasons – it describes the information you collect as accurately and suc-
cinctly as possible. The first few chapters of this book are largely devoted to descriptive 
statistics.

2.	Another branch of statistics is far less familiar to most of us: inferential statistics. This 
branch of statistics is really about economy of effort in research. There was a time 
when in order to find out about people, for example, everyone in the country would 
be contacted in order to collect information. This is done today when the government 
conducts a census of everyone in order to find out about the population of the country 
at a particular time. This is an enormous and time-consuming operation that cannot 
be conducted very often. But most of us are familiar with using relatively small samples 
in order to approximate the information that one would get by studying everybody. 
This is common in public-opinion surveying where the answers of a sample of 1000 
or so people may be used, say, to predict the outcome of a national election. Even 
though samples can sometimes be misleading, nevertheless it is the principle of sam-
pling that is important. Inferential statistics is about the confidence with which we can 
generalise from a sample to the entire population (see Photo 2.1).

3.	The amount of data that a researcher can collect is potentially massive. Some statisti-
cal techniques enable the researcher to clarify trends in vast quantities of data using 
a number of powerful methods. Data simplification, data exploration and data reduc-
tion are among the names given to the process. Whatever the name, the objective is 
the same – to make sense of large amounts of data that otherwise would be much 
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too confusing. These data explanation techniques are mainly dealt with in the later 
chapters of this book.

	 2.2	 Variables and measurement

The concept of a variable is basic but vitally important in statistics. It is also as easy as 
pie. A variable is anything that varies and can be measured. These measurements need 
not correspond very well with everyday notions of measurement such as weight, distance 
and temperature. So the gender of a person is a variable since it can be measured as either 
male or female – and gender varies among people. Similarly, eye colour is a variable 
because a set of people will include some with brown eyes, some with blue eyes and some 
with green eyes. Thus measurement can merely involve categorisation. Clinical psycholo-
gists might use different diagnostic categories such as schizophrenia, bipolar disorder and 
anxiety in research. These diagnostic categories constitute a variable since they are differ-
ent mental and emotional states to which people can be allocated. Such categorisation 
techniques are an important type of measurement in statistics.

Another type of measurement in statistics is more directly akin to everyday concepts 
of measurement in which numerical values are provided. These numerical values are 
assigned to variables such as weight, length, distance, temperature and the like – for 
example, 10 kilometres or 30 degrees. These numerical values are called scores. In 

	
Photo 2.1

	 People vary in very obvious ways but they also vary in terms of their psychological characteristics. Just what would a 
small sample of people such as this tell us about the bigger crowd? (Photo: Dennis Howitt)
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psychological research many variables are measured and quantified in much the same 
way. Good examples are the many tests and scales used to assess intelligence, personality, 
attitudes and mental abilities. In most of these, people are assigned a number (or score) 
in order to describe, for example, how neurotic or how extraverted an individual is. Psy-
chologists will speak of a person having an IQ of 112 or 93, for example, or they will say 
an individual has a low score of 6 on a measure of psychoticism. Usually these numbers 
are used as if they corresponded exactly to other forms of measurement such as weight 
or length. For these, we can make statements such as that a person has a weight of  
60 kilograms or is 1.3 metres tall.

	 2.3	 Major types of measurement

Traditionally, statistics textbooks for psychologists emphasise different types of measure-
ment – usually using the phrase scales of measurement. However, for virtually all practical 
purposes there are just two different types of measurement in statistics. These have already 
been discussed, but to stress the point:

1.	Score/numerical measurement This is the assignment of a numerical value to a meas-
urement. This includes most physical and psychological measures. In psychological 
jargon, these numerical measurements are called scores. We could record the IQ scores 
of five people as in Table 2.1. Each of the numerical values in the table indicates the 
named individual’s score on the variable IQ. It is a simple point, but note that the 
numbers contain information that someone with an IQ of 150 has a higher intelligence 
than someone with an IQ of 80. In other words, the numbers quantify the variable.

2.	Nominal/categorical/category measurement This is deciding to which category of a 
variable a particular case belongs. It is also appropriate to refer to it as a qualitative 
measure since it measures the qualities of the variable rather than the quantity on the 
variable. So, if we were measuring a person’s job or occupation, we would have to 
decide whether or not he or she was a lorry driver, a professor of sociology, a debt 
collector and so forth. This is called nominal measurement since usually the categories 
are described in words and, especially, given names. Thus the category ‘lorry driver’ is 
a name or verbal description of what sort of case should be placed in that category.

Notice that there are no numbers involved in the process of categorisation as such. A 
person is either a lorry driver or not. However, you need to be warned of a possible confu-
sion that can occur. If you have 100 people whose occupations are known, you might 
wish to count how many are lorry drivers, how many are professors of sociology and so 
forth. These counts could be entered into a data table like Table 2.2. Notice that the 
numbers this time correspond to a count of the frequency or number of cases falling into 

	 Table 2.1	 IQ scores of five named individuals

Individual IQ score

Stan 80

Mavis 130

Sanjit 150

Sharon 145

Peter 105
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each of the four occupational categories. They are not scores, but frequencies. The num-
bers do not correspond to a single measurement but are the aggregate of many separate 
(nominal) measurements. There is more about the concept of frequency in Box 2.1.

Frequency
The concept of frequency tends to be taken a little for 
granted in statistics textbooks although it can cause some 
confusion in practice. A frequency is simply a count of 
how often a particular something occurs in your data. So 
counting the number of people with red hair in your sam-
ple gives you the frequency of red-haired people. Quite 
obviously, therefore, frequency and frequent are not the 
same – a frequency of 1 cannot usually be described as 
frequent. In some disciplines, frequency is defined as how 
often something occurs in a given period of time, such as 
in the frequency of sound waves. However, in psychology, 
this usage is not so common and frequency simply means 
the number of times something occurs in your data. You 
will find the word count used instead of frequency espe-
cially in statistical analysis computer program output.

Frequency is the main statistical procedure which can 
be used with nominal category data. The analysis of nomi-
nal category data is largely in terms of counting the fre-
quency of occurrence of each of the categories of nominal 
category variables. This is straightforward enough. Things 
risk getting confused when frequencies are used in relation 
to score data. So, as we have seen, we can count the fre-
quency of any sort of characteristic in our data such as the 
frequency of children with dyslexia in a school class. But, 
equally, we can count the frequency of participants in a 
research study with an IQ of 140. That is, dyslexia and 140 
are both categories (different values) in our data and so 

Box 2.1	 Key concepts

their frequencies can be counted. Dyslexia may have a fre-
quency of 15 and the IQ of 140 may have a frequency of 
23 or whatever. It is in the idea that the IQ of 140 has the 
frequency of 23 that the confusion may emerge. Surely 140 
and 23 are both numbers just as 15 is a number? Indeed 
they are all numbers, but 140 is a score on the variable IQ 
and 23 is its frequency. What this boils down to is as 
follows:

●	 Frequency refers to the number of times that a particular 
category (or value) of a variable appears in the data. It 
is irrelevant whether these categories are given a name 
(e.g. dyslexia) or a number (e.g. 140).

●	 Scores refer to the amount or extent or quantity of a 
variable. So a number can be a frequency or a score. 
Consequently, it is important to carefully distinguish 
between the two since both are numbers.

There is another potential confusion in relation to 
scores. Sometimes, a researcher will count how often a par-
ticipant does something and use this as a score. So, for 
example, a researcher might be interested in people’s abili-
ties to write text messages. A measure of skill at texting 
might be the number of errors that a person makes while 
texting for one minute. In this case, each person’s frequency 
of making errors is being used as a score on the variable 
‘texting errors’, for example.

	 Table 2.2	 Frequencies of different occupations

Occupational category Number or frequency in set

Lorry drivers 27

Sociology professors 10

Debt collectors 15

Other occupations 48
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Make a habit of mentally labelling variables as numerical scores or nominal categories. 
Doing so is a big step forward in thinking statistically. This is all you really need to know 
but you should be aware that a more complex system has been used in psychology for 
many years and that SPSS employs a variation on that. Read the following section to learn 
more about scales of measurement.

	 ■	 Formal measurement theory

Many psychologists speak of four different scales of measurement. Conceptually they are 
distinct. Nevertheless, for most practical situations in psychologists’ use of statistics the 
nominal category versus numerical scores distinction discussed above is sufficient.

The four ‘theoretical’ scales of measurement are as follows. The scales numbered 2, 3 
and 4 are different types of numerical scores.

1.	Nominal categorisation This is the placing of cases into named categories – nominal clearly 
refers to names. It is exactly the same as our nominal measurement or categorisation pro-
cess. This sort of data is often referred to as categorical data as well as nominal data.

2.	Ordinal (or rank) measurement The assumption here is that the values of the numerical 
scores tell us little else other than which is the smallest, the next smallest and so forth 
up to the largest. In other words, we can place the scores in order (hence ordinal) from 
the smallest to the largest. It is sometimes called rank measurement since we can assign 
ranks to the first, second, third, fourth, fifth, etc. in order from the smallest to the 
largest numerical value. These ranks have the numerical value 1, 2, 3, 4, 5, etc. You 
will see examples of this later in the book, especially in Chapters 8 and 21. However, 
few psychologists collect data directly as ranks.

3.	Interval or equal-interval measurement The basic idea here is that in some cases the 
intervals between numbers on a numerical scale are equal in size. Thus, if we measure 
distance on a scale of centimetres then the distance between 0 and 1 centimetre on our 
scale is exactly the same as the difference between 4 and 5 centimetres or between 11 
and 12 centimetres on that scale. This is obvious for some standard physical measure-
ments such as temperature.

4.	Ratio measurement This is exactly the same as interval scale measurement with one 
important proviso. A ratio scale of measurement has an absolute zero point that is 
measured as 0. Most physical measurements such as distance and weight have zero 
points that are absolute. Thus zero on a tape measure is the smallest distance one 
can have – there is no distance between two coinciding points. With this sort of scale 
of measurement, it is possible to work out ratios between measures. So, for example, 
a town that is 20 kilometres away is twice as far away as a town that is only  
10 kilometres away. A building that is 15 metres high is half the height of a building 
that is 30 metres high. (Not all physical measures have a zero that is absolute  
zero – this applies particularly to several measures of temperature. Temperatures 
measured in degrees Celsius or Fahrenheit have points that are labelled as zero. 
However, these zero points do not correspond to the lowest possible temperature you 
can have. It is then meaningless to say, for example, that it is twice as hot if the 
temperature is 20 degrees Celsius than if it were 10 degrees Celsius.)

These different scales of measurement are illustrated in Figure 2.1 which includes 
additional examples. Nominal or categorical measurement is to be found in a distinct, 
blue box because it is very different from the other three types of measurement. Nominal 
or category measurement is about categorisation and involves qualities not quantification. 
The types of measurement in the green sections are similar to each other as they involve 
quantities. In practice, it is hard to separate them in terms of their applicability to 
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psychological data. Thus it is far from easy to apply the last three types of measurement 
in psychology with certainty. Put another way, it is usually very difficult to distinguish 
between ordinal, interval and ratio scales of measurement. Most psychological scores do 
not have any directly observable physical basis which makes it impossible to decide 
whether they consist of equal intervals or have an absolute zero. It is noteworthy that the 
most convincing examples of these three different types of measurement come from the 
physical world, such as temperature, length and weight – it is virtually impossible to think 
of examples from psychology itself. Time perhaps is a rare example as in reaction time.

For many years this problem caused great controversy and confusion among psycholo-
gists. For the most part, much current usage of statistics in psychology ignores the distinc-
tions between the three different types of numerical scores. This has the support of many 
statisticians. On the other hand, some psychologists prefer to emphasise that some data 
are best regarded as rankable and lack the qualities which are characteristic of interval/
ratio data (see Figure 2.2). They are more likely to use the statistical techniques to be found 
in Chapter 21 and the ranking correlation coefficient (Chapter 8) than others. In other 
words, for precisely the same data, different psychologists will adopt different statistical 
techniques. Usually this will make little difference to the outcomes of their statistical analy-
ses – the results. In general, it will cause you few, if any, problems if you ignore the three 
subdivisions of numerical score measurement in your practical use of statistics. The excep-
tions to this are discussed in Chapters 8 and 21. Since psychologists rarely if ever collect 
data in the form of ranks, Chapters 3 to 7 are unaffected by such considerations.

What system does SPSS use? Well the terms nominal and ordinal are used as described 
above. However, interval and ratio levels of measurement are combined by SPSS under 
the name ‘scale’. In ‘Variable View’ (see SPSS instructions at the end of this chapter) on 
SPSS you can specify the nature of each variable using these three categories of nominal, 
ordinal and scale. Mostly SPSS works fine if you do not do this but you may at some stage 
find that it demands you do so for a particular procedure. Use the drop-down menu in 
the column headed ‘Measure’. It may say ‘unknown’ if no information has been given.

	 Figure 2.1	 Different scales of measurement and their characteristics
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	 Figure 2.2	 Two practical types of scales of measurement

●	 Always ask yourself what sort of measurement it is you are considering – is it a numerical score on a variable 
or is it putting individuals into categories?

●	 Never assume that a number is necessarily a numerical score. Without checking, it could be a frequency of 
observations in a named category.

●	 Clarity of thinking is a virtue in statistics – you will rarely be expected to demonstrate great creativity in your 
statistical work. Understanding precisely the meaning of terms is an advantage in statistics.

Key points
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Computer Analysis

Some basics of data entry using SPSS

Nominal (category/categorical) data are usually analysed differently from data based on scores (including ordinal, 
interval and ratio data) in statistics. Generally nominal data are entered in the form of an arbitrary numerical code 
(e.g. 1 = females, 2 = males) which stands for verbal descriptions and, of course, scores are entered as num-
bers too. The data are entered in the spreadsheet called ‘Data View’ (Screenshot  2.2). You specify details of each 
variable in ‘Variable View’ (Screenshot  2.1). Switch between the two using the tab at the bottom of the screen. 
You may wish to indicate the type of measurement each variable is in ‘Variable View’ by using the drop-down 
menu under ‘Measure’ six columns to the right of ‘Decimals’. Usually it does not matter but some SPSS analyses 
require it. Overwhelmingly, psychological data is collected in the form of scores.

Figure 2.3	 Entering score and nominal data into SPSS
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	 Screenshot 2.2	 Part of the ‘Data View’ window

	 Screenshot 2.5	 Value and label inserted in ‘Value Labels’ box

	 Screenshot 2.1	 Part of the ‘Variable View’ window

	 Screenshot 2.4
	 Input value and label in the ‘Value 

Labels’ box	 Screenshot 2.3	 Select appropriate ‘Values’ cell
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●	 Tables and diagrams are important aspects of descriptive statistics (the description of the 
major features of the data). Examining data in detail is a vital stage of any statistical analysis 
and should never be omitted. At most, a very small number of important tables and diagrams 
will be included in your report as they consume a lot of space.

●	 This chapter describes how to create and present tables and diagrams for individual 
variables.

●	 Statistical tables and diagrams should effectively communicate information about your data. 
Beware of complexity.

●	 The type of data (nominal versus score) largely determines what an appropriate table and 
diagram will be.

●	 If the data are nominal, then simple frequency tables, bar charts or pie charts are most 
appropriate. The frequencies indicate the numbers of cases in each of the separate 
categories.

●	 If the data are scores, then frequency tables or histograms are appropriate. However, to keep 
the presentation uncluttered and to help clarify trends, it is often best to put the data into 
bands (or ranges) of adjacent scores.

Describing variables
Tables and diagrams

Chapter 3

Overview

Preparation

Remind yourself what a variable is from Chapter 2. Similarly, if you are still not sure of the nomi-
nal (categorisation) form of measurement and the use of numerical scores in measurement 
then revise these too.
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	 3.1	 Introduction

You probably know a lot more about statistics than you think. Statistical tables and dia-
grams are fairly common in newspapers and magazines and on television; children become 
familiar with statistical tables and diagrams at school. Skill in constructing tables and 
diagrams is essential because researchers collect large amounts of data from numerous 
people (see Box 3.1). If we asked 100 people their age, gender, marital status (divorced, 
married, single, etc.), their number of children and their occupation this would yield 500 
separate pieces of information. Although this is small fry compared with much research, 
it is not very helpful to present these 500 measurements in your research report. Such 
unprocessed information is called raw data. Statistical analysis has to be more than 
describing the raw ingredients. It requires the data to be structured in ways that effectively 
communicate the major trends or characteristics of your data. If you fail to structure your 
data, you may as well just give the reader copies of your questionnaires or observation 
schedules to interpret themselves.

There are very few rules regarding how to produce tables and diagrams in statistics so 
long as they are clear to the reader and concise; they need to communicate quickly the 
important trends in the data. There is absolutely no point in using tables and diagrams 
that do not ease the task of communication. Probably the best way of deciding whether 
your tables and diagrams do their job well is to ask other people to decipher what they 
mean. Tables which are unclear to other people are generally useless. Of course, if you 
don’t understand your table or diagram then it is unlikely that other people can.

Descriptive statistics are, by and large, relatively simple visual and numerical tech-
niques for describing your data’s major features. Data analysis begins with a thorough 
examination of the statistical characteristics of each variable. The researcher may spot 
problems at this stage but, more importantly, they become aware of the nature of their 
data. What is the frequency of people in each category of a variable? What is the average 
score on another variable? Never regard descriptive statistical analysis as an unnecessary 

Multiple responses
One of the easiest mistakes to make in research is to allow 
participants in your research to give more than one answer 
to a single question. So, for example, if you ask people to 
name their favourite television programme and allow each 
person more than one answer, you will find that the data 
can be very tricky to analyse thoroughly. Take our word for 
it for now: statistics in general do not handle multiple 
responses very well. Certainly it is possible to draw up 
tables and diagrams, but some of the more advanced statis-
tical procedures become more difficult to apply. You will 
sometimes read comments to the effect that the totals in a 
table exceed the number of participants in the research. This 
is usually because the researcher has allowed multiple 

responses to a single variable. So only allow the participants 
in your research to give one piece of data for each variable 
you are measuring to avoid digging a pit for yourself. If you 
plan your data analysis in detail before you collect your 
data, you should be able to anticipate any difficulties.

It is possible to do something about data which allow 
multiple responses. This is to use dummy coding, which is 
discussed later (Chapter 42). Essentially what one does is 
to take every possible response as a separate new variable 
and code each person’s data for the presence or absence of 
each of these new variables. Of course, if there are a lot of 
different responses then this involves creating a lot of new 
variables.

Box 3.1	 Focus on
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or trivial stage in research. It is probably more informative than any other aspect of data 
analysis. Box 3.2 explains the crucial role of descriptive statistics in research further.

The distinction between nominal (category) data and numerical scores discussed in the 
previous chapter is important in terms of the appropriate tables and diagrams to use. 
Some only work for nominal data and some only work for score data.

	 3.2	 Choosing tables and diagrams

So long as you are able to decide whether your data are either numerical scores or nominal 
(category) data, there are few other choices to be made since the available tables and 
diagrams are essentially dependent upon this distinction. Figure 3.1 gives some of the key 
steps when considering tables and diagrams.

Descriptive statistics
The basic idea of descriptive statistics is very clear. Descrip-
tive statistics are the various techniques which help us get 
a picture of what is happening in our data. They include 
tables which give averages, frequencies and the like and 
diagrams which represent very much the same things but 
in a more graphic, pictorial form. Descriptive statistics can 
involve the examination of one variable on its own or the 
relationships between two or more variables. Many aspects 
of descriptive statistics are very familiar to us all even 
before we study statistics. We were all taught at least some 
of them at school. One consequence of this is that we tend 
to overlook their vital role in our research. This is a mistake 
as descriptive statistical techniques contain what is essential 
to understanding our data – they provide a window 
through which we can begin to appreciate what is going on 
in our data. They are the bedrock on which other more 
complex statistical techniques are built. To be sure, there 
are more demanding techniques to learn about in statistics 
than tables and diagrams. This book and others are full of 
seemingly complex and, sometimes, difficult new things to 
learn. The danger is that we neglect descriptive statistics in 
favour of these. Indeed, there are some popular statistics 
textbooks which almost entirely overlook how to construct 
good tables and diagrams. Using descriptive statistics effec-
tively allows us to see the trends, patterns, quirks, bumps 

Box 3.2	 Key concepts

and irregularities in our data. Keep sight of what descrip-
tive statistics say about your data as this helps you antici-
pate problems in the data analysis. They are an important 
part of understanding the ‘fancier’ stuff that comes later.

Qualitative researchers in psychology spend considerable 
amounts of time and a great deal of effort in familiarising 
themselves with their data. So why should quantitative 
researchers not do the same? Try not to think of tables and 
diagrams as merely something to adorn your practical 
reports and dissertations. You will not have space to include 
all of the tables, diagrams and other descriptive statistics 
which you create in the early part of your analysis. Descrip-
tive statistics are best seen as a tool in the analysis process 
rather than merely parts of the final product – your research 
report. Use descriptive techniques to explore your data thor-
oughly, knowing that you may need to modify your initial 
attempts in the light of experience. Data analysis is a sort of 
trial-and-error process of finding out what works for you 
and for your data. Statistics programs allow you to generate 
numerous tables and diagrams, some of which are useful 
and illuminating, although others verge on the useless. The 
not-so-good stuff is easily deleted from your computer. Be 
prepared to devote quite some time to this stage of your 
analysis. It will pay dividends in the long run and bring you 
close to the data from your study early on.

M03 Introduction to Statistics in Psychology with SPSS 29099.indd   35 04/01/2017   15:48



36	 CHAPTER 3â•‡ Describing variables: Tables and diagrams

	 ■	 Tables and diagrams for nominal (category) data

One of the main characteristics of tables and diagrams for nominal (category) data is that 
they have to show the frequencies of cases in each category used. While there may be as 
many categories as you wish, it is not the function of statistical analysis to communicate 
all of the data’s detail; the task is to identify the major trends or features. For example, 
imagine you are researching the public’s attitudes towards private health care. If you ask 
participants in your research their occupations then you might find that they mention tens 
if not hundreds of different job titles – newsagents, homemakers, company executives and 
so forth. Simply counting the frequencies with which different job titles are mentioned 
results in a vast number of categories. You need to think of relevant and meaningful ways 
of reducing this vast number into a smaller number of much broader categories that might 
reveal important trends. For example, since the research is about a health issue you might 
wish to form a category made up of those involved in health work – some might be den-
tists, some nurses, some doctors, some paramedics and so forth. Instead of keeping these 
as different categories, they might be combined into a category ‘health worker’. There are 
no hard-and-fast rules about combining to form broader categories. It depends on the 
purpose of your research and the detail of the data as much as anything. The following 
might be useful rules of thumb:

●	 Keep your number of categories low, especially when you have only small numbers of 
participants in your research.

●	 Try to make your ‘combined’ categories meaningful and sensible in the light of the pur-
poses of your research. It would be nonsense, for example, to categorise jobs by the letter 
of the alphabet with which they start – nurses, nuns, nursery teachers and national 
footballers. All of these have jobs beginning with the same letter, but it is very difficult 
to see any other common thread which allows them to be combined meaningfully.

	 Figure 3.1	 Conceptual steps for understanding tables and diagrams
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In terms of drawing tables, all we do is to list the categories we have chosen and give 
the frequency of cases that fall into each of the categories (Table 3.1). The frequencies are 
presented in two ways in this table – simple frequencies and percentage frequencies. A 
percentage frequency is the frequency expressed as a percentage of the total of the frequen-
cies (or total number of cases, usually).

Notice also that one of the categories is called ‘other’. This consists of those cases which 
do not fit into any of the main categories. It is, in other words, a ‘rag bag’ category or 
miscellany. Generally it is best to have a small number of cases in the ‘other’ category.

Occupation Frequency Percentage frequency

Nuns 17 21.25

Nursery teachers 3 3.75

Television presenters 23 28.75

Students 20 25.00

Other 17 21.25

	
Table 3.1

	

How percentage frequencies work

Explaining statistics 3.1

Many readers will not need this, but if you are a little rusty with simple maths, it might be helpful.
Throughout this book you will find sections headed ‘Explaining statistics’. Although most of the statistics discussed 

in this book may be calculated using SPSS or other computer programs, not everyone is satisfied by simply pressing a 
few computer keys. They like to know a bit more about how the statistical analysis is carried out. Some may prefer simply 
to go to the instructions for doing the analysis on the computer and ignore the following. However, most people will 
learn better by knowing something about what is involved in the calculation that the computer does. We will show you 
how to do the calculation by hand – not because we think that this is the best way to do the calculation, because it is not. 
By working through the calculation, you should get some idea though of the mechanics of the statistical technique and 
understand some things which a computer analysis alone will not clarify. We are not suggesting that the computer does 
things exactly this way but that this will approximate what the computer does.

The percentage frequency for a particular category, say for students, is the frequency in that category expressed as a 
percentage of the total frequencies in the data table.

Step 1	 What is the category frequency? For students in Table 3.1:

category frequency[students] = 20

	 Add up all of the frequencies in Table 3.1
 total frequencies = nuns + nursery teachers + TV presenters + students + other

 = 17   +  3 +  23 +    20 +  17
 = 80

	  Percentage frequency[students] =
category frequency[students] * 100

total frequencies

 =
20 * 100

80
=

2000
80

= 25%

Step 1

Step 2

Step 3

�Occupational status of participants in the research expressed as frequencies 
and percentage frequencies
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One advantage of using computers is that they enable experimentation with different 
schemes of categorising data in order to decide which is best for your purposes. In this 
case, you would use initially narrow categories for coding your data. Then you can tell 
the computer which of these to combine into broader categories. This process is gener-
ally termed recoding and simply means putting a category into a new category or put-
ting several categories into a new combined category. Recode is a procedure in SPSS. 
You will find it under ‘Transform’ which gives you the choice of recoding the same 
variable or creating a new variable for the recoded data (see Computer Analysis at the 
end of this chapter and Chapter 31). Recode into a new variable unless you have good 
reason not to.

Sometimes it is preferable to turn frequency tables into diagrams. Good diagrams are 
quickly understood and add variety to the presentation. The main types of diagram for 
nominal (category) data are pie diagrams and bar charts. A pie diagram is a very familiar 
form of presentation – it simply expresses each category as a slice of a pie which represents 
all cases (see Figure 3.2).

Notice that the number of slices is small – a multitude of slices can be confusing. Each 
slice is clearly marked with its category name, and the percentage frequency in each cat-
egory also appears.

In Table 3.1, 25.00% of cases were students. In order to turn this into the correct angle 
for the slice of the pie, you simply need to multiply 25.00 by 3.6 to give an angle of  
90 degrees.

	 Figure 3.2	 Simple pie diagram

How pie diagrams work
There is nothing difficult in constructing a pie diagram though most of the time we would use a computer program. 
Our recommendation is that you turn each of your frequencies into a percentage frequency. Since there are 360 
degrees in a circle, if you multiply each percentage frequency by 3.6 you will obtain the angle (in degrees) of the slice 
of the pie which you need to mark out. In order to create the diagram, you will require a protractor to measure the 
angles. However, computer graph packages are standard at any university or college and do an impressive job – SPSS 
included.

Explaining statistics 3.2

M03 Introduction to Statistics in Psychology with SPSS 29099.indd   38 04/01/2017   15:48



	 3.2â•‡ Choosing tables and diagrams	 39

Figure 3.3 shows a bad example of a pie diagram for purposes of comparison. There 
are several problems with this pie diagram:

●	 There are too many small slices identified by different shading patterns and the legend 
takes time to decode.

●	 It is not too easily seen what each slice concerns, and the relative sizes of the slices are 
difficult to judge. We have the size of the slices around the figure and a separate legend 
or key to identify the components to help cope with the overcrowding problem. In 
other words, too many categories have resulted in a diagram which is far from easy to 
read – a cardinal sin in any statistical diagram.

A simple table of the frequencies might be more effective in this case.
Another very familiar form of statistical diagram for nominal (category) data is the bar 

chart. Again these charts are very common in the media. Basically they are diagrams in 
which bars represent the size of each category. An example is shown in Figure 3.4.

The relative lengths (or heights) of the bars quickly reveal the main trends in the data. 
With a bar chart, there is very little to remember other than that the bars have a standard 
space separating them. The spaces indicate that the categories are not in a numerical 
order; they are frequencies of categories, not scores.

It is hard to go wrong with a bar chart (that is not a challenge!) so long as you remem-
ber the following:

●	 The heights of the bars represent frequencies (number of cases) in a category.

●	 Each bar should be clearly labelled as to the category it represents.

	 Figure 3.3	 Poor pie diagram

	 Figure 3.4	 Bar chart showing occupational categories in Table 3.1
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●	 Too many bars make bar charts hard to follow.

●	 Avoid having many empty or near-empty categories which represent very few cases. 
Generally, the information about substantial categories is the most important. (Small 
categories can be combined together as an ‘other’ category.)

●	 Nevertheless, if important categories have very few entries then this needs to be shown 
clearly. So, for example, a researcher who is particularly interested in opportunities for 
women surveys people in top management and finds very few women employed in such 
jobs. This is easily shown in a simple bar chart comparing the frequencies of men and 
women in top jobs. There is little point in a bar chart which shows the occupations of 
a sample of women in general as their scarcity in top management jobs will be obscured 
by all of the other categories. The chart will not have made its point strongly. Once 
again, there are no hard-and-fast rules to guide you – common sense will take you a 
long way.

●	 Make sure that the vertical axis (the heights of the bars) is clearly marked as being 
frequencies or percentage frequencies.

●	 The bars should be of equal width.

In newspapers and on television you are likely to come across a variant of the bar chart 
called the pictogram. In this, the bars of the bar chart are replaced by varying sized draw-
ings of something eye-catching to do with your categories. Thus, pictures of men or 
women of varying heights, for example, replace the bars. Pictograms are rarely used in 
professional presentations. The main reason is that pictures of things get wider as well as 
taller as they increase in size. This can misrepresent the relative sizes of the categories, 
given that readers easily forget that it is only the height of the picture that counts.

	 ■	 Tables and diagrams for numerical score data

One crucial consideration when deciding what tables and diagrams to use for score data 
is the number of separate scores recorded for the variable in question. This can vary 
markedly. So, for example, age in the general population can range from newly born to 
over 100 years of age. If we merely recorded ages to the nearest whole year then a table 
or diagram may have entries for 100 different ages. Such a table or diagram would look 
horrendous. If we recorded age to the nearest month, then we could multiply this number 
of ages by 12! Such scores can be grouped into bands or ranges of scores to allow effective 
tabulation (Table 3.2). This sort of grouping into bands involves the recoding procedure 
when using SPSS.

Many psychological variables have a much smaller range of numerical values. So, for 
example, it is fairly common to use questions which pre-specify just a few response 

Age range Frequency

0–9 years 19

10–19 years 33

20–29 years 17

30–39 years 22

40–49 years 17

50 years and over 3

	 Table 3.2	 Ages expressed as age bands
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alternatives. The so-called Likert-type questionnaire item is a good case in point. Typically 
this looks something like this:

Statistics is my favourite university subject:
Strongly agreeâ•… Agreeâ•… Neither agree nor disagreeâ•… Disagreeâ•… Strongly disagree

Participants completing this questionnaire circle the response option that best fits their 
personal opinion. It is conventional in this type of research to code these different response 
alternatives on a five-point scale from one to five. Thus strongly agree might be coded 1, 
neither agree nor disagree 3, and strongly disagree 5. This scale therefore has only five 
possible values. Because of this small number of possible answers, a table based on this 
question will be relatively simple. Indeed, if students are not too keen on statistics, you 
may well find that they select only the disagree and strongly disagree categories.

Tabulating such data is quite straightforward: you can simply report the numbers or fre-
quencies of replies for each of the different categories or scores as in Table 3.3. A histogram 
might be the best form of statistical diagram to represent these data. At first sight, histograms 
look very much like bar charts but without gaps between the bars. This is because the histo-
gram does not represent distinct unrelated categories but different points on a numerical meas-
urement scale. So a histogram of the above data might look like Figure 3.5.

But what if your data have numerous different possible values of the variable in ques-
tion? One common difficulty for most psychological research is that the number of 
respondents tends to be small. The large number of possible different scores on the variable 
is therefore shared among very few respondents. Tables and diagrams should present major 
features of your data in a simple and easily assimilated form. So, sometimes you will have 
to use bands of scores rather than individual score values, just as you did for Table 3.2. 
So, if we asked 100 people their ages we could categorise their replies into bands such as 

Response category Value Frequency

Strongly agree 1 17

Agree 2 14

Neither agree nor disagree 3 6

Disagree 4 2

Strongly disagree 5 1

	 Table 3.3	 Distribution of students’ attitudes towards statistics

	 Figure 3.5	 Histogram of students’ attitudes towards statistics
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0–9 years, 10–19 years, 30–39 years, 40–49 years and a final category of those 50 years 
and over. By using bands we reduce the risk of empty parts of the table and allow any 
trends to become clear (Figure 3.6). This does not mean that you have to use these bands 
for additional statistical analyses – the point is that tables and diagrams need to show 
things clearly and if this needs the use of bands or ranges of scores then so be it.

How one chooses the bands to use is an important question. The answer is a bit of luck 
and judgement, and a lot of trial and error. It is very time-consuming to rejig the ranges 
of the bands when one is analysing the data by hand. One big advantage of computers is 
that they will recode your scores into bands repeatedly until you have tables which seem 
to do the job as well as possible. The criterion is still whether the table communicates 
information effectively.

The one rule is that the bands ought to be of the same size – that is cover, for example, 
equal ranges of scores. Generally this is easy except at the upper and lower ends of the 
distribution. Perhaps you wish to use ‘over 70’ as your upper range. This, in modern 
practice, can be done as a bar of the same width as the others, but must be very carefully 
marked. (Strictly speaking, the width of the band should represent the range of scores 
involved and the height reduced in the light of this. However, this is rarely done in modern 
psychological statistics.) One might redefine the bands of scores and generate another 
histogram based on identical data but a different set of bands (Figure 3.7).

	 Figure 3.6	 Use of bands of scores to enable simple presentation

	 Figure 3.7	 Histogram showing ‘collapsed’ categories
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It requires some thought to decide which of the diagrams is best for a particular purpose 
and the style of chart which would be best. You will find many different sorts of charts in 
SPSS in ‘Legacy Dialogs’ (Screenshot 5.5) or ‘Chart Builder. . . ’ (Screenshot 8.7) on the 
‘Graphs’ drop-down menu. There are far too many to discuss here but SPSS does illustrate 
the range that it can draw. The SPSS instructions at the end of this chapter and Chapter 8 
will get you started.

	 3.3	 Errors to avoid

There are a couple of mistakes that you can make in drawing up tables and diagrams:

●	 Do not forget to head the table or diagram with a succinct description of what it con-
cerns. You will notice that we have done our best throughout this chapter to supply 
each table and diagram with a clear title.

●	 Label everything on the table or diagram as clearly as possible. What this means is that 
you have to mark your bar charts and histograms in a way that tells the reader what 
each bar means. Then you must indicate what the height of the bar refers to – probably 
either frequency or percentage frequency.

Note that this chapter has concentrated on describing a single variable as clearly as 
possible. This is known as a univariate analysis. In Chapter 8, methods of making tables 
and diagrams showing the relationships between two or more variables are described.

Using graphs and tables

The extent of the use of tables and diagrams varies markedly in psychology. Some subfields use diagrams to a 
greater extent than others. While it is usually impossible to incorporate every diagram used in data analysis in 
the final report, diagrams can be very persuasive. So they should be considered for inclusion when they tell an 
interesting ‘story ’.

Carr and colleagues (2012) used the second Australian National Survey of High Impact Psychosis in order to 
identify its policy implications. Using bar charts, they show that financial matters, social isolation/loneliness, 
and lack of employment were the main challenges foreseen by sufferers of psychosis in the years to come.

Rothbard and Wilk (2011) examined how a person’s mood at the start of the workday primes how they see 
events at work later in the day in relation to the worker’s job performance in a call centre. Graphical methods 
were used to show such things as the variation in mood at the start of day over time. Start of day mood affected 
the call centre employees’ perceptions of how the customer was feeling emotionally during the telephone 
conversation and the employees’ response to the calls.

Skinner (e.g. 1948) developed operant conditioning which had a big influence on behaviourist psychology. He 
had a strong preference for the use of graphical methods rather than statistics in his work on animal condition-
ing. His research findings were usually presented in graph form and he had little time for the sort of inferential 
statistics which dominates modern psychological research.

Research examples

➜
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●	 Try to make your tables and diagrams useful. It is not usually their purpose to record the data as you collected 
it in your research. Of course you can list your data in the appendix of projects that you carry out or include 
it on a disk, but this is not useful as a way of illustrating trends. It is part of a researcher’s job to make the data 
accessible to the reader in a structured form that is easily understood by the reader.

●	 Especially when using computers, it is very easy to generate useless tables and diagrams. This is usually 
because computer analysis encourages you not to examine your raw data in any detail. This implies that you 
should always regard your first analyses as tentative and merely a step towards something better.

●	 If a table is not clear to you, it is unlikely to be any clearer to anyone else.

●	 Check each table and diagram for clear and full labelling of each part. Especially, check that frequencies are 
clearly marked as such.

●	 Check that there is a clear, helpful title to each table and diagram.

Key points

Smith-Bell, Burhans and Schreurs (2012) explored animal models of post-traumatic stress disorder. Such models 
assume that fear conditioning can result in responses to innocuous cues the same as to the traumatic event. 
The researchers employed classical conditioning methods. Their data were analysed to a substantial extent using 
graphs. Data from research using rabbits suggested that 25% exhibited a conditioned specific reflex modification 
similar to the response to innocuous cues that is characteristic of post-traumatic stress disorder.

Spini, Elcheroth and Figini (2009) analysed the content of social psychology journals to establish how extensively 
the concept of time was involved. The contents of the articles were read and the articles coded for different 
aspects of the coverage of time. Using tables to present the frequencies, etc. involved, the researchers found 
that most research studies do not include time- or age-related explanatory variables.
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Computer analysis

Tables, diagrams and recoding using SPSS

Interpreting and reporting the output

●	 Tables and similar diagrams are primarily part of the initial analysis of your data and can help you to 
identify significant features of the data – such as unusual distributions of variables and so forth. It would 
be usual to generate many more charts and tables than you include in your report.

●	 One therefore has to be selective about what charts and tables one includes in one’s report. They are 
space consuming and often can be summarised in a few words – and so might not need to be 
included. Charts and tables included in your report should be very clear, fully labelled and as 
informative as possible.

●	 See Computer Analysis in Chapter 4 for the analysis of score data.

	 Screenshot 3.1	 Enter nominal variables into ‘Data Editor’

	              Figure 3.8	 SPSS steps for producing tables and diagrams to describe a nominal category variable

M03 Introduction to Statistics in Psychology with SPSS 29099.indd   45 04/01/2017   15:48



46	 CHAPTER 3â•‡ Describing variables: Tables and diagrams

	 Screenshot 3.4	 Occupation frequency output

	        Figure 3.9	 SPSS steps for recoding values

See Computer Analysis in Chapter 4 for the analysis of score data.

	 Screenshot 3.3	 On ‘Analyze’ select ‘Frequencies . . . ’	 Screenshot 3.2	 Select ‘Nominal’ ‘Measure’
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	 Screenshot 3.8	 New values appear in ‘Data View’

Interpreting and reporting the output

●	 Tables and similar diagrams are primarily part of the initial analysis of your data and can help you to 
identify significant features of the data – such as unusual distributions of variables and so forth. It 
would be usual to generate many more charts and tables than you include in your report.

●	 One therefore has to be selective about what charts and tables one includes in one’s report.  
They are space consuming and often can be summarised in a few words – and so might not  
need to be included. Charts and tables included in your report should be very clear, fully labelled  
and as informative as possible.

	 Screenshot 3.5	 Select ‘Recode into Different Variables. . . ’

	 Screenshot 3.7	 Select new values

	 Screenshot 3.6	 Name new variable
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●	 Scores can be described or summarised numerically – for example the average of a sample 
of scores can be given.

●	 There are several measures of central tendency – the most typical or most likely score or value.

●	 The mean score is simply the average score assessed by the total of the scores divided by 
the number of scores.

●	 The mode is the numerical value of the most frequently occurring score.

●	 The median is the score in the middle if the scores are ordered from smallest to largest.

●	 The spread of scores can be expressed as the range (which is the difference between the 
largest and the smallest score).

●	 Variance (an indicator of variability around the average) indicates the spread of scores in 
the data. Unlike the range, variance takes into account all of the scores. It is a ubiquitous 
statistical concept.

●	 Nominal data can only be described in terms of the numbers of cases falling in each category. 
The mode is the only measure of central tendency that can be applied to nominal (categorical)  
data.

●	 Outliers are unusually large or small values in your data which are very atypical of your data. 
They can create the impression of trends in your analysis which are not really present. Iden-
tifying such outliers and dealing with them effectively can have an important impact on the 
quality of your analysis.

Describing variables 
numerically
Averages, variation and spread

Chapter 4

Overview

Preparation

Revise the meaning of nominal (category) data and numerical score data.
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	 4.1	 Introduction

Tables and diagrams take up a lot of space. It can be more efficient to use numerical 
indexes to describe the distributions of variables. For this reason, you will find relatively 
few pie charts and the like in published research. One numerical index is familiar to  
everyone – the numerical average (or arithmetic mean). Large amounts of data can be 
described or summarised adequately using just a few numerical indexes.

What are the major features of data that we might attempt to summarise in this way? 
Look at the two different sets of scores in Table 4.1. The major differences between these 
two sets of data are:

●	 The sets of scores differ substantially in terms of their typical value – in one case the 
scores are relatively large (variable B); in the other case the scores are much smaller 
(variable A).

●	 The sets of scores differ in their spread or variability – one set (variable B) seems to 
have more spread or a greater variability than the other.

●	 If we plot these two sets of scores as histograms then we also find that the shapes of 
the distributions differ markedly. Variable A is much steeper and less spread out than 
variable B.

Each of these different features of a set of scores can be described using various indexes. 
They do not generally apply to nominal (category) variables. Figure 4.1 describes some 
of the key steps you need to consider when describing your data numerically.

	 Figure 4.1	 Conceptual steps for understanding how to describe your variables numerically

M04 Introduction to Statistics in Psychology with SPSS 29099.indd   49 05/01/2017   14:55



50	 CHAPTER 4â•‡ Describing variables numerically: Averages, variation and spread

Variable A scores Variable B scores

2 27

2 29

3 35

3 40

3 41

4 42

4 45

4 45

4 49

4 49

5 49

5

5

	 Table 4.1	 Two different sets of scores

	 4.2	 Typical scores: mean, median and mode

Researchers sometimes speak about the central tendency of a set of scores. By this they 
are raising the issue of what are the most typical and likely scores in the distribution of 
measurements. We could speak of the average score, but that can mislead us into thinking 
that the arithmetic mean is the average score when it is just one of several possible aver-
ages. There are three main measures of the typical scores used by psychologists in statisti-
cal analyses: the arithmetic mean, the median and the mode. These are quite distinct 
concepts but generally simple enough in themselves. Statisticians have other types of 
average which psychologists would rarely come across except disguised somewhere in a 
statistical formula.

	 ■	 Arithmetic mean

The arithmetic mean is calculated by summing all of the scores in a distribution and divid-
ing by the number of scores. This is the everyday concept of average. In statistical notation 
we can express this mean as follows:

Xmean = aX[scores]

N[number of scores]

As this is the first statistical formula we have presented, you should take very careful 
note of what each symbol means:

X is the statistical symbol for a score
Σ is the summation or sigma sign
ΣX means add up all of the scores X
N is the number of scores
X is the statistical symbol for the arithmetic mean of a set of scores

We have added a few comments in small square brackets [just like this]. Although 
mathematicians may not like them very much, you might find they help you to 
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interpret a formula a little faster. Calculating the average of a set of scores such as 
7, 5, 4, 7, 7 and 5 is more quickly done than explained. In statistical notation, a score 
is usually given the symbol X and subscripts identify the different numbers. So 
X1 = 7, X2 = 5, X3 = 4, X4 = 7, X5 = 7 and X6 = 5 for this set of six scores. You 
will find that this sort of use of subscripts is common in journal articles so it is useful 
to be familiar with it. The formula for the mean follows together with the calculation 
for our six scores:

Xmean = aX[scores]

N[number of scores]

 =
X1 + X2 + X3 + X4 + X5 + X6

N

 = 7 + 5 + 4 + 7 + 7 + 5
6

= 35
6

= 5.83

	 ■	 Median

The median is the middle score of a set if the scores are organised from the smallest to 
the largest. Thus the set of scores 7, 5, 4, 7, 7, 5, 3, 4, 6, 8, 5 becomes 3, 4, 4, 5, 5, 5, 6, 
7, 7, 7, 8 when put in order from the smallest to the largest. Since there are 11 scores and 
the median is the middle score from the smallest to the largest, the median has to be the 
sixth score, i.e. 5.

With odd numbers of scores all of which are different, the median is easily calculated 
since there is a single score that corresponds to the middle score in the set of scores. 
However, if there is an even number of all different scores in the set then the mid-point 
will not be a single score but two scores. So if you have 12 different scores placed in order 
from smallest to largest, the median will be somewhere between the sixth and seventh 
score from smallest. There is no such score, of course, by definition – the 6.5th score just 
does not exist. What we could do in these circumstances is to take the average of the sixth 
and seventh scores to give us an estimate of the median.

For the distribution of 40 scores shown in Table 4.2, the middle score from the 
smallest is somewhere between the 20th and 21st scores. Thus the median is 

Score Frequency (f)

1 1

2 2

3 4

4 6

5 7

6 8

7 5

8 3

9 2

10 1

11 0

12 1

	 Table 4.2	 Frequency distribution of 40 scores
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Score Frequency (f)

4 1

5 2

6 0

7 3

	 Table 4.3	 Frequencies of scores

Score Frequency (f)

3 1

4 2

5 3

6 1

7 3

8 1

	 Table 4.4	 Bimodal frequency distribution

somewhere between score 5 (the 20th score) and score 6 (the 21st score). One could 
give the average of these two as the median score – that is, the median is 5.5. For 
most purposes this is good enough.

You may find that computer programs give different values from this. The computer 
program is making adjustments since there may be several identical scores near the 
median, but you need only a fraction of them to reach your mid-point score. So, in the 
above example the 21st score comes in score category 6 although there are actually eight 
scores in that category. So in order to get that extra score we need take only one-eighth 
of score category 6. One-eighth equals 0.125 so the estimated median equals 5.125. To 
be frank, it is difficult to think of many circumstances in which this level of precision 
about the value of the median is required in psychological statistics. If you follow our 
advice to use a computer program to do your calculations wherever possible you will 
always have a precise, adjusted value for the median.

	 ■	 Mode

The mode is the most frequently occurring category of score. It is merely the most com-
mon score or most frequent category of scores. In other words, you can apply the mode 
to any category of data and not just scores. In the above example for arithmetic mean 
where the scores were 7, 5, 4, 7, 7, 5 we could represent the scores in terms of their fre-
quencies of occurrence (Table 4.3).

Frequencies are often represented as f in statistics. It is very easy to see in this example 
that the most frequently occurring score is 7 with a frequency of 3. So the mode of this 
distribution is 7.

If we take the slightly different set of scores 7, 5, 4, 7, 7, 5, 3, 4, 6, 8, 5, the frequency 
distribution of these scores is shown in Table 4.4. Here there is no single mode since scores 
5 and 7 jointly have the highest frequency of 3. This sort of distribution is called bimodal 
and the two modes are 5 and 7. The general term multimodal implies that a frequency 
distribution has several modes.
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The mode is the only measure in this chapter that applies to nominal (category/categori-
cal) data as well as numerical score data.

	 4.3	 Comparison of mean, median and mode

Usually the mean, median and mode will give different values of the central tendency 
when applied to the same set of scores. It is only when a distribution is perfectly symmetri-
cal and the distribution peaks in the middle that they coincide completely. Regard big 
differences between the mean, median and mode as a sign that your distribution of scores 
is rather asymmetrical or lopsided.

Distributions of scores do not have to be perfectly symmetrical for statistical analysis, 
but symmetry tends to make some calculations a little more accurate. It is difficult to say 
how much lack of symmetry there can be without it becoming a serious problem as it 
depends on circumstances. There is more about this later, especially in Chapter 21 and 
Appendix A, which make some suggestions about how to test for asymmetry. SPSS 
includes skewness in ‘Frequencies. . . ’ (Screenshot  4.5), ‘Explore. . . ’ (Screenshot  4.3) 
and ‘Statistics. . . ’, and ‘Descriptive Statistics’ (Screenshot 12.2) and ‘Options. . . ’ (Screen-
shot 12.4) if you request it. Measures of skewness are rarely included in research reports 
in our experience. They are not very useful if you have only a small sample size.

	 4.4	 Spread of scores: range and interquartile range

The concept of variability is essential in statistics. Variability is a non-technical term and 
is related to (but is not identical with) the statistical term variance. Range and interquartile 
range are easily understood indicators of the spread of scores on a variable. However, 
they only involve the extremes of your scores. Variance, which we will deal with in the 
next section, is a statistical formula indicating spread which involves all of the scores in 
its calculation.

Table 4.5 gives a set of ages of 12 university students and can be used to illustrate 
some different ways of measuring variability in our data. These 12 students vary in 
age from 18 to 33 years. In other words, the range covers a 15-year period. The inter-
val from youngest to oldest (or tallest to shortest, or fattest to thinnest) is called the 
range – a useful statistical concept. As a statistical concept, correctly range is always 
expressed as a single number such as 20 centimetres and not as an interval, say, from 
15 to 25 centimetres. SPSS will give you the range if you select ‘Frequencies.  .  .  ’ 
(Screenshot  4.5), ‘Explore. . . ’ and ‘Statistics. . . ’, or ‘Descriptive Statistics’ (Screen-
shot 12.2) and ‘Options. . . ’ (Screenshot 12.4).

One problem with range is that it can be heavily influenced by extreme cases (or outli-
ers) (see Box 4.1). Thus the 33-year-old student in Table 4.5 is having a big influence on 
the range of ages because they are much older than most of the students. For this reason, 
the interquartile range might be preferred as this basically ignores the extreme quarters 

18 years 21 years 23 years 18 years 19 years 19 years

19 years 33 years 18 years 19 years 19 years 20 years

	 Table 4.5	 Ages of a sample of 12 students
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Outliers and identifying them statistically
Outliers, potentially, put your analysis at risk of erroneous 
conclusions. This is because they are scores which are so 
atypical of your data in general that they distort any trend 
there is simply because they are unusually large or small. 
In other words, outliers are a few cases which are out of 
step with the rest of the data. They can mislead an unwary 
researcher. It is important to eliminate outliers which 
would distort the analysis and lead to wrong conclusions. 
Routinely, good researchers examine their data for possible 
outliers simply by inspecting tables of frequencies or scat-
terplots, for example. This is often sufficient but does 
involve an element of judgement which is probably best 
avoided. Fortunately, there are objective ways of identify-
ing outliers to avoid this subjectivity. One method is simply 
to trim off the extreme 5%, say, of scores from the variable 
which ought to eliminate any outliers.

Another way of identifying outliers is based on the inter-
quartile range. It defines possible outliers in terms of a number 
of interquartile ranges outside of the interquartile range. The 
calculation of interquartile range is given in the main text for 
this chapter (Section 4.4) so we will not repeat it here. Outliers, 
which by definition are unusually large or small scores, cannot 
affect the interquartile range since they will be in the top or 
bottom extremes and thus not part of the interquartile range. 
Possible moderate outliers are defined in terms of being more 
than 1.5*  the interquartile range outside of the interquartile 
range. Identifying extreme outliers would involve 
3*  the interquartile range outside of the interquartile range.

Imagine that we had the following scores for the IQs 
(Intelligence Quotients) from a sample of 12 people:

120 115 65 140 122 142 125 135 122 136 144 118

We can rearrange these in order:

65 115 118 120 122 122 125 135 136 140 142 144

Common sense would suggest that the score of 65 is 
uncharacteristic of the general run of the data so it is poten-
tially an outlier (or possibly a data entry error – maybe it 
should have been 165).

If you wish to use SPSS to calculate percentiles, select 
‘Frequencies. . . ’ (Screenshot  4.3), the variable and ‘Statis-
tics. . . ’ (Screenshot  4.4), ‘Percentile(s)’ and enter or add 

Box 4.1	 Key concepts

the percentile points you want (Screenshot  4.5). The 25th 
(118.5) and 75th (139) percentiles can be read from the 
Percentiles table. For the interquartile range (20.5), select 
‘Explore. . . ’ (Screenshot  4.3), the variable and ‘Statis-
tics. . . ’, and ‘Percentile(s)’. The values for the 25th and 
75th percentiles have been added in brackets in bold type. 
They indicate the interquartile range

65 115 118 (118.5) 120 122 122 125 135 136 (139) 
140 142 144

The next step is to multiply the interquartile range by 1.5 
(if we wish to eliminate moderate outliers or by 3 for 
extreme outliers). This gives us 1.5 * 20.5 = 30.75. Outli-
ers among the low scores are defined as any score which is 
smaller than the low boundary of the interquartile range 
minus this figure of 30.75. SPSS has given the lower bound-
ary of the interquartile range as 118.5. So we need to calcu-
late 118.5 - 30.75 = 87.75. Any score lower than 87.75 
is regarded as an outlier. Outliers among the high scores are 
defined as any score which is bigger than the high boundary 
of the interquartile range plus 30.75. We have obtained the 
value of 139 for the upper boundary from SPSS. So the 
upper cut-off point for outliers is 139 + 30.75 = 169.75. 
Any score bigger than 169.75 is considered to be an outlier. 
There is only one potential outlier in the data which is the 
IQ of 65 because it is not within the range from 87.75 to 
169.75. No potential outliers are present in the high scores 
since none of them is above 169.75. Here are the data again 
with the addition of the cut-off points for outliers also 
added in square brackets in bold type:

65 [87.75] 115 118 (118.5) 120 122 122 125 135 136 
(139) 140 142 144 [169.75]

On the assumption that the scores are normally distributed, 
then less than 1% of scores would be defined as outliers by 
this method. Remember that for extreme outliers the calcula-
tion uses 3*  the interquartile range rather than 1.5.

When you have small amounts of data, it is easy enough 
to spot potential outliers. However, it is difficult when you 
have a large sample. So you need help with this:

●	 Produce a histogram of the scores on the variable in 
question using SPSS (see Computer Analysis in  

➜
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Chapter 5). You will easily spot any extreme scores 
which are separated from the main part of the distribu-
tion in this way.

●	 You may find it helpful to use the Extreme Values proce-
dure on SPSS. All this does is produce a list of the high 
and low extremes of the distribution. This is helpful when 
you have a lot of cases. You have to decide if you have an 
outlier. The steps are: ‘Explore. . . ’ (Screenshot  4.3), the 
variable and ‘Statistics’ and ‘Outliers’. The information 
you need is found in the ‘Extreme Values’ table.

●	 It would be usual practice to delete outliers from 
your data. On SPSS, you could simply click on the 

appropriate row number and clear the row of data. 
It is best if you do this on a copy of your data file. 
Or you might define the value of the outlier as a 
discrete missing value in ‘Variable View’. You do this 
in the ‘Missing’ column by clicking on the row for 
the variable in question. When you do your analysis 
you would probably opt for the listwise omission of 
missing values. You might also wish to compare the 
outcome of your analysis using the complete data 
and with the outliers excluded. In this way, you can 
see the extent of the outliers’ influence. However, it 
is important to mention what you have done in any 
report about your research.

of the distribution. So the interquartile range is the range of the middle 50% of the scores 
put in order from smallest to largest. To calculate the interquartile range, we split the age 
distribution into quarters (quartiles) and take the range of the middle two quarters (or 
middle 50%), ignoring the extreme quarters. The interquartile range is the range between 
the boundaries cutting off this middle 50% of scores from the 25% below and the 25% 
above. Take the following 9 scores:

5 7 2 8 3 8 9 7 5

We then put them in order, which gives:

2 3 5 5 7 7 8 8 9

The median score is 7, which we have isolated from the other scores for easy identifica-
tion. The median is referred to as the second quartile. The first quartile (the point cutting 
off the lowest 25%) could be found by finding the median of 2, 3, 5 and 5. That is we 
are simply finding the middle score of the lower half of the scores. You will have spotted 
the problem. There is no middle score. So we have to ‘interpolate’ to find a value some-
where between 3 and 5. One procedure, which we mentioned before in connection with 
the median, is simply to average the two scores to give 4 as the median or the boundary 
between the lowest quarter and the middle 50% of the distribution. For the quartile (the 
third quartile) at the high end of the scores the median is somewhere between 8 and 
8 = 8. The scores are given again below. The boundaries between the middle 50% and 
the upper and lower quartiles are each marked with an up arrow (c) Thus the boundaries 
for the interquartile range are 4 and 8:

2 3 c 5 5 7 7 8 c 8 9

The interquartile range is therefore 8 - 4 = 4.
A word of warning is needed here. Calculating the interquartile range is not as 

straightforward as it looks. There are many ways of doing ‘interpolation’ when cal-
culating the interquartile range. We have described one of the easier ones. Different 
statistical packages calculate the interquartile range differently and sometimes the 
same program gives you a variety of different ways of doing the calculation though 
SPSS does not. Generally statistics textbook authors point out that these differences 
are of little practical importance. Naughty textbook writers sometimes just give an 
example which works out fine because there is no ‘interpolation’ to do. SPSS will 
give you a perfectly good value for the interquartile range and the one that many 
researchers would use.
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	 4.5	 Spread of scores: variance

Useful as the range is, a lot of information is ignored when calculating the range. It 
merely is based on the two extreme scores at each end of the distribution. Other meas-
ures of spread or variability involve the extent to which every score differs from the 
mean score.

One such measure is the mean deviation. To calculate this we have to work out the 
mean of the set of scores and then how much each score in the set differs from that 
mean. These deviations are then added up, ignoring the positive and negative signs, to 
give the total of deviations from the mean. Finally, we can divide by the number of 
scores to give the average or mean deviation from the mean of the set of scores. If we 
take the ages of the students listed above, we find that the total of the ages 
is 18 + 21 + 23 + 18 + 19 + 19 + 19 + 33 + 18 + 19 + 19 + 20 = 246.â•› Divide 
this total by 12 and we get the average age in the set to be 20.5 years. Note that this is 
the same value as given by SPSS in Screenshot  4.6. Now if we subtract 20.5 years from 
each of the student’s ages we get the figures in Table 4.6.

The average amount of deviation from the mean (ignoring the sign) is known as the 
mean deviation (for the deviations in Table 4.6 this would give a value of 2.6 years). The 
mean deviation is not used in research. However, there is a very closely related concept, 
variance, which is much more useful and has widespread and extensive applications. 
Actually it is crucial to many statistical techniques. Variance is calculated in an almost 
identical way to mean deviation but for one thing. When we draw up a table to calculate 
the variance, we square each deviation from the mean before summing the total of these 
squared deviations as shown in Table 4.7.

	 Figure 4.2	 SPSS output of boxplot of age

35

*

30

25

20

15

Age

Lowest age

Highest age

You may find the Box Plot or Box and Whisker Plot useful where medians and inter-
quartile ranges are being studied. To obtain the boxplot shown in Figure 4.2, select 
‘Frequencies.  .  .  ’ (Screenshot   4.3), or ‘Legacy Dialogs’ (Screenshot 5.5) or ‘Chart 
Builder. . . ’ (Screenshot 8.9) on the ‘Graphs’ dropdown menu. The box plot gives the 
extreme values of your scores and the quartiles including the median.
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Score – mean Deviation from mean

18 - 20.5 -2.5

21 - 20.5 0.5

23 - 20.5 2.5

18 - 20.5 -2.5

19 - 20.5 -1.5

19 - 20.5 -1.5

19 - 20.5 -1.5

33 - 20.5 12.5

18 - 20.5 -2.5

19 - 20.5 -1.5

19 - 20.5 -1.5

20 - 20.5 -0.5

	 Table 4.6	 Deviations from the mean

Score – mean Deviation from mean Square of deviation from mean

18 - 20.5 -2.5 6.25

21 - 20.5 0.5 0.25

23 - 20.5 2.5 6.25

18 - 20.5 -2.5 6.25

19 - 20.5 -1.5 2.25

19 - 20.5 -1.5 2.25

19 - 20.5 -1.5 2.25

33 - 20.5 12.5 156.25

18 - 20.5 -2.5 6.25

19 - 20.5 -1.5 2.25

19 - 20.5 -1.5 2.25

20 - 20.5 -0.5 0.25

Total ∙ 0 Total ∙ 193

	 Table 4.7	 Squared deviations from the mean

The total of the squared deviations from the mean is 193. If we divide this by the 
number of scores (12), it gives us the value of the variance, which equals 16.08 in this 
case. Expressing the concept as a formula:

variance = a (X - X)2

N
The statistical symbol for variance is s2.

The formula above defines what variance is – it is the defining formula. Variance is a 
statistical concept and so is defined mathematically. It is a technical concept and does not 
correspond exactly to more everyday or common-sense ideas. In statistics there are often 
quicker ways of doing calculations than using the defining formula. These quicker 

M04 Introduction to Statistics in Psychology with SPSS 29099.indd   57 05/01/2017   14:55



58	 CHAPTER 4â•‡ Describing variables numerically: Averages, variation and spread

Computational formulae in statistics
Before there were computers, psychologists would compute 
statistical formula by hand. This is time consuming and 
risks errors so we recommend that you avoid doing it. One 

way of easing the computational chore in the past was to 
use what are known as computational formulae. These are 
little used now statistical analysis is almost always 

Box 4.3	 Focus on

Using negative (-) values
Although psychologists rarely collect data that involve neg-
ative signs, some statistical techniques can generate them. 
Negative values occur in statistical analyses because work-
ing out differences is common. The mean is often taken 
away from scores, for example, or one score is subtracted 
from another. Generally speaking, negative values are not a 
problem since either the computer or the calculator will do 
them for you. A positive value is one which is bigger than 
zero. Often the + sign is omitted as it is taken for granted.

A negative value (or minus value or - value) is a number 
which is smaller than (less than) zero. The negative sign is 
never omitted. A value of -20 is a smaller number than -3 
(whereas a value of +20 is a bigger number than +3).

Negative values should cause few problems in terms of cal-
culations – the calculator or computer has no difficulties with 
them. With a calculator you will need to enter that a number 
is a negative. A key labelled + /-  is often used to do this. On a 
computer, the number must be entered with a – sign.

Probably, the following are the only things you need to 
know to be able to understand negative numbers in 
statistics:

●	 If a negative number is multiplied by another negative 
number the outcome is a positive number. So 
-2 *  -3 = +6. This is also the case when a number is 

squared – squaring is when a number is multiplied by 
itself. Thus -32 = +9. You need this information to 
understand how the standard deviation and variance 
formulae work, for example.

●	 Psychologists often speak of negative correlations and 
negative regression weights. This needs care because the 
negative in this case indicates that there is a reverse rela-
tionship between two sets of scores. That is, for exam-
ple, the more intelligent a person is, the less time will 
they take to complete a crossword puzzle.

●	 If you have got negative values for your scores, it is 
often advantageous to add a number of sufficient size to 
make all of the scores positive. This normally makes 
absolutely no difference to the outcome of your statisti-
cal analysis. For example, the variance and standard 
deviation of -2, -5 and -6 are exactly the same if we 
add 6 to each of them. That is, calculate the variance 
and standard deviation of +4, +1 and 0 and you will 
find them to be identical to those for -2, -5 and -6. 
It is important that the same number is added to all of 
your scores. Doing this is helpful since many of us expe-
rience anxiety about negative values and prefer it if they 
are not there.

Box 4.2	 Focus on

methods involve computational formulae as described in Box 4.3 though these are largely 
outmoded for psychologists in these days of high-speed computers. We include them for 
the reason that aspects of computational formula sometimes make an appearance in other 
contexts such as the analysis of variance (see Box 4.4).
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computerised. They occasionally pop-up in a slightly dis-
guised form in some statistical techniques – especially the 
analysis of variance (Chapters 23 to 29). You may never 
need to use these computational formulae but being aware 
of them can help you understand some statistics better. In 
the light of all of this one computational formula is worth 
mentioning here – the formula for computing variance:

variance[computational formula] =
aX2 -

(aX)2

N
N

Take care with elements of this formula:

X = the general symbol for each member of a set of 
scores
Σ = sigma or the summation sign, i.e. add up all the 
things which follow

aX2 = the sum of the square of each of the scores
(aX)2 = sum all the scores and square that total
N = the number of scores

This formula for variance is quicker to calculate by hand 
because it saves a lot of subtraction steps. If you understand 
the formula then fine but, if not, the important thing is sim-
ply to remember that there are quick formulae for doing 

calculations which are now outmoded but which appear in 
the explanation of some statistics. Using the scores 
18 + 21 + 23 + 18 + 19 + 19 + 19 + 33 + 18 + 19 + 19 + 20 
+ 19 + 20 again, using the computational formulae gives 
us the same value for the variance as before (i.e. 16.08):

 variance[computational formula] =
aX2 -

(aX)2

N
N

 =
5236 - 2462

12
12

 =
5236 - 60 516

12
12

 = 5236 - 5043
12

= 193
12

= 16.08
There are some correlation coefficients (Chapter 8) such 
as Spearman’s rho and phi which are nothing other than 
computational formula for special applications of the 
Pearson correlation coefficient.

Variance estimate
There is a concept called the variance estimate (or esti-
mated variance) which is closely related to variance. The 
difference is that the variance estimate is your best guess as 
to the variance of a population of scores if you only have 
the data from a small set of scores from that population on 
which to base your estimate. The variance estimate is 
described in detail in Chapter  22. It involves a slight 
amendment to the variance formula in that instead of divid-
ing by N one divides by N - 1.

The formula for the estimated population variance is:

estimated variance = a (X - X)2

N - 1

Although not strictly speaking correct, it is common prac-
tice to refer to the variance estimate simply as  
variance. So if you calculate variance on SPSS you will not 
get the same value as elsewhere in this chapter but the one 

Box 4.4	 Key concepts

based on the formula above. Since virtually all statistical 
analyses in psychology are based on samples from which 
we wish to generalise, the variance estimate is likely to be 
used in most if not all practical situations. Hence it is 
reasonable to use the estimated variance as the general 
formula for variance. The drawback to this is that if we 
are merely describing the data, this practice is theoreti-
cally imprecise. As everyone else refers to the variance 
estimate as the variance, you will be in good company if 
you follow suit.

If we calculate the estimated variance using the data in 
Table 4.5, we need to divide 193 by 11 instead of the 12 
that we did earlier. 193 divided by 11 is 17.545 or 17.55. 
This is the value you will get using SPSS as we describe in 
the Computer Analysis at the end of this chapter. This is 
shown in Screenshot  4.6 and confirms that SPSS is calcu-
lating the variance estimate.
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Averages, variation and spread

It is difficult to imagine quantitative research studies in psychology which do NOT give details of averages and 
variation in some form. Typically very little space is devoted to this and highly stylised and structured ways of 
presenting such information are used. So you could open virtually any psychology journal describing an empirical 
study and you are almost certain to find them reported. Although variance is the basic measure of variation it is 
not so often reported. Modern psychologists seem to prefer to use standard deviation (SD) instead (standard 
deviation is the square root of variance). However, variance, standard deviation and standard error can be used 
virtually interchangeably as they are closely related and any researcher worth their salt knows the relationship 
between the three. Here are just a few examples.

Cetinkalp (2012) provides some basic information on those taking part in his study of achievement goals in sport 
in the following way: ‘Participants comprised 208 adolescent athletes of whom 120 were female 
((M{SD =  16.33{0.47)) and 88 male (M{SD = 16.38{0.49) with a mean of age of 16.35{0.48 years. 
Participants, who took part in handball and volleyball competition at a regional level in Adana, Turkey, reported 
that their sport experience was 4.00{2.41 years, and they trained for 3.59{1.75 days per week.’  
(pp. 474–5).

Research examples

	 ■	 Interpreting the results

Variance is difficult to interpret in isolation because of its mathematical abstractness. You 
need more information about the data since variance is dependent on the measurement 
in question. Measures which are based on a wide numerical scale for the scores will tend 
to have higher variance than measures based on a narrow scale. Thus if the range of scores 
is only 10 then the variance is likely to be less than if the range of scores is 100. The vari-
ance of age for the general population is greater than for university students. Interpreting 
variance is easier when comparing the variances of two different groups (see Chapter 22) 
than looking at the variance of one group in isolation.

	 ■	 Reporting the results

Usually variance is routinely reported in tables which summarise a variable or a number of 
variables along with other statistics such as the mean and range. This is shown in Table 4.8.
Standard deviation (see Chapter 6) is computationally very closely related to variance. 
Indeed, textbooks often describe them at the same time. It is better to maintain their 
distinctiveness.

Variable N Mean Variance Range

Age 12 20.50 years 16.08 15 years

	 Table 4.8	 Illustrating the table for descriptive statistics
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●	 Because they are routine ways of summarising the typical score and the spread of a set of scores, it is impor-
tant always to report the following information for each of your variables:

●	 mean, median and mode

●	 range and variance (or more commonly) standard deviation

●	 number of scores in the set of scores.

●	 The above does not apply to nominal categories. For these, the mode and the frequency of cases in each 
category exhausts the main possibilities.

●	 It is worth trying to memorise the definitional and computational formulae for variance. You will be surprised 
how often these formulae appear in statistics.

●	 When using a computer, look carefully for variables that have zero variance. They can cause problems and 
generally ought to be omitted from your analyses. Normally the computer will not compute the calculations 
you ask for in these circumstances. The difficulty is that if all the scores of a variable are the same, it is impos-
sible to calculate many statistical formulae. It is not surprising that a computer won’t calculate variance if 
there is no variance in the data!

Key points

Kenyon and her colleagues (2012) tested whether people with bulimia nervosa or other unspecified eating 
disorders were less able to infer the feelings, beliefs and knowledge of other people than people who did not 
have psychological disorders. As part of the study they measured various characteristics of the participants in 
the three groups such as their age, body mass index, IQ and so on. They presented the mean scores with the 
standard deviation in brackets for each of the three groups. So the mean age of the 48 people in their study 
with bulimia nervosa was 28.0 years with a standard deviation of 7.7 years. The mean age of the 34 people with 
other unspecified eating disorders was 27.6 years with a standard deviation of 6.9 years.

Meeten and Davey (2012) manipulated five moods by showing participants one of five films. The five moods 
were sad, happy, anxious, angry and neutral. Participants rated how they felt in these five conditions in terms of 
four scales measuring sadness, happiness, anxiety and anger. The mean scores with their standard deviations 
in brackets were presented in a table with the five conditions represented by five columns and the four moods 
by four rows. In another table, they presented the mean score, standard deviation and minimum and maximum 
score for participants in these five groups separately and combined together for three measures of anxiety, 
depression and worry.

Otgaar and colleagues (2012) reported the characteristics of the participants of their study of correct and 
incorrect reports of being touched as: ‘Eighty 4/5-year-olds (40 girls; mean age 4.66 years (56 months), 
SD = 0.53 (6.36 months)) and 80 9/10-year-olds (36 girls; mean age 9.50 (114 months), SD = 0.64 (7.68 
months)) obtained parental consent for their participation. These children were recruited from different primary 
schools in the Netherlands.’ (p. 643).

Van Schaik and Ling (2012) write of their study: ‘One hundred and fourteen undergraduate psychology students 
(91 female, 23 male), with a mean age of 22.66 years (SD = 6.03) took part in the experiment. There were 30 
participants in the condition of low artifact complexity/low task complexity, 29 in the low/high condition, 28 in 
the high/low condition, and 27 in the high/high condition. All participants had used the Web. Mean experience 
using the Web was 9.68 years (SD = 3.03), mean time per week spent using the Web was 17.25 hr (SD = 16.73) 
and mean frequency of Web use per week was 14.76 (SD = 9.87).’ (p. 209).
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Computer Analysis

Descriptive statistics using SPSS

Interpreting and reporting the output

●	 In the example calculated, we can see that the mean, median and mode are relatively similar. The 
variance is 17.55 to two decimal places. These are the basic facts. It is difficult to say much more without 
having additional variables for comparison.

●	 One could write ‘The ages of the sample had a mean of 20.50 years with a median of 19.00 and a mode 
of 19. These are fairly close and perhaps indicate that the distribution is fairly symmetrical. The 
estimated variance was large at 17.55 reflecting the large value of the range (15).’

	 Figure 4.3	  SPSS steps for descriptive statistics when dealing with scores

Name variables in ‘Variable View’ of the ‘Data Editor’. In the example, the only variable is termed
‘Age’ but you could have several variables (see Screenshot 4.1).

Move to the ‘Data View’ by clicking on the tab at the bottom of your screen.
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	 Screenshot 4.1	 Part of ‘Variable View’ 	 Screenshot 4.2	 Part of ‘Data View’

	 Screenshot 4.3	 On ‘Analyze’ select ‘Frequencies. . . ’ 	 Screenshot 4.4	 Select variables for analysis

	 Screenshot 4.5	 Select statistics 	 Screenshot 4.6	 Descriptive statistics output
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●	 The shape of the distribution of scores is a major consideration in statistical analysis. It simply 
refers to the characteristics of the frequency distribution (i.e. histogram) of the scores.

●	 The normal distribution is an ideal because it forms part of the theoretical basis of many 
statistical techniques. It is best remembered as a bell-shaped frequency diagram.

●	 The normal distribution is a symmetrical distribution. That is, it can be folded perfectly on 
itself at the mean. Such symmetry is another ‘ideal’ in many statistical analyses.  
Non-symmetrical distributions are known as skewed distributions.

●	 Kurtosis indicates how steep or flat a curve is compared with the normal (bell-shaped) curve.

●	 Cumulative frequencies are ones which include all of the lower values on an accumulating 
basis. So the highest score will always have a cumulative frequency of 100% since it includes 
all of the smaller scores.

●	 Percentiles are the numerical values of the score that cut off the lowest 10%, 30%, 95% or 
what have you of the distribution of scores.

Shapes of distributions of 
scores

Chapter 5

Overview

Preparation

Be clear about numerical scores and how they can be classified into ranges of scores (Chapter 3).

M05 Introduction to Statistics in Psychology with SPSS 29099.indd   64 05/01/2017   14:57



	 5.2â•‡ Histograms and frequency curves	 65

	 5.1	 Introduction

The final important characteristic of scores on a variable is the particular shape of their 
frequency distribution. It is useful for a researcher to be able to describe this shape suc-
cinctly. Obviously it is possible to find virtually any shape of distribution among the 
multitude of variables that could be measured. So, intuitively, it seems unrealistic to seek 
to describe just a few different shapes. But there are some advantages in doing so, as we 
shall see. The key steps when planning to discuss the shapes of data distributions are given 
in Figure 5.1.

	 Figure 5.1	 Conceptual steps for understanding shapes of distributions

	 5.2	 Histograms and frequency curves

Most of us have very little difficulty in understanding histograms; we know that they 
are plots of the frequency of scores (the vertical dimension) against a numerical scale 
(the horizontal dimension). Figure 5.2 is an example of a histogram based on a relatively 
small set of scores. This histogram has quite severe steps from bar to bar. In other words, 
it is quite angular and not a smooth shape at all. Part of the reason for this is that the 
horizontal numerical scale moves along in discrete steps, so resulting in this pattern. 
Things would be different if we measured on a continuous scale on which every possible 
score could be represented to the smallest fraction. For example, we might decide to 
measure people’s heights in centimetres to the nearest whole centimetre. But we know 
that heights do not really conform to this set of discrete steps or points; people who 
measure 120 centimetres actually differ in height by up to a centimetre from each other. 
Height can be measured in fractions of centimetres, not just whole centimetres. In other 
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words height is a continuous measurement with infinitesimally small steps between 
measures so long as we use sufficiently precise measuring instruments.

So a histogram of heights measured in centimetre units is at best an approximation to 
reality. Within each of the blocks of the histogram is a possible multitude of smaller steps. 
For this reason, it is conventional when drawing frequency curves for theoretical purposes 
to smooth out the blocks to form a continuous curve. In essence, this is like taking much 
finer and more precise measurements and redrawing the histogram. Instead of doing this 
literally we approximate it by drawing a smooth curve through imaginary sets of extremely 
small steps. When this is done our histogram is ‘miraculously’ turned into a continuous 
unstepped curve (try doing this with  Figure 5.3 compared to  Figure 5.2).

A frequency curve can, of course, be of virtually any shape but one shape in particular 
is of concern in psychological statistics – the normal curve.

	 5.3	 Normal curve

The normal curve describes a particular shape of the frequency curve. Although this shape 
is defined by a formula and so can be described mathematically, for most purposes it is suf-
ficient to regard it as a symmetrical bell-shape (Figure 5.4). Actually, to be pedantic, two 
normal curves can look very different from each other because a normal curve is defined by 
a mathematical formula, not a precise shape (Huck, 2009). Ultra-pedantically, the bell-shape 
does not apply to all normal curves but is good enough a description for most purposes.

	 Figure 5.2	 Histogram showing steep steps

	 Figure 5.3	 Smooth curve based on small blocks
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It is called the ‘normal’ curve because it was once believed that distributions in the 
natural world corresponded to this shape. Even though it turns out that the perfect normal 
curve is not universal, it is important because many distributions are more or less this 
shape – at least sufficiently so for most practical purposes. The crucial reason for the use 
of the normal curve in statistics is that theoreticians developed many statistical techniques 
on the assumption that the distributions of scores had this particular bell-shape. It so 
happens that these assumptions which are useful in the development of statistical tech-
niques have relatively little bearing on their day-to-day application (see Box 5.1). That is, 
the statistical techniques developed on the assumption of normality generally work well 
even when they are applied to data which is only roughly bell-shaped. In run-of-the-mill 
psychological statistics, the question of whether a distribution is normal or bell-shaped is 
not that important since often substantial violations of normality in our data make little 
difference to the value of the statistical test. Exceptions to this will be mentioned as 
appropriate in later chapters.

Don’t forget that for the perfectly symmetrical, bell-shaped (normal) curve the values 
of the mean, median and mode are identical. Disparities between the three are indications 
that you have an asymmetrical curve.

	 Figure 5.4	 Normal (bell-shaped) frequency curve

How normal are my curves?
One thing which may trouble you is the question of how 
precisely your data need fit the normal or bell-shaped ideal. 
Is it possible to depart much from the ideal without causing 
problems? The short answer is that usually a lot of devia-
tion is often possible without affecting things too much.  
Of course, the more your data do not correspond to the 
normal curve the less precise your statistical test will be. 
Perhaps psychologists have worried too much in the past 
about non-normality and the like. As a rule of thumb, it 
has been suggested that for practical purposes, you can 
disregard deviations from the ideal distribution, especially 
when dealing with about 30 or more scores. Unfortunately, 
all of this involves a degree of subjective judgement since 
there are no useful ways of assessing what is an acceptable 

amount of deviation from the ideal when faced with the 
small amounts of data that student projects often involve. 
If you wish you can use statistics which do not involve the 
normal curve (Chapter 21). Some of these are known as 
nonparametric or distribution-free methods. Furthermore, 
it is possible to use bootstrapping (see Box 21.1) with many 
statistical techniques which usually are based on the nor-
mal distribution. In bootstrapping the theoretical normal 
distribution is replaced by the distribution of randomly 
drawn samples based on the available data. So there are 
alternative versions of many statistical tests which avoid 
the issue of normality. As yet, bootstrapping is underuti-
lised by psychologists. Bootstrapping methods are often 
easy on SPSS.

Box 5.1	 Focus on
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68	 CHAPTER 5â•‡ Shapes of distributions of scores

	 5.4	 Distorted curves

The main concepts which deal with distortions in the normal curve are skewness and 
kurtosis.

	 ■	 Skewness

It is always worth examining the shape of your frequency distributions. Gross skewness 
is the exception to our rule of thumb that non-normality of data has little influence on 
statistical analyses. By skewness we mean the extent to which your frequency curve is 
lopsided rather than symmetrical. A mid-point of a frequency curve may be skewed either 
to the left or to the right of the range of scores (Figures 5.5 and 5.6).

There are special terms for left-handed and right-handed skew:

●	 Negative skew:

●	 more scores are to the left of the mode than to the right

●	 the mean and median are smaller than the mode.

●	 Positive skew:

●	 more scores are to the right of the mode than to the left

●	 the mean and median are bigger than the mode.

There is also an index of the amount of skew shown in your set of scores. Looking at the 
frequency curve for the variable in question will give you a good idea of whether there is 

	 Figure 5.5	 Negative skew

	 Figure 5.6	 Positive skew
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skewness. The index of skewness is positive for a positive skew and negative for a negative 
skew. Appendix A explains how to test for skewness in your data. SPSS includes skewness 
in ‘Frequencies. . . ’ (Screenshot 4.5), ‘Explore. . . ’ (Screenshot 4.3) and ‘Statistics. . . ’, and 
‘Descriptive Statistics’ (Screenshot 12.2) and ‘Options. . . ’ (Screenshot 12.4) if you request 
it. For a perfect normal distribution the value of skewness would be 0.

	 ■	 Kurtosis (or steepness/shallowness)

Some symmetrical curves may look rather like the normal bell-shaped curve except that 
they are excessively steep or excessively flat compared to the mathematically defined 
normal bell-shaped curve (Figures 5.7 and 5.8).

Kurtosis is the term used to identify the degree of steepness or shallowness of a distri-
bution. There are technical words for different types of curve:

●	 a steep curve is called leptokurtic

●	 a normal curve is called mesokurtic

●	 a flat curve is called platykurtic.

These are terms beloved of statistics book writers. However, since the terms mean nothing 
more than steep, middling and flat there is probably good reason to avoid these Greek 
words in favour of clear descriptions in everyday English.

It is possible to obtain indexes of the amount of shallowness or steepness of your  
distribution compared with the mathematically defined normal distribution. For most 
purposes, an inspection of the frequency curve of your data will give you a good idea. 

	 Figure 5.7	 Shallow curve

	 Figure 5.8	 Steep curve
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Knowing what the index means should help you cope with computer output; quite 
simply:

●	 a positive value of kurtosis means that the curve is steep compared to the normal curve

●	 a zero value of kurtosis means that the curve is middling – just like the normal curve

●	 a negative value of kurtosis means that the curve is flatter compared to the normal 
curve.

Steepness and shallowness have little or no bearing on the statistical techniques you use 
to analyse your data, quite unlike skewness.

SPSS includes kurtosis in ‘Frequencies. . . ’ (Screenshot 4.5), ‘Explore. . . ’ (Screen-
shot 4.3) and ‘Statistics. . . ’, and ‘Descriptive Statistics’ (Screenshot 12.2) and ‘Options. . . ’ 
(Screenshot 12.4) if you request it. A value of 0 means no kurtosis, a negative value indicates 
a flat curve, and a positive value indicates a steep curve.

	 5.5	 Other frequency curves

	 ■	 Bimodal and multimodal frequency distributions

Of course, there is no rule that says that frequency curves have to peak in the middle and 
tail off to the left and right. As we have already explained, it is perfectly possible to have 
a frequency distribution with twin peaks (or even multiple peaks). Such twin-peaked 
distributions are called bimodal since they have two modes – most frequently occurring 
scores. Such a frequency curve might look like Figure 5.9.

SPSS includes the mode in ‘Frequencies. . . ’ (Screenshot 4.3), ‘Variable’ (Screenshot 4.4), 
‘Statistics. . . ’ and ‘Mode’ (Screenshot 4.5), and output (Screenshot 4.6).

	 ■	 Cumulative frequency curves

There are any number of different ways of presenting a single set of data. Take, for exam-
ple, the 50 scores in Table 5.1 for a measure of extraversion obtained from airline pilots.

One way of tabulating these extraversion scores is simply to count the number of pilots 
scoring at each value of extraversion from 1 to 5. This could be presented in several forms, 
for example Tables 5.2 and 5.3 and Figure 5.10.

	 Figure 5.9	 Bimodal frequency histogram
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Exactly the same distribution of scores could be represented using a cumulative fre-
quency distribution. A simple frequency distribution merely indicates the number of peo-
ple who achieved any particular score. A cumulative frequency distribution gives the 
number scoring, say, one, two or less, three or less, four or less, and five or less. In other 
words, the frequencies accumulate. Examples of cumulative frequency distributions are 
given in Tables 5.4 and 5.5 and Figure 5.11. Cumulative frequencies can be given also as 
cumulative percentage frequencies in which the frequencies are expressed as percentages 
and these percentages accumulated. This is shown in Table 5.4.

3 5 5 4 4 5 5 3 5 2

1 2 5 3 2 1 2 3 3 3

4 2 5 5 4 2 4 5 1 5

5 3 3 4 1 4 2 5 1 2

3 2 5 4 2 1 2 3 4 1

	 Table 5.1	 Extraversion scores of 50 airline pilots

Number scoring 1 7

Number scoring 2 11

Number scoring 3 10

Number scoring 4 9

Number scoring 5 13

	 Table 5.2	 Frequency table based on data in Table 5.1

Number of pilots scoring

1 2 3 4 5

7 11 10 9 13

	 Table 5.3	 Alternative layout for data in Table 5.1

	 Figure 5.10	 Histogram of Table 5.1
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There is nothing difficult about cumulative frequencies. However, you must label 
such tables and diagrams clearly – simply by using the word cumulative wherever 
appropriate – or they can be very misleading.

To compute a frequency distribution in SPSS see the Computer Analysis at the end of 
this chapter.

	 ■	 Percentiles

Percentiles are merely a form of cumulative frequency distribution, but instead of being 
expressed in terms of accumulating scores from lowest to highest, the categorisation is in 
terms of whole numbers of percentages of people. In other words, the percentile is the score 
which a given percentage of scores equals or is less than. You do not necessarily have to 
report every percentage point and units of 10 might suffice for some purposes. Such a 
distribution would look something like Table 5.6. The table shows that 10% of scores are 
equal to 7 or less and 80% of scores are equal to 61 or less. Note that the 50th percentile 

Score range Cumulative frequency Cumulative percentage 
frequency

1 7 14%

2 or less 18 36%

3 or less 28 56%

4 or less 37 74%

5 or less 50 100%

	 Table 5.4	 Cumulative frequency distribution of pilots’ extraversion scores from Table 5.1

	 Figure 5.11	 Cumulative histogram of the frequencies of pilots’ extraversion scores from Table 5.1

Number of pilots scoring

1 2 or less 3 or less 4 or less 5 or less

7 18 28 37 50

	 Table 5.5	 �Alternative style of cumulative frequency distribution of pilots’ extraversion 
scores from Table 5.1
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corresponds to the median score (but not necessarily the mean or mode). Quartiles which 
we discussed in the previous chapter in connection with the interquartile range are merely 
the 25th percentile, the 50th percentile which is also the median, and the 75th percentile.

Percentiles are commonly used in standardisation tables of psychological tests and meas-
ures. That is, tables which present information on the distribution of test scores based on 
large samples of people. For these it is often very useful to be able to describe a person’s 
standing compared with the set of individuals on which the test or measure was initially 
researched. Thus if a particular person’s neuroticism score is described as being at the 90th 
percentile it means that they are more neurotic than about 90% of people. In other words, 
percentiles are a quick method of expressing a person’s score relative to those of others. Not 
using percentiles can result in rather clumsy and convoluted explanations.

In order to calculate the percentiles for any data, it is first necessary to produce a table 
of cumulative percentage frequencies. This table is then examined to find the score which 
cuts off, for example, the bottom 10%, the bottom 20%, the bottom 30%, etc. of scores. 
It should be obvious that calculating percentiles in this way is actually easier if there are 
a large number of scores so that the cut-off points can be found precisely.

To compute percentiles on SPSS, select ‘Frequencies. . . ’ (Screenshot 4.3), the ‘Variable’ 
and ‘Statistics. . . ’ (Screenshot 4.4), ‘Percentile(s)’ and enter or add the percentile points 
you want (Screenshot 4.5).

Percentile Score

10th 7

20th 9

30th 14

40th 20

50th 39

60th 45

70th 50

80th 61

90th 70

100th 78

	 Table 5.6	 Example of percentiles

Kurtosis, skew, etc.

Brasel and Gips (2011) were interested in people’s use of what the researchers term the media landscape, which 
includes television and the Internet. Just what happens when people use either of these media? Using a labora-
tory-based design, individuals were studied when they ‘multitasked’ (i.e. used a computer and television simul-
taneously). One of the findings was the strongly skewed nature of people’s gaze at the screen. People gazed 

Research examples

➜

M05 Introduction to Statistics in Psychology with SPSS 29099.indd   73 05/01/2017   14:57



74	 CHAPTER 5â•‡ Shapes of distributions of scores

longer at the computer than the television. Nevertheless the conclusion was that the distribution of gaze is 
strongly skewed – short duration gazes of only a few seconds dominate. One of the intriguing findings was that 
people were very poor at estimating the extent of their gaze-switching behaviour compared with the objective 
reality as measured by the researchers.

Kenyon and her colleagues (2012) tested whether people with bulimia nervosa or other unspecified eating 
disorders were less able to infer the feelings, beliefs and knowledge of other people than people who did not 
have psychological disorders. As part of the study they assessed how depressed, anxious and stressed the three 
groups were. Because these three variables were not normally distributed and could not be transformed to be 
so, they carried out nonparametric tests to determine whether there were any differences between the three 
groups (see Chapter 21 for a discussion of nonparametric tests).

Linley and his colleagues (2009) investigated the relationship between various measures of psychological well-
being. Before carrying out their main statistical analyses, they examined the skewness and kurtosis of their nine 
measures together with their standard errors which they present in a table. They also inspected the normality 
of these distributions by looking at a histogram of their scores. According to both these methods their scores 
were normally distributed.

Peters and Durding (1978) were interested in the relationship between laterality (right versus left-handedness) 
and the differences between performance on a simple tapping task for the left and right hand. Of course, obvi-
ous preference for the use of one hand to perform tasks will tend to emphasise that laterality has a biased 
distribution (many people are right-handed, some are left-handed, and a few have no clear preference). However, 
handedness in task performances not allowing such a preference is different and some have regarded it as a 
continuous variable. The tapping task involved in this study had children tapping with the index finger as fast as 
possible over a series of timed trials using the different index fingers. Laterality preference was assessed by 
having the child show the researcher how to do things like hammering in a nail, combing hair and brushing teeth. 
The hand chosen was recorded as the preferred hand. An index of laterality was calculated for a range of this 
sort of task. There was a linear relationship between the left/right speed of finger tapping and the child’s lateral-
ity as measured by the preference test for activities. Furthermore, the distribution of the tapping task differences 
was symmetrical about the mean and it was unimodal rather than, say, bimodal which would indicate disconti-
nuities in handedness. This was not at all the case for the preference task. However, the distribution for finger 
tapping differences was more peaked than the normal distribution, indicating a degree of kurtosis which was 
significant. Overall, the research provided some support for the idea that laterality in performance is a continu-
ous variable.

Shafran and her colleagues (2006) were interested in determining whether being asked to have higher general 
personal standards such as working very hard would result in more dysfunctional eating than those who were 
asked to have lower general personal standards such as taking it easy at work. Some of the measures used to 
assess dysfunctional eating such as trying to restrict the intake of food and feeling regret after eating were 
significantly positively skewed. Consequently, nonparametric tests were used to test for differences on these 
variables.

Wickham, Morris and Fritz (2000) addressed the question of the distinctiveness of faces. One conventional 
assumption is that there are many relatively typical faces but rather few that are distinctive. This would indicate 
a highly skewed distribution in terms of facial distinctiveness. The researchers went about testing this using 
three separate but related studies which used different ways of estimating distinctiveness. For example, tradi-
tional ratings of distinctiveness produced normal distributions but ratings that emphasised the amount of 
deviation from the typical face were very skewed. In their first study, however, they used traditional ratings of 
distinctiveness of faces. They used the distance on a physical scale such that 0 equalled extremely typical and 
9 would be extremely distinctive. The mean rating was found to be 3.7 cm with a skewness of 0.25 and kurtosis 
of -0.91. A bar chart for these data looks relatively flat and there is a long tail towards the distinctiveness end 
of the continuum.
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●	 The most important concept in this chapter is that of the normal curve or normal distribution. It is worth 
extra effort to memorise the idea that the normal curve is a bell-shaped symmetrical curve.

●	 Be a little wary if you find that your scores on a variable are very skewed since this can lose precision in certain 
statistical analyses.

Key points

Computer Analysis

Frequencies using SPSS

Interpreting and reporting the output

●	 The frequency table and histogram should be studied to identify their most characteristic features. Since 
tables and histograms are basically descriptive methods then their features may simply be reported and 
little or nothing by way of interpretation may be necessary.

●	 Although frequency tables and histograms may be presented in your report, be careful to ensure that 
what appears is clear and effective. Too many tables and histograms can be distracting if not confusing. 
Perhaps you should find ways of reducing their number without changing effectiveness. Make sure that 
any that you use are properly labelled and mentioned in the text. In our experience, SPSS tables and 
histograms can always be improved by careful reflection and using the chart editor, etc. It is easy to 
create a bad impression by including tables and diagrams which add nothing or even confuse the reader.

	 Figure 5.12	 SPSS steps for frequency tables and histograms
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	 Screenshot 5.1	 Part of the data in ‘Data View’

	 Screenshot 5.3	 Move variables for analysis to the 
‘Variable(s):’ box

	
Screenshot 5.5

	 Selecting ‘Histogram. . . ’ with 
‘Legacy Dialogs’

	 Screenshot 5.2	 On ‘Analyze’ select ‘Frequencies. . . ’

	 Screenshot 5.6	 Histogram output

	 Screenshot 5.4	 Frequency output table
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●	 Standard deviation computationally is the square root of variance (Chapter 4).

●	 Conceptually, standard deviation is a distance along a frequency distribution of scores.

●	 The estimated standard deviation is calculated by SPSS and other packages. Nevertheless, 
it is almost universally referred to as the standard deviation. If you are using a sample to 
estimate the characteristics of a population then the estimated standard deviation should 
be used. Almost invariably, this is what psychologists are doing. But knowing about both 
makes the explanation more understandable.

●	 Because the normal (bell-shaped) curve is a standard shape, it is possible to give the distri-
bution as percentages of cases which lie between any two points on the frequency distribu-
tion. Tables are available to do this easily if necessary.

●	 It is common to express scores as z-scores. A z-score for a particular score is simply the 
number of standard deviations that the score lies from the mean of the distribution. (A 
negative sign is used to indicate that the score lies below the mean.) Z-scores are also 
referred to as standardised scores or standard scores.

Standard deviation and 
z-scores
Standard unit of measurement in statistics

Chapter 6

Overview

Preparation

Make sure you know the meaning of variables, scores, Σ and scales of measurement – especially 
nominal, interval and ratio (Chapter 2).
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	 6.1	 Introduction

Measurement ideally uses standard or universal units. It would be really stupid if, when 
we ask people how far it is to the nearest railway station, one person says 347 cow’s 
lengths, another says 150 poodle jumps and a third person says three times the distance 
between my doctor’s house and my dentist’s surgery. If you ask us how hot it was on 
midsummer’s day you would be pretty annoyed if one of us said 27 degrees Howitt and 
the other said 530 degrees Cramer. We measure in standard units such as centimetres, 
degrees Celsius, kilograms and so forth. The advantages of doing so are obvious: standard 
units of measurement allow us to communicate easily, precisely and effectively with other 
people.

It is much the same in statistics but there is a difficulty. Statistics is applied to data of 
all sorts and in all sorts of disciplines. So how is it possible for the same statistical methods 
to be applied to things measured in kilograms and to more abstract things in psychology 
such as acquiescence tendency? Although it would be nice if statisticians had a standard 
unit of measurement, it is not intuitively obvious what this should be.

	 6.2	 Theoretical background

Imagine a 30 centimetre rule – it will be marked in 1 centimetre units from 0 centimetres 
to 30 centimetres (Figure 6.1). The standard unit of measurement here is the centimetre. 
But you could have a different sort of rule in which instead of the scale being from 0 to 
30 centimetres, the mid-point of the scale is 0 and the scale is marked as -15, -14, -13, 
. . . , -1, 0, + 1, . . . , + 13, + 14, + 15 centimetres. This rule is in essence marked 
in deviation units (Figure 6.2).

The two rules use the same unit of measurement (the centimetre) but the deviation rule 
is marked with 0 in the middle, not at the left-hand side. In other words, the mid-point 
of the scale is marked as 0 deviation (from the mid-point). The standard deviation is simi-
lar to this rule in so far as it is based on distances or deviations from the average or 
mid-point.

One of the odd things about the standard deviation is that its value is dependent on 
the variability of the scores. So the standard deviation might be 5 or it might be 7 of the 

	 Figure 6.1	 30 centimetre rule

	 Figure 6.2	 30 centimetre rule using deviation units
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units in which the scores were measured. For example, it could be 5 inches or 2 IQ points 
and so forth. But we can talk about the number of standard deviations a score is away 
from the mean. In this way, we can ignore the units of measurement. So the number of 
standard deviations a score is away from the mean is a sort of standard measurement unit. 
That is, although the standard deviation itself depends on the data involved, the number 
of standard deviations frees us from the measurement scale. Standard deviation is a key 
concept in statistics; it is nearly universal in quantitative analyses. So it is worth spending 
time getting to terms with it. It allows the standardisation of variables and makes com-
parisons between very different measures possible.

Some statisticians would have apoplexy but we think that the best way of understanding 
standard deviation is that it is a measure of the amount by which scores differ from the 
mean or average score. Of course, each score will differ by a different amount from the 
mean and some scores will differ in a positive direction and other scores will differ in a 
negative direction. So a particular score may be described as being 1.5 standard deviations 
from the mean. It is quite an odd idea to base a standard unit of measurement on the vari-
ability in the data rather than some absolute standard. And we need to be a little cautious 
about suggesting that the standard deviation is the average deviation from the mean – this 
might cause more apoplexy. The standard deviation is not calculated in the way that one 
might expect. The obvious way would be as follows and it is wrong. Imagine that the scores 
were 4, 6, 3 and 7 then the mean is 20 divided by 4 (the number of scores), or 5. Each of 
the four scores deviates from the average by a certain amount – for example, 7  
deviates from the mean of 5 by just 2. The sum of the deviations of our four scores from 
the mean of 5 is 1 + 1 + 2 + 2 which equals 6. Surely, then, the standard deviation is  
6 divided by 4, which equals 1.5?

But this is not how statisticians work out the average deviation for their standard unit. 
Such an approach might seem logical, but it turns out to be not very useful in practice. 
Instead standard deviation uses a different type of average which most mortals would not 
even recognise as an average.

The big difference is that standard deviation is calculated as the average squared devia-
tion. What this implies is that instead of taking our four deviation scores (1 + 1 + 2 + 2) 
we square each of them (12 + 12 + 22 + 22) which gives 1 + 1 + 4 + 4 = 10. If we 
divide this total deviation of 10 by the number of scores (4), this gives a value of 2.5. 
However, this is still not quite the end of the story since we then have to calculate the 
square root of this peculiar average deviation from the mean. Thus we take the 2.5 and 
work out its square root – that is, 1.58. In words, the standard deviation is the square 
root of the average squared deviation from the mean.

And that really is it – honest. It is a pity that one of the most important concepts in 
statistics is less than intuitively obvious, but there we are. To summarise:

●	 The standard deviation is the standard unit of measurement in statistics.

●	 The standard deviation is simply the ‘average’ amount that the scores on a variable 
deviate (or differ) from the mean of the set of scores. In essence, the standard deviation 
is the average deviation from the mean. Think of it like this since most of us will have 
little difficulty grasping it in these terms. Its peculiarities can be safely ignored for most 
purposes. Of course, this being statistics, standard deviation is defined as a formula. 
Putting it into understandable words can only approximate what it is.

●	 Although the standard deviation is an average, it is not the sort of average which most 
of us are used to. However, it is of greater use in statistical applications than any other 
way of calculating the average deviation from the mean.

It should be stressed that the standard deviation is not a unit-free measure. If we meas-
ured a set of people’s heights in centimetres, the standard deviation of their heights would 
also be a certain number of centimetres. If we measured 50 people’s intelligences using an 
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intelligence test, the standard deviation would be a certain number of IQ points. It might 
help you to remember this, although most people would say or write things like ‘the 
standard deviation of height was 4.5’ without mentioning the units of measurement. 
Figure 6.3 gives the key steps in relation to using standard deviation.

The standard deviation gives greater numerical emphasis to scores which depart by 
larger amounts from the mean. The reason is that it involves squared deviations from the 
mean which give disproportionately more emphasis to larger deviations.

The standard deviation is important for many reasons. It is often used in preference to 
variance as an indicator of the amount of variability there is in the scores. This makes 
sense because variance is simply the square of the standard deviation. The more spread 
in the scores the bigger will be the standard deviation and the variance.

The standard deviation and the estimated standard deviation are slightly different. The 
estimated standard deviation is used when you are generalising from a sample to the 
population from which the sample was taken. However, the distinction between the two 
has become blurred and invariably researchers give the estimated standard deviation 
though they refer to it as the standard deviation. One good reason for this is that research-
ers overwhelmingly are trying to say something about the population on the basis of the 
sample data. When you use SPSS to calculate standard deviation it gives you the estimated 
standard deviation. The calculation of the estimated standard deviation involves dividing 
by the sample size minus one (N - 1) instead of the sample size. Another way of saying 
this, as we shall see, is that we divide by the degrees of freedom rather than the sample 
size. You will frequently come across degrees of freedom in psychological statistics.

The calculation of the estimated standard deviation using SPSS is described at the end 
of this chapter.

	 Figure 6.3	 Conceptual steps for understanding standard deviation
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How standard deviation works
The defining formula for standard deviation is as follows:

standard deviation = C
a (X - X)2

N
or the computationally quicker formula is:

standard deviation = S
aX2 -

(aX)2

N
N

Table 6.1 lists the ages of nine students (N = number of scores = 9) and shows steps in calculating the standard 
deviation. Substituting these values in the standard deviation formula:

 standard deviation = S
aX2 -

(aX)2

N
N

= S
5115 -

(207)2

9
9

 A
5115 - 4761

9

 A
354

9
= 239.333 = 6.27

(You may have spotted that the standard deviation is simply the square root of the variance.)

Interpreting the results

Like variance, standard deviation is difficult to interpret without other information about the data. Standard deviation 
is just a sort of average deviation from the mean. Its size will depend on the scale of the measurement in question. The 
bigger the units of the scale, the bigger the standard deviation is likely to be.

Explaining statistics 6.1

Scores (X) (age in years) Scores squared (X2)

20 400

25 625

19 361

35 1225

19 361

17 289

15 225

30 900

27 729

ΣX = 207 ΣX2 = 5115

	 Table 6.1	 Steps in the calculation of the standard deviation

➜

=

=
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Reporting the results

Usually standard deviation is routinely reported in tables which summarise a variable or a number of variables along 
with other statistics such as the mean and range. This is shown in Table 6.2.

Variable N Mean Range Standard deviation

Age 9 23.00 years 20.00 years 6.27 years

	 Table 6.2	 Illustrating the table for descriptive statistics

Estimated standard deviation
In this chapter the standard deviation is discussed as a 
descriptive statistic; that is, it is used like the mean and 
median, for example, to characterise important features of 
a set of scores. Be careful to distinguish this from the esti-
mated standard deviation which is discussed in more detail 
in Chapter 12. Estimated standard deviation is your best 
guess as to the standard deviation of a population of scores 
based on information known about only a small subset or 
sample of scores from that population. Estimated standard 
deviation involves a modification to the standard deviation 
formula so that the estimate is better – the formula is modi-
fied to read N - 1 instead of just N.

The formula for the estimated standard deviation is:

estimated standard deviation = S
aX2 -

(aX)2

N
N - 1

Box 6.1	 Key concepts

If you wish, this formula could be used in all of your 
calculations of standard deviation. Some textbooks and 
some computer programs give you calculations based on 
the above formula in all circumstances. Since virtually all 
statistical analyses in psychology are based on samples and 
we normally wish to generalise from these samples to all 
cases then there is good justification for this practice. The 
downside is that if we are describing the data rather than 
generalising from them to the population then the formula 
is theoretically a little imprecise. If we did this calculation 
we would obtain a value of 6.65. This is the value that SPSS 
calls the standard deviation, as shown in Screenshot 6.4 
though this is a bit of a misnomer. The distinction between 
the two standard deviations has been lost.

	 6.3	 Measuring the number of standard deviations – the z-score

Given that one of the aims of statisticians is to make life as simple as possible for them-
selves, they try to use the minimum number of concepts possible. Expressing standard 
statistical units in terms of standard deviations is just one step towards trying to express 
many measures in a consistent way. Another way of achieving consistency is to express 
all scores in terms of a number of standard deviations. That is, we can abandon the origi-
nal units of measurements almost entirely if all scores are re-expressed as a number of 
standard deviations.

It is a bit like calculating all weights in terms of kilograms or all distances in terms of 
metres. So, for example, since there are 2.2 pounds in a kilogram, something that weighs 
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10 pounds converts to 4.5 kilograms. We simply divide the number of pounds weight by 
the number of pounds in a kilogram in order to express our weight in pounds in terms of 
our standard unit of weight, the kilogram.

It is very much like this in statistics. If we know that the size of the standard deviation 
is, say, 7, we know that a score which is 21 above the mean score is 21 , 7 or three stand-
ard deviations above the mean. A score which is 14 below the mean is 14 , 7 or two 
standard deviations below the mean. So, once the size of the standard deviation is known, 
all scores can be re-expressed in terms of the number of standard deviations they are from 
the mean. One big advantage of this is that, unlike other standard units of measurement 
such as distance and weight, the number of standard deviations will apply no matter what 
the variable being measured is. Thus it is equally applicable if we are measuring time, anxi-
ety, depression, height or any other variable. So the number of standard deviations is a 
universal scale of measurement. But note the stress on the number of standard deviations.

Despite sounding a bit space-age and ultra-modern, the z-score is nothing other than the 
number of standard deviations a particular score lies above or below the mean of the set of 
scores – precisely the concept just discussed. So in order to work out the z-score for a par-
ticular score (X) on a variable we also need to know the mean of the set of scores on that 
variable and the value of the standard deviation of that set of scores. Sometimes it is referred 
to as the standard score since it allows all scores to be expressed in a standard form.

The standard deviation in this case is technically the standard deviation of the popula-
tion if it is known. Usually we do not know it as we only have information from a sample 
from that population. So we use the estimated standard deviation which involves the 
division by N - 1. There are rare occasions when we are dealing with the population. 
For example, if your university published its student profile based on its records of all of 
the students there then we do not have a sample but a population. In this case, arguably 
the correct thing to do would be to use the first version of standard deviation not the 
estimated standard deviation. When SPSS calculates the z-scores for you it uses the esti-
mated standard deviation formula invariably.

How z-scores work
To convert the age of a 32-year-old to a z-score, given that the mean of the set of ages is 40 years and the standard devia-
tion of age is 6 years, just apply the following formula:

z@score =
X - X

SD
where X stands for a particular score, X is the mean of the set of scores and SD stands for standard deviation.

The z-score of any age (e.g. 32) can be obtained as follows:

z@score[of a 32@year@old] = 32 - 40
6

= -8
6

= -1.33

The value of -1.33 means that:

●	 a 32-year-old is 1.33 standard deviations from the mean age of 40 for this set of age scores

●	 the minus sign simply means that the 32-year-old is younger (lower) than the mean age for the set of age scores.  
A plus sign (or no sign) would mean that the person is older (higher) than the mean age of 40 years.

Explaining statistics 6.2

➜
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	 6.4	 Use of z-scores

z-scores, at first sight, deter a lot of students. They are an odd, abstract idea which needs a 
little time to master. So what is the point of a z-score? Well they are important to know 
about because z-scores and related concepts appear in many of the more advanced statistical 
techniques to be found later in this book. You will come across values for z often in the 
output from SPSS. So if you grasp the idea now then you will find things easier later on.

So the z-score is a score expressed in terms of the number of standard statistical units 
of measurement (standard deviations) it is from the mean of the set of scores. One big 
advantage of using these standard units of measurement is that variables measured using 
different units of measurement can be compared with each other and even combined.

A good example of this comes from a student project (Szostak, 1995). The researcher 
was interested in the amount of anxiety that child tennis players exhibited and its effect 
on their performance (serving faults) in competitive situations as compared with practice. 
One consideration was the amount of commitment that parents demonstrated to their 
children’s tennis. Rather than base this simply on the extent to which parents claimed to 
be involved, she asked parents the amount of money they spent on their child’s tennis, the 
amount of time they spent on their child’s tennis and so forth:

1.	How much money do you spend per week on your child’s tennis coaching?

2.	How much money do you spend per year on your child’s tennis equipment?

3.	How much money do you spend per year on your child’s tennis clothing?

4.	How many miles per week on average do you spend travelling to tennis events?

5.	How many hours per week on average do you spend watching your child play 
tennis?

6.	How many LTA tournaments does your child participate in per year?

This is quite straightforward information to collect, but it causes difficulties for the 
analysis. The reason is that there are six different measures of parental commitment 
which would make the report cumbersome if each was to be discussed separately. The 
student wanted to combine these six different measures to give an overall commitment 
score for each parent. However, the six items are based on radically different units of 
measurement – time, money and so forth. Her solution was to firstly turn each parent’s 
score on each of the questionnaire items into a z-score. SPSS will do this for you. These 
six z-scores were then added together (including the +  or -  signs) to give a total 
score on the amount of commitment by each parent, which could be a positive or nega-
tive value since z-scores can be +  or -  since they are relative to the mean.

Interpreting the results

There is little to be added about interpreting the z-score since it is defined by the formula as the number of standard 
deviations a score is from the mean score. Generally speaking, the larger the z-score (either positive or negative) the more 
atypical a score is of the typical score in the data. A z-score of about 2 or more is fairly rare.

Reporting the results

As z-scores are scores they can be presented as you would any other score using tables or diagrams. Usually there is no 
point in reporting the mean of a set of z-scores since this will be 0.00 if calculated for all of the cases.
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This was an excellent strategy since this measure of parental commitment was the best 
predictor of a child performing poorly in competitive situations; the more parental com-
mitment the worse the child does in real matches compared with practice.

	 6.5	 Standard normal distribution

There is a remaining important use of standard deviation. Although it should now be 
obvious that there are some advantages in converting scores into standard units of meas-
urement, you might get the impression that, in the end, the scores themselves on a variable 
contain extra information which the z-score does not fully capture. In particular, if one 
looks at a distribution of the original scores, it is possible to have a good idea of how a 
particular individual scores relative to other people. So, for example, if you know the 
distribution of weights in a set of people, it should be possible to say something about the 
weight of a particular person relative to other people. A histogram giving the weights of 
38 children in a school class allows us to compare a child with a weight of, say, 42 kilo-
grams with the rest of the class (Figure 6.4).

We can see that a child of 42 kilograms is in the top four of the distribution – that is, in 
about the top 10% of the weight distribution. Counting the frequencies in the histogram 
tells us the percentage of the part of the distribution the child falls in. We can also work out 
that 34 out of 38 (about 90%) of the class are lighter than this particular child.

Surely this cannot be done if we work with standard deviations? Actually it is relatively 
straightforward to do this. There are ready-made tables to tell us precisely how a particu-
lar score (expressed as a z-score or number of standard deviations from the mean) com-
pares with other scores. This table is based on the frequency distribution of the normal 
(bell-shaped) curve. This table is known as either the standard normal distribution or the 
z-distribution. These tables can be complicated but we have opted for a relatively simple 
and useful version. Tables like this are generally called significance tables for reasons 
which will become more apparent later on.

Significance Table 6.1 gives the percentage number of scores which will be higher than 
a score with a given z-score. Basically this means that the table gives the proportion of the 
frequency distribution of z-scores which lie in the shaded portions in the example shown in 
Figure 6.5. The table assumes that the distribution of scores is normal or bell-shaped. The 
table usually works sufficiently well even if the distribution departs somewhat from the 
normal shape. Of course, since the area of the entire curve is 100% then it is quite easy to 
work out other characteristics of the curve. So if you know, for example, that 15.87% of 
scores will be above 1 standard deviation above the mean, it is a quick calculation to say 
that 100% - 15.87% = 84.13% will be below 1 standard deviation above the mean.

	 Figure 6.4	 Distribution of weights in a set of children
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How the table of the standard normal distribution works

Significance Table 6.1 is easy to use. Imagine that you have the IQs of a set of 250 people. The mean X of these IQs is 
100 and you calculate that the standard deviation (SD) is 15. You could use this information to calculate the z-score of 
Darren Jones who scored 90 on the test:

 z@score =
X - X

SD
=

90 - 100
15

 = -10
15

= -0.67 = -0.7 (to 1 decimal place)

Taking a z-score of -0.7, Significance Table 6.1 tells us that 75.80% of people in the set would have IQs equal to or 
greater than Darren’s. In other words, he is not particularly intelligent. If the z-score of Natalie Smith is +2.0 then this 
would mean that only 2.28% of scores are equal to or higher than Natalie’s – she’s very bright.

Of course, you could use the table to calculate the proportion of people with lower IQs than Darren and Natalie. 
Since the total amount of scores is 100%, we can calculate that, for Darren, there are 100% - 75.80% = 24.20% of 
people with IQs equal to or smaller than his. For Natalie, there are 100% - 2.28% = 97.72% of scores equal to or 
lower than hers.

Explaining statistics 6.3

z-score Percentage of scores higher 
than this particular z-score

-4.00 99.997%

-3.00 99.87%

-2.90 99.81%

-2.80 99.74%

-2.70 99.65%

-2.60 99.53%

-2.50 99.38%

-2.40 99.18%

-2.30 98.93%

-2.20 98.61%

-2.10 98.21%

-2.00 97.72%

-1.96 97.50%

z-scores above this point are in the extreme 5% of scores in 
either direction from the mean (i.e. the extreme 2.5% below  

the mean)

-1.90 97.13%

-1.80 96.41%

Significance 
Table 6.1

z-score Percentage of scores higher 
than this particular z-score

-1.70 95.54%

-1.64 95.00%

z-scores above this point are in the extreme 5% below  
the mean

-1.60 94.52%

-1.50 93.32%

-1.40 91.92%

-1.30 90.32%

-1.20 88.49%

-1.10 86.43%

-1.00 84.13%

-0.90 81.59%

-0.80 78.81%

-0.70 75.80%

-0.60 72.57%

-0.50 69.15%

-0.40 65.54%

-0.30 61.79%

Standard normal z-distribution: this gives the percentage of z-scores which are higher than the tabled values
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	 Figure 6.5	 Part of the z-distribution which is listed in Significance Table 6.1

z-score Percentage of scores higher 
than this particular z-score

-0.20 57.93%

-0.10 53.98%

0.00 50.00%

0.00 50.00%

+ 0.10 46.02%

+ 0.20 42.07%

+ 0.30 38.21%

+ 0.40 34.46%

+ 0.50 30.85%

+ 0.60 27.43%

+ 0.70 24.20%

+ 0.80 21.19%

+ 0.90 18.41%

+ 1.00 15.87%

+ 1.10 13.57%

+ 1.20 11.51%

+ 1.30 9.68%

+ 1.40 8.08%

+ 1.50 6.68%

+ 1.60 5.48%

z-score Percentage of scores higher 
than this particular z-score

z-scores below this point are in the extreme 5% above  
the mean

+ 1.64 5.00%

+ 1.70 4.46%

+ 1.80 3.59%

+ 1.90 2.87%

z-scores below this point are in the extreme 5% of scores in 
either direction from the mean (i.e. the extreme 2.5% above 

 the mean)

+ 1.96 2.50%

+ 2.00 2.28%

+ 2.10 1.79%

+ 2.20 1.39%

+ 2.30 1.07%

+ 2.40 0.82%

+ 2.50 0.62%

+ 2.60 0.47%

+ 2.70 0.35%

+ 2.80 0.26%

+ 2.90 0.19%

+ 3.00 0.13%

+ 4.00 0.0003%
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	 ■	 More about Significance Table 6.1

Significance Table 6.1 is just about as simple as we could make it. It is not quite the same 
as similar tables in other books:

●	 We have given negative as well as positive values of z-scores.

●	 We have only given z-scores in intervals of 0.1 with a few exceptions.

●	 We have given percentages – many other versions of the table give proportions out of 
1. In order to convert the values in Significance Table 6.1 into proportions, simply 
divide the percentage by 100 and delete the % sign.

●	 We have introduced a number of ‘cut-off points’ or zones into the table. These basically 
isolate extreme parts of the distribution of z-scores and identify those z-scores which 
come into the extreme 5% of the distribution. If you like, these are the exceptionally 
high and exceptionally low z-scores. The importance of this might not be obvious right 
now but will be clearer later on. They are related to the concept of statistical signifi-
cance which we deal with later in the book. We have indicated the extreme 5% in either 
direction (that is, the extreme 2.5% above and below the mean) as well as the extreme 
5% in a particular direction.

	 6.6	 Important feature of z-scores

By using z-scores the researcher is able to say an enormous amount about a distribution 
of scores extremely succinctly. If we present the following information:

●	 the mean of a distribution

●	 the standard deviation of the distribution

●	 that the distribution is more or less bell-shaped or normal

then we can use this information to make very clear statements about the relative position 
of any score on the variable in question. In other words, rather than present an entire 
frequency distribution, these three pieces of information are virtually all that is required.

Negative signs
One thing which can cause confusion is when psychologists 
talk about plus two standard deviations or minus one 
standard deviation. The first thing to say is that a standard 
deviation can never itself have a negative value – a standard 
deviation is positive. The reason why psychologists talk 
about minus standard deviations is because they are saying 
how many standard deviations a score is below the mean. 

Thus a plus indicates that a score is so many standard 
deviations above the mean and a minus means that the 
score is so many standard deviations below the mean. 
Really, what they should be saying is that a score has a 
z-score of + 2 or a z-score of -1 since this is where the 
pluses and minuses come from and nobody would get 
confused.

Box 6.2	 Focus on
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Standard deviation and z-scores

Contador and colleagues (2010) used z-scores to define the level of memory scores which they describe as 
impaired: ‘To find the proportion of the subjects whose performance fell outside of the normal range, scores 
were converted to z-scores. Patients were considered to be impaired if their z-scores were lower than -1.5. 
Considering that -2 SD are also often used as a cut off for such purposes, we computed additionally the pro-
portion of patients whose z-scores fell lower than -2 SD.’ (p. 255).

Di Filippo and colleagues (2006) were interested in the lexicality (readability) of words in relation to word length 
in a sample of dyslexic Italian children and a sample of age-matched controls. They analysed their data twice: 
once using the raw scores on reaction times to the words and again using z-score transformations. The raw reac-
tion time data demonstrated that reaction times to non-words were bigger than for real words and bigger for 
long words than for short words in dyslexics than proficient readers. But things changed when the data had been 
transformed into z-scores. The lexicality effect disappeared although the length of word effect remained. The 
researchers put this down to what they call the ‘overadditivity’ effect in the raw data. The authors explain this in 
the following way: ‘However, overall performance changes can directly influence the size of the interaction (so-
called overadditivity effect . . . ) when response time is considered, one can expect that the effect due to any 
experimental manipulation will be smaller for a subject with relatively fast responses than a subject with slower 
responses. As a consequence, a “spurious” interaction may be produced.’ (p. 142). Faust and colleagues (1999) 
proposed transformations (z-scores) to control for this overadditivity effect.

Green and colleagues (2001) studied the performance of patients who had been given a battery of neuropsy-
chological tests. The researchers also included measurement of the effort put into the testing by the patients. 
The context of the assessment was compensation claims for the patient’s disabilities. There were a total of 43 
neuropsychological test scores. The researchers obtained the z-score values for each of these tests from stand-
ardisation data for the tests. This allowed the scores of each patient to be summed and averaged to give an 
Overall Test Battery mean. That is to say, average z-scores were obtained on the basis of normative data rather 
than by reference to the means and standard deviations for the sample involved in the research. The variable 
measuring effort correlated with the overall test battery mean quite substantially. The evidence suggested that 
sub-optimum effort reduced the overall score by several times the amount that moderate or severe brain injury 
did. If only patients making a good effort on the effort variable were included, then patients with severe brain 
injuries and neurological diseases performed substantially worse than the patients presumed not to have neu-
rological problems. These data support the need for the assessment of effort as part of neuropsychological 
testing as without it, the expected relationship between brain injury and neurological disease may be reversed.

Tremont and Alosco (2011) investigated the correlates of lack of awareness of their condition in Alzheimer’s 
sufferers. Such lack of insight into one’s condition is known as anosognosia. It is common in Alzheimer’s disease 
but its role in cognitive performance has not been extensively researched. The participants were 65 Alzheimer’s 
sufferers who took part in an extensive neuropsychological evaluation using a range of different measures. About 
half were aware and about half were unaware of their condition. This classification was done using the ratings 
of a clinical interview which also included a family member as informant. In order to compare their cognitive 
functioning based on a wide variety of measures, the researchers chose to convert each measure to a z-score 
by subtracting the sample mean from each individual’s score and dividing by the standard deviation of that 
measure. The z-scores for each individual could be added up and averaged. This gave a measure of cognitive 
performance based on each measure contributing equally. Although there were no significant differences 
between the aware and non-aware groups in terms of age, gender, education level, the unaware group did 
significantly worse on cognitive tasks which involved learning. Despite this, generally, the groups performed 
similarly on cognitive tasks.

Research examples
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Computer Analysis

Standard deviation and z-scores using SPSS

●	 Do not despair if you have problems in understanding standard deviation; it is one of the most abstract ideas 
in statistics, but so fundamental that it cannot be avoided. It can take some time to absorb completely.

●	 Remember that the standard deviation is a sort of average deviation from the mean and you will not go far 
wrong.

●	 Remember that using z-scores is simply a way of putting variables on a standard unit of measurement irre-
spective of special characteristics of that variable. Standardised values are common in the more advanced 
statistical techniques so it is good to master them at an early stage.

●	 Remember that virtually any numerical score variable can be summarised using the standard deviation and 
that virtually any measurement can be expressed as a z-score. The main exception to its use is measurements 
which are in nominal categories like occupation or eye colour. Certainly if a score is interval or ratio in nature, 
standard deviation and z-scores are appropriate.

Key points

	 Figure 6.6	  SPSS steps for standard deviation and z-scores
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	 Screenshot 6.2	 On ‘Analyze’ select ‘Descriptives. . . ’

	 Screenshot 6.4	 Part of the output

Interpreting and reporting the output

●	 The standard deviation of just one variable is readily mentioned in the text of your report: ‘The standard 
deviation of age was 6.65 years (N = 9).’ However, if you have a lot of variables, a table giving basic 
descriptive statistics for several variables may be more effective. Remember that SPSS gives the estimated 
standard deviation so the value here is the one we calculated in Box 6.1 – the estimated standard 
deviation.

●	 It is not usual to report standard scores as this would be somewhat like reporting the raw scores for each 
individual. However, you need to understand standard scores as these can be meaningfully added, etc. 
because they have been standardised to be on the same scale of measurement.

	 Screenshot 6.1	 Enter data in ‘Data View’ of ‘Data Editor’

	 Screenshot 6.3	 Move variable to ‘Variable(s):’ box
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	 Screenshot 6.5	 Select ‘Save standardized values as variables’ 	 Screenshot 6.6	 z-scores appear in ‘Data View’
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●	 Most research in psychology involves the relationships between two or more sets of scores. 
These can be represented pictorially as a scattergram (or scatterplot).

●	 Alternatively, a crosstabulation table with the scores broken down into ranges (or bands) is 
sometimes effective.

●	 If both variables are nominal (category) then compound bar charts of various sorts may be 
used or, alternatively, crosstabulation tables.

●	 If there is one score variable and one nominal (category) variable then often tables of means 
of the score variable tabulated against the nominal (category) variable will be adequate. It 
is possible, alternatively, to employ a compound histogram.

Relationships between 
two or more variables
Diagrams and tables

Chapter 7

Overview

Preparation

You should be aware of the meaning of variables, scores and the different scales of  
measurement, especially the difference between nominal (category) measurement and 
numerical scores.
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	 7.1	 Introduction

Although it is fundamental and vitally important to be able to describe the 
Â�characteristics of each variable in your research both diagrammatically and numeri-
cally, studies involving interrelationships between variables as well are more typical. 
Public opinion polling is the most common use of single-variable statistics that most 
of us come across. Opinion pollsters ask a whole series of questions about political 
leaders and voting intentions which are generally reported separately – 57% of peo-
ple support the Prime Minister, for example. Nevertheless, the pollsters could look 
at two variables together. To ask how men compare with women in their voting 
intentions, whether there is a relationship (or correlation or association) between 
gender and voting intentions, and whether men and women differ in their voting 
intentions are the same thing. If one asks whether the popularity of the President of 
the USA changed over time, this really implies that there may be a relationship 
between the variable ‘time’ and the variable ‘popularity of the President’. Questions 
like these seem common sense ones to ask. Statistics gives us ways of quantifying and 
illustrating relationships.

Interrelationships between variables form the bedrock of virtually all psychological 
research. It is rare in psychology to have research questions which require data from 
only one variable at a time. Much of psychology concerns explanations of why things 
happen – what causes what – which clearly is about relationships between variables. 
This chapter describes some of the main graphical and tabular methods for presenting 
interrelationships between variables. Usually they are simply alternative ways of doing 
much the same thing. Importantly, graphs and tables are not simply ways of smartening 
up a report or dissertation. Their function in statistical analysis is much deeper than 
this and they are at the heart of the analytic work of the researcher. Graphs and tables 
should be the mainstay of a good statistical analysis, not the end product. At the start 
of the analysis, they have the crucial role of familiarising the researcher with their data. 
They help you understand what is going on in the data. Histograms and bar charts will 
quickly show you the distribution of each variable. You may see problems such as a 
very skewed distribution or bunching and clustering around particular data points. 
Outliers may be spotted. Then you can move on to graphs and tables of the sort 
described in this chapter which show you the relationships between pairs of variables. 
You may see evidence that your expectations are supported by the data – or not. Or 
you may find that the relationships are much more complex than you had expected. 
You may need to adjust your plans for the later stages of the statistical analysis on the 
basis of what you see.

Graphs and tables may seem very basic compared with the riches of more advanced 
statistical techniques. Nevertheless, it is a mistake not to go through the basic 
description and exploration of your data. Computers allow you to produce charts 
and tables very quickly, which makes it easy to look at the detail of your data. A 
good researcher may get as much from this aspect of their analysis than from the 
more fancy statistical techniques to be found later in this book. Figure 7.1 gives the 
key steps to consider when describing relationships between two variables in diagram 
and table form.
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	 7.2	 Principles of diagrammatic and tabular presentation

Choosing appropriate techniques to show relationships between two variables requires 
an understanding of the difference between nominal category data and numerical score 
data. If we are considering the interrelationships between two variables (X and Y) then 
the types of variable involved are as shown in Table 7.1.

Once you have decided to which category your pair of variables belongs, it is easy to 
suggest appropriate descriptive statistics. We have classified different situations as type 
A, type B and type C. Thus type B has both variables measured on the nominal category 
scale of measurement.

	 Figure 7.1	 Conceptual steps for showing relationships between two variables

Variable X = numerical scores Variable X = nominal categories

Variable y = numerical scores type A type C

Variable y = nominal categories type C type B

	 Table 7.1	 Types of relationships based on nominal categories and numerical scores
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	 7.3	 Type A: both variables numerical scores

Where both variables take the form of numerical scores, generally the best form of 
graphical presentation is the scattergram or scatterplot. This is a sort of graph in which 
the values on one variable are plotted against the values on the other variable. The most 
familiar form of graph is one that plots a variable against time. These are very familiar 
from newspapers, especially the financial sections (see Figure 7.2).

Time is no different, statistically speaking, from a wide range of other numerical 
scores. Figure 7.3 is an example of a scattergram from a psychological study. You will 
see that the essential features remain the same. In Figure 7.3, the point marked with an 
arrow represents a case (person) whose score on the X-variable is 8 and whose score on 
the Y-variable is 120. It is sometimes possible to see that the points of a scattergram fall 
more or less on a straight line. This line through the points of a scattergram is called the 
regression line. It is the best-fitting straight line to the data points. Figure 7.3 includes 
the regression line for the points of the scattergram.

	 Figure 7.2	 Dramatic fall in share price in the Timeshare Office Company

	 Figure 7.3	 Scattergram showing the relationship between two variables
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In line with general mathematical notation, the horizontal axis or horizontal dimension 
is described as the X-axis and the vertical axis or vertical dimension is called the Y-axis. 
It is helpful if you remember to label one set of scores the X scores since these belong on 
the horizontal axis, and the other set of scores the Y scores because these belong on the 
vertical axis (Figure 7.4).

One complication you sometimes come across is where several points on the scatter-
gram overlap completely. In these circumstances you may well see a number next to a 
point which corresponds to the number of overlapping points at that position on the 
scattergram. In Figure 7.4, overlapping points are marked not with a number but with 
lines around the point on the scattergram. These are called ‘sunflowers’ – the number of 
‘petals’ indicates the number of cases overlapping at the same point. Another way of 
indicating overlaps is simply to put the number of overlaps next to the scattergram point. 
SPSS has a system by which the size of the data point will get bigger the more cases overlap 
on a particular data point. You find it in ‘Chart Editor’ (Screenshot 8.10) under ‘Options’ 
and then ‘Bin Element’, which opens up ‘Binning’ (Screenshot 8.11). You will find instruc-
tions for obtaining scattergrams on SPSS at the end of Chapter 8.

Apart from cumbersomely listing all of your pairs of scores, it is often difficult to 
think of a succinct way of presenting data from pairs of numerical scores in tabular 
form. The main possibility is to categorise each of your score variables into ‘bands’ 
of scores and express the data in terms of frequencies of occurrence in these bands; a 
table like Table 7.2 might be appropriate. Just to remind you, on SPSS it is possible 
to recode ranges of scores into bands. Select ‘Transform’ then ‘Recode into Different 
Variables. . .’ (Screenshot 3.5).

Such tables are known as ‘crosstabulation’ or ‘contingency’ tables. In Table 7.2 there 
does seem to be a relationship between variable X and variable Y. People with low scores 
on variable X also tend to get low scores on variable Y. High scorers on variable X also 
tend to score highly on variable Y. However, the trend in the table is less easily discerned 
than in the equivalent scattergram. You will find the SPSS steps for creating a contingency 
or crosstabulation table at the end of this chapter.

	 Figure 7.4	 Scattergram with the x- and y-axes labelled and overlapping points illustrated
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	 7.4	 Type B: both variables nominal categories

Where both variables are in nominal categories, it is necessary to report the frequencies 
in all of the possible groupings of the variables. If you have more than a few nominal 
categories, the tables or diagrams can be too big and cumbersome.

Take the imaginary data shown in Table 7.3 on the relationship between a person’s 
gender and whether they have been hospitalised at any time in their life for a psychiatric 
reason. These data are ideal for certain sorts of tables and diagrams because there are few 
categories of each variable. Thus a suitable table for summarising these data might look 
like Table 7.4 – it is called a contingency or crosstabulation table.

The numbers (frequencies) in each category are instantly obvious from this table. You 
might prefer to express the table in percentages rather than frequencies, but some thought 

Person Gender Previously hospitalised

1 male yes

2 male no

3 male no

4 male yes

5 male no

. . .  . . .  . . . 

85 female yes

86 female yes

87 female no

88 female no

89 female yes

	 Table 7.3	 Gender and whether previously hospitalised for a set of 89 people

Variable X Variable Y

1–5 6–10 11–15 16–20 21–25

0–9 15 7 6 3 4

10–19 7 12 3 5 4

20–29 4 9 19 8 4

30–39 1 3 2 22 3

40–49 3 2 3 19 25

	 Table 7.2	 �Use of bands of scores to tabulate the relationship between two numerical score 
variables
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needs to go into the choice of percentages. For example, you could express the frequencies 
as percentages of the total of males and females (Table 7.5).

You probably think that Table 7.5 is not much of an improvement in clarity. An  
alternative is to express the frequencies as percentages of males and percentages of females 
(Table 7.6). By presenting the percentages based on males and females separately, it is 
easier to see the trend for females to have had a previous psychiatric history relatively 
more frequently than males. Remember, the instructions for creating a contingency or  
crosstabulation table are at the end of this chapter.

The same data can be expressed as a compound bar chart. In a compound bar chart 
information is given about the subcategories based on a pair of variables. Figure 7.5 
shows one example in which the proportions are expressed as percentages of the males 
and females separately.

The golden rule for such data is to ensure that the number of categories is manageable. 
In particular, avoid having too many empty or near-empty categories. The compound bar 
chart shown in Figure 7.6 is a particularly bad example and is not to be copied. This chart 
fails any reasonable clarity test and is too complex to decipher quickly. Your chart should 
be a model of clarity if you are to impress others with your thoughtful approach to 
Â�statistical analysis. SPSS instructions for compound bar charts are at the end of this 
chapter.

Male Female

Previously hospitalised f = 20 f = 25

Not previously hospitalised f = 30 f = 14

	 Table 7.4	 Crosstabulation table of gender against hospitalisation

Male Female

Previously hospitalised 22.5% 28.1%

Not previously hospitalised 33.7% 15.7%

	 Table 7.5	 �Crosstabulation table with all frequencies expressed as a percentage of the total 
number of frequencies

Male Female

Previously hospitalised 40.0% 64.1%

Not previously hospitalised 60.0% 35.9%

	 Table 7.6	 �Crosstabulation table with hospitalisation expressed as a percentage of the male 
and female frequencies taken separately
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	 Figure 7.6	 How not to do a compound bar chart

	 Figure 7.5	 Compound percentage bar chart showing gender trends in previous hospitalisation

	 7.5	 Type C: one variable nominal categories, the other numerical 
scores

This final type of situation offers a wide variety of ways of presenting the relationships 
between variables. We have examined the compound bar chart so it is not surprising to 
find that there is also a compound histogram. To be effective, a compound histogram 
needs to consist of:

●	 a small number of categories for the nominal category variable

●	 a few ranges for the numerical scores.
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So, for example, if we wish to plot the relationship between managers’ anxiety scores 
and whether they are managers in a high-tech or a low-tech industry, we might create a 
compound histogram like Figure 7.7 in which there are only two values of the nominal 
variable (high-tech and low-tech) and four bands of anxiety score (low anxiety, medium 
anxiety, high anxiety and very high anxiety). The SPSS steps to make compound histo-
grams are described at the end of this chapter in the Computer Analysis section.

An alternative way of presenting such data is to use a crosstabulation table as in 
Table 7.7. Instead, however, it is almost as easy to draw up a table (Table 7.8) which gives 
the mean, median, mode, etc. for the anxiety scores of the two different groups.

Frequency of anxiety score

0–3 4–7 8–11 12–15

Low-tech 
industry

7 18 3 1

High-tech 
industry

17 7 0 0

	 Table 7.7	 Crosstabulation table of anxiety against type of industry

Mean Median Mode Interquartile 
range

Variance

High-tech 
industry

3.5 3.9 3 2.3–4.2 2.2

Low-tech 
industry

5.3 4.7 6 3.9–6.3 3.2

	 Table 7.8	 �Comparison of the statistical characteristics of anxiety in two different types of 
industry

	 Figure 7.7	 Compound histogram
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●	 Never assume that your tables and diagrams are good enough at the first attempt. They could probably be 
improved with a little care and adjustment.

●	 Do not forget that tables and diagrams are there to present clearly the major trends in your data (or lack of 
them). There is not much point in having tables and diagrams that do not clarify your data.

●	 Your tables and diagrams are not means of tabulating your unprocessed data. If you need to present your 
data in full then most of the methods to be found in this chapter will not help you much.

●	 Labelling tables and diagrams clearly and succinctly is an important part of the task – without clear titling 
and labelling you are probably wasting your time.

Key points

Crosstabulation and charts

Arden and Plomin (2006) drew a compound histogram to show how the standard deviation of intelligence scores 
differed between boys and girls at the ages of 2, 3, 4, 7, 9 and 10.

Deary and his colleagues (1991) looked at the relation between intelligence and deciding which of two vertical 
lines was the longer. They used three groups of different people. They presented the relation between Â�intelligence 
and the time to do the task as a correlation and as a scattergram for the three groups combined. The correlation 
was negative with lower intelligence scores associated with longer inspection times.

Jenkins and colleagues (2012) used three bar charts to show the differences in means in eating disorder pathol-
ogy, general pathology and quality of life between five groups. These five groups differed in whether they over-
ate and had lost control of their over-eating.

Meeten and Davey (2012) manipulated five moods by showing participants one of five films. The five moods 
were sad, happy, anxious, angry and neutral. Participants rated how they felt in these five conditions in terms of 
four scales of sadness, happiness, anxiety and anger. The mean scores and their standard deviations were 
Â�presented in a crosstabulation with the five conditions represented by five columns and the four moods by four 
rows. They used a compound histogram to show the mean number of instances of exaggerating negative 
Â�consequences using one of two rules in the five mood conditions.

Sierra, Livianos and Rojo (2005) employed a bar chart to show the differences in means on eight subscale scores 
of a measure of quality of life between patients with bipolar depression and a sample from the general 
population.

Wickett, Vernon and Lee (1994) wanted to know whether there was a correlation between intelligence and brain 
size as measured by magnetic resonance imaging. They found a positive correlation of .395 which they showed 
as a scatterplot. Greater brain size was positively associated with higher intelligence scores.

Research examples
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Computer Analysis

Crosstabulation and compound bar charts using SPSS

Interpreting and reporting the output

●	 You should have a good idea of what you want your tables and charts or diagrams to tell you.  
If you find the chart difficult to understand then you cannot expect anyone reading your report to 
understand it any better. You might wish to start again. Basically in order to interpret the chart or  
table you are looking for evidence for a relationship between the two variables.

●	 Always think carefully about whether to present tables and diagrams in reports. They may be very 
important to the researcher when they are analysing their data but less important in the light of this 
analysis in terms of their inclusion in the report. If you do choose to include a table or diagram, always 
refer to it in the main text of your report – never leave it to the reader to interpret what it indicates.  
As always, make sure that the labelling, etc. of the chart is as good as you can make it.

	 Figure 7.8	  SPSS steps for contingency (crosstabulation) tables and compound charts
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	 Screenshot 7.5	 Select variables and statistics 	 Screenshot 7.6	 Clustered bar chart output

	 Screenshot 7.1	 Enter data in ‘Data View’ 	 Screenshot 7.2	 On ‘Analyze’ select ‘Custom Tables. . . ’ 
for a contingency table

	
Screenshot 7.3

	 Move the variables for a 
contingency table 	 Screenshot 7.4	 Contingency table output
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●	 Correlation coefficients are numerical indexes of the relationship between two variables. 
They are the bedrock of much statistical analysis.

●	 The correlation coefficient may be positive or negative depending on whether both sets of 
scores increase together (positive correlation) or whether one set increases as the other 
decreases (negative correlation).

●	 The numerical size of the correlation coefficient ranges from 0 (no relationship) to 1 (a perfect 
relationship). Intermediate values indicate different amounts of spread around the best-fitting 
straight line through the points (i.e. the spread around the regression line). If the points on the 
scattergram do not lie close to the regression line then the correlation is poor.

●	 The Pearson correlation is primarily used for score variables (though it can be used where 
one or both variables are nominal variables with just two categories).

●	 Spearman’s correlation works differently in that it is a correlation between scores which are 
ranked from smallest to largest. It is used sometimes when the scores are not normally  
distributed. It is a special case of the Pearson correlation coefficient formula.

●	 Great care should be taken to inspect the scattergram between the two variables in question 
in order to make sure that the best-fitting line is a straight line rather than a curve.

●	 Small numbers of very extreme scores can substantially mask the true trend in the  
data – these are called outliers. The chapter explains what to do about them.

●	 The statistical significance of correlation coefficients is dealt with in detail in Chapter 11.

Correlation coefficients
Pearson’s correlation and Spearman’s rho

Chapter 8

Overview

Preparation

Revise variance (Chapter 4) and the use of the scattergram to show the relationship between 
two variables (Chapter 7).
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	 8.1	 Introduction

Although the scattergram is an important statistical tool for examining relationships 
between two variables, it is space consuming. The correlation coefficient is a numerical 
index which summarises some of the main features of a scattergram. By far the most 
commonly used correlation coefficient is the Pearson correlation, also known more 
grandly and obscurely as the Pearson product–moment correlation coefficient. It includes 
two major pieces of information:

●	 The closeness of the fit of the points of a scattergram to the best-fitting straight line 
through those points.

●	 Information about whether the slope of the scattergram is positive or negative.

However it omits a lot of other information from the scattergram such as the measure-
ment scales of the two variables and specific information about individual cases.

The correlation coefficient thus neatly summarises some of the information to be found 
in a scattergram. It is especially useful when you have several variables which would 

	 Figure 8.1	 Conceptual steps for understanding the correlation coefficient 
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involve drawing numerous scattergrams, one for each pair of variables. It most certainly 
does not replace the need for scattergrams but merely helps you to present your findings 
rather more concisely than other methods. Indeed, you should draw a scattergram for 
every correlation coefficient you calculate even if that scattergram is not intended for 
inclusion in your report.

Although the correlation coefficient is a basic descriptive statistic, it is elaborated in a 
number of sophisticated forms such as partial correlation, multiple correlation and factor 
analysis, which are some of the more advanced statistics to be found later in this book. 
Correlation is of paramount importance in many forms of research, especially survey, 
questionnaire and similar kinds of investigation. Figure 8.1 gives the key steps to consider 
when using the correlation coefficient.

	 8.2	 Principles of the correlation coefficient

The Pearson correlation coefficient basically takes the following form:

r[correlation coefficient] = + 1.00
orâ•…â•…â•…â•‡    .00
orâ•…â•…â•›  -1.00
orâ•…â•…â•…   0.30
orâ•…â•…   -0.72, etc.

So a correlation coefficient consists of two parts:

●	 a positive or negative sign (although for positive values the sign is normally omitted)

●	 any numerical value in the range of .00 to 1.00.

The +  or -  sign tells us something important about the slope of the regression line 
(i.e. the best-fitting straight line through the points on the scattergram). A positive value 
means that the slope is from the bottom left to the top right of the scattergram  
(Figure 8.2). On the other hand, if the sign is negative (- ) then the slope of the straight 
line goes from upper left to lower right on the scattergram (Figure 8.3).

	 Figure 8.2	 Positive correlation between two variables
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The numerical value of the correlation coefficient (.50, .42, etc.) is an index of how close 
the points on the scattergram fit the best-fitting straight line. A value of 1.00 means that the 
points of the scattergram all lie exactly on the best-fitting straight line (Figure 8.4), unless 
that line is perfectly vertical or perfectly horizontal, in which case it means that there is no 
variation in the scores on one of the variables and so no correlation can be calculated.

A value of .00 means that the points of the scattergram are randomly scattered around 
the straight line. It is purely a matter of luck if any of them actually touch the straight line 
(Figure 8.5). In this case, the best-fitting straight line for the scattergram could be virtually 
any line you arbitrarily decide to draw through the points. Conventionally it is drawn as 
a horizontal line, but any other angle of slope would do just as well since there is no 
discernible trend in the relationship between the two variables on the scattergram.

A value of .50 would mean that although the points on the scattergram are generally 
close to the best-fitting straight line, there is considerable spread of these points around 

	 Figure 8.3	 Negative correlation between two variables

	 Figure 8.4	 Perfect correlation between two variables
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that straight line. If you would like verbal labels for different sizes of the Pearson correla-
tion coefficient then this is the commonly described scheme:

●	 A small correlation is .10 or larger.

●	 A medium correlation is .30 or larger.

●	 A large correlation is .50 or larger.

To summarise, the components of the correlation coefficient are the sign (+  or - ), 
which indicates the direction of the slope, and a numerical value which indicates how 
much variation there is around the best-fitting straight line through the points (i.e. the 
higher the numerical value the closer the fit).

	 ■	 Covariance

The calculation of the correlation coefficient involves something called the covariance 
which is compared to the maximum value it could take based on the variances of the two 
sets of scores. Covariance is the extent to which two variables vary together and its cal-
culation is little more than an elaboration of the formula for variance:

variance = a (X - X)2

N

where X = scores on variable X
X = mean score on variable X
N = number of scores

a = sum of what follows

If you wished (you will see why in a moment), the formula for variance could be  
re-expressed as:

variance = a (X - X)(X - X)

N

	 Figure 8.5	 Near-zero correlation between two variables
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All we have done is to expand the formula so as not to use the square sign. (A square is 
simply a number multiplied by itself.)

The formula for covariance is almost exactly the same as this formula for variance, but 
instead of multiplying scores by themselves we multiply the score on one variable (X) by 
the score on the second variable (Y) having subtracted the relevant mean:

covariance[of variable X with variable Y] = a (X - X)(Y - Y)

N

where X = scores on variable X
X = mean score on variable X
Y = scores on variable Y
Y = mean score on variable Y
N = number of pairs of scores

a = sum of what follows

We get a large positive value of covariance if there is a strong positive relationship between 
the two variables, and a big negative value if there is a strong negative relationship 
between the two variables. If there is no relationship between the variables then the 
covariance is zero. Notice that, unlike variance, the covariance can take positive or nega-
tive values.

However, the size of the covariance is affected by the size of the variances of the two  
separate variables involved. The larger the variances, the larger is the covariance, potentially. 
Obviously this would make comparisons difficult. So the covariance is adjusted by dividing 
by the square root of the product of the variances of the two separate variables. Because N, 
the number of pairs of scores, in the variance and covariance formulae can be cancelled out 
in the correlation formula, the usual formula includes no division by the number of scores. 
Once this adjustment is made, we have the formula for the correlation coefficient:

r[correlation coefficient] = a (X - X)(Y - Y)

Aa (X - X)2Aa (Y - Y)2

The lower part of the formula gives the largest possible value of the covariance of the two 
variables – that is, the theoretical covariance if the two variables lay perfectly on the 
straight line through the scattergram. Dividing the covariance by the maximum value it 
could take (if there were no spread of points away from the straight line through the  
scattergram) ensures that the correlation coefficient can never be greater than 1.00. The 
covariance formula also gives the necessary sign to indicate the slope of the 
relationship.

A slightly quicker computational formula which does not involve the calculation of the 
mean scores directly is as follows, though we will not illustrate it here as we assume that 
you will prefer to do your calculations on a computer:

r[correlation coefficient] =
aXY - aXaY

N

C¢aX2 -
1aX22

N
≤ ¢aY2 -

1aY22
N

≤
The resemblance of parts of this formula to the computational formula for variance 
should be fairly obvious. This is not surprising as the correlation coefficient is a measure 
of the lack of variation around the straight line through the scattergram.
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Our data for this calculation come from scores on the relationship between mathematical ability and musical ability for 
a group of 10 children (Table 8.1). It is always sound practice to draw the scattergram for any correlation coefficient you 
are calculating. For these data, the scattergram will be like Figure 8.6. Notice that the slope of the scattergram is negative, 
as one could have deduced from the tendency for those who score highly on mathematical ability to have low scores on 
musical ability. You can also see not only that a straight line is a pretty good way of describing the trends in the points 
on the scattergram but that the points fit the straight line reasonably well. Thus we should expect a fairly high negative 
correlation from the correlation coefficient.

How the Pearson correlation works

Explaining statistics 8.1

	 Figure 8.6	 Scattergram for Table 8.1

Individual Music score Mathematics score

Jessica 2 8

Joshua 6 3

Tyler 4 9

Daniel 5 7

Emily 7 2

Brittany 7 3

Samantha 2 9

Alexis 3 8

Ryan 5 6

Nicola 4 7

	 Table 8.1	 Scores on musical and mathematical ability for 10 children
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	 �Set the scores out in a table (Table 8.2) and follow the calculations as shown. Here N is the 
number of pairs of scores, i.e. 10.

	 Substitute the appropriate values from Table 8.2 in the formula:

		   r[correlation coefficient] = a (X - X)(Y - Y)

Aa (X - X)2Aa (Y - Y)2

 =
-39

230.5 * 61.6

 =
-39

43.35

 = -0.90

Step 1

Step 2

X score 
(music)

Y score 
(maths)

X − X (X − X)2 Y − Y (Y − Y)2 (X − X) (Y − Y)

2 8 2 - 4.5 = -2.5 6.25 8 - 6.2 =     1.8 3.24 -2.5 *     1.8 =   -4.5

6 3 6 - 4.5 =     1.5 2.25 3 - 6.2 = -3.2 10.24    1.5 *   -3.2 =   -4.8

4 9 4 - 4.5 = -0.5 0.25 9 - 6.2 =     2.8 7.84 -0.5 *      2.8 =   -1.4

5 7 5 - 4.5 =     0.5 0.25 7 - 6.2 =     0.8 0.64    0.5 *      0.8 =       0.4

7 2 7 - 4.5 =     2.5 6.25 2 - 6.2 = -4.2 17.64    2.5 *  -4.2 = -10.5

7 3 7 - 4.5 =     2.5 6.25 3 - 6.2 = -3.2 10.24    2.5 *  -3.2 =   -8.0

2 9 2 - 4.5 = -2.5 6.25 9 - 6.2 =     2.8 7.84 -2.5 *      2.8 =   -7.0

3 8 3 - 4.5 = -1.5 2.25 8 - 6.2 =     1.8 3.24 -1.5 *      1.8 =   -2.7

5 6 5 - 4.5 =     0.5 0.25 6 - 6.2 = -0.2 0.04    0.5 *  -0.2 =    -0.1

4 7 4 - 4.5 = -0.5 0.25 7 - 6.2 =     0.8 0.64 -0.5 *      0.8 =    -0.4

a X = 45

Mean
X = 4.5

a Y = 62

Mean 
Y = 6.2

a  (X - X)2 =

30.50

a  (X - X)2 =

-61.6
a  (X - X)(Y - Y) =

-39

	 Table 8.2	 Essential steps in the calculation of the correlation coefficient

Note this is the same value as given by SPSS in Screenshot 8.6.

Interpreting the results

So the value obtained for the correlation coefficient equals - .90. This value is in line with what we suggested about the 
scattergram which serves as a rough check on our calculation. There is a very high negative relationship between  
mathematical and musical ability. In other words, the good mathematicians tended to be the poor musicians and vice 
versa. It is not claimed that they are good at music because they are poor at mathematics but merely that there is an 
inverse association between the two.

Reporting the results

When reporting the size of a correlation coefficient it is usual to report its statistical significance as well. Statistical  
significance is such an important concept that it needs to be discussed in some depth as it is so easily misunderstood. We 
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briefly introduced the concept in Chapter 1 (Section 1.4) and devote a chapter (Chapter 11) to explaining it. Statistical 
significance indicates that your correlation, etc. is unlikely to be a fortuitous or fluke finding. That is, the correlation is 
large enough that it is unlikely to come from a population in which there is really a zero correlation. So you assume that 
your finding reflects a relationship that truly exists. If it is unlikely that your correlation is a fluke then the correlation is 
said to be statistically significant. This probability is usually set at .05 (i.e. 5%) or lower. However, the important point 
for now is to remember that statistical significance is invariably given with the value of the correlation coefficient.

We would write something like: ‘It was found that musical ability was inversely related to mathematical ability. The 
Pearson correlation coefficient was - .90 which is statistically significant at the 5% level with a sample size of 10.’ The 
statement about statistical significance will become clearer after you have studied Chapter 11.

If we follow the advice of the 2010 Publication Manual of the American Psychological Association (APA) we could 
write: ‘Musical ability was significantly inversely related to mathematical ability, r(8) = - .90, p 6  .05.’ The number in 
brackets after r is the sample size minus 2. This number is called the degrees of freedom and is explained in detail in 
Section 23.4. It is more usual in a statistical analysis to report degrees of freedom rather than sample size. Statistical 
significance is usually reported as a proportion rather than a percentage. Computer packages like SPSS give the exact 
significance level. The APA Publication Manual recommends that researchers give this exact significance rather than 
simply to indicate significance at the 5% or .05 level.

Covariance
Many of the basic concepts taught in introductory statistics 
are relevant even at the advanced level. The concept of 
covariance is one of these. As we have seen, covariance is 
based on the deviation from the mean for the variable X 
multiplied by the deviation of the variable Y for each pair of 
scores. In other words, it is the top part of the Pearson cor-
relation formula. The correlation coefficient is simply the 
ratio of the covariance over the largest value that the covari-
ance could take for a particular pair of variables. That makes 
the correlation coefficient a standardised measure of covari-
ance. But the term covariance crops up throughout this book 
in a number of different contexts. It is involved in ANOVA 
(especially the analysis of covariance) and regression, for 
example – lots of places, some of them unexpected.

Box 8.1	 Key concepts

One phrase that might cause some consternation when 
you first come across it is that of the ‘variance–covariance’ 
matrix. This is simply a table (matrix) which includes the 
variances of each variable in the diagonal and their covari-
ances off the diagonal. This is illustrated for variables X, Y 
and Z in Table 8.3. The diagonal contains the variances but 
the other numbers are the covariances – each of these is 
presented twice because the covariance of X with Z is the 
same as the covariance of Z with X.

Similar matrices are produced for correlation coeffi-
cients. However, in this case the diagonal consist of 1.00s 
(the correlation of a variable with itself is always 1) and the 
off-diagonals have the correlation coefficients of each  
variable with the other variables.

Variable X Variable Y Variable Z

Variable X 2.400 1.533 1.244

Variable Y 1.533 4.933 3.733

Variable Z 1.244 3.733 5.156

	 Table 8.3	 Variance–covariance matrix for three variables
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	 8.3	 Some rules to check out

●	 You should make sure that a straight line is the best fit to the scattergram points. If the 
best-fitting line is a curve such as in Figure 8.7 then you should not use the Pearson 
correlation coefficient. The reason for this is that the Pearson correlation assumes a 
straight line which is a gross distortion if you have a curved (curvilinear) relationship.

●	 Make sure that your scattergram does not contain a few extreme cases which are unduly 
influencing the correlation coefficient (Figure 8.8). In this diagram you can see that the 
points at the top left of the scattergram are responsible for the apparent negative correlation 
between the two variables. Your eyes probably suggest that for virtually all the points on 
the scattergram there is no relationship at all. You could in these circumstances eliminate 
the ‘outliers’ (i.e. extreme, highly influential points) and recalculate the correlation coeffi-
cient based on the remaining, more typical group of scores. If the correlation remains sig-
nificant with the same sign as before then your interpretation of your data is likely to remain 
broadly unchanged. However, there needs to be good reason for deleting the ‘outliers’; this 
should not be done simply because the data as they stand do not support your ideas. It may 
be that something unusual had happened – perhaps an outlier arose from the responses of 
a slightly deaf person who could not hear the researcher’s instructions, for example.

	 Figure 8.7	 Curved relationship between two variables

	 Figure 8.8	 Influence of outliers on a correlation
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Correlation and causality
It is typically argued that a correlation does not prove cau-
sality. Just because two variables are related to each other 
is not sufficient reason to say anything other than that they 
are related. Statistical analysis is basically incapable of 
showing that one variable influenced the other variable 
directly one way or the other. It is your research design 
which allows you to infer causality or not. Your particular 
statistical analysis is irrelevant. Psychologists use labora-
tory experiments (or randomised trials) to address the issue 

Box 8.2	 Key concepts

of causality. In experimental designs, variables can be sys-
tematically manipulated by the researcher and participants 
randomly assigned to the various experimental conditions. 
As a consequence, it is possible to infer causality.

Be careful when you read phrases such as ‘the effect of 
Variable A on Variable B’ in psychological writings. This 
can be misleading as it does not always mean causal effect. 
Instead, sometimes it merely refers to a relationship, causal 
or otherwise.

	 8.4	 Coefficient of determination

The correlation coefficient is an index of how much variance two variables have in com-
mon. However, you need to square the correlation coefficient in order to know precisely 
how much variance is shared. The squared correlation coefficient is also known as the 
coefficient of determination.

The proportion of variance shared by two variables whose correlation coefficient is .5 
equals .52 or .25. This is a proportion out of 1 so as a percentage it is .25 * 100% = 25%. 
A correlation coefficient of .8 means that .82 * 100% or 64% of the variance is shared. 
A correlation coefficient of 1.00 means that 1.002 * 100% = 100% of the variance is 
shared. Since the coefficient of determination is based on squaring the correlation coef-
ficient, it should be obvious that the amount of variance shared by the two variables 
declines increasingly rapidly as the correlation coefficient gets smaller (Table 8.4).

Correlation coefficient Variance the two variables share

1.00 100%

.90 81%

.80 64%

.70 49%

.60 36%

.50 25%

.40 16%

.30 9%

.20 4%

.10 1%

.00 0%

	 Table 8.4	 Variance shared by two variables
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	 8.5	 Significance testing

Some readers who have previously studied statistics a little will be familiar with the notion 
of significance testing and might be wondering why this has not been dealt with for the 
correlation coefficient. We mention it briefly in this chapter when explaining how to 
interpret and report your data largely so it does not get omitted when you report a study 
that you have carried out. It is a crucial statistical concept but easily misunderstood. 
Consequently we devote two chapters (Chapters 10 and 11) to explaining it. It is impor-
tant when you are trying to make generalisations from your sample. The present chapter 
presents the correlation coefficient as a descriptive statistic or index which numerically 
summarises a scattergram between two variables. Nevertheless, researchers would always 
give significance levels for a correlation coefficient. Significance levels are easily obtained 
from SPSS output. We show you how to do this in the Computer Analysis section at the 
end of this chapter.

	 8.6	 Spearman’s rho – another correlation coefficient

Spearman’s rho is often written as rs. We have not used this symbol in the following dis-
cussion although it is common in textbooks. Just why do we need another variety of 
correlation coefficient? The answer is that every statistical procedure is developed by 
statisticians who make assumptions about the characteristics of the data to which they 
apply. One of the assumptions underlying the Pearson correlation is that the variables are 
normally distributed and so, roughly speaking, correspond to the bell-shaped frequency 
curve. If this assumption is not met then the outcome becomes more and more inaccurate. 
Spearman’s rho does not make this assumption about the normality of the variables. So 
it may be used when the data are not normally distributed. Nonparametric is the term 
used for statistical techniques which do not assume that each variable is normally distrib-
uted. They were often used in the 1960s and 1970s. They generally had the advantage of 
being easy to calculate especially when sample sizes are small, so they were good news 
for students who definitely had no personal computers and calculators were virtually 
unknown.

Actually, the Pearson correlation remains acceptably accurate even with quite a 
lot of non-normality so it can be used even when its assumptions are violated. Nev-
ertheless, some researchers will opt for distribution-free or nonparametric techniques 
when the normality assumption is not met (see Chapter 21 for other nonparametric 
and ranking tests). It is not possible to argue that they are wrong to do so. There are 
many different opinions in statistics. Generally speaking, however, we would suggest 
that you use the Pearson correlation coefficient unless there is a good reason not to. 
You could try comparing both coefficients to see whether it makes much difference. 
The Pearson correlation is used in many advanced statistical techniques which is not 
the case with Spearman’s rho.

Spearman’s rho is a version of the Pearson correlation coefficient. Instead of using the 
scores from your data, in Spearman’s rho the scores on each variable are ranked from 
smallest to largest. That is, the smallest score on variable X is given rank 1, the second 
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smallest score on variable X is given rank 2 and so forth. The smallest score on variable 
Y is given rank 1, the second smallest score on variable Y is given rank 2, etc. In  
Spearman’s rho, it is these two sets of ranks which are correlated and not the scores. To 
get the value of Spearman’s rho you could simply calculate the Pearson correlation 
between these two sets of ranks. The Spearman’s rho formula is merely a quick method 
of doing this calculation. You have to bear in mind that these correlation coefficients were 
originated at the beginning of the 20th century – long before computers. The quick 
method used simpler steps and saved labour.

Statistical methods involving ranks have a problem. What do you do when ranks are 
tied? This is when there are two or more identical scores on a variable? There might be 
two people who scored 7 on variable X, for example. Then we pretend that the two scores 
are minutely different and allocate the appropriate ranks to these scores. But they are 
exactly the same scores so we give each of the tied scores the average of these ranks. 
Table 8.5 shows a set of ten scores and their corresponding ranks. The two scores of 5 
are each given the rank 2.5 because if they were slightly different they would have been 
given ranks 2 and 3, respectively. But they cannot be separated and so we average the 
ranks as follows:

2 + 3
2

= 2.5

This average of the two ranks corresponds to what was entered into Table 8.5.
There are three scores of 9 which would have been allocated the ranks 7, 8 and 9 if 

the scores had been slightly different from each other. These three ranks are averaged to 
give an average rank of 8 which is entered as the rank for each of the three tied scores in 
Table 8.5.

Scores 4 5 5 6 7 8 9 9 9 10

Ranks 1 2.5 2.5 4 5 6 8 8 8 10

	 Table 8.5	 Ranking of a set of scores when tied (equal) scores are involved

So Spearman’s rho is a special computational formula (see Box 4.3 for an explanation 
of computational formula) which is equivalent to the Pearson correlation formula when 
you have ranked scores. This computational formula becomes a little inaccurate when 
you have tied ranks. As tied ranks are not uncommon in psychological data, using the 
computational formula has its limitations.

Although Spearman’s rho can be calculated using the Pearson correlation formula, they 
are not the same thing. One is based on the scores and the other on the ranks of scores 
so one should expect them to be different. They have different theoretical distributions. 
The practical consequence of this is in terms of statistical significance. So what you find 
is that for any given value of the correlation coefficient (say .6) the statistical significances 
of the Pearson correlation for the scores and Spearman’s rho for the ranked scores will 
be different.
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How Spearman’s rho works
If you calculate the Pearson correlation coefficient between the ranks of the scores in Table 8.1 the correlation coefficient is 
- .89. In other words, the Spearman rho is - .89. This is a little different from the value of - .90 that we obtained earlier 
when we correlated the scores for the Pearson correlation (Explaining statistics 8.1). We will use the same data to show how 
the computational formula for Spearman’s rho works and illustrate ranking. The calculation steps are given in Table 8.6. 
You will see that the scores on the two variables have been ranked separately from smallest to largest in the table. Since the 
sample size is ten the ranks go from 1 to 10. You will also notice that there are quite a few scores which tie and have been 
given the average of the ranks which would have been given were the scores slightly different. For example, there are two 
mathematics scores which are 7 both of which receive the average of the ranks 5 and 6, which is 5.5.

Following the columns of ranks there is another column which consists of the difference (D) between the two sets of 
ranks. So the music column ranks have been subtracted from the mathematics column ranks. If there is a perfect correla-
tion between the two variables then all of the differences would be zero. The differences between the two sets of ranks 
will be larger the lower the correlation between the two variables. The final column consists of these differences squared. 
At the bottom of this column you will find the sum of these squared differences, which is 305. This is aD2. The sample 
size (N) is 10.

Explaining statistics 8.2

Person Maths score Xscore Music score YScore Maths rank Xr Music rank Yr Maths rank – 
music rank D 
(difference)

Square of 
previous column 

D2

1 8 2 7.5 1.5 6.0 36.00

2 3 6 2.5 8 -5.5 30.25

3 9 4 9.5 4.5 5 25.00

4 7 5 5.5 6.5 -1.0 1.00

5 2 7 1 9.5 -8.5 72.25

6 3 7 2.5 9.5 -7.0 49.00

7 9 2 9.5 1.5 8.0 64.00

8 8 3 7.5 3 4.5 20.25

9 6 5 4 6.5 -2.5 6.25

10 7 4 5.5 4.5 1.0 1.00

aD2 = 305

	 Table 8.6	 Steps in the calculation of Spearman’s rho correlation coefficient using the speedy formula
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	 8.7	 Example from the literature

Pearson correlation coefficients are extremely common in published research. They can 
be found in a variety of contexts so choosing a typical example is virtually meaningless. 
The correlation coefficient is sometimes used as an indicator of the validity of a psycho-
logical test. So it might be used to indicate the relationship between a test of intelligence 
and children’s performance in school. The test is a valid predictor of school performance 
if there is a substantial correlation between the test score and school performance.

All that needs to be done now is to substitute these two values into the formula below and work through the 
computation:

p[Spearman’s rho]  = 1 -
6aD2

N(N2 - 1)

 = 1 - 6 * 305
10(102 - 1)

 = 1 -
1830

10(100 - 1)

 = 1 -
1830

10 * 99

 = 1 -
1830
990

 = 1 - 1.848

 = - .848

 = - .85 to 2 decimal places

Interpreting the results

It should be noted that this value of Spearman’s rho is a little different from its correct value (- .89) that we calculated 
using the Pearson correlation formula. Had we not got tied ranks in the data, the calculations would have given exactly 
the same values. In other words, this computational formula for Spearman’s rho is slightly inaccurate where there are 
tied ranks – another good reason for not doing the computation by hand. Although the difference is not major, it is best 
to avoid the inaccuracy. The easy way of doing this is to use SPSS to do the calculation for you. Otherwise the interpreta-
tion of the negative correlation is the same as we have previously discussed.

Reporting the results

As with the Pearson correlation (Explaining statistics 8.1), when reporting the Spearman’s rho correlation coefficient we 
would report the statistical significance of the coefficient.

We would write up the results something along the lines of the following: ‘It was found that musical ability was 
inversely related to mathematical ability. The value of Spearman’s rho correlation coefficient was - .85 which is statisti-
cally significant at the 5% level with a sample size of 10.’ The last sentence may not mean much until Chapters 10 and 
11 have been studied. The statistical significance of the Spearman rho correlation coefficient may be obtained from 
Appendix D when doing this calculation by hand. However, it is preferable to let SPSS do the calculation for you.
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The correlation coefficient is also very useful as an indicator of the reliability of a 
psychological test. This might mean the extent to which people’s scores on the test are 
consistent over time. You can use the correlation coefficient to indicate whether those 
who perform well now on the test also performed well a year ago. For example, Gillis 
(1980) in the manual accompanying the Child Anxiety Scale indicates that he retested 
127 US schoolchildren in the first to third grades immediately after the initial testing. The 
reliability coefficients (test–retest reliability) or the correlation coefficients between the 
two testings were:

Grade 1 = .82
Grade 2 = .85
Grade 3 = .92

A sample of children retested after a week had a retest reliability coefficient of .81. It is 
clear from this that the reliability of the measure is good. This means that the children 
scoring the most highly one week also tend to get the highest scores the next week. It does 
not mean that the scores are identical from week to week – only that the relative scores 
are the same.

Practically all reliability and validity coefficients used in psychological testing are vari-
ants on much the same theme and are rarely much more complex than the correlation 
coefficient itself.

Pearson correlation and Spearman’s rho

Blom, van Middendorp and Geenen (2012) proposed that embitterment is the consequence of childhood attach-
ment problems such as anxious attachment. Embitterment involves the overall feeling of being invalidated by 
others such as having persistent feelings that one has been let down, or one is a loser, or that one needs revenge 
but is helpless to do so. Attachment was measured using the Attachment Styles Questionnaire which measures 
1) fearful attachment, 2) preoccupied attachment, 3) dismissive attachment and 4) secure attachment. Embit-
terment was measured using the Bern Embitterment Inventory. Some of the subscales of the embitterment 
inventory had very skewed distributions which led the researchers to choose Spearman’s rank correlation coef-
ficient to assess associations. Embitterment correlated .39 with fearful attachment and .44 with preoccupied 
attachment. These two scales are the ones measuring anxious attachment.

Carlson, Vazire and Oltmanns (2011) investigated narcissistic personalities, asking such questions as whether 
such individuals understand the negative aspects of their personalities and reputations. Various measures of 
narcissism were used including clinical ones. Their meta-perceptions of others concerning themselves were also 
measured. The research suggested that narcissistic individuals did have a degree of self-insight into how others 
see them. However, using Pearson correlation coefficients, it was shown that individuals scoring higher on 
narcissism also saw themselves more positively on such traits as being funny (r = .25), extravert (r = .43) and 
intelligence (r = .31).

Casarett and his colleagues (2010) were interested in doctors’ use of metaphors and analogies in their consulta-
tions with patients with advanced cancer. Using Spearman rho correlations, they found that there was a signifi-
cant positive correlation between doctors’ use of metaphors and analogies and patients’ rating of how good the 
doctors’ communications were. The more doctors used analogies and metaphors, the more highly patients rated 
their communications to them.

Research examples
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Teissedre and Chabrol (2004) examined depression in 299 French women using the Edinburgh Postnatal Depres-
sion Scale. They completed the measure at two to three days following giving birth and four to six weeks after 
giving birth. They decided to use the Spearman rho correlation coefficient because of the non-normality of the 
distribution of the Edinburgh Postnatal Depression Scale. The Spearman rank correlation or rho was fairly high 
at .61 which was significant at the .0001 level.

Kenyon and her colleagues (2012) tested whether people with bulimia nervosa or other unspecified eating 
disorders were less able to infer the feelings, beliefs and knowledge of other people than people who did not 
have psychological disorders. As part of the study they assessed how depressed, anxious and stressed the three 
groups were and two tests which measured how well they evaluated the feelings of others. They were interested 
in whether the scores on these two tests were related to their score on an Eating Disorder Examination as well 
as other clinical variables in the two eating disorder groups. As the clinical variables were not normally distrib-
uted and could not be transformed to be so, they carried out Spearman rho correlations. They reported that no 
significant correlations were found for three of the variables, including the Eating Disorder Examination score. 
They presented the correlations for these three variables.

Lounsbury and his colleagues (2003) were interested in whether five personality factors and work drive would 
predict the grades students obtained on a course once intelligence had been taken into account. Initially they 
presented the correlations between these eight variables in a table. Which correlations were statistically signifi-
cant was indicated by one asterisk for the .05 level and two asterisks for the .01 level. In the Results section, 
they reported the correlations and the significance level for the four variables that were significantly related to 
grades. So, for example, general intelligence had a .01 significant correlation with grades.

Warren and colleagues (2012) explored whether stress would moderate the positive relationship of talking about 
being too fat to body dissatisfaction and drive for thinness in 121 female students. To show the relationships 
between the main variables of their study, they initially presented the Pearson correlations between these four 
variables in a table together with age and body mass index. The .01 significance level of the correlations was 
indicated by two asterisks. They described the direction of the main significant correlations in the Results. So 
‘fat talk and perceived stress were both significantly positively correlated with body dissatisfaction and drive for 
thinness’ (p. 360).

Most of the major points have been covered already. But they bear repetition:

●	 Check the scattergram for your correlation coefficient for signs of a nonlinear relationship – if you find one 
you should not be using the Pearson correlation coefficient. In these circumstances you should use coefficient 
eta (h) which is designed for curvilinear relationships. However, eta is a relatively obscure statistic. It is men-
tioned again in Chapter 17.

●	 Check the scattergram for outliers which may spuriously be producing a correlation when overwhelmingly 
the scattergram says that there is a poor relationship.

●	 Examine the scattergram to see whether there is a positive or negative slope to the scatter and form a general 
impression of whether the correlation is good (the points fit the straight line well) or poor (the points are 
very widely scattered around the straight line). Obviously you will become more skilled at this with experience, 
but it is useful as a rough computational check among other things.

●	 Before concluding your analysis, look at Chapter 10 to decide whether or not to generalise from your set of 
data.

Key points
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Computer Analysis

Correlation coefficients using SPSS

Interpreting and reporting the output

●	 Interpretation of the output is complicated by the fact that SPSS intercorrelates each of the variables 
with itself and with the other variables. The correlation of a variable with itself is always 1. No 
significance level is given for this. The table also includes the correlation between the variables with  
the other variables twice. So you have the correlation of Variable X with Variable Y and the correlation  
of Variable Y with Variable X. These are, of course, the same. The output gives the correlation (- .900), 
the statistical significance (.000) and the sample size (10).

●	 It would be good to report the significance level as being less than .001 and something known as the 
degrees of freedom which for the correlation coefficient is N - 2 or 8 in this case. Significance is 
discussed in Chapter 11 and degrees of freedom in Chapter 23.

●	 In a report, we could write ‘There is a significant negative correlation between musical ability  
and mathematical ability, r(8) = .90, p … .001. Children with more musical ability have lower 
mathematical ability.’

	 Figure 8.9	 SPSS steps for correlation coefficient
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	 Screenshot 8.6	 Output table giving correlations	 Screenshot 8.5
	 Output table giving means and 

standard deviations

	 Screenshot 8.4	 Select ‘Means and standard deviations’

	 Screenshot 8.2	 On ‘Analyze’ select ‘Bivariate . . . ’

	 Screenshot 8.3	 Ensure ‘Pearson’ is selected

	 Screenshot 8.1	 Data in ‘Data View’ of the ‘Data Editor’
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Computer Analysis

Scattergram using SPSS

Interpreting and reporting the output

●	 Interpreting a scatterplot is important. In particular, the researcher should look to make sure that  
a straight line is the best description of the pattern of points. Also, the researcher should look for 
outliers which are data points which are radically out of line with most of the data. Both of these  
mean that the Pearson correlation coefficient should not be used.

●	 By all means include the scattergram in your report especially if it reveals something of importance 
about your data. Make sure that it is properly labelled. Too many scattergrams can make your report  
too cumbersome so be selective in terms of the ones that you use. Comment on the linearity of the  
data points and the presence of outliers, if any.

	 Figure 8.10	 SPSS steps for scattergrams
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	 Screenshot 8.7	 On ‘Graphs’ select ‘Chart Builder. . . ’ 	 Screenshot 8.8	 Select ‘Define Variable Properties’

	 Screenshot 8.11	 Adjust ‘Marker Size’ if needed

	
Screenshot 8.10

	 Select ‘Fit Line at Total’ (the 
regression line)

	 Screenshot 8.9
	 Move variables for analysis to the 

‘Scatter/Dot’ option

	 Screenshot 8.12	 Scatterplot output
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●	 Regression basically identifies the regression line (the best-fitting straight line) for a scat-
terplot between two variables. (By this token, the correlation coefficient can be seen as an 
index of the spread of the data points around this regression line.)

●	 It uses a variable X (which is the horizontal axis of the scatterplot) and a variable Y (which is 
the vertical axis of the scatterplot).

●	 Sometimes (somewhat misleadingly) the X variable is known as the independent variable 
and the Y variable is known as the dependent variable. Alternatively, the X variable may be 
called the predictor variable and the Y variable the criterion variable.

●	 To describe the regression line, one needs the slope of the line and the point at which it 
touches the vertical axis (the intercept).

●	 Using this information, it is possible to estimate the most likely score on the variable Y for 
any given score on variable X. Sometimes this is referred to as making predictions.

●	 Standard error is a term used to describe the variability of any statistical estimate including 
those of the regression calculation. So there is a standard error of the slope, a standard error 
of the intercept and so forth. Standard error is analogous to standard deviation and indicates 
the likely spread of any of the estimates.

●	 Regression is the foundation of many of the more advanced techniques described later in this 
book. So the better you understand the concept at this stage, the easier will be your later work.

Regression
Prediction with precision

Chapter 9

Overview

Preparation

You should have a working knowledge of the scattergram, of the relationship between two 
variables (Chapter 7) and understand the correlation coefficient (Chapter 8).

M09 Introduction to Statistics in Psychology with SPSS 29099.indd   126 05/01/2017   15:02



	 9.1â•‡ Introduction	 127

	 9.1	 Introduction

Regression, like the correlation coefficient, numerically describes important features of a 
scattergram relating two variables. However, it does it in a different way from the correla-
tion coefficient. Among its important uses is that it allows the researcher to make predic-
tions (for example, when choosing the best applicant for a job on the basis of an aptitude 
or ability test).

Assume that research has shown that a simple test of manual dexterity is capable of 
distinguishing between the better and not-so-good assembly workers in a precision com-
ponents factory. Manual dexterity is a predictor variable and job performance the crite-
rion variable. So it should be possible to predict which applicants are likely to be the more 
productive employees from scores on this easily administered test of manual dexterity. 
Using the test might be a lot cheaper than employing people who do not make the grade 
in the factory. Imaginary data for such a study are shown in Table 9.1.

The scattergram (Figure 9.1) shows the relationship between scores on the manual 
dexterity test and the number of units per hour the employee produces in the compo-
nents factory. Notice that we have made scores on the manual dexterity test the hori-
zontal dimension (X-axis) and the number of units produced per hour the vertical 
dimension (Y-axis).

In regression in order to keep the number of formulae to the minimum, the horizontal 
dimension (X-axis) should always be used to represent the variable from which the predic-
tion is being made, and the vertical dimension (Y-axis) should always represent what is 
being predicted. It requires a different formula to predict the X values from the Y values 
and this is not commonly available. Furthermore, statistical packages such as SPSS require 
that you enter the predictor and criterion variables in this standard way.

It is clear from the scattergram that the number of units produced by workers is fairly 
closely related to scores on the manual dexterity test. If we draw a straight line as best we 
can through the points on the scattergram, this line could be used as a basis for making 
predictions about the most likely score on work productivity from the aptitude test score 
for manual dexterity. This line through the points on a scattergram is called the regression 
line. In order to predict the likeliest number of units per hour corresponding to a score of 
70 on the manual dexterity test, we simply draw a right angle from the score 70 on the 
horizontal axis (manual dexterity test score) to the regression line, and then a right angle 

Manual dexterity score Number of units produced per hour

56 17

19 6

78 23

92 22

16 9

23 10

29 13

60 20

50 16

35 19

	 Table 9.1	 Manual dexterity and number of units produced per hour
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from the vertical axis to meet this point. In this way we can find the productivity score 
which best corresponds to a particular manual dexterity score (Figure 9.2). Estimating 
from this scattergram and regression line, it appears that the best prediction from a 
manual dexterity score of 70 is a productivity rate of about 19 or 20.

There is only one major problem with this procedure – the prediction depends on the 
particular line drawn through the points on the scattergram. You might draw a somewhat 
different line from the one we did. Subjective factors such as these are not desirable in 
statistical analyses and it would be better to have a method which was not affected in this 
way. So mathematical ways of determining the best regression line have been developed. 
Fortunately, the computations involved are generally straightforward and SPSS and other 
computer programs do all of the hard work for you.

Regression is a component of many of the more advanced statistical techniques which 
we describe later in this book and a good understanding of the basics will make your more 

	 Figure 9.1	 Scattergram of the relationship between manual dexterity and productivity

	 Figure 9.2	 Using a regression line to make approximate predictions
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advanced work easier. See Box 9.1 for a discussion of the General Linear Model which 
underlies a great deal of the statistical analyses used by psychologists. Figure 9.3 describes 
the key steps when using regression.

	 Figure 9.3	 Conceptual steps for understanding regression

General Linear Model
GLM, the General Linear Model, is the basis of many of 
the statistical techniques discussed in this book. It is quite 
simple – it is the assumption that the effects of variables 
on other variables are additive. In other words, an increase 
of 1 unit on variable A is associated with an increase of x 
on variable B. This is basically assumed to be the case 
irrespective of where the increase of 1 unit is on variable 
A (i.e. at the top, middle or bottom of the distribution, 
etc.). The basis of the General Linear Model is the for-
mula that you can see in Explaining statistics 9.1 which is 
used to predict values on one variable from values on 
another. The formula only needs slight modification to 
give the relationship b  etween one set of data Y and 
another set of data X:

Box 9.1	 Key concepts

Ydata set = aconstant + (bregression weight * Xscores) + eerror

All that we have done is to add in e for error. That is, there 
is not a perfect relationship between the Y data and the X 
data. The imperfection is the result of error in the 
measurements.

The General Linear Model is actually more general than 
this basic formula implies. The reason is that there may be 
several Y variables (as in multivariate ANOVA –  
Chapter 29), several X variables (as in multiple regression – 
Chapter 34), several intercept values for each X variable 
and several regression coefficients also for each X variable. 
But the basic regression equation is the simplest version of 
the General Linear Model.

	 9.2	 Theoretical background and regression equations

The line through a set of points on a scattergram is called the regression line. In order to 
establish an objective criterion, the regression line is chosen which gives the closest fit to 
the points on the scattergram. In other words, the procedure minimises the total distances 
between the regression line and the points in the scattergram. In theory, then, one could 
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keep trying different possible regression lines until one is found which has the minimum 
deviation of the points from it.

The best regression line is the one which has the smallest sum of deviations from it 
with one proviso. This taken literally would mean that the sum of the deviations from the 
regression line is used (Σd), which is not the case. Actually, the precise criterion is the 
sum of the squared deviations from the regression line. The line is chosen which minimises 
the sum of these squared deviations, so this is known as the least squares solution. It 
would be a thankless task to draw every possible regression line and calculate the sum of 
the squared deviations for each of these looking for the smallest. Fortunately things are 
not done like that and trial and error is not involved. The formulae for regression do all 
of that work. SPSS makes it even easier.

In order to specify the regression line for any scattergram, you quantify two things:

1.	The point at which the regression line cuts the vertical axis at X = 0 – this is a number 
of units of measurement from the zero point of the vertical axis. It can take a positive 
or negative value, denoting whether the vertical axis is cut above or below its zero 
point. It is normally denoted in regression as point a or the intercept.

2.	The slope of the regression line or, in other words, the gradient of the best-fitting line 
through the points on the scattergram. Just as with the correlation coefficient, this slope 
may be positive in the sense that it goes up from bottom left to top right or it can be 
negative in that it goes downwards from top left to bottom right. The slope is normally 
denoted by the letter b.

The intercept and slope are both shown in Figure 9.4. To work out the slope, we have 
drawn a horizontal dashed line from X = 30 to X = 50 (i.e. its length is 20) and a verti-
cal dashed line up to the regression line (length about 4) up the Y-axis.

	 Figure 9.4	 Slope b and intercept a of a regression line

The slope b is the increase (+ ) or decrease (- ) of the units produced (in this case +4) 
divided by the increase in the manual dexterity score (in this case 20), i.e. +0.2.
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The slope is simply the number of units that the regression line moves up the vertical 
axis for each unit it moves along the horizontal axis. In other words, you mark a single 
step along the horizontal axis and work out how much increase this represents on the 
vertical axis. So, for example, if you read that the slope of a scattergram is 2.00, this 
means that for every increase of 1.00 on the horizontal axis (X-axis) there is an increase 
of 2.00 on the vertical axis (Y-axis). If there is a slope of -0.5 then this means that for 
every increase of 1 on the horizontal axis (X-axis) there is a decrease of 0.5 on the vertical 
axis (Y-axis).

In our example, for every increase of 1 in the manual dexterity score, there is an 
increase of 0.2 (more accurately, 0.21) in the job performance measure (units produced 
per hour). We have estimated this value from the scattergram – it may not be exactly the 
answer that we would have obtained had we used mathematically more precise methods 
or a computer program. This increase defines the slope. (Note that you do not work with 
angles, merely distances on the vertical and horizontal axes.)

Fortunately, the application of only two relatively simple formulae (see Explaining 
statistics 9.1) will give us the slope and the intercept. A third formula is used to make our 
predictions from the horizontal axis to the vertical axis.

The major differences between correlation and regression are as follows:

●	 Regression retains the original units of measurement so direct comparisons between 
regression analyses based on different variables are difficult. Correlation coefficients 
can readily be compared as they are essentially on a standardised measurement scale 
and free of the original units of measurement.

●	 The correlation coefficient does not specify the slope of a scattergram. Correlation 
indicates the amount of spread or variability of the points around the regression line 
in the scattergram.

In other words, correlation and regression have somewhat different functions despite their 
close similarities. See more about regression in Box 9.2.

Regression lines
One of the things which can cause difficulty when using 
regression is the question of what variable should go on 
the horizontal axis and what variable should go on the 
vertical axis. Get them the wrong way around and your 
calculation will be incorrect. There are, in reality, always 
two regression lines between two variables: that from 
which variable Y is predicted from variable X, and that 
from which variable X is predicted from variable Y. 
They almost always have different slopes. But you prob-
ably will never come across these two different formu-
lae. The reason is that life is made simpler if we always 

have the predictor on the horizontal axis and the crite-
rion to be predicted on the vertical axis. You need to be 
careful what you are trying to predict and from what. 
Make sure that you put your predictor on the horizontal 
axis. If you are using regression weights to calculate 
actual scores on the dependent variable then it is sensible 
to produce a scattergram for your data. From this you 
should be able to estimate what the correct answer 
should be. If this is very different from what your calcu-
lation says, then one possibility is that you have got the 
axes the wrong way round.

Box 9.2	 Focus on
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How regression works
To facilitate comparison, we will take the data used in the computation of the correlation coefficient (Chapter 8). The 
data concern the relationship between mathematical and musical ability for a group of 10 individuals. The 10 scores need 
to be set out in a table like Table 9.2 and the various intermediate calculations carried out. However, it is important with 

Explaining statistics 9.1

Person Maths score
X score

Music score
Y score

 
X2

 
Y2

 
XY

1 8 2 64 4 16

2 3 6 9 36 18

3 9 4 81 16 36

4 7 5 49 25 35

5 2 7 4 49 14

6 3 7 9 49 21

7 9 2 81 4 18

8 8 3 64 9 24

9 6 5 36 25 30

10 7 4 49 16 28

ΣX = 62 ΣY = 45 ΣX2 = 446 ΣY2 = 233 ΣXY = 240

	 Table 9.2	 Important steps in calculating the regression equation

regression to make the X scores the predictor variable; the Y scores are the criterion variable. N is the number of pairs 
of scores, i.e. 10. (Strictly speaking the Y2 and aY2 calculations are not necessary for regression but are included here 
because they highlight the similarities between the correlation and regression calculations.)

The slope b of the regression line is given by the following formula:

b =
aXY - ¢ aXaY

N
≤

aX2 -
(aX)2

N

Thus, substituting the values from the table in the above formula:

 b[slope] =
240 - ¢62 * 45

10
≤

446 -
(62)2

10

 =
240 -

2790
10

446 -
3844

10
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 =
240 - 279

446 - 384.4

 =
-39
61.6

 = - .63

Note that this is the same value as given by SPSS in Screenshot 9.5.
This tells us that the slope of the regression line is negative – it moves downwards from top left to bottom right. Further-
more, for every unit one moves along the horizontal axis, the regression line moves 0.63 units down the vertical axis 
since in this case it is a negative slope.

We can now substitute in the following formula to get the cut-off point or intercept a of the regression line on the verti-
cal axis:

 a[intercept on vertical axis] =
ΣY - bΣX

N

 =
45 - (-0.63 * 62)

10

 =
45 - (-39.06)

10

 =
84.06

10

 = 8.41

This value for a is the point on the vertical axis (musical ability) cut by the regression line. Note that this value is similar 
to that produced by SPSS in Screenshot 9.5 given rounding error in our hand calculation.

If one wishes to predict the most likely score on the vertical axis from a particular score on the horizontal axis, one 
simply substitutes the appropriate values in the following formula:

Y[predicted score] = a[intercept] + (b[slope] * X[known score])

Thus if we wished to predict musical ability for a score of 8 on mathematical ability, given that we know the slope b is 
-0.63 and the intercept is 8.41, we simply substitute these values in the formula:

Y[predicted score] = a[intercept] + (b[slope] * X[known score])

 = 8.41 + (-0.63 * 8)

 = 8.41 + (-5.04)

 = 3.37

This is the best prediction – it does not mean that people with a score of 8 on mathematical ability inevitably get a score 
of 3.37 on musical ability. It is just our most intelligent estimate.

Interpreting the results

The proper interpretation of the regression equations depends on the scattergram between the two variables showing a 
more or less linear (i.e. straight line) trend. If it does not show this, then the interpretation of the regression calculations 
for the slope and intercept will be misleading since the method assumes a straight line. Curvilinear relationships (see 
Chapter 8) are difficult to handle mathematically.

If the scattergram reveals a linear relationship, then the interpretation of the regression equations is simple as the 
formulae merely describe the scattergram mathematically.
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	 9.3	 Confidence intervals and standard error: how accurate are the 
predicted score and the regression equations?

You may prefer to leave studying the following material until you have had the opportu-
nity to study Chapter 12.

The accuracy of the predicted score on the criterion is dependent on the closeness of 
the scattergram points to the regression line; if there is a strong correlation between the 
variables there is little error in the prediction. Examining the scattergram between two 
variables will give you an idea of the variability around the regression line and hence the 
precision of the estimated or predicted scores. See Box 9.3 for more on interpreting 
regression.

Statisticians prefer to calculate what they call the standard error to indicate how certain 
one can be about aspects of regression such as the prediction of the intercept or cut-off 
points, and the slope. A standard error is much the same as the standard deviation except 
it applies to the variability of samples rather than individual scores. So the standard error 
of something is the average deviation of samples from the population value. Don’t worry 
too much if you don’t quite understand the concept yet, since we come back to it (in 
Chapters 11 and 12). Just regard standard error of an estimate as the average amount by 
which an estimate is likely to be wrong. As you might expect, since this is statistics, the 
average is calculated in an unexpected way, as it was for the standard deviation which is 
not dissimilar. See Box 9.4 for more on standard error.

Reporting the results

This regression analysis could be reported as follows: ‘Because of the negative correlation between mathematical and 
musical abilities, it was possible to carry out a regression analysis to predict musical ability from mathematical ability. 
The slope of the regression of mathematical ability on musical ability b is -0.63 and the intercept a is 8.41.’

Problems interpreting regression
The use of regression in prediction is a fraught issue not 
because of the statistical methods but because of the 
characteristics of the data used. In particular, note that 
our predictions about job performance are based on data 
from the people already in the job. So, for example, 
those with the best manual dexterity might have devel-
oped these skills on the job rather than having them 
when they were interviewed. Thus it may not be that 

manual dexterity determines job performance but that 
they are both influenced by other (unknown) factors. 
Similarly, if we found that age was a negative predictor 
of how quickly people get promoted in a banking corpo-
ration, this may simply reflect a bias against older people 
in the profession rather than greater ability of younger 
people.

Box 9.3	 Focus on
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Although the formulae for calculating the standard errors of the various aspects of the 
regression line are readily available, they add considerably to the computational labour 
involved in regression, so we recommend that you use a computer to relieve you of this 
computational chore.

The main standard errors involved in regression are:

●	 the one for your predicted (or estimated) value on the criterion (this is known as the 
standard error of the estimate of y)

●	 the one for the slope of the regression line b

●	 the one for the intercept on the vertical axis a.

Don’t forget that the formulae for calculating these standard errors merely give you the 
‘average’ amount by which your estimate is wrong. OK, what we mean by ‘average’ is a 
little bit convoluted but it might help you get a grasp on the concept.

It might be more useful to estimate the likely range within which the true value of the 
prediction, slope or intercept is likely to fall. In other words, to be able to say that, for 
example, the predicted score on the criterion variable is likely to be between 2.7 and 3.3. 
In statistics, this likely range of the true value is known as the confidence interval (CI). 
Actually there are several confidence intervals depending on how confident you wish to 
be that you have included the true value – the interval is obviously going to be wider if 
you wish to be very confident rather than just confident. In statistics one would routinely 
use the 95% confidence interval. This 95% confidence interval indicates the range of 
values within which the true value will fall 95% of the time. That is, our confidence 
interval will not contain the true value only in 5% of times.

The following is a rule of thumb which is accurate enough for your purposes for now. 
Multiply the standard error by 2. This gives you approximately the amount which you 
need to add and subtract from the estimated value to cut off the middle 95% of the pos-
sible values – that is the 95% confidence interval. In other words, if the estimated value 
of the criterion (Y-variable) is 6.00 and the standard error of this estimate is 0.26, then 
the 95% confidence interval is 6.00 { (2 * 0.26) which is 6.00 { 0.52. This gives us 
a 95% confidence interval of 5.48 to 6.52. Thus it is highly likely that the person’s score 
will actually fall in the range of 5.48 to 6.52 although the most likely value is 6.00.

Exactly the same applies to the other aspects of regression. If the slope is 2.00 with a 
standard error of 0.10, then the 95% confidence interval is 2.00 { (2 * 0.10), which 
gives a confidence interval of 1.80 to 2.20.

The use of confidence intervals is not as common as it ought to be despite the fact 
that it gives us a realistic assessment of the precision of our estimates. If you look at 

Standard error

Standard error is discussed again in later chapters. Superfi-
cially, it may appear to be quite different from the ideas in 
this chapter. However, remember that whenever we use any 
characteristic of a sample as the basis for estimating the char-
acteristic of a population, we are likely to be wrong to some 

Box 9.4	 Key concepts

extent. The standard error is merely the average amount by 
which the characteristics of samples from the population 
differ from the characteristics of the whole population. In 
other words, the standard error is very much like the stand-
ard deviation but applied to sample means and not to scores.
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Screenshot 9.5 it shows the output from SPSS for simple regression. The 95% confidence 
intervals are given both for the constant (intercept) and for the regression weight for 
Maths. For the regression weight of Maths the confidence interval is - .883 to - .383. 
Confidence intervals are generally provided on SPSS so there is little to stop you report-
ing them. Given that the use of confidence intervals is being advocated by many and 
increasingly insisted upon, there is every reason to include them.

The above calculations of confidence intervals are approximate if you have fewer than 
about 30 pairs of scores. If you have between 16 and 29 pairs of scores the calculation 
will be more accurate if you multiply by 2.1 rather than 2.0. If you have between 12 and 
15 pairs of scores then multiplying by 2.2 would improve the accuracy of the calculation. 
With fewer than 12 pairs the method gets a little more inaccurate. When you have become 
more knowledgeable about statistics, you could obtain precise confidence intervals by 
multiplying your standard error by the appropriate value of t from Significance Table 13.1. 
The appropriate value is in the row headed ‘Degrees of freedom’, corresponding to your 
number of pairs of scores minus 2 under the column for the 5% significance level (i.e. if 
you have 10 pairs of scores then you would multiply by 2.31).

Simple regression

Examples of the use of simple regression in the modern psychological research literature are not common. One likely 
reason is the general ease of adding in more predictor variables into a study than one. So regard our discussion of 
simple regression as primarily preparing you to understand multiple regression. Of course, anytime that you use 
Pearson correlation then it would be appropriate to include the statistics from the equivalent simple regression.

Ang and Huan (2006) tested whether depression mediated the relation between academic stress and thoughts 
of killing oneself (suicidal ideation) in adolescents. As a first step, they carried out simple regressions of academic 
stress with depression and suicidal ideation. Both depression and suicidal ideation were positively related to 
academic stress. Greater academic stress was predictable from greater depression and suicidal ideation.

Fayed and colleagues (2011) were interested in the sorts of factors which predict optimism in the parents of 
children who are suffering from cancer. They obtained a sample of such parents whose children were actively 
undergoing treatment. Their measure of optimism was the Life Orientation Test and they included another 26 
predictor variables based on stress process theory expectations. They included a number of measures of positive 
intrapsychic traits which they found to be more predictive of optimism than factors to do with the child’s cancer 
such as the prognosis. They chose to analyse each of their predictors of optimism separately in order to find the 
predictors which explained substantial amounts of variation. On the basis of their choices made in this way, the 
initial simple regressions were followed up with multiple regression analysis.

Gallagher and his colleagues (2013) investigated the relation between patients’ weight and a number of other 
variables such as their confidence in exercising and following a cholesterol-lowering diet. Before carrying out a 
multiple regression, they conducted simple regressions. They found a number of significant regressions such as 
greater weight being associated with less confidence in exercising and with following a cholesterol-lowering diet.

Norman and his colleagues (2013) wanted to know whether early childhood trauma was associated with 
increased blood pressure in older adults. As part of their analysis, they carried out a simple regression between 
these two variables which was found to be statistically significant.

Research examples
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●	 Drawing the scattergram will invariably illuminate the trends in your data and strongly hint at the broad fea-
tures of the regression calculations. It will also provide a visual check on your computations.

●	 These regression procedures assume that the best-fitting regression line is a straight line. If it looks as if the 
regression line ought to be curved or curvilinear, do not apply these numerical methods. Of course, even if a 
relationship is curvilinear you could use the curved-line scattergram to make graphically based predictions.

●	 It may be that you have more than one predictor variable that you wish to use – if so, look at Chapter 34 on 
multiple regression.

Key points

Computer Analysis

Simple regression using SPSS

Figure 9.5	 SPSS steps for performing simple regression
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Interpreting and reporting the output

●	 The most important part of the regression output is the b-weight (SPSS output uses capital B for this) 
and its sign as this tells you about the direction of the relationship in the scattergram. The significance 
level is also important, of course. You can largely ignore the row for the constant as this generally is not 
involved in the interpretation. Remember that there is always a direction to the prediction and that one 
variable will be the predictor variable and the other the predicted variable.

●	 One way of reporting this regression analysis following APA recommendations (see Section 15.2) would 
be: ‘Because of the negative correlation between mathematical and musical abilities, it was possible to 
carry out a regression analysis to predict musical ability from mathematical ability. The slope of the 
regression of mathematical ability on musical ability b = -0.63, p 6 .001, 95% CI [- .88, - .38] and the 
intercept a = 8.41, p 6 .001, 95% Cl [6.75, 10.10]. ‘Probability or significance levels (p) are explained in 
Chapter 11 and confidence intervals (CIs) in Chapter 16. 

	 Screenshot 9.1	 Data in ‘Data View’ 	 Screenshot 9.2	 On ‘Analyze’ select ‘Linear. . .’
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	 Screenshot 9.4	 Select ‘Statistics’ options	 Screenshot 9.3	 Move variables into boxes for analysis

	 Screenshot 9.5	 Main output
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Part 2

Significance testing
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Samples from populations

Chapter 10

Overview

●	 Samples are characteristic of all modern research. Their use requires inferential statistical 
techniques in the analysis of data.

●	 A population in statistics is all of the scores on a particular variable and a sample is a smaller 
set of these scores.

●	 Random samples are systematically drawn samples in which each score in the population 
has an equal likelihood of being selected.

●	 Random samples tend to be like the population from which they are drawn in terms of char-
acteristics such as the mean and variability of scores.

●	 Standard error is a measure of the variation in the means of samples drawn from a popula-
tion. It is essentially the standard deviation of the sample means.

Preparation

This chapter introduces some important new ideas. They can be understood by anyone with a 
general familiarity with Chapters 2–9.
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	 10.1	 Introduction

Most research in psychology relies on just a small sample of data from which general 
statements are made. The terms sample and population are familiar to most of us, 
although the fine detail may be a little obscure. So far we have mainly discussed sets of 
data. This was deliberate since most things we have discussed in previous chapters are 
applicable to either samples or populations. The next stage is to understand how we can 
use a sample of scores to make general statements or draw general conclusions that apply 
beyond that sample. This is a branch of statistics called inferential statistics because it is 
about drawing inferences about the population from just a sample. But first of all we need 
to understand what happens when we randomly sample from a population.

	 10.2	 Theoretical considerations

We need to be careful when defining our terms. A sample is fairly obvious – it is just a 
small number of scores selected from the entirety of scores. A population is the entire set 
of scores. In other words, a sample is a small set, or a subset, taken from the full set or 
population of scores. In this chapter we concentrate on a known (rather small) population 
of scores.

Notice the terminology that has been used. We referred to a population of scores and a 
sample of scores. In other words, population and sample refer to scores on a variable. 
Populations in statistics are not people as such. So, in statistical terms, all of the people 
living in Scotland do not constitute a population. Similarly, all of the people working in 
clothing factories in France or all of the goats on the Isle of Capri are not statistical popula-
tions. They may be populations for geographers or for everyday purposes, but they are not 
what we are talking about in statistics when we refer to populations. A statistical popula-
tion is all of the scores on a particular variable and in research we study samples of scores.

In some cases, all of the scores are potentially obtainable, for example the ages of 
students entering psychology degree courses in a particular year. However, often the 
population of scores is infinite and otherwise impossible to specify. An example of this 
might be the amount of time people take to react to an auditory signal in a laboratory. 
The number of possible measures of reaction time in these circumstances is bounded only 
by time and resources. No one could actually find out the population of scores other than 
by taking measurement after measurement – and then there is always another measure-
ment to be taken. The notion of population in statistics is much more of a conceptual tool 
than something objective. Normally a psychologist will only have a few scores (his or her 
sample) and no direct knowledge of what the population of scores is. But it is the popula-
tion that we really are trying to say something about.

Can we generalise from samples? What can we possibly say about the population based 
on our knowledge of a sample? The answer is quite a lot if we are prepared to generalise. 
And we have little choice other than to do that since our sample is all that we know about.

If we know nothing about the population other than the characteristics of a sample 
drawn from that population of scores, our best guess or inference about the characteristics 
of the population is the characteristics of the sample from that population. It does not 
necessarily have to be particularly precise since an informed guess has to be better than 
nothing. So, in general, if we know nothing else, our best guess as to the mean of the 
population is the mean of the sample, our best guess as to the mode of the population is 
the mode of the sample, and our best guess as to the variance of the population is the 
variance of the sample. It is a case of beggars not being able to be choosers.
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In statistical inference, it is generally assumed that samples are drawn at random from 
the population. Such samples are called random samples from the population. The con-
cept of randomness is sometimes misunderstood. Randomness is not the same as arbitrari-
ness, informality, haphazardness or any other term that suggests a casual approach to 
drawing samples. A random sample of scores from a population entails selecting scores 
in such a way that each score in the population has an equal chance of being selected. In 
other words, a random sample favours the selection of no particular scores in the popula-
tion. Although it is not difficult to draw a random sample, it does require a systematic 
approach. Any old sample you choose because you like the look of it is not a random 
sample.

There are a number of ways of drawing a random sample. Here are just a couple:

●	 Put the information about each member of the population on a slip of paper, put all 
of the slips into a hat, close your eyes, give the slips a long stir with your hand and 
finally bring one slip out of the hat. This slip is the first member of the sample; repeat 
the process to get the second, third and subsequent members of the sample. Technically 
the slip of paper should be returned to the container after being selected so it may be 
selected again. However, this is not done, largely because with a large population it 
would make little difference to the outcome.

●	 Number each member of the population. Then press the appropriate randomisation 
button on your scientific calculator to generate a random number. If it is not one of 
the numbers in your population, ignore it and press the button again. The member of 
the population corresponding to this number becomes a member of the sample. Com-
puter programs are also available for generating random numbers or use an Internet 
site for random numbers to do the same thing.

Low-tech researchers might use the random number tables that can be found in books of 
statistical tables. Essentially what you do is choose a random starting point in the table 
(closing your eyes and using a pin is recommended) and then choose numbers using a 
predetermined formula. For example, you could take the first three numbers after the pin, 
then a gap of seven numbers and then the three numbers following this, then a gap of 
seven numbers and then the three numbers following this, etc. Do not laugh at these 
procedures – they are all valid and convenient ways of choosing random samples. How-
ever, they are a little labour intensive given that there are available computer programs 
and applets on the Internet which will generate a random sequence of numbers for you. 
These are clearly preferable but less intuitive than the above approaches. Figure 10.1 gives 
the basics facts about random samples.

	 Figure 10.1	 Conceptual steps for understanding significance testing
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	 10.3	 Characteristics of random samples

In Table 10.1 there is a population of 100 scores – the mode is 2, the median is 6.00 and 
the mean is 5.52. Have a go at drawing random samples of, say, five scores from this 
population. Repeat the process until you have a lot of sets (or samples) of scores. For each 
sample calculate any of the statistics just mentioned – the mean is a particularly useful 
statistic.

We drew 40 samples from this population at random using a computer. The means 
of each of the 40 samples are shown in Table 10.2. It is noticeable that these means vary 
quite considerably. However, if we plotted them graphically we would find that sample 
means that are close to the population mean of 5.52 are relatively common. The average 
of the sample means is 5.20 which is close to the population mean. The minimum sam-
ple mean is 2.00 and the maximum is 8.80; these contrast with minimum and maximum 
values of 0 and 12 in the population. Sample means that are very different from this 
population mean become increasingly uncommon the further away they are from the 
population mean.

7 5 11 3 4 3 5 8 9 1

9 4 0 2 2 2 9 11 7 12

4 8 2 9 7 0 8 0 8 10

10 7 4 6 6 2 2 1 12 2

2 5 6 7 10 6 6 2 1 9

3 4 2 4 9 7 5 1 6 4

5 7 12 2 8 8 3 4 6 5

9 2 6 0 7 7 5 9 10 8

6 1 7 12 3 5 2 7 2 7

2 2 8 11 4 5 8 6 4 6

	 Table 10.1	 Population of 100 scores

2.20 5.60 4.80 5.00 8.40 6.80 4.60 6.60

4.00 3.00 5.00 5.60 8.80 5.60 4.60 6.80

3.00 8.20 8.20 3.80 5.40 6.00 4.80 5.20

3.20 5.20 3.00 5.00 5.40 4.80 6.00 7.40

5.00 2.00 3.60 4.60 5.60 4.60 4.40 6.00

	 Table 10.2	 �Means of 40 samples each of five scores taken at random from the population in Table 10.1

We can calculate the (estimated) standard deviation of these 40 sample means on SPSS 
which gives us a value of 1.6. The standard deviation of sample means has a technical 
name, although the basic concept differs only in that it deals with means of samples and 
not scores. The special term is standard error. So, in general, it would seem that sample 
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means are a pretty good estimate of population means although not absolutely necessarily 
so. All of this was based on samples of size 5. Table 10.3 shows the results of exactly the 
same exercise with samples of size 20. Much the same trends appear with these larger 
samples but for the following:

●	 The spread of the sample means is reduced somewhat and they appear to cluster 
closer to the population mean. The minimum value is 4.25 and the maximum value 
is 6.85. The overall mean of these samples is 5.33, close to the population mean 
of 5.52.

●	 The standard deviation of these means (i.e. the standard error) of larger samples is 
smaller. For Table 10.3 the standard deviation is 0.60.

●	 The distribution of sample means is a steeper curve than for the smaller samples.

The conclusion to be drawn from all of this is that the larger sample size produces 
better estimates of the mean of the population. For statistics, this verges on common sense.

4.50 5.70 5.90 5.15 4.25 5.25 5.60 5.00

5.35 5.90 6.85 5.55 5.30 5.60 5.70 4.55

6.35 6.30 4.40 5.25 4.65 5.30 4.80 5.65

4.85 5.35 5.70 4.35 5.25 5.10 6.45 5.05

5.50 6.15 5.65 5.05 5.15 5.10 4.65 4.95

	 Table 10.3	 �Means of 40 samples each of size 20 taken at random from the population in Table 10.1

	 10.4	 Confidence intervals

There is another idea that is fundamental to some branches of statistics – confidence 
interval of the mean. In public opinion surveys you often read of the margin of error being 
a certain percentage. The smaller the margin of error the more confident we should be in 
the estimate of the population based on the sample. Confidence intervals (CIs) are similar 
in that they tell us the range of means (and other things) which is likely to contain the 
actual population mean 95% of the time. The smaller the confidence interval the more 
confidence that we should have that the sample mean accurately estimates the population 
mean. The definition of confidence intervals is a little technical. Mostly students find it 
easiest to think of the confidence interval as the range of values which is 95% likely to 
include the population value. This is more or less the same as when public opinion poll-
sters give a margin of error – it indicates that the pollster thinks that the true value is likely 
to be within a certain range as a consequence of sampling variation. The confidence 
interval includes the margin of error in both directions.

Finally, a little more jargon. The correct term for characteristics of samples such as 
their means, standard deviations, ranges and so forth is statistics. The same characteristics 
of populations are called parameters. In other words, you use the statistics from samples 
to estimate or infer the parameters of the population from which the sample came.
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Computer Analysis

Selecting a random sample using SPSS

Figure 10.2â•…         SPSS steps for selecting a random sample of cases

●	 The material in this chapter is not immediately applicable to research. Regard it as a conceptual basis for the 
understanding of inferential statistics.

●	 You need to be a little patient since the implications of this chapter will not be appreciated until later.

Key points
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	 Screenshot 10.3	 Select ‘Random sample of cases’ 
and ‘Sample. . . ’

	 Screenshot 10.4	 Select the ‘Sample Size’

	
Screenshot 10.5

	 Selected sample in ‘Data View’ 
includes case 9

	 Screenshot 10.1	 Part of data in ‘Data View’

	 Screenshot 10.2	 On ‘Data’ select ‘Select Cases. . . ’
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Preparation

You must be familiar with correlation coefficients (Chapter 8) and populations and samples 
(Chapter 10).

Statistical significance for 
the correlation coefficient
Practical introduction to statistical inference

●	 It is generally essential to report the statistical significance of the correlation coefficient and 
many other statistical techniques.

●	 Statistical significance is little other than an indication that your statistical findings are 
unlikely to be the result of chance factors.

●	 It can be shown that samples drawn randomly from a population generally tend to have 
similar characteristics to those of the population. However, there will be some samples which 
tend to be unlike the population.

●	 The null hypothesis always states that there is no relation between two variables. Signifi-
cance testing always seeks to assess the validity of the null hypothesis.

●	 If our data sample is in the middle 95% of samples if the null hypothesis is true, we say that 
our findings are not statistically significant at the 5% level and prefer the null hypothesis.

●	 However, if our data sample is in the extreme 5% of samples assuming that the null hypoth-
esis is true, our sample does not seem to support the null hypothesis. In this case, we tend 
to prefer the alternative hypothesis and reject the null hypothesis. We also say that our 
findings are statistically significant.

Chapter 11

Overview
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	 11.1	 Introduction

Researchers have correlated two variables for a sample of 20 people. They obtained a 
correlation coefficient of .56. The problem is that they wish to generalise beyond this 
sample and make statements about the trends in the data which apply more widely. 
However, their analyses are based on just a small sample which might not be characteristic 
of the trends in the population. What do they do?

	 11.2	 Theoretical considerations

We can all sympathise with these researchers. The reason why they are concerned is 
straightforward. Imagine that Table 11.1 contains the population of pairs of scores. Over-
all, the correlation between the two variables in this population is .0. That is, there is 
absolutely no relationship between variable X and variable Y in the population.

What happens, though, if we draw many samples of, say, eight pairs of scores at ran-
dom from this population and calculate the correlation coefficients for each sample? Some 
of the correlation coefficients are indeed more-or-less zero, but a few are substantially 

	 Table 11.1	 Imaginary population of 60 pairs of scores with zero correlation between the pairs

Pair Variable Pair Variable Pair Variable

X Y X Y X Y

01 14 12 02 5 11 03 12 5

04 3 13 05 14 9 06 10 14

07 5 12 08 17 17 09 4 8

10 15 5 11 3 3 12 19 12

13 16 7 14 14 9 15 12 13

16 13 8 17 15 11 18 15 7

19 12 17 20 11 14 21 5 13

22 12 11 23 11 9 24 15 14

25 5 12 26 15 9 27 12 13

28 6 13 29 14 7 30 18 13

31 12 1 32 19 12 33 12 19

34 11 14 35 12 17 36 13 9

37 14 12 38 15 5 39 18 13

40 17 11 41 3 12 42 16 9

43 16 12 44 11 9 45 18 2

46 12 14 47 12 14 48 15 11

49 16 12 50 12 14 51 8 14

52 5 11 53 7 8 54 16 8

55 13 13 56 12 15 57 18 2

58 3 1 59 7 8 60 11 6
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different from zero, as we can see from Table 11.2. Plotted on a histogram, the distribu-
tion of these correlation coefficients looks like Figure 11.1. It is more or less a normal 
distribution with a mean correlation of about zero and most of the correlations being 
close to that zero point. However, some of the correlation coefficients are substantially 
different from .0. This shows that even where there is zero relationship between the two 
variables in the population, random samples can appear to have correlations which depart 
from .0. So you will find in the table correlations as large as .81 which most researchers 
would be delighted to obtain in their research – though we know that this correlation is 
really due to chance and that there is no real correlation in the population.

	 Table 11.2	� Two hundred correlation coefficients obtained by repeatedly random sampling eight pairs of scores from Table 11.1

- .56 - .30 .36 .54 - .27 .05 - .33 - .19 .54 .18

- .54 .11 .25 - .15 - .57 - .31 - .24 .17 - .69 - .19

- .53 .68 - .22 - .22 - .26 - .42 .08 - .30 - .41 .29

- .45 - .09 - .06 - .30 - .72 - .53 .04 - .66 .65 - .53

- .39 - .21 .07 - .80 - .68 .08 .13 .76 - .04 .18

- .36 - .19 .29 .24 .38 - .55 - .40 .50 - .09 - .30

- .30 - .56 .68 - .14 .35 - .28 .56 - .38 - .16 .15

- .29 - .23 - .42 - .27 .01 .43 .01 - .33 - .20 .49

- .26 - .41 - .09 .00 .54 .17 .34 .52 - .11 .67

- .26 - .16 - .70 .00 - .17 .40 .03 - .02 .35 - .01

- .23 .03 .30 - .52 - .05 - .26 - .32 - .37 - .51 .18

- .20 - .17 - .43 - .39 .37 .23 - .10 .32 .02 .52

- .18 .38 .45 - .50 - .58 .28 - .34 - .28 .24 .53

- .17 - .02 - .34 - .23 - .54 .25 - .71 .72 .03 - .13

- .08 - .30 - .06 - .10 - .65 .27 - .04 .32 - .52 - .42

- .04 .59 - .29 - .31 .48 - .48 .02 - .30 .81 - .23

.10 - .12 - .51 - .19 .08 .18 - .27 - .67 - .69 .50

.15 - .54 - .15 .05 .01 .52 .19 .19 .07 .27

.34 - .44 - .11 - .21 - .02 - .07 .17 - .30 - .06 - .49

.57 - .10 - .23 .01 - .09 - .27 .22 - .28 .43 - .34

	 Figure 11.1	 Distribution of correlation coefficients presented in Table 11.2
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Just about anything is possible in samples although only certain things are likely. 
Consequently, we try to stipulate which are the likely correlations in samples of a 
given size and which are the unlikely ones (if the population correlation is zero). Actu-
ally all we say is that correlations in the middle 95% of the distribution of samples 
are likely if the population correlation is zero. Correlations in the extreme 5% (usually 
the extreme 2.5% in each direction) are unlikely in these circumstances. These are 
arbitrary cut-off points, but they are conventional in statistics and have long anteced-
ents. It is also not an unreasonable cut-off for most purposes to suggest that if a 
sample has only a 1 in 20 chance of occurring then it is unlikely to represent the popu-
lation value.

If a correlation is in the extreme 5% of the distribution of samples from a population 
where the correlation is zero, it is deemed statistically significant. We should be sitting up 
and taking notice if this happens. In other words, statistical significance merely signals 
the statistically unusual or unlikely. In the above example, by examining Table 11.2 we 
find that the correlations .81, .76, .72, .68 and .68 and - .80, - .72, - .71, - .70 and - .69 
are in the extreme 5% of correlations away from zero. This extreme 5% is usually made 
up of the extreme 2.5% positive correlations and the extreme 2.5% negative correlations. 
Therefore, a correlation of between .68 and 1.00 or - .69 and -1.00 is in the extreme 
5% of correlations in our example. This is the range which we describe as statistically 
significant. Statistical significance simply means that our sample falls in the relatively 
extreme part of the distribution of samples obtained if the null hypothesis (see the next 
section) of no relationship between the two variables is true.

These ranges of significant correlations mentioned above only apply to samples of size 
eight. A different size of sample from the same population results in a different spread of 
correlations obtained from repeated sampling. The spread is bigger if the samples are 
smaller and less if the samples are larger. In other words, there is more variation in the 
distribution of samples with small sample sizes than with larger ones.

On the face of things, all of this is merely a theoretical meandering of little value. We 
know that the population correlation is zero – actually we made it zero. A major difficulty 
is that we are normally unaware of the population correlation since our information is 
based solely on a sample which may or may not represent the population very well. How-
ever, it is not quite the futile exercise it appears. Some information provided by a sample 
can be used to infer or estimate the characteristics of the population. For one thing, 
information about the variability or variance of the scores in the sample is used to estimate 
the variability of scores in the population.

	 11.3	 Back to the real world: null hypothesis

There is another vitally important concept in statistics – the hypothesis. Hypotheses in 
psychological statistics are usually presented as antithetical pairs – the null hypothesis 
and its corresponding alternative hypothesis:

●	 The null hypothesis is in essence a statement that there is no relationship between two 
variables. The following are all examples of null hypotheses:

●	 There is no relationship between brain size and intelligence.

●	 There is no relationship between gender and income.

●	 There is no relationship between baldness and virility.

●	 There is no relationship between children’s self-esteem and that of their parent of 
the same sex.
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●	 There is no relationship between ageing and memory loss.

●	 There is no relationship between the amount of carrots eaten and ability to see in 
the dark.

●	 The alternative hypothesis simply states that there is a relationship between two vari-
ables. In its simplest forms the alternative hypothesis says only this:

●	 There is a relationship between the number of years of education people have and 
their income.

●	 There is a relationship between people’s gender and how much they talk about their 
emotional problems.

●	 There is a relationship between people’s mental instability and their artistic 
creativity.

●	 There is a relationship between abuse in childhood and later psychological 
problems.

●	 There is a relationship between birth order and social dominance.

●	 There is a relationship between the degree of similarity of couples and their sexual 
attraction for each other.

So the difference between null and alternative hypotheses is merely the word ‘no’. Of 
course, sometimes psychologists dress their hypotheses up in fancier language than this 
but the basic principle is unchanged. (Actually there is a complication – directional 
hypotheses – but these are dealt with in Chapter 20.)

The statistical reason for using the null hypothesis and alternative hypothesis is that 
they clarify the populations in statistical analyses. In statistics, inferences are based on 
the characteristics of the population as defined by the null hypothesis. Invariably the 
populations defined by the null hypothesis are ones in which there is no relation between 
a pair of variables. Thus, the population defined by the null hypothesis is one where the 
correlation between the two variables under consideration is .00. The characteristics of a 
sample can be used to assess whether it is likely that the correlation for the sample comes 
from a population in which the correlation is zero.

So the basic trick is to use certain of the characteristics of a sample together with the 
notion of the null hypothesis to define the characteristics of a population. Other charac-
teristics of the sample are then used to estimate the likelihood that this sample comes from 
this particular population. To repeat and summarise:

●	 The null hypothesis is used to define a population in which there is no relationship 
between two variables.

●	 Other characteristics, especially the variability of this population, are estimated or 
inferred from the known sample.

It is then possible to decide whether or not it is likely that the sample comes from this 
population defined by the null hypothesis. If it is unlikely that the sample comes from the 
null hypothesis-based population, the possibility that the null hypothesis is true is rejected. 
Instead the view that the alternative hypothesis is true is accepted. That is, the alternative 
hypothesis that there really is a relationship is preferred. This is the same thing as saying 
that we can safely generalise from our sample because we think that there is a real trend. 
It is conventional to regard correlations in the extreme 5% of correlations as being statisti-
cally significant. That is, we prefer the hypothesis that there is a correlation to the null 
hypothesis that there is no correlation. Correlations which are not in the extreme 5% are 
described as being not significant. That is, we cannot reject the null hypothesis. 

Box 11.1 explains how to test whether two correlations are significantly different from 
each other.
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	 11.4	 Pearson’s correlation coefficient again

Computer programs such as SPSS give exact significance levels for your correlation coef-
ficient. Nevertheless, originally one would have used tables of the distribution of the 
correlation coefficient to find the significance level. Occasionally you still might need to 
consult such a table:

●	 For example, imagine that you are reviewing the research literature and find that one 
old study reports a correlation of .66 between two variables but fails to give the sig-
nificance level, then what do you do? This sort of situation can occasionally happen 
since not every research paper is exemplary in its statistical analysis. Or you wish to 
check that there is not a typographical error for the given significance level then what 
do you do? SPSS will not be of help in these situations.

●	 What if you wanted to know the size of correlation which would be statistically sig-
nificant for a given sample size? If, for example, you are expecting a small correlation 
of say .2 then how big a sample would be needed for this to be statistically significant? 
The only way to find out is to consult tables.

SPSS will not help you deal with these situations. So in this section we will explain how 
significance levels may be obtained from tables so long as you know the size of the cor-
relation coefficient and the sample size (or in some tables the degrees of freedom) 
involved.

The null hypothesis for research involving the correlation coefficient is that there is no 
relationship between the two variables. In other words, the null hypothesis states that the 
correlation coefficient between the two variables is .00 in the population (defined by the 
null hypothesis). So what if, in a sample of 10 pairs of scores, the correlation is .94 as for 
the data in Table 11.3? Do we accept or reject the null hypothesis?

Do correlations differ?
Notice that throughout this chapter we are comparing a 
particular correlation coefficient obtained from our data 
with the correlation coefficient that we would expect to 
obtain if there were no relationship between the two vari-
ables at all. In other words, we are calculating the likeli-
hood of obtaining the correlation coefficient based on our 
sample of data if, in fact, the correlation between these two 
variables in the population from which the sample was 
taken is actually .0. However, there are circumstances in 
which the researcher might wish to assess whether two cor-
relations obtained in their research are significantly differ-
ent from each other. Imagine, for example, that the 
researcher is investigating the relationship between satisfac-
tion with one’s marriage and the length of time that 

individuals have been married. The researcher notes that 
the correlation between satisfaction and length of marriage 
is .25 for male participants but .53 for female participants. 
There is clearly a difference here, but is it a statistically 
significant one? So essentially the researcher needs to know 
whether a correlation of .53 is significantly different from 
a correlation of .25 (the researcher has probably already 
tested the significance of each of these correlations sepa-
rately but, of course, this does not answer the question of 
whether the two correlation coefficients differ from each 
other). It is a relatively simple matter to do this calculation. 
It has to be done by hand, unfortunately. The procedure 
for doing this is described in Section 37.7 Comparing a 
study with a previous study.

Box 11.1	 Focus on
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Is it likely that such a correlation would occur in a sample if it actually came from a 
population where the true correlation is zero? We need to know the distribution of cor-
relations based on samples of ten assuming the null hypothesis. This is not a simple task 
but was done at the time the correlation coefficient was developed many decades ago. 
Mere mortals like us can use significance tables for the correlation coefficient calculated 
way back then. Actually all we really need to know is the minimum value which puts a 
correlation into the extreme 5% of correlation coefficients. This tells us whether or not 
our correlation coefficient is statistically significant.

	 Figure 11.2	 Conceptual steps for understanding statistical significance testing

	 Table 11.3	 Sample of 10 pairs of scores

Pair number X score Y score

1 5 4

2 2 1

3 7 8

4 5 6

5 0 2

6 1 0

7 4 3

8 2 2

9 8 9

10 6 7
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For any given size of sample (or number of degrees of freedom), the table gives us the 
minimum size of a correlation coefficient required to be statistically significant. These 
cut-off points are usually called critical values.

If the sample’s correlation is smaller than the critical value required then we accept the 
null hypothesis that there is no relationship between the two variables. By accept, we 
mean that in the absence of any other information or considerations, the null hypothesis 
cannot be rejected. So correlations which are smaller than the critical value are described 
as being statistically non-significant.

However, if the correlation is equal to or larger than the critical value then it is in the 
extreme 5% of correlations. In this case the alternative hypothesis is accepted (that there 
is a relationship between the two variables). Correlations equal to or larger than the criti-
cal value are described as being statistically significant. That is, we accept the alternative 
hypothesis that there is a correlation between the two variables.

Significance Table 11.1 indicates that for a sample size of 10, a correlation has to be 
between - .63 and -1.00 or between .63 and 1.00 to be sufficiently large as to be in the 
extreme 5% of correlations which support the alternative hypothesis. Correlations closer 
to .00 than these come in the middle 95%, which supports the null hypothesis. So our 
correlation of .94 based on a sample of 10 is clearly statistically significant. Figure 11.2 
gives the key steps in testing statistical significance. See Box 11.2 for a discussion of the 
two types of error in hypothesis testing. 

Statistical significance of a Pearson correlation coefficient
Given that you know the value of the Pearson correlation coefficient, whether or not this is significant or not may be 
found from Significance Table 11.1. You need either the sample size or the degrees of freedom to do this. The degrees of 
freedom (df) for a correlation coefficient is the sample size minus 2 so it is easy to convert degrees of freedom to sample 
sizes simply by adding 2 to the degrees of freedom. In the example in Chapter 8 (Explaining statistics 8.1), the correlation 
between mathematical scores and musical scores was found to be - .90 with a sample size of 10. If this correlation is in 
the range of correlations listed as being in the extreme 5% of correlations for this sample size, the correlation is described 
as being statistically significant at the 5% level of significance.

Interpreting the results

In this case, since our obtained value of the correlation coefficient is in the significant range of the correlation coefficient 
(- .63 to -1.00 and .63 to 1.00), we reject the null hypothesis in favour of the alternative hypothesis that there is a 
relationship between mathematical and musical scores.

Reporting the results

In our report of the study we would conclude by writing something to the following effect: ‘There is a negative correlation 
of - .90 between mathematical and musical scores which is statistically significant at the 5% level with a sample size of 
10.’ Alternatively, following the recommendations of the APA (2010) Publication Manual we could say something like 
‘Mathematical scores were significantly negatively correlated with musical scores, r(8) = - .90, p 6 .05.’ This gives the 
degrees of freedom in the brackets. The size of the sample itself for the correlation would not be given in modern research 
publications. The value of the degrees of freedom will be the sample size minus 2 for the Pearson correlation. If you use 
SPSS to obtain the significance level, then it is given as .000 in the output. You would in this case give the probability as 
being p 6 .001 and not as p = .00. But if the probability level given by SPSS is, say, .002 then it is correct to give it as 
p = .002.

Explaining statistics 11.1

➜
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Type I and Type II errors
The terms Type I error and Type II error frequently appear 
in statistics textbooks although they are relatively uncom-
mon in reports and other publications. They refer to the 
risk that no matter what decision you make in research 
based on your statistical analysis there is always a chance 
that you have made the wrong decision. There are two 
types of wrong decision – one involves deciding that there 
is a trend when there is in reality no trend; the other 

Box 11.2	 Key concepts

involves deciding that there is not a trend when in reality 
there is:

●	 a Type I error is deciding that the null hypothesis is false 
when it is actually true

●	 a Type II error is deciding that the null hypothesis is true 
when it is actually false. Powerful statistical tests are 
those in which there is less chance of a Type II error.

	 Significance 
Table 11.1

Sample size Significant at 5% level
Accept hypothesis

5 - .88 to -1.00 or + .88 to +1.00

6 - .81 to -1.00 or + .81 to +1.00

7 - .75 to -1.00 or + .75 to +1.00

8 - .71 to -1.00 or + .71 to +1.00

9 - .67 to -1.00 or + .67 to +1.00

10 - .63 to -1.00 or + .63 to +1.00

11 - .60 to -1.00 or + .60 to +1.00

12 - .58 to -1.00 or + .58 to +1.00

13 - .55 to -1.00 or + .55 to +1.00

14 - .53 to -1.00 or + .53 to +1.00

15 - .51 to -1.00 or + .51 to +1.00

16 - .50 to -1.00 or + .50 to +1.00

17 - .48 to -1.00 or + .48 to +1.00

18 - .47 to -1.00 or + .47 to +1.00

19 - .46 to -1.00 or + .46 to +1.00

20 - .44 to -1.00 or + .44 to +1.00

25 - .40 to -1.00 or + .40 to +1.00

30 - .36 to -1.00 or + .36 to +1.00

40 - .31 to -1.00 or + .31 to +1.00

50 - .28 to -1.00 or + .28 to +1.00

60 - .25 to -1.00 or + .25 to +1.00

100 - .20 to -1.00 or + .20 to +1.00

5% significance values of the Pearson correlation coefficient (two-tailed test). An extended and conventional 
version of this table is given in Appendix C

Your value must be in the listed ranges for your sample size to be significant at the 5% level (i.e. to accept the hypothesis). 
If your required sample size is not listed, then take the nearest smaller sample size. Alternatively, extrapolate from listed values.
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	 11.5	 Spearman’s rho correlation coefficient

We discussed the Spearman’s rho correlation coefficient in Chapter 8 (Explaining statistics 
8.2). There are tables for finding the critical values of this statistic which can be used. An 
example of such a table is Significance Table 11.2. Compare this with the table for the 
Pearson correlation coefficient (Significance Table 11.1). They are different because the 
two correlations have different distributions. For a sample size of eight, the Pearson cor-
relation needs to be .72 (or - .72) at least to be statistically significant. However, to be 
significant with this sample size, the Spearman’s rho correlation has to be .74 (or - .74) 
at least. Generally the differences are quite small and with samples of 100 or so they are 
indistinguishable. Nevertheless, they are different distributions.

Figure 11.3 shows the process by which correct deci-
sions are made and the processes by which Type I errors 
and Type II errors are made. Of course, these are not errors 
which it is easy to do anything about since the researcher 
simply does not know what is truly the case in general (i.e. 
in the population) as they only have information from the 
sample of data that they have collected. So these are rather 
abstract concepts rather than concrete situations. You may 
have also noticed that if the researcher does something to 
minimise the risk of a Type I error then the risk of a Type 
II error increases. So to avoid a Type I error then the 
researcher could set a more stringent level of significance 
than the 5% level – say the 1% level – but this would 

reduce the risk of a Type I error at the cost of increasing the 
risk of a Type II error. The main issue in succeeding chap-
ters is significance testing and the Type I error. However, 
Chapter 40 discusses statistical power in which the Type II 
error is just as important.

Unfortunately, the terms are not particularly useful in 
the everyday application of statistics where it is hard 
enough making a decision let alone worrying about the 
chance that you have made the wrong decision. Given 
that statistics deals with probabilities and not certainties, 
it is important to remember that there is always a chance 
that any decision you make is wrong in statistical 
analysis.

	 Figure 11.3	 Type I and Type II errors
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In Chapter 8 we calculated Spearman’s rho correlation coefficient between mathemati-
cal score and musical score. The correlation was found to be - .89 with a sample size of 
10. Significance Table 11.2 reveals that in order to be significant at the 5% level with a 
sample size of 10, correlations have to be in the range .65 to 1.00 or - .65 to -1.00.

	 ■	 Interpreting the results

Since our obtained value of the Spearman’s rho correlation coefficient is in the range of 
significant correlations we accept the alternative hypothesis that mathematical and musi-
cal scores are (inversely) related and reject the null hypothesis.

	 ■	 Reporting the results

We can report a significant correlation: ‘There is a negative correlation of - .89 between 
mathematical and musical scores which is statistically significant at the 5% level with a 

	 Significance  
    Table 11.2

Sample  
size

Significant at 5% level
Accept hypothesis

5 -1.00 or +1.00

6 - .89 to -1.00 or + .89 to +1.00

7 - .79 to -1.00 or + .79 to +1.00

8 - .74 to -1.00 or + .74 to +1.00

9 - .68 to -1.00 or + .68 to +1.00

10 - .65 to -1.00 or + .65 to +1.00

11 - .62 to -1.00 or + .62 to +1.00

12 - .59 to -1.00 or + .59 to +1.00

13 - .57 to -1.00 or + .57 to +1.00

14 - .55 to -1.00 or + .55 to +1.00

15 - .52 to -1.00 or + .52 to +1.00

16 - .51 to -1.00 or + .51 to +1.00

17 - .49 to -1.00 or + .49 to +1.00

18 - .48 to -1.00 or + .48 to +1.00

19 - .46 to -1.00 or + .46 to +1.00

20 - .45 to -1.00 or + .45 to +1.00

25 - .40 to -1.00 or + .40 to +1.00

30 - .36 to -1.00 or + .36 to +1.00

40 - .31 to -1.00 or + .31 to +1.00

50 - .28 to -1.00 or + .28 to +1.00

60 - .26 to -1.00 or + .26 to +1.00

100 - .20 to -1.00 or + .20 to +1.00

�	�5% significance values of the significance correlation coefficient (two-tailed test). Extended and conventional 
version of this table is given in Appendix D

Your value must be in the listed ranges for your sample size to be significant at the 5% level (i.e. to accept the hypothesis).
If your required sample size is not listed, then take the nearest smaller sample size. Alternatively, extrapolate from listed values.
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sample size of 10.’ Alternatively, following the APA (2010) Publication Manual recom-
mendations we could write something like ‘Mathematical scores were significantly nega-
tively correlated with musical scores, rs(8) = - .89, p 6 .05’. The APA manual uses the 
degrees of freedom which are given in brackets. The value of the degrees of freedom will 
be the sample size minus 2 for Spearman’s rho. Using SPSS to do the calculation, you will 
find that it gives the probability as .00. In this case the procedure is to give it as p 6 .001 
as explained earlier for the Pearson correlation. 

Significance of Pearson’s correlation and Spearman’s rho

Rohmer and Louvet (2012), in their analysis of stereotyping of people with disability, report some correlations 
as follows: ‘To examine the relationships between the implicit and the explicit measures, separate scores were 
computed on competence and warmth at both the implicit and the explicit level, by subtracting the scores given 
to targets with disability from those given to targets without disability. Results indicated that there were no 
significant correlations for both competence (r = .08, p = .46) and warmth (r = .05, p = .65).’ (p. 738).

Gannon and Barrowcliffe (2012) in their study of firesetters make the comment: ‘Overall scores on the Fire Set-
ting Scale and the Fire Proclivity Scale were not significantly related to impression management scores across 
the whole sample (r = - .12 and - .01, respectively). However, when these correlations were computed for 
firesetters and nonfiresetters separately, scores on the Fire Setting Scale were significantly negatively related 
to impression management scores for the firesetters (r = - .64; p = .01).’ (p. 9).

Vallat-Azouvi, Pradat-Diehl and Azouvi (2012) report on the Working Memory Questionnaire which measures 
aspects of working memory including short-term storage, executive control and attention. As part of this, they 
investigated the validity of this scale by reference to the Cognitive Failure Questionnaire (CFQ) and the Rating 
Scale of Attentional Behaviour (RSAB). They write: ‘Concurrent validity was assessed by computing Spearman 
rank order correlation coefficients between the total score of the scale on the one hand and the CFQ and the 
RSAB on the other hand.  .  .   Both correlations were significant (rho = .90, p 6 .0001 with the CFQ, and 
rho = .81, p 6 .0001 with the RSAB).’ (pp. 642–3).

Research examples

●	 There is nothing complex in the calculation of statistical significance for the correlation coefficients SPSS 
routinely calculates the statistical significance of a correlation to a precise level. However, statistical tables 
normally do not include every sample size. When a particular sample size is missing you can simply use the 
nearest (lower) tabulated value. Alternatively you could extrapolate from the nearest tabulated value above 
and the nearest tabulated value below your actual sample size.

●	 It is a bad mistake to report a correlation without indicating whether it is statistically significant.

●	 Chapter 15 explains how to report your significance levels in a more succinct form. Try to employ this sort of 
style as it eases the writing of research reports and looks professional.

●	 Beware that some statistical textbooks provide significance tables for the correlation coefficient which are 
distributed by degrees of freedom rather than sample size. For any given sample size, the degrees of freedom 
are two less. Thus, for a sample size of 10, the degrees of freedom are 10 - 2, or 8.

Key points
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Computer Analysis

Correlation coefficients using SPSS

â•‡ Figure 11.4â•‡           â•›SPSS steps for the significance of the correlation coefficient

Interpreting and reporting the output

●	 Interpretation of the output is complicated by the fact that SPSS intercorrelates each of the variables 
with itself and with the other variables. The correlation of a variable with itself is always 1. No 
significance level is given for this. The table also includes the correlation between the variables with 
the other variables twice, so you have the correlation of Variable X with Variable Y AND the 
correlation of Variable Y with Variable X. These are, of course, the same. The output gives the 
correlation (- .900), the statistical significance (.000) and the sample size (10).

●	 It would be good to report the significance level as being less than .001 and something known as the 
degrees of freedom which for the correlation coefficient is N - 2 or 8 in this case. Statistical 
significance is discussed further in Chapter 20 and degrees of freedom in Chapter 23.

●	 In a report, we could write ‘There is a significant negative correlation between musical ability and 
mathematical ability, r(8) = .90, p 6 = .001. Children with more musical ability have lower 
mathematical ability.’
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	 Screenshot 11.1	 Data in ‘Data View’ 	 Screenshot 11.2	 On ‘Analyze’ select ‘Bivariate. . . ’

	 Screenshot 11.3	 	â•‡ Screenshot 11.4â•‡      Select ‘Means and standard deviations’

 Screenshot 11.5 	â•‡ Screenshot 11.6â•‡       Output table giving correlations
 �Output table giving means and  
standard deviations

Move variables for analysis into 
‘Variables:’ box
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●	 Standard error is the term for the standard deviation of sample means. It is important 
theoretically.

●	 We never calculate the standard error directly but estimate its value from the characteristics 
of our sample of data.

●	 The standard error is simply estimated by dividing the standard deviation of scores in the 
population by the square root of the sample size for which we need to calculate the standard 
error.

●	 We use the estimated standard deviation when calculating the standard error.

Standard error
Standard deviation of the means of 
samples

Chapter 12

Overview

Preparation

Review z-scores and standard deviation (Chapter  6) and sampling from populations 
(Chapter 10).
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	 12.1	 Introduction

Most psychological research involves the use of samples drawn from a population. How do 
such samples differ from the population? Some samples will be very similar to the population 
from which they were drawn, a smaller number will be somewhat different from the popula-
tion and others will be very different from the population. So we expect to find some samples 
which are very atypical of the population. Since we normally do not know the distribution 
of the population, we do not know whether the sample we are using in our research is like 
that population or not. However, we can estimate the likelihood that our sample comes from 
a particular population by using the sample characteristics. For illustrative purposes we will 
use a known population of scores to make things a little more concrete.

This chapter explains the concept of standard error. The standard error can be thought 
of as a summary index of the diversity in sample means drawn from a population. It is 
employed in many different contexts in statistics but it is not always necessary to report 
its value in a study. Different versions of standard error are used in different statistical 
procedures. In this chapter we will concentrate on the standard error of the mean. The 
importance of the standard error will become clearer in the next two chapters. Master 
the concept now and it will ease your way in later chapters. Figure 12.1 illustrates the key 
steps in understanding standard error.

	 Figure 12.1	 Conceptual steps for understanding standard error

5 7 9 4 6

2 6 3 2 7

1 7 5 4 3

3 6 1 2 4

2 5 3 3 4

	 Table 12.1	 Population of 25 scores

	 12.2	 Theoretical considerations

The first thing we need is a population from which samples are drawn. For learning 
purposes, Table 12.1 gives all the scores for a population. Of course, populations are 
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not small like this and mostly they are potentially infinitely large. But our population 
we can see in front of us. The population consists of 25 scores. The mean of the popula-
tion is 4.20. What pattern of means do we get if we select a lot of samples at random 
from this population? We will use samples of four scores. Using a random procedure, 
we take 20 samples of four from the population. The decision to take 20 samples of 
four is an arbitrary one and other values could have been used. For each of these 20 
samples the mean has been calculated, giving 20 separate sample means. They are 
shown in Table 12.2. The distribution of the sample means is an example of a sampling 
distribution.

Looking at the 20 sample means, we can see that they vary and that they vary from 
our population mean of 4.16. The largest and smallest sample means are 6.00 and 2.50, 
respectively. (The average of the 20 sample means is 4.00, which suggests that sample 
means cluster around the population mean.) The outcome of our little exercise in sampling 
from a known population is that samples tend to have similar means to the population 
mean but some samples are very different from the population.

One way of summarising the variation in the means of samples drawn from a popula-
tion would be to work out the standard deviation of the means. Standard deviation refers 
to scores, though, and a different name is given to the standard deviation when it is 
applied to means. It is called the standard error. So there is not much new about the 
standard error that we have not seen before. Consequently, the standard error is simply 
the average deviation of sample means from the mean of the sample means. If we had 
taken many more samples, then the mean of the sample means would be the same as the 
population mean. The (estimated) standard deviation of these 20 sample means is 0.91. 
This is the value that you would get doing the calculation on SPSS. Using the basic for-
mula for standard deviation (which involves the division by N and not N - 1) we would 
get the smaller value of 0.89 for the standard deviation (see Explaining statistics 6.1).  
(To stress, usually we would work out the standard error around the population mean. 
In our example, only a small number of samples were taken. If we had taken a very large 
number of samples, the mean of the sample means would get to be much closer to or 
identical with the population mean.)

If we sampled from the population of scores in Table 12.1 using a different sample size, 
say samples of 12, we would get a rather different sampling distribution. In general, all 
other things being equal, the standard error of the means of bigger samples is less than 
that of smaller sized samples. This is just a slightly convoluted way of supporting the 
common-sense belief that larger samples are more precise estimates of the characteristics 
of populations than are smaller samples. This is why we tend to be more convinced by 
studies with larger samples than smaller samples.

A frequency curve of the means of samples drawn from a population will get taller and 
narrower as the sample size increases. It will also tend to show a normal (bell-shaped) 
frequency curve. The more normal the population of scores, the more normal the fre-
quency curve of the sample means.

3.75 6.00 4.00 4.25

3.00 3.75 4.50 3.50

4.50 3.00 4.25 2.50

3.50 5.00 3.00 4.25

4.00 3.00 4.50 5.75

	 Table 12.2	 �Means of 20 samples each of four scores taken at random from the population of 
25 scores in Table 12.1
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	 12.3	 Estimated standard deviation and standard error

Usually in research we know nothing directly about the characteristics of the population. 
We only know about the characteristics of the data we have collected, our sample. At first 
sight, this seems to suggest that we never can calculate the standard error in practice. The 
solution is simple though the underlying mathematics is hard. We use the variability of 
scores in the sample to work out the standard error. This is possible because there is a 
simple relationship between the standard deviation of a sample of scores and the standard 
error of sample means taken from the population.

The first step is to estimate the standard deviation of the population of scores from the 
scores in our sample. One quick formula for doing this is as follows:

estimated standard deviation = S
aX2 -

1aX22
N

N - 1

We talked a little before about the difference between the standard deviation and the 
estimated standard deviation. The formulae for the two are almost exactly the same 
except that for the standard deviation we divide by the sample size N and for the esti-
mated standard deviation we divide by N - 1 as above. Since we are estimating the popu-
lation standard deviation from a sample of scores, we use the estimated standard deviation 
formula. If we were merely describing a set of scores, then the standard deviation formula 
would be more appropriate. The estimated standard deviation formula corrects for a 
systematic bias that would otherwise occur. That is to say, if we used the basic standard 
deviation formula as our estimate of the population standard deviation then we would 
systematically underestimate the population standard deviation. So we divide by N - 1 
to correct for this bias. With large sample sizes the correction for bias makes very little 
difference. The distinction between the standard deviation and the estimated standard 
deviation is generally overlooked in modern statistics, though it is part of statistical the-
ory. The probable reason is that almost always in research we are trying to generalise 
from a sample to the population. These are the circumstances where the adjustment is 
necessary. So invariably you will find the estimated standard deviation given when stand-
ard deviation is calculated. SPSS does exactly this.

The second step is to use the estimated standard deviation from a sample of scores to 
calculate the standard error of sample means. It is not obvious how to do this. Fortu-
nately, mathematically it can be shown that there is a simple relationship between the 
standard deviation and the standard error. The standard error is obtained by dividing the 
population standard deviation by the square root of the size of the sample. That is, we 
divide the standard deviation by 2N. So the standard error for large samples will be 
smaller than the standard error for small samples.

(estimated) standard error =
(estimated) standard deviation of population

2N

Obviously it is possible to combine the (estimated) standard deviation and the (esti-
mated) standard error formulae:

(estimated) standard error =
S

aX2 -
1aX22

N
N - 1

2N
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How the estimated standard error works

Table 12.3 is a sample of six scores taken at random from the population: 5, 7, 3, 6, 4, 5.

Explaining statistics 12.1

Using this information we can estimate the standard error of samples of size 6 taken from the same 
population. Taking our six scores (X), we need to produce Table 12.3, where N = 6.

Substitute these values in the standard error formula:

 (estimated) standard error =
S

aX2 -
1aX22

N
N - 1

4N
=
S

160 - 302

6
6 - 1

46
=
S

160 - 900
6

5
2.449

 =
A

160 - 150
5

2.449
  =

A
10
5

2.449

 =
22

2.449
=

1.414
2.449

= 0.58

Note that this is the same value as that given by SPSS in Screenshot 12.5.

Interpreting the results

The standard error is 0.58. This is a measure of deviation of sample means from the population mean. It is a difficult 
concept to make concrete. Very roughly speaking, we could say that the standard deviation is the typical amount by 
which sample means deviate from the population mean. Some statisticians (e.g. Huck, 2009) dislike this sort of 
explanation though they offer no easily understood alternative for non-statisticians. It is possible to use a special 
mathematical distribution, the t-distribution, to indicate the proportions of sample means which lie between the 
population mean and any number of standard errors away from it. This is discussed in the following two chapters.

Step 1

Step 1

Step 2

X (scores) X2 (squared scores)

5 25

7 49

3 9

6 36

4 16

5 25

aX = 30 aX2 = 160

	 Table 12.3	 Steps in calculating the standard error
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Standard error

Standard error as discussed in this chapter is rarely reported in modern psychological research directly. It is nev-
ertheless extremely important to understand as it occurs in the calculation of the t-tests which are discussed in 
the following chapters. You will rapidly realise that standard error can mean various things. Standard error can 
refer to the means of samples of scores but it can also refer to the standard error of the difference between scores. 
The term is also very common in the context of regression where there are a number of standard errors. There are 
also circumstances in which the term is used in a sense which is very different from that intended in the present 
chapter – i.e. in the context of standard error of measurement (SEM).

Bierie (2013) in his study of complaints made by federal prison inmates provides an example of the use of 
standard error in describing the findings from a regression study. The standard errors of regression coefficients 
are reported in a table alongside the regression coefficients. He does not discuss the standard errors in the text 
which is commonly the case.

Mercer and colleagues (2012) provide an example of a use of the term standard error which is very different 
from that in this chapter. They refer to SEM. They write: ‘Reliability for absolute decisions based on single probes 
was excellent for both probe sets (hv = .92, lv = .98); however, there were substantial differences in SEM 
across the probe sets. For absolute decisions based on comparisons of single probes, the SEM was 5.76 on the 
LV set compared with 12.17 on the HV set. In general, reliability and SEM improved for decisions comparing 
averages of two probes versus single probes.’ (p. 229). Standard error of measurement indicates the amount of 
uncertainty associated with an individual’s score on a particular psychological measurement. It is based on the 
standard deviation of the measurement adjusted for the unreliability of the measurement. As such it is very 
different from standard error of sample means. It is a concept from psychological measurement theory.

Research examples

●	 The standard error is often reported in computer output but not in research publications. Very much like 
standard deviation, it can be used as an indicator of the variability in one’s data. Variables with different 
standard errors essentially have different variances so long as the number of scores is the same.

●	 Standard error is almost always really the estimated standard error in current usage. However, it is simply 
referred to as the standard error. This is a pity in the sense that it loses sight of a conceptual distinction.

Key points

Reporting the results

Standard error is not routinely mentioned in research reports. You will almost always find that standard deviation is 
given. There is a close connection between variance, standard deviation and standard error. So there is no point in report-
ing all three.

The term standard error is a standardised unit indicating by how much your estimate of the population mean is wrong. 
Like many statistical concepts which are defined mathematically, it is difficult to express its meaning precisely in words.
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Computer Analysis

Standard error using SPSS

Interpreting and reporting the output

●	 It is difficult to give meaning to standard error since it is the outcome of the application of a statistical 
formula which is its meaning. It can be thought of as a sort of average amount by which samples are 
likely to be different from the population mean.

●	 It would be unusual to use standard error to describe a sample as an indication of the variability in the 
scores. The standard deviation would almost certainly be used to do this. This does not mean that 
standard errors are never given. You will find them presented for some techniques such as multiple 
regression. They can often be seen in SPSS output.

Figure 12.2	 SPSS steps for standard error in Descriptive Statistics

Name each variable in ‘Variable View’ of the ‘Data Editor’.

Select ‘Analyze’, ‘Descriptives Statistics’ and ‘Descriptives. . . ’ (Screenshot 12.2).

Enter the data under the appropriate variable names in ‘Data View’ of the
‘Data Editor’ (Screenshot 12.1).

Select ‘Options. . . ’
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	 Screenshot 12.1	 Part of data in ‘Data View’

	 Screenshot 12.3	 Select variables for analysis 	 Screenshot 12.4	 Select statistics

	 Screenshot 12.2	 On ‘Analyze’ select ‘Descriptives. . . ’

	 Screenshot 12.5	 Table of ‘Descriptive Statistics’ output
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●	 The related t-test is mainly used when we have data in the form of scores collected under 
two separate conditions but from a single sample of participants. So it is useful when assess-
ing change over time.

●	 It is also appropriate to use the related t-test in other sets of circumstances when the two 
sets of scores are correlated with each other as when matching is used.

●	 It assesses whether the mean of one set of scores is different from the mean of another set 
of scores.

●	 The t-test is simply the number of standard errors by which the sample means differ from 
each other.

●	 There are tables of the t-distribution which can be used to assess its statistical significance. 
Generally computer programs calculate significance automatically.

Related t-test
Comparing two samples of  
related/correlated/paired scores

Chapter 13

Overview

Preparation

Review z-scores and standard deviation (Chapter 6) and standard error (Chapter 12).
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	 13.1	 Introduction

Many research projects involve comparisons between two groups of scores. Each group 
of scores is a sample from a population of scores. There is a test called the related (cor-
related) t-test which compares the means of two related samples of scores to see whether 
the means differ significantly. The meaning of related samples can be illustrated by the 
following examples:

●	 People’s scores on a psychological test of creativity are measured at two different points 
in time in order to see if any improvement has taken place (see Table 13.1). Notice that 
we have mentioned individuals by name in the table in order to stress that they are 
being measured twice – they are not different individuals in the two conditions. Also, 
some of the data have been omitted.

●	 A group of students’ memory test scores are measured in the morning and in the after-
noon in order to see whether memory is affected by time of day (Table 13.2).

●	 A group of participants in an experiment are assessed in terms of their reaction time 
to a coloured light when they have taken the anti-depressant drug ‘Nogloom’ and when 
they have taken an inert control tablet (placebo) (see Table 13.3).

In each of the above studies, the same group of participants has been measured twice 
on the variable in question. The researcher wishes to know whether the means of the two 
conditions differ from each other. The question is whether the mean scores in the two 
conditions are sufficiently different from each other that they fall in the extreme 5% of 
cases. If they do, this allows us to generalise from the research findings. In other words, 
are the two means significantly different from each other?

1 March 6 months later

Sam 17 19

Jack 14 17

. . .  . . .  . . . 

Karl 12 19

Shahida 19 25

Mandy 10 13

Mean X1 = 15.09 X2 = 18.36

	 Table 13.1	 Creativity scores measured at two different times

Morning Afternoon

Rebecca 9 15

Sharon 16 23

. . .  . . .  . . . 

Neil 18 24

Mean X1 = 17.3 X2 = 22.1

	 Table 13.2	 Time of day and memory performance scores
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The key characteristic of all of the previous studies is that a group of participants is 
measured twice on a single variable in slightly different conditions or circumstances (see 
Boxes 13.1 and 13.2). So in the previous studies, creativity has been measured twice, 
memory has been measured twice and reaction time has been measured twice. In other 
words, they are repeated measures designs for the obvious reason that participants have 
been measured more than once on the same variable. Repeated measures designs are also 
called related measures designs and correlated scores designs.

Counterbalancing
Repeated measures designs of the sort described in this chap-
ter can be problematic. For example, since the participants 
in the research are measured under both the experimental 
and control conditions, it could be that their experiences in 
the experimental condition affect the way they behave in the 

Box 13.1  Key concepts

control condition. Many of the problems can be overcome 
by counterbalancing conditions. By this we mean that a ran-
dom selection of half of the participants in the research are 
put through the experimental condition first; the other half 
are put through the control condition first.

Matching
It is also possible to have a related design if you take 
pairs of subjects matched to be as similar as possible on 
factors which might be related to their scores on the 
dependent variable. So pairs of participants might be 

Box 13.2 Key concepts

matched on gender and age so that each member of the 
pair in question is of the same gender and age group (or 
as close as possible). One member of the pair would be 
assigned at random to one experimental condition, the 

‘Nogloom’ Placebo

Jenny 0.27 0.25

David 0.15 0.18

. . .  . . .  . . . 

Mean X1 = 0.22 X2 = 0.16

	 Table 13.3	 Reaction time in seconds for drug and no-drug conditions

In our opening paragraph we mentioned the related (correlated) t-test. There are in 
fact two versions of the t-test – a correlated/related and an uncorrelated/unrelated samples 
version. The latter is more likely to be of use to you simply because unrelated designs are 
more common in psychological statistics. However, the correlated/related t-test is sub-
stantially simpler to understand and is useful as a learning aid prior to tackling the more 
difficult unrelated t-test (described in Chapter 14).
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	 13.2	 Dependent and independent variables

The scores in Tables 13.1–13.3 are scores on the dependent variable. They include the 
variables creativity, memory and reaction time in the experiments.

However, there is another variable – the independent variable. This refers to the various 
conditions in which the measurements are being taken. In Table 13.1 measurements are 
being taken at two different points in time – on 1 March and six months later. The alter-
native hypothesis is that there is a relationship between the independent variable ‘time of 
measurement’ and the dependent variable ‘creativity score’. Obviously, it is being assumed 
that creativity scores are dependent on the variable time.

	 13.3	 Some basic revision

Many statistical concepts and ideas are closely related. So understanding one thing helps 
understand another. Some revision of z-scores is appropriate here because z-scores have 
a lot in common with the related t-test.

A z-score is simply the number of standard deviations a score is away from the mean 
of the set of scores. The formula is:

z@score =
X - X

SD

where X is a particular score, X is the mean of the set of scores and SD is the standard 
deviation of the set of scores.

Remember, once you have obtained the z-score, it is possible to use the table of the 
standard normal distribution (z-distribution) (Significance Table 13.1) to identify the rela-
tive position of the particular score compared to the rest of the set.

other member to the other experimental condition. Using 
the effect of time of day on the memory research ques-
tion (Table 13.2), the arrangement for a matched pairs 
or matched subjects design might be as in Table 13.4. Of 
course, this is only the basic design – the full design 

would repeat Table  13.4 several times to get a large 
enough sample size overall.

The purpose of matching, like using the same person 
twice, is to reduce the influence of unwanted variables on 
the comparisons.

Matched pairs Morning score Afternoon score

Both male and under 20 16 17

Both female and under 20 21 25

Both male and over 20 14 20

Both female and over 20 10 14

	 Table 13.4	 Matched pairs design testing memory score
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	 13.4	 Theoretical considerations underlying the computer analysis

As we have seen, the most important theoretical concept with any inferential statistical 
test is the null hypothesis. This states that there is no relationship between the two vari-
ables in the research. In the previous example the independent variable is time of day 
and the dependent variable is memory. The null hypothesis is that there is no relation 
between the independent variable time and the dependent variable memory. This 
implies, by definition, that the two samples, according to the null hypothesis, come from 
the same population. In other words, in the final analysis the overall trend is for pairs 
of samples drawn from this population to have identical means. However, that is the 
trend over many pairs of samples. The means of some pairs of samples will differ 

Degrees of freedom (always  
N - 1 for related t-test)

Significant at 5% level  
Accept hypothesis

3 {3.18 or more extreme

4 {2.78 or more extreme

5 {2.57 or more extreme

6 {2.45 or more extreme

7 {2.37 or more extreme

8 {2.31 or more extreme

9 {2.26 or more extreme

10 {2.23 or more extreme

11 {2.20 or more extreme

12 {2.18 or more extreme

13 {2.16 or more extreme

14 {2.15 or more extreme

15 {2.13 or more extreme

18 {2.10 or more extreme

20 {2.09 or more extreme

25 {2.06 or more extreme

30 {2.04 or more extreme

40 {2.02 or more extreme

60 {2.00 or more extreme

100 {1.98 or more extreme

∞ {1.96 or more extreme

Significance  
Table 13.1

Your value must be in the listed ranges for your degrees of freedom to be significant at the 5% level (i.e. to 
accept the hypothesis).

If your required degrees of freedom are not listed, then take the nearest smaller listed values. Refer to 
Appendix E if you need a more precise value of t.

‘More extreme’ means that, for example, values in the ranges of +3.18 to infinity or -3.18 to (minus) infinity 
are statistically significant with 3 degrees of freedom.

�5% significance values of related t (two-tailed test). Appendix E gives a fuller and 
conventional version of this table
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somewhat from each other simply because samples from even the same population tend 
to vary. Little differences will be more common than big differences.

Another important concept is that of the t-distribution. This is a theoretical statistical 
distribution which is similar to the z-distribution discussed in Chapter 6. There is also a 
t-score which is similar to the z-score. The t-score is based on analogous logic to the 
z-score. The major difference is that the t-score involves standard error and not standard 
deviation. As we saw in the previous chapter, the standard error is nothing other than the 
standard deviation of a set of sample means. Using the z-distribution, it is possible to 
work out the standing of any score relative to the rest of the set of scores. Exactly the 
same applies where one has the standard error of a set of sample means. One can calculate 
the relative extent to which a particular sample mean differs from the average sample 
mean. (The average sample mean with many samples will be the same as the mean of the 
population, so normally the population mean is referred to rather than the average of 
sample means.) The key formulae are as follows:

 z =
particular score - sample mean of scores

standard deviation of scores

 t =
particular sample mean - average of sample means

standard error of sample means

or

 t =
particular sample mean - population mean

standard error of sample means

As you can see, the form of each of these formulae is identical.
Both z and t refer to standard distributions which are symmetrical and bell-shaped. 

The z-distribution is a normal distribution – the standard normal distribution. Similarly, 
the t-distribution is also a normal distribution when large sample sizes are involved. In 
fact z and t are identical in these circumstances. As the sample size gets smaller, however, 
the t-distribution becomes a decidedly flatter distribution. Significance Table 13.1 is a 
table of the t-distribution which reports the value of the t-score needed to put a sample 
mean outside the middle 95% of sample means and into the extreme 5% of sample means 
that are held to be unlikely or statistically significant sample means. Notice that the table 
of the t-distribution is structured according to the degrees of freedom. Usually this is the 
sample size minus one if a single sample is used to estimate the standard error, otherwise 
it may be different.

The t-test can be applied to the data on the above population. Assume that for a given 
population, the population mean is 1.0. We have estimated the standard error by taking 
a known sample of 10 scores, calculating its estimated standard deviation and dividing 
by the square root of the sample size. All of these stages are combined in the following 
formula, which was discussed in Chapter 12:

(estimated) standard error =
S

aX2 -
(aX)2

N
N - 1

2N

This gives the (estimated) standard error to be 2.5. We can calculate if a sample with a 
mean of 8.0 (N = 10) is statistically unusual. We simply apply the t-test formula to the 
information we have:
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 t =
particular sample mean - population mean

standard error of sample means

 =
8.0 - 1.0

2.5

 =
7.0
2.5

 = 2.8

In other words, our sample mean is actually 2.8 standard errors above the average sample 
mean (i.e. population mean) of 1.0.

We can now use Significance Table 13.1. This table is distributed according to the 
number of degrees of freedom involved in the estimation of the population standard 
deviation. Since the sample size on which this estimate was based is 10, the degrees of 
freedom are 1 less than 10, i.e. N - 1 = 9 degrees of freedom. Significance Table 13.1 
tells us that we need a t-score of 2.26 or more to place our particular sample mean in the 
extreme 5% of sample means drawn from the population. Our obtained t-score was 2.8. 
This tells us that our sample mean is within the extreme 5% of sample means, i.e. that it 
is statistically significantly different from the average of sample means drawn from this 
particular population.

Wonderful! But what has this got to do with our research problem which we set out 
at the beginning of this chapter? The above is simply about a single sample compared 
with a multitude of samples. What we need to know is whether or not two sample means 
are sufficiently different from each other that we can say that the difference is statistically 
significant. There is just one remaining trick that statisticians employ in these circum-
stances. That is, the two samples of scores are turned into a single sample by subtracting 
one set of scores from the other. We calculate the difference between a person’s score in 
one sample and their score in the other sample. This leaves us with a sample of difference 
scores D which constitutes the single sample we need.

The stylised data in Table 13.5 show just what is done. The difference scores in the 
final column are the single sample of scores which we use in our standard error formula. 
For this particular sample of difference scores the mean is 4.0. According to the null 
hypothesis, the general trend should be zero difference between the two samples – that is, 
the mean of the difference scores would be zero if the sample reflected precisely the null 
hypothesis. Once again we are reliant on the null hypothesis to tell us what the population 
characteristics are. Since the null hypothesis has it that there is no difference between the 
samples, there should be zero difference in the population, that is, the average difference 
score should be 0. (Since the difference between sample means – under the null hypothesis 
that the two samples do not differ – is zero by definition, the population mean should be 
zero. In other words, we can delete the population mean from the formula for t-scores.) 

Person Sample 1 
  (X1)

Sample 2 
  (X2)

Difference  
 X1 − X2 = D

A 9 5 4

B 7 2 5

C 7 3 4

D 11 6 5

E 7 5 2

	 Table 13.5	 Basic rearrangement of data for the related samples t-test
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	 Figure 13.1	 Conceptual steps for understanding the related/correlated t-test

We would of course expect some samples of difference scores to be above or below zero 
by varying amounts. The question is whether a mean difference of 4.0 is sufficiently dif-
ferent from zero to be statistically significant. If it comes in the middle 95% of the distri-
bution of sample means then we accept the null hypothesis. If it comes in the extreme 5% 
then we describe it as significant and reject the null hypothesis in favour of the alternative 
hypothesis. We achieve this by using the t-test formula applied to the sample of difference 
scores. We then test the significance of t by comparing it to the values in Significance 
Table 13.1. For a sample of 4, since the degrees of freedom are N - 1 which equals 3, 
the table tells us that we need a t-score of 3.18 at the minimum to put our sample mean 
in the significant extreme 5% of the distribution of sample means. Figure 13.1 gives the 
key steps in carrying out a related/correlated samples t-test.

How the related t-test works
The data are taken from an imaginary study which looked at the relationship between the age of an infant and the amount 
of eye contact it makes with its mother. The infants were six months old and nine months old at the time of testing – age 
is the independent variable. The dependent variable is the number of one-minute segments during which the infant made 
any eye contact with its mother over a ten-minute session. The null hypothesis is that there is no relation between age 
and eye contact. The data are given in Table 13.6, which includes the difference between the six-month and nine-month 
scores as well as the square of this difference. The number of cases, N, is the number of difference scores, i.e. 8.

We can clearly see from Table 13.6 that the nine-month-old babies are spending more periods in eye contact with their 
mothers, on average, than they did when they were six months old. The average difference in eye contact is 1.5. The 
question remains, however, whether this difference is statistically significant.

The formula for the standard error of the difference (D) scores is as follows. It is exactly as for the 
calculation in Explaining statistics 12.1 except that we have substituted D for X.

Step 1

Explaining statistics 13.1

➜
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standard error =
S

aD2 -
(aD)2

N
N - 1

2N

Substituting the values from Table 13.6:

 =
T

50 -
(-12)2

8
8 - 1

28
=
T

50 -
144

8
7

2.828

 =
A

50 - 18
7

2.828

 =
A

32
7

2.828
=
24.571
2.828

=
2.138
2.828

= 0.756

We can now enter our previously calculated values in the following formula:

t@score =
D
SE

where D is the average difference score and SE is the standard error

t@score =
-1.5
0.756

= -1.98

Note that this value is the same as that given by SPSS in Screenshot 13.5.

Step 2

Subject 6 months X1 9 months X2 Difference 
D = X1 − X2

Difference2 D2

Baby Clara 3 7 -4 16

Baby Martin 5 6 -1 1

Baby Sally 5 3 2 4

Baby Angie 4 8 -4 16

Baby Trevor 3 5 -2 4

Baby Sam 7 9 -2 4

Baby Bobby 8 7 1 1

Baby Sid 7 9 -2 4

Sums of columns a X1 = 42 a X2 = 54 aD = -12 aD2 = 50

Means of columns X1 = 5.25 X2 = 6.75 D = -1.5

	 Table 13.6
	 �Steps in calculating the related/correlated samples t-test (number of one-minute segments with  

eye contact)
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Warning The distribution of the difference scores should not be markedly skewed if the 
t-test is to be used. Appendix A explains how to test for significant skewness. If the dis-
tribution of difference scores is markedly skewed, you might wish to consider the use of 
the Wilcoxon matched pairs test (Explaining statistics 21.2).

	 13.5	 Cautionary note

Many psychologists act as if they believe that it is the design of the research which deter-
mines whether you should use a related test. Related designs are those, after all, in which 
people serve in both research conditions. It is assumed that there is a correlation between 
subjects’ scores in the two conditions. What if there is no correlation between the two 
samples of scores? The standard error becomes relatively large compared to the number 
of degrees of freedom so your research is less likely to be statistically significant (especially 
if the samples are small). So while trying to control for unwanted sources of error, if there 
is no correlation between the scores in the two conditions of the study, the researcher may 
simply reduce the likelihood of achieving statistical significance. The reason is that the 
researcher may have obtained non-significant findings simply because a) they have 
reduced the error degrees of freedom, which therefore b) increases the error estimate, thus 
c) reducing the significance level perhaps to non-significance. Some computer programs 
print out the correlation between the two variables as part of the correlated t-test output. 
If this correlation is not significant then you might be wise to think again about your test 

If we look up this t-score in Significance Table 13.1 for N - 1 = 7 degrees of freedom, we find that we 
need a t-value of 2.37 or more (or -2.37 or less) to put our sample mean in the extreme 5% of sample 
means. In other words, our sample mean of -1.5 is in the middle 95% of sample means which are held 
to be statistically not significant. In these circumstances we prefer to believe that the null hypothesis is 
true. In other words, there is no significant difference between the babies’ scores at six and nine months.

Interpreting the results

Check the mean scores for the two conditions in order to understand which age group has the highest levels of eye contact. 
Although eye contact was greater at nine months, the t-test is not significant, which indicates that the difference between 
the two ages was not sufficient to allow us to conclude that the two groups truly differ from each other.

Reporting the results

We would write something along the lines of the following in our report: ‘Eye contact was slightly higher at nine months 
(M = 6.75) than at six months (M = 5.25). However, the difference did not support the hypothesis that eye contact 
differs in six-month and nine-month-old babies since the obtained value for t of -1.98 is not statistically significant at 
the 5% level.’

Alternatively, following the recommendations of the APA (2010) Publication Manual we could write: ‘Eye contact was 
slightly higher at nine months (M = 6.75) than at six months (M = 5.25). However, the difference did not support the 
hypothesis that the amount of eye contact differs significantly at six months and nine months, t(7) = -1.98, p 7 .05.’

The material in the last part of the second sentence simply gives the statistic used (the t-test), the degrees of freedom 
(7), its value (-1.98), and the level of significance which is more than that required for the 5% level (p 7 .05). Chapter 15 
explains this in greater detail.

Step 3
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of significance. This situation is particularly likely to occur where you are using a match-
ing procedure (as opposed to having the same people in both conditions). Unless your 
matching variables actually do correlate with the dependent variable, the matching can 
have no effect on reducing the error variance.

In the previous calculation, we found no significant change in eye contact in older 
babies compared with younger ones. It is worth examining the correlation between the 
two sets of scores to see if the assumption of correlation is fulfilled. If we calculate the 
correlation between the two measures, we obtain a value of .42. However, from tables of 
the significance of Pearson’s correlation coefficient (Significance Table 11.1) we find a 
correlation of .71 or greater to be statistically significant. In other words, the correlated 
scores do not really correlate – certainly not significantly. Even applying the uncorrelated 
version of the t-test described in the next chapter makes no difference. It still leaves the 
difference between the two age samples non-significant. We are not suggesting that if a 
related t-test fails to achieve significance you should replace it by an unrelated t-test, 
merely that you risk ignoring trends in your data which may be important. The most 
practical implication is that matching variables should relate to the dependent variable, 
otherwise there is no point in matching in the first place.

Related/correlated/paired t-test

Drees and Mack (2012) argue that mental toughness is critical for achieving athletic success and that it comes 
with experiences. The researchers wanted to know, among other things, whether the mental toughness ability 
of high-school wrestlers changes over time (the competitive season). Participants in the study completed  
MeBTough (the Mental, Emotional and Bodily Toughness Inventory). A related/correlated/paired t-test was used 
to examine the change in mental toughness over the sporting season. No significant change was found.

Jafari and colleagues (2013) examined whether spiritual therapy improved the quality of life of women undergo-
ing radiation therapy for breast cancer. In a randomised control experiment, quality of life was assessed psycho-
metrically. Using the related/correlated/paired t-test it was found that for the treated group there was an 
improvement in quality of life scores from the start of the treatment until after six weeks of the intervention. 
This was not the case for the control group.

Wilkes and colleagues (2011) studied children with ADHD (attention deficit hyperactivity disorder), who can be 
deficient in social skills. The study examined the effectiveness of a new intervention. This, in part, involved play 
sessions incorporating feedback and peer modelling. This was intended to enhance play and social skills in chil-
dren with ADHD and their playmates. The design was a matched samples one of the sort to which the paired 
t-test can be applied. The pre- and post-measures were the Test of Playfulness. A related samples t-test (they 
call it the dependent samples t-test) was used to test for improvement. Separate related t-tests showed that 
both the ADHD and the paired controls improve over the period of the intervention.

Research examples
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●	 The related or correlated t-test is merely a special case of the one-way analysis of variance for related samples 
(Chapter 24). Although it is frequently used in psychological research it tells us nothing more than the equiva-
lent analysis of variance would do. Since the analysis of variance is generally a more flexible statistic, allowing 
any number of groups of scores to be compared, it might be your preferred statistic. However, the common 
occurrence of the t-test in psychological research means that you need to have some idea about what it is.

●	 The related t-test assumes that the distribution of the difference scores is not markedly skewed. If it is then 
the test may be unacceptably inaccurate. Appendix A explains how to test for skewness.

●	 If you compare many pairs of samples with each other in the same study using the t-test, you should consult 
Chapter 26 to find out about appropriate significance levels. There are better ways of making multiple com-
parisons, as they are called, but with appropriate adjustment to the critical values for significance, multiple 
t-tests can be justified.

●	 If you find that your related t-test is not significant, it could be that your two samples of scores are not cor-
related, thus not meeting the assumptions of the related t-test.

●	 Significance Table 13.1 applies whenever we have estimated the standard error from the characteristics of 
a sample. However, if we had actually known the population standard deviation and consequently the stand-
ard error was the actual standard error and not an estimate, we should not use the t-distribution table. In 
these rare (virtually unknown) circumstances, the distribution of the t-score formula is that for the z-scores.

●	 Although the correlated t-test can be used to compare any pairs of scores, it does not always make sense to 
do so. For example, you could use the correlated t-test to compare the weights and heights of people to see 
if the weight mean and the height mean differ. Unfortunately, it is a rather stupid thing to do since the numeri-
cal values involved relate to radically different things which are not comparable with each other. It is the 
comparison which is nonsensical in this case. The statistical test is not to blame. On the other hand, one could 
compare a sample of people’s weights at different points in time quite meaningfully.

Key points

M13 Introduction to Statistics in Psychology with SPSS 29099.indd   183 04/01/2017   16:36



184	 CHAPTER 13â•‡ Related t-test: Comparing two samples of related/correlated/paired scores

Computer Analysis

Related/correlated/paired t-test using SPSS

Interpreting and reporting the output

●	 In the example calculated, although the mean score at nine months is higher than the mean score  
at six months, the difference is not statistically significant at the 5% level so there is no reliable  
increase in scores with age.

●	 One could write, therefore: ‘Eye contact was slightly higher at nine months (M = 6.75, SD = 2.05)  
than at six months (M = 5.25, SD = 1.91). However, the difference of -1.50, 95% CI [-3.29, 0.29],  
was not statistically significant, t(7) = -1.98, p = .09.’ CI stands for Confidence Interval and is 
discussed in Chapter 16. The SDs and CIs are obtained from Screenshots 13.4 and 13.5, respectively.

Figure 13.2	 SPSS steps for calculating the related/correlated/paired t-test
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	 Screenshot 13.1	 Data in ‘Data View’

	 Screenshot 13.5	 Output table for related t-test

	 Screenshot 13.3	 Select pair of variables for analysis

	
Screenshot 13.2

	 On ‘Analyze’ select ‘Paired-Samples 
T Test. . . ’

	
Screenshot 13.4

	 Output tables giving descriptive 
statistics
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●	 The unrelated t-test is used to compare the mean scores of two different samples on a single 
variable. So it is used with score data.

●	 It tells you whether the difference between the two means is statistically significant or not: 
that is, whether to accept the alternative hypothesis or the null hypothesis that there is, or 
is not, a difference between the two means.

●	 The unrelated t-test combines the variation in the two sets of scores to estimate the stand-
ard error. This leads to a rather clumsy calculation which superficially is very daunting. The 
calculation is easily done using SPSS or another computer program.

●	 The t-value is simply the number of standard errors that the two means are apart by.

●	 The statistical significance of this t-value may be obtained from tables though it is preferable 
to use computer output which usually gives statistical significance levels exactly.

Unrelated t-test
Comparing two samples of unrelated/
uncorrelated/independent scores

Chapter 14

Overview

Preparation

This chapter will be easier if you have mastered the related t-test (Chapter 13). Revise dependent 
and independent variables from that chapter.
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	 14.1	 Introduction

The t-test described in this chapter has various names. The unrelated t-test, the uncorre-
lated scores t-test and the independent samples t-test are the most common variants. It is 
also known as the Student t-test after its inventor who used the pen-name Student.

Often researchers compare two groups of scores from two separate groups of individu-
als to assess whether the average score of one group is higher than that of the other group. 
The possible research topics involved in such comparisons are limitless:

●	 One might wish to compare an experimental group with a control group. For example, 
do volunteers who are randomly assigned to a sexually abstinent condition have more 
erotic dreams than those in the sexually active control group? The independent variable 
is sexual activity (which has two levels – sexually abstinent and sexually active) and 
the dependent variable is the number of erotic dreams in a month (see Table 14.1). The 
independent variable differentiates the two groups being compared. In the present 
example, this is the amount of sexual activity (sexually abstinent versus sexually 
active). The dependent variable is the variable which might be influenced by the inde-
pendent variable. These variables correspond to the scores given in the main body of 
the table (i.e. number of erotic dreams).

●	 A group of experienced managers may be compared with a group of inexperienced 
managers in terms of the amount of time which they take to make complex decisions. 
The independent variable is experience in management (which has two levels –  
experienced versus inexperienced) and the dependent variable is decision-making time 
(Table 14.2).

●	 A researcher might compare the amount of bullying in two schools, one with a strict 
and punitive policy and the other with a policy of counselling on discipline infringe-
ments. A sample of children from each school is interviewed and the number of times 
they have been bullied in the previous school year obtained. The independent variable 
is policy on discipline (which has two levels – strict versus counselling); and the 

	 Table 14.1	 Number of erotic dreams per month in experimental and control groups

Experimental group
Sexually abstinent

Control group
Sexually active

17 10

14 12

16 7

	 Table 14.2	 Decision time (seconds) in experienced and inexperienced managers

Experienced managers Inexperienced managers

24 167

32 133

27 74
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dependent variable is the number of times a child has been bullied in the previous 
school year (see Table 14.3).

The basic requirements for the unrelated/uncorrelated scores t-test are straightforward 
enough – two groups of scores coming from two distinct groups of people. The scores 
should be roughly similar in terms of the shapes of their distributions. Ideally both dis-
tributions should be bell-shaped and symmetrical. However, there can be a marked devi-
ance from this ideal and the test will remain sufficiently accurate.

The t-test is the name of a statistical technique which examines whether the two groups 
of scores have significantly different means – in other words, how likely is it that there 
could be a difference between the two groups as big as the one obtained if there is no 
difference in reality in the population?

	 14.2	 Theoretical considerations

The basic theoretical assumption underlying the use of the t-test involves the characteris-
tics of the null hypothesis. We explained null hypotheses in Chapter 11. Figure 14.1 gives 
the steps in carrying out a t-test.

	 Table 14.3	 Number of times bullied in a year in schools with different discipline policies

Strict policy Counselling

8 12

5 1

2 3

	 Figure 14.1	 Conceptual steps for understanding the t-test
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Null hypotheses are statements that there is no relationship between two variables. The 
two variables in question at the moment are the independent and dependent variables. 
This is another way of saying that there is no difference between the means of the two 
groups (i.e. columns) of scores. The simplest null hypotheses for the above three studies 
are:

●	 There is no relationship between sexual activity and the number of erotic dreams that 
participants have.

●	 Managerial experience is not related to speed of complex decision-making.

●	 The disciplinary style of a school is not associated with the amount of bullying.

The alternative hypotheses to these null hypotheses can be obtained by simply deleting 
no or not from each of the above. Notice that the above way of writing the null hypothesis 
is relatively streamlined compared with what you often read in books and journals. So 
do not be surprised if you come across null hypotheses expressed in much more clumsy 
language such as:

●	 Participants who abstain from sex will have the same number of erotic dreams as 
participants who are sexually active.

●	 Erotic dreams do not occur at different frequencies in sexually active and sexually 
inactive participants.

These two statements tend to obscure the fact that null hypotheses are fundamentally 
similar irrespective of the type of research under consideration.

The erotic dreams experiment will be used to illustrate the theoretical issues. There are 
two different samples of scores defined by the independent variable – one for the sexually 
abstinent group and the other for the sexually active group. The scores in Table 14.4 are 
the numbers of sexual dreams that each participant in the study has in a seven-day period. 
We can see that, on average, the sexually active participants have fewer erotic dreams. 
Does this reflect a generalisable (significant) difference? The data might be as in Table 14.4. 
Apart from suggesting that Wendy’s fantasy life is wonderful, the table indicates that 
sexual abstinence leads to an increase in erotic dreams.

The null hypothesis suggests that the scores in the two samples come from the same 
population since it claims that there is no relationship between the independent and 
dependent variables. That is, for all intents and purposes, the two samples can be con-
strued as coming from a single population of scores; there is no difference between them 
due to the independent variable. Any differences between samples drawn from this 

�Possible data from the sexual activity and erotic dreams experiment  
(dreams per seven days)

Participant Sexually abstinent Participant Sexually active

Lindsay 6 Janice 2

Claudine 7 Jennifer 5

Sharon 7 Joanne 4

Natalie 8 Anne-Marie 5

Sarah 9 Helen 6

Wendy 10 Amanda 6

Ruth 8 Sophie 5

Angela 9

Table 14.4
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null-hypothesis-defined population are due to chance factors rather than a true relation-
ship between the independent and dependent variables. Table 14.5 is an imaginary popu-
lation of scores from this null-hypothesis-defined population on the dependent variable 
‘number of erotic dreams’. The table also indicates whether the score is that of a sexually 
abstinent participant or a sexually active one. If the two columns of scores are examined 
carefully, there are no differences between the two sets of scores. In other words, they 
have the same average scores. Statistically, all of the scores in Table 14.5 can be regarded 
as coming from the same population. There is no relationship between sexual activity and 
the number of erotic dreams.

Given that the two samples (sexually abstinent and sexually active) come from the same 
population of scores on erotic dreams, in general we would expect no difference between 
pairs of samples drawn at random from this single population. Of course, sampling 
always introduces a chance element so some pairs of samples would be different, but 
mostly the differences will cluster around zero. Overall, numerous pairs of samples will 
yield an average difference of zero. We are assuming that we consistently subtract the 
sexually active mean from the sexually abstinent mean (or vice versa – it does not matter 
so long as we always do the same thing) so that positive and negative differences cancel 
each other out.

Since in this case we know the population of scores under the null hypothesis, we 
could pick out samples of 10 scores at random from the population to represent the 
sexually abstinent sample and, say, nine scores from the population to represent the 
sexually active sample. (Obviously the sample sizes will vary and they do not have to 
be equal.) Any convenient randomisation procedure could be used to select the sam-
ples (e.g. computer-generated, random number tables or numbers drawn from a hat). 
The two samples selected at random, together with their respective means, are listed 
in Table 14.6.

	 Table 14.5	 Imaginary population of scores for erotic dreams study

Experimental group
Sexually abstinent

Sexually active
Control group

8 3 6 6

7 6 8 4

6 7 7 7

7 7 4 9

5 9 6 8

5 8 9 7

2 7 10 5

4 6 2 7

6 7 3 5

10 8 6 5

9 6 7 7

7 4 8 6

5 7
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Examining Table 14.6, we can clearly see that there is a difference between the two 
sample means. This difference is 7.0 - 6.7 = 0.3. This difference between the two sample 
means has been obtained despite the fact that we know that there is no relationship 
between the independent variable and the dependent variable in the null-hypothesis-
defined population. This is the nature of the random sampling process.

We can repeat this experiment by drawing more pairs of samples of these sizes from 
the null-hypothesis-defined population. This is shown for 40 new pairs of variables in 
Table 14.7.

Many of the differences between the pairs of means in Table 14.7 are very close to 
zero. This is just as we would expect since the independent and dependent variables are 
not related. Nevertheless, the means of some pairs of samples are somewhat different. 
In Table 14.7, 95% of the differences between the two means come in the range 0.922 
to -1.400. (Given the small number of samples we have used, it is not surprising that 
this range is not symmetrical. If we had taken large numbers of samples, we would have 
expected more symmetry. Furthermore, had we used normally distributed scores, the 
symmetry may have been better.) The middle 95% of the distribution of differences 
between pairs of sample means are held clearly to support the null hypothesis. The 
extreme 5% beyond this middle range are held more likely to support the alternative 
hypothesis.

The standard deviation of the 40 ‘difference’ scores gives the standard error of the 
differences. Don’t forget we are dealing with sample means so the term standard error is 
the correct one. The value of the standard error is 0.63. This is the ‘average’ amount by 
which the differences between sample means is likely to deviate from the population mean 
difference of zero.

	 Table 14.6	 �Random samples of scores from population in Table 14.5 to represent experimental  
and control conditions

Experimental group
Sexually abstinent

Control group
Sexually active

4 5

5 5

10 10

7 9

7 7

5 7

7 8

9 6

9 2

8

X1 = 7.0 X2 = 6.7
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	 Table 14.7	 Forty pairs of random samples from the population in Table 14.5

Experimental group
Sexually abstinent

N = 10

Control group
Sexually active

N = 9

Difference
(column 1 – column 2)

6.100 6.444 -0.344

6.300 5.444 0.856

6.000 6.556 -0.556

6.400 6.778 -0.378

6.600 6.111 0.489

5.700 6.111 -0.411

6.700 6.111 0.589

6.300 5.667 0.633

6.400 6.667 -0.267

5.900 5.778 0.122

6.400 6.556 -0.156

6.360 6.444 -0.084

6.400 6.778 -0.378

6.200 6.222 -0.022

5.600 5.889 -0.289

6.100 6.222 -0.122

6.800 6.667 0.133

6.100 6.222 -0.122

6.900 6.000 0.900

7.200 5.889 1.311

5.800 7.333 -1.533

6.700 6.889 -0.189

6.200 6.000 0.200

6.500 6.444 0.056

5.900 6.444 -0.544

6.000 6.333 -0.333

6.300 6.778 -0.478

6.100 5.778 0.322

6.000 6.000 0.000

6.000 6.667 -0.667

6.556 6.778 -0.222

6.700 5.778 0.922

5.600 7.000 -1.400

6.600 6.222 0.378

5.600 6.667 -1.067

5.900 7.222 -1.322

6.000 6.667 -0.667

7.000 6.556 0.444

6.400 6.556 -0.156

6.900 6.222 0.678
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	 14.3	 Standard deviation and standard error

The trouble with all of the above is that it is abstract theory. Normally, we know nothing 
for certain about the populations from which our samples come. Fortunately, quite a lot 
can be inferred about the population given the null hypothesis and information from the 
samples:

●	 Since the null hypothesis states that there is no relationship between the independent 
and dependent variables in the population, it follows that there should be no systematic 
difference between the scores in the pair of samples. That is, the average difference 
between the two means should be zero over many pairs of samples.

●	 We can use the scores in a sample to estimate the standard deviation of the scores 
in the population. However, if we use our usual standard deviation formula the 
estimate tends to be somewhat too low. Consequently we have to modify our stand-
ard deviation formula (Chapter 6) when estimating the standard deviation of the 
population. The change is minimal – the N in the bottom half of the formula is 
changed to N - 1:

estimated standard deviation =
T

aX2 -
(aX)2

N
N - 1

●	 The net effect of this adjustment is to increase the estimated standard deviation in the 
population – the amount of adjustment is greatest if we are working with small sample 
sizes for which subtracting 1 is a big adjustment. But this only gives us the estimated 
standard deviation of the scores in the population. We really need to know about the 
standard deviation (i.e. standard error) of sample means taken from that population. 
Remember, there is a simple formula which converts the estimated standard deviation 
of the population to the estimated standard error of sample means drawn from that 
population: we simply divide the estimated standard deviation by the square root of 
the sample size. It so happens that the computationally most useful way of working 
out the standard error is as follows:

standard error =
T

aX2 -
(aX)2

N
N - 1

2N

Still we have not finished because this is the estimated standard error of sample means; 
we want the estimated standard error of differences between pairs of sample means. It 
makes intuitive sense that the standard error of differences between pairs of sample 
means is likely to be the sum of the standard errors of the two samples. After all, the 
standard error is merely the average amount by which a sample mean differs from the 
population mean of zero. So the standard error of the differences between pairs of 
sample means drawn from a population should be the two separate standard errors 
combined.

Well, that is virtually the procedure. However, the two different standard errors (SE) 
are added together in a funny sort of way:

SE[of differences between sample means] = 2(SE1
2 + SE2

2)
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Finally, because the sample sizes used to estimate the two individual standard errors are 
not always the same, it is necessary to adjust the equation to account for this, otherwise 
you end up with the wrong answer. The computational formula for the estimated standard 
error of differences between pairs of sample means is as follows:

Standard error of differences between pairs of sample means

= c 
§ aX1

2 -
(aX1)2

N1
+ aX2

2 -
(aX2)2

N2

N1 + N2 - 2
¥ a 1

N1
+ 1

N2
b

Although this looks appallingly complicated, the basic idea is fairly simple. It appears 
complex because of the adjustment for different sample sizes.

Now we simply use the t-test formula. The average difference between the pairs of 
sample means is zero assuming the null hypothesis to be true. The t formula is:

t =
sample 1 mean - sample 2 mean - 0

standard error of differences between sample means

or

t =
differences between the two sample means - 0

standard error of differences between sample means

Since in the above formula the population mean of difference between pairs of sample 
means is always zero, we can omit it:

t =
sample 1 mean - sample 2 mean

standard error of differences between sample means

The formula expressed in full looks even more complicated:

t =
X1 - X2

c § aX1
2 -

(aX1)2

N1
+ aX2

2 -
(aX2)2

N2

N1 + N2 - 2
¥ a 1

N1
+ 1

N2
b

 

So t is the number of standard errors by which the difference between our two sample 
means differs from the population mean of zero. The distribution of t is rather like the 
distribution of z if you have a large sample – thus it approximates very closely the normal 
distribution. However, with smaller sample sizes the curve of t becomes increasingly flat 
and more spread out than the normal curve. Consequently we need different t-distribu-
tions for different sample sizes.

Significance Table 14.1 gives values for the t-distributions. Notice that the distribution 
is dependent on the degrees of freedom which for this t-test are the total number of scores 
in the two samples combined minus 2.
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How the unrelated t-test works
The calculation of the unrelated t-test uses the following formula:

t =
X1 - X2

W
£ aX1

2 -
(aX1)2

N1
+ aX2

2 -
(aX2)2

N2

N1 + N2 - 2 ≥¢ 1
N1

+ 1
N2

≤

Explaining statistics 14.1

	 Significance  
    Table 14.1

Degrees of freedom
(always N - 2 for unrelated t -test)

Significant at 5% level
Accept hypothesis

3 {3.18 or more extreme

4 {2.78 or more extreme

5 {2.57 or more extreme

6 {2.45 or more extreme

7 {2.37 or more extreme

8 {2.31 or more extreme

9 {2.26 or more extreme

10 {2.23 or more extreme

11 {2.20 or more extreme

12 {2.18 or more extreme

13 {2.16 or more extreme

14 {2.15 or more extreme

15 {2.13 or more extreme

18 {2.10 or more extreme

20 {2.09 or more extreme

25 {2.06 or more extreme

30 {2.04 or more extreme

40 {2.02 or more extreme

60 {2.00 or more extreme

100 {1.98 or more extreme

∞ {1.96 or more extreme

	5% significance values of unrelated t (two-tailed test). Appendix E gives a fuller and 
conventional version of this table

Your value must be in the listed ranges for your degrees of freedom to be significant at the 5% level (i.e. to 
accept the hypothesis).

If your required degrees of freedom are not listed, then take the nearest smaller listed values. Refer to 
Appendix E if you need a precise value of t.

‘More extreme’ means that, for example, values in the ranges of +3.18 to infinity or -3.18 to (minus) infinity 
are statistically significant with 3 degrees of freedom.

➜

M14 Introduction to Statistics in Psychology with SPSS 29099.indd   195 04/01/2017   16:47



196	 CHAPTER 14â•‡ Unrelated t-test: Comparing two samples of unrelated/uncorrelated/independent scores

Horrific, isn’t it? It is perhaps the worst formula that you are likely to come across in psychological statistics. However, 
it contains little that is new. It is probably best to break the formula down into its component calculations and take things 
step by step. However, if you prefer to try to work directly with the above formula do not let us stand in your way.

The data are from an imaginary study involving the emotionality of children from lone-parent and two-parent families. 
The independent variable is family type which has two levels – the lone-parent type and the two-parent type. The depend-
ent variable is emotionality on a standard psychological measure – the higher the score on this test, the more emotional 
is the child. The data are listed in Table 14.8.

A key thing to note is that we have called the scores for the two-parent family condition X1 and those for the lone-
parent family condition X2.

Extend the data table by adding columns of squared scores and column totals as in Table 14.9.

                   The sample size for X1 = N1 = 12; the sample size for X2 = N2 = 10.

aX1 = sum of scores for two-parent family sample

aX1
2 = sum of squared scores for two-parent family sample

aX2 = sum of scores for lone-parent family sample

aX2
2 = sum of squared scores for lone-parent family sample

Do each of the following calculations.

             â•›Calculation of A:

 A = X1 - X2

 = aX1

N1
- aX2

N2

 =
161
12

-
95
10

 = 13.417 - 9.500 = 3.917

Step 1

Step 2

	 Table 14.8	 Emotionality scores in two-parent and lone-parent families

Two-parent family X1 Lone-parent family X2

12 6

18 9

14 4

10 13

19 14

8 9

15 8

11 12

10 11

13 9

15

16
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Calculation of B:

 B = aX1
2 -

¢aX1≤2

N1

 = 2285 -
1612

12
= 2285 -

25 921
12

 = 2285 - 2160.0833

 = 124.9167

Calculation of C:

 C = aX2
2 -

¢aX2≤2

N2

 = 989 -
952

10
= 989 -

9025
10

 = 989 - 902.5

 = 86.5

Calculation of D:

 D = N1 + N2 - 2

 = 12 + 10 - 2

 = 20

Calculation of E:

 E =
1

N1
+

1
N2

=
1

12
+

1
10

 = 0.0833 + 0.1000 = 0.1833

	 Table 14.9	 Table 14.8 extended to include steps in the calculation

Two-parent family X1 Square previous column X1
2 Lone-parent family X2 Square previous column X2

2

12 144 6 36

18 324 9 81

14 196 4 16

10 100 13 169

19 361 14 196

8 64 9 81

15 225 8 64

11 121 12 144

10 100 11 121

13 169 9 81

15 225

16 256

aX1 = 161 aX1
2 = 2285 aX2 = 95 aX2

2 = 989

➜
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Calculation of F:

 F = aB + C
D

b * E

 = a124.9167 + 86.5000
20

b * 0.1833

 = a211.4167
20

b * 0.1833

 = 10.57083 * 0.1833 = 1.938

Calculation of G:

G = 2F = 21.938 = 1.392

Calculation of t:

t =
A
G

=
3.917
1.392

= 2.81

Note that this is the same value as that produced by SPSS for equal variances assumed in Screenshot 14.5.

�t is the t-score or the number of standard errors our sample data are away from the population mean of 
zero. We can use Significance Table  14.1 to check the statistical significance of our value of 2.81 by 
checking against the row for degrees of freedom (i.e. N1 + N2 - 2 = 20 degrees of freedom). This table 
tells us that our value of t is in the extreme 5% of the distribution because it is larger than 2.09; so we 
reject the null hypothesis that family structure is unrelated to emotionality. Our study showed that 
emotionality is significantly greater in the two-parent family structure as opposed to the lone-parent 
family structure.

Interpreting the results

Remember to check carefully the mean scores for both groups in order to know which of the two groups has the higher 
scores on the dependent variable. In our example, this shows that the greater emotionality was found in the children from 
the two-parent families. The significant value of the t-test means that we are reasonably safe to conclude that the two 
groups do differ in terms of their emotionality.

Reporting the results

The statistical analysis could be reported in the following style: ‘It was found that emotionality was significantly higher 
(t = 2.81, df = 20, p 6 .05) in the two-parent families (X = 13.42) than in the lone-parent families (X = 9.50).’

The material in the final brackets simply reports the significance test used (the t-test), its value (2.81), the degrees of 
freedom (df = 20) and that the value of t is statistically significant (p 6 .05). Chapter 15 explains the approach to 
reporting the outcomes of statistical analyses in greater detail.

Alternatively, following the recommendations of the APA (2010) Publication Manual, we could write the results as 
follows: ‘It was found that emotionality was significantly higher, t(20) = 2.81, p 6 .05, in the two-parent families 
(M = 13.42, SD = 3.37) than in the lone-parent families (M = 9.50, SD = 3.10).’

Box 14.1 explains how to avoid rounding errors.

Step 3

M14 Introduction to Statistics in Psychology with SPSS 29099.indd   198 04/01/2017   16:47



	 14.4â•‡ Cautionary note	 199

	 14.4	 Cautionary note

You should not use the t-test if your samples are markedly skewed, especially if they 
are skewed in opposite directions. Appendix A explains how to test for skewness. You 
might consider using the Mann–Whitney U-test in these circumstances (Explaining 
statistics 21.3).

Avoiding rounding errors
When doing calculations of any sort by hand, there is a risk 
of inaccuracy if you use too few numbers after the decimal 
point. These inaccuracies are known as rounding errors. So 
you risk getting a somewhat different answer from that 
calculated by the computer. Generally speaking, you need 
to work to at least three decimal places on your calculator 
though the actual calculated figures given by the calculator 

are best and easiest to use. Because of limitations of space 
and for clarity, the calculations reported in this book have 
been given to a small number of decimal places – usually 
three decimal places. When you report the results of the 
calculation, however, round the figure to no more than two 
decimal places. Remember to be consistent in the number 
of decimal places you present in your results.

Box 14.1	 Focus on

Unrelated/uncorrelated/independent sample t-test

Centinkalp (2012) was interested in achievement goals in adolescent athletes. Participants were on average just 
over 16 years of age. The researcher compared male and female athletes on a range of achievement-related 
measures using unrelated t-tests. None of the comparisons was significant with the exception of the mastery 
avoidance scale which was significantly higher for the female athletes than for the male athletes.

Mutsvunguma and Gwandure (2011) compared the psychological well-being of two groups of South African 
bank employees – those who handled cash versus those who did not. The measures included a Burnout Inven-
tory and a Life Satisfaction scale. Each of these dependent variables was analysed separately using independent 
samples t-tests. The findings indicated that the two groups differed significantly in terms of the measures of 
stress and burnout used.

Passmore and Rehman (2012) studied the way in which driving development could be enhanced using a coach-
ing-based paradigm as opposed to an instruction-based approach. Participants were learning to drive large 
goods vehicles. Their methodology was basically a randomised controlled trial (experiment) though they did 
supplement this with semi-structured interviews and qualitative analysis, which are not reported here. Partici-
pants were randomly allocated to one of the two learning conditions so there were different participants in each 

Research examples

➜
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group. The first group was taught by instructors who were trained in coaching skills which involved a mixture of 
coaching and instruction. The second group of participants was taught by driving instructors using exclusively 
an instruction-based approach much like a driving instructor at a driving school. The coaching approach sought 
to teach a wider variety of skills and abilities. For example, vehicle control ranges from the basic manual handling 
of the vehicle through driving in traffic to goals for life and skills for living. The data were analysed with inde-
pendent samples t-tests using a variety of dependent variables. For example, the coaching group spent fewer 
hours in total in learning to drive (M = 21.43) whereas the control group spent 30.12 hours on average 
(t = 4.014, p6 .01, one@tailed p = .0005).

Schulenberg and Yutrzenka (2001) researched whether a conventionally administered and a computerised 
version of the Beck Depression Inventory-II (BDI-II) produced equivalent results. Their concern was that the 
then aversion to computers might affect responses to a computerised version of the scale. Although overall 
their research was a little more complicated than this, one of their primary analyses was to compare the 
results of those who received the conventional version of the Beck scale first with those who received the 
computerised version of the Beck scale first using an independent samples’ t-test. The results showed that 
the two versions were equivalent as with fairly substantial overall samples of 180, the t-test was not significant 
at the 5% level.

Skipper and Douglas (2012) compared the effects of praise delivered using personal terms such as ‘you are 
clever’ with praise using process terms such as ‘you worked hard’ with an objective outcome control condition 
where only factual information was given. The different conditions were presented in the form of written 
scenarios. The child participants then read scenarios where they failed a task. Receiving personal praise 
resulted in the most negative responses in these circumstances. The researchers used the unrelated t-test to 
compare the children in the person condition with those in the process and control conditions in combination. 
This confirmed that the negative response was associated with the personal condition compared with the 
other two.

●	 The t-test is commonly used in psychological research, so it is important that you have an idea of what it does. 
However, it is only a special case of the analysis of variance (Chapter 23) which is a much more flexible sta-
tistic. Given the analysis of variance’s ability to handle any number of samples, you might prefer to use it 
instead of the t-test in most circumstances. To complicate matters, some use the t-test in the analysis of 
variance.

●	 The t-test assumes that the variances of the two samples are similar so that they can be combined to yield 
an overall estimate. However, if the variances of the two samples are significantly different from each other, 
you should not use this version of the t-test. The way to see if two variances are dissimilar is to use the vari-
ance ratio test described in Chapter 22.

●	 If you wish to use the t-test but find that you fall foul of this F-ratio requirement, there is a version of the 
t-test which does not assume equal variances. The best way of doing such t-tests is to use a computer pack-
age which applies both tests to the same data. Unfortunately, the calculation for the degrees of freedom is 
a little complex (you can have decimals involved in the values) and it goes a little beyond reasonable hand 
calculations. The calculation details are provided in Blalock (1972).

Key points
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Computer Analysis

Unrelated/uncorrelated/independent t-test using SPSS

Interpreting and reporting the output

●	 The means tell you which group has the highest scores. Normally the highest scores mean a higher 
amount of the variable samples’. In this example, emotionality was found to be higher for the 
children of two-parent families. The significance level should be noted as this tells you whether the 
difference is likely to be the product of chance.

●	 Reporting the results can following this pattern: ‘It was found that emotionality was significantly 
higher, t(20) = 2.81, df = 20, p 6 .05, 95% CI [-6.82, -1.01], in the two-parent families 
(M = 13.42, SD = 3.37) than in the lone-parent families (M = 9.50, SD = 3.10).’ CI stands for 
Confidence Interval and is discussed in Chapter 16.

In ‘Data View’ of the ‘Data Editor’, the data are entered as two coulmns: 1) the scores on the 

Name each variable i  ‘Variable View’ of the ‘Data Editor’.

Figure 14.2	 SPSS steps for the unrelated t-test
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	 Screenshot 14.1	 Data in ‘Data View’

	 Screenshot 14.5	 Main output

	 Screenshot 14.4	 Define the two groups of scores

	 Screenshot 14.2
	 On ‘Analyze’ select ‘Independent-

Samples T Test. . . ’

	 Screenshot 14.3	 Select variables for the analysis
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●	 A glance at reports in psychology journals will show you that the reporting of the outcome 
of a statistical analysis is relatively brief.

●	 Statistical findings are usually reported very succinctly.

●	 Things may look complicated because researchers often use many statistical analyses in the 
same paper.

●	 The current recommendations of the American Psychological Association are that you give 
the abbreviated name of the statistic you are using, the value of this test statistic, the 
degrees of freedom or the sample size as appropriate, the significance level, whether a one-
tailed test of significance is used, confidence intervals, effect size and statistical power if 
possible. Many psychology journals including those of the British Psychological Society emu-
late this style.

●	 These are recommendations for professional publications but are appropriate for student 
reports at nearly every stage.

What you need to write 
about your statistical 
analysis

Chapter 15

Overview

Preparation

You need to know about testing significance, from Chapter 11 onwards.
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	 15.1	 Introduction

A glance at any psychology journal will tell you that precious little space is devoted to 
reporting tests of significance and their outcome in professional reports. It is also clear 
that there are standard ways of reporting statistical analyses. These things make it much 
easier for even a novice researcher to report their statistical findings in an acceptable 
fashion. Ways of reporting statistics have changed somewhat over time and not all 
research journals use the same style but many do. The major influence on writing up 
research in psychology is the Publication Manual of the American Psychological Asso-
ciation (APA, 2010). Researchers who wish to publish their work in an APA journal, a 
British Psychological Society (BPS) journal, and in many other places need to conform 
to its style recommendations. As a student, you should check what is required by your 
department but it is likely to be APA style or a variant of it.

The Publication Manual now stresses the importance of not merely reporting informa-
tion about the test of significance used but also (a) confidence intervals and (b) effect sizes. 
These are discussed in detail in Chapters 16 and 17, respectively. They are not particularly 
difficult ideas to understand and are fairly easily incorporated into your reports. Confi-
dence intervals are given in most of the output of SPSS. Things are a little less satisfactory 
with effect sizes since SPSS does not provide too many of these though they are generally 
easily calculated using simple formulae where they cannot be obtained from SPSS.

What is a confidence interval? Briefly, in statistical significance testing the most prob-
able value of population parameter is given as a single figure based on the information 
we have from our sample or samples. So if the mean of the sample is 2.51 then we estimate 
the mean of the population as being 2.51, for example. This is known as a point estimate 
as it consists of a single value. However, this is only the best estimate and, as such, does 
not indicate anything about the likely range within which the population mean is most 
likely to fall. We all know that samples usually vary somewhat from the population from 
which they came. A confidence interval (CI) is a range of scores within which a population 
parameter (such as the population mean) plausibly could fall. So a confidence interval 
might be 1.21 to 3.81 in this case. Confidence intervals are usually expressed as a percent-
age such as the 95% confidence interval. What this means is that the population param-
eter is likely to be within the stipulated confidence interval 95% of the time. It is possible 
to have confidence intervals for many of the statistics given in this book and SPSS usually 
calculates them for you routinely. More on confidence intervals and how they are calcu-
lated can be found in Chapter 16.

What is effect size? An effect size is just that – the size of the correlation or difference 
found in your study. So, in an experiment, the effect size would be the difference between 
the mean score in the experimental condition and the mean score in the control condition. 
In another study, it might be the size of the correlation between two variables. It would 
seem very obvious to include the effect size in your reports but it can be overlooked if one 
is too focused on statistical significance testing. So means and standard deviations for, 
say, the experimental and control groups need to be in the report as should be the size of 
the correlation coefficients that you have calculated. In this way, the size of the effect you 
have found is made clear to the reader. There is nothing difficult about the idea of effect 
sizes except that sometimes psychologists prefer to report effect sizes in standardised form 
so studies may more easily be compared with each other. Actually the correlation coef-
ficient is a measure of effect size in itself but there are others such as Cohen’s d and many 
more. The calculation of effect size is discussed in Chapter 17.

These are the basics. This chapter concentrates on reporting the fundamental features 
of your statistical analysis and mainly concentrates on statistical significance. Confidence 
intervals and effect size can be added in once you have studied Chapters 16 and 17.
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	 15.2	 Reporting statistical significance

At a minimum, the following should be mentioned when reporting statistical 
significance:

●	 The statistical distribution used (F, chi-square, r, z, t, etc.).

●	 The degrees of freedom (df). Alternatively, for some statistical techniques you may 
report the sample size (N).

●	 The value of the calculation (e.g. the value of your z-score or your chi-square).

●	 The probability or significance level. In older journal articles you will find the following 
used: ‘not significant’, ‘not sig.’ or ‘ns’. However, statistical calculations are now done 
almost exclusively on computers and it is most usual now to give the exact probabilities 
for your significance test. These are provided routinely by SPSS.

●	 If you have a one-tailed hypothesis then this should be also mentioned. Otherwise a 
two-tailed hypothesis will be assumed by the reader.

These are requirements for the reporting of tests of significance though confidence inter-
vals and effect sizes are also important. They can be incorporated when your statistical 
skills are adequate though you probably will not find them difficult concepts even as a 
beginner.

	 15.3	 Shortened forms

In research reports, comments such as the following are to be found:

●	 The hypothesis that drunks slur their words was supported (t = 2.88, degrees of 
freedom = 97, p 6 .01).

●	 The null hypothesis that drunks do not slur their words more than sober people was 
rejected (t = 2.88, df = 97, p = .01).

●	 The hypothesis that drunks slur their words was accepted, t(97) = 2.88, p = 6 .003, 
1-tail.

Each of these says more or less the same thing. The symbol t indicates that the t-test was 
used. The symbol 6  indicates that your probability level is smaller than the given value. 
That is, the test is statistically significant at better than the reported level of .01. Some-
times, the degrees of freedom (df) are put in brackets after the symbol for the statistical 
test used, as in t(97) = 2.88. All of the above examples are statistically significant at 
the .0 or 5% level and so the null hypothesis is rejected.

The following are examples of what might be written if the hypothesis was not 
supported by your data:

●	 The hypothesis that drunks slur their words was rejected (t = 0.56, degrees of freedom
=  97, p 7 0.05).

●	 Drunks and sober people did not differ in their average rates of slurring their speech 
(t = 0.56, df = 97, not significant).

●	 The hypothesis that drunks slur their words was rejected, t(97) = 0.13, p = .45, ns, 
1-tail.
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All of these mean much the same. The symbol 7  means that your probability is greater 
than the listed value. Notice that each of these examples in some way states that the find-
ing is not significant (p 7 0.05, ns, and not significant all mean the same).

The significance level determines whether we accept or reject the statistical null hypoth-
esis. The significance level is usually set at .05 or 5% but it is not unusual to see the .01 
or 1% levels used. If the probability is equal or less than this then we reject the null 
hypothesis in favour of the alternative hypothesis. Computers do far more complex cal-
culations than are practicable by hand. In particular, they work out the exact probability 
for your statistical test. So instead of writing that a difference is significant at the 5% level 
we can give the exact significance, such as .037. Our significance level for rejecting the 
null hypothesis still remains at 5%. The APA style is to report the exact significance. One 
possible objection to this is that it gives a false sense of precision to the statistical findings. 
Statistical significance can become a holy grail in statistics, supporting the view ‘the 
smaller the probability the better’. We have seen the variability that is possible in ran-
domly selected data so we should be very cautious about assuming that a significance level 
of .003 is really better in some sense than a significance level of .006. On the other hand, 
the 5% is a somewhat arbitrary but traditional criterion questioned by some. It has been 
suggested that by giving the precise significance it is absolutely clear whether the signifi-
cance level was, say, .049 or .051. Pedantically, .049 would be statistically significant but 
.051 would not be, though the difference is miniscule.

Statistical significance is important but the size of your effect is probably more so. A 
significant result with a strong trend is the ideal which is not obtained simply by exploring 
the minutiae of probability. If you are using exact probabilities, then make it clear what 
significance level you are using to reject the null hypothesis. This significance level is 
known as alpha so you could write ‘Throughout the analysis an alpha level of .05 was 
used for all statistical tests.’ The reader may have assumed this but it is important to be 
absolutely clear. It would not be common but the alpha criterion could be varied.

	 15.4	 APA (American Psychological Association) style

The Publication Manual of the American Psychological Association sets out the ways in 
which manuscripts should be typed to be considered for publication in the Association’s 
journals. The latest version is the sixth edition and was published in 2010. It is claimed 
that about 1000 journals worldwide use APA style. The recommendations for reporting 
statistics seem to be relatively straightforward. The main ones are listed below:

●	 Generally, report numbers to no more than two decimal places.

●	 Probability or significance values are the exception to this. These may be reported to 
three decimal places. APA style asks for exact probabilities to be given down to the 
.001 level of significance. So if your significance level starts with .000 (e.g. 0003) then 
report this as p 6 .001. (Giving significance levels such as .000 is confusing because 
it is not the same as zero.)

●	 Leading zeroes (i.e. zeroes before the decimal point) should not be used for numbers 
which cannot be more than 1.00 such as correlation coefficients. For example, correla-
tions should not be reported with a leading zero such as 0.671 but as .671.

●	 It is preferable to report the exact significance level to three decimal places as given by 
statistics software such as SPSS. For example, it is more informative to report p = .343 
than p 7 .05 or p ns.
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●	 Means (M) and standard deviations (SD) when reported within sentences should be 
appropriately abbreviated and reported within round brackets. Details of the results 
of the inferential test are placed after a comma and are not bracketed. Round bracket-
ing is reserved for the degrees of freedom. The appropriate letter of the statistical test 
is given first followed by the degrees of freedom in brackets, an = sign, the value of 
the statistical test to two decimal places, a comma, p, an = sign and the probability 
level to three decimal places or a 6 sign and .001. You will find examples later in this 
chapter.

●	 The size of the confidence interval should be given followed in square brackets by the 
size of the lower confidence limit, a comma, and the value of the upper confidence 
limit. Both values should be placed within square brackets. For example, we could 
write ‘Post-test depression was lower in the treated (M = 3.52, SD = 1.09, 95% CI 
[3.42, 3.62]) than in the untreated group (M = 5.39, SD = 2.13, 95% CI [5.20, 
5.68]).’ Confidence intervals are discussed further in Chapter 16. Their width indicates 
the uncertainty that you have about the statistic.

●	 (Standardised) effect sizes should be reported if these are readily available and you are 
familiar with them. They are discussed further in Chapter 17. However, always give 
the size of the effect as it appears in your data. This may be as simple as the difference 
between the means of the experimental and control conditions.

Of course, it is difficult to absorb this list and apply it, so we would suggest that you use 
a published journal article as a model or guide to your use of the style. Any paper pub-
lished by the APA or the BPS in their journals should be suitable especially one on a similar 
topic to your research. Here are two examples taken from APA journals:

●	 ‘Participants indicated that selfless behaviors are driven more by the internal force, the 
moral conscience (M = 4.57, SD = 1.41), t(185) = 5.47, p 6 .001.’ (Critcher and 
Dunning, 2013, p. 34)

●	 ‘Asian Americans who heard a positive stereotype about their group evaluated their 
partner more negatively (M = 3.57, SD = 1.27) than Asian Americans who did not 
hear a positive stereotype (M = 2.69, SD = 0.60), t(39) = 2.70, p = .01, d = 0.89.’ 
(Siy and Cheryan, 2013, p. 90)

Both report the results of a t-test. The main difference is that the second example includes 
a measure of the effect size ‘d’ which is Cohen’s d. Effect size is discussed further in Chap-
ter 17. Missing from both of these examples are confidence intervals.

You should make sure that your report gives all of the necessary means and standard 
deviations to understand the extent of trends (differences, etc.) in your data. So give, for 
example, the means and standard deviations for the experimental and control groups on 
the dependent variable. Just reporting significance tests is not enough as they tell the 
reader nothing about the size of the effects. This is basic information but it can be over-
looked when faced with the complexities of the statistical analysis and computer output. 
As your research skills develop, then you could include standardised effect sizes such as 
Cohen’s d and r (Chapters 17 and 37).

Tables are a good solution if you have a lot of very similar statistical findings to report. 
If the statistical information is in a table then you do not unnecessarily repeat this infor-
mation in the text of the results section.

The following is a quick summary of how you would report some of the basic statistical 
analyses covered in this book using APA style:

●	 Percentagesâ•‡ Give percentages in brackets, use the symbol %, and avoid decimal places: 
‘Over half of the sample (53%) were unemployed at the beginning of the study.’
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●	 Means and standard deviationsâ•‡ These would generally be reported together using 
brackets wherever possible as this tends to add clarity: ‘The mean number of years since 
qualifying for the university graduates was 6.37 years (SD = 1.23)’ or ‘The university 
graduates had been qualified for relatively few years (M = 6.37, SD = 1.23).’

●	 Correlationsâ•‡ These are reported as follows with the degrees of freedom put in brackets 
after the value of r: ‘Mathematical ability and musical ability were strongly negatively 
correlated, r(8) = - .90, p 6 .001.’

●	 t-testsâ•‡ For these t is followed by the degrees of freedom in brackets, followed by the 
value of the t statistic, followed by the significance level: ‘The mean emotionality score 
for the two-parent families (M = 13.42, SD = 3.37) was higher than for the lone-
parent families (M = 9.50, SD = 3.37). The difference was statistically significant, 
t(20) = 2.81, p = .01.’

●	 Chi-squareâ•‡ This is different because in the APA system both the degrees of freedom 
and the sample size are given in brackets. The value of chi-square is then given (13.52) 
followed by the probability level (.001). Degrees of freedom do not indicate sample 
size in chi-square. So you could write: ‘Preference for the three different types of TV 
programme differed significantly according to gender, x2(2, N = 119) = 13.52, 
p = .001. As can be seen from the contingency table, males tended to prefer soap 
operas more than females do, prefer crime drama less than females, and were more 
likely to report a preference for neither.’ Of course, the analysis is likely to test specific 
trends in the data (as explained in Chapter 18).

●	 ANOVAâ•‡ These use very much the same style as for the t-test with the exception that 
two values of the degrees of freedom need to be given. These are given in order starting 
with the between treatment degrees of freedom followed by the within-group (error/
residual) degrees of freedom: ‘The main effects for both Alcohol and Sleep Deprivation 
were significant. They were respectively, F(1, 12) = 31.68, p 6 .001, 
F(2, 12) = 130.11, p 6 .001. However, the interaction of Alcohol and Sleep Depriva-
tion was not significant, F(2, 12) = 2.71, p = .11.’You would then probably describe 
the outcome of a multiple comparisons test (Chapter 26) for the Sleep Deprivation 
condition as it has more than two levels.

●	 Regressionâ•‡ The best way to give the results of a regression analysis is to provide a 
table. This can be based on the SPSS Coefficients table in the output for multiple regres-
sion. This will vary for the form of multiple regression chosen. The important part of 
Screenshot 34.5 could be given as in Table 15.1. This is a small table for a regression 
but still contains a lot of numbers if they were to be given in the text.

Unstandardised ß Standard  
error

Standardised 
beta

t Sig. 95% 
confidence 

interval

Ability .83 .09 .65 9.56 .0001 .66 1.01

Motivation .17 .07 .16 2.42 .02 .03 .30

Constant - .17 .25 - .66 .51 - .67 .34

	 Table 15.1	 Regression weights for predictors of academic achievement
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Reporting significance succinctly

In the first example, a measure of effect size (d) is given in addition to other basic information (see 
Chapter 17).

Mitsumatsu (2013) reported part of the statistical analysis of his study concerning the perception of causality 
as follows: ‘In the dual-cause condition, the mean screen locations were 2.0 (1.1) cm right and 0.3 (0.9) cm above 
when rating the finger; when rating the object, touch locations were 2.0 (0.7) cm right and 0.5 (0.7) cm above. 
The mean time between space bar release and screen touch was 471 ms (SD = 95) in the single-cause condi-
tion and 467 ms (SD = 73) and 454 ms (SD = 108) in blocks of rating the finger and object in the dual-cause 
conditions, respectively. t-tests showed that no mean finger touch time was significantly different from the time 
when the effect object started moving,  t(9) = 0.9, p 7 .3, d = 0.30, t(9) = 1.3, p 7 .2, d = 0.43, t(9) =
1.3, p 7 .2, d = 0.42, respectively. The mean finger touch times did not differ significantly by condition, 
F(2, 18) = 0.45, p 7 .6, d = 0.05.’ (p. 104).

Rowe (2012) wrote of her statistical analysis: ‘Child PPVT [Peabody Picture Vocabulary Test] scores varied widely 
at each age. At child age 30 months, the mean normed score was 96.2 (SD = 15.2), compared to 
106.2 (SD = 17.4) at 42 months and 110.4 (SD = 18.2) at 54 months. PPVT scores at each age were positively 
related to one another (rs = .65 - .84, p 6 .001). At child ages 30 and 54 months, 2 children did not complete 
the PPVT and the sample size is 48 for each of those ages. At child age 42 months, all 50 children completed 
the PPVT.’ (p. 1767).

Research examples

Key points

●	 Remember that the important pieces of information to report are:

●	 the symbol for the statistic (t, T, r, etc.)

●	 the value of the statistic for your analysis – two decimal places are enough

●	 an indication of the degrees of freedom or the sample size involved (df = . . . ,  N = . . .)

●	 the probability or significance level

●	 whether a one-tailed test was used.

●	 Sometimes you will see symbols for statistical techniques that you have never heard of. Do not panic since 
it is usually possible to work out the sense of what is going on. Certainly if you have details of the sort 
described in this chapter, you know that a test of significance is involved.

●	 Using the approaches described in this chapter creates a good impression and ensures that you include perti-
nent information. However, standardise on one of the variants in your report. Eventually, when you submit 
papers to a journal for consideration, you should check out that journal’s method of reporting significance.

●	 Some statistical tests are regarded as being directionless. That is, their use always implies a two-tailed test. This 
is true of chi-square and the analysis of variance. These tests can only be one-tailed if the degrees of freedom 
equal one. Otherwise, the test is two-tailed. Even when the degrees of freedom equal one, only use a one-tailed 
test if you are satisfied that you have reached the basic requirements of one-tailed testing (see Chapter 20).
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●	 Confidence intervals are an alternative way of conceptualising inferential statistics that 
stresses the uncertainty of statistical data. In recent years, they have received some enthu-
siastic support.

●	 A confidence interval is essentially a range (of means, differences between means, correla-
tions, etc.) within which the population value (based on our sample data) is most likely to lie. 
That is, instead of estimating the population value as a single point value (such as the popu-
lation mean equals 6.0), the confidence interval approach estimates that the population 
mean will lie between 4.5 and 7.5 based on the characteristics of the sample, for example.

●	 The confidence interval is usually calculated as the 95% confidence interval. This is the 
interval between the largest and the smallest values which cut off the most extreme 2.5% 
of values in either direction. In other words, the 95% confidence interval covers the most 
central 95% of values.

●	 The calculation of the confidence interval involves the calculation of the standard error. 
Since for any given sample size, tables of the t-distribution are available which indicate how 
many standard errors embrace the middle 95% of values, the 95% confidence interval is 
easily found.

Confidence intervals

Chapter 16

Overview

Preparation

Read the previous discussions of confidence intervals (Chapter 9). Revise the concepts of 
sampling distributions and standard error (Chapters 10 and 12, respectively).
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	 16.1	 Introduction

The concept of confidence intervals has been discussed briefly in earlier chapters. Although 
confidence intervals have been used in psychological statistics for many years, their greater 
use has been advocated strongly recently, notably in the publication manual of the Ameri-
can Psychological Association (APA, 2010). More radically, it has been proposed that 
confidence intervals should replace null hypothesis statistical significance testing. What-
ever the merits of the argument for this, both confidence intervals and significance testing 
based on point estimates are informative approaches to statistical analysis and likely to 
coexist for a good many years. This chapter provides some information on the computa-
tion of confidence intervals for a variety of statistics discussed at various points in this 
book together with advice on how to report significance levels. Despite the fact that any 
measure based on a sample has a confidence interval in theory, methods of calculating 
confidence intervals are not readily available on SPSS for some statistical procedures. 
However, the availability of bootstrapping methods (Box 21.1) makes such calculations 
much easier because with bootstrapping there is no need to develop statistical theory giv-
ing the confidence intervals for a particular statistic. Instead, purely empirical methods 
can be used to calculate the confidence interval.

Confidence intervals concern the estimates of population characteristics (parameters) 
based on a sample or samples taken from that population. The characteristics of samples 
tend to vary somewhat from the characteristics of the population from which they came – 
and from each other (Chapter 10). Consequently, estimates of the characteristics of a 
population based on a sample drawn from that population are best estimates and not 
precise. Nevertheless, they remain the best estimates we can have when ignorant of the 
exact details of the population which is almost always the case. In previous chapters, 
we have used point estimates of population parameters based on sample statistics. A 
point estimate is merely a single figure estimate as opposed to a range. Thus if the mean 
of a sample is 5.3 then the point estimate of the mean of the population from which the 
sample came is 5.3. Since this point estimate is only our best guess from the character-
istics of the sample, usually it only approximates the true population mean at best.

The alternative to point estimates, the confidence interval approach, acknowledges the 
approximate nature of the point estimates more directly. Confidence intervals give the range 
of values likely to include the population value. This range of likely values is called the con-
fidence interval since it reflects the range of values likely to include the true population mean 
(if we only knew this). Thus, instead of saying that our estimate of the population mean is 
5.3, we say that the population mean is likely to be in the range 4.0–6.6. By expressing our 
inference or estimate in this way, we reinforce the notion of uncertainty as to the precise 
value. So a confidence interval is simply the range of values of a statistic such as the mean or 
correlation which is likely to contain the true population mean or correlation. The size of 
the confidence interval will depend on the variability of scores. The more variable the scores 
in a sample, the larger the confidence interval has to be for any level of confidence.

There is an obvious problem with confidence intervals. We can never be absolutely cer-
tain how different a sample mean is from the mean of the population from which it was 
drawn (if we are basing our estimate on a sample). Consequently, the following strategy is 
adopted. We state the range of sample means that includes (usually) the most likely 95% 
of sample means drawn at random from the population. In other words, the 95% confi-
dence interval is the range of values we are 95% certain includes the ‘true’ population mean.

Chapter 10 explained how we take the characteristics of a sample to infer the most 
likely characteristics of the population from which that sample was taken. Furthermore, 
we can even calculate the distributions of samples taken from that inferred population. 
Remember that the standard error is the usual index of the amount of variability in sample 
means drawn at random from a population. Standard error is simply the standard 
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deviation of sample means. The calculation of standard error is a crucial phase in estimat-
ing confidence intervals for all parametric tests.

Normal distribution theory (Chapter 6) tells us that for large samples, 95% of sample 
means lie within plus or minus 1.96 standard errors from the population mean. Thus if 
the standard error for samples has been calculated as 2.6, then 95% of sample means lie 
between -5.096 and +5.096 (1.96 * 2.6 = 5.096) of the mean of our sample (i.e. the 
estimate of the population mean). If the sample mean is 10.00 then the confidence interval 
is 10.00 { 5.096. That is, the confidence interval is between 4.904 and 15.096. Since 
this covers 95% of the most likely sample means, it is known as the 95% confidence 
interval. In other words, the 95% confidence interval is 4.90 to 15.10. However, this is 
approximate where the sample size is small.

Confidence intervals can be set at other levels such as 99%. The more stringent 99% 
confidence interval involves multiplying the standard error by 2.576 = 2.576 * 2.6
=  6.698. The resulting 99% confidence interval would be 10.00 (the sample mean) 
{6.698, or 3.30 to 16.70. So the more confident we want to be, the larger the confidence 
interval is. We can use tables of the z-distribution to work out other confidence intervals, 
but the 95% and 99% are fairly conventional.

However, with small samples the z-distribution does not work perfectly. It is more usual 
to use the distribution of t (which is identical to that of z for large samples). With small 
samples, the value of t corresponding to our chosen confidence interval would be obtained 
from Table 16.1. This is distributed by the degrees of freedom. Thus if the degrees of free-
dom for the sample were 25, then the value of t for 95% confidence is 2.06 (from 
Table 16.1). So the confidence interval would be 2.06 * 2.6 on either side of the estimated 
population mean of 10.00. That is, the 95% confidence interval would be 4.64 to 15.36. 
The degrees of freedom will vary according to the statistical estimate in question.

Sometimes the concept of confidence limits is used. Confidence limits are merely the 
extreme values of the confidence interval. In the above example, the 95% confidence 
limits are 4.64 and 15.36.

While this introduction explains confidence intervals in principle, their calculation 
varies from this pattern for some statistics. Figure 16.1 gives the key steps to consider in 
understanding confidence intervals.

	 Figure 16.1	 Conceptual steps for understanding confidence intervals
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Degrees of freedom t for 95% confidence t for 99% confidence

1 12.71 63.66

2 4.30 9.93

3 3.18 5.84

4 2.78 4.60

5 2.57 4.03

6 2.45 3.71

7 2.37 3.50

8 2.31 3.36

9 2.26 3.25

10 2.23 3.17

11 2.20 3.11

12 2.18 3.06

13 2.16 3.01

14 2.15 2.98

15 2.13 2.95

16 2.12 2.92

17 2.11 2.90

18 2.10 2.88

19 2.09 2.86

20 2.09 2.85

25 2.06 2.79

30 2.04 2.75

35 2.03 2.72

40 2.02 2.70

45 2.01 2.69

50 2.01 2.68

60 2.00 2.66

70 1.99 2.65

80 1.99 2.64

90 1.99 2.63

100 1.98 2.63

∞ 1.96 2.58

	 Table 16.1	 Table of t-values for 95% and 99% confidence intervals

Note: If the required number of degrees of freedom is missing, take the nearest lower number.

	 16.2	 Relationship between significance and confidence intervals

At first sight, statistical significance and confidence intervals appear dissimilar concepts. 
This is incorrect since they are both based on much the same inferential process. 
Remember that in significance testing we usually test the null hypothesis of no 
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relationship between two variables. This usually boils down to a zero (or near-zero) 
correlation or to a difference of zero (or near-zero) between sample means. If the con-
fidence interval does not contain this zero value then the obtained sample mean is 
statistically significant at 100% minus the confidence level. So if the 95% confidence 
interval is 2.30 to 8.16 but the null hypothesis would predict the population value of 
the statistic to be 0.00, then the null hypothesis is rejected at the 5% level of signifi-
cance. In other words, confidence intervals contain enough information to judge statisti-
cal significance. However, statistical significance alone does not contain enough 
information to calculate confidence intervals.

How confidence intervals for a population mean based 
on a single sample work

Calculate the standard error of the scores in the sample. The stages in doing this are given in Explaining 
statistics 12.1. You will also need to calculate the mean of the sample and the degrees of freedom (i.e. 
sample size - 1).

For the data in Table 12.3, the standard error is 0.58, the estimated population mean (the sample mean) 
is 5.00, and the degrees of freedom are 6 - 1 = 5 degrees of freedom.

Decide what confidence level you require. We will use the 95% level. This is the minimum value of 
confidence in general use. If it was especially important that your confidence interval included the true 
population mean than you could use the 99% level or even the 99.9% level.

Use Table 16.1 to find the value of t corresponding to the 95% confidence level. You need the row for 
the appropriate number of degrees of freedom (i.e. N - 1 = 5). This value of t is 2.57. Table 16.1 is 
merely a version of the table of the t-distribution that appears elsewhere in the book. It is included as it 
is initially less confusing to be able to look up the values directly.

Calculate the confidence interval. It is the sample mean { (t * the standard error). Therefore, the 95% 
confidence interval for the population mean is 5.00 { (2.57 * 0.58). This gives us a 95% confidence 
interval of 3.51 to 6.49.

Reporting the results

The results of this analysis may be written up as follows: ‘The 95% confidence interval for the population mean was 3.51 
to 6.49. As this interval does not include 0.00 then the null hypothesis that the sample comes from a population with  
a mean of 0.00 can be rejected at the 5% level of significance.’

Step 1

Step 2

Step 3

Step 4

Step 5

Explaining statistics 16.1
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How confidence intervals for the unrelated t-test work
As most of the major steps in calculating the confidence interval involve steps in the calculation of the 
unrelated t-test, use Explaining statistics 14.1 to calculate the necessary values.

Make a note of the difference between the two sample means, the degrees of freedom (N
1

+ N2 - 2), and 

the standard error of the difference between two sample means. For the example in Explaining statistics 

14.1 (Table 14.9), the difference between the sample means = 3.917, the degrees of freedom = 20 and 

the standard error = 1.392.

Decide what level of confidence you require. This time we will use the 99% level of confidence.

From Table 16.1, the t-value for 99% confidence with 20 degrees of freedom = 2.85.

The confidence interval is obtained by taking the difference between the two sample means 
{ (t * the standard error). Thus the 99% confidence interval for the population of differences between 

sample means = 3.917 { (2.85 * 1.392). Therefore the 99% confidence interval is 3.917 { 3.97, 
which gives a 99% confidence interval of -0.05 to 7.89.

Reporting the results

The results of this analysis can be written up as follows: ‘The 99% confidence interval for the difference in emotionality 
scores in two-parent and lone-parent families is -0.05 to 7.89. Since the null hypothesis holds that this difference is 0.00 
then we can accept the null hypothesis at the 1% level of significance since the confidence interval includes the value 0.00. 
The hypothesis that emotionality is different in two-parent and lone-parent families is not supported at the 1% level of 
significance.’

Step 1

Step 2

Step 3

Step 4

Step 5

Explaining statistics 16.2

How confidence intervals for the related t-test work
Follow the calculation of the related t-test as described in Explaining statistics 13.1. We will use these 
data to obtain the 95% confidence interval for the difference between the means.

Make a note of the difference between the sample means, the degrees of freedom and the standard error 
for your data. Explaining statistics 13.1 yields a value of the difference between the sample means of 
-1.50, a standard error of the difference of 0.756 with 7 degrees of freedom.

Decide what level of confidence you require. This time we are using the 95% level of confidence.

From Table 16.1, the t-value for 95% confidence with 7 degrees of freedom = 2.37.

Step 1

Step 2

Step 3

Step 4

Explaining statistics 16.3

➜
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How confidence intervals for the Pearson correlation 
coefficient work

The calculation of the Pearson correlation coefficient is described in Explaining statistics 8.1. Work 
through these steps for your data or compute the value of r using a computer.

Make a note of the value of the correlation coefficient and the sample size. For the data in Table 8.1, the 
value of the correlation coefficient is - .90 and the sample size is 10. We do not require the degrees of 
freedom for calculating the confidence interval for a Pearson correlation coefficient.

To calculate the confidence interval, it is necessary to convert the correlation coefficient to its zr using 
Table 37.5. Note that zr is the Fisher normalised correlation coefficient (see Chapter 37). This table gives 
a value of zr for a correlation of - .90 as -1.472. The negative sign is added because the correlation is 
negative.

The standard deviation of zr is obtained using the formula:

standard deviation of zr = 1

2N - 3

Given that in our example the sample size N is 10, the standard deviation according to this formula is:

standard deviation of zr = 1

210 - 3
= 1

27
= 1

2.646
= 0.378

This standard deviation is distributed as for z so that the 95% confidence interval is 1.96*  the standard 
deviation. Thus the 95% confidence interval of zr is the value of zr for the correlation coefficient 
{1.96 * 0.378. That is, in our example, -1.472 { 0.741. Therefore the 95% confidence interval for zr is 
-0.731 to -2.213.

Step 1

Step 2

Step 3

Step 4

Explaining statistics 16.4

The confidence interval is obtained by taking the difference between the two sample means {  the 

(t@value * the standard error); i.e.

-1.50 { (2.37 * 0.756) = -1.50 { 1.79

= -3.29 to 0.29

Thus the 95% confidence interval for the population of differences between sample means is -1.94 to 1.64.

Reporting the results

The results of this analysis can be written up as follows: ‘The 95% confidence interval for the difference in eye contact 
at six months and nine months was -3.29 to 0.29. According to the null hypothesis, this difference should be 0.00. 
Consequently, as this value is included in the 95% confidence interval then the null hypothesis is supported and the 
alternative hypothesis that eye contact is related to age is rejected.’

Step 5

Step 6
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	 16.3	 Regression

There are several confidence intervals for even a simple regression analysis since regression 
involves several estimates of population parameters – the slope of the regression line, the 
cut-point for the vertical axis and the predicted score from scores on the X variable.

How confidence intervals for a predicted score work
Carry out the simple regression analysis according to Explaining statistics 9.1. This will give the slope and 
the intercept (cut-point) of the regression line. These can be used to calculate the most likely value of 
variable Y from a particular value of variable X. For a value of X = 8, the best prediction of Y is 3.37 
for the data in Table 9.2.

Calculate the Pearson correlation between variable X and variable Y in Table  9.2 using Explaining 
statistics 8.1. This gives r as - .90.

Calculate the standard deviation of the Y variable scores using Explaining statistics 6.1. The standard 
deviation of the Y scores is 1.75.

Using the information calculated in the previous three steps, the standard error of the estimate of Y from 
a particular value of X is given by the following formula:

 standard error of estimate of Y = SD of Y * B
N(1 - r2)

N - 2

Step 1

Step 2

Step 3

Step 4

Explaining statistics 16.5

The above is the confidence interval for zr rather than for the original correlation coefficient. We can use 
Table  37.5 to convert this zr back to the range of correlation coefficients. Thus the 95% confidence 
interval for the correlation coefficient is - .62 to - .97.

Interpreting the results

You will notice that this confidence interval is not symmetrical around the sample correlation of - .90. The correlation 
coefficient is not a linear variable so it cannot be added and divided as if it were. Hence the transformation to zr which 
has linear characteristics.

Reporting the results

The results of this analysis can be written up as follows: ‘The 95% confidence interval for the Pearson correlation between 
musical and mathematical ability was - .62 to - .97. The null hypothesis suggests that this relationship will be .00. Since 
the value under the null hypothesis was not included in the confidence interval, the null hypothesis of no relationship 
between musical and mathematical ability was rejected in favour of the alternative hypothesis that there is a negative 
correlation between mathematical and musical ability.’

Step 5

➜
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 = 1.75 * B
10(1 - 0.902)

10 - 2

 = 1.75 * B
10(1 - 0.81)

8

 = 1.75 * 20.2375

 = 1.75 * 0.4873

 = 0.853

This standard error can be converted to the confidence interval by multiplying the value of the standard 
error by the appropriate value of t. The degrees of freedom for this are N - 2. Table 16.1 indicates that 
the t-value for N - 2 or 3 degrees of freedom is 3.18 for the 95% confidence interval. This gives us a 
value of the confidence interval around the predicted Y score of 3.37 of { 0.85 * 3.18 = { 2.70. 
Thus we can be 95% sure that the population value of Y predicted from X is within the range of  
0.67 to 6.07.

Interpreting the results

Of course, the confidence interval will vary numerically according to which X score is being used to predict Y. The size 
of the interval between the upper and lower confidence limits though does not vary. This is because the standard error 
is an average for all estimated Y scores.

Reporting the results

The results of this analysis can be written up as follows: ‘The 95% confidence interval for predicting musical ability from 
maths score was 0.67 to 6.07 for a point-prediction of 3.37.’

Step 5

Confidence intervals

Confidence intervals are available for a substantial number of statistical methods. The basic principle is the same 
in all cases but expect to come across them in relation to statistics about which you know little. You should, nev-
ertheless, be able to interpret them as a confidence interval is an indication of the spread of samples on that 
statistic.

Ang and Huan (2006) tested whether depression mediated the relation between academic stress and thoughts 
of killing oneself (suicidal ideation) in adolescents. They carried out a simple regression of academic stress with 
depression and suicidal ideation and a multiple regression of academic stress and depression with suicidal idea-
tion. They presented the 95% confidence intervals for the unstandardised regression coefficients.

Hannaford, Thompson and Simpson (1996) evaluated an educational package which was designed to help 
general practitioners identify patients with depression. There was a 7% decrease in the number of cases of 
depression that were missed after receiving the educational package. The 95% confidence interval for this 
decrease varied from 2 to 12%.

Research examples
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	 16.4	 Writing up a confidence interval using APA style

We saw in Chapter 15 how simple it is to incorporate confidence intervals into writing 
up your statistical analysis when using APA style. For example, you could put:

95% CI [2.32. 4.44]
Or if you have several then you could put:
95% CI [2.32, 4.44], [-2.12, 1.13], and [4.26, 6.33], respectively.
The confidence interval follows the statistic: M = 38.6, 95% CI [33.4, 43.7].
Two examples of published write-ups giving confidence intervals in APA style 

follow:
‘These analyses revealed that within relationship goals, participants in the nostalgic 

past condition evinced greater goal importance, t(82) = 2.47, p = .02, d = .54, 95% CI 
[0.09, 0.79] and greater achievement likelihood, t(82) = 2.54, p = .01, d = .56, 95% 
CI [0.10, 0.81] than those in the ordinary past condition. However, participants in the 
two conditions did not differ in the extent to which they believed that they had already 
accomplished the relationship goals, t(82) = 1.50, p = .14, 95% CI [-0.14, 1.01].’ 
(Abeyta, Routledge and Juhl, 2015, p. 1033.)

Notice how in the final sentence the confidence interval for the t-test passes through 
zero which means that the comparison is not significant. This is, of course, confirmed by 
the probability value of p = .14.

‘In contrast, participants added information about a specific person in only 16% of 
the place-cued events, M = 16%, 95% CI [6, 26]).’ (Rubin, Wynn and Moscovitch, 2016, 
p. 310.)

The above is simpler and merely gives the confidence interval for the mean.

	 16.5	 Other confidence intervals

In theory, any statistic (i.e. characteristic of a sample) will have a sampling distribution 
and, hence, a confidence interval. In practice, however, these can be obscure or unavail-
able though bootstrap statistics may make their estimation possible.

Huisman, van Houwelingen and Kerkhof (2010) were interested in whether psychiatric diagnosis, gender 
and status as in- or out-patient were associated with particular types of suicide methods. They used multi-
nomial logistic regression to determine which of these variables were related to suicide method when 
examined together. The dependent variables were the four categories of 1) self-poisoning, 2) jumping before 
a train, 3) jumping from a high place and 4) all other methods apart from hanging, which as the most com-
mon method was chosen to be the reference category. They reported the odds ratio of being in these catego-
ries together with the 95% confidence interval for the odds ratio. So, for example, the odds ratio for jumping 
before a train compared to hanging for patients with bipolar disorders was 5.53 with a 95% confidence 
interval of 1.23 to 24.82.
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	 Screenshot 16.3	 Unrelated t-test

	 Screenshot 16.2	 Related t-test

●	 Confidence intervals for many statistical estimates are not easily obtained. Do not expect to find unusual 
confidence intervals explained in other than relatively difficult sources.

●	 Standard statistical packages routinely calculate standard errors from which confidence intervals are relatively 
easy to derive.

Key points

Computer analysis

Examples of SPSS output containing confidence intervals

SPSS includes confidence intervals in much of its output. This is routinely done and so no special computer steps 
are needed generally. Screenshots 16.1 to 16.6 give a few examples of confidence intervals in SPSS output.

	 Screenshot 16.4	 One-way ANOVA

	 Screenshot 16.1	 Simple regression

	 Screenshot 16.5	 Multiple comparison tests 	 Screenshot 16.6	 One-way ANCOVA

M16 Introduction to Statistics in Psychology with SPSS 29099.indd   220 04/01/2017   16:53



●	 Statistical significance is not the key attribute of a successful statistical analysis. Significance 
is merely a matter of whether the trend in the sample is likely if there is not a trend in the 
population.

●	 More important is the size of the relationship or difference obtained. This is not always easily 
assessed on the basis of tests of significance.

●	 One standardised way of indicating the strength of a relationship is simply to turn the sta-
tistic into a correlation coefficient. This is easily done for chi-square, the t-test, nonparamet-
ric tests and the analysis of variance using the simple formulae presented in this chapter. 
There are other ways of doing this including Cohen’s d, which is discussed in later 
chapters.

Effect size in statistical 
analysis
Do my findings matter?

Chapter 17

Overview

Preparation

Significance testing (Chapter 11) and the correlation coefficient (Chapter 8) are the basic ideas.
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	 17.1	 Introduction

One of the most neglected questions in statistical analysis is that of whether or not the 
researcher’s findings are of any real substance. Obviously part of the answer depends 
very much on the particular research question being asked. One needs to address issues 
such as:

●	 Is this a theoretically important issue?

●	 Is this an issue of social relevance?

●	 Will this research actually help people?

These are not statistical matters. Statistics can help quantify the strength of the relation-
ships established in the research. Very few research publications seriously discuss this issue 
with respect to the research they describe. However, increasingly it is being recommended 
that measures of effect size are included in research reports.

Effect size can refer to a simple measure of the size of the effect in your study. For 
example, if the difference between women and men on a test of manual dexterity is 6.3 
then 6.3 is the effect size. In many circumstances, such simple measures of effect size are 
perfectly adequate. It is only common sense to include such a measure since your findings 
will not be very meaningful if you do not do so.

The alternative meaning of effect size is a standardised measure of effect size. This is 
where the effect size is put on a common scale. A standardised measure of effect size 
makes it easy to compare the outcomes of studies with, say, different dependent variables. 
Unfortunately there is no single measure of effect size: it is said that there are up to about 
80 different measures. Fortunately, only a few are common. The correlation coefficient 
is a standardised effect size itself so you do not need a separate measure of effect size when 
dealing with correlations. The most common alternative to this is Cohen’s d, which can 
be used when comparing two groups. There is a simple relationship between the Pearson 
correlation coefficient and Cohen’s d (see Chapter 37). The third measure of effect size 
which commonly occurs is eta squared or partial eta squared. This is used for the ANOVA 
designs discussed later in this book.

SPSS does not always calculate measures of effect size so you may have to do a few, 
simple calculations in some cases.

	 17.2	 Statistical significance and effect size

Students sometimes get confused as to the meaning of significance in statistics. Perhaps it 
is a pity that the word significance was ever used in this context since all that it means is 
that it is reasonable to generalise from your sample data to the population. That is to say, 
significance merely gives you an estimate of the extent to which you can be confident that 
your findings are not simply artefacts of your particular sample or samples. It has abso-
lutely nothing to do with whether or not there are really substantial trends in your data. 
Researchers tend to keep a little quiet about the substance of their findings, preferring 
merely to report the statistical significance. It is common – but bad – practice to dwell 
solely on statistical significance, but this is encouraged by the fact that publication of one’s 
research in psychology depends to a considerable extent on obtaining statistical signifi-
cance. Increasingly, however, journals are requiring the inclusion of effect size statistics 
in the articles they select for publication. But the bottom line is that the size of any effect 
(trend) that you find in your research is important in its own right.
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The size of the samples being used has a profound effect on the statistical significance 
of one’s research. A correlation of .81 is needed to be statistically significant at the 5% 
level with a sample size of 6. However, with a much larger sample size (say, 100), a much 
smaller correlation of .20 is statistically significant at the 5% level. In other words, with 
a large enough sample size quite small relationships can be statistically significant. This 
is discussed extensively in Chapter 40 on statistical power analysis.

We have already seen that the squared correlation coefficient basically gives us the pro-
portion of the total variance shared by two variables. Sometimes r2 is referred to as the 
coefficient of determination. With a correlation of r = 1.00 the value of r2 is still 1.00 (i.e. 
the total amount of variance). That means that all of the variation in one of the variables is 
predictable from the other variable. In other words, 100% of the variation on one variable 
is determinable from the variation in the other variable. Expressed graphically, it would 
mean that all of the points on a scattergram would fit perfectly on a straight line. If, how-
ever, the correlation between two variables is .2 then this means that r2 equals .04. That is 
to say, the two variables have only 4% of their variance in common. This is not very much 
at all despite the fact that such a small correlation may well be statistically significant given 
a large enough sample size. The scatterplot of such a small correlation has points which 
deviate quite a lot from the best-fitting straight line between the points – in other words, 
there is a lot of error variance compared to the strength of the relationship between the 
two variables.

	 17.3	 Size of the effect in studies

Although it is relatively easy to see the size of the relationships in correlation research, it 
is not quite so obvious in relation to experiments which have been analysed using t-tests, 
chi-square or a nonparametric test such as the Wilcoxon matched pairs. One of the 
approaches to this is to find ways of turning each of these statistics into a correlation 
coefficient. Generally this is computationally easy. The resulting correlation coefficient 
makes it very easy to assess the size of your relationships as it can be interpreted like any 
other correlation coefficient.

Some notes follow about the calculation of effect size statistics for different tests of 
significance. These can be referred to as appropriate when you wish to calculate effect 
sizes.

	 ■	 Chi-square

Read Chapter 18 on chi-square before attempting to understand this section. It is easy to 
turn a 2 * 2 chi-square into a sort of correlation coefficient by substituting the appropri-
ate values in the following formula:

rphi = C
chi@square

N

rphi is simply a Pearson correlation coefficient for frequency scores. In fact, it is 
merely a special name for the Pearson correlation coefficient formula used in these 
circumstances. Interpret it more or less like any other correlation coefficient. It is always 
positive because chi-square itself can only have positive values. Remember that N in the 
above formula refers to the number of observations and not to the degrees of 
freedom.
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If the chi-square is bigger than 2 * 2, it is possible to use Cramér’s V in place of the 
phi coefficient. This and phi are included in the output when you use SPSS to calculate 
chi-square so there is no need for any additional computational labour.

	 ■	 t-test

Essentially what is done here is to turn the independent variable into numerical values. 
That is to say, if the research design has, say, an experimental and a control group we 
code one group with the value 1 and the other group with the value 2. Take the data in 
Table 17.1, for example, which compares men and women in terms of level of job ambi-
tion (the dependent variable).

Of course, normally we would analyse the difference between the means in terms of 
the t-test or something similar. However, we can correlate the scores on the dependent 
variable (job ambition) if we code the independent variable as 1 for a man and 2 for a 
woman (Table 17.2). The two sets of scores can then be correlated using a Pearson cor-
relation. This should be a simple calculation for you using SPSS. However, if you have 
already worked out your t-values for the t-test you can use the following formula to 
enable you to calculate the correlation quicker:

rbis = C
t2

t2 + df

where t is the value of the t-statistic and df equals the degrees of freedom for the t-test.
Do not worry too much about rbis since it is merely the Pearson correlation coefficient 

when one variable (e.g. gender) has just one of two values. It stands for the point biserial 
correlation coefficient.

Probably, more commonly, Cohen’s d would be used as the measure of effect size for 
the t-test. This is calculated by dividing the difference between the two conditions by a 
measure of the variance of the scores. It is discussed further in Chapter 37 where it is also 
explained how d can be calculated if you know the value of r and vice versa. Unfortu-
nately, SPSS does not give the value of d. However, it is an easy matter to use SPSS to 
calculate the correlation between the scores on the dependent variable and the variable 
which indicates which group each of the scores belongs to. This correlation is a perfectly 
good measure of effect size though, if you wish, you can turn this correlation into the 
corresponding value of d (as described in Chapter 37).

	 Table 17.1	 Scores of men and women on a dependent variable

Men Women

5 2

4 1

9 3

6 2

4 1

7 6

5 2

1 2

4
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	 17.4	 Approximation for nonparametric tests

We have to approximate to obtain a correlation coefficient for nonparametric tests such 
as the Mann–Whitney U-test. Before this section becomes clear, you need to read Chap-
ter 21 on nonparametric tests of significance. One possible procedure is to work out the 
statistic (e.g. Mann–Whitney U-test), check its probability value (significance level) and 
then look up what the value of the t-test would be for that same significance level and 
sample size. For example, if we get a value of the Mann–Whitney U of 211 which we find 
to be significant at the 5% level (two-tailed test) on a sample of 16 subjects, we could 
look up in the t-table the value of t which would be significant at the 5% level (two-tailed 
test) on a sample of 16 subjects (i.e. the degrees of freedom = 14). This value of t is 2.15 
which could be substituted in the formula:

rbis = C
t2

t2 + df

	 17.5	 Analysis of variance (ANOVA)

You need to read about ANOVA in Chapters 23 to 27 before this section will be clear. It 
is possible to compute from analysis of variance data a correlation measure called eta. 

	 Table 17.2	� Rearranging the data in Table 17.1 so that gender can be correlated with the 
dependent variable

Score on dependent variable (job ambition) Score on independent variable gender  
(men coded as 1, women coded as 2)

5 1

4 1

9 1

6 1

4 1

7 1

5 1

1 1

4 1

2 2

1 2

3 2

2 2

1 2

6 2

2 2

2 2
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This is analogous to a correlation coefficient but describes a curvilinear rather than the 
linear relationship which the Pearson correlation coefficient does. It is of particular use 
in the analysis of variance since it is sometimes difficult to know which of the independent 
variables explains the most variance. The probability value of an F-ratio in itself does not 
enable us to judge which of the independent variables accounts for the largest amount of 
the variance of the dependent variable. Table 17.3 is a summary table from an analysis 
of variance considering the influence of intelligence and social class on a dependent vari-
able. It is difficult to know from the table whether intelligence or social class explains 
more of the variance as the degrees of freedom differ.

In order to calculate the value of eta for any of the variables all we need to do is sub-
stitute in the following formula:

eta = C
treatment df * F@ratio

(treatment df * F@ratio) + within df

So, for example, if we take intelligence then we substitute the values from Table 17.3 in 
the formula:

 eta = C
2 * 8.9

(2 * 8.9) + 108
= C

17.8
17.8 + 108

 = C
17.8

125.8
= 40.1415 = 0.38

If we do a similar calculation for the two other sources of variation, we can extend our 
summary table to include eta (Table 17.4). What this extra information tells us is that 
social class accounts for more variation in the dependent variable than does either 

	 Table 17.3	 Analysis of variance summary table

Source of  
variance

Sum of squares Degrees of 
freedom

Mean square F-ratio Significance

Intelligence 1600 2 800 8.9 1%

Social class 2400 3 800 8.9 1%

Interaction 720 6 120 1.3 ns

Within (error) 9720 108 90

	 Table 17.4	 Analysis of variance summary table with values of eta added

Source of  
variance

Sum of squares Degrees of 
freedom

Mean square F-ratio Significance Eta

Intelligence 1600 2 800 8.9 1% 0.38

Social class 2400 3 800 8.9 1% 0.44

Interaction 720 6 120 1.3 ns 0.26

Within (error) 9720 108 90
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intelligence or the interaction. In other words, social class has a bigger effect than intel-
ligence or the interaction.

Some researchers prefer to use the value of eta squared (h2) as this more directly reflects 
the amount of variance explained.

You will find references to something called partial eta squared (hp
 2) which is basically 

the value of eta squared adjusted in the following way: Instead of the variance due to each 
of the main effect being divided by total variance, it is divided by the total variance minus 
the error variance. SPSS will calculate partial eta squared for the analysis of variance if 
you request it but it does not do this using the one-way ANOVA. However, some statisti-
cians caution against its use.

	 17.6	 Writing up effect sizes using APA style

Effect sizes are easily incorporated into a research method using APA style. Here is a 
simple example though they do not get very difficult:

‘Care was taken to match the pictures of snakes and the pictures of fish for peripheral 
details and for the size of the area covered by the animal, t(62) = 0.15, p = .88, 
d = 0.04. Each animal’s color was manipulated to be either blue or red. All animals 
were presented on green backgrounds.’ (Meyer, Bell, and Buchner, 2015, p.727)

Based on what you read in Chapter 14, it should be clear that the researchers had used 
a t-test which was not significant (p = .88). The effect size, d, is 0.04 which is a very 
small effect size. You can find out about d in Chapter 37. This would have been what 
the researchers had hoped for since it refers to the matching of the two sets of pictures. 
Whatever the measure of effect size, it is merely inserted in the same way though per-
haps r would be used or partial eta squared (hp

 2) for ANOVAs as in the following 
example:

‘There was a significant main effect of activity type, F(1, 46) = 16.07, p = .0002, 
hp

 2 = .26, qualified by the predicted interaction between activity type and location, 
F(1, 46) = 4.40, p = .041, hp

 2 =  .09.’ (Zhang and Risen, 2014, p. 968)

Once you know the basic APA method for reporting statistical analyses succinctly, you 
will be able to understand the gist of what the researcher has written even though you 
may be unfamiliar with the statistical test used.

	 17.7	 Have I got a large, medium or small effect size?

The novice researcher may well not understand what the different values of effect size 
mean. Consequently, Table 17.5 offers verbal equivalents (small, medium and large 
effects) for numerical values of effect size. These are best seen as rules-of-thumb since in 
some circumstances a small effect may be an important effect.
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	 17.8	 Method and statistical efficiency

Before going any further, we should emphasise that the quality of your research methods 
is an important factor determining the strength of the relationships found in your research. 
Sloppy research methods or poor measurements are to be avoided at all costs. Anything 
which introduces measurement error into your research design will reduce the apparent 
trends in the research. So, for example, a laboratory experimenter must take scrupulous 
care in standardising her or his procedures as far as possible. Sloppy methods may lead 
to disappointment because they introduce error.

This is clearly demonstrated if we consider a researcher trying to assess the relation-
ship between children’s ages and their heights in a sample of pre-school children. An 
excellent method for doing this would be to obtain each child’s birth certificate so that 
their date of birth will give their precise age and to take the child down to the local 
clinic to have the child’s height precisely measured by the clinic nurse who is experienced 
at doing this. In these circumstances, there is probably very little we can do further to 
maximise our chances of assessing the true relationship between age and height in 
children.

A much sloppier way of doing this research on the relation between children’s ages 
and heights might be as follows: The researcher asks the child’s nursery teacher to esti-
mate the child’s height and tells them to guess if they complain that they do not know. 
The children’s ages are measured by asking the children themselves. It is pretty obvious 
that these measures of age and height are a little rough and ready. Using these approxi-
mate measures we would expect rather poor correlations between age and height – 
especially compared with the previous, very precise method. In other words, the 
precision of our measurement procedures has an important influence on the size of the 
relationships we obtain.

The difference between the two studies is that the second researcher is using very unreli-
able measures of height and age compared with the very reliable measures of the first 
researcher. There are a number of ways of measuring reliability in psychology including 
inter-rater reliability which is essentially the correlation between a set of measurements 
taken by person A with those taken by person B. So, for example, we would expect that 
the birth certificate method of measuring age would produce high correlations between 
the calculations of two different people, and that asking the children themselves would 

	 Table 17.5	 Verbal labels for different measures of effect size

Standardised measure 
of effect size

Test applied to Verbal label for the size of effect

Small Medium Large

r Correlation  
coefficient, etc.

.1 .3 .5

Cohen’s d t-test 0.2 0.5 0.8

Phi Chi-square 0.1 0.3 0.5

Eta squared ANOVA 0.01 0.06 0.13

Cramér’s V with 2 df Chi-square .07 .21 .35

Cramér’s V with 3 df Chi-square .06 .17 .29

M17 Introduction to Statistics in Psychology with SPSS 29099.indd   228 04/01/2017   16:57



	 17.8â•‡ Method and statistical efficiency	 229

not produce very reliable measures compared with the answer we would get from the 
same children even the next day.

If you can calculate the reliability of your measurements, it is possible to adjust the 
correlation between two measures for the unreliability of each of the measures. This 
essentially inflates the reliability coefficients upwards towards 1.00. In other words, you 
get the correlation between age and height assuming that the measures were totally reli-
able. The formula for doing this is:

rx ∞ y ∞ =
rxy

2rxxryy

The symbol rx ∞ y∞  is the coefficient of attenuation. It is merely the correlation between 
variables x and y if these variables were perfectly reliable. The symbols rxx and ryy are the 
separate reliability coefficients of the variables x and y.

Often in research we do not have estimates of the reliability of our measures so the 
procedure is not universally applicable.

Effect sizes

Effect sizes can be reported using a number of statistics. What is appropriate depends partly on the statistical 
design involved. So eta is used for ANOVA whereas Cohen’s d or the correlation coefficient can be used for the 
t-test.

Gervais, Vescio and Allen (2012) in their study of people’s interchangeability as sex objects (fungibility) report 
the effect size for one of their ANOVAs as follows: ‘A main effect of body type, F(1, 65) =  5.47, p =  .02, h p

2    =  .08, 
revealed that ideal targets (M = 13.51, SD = 7.39) were more fungible than average targets 
(M = 12.79, SD = 7.06). This effect, however, was modified by the presence of the hypothesised interaction 
between body type and target gender, F(1, 65) =  6.11, p =  .02, h p

2    =  .10, indicating that the tendency for 
ideal targets to be perceived as more fungible than average targets was moderated by target gender.’ (p. 507).

Lautamo and colleagues (2011), in an investigation of children with Specific Language Impairment (SLI), used 
Cohen’s d as their measure of effect size: ‘The results revealed significant differences between the two groups 
of 3.1 to 6.5-year-old children (with and without SLI). In the first analysis of differences in play performance 
(conducted with 38 items) independent samples t-tests confirmed that the means differed significantly 
(t(108) = 5.80, p 6 .01), and the effect size was large (Cohen’s d = 1.11).’ (p. 227).

Levine, Asada and Carpenter (2009) were interested in the effect sizes reported in the literature involving meta-
analyses (see Chapter 37). They took a sample of 51 published meta-analyses which involved over 3600 separate 
studies. Levine et al. wanted to know what the correlation between effect sizes found in the analyses and the 
sample sizes involved. In approximately 80% of meta-analyses there was a negative correlation between effect 
size and sample size. In other words, the larger the effect size then the smaller the sample size was likely to be. 
For the researchers, the best interpretation of this involves a publication bias against non-significant results. 
That is, studies which do not reach statistical significance are systematically excluded from publication because 
the journals reject them or because the researchers do not attempt to publish them. The broader conclusion is 
that effect sizes reported in meta-analyses are likely to be overestimates of those found by the researchers doing 
research in an area.

Research examples
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●	 Do not expect the things in this chapter to feature regularly in other researchers’ reports. They tend to get 
ignored despite their importance.

●	 Do be aware of the need to assess the degree of explanatory power obtained in your research as part of your 
interpretation of the value of your findings. All too frequently psychologists seek statistical significance and 
forget that their findings may be trivial in terms of the amount of variance explained.

●	 Do try to design your research in such a way that the error and unreliability are minimised as far as 
possible.

Key points
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●	 Chi-square is used with nominal (category) data in the form of frequency counts. A minimum 
of two categories is involved.

●	 It tests whether the frequency counts in the various nominal categories could be expected 
by chance or whether there is a relationship.

●	 Chi-square is relatively uncommon in psychological research because psychological research 
usually uses score rather than category measures. However, in some circumstances its use 
is necessary.

●	 One-sample chi-square compares the frequencies obtained in each category with a known 
expected frequency distribution. Two-sample chi-square uses a crosstabulation or frequency 
table for two variables. This gives the frequencies in the various possible combinations of 
categories of these two variables.

●	 The disparity between the actual frequencies in the data and what the frequencies would 
be if the null hypothesis were true is at the heart of the calculation. The bigger the disparity, 
the bigger the value of chi-square and the more one’s findings are statistically significant.

●	 When the chi-square table has more than four cells (i.e. combinations of categories), inter-
pretation becomes difficult. It is possible to subdivide a big table into a number of smaller 
chi-squares in order to facilitate interpretation. This is known as partitioning.

●	 Sometimes data may violate the mathematical foundations of chi-square too much. In these 
circumstances, the data may have to be modified to meet the mathematical requirements, 
or an alternative measure such as the Fisher exact test may be employed.

Chi-square
Differences between samples of  
frequency data

Chapter 18

Overview

Preparation

You should be familiar with crosstabulation and contingency tables (Chapter 7) and samples and  
populations (Chapter 10).
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	 18.1	 Introduction

Often, chi-square is written as x2. However, we have avoided Greek letters as far as pos-
sible. If a researcher has several samples of data which involve frequencies rather than 
scores, a statistical test designed for frequency data must be used. The following are some 
examples of research of this sort:

●	 Male and female schoolchildren are compared in terms of wanting to be psychologists 
when they leave school (Table 18.1).

●	 The sexual orientations of a sample of religious men are compared with those of a 
non-religious sample (Table 18.2).

●	 Choosing to play with either a black or a white doll in black and white children 
(Table 18.3).

In each of these examples, both variables consist of a relatively small number of catego-
ries. Schematically each study approximates to the form shown in Table 18.4 in which 
the independent variable is the sample and the dependent variable consists of one of 
several categories.

The precise number of samples may vary from study to study and the number of cat-
egories of the dependent variable can be two or more. As a rule of thumb, it is better to 
have just a few samples and a few categories, since large tables can be difficult to interpret 
and generally require large numbers of participants or cases to be workable.

Intention Male Female

Wants to be a psychologist f = 17 f = 98

Does not want to be a psychologist f = 67 f = 35

	 Table 18.1	 Relationship between gender and wanting to be a psychologist

Orientation Religious Non-religious

Heterosexual 57 105

Gay 13 27

Bisexual 8 17

	 Table 18.2	 Relationship between sexual orientation and religion

Choice Black child White child Mixed-parentage

Black doll 19 17 5

White doll 16 18 9

	 Table 18.3	 Relationship between doll choice and ethnicity
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The ‘cells’ of Table 18.4 (called a crosstabulation or contingency table) contain the 
frequencies of individuals in that particular sample and that particular category. So the 
‘cell’ that corresponds to sample 2 and category 3 contains the frequency 17. This means 
that in your data there are 17 cases in sample 2 which also fit category 3. In other words, 
a cell is the intersection of a row and a column.

The statistical question is whether the distribution of frequencies in the different sam-
ples is so varied that it is unlikely that these all come from the same population. As ever, 
this population is the one defined by the null hypothesis (which suggests that there is no 
relationship between the independent and dependent variables).

	 18.2	 Theoretical issues

Imagine a research study in which children are asked to choose between two television 
programmes, one violent and the other non-violent. Some of the children have been in 
trouble at school for fighting and the others have not been in trouble. The researcher 
wants to know if there is a relationship between the violence of the preferred television 
programme and having been in trouble for fighting at school. The data might look some-
thing like Table 18.5.

We can see from Table 18.5 that the fighters (sample 1) are more likely to prefer the 
violent programme and the non-fighters (sample 2) are more likely to prefer the non-
violent programme. The frequencies obtained in the research are known as the observed 
frequencies. This merely refers to the fact that we obtain them from our empirical obser-
vations (that is, the data).

Assume that both of the samples come from the same population of data in which there 
is no relationship between the dependent and independent variables. This implies that any 
differences between the samples are merely due to the chance fluctuations of sampling.  
A useful index of how much the samples differ from each other is based on how different 
each sample is from the population distribution defined by the null hypothesis. As ever, 
since we do not know the population directly in most research, we have to estimate its 
characteristics from the characteristics of samples.

Category Sample 1 Sample 2 Sample 3

Category 1 27 21 5

Category 2 19 20 19

Category 3 9 17 65

	 Table 18.4	 Stylised table for chi-square

Preference Sample 1 Fighters Sample 2 Non-fighters

Violent TV preferred 40 15

Non-violent TV preferred 30 70

	 Table 18.5	 Relationship between preferred TV programme and fighting
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With the chi-square test, we simply add together the frequencies for whatever number 
of samples we have. These sums are then used as an estimate of the distribution of the 
different categories in the population. Since differences between the samples under the 
null hypothesis are solely due to chance factors, by combining samples the best possible 
estimate of the characteristics of the population is obtained. In other words, we simply 
add together the characteristics of two or more samples to give us an estimate of the popu-
lation distribution of the categories. The first stage of doing this is illustrated in Table 18.6.

Preference Sample 1 
Fighters

Sample 2 
Non-fighters

Row frequencies

Violent TV preferred 40 15 55

Non-violent TV preferred 30 70 100

Column frequencies 70 85 O verall freq u ency = 1 5 5

	 Table 18.6	 �Relationship between preferred TV programme and fighting including the marginal 
frequencies (column and row frequencies)

So in the null-hypothesis-defined population, we would expect 55 out of every 155 to 
prefer the violent programme and 100 out of 155 to prefer the non-violent programme. 
But we obtained 40 out of 70 preferring the violent programme in sample 1, and 15 out 
of 85 preferring the violent programme in sample 2. How do these figures match the 
expectations from the population defined by the null hypothesis? We need to calculate 
the expected frequencies of the cells in Table 18.6. This calculation is based on the 
assumption that the null hypothesis population frequencies are our best information as 
to the relative proportions preferring the violent and non-violent programmes if there 
truly was no difference between the samples.

Sample 1 contains 70 children. If the null hypothesis is true then we would expect 55 
out of every 155 of these to prefer the violent programme. Thus our expected frequency 
of those preferring the violent programme in sample 1 is:

70 *
55

155
= 70 * 0.355 = 24.84

Remember that these figures have been rounded for presentation and give a slightly dif-
ferent answer from that generated by a calculator or computer.

Similarly, since we expect under the null hypothesis 100 out of every 155 to prefer the 
non-violent programme, then our expected frequency of those preferring the non-violent 
programme in sample 1, out of the 70 children in that sample, is:

70 *
100
155

= 70 * 0.645 = 45.16

Notice that the sum of the expected frequencies for sample 1 is the same as the number 
of children in that sample (24.84 + 45.16 = 70).

We can apply the same logic to sample 2 which contains 85 children. We expect that 
55 out of every 155 will prefer the violent programme and 100 out of every 155 will prefer 
the non-violent programme. The expected frequency preferring the violent programme in 
sample 2 is:

85 * 55
155

= 85 * 0.355 = 30.18
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The expected frequency preferring the non-violent programme in sample 2 is:

85 *
100
155

= 85 * 0.645 = 54.83

We can enter these expected frequencies (population frequencies under the null hypoth-
esis) into our table of frequencies (Table 18.7).

Preference Sample 1 Fighters Sample 2 Non-fighters Row frequencies

Violent TV preferred observed frequency = 40

expected frequency = 24.84

observed frequency = 15

expected frequency = 30.18

55

Non-violent TV preferred observed frequency = 30

expected frequency = 45.16

observed frequency = 70

expected frequency = 54.83

100

Column frequencies  
(i.e. sum of observed 
frequencies in column)

70 85 Overall frequencies = 155

	 Table 18.7	 Contingency table including both observed and expected frequencies

The chi-square statistic is based on the differences between the observed and the 
expected frequencies. It should be fairly obvious that the greater the disparity between the 
observed frequencies and the population frequencies under the null hypothesis, the less 
likely is the null hypothesis to be true. Thus if the samples are very different from each 
other, the differences between the observed and expected frequencies will be large. Chi-
square involves calculating the overall disparity between the observed and expected fre-
quencies over all the cells in the table. To be precise, the chi-square formula involves the 
squared deviations over the expected frequencies, but this is merely a slight diversion to 
make our formula fit a convenient statistical distribution which is called chi-square. The 
calculated value of chi-square is then compared with a table of critical values of chi-square 
(Significance Table 18.1) in order to estimate the probability of obtaining our pattern of 
frequencies by chance (if the null hypothesis of no differences between the samples was 
true). This table is organised according to the number of degrees of freedom, which is 
always (number of columns of data - 1) * (number of rows of data - 1). This 
would be (2 - 1) * (2 - 1) or 1 for Table 18.7. Figure 18.1 gives the key steps when 
carrying out a chi-square test.

Degrees of freedom Significant at 5% level 
Accept hypothesis

Significant at 1% level 
Accept hypothesis

1 3.8 or more 6.7 or more

2 6.0 or more 9.2 or more

3 7.8 or more 11.3 or more

	 Significance	 �5% and 1% significance values of chi-square (two-tailed test). Appendix F gives a 
fuller and conventional version of this tableTable 18.1

➜
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Degrees of freedom Significant at 5% level 
Accept hypothesis

Significant at 1% level 
Accept hypothesis

4 9.5 or more 13.3 or more

5 11.1 or more 15.1 or more

6 12.6 or more 16.8 or more

7 14.1 or more 18.5 or more

8 15.5 or more 20.1 or more

9 16.9 or more 21.7 or more

10 18.3 or more 23.2 or more

11 19.7 or more 24.7 or more

12 21.0 or more 26.2 or more

Your value must be in the listed ranges for your degrees of freedom to be significant at the 5% level (column 2) 
or the 1% level (column 3) (i.e. to accept the hypothesis).
Should you require more precise values than those listed above, these are to be found in the table in Appendix F.

	 Figure 18.1	 Conceptual steps for understanding the chi-square test
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How chi-square works
The calculation of chi-square involves several relatively simple but repetitive calculations. For each cell in the chi-square 
table you calculate the following:

(observed frequency-expected frequency)2

expected frequency

The only complication is that this small calculation is repeated for each of the cells in your crosstabulation or contingency 
table. The formula in full becomes:

chi@square = a  
(O - E)2

E

where O = observed frequency and E = expected frequency.
The following is an imaginary piece of research in which teenage boys and girls were asked to name their favourite 

type of television programme from a list of three: (1) soap operas, (2) crime dramas and (3) neither of these. The researcher 
suspects that gender may be related to programme preference (Table 18.8).

We next need to calculate the expected frequencies for each of the cells in Table 18.8. One easy way of doing this is 
to multiply the row total and the column total for each particular cell and divide by the total number of observations 
(i.e. total frequencies). This is shown in Table 18.9.

Explaining statistics 18.1

Respondents Soap opera Crime drama Neither Totals

Males observed = 27 observed = 14 observed = 19 row 1 = 60

Females observed = 17 observed = 33 observed = 9 row 2 = 59

Total Column 1 = 44 Column 2 = 47 Column 3 = 28 Total = 119

	 Table 18.8	 Relationship between favourite type of TV programme and gender of respondent

Respondents Soap opera Crime drama Neither Total

Males observed = 27

expected = 60 *  
44 , 119 =  
22.185

observed = 14

expected = 60 *  
47 , 119 =  
23.698

observed = 19

expected = 60 *  
28 , 119 =  
14.118

row 1 = 60

Females observed = 17

expected = 59 *  
44 , 119 =  
21.815

observed = 33

expected = 59 *  
47 , 119 =  
23.303

observed = 9

expected = 59 *  
28 , 119 =  
13.882

row 2 = 59

Total Column 1 = 44 Column 2 = 47 Column 3 = 28 Total = 119

	 Table 18.9	 �Calculation of expected frequencies by multiplying appropriate row and column totals and then dividing  
by overall total

M18 Introduction to Statistics in Psychology with SPSS 29099.indd   237 04/01/2017   17:03



238	 CHAPTER 18â•‡ Chi-square: Differences between samples of frequency data

We then simply substitute the above values in the chi-square formula:

 chi@square = a (O - E)2

E

 =
(27 - 22.185)2

22.185
+

(14 - 23.698)2

23.698
+

(19 - 14.118)2

14.118

 +
(17 - 21.815)2

21.815
+

(33 - 23.303)2

23.303
+

(9 - 13.882)2

13.882

 =
4.8152

22.185
+

-9.6982

23.698
+

4.8822

14.118
+

-4.8152

21.815
+

9.6972

23.303
+

-4.8822

13.882

 =
23.184
22.185

+
94.051
23.698

+
23.834
14.118

+
23.184
21.815

+
94.032
23.303

+
23.834
13.882

 = 1.045 + 3.969 + 1.688 + 1.063 + 4.035 + 1.717

 = 13.52

Note that this value is the same as that given by SPSS in Screenshot 18.5.
The degrees of freedom are (the number of columns - 1) * (the number of rows - 1) = (3 - 1) * (2 - 1) = 2  

degrees of freedom.
We then check the table of the critical values of chi-square (Significance Table 18.1) in order to assess whether or not 

our samples differ among each other so much that they are unlikely to be produced by the population defined by the null 
hypothesis. The value must equal or exceed the tabulated value to be significant at the listed level of significance. Some 
tables will give you more degrees of freedom, but you will be hard pressed to do a sensible chi-square that exceeds 12 
degrees of freedom.

Interpreting the results

Our value of chi-square is well in excess of the minimum value of 6.0 needed to be significant at the 5% level for 2 degrees 
of freedom, so we reject the idea that the samples came from the population defined by the null hypothesis. Thus we 
accept the hypothesis that there is a relationship between television programme preferences and gender.

Only if you have a 2 * 2 chi-square is it possible to interpret the significance level of the chi-square directly in terms 
of the trends revealed in the data table. As we will see in Section 18.3, if we have a bigger chi-square than this 
(say 3 * 2 or 3 * 3) then a significant value of chi-square merely indicates that the samples are dissimilar to each other 
overall without stipulating which samples are different from each other.

Because the sample sizes generally differ in contingency tables, it is helpful to convert the frequencies in each cell to 
percentages of the relevant sample size at this stage. It is important, though, never to actually calculate chi-square itself 
on these percentages as you will obtain the wrong significance level if you do. It seems from Table 18.10 that males prefer 
soap operas more often than females do, females have a preference for crime drama, and males are more likely than 
females to say that they prefer another type of programme. Unfortunately, as things stand we are not able to say which 
of these trends are statistically significant unless we partition the chi-square as described in Section 18.3.

Reporting the results

The results could be written up as follows: ‘The value of chi-square was 13.52 which was significant at the 5% level with 
2 degrees of freedom. Thus there is a gender difference in favourite type of TV programme. Compared with females, 
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	 18.3	 Partitioning chi-square

There is no problem when the chi-square contingency table is just two columns and two 
rows. The chi-square in these circumstances tells you that your two samples are different 
from each other. Examine your contingency table to see just what the difference is. But if 
you have, say, a 2 * 3 chi-square (e.g. you have two samples and three categories) then 
there is some uncertainty as to what a significant chi-square means – does it mean that 
all three samples are different from each other, that sample 1 and sample 2 are different, 
that sample 1 and sample 3 are different, or that sample 2 and sample 3 are different? In 
the television programmes example, although we obtained a significant overall chi-square, 
there is some doubt as to why we obtained this. The major differences between the 
genders are between the soap opera and crime drama conditions rather than between the 
soap opera and the ‘other’ conditions.

It is a perfectly respectable statistical procedure to break your large chi-square into a 
number of 2 * 2 chi-square tests to assess precisely where the significant differences lie. 
Thus in the TV programmes study you could generate three separate chi-squares from the 
2 * 3 contingency table. These are illustrated in Table 18.11.

These three separate chi-squares each have just one degree of freedom (because they 
are 2 * 2 tables). If you calculate chi-square for each of these tables you hopefully should 
be able to decide precisely where the differences are between samples and conditions.

The only difficulty is the significance levels you use. Because you are doing three 
separate chi-squares, the normal significance level of 5% still operates, but it is 
divided between the three chi-squares you have carried out. In other words, we share 
the 5% between three to give us the 1.667% level for each – any of the three  
chi-squares would have to be significant at this level to be reported as being signifi-
cant at the 5% level. Significance Table 18.2 gives the adjusted values of chi-square 
required to be significant at the 5% level (two-tailed test). Thus if you have three 
comparisons to make, the minimum value of chi-square that is significant is 5.73. 
The degrees of freedom for these comparisons will always be 1 as they are always 
based on 2 * 2 contingency tables.

males were more likely to choose soap operas and less likely to choose crime dramas as their favourite programmes and 
more likely to prefer neither of these.’

However, as this table is bigger than a 2 * 2 table, it is advisable to partition the chi-square as discussed in Sec-
tion 18.3 in order to say which of these trends are statistically significant.

Alternatively, following the recommendations of the APA (2010) Publication Manual we could write: ‘There was a 
significant gender difference in favourite type of TV programme, x2(2, N = 119) = 13.52, p 6 .05. Compared with 
females, males were more likely to choose soap operas and less likely to choose crime dramas as their favourite pro-
grammes and more likely to prefer neither of these.’ Chapter 15 explains how to report statistical significance in the 
shorter, professional way used in this version.

Respondents Soap opera Crime drama Neither

Males 45.0% 23.3% 31.7%

Females 28.8% 55.9% 15.3%

	 Table 18.10	 Observed percentages in each sample based on the observed frequencies in Table 18.8
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Soap opera versus crime drama

Respondents Soap opera Crime drama Totals

Males 27 14 row 1 = 41

Females 17 33 row 2 = 50

Totals Column 1 = 44 Column 2 = 47 Total = 91

Soap opera versus neither

Respondents Soap opera Neither Totals

Males 27 19 row 1 = 46

Females 17   9 row 2 = 26

Totals Column 1 = 44 Column 3 = 28 Total = 72

Crime drama versus neither

Respondents Crime drama Neither Totals

Males 14 19 row 1 = 33

Females 33   9 row 2 = 42

Totals Column 2 = 47 Column 3 = 28 Total = 75

	 Table 18.11	 Three partitioned sub-tables from the 2 * 3  contingency table (Table 18.8)

Degree of freedom Number of comparisons being made

1 2 3 4 5 6 7 8 9 10

1 3.84 5.02 5.73 6.24 6.64 6.96 7.24 7.48 7.69 7.88

	 Significance	 Chi-square 5% two-tailed significance values for 1–10 unplanned comparisons
Table 18.2

To use this table, simply look under the column for the number of separate comparisons you are making using chi-square.
Your values of chi-square must equal or exceed the listed value to be significant at the 5% level with  
a two-tailed test.

	 18.4	 Important warnings

Chi-square is rather less user friendly than is warranted by its popularity among psycholo-
gists. The following are warning signs not to use chi-square or to take very great care:

●	 For a 2 * 2 crosstabulation table, all of the expected frequencies should be 5 or greater 
in order to use chi square. You may use the Fisher exact test if your data violate this 
requirement. For bigger crosstabulation tables, the rule is that no more than one-fifth of 
the expected frequencies should be lower than 5 and none should be less than 1. Some 
computers automatically print an alternative to chi-square if this assumption is breached.

●	 Never do chi-square on percentages or anything other than frequencies.

●	 Always check that your total of frequencies is equal to the number of participants in 
your research. Chi-square should not be applied where participants in the research are 
contributing more than one frequency each to the total of frequencies.
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You may come across something called Yates’s correction which once was com-
monly applied when the expected frequencies in chi-square were small. It was sup-
posed to make the data fit the theoretical distribution better. Unfortunately it 
overcompensated for the problem it was intended to deal with and made the value 
of chi square smaller and so less likely to be statistically significant. In short, it is 
outmoded and should not be used.

	 18.5	 Alternatives to chi-square

Assume that your data violate the expected frequency rules given in the previous section. 
The following are the main alternatives for dealing with the situation but they will not 
work in every case:

●	 If you have a 2 * 2 or a 2 * 3 chi-square table then you can use the Fisher exact 
probability test which is not sensitive to small expected frequencies (see Explaining 
statistics 18.2 below).

●	 Apart from omitting very small samples or categories which may be all that is 
possible, sometimes you can save the day by combining samples and/or categories 
so that there are no small expected frequencies. So, for example, take the data set 
out in Table 18.12. It should be apparent that by combining two samples and/or 
two categories you are likely to increase the expected frequencies in the resulting 
chi-square table.

Sample Category 1 Category 2 Category 3

Sample 1 10 6 14

Sample 2 3 12 4

Sample 3 4 2 5

	 Table 18.12	 3 * 3  contingency table

But you cannot simply combine categories or samples at a whim – the samples or 
categories have to be combined meaningfully. So, if the research was on the relationship 
between the type of degree that students take and their hobbies, you might have the fol-
lowing categories and samples:

category 1 – socialising
category 2 – dancing
category 3 – stamp collecting
sample 1 – English literature students
sample 2 – media studies students
sample 3 – physics students

Looking at these, it would seem reasonable to combine categories 1 and 2 and sam-
ples 1 and 2 since they seem to reflect rather similar things. No other combinations 
would seem appropriate. For example, it is hard to justify combining dancing and 
stamp collecting. As always in research, you need to be able to justify the decision 
that you make.
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How the Fisher exact probability test works
Frequently students only have very small samples because they are working on learning exercises and there is not time 
to collect much data. As a consequence, the assumptions and requirements of the chi-square test are frequently broken. 
The Fisher exact probability test deals with small samples of frequency data much better than chi-square does because it 
is not subject to the expected frequencies requirement. We will only show the calculation of a 2 * 2 Fisher exact probabil-
ity test although there is a version for 2 * 3 tables. SPSS prints these out together with you chi-square if appropriate. 
The interpretation of the Fisher exact test is much the same as for chi-square for the same data.

The calculation of the Fisher exact probability test is something of a nightmare by hand because it involves something 
called factorials. These are written as, for example, 5!. The exclamation mark is appropriate. What 5! means is 
5 * 4 * 3 * 2 * 1, which is 120. Easy enough but as the basic formula involves four factorials multiplied by each 
other divided by five factorials multiplied by each other things get very cumbersome. Computers like cumbersome and 
repetitive tasks and this is one that we can best leave to SPSS.

Imagine a small study of the relationship between photographic memory and gender as illustrated in Table 18.13. The 
data are interesting because they suggest that photographic memory is more common among females than men. It is fairly 
obvious that the expected frequencies if this were a chi-square would be less than 5 – in fact 3 of them would be. So the 
chi-square rules are violated. Hence we turn to Fisher’s exact test. You don’t need to do anything special to calculate the 
Fisher exact test on SPSS as it is to be found in the Chi-Square Tests output tables such as Table 18.14 if appropriate for 
your data. Find the row for the Fisher’s exact test and you can see that the two-sided exact significance is .091 or the 
9.1% significance level. So the study is non-significant despite the data being interesting. You will also see that the Pearson 
chi-square value is 4.381 with a two-sided significance level of .036 or 3.6%. This is statistically significant but has to 
be disregarded because the data violate the assumptions of chi-square in terms of expected frequencies.

Explaining statistics 18.2

Photographic memory No photographic memory

Males 2 7

Females 4 1

	 Table 18.13	 Photographic memory and gender

Chi-Square Tests

Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided)

Pearson Chi-Square 4.381a 1 .036

Continuity  
Correctionb

2.340 1 .126

Likelihood Ratio 4.583 1 .032

Fisher’s Exact Test .091 .063

Linear-by-Linear 
Association

4.069 1 .044

N of Valid Cases 14

	 Table 18.14	 Fisher’s exact test in SPSS output

a 3 cells (75.0%) have expected count less than 5. The minimum expected count is 2.14.
b Computed only for a 2 *2  table
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	 18.6	 Chi-square and known populations

Sometimes, but rarely, in research we know the distribution in the population. If the popu-
lation distribution of frequencies is known then it is possible to employ the single-sample 
chi-square. Usually the population frequencies are known as relative frequencies or per-
centages. So, for example, if you wished to know the likelihood of getting a sample of 40 
university psychology students in which there are 30 female and 10 male students if you 
know that the population of psychology students is 90% female and 10% male, you simply 
use the latter proportions to calculate the expected frequencies of females and males in a 
sample of 40. If the sample were to reflect the population then 90% of the 40 should be 
female and 10% male. So the expected frequencies are 40 * 90 , 100 for females and 
40 * 10 , 100 for males = 36 females  and 4 males. These are then entered into the 
chi-square formula, but note that there are only two cells. The degrees of freedom for  
the one-sample chi-square is the number of cells minus 1 (i.e. 2 - 1 = 1).

Our two-tailed probability value of .091 is not statistically significant at the conventional 5% level (neither would the 
one-tailed test if that were appropriate).

Interpreting the results

We cannot reject the null hypothesis that the incidence of photographic memory is related to gender. It would be useful 
to convert the frequencies in Table 18.13 into percentages of the relevant sample size when interpreting these data as we 
have different numbers of males and females. Such a table would show that 80% of the females had photographic memo-
ries but only 22% of the males. Despite this, with such a small amount of data, the trend is not statistically significant.

Reporting the results

The following would be an appropriate description: ‘Although photographic memory was nearly four times more common 
in females than in males, this proved not to be statistically significant using the Fisher exact probability test. The exact 
probability was .09 which is not significant at the .05 level. Thus we must reject the hypothesis that photographic memory 
is related to gender. 

Alternatively, following the recommendations of the APA (2010) Publication Manual we could write something like: 
‘Photographic memory was nearly four times more common in females than in males. However, the difference was not 
statistically significant, Fisher, p = .091. Thus we must reject the hypothesis that photographic memory is related to 
gender.’ This style of presenting statistical significance is explained in detail in Chapter 15.

How the one-sample chi-square works
The research question is whether a sample of 80 babies of a certain age in foster care show the same level of smiling to 
their carer as a population of babies of the same age assessed on a developmental test. On this developmental test, 50% 
of babies at this age show clear evidence of the smiling response, 40% clearly show no evidence, and for 10% it is impos-
sible to make a judgement. This is the population from which the foster babies are considered to be a sample. It is found 
that 35 clearly showed evidence of smiling, 40 showed no clear evidence of smiling and the remaining 5 were impossible 
to classify (Table 18.15).

Explaining statistics  18.3

➜
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We can use the population distribution to work out the expected frequency in the sample of 80 if this sample precisely 
matched the population. Thus 50% of the 80 (=  40) should be clear smilers, 40% of the 80 (=  32) should be clear 
non-smilers, and 10% of the 80 (=  8) should be impossible to classify. Table 18.15 gives the expected frequencies  
(i.e. population-based) and observed frequencies (i.e. sample-based).

These observed and expected frequencies are entered into the usual chi-square formula. The only difference is that  
the degrees of freedom are not quite the same – they are the number of conditions minus 1 (i.e. 3 - 1 = 2 in the above 
example):

 chi@square = a  
(O - E)2

E

 =
(35 - 40)2

40
+

(40 - 32)2

32
+

(5 - 8)2

8

 =
(-5)2

40
+

82

32
+

(-3)2

8

 =
25
40

+
64
32

+
9
8

 = 0.625 + 2.000 + 1.125 = 3.75

But from Significance Table 18.1 we can see that this value of chi-square is far below the critical value of 6.0 required to 
be significant at the 5% level. Thus the sample of foster babies is not significantly different from the population of babies 
in terms of their smiling response.

Interpreting the results

A significant value of the one-sample chi-square means that the distribution over the various categories departs markedly 
from that of the known population. That is, the sample is significantly different from the population and is unlikely to 
come from that population. In our example, however, the sample does not differ significantly from the population. This 
shows that smiling behaviour in our sample of babies is no different from that of the population of babies. For the one-
sample chi-square, it is sufficient to compare the observed frequencies with the expected frequencies (which are the popu-
lation values). In our example, there seems to be little difference between the sample and the population values.

Reporting the results

The following would summarise the findings of this study effectively: ‘It was possible to compare smiling behaviour in 
babies in foster care with population values of known smiling behaviour on a standard developmental test. A one-sample 
chi-square test yielded a chi-square value of 3.75 which was not statistically significant with two degrees of freedom. 
Thus it can be concluded that the fostered babies were no different in terms of smiling behaviour from the general popula-
tion of babies of this age.’

Alternatively, following the recommendations of the APA (2010) Publication Manual we could write: ‘It was found 
that smiling behaviour in babies in foster care was not different from population figures obtained from a standard devel-
opmental test, x2(2, N = 80) = 3.75, p ns. Thus it can be concluded that the fostered babies were no different in terms 
of smiling behaviour from the general population of babies of this age.’ This style of reporting statistical significance is 
discussed in greater detail in Chapter 15.

Clear smilers Clear non-smilers Impossible to classify

Observed frequency 35 40 5

Expected frequency 40 32 8

	 Table 18.15	 Data for a one-sample chi-square
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Before talk ‘yes’ Before talk ‘no’

After talk ‘yes’ 30 50

After talk ‘no’ 10 32

	 Table 18.16	 Illustrative data for the McNemar test

	 18.7	 Chi-square for related samples – the McNemar test

It is possible to use chi-square to compare related samples of frequencies. Essentially, this 
involves arranging the data in such a way that the chi-square contingency table only 
includes two categories: those that change from the first to the second occasion. For 
example, data are collected on whether or not teenage students wish to go to university; 
following a careers talk favouring university education the same informants are asked 
again whether they wish to go to university. The data can be tabulated as in Table 18.16.

Positive changers Negative changers

Observed frequency 50 10

Expected frequency 30 30

	 Table 18.17	 Table of those who changed in a positive or negative direction based on Table 18.16

We can see from this table that although some students did not change their minds as 
a consequence of the talk (30 wanted to go to university before the talk and did not 
change their minds, 32 did not want to go to university before the talk and did not change 
their minds), some students did change. Fifty changed their minds and wanted to go to 
university following the talk and 10 changed their minds and did not want to go to uni-
versity after the talk.

The McNemar test simply uses the data on those who changed; non-changers are 
ignored. The logic of the test is that if the talk did not actually affect the teenagers, just 
as many would change their minds in one direction after the talk as change their minds 
in the other direction. That is, 50% should change towards wanting to go to university 
and 50% should change against wanting to go to university, if the talk had no effect. We 
simply create a new table (Table 18.17) which only includes changers and calculate chi-
square on the basis that the null hypothesis of no effect would suggest that 50% of the 
changers should change in each direction.

The calculation is now exactly like that for the one-sample chi-square. This gives us a 
chi-square value of 25.35 with one degree of freedom (since there are two conditions). 
This is very significant when checked against the critical values in Significance Table 18.1. 
Thus there appears to be more change towards wanting to go to university following the 
careers talk than change towards not wanting to go to university.

	 18.8	 Example from the literature

In a study of the selection of prison officers, Crighton and Towl (1994) found the relation-
ship shown in Table 18.18 between the ethnicity of the candidate and whether or not they 
were selected during the recruitment process.
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The interpretation of this table is that there is no significant relationship (p = ns ) 
between selection and ethnicity. In other words, the table does not provide evidence of a 
selection bias in favour of white applicants, for example. While this is not an unreasonable 
conclusion based on the data if we ignore the small numbers of ethnic minority applicants, 
the statistical analysis itself is not appropriate. In particular, if you calculate the expected 
frequencies for the four cells you will find that 50% of the expected frequencies are less 
than 5, and thus a rule has been violated. The Fisher exact probability test would be better 
for these data.

Selected Not selected

Ethnic minority   1  3

Ethnic majority 17 45

Chi@square = 0.43; p =  ns

	 Table 18.18	 Relationship between ethnicity and selection

Chi-square and Fisher’s exact probability test

Remember that these tests require nominal category variables.

Hughes and Trafimow (2012) were interested in the extent to which attributions of intentionality are influenced 
by motive and character of the person doing the act. Their prediction was that character can influence inten-
tionality judgements. Participants read a scenario concerning a doctor who was described positively, negatively 
or neutrally. His motive was a positive one – he was seeking a cure for cancer but that his attempts had the side 
effect of increasing the risk of viral infections. In effect, the design involved two levels of consequence (good 
versus bad) and three levels of character (positive, negative or neutral). After reading the scenario, participants 
had to decide whether the doctor had deliberately caused the viral infection. The researchers used chi-square 
to examine the pattern of intentionality attributions but do not report the findings of the overall chi-square. 
Because of the precise predictions they had made, the researchers partitioned the chi-square in order to see 
whether their specific predictions were supported. As predicted, the positive target person with the good side 
effect produced high levels of intentionality but the researchers found no significant differences for the good 
side effects or bad side effects for the negatively described version.

Huisman, van Houwelingen and Kerkhof (2010) investigated whether psychiatric diagnosis, gender and status 
as in- or out-patient were associated with particular types of suicide methods. Initially they examined the rela-
tion between suicide method and each of these three variables separately using chi-square. Six categories of 
suicide methods were used. Each of these chi-squares was significant. So, for the chi-square for gender and 
suicide method, significantly more male patients (41%) hanged themselves than female patients (26%). Signifi-
cantly more female patients (27%) poisoned themselves than male patients (12%).

Kogan (2004) examined factors that predicted disclosure in women who had unwanted sexual experiences in 
their childhood or adolescence. The dependent variables were the timing of disclosure and the person disclosed 
to. Timing of disclosure consisted of the three categories of immediate, delayed and non-disclosure. The catego-
ries of the sorts of person disclosed to were adult, peers only and non-disclosure. Predictors of these two 

Research examples
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dependent variables included age at which the experience first occurred. The person disclosed to was then 
recategorised by the researcher into four groups – whether the person knew the other person, whether they 
were family and so on. Initially, chi-square tests were carried out between each of the dependent variables and 
each of the predictor variables. There were a number of significant findings. For example, whether the experi-
ence was with a family member was significantly related to both dependent variables. Women who had the 
experience with a family member were less likely to disclose or disclose immediately and less likely to disclose 
to peers only.

Kois and colleagues (2013) wished to explore whether the research on competency to stand trial among male 
inpatients extended to female inpatients. They used chi-square to look for significant relationships between 
findings of incompetence and other variables. They found significant associations, for example, between 
incompetence (versus competence) and the nominal category variables of active psychotic symptoms, diag-
nosis of a psychotic disorder, noncompliance with medication, and non-felony charges and competency.

Matthews and co-workers (2012) studied theory of mind in children with Autism Spectrum Disorder (ASD). 
ASD typically involves restricted repetitive behaviour patterns and impairments in interpersonal communica-
tion and social interaction. Deficits in theory of mind have been held to characterise autistic children though 
some researchers point out that such deficits are not unique to such children and that it is not universal in 
autistic children. In the study, the ability to infer the mental states of others (theory of mind) was compared 
for youngsters with early-onset autism and those with regressive autism with ‘normally’ developing young-
sters. Using the Fisher exact test, the children were allocated to pass or non-pass groups on different meas-
ures of theory of mind deficits and the various groups compared with each other. The results showed among 
other things that high levels of theory of mind scores (a non-verbal appearance reality task) were more 
common in the normally developing group compared with the early-onset group. This task involved asking 
children to identify objects which superficially looked different from what they were. For example, the object 
might be a candle which looked like a crayon.

McKiernan and his colleagues (2010) were interested in determining the effectiveness of a cognitive-behavioural 
group intervention for patients with early breast cancer compared with a control group which received an edu-
cational programme. As part of their assessment of these two groups, they asked patients whether or not they 
used any health services other than their doctor and whether they had attended all specialist oncology appoint-
ments during the six-month follow-up period. They used chi-square to analyse the results for these two questions 
separately. There were no significant differences between the two groups on these two questions.

●	 Avoid as far as possible designing research with a multiplicity of categories and samples for chi-square. Large 
chi-squares with many cells are often difficult to interpret without numerous sub-analyses.

●	 Always make sure that your chi-square is carried out on frequencies and that each participant contributes 
only one to the total frequencies.

●	 Check for expected frequencies under 5; if you have too many then take one of the escape routes described 
if possible.

●	 Effect size measures are phi for 2 * 2  chi square or Cramér’s V for larger.

Key points
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Computer Analysis

Chi-square using SPSS

	 Figure 18.2	 SPSS for chi-square

Select ‘Cell Display’ ‘Expected’ and ‘Unstandardized’, ‘Continue’ and ‘OK’ (Screenshot 18.4).

(Screenshot 18.1).

Name the variables in ‘Variable View’ of the ‘Data Editor’.
in ‘Data View’ of the ‘Data Editor’

(Screenshot 18.2).

(Screenshot 18.5).

For a more-than-one-sample chi-square, select ‘Analyze’, ‘Descriptive Statistics’ and
‘Crosstabs. . .’ (Screenshot 18.3).
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Interpreting and reporting the output

There are two alternative ways of describing these results for the data in Table 18.8 and the output  
shown in Screenshot 18.5. To the inexperienced eye they may seem very different but they amount  
to the same thing:

●	 We could describe the results in the following way: ‘There was a significant difference between the 
observed and expected frequency of teenage boys and girls in their preference for the three types of 
television programme, x2(2) = 13.51, p = .001.’

●	 Alternatively, and just as accurate: ‘There was a significant association between gender and preference 
for different types of television programme, x2(2)=  13.51, p =  .001.’

●	 In addition, we need to report the direction of the results. One way of doing this is to state that: ‘Girls were 
more likely than boys to prefer crime programmes and less likely to prefer soap operas or both programmes.’

●	 With greater than 2 :  2 tables as in this case, it is most probably worthwhile presenting a table of  
the frequencies.

	
Screenshot 18.2

	 On ‘Analyze’ select one-way 
‘Chi-square. . . ’

	
Screenshot 18.1

	 Part of data for two variables in 
‘Data View’

	 Screenshot 18.3	 On ‘Analyze’ select ‘Crosstabs. . . ’ 
for two-way chi-square

	
Screenshot 18.4

	 Select ‘Expected’ frequencies 
and ‘Unstandardized Residuals’

M18 Introduction to Statistics in Psychology with SPSS 29099.indd   249 04/01/2017   17:03



250	 CHAPTER 18â•‡ Chi-square: Differences between samples of frequency data

Recommended further reading

Maxwell, A. E. (1961). Analysing qualitative data. London: Methuen.

	 Screenshot 18.5	 Two-way chi-square output
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●	 Although probability theory is at the heart of statistics, in practice the researcher needs to 
know relatively little of this.

●	 The addition rule basically suggests that the probability of, say, any of three categories occur-
ring is the sum of the three individual probabilities for those categories.

●	 The multiplication rule suggests that the probability of different events occurring in a par-
ticular sequence is the product of the individual probabilities.

Probability

Chapter 19

Overview

Preparation

General familiarity with previous chapters.
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	 19.1	 Introduction

From time to time, researchers need to be able to calculate the probabilities associated 
with certain patterns of events. One of us remembers being a student in a class that carried 
out an experiment based on newspaper reports of a Russian study in which people 
appeared to be able to recognise colours through their fingertips. So we designed an 
experiment in which a blindfolded person felt different colours in random order. Most of 
us did not do very well but some in the class seemed excellent. The media somehow heard 
about the study and a particularly good identifier in our experiment quickly took part in 
a live TV demonstration of her skills. She was appallingly bad at the task this time.

The reason why she was bad on television was that she had no special skills in the first 
place. It had been merely a matter of chance that she had done well in the laboratory. On 
the television programme, chance was not on her side and she turned out to be as bad as 
the rest of us. Actually, this reflects a phenomenon commonly referred to as regression to 
the mean. Choose a person (or group) because of their especially high (or, alternatively, 
especially low) scores and they will tend to score closer to the mean on the next admin-
istration of the test or measurement. This is because the test or measure is to a degree 
unreliable and by choosing exceptional scores you have to an extent capitalised on chance 
factors. With a completely unreliable test or measure, the reversion towards the mean will 
be dramatic. In our colour experiment the student did badly on TV because she had been 
selected totally on the basis of a criterion that was fundamentally unreliable – that is, 
completely at random.

Similar problems occur in any investigation of individual paranormal or psychic pow-
ers. For example, a spiritual medium who addresses a crowd of 500 people is doing noth-
ing spectacular if in Britain she claims to be speaking to a dead relative of someone and 
that relative is Mary or Martha or Margaret. The chances of someone in the 500 having 
such a relative are very high.

	 19.2	 Principles of probability

When any of us use a test of significance we are utilising probability theory. This is 
because most statistical tests are based on it. Our working knowledge of probability in 
most branches of psychology does not have to be very great for us to function well. We 
have been using probability in previous chapters on significance testing when we talked 
about the 5% level of significance, the 1% level of significance and the 95% confidence 
intervals. Basically what we meant by a 5% level of significance is that a particular event 
(or outcome) would occur on five occasions out of 100. Although we have adopted the 
percentage system of reporting probabilities in this book, statisticians would normally 
not write of a 5% probability. Instead they would express it as being out of a single event 
rather than 100 events. Thus:

●	 .05 is an alternative way of writing 5%

●	 .10 is an alternative way of writing 10%

●	 1.00 is an alternative way of writing 100%.

The difficulty for some of us with this alternative, more formal, way of writing probabil-
ity is that it leaves everything in decimals, which does not appeal to the less 
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mathematically skilled. However, you should be aware of the alternative notation since 
it appears in many research reports. Furthermore, much computer output can give prob-
abilities to several decimal places which can be confusing. For example, what does a 
probability of .000 001 mean? The answer is one chance in 100 000 or a 0.0001% 
probability 1 1

1 000 000 * 100 = 0.0001%2 .
There are two rules of probability with which psychologists ought to be familiar. They 

are the addition rule and the multiplication rule.

●	 The addition rule is quite straightforward. It merely states that for a number of mutu-
ally exclusive outcomes the sum of their probabilities adds up to 1.00. So if you have 
a set of 150 people of whom 100 are women and 50 are men, the probability of picking 
a woman at random is 100 ,  150 or .667. The probability of picking a man at random 
is 50 , 150 or .333. However, the probability of picking either a man or a woman at 
random is .667 + .333 or 1.00. In other words, it is certain that you will pick either 
a man or a woman. The assumption is that the categories or outcomes are mutually 
exclusive, meaning that a person cannot be in both the man and woman categories. 
Being a man excludes that person from also being a woman. In statistical probability 
theory, one of the two possible outcomes is usually denoted p and the other is denoted 
q, so p + q = 1.00. Outcomes that are not mutually exclusive include, for example, 
the categories man and young since a person could be a man and young.

●	 The multiplication rule is about a set of events. It can be illustrated by our set of 150 
men and women, in which 100 are women and 50 are men. Again the assumption is 
that the categories or outcomes are mutually exclusive. We could ask how likely it is 
that the first five people that we pick at random will all be women, given that the prob-
ability of choosing a woman on a single occasion is .667. The answer is that we mul-
tiply the probability associated with the first person being a woman by the probability 
that the second person will be a woman by the probability that the third person will 
be a woman by the probability that the fourth person will be a woman by the probabil-
ity that the fifth person will be a woman:

 Probability of all five being women = p * p * p * p * p

 = .667 * .667 * .667 * .667 * .667

 = .13

Therefore there is a 13% probability (.13) that we will choose a sample of five women 
at random. That is not a particularly rare outcome. However, picking a sample of all 
men from our set of men and women is much rarer:

 Probability of all five being men = p * p * p * p * p

 = .333 * .333 * .333 * .333 * .333

 = .004

Therefore there is a 0.4% probability (.004) of choosing all men.

The multiplication rule as stated here assumes that once a person is selected for 
inclusion in the sample, he or she is replaced in the population and possibly 
selected again. This is called random sampling with replacement. However, nor-
mally we do not do this in psychological research, though if the population is big 
then not replacing the individual back into the population has negligible influence 
on the outcome. Virtually all statistical analyses assume replacement, but it does 
not matter that people are usually not selected more than once for a study in  
psychological research.
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	 19.3	 Implications

Such theoretical considerations concerning probability theory have a number of implica-
tions for research. They ought to be carefully noted.

●	 Repeated significance testing within the same studyâ•‡ It is tempting to carry out several 
statistical tests on data. Usually we find that a portion of these tests are statistically 
significant at the 5% level whereas a number are not. Indeed, even if there were abso-
lutely no trends in the population, we would expect, by chance, 5% of our comparisons 
to be significant at the 5% level. This is the meaning of statistical significance, after 
all. The more statistical comparisons we make on our data the more significant findings 
we would expect. If we did 20 comparisons we would expect one significant finding 
even if there are no trends in the population. In order to cope with this, the correct 
procedure is to make the statistical significance more stringent the more tests of signifi-
cance we do. So, if we did two tests then our significance level per test should be 5%/2 
or 2.5%; if we did four comparisons our significance level would be 5%/4 or 1.25% 
significance per test. In other words, we simply divide the 5% significance level by the 
number of tests we are doing. Although this is the proper thing to do, few psychological 
reports actually do it. However, the consequence of not doing this is to find more 
significant findings than you should.

●	 Significance testing across different studiesâ•‡ An application of the multiplication rule 
in assessing the value of replicating research shows the dramatic increase in significance 
that this can achieve. Replication means the essential repeating of a study at a later 
date and possibly in radically different circumstances such as other locations. Imagine 
that the significance level achieved in the original study is 5% (p = .05). If one finds 
the same significance level in the replication, the probability of two studies producing 
this level of significance by chance is p * p or .05 * .05 = .0025 or 0.25%. This 
considerably enhances our confidence that the findings of the research are not the result 
of chance factors but reflect significant trends.

Addition rule
A psychologist wishes to calculate the chance expectations of marks on a multiple choice test of general knowledge. Since 
a person could get some answers correct simply by sticking a pin into the answer paper, there has to be a minimum score 
below which the individual is doing no better than chance. If each question has four response options then one would 
expect that by chance a person could get one in four or one-quarter of the answers correct. That is intuitively obvious. 
But what if some questions have three possible answers and others have four? This is not quite so obvious, but we simply 
apply the law of addition and add together the probabilities of being correct for all of the questions on the paper. This 
entails adding together probabilities of .33 and .25 since there are three or four possible answers. So if there are 10 ques-
tions with three possible answers and five questions with four possible answers, the number of answers correct by chance 
is (10 * .33) + (5 * .25) = 3.3 + 1.25 = 4.55.

Explaining statistics 19.1
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Multiplication rule
A psychologist studies a pair of male twins who have been brought up separately and who have never met. The psycholo-
gist is surprised to find that the twins are alike on seven out of ten different characteristics, as presented below. The 
probability of their characteristics occurring in the general population is given in brackets:

	 1.	 They both marry women younger than themselves (.9).

	 2.	 They both marry brunettes (.7).

	 3.	 They both drive (.7).

	 4.	 They both swim (.6).

	 5.	 They have both spent time in hospital (.8).

	 6.	 They both take foreign holidays (.5).

	 7.	 They both part their hair on the left (.9).

However, they are different in the following ways:

	 1.	 One attends church (.4) and the other does not.

	 2.	 One has a doctorate (.03) and the other does not.

	 3.	 One smokes (.3) and the other does not.

The similarities between the two men are impressive if it is exceptional for two randomly selected men to be similar on 
each of the items. As stated above, the probabilities in brackets are the proportions of men in the general population 
demonstrating these characteristics. For many of the characteristics it seems quite likely that they will be similar. So two 
men taken at random from the general population are most likely to marry a younger woman. Since the probability of 
marrying a younger woman is .9, the probability of any two men marrying younger women is .9 * .9 = .81. The prob-
ability of two men taken at random both being drivers is .7 * .7 = .49. In fact the ten characteristics listed above are 
shared by randomly selected pairs of men with the following probabilities:

	 1.	 .9 * .9 = .81

	 2.	 .7 * .7 = .49

	 3.	 .7 * .7 = .49

	 4.	 .6 * .6 = .36

	 5.	 .8 * .8 = .64

	 6.	 .5 * .5 = .25

	 7.	 .9 * .9 = .81

	 8.	 .4 * .4 = .16

	 9.	 .03 * .03 = .0009

	10.	 .3 * .3 = .09

The sum of these probabilities is 4.10. Clearly the twins are more alike than we might expect on the basis of chance. 
However, it might be that we would get a different answer if instead of taking the general population of men, we took 
men of the same age as the twins.

Explaining statistics 19.2
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●	 Although probability theory is of crucial importance for mathematical statisticians, psychologists generally 
rely on an intuitive approach to the topic. This may be laziness on their part, but we have kept the coverage 
of probability to a minimum given the scope of this book. It can also be very deterring to anyone not too 
mathematically inclined. If you need to know more, especially if you need to estimate precisely the likelihood 
of a particular pattern or sequence of events occurring, we suggest that you consult books such as Kerlinger 
(1986) for more complete accounts of mathematical probability theory.

●	 However, it is important to avoid basic mistakes such as repeated significance testing on the same data 
without adjusting your significance levels to allow for the multitude of tests. This is not necessary for tests 
designed for multiple testing such as those for the analysis of variance, some of which we discuss later 
(Chapter 26), as the adjustment is built in.

Key points
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●	 Hypotheses which do not or cannot stipulate the direction of the relationship between  
variables are called non-directional. So far we have only dealt with non-directional tests of 
hypotheses. These are also known as two-tailed tests.

●	 Some hypotheses stipulate the direction of the relationship between the variables – either 
a positive relation or a negative relation. These are known as directional hypotheses. They 
are also known as one-tailed tests.

●	 Directional tests for any given data result in more significant findings than non-directional 
tests when applied to the same data. This is provided that the trend is in the direction 
stipulated.

●	 However, there are considerable restrictions on when directional tests are allowable. Without 
very carefully planning, it is wise to deal with one’s data as if it were non-directional. Most 
student research is likely to fail to meet the requirements of one-tailed testing.

One-tailed versus  
two-tailed significance 
testing

Chapter 20

Overview

Preparation

Revise the null hypothesis and alternative hypothesis (Chapter 11) and significance testing.
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	 20.1	 Introduction

Sometimes researchers are so confident about the likely outcome of their research that 
they make pretty strong predictions about the relationship between their independent and 
dependent variables. So, for example, rather than say that the independent variable age 
is correlated with verbal ability, the researcher predicts that the independent variable age 
is positively correlated with the dependent variable verbal ability. In other words, it is 
predicted that the older participants in the research will have better verbal skills. Equally 
the researcher might predict a negative relationship between the independent and depend-
ent variables.

It is conventional in psychological statistics to treat such directional predictions differ-
ently from non-directional predictions. Normally psychologists speak of a directional 
prediction being one-tailed whereas a non-directional prediction is two-tailed. The crucial 
point is that if you have a directional prediction (one-tailed test) the critical values of the 
significance test become slightly different.

In order to carry out a one-tailed test you need to be satisfied that you have met the 
criteria for one-tailed testing. These, as we will see, are rather stringent. In our experience, 
many one-tailed hypotheses put forward by students are little more than hunches and 
certainly not based on the required strong past research or strong theory. In these circum-
stances it is unwise and wrong to carry out one-tailed testing. It would be best to regard 
the alternative hypothesis as non-directional and choose two-tailed significance testing 
exactly as we have done so far in this book. One-tailed testing is a contentious issue and 
you may be confronted with different points of view; some authorities reject it although 
it is fairly commonplace if not frequent in psychological research.

	 20.2	 Theoretical considerations

If we take a directional alternative hypothesis (such as that intelligence correlates posi-
tively with level of education) then it is necessary to revise our understanding of the null 
hypothesis somewhat. (The same is true if the directional alternative hypothesis suggests 
a negative relationship between the two variables.) In the case of the positively worded 
alternative hypothesis, the null hypothesis is:

Intelligence does not correlate positively with level of education.

Our previous style of null hypothesis would have left out the word positively. There are 
two different circumstances which support the null hypothesis that intelligence does not 
correlate positively with level of education:

If intelligence does not correlate at all with level of education, or

If intelligence correlates negatively with level of education.

That is, it is only research which shows a positive correlation between intelligence and 
education which supports the directional hypothesis – if we found an extreme negative 
correlation between intelligence and education this would lead to the rejection of the 
alternative hypothesis just as would zero or near-zero relationships. Because, in a sense, 
the dice is loaded against the directional alternative hypothesis, it is conventional to argue 
that we should not use the extremes of the sampling distribution in both directions for 
our test of significance for the directional hypothesis. Instead we should take the extreme 
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samples in the positive direction (if it is positively worded) or the extreme samples in the 
negative direction (if it is negatively worded). In other words, our extreme 5% of samples 
which we define as significant should all be from one side of the sampling distribution, 
not 2.5% on each side as we would have done previously (see Figure 20.1).

Because the 5% of extreme samples, which are defined as significant, are all on the 
same side of the distribution, you need a smaller value of your significance test to be in 
that extreme 5%. Part of the attraction of directional or one-tailed significance tests of 
this sort is that basically you can get the same level of significance with a smaller sample 
or smaller trend than would be required for a two-tailed test. Essentially the probability 
level can be halved – what would be significant at the 5% level with a two-tailed test is 
significant at the 2.5% level with a one-tailed test, for example.

There is a big proviso to this. If you predicted a positive relationship but found what 
would normally be a significant negative relationship, with a one-tailed test you ought to 
ignore that negative relationship – it merely supports the null hypothesis. The temptation 
is, however, to ignore your original directional alternative hypothesis and pretend that you 
had not predicted the direction. Given that significant results are at a premium in psychol-
ogy and are much more likely to get published, it is not surprising that psychologists seek-
ing to publish their research might be tempted to ‘adjust’ their hypotheses slightly.

It is noteworthy that the research literature contains very few tests of significance of 
directional hypotheses which are rejected when the trend in the data is strongly (and 
significantly with a two-tailed test) in the opposite direction to that predicted. The only 
example we know of was written by one of us. Figure 20.2 gives the key steps to consider 
in understanding one- and two-tailed significance testing.

	 Figure 20.1	 Areas of statistical significance for two-tailed and one-tailed tests
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	 20.3	 Further requirements

There are a number of other rules which are supposed to be followed if one is to use a 
directional hypothesis, including the following:

●	 The prediction is based on strong and well-researched theory, and not on a whim or 
intuition.

●	 The prediction is based on previous similar research demonstrating consistent trends 
in the predicted direction.

●	 One should make the above predictions in advance of any information about the trends 
in the data about which the prediction is to be made. That is, for example, you do not 
look at your scattergrams and then predict the direction of the correlation between 
your variables. That would be manifestly cheating but a ‘good’ way otherwise of get-
ting significant results with a one-tailed test when they would not quite reach signifi-
cance with a two-tailed test.

There is another practical problem in the use of directional hypotheses. That is, if you 
have more than two groups of scores it is often very difficult to decide what the predicting 
trends between the groups would be. For this reason, many statistical techniques are 
commonly regarded as directionless when you have more than two groups of scores or 
subjects. This applies to techniques such as chi-square, the analysis of variance and other 
related tests.

Although this is clearly a controversial area, you will probably find that as a student 
you rarely if ever have sufficient justification for employing a one-tailed test. As you might 
have gathered, most of these criteria for selecting a one-tailed test are to a degree 

	 Figure 20.2	 Conceptual steps for understanding one-tailed and two-tailed significance testing
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subjective which makes the use of one-tailed tests less objective than might be expected. 
We would recommend that you choose a two-tailed or directionless test unless there is a 
pressing and convincing reason to do otherwise. Otherwise the danger of loading things 
in favour of significant results is too great.

In addition to two-tailed critical values, the significance tables in the appendices give 
the one-tailed values where these are appropriate.

One-tailed and two-tailed significance testing

The use of one-tailed significance testing seems to be relatively uncommon in modern psychology research pub-
lications. Whether this is a good thing depends to some extent on one’s point of view. It possibly indicates a 
diminished interest in testing highly specific hypotheses based on theory and past research in favour of a more 
exploratory approach to data analysis. With the latter, it is not really appropriate to make predictions about the 
direction of trends.

Meeten and Davey (2012) manipulated one of five moods by showing participants one of five films reflecting 
those moods. The five conditions were sad, happy, anxious, angry and neutral. Participants rated how they felt 
immediately after seeing the film and at the end of the study in terms of the four moods of sadness, happiness, 
anxiety and anger. Because each of the five conditions were expected to produce a particular mood immediately 
after seeing the film, one-tailed unrelated t-tests were carried out to compare each of the five conditions on 
each of the four moods. The five conditions were found to produce the expected mood. In order to see whether 
the induced mood was still present at the end of the study they carried out two-tailed related t-tests as they 
did not predict any particular results. There was only a significant change for anger, which was less at the end 
of the study.

Hoicka and Akhtar (2012) report in their study of early humour in children that ‘Mann–Whitney U-tests revealed 
no effects of children’s age or gender for whether children produced each humour type (all p 7 .281)’ (p. 589). 
No indication is given of whether one- or two-tailed tests of significance were used but the default option is 
two-tailed tests. Only if the testing is indicated to be one-tailed do we assume that it is.

Research examples

●	 Routinely make your alternative hypotheses two-tailed or directionless. This is especially the case when the 
implications of your research are of practical or policy significance. However, this may not be ideal if you are 
testing theoretical predictions when the direction of the hypothesis might be important. Nevertheless, it is 
a moot point whether you should take advantage of the ‘less stringent’ significance requirements of a one-
tailed test.

●	 If you believe that the well-established theoretical or empirical basis for predicting the direction of the out-
comes is strong enough, then still be a little cautious about employing one-tailed tests. In particular, do not 
formulate your hypothesis after collecting or viewing your data.

●	 You cannot be faulted for using two-tailed tests since they are less likely to show significant relationships. 
Thus they are described as being statistically more conservative. Student research often does not arise out 
of previous research or theory. Often the research is initiated before earlier research and theory have been 
reviewed. In these circumstances one-tailed tests are not warranted.

Key points
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Computer Analysis

One- and two-tailed statistical significance using SPSS

●	 If there are good grounds for predicting the direction of the relationship between two variables, it is 
conventional to use a one-tailed rather than a two-tailed significance level. SPSS provides a one-tailed 
significance level for correlations and a 2 * 2 chi-square. It does not do this for t-tests and analysis of 
variance with two groups. To obtain the one-tailed level for these tests, the two-tailed significance level 
needs to be divided by 2.
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●	 There are many statistical techniques which are not based on the notion of the normal curve.

●	 Some data violate the assumption of normality which underlies many of the statistical tests 
in this book. However, violations rarely have much impact on the outcome of a statistical 
analysis.

●	 Nonparametric and distribution-free statistics are often helpful where one’s data violate the 
assumptions of other tests too much.

●	 For each of the tests discussed in the earlier chapters of this book, a nonparametric or  
distribution-free alternative is available.

●	 Unfortunately, in many cases there is no satisfactory alternative to the parametric tests.

Ranking tests
Nonparametric statistics

Chapter 21

Overview

Preparation

Be aware of the t-tests for related and unrelated samples. Revise ranking (Chapter 8).
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	 21.1	 Introduction

From time to time, any researcher will be faced with the distinction between parametric 
and nonparametric significance tests. The difference is quite straightforward. Many sta-
tistical techniques require that the details are known or estimates can be made of the 
characteristics of the population. These are known as parametric tests (a parameter is a 
characteristic of a population). Almost invariably, as we have seen, the population is the 
population defined by the null hypothesis. Generally speaking, the numerical scores we 
used had to roughly approximate to the normal (bell-shaped) distribution in order for 
our decisions to be precise. The reason for this is that the statistician’s theoretical assump-
tions, when developing the test, included the normal distribution of the data. It is widely 
accepted that the assumption of a bell-shaped or normal distribution of scores is a very 
broad criterion and that the distribution of scores on a variable would have to be very 
lopsided (skewed) in order for the outcomes to be seriously out of line. Appendix A 
explains how to test for such skewness.

But what if assumptions such as that of symmetry are so badly violated that the use of 
the test seems somewhat unacceptable? One traditional alternative approach is called 
nonparametric testing because it makes few or no assumptions about the distribution in 
the population. Many nonparametric tests of significance are based on rankings given to 
the original numerical scores – it is unusual for researchers to collect their data in the form 
of ranks in the first place.

Conventionally these tests for ranks were regarded as relatively easy computations for 
students – this was part of their appeal. However, in the age of computers this is hardly 
a compelling reason for their use. There are problems with their use as follows:

●	 They become disproportionately cumbersome with increasing amounts of data. This 
is not a problem for the computer.

●	 They also suffer from the difficulty that many psychological data are gathered using 
rather restricted ranges of scores. This often results in the same values appearing 
several times in a set of data. The tests based on ranks also become cumbersome with 
increased tied scores and, consequently, somewhat inaccurate. The extent of this is 
generally unknown.

●	 Worst of all, the variety and flexibility of these nonparametric statistical techniques are 
nowhere as great as for parametric statistics. For this reason it is generally best to err 
towards using parametric statistics in our opinion. Certainly current research practice 
seems to increasingly disfavour nonparametric statistics. You will find them only rela-
tively rarely in the modern research literature.

Figure 21.1 gives some of the key steps in deciding to use nonparametric statistics. 
Box 21.1 discusses bootstrapping which is another way of dealing with data which do 
not meet the requirements of parametric tests of significance.

	 21.2	 Theoretical considerations

Ranking merely involves the ordering of a set of scores from the smallest to the largest. 
The smallest score is given the rank 1, the second smallest score is given the rank 2, the 
50th smallest score is given the rank 50 and so on.

Since many nonparametric statistical techniques use ranks, the question is raised why 
this is so. The answer is very much the same as the reason for using the normal distribu-
tion as the basis for parametric statistics – it provides a standard distribution of scores 
with standard characteristics. It is much the same for the tests based on ranks. Although 
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there are incalculable varieties in samples of data, for any given number of scores the 
ranks are always the same. So the ranks of 10 scores which represent the IQs of the 10 
greatest geniuses of all time are exactly the same as the ranks for the scores on introver-
sion of the 10 members of the local stamp collectors’ club: 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

Since all sets of 10 scores use exactly the same set of ranks, this considerably eases the 
statistician’s calculations of the distribution of the ranks under the null hypothesis that there 
is no relationship between pairs of variables. Instead of an infinite variety of 10 scores, there 
is just this one set of 10 ranks on which to do one’s calculations. Only sample size makes a 
difference to the ranks, not the precise numerical values of the scores themselves.

The other advantage, of course, is that it uses ideas which can be seen as fairly com-
monsensical and more intuitive.

	 Figure 21.1	 Conceptual steps for understanding nonparametric statistics

Bootstrapping
Probably the history of statistics in psychology would have 
been somewhat different if computers had been available 
earlier. Many of the statistical techniques which modern 
psychologists routinely compute using powerful computer 
programs are actually quite elderly and, in some ways, 
creak a little when used in this digital age. In particular, the 
various standard statistical distributions, such as the t-dis-
tribution and the F-distribution, which are used in statistics 
were particularly important because they enabled calcula-
tions to be carried out relatively easily, long before elec-
tronic calculators, let alone computers, had been invented. 
But could things have been different if computers had been 
available to the early statisticians?

Box 21.1 Key concepts

Bootstrapping refers to a number of techniques which do 
not assume a particular shape or distribution to the popula-
tion. We have seen that, for example, the t-test assumes that 
the data are normally distributed. Instead bootstrapping 
simply assumes that a sample or sample of scores represents 
what is going on in the population. In other words, the 
population simply has the characteristics of the sample(s). 
So if the distribution of scores in a sample is 6, 8, 9, 9, 11, 
12 and 13, then it is assumed that the population is exactly 
the same. Wait a minute, you might be saying, just how does 
this help? We cannot work out a sampling distribution of 
samples of seven scores if we only have seven scores. There 
is only one sample of seven possible from seven scores. This 

➜

M21 Introduction to Statistics in Psychology with SPSS 29099.indd   265 04/01/2017   17:13



266	 CHAPTER 21â•‡ Ranking tests: Nonparametric statistics

	 21.3	 Nonparametric statistical tests

There is an extensive battery of nonparametric tests, although many are interchangeable 
with each other or rather obscure with very limited applications. In this chapter we will 
consider only a small number of tests which you may come across during your university 
courses or general reading. We have discussed chi-square (for frequencies) and Spear-
man’s rho (for correlations) elsewhere in this book. The nonparametric tests discussed 
in this chapter are usually applicable in very much the same experimental designs as the 
parametric tests we have discussed elsewhere (see Table 21.1).

	 ■	 Tests for related samples

Two nonparametric tests are common in the literature – the sign test (which is not 
based on ranks) and the Wilcoxon matched pairs test (which is based on ranks). 
Because they would apply to data for the related t-test, we will use the data for Explain-
ing statistics 13.1 to illustrate the application of both of these tests.

Parametric test Nonparametric equivalent

Related t-test Wilcoxon matched pairs test

Sign test

Unrelated t-test Mann–Whitney U-test

One-way ANOVA Kruskal–Wallis test (Appendix B2)

Related ANOVA Friedman test (Appendix B2)

	 Table 21.1	 Similar parametric and nonparametric tests

is quite right. The ‘trick’ in bootstrapping is to take these 
seven scores and reproduce them, say, a thousand times, so 
that instead of seven scores we have 7000 scores. There is 
nothing in this bootstrapped ‘population’ that was not in the 
sample – everything is merely reproduced many times.

Now it is possible to work out a sampling distribution 
of samples of seven taken from this bootstrapped popula-
tion. Actually, literally hundreds if not thousands of sam-
ples are drawn and the distribution, say, of their means can 
be plotted. So it is possible to work out the likelihood of 
getting a particular sample mean given this bootstrapped 
sampling distribution. This is number crunching with a 
vengeance but the sort of work that computers are excellent 
at doing. The good news is that it is no longer necessary to 
do the bootstrapping calculations yourself since SPSS does 
bootstrapping as part of some of the statistical routines that 
it carries out – for example, the t-test. Where it is available, 
bootstrapping only requires the minimum effort of select-
ing the bootstrapping option.

Bootstrapping is capable of calculating things which are 
not easily calculated by traditional means – for example, it 

can work out the standard deviation of the median and any 
number of other statistics. From the point of view of the 
present chapter on nonparametric statistics, bootstrapping 
does not make assumptions about the data of the sort that 
parametric statistical tests do. Consequently, it can be seen 
as a powerful alternative to parametric testing but based 
on the same routines as the parametric test.

The main problem though is that bootstrapping has not 
entered psychological statistics to any great extent and so 
many psychologists may be unfamiliar with the concept. 
But the fact that it overcomes some of the problems associ-
ated with the use of statistics in psychology should be a 
reason for its more widespread acceptance.

Many statistical procedures in SPSS have bootstrap 
options that you can choose. They give significance levels 
based on the bootstrapped population. These significance 
levels, obviously, are not identical to those calculated 
from, say, the t-distribution, etc., but constitute a per-
fectly valid approach to significance testing which does 
not make assumptions about the distribution of the 
population.
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How the sign test works
The sign test is like the related t-test in that it takes the differences between the two related samples of scores. However, 
instead of considering the size of the difference, the sign test merely uses the sign of the difference. In other words, it loses 
a lot of the information inherent in the size of the difference.

	 �Delete from the analysis any case which has identical scores for both variables. They are ignored in the 
sign test. Take the second group of scores away from the first group (Table 21.2). Remember to include 
the sign of the difference (+  or -).

	 Count the number of scores which are positively signed and then count the number of scores which are 
negatively signed. (Don’t forget that zero differences are ignored in the sign test.)

	 Take whichever is the smaller number – the number of positive signs or the number of negative 
signs.

	 Look up the significance of this smaller number in Significance Table 21.1. You need to find the row 
which contains the sum of the positive and negative signs (i.e. ignoring zero differences). Your value has 
to be in the tabulated range to be statistically significant.

In our example, there are 6 negative and 2 positive signs; 2 is the smaller number. The sum of positive and negative signs 
is 8. Significance Table 21.1 gives the significant values of the smaller number of signs as 0 only. Therefore our value is 
not statistically unusual and we accept the null hypothesis.

It would be a good approximation to use the one-sample chi-square formula (Explaining statistics 13.1), given that 
you would expect equal numbers of positive and negative differences under the null hypothesis that ‘the two samples do 
not differ’. That is, the distributions of the sign test and the McNemar test (Section 18.7) for the significance of changes 
are the same.

Step 1

Step 2

Step 3

Step 4

Explaining statistics 21.1

Subject Six months X1 Nine months X2 Difference D = X1 − X2

Baby Clara 3 7 -4

Baby Martin 5 6 -1

Baby Sally 5 3 +2

Baby Angie 4 8 -4

Baby Trevor 3 5 -2

Baby Sam 7 9 -2

Baby Bobby 8 7 +1

Baby Sid 7 9 -2

	 Table 21.2	 Steps in the calculation of the sign test

➜
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Interpreting the results

The mean scores for eye contact at six months and nine months need to be checked in order to know what the trend is 
in the data. Although eye contact was greater at nine months, the sign test is not significant which means that we should 
accept the null hypothesis of no differences in eye contact at the two ages.

Reporting the results

Following the APA (2010) Publication Manual recommendations, we could write these results as follows: ‘Eye 
contact was higher at nine months (M = 6.75) than at six months (M = 5.25). However, this difference was insuf-
ficient to cause us to reject the null hypothesis that the amount of eye contact is the same at six months and nine 
months of age, sign test (8), p = 289.’

Number of pairs of scores (ignoring any tied pairs) Significant at 5% level
Accept hypothesis

6–8 0 only

9–11 0 to 1

12–14 0 to 2

15–16 0 to 3

17–19 0 to 4

20–22 0 to 5

23–24 0 to 6

25 0 to 7

26–28 0 to 8

29–30 0 to 9

31–33 0 to 10

34–35 0 to 11

36–38 0 to 12

39–40 0 to 13

41–42 0 to 14

43–45 0 to 15

46–47 0 to 16

48–49 0 to 17

50 0 to 18

	 Significance	 �5% significance values for the sign test giving values of T (the smaller of the sums 
of signs) (two-tailed test). An extended table is given in Appendix GTable 21.1

Your value must be in the listed ranges for your sample size to be significant at the 5% level (i.e. to accept the hypothesis).

The calculation steps for the Wilcoxon matched pairs (or signed ranks) test are similar. 
However, this test retains a little more information from the original scores by ranking 
the differences.
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How the Wilcoxon matched pairs test works
The test is also known as the Wilcoxon signed ranks test. It is similar to the sign test except that when we have obtained 
the difference score we rank-order the differences ignoring the sign of the difference.

The difference scores are calculated and then ranked ignoring the sign of the difference (Table 21.3). Notice 
that where there are tied values of the differences, we have allocated the average of the ranks which would 
be given if it were possible to separate the scores. Thus the two difference scores which equal 1 are both 
given the rank 1.5 since if the scores did differ minutely one would be given the rank 1 and the other the 
rank 2. Take care: zero differences are ignored and are not ranked.

The ranks of the differences can now have the sign of the difference reattached.

The sum of the positive ranks is calculated = 4.5 + 1.5 = 6. The sum of the negative ranks  
is calculated = 7.5 + 1.5 + 7.5 + 4.5 + 4.5 + 4.5 = 30.

We then decide which is the smaller of the two sums of ranks – in this case it is 6. This is normally  
designated T.

We then find the significance values of T (the smaller of the two sums of ranks) from Significance 
Table 21.2. This is structured in terms of the number of pairs of scores used in the calculation, which is 8 
in the present case. The critical value for a two-tailed test at the 5% level is 4 or less. Our value is 6 which 
is not statistically significant.

If your sample size is larger than Significance Table  21.2 deals with, Appendix B1 explains how to test for 
significance.

Step 1

Step 2

Step 3

Step 4

Step 5

Explaining statistics 21.2

Subject Six months X1 Nine months X2 Difference D = X1 − X2 Rank of difference 
ignoring sign during 

ranking

Baby Clara 3 7 -4 7.5-

Baby Martin 5 6 -1 1.5-

Baby Sally 5 3 2 4.5+

Baby Angie 4 8 -4 7.5-

Baby Trevor 3 5 -2 4.5-

Baby Sam 7 9 -2 4.5-

Baby Bobby 8 7 1 1.5+

Baby Sid 7 9 -2 4.5-

	 Table 21.3	 Steps in the calculation of the Wilcoxon matched pairs test

➜
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Interpreting the results

As always, it is important to examine the means of the two sets of scores in order to know what the trend in the data is. 
Although the amount of eye contact at nine months was greater than at six months, the Wilcoxon matched pairs test failed 
to reach statistical significance so it is not possible to reject the null hypothesis of no differences in eye contact at the two ages.

Reporting the results

Following the APA (2010) Publication Manual recommendations we could write the results as follows: ‘Eye contact was 
slightly higher at nine months (M = 6.75) than at six months (M = 5.25). However, this difference did not reach statisti-
cal significance so it was not possible to reject the null hypothesis that eye contact does not change between these ages, 
T(8) = 6, p = .088.’

Number of pairs of scores (ignoring any tied pairs) Significant at 5% level
Accept hypothesis

6 0 only

7 0 to 2

8 0 to 4

9 0 to 6

10 0 to 8

11 0 to 11

12 0 to 14

13 0 to 17

14 0 to 21

15 0 to 25

16 0 to 30

17 0 to 35

18 0 to 40

19 0 to 46

20 0 to 52

21 0 to 59

22 0 to 66

23 0 to 74

24 0 to 81

25 0 to 90

	 Significance	 �5% significance values for the Wilcoxon matched pairs test (two-tailed test). An 
extended and conventional significance table is given in Appendix HTable 21.2

Your value must be in the listed ranges for your sample size to be significant at the 5% level (i.e. to accept the 
hypothesis).
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How the Mann–Whitney U-test works
The most common nonparametric statistic for unrelated samples of scores is the Mann–Whitney U-test. This is used for 
similar research designs as the unrelated or uncorrelated scores t-test (Chapter 14). In other words, it can be used when-
ever you have two groups of scores which are independent of each other (i.e. they are usually based on different samples 
of people). We will use the identical data upon which we demonstrated the calculation of the unrelated/uncorrelated 
scores t-test (Chapter 14).

Rank all of the scores from the smallest to the largest (Table 21.4). Scores which are equal are allocated 
the average of ranks that they would be given if there were tiny differences between the scores. Be careful! 
All of your scores are ranked irrespective of the group they are in. To avoid confusion, use the first column 
for the larger group of scores. If both groups are equal in size then either can be entered in the first column. 
Group size N1 = 12 for the two-parent families and N2 = 10 for the lone-parent families.

Sum the ranks for the larger group of scores. This is R1. (If the groups are equal in size then either can be 
selected.)

The sum of ranks (R1) of Group 1 (174.5) (the larger group) and its sample size N1 (N1 = 12) together 
with the sample size N2 of Group 2 (N2 = 10) are entered into the following formula which gives you the 
value of the statistic U:

 U = (N1 * N2) +
N1 * (N1 + 1)

2
- R1

 = (12 * 10) +
12 * (12 + 1)

2
- 174.5

 = 120 +
12 * 13

2
- 174.5

 = 120 +
156
2

- 174.5

 = 120 + 78 - 174.5

 = 198 - 174.5

 = 23.5

Step 1

Step 2

Step 3

Explaining statistics 21.3

Generally speaking, it is difficult to suggest circumstances in which the sign test is to 
be preferred over the Wilcoxon matched pairs test. The latter uses more of the informa-
tion contained within the data and so is more likely to detect significant differences 
where they exist.

The sign test can be applied in virtually any circumstance in which the expected popula-
tion distribution under the null hypothesis is 50% of one outcome and 50% of another. 
In other words, the table of significance of the sign test can be used to check for departures 
from this 50/50 expectation.

	 ■	 Tests for unrelated samples

The major nonparametric test for differences between two groups of unrelated or uncor-
related scores is the Mann–Whitney U-test.
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Check the significance of your value of U by consulting Significance Table 21.3 (or Appendix I for the 1% 
significance level). In order to use this table, you need to find your value of N1 in the column headings and 
your value of N2 in the row headings. (However, since the table is symmetrical it does not matter if you 
use the rows instead of the columns and vice versa.) The table gives the two ranges of values of U which 
are significant. Your value must be in either of these two ranges to be statistically significant. (Appendix 
B1 explains what to do if your sample size exceeds the largest value in the table.)

The table tells us that for sample sizes of 12 and 10, the ranges are 0 to 29 or 91 to 120. Our value of 23.5 therefore is 
significant at the 5% level. In other words, we reject the null hypothesis that the independent variable is unrelated to the 
dependent variable in favour of the view that family structure has an influence on scores of the dependent variable.

Interpreting the results

The means of the two groups of scores must be examined to know which of the two groups has the higher scores on the 
dependent variable. In our example, greater emotionality was found in the children from the two-parent families. The 
significant value of the Mann–Whitney U-test suggests that we are reasonably safe to conclude that the two groups do 
differ in terms of their emotionality.

Reporting the results

The statistical analysis could be reported in the following APA (2010) Publication Manual style: ‘It was found that emo-
tionality was significantly higher, U(22) = 23.5, p 6 .05, in the two-parent families (M = 13.42) than in the lone-parent 
families (M = 9.50).’

Step 4

Two-parent families (X1) Rankings Lone-parent families (X2) Rankings

(This column is for the 
larger group)

(This column is for the 
smaller group)

12 12.5 6 2

18 21 9 6

14 16.5 4 1

10 8.5 13 14.5

19 22 14 16.5

8 3.5 9 6

15 18.5 8 3.5

11 10.5 12 12.5

10 8.5 11 10.5

13 14.5 9 6

15 18.5

16 20

aR1 = 174.5 (Note that this is 
the sum of ranks for the larger 
group)

	 Table 21.4	 Steps in the calculation of the Mann–Whitney U-test
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Ranking tests

Blackmore and her colleagues (2006) were interested in whether a number of factors such as how long the 
pregnancy had lasted were associated with developing post-pregnancy bipolar depression in women who had 
such depression. They compared the length of pregnancy in pregnancies which had resulted in depression with 
those which had not resulted in depression using a Wilcoxon matched pairs signed-rank test and found no 
significant difference.

Casarett and his colleagues (2010) studied the use of metaphors and analogies in their consultations with 
patients with advanced cancer. Using a sign test, they found that significantly more conversations contained 
metaphors than analogies. With the Wilcoxon signed-rank test, they found that the number of metaphors used 
in conversations was also significantly higher than the number of analogies.

Hannaford, Thompson and Simpson (1996) evaluated an educational package which was designed to help 
general practitioners identify patients with depression. A Wilcoxon matched pairs test showed that doctors 
missed significantly fewer cases of depression after receiving the package than before they had received it.

Kenyon and her colleagues (2012) tested whether people with bulimia nervosa or other unspecified eating 
disorders were less able to infer the feelings, beliefs and knowledge of other people than people who did not 
have psychological disorders. As part of the study they assessed how depressed, anxious and stressed the three 
groups were (the two eating disorder groups and the control group). Because these three variables were not 
normally distributed thus violating an assumption of parametric statistics and could not be transformed to be 
so, the researchers carried out a Kruskal–Wallis test to determine if there was a statistical difference between 
the three groups. If there was a significant difference, they used a Mann–Whitney test to determine which 
groups differed from each other. They found that the two eating disorder groups did not differ from each other 
on these measures but were significantly more depressed, anxious and stressed than the healthy group.

Shafran and her colleagues (2006) were interested in determining whether being asked to have higher general 
personal standards such as working very hard would result in more dysfunctional eating than those who were 
asked to have lower general personal standards such as taking it easy at work. Some of the measures used to 
assess dysfunctional eating such as trying to restrict the intake of food and feeling regret after eating were 
significantly positively skewed. On these measures Mann–Whitney tests were used to test for differences 
between these two groups before and after manipulating personal standards. After manipulation, those in the 
higher personal condition reported significantly more attempts to restrict their overall food intake and reported 
significantly more regret after eating.

Research examples

	 21.4	 Three or more groups of scores

The Kruskal–Wallis test and the Friedman test are essentially extensions of the Mann–
Whitney U-test and the Wilcoxon matched pairs test, respectively. Appendix B2 gives 
information on how to calculate these nonparametric statistics.
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●	 Often you will not require nonparametric tests of significance of the sort described in this chapter. The t-test 
will usually fit the task better.

●	 Only when you have marked symmetry problems in your data will you require the nonparametric tests. But 
even then remember that a version of the unrelated t-test is available to cope with some aspects of the 
problem (Chapter 14).

●	 The computations for the nonparametric tests may appear simpler. A big disadvantage is that when the 
sample sizes get large the problems in ranking escalate disproportionately.

●	 Some professional psychologists tend to advocate nonparametric techniques for entirely outmoded reasons.

●	 There is no guarantee that the nonparametric test will always do the job better when the assumptions of 
parametric tests are violated.

●	 There are large sample formulae for the nonparametric tests reported here for when your sample sizes are 
too big for the printed tables of significance. However, by the time this point is reached the computation is 
getting clumsy and can be better handled by a computer; also the advantages of the nonparametric tests are 
very reduced.

Key points

Computer Analysis

Two-group ranking tests using SPSS

Figure 21.2	 SPSS steps for the sign, Wilcoxon and Mann–Whitney nonparametric tests
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Interpreting and reporting the output

●	 We could report the Wilcoxon results for the data in Table 21.2 as follows: ‘There was no significant 
difference in the amount of eye-contact by babies between 6 and 9 months, Wilcoxon, z(8) = -1.71, 
two-tailed p = .088.’

●	 We could report the Mann–Whitney results of the data in Table 21.4 as follows: ‘The Mann–Whitney 
U-test found that the emotionality scores of children from two-parent families were significantly 
higher than those of children in lone-parent families, U(10, 12) = 23.5, two-tailed p = .016.’

	 Screenshot 21.4	 Select for analysis variables 
for the unrelated groups

	 Screenshot 21.2	 Select the two related groups and tests
	 Screenshot 21.1

	 On ‘Analyze’ select ‘2 Related 
Samples. . . ’ ranking tests for two 
related groups

	 Screenshot 21.3
	 On ‘Analyze’ select ‘2 Independent 

Samples. . . ’ ranking tests for two 
unrelated groups
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Recommended further reading

Mariscuilo, L. A., & McSweeney, M. (1977). Nonparametric and distribution-free methods for the 
social sciences. Monterey, CA: Brooks/Cole.

Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences. New York, 
NY: McGraw-Hill.

	 Screenshot 21.6	 Mann–Whitney output	 Screenshot 21.5	 Wilcoxon output
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Part 3

Introduction to analysis of 
variance
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●	 The variance ratio test (the F-ratio test) assesses whether the variances of two different 
samples are significantly different from each other.

●	 That is, it tests whether the spread of scores for the two samples is significantly different. 
This is not dependent on the value of the means of each sample.

●	 However, it is more commonly used as part of other statistical techniques especially the  
analysis of variance. So understanding the F-ratio is an important step towards understanding 
the analysis of variance.

●	 It is also used to test one of the underlying assumptions of the unrelated t-test since this 
assumes that the variances of the two sets of scores are more or less equal (i.e. not  
significantly different).

Variance ratio test
F-ratio to compare two variances

Chapter 22

Overview

Preparation

Make sure that you understand variance and the variance estimate (Chapters 4 and 12).  
Familiarity with the t-test will help with some applications (Chapters 13 and 14).
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	 22.1	 Introduction

In a number of circumstances in research it is important to compare the variances of two 
samples of scores. The conventions of psychological research stress the comparison of 
two or more sample means with each other. This is to overlook other important effects 
which may occur in a study. For instance, it is perfectly possible to find that despite the 
means of two groups of scores being identical, their variances are radically different. Take 
the following simple experiment in which men and women are shown advertisements for 
women’s underwear (tights), set out in Table 22.1. The dependent variable is the readers’ 
degree of liking for the product rated on a scale from 1 to 7 (on which 1 means that they 
strongly disliked the advertisement and 7 means that they strongly liked the 
advertisement).

The big difference between the two groups is not in terms of their means – the men’s 
mean is 4.4 whereas the women’s mean is 4.3. This is a small and unimportant difference. 
What is more noticeable is that the women seem to be split into two camps. The women’s 
scores tend to be large or small with little in the centre. There is more variance in the 
women’s scores. Just how does one test to see whether the difference in variance is 
significant?

There are other circumstances in which we compare variances:

●	 For the unrelated t-test, it is conventional to make sure that the two samples do not 
differ significantly in terms of their variances – if they do then it is better to opt for an 
‘unpooled’ t-test which is easily computed using SPSS. It is to be found in Screenshot 
14.5 in the bottom row beginning ‘Equal variances not assumed’. In other words, SPSS 
presents you with a choice.

●	 Another major application is the analysis of variance in which variance estimates are 
compared (see Chapter 23). SPSS uses a slight variation on this which makes little dif-
ference for the analysis of variance.

The statistical test to use in all these circumstances is called the F-ratio test or the variance 
ratio test. There is not a great deal that is new as it is dependent on the variance estimate, 
which we have already discussed several times.

	 Table 22.1	 Data comparing men and women on ratings of tights

Men Women

5 1

4 6

4 7

3 2

5 6

4 7

3 5

6 7

5 2

5 6

1

2
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	 22.2	 Theoretical issues and application

The variance ratio simply compares two variances in order to test whether they come 
from the same population. In other words, are the differences between the variances 
simply the result of chance sampling fluctuations? Of course, since we are comparing 
samples from a population we need the variance estimate formula. In the simpler applica-
tions of the variance ratio test (F-ratio), the variance estimate involves using the sample 
size minus one (N - 1) as the denominator (lower part) of the variance estimate formula. 
(This does not apply in quite the same way in the more advanced case of the analysis of 
variance, as we will see in Chapter 23 onwards.)

The variance ratio formula is as follows:

F =
larger variance estimate

smaller variance estimate

There is a table of the F-distribution (Significance Table 22.1) which is organised accord-
ing to the degrees of freedom of the two variance estimates. Unlike the t-test, the F-ratio 
is a one-tailed test. It determines whether the numerator, the top part of the formula, is 
larger than the denominator, the lower part. The variance ratio cannot be smaller than 
one. The 5% or .05 applies to the upper or right-hand tail of the distribution. The larger 
the F-ratio is, the more likely it is that the larger variance estimate is significantly larger 
than the lower variance estimate.

Figure 22.1 shows the key steps in the variance test.

 Significance                      
Table 22.1

Degrees of freedom for 
smaller variance estimate 

(denominator)

Degrees of freedom for larger variance estimate (numerator)

5 7 10 20 50 H

5 5.1 or more 4.9 4.7 4.6 4.4 4.4

6 4.4 4.1 4.1 3.9 3.8 3.7

7 4.0 3.8 3.6 3.4 3.3 3.2

8 3.7 3.5 3.3 3.2 3.0 2.9

10 3.3 3.1 3.0 2.8 2.6 2.5

12 3.1 2.9 2.8 2.5 2.4 2.3

15 2.9 2.7 2.6 2.3 2.2 2.1

20 2.7 2.5 2.4 2.1 2.0 1.8

30 2.5 2.3 2.2 1.9 1.8 1.6

50 2.4 2.2 2.0 1.8 1.6 1.4

100 2.3 2.1 1.9 1.7 1.5 1.3

∞ 2.2 2.0 1.8 1.6 1.4 1.0

	5% significance values of the F-distribution for testing differences in variance estimates between two samples  
(one-tailed test). Additional values are given in Significance Table 23.1

Your value has to equal or be larger than the tabulated value to be significant at the 5% level.
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How the variance ratio (F-ratio) works
It is not possible to calculate the variance ratio directly on SPSS so here are the steps in the calculation. It is possible to 
use SPSS to calculate the variance estimates involved, as we show in the Computer Analysis.

Imagine a very simple piece of clinical research which involves the administration of electroconvulsive therapy (ECT). 
There are two experimental conditions: in one case the electric current is passed through the left hemisphere of the brain 
and in the other case it is passed through the right hemisphere of the brain. The dependent variable is scores on a test of 
emotional stability following treatment. Patients were assigned to one or other group at random. The scores following 
treatment were as listed in Table 22.2.

Quite clearly there is no difference in terms of the mean scores on emotional stability. Looking at the data, though, it 
looks as if ECT to the right hemisphere tends to push people to the extremes whereas ECT to the left hemisphere leaves 
a more compact distribution.

Explaining statistics 22.1

	 Figure 22.1	 Conceptual steps for understanding the variance ratio test

	 Table 22.2	 Emotional stability scores from a study of ECT to different hemispheres of the brain

Left hemisphere Right hemisphere

20 36

14 28

18 4

22 18

13 2

15 22

9 1

Mean = 15.9 Mean = 15.9
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To calculate the variance ratio, the variance estimates of the two separate samples (left and right hemispheres) have 
to be calculated using the usual variance estimate formula. The following is the computational formula version of this:

estimated variance =
aX2 -

1aX22

N
N - 1

Calculate the variance of the first group of scores (i.e. the left hemisphere group), as in Table 22.3. 
The sample size (number of scores) is N1 = 7. Substituting in the formula:

 variance estimate[group 1] =
aX1

2 -
1aX122

N1

N1 - 1
=

1879 - 1112

7
7 - 1

=
1879 - 12 321

7
6

 =
1879 - 1760.143

6
=

118.857
6

 = 19.81 (degrees of freedom = N1 - 1 = 6)

Step 1

	 Table 22.4	 Step 2 in the calculation of the variance estimate

X2 = right hemisphere X2
 2

36 1296

28 784

4 16

18 324

2 4

22 484

1 1

�X2 = 111 �X2
 2 = 2909

The variance estimate of the right hemisphere group is calculated using the standard computational  
formula as in Table 22.4. The sample size N2 = 7.

Step 2

	 Table 22.3	 Step 1 in the calculation of the variance estimate

X1 = left hemisphere X1
 2

20 400

14 196

18 324

22 484

13 169

15 225

9 81

�X1 = 111 ΣX1
 2 = 1879
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Substituting in the formula:

 variance estimate[group 2] =
aX2

2 -
1aX222

N2

N2 - 1
=

2909 - 1112

7
7 - 1

=
2909 - 12 321

7
6

 =
2909 - 1760.143

6
=

1148.857
6

 = 191.48 (degrees of freedom = N2 - 1 = 6)

The larger variance estimate is divided by the smaller:

F =
larger variance estimate

smaller variance estimate

= 191.48
19.81

= 9.67 (df larger variance estimate = 6, df smaller variance estimate = 6

We need to check whether or not a difference between the two variance estimates as large as this 
ratio implies would be likely if the samples came from the same population of scores. Significance 
Table 22.1 contains the critical values for the F-ratio. To use the table you find the intersection of 
the column for the degrees of freedom for the larger variance estimate and the degrees of freedom 
for the smaller variance estimate. Notice that the degrees of freedom we want are not listed for the 
numerator, so we take the next smaller listed value. Thus the table tells us we need a value of 4.4 at 
a minimum to be significant at the 5% level with a one-tailed test. Our calculated value of F is sub-
stantially in excess of the critical value. Thus we conclude that it is very unlikely that the two samples 
come from the same population of scores. We accept the hypothesis that the two sample variances 
are significantly different from each other.

Interpreting the results

The interpretation of the F-ratio test is simply a matter of examining the two variance estimates to see which is the larger 
value. If the F-ratio is statistically significant then the larger of the variance estimates is significantly larger than the smaller 
one.

Reporting the results

The results could be written up according to the APA (2010) Publication Manual recommendations as follows: ‘Despite 
there being no difference between the mean scores on emotionality following ECT to left and right brain hemispheres, 
the variance of emotionality was significantly higher for ECT to the right hemisphere, F(6, 6) = 9.67, p 6 .05. This 
suggests that ECT to the right hemisphere increases emotionality in some people but decreases it in others.’

Step 3

Step 4
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Comparing variances

Arden and Plomin (2006) were interested in determining whether greater variance in intelligence in males and 
females was found in early childhood. They compared the variance of intelligence in boys and girls at the ages 
of 2, 3, 4, 7, 9 and 10 and found greater variance in boys compared to girls at every age apart from at 2. In this 
analysis, they used Levene’s test of homogeneity of variance rather than the F-ratio which would have been an 
alternative test.

Ruscio and Roche (2012) addressed the question of the extent to which the parametric assumptions of statisti-
cal tests in terms of equality of variances (and normality) are met by researchers. The past evidence is that 
normality assumptions are frequently violated but sample variance inequality has received little attention. Ruscio 
and Roche took 455 studies published in top psychology journals and noted the variances of the different groups 
in each study on the dependent variable. It is an assumption that the variances of groups used in statistics such 
as ANOVA and the regular version of the t-test should be equal – that is, not differ significantly. It was found 
that the variances of groups in a study often varied significantly using the F-ratio test and similar procedures.

Vista and Care (2011) point to the scarcity of research on gender differences in intelligence in non-Western 
countries and evidence from Southeast Asia is uncommon. They administered a non-verbal intelligence test (the 
Naglieri Non-verbal Ability Test) to a national sample of 2700 public schoolchildren in the Philippines in three 
different age groups. Studying mean scores from the research showed very little by way of gender differences. 
The trend is non-existent or, at most, very trivial. However, this was not at all the case when variance ratio tests 
(F-ratios) were calculated. There was evidence of greater variability of scores for males compared with females 
in the upper half of the distribution of scores and the reverse trend of greater variability of scores for females 
compared to males in the lower part of the distribution of scores. Although the research provides little evidence 
of gender differences in intelligence, it raises important questions about the distribution of intelligence between 
the genders in this context.

Research examples

●	 Psychologists often fail to explore for differences in variances in their data. It is good practice to routinely 
examine your data for them where they might be meaningful.

●	 The F-ratio is a necessary adjunct to applying the unrelated t-test correctly. Make sure that you check that 
the variances are indeed similar before using the t-test.

●	 Be very careful when you use the F-ratio in the analysis of variance (Chapter 23 onwards). The F-ratio in the 
analysis of variance is not quite the same. In this you do not always divide the larger variance estimate by the 
smaller variance estimate.

Key points

M22 Introduction to Statistics in Psychology with SPSS 29099.indd   287 04/01/2017   17:15



288	 CHAPTER 22â•‡ Variance ratio test: F-ratio to compare two variances

Computer Analysis

F-ratio test using SPSS

Interpreting and reporting the output

●	 Decide which of the variance estimates is the larger. If the F-ratio is statistically significant then this 
variance is significantly larger than the smaller one.

●	 In APA recommended style you could write: ‘Despite there being no difference between the mean 
scores on emotionality following ECT to left and right brain hemispheres, the variance of 
emotionality was significantly higher for ECT to the right hemisphere, F(6, 6) = 9.67, p 6 .05. This 
suggests that ECT to the right hemisphere increases emotionality in some people but decreases it 
in others.’

Figure 22.2	 SPSS steps for computing variance
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	 Screenshot 22.1	 Data in ‘Data View’ 	 Screenshot 22.2	 On ‘Analyze’ select ‘Means. . . ’

	 Screenshot 22.3	 Move variables for analysis 	 Screenshot 22.4	 Select options

	 Screenshot 22.5	 Descriptive statistics output
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●	 The one-way analysis of variance (ANOVA) compares the variation in the means of a mini-
mum of two groups but is most commonly used when there are three or more mean scores 
to compare.

●	 This chapter concentrates on the case where the samples of scores are unrelated – that is, 
there is no relation between the samples and they consist of different people.

●	 The scores are the dependent variable, the groups are the independent variable.

●	 In essence, the ANOVA estimates the variance in the population due to the cell means 
(between variance) and the variance in the population due to random (or error) processes 
(within variance). These are compared using the F-ratio test.

●	 Error is variation which is not under the researcher’s control.

●	 A significant finding for the analysis of variance means that overall some of the means differ 
from each other.

Analysis of variance 
(ANOVA)
One-way unrelated or uncorrelated ANOVA

Chapter 23

Overview

Preparation

It is pointless to start this chapter without a clear understanding of how to calculate the basic 
variance estimate formula and the computational formula for variance estimate (Chapter 4).  
A working knowledge of the variance ratio test (F-ratio test) is also essential (Chapter 22).
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	 23.1	 Introduction

Up to this point we have discussed research designs comparing the means of just two groups 
of scores. The analysis of variance (ANOVA) can do this but in addition can extend the 
comparison to three or more groups of scores. Analysis of variance takes many forms but 
is primarily used to analyse the results of experiments. Nevertheless, the simpler forms of 
ANOVA are also routinely used in surveys and similar types of research. This chapter 
describes the one-way analysis of variance. This can be used whenever we wish to compare 
two or more groups in terms of their mean scores on a dependent variable. The scores must 
be independent (uncorrelated or unrelated). In other words, each respondent contributes 
just one score to the statistical analysis. Stylistically, Table 23.1 is the sort of research design 
for which the (uncorrelated or unrelated) one-way analysis of variance is appropriate.

Group 1 Group 2 Group 3 Group 4

9 3 1 27

14 1 4 24

11 5 2 25

12 5 31

	 Table 23.1	 Stylised table of data for unrelated analysis of variance

The scores are those on the dependent variable. The groups are the independent variable. 
There are very few limitations on the research designs to which this is applicable:

●	 It is possible to have any number of groups, with the minimum being two.

●	 The groups consist of independent samples of scores. For example the groups could 
be:

●	 men versus women

●	 an experimental versus one control group

●	 four experimental groups and one control group

●	 three different occupational types – managers, office personnel and production 
workers.

●	 The scores (the dependent variable) can be for virtually any variable. The main thing 
is that they are numerical scores suitable for calculating the mean and variance.

●	 It is not necessary to have equal numbers of scores in each group. With other forms of 
analysis of variance, not having equal numbers can cause complications.
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	 23.2	 Some revision and some new material

You should be familiar with most of the following. Remember the formula for 
variance:

variance[definitional formula] = a (X - X)2

N

If you wish to estimate the variance of a population from the variation in a sample from 
that population, you use the variance estimate formula which is:

variance estimate[definitional formula] = a (X - X)2

N - 1

(By dividing by N - 1 we get an unbiased estimate of the population variance from the 
sample data.)

It is useful if you memorise the fact that the top part of the formula, i.e. Σ(X - X)2 is 
called the sum of squares. It is the sum of the squared deviations from the mean. The 
phrase ‘sum of squares’ occurs repeatedly in all forms of the analysis of variance so cannot 
be avoided.

The bottom part of the variance formula (N) or variance estimate formula (N - 1) is 
called the degrees of freedom. In the analysis of variance it is a little complex in that the 
value of the degrees of freedom can vary. Nevertheless, memorising that the phrase 
‘degrees of freedom’ refers to the bottom part of the variance formulae is a useful start.

We can rewrite this formula as a computational formula:

variance estimate[computational formula] =
aX2 -

(aX)2

N
N - 1

	 23.3	 Theoretical considerations

The analysis of variance involves very few new ideas. However, some basic concepts are 
used in a relatively novel way. Unfortunately, most textbooks confuse readers by present-
ing the analysis of variance rather obscurely. In particular, they use a variant of the com-
putational formula for the calculation of the variance estimate, which makes following 
the logic of what is happening very difficult. This is a pity since the analysis of variance 
is relatively simple in many respects. The main problem is the number of steps that have 
to be coped with.

All measurement assumes that a score is made up of two components:

●	 the ‘true’ value of the measurement

●	 an ‘error’ component.

In other words, the score that is obtained through measurement consists of a True Score 
plus an Error component. This is illustrated in Figure 23.1. The obtained score component 
can take any value and so can the error component but they add up to the measured score. 
Error can take a positive or negative value.
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Most psychological measurements tend to have a large error component compared 
with the true component. Error results from all sorts of factors – tiredness, distraction, 
unclear instructions and so forth. Normally we cannot say precisely to what extent these 
factors influence our scores. It is further assumed that the ‘true’ and ‘error’ components 
add together to give the obtained scores (i.e. the data). So, for example, an obtained score 
of 15 might be made up of:

15[obtained score] = 12[true] + 3[error]

or an obtained score of 20 might be made up as follows:

20 = 24 + (-4)

We have no certain knowledge about anything other than the obtained scores. The true and 
error scores cannot be known directly. However, in some circumstances we can infer them 
through intelligent guesswork. It is not difficult to understand how this is done in ANOVA. 
So in the analysis of variance, each score is separated into the two components – true scores 
and error scores. This is easier than it sounds. Look at the data of some fictitious research in 
Table 23.2. It is a study of the effects of two different hormones and an inert (placebo) control 
on depression scores in men. Tables 23.3 and 23.4 give the best estimates possible of the 
‘true’ scores and ‘error’ scores in Table 23.2. Try to work out the simple ‘tricks’ we have 
employed. All we did to produce these two new tables was the following:

●	 In order to obtain a table of ‘true’ scores we have simply substituted the column mean for 
each group for the individual scores, the assumption being that the obtained scores deviate 
from the ‘true’ score because of the influence of varying amounts of error in the measure-
ment. In statistical theory, error is assumed to be randomly distributed. Thus we have 
replaced all of the scores for Group 1 by the mean of 9.667. The column mean is simply 
the best estimate of what the ‘true’ score would be for the group if we could get rid of the 
‘error’ component. As all of the scores are the same, there is absolutely no error compo-
nent in any of the conditions of Table 23.3. The assumption in this is that the variability 
within a column is due to error so the average score in a column is our best estimate of 
the ‘true’ score for that column. Notice that the column means are unchanged by this.

	 Figure 23.1	 Components of a measured score in ANOVA

Group 1
Hormone 1

Group 2
Hormone 2

Group 3
Placebo control

  9 4 3

12 2 6

  8 5 3

mean = 9.667 mean = 3.667 mean = 4.000

Overall mean = 5.778

	 Table 23.2	 Stylised table of data for unrelated analysis of variance with means
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●	 We have obtained the table of ‘error’ scores (Table 23.4) simply by subtracting the 
scores in the ‘true’ scores table away from the corresponding score in the original scores 
table (Table 23.2). What is not a ‘true’ score is an ‘error’ score by definition. Notice 
that the error scores show a mixture of positive and negative values, and that the sum 
of the error scores in each column (and the entire table for that matter) is zero. This is 
always the case with error scores and so constitutes an important check on your cal-
culations should you wish to try out ANOVA for yourself. An alternative way of 
obtaining the error scores is to take the column (or group) mean away from each score 
in the original data table. This, of course, will give you exactly the same values for the 
error component.

So what do we do now that we have the ‘true’ scores and ‘error’ scores? The two derived 
sets of scores – the ‘true’ and the ‘error’ scores – are used separately to estimate the vari-
ance of the population of scores from which they are samples. (That is, the calculated 
variance estimate for the ‘true’ scores is an estimate of the ‘true’ variation in the popula-
tion, and the calculated variance estimate of the ‘error’ scores is an estimate of the ‘error’ 
variation in the population.) Remember, the null hypothesis for this research would sug-
gest that differences between the three groups are due to error rather than real differences 
related to the influence of the independent variable. The null hypothesis suggests that both 
the ‘true’ and ‘error’ variance estimates are similar since they are both the result of error. 
If the null hypothesis is correct, the variance estimate derived from the ‘true’ scores should 
be no different from the variance estimate derived from the ‘error’ scores. After all, under 
the null hypothesis the variation in the ‘true’ scores is due to error anyway. If the alterna-
tive hypothesis is correct, then there should be rather more variation in the ‘true’ scores 
than is typical in the ‘error’ scores.

We calculate the variance estimate of the ‘true’ scores and then calculate the variance 
estimate for the ‘error’ scores. See Chapter 22 for a discussion of variance estimates. Next 

Group 1
Hormone 1

Group 2
Hormone 2

Group 3
Placebo control

9.667 3.667 4.000

9.667 3.667 4.000

9.667 3.667 4.000

mean = 9.667 mean = 3.667 mean = 4.000

Overall mean = 5.778

	 Table 23.3	 ‘True’ scores based on the data in Table 23.2

Group 1
Hormone 1

Group 2
Hormone 2

Group 3
Placebo control

-0.667    0.333 -1.000

   2.333 -1.667     2.000

-1.667    1.333 -1.000

mean = 0.000 mean = 0.000 mean = 0.000

Overall mean = 0.000

	 Table 23.4	 ‘Error’ scores based on the data in Table 23.2

M23 Introduction to Statistics in Psychology with SPSS 29099.indd   294 05/01/2017   15:14



	 23.3â•‡ Theoretical considerations	 295

the two variance estimates are examined to see whether they are significantly different 
using the F-ratio test (the variance ratio test). This involves the following calculation:

F =
variance estimate[of true scores]

variance estimate[of error scores]

(The error variance is always at the bottom in the analysis of variance. This is different 
from the F-ratio test described in the previous chapter. This is because we want to know 
if the variance estimate of the true scores is bigger than the variance estimate of the ‘error’ 
scores. We are not simply comparing the variances of two conditions.)

It is then a fairly straightforward matter to use Significance Table 23.1 for the F-dis-
tribution to decide whether or not these two variance estimates are significantly different 
from each other. We just need to be careful to use the appropriate numbers of degrees of 
freedom. The F-ratio calculation was demonstrated in Chapter 22. If the variance esti-
mates are similar then the variance in ‘true’ scores is little different from the variance in 
the ‘error’ scores; since the estimated ‘true’ variance is much the same as the ‘error’ vari-
ance in this case, both can be regarded as ‘error’. On the other hand, if the F-ratio is 
significant it means that the variation due to the ‘true’ scores is much greater than that 
due to ‘error’; the ‘true’ scores represent reliable differences between groups rather than 
chance factors.

As mentioned in Chapter 22, the F-ratio, unlike the t-test, is a one-tailed test. It simply 
determines whether the true variance estimate is bigger than the error variance estimate. 

Degrees of freedom for error or 
within cells mean square (or 
variance estimate)

Degrees of freedom for true or between-treatment mean square (or variance estimate)

1 2 3 4 5 ∞

1 161 or more 200 216 225 230 254

2 18.5 19.0 19.2 19.3 19.3 19.5

3 10.1 9.6 9.3 9.1 9.0 8.5

4 7.7 6.9 6.6 6.4 6.3 5.6

5 6.6 5.8 5.4 5.2 5.1 4.4

6 6.0 5.1 4.8 4.5 4.4 3.7

7 5.6 4.7 4.4 4.1 4.0 3.2

8 5.3 4.5 4.1 3.8 3.7 2.9

9 5.1 4.3 3.9 3.6 3.5 2.7

10 5.0 4.1 3.7 3.5 3.3 2.5

13 4.7 3.8 3.4 3.2 3.0 2.2

15 4.5 3.7 3.3 3.1 2.9 2.1

20 4.4 3.5 3.1 2.9 2.7 1.8

30 4.2 3.3 2.9 2.7 2.5 1.6

60 4.0 3.2 2.8 2.5 2.4 1.4

∞ 3.8 3.0 2.6 2.4 2.2 1.0

	 Significance	

Your value has to be equal or be larger than the tabulated value for an effect to be significant at the 5% level.

Table 23.1
�5% significance values of the F-ratio for unrelated ANOVA. Additional values are given in Significance Table 22.1
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The F-ratio cannot be smaller than zero. In other words, it is always positive. The 5% or 
.05 probability only applies to the upper or right-hand tail of the distribution. The larger 
the F-ratio is, the more likely it is to be statistically significant.

And that is just about it for the one-way analysis of variance. There is just one remain-
ing issue: the degrees of freedom. If one were to work out the variance estimate of the 
original data in our study we would use the formula as given above:

variance estimate[original data] =
aX2 -

1aX22

N
N - 1

where N - 1 is the number of degrees of freedom.
However, the calculation of the number of degrees of freedom varies in the analysis of 

variance (it is not always N - 1). With the ‘true’ and ‘error’ scores the degrees of freedom 
are a little more complex although easily calculated using formulae. But the idea of degrees 
of freedom can be understood at a more fundamental level with a little work as shown in 
the next section. Figure 23.2 gives the key steps for an unrelated analysis of variance.

	 Figure 23.2	 Conceptual steps for understanding the one-way analysis of variance

	 23.4	 Degrees of freedom

This section gives a detailed explanation of degrees of freedom. You may find it easier to 
return to this section when you are a little more familiar with ANOVA.

Degrees of freedom refer to the distinct items of information contained in your data. 
By information we mean something which is new and not already known. 
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Group 1
Hormone 1

Group 2
Hormone 2

Group 3
Placebo control

9.667 3.667 4.000

9.667 3.667 4.000

9.667 3.667 4.000

mean = 9.667 mean = 3.667 mean = 4.000

Overall mean = 5.778

	 Table 23.5	 ‘True’ scores based on the data in Table 23.2

For example, if we asked you what is the combined age of your two best friends and 
then asked you the age of the younger of the two, you would be crazy to accept a bet 
that we could tell you the age of your older best friend: the reason being that if you 
told us that the combined ages of your best friends was 37 years and that the younger 
was 16 years, any fool could work out that the older best friend must be 21 years. 
The age of your older best friend is contained within the first two pieces of informa-
tion. The age of your older friend is redundant because you already know it from your 
previous information.

It is much the same sort of idea with degrees of freedom – which might be better termed 
the quantity of distinct information.

Table 23.5 repeats the table of the ‘true’ scores that we calculated earlier as Table 23.3. 
The question is how many items of truly new information the table contains. You have 
to bear in mind that what we are looking at is the variance estimate of the scores which 
is basically their variation around the overall mean of 5.778. Don’t forget that the overall 
mean of 5.778 is our best estimate of the population mean under the null hypothesis that 
the groups do not differ.

Just how many of the scores in this table are we able to alter and still obtain this 
same overall mean of 5.778? For this table, we simply start rubbing out the scores one 
by one and putting in any value we like. So if we start with the first person in group 1 
we can arbitrarily set their score to 10.000 (or any other score you can think of). But, 
once we have done so, each score in group 1 has to be changed to 10.000 because the 
columns of the ‘true’ score table have to have identical entries. Thus the first column 
has to look like the column in Table 23.6 (the dashes represent parts of the table we 
have not dealt with yet). 

Group 1 Group 2 Group 3

10.000 – –

10.000 – –

10.000 – –

Mean = 10.000

Overall mean = 5.778

	 Table 23.6	 Insertion of arbitrary values in the first column
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We have been free to vary just one score so far. We can now move on to the group 2 
column. Here we can arbitrarily put in a score of 3.000 to replace the first entry. Once 
we do this then the remaining two scores in the column have to be the same because this 
is the nature of ‘true’ tables – all the scores in a column have to be identical (Table 23.7).

Thus so far we have managed to vary only two scores independently. We can now move 
on to group 3. We could start by entering, say, 5.000 to replace the first score, but there 
is a problem. The overall mean has to end up as 5.778 and the number 5.000 will not 
allow this to happen given that all of the scores in group 3 would have to be 5.000. There 
is only one number which can be put in the group 3 column which will give an overall 
mean of 5.778, that is 4.333 (Table 23.8).

We have not increased the number of scores we were free to vary by changing group 
3 – we have changed the scores but we had no freedom other than to put one particular 
score in their place. Thus we have varied only two scores in the ‘true’ scores table – notice 
that this is one less than the number of groups we have. We speak of the ‘true’ scores 
having two degrees of freedom.

It is a similar process with the error table. The requirements this time are (a) that the 
column averages equal zero and (b) that the overall average equals zero. This is because 
they are error scores which must produce these characteristics – if they do not they 
cannot be error scores. Just how many of the scores can we vary this time and keep 
within these limitations? (We have ‘adjusted’ the column means to ignore a tiny amount 
of rounding error.)

The answer is six scores (Table 23.9). The first two scores in each group can be varied 
to any values you like. However, having done this the value of the third score has to be 
fixed in order that the column mean equals zero. Since there are three equal-size groups 
then there are six degrees of freedom for the error table in this case.

Group 1 Group 2 Group 3

10.000 3.000 –

10.000 3.000 –

10.000 3.000 –

Mean = 10.000 Mean = 3.000

Overall mean = 5.778

	 Table 23.7	 Insertion of arbitrary values in the second column

Group 1 Group 2 Group 3

10.000 3.000 4.333

10.000 3.000 4.333

10.000 3.000 4.333

Mean = 10.000 Mean = 3.000 Mean = 4.333

Overall mean = 5.778

	 Table 23.8	 �Forced insertion of a particular value in the third column because of the 
requirement that the overall mean is 5.778
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Just in case you are wondering, for the original data table the degrees of freedom cor-
respond to the number of scores minus one. This is because there are no individual column 
constraints – the only constraint is that the overall mean has to be 5.778. The lack of 
column constraints means that the first eight scores could be given any value you like and 
only the final score is fixed by the requirement that the overall mean is 5.778. In other 
words, the variance estimate for the original data table uses N - 1 as the denominator –  
thus the formula is the usual variance estimate formula for a sample of scores. Also note 
that the degrees of freedom for the ‘error’ and ‘true’ scores tables add up to N - 1.

	 ■	 Quick formulae for degrees of freedom

Anyone who has difficulty with the above explanation of degrees of freedom should take 
heart. Few of us would bother to work out the degrees of freedom from first principles. 
It is much easier to use simple formulae. For the one-way analysis of variance using unre-
lated samples, the degrees of freedom are as follows:

N = number of scores in the table

degrees of freedom[original data] = N - 1

degrees of freedom['true' scores] = number of columns - 1

degrees of freedom['error' scores] = N - number of columns

This is not cheating – most textbooks ignore the meaning of degrees of freedom and 
merely give the formulae anyway.

Group 1 Group 2 Group 3

-0.667   0.333 -1.000

   2.333 -1.667     2.000

-1.667    1.333 -1.000

Mean = 0.000 Mean = 0.000 Mean = 0.000

Overall mean = 0.000

	 Table 23.9	 ‘Error’ scores based on the data in Table 23.2

How the unrelated/uncorrelated one-way analysis of 
variance works
Step-by-step, the following is the calculation of the analysis of variance.

	 �Draw up your data table using the format shown in Table 23.10. The degrees of freedom for this 
table are the number of scores minus one = 9 - 1 = 8.

Step 1

Explaining statistics 23.1

➜

M23 Introduction to Statistics in Psychology with SPSS 29099.indd   299 05/01/2017   15:14



300	 CHAPTER 23â•‡ Analysis of variance (ANOVA): One-way unrelated or uncorrelated ANOVA

Although this is not absolutely necessary you can calculate the variance estimate of your data table as a 
computational check – the sum of squares for the data table should equal the total of the sums of squares 
for the separate components. Thus, adding together the true and error sums of squares should give the 
total sum of squares for the data table. Similarly, the data degrees of freedom should equal the total of the 
true and error degrees of freedom. We will use the computational formula:

variance estimate[original data] =
aX2 -

1aX22

N
df

ΣX2 means square each of the scores and then sum these individual calculations:

 aX2 = 92 + 42 + 32 + 122 + 22 + 62 + 82 + 52 + 32

 = 81 + 16 + 9 + 144 + 4 + 36 + 64 + 25 + 9

 = 388

(ΣX)2 means add up all of the scores and then square the total:

1aX22 = (9 + 4 + 3 + 12 + 2 + 6 + 8 + 5 + 3)2 = (52)2 = 2704

The number of scores N equals 9. The degrees of freedom (df) equal N - 1 = 9 - 1 = 8. Substituting 
in the formula:

 variance estimate[original data] =
aX2 -

1aX22

N
df

=
388 -

2704
9

8

 =
388 - 300.444

8
=

87.556
8

= 10.944

Draw up Table 23.11 of ‘true’ scores by replacing the scores in each column by the column mean.

 aX2 = 9.6672 + 3.6672 + 4.0002 + 9.6672 + 3.6672 + 4.0002 + 9.6672 + 3.6672 + 4.0002

 = 93.451 + 13.447 + 16.000 + 93.451 + 13.447 + 16.000 + 93.451 + 13.447 + 16.000

 = 368.694

 1aX22 = (9.667 + 3.667 + 4.000 + 9.667 + 3.667 + 4.000 + 9.667 + 3.667 + 4.000)2

 = (52.000)2 = 2704

Step 2

Group 1
Hormone 1

Group 2
Hormone 2

Group 3
Placebo control

  9 4 3

12 2 6

  8 5 3

mean = 9.667 mean = 3.667 mean = 4.000

Overall mean = 5.778

	 Table 23.10	 Data table for an unrelated analysis of variance
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The number of scores N equals 9. The degrees of freedom (df) are given by:

degrees of freedom[true scores] = number of columns - 1 = 3 - 1 = 2

We can now substitute in the formula:

 variance estimate[true scores] =
aX2 -

1aX22

N
df

 =
368.694 -

2704
9

2

 =
368.964 - 300.444

2

 = 68.250
2

= 34.125

Draw up the table of the ‘error’ scores (Table 23.12) by subtracting the ‘true’ scores table from the 
original data table (Table 23.10). Remember all you have to do is to take the corresponding scores in 
the two tables when doing this subtraction. The alternative is to take the appropriate column mean 
away from each score in your data table.

variance estimate[error] =
aX2 -

1aX22

N
df

 aX2 = (-0.667)2 + 0.3332 + (-1.000)2 + 2.3332

+ (-1.667)2 + 2.0002 + (-1.667)2 + 1.3332 + (-1.000)2

 = 0.445 + 0.111 + 1.000 + 5.443 + 2.779 + 4.000 + 2.779 + 1.777 + 1.000

 = 19.334

 1aX22 = [(-0.667) + 0.333 + (-1.000) + 2.333 + (-1.667) + 2.000

 + (-1.667) + 1.333 + (-1.000)]

 = 0

The number of scores N equals 9. The degrees of freedom (df) equal N minus the number of columns, 
i.e. 9 - 3 = 6. We can now substitute in the above formula:

Step 3

Group 1 Group 2 Group 3

9.667 3.667 4.000

9.667 3.667 4.000

9.667 3.667 4.000

mean = 9.667 mean = 3.667 mean = 4.000

Overall mean = 5.778

	 Table 23.11	 ‘True’ scores based on the data in Table 23.10

➜
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	 23.5	 Analysis of variance summary table

The analysis of variance calculation can get very complicated with complex experimental 
designs. In preparation for this, it is useful to get into the habit of recording your analysis 
in an analysis of variance summary table. This systematically records major aspects of the 
calculation. Table 23.13 is appropriate for this. Notice that the sums of squares for ‘true’ 
and ‘error’ added together are the same as the sum of squares of the original data (allow-
ing for rounding errors). Don’t forget that the sum of squares is simply the upper part of 
the variance estimate formula. Similarly the degrees of freedom of ‘true’ and ‘error’ scores 
added together give the degrees of freedom for the original data. The degrees of freedom 
are the lower part of the variance estimate formula.

In Table 23.13, we have used the terminology from our explanation. This is not quite 
standard in discussions regarding the analysis of variance. It is more usual to see the analysis 
of variance summary table in the form of Table 23.14 which uses slightly different terms.

Tables 23.13 and 23.14 are equivalent except for the terminology and the style of 
reporting significance levels:

variance estimate[error] =
aX2 -

1aX22

N
df

=
19.334 -

0
9

6
= 3.222

We can now work out the F-ratio by dividing the variance estimate[true scores] by the variance 
estimate[error scores] :

 F-ratio =
variance estimate[true scores]

variance estimate[error scores]

 =
34.125
3.222

 = 10.59 (degrees of freedom = 2 for true and 6 for error)

Note that this value is very similar to that provided by SPSS in Screenshot 23.5.
From Significance Table 23.1, we need a value of F of 5.1 or more to be significant at the 5% level of 

significance. Since our value of 10.59 is substantially larger than this, we can reject the null hypothesis and 
accept the hypothesis that the groups are significantly different from each other at the 5% level of 
significance.

Step 4

Group 1 Group 2 Group 3

-0.667     0.333 -1.000

    2.333 -1.667     2.000

-1.667    1.333 -1.000

Mean = 0.000 Mean = 0.000 Mean = 0.000

Overall mean = 0.000

	 Table 23.12	 ‘Error’ scores based on the data in Table 23.10
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●	 ‘Mean square’ is analysis of variance terminology for variance estimate. Unfortunately 
the name ‘mean square’ loses track of the fact that it is an estimate and suggests that 
it is something new.

●	 ‘Between’ is another way of describing the variation due to the ‘true’ scores. The idea 
is that the variation of the ‘true’ scores is essentially the differences between the groups 
or experimental conditions. Sometimes these are called the ‘treatments’.

●	 ‘Within’ is just another way of describing the ‘error’ variation. It is called ‘within’ since the 
calculation of ‘error’ is based on the variation within a group or experimental condition.

●	 Total is virtually self-explanatory – it is the variation of the original scores which com-
bine ‘true’ and ‘error’ components.

	 ■	 Interpreting the results

The most important step in interpreting your data is simple. You need a table of the means 
for each of the conditions such as Table 23.10. It is obvious from this table that two of 
the cell means are fairly similar whereas the mean of Group 1 is relatively high. This 
would suggest to an experienced researcher that if the one-way analysis of variance is 
statistically significant, then a multiple comparisons test (Chapter 26) is needed in order 
to test for significant differences between pairs of group means.

	 ■	 Reporting the results

The results of this analysis could be written up following the APA (2010) Publication 
Manual recommendations as: ‘The data were analysed using an unrelated one-way analysis 
of variance. It was found that there was a significant effect of the independent variable drug 
treatment on the dependent variable depression, F (2, 6) = 10.59, p 6 .05. The mean for 
the hormone 1 group (M = 9.67, 95% CI [4.50, 14.84]), appears to indicate greater 
depression scores than for the hormone 2 group (M = 3.67, 95% CI [-0.13, 7.46])  
and the placebo control (M = 4.00, 95% CI [-0.30, 8.30]).’ (see Screenshot 23.5).

Source of 
variation

Sum of 
squares

Degrees of 
freedom

Variance 
estimate

F-ratio Significance

‘True’ scores 68.222 2 34.111 10.6 5%

‘Error’ scores 19.334 6 3.222

Original data 87.556 8 10.944

	 Table 23.13	 Analysis of variance summary table for unrelated ANOVAs

Source of 
variation

Sum of squares Degrees of 
freedom

Mean square F-ratio

Between groups 68.222 2 34.111 10.6*

Within groups 19.334 6 3.222

Total 87.556 8 10.944

	
Table 23.14

	 �Analysis of variance summary table for unrelated ANOVAs using alternative 
terminology

* Significant at 5% level.
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Of course, you can use Appendix J to test for significance at other levels.
In order to test whether the mean for group 1 is significantly greater than for the other 

two groups, it is necessary to apply a multiple comparisons test such as the Scheffé test 
or Tukey test (Chapter 26) if the differences had not been predicted. The outcome of this 
should also be reported.

Unrelated one-way ANOVA

Carolan and Power (2011) asked about the sorts of emotion experienced by those diagnosed with bipolar dis-
orders. One relevant theoretical model (SPAARS) suggests that mania involves mainly the emotions of happiness 
and anger in combination. In contrast, depression (including bipolar) involves predominantly the emotions of 
sadness and disgust. The structured clinical interview was used to confirm the clinical group (mania or depres-
sion) to which the person belonged. The participants’ mood states were measured using different psychological 
measures: 1) the Beck Depression Inventory, 2) the State-Trait Anxiety Inventory and 3) a Mania Scale and a 
Basic Emotions Scale. One-way unrelated ANOVAs compared the bipolar, unipolar and control groups in terms 
of the emotions primarily experienced. The analysis clearly showed that for the bipolar condition (mania) the 
emotions of happiness, anger and fear tended to be significantly higher. However, in depressed states the most 
elevated emotions are fear, sadness, disgust and anger. The findings tended to support the SPAARS model well.

Edenfield, Adams and Briihl (2012) studied adult relationship attachment style in post-secondary level students. 
Their research focus was on the relationship maintenance strategies employed by those manifesting the differ-
ent attachment styles (e.g. secure, fearful, dismissive). Measurement instruments were 1) for relationship style 
the Experiences in Close Relationships Inventory and 2) for relationship maintenance strategies the Relationship 
Maintenance Questionnaire. The participants were sorted into the different relationship attachment style 
groups. These groups were then used in an unrelated one-way ANOVA in order to examine the characteristic 
use of each of the relationship maintenance tactics as measured by the Relationship Maintenance Question-
naire. The avoidance relationship maintenance style was characteristic of the fearful and dismissive relationship 
style. This style was associated with fewer assurances, less positivity and less openness.

Frank and his colleagues (2012) tested whether intolerance for uncertainty is significantly higher in women with 
the eating disorders of 1) bulimia or 2) anorexia nervosa than ‘healthy’ women. They found a significant effect 
with a one-way analysis of variance. To determine which of the three groups differed significantly from one 
another the Tukey post hoc test was employed. Intolerance of uncertainty was significantly higher in women 
with bulimia or anorexia nervosa than in the healthy women.

Jenkins and colleagues (2012) investigated whether eating disorder pathology, general psychopathology and 
quality of life varied in five groups of female students who differed in whether they over-ate and had lost control 
of their over-eating. They used a one-way ANOVA to show that there was a significant effect for the groups. 
They then used Tukey B post hoc tests to see which groups differed from each other. Groups which had lost 
control of their over-eating showed significantly greater eating disorder pathology, greater general psychopa-
thology and lower quality of life than groups which had not lost control.

MacCabe and co-workers (2012) addressed whether neurocognitive impairment is a central characteristic defi-
cit in schizophrenics. There are, however, schizophrenic patients in the superior intelligence range. MacCabe et 
al. studied schizophrenics with a pre-illness IQ of 115 or greater in order to assess their neuropsychological 
profile. Thirty-four patients meeting the DSM-1V diagnostic requirements for schizophrenia were used in the 
study. Their mean pre-illness IQ estimate was 120 IQ points. They were divided into two groups – those whose 
IQ had declined by 10 IQ points from their pre-illness estimate and those whose IQ had not declined in this way. 
The IQs of these were compared with a group of matched healthy controls and another sample of typical 

Research examples
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schizophrenia patients. These various groups were compared using the one-way unrelated ANOVA plus Bonfer-
roni adjusted comparisons (see Chapter 26). It was not possible to distinguish schizophrenia patients whose IQs 
were in the superior range statistically from the matched healthy controls on any of the neurocognitive tests. 
Furthermore, their relative performances on the various subtests (e.g. picture completion, letter-number 
sequencing, and forward and backward memory of digits) were indistinguishable from typical schizophrenia 
patients. In other words, intellectually superior schizophrenia patients are not characterised at all by gross 
neuropsychological deficits.

Meeten and Davey (2012) researched the question of whether manipulating mood by showing participants one 
of five films influenced their emotions. The five mood conditions were sad, happy, anxious, angry and neutral. These 
five conditions were rated on the four mood scales of sadness, happiness, anxiety and anger. There was a significant 
one-way ANOVA effect for each mood rating. Planned t-tests showed that sadness was highest in the sad condition, 
happiness in the happy condition, anxiety in the anxious condition and anger in the angry condition.

Sierra, Livianos and Rojo (2005) researched the question whether the eight subscale scores of a measure of 
quality of life in patients with bipolar depression differed according to four categories of marital status and eight 
categories of employment status. None of the one-way ANOVAs for either of these variables was statistically 
significant showing that these quality of life indices did not differ according to marital or employment status.

Tyson and colleagues (2010) looked at the association between physical activity and anxiety and depression in 
a student sample. They broke down physical activity into three groups of low, medium and high physical activity 
and used a one-way analysis to determine whether anxiety and depression differed significantly between the 
three groups. They found a significant difference for both dependent variables – anxiety and depression. They 
used post hoc tests to determine which groups differed significantly. They found that the lowest level of anxiety 
and depression was shown by the high physical activity group and the highest level of anxiety and depression 
was shown by the low physical activity group.

●	 The t-test is simply a special case of one-way ANOVA, so these tests can be used interchangeably when you 
have two groups of scores. They give identical significance levels. The square of the two-tailed t-value equals 
the one-tailed F-value (e.g. 1.962 = 3.8416) and the square root of the one-tailed F-value equals the two-

	 tailed t-value (e.g. 23.8416 = 1.96).

●	 Do not be too deterred by some of the strange terminology used in the analysis of variance. Words like treat-
ments and levels of treatment merely reveal the agricultural origins of these statistical procedures; be warned 
that it gets worse. Levels of treatment simply refer to the number of different conditions for each independ-
ent variable. Thus if the independent variable has three different values it is said to have three different levels 
of the treatment.

●	 The analysis of variance with just two conditions or sets of scores is relatively easy to interpret. You merely 
have to examine the difference between the means of the two conditions. It is not so easy where you have 
three or more groups. Your analysis may not be complete until you have employed a multiple comparisons 
procedure as in Chapter 26. Which multiple comparisons test you use may be limited by whether your ANOVA 
is significant or not.

●	 When the F-ratio is statistically significant for a one-way analysis of variance with more than two groups, you 
need to determine which groups differ significantly from each other. If you had good grounds for predicting 
which groups differed, you could use an unrelated t-test to see if the difference was significant (see  
Chapter 14). If you did not have a sound basis for predicting which groups differed, you would use a multiple 
comparison test such as the Scheffé test (Chapter 26).

Key points

M23 Introduction to Statistics in Psychology with SPSS 29099.indd   305 05/01/2017   15:14



306	 CHAPTER 23â•‡ Analysis of variance (ANOVA): One-way unrelated or uncorrelated ANOVA

Computer Analysis

Unrelated one-way analysis of variance using SPSS

Interpreting and reporting the output

●	 Start with the table of means for each of the conditions of study. Ask yourself what the pattern of 
different means implies. In this case, one of the means seems to be very different from the other two. 
The implication of this is that a multiple comparison test such as explained in Chapter 26 would be 
helpful.

●	 An APA (2010) style write-up for this analysis might be: ‘Using a one-way analysis of variance, it was 
found that there was a significant effect of the independent variable drug treatment on the 
dependent variable depression, F(2, 6) = 10.59, p 6 .05. The mean for the hormone 1 group 
(M = 9.67, 95% CI [4.50, 14.84]) appears to indicate greater depression scores than for the hormone 
2 group (M = 3.67, 95% CI [-0.13, 7.46]) and the placebo control (M = 4.00, 95% CI [-0.30, 8.30]).’

●	 The partial eta squared hp
 2) effect size can be obtained by conducting this analysis with the General 

Linear Model (see Box 9.1). 

	 Figure 23.3	  SPSS steps for one-way analysis of variance
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	 Screenshot 23.3	 Move variables for analysis

	 Screenshot 23.2	 On ‘Analyze’ select ‘One-Way ANOVA . . . ’ 

	 Screenshot 23.4	 Select ‘Statistics’ Options

	 Screenshot 23.1	 Data in ‘Data View’

	 Screenshot 23.5	 One-way ANOVA output
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●	 The related analysis of variance is used to compare two or more related samples of means: 
for example, when the same group of participants is assessed three times on a measure. That 
is, measurement takes place under a number of conditions.

●	 The scores are the dependent variable, the different occasions on which the measure is 
taken constitute the independent variable.

●	 Because individuals are measured more than once, it is possible to estimate the impact of 
the characteristics of the individual on the scores. This allows a separate assessment of the 
variation in the data due to these individual differences. Effectively this variation can be 
removed from the data.

●	 The amount of error variance is lower in related designs since the variation due to individual 
differences is removed. What remains of the error is known as the ‘residual’ or residual error. 
The value of the residual is compared to the variation due to the condition using the F-ratio.

●	 A significant value of the F-ratio shows that the means in the conditions differ from each 
other overall. It does not tell you that all the means differ overall or that different pairs of 
means differ from each other. These differences are tested for separately using a multiple 
comparisons procedure.

ANOVA for correlated 
scores or repeated 
measures

Chapter 24

Overview

Preparation

You need a good understanding of the unrelated/uncorrelated analysis of variance (Chapter 23). 
In addition, the difference between correlated/related samples and unrelated/uncorrelated sam-
ples (or repeated measures) should be revised.
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	 24.1	 Introduction

The analysis of variance covered in this chapter is also called the related, related scores, 
related samples, repeated measures and matched analysis of variance.

Correlated or related research designs are held to be efficient forms of planning research. 
Generally these designs involve the same group of participants being assessed in two or 
more research conditions. The assumption is that by doing so, many of the differences 
between people are ‘allowed for’ by having each person ‘serve as their own control’ – that 
is, appear in all of the research conditions.

The different sets of scores in the related or correlated analysis of variance are essen-
tially different treatment conditions. We can describe them as either different levels of the 
treatment or different experimental conditions (Table 24.1).

Case Treatment 1 Treatment 2 Treatment 3 Treatment 4

Case 1 (John) 9 14 6 18

Case 2 (Heather) 7 12 9 15

Case 3 (Jane) 5 11 6 17

Case 4 (Tracy) 10 17 12 24

Case 5 (Paul) 8 15 7 19

	 Table 24.1	 Stylised research design for the analysis of variance

The numerical scores are scores on the dependent variable. They can be any measures 
for which it is possible to calculate their means and variances meaningfully, in other 
words basically numerical scores. The treatments are the levels of the independent vari-
able. There are very few limitations to the use of this research design:

●	 It is possible to have any number of treatments with two being the minimum.

●	 The groups should consist of related or correlated sets of scores. For example:

●	 Children’s IQs assessed at the age of 5 years, then again at 8 years and finally at  
10 years (Table 24.2).

●	 Studies with several experimental and control conditions such as that illustrated in 
Table 24.3 in which each participant takes part in every condition. The study is one 
of reaction time to emotive words. It is usual to counterbalance the order in which 
the participant is run through the different conditions.

●	 A group of weight-watchers’ weights before and after dieting. The dependent vari-
able is their weight in pounds (Table 24.4).

Child Age 5 years Age 8 years Age 10 years

John 120 125 130

Paula 93 90 100

Sharon, etc. 130 140 110

	 Table 24.2	 Research design of IQ assessed sequentially over time
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●	 It is necessary to have equal numbers of scores in each group since this is a related 
subjects or repeated measures design. Obviously in the above examples we have used 
small numbers of cases.

The related/correlated analysis of variance can also be applied when you have matched 
sets of people (Table 24.5). By this we mean that although there are different people in 
each of the treatment conditions, they are actually very similar. Each set is as alike as 
possible on specified variables such as age or intelligence. One member of each matched 
set is assigned at random to each of the treatment conditions. The variables forming the 
basis of the matching are believed or known to be correlated with the dependent variable. 
There is no point in matching if they are not. The purpose of matching is to reduce the 
amount of ‘error’ variation.

Subject Four-letter
words

Mild swear
words

Neutral
words

Nonsense 
syllables

Darren 0.3 0.5 0.2 0.2

Lisa, etc. 0.4 0.3 0.3 0.4

	
Table 24.3

	 �Reaction time in seconds comparing two experimental conditions with two 
control conditions

Dieter Before diet After diet

Ben 130 120

Claudine, etc. 153 141

	 Table 24.4	 Weight in pounds before and after dieting

Matched set Treatment 1 Treatment 2 Treatment 3 Treatment 4

Matched set 1 9 14 6 18

Matched set 2 7 12 9 15

Matched set 3 5 11 6 17

Matched set 4 10 17 12 24

Matched set 5 8 15 7 19

	 Table 24.5	 Stylised ANOVA design using matched samples

One advantage of using matched sets of people in experiments rather than the 
same person in several different treatment conditions is their lack of awareness of 
the other treatment conditions. That is, they only respond in one version of the 
experimental design and so cannot be affected by their experience of the other condi-
tions. Matching can be done on any variables you wish but it can get cumbersome if 
there are too many variables on which to match. So, for example, if you believed that 
age and sex were related to the dependent variable, you could control for these 
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variables by using matched sets which contained people of the same sex and a very 
similar age. In this way variation due to sex and age is equally spread between the 
different treatments or conditions. Thus, matched set 1 might consist of four people 
matched in that they are all females in the age range 21–25 years. Each one of these 
is randomly assigned to one of the four treatment conditions. Matched set 2 might 
consist of four males in the age range 16–20 years. Once again, one of each of these 
four people is randomly assigned to one of the four treatment conditions.

	 24.2	 Theoretical considerations underlying the computer analysis

It is a very small step from the uncorrelated to the correlated analysis of variance. All 
that is different in the correlated ANOVA is that the error scores are reduced (or 
adjusted) by removing from them the contribution made by individual differences. The 
basic idea is shown in Figure 24.1. By an individual difference we mean the tendency 
of a particular person to score generally high or generally low irrespective of the 
research treatment or condition they are being tested in. So, for example, bright people 
will tend to score higher on tests involving intellectual skills no matter what the test 
is. Less bright people may tend to score relatively poorly no matter what the intellec-
tual test is. In uncorrelated research designs there is no way of knowing the contribu-
tion of individual differences. In effect, the individual differences have to be lumped 
together with the rest of the variance which we have called error. But repeated/related/
correlated designs allow us to subdivide the error variance into two sorts: a) that which 
is explained (as individual differences) and b) that which remains unexplained (or 
residual error variance).

	 Figure 24.1	 How scores are broken up in related ANOVA

So far we have discussed error variance as if it were purely the result of chance  
factors, but error variance is to some extent explicable in theory – the problem is that 
we do not know what causes it. If we can get an estimate of the contribution of an 
individual’s particular characteristics to their scores in our research we should be able 
to revise the error scores so that they no longer contain any contribution from the 
individual differences of that participant. (Remember that individual differences are 
those characteristics of individuals which tend to encourage them to score generally 
high or generally low on the dependent variable.) Figure 24.2 shows the key steps in 
related ANOVA.
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	 24.3	 Examples

Once we have measured the same participant twice (or more) then it is possible to estimate 
the individual difference. Take the data from two individuals given in Table 24.6. Looking 
at these data, we can see the participants’ memory ability for both words and numbers. 
It is clear that Ann Jones tends to do better on these memory tasks irrespective of the 
precise nature of the task; John Smith generally does worse no matter what the task. 
Although both of them seem to do better on memory for numbers, this does not alter the 
tendency for Ann Jones to generally do best overall. This is not measurement error but a 
general characteristic of Ann Jones. On average, Ann Jones tends to score six points above 
John Smith or three points above the overall mean of 15.5 and John Smith tends to score 
three points below the overall mean of 15.5. In other words, we can give a numerical 
value to their individual difference relative to the overall mean.

Subject Memory for words Memory for numbers Row mean

Ann Jones 17 20 18.5

John Smith 11 14 12.5

Overall mean = 15.5

	 Table 24.6	 Individual differences for two people

	 Figure 24.2	 Conceptual steps for related ANOVA
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A physiological psychologist is researching the effects of different pain-relieving drugs 
on the amount of relief from pain that people experience in a controlled trial. In one 
condition people are given aspirin, in another condition they are given the trial drug 
product X, and in the third condition (the control condition) they are given a dummy 
tablet which contains no active ingredient (this is known as a placebo). The amount of 
relief from pain experienced in these conditions is rated by each of the participants. The 
higher the score, the more pain relief. Just to be absolutely clear, participant 1 (Bob Rob-
ertson) gets a relief from pain score of 7 when given one aspirin, 8 when given product 
X and 6 when given the inactive placebo tablet (Table 24.7). It is obvious that Bob Rob-
ertson tends to get the most relief from pain (the row mean for Bob is the highest there 
is) because of the tablets whereas Bert Entwistle tends to get the least relief from pain (his 
row mean is the lowest there is).

Participant Aspirin Product X Placebo Row mean

Bob Robertson 7 8 6 7.000

Mavis Fletcher 5 10 3 6.000

Bob Polansky 6 6 4 5.333

Ann Harrison 9 9 2 6.667

Bert Entwistle 3 7 5 5.000

Column mean 6.000 8.000 4.000 Overall mean = 6.000

	 Table 24.7	 Pain relief scores from a drugs experiment

Participant Overall mean Row mean
Adjustment needed to error scores to 

allow for individual differences (overall 
mean – row mean)

Bob Robertson 6.000 7.000 -1.000

Mavis Fletcher 6.000 6.000 0.000

Bob Polansky 6.000 5.333 0.667

Ann Harrison 6.000 6.667 -0.667

Bert Entwistle 6.000 5.000 1.000

	 Table 24.8	 Amount of adjustment of Table 24.7 for individual differences

The related/correlated scores analysis of variance is different in that we make adjust-
ments for these tendencies for individuals to typically score generally high or generally 
low or generally in the middle. We simply subtract each person’s row mean from the 
table’s overall mean of 6.000 to find the amount of adjustment needed to each person’s 
score in order to ‘eliminate’ individual differences from the scores. Thus for Bob Robert-
son we need to add -1 (i.e. 6.000 - 7.000) to each of his scores in order to overcome 
the tendency of his scores to be 1.000 higher than the overall mean (i.e. average score in 
the table). Do not forget that adding -1 is the same as subtracting 1. Table 24.8 shows 
the amount of adjustment needed to everyone’s scores in order to eliminate individual 
differences.

Apart from the adjustment for individual differences, the rest of the analysis of variance 
is much as in Chapter 23.
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How correlated samples analysis of variance works
The end point of our calculations is the analysis of variance summary table (Table 24.9). Hopefully by the time we reach 
the end of our explanation you will understand all of the entries in this table.

To begin, you need to tabulate your data. We will use the fictitious relief from pain experiment 
described above. This is given in Table 24.10.

Step 1

Explaining statistics 24.1

Participant Aspirin Product X Placebo Row mean

Bob Robertson 7 8 6 7.000

Mavis Fletcher 5 10 3 6.000

Bob Polansky 6 6 4 5.333

Ann Harrison 9 9 2 6.667

Bert Entwistle 3 7 5 5.000

Column mean 6.000 8.000 4.000 Overall mean = 6.000

	 Table 24.10	 Pain relief scores from a drugs experiment

Source of variation Sum of squares Degrees of freedom Mean square (or 
variance estimate)

F-ratio Probability (sig.)

Between treatments 40.00 2 20.00 5.10 5% (i.e. drugs)

Between people (i.e. 
individual differences)

8.67 4 2.17

Error (i.e. residual) 31.33 8 3.92

Total 80.00 14

	 Table 24.9	 Analysis of variance summary table

If you wish, you may calculate the variance estimate of this table using the standard variance estimate formula. As this 
is generally only a check on your calculations, it is unnecessary for our present purposes since it contains nothing new. 
If you do the calculation then you should find that the sum of squares is 80 and the degrees of freedom 14 which would 
give a variance estimate value of 5.71 (i.e. 80 divided by 14). The first two pieces of information are entered into the 
analysis of variance summary table.

We then produce a table of the ‘true’ scores. Remember that ‘true’ scores are usually called the 
‘between’ or ‘between groups’ scores in analysis of variance. To do this, we simply  
substitute the column mean for each of the individual scores in that column so leaving no vari-
ation within the column – the only variation is between the columns. The results are given in 
Table 24.11.

Step 2
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The estimated variance of these data can be calculated using the standard computational formula:

estimated variance[true/between scores] =
aX2 -

1aX22

N
df

 aX2 = 6.0002 + 8.0002 + 4.0002 + 6.0002 + 8.0002 + 4.0002 + 6.0002 + 8.0002 + 4.0002

+ 6.0002 + 8.0002 + 4.0002 + 6.0002 + 8.0002 + 4.0002

 = 36.000 + 64.000 + 16.000 + 36.000 + 64.000 + 16.000 + 36.000 + 64.000

+ 16.000 + 36.000 + 64.000 + 16.000 + 36.000 + 64.000 + 16.000

 = 580

 1a  X22 = (6.000 + 8.000 + 4.000 + 6.000 + 8.000 + 4.000 + 6.000 + 8.000 + 4.000

+ 6.000 + 8.000 + 4.000 + 6.000 + 8.000 + 4.000)2

 = (90)2

= 8100

The number of scores N equals 15. The degrees of freedom (df) equals the number of columns of data 
minus 1 (3 - 1 = 2). Substituting in the formula:

 estimated variance[true/between scores] =
aX2 -

(aX)2

N
df

 =
580 -

8100
15

2

 =
580 - 540

2
=

40
2

 = 20.0

Note that this is the same value as given by SPSS in the first line of factor1 in the output table in  
Screenshot 24.5.

The error table is now calculated as an intermediate stage. As ever, this is done by subtracting 
the true/between scores from the scores in the original data table (see Table 24.12). Alternatively, 
we subtract the column mean from each of the scores in the data table.

Step 3

➜

Participant Aspirin Product X Placebo Row mean

Bob Robertson 6.000 8.000 4.000 6.000

Mavis Fletcher 6.000 8.000 4.000 6.000

Bob Polansky 6.000 8.000 4.000 6.000

Ann Harrison 6.000 8.000 4.000 6.000

Bert Entwistle 6.000 8.000 4.000 6.000

Column mean 6.000 8.000 4.000 Overall mean = 6.000

	 Table 24.11	 ‘True’ scores (obtained by replacing each score in a column by its column mean)
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This is essentially our table of ‘error’ scores, but since the row means vary (Bert Entwistle’s is -1.000 
but Mavis Fletcher’s is 0.000) then we still have to remove the effects of the individual differences. This 
we do simply by taking away the row mean from each of the error scores in the row. That is, we take 
1.000 away from Bob Robertson’s error scores, 0.000 from Mavis Fletcher’s, -0.667 from Bob Polansky’s, 
0.667 from Ann Harrison’s and -1.000 from Bert Entwistle’s. (Don’t forget that subtracting a negative 
number is like adding a positive number.) This gives us a revised table of error scores without any indi-
vidual differences. It is usually called the residual scores table in analysis of variance, but it is just a more 
refined set of error scores (Table 24.13).

Notice that both the column and row means now equal zero. This is because not only have the ‘true’ 
or between scores been removed from the table but the individual differences are now gone. We need to 
check out the degrees of freedom associated with this table. There are more constraints now because the 
row totals also have to equal zero. Thus in the aspirin column we can adjust four scores, but the fifth score 
is fixed by the requirement that the mean equals zero. In the product X condition we can again vary four 
scores. However, once we have made these changes, we cannot vary any of the scores in the placebo condi-
tion because the row means have to equal zero. In other words, there is a total of eight degrees of freedom 
in the residual error scores.
The formula for the degrees of freedom is quite straightforward:

degrees of freedom[residual error scores] = (number of columns of error scores - 1)

* (number of rows of error scores - 1)

Participant Aspirin Product X Placebo Row mean

Bob Robertson 0.000 -1.000 1.000 0.000

Mavis Fletcher -1.000 2.000 -1.000 0.000

Bob Polansky 0.667 -1.333 0.667 0.000

Ann Harrison 2.333 0.333 -2.667 0.000

Bert Entwistle -2.000 0.000 2.000 0.000

Column mean 0.000 0.000 0.000 Overall mean = 0.000

	
Table 24.13

	 �‘Residual (error)’ scores (obtained by subtracting individual differences or row 
means from Table 24.12)

Participant Aspirin Product X Placebo Row mean

Bob Robertson 1.000 0.000 2.000 1.000

Mavis Fletcher -1.000 2.000 -1.000 0.000

Bob Polansky 0.000 -2.000 0.000 -0.667

Ann Harrison 3.000 1.000 -2.000 0.667

Bert Entwistle -3.000 -1.000 1.000 -1.000

Column mean 0.000 0.000 0.000 Overall mean = 0.000

	 Table 24.12	 ‘Error’ scores (original data table minus true/between scores)
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The variance estimate of this residual error can be calculated using the standard formula:

variance estimate[residual error scores] =
aX2 -

(aX)2

N
df

 aX2 = 0.0002 + (-1.000)2 + 1.0002 + (-1.000)2 + 2.0002 + (-1.000)2

+ 0.6672 + (-1.333)2 + 0.6672 + 2.3332 + 0.3332 + (-2.667)2 + (-2.000)2

+ 0.0002 + 2.0002

 = 0.000 + 1.000 + 1.000 + 1.000 + 4.000 + 1.000 + 0.445 + 1.777 + 0.445 + 5.443

+ 0.111 + 7.113 + 4.000 + 0.000 + 4.000

 = 31.334

 (aX)2 = [0.000 + (-1.000) + 1.000 + (-1.000) + 2.000

+ (-1.000) + 0.667 + (-1.333) + 0.667 + 2.333 + 0.333 + (-2.667)

+ (-2.000) + 0.000 + 2.000]2

 = 0

The number of scores N equals 15 as before. The degrees of freedom are given by:

degree of freedom = (number of columns - 1) * (number of rows - 1)

 = (3 - 1) * (5 - 1)

 = 2 * 4 = 8

Substituting in the formula:

 variance estimate[residual error scores] =
aX2 -

(aX)2

N
df

 =
31.334 -

0
15

8

 =
31.334

8
= 3.92

Once again, note that this is the same value as that provided by SPSS in the first line of Error(factor1) 
in the output table in Screenshot 24.5.

This is not absolutely necessary, but the conventional approach to correlated/repeated measures 
analysis of variance calculates the variance estimate of the individual differences. This is usually 
described as the between-people variance estimate or ‘blocks’ variance estimate. (The word ‘blocks’ 
originates from the days when the analysis of variance was confined to agricultural research. Dif-
ferent amounts of fertiliser would be put on a single area of land and the fertility of these different 
‘blocks’ assessed. The analysis of variance contains many terms referring to its agricultural origins 
such as split plots, randomised plots, levels of treatment and so forth.)

If you wish to calculate the between-people (or individual differences) variance estimate, you need to 
draw up Table 24.14, which consists of the individual differences component in each score (this is obtained 
by the difference between the row means and the overall mean in the original data). In other words, it is 
a table of the amount of adjustment required to everyone’s scores in order to remove the effect of their 
individual characteristics.

Step 4
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We calculate the variance estimate of this using the usual variance estimate formula for the analysis 
of variance. The degrees of freedom are constrained by the fact that the column means have to equal 
zero and that all the scores in the row are the same. In the end, this means that the degrees of freedom 
for this table are the number of rows minus one. We have five rows so therefore the number of degrees 
of freedom is four.

The sum of squares for Table 24.14 is 8.67 and the degrees of freedom are 4, therefore the variance 
estimate is 8.67 , 4 = 2.17. These values can be entered in the analysis of variance summary table. 
(Strictly speaking, this is another unnecessary stage in the calculation, but it does provide a check on the 
accuracy of your calculations.)

 We can enter the calculations into an analysis of variance summary table. It might be more conven-
tional to see an analysis of variance summary table written in the form shown in Table 24.15. Some 
calculations are unnecessary and we have omitted them.

Notice that the total sum of squares (80.00) is the same as the sum of the individual components of this total 
(40.00 + 8.67 + 31.33) and this applies also to the degrees of freedom. This can provide a useful check on the accuracy 
of your calculations.

Interpreting the results

The most important part of the analysis is the F-ratio. This is the between-groups variance estimate divided by the error 
(residual) variance estimate. In other words, it is 20.00 , 3.92 = 5.10. The statistical significance of this value can be 

Step 5

Source of variation Sum of squares Degrees of freedom Mean square (or 
variance estimate)

F-ratio

Between treatments 
(i.e. drugs)

40.00 2 20.00 5.10*

Between people (i.e. 
individual differences)

8.67 4 2.17 –

Error (i.e. residual) 31.33 8 3.92 –

Total 80.00 14 – –

	 Table 24.15	 Analysis of variance summary table

* Significant at 5% level.

Participant Aspirin Product X Placebo Row mean

Bob Robertson 1.000 1.000 1.000 1.000

Mavis Fletcher 0.000 0.000 0.000 0.000

Bob Polansky -0.667 -0.667 -0.667 -0.667

Ann Harrison 0.667 0.667 0.667 0.667

Bert Entwistle -1.000 -1.000 -1.000 -1.000

Column mean 0.000 0.000 0.000 Overall mean = 0.000

	 Table 24.14	 �Between-people (individual difference) scores (obtained by taking the difference 
between the row means and overall mean in the original data)
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assessed by the use of Significance Table 24.1. With two degrees of freedom for between treatments and eight for the 
error, a minimum F-ratio of 4.5 is needed to be statistically significant. Thus the obtained F-ratio of 5.10 is significant at 
the 5% level.

The significant probability value of 5% tells us that the variance in the between-groups scores is substantially greater 
than the error (residual) variance. Thus the null hypothesis that the drugs have no effect on the amount of relief from 
pain is rejected and the hypothesis that the drugs treatments have an effect at the 5% level of significance is accepted. 
What you do not know as a result of this analysis is which of the particular groups or conditions differ from each other. 
The F-ratio is just an overall test. Further analyses using multiple comparisons tests are necessary to say just where the 
significant differences lie (see Chapter 26).

The use of SPSS and other computer programs make very sophisticated statistical analyses to be computed which 
would have been very difficult without them. One of these which is applicable here is the test of sphericity. This simply 
tests whether certain assumptions about your data are met. If they are, then the test of significance is slightly different 
and, for the same data, more likely to be statistically significant. This is discussed further in the Computer Analysis sec-
tion at the end of this chapter.

Reporting the results

There are a number of ways of reporting this output. ‘One-way repeated measures analysis of variance was used to 
compare the treatment means. A significant treatment effect was found for the three conditions, F(2, 8) = 5.10, p 6 .05. 
The Aspirin mean was 6.00, the Product X mean 8.00, and the Placebo mean was 4.00.’ The results of Bonferroni related 
t-tests could be added. These are discussed in Chapter 26.

Degrees of freedom for residual  
or residual error mean square 

(or variance estimate)

Degrees of freedom for between-treatments mean square (or variance estimate)

1 2 3 4 5 H

1 161 or 
more

200 216 225 230 254

2 18.5 19.0 19.2 19.3 19.3 19.5

3 10.1 9.6 9.3 9.1 9.0 8.5

4 7.7 6.9 6.6 6.4 6.3 5.6

5 6.6 5.8 5.4 5.2 5.1 4.4

6 6.0 5.1 4.8 4.5 4.4 3.7

7 5.6 4.7 4.4 4.1 4.0 3.2

8 5.3 4.5 4.1 3.8 3.7 2.9

9 5.1 4.3 3.9 3.6 3.5 2.7

10 5.0 4.1 3.7 3.5 3.3 2.5

13 4.7 3.8 3.4 3.2 3.0 2.2

15 4.5 3.7 3.3 3.1 2.9 2.1

20 4.4 3.5 3.1 2.9 2.7 1.8

30 4.2 3.3 2.9 2.7 2.5 1.6

60 4.0 3.2 2.8 2.5 2.4 1.4

∞ 3.8 3.0 2.6 2.4 2.2 1.0

	 Significance	 �5% significance values of the F-ratio for related ANOVA (one-tailed test). Additional values are to be found 
in Significance Table 22.1Table 24.1

Your value has to equal or be larger than the tabulated value for an effect to be significant at the 5% level.
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Correlated/related ANOVA

Chan and Singhal (2013) investigated the effect of seeing positive, negative, neutral and no words while driving 
in a simulator. All participants were run in all four conditions counterbalanced in a Latin square design. In the 
ideal case, this involves participants taking part in each condition and that the orders of the conditions varying 
in a way in which all possible orders are employed equally. A number of one-way repeated measures ANOVAs 
were carried out. For example, ANOVA was used to analyse differences in mean driving speed between the four 
conditions. A significant main effect was found. Planned contrasts were used to determine which means differed 
significantly. These showed 1) that the no word condition had a significantly higher mean speed than the neutral 
or negative word conditions and 2) the positive word condition had a significantly higher mean speed than the 
neutral word condition.

Dumont and Louw (2009) analysed the impact of the work of Henri Tajfel (1919–1982) on social psychology. 
They suggest that his work formed the infrastructure to European social psychology over a long period of time. 
They collected data on the citations to his work in five prominent psychology journals. Six time periods starting 
with 1972–1976 and ending with 1997–2002 formed the conditions for a related samples one-way analysis of 
variance. This showed that the percentages of articles published in these journals varied significantly over the 
six time periods. Furthermore, multi-comparisons employing Bonferroni correction showed that the percentage 
for each time period was significantly greater than that of the preceding one.

Hunter, Schellenberg and Griffith (2011) manipulated mood by showing the same participants pictures that 
were designed to elicit happy, neutral or sad feelings. To check whether these pictures evoked these feelings, 
participants rated each picture on a 7-point bipolar sad–happy scale. A one-way repeated measures ANOVA was 
carried out which found a significant effect. Related t-tests were used to show that the happy pictures made 
participants feel significantly happier than the neutral pictures, which made them feel significantly happier than 
the sad pictures.

Kam and his colleagues (2012), in trying to understand health professionals’ intentions to refer cancer patients 
for psychosocial support services, asked them how likely they were to refer patients to three support services. 
A one-way repeated measures ANOVA found a significant effect. Although it was reported that ‘that referral 
intentions for complementary therapies were significantly lower than allied professionals and the Cancer Helpline 
(Wilks’ lambda = 50.28, F(2, 58) = 574.96, p 6 .001, multivariate partial hp

2 = 50.72)’, no results were 
Â�presented for multiple comparison tests.

McKiernan and his colleagues (2010) were interested in determining the effectiveness of a cognitive-behavioural 
group intervention for patients with early breast cancer. This intervention was known as the Time to Adjust 
Programme. The researchers had four measures of how well the patients were doing which were assessed before 
the patients received treatment, immediately after treatment had ended and at six-month follow-up. To test 
their hypothesis that patients in this group would show a significant improvement over time on each of these 
four dependent variables, four repeated measures ANOVAs were used. Each of the four ANOVAs was statistically 
significant. Looking at the means for each measure at the three measurement times showed that they had 
improved.

Perlman (2011) points out that research suggests that teachers often use teaching styles which undermine the 
motivation of students. Using what is known as self-determination theory teachers’ behaviours have been 
changed to be more motivationally supportive. The purpose of Perlman’s research was to assess the influence 
of using a Sport Education approach as opposed to a skill-drill game approach on the teaching behaviour of 
pre-service physical education teachers. An observation protocol was used to code teacher–student interaction 
episodes employing 15 different categories. Furthermore, the teachers were given a breakdown of their use of 
autonomy supportive, controlling and neutral comments. The Learning Climate Questionnaire and the Sport 

Research examples
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Motivation Scale were completed by the students which provided scores on their perceptions of autonomy–sup-
port and individual motivation. The data were collected on a repeated basis over time from this group of partici-
pants including the questionnaire data. Related analysis of variance was used to assess the data. The use of the 
Sport Education approach resulted in higher levels of autonomy supportive interactions on the part of the 
teachers.

Stasiewicz and colleagues (2013) suggest that pretreatment consumption of alcohol offers a challenge to the 
view that treatment for alcoholism is largely responsible for alcohol consumption changes. More needs to be 
known about pretreatment change processes which follow the decision to request help but precede the treat-
ment itself. The researchers studied the pretreatment behaviours in a group of participants volunteering for a 
cognitive-behavioural treatment for alcohol dependence. Several pretreatment intervals were created such as 
the period from the first phone call to baseline assessment, the period between baseline assessment to first 
treatment. The number of days abstinent from drinking in these periods was the dependent variable. The data 
were analysed using a related ANOVA because each participant was measured in each time period. The data 
analysis revealed that there were significant reductions in the days drinking and the number of drinks in the 
pretreatment period – especially between the telephone call seeking help and the baseline assessment. It is 
noteworthy that those who changed rapidly in this period tended to be those still abstinent at 90-day 
follow-up.

●	 Working out this analysis of variance by hand is quite time-consuming and extremely repetitive. Computers 
will save most people time.

●	 Do not be deterred by some of the strange terminology used in the analysis of variance. Words like blocks, 
split-plots and levels of treatment have their origins in agricultural research, as does ANOVA.

●	 The analysis of variance in cases in which you have just two conditions or sets of scores is relatively easy to 
interpret. It is not so easy where you have three or more groups; then your analysis is not complete until you 
have employed a multiple comparisons procedure as in Chapter 26.

Key points
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Computer Analysis

Related analysis of variance using SPSS

Interpreting and reporting the output

●	 In this example, assuming sphericity, the exact significance level for F is .037, which means that the 
analysis is significant at the 5% output (.05 probability). If sphericity cannot be assumed then use one of 
the other three tests in Screenshot 24.5 (e.g. Greenhouse–Geisser). Since we have three groups, it is 
appropriate to compare each group using the related t-test adjusted for the number of comparisons 
(three in this case). In this situation, this would mean that the significance obtained has to be smaller 
than .05 , 3 = .0167 in order to be reported statistically significant at the .05 level. None of them is 
statistically significant.

●	 We could describe the results of this analysis in the following way: ‘A one-way repeated measures 
analysis of variance showed a significant treatment effect for the three conditions, 
F(2, 8) = 5.10, p = .037, hp

2 = .56. The Aspirin mean was 6.00, the Product X mean 8.00, and the 
Placebo mean was 4.00. None of the three treatments differed significantly from one another with 
related t-tests when a Bonferroni adjustment was made for the number of comparisons.’

	 Figure 24.3	 SPSS steps for a repeated measures analysis of variance
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	 Screenshot 24.5	 Most important part of the output

	 Screenshot 24.1	 Data in ‘Data View’

	 Screenshot 24.3
	 Enter the ‘Number of Levels:’ or 

groups

	
Screenshot 24.4

	 Select the variables for analysis 
and statistics

	 Screenshot 24.2	 On ‘Analyze’ select ‘Repeated 
Measures. . . ’
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●	 The two-way analysis of variance involves two independent variables and a single dependent variable 
which is the score. ANOVAs with two or more independent variables are called factorial ANOVAs.

●	 It then has the potential to indicate the extent to which the two independent variables may 
combine to influence scores on the dependent variable.

●	 The main effects are the influence of the independent variables acting separately, the interac-
tion is the influence of the independent variables acting in combination.

●	 Much of the two-way analysis of variance proceeds like two separate one-way analyses. However, 
there is the interaction which is really a measure of the multiplicative (rather than additive) 
influence of the two independent variables acting in combination.

●	 Two-way analysis of variance requires some care in its interpretation. It is not possible to adopt a 
purely mechanical approach. Interpretation is required. The problem is that the main effects are 
estimated before the interaction effects. Sometimes interaction effects become subsumed as main 
effects. Care is needed to examine the graph of the interaction to identify this possibility.

●	 The two-way analysis of variance can be extended to any number of independent variables though 
the process rapidly becomes very cumbersome with each additional independent variable.

Two-way or factorial 
ANOVA for unrelated/
uncorrelated scores
Two studies for the price of one?

Chapter 25

Overview

Preparation

Chapter 23 on the one-way analysis of variance contains material essential to the full understand-
ing of this chapter.
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	 25.1	 Introduction

Often researchers wish to assess the influence of more than a single independent variable at 
a time in experiments. The one-way analysis of variance deals with a single independent 
variable which can have two or more levels. However, analysis of variance copes with several 
independent variables in a research design. These are known as multi-factorial ANOVAs. 
The number of ‘ways’ is the number of independent variables. Thus a two-way analysis of 
variance allows two independent variables to be included, three-way analysis of variance 
allows three independent variables and five-way analysis of variance means that there are 
five independent variables. There is only one dependent variable no matter how many ‘ways’ 
in each analysis of variance. If you have two or more dependent variables, each of these will 
normally entail a separate analysis of variance (though see Chapter 29 on MANOVA). 
Although things can get very complicated conceptually, two-way analysis of variance is rela-
tively straightforward and introduces just one major new concept – interaction.

In this chapter we will be concentrating on examples in which all of the scores are 
independent (uncorrelated). Each participant therefore contributes just one score to the 
analysis. In other words, it is an uncorrelated design.

Generally speaking, the two-way analysis of variance is best suited to experimental 
research in which it is possible to allocate participants at random into the various condi-
tions. Although this does not apply to the one-way analysis of variance, there are prob-
lems in using two-way and multi-way analyses of variance in survey and other 
non-experimental research. The difficulty is that ideally you need equal numbers of scores 
in each cell otherwise the calculation involves estimates. It is hard to do these calculations 
by hand though easy on the computer as no extra effort is involved. However, the ideal 
still would be equal numbers in each cell.

A typical research design for a two-way analysis of variance is the effect of the inde-
pendent variables alcohol and sleep deprivation on the dependent variable of people’s 
comprehension of complex video material expressed in terms of the number of mistakes 
made on a test of understanding of the video material. The research design and data might 
look like that shown in Table 25.1.

Sleep deprivation

4 hours 12 hours 24 hours

Alcohol 16 18 22

12 16 24

17 25 32

No alcohol 11 13 12

9 8 14

12 11 12

	 Table 25.1	 Data for typical two-way analysis of variance: number of mistakes on video test

In a sense, one could regard this experiment conceptually as two separate experiments, 
one studying the effects of sleep deprivation and the other studying the effects of alcohol. 
The effects of each of the two independent variables are called the main effects. Addition-
ally, the analysis normally looks for interactions which are basically findings that cannot 
be explained on the basis of the distinctive effects of alcohol level and sleep deprivation 
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acting separately. For example, it could be that people do especially badly if they have 
been deprived of a lot of sleep and have been given alcohol. They do more badly than the 
additive effects of alcohol and sleep deprivation would predict. Interactions are about the 
effects of specific combinations of variables. If we look carefully at Table 25.1, it is pos-
sible to see that the scores in the Alcohol–24 hours cell seem to be rather higher on average 
than the scores in any of the other cells. Similarly, the scores in the No alcohol–4 hours 
cell seem to be rather smaller, typically, than the other cells. This is an example of what 
we mean by an interaction – an outcome which does not seem to be the consequence of 
the two main variables acting separately. We will return to the concept of interaction later.

In the analysis of variance, we sometimes talk of the levels of a treatment – this is simply 
the number of values that any independent variable can take. In the above example, the 
alcohol variable has two different values – that is, there are two levels of the treatment or 
variable alcohol. There are three levels of the treatment or variable sleep deprivation. 
Sometimes, a two-way ANOVA is identified in terms of the numbers of levels of treatment 
for each of the independent variables. So a 2 * 3 ANOVA has two different levels of the 
first variable and three for the second variable. This corresponds to the above example.

	 25.2	 Theoretical considerations

Much of the two-way analysis of variance is easy if it is remembered that it largely 
involves two separate ‘one-way’ analyses of variance as if there were two separate experi-
ments. Imagine an experiment in which one group of subjects is given iron supplements 
in their diet to see if iron has any effect on their depression levels. In the belief that women 
have a greater need for iron than men, the researchers included gender as their other 
independent variable. The data are given in Table 25.2. Figure 25.1 gives the key steps in 
a two-way ANOVA.

Iron supplement No iron supplement

Males 3 9

7 5

4 6

6 8

Cell mean = 5.00 Cell mean = 7.00 row mean = 6.00

Females 11 19

  7 16

10 18

  8 15

Cell mean = 9.00

Column mean = 7.00

Cell mean = 17.00

Column mean = 12.00

row mean = 13.00

Overall mean = 9.50

	 Table 25.2	 Data table for study of dietary supplements

Table 25.2 represents a 2 * 2 ANOVA. Comparing the four condition means (cell 
means), the depression scores for females not receiving the supplement seem rather higher 
than those of any other groups. In other words, it would appear that the lack of the iron 
supplement has more effect on women. Certain gender and iron supplement conditions 
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in combination have a great effect on depression scores. This suggests an interaction. That 
is, particular cells in the analysis have much higher or lower scores than can be explained 
simply in terms of the gender trends or dietary supplement trends acting separately.

The assumption in the two-way analysis of variance is that the variation in Table 25.2 
comes from four sources:

●	 ‘error’ (often referred to as residual error)

●	 the main effect of gender

●	 the main effect of iron supplement

●	 the interaction of gender and iron supplement.

The first three components above are dealt with exactly as they were in the one-way unre-
lated analysis of variance. The slight difference is that instead of calculating the variance 
estimate for one independent variable we now calculate two variance estimates – one for 
each independent variable. However, the term main effect should not cause any confusion. 
It is merely the effect of an independent variable acting alone as it would if the two-way 
design were turned into two separate one-way designs. The only difference is that the error 
term may be smaller than in a one-way ANOVA as part of the error may now be accounted 
for by the other independent variable and the interaction of the two independent variables. 
A smaller error term makes it more likely that significant effects will be obtained.

The interaction consists of any variation in the scores which is left after we have taken 
away the ‘error’ and main effects for the gender and iron supplements sub-experiments. 
That is, priority is given to finding main effects at the expense of interactions. This is 
important and can lead to incorrectly interpreted analyses if it is not appreciated.

	 25.3	 Steps in the analysis

	 ■	 Step 1

To produce an ‘error’ table we simply take our original data and subtract the cell mean 
from every score in the cell. Thus, for instance, we need to subtract 5.00 from each score 
in the cell for males receiving the iron supplement and 17.00 from each cell for the females 

	 Figure 25.1	 Conceptual steps for understanding the two-way ANOVA
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not receiving the iron supplement, etc. In the present example the ‘error’ table is as in 
Table 25.3.

Iron supplement No iron supplement

Males 3 - 5 = -2 9 - 7 =     2

7 - 5 =    2 5 - 7 = -2

4 - 5 = -1 6 - 7 = -1

6 - 5 =     1 8 - 7 =     1

Cell mean = 0.00 Cell mean = 0.00 row mean = 0.00

Females 11 - 9 =     2 19 - 17 =     2

  7 - 9 =  -2 16 - 17 = -1

10 - 9 =     1 18 - 17 =     1

  8 - 9 =  -1 15 - 17 = -2

Cell mean = 0.00

(i) Column mean = 0.00

Cell mean = 0.00

Column mean = 0.00

row mean = 0.00

Overall mean = 0.00

	 Table 25.3	 ‘Error’ scores for study of dietary supplements

Iron supplement No iron supplement

7.00 12.00

7.00 12.00

7.00 12.00

7.00 12.00 row mean = 9.50

7.00 12.00

7.00 12.00

7.00 12.00

7.00 12.00 row mean = 9.50

Column mean = 7.00 Column mean = 12.00 Overall mean = 9.50

	 Table 25.4	 Diet main effect scores for study of dietary supplements

We calculate the ‘error’ variance estimate for this in the usual way. The formula, as 
ever, is:

variance estimate[error] =
aX2 -

(aX)2

N
df

The degrees of freedom (df), analogously to the one-way analysis of variance, are the 
number of scores minus the number of conditions or cells. This leaves 12 degrees of free-
dom (16 scores minus 4 conditions or cells).

	 ■	 Step 2

To produce a table of the main effects for the iron supplement treatment, simply substitute 
the column means from the original data for each of the scores in the columns. The iron 
supplement mean was 7.00 so each iron supplement score is changed to 7.00, thus elimi-
nating any other source of variation. Similarly, the no-iron supplement mean was 12.00 
so each score is changed to 12.00 (see Table 25.4).
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The variance estimate of the above scores can be calculated using the usual variance 
estimate formula. The degrees of freedom are calculated in the familiar way – the number 
of columns minus one (i.e. df = 1).

	 ■	 Step 3

To produce a table of the main effect of gender, remember that the independent variable 
gender is tabulated as the rows (not the columns). In other words, we substitute the row 
mean for the males and the row mean for the females for the respective scores (Table 25.5).

Males 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 row mean = 6.00

Females 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 row mean = 13.00

	 Table 25.5	 Gender main effect scores for study of dietary supplements

The variance estimate of the above scores can be calculated with the usual variance 
estimate formula. Even the degrees of freedom are calculated in the usual way. However, 
as the table is on its side compared to our usual method, the degrees of freedom are the 
number of rows minus one in this case (2 - 1 or 1 degree of freedom).

The calculation of the main effects (variance estimates) for gender and the iron supple-
ment follows exactly the same procedures as in the one-way analysis of variance.

	 ■	 Step 4

The remaining stage is to calculate the interaction. This is simply anything which is left 
over after we have eliminated ‘error’ and the main effects. So for any score, the interaction 
score is found by taking the score in your data and subtracting the ‘error’ score and the 
gender score and the iron supplement score.

Table 25.6 is our data table less the ‘error’ variance, in other words a table which 
replaces each score by its cell mean. It is obvious that the row means for the males and 
females are not the same. The row mean for males is 6.00 and the row mean for females 
is 13.00. To get rid of the gender effect, we can subtract 6.00 from each male score and 
13.00 from each female score in the previous table. The results of this simple subtraction 
are found in Table 25.7.

Iron supplement No iron supplement

Males 5.00   7.00

5.00   7.00

5.00   7.00

5.00   7.00 row mean = 6.00

Females 9.00 17.00

9.00 17.00

9.00 17.00

9.00 17.00 row mean = 13.00

Column mean = 7.00 Column mean = 12.00 Overall mean = 9.50

	 Table 25.6	 Data table with ‘error’ removed
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You can see that the male and female main effect has been taken into account since 
now both row means are zero. That is, there remains no variation due to gender. But you 
can see that there remains variation due to iron treatment. Those getting the supplement 
now score -2.50 on average and those not getting the iron treatment score +2.50. To 
remove the variation due to the iron treatment, subtract -2.50 from the iron supplement 
column and 2.50 from the non-iron supplement column (Table 25.8). Do not forget that 
subtracting a negative number is like adding a positive number.

Looking at Table 25.8, although the column and row means are zero throughout, the 
scores in the cells are not. This shows that there still remains a certain amount of variation 
in the scores even after ‘error’ and the two main effects have been taken away. That is, 
there is an interaction, which may or may not be significant. We have to check this using 
the F-ratio test.

Iron supplement No iron supplement

Males -1.00 1.00

-1.00 1.00

-1.00 1.00

-1.00 1.00 row mean = 0.00

Females -4.00 4.00

-4.00 4.00

-4.00 4.00

-4.00 4.00 row mean = 0.00

Column mean = −2.50 Column mean = 2.50 Overall mean = 0.00

	 Table 25.7	 Data table with ‘error’ and gender removed

Iron supplement No iron supplement

Males 1.5 -1.5

1.5 -1.5

1.5 -1.5

1.5 -1.5 row mean = 0.00

Females -1.5 1.5

-1.5 1.5

-1.5 1.5

-1.5 1.5 row mean = 0.00

Column mean = 0.00 Column mean = 0.00 Overall mean = 0.00

	 Table 25.8	 �Interaction table, i.e. data table with ‘error’, gender and iron supplement all 
removed

What the interaction table implies is that women without the iron supplement and 
men with the iron supplement are getting the higher scores on the dependent 
variable.
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We can calculate the variance estimate for the interaction by using the usual formula. 
Degrees of freedom need to be considered. The degrees of freedom for the above table of 
the interaction are limited by:

●	 all scores in the cells having to be equal (i.e. no ‘error’ variance)

●	 all marginal means (i.e. row and column means) having to equal zero.

In other words, there can be only one degree of freedom in this case.
There is a general formula for the degrees of freedom of the interaction: degrees of 

freedom[interaction] = (number of rows - 1) * (number of columns - 1). Since there are 
two rows and two columns in this case, the degrees of freedom are:

(2 - 1) * (2 - 1) = 1 * 1 = 1

	 ■	 Step 5

All of the stages in the calculation are entered into an analysis of variance summary table 
(Table 25.9).

Notice that there are several F-ratios because you need to know whether there is a 
significant effect of gender, a significant effect of the iron supplement and a significant 
interaction of the gender and iron supplement variables. In each case, you divide the 
appropriate mean square by the ‘error’ mean square. If you wish to check your under-
standing of the processes involved, see if you can obtain the above table by going through 
the individual calculations.

The significant interaction indicates that some of the cells or conditions are getting 
exceptionally high or low scores which cannot be accounted for on the basis of the two 
main effects acting independently of each other. In this case, it would appear that females 
getting the iron supplement and males not getting the iron supplement are actually getting 
higher scores than the gender or supplement acting separately and independently of each 
other would produce. In order to interpret an interaction, you have to remember that the 
effects of the independent variables are separately removed from the table (i.e. the main 
effects are removed first). It is only after this has been done that the interaction is calcu-
lated. In other words, ANOVA gives priority to main effects, and sometimes it can confuse 
interactions for main effects. Table 25.10 presents data from the present experiment in 
which the cell means have been altered to emphasise the lack of main effects.

Source of variation Sums of squares Degrees of freedom Mean square F-ratio

Main effects

Gender 196.00 1 196.00 58.96*

Iron supplement 100.00 1 100.00 30.00*

Interaction

Gender with iron 
supplement

36.00 1 36.00 10.81*

‘Error’ 40.00 12 3.33 –

Total (data) 372.00 15 – –

	 Table 25.9	 Analysis of variance summary table

*Significant at the 5% level.
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In this example, it is absolutely clear that all the variation in the cell means is to do with 
the female/no-supplement condition. All the other three cell means are identical at 5.00. 
Quite clearly the males and females in the iron supplement condition have exactly the same 
average score. Similarly, males in the iron supplement and no-supplement conditions are 
obtaining identical means. In other words, there seem to be no main effects at all. The 
females in the no-supplement condition are the only group getting exceptionally high scores.

This would suggest that there is an interaction but no main effects. However, if you do 
the analysis of variance on these data you will find that there are two main effects and an 
interaction! The reason for this is that the main effects are estimated before the interac-
tion, so the exceptionally high row mean for females and the exceptionally high column 
mean for the no-supplement condition will lead to the interaction being mistaken for main 
effects as your ANOVA summary table might show significant main effects. So you need 
to examine your data with great care as you carry out your analysis of variance, otherwise 
you will observe main effects which are an artefact of the method, and ignore interactions 
which are actually there! The analysis of variance may be tricky to execute, but it can be 
even trickier for the novice to interpret properly – to be frank, many professional psy-
chologists are unaware of the problems.

It is yet another example of the importance of close examination of the data alongside 
the statistical analysis itself.

Iron supplement No iron supplement

Males Cell mean = 5.00 Cell mean = 5.00 row mean = 5.00

Females Cell mean = 5.00 Cell mean = 17.00 row mean = 11.00

Column mean = 5.00 Column mean = 11.00

	 Table 25.10	 Alternative data table showing different trends

How two-way unrelated analysis of variance works
Without a safety net we will attempt to analyse the sleep and alcohol experiment mentioned earlier. It is described as a 
2 * 3 analysis of variance because one independent variable has two values and the other has three values (Table 25.11).

Explaining statistics 25.1

Sleep deprivation

4 hours 12 hours 24 hours

Alcohol 16 18 22

12 16 24

17 25 32

No alcohol 11 13 12

9 8 14

12 11 12

	 Table 25.11	 Data for sleep deprivation experiment: number of mistakes on video test
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Total variance estimate. We enter the row and column means as well as the means of each of the six 
cells (Table 25.12).

variance estimate[data] =
aX2 -

(aX)2

N
df

ΣX2 = 162 + 182 + 222 + 122 + 162 + 242 + 172 + 252 + 322 + 112 + 132 + 122 + 92 + 82

+ 142 + 122 + 112 + 122

 = 256 + 324 + 484 + 144 + 256 + 576 + 289 + 625 + 1024 + 121 + 169 + 144 + 81

+ 64 + 196 + 144 + 121 + 144

 = 5162

 (ΣX)2 = (16 + 18 + 22 + 12 + 16 + 24 + 17 + 25 + 32 + 11 + 13 + 12 + 9 + 8 + 14 + 12

+ 11 + 12)2

 = (284)2 = 80 656

The number of scores N equals 18. The degrees of freedom (df) equal the number of scores minus one,  
i.e. 17. Substituting in the formula:

 variance estimate[data] =
aX2 -

(aX)2

N
df

=
5162 - 80 656

18
17

 =
5162 - 4480.889

17

 =
681.111

17
= 40.065

The sum of squares here (i.e. 681.111) is called the total sum of squares in the ANOVA summary table. (Strictly 
speaking, this calculation is unnecessary in that its only function is a computational check on your other 
calculations.)

Step 1

Sleep deprivation

4 hours 12 hours 24 hours

Alcohol 16 18 22

12 16 24

17 25 32

Cell mean = 15.000 Cell mean = 19.667 Cell mean = 26.000 row mean = 20.222

No alcohol 11 13 12

  9   8 14

12 11 12

Cell mean = 10.667 Cell mean = 10.667 Cell mean = 12.667 row mean = 11.333

Column mean = 12.833 Column mean = 15.167 Column mean = 19.333 Overall mean = 15.777

	 Table 25.12	 Data for sleep deprivation experiment with the addition of cell, column and row means
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‘Error’ variance estimate. Subtract the cell mean from each of the scores in a cell to obtain the ‘error’ 
scores (Table 25.13).

Apart from rounding errors, the cell means, the row means, the column means and the overall mean are 
all zero – just as required of an ‘error’ table.

We calculate the ‘error’ variance estimate using the usual variance estimate formula:

variance estimate[data] =
aX2 -

(aX)2

N
df

ΣX2 = 1.0002 + (-1.667)2 + (-4.000)2 + (-3.000)2 + (-3.667)2 + (-2.000)2 + 2.0002

+ 5.3332 + 6.0002 + 0.3332 + 2.3332 + (-0.667)2 + (-1.667)2 + (-2.667)2 + 1.3332

+ 1.3332 + 0.3332 + (-0.667)2

 = 1.000 + 2.779 + 16.000 + 9.000 + 13.447 + 4.000 + 4.000 + 28.444 + 36.000 + 0.111

+ 5.443 + 0.445 + 2.779 + 7.113 + 1.777 + 1.777 + 0.111 + 0.445

 = 134.671

 (ΣX)2 = [1.000 + (-1.667) + (-4.000) + (-3.000) + (-3.667) + (-2.000) + 2.000 + 5.333

+ 6.000 + 0.333 + 2.333 + (-0.667) + (-1.667) + (-2.667) + 1.333 + 1.333 + 0.333

+ (-0.667)]2

 = 0
(Notice that this latter calculation is unnecessary as it will always equal 0 for ‘error’ scores.) The number 

of scores N equals 18. The degrees of freedom (df) equal the number of scores minus the number of cells, 
i.e. 18 - 6 = 12. We can now substitute these values in the formula:

 variance estimate[‘error scores’] =
aX2 -

(aX)2

N
df

 =
134.671 -

0
18

12

 =
134.671

12
 = 11.223

Step 2

	 Table 25.13	 ‘Error’ scores

Sleep deprivation

4 hours 12 hours 24 hours

Alcohol 1.000 -1.667 -4.000

-3.000 -3.667 -2.000

2.000 5.333 6.000 Alcohol mean = 0.000

No alcohol 0.333 2.333 -0.667

-1.667 -2.667 1.333

1.333 0.333 -0.667 No alcohol mean = 0.000

Column mean = 0.000 Column mean = 0.000 Column mean = 0.000 Overall mean = 0.000
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Sleep deprivation variance estimate. We now derive our table containing the scores in the three sleep 
deprivation conditions (combining over alcohol and non-alcohol conditions) simply by replacing each score 
in the column by the column mean (Table 25.14).

variance estimate[`sleep deprivation′ scores] =
aX2 -

(aX)2

N
df

ΣX2 = 12.8332 + 15.1672 + 19.3332 + 12.8332 + 15.1672 + 19.3332 + 12.8332 + 15.1672

+ 19.3332 + 12.8332 + 15.1672 + 19.3332 + 12.8332 + 15.1672 + 19.3332 + 12.8332

+ 15.1672 + 19.3332

 = 164.686 + 230.038 + 373.765 + 164.686 + 230.038 + 373.765 + 164.686 + 230.038

+ 373.765 + 164.686 + 230.038 + 373.765 + 164.686 + 230.038 + 373.765 + 164.686

+ 230.038 + 373.765

 = 4610.934

 (ΣX)2 = (12.833 + 15.167 + 19.333 + 12.833 + 15.167 + 19.333 + 12.833 + 15.167

+ 19.333 + 12.833 + 15.167 + 19.333 + 12.833 + 15.167 + 19.333 + 12.833 + 15.167

+ 19.333)2

 = 2842

 = 80 656
The number of scores N equals 18. The degrees of freedom (df) equal the number of columns minus one, i.e. 
3 - 1 = 2. We can now substitute these values in the formula:

 variance estimate[`sleep deprivation′ scores] =
aX2 -

(aX)2

N
df

=
4610.934 - 80 656

18
2

 =
4610.934 - 4480.889

2

 =
130.045

2
= 65.023

Step 3

Sleep deprivation

4 hours 12 hours 24 hours

12.833 15.167 19.333

12.833 15.167 19.333

12.833 15.167 19.333

12.833 15.167 19.333

12.833 15.167 19.333

12.833 15.167 19.333

Column mean = 12.833 Column mean = 15.167 Column mean = 19.333

	 Table 25.14	 Scores due to sleep deprivation
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Alcohol variance estimate. The main effect for alcohol (or the table containing scores for the alcohol and 
no-alcohol comparison) is obtained by replacing each of the scores in the original data table by the row 
mean for alcohol or the row mean for no-alcohol as appropriate. In this way the sleep deprivation variable 
is ignored (Table 25.15).

The variance estimate of these 18 scores gives us the variance estimate for the independent variable 
alcohol. We calculate:

variance estimate[‘alcohol’ scores] =
aX2 -

(aX)2

N
df

ΣX2 = 20.2222 + 20.2222 + 20.2222 + 20.2222 + 20.2222 + 20.2222 + 20.2222 + 20.2222

+ 20.2222 + 11.3332 + 11.3332 + 11.3332 + 11.3332 + 11.3332 + 11.3332 + 11.3332

+  11.3332 + 11.3332

 = 408.929 + 408.929 + 408.929 + 408.929 + 408.929 + 408.929 + 408.929 + 408.929

+  408.929 + 128.437 + 128.437 + 128.437 + 128.437 + 128.437 + 128.437 + 128.437

+  128.437 + 128.437

 = 4836.294

 (ΣX)2 = (20.222 + 20.222 + 20.222 + 20.222 + 20.222 + 20.222 + 20.222 + 20.222

+  20.222 + 11.333 + 11.333 + 11.333 + 11.333 + 11.333 + 11.333 + 11.333 + 11.333

+ 11.333)2

 = (284)2

 = 80 656

The number of scores N equals 18. The degrees of freedom (df) equal the number of conditions for the 
Alcohol variable (i.e. Alcohol and No alcohol)  minus one, i.e. 2 - 1 = 1. We can now substitute these 
values in the formula:

 variance estimate[‘alcohol’ scores] =
aX2 -

(aX)2

N
df

=
4836.294 - 80 656

18
1

 =
4836.294 - 4480.889

1

 =
355.405

1
= 355.405

Step 4

Alcohol 20.222 20.222 20.222

20.222 20.222 20.222

20.222 20.222 20.222

No alcohol 11.333 11.333 11.333

11.333 11.333 11.333

11.333 11.333 11.333

	 Table 25.15	 Scores due to alcohol effect alone
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Interaction variance estimate. The final stage is to calculate the interaction. This is obtained by getting 
rid of ‘error’, getting rid of the effect of sleep deprivation and then getting rid of the effect of alcohol:

●	 Remove ‘error’ by simply replacing our data scores by the cell mean (Table 25.16).

●	 Remove the effect of the alcohol versus no-alcohol treatment. This is done simply by subtracting the 
row mean (20.222) from each of the alcohol scores and the row mean (11.333) from each of the no-
alcohol scores (Table 25.17).

●	 Remove the effect of sleep deprivation by subtracting the column mean for each sleep deprivation 
condition from the scores in the previous table. In other words, subtract -2.944, -0.611 or 3.556 as 
appropriate. (Do not forget that subtracting a negative number is like adding the absolute value of 
that number.) This leaves us with the interaction (Table 25.18).

The variance estimate from the interaction is computed using the usual formula:

variance estimate[‘interaction’ scores] =
aX2 -

(aX)2

N
df

Step 5

Sleep deprivation

4 hours 12 hours 24 hours

Alcohol 15.000 19.667 26.000

15.000 19.667 26.000

15.000 19.667 26.000 row mean = 20.222

No alcohol 10.667 10.667 12.667

10.667 10.667 12.667

10.667 10.667 12.667 row mean = 11.333

Column mean = 12.833 Column mean = 15.167 Column mean = 19.333 Overall mean = 15.777

	 Table 25.16	 Data minus ‘error’ (each data score replaced by its cell mean)

Sleep deprivation

4 hours 12 hours 24 hours

Alcohol -5.222 -0.555 5.778

-5.222 -0.555 5.778

-5.222 -0.555 5.778 row mean = 0.000

No alcohol -0.666 -0.666 1.334

-0.666 -0.666 1.334

-0.666 -0.666 1.334 row mean = 0.000

Column mean = −2.944 Column mean = −0.611 Column mean = 3.556 Overall mean = 0.000

	 Table 25.17	 Data minus ‘error’ and alcohol effect (row mean subtracted from each score in Table 25.16)
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ΣX2 = (-2.278)2 + 0.0562 + 2.2222 + (-2.278)2 + 0.0562 + 2.2222 + (-2.278)2 + 0.0562

+ 2.2222 + 2.2782 + (-0.056)2 + (-2.222)2 + 2.2782 + (-0.056)2 + (-2.222)2 + 2.2782

+ (-0.056)2 + (-2.222)2

 = 5.189 + 0.003 + 4.937 + 5.189 + 0.003 + 4.937 + 5.189 + 0.003 + 4.937 + 5.189

+ 0.003 + 4.937 + 5.189 + 0.003 + 4.937 + 5.189 + 0.003 + 4.937

 = 60.774

 (ΣX)2 = [(-2.278) + 0.056 + 2.222 + (-2.278) + 0.056 + 2.222 + (-2.278) + 0.056

+ 2.222 + 2.278 + (-0.056) + (-2.222) + 2.278 + (-0.056) + (-2.222) + 2.278 + (-0.056)

+ (-2.222)]2

 = 0

(This latter calculation is an unnecessary calculation as it will always equal 0.) The number of scores N  
equals 18. The degrees of freedom (df) are given by the following formula:

 df = (number of rows - 1) * (number of columns - 1)

 = (2 - 1) * (3 - 1)

 = 1 * 2

 = 2

We can now substitute the above values in the formula:

 variance estimate[‘interaction’ scores] =
aX2 -

(aX)2

N
df

=
60.774 - 0

18
2

 =
60.774 - 0

2
= 30.387

Table 25.19 is the analysis of variance summary table. The F-ratios are always the mean square of either 
one of the main effects or the interaction divided by the variance estimate (mean square) due to ‘error’.

Step 6

Sleep deprivation

4 hours 12 hours 24 hours

Alcohol -2.278 0.056 2.222

-2.278 0.056 2.222

-2.278 0.056 2.222 row mean = 0.000

No alcohol 2.278 -0.056 -2.222

2.278 -0.056 -2.222

2.278 -0.056 -2.222 Row mean = 0.000

Column mean = 0.000 Column mean = 0.000 Column mean = 0.000 Overall mean = 0.000

	
Table 25.18

	 �Interaction table: data minus ‘error’, alcohol and sleep deprivation (column mean subtracted from each 
score in Table 25.17)
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The significance of each F-ratio is checked against Significance Table 25.1. Care must be taken to use the appropriate 
degrees of freedom. The degrees of freedom error in this case is 12, which means that alcohol (with one degree of freedom) 
must have an F-ratio of 4.8 or more to be significant at the 5% level. (As the significance table does not contain a row 
for 12 degrees of freedom, the value 4.8 has been estimated by interpolation.) Sleep deprivation and the sleep deprivation 
with alcohol interaction (both of which have two degrees of freedom) need to have a value of 3.9 or more to be significant 
at the 5% level. Thus the interaction is not significant, but sleep deprivation is.

Source of variation Sums of square Degrees of freedom Mean square F-ratio

Main effects

Sleep deprivation 130.045 2 65.023 5.79a

Alcohol 355.405 1 355.405 31.67a

Sleep deprivation with alcohol 60.774 2 30.387 2.71

‘Error’ 134.668 12 11.222 –

Total (data) 681.111b 17 – –

	 Table 25.19	 Analysis of variance summary table

a Significant at 5% level.
b This form of calculation has introduced some rounding errors.

Degrees of freedom for 
error or mean square (or 

variance estimate)

Degrees of freedom for between-treatments mean square (or variance estimate)

1 2 3 4 5 ∞

1 161 or more 200 216 225 230 254

2 18.5 19.0 19.2 19.3 19.3 19.5

3 10.1 9.6 9.3 9.1 9.0 8.5

4 7.7 6.9 6.6 6.4 6.3 5.6

5 6.6 5.8 5.4 5.2 5.1 4.4

6 6.0 5.1 4.8 4.5 4.4 3.7

7 5.6 4.7 4.4 4.1 4.0 3.2

8 5.3 4.5 4.1 3.8 3.7 2.9

9 5.1 4.3 3.9 3.6 3.5 2.7

10 5.0 4.1 3.7 3.5 3.3 2.5

13 4.7 3.8 3.4 3.2 3.0 2.2

15 4.5 3.7 3.3 3.1 2.9 2.1

20 4.4 3.5 3.1 2.9 2.7 1.8

30 4.2 3.3 2.9 2.7 2.5 1.6

60 4.0 3.2 2.8 2.5 2.4 1.4

∞ 3.8 3.0 2.6 2.4 2.2 1.0

	 Significance	 �5% significance values of the F-ratio for unrelated ANOVA. Additional values are to be found in 
Significance Table 22.1Table 25.1

Your value has to equal or be larger than the tabulated value for an effect to be significant at the 
5% level for a two-tailed test (i.e. to accept the hypothesis).
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	 25.4	 More on interactions

A conventional way of illustrating interactions is through the use of graphs such as those 
in Figures 25.2 to 25.5. These graphs deal with the sleep and alcohol study just analysed. 
Notice that the means are given for each of the cells of the two-way ANOVA. Thus the 

Interpreting the results

At first glance, the interpretation of the analysis of variance summary table and thus the results of the analysis appears 
to be quite straightforward in this case:

•	 Alcohol has a significant influence on the number of mistakes in the understanding of the video.

•	 The amount of sleep deprivation has a significant influence on the number of mistakes in the understanding of the 
video.

•	 There is apparently no significant interaction – that is, the differences between the conditions are fully accounted for 
by alcohol and sleep deprivation acting independently.

But this only tells us that there are significant differences; we have to check the column and row means in order to say 
precisely which condition produces the greatest number of mistakes. In other words, the analysis of variance summary 
table has to be interpreted in the light of the original data table with the column, row and cell means all entered.

Carefully checking the data suggests that the above interpretation is rather too simplistic. It seems that sleep depriva-
tion actually has little effect unless the person has been taking alcohol. The high cell means are associated with alcohol 
and sleep deprivation. In these circumstances, there is some doubt that the main effects explanation is good enough.

Reporting the results

We would conclude, in these circumstances, ‘Although, in the ANOVA, only the main effects were significant, there is 
reason to think that the main effects are actually the results of the interaction between the main effects. Careful examina-
tion of the cell means suggests that especially high scores are associated with taking alcohol and undergoing higher 
amounts of sleep deprivation. In contrast, those in the no-alcohol condition were affected only to a much smaller extent 
by having high amounts of sleep deprivation.’

This is tricky for a student to write up since it requires a rather subtle interpretation of the data which might exceed 
the statistical skills of the readers of their work.

	 Figure 25.2	 ANOVA graph illustrating possible interactions
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vertical axis is a numerical scale commensurate with the scale of the dependent variable; 
the horizontal axis simply records the different levels of one of the independent variables. 
In order to indicate the different levels of the second independent variable, the different 
cell means for each level are joined together by a distinctively different line.

The main point to remember is that main effects are assumed to be effects which can be 
added directly to the scores in the columns or rows for that level of the main effect and that 
the effect is assumed to be common and equal in all of the cells involved. This implies that:

●	 if there is no interaction, then the lines through the points should move more or less 
parallel to each other

●	 if there is an interaction, then the lines through the points will not be parallel; they may 
touch, move together or move apart.

Figure 25.3 illustrates the sort of pattern we might expect if there is no interaction between 
the independent variables. Figure 25.4 shows that it is possible for an interaction to 
involve the crossing of the lines through the points.

Crucially, the pattern illustrated in Figure 25.5 demonstrates the circumstances in 
which the risk of confusing main effects for the interaction is minimal. This is because, 
although the two lines are definitely not parallel, the evidence for main effects is not 
strong but there is evidence of an interaction. Thus there seems to be no sleep deprivation 

	 Figure 25.3	 ANOVA graph illustrating lack of interactions

	 Figure 25.4	 ANOVA graph illustrating an alternative form of interaction
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main effect since the means of the no alcohol and alcohol groups combined vertically are 
more or less the same. Thus there is no main effect of sleep deprivation in Figure 25.5 
because of this similarity. In much the same way, if the three means for the no-alcohol 
condition are averaged and the three means for the alcohol condition are averaged, these 
two overall means are very similar. In other words, if the means of the combined condi-
tions are the same, this implies, by definition, there is no interaction. In any of the other 
circumstances such as in Figures 25.2–25.4, combining the means vertically and combin-
ing the means horizontally produces combined means which differ. So be comforted if 
you obtain the pattern shown in Figure 25.5 in your research; there is no element of 
judgement involved in its interpretation. In the end, simple statistics usually tell you more 
about your data than many of the more complex statistics. If, when doing ANOVA, you 
look at graphs like these then you should be able to work out what is happening in your 
study. The F-ratios and the like simply confirm whether or not what you see is 
significant.

	 ■	 Interpreting the results

Remember that the interpretation of any data should be based first of all on an examina-
tion of cell means and variances (or standard deviations) as in Table 25.20. The tests of 
significance merely confirm whether or not your interpretations can be generalised. It 
would appear from Table 25.20 that the cell means for the no-alcohol condition are rela-
tively unaffected by the amount of sleep deprivation. However, in the alcohol conditions 
increasing levels of sleep deprivation produce a greater number of mistakes. There also 
appears to be a tendency for there to be more mistakes when the participants have taken 
alcohol than when they have not.

Sleep deprivation

4 hours 12 hours 24 hours

Alcohol 15.000 19.667 26.000 row mean = 20.222

No alcohol 10.667 10.667 12.667 row mean = 11.333

Column mean = 12.833 Column mean = 15.167 Column mean = 19.333 Overall mean = 15.777

	 Table 25.20	 Table of means for the two-way ANOVA

	 Figure 25.5	 ANOVA graph illustrating interaction when it cannot be mistaken for main effects
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	 ■	 Reporting the results

The results of this analysis may be written up according to the APA (2010) Publication 
Manual’s recommendation as follows: ‘A two-way ANOVA was carried out on the data. 
The two main effects of sleep deprivation, F(2, 12) = 31.67, p 6 .05, and alcohol, 
F(1, 12) = 5.79, p 6 .05, were statistically significant. The number of errors related to 
the number of hours of sleep deprivation. Four hours of sleep deprivation resulted in an 
average of 12.83 errors, 12 hours of sleep deprivation resulted in an average of 15.17 
errors, and 24 hours of sleep deprivation resulted in 19.33 errors on average. Consuming 
alcohol before the test resulted on average in 20.22 errors and the no-alcohol condition 
resulted in substantially fewer errors (M = 11.33). The interaction between sleep depriva-
tion was not significant despite the tendency of the scores in the alcohol condition with 
24 hours of sleep deprivation to be much higher than those in the other conditions, 
F(2, 12) = 2.71, p ns. Inspection of the graph (Figure 25.2) suggests that there is an 
interaction since the alcohol and no-alcohol lines are not parallel. It would appear that 
the interaction is being hidden by the main effects in the ANOVA.’

The significant F-ratio for the main effect of sleep deprivation needs to be explored 
further by the use of multiple comparisons tests (Chapter 26). This is only necessary when 
there are more than two levels of an independent variable. Given the possibility of an 
interaction in this study, it would be sensible to carry out multiple comparisons comparing 
all of the six cell means of the 2 * 3 ANOVA with each other (Chapter 26 and Computer 
Analysis in Chapter 31).

	 25.5	 Three or more independent variables

The two-way ANOVA can be extended to include three or more independent variables 
although you are always restricted to analysing a single dependent variable. Despite this, 
it should be noted that the complexity of experimental research is constrained by a num-
ber of factors including the following:

●	 Having a lot of different conditions in an experiment may involve a lot of research and 
planning time. Preparing complex sets of instructions for participants in the different 
experimental conditions, randomly assigning individuals to these groups and many 
other methodological considerations usually limit our level of ambition in research 
designs. In non-psychological disciplines, the logistics of experiments are different since 
the units may not be people but, for example, seedlings in pots containing one of sev-
eral different composts, with different amounts of fertiliser, and one of several different 
growing temperatures. These are far less time-consuming.

●	 Interpreting ANOVA is more skilful than many researchers realise. Care is needed to 
interpret even a two-way analysis properly because main effects are prioritised in the 
calculation, which results in main effects being credited with variation which is really 
due to interaction.

Since theoretically but not practically there is no limit to the number of independent vari-
ables possible in the analysis of variance, the potential for complexity is enormous. How-
ever, caution is recommended when planning research. The problems of interpretation get 
somewhat more difficult the more independent variables there are. The complexity is 
largely the result of the number of possible interactions. Although there is just one interac-
tion with a two-way analysis of variance, there are four with a three-way analysis of vari-
ance. The numbers accelerate rapidly with greater numbers of independent variables. As 
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far as possible, we would recommend any psychologist to be wary of going far beyond a 
two-way analysis of variance without very careful planning and without some experience 
with these less complex designs.

It is possible to disregard the interactions and simply to analyse the different variables 
in the experiment as if they were several one-way experiments carried out at the same 
time. The interpretations would be simpler by doing this. However, this is rarely if ever 
done in psychological research and it is conventional always to consider interactions.

Imagine the following three-way or three-factor analysis of variance. The three inde-
pendent variables are:

●	 age – coded as either young or old

●	 gender – coded as either male or female

●	 noise – the research takes place in either a noisy or a quiet environment.

So this is a three-way ANOVA with a total of eight different conditions (2 ages * 2 genders
*  2 different noise levels). The dependent variable is the number of errors on a numerical 
memory test in the different conditions. The main features of this research are presented 
in Table 25.21.

The sheer number of comparisons possible between sections of the data causes prob-
lems. These comparisons are:

●	 The main effect of gender that is, comparing males and females irrespective of age or 
noise.

●	 The main effect of age that is, comparing young and old irrespective of gender or noise.

●	 The main effect of noise that is, comparing noisy and quiet conditions irrespective of 
age or gender.

●	 The interaction of age and gender that is, comparing age and gender groups ignoring 
the noise conditions. This would look like Table 25.22.

●	 The interaction of age and noise that is, comparing age and noise groups ignoring 
gender. This is shown in Table 25.23.

Noisy conditions Quiet conditions

Young Old Young Old

Males

Females

	 Table 25.21	 Stylised three-way analysis of variance study

Young Old

Males

Females

	 Table 25.22	 Interaction of age and gender
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●	 The interaction of noise and gender that is, comparing the noise and gender groups 
ignoring age. This is shown in Table 25.24.

●	 There is a fourth interaction the interaction of noise and gender and age which is 
represented by Table 25.25. Notice that the cell means of each of the conditions are 
involved in this.

Although Table 25.25 looks like the format of the original data table (Table 25.21), the 
scores in the cells will be very different because all of the other sources of variation will 
have been removed.

The steps in calculating this three-way analysis of variance follow the pattern demon-
strated earlier in this chapter but with extra layers of complexity:

1.	The error term is calculated in the usual way by subtracting the cell mean from each 
score in a particular cell. The variance estimate of this table can then be calculated.

2.	The main effect of gender is calculated by substituting the male mean for each of the 
male scores and the female mean for each of the female scores. The variance estimate 
of this table can then be calculated.

3.	The age main effect is calculated by substituting the mean score of the young people 
for each of their scores and substituting the mean score of the old people for each of 
their scores. The variance estimate of this table can then be calculated.

4.	The noise main effect is obtained by substituting the mean score in the noisy conditions 
for each score in the noisy conditions and substituting the mean score in the quiet 

Noisy conditions Quiet conditions

Young Old Young Old

	 Table 25.23	 Interaction of age and noise

Noisy conditions Quiet conditions

Males

Females

	 Table 25.24	 Interaction of noise and gender

Noisy conditions Quiet conditions

Young Old Young Old

Males

Females

	 Table 25.25	 Interaction of noise, gender and age
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conditions for each score in the quiet conditions. The variance estimate of this table 
can then be calculated.

5.	The interaction of age and gender is arrived at by taking the table of scores with the 
error removed and then removing the age and gender difference simply by taking away 
the column mean and then the row mean. This is the same procedure as we applied to 
get the interaction in the two-way analysis of variance. The variance estimate of this 
table can then be calculated.

6.	We arrive at the interaction of age and noise by drawing up a similar table and then 
taking away the appropriate age and noise means in turn. The variance estimate of this 
table can then be calculated.

7.	We arrive at the interaction of noise and gender by drawing up a similar table and then 
taking away the appropriate noise and gender means in turn. The variance estimate of 
this table can then be calculated.

8.	The three-way interaction (age * noise * gender) is obtained by first of all drawing up 
our table of the age * noise * gender conditions. We then take away the main effects by 
subtracting the appropriate age, noise and gender means from this table. But we also have 
to take away the two-way interactions of age * noise, age * gender and noise * gender 
by subtracting the appropriate means. Whatever is left is the three-way interaction. The 
variance estimate of this final table can then be calculated.

Two-way unrelated analysis of variance

Curseu, Schruijer and Boros (2012) explain that groups in which a minority dissent from the dominant view  
are complex situations in which the dissent might lead to greater complexity of thinking by the majority but also 
the rejection and relationship conflict which may ensue also has its influence. Groups need to deal with this. The 
research involved a design in which some groups experienced minority dissent whereas others did not and some 
groups retained all members and others lost the dissenting member or a random other member where there was 
no dissent. These conditions were manipulated by the researchers. Using two-way analysis of variance, it was 
found that groups with dissent where the deviant left the group tended to have the highest complexity of cogni-
tions about the topic under discussion. It may be that the absence of the dissenting member reduced the need 
to deal with the ill feelings and upset that their presence would have caused. The group then might be better 
placed to think about the nature of the disagreement in a positive and stimulating way.

Harinck and Van Kleef (2012) argue that emotion is an important component of conflict resolution. Anger can lead 
to the other party conceding. The researchers make a case that anger is effective when the matter is one concern-
ing conflicts of interest but not so when conflicts of values are involved. The research design was a 2 * 2 factorial 
design with one unrelated independent variable being the conflict issue (interest versus values) and the other 
unrelated independent variable was emotion (anger versus neutral). Psychology students participated for course 
credit. The experimental manipulation was achieved through the use of scenarios containing different information 
pertinent to the various experimental conditions. The goal of the negotiation was a pay rise. This could be for self-
interest reasons or for reasons of fairness (i.e. the value reason). People perceive anger as unfair in value conflicts 
to a greater extent than if the conflict is one of interest. That is, there was a significant interaction.

Research examples
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Wyrick and Bond (2011) were interested in the influence of the mode of administration of a questionnaire on 
the amount of disclosure. They used the POSIT (Problem Oriented Screening Instrument for Teenagers) Instru-
ment in either pencil and paper form or in a web-based administration method. They used as one independent 
variable age (middle versus high school students) and the two modes of administration as the other to give a 
2 * 2 ANOVA design. One dependent variable was the number of items omitted by the respondents and another 
was the perceived risk involved in answering the questions. There was no evidence that risk was related to the 
experimental manipulation. Contrary to expectations, the students were more likely to skip items on the web 
than in the pencil and paper version.

●	 Only when you have a 2 * 2 unrelated analysis of variance is the interpretation of the data relatively straight-
forward. For 2 * 3 or larger analyses of variance, you need to read Chapter 26 as well.

●	 Although at heart simple enough, the two-way analysis of variance is cumbersome to calculate by hand and 
is best done on a computer.

●	 Analysis of variance always requires a degree of careful interpretation of the findings and cannot always be 
interpreted in a hard-and-fast way. This is a little disconcerting given its apparent mathematical 
sophistication.

●	 Before calculating the analysis of variance proper, spend a good deal of effort trying to make sense of the 
pattern of column, row and cell means in your data table. This should alert you to the major trends in your 
data. You can use your interpretation in combination with the analysis of variance summary table to obtain 
as refined an interpretation of your data as possible.

Key points
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Computer Analysis

Unrelated two-way analysis of variance using SPSS

	 Figure 25.6	 SPSS steps for two-way analysis of variance
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	 Screenshot 25.3	 Plot the interaction by selecting ‘Plots. . . ’

	 Screenshot 25.2	 On ‘Analyze’ select ‘Univariate. . . ’

Interpreting and reporting the output

●	 Make sure that you examine the cell means in particular together with the row and column means in 
order to understand what is going on in the data. Such an inspection would appear to suggest that the 
cell means for the no-alcohol condition are not related to the amount of sleep deprivation. Where 
alcohol is consumed, sleep deprivation leads to greater numbers of errors. More mistakes occur, 
apparently, when alcohol has been taken.

●	 Following APA Publication Manual (2010) style, one might write: ‘A two-way ANOVA revealed that the 
main effects for sleep deprivation, F(2, 12) = 5.80, p 6 .05, hp

 2 = .49, and alcohol, 
F(1, 12) = 31.68, p 6 .05, hp

 2 = .73, were statistically significant. The more sleep deprivation the 
greater the number of errors. Four hours of sleep deprivation gave an average of 12.83 errors, 95% CI 
[9.85, 15.81], 12 hours of sleep deprivation 15.17 errors, 95% CI [12.19, 18.15], and 24 hours of sleep 
deprivation 19.33 errors, 95% CI [16.35, 22.31]. Consuming alcohol led to an average of 20.22 errors, 
95% CI [17.79, 22.66], compared to a mean of 11.33, 95% CI [8.90, 13.77], for the no alcohol condition. 
There was not a significant interaction, though scores in the alcohol condition with 24 hours of sleep 
deprivation were much higher than those in the other conditions, F(2, 12) = 2.71, p ns, hp

 2 = .31. 
Inspection of the graph (Figure 25.2) suggests that there is an interaction since the alcohol and 
no-alcohol lines are not parallel. It would appear that the interaction is being disguised by the main 
effects in the ANOVA.’

	 Screenshot 25.1	 Data in ‘Data View’
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	 Screenshot 25.5	 Output

	 Screenshot 25.4	 Select options
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●	 Generally speaking, analyses of variance are relatively easy to interpret if the independent 
variables all have just two different values.

●	 Interpretation becomes difficult with greater numbers of values of the independent variables.

●	 This is because the analysis does not stipulate which means are significantly different from 
each other. If there are only two values of each independent variable, then statistical signifi-
cance means that those two values are significantly different.

●	 Multiple comparison tests are available to indicate just where the differences lie.

●	 These multiple comparison tests have built-in adjustment for the numbers of comparisons being 
made. Hence they are generally to be preferred over multiple comparisons using the t-test.

●	 It is very difficult to know which multiple comparison tests are the most appropriate for any 
particular data or purpose. Consequently, it is reasonable advice that several different tests should 
be used. The only problem that arises is when the different tests yield different conclusions.

●	 If you have preplanned your analysis prior to collecting the data then a priori tests may be 
appropriate. They are known as planned contrasts. They are briefly explained. However, only 
a minority of research meets the strictures of pre-planning required.

●	 If the categories of the independent variable can be ordered from smallest to largest mean-
ingfully, then it is possible to test for trends in the ordering of the means. Possible trends 
include linear and U-shaped.

Multiple comparisons 
within ANOVA
A priori and post hoc tests

Chapter 26

Overview

Preparation

You will need a working knowledge of Chapters 23, 24 and 25 on the analysis of variance. 
Chapter 18 introduces the problem of multiple comparisons in the context of partitioning 
chi-square tables.
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	 26.1	 Introduction

When in research there are more than two levels of an independent variable it is not 
always obvious where the differences between conditions lie in ANOVA. There is no 
problem when you have only two groups of scores to compare in a one-way or a 2 * 2 
ANOVA. However, if there are three or more different levels of any independent variable 
the interpretation problems multiply. Take, for example, Table 26.1 of means for a one-
way analysis of variance. Although the analysis of variance for the data which are sum-
marised in this table may well be statistically significant, there remains a very obvious 
problem. Groups 1 and 2 have virtually identical means and it is group 3 which has the 
exceptionally large scores. Quite simply we would be tempted to assume that groups 1 
and 2 do not differ significantly and that any differences are due to group 3. Our eyes are 
telling us that only parts of the data are contributing to the significant ANOVA.

Although the above example is very clear, it becomes a little more fraught if the data 
are less clear-cut than this (Table 26.2). In this case, it may well be that all three groups 
differ from each other. Just by looking at the means we cannot know for certain since they 
may just reflect sampling differences.

	 Table 26.1	 Sample means in a one-way ANOVA

Group 1 Group 2 Group 3

Mean 5.6 5.7 12.9

	 Table 26.2	 Sample means in another one-way ANOVA

Group 1 Group 2 Group 3

Mean 5.6 7.3 12.9

Obviously it is essential to test the significance of the differences between the means 
for all three possible pairs of sample means from the three groups. These are:

group 1 with group 2

group 1 with group 3

group 2 with group 3

If there had been four groups then the pairs of comparisons would be:

group 1 with group 2

group 1 with group 3

group 1 with group 4

group 2 with group 3

group 2 with group 4

group 3 with group 4

This is getting to be a lot of comparisons! It is worthwhile asking yourself whether you 
need all of the comparisons.
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	 26.2	 Planned (a priori) versus unplanned (post hoc) comparisons

In the fantasy world of statisticians, there is a belief that researchers meticulously plan 
down to the last detail of their statistical analysis in advance of collecting their data. As 
such an ideal researcher, one would have planned in advance precisely what pairs of cells 
or conditions in the research are to be compared and unnecessary ones are excluded. 
These choices are based on the hypotheses and other considerations which do not depend 
on the data. In other words, they are planned comparisons. The term for this is a priori 
comparisons. More usual, in our experience, is the researcher who decides the analysis in 
retrospect and in the light of the data collected. Psychological theory is rarely so powerful 
that we can predict from it the precise pattern of outcomes to expect. Comparisons 
decided upon after the data have been collected and tabulated are called a posteriori or 
post hoc comparisons.

You do not use the same statistical tests for planned and unplanned comparisons. 
For planned comparisons contrasts are used; for unplanned comparisons multiple com-
parisons tests are used. You do not use both in the same analysis. In the unlikely cir-
cumstances that you have planned the comparisons in advance then a simple approach 
would be as follows: Compare the pairs of means using several t-tests. No adjustments 
need to be made to the significance levels if you make sure that the number of compari-
sons is less than the number of conditions. Of course, in no circumstances should you 
retrospectively add in unplanned comparisons. However, circumstances like these rarely 
occur in most student research. The more formal way of doing a priori comparisons 
(planned comparisons) is discussed in Section 26.5. Since most researchers in psychol-
ogy do not pre-plan in this way, we will give priority to the more usual situation in 
which comparisons are made after the data are inspected. The big problem here is the 
number of comparisons that are usually made in the post hoc analysis. The more sig-
nificance tests we do the more likely we are to obtain statistical significance. The con-
sequence is that the normal significance levels are inappropriate, so whatever test is used 
needs to take this into account. As their name suggests, multiple comparison tests do 
just that.

SPSS has a substantial number of multiple comparisons tests and you can do several 
at the same time for comparison, if you wish. They include LSD, Bonferroni, Ryan–Â� 
Einot–Gabriel–Welsch Q (REGWQ), Tukey, Scheffé and the Duncan test. Each of these 
assumes that the variance within each of the groups is the same. Where the variances are 
not equal then the Games–Howell and Dunnett’s T3 can be selected. They do not give 
exactly the same answer in every circumstance. The main difference is in terms of how 
conservative they are – that is, tending to favour the null hypothesis. 

Does it matter that the F-ratio is not significant?
Traditionally, the advice was that unless the ANOVA itself 
was statistically significant, no further analyses should be 
carried out. That is, a significant ANOVA is a prerequisite 
before comparing pairs of means. This advice no longer 
applies since the introduction of multiple comparisons tests 

like the Newman–Keuls test and Duncan’s new multiple 
range test. If one is operating within the strictures of pre-
planned (a priori) testing then issues of multiple compari-
sons do not apply.

Box 26.1	 Focus on
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	 26.3	 Methods of multiple comparisons testing

Before leaping into what SPSS can do, it is worthwhile looking at the basic procedures 
involved in multiple comparisons testing. One intuitively obvious and traditional multiple 
comparisons method is to compare each of the pairs of groups using a t-test. So for the 
four-group experiment there would be up to six separate t-tests to calculate (group 1 with 
group 2, group 1 with group 3, etc.). The problem with this procedure (which is not so 
bad really) is the number of separate comparisons being made. The more comparisons 
you make between pairs of means the more likely is a significant difference merely due to 
chance (always the risk in inferential statistics). This has to be dealt with.

To cope with this problem a relatively simple procedure, the Bonferroni method, can 
be employed. It has the advantage that it is fairly intuitive unlike many of the procedures 
used by SPSS. The obvious procedure is to share the 5% (.05) significance between all of 
the comparisons. The more comparisons, the smaller the share. So, if you are making four 
comparisons (i.e. conducting four separate t-tests) then the appropriate significance level 
for the individual tests is as follows:

 significance level for each test =
overall significance level
number of comparisons

 =
5%
4

 = 1.25%

In other words, a comparison actually needs to be significant at the 1.25% level accord-
ing to the significance tables (or more likely the computer output) before we accept that 
it is significant at the equivalent of the 5% level. This essentially compensates for our 
generosity in doing many comparisons and reduces the risk of inadvertently capitalising 
on chance differences. (We adopted this procedure for chi-square in Chapter 18.)

So long as you adjust your critical values to allow for the number of comparisons 
made, in this way there is nothing much wrong with using multiple t-tests. Indeed, this 
procedure, properly applied, is a ‘conservative’ one in that it errs in favour of the null 
hypothesis. Appendix K contains a table of t-values for use when there are a number of 
comparisons being made (i.e. multiple comparisons). Say you wished to test the statistical 
significance of the differences between pairs of groups in a three-group one-way analysis 
of variance. This gives three different comparisons between the pairs. The significant t-test 
values for this are found under the column for three comparisons. Or if you have the exact 
significance level, then adjust this by dividing by the number of comparisons. As SPSS 
includes Bonferroni in its multiple comparisons procedures use that.

SPSS has a smorgasbord of methods of doing multiple comparisons. Choosing between 
them is no easy task. The Bonferroni option may be best when the sample sizes are small 
as is the case with much student work. REGWQ generally would be a good option for 
the style of analysis that students tend to do. The GamesÂ�–Howell would be an appropriate 
choice where the variances of the groups differ significantly.

Instructions for multiple comparisons testing on SPSS are given in the Computer Analy-
sis at the end of the chapter.

	 26.4	 Multiple comparisons for multifactorial ANOVA

The procedure is much the same when we have two or more independent variables in our 
ANOVA design except that we have more than one independent variable. Each of these 
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independent variables (factors) is treated separately. Essentially this is like treating each factor 
as a separate study. You can compare pairs of groups within any of the main effects by using 
a t-test. This is only appropriate for independent variables with more than two levels. The 
reason is, of course, that if we only have two levels of the independent variable then a significant 
main effect for this variable can only mean that the two levels or groups differ significantly. 
Figure 26.1 shows the key steps for multiple comparison tests. Box 26.1 discusses the 
outmoded idea that the overall ANOVA needs to be statistically significant if multiple 
comparisons are going to be made.

	 Figure 26.1	 Conceptual steps for understanding multiple comparison testing

	 26.5	 Contrasts

Super psychology student of the year has probably decided in detail the statistical com-
parisons that she wants in advance of collecting her data. For example, in the study 
involving Group 1 given hormone 1, Group 2 given hormone 2 and Group 3 a Placebo 
control (see Table 26.1) she may have prepared the following plan: She will compare the 
control group (placebo group) with Group 1 and Group 2 combined because they think 
that depression scores will be higher in the hormone conditions. She also plans to compare 
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Group 1 and Group 2 to see if two hormones differ in their effects. When comparisons 
are preplanned (a priori) like this then the statistics change and we do not make adjust-
ments to the significance levels. To be truthful, we have never met a student who carries 
out such thoughtful and meticulous statistical planning. But the clever folk at SPSS clearly 
have as they provide the procedures for carrying out planned contrasts. For most of us, 
we suspect, planning research, collecting data and analysing data are done in a somewhat 
more erratic fashion, so planned contrasts are not appropriate. It is completely wrong to 
check the data, see what looks interesting and then decide on the contrasts to make. 
Planned contrasts require discipline on the part of the researcher.

There is one basic thing that you need to know. Planned comparisons involve the use 
of weights. You need to understand this system in order to tell SPSS what comparisons 
you want but the weights are intrinsically part of planned comparisons. The bad news is 
that you cannot have all possible comparisons (which is very different from the post hoc 
multiple comparison tests). So if you wished to Compare Group 1 with the placebo con-
trol group (Group 3) we give weights as follows:

Group 1 weight = 1; Group 2 weight = 0; Group 3 weight = -1

So the groups to be compared have been given a value of 1 and -1 but Group 2 is given 
a weight of zero, which means it is excluded from the analysis as it is given no (zero) 
weighting. This contrast compares the mean of Group 1 with the mean of Group 3. Also 
notice that the sum of the three weights totals 0. This is always the case if your compari-
sons are going to be orthogonal (uncorrelated with each other). If, instead, you wished 
to compare Group 3 (the placebo control group) with Group 1 and Group 2 combined 
together then the weights would be as follows:

Group 1 weight = 1; Group 2 weight = 1; Group 3 weight = -2

These weights indicate that the mean of Group 3 is compared with the combined average 
of Group 1 and Group 2. Notice how the weights have been set so that they add up to 
zero in this case too.

This sort of a priori significance testing involves quite hard rules. Rule 1 is that the 
maximum number of contrasts is one less than the number of groups. So in our example, 
since there are three groups we can plan for no more than two contrasts. Rule 2 is that a 
group on its own cannot appear in more than one contrast (though it can be used in 
combination with another group). So you may have realised that the above two contrasts 
for our study are not legitimate since Group 3 appears as a separate group twice, which 
violates Rule 2. There is a simple test to see if the contrasts you choose are within the 
rules. That is, you simply multiply the weights for each mean by each other and check 
whether the total comes to zero. If we do this with the two contrasts in the previous para-
graph we get (1 * 1) + (0 * 1) + (-1 * -2) = 1 + 0 + 2 = 3. It does not add up to 
zero so there is something wrong because you have broken a rule. Quickly we should be 
able to see that Group 3 has been used on its own twice in the contrasts. Of course, if you 
only planned one of the above two contrasts then the rule would not be broken. One 
possible legitimate pair of contrasts are possible as follows:

CONTRAST 1: Group 1 weight = 1; Group 2 weight = 1; Group 3 weight = -2

CONTRAST 2: Group 1 weight = 1; Group 2 weight = -1; Group 3 weight = 0

N o w  i f  w e  m u l t i p l y  t h e  w e i g h t s  t o g e t h e r  w e  g e t 
(1 * 1) + (1 * -1) + (-2 * 0) = 1 + -1 + 0 = 0. So this pair of contrasts would 
be legitimate. The reason for the rules is that the tests between the means need to be 
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independent of each other in order for the significance level to be correct. That is, there 
is no correlation between the two sets of weights. You can do the Pearson correlation to 
show this. When the rules are broken then the result is that the error rates (significance 
levels) are above the usual 5% level. Not sticking to the rules would mean that your 
reported significance levels for the contrasts are wrong – too generous in favour of finding 
support for the hypothesis/ses. Another important thing is that you do not have all the 
comparisons that in the end you would like. But this should not come as a surprise as this 
is the analysis you planned.

Should you wish to use contrasts on SPSS, select ‘Contrasts. . .’ (Screenshot 26.3) and 
enter or add the weights into the ‘Coefficients’ box one at a time. The important table in 
the output is Contrast Tests. The final column gives the significance level of the contrast. 
The coefficients you used can be found in the Contrast Coefficients table.

	 26.6	 Trends

In some areas of psychological research, it is possible that the different levels of the 
independent variable can be put in order from the smallest to the largest. Often, 
though, such ordering is impossible. But if it is, then it is possible to seek trends in the 
means of the dependent variable over the different levels of the independent variable. 
If you wanted to compare the effect of different levels of music played in the back-
ground while studying for a stats test then such an ordering is possible. The music 
might in one condition be at 40 decibels, in another 60 decibels, in another 80 decibels, 
in another 100 decibels, and in the last condition 120 decibels. Here there is a clear, 
natural progression of loudness so a trend analysis is possible on these five conditions. 
The trend may be a linear one but it could be a curve of some sort. If you plotted the 
means of the conditions on a graph you would be able to get some idea of the shape 
of the trend. You need several levels of the independent variable to fit a trend if the 
result is to be meaningful. With three conditions the only trend that could be fitted is 
a linear one. This would indicate that there is a steady, equal increase in the means as 
the music loudness increases from its lowest level to its highest. SPSS will calculate 
linear, quadratic, cubic and quartic trends for you if you have reason to want them. 
Of these, the linear trend is probably the most useful. The quadratic trend might some-
times be of interest. It is basically a U-shaped relationship. Very little medicine will 
leave the patient feeling very unwell and a bigger dose will leave the patient unwell, 
and the ideal dose will do the most good and stop the patient feeling unwell. However, 
a bigger dose than that might make the patient feel somewhat unwell and a bigger dose 
than that may leave the patient feeling very unwell. In other words, this would be an 
inverted U relationship.

It is not difficult to assess any or all of these trends tested using SPSS as part of your 
ANOVA. However, you must have the groups ordered from the smallest to the largest in 
your variable list for it to work properly. To conduct a trend analysis on SPSS select 
‘Contrasts. . .’ (Screenshot 26.3) and the appropriate contrast (Linear, Quadratic, Cubic, 
4th or 5th) in ‘Polynomial’. In the output, look for the table labelled ANOVA and you 
can check for the trend that you requested – if it is significant then you have that sort of 
trend in your data. If not, you haven’t. But before you incorporate trends into your analy-
sis, make sure that your categories can be put in order from low to high and, if they can, 
then enter your categories in this order.

M26 Introduction to Statistics in Psychology with SPSS 29099.indd   357 06/01/2017   15:52



358	 CHAPTER 26â•‡ Multiple comparisons within ANOVA: A priori and post hoc tests

Multiple comparison tests

Ivancevich (1976) conducted a field experiment in which sales personnel were assigned to various goal setting 
groups. One was a participative goal-setting situation, another was an assigned goal group, and a third group 
served as a comparison group. Various measures of performance and satisfaction were collected at various data 
collection points which included a before training baseline, then 6 months, 9 months and 12 months after train-
ing. ANOVA was used together with the Duncan’s multiple range test to examine where the significant differ-
ences were to be found between the experimental and control conditions. The results suggested that for up to 
nine months both the participative and assigned goal setting groups had higher performance and satisfaction 
levels. At 12 months, this advantage no longer applied.

Touliatos and Lindholm (1981) compared the ratings on the Behavior Problem Checklist for parents and teach-
ers. Some of the children rated were in counselling and others were not in counselling. Using ANOVA, it was 
found that the youngsters in counselling were more likely to exhibit deviant behaviour. The independent variables 
for the ANOVA were counselling versus not in counselling and ratings by mothers versus fathers versus teachers. 
The researchers wanted to know just where in their data the differences lay. So they used Duncan’s Multiple 
Range Test which showed that more behavioural problems were seen by parents than by the children’s 
teachers.

Yildirim (2008) investigated the relationship between occupational burnout and the availability of various 
sources of social support among school counsellors in Turkey. The analysis included other sociodemographic 
variables. There was a significant negative relationship between burnout and sources of social support. How-
ever, burnout was not related to age, gender or marital status in this study. Some of the subdimensions of 
burnout were related to some of these variables. The Scheffé test was employed to make finer comparisons 
between the conditions of the ANOVA. For example, it was found that counsellors with only up to three years 
of experience had higher levels of depersonalisation of burnout than those with more experience in this sort 
of counselling.

Research examples

●	 If you have more than two sets of scores in the analysis of variance (or any other test for that matter), it is 
important to employ one of the procedures for multiple comparisons.

●	 Even simple procedures such as multiple t-tests are better than nothing, especially if the proper adjustment 
is made for the number of t-tests being carried out and you adjust the critical values accordingly.

●	 Modern computer packages, especially SPSS, have a range of multiple comparison tests. It is a fine art to 
know which is the most appropriate for your particular circumstances. Usually it is expedient to compare the 
results from several tests; often they will give much the same results, especially where the trends in the data 
are clear.

Key points
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Computer Analysis

Multiple comparison tests using SPSS

Interpreting and reporting the output

●	 Screenshot 26.6 is one way in which SPSS gives multiple comparisons. The table gives all of the 
possible comparisons between the conditions of the study. It is a little repetitive so you will find 
similar comparisons included twice. The significance column tells you which means are significantly 
different from the others.

●	 Following APA Publication Manual (2010) guidelines, we might write: ‘The main effect was 
significant, F(2, 6) = 10.59, p 6 .05, hp

 2 = .78. Consequently, the Scheffé test was used to 
compare pairs of group means. The mean for Hormone 1 (M = 9.67) was significantly higher than 
Hormone 2 (M = 3.67) and the placebo group (M = 4.00) at the 5% level of significance but no 
other groups differed significantly.’

Select ‘Analyze’, 'General Linear Model' and 'Univariate...' (Screenshot 26.2).

Enter dependent and independent variables in boxes to the right (Screenshot
26.3).

Select 'Options', factor to put in 'Display Means for:' box, ‘Descriptive
statistics’, ‘Estimates of effect size’, ‘Homogeneity tests’, 'Continue' and 'OK'
(Screenshot 26.4).
Select ‘Post Hoc...’, the test/s wanted, ‘Continue’ and 'OK' (Screenshot 26.5).

Check which means di�er significantly by seeing if the Sig(nificance) is .05 or
less (Screenshot 26.6).
Note the direction of the di�erence.

Name the variables in 'Variable View' of the 'Data Editor'.
Enter data under the appropriate variable names in 'Data View' of the 'Data
Editor' (Screenshot 26.1). The data we are using is to be found in Table 23.10

2

3

Output

Data

Analysis

	 Figure 26.2	 â•›SPSS steps for multiple comparison tests
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	 Screenshot 26.1	 Data in ‘Data View’

	 Screenshot 26.2	 On ‘Analyze’ select ‘Univariate. . . ’ 

	 Screenshot 26.3	 Move variables for analysis

	 Screenshot 26.4	 Select options

	 Screenshot 26.5	 Select multiple comparison tests
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Depression

Scheffea,b

Subset

Condition N 1 2

Hormone 2 3 3.67

Placebo control 3 4.00

Hormone 1 3 9.67

Sig. .975 1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean square(error) = 3.222.

a. Uses Harmonic Mean Sample size = 3.000.

b. Alpha = 0.05.

Recommended further reading

Howell, D. (2013). Statistical methods for psychology (8th ed.). Belmont, CA: Duxbury Press.

	 Screenshot 26.6	 Output for the Scheffé test

 
Multiple Comparisons

Dependent Variable: Depression

Scheffe

(I) Condition (J) Condition

Mean 
Difference 

(I-J)

Std. Error Sig. 95% Confidence Interval

Lower Bound Upper Bound

Hormone 1 Hormone 2 6.00* 1.466 .018 1.30 10.70

Placebo control 5.67* 1.466 .023 .97 10.37

Hormone 2 Hormone 1 -6.00* 1.466 .018 -10.70 -1.30

Placebo control - .33 1.466 .975 -5.03 4.37

Placebo control Hormone 1 -5.67* 1.466 .023 -10.37 - .97

Hormone 2 .33 1.466 .975 -4.37 5.03

Based on observed means.

The error term is Mean Square square(error) = 3.222.

*. The mean difference is significant at the 0.05 level
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●	 The analysis of variance has procedures for dealing with a variety of research designs.

●	 Mixed designs refer to the situation in which there is a mixture of related and unrelated 
independent variables.

●	 There is just a single dependent variable.

●	 Mixed designs are complicated by the fact that there is more than one error term. That is, 
there are different error terms for the unrelated variables and the related variables.

Mixed-design ANOVA
Related and unrelated variables together

Chapter 27

Overview

Preparation

Chapters 23 to 25 are essential as this chapter utilises many of the ideas from different types 
of ANOVA.
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	 27.1	 Introduction

This chapter deals with a useful variant of the analysis of variance: the mixed design. 
Although we are moving into quite advanced areas of statistics, the key to most statistical 
analysis lies more in the interpretation of simple statistics such as cell means. Avoid letting 
the complex calculations employed blind you to the major purpose of your analysis – 
understanding what your data say. The mixed-design analysis of variance is similar to the 
two-way ANOVA described in Chapter 25. The big difference is that one of the independ-
ent variables is related and one is unrelated – hence the term mixed design. Thus it is used 
when participants take part in all of the conditions of one independent variable but in 
just one condition of the other variable. A good example of this type of design is when a 
pre-test has been given on the dependent variable before the different experimental treat-
ments and a post-test given afterwards. So all participants are measured on both the 
pre-test and post-test, making pre-test/post-test a related measure. Of course, the unre-
lated independent variable involves the important experimental manipulation. This design 
may be extended to involve more than one independent variable and more than one 
related variable. Box 27.1 explains some important issues about cell sizes in ANOVA. 

Equal cell sizes?
Before the introduction of computers, it was conventional 
in many of the variants of the analysis of variance to ensure 
that all conditions or cells had the same number of scores. 
The reason for this was that the hand calculations are sim-
pler if this is the case. When carrying out laboratory stud-
ies, equal cell sizes are relatively easy to achieve even if it 
involves randomly discarding scores from some cells. How-
ever, it is possible to do any analysis of variance with une-
qual numbers of scores in each condition or cell. The 
calculations tend to be cumbersome and so it is best to use 
a computer package such as SPSS to reduce the computa-
tional load.

The exception to this is the one-way analysis of variance 
described in Chapter 23, which can be calculated with no 

adjustments for unequal sample size. Of course, with the 
related one-way analysis of variance it is not possible to 
have different numbers of participants in different condi-
tions of the experiment since participants have to take part 
in all conditions.

One issue remains, though, and that is whether it is bet-
ter to have equal cell sizes no matter whether a computer 
package is being used or not. The answer to the question is 
that it is always better to have equal cell sizes for the simple 
reason that if data are not there then the computer package 
has to employ estimates. While the bias caused by this is 
probably minimal in most cases, anyone employing really 
complex ANOVA designs would be well advised to try to 
ensure that equal sample sizes are used.

Box 27.1	 Focus on

	 27.2	 Mixed designs and repeated measures

Repeated measures designs have the same subjects (or matched groups of subjects) 
measured in all conditions just as in the repeated measures one-way analysis of vari-
ance except that there are two or more independent variables. The repeated measures 
design is intended to increase the precision of research by measuring the error variance 
(residual variance) in a way which excludes the individual differences component. The 
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individual difference component is obtained from the general tendency of individual 
participants to score relatively high or relatively low irrespective of the experimental 
condition. The trend for each individual can simply be deducted from the error scores 
to leave (residual) error.

Fully repeated measures designs can be analysed, but they are beyond the scope of this 
book (see Howell, 2013, for calculation methods). Some independent variables do not 
allow for repeated measures – gender, for example, is not a repeated measure since a 
person cannot change their gender during the course of an experiment. Only where match-
ing of groups on the basis of gender has been carried out is it possible to have gender as 
a repeated measure.

Fixed and random effects
The issue of fixed versus random effects is a typical analy-
sis of variance misnomer. It really means fixed or random 
choice of the different levels of an independent variable. 
The implication is that you can select the levels of a treat-
ment (independent variable) either by a systematic deci-
sion or by choosing the levels by some random 
procedure.

Most psychological research assumes a fixed effects 
model, and it is hard to find instances of the use of random 
effects. A fixed effect is where you as the researcher choose 
or decide or fix what the different values of the independ-
ent variable are going to be. In some cases you have no 
choice at all – a variable such as gender gives you no discre-
tion since it has just two different values (male and female). 
Usually we just operate as if we have the choice of the 
different treatments for each independent variable. We sim-
ply decide that the experimental group is going to be 
deprived of sleep for five hours and the control group not 
deprived of sleep at all.

Box 27.2	 Key concepts

But there are many different possible amounts of sleep 
deprivation – no hours, one hour, two hours, three hours, 
four hours and so forth. Instead of just selecting the num-
ber of hours of sleep deprivation on the basis of a particular 
whim, practicality or any other similar basis, it is possible 
to choose the amounts of sleep deprivation at random. We 
could draw the amount out of a hat containing the possible 
levels. In circumstances like these we would be using a ran-
dom effects model. Because we have selected the hours of 
sleep deprivation at random, it could be said that our abil-
ity to generalise from our experiment to the effects of sleep 
deprivation in general is enhanced. We have simply chosen 
an unbiased way of selecting the amount of sleep depriva-
tion after all.

Since the random effects model rarely corresponds to 
practice in psychological research it is not dealt with fur-
ther in this book. Psychologists’ research is more likely to 
be the result of agonising about time, money and other 
practical constraints on the choices available.

Much more common in psychology are mixed designs in which the repeated measure 
is on just some of the independent variables. Mixed designs are two- or more-way analy-
ses of variance in which participants are measured in more than one experimental condi-
tion but not every experimental condition. (This means that for at least one of the 
independent variables in a mixed design, scores on different participants will be found 
in the different levels of this independent variable.) Usually you will have to check 
through the experimental design carefully in order to decide whether a researcher has 
used a mixed design, although many will stipulate the type of design. Box 27.2 explains 
a potentially confusing aspect of ANOVA – the difference between fixed and random 
effects models.

One common mixed design is the pre-test/post-test design. Participants are measured 
on the dependent variable before and after the experimental treatment. This is clearly a 
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related design since the same people are measured twice on the same dependent variable. 
However, since the experimental and control groups consist of different people, this com-
parison is unrelated. Hence this form of the pre-test/post-test design is a mixed design. 
This sort of design is illustrated in Table 27.1. Imagine that the dependent variable is 
self-esteem measured in children before and after the experimental manipulation. The 
experimental manipulation involves praising half the children (the experimental group) 
for good behaviour but telling the other half (the control group) nothing. Obviously this 
type of design allows the researcher to test whether the two groups are similar prior to 
the experimental manipulation by comparing the experimental and control groups on the 
pre-test measure. The hypothesis that praise affects self-esteem suggests that the post-test 
measure should be different for the two groups. (Notice that the hypothesis predicts an 
interaction effect in which the related and unrelated independent variables interact to yield 
rather different scores for the experimental group and the control group on the 
post-test.)

In virtually all respects, the computation of the mixed design is like that for the 
two-way (unrelated) ANOVA described in Chapter 25. Both main effects and the 
interaction are calculated in identical fashion. The error is treated differently though 
as shown in Tables 27.13 and 27.14 (Explaining statistics 27.1). Although the total 
error is calculated by subtracting the cell mean from each of the data scores to leave 
the error score (as in Chapter 25), in the mixed design this error is then subdivided 
into two component parts: (a) the individual differences component and (b) the (resid-
ual) error component:

●	 the error due to individual differences is calculated and then used as the error term for 
the unrelated independent variable (this error term is often called ‘subjects within 
groups’)

●	 the (residual) error term is used as the error term when examining the effects of the 
related independent variable (this error term is often called ‘B * subjects within 
groups’).

Note the slight amendments made to the tables such as Table 27.3 (Explaining statis-
tics 27.1) compared with those given in Chapter 25; columns headed ‘subject’ and ‘subject 
mean’ have been added. If there is variation in the subject mean column it shows that 
there is still an individual differences component in the scores in the main body of the 
table. Careful examination of a) the column means and row means, b) cell means, c) 
subject means and d) the individual scores in the cells will hint strongly whether there 
remains any variation due to a) the main effects, b) interaction, c) individual differences 
and d) (residual) error). Table 27.2 shows a typical ANOVA summary table for the mixed 
design. The main effects are A and B and there is an interaction AB. However, there are 
rows such as that for Subjects within groups and B * subjects within groups. These are 
used as error terms in the mixed design ANOVA – that is, more than one error term is 
used (Figure 27.1). Figure 27.2 shows the key steps in a mixed ANOVA.

	 Table 27.1	 Stylised version of the mixed ANOVA design

Unrelated variable Related variable

Pre-test Post-test

Experimental condition

Control condition
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If you feel confident with the two-way unrelated ANOVA described in Chapter 25, we 
suggest that you need to concentrate on steps 2 and 7 overleaf as these tell you how to 
calculate the error terms. The other steps should be familiar.

	 Table 27.2	 Analysis of variance summary table for the mixed design

Source of variation Sums of squares Degrees of freedom Mean square F-ratio

Between subjects

A (Unrelated variable)

Subjects within groups

Within subjects

B (Related variable)

AB (Interaction)

b * subjects within 
groups

	 Figure 27.1	 Components of the measured score in the mixed design

Figure 27.2	 Conceptual steps for understanding the mixed ANOVA
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How the mixed-design two-way analysis of  
variance works
The variance estimate for the data in Table 27.3 for N - 1 degrees of freedom is 76.89 , 11 = 6.99. N is the number 
of scores.

Explaining statistics 27.1

	 Table 27.3	 Example of a mixed ANOVA design

Subject Pre-test measure Post-test measure Subject mean

Control S1 6 5 5.500

S2 4 6 5.000

S3 5 7 6.000

Mean = 5.000 Mean = 6.000 Mean = 5.500

Experimental S4 7 10 8.500

S5 5 11 8.000

S6 5 12 8.500

Mean = 5.667 Mean = 11.000 Mean = 8.333

Mean = 5.333 Mean = 8.500 Overall mean = 6.917

Just to remind you, 6.99 is the variance estimate (or mean square) based on the 12 scores in Table 27.3. To avoid repeti-
tious calculations with which you should now be familiar, we have given only the final stages of the calculation of the 
various variance estimates. This is to allow you to work through our example and check your calculations.

In the mixed-design ANOVA the following steps are then calculated.

between-subjects scores. Between-subjects scores are the data but with the pre-test/post-test difference 
eliminated. In other words, each subject’s scores in the pre-test and post-test conditions are replaced by 
the corresponding subject mean. Thus the column means for the pre-test and post-test have the (residual) 
error removed since the remaining variation within the cells is due to individual differences. However, 
there still remains variation within the table due to individual differences as well as the main effects and 
interaction. (To be absolutely clear, the first entry of 5.500 for both the pre-test and post-test measure is 
obtained by averaging that first person’s scores of 5 and 6 in Table 27.3.)

The variance estimate for the between-subjects scores is 25.40 , 5 = 5.08 (df = number of subjects - 1, 
i.e. 6 - 1 = 5).

subjects within groups scores, i.e. individual difference component. If we take away the cell mean from 
the scores in Table 27.4, we are left with the individual difference component for each subject for each 
score. Thus, S2’s scores are on average –0.500 below the row mean. Table 27.5 gives the individual dif-
ference component of every score in the original data.

The variance estimate for the subjects within groups scores is 1.32 , 4 = 0.33 (the df is the number 
of subjects – number of rows of data, i.e. 6 - 2 = 4).

Step 1

Step 2
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You will see that these individual difference scores seem rather like error scores – they add to zero for 
each cell. Indeed they are error scores – the individual differences component of error. The variance esti-
mate of the individual differences is used as the error variance estimate for calculating the significance of 
the control/experimental comparison (i.e. the unrelated independent variable).

experimental/control scores: main effect. The best estimate of the effects of the experimental versus the 
control condition involves simply replacing each score for the control group with the control group mean 
(5.500) and each score for the experimental group by the experimental group mean (8.333). This is shown 
in Table 27.6.

The variance estimate for the experimental/control main effect is 24.08 , 1 = 24.08 (the df is the 
number of rows of data -1, i.e. 2 - 1 = 1).

The statistical significance of the main effect of the experimental versus control manipulation inde-
pendent variable involves the variance estimate for the main effects scores in Table 27.6 and the vari-
ance estimate for the individual differences error scores in Table 27.5. By dividing the former by the 

Step 3

	 Table 27.4	 Table of between-subjects scores, i.e. with (residual) error removed

Subject Pre-test Post-test Subject mean

Control S1 5.500 5.500 5.500

S2 5.000 5.000 5.000

S3 6.000 6.000 6.000

Mean ∙ 5.500 Mean ∙ 5.500 Mean ∙ 5.500

Experimental S4 8.500 8.500 8.500

S5 8.000 8.000 8.000

S6 8.500 8.500 8.500

Mean ∙ 8.333 Mean ∙ 8.333 Mean ∙ 8.333

Mean ∙ 6.917 Mean ∙ 6.917 Overall mean ∙ 6.917

	 Table 27.5	 Subjects within-groups scores, i.e. error due to individual differences removed

Subject Pre-test Post-test Subject mean

Control S1 5.500 - 5.500 =    0.000 0.000 0.000

S2 5.000 - 5.500 = -0.500 -0.500 -0.500

S3 6.000 - 5.500 =    0.500 0.500 0.500

Mean ∙ 0.000

Experimental S4 8.500 - 8.333 =    0.167 0.167 0.167

S5 -0.333 -0.333 -0.333

S6    0.167 0.167 0.167

Mean ∙ 0.000

Mean ∙ 0.000 Mean ∙ 0.000 Overall mean ∙ 0.000
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	 Table 27.6	 Main effect (experimental/control comparison)

Subject Pre-test Post-test Subject mean

Control S1 5.500 5.500 5.500

S2 5.500 5.500 5.500

S3 5.500 5.500 5.500

Mean ∙ 5.500

Experimental S4 8.333 8.333 8.333

S5 8.333 8.333 8.333

S6 8.333 8.333 8.333

Mean ∙ 8.333

Mean ∙ 6.917 Mean ∙ 6.917 Overall mean ∙ 6.917

latter variance estimate, we obtain the F-ratio for testing the effects of the experimental versus control 
conditions. If this is significant then there is an overall difference between the control and experimental 
group scores.

within-subjects scores. Subtract the between-subjects scores (Table 27.4) from the data table (Table 27.3) 
and you are left with the within-subjects scores. In other words, the scores in Table 27.7 are what is left 
when the effects of the experimental/control comparison and the individual difference component of the 
scores are removed. Notice that the subject means in Table 27.7 are all zero as are the row means. This 
indicates that there are no individual differences or differences due to the experimental/control comparison 
remaining in Table 27.7.

The variance estimate for this table is 51.54 , 6 = 8.59 (df is the number of scores minus the number 
of subjects = 12 - 6 = 6).

within-subjects independent variable main effect: pre-test/post-test scores. This is the main effect of the 
repeated measure. It is obtained simply by substituting the appropriate column average from the data table 
(Table 27.3) for each of the scores (Table 27.8).

Step 4

Step 5

	 Table 27.7	 Within-subjects scores (i.e. the scores with individual differences and control/experimental differences eliminated)

Subject Pre-test Post-test Subject mean

Control S1 0.5 -0.5 0.000

S2 -1.0 1.0 0.000

S3 -1.0 1.0 0.000

Mean ∙ 0.000

Experimental S4 -1.5 1.5 0.000

S5 -3.0 3.0 0.000

S6 -3.5 3.5 0.000

Mean ∙ 0.000

Mean ∙ ∙1.583 Mean ∙ 1.583 Overall mean ∙ 0.000
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The variance estimate for the pre-test/post-test main effect is 30.09 , 1 = 30.09 (the df is the number 
of columns of data -1, i.e. 2 - 1 = 1).

interaction of experimental/control with pre-test/post-test. The calculation of the interaction is much as 
for the two-way unrelated ANOVA (Chapter 25):

●	 We can eliminate error by making every score in the data table the same as the cell mean (Table 27.9).

●	 We can eliminate the effect of the control versus experimental treatment by simply taking the corre-
sponding row means away from all of the scores in Table 27.9 (Table 27.10).

●	 Note that Table 27.10 still contains variation between its pre-test and post-test columns. We eliminate 
this by subtracting the corresponding column mean from each of the scores in the pre-test and post-
test columns (Table 27.11).

Table  27.11 contains the scores for the interaction. The variance estimate for the interaction is 
14.08 , 1 = 14.08 (the df is the number of rows of data -1 * the number of columns of data -1  
(i.e. (2 - 1) * (2 - 1) = 1 * 1 = 1)).

Step 6

	 Table 27.8	 Main effects of the pre-test/post-test comparison

Subject Pre-test Post-test Subject mean

Control S1 5.333 8.500 6.917

S2 5.333 8.500 6.917

S3 5.333 8.500 6.917

Mean ∙ 6.917

Experimental S4 5.333 8.500 6.917

S5 5.333 8.500 6.917

S6 5.333 8.500 6.917

Mean ∙ 6.917

Mean ∙ 5.333 Mean ∙ 8.500 Overall mean ∙ 6.917

	 Table 27.9	 Removing (total) error from the data table

Subject Pre-test Post-test Subject mean

Control S1 5.000 6.000 5.500

S2 5.000 6.000 5.500

S3 5.000 6.000 5.500

Mean ∙ 5.500

Experimental S4 5.667 11.000 8.333

S5 5.667 11.000 8.333

S6 5.667 11.000 8.333

Mean ∙ 8.333

Mean ∙ 5.333 Mean ∙ 8.500 Overall mean ∙ 6.917
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	 Table 27.10	 Removing experimental/control main effect (total error removed in previous step)

Subject Pre-test Post-test Subject mean

Control S1 5.000 - 5.500 = -0.500 0.500 0.000

S2 -0.500 0.500 0.000

S3 -0.500 0.500 0.000

Mean ∙ 0.000

Experimental S4 5.667 - 8.333 = -2.666 2.667 0.000

S5 -2.666 2.667 0.000

S6 -2.666 2.667 0.000

Mean ∙ 0.000

Mean ∙ ∙1.583 Mean ∙ 1.583 Overall mean ∙ 0.000

	 Table 27.11	 �Removing pre-test/post-test differences (error and experimental/control main effect already removed in 
previous two steps)

Subject Pre-test Post-test Subject mean

Control S1 -0.500 - (-1.583) = 1.083 -1.083 0.000

S2 1.083 -1.083 0.000

S3 1.083 -1.083 0.000

Mean ∙ 0.000

Experimental S4 -2.666 - (-1.583) = -1.083 1.083 0.000

S5 -1.083 1.083 0.000

S6 -1.083 1.083 0.000

Mean ∙ 0.000

Mean ∙ 0.00 Mean ∙ 0.00 Overall mean ∙ 0.00

Pre@test/post@test * subjects within groups. Earlier we explained that pre@test/post@test * subjects  within 
groups is an error term which is in essence the (residual) error that we calculated in Chapter 24. It is actu-
ally quite easy to calculate the (residual) error simply by:

●	 drawing up a total error table by subtracting the cell means from each score in the data table 
(Table 27.9) as we did for the two-way unrelated ANOVA in Chapter 25 and then

●	 taking away from these (total) error scores the corresponding (residual) error in Table 27.4. In other 
words,

(Residual) error = (Total) error - Individual difference error

Most statistical textbooks present a rather more abstract computational approach to this which obscures 
what is really happening. However, to facilitate comparisons with other textbooks, if required, we will 
present the calculation using essentially the computational method.

The calculation of this error term involves taking the data (Table 27.3) and then a) subtracting the interac-
tion score (Table 27.9), b) subtracting the individual differences score (Table 27.4) and c) adding the 
between-subjects score (Table 27.6). Notice that the scores in Table 27.12 are just as we would expect of 

Step 7
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	 Table 27.12	 pre@test/post@test * subjects within groups scores (i.e. (residual) error)

Subject Pre-test Post-test Subject mean

Control S1 6 - 5.000 - 5.500 + 5.500 =    1.000 5 - 6.000 - 5.500 + 5.500 = -1.000 0.000

S2 4 - 5.000 - 5.000 + 5.500 = -0.500 6 - 6.000 - 5.000 + 5.500 =    0.500 0.000

S3 5 - 5.000 - 6.000 + 5.500 = -0.500 7 - 6.000 - 6.000 + 5.500 =    0.500 0.000

Mean ∙ 0.000

Experi-
mental

S4 7 - 5.667 - 8.500 + 8.333 =    1.167 10 - 11.000 - 8.500 + 8.333 = -1.167 0.000

S5 5 - 5.667 - 8.000 + 8.333 = -0.333 11 - 11.000 - 8.000 + 8.333 =    0.333 0.000

S6 5 - 5.667 - 8.500 + 8.333 = -0.833 12 - 11.000 - 8.500 + 8.333 =    0.833 0.000

Mean ∙ 0.000

Mean ∙ 0.000 Mean ∙ 0.000 Overall mean ∙ 0.000

error scores – the cells all add up to zero. It is (residual) error since there is no variation left in the subject 
mean column.

The variance estimate for the pre@test/post@test * subjects within groups (or residual error) is 7.37 , 4 = 1.84 
(the df is (number of subjects - number of rows) * (number of columns -1) = (6 - 2) * (2 - 1) = 4 * 1 = 4  
4 * 1 = 4).

This (residual) error term is used in assessing the significance of the pre-test/post-test comparison as well 
as the interaction.

The various calculations in steps 1–7 can be made into an analysis of variance summary table. Table 27.13 is a summary 
table using the basic concepts we have included in this book; Table 27.14 is the same except that it uses the conventional 
way of presenting mixed designs in statistics textbooks.

You might be wondering about the reasons for the two error terms. The (residual) error is merely that with no indi-
vidual differences remaining, and in Chapter 24 we examined how removing individual differences helps to control error 
variation in related designs. Not surprisingly, it is used for the main effect and interaction which include related 

	 Table 27.13	 Analysis of variance summary table (using basic concepts)

Source of variation Sums of squares Degrees of freedom Variance estimate F-ratio

Unrelated   

Main effect (unrelated variable) 24.08 1 24.08 24.08
0.33

= 72.97a

Individual differences error 1.32 4 0.33

Related

Main effect (related variable) 30.09 1 30.09 30.09
1.84

= 16.35a

Interaction (related * unrelated 
variables)

14.08 1 14.08 14.08
1.84

= 7.65a

(Residual) error 7.37 4 1.84

a Significant at the 5% level.
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	 Table 27.14	 Analysis of variance summary table (with layout in the conventional form)

Source of variation Sums of squares Degrees of freedom Variance estimate F-ratio

Between subjects

A (Praise) 24.08 1 24.08 24.08
0.33

= 72.97a

Subjects within groups 1.32 4 0.33

Within subjects

B (Time) 30.09 1 30.09 30.09
1.84

= 16.35a

AB 14.08 1 14.08 14.08
1.84

= 7.65a

b * subjects within groups 7.37 4 1.84

	 Table 27.15	 Table of means for mixed ANOVA design

Pre-test measure Post-test measure

Control Cell mean = 5.000 Cell mean = 6.000 Row mean = 5.500

Experimental Cell mean = 5.667 Cell mean = 11.000 Row mean = 8.333

Column mean ∙ 5.333 Column mean ∙ 8.500 Overall mean ∙ 6.917

a Significant at the 5% level. The above which is conceptually correct is based on calculations subject to compounded rounding 
errors. So the figures do not correspond exactly to those in Screenshot 27.6 for example.

components. However, since the individual differences error contains only that source of variation, it makes a good error 
term for the unrelated scores comparison. After all, by getting rid of ‘true’ error variation the design allows a ‘refined’ 
error term for the unrelated comparison. For a simpler way of analysing this data see Box 27.3.

Perhaps we ought to explain why rather unusual names are used conventionally for the error terms in mixed ANOVAs. 
The reason is that the individual differences component of the scores cannot be estimated totally independently of the 
interaction between the main variables since they are both dependent on pre-test/post-test differences. Consequently, the 
estimate of individual differences cannot be totally divorced from the interaction. It follows that both error terms ought to 
be labelled in ways which indicate this fact. On balance, then, you would be wise to keep to the conventional 
terminology.

Interpreting the results

The interpretation of the mixed-design two-way ANOVA is virtually identical to the interpretation of any two-way 
ANOVA design such as the unrelated two-way ANOVA in Chapter 25. It is the calculation of the error terms which is 
different and this does not alter the interpretation although obviously may affect the significance level.

Remember that the interpretation of any data should be based first of all on an examination of cell means and vari-
ances (or standard deviations) such as those to be found in Table 27.15. It is the pattern that you find in these which tells 
you just what the data say. The tests of significance merely confirm whether or not your interpretations may be general-
ised. An examination of Table 27.15 suggests that it is the experimental group at the post-test which has by far the highest 
mean score. There seems to be little difference between the other cells. This seems to suggest that there is an interaction 
between the two independent variables. The ANOVA summary table confirms this.
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	 ■	 ‘Risks’ in related subjects designs

The advantage of related designs is that the error component of the data can be reduced 
by the individual differences component. Similarly, in matched-subject designs the match-
ing variables, if they are carefully selected because they correlate with the dependent vari-
able, reduce the amount of error in the scores. However, there is a trade-off between 
reducing the error term and the reduction in degrees of freedom involved (Glantz and 
Slinker, 1990) since the degrees of freedom in an unrelated ANOVA error term are higher 
than for the related ANOVA error term. If one’s matching variables are poorly related to 
the dependent variable or if the individual differences component of error is very small, 
there may be no advantage in using the related or matched ANOVA. Indeed, there can be 
a reduction in the power of the related ANOVA to reject your null hypothesis. This is a 
complex matter. The most practical advice is:

●	 Do not employ matching unless you know that there is a strong relationship between 
the matching variables and the dependent variable (for example, it is only worthwhile 

Simpler alternative
The sort of mixed design dealt with in this chapter 
requires a significant interaction for the experimental 
hypothesis to be supported. However, it has the draw-
back that the main effect of the pre-test/post-test com-
parison may well be affected by this interaction. 
(Remember that ANOVA takes out main effects first and 
interactions can be confused for these unless you keep 
your eye firmly on the descriptive output for the means, 
etc.) Furthermore, the unrelated comparison can also be 
affected in the same way. A simpler analysis of these same 

data, although not so thorough as the mixed design 
ANOVA, would be a t-test comparing the differences 
between the pre-test and post-test scores for the experi-
mental and control groups. In other words, you have two 
groups of scores based on the change from pre-test 
scores. So you can compare the amount of change in your 
experimental group compared to the amount of change 
in the control group using an unrelated t-test. Of course, 
if you had three groups then you could use one-way 
ANOVA to much the same effect.

Box 27.3	 Focus on

Reporting the results

These results may be written up according to the APA (2010) Publication Manual’s recommendations as follows: ‘A 
mixed-design analysis of variance with praise as the unrelated independent variable and pre-test versus post-test as the 
related independent variable was carried out on the dependent variable self-esteem. The independent variable praise had 
a significant effect on self-esteem, F(1, 4) = 72.97, p 6 .05. The scores in the control group (M = 5.50) were signifi-
cantly lower than those in the experimental group which was given praise (M = 8.33). Similarly, scores at the post-test 
were significantly higher in the post-test (M = 8.50) than in the pre-test (M = 5.33), F(1, 4) = 16.35, p 6 .05.

However, the hypothesis suggests that there is an interaction between the two independent variables such that the 
post-test measures of the experimental group given praise score more highly on the dependent variable than the other 
cells. There was a significant interaction, F(1, 4) = 7.65, p 6 .05. Furthermore, it would seem that it is the experimental 
groups following the praise manipulation which had the highest self-esteem scores. Table 27.15 shows the cell means for 
the four conditions of the experiment. It would appear that the variation between the cells is the result of the interaction 
effect and that the main effects are slight in comparison.’
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matching subjects by their gender if you know that there is a gender difference in scores 
on the dependent variable).

●	 Do whatever you can to reduce the error variance by standardising your methods and 
using highly reliable measures of the dependent variable.

Mixed-design ANOVA

Blankenship, Wegener and Murray (2012) pointed out that much of the research on persuasion deals with the 
attitude of interest directly. There are circumstances where indirect methods could work better. They suggest 
that tackling persuasion through the indirect method of changing values might be more effective than directly 
dealing with attitudes. By dealing with values directly, confidence in the value might be undermined and this 
may lead to attitude change. Undermining the attitude might lead to resistance. In research related to these 
ideas, Blankenship et al. used psychology students as participants. Two independent variables were created: a) 
the target of the persuasive attack, which was either on pertinent values or a policy attack on the issue of 
affirmative action, and b) the time which was either a pre-attack measure or a post-attack measure. In other 
words, their attitudes to affirmative action were measured both before and after the persuasive communication. 
The type of persuasive communication was randomly assigned but the pre-test and post-test measure was a 
correlated variable since all participants provided both measures. So the appropriate ANOVA was a mixed design. 
The study showed that attitudes towards affirmative action changed more when equality was attacked as a value 
than when affirmative action as a policy was attacked directly using the same arguments. As this was a 2 * 2 
design there was no need for multiple comparison testing.

Fitneva, Lam and Dunfield (2013) were interested in children’s strategies for information gathering. The sources 
of information may be asking other people for the information but they can involve direct experience. What is 
not known from previous research is the extent to which children understand when it is better to ask and when 
it is better to find out. The researchers set up a situation in which the children were asked questions about 
‘moozle’ figures. They could seek the answer by looking at the figure or by asking an adult who was ‘the moozle 
expert’. The questions asked could be about physical properties (such as hair colour) or invisible properties 
(such as whether the moozle spoke French). The analysis was basically a repeated measures analysis of variance. 
The age of the children was one independent variable (4-year-olds versus 6-year-olds) and the related measures 
independent variable was visible versus invisible aspects of the moozle. The dependent variable was the number 
of times that the child chose to look at the moozle. It was found that children were significantly more likely to 
look at the moozle for information in the visible condition. There was an interaction showing the stronger ten-
dency for the older children to look for visible properties and ask the expert for invisible properties.

Signal and colleagues (2012) discuss the transitory state following waking from sleep. This is a period of poor 
functioning, confusion and low levels of arousal. This occurs despite the opportunity for recovery that might be 
expected to follow sleep. It is of particular concern where a worker performs a critical task immediately after 
being woken up (e.g. when called out to an emergency at night). During such periods, performance at tasks can 
be inferior to before going to sleep. The study investigated the extent and course of sleep inertia. Participants 
were awakened after a short nap of 20 minutes, 40 minutes or 60 minutes. This was a simulation study taking 
place in a controlled setting of the laboratory. There was a no nap control condition. Dependent measures 
included a short test battery including a Sleepiness Scale and a Working Memory Task repeated several times 
after waking. The statistical analysis employed the mixed-model analyses of variance using time post-nap (a 
repeated measure), duration of nap and order of completing protocols as the independent variables. There was 
no effect of sleep inertia on the Sleepiness Scale. Nevertheless, the Working Memory task showed impairment 
in the form of slower reaction time, fewer correct responses and increased omissions due to sleep inertia.

Research examples
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●	 Research designs which require complex statistics such as the above ANOVAs are difficult and cumbersome 
to implement. Use them only after careful deliberation about what it is you really need from your research.

●	 Avoid the temptation to include basic demographic variables such as age and gender routinely as independ-
ent variables in the analysis of variance. If they are key factors then they should be included, otherwise they 
can merely lead to complex interactions which may be hard to interpret and not profitable when you have 
done so.

Key points

Computer Analysis

Mixed design analysis of variance using SPSS

	 Figure 27.3	  â•›SPSS steps for a mixed ANOVA

6
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Interpreting and reporting the output

●	 The post-test mean for the experimental condition is higher than the other means in the Descriptive 
Statistics output suggesting an interaction. This is confirmed in the Tests of Within-Subjects 
Contrasts table. Both the main effect of order and the interaction between order and condition are 
statistically significant. It is important that Box’s Test of Equality of Covariance Matrices and Levene’s 
Test of Equality of Error Variances are non-significant.

●	 In line with APA (2010) conventions and after carrying out some t-tests to determine which means 
of the interaction differ, the results could be written as follows: ‘The interaction between the two 
conditions and the change over time was statistically significant, F(1, 4) = 7.68, p 6 .05, hp

 2 = .66. 
While the pre-test means did not differ significantly, t(4) = 0.76, two-tailed p 6 .492, the post-test 
mean for the experimental condition (M = 11.00, SD = 1.00) was significantly higher, t(4) = 6.12, 
two-tailed p 6 .004, than that for the control condition (M = 6.00, SD = 1.00). The increase from 
pre-test (M = 5.67, SD = 1.15) to post-test (M = 11.00, SD = 1.00) was significant for the 
experimental condition, t(2) = 4.44, two-tailed p 6 .047, but not for the control condition, 
t(2) = 1.00, two-tailed p 6 .423.’

	 Screenshot 27.1	 Data in ‘Data View’

	
Screenshot 27.2

	 On ‘Analyze’ select ‘Repeated 
Measures. . . ’

	
Screenshot 27.3

	 Enter the ‘Number of Levels:’ or 
occasions for the repeated measures 	 Screenshot 27.4	 Select the variables
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	 Screenshot 27.5	 Select options 	 Screenshot 27.6	 Key output

Recommended further reading

Glantz, S. A., & Slinker, B. K. (1990). Primer of applied regression and analysis of variance. 
New York, NY: McGraw-Hill.

Tests of Within-Suhjects Contrasts

Measure: MEASURE_1

Source factor1 Type III Sum 
of Squares

df Mean 
Square

F Sig. Partial Eta 
Squared

factor1 Linear 32.000 1 32.000 12.800 .012 .681
factor1 * 
Condition

Linear 9.000 2 4.500 1.800 .244 .375

Error(factor1) Linear 15.000 6 2.500

Levene's Test of Equality of Error Variancesa

F df1 df2 Sig.

Pretest .211 2 6 .816
Posttest .293 2 6 .756
Tests the null hypothesis that the error variance of the dependent variable is 
equal across groups.
a. Design: intercept + Condition Within Subjects Design: factor1

3. Condition *factor1

Measure: MEASURE_1

Condition factor1 Mean Std. Error 95% Confidence Interval
Lower Bound Upper Bound

Hormone 1 1 5.000 .509 3.754 6.246
2 9.667 1.036 7.131 12.203

Hormone 2 1 2.000 .509 .754 3.246

Box's Test of  
Equality of Covariance 

 Matricesa

Box's M 3.015
F .460
df1 3
df2 2880.000
Sig. .711
Tests the null hypothesis that the 
observed covariance matrices of the 
dependent variables are equal across 
groups.
a. Design: intercept + Condition 
Within Subjects Design: factor1
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●	 The analysis of covariance (ANCOVA) involves procedures by which it is possible to control 
for additional variables which may be influencing the apparent trends in the data.

●	 Analysis of covariance designs often include a pre-test measure of the dependent variable. 
The analysis adjusts for these pre-test differences. Very approximately speaking, it adjusts 
or controls the data so that the pre-test scores are equal. This is especially useful when 
participants cannot be randomly allocated to different conditions of the design.

●	 Remember that in properly randomised experimental designs, extraneous influences are 
controlled partly by this process of randomly assigning participants to conditions. Of course, 
this may not always have the desired outcome which is why some researchers will use a pre-
test to check that the participants are similar on the dependent variable prior to actually 
running the experiment. If the pre-test data suggest that the participants are not equated 
on the dependent variable then ANCOVA may be employed to help correct this.

Analysis of covariance 
(ANCOVA)
Controlling for additional variables

Chapter 28

Overview

Preparation

Chapters 23 to 25 are essential as this chapter utilises many of the ideas from different types 
of ANOVA.
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	 28.1	 Introduction

Another useful variant of the analysis of variance is the analysis of covariance 
(ANCOVA). This adds extra complexity but is especially valuable when there is 
reason to believe that the randomisation process cannot be relied on to have equated 
participants in the various conditions (cells) prior to the experimental manipulation. 
Of course, in non-randomised studies using analysis of variance (ANOVA) this is 
especially likely to be the case.

The analysis of covariance described in this chapter is basically an elaboration of the 
unrelated analysis of variance (Chapter 23). The crucial difference is that an additional 
variable known as the covariate is measured as well as the dependent variable and inde-
pendent variable(s). This covariate is a variable which correlates potentially with the 
dependent variable. That is, the researcher suspects that the covariate is an uncontrolled 
source of variation which is affecting the outcome of the study. The participants in the 
various conditions of the experiment may be different in terms of a covariate, for example. 
Thus not all differences between the experimental conditions are due to the influence of 
the independent variable (experimental manipulation) on the dependent variable if the 
covariate is having an influence. In the analysis of covariance the scores on the dependent 
variable are adjusted so that they are equated on the covariate. Although the procedures 
do not actually use the adjusted scores, the cell means for the adjusted scores are obtained 
as part of an additional stage in the statistical analysis.

In experiments random assignment of participants to different conditions of the experi-
ment is used so that any pre-existing differences between participants are randomly dis-
tributed – hopefully. However, randomisation does not fully guarantee that participants 
are similar in all conditions for every study. Randomisation avoids systematic biases, but 
it cannot ensure that there are no differences between participants in the different condi-
tions prior to the experimental manipulation which affect their scores on the dependent 
variable. Furthermore, non-experimental studies cannot employ randomisation properly. 
In one important application of analysis of covariance, pre-test measures can be thought 
of as covariates of the post-test measure and thus handled using the analysis of covariance 
as an alternative to the mixed design described in the previous chapter. Figure 28.1 shows 
the key steps in ANCOVA.

	 Figure 28.1	 Conceptual steps for understanding ANCOVA
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	 28.2	 Analysis of covariance

The analysis of covariance is very much like the analysis of variance. The big difference 
is that it allows you to take account of any variable(s) which might correlate with the 
dependent variable (apart, of course, from any independent variables in your analysis 
of variance design). In other words, it is possible to adjust the analysis of variance for 
differences between your groups that might affect the outcome. For example, you might 
find that social class correlates with your dependent variable, and that social class dif-
fers for the groups in your analysis of variance. Using analysis of covariance you can 
effectively ‘adjust’ the scores on your dependent variable for these social class differ-
ences. This is, in essence, to equate all of the groups so that their mean social class is 
the same. Although it is possible to calculate analysis of covariance by hand, we would 
recommend the use of a computer package since you are likely to want to equate for 
several variables, not just one. Furthermore, you should check to see that your covariate 
does, in fact, correlate with the dependent variable otherwise your analysis becomes 
less sensitive, not more so. In any form of analysis of variance, there is a balance 
between the gains from additional controls on variance and the loss of degrees of free-
dom as a consequence of doing so. Controlling for covariates which do not correlate 
with the dependent variable effectively reduces the degrees of freedom but does nothing 
to remove these sources of variance – because they simply do not correlate with the 
dependent variable. Reducing degrees of freedom reduces the likelihood of statistical 
significance all other things being equal.

Table 28.1 gives data that could be analysed using the analysis of covariance. The 
study is of the effects of different types of treatment on the dependent variable 
depression. For each participant, a pre-test measure of depression taken prior to 
therapy is also given. Notice that the pre-test scores of group 3, the no-treatment 
control group, tend to be larger on this pre-measure. Therefore, it could be that the 
apparent effects of therapy are to do with pre-existing differences between the three 
groups. Analysis of covariance could be used to allow for these pre-existing 
differences.

Group 1  
Psychotherapy

Group 2  
Anti-depressant

Group 3  
No-treatment control

Dependent 
variable 

Depression

Covariate  
Pre-test

Dependent 
variable 

Depression

Covariate  
Pre-test

Dependent  
variable  

Depression

Covariate  
Pre-test

27 38 30 40 40 60

15 32 27 34 29 52

22 35 24 32 35 57

	 Table 28.1	 Example of analysis of covariance data
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How the one-way analysis of covariance works
The data are found in Table 28.1. The analysis of covariance involves a number of steps which remove the influence of 
the covariate on the dependent variable prior to calculating the analysis of variance on these adjusted scores. It is unnec-
essary to calculate the adjusted scores directly and adjusted sums of squares are used instead. The one-way analysis of 
covariance involves three major steps:

●	 Calculating a one-way ANOVA on the dependent variable (depression) using exactly the same methods as found in 
Explaining statistics 23.1

●	 Calculating a one-way ANOVA on the covariate (in this case the pre-test scores) again using exactly the same methods 
as found in Explaining statistics 23.1.

●	 Calculating a variation on the one-way ANOVA which involves the regression of the covariate on the dependent vari-
able. In essence this is the covariation which is subtracted from the variation in the scores on the dependent variable 
to adjust them for the effect of the covariate.

The above steps are then used to calculate the analysis of covariance (ANCOVA).
Finally, in order to judge what the data say after the influence has been removed, we also need a table of the adjusted 

cell means for the dependent variable, i.e. what is left when the covariate is removed from the dependent variable.

�One-way unrelated ANOVA on the dependent variable. For clarity we have given the data on the depend-
ent variable in Table 28.2. Consult Explaining statistics 23.1 for fuller details of calculating the one-way 
ANOVAs.

1.	 Calculate the sum of the squared scores by squaring each score on the dependent variable and adding 
to give the total:

ΣX2 = 272 + 152 + 222 + 302 + 272 + 242 + 402 + 292 + 352 = 7309

2.	 Sum the scores to give:

G = 27 + 15 + 22 + 30 + 27 + 24 + 40 + 29 + 35 = 249

3.	 Calculate the total number of scores on the dependent variable, N = 9.

4.	 Calculate the correction factor using the following formula:

G2

N
=

2492

9
= 6889.000

Explaining statistics 28.1

Step 1

Group 1 Group 2 Group 3

27 30 40

15 27 29

22 24 35

	 Table 28.2	 Scores on the dependent variable
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5.	 Obtain the total sum of squares for the dependent variable by taking the sum of the squared scores 
minus the correction factor. This is 7309 - 6889.000 = 420.000. This is entered into the ANOVA 
summary table for the dependent variable (Table 28.3).

6.	 Enter the degrees of freedom for the total sum of squares for the dependent variable. This is always 
N - 1 or the number of scores - 1 = 9 - 1 = 8.

7.	 The sum of squares between groups (SS[between]) can be calculated as follows using the correction factor 
calculated above, the totals of each column and the number of scores in each column (e.g. N1):

 SS[between] =
T1

2

N1
+

T2
2

N2
+

T3
2

N3
-

G2

N

 =
642

3
+

812

3
+

1042

3
- 6889.000

 = 268.667

	 This value of the between-groups sum of squares for the dependent variable is entered into the 
ANOVA summary table (Table 28.3).

8.	 Enter the degrees of freedom for the between-groups sum of squares = columns - 1 = c -1 = 3 - 1 = 2. 

9.	â•›� Calculate the error (i.e. error or within) sum of squares (SS[error]) by subtracting the between-groups 
sum of squares from the total sum of squares:

 SS[error] = SS[total] - SS[between]

 = 420.000 - 268.667

 = 151.333

10.	 â•› �The degrees of freedom for error are the number of scores minus the number of columns = N - c   
= 9 - 3 = 6.

Unrelated ANOVA on the covariate. Again we can create a table of the covariate scores (Table 28.4) and 
carry out an unrelated ANOVA in exactly the same way as above for the dependent variable.

1.	 Calculate the sum of the squared scores by squaring each score on the covariate and adding to give 
the total:

ΣX2 = 382 + 322 + 352 + 402 + 342 + 322 + 602 + 522 + 572 = 17 026

2.	 Sum the scores to give:

G = 38 + 32 + 35 + 40 + 34 + 32 + 60 + 52 + 57 = 380

Step 2

Source of variation Sum of squares Degrees of  
freedom

Mean square 
(variance 
estimate)

F -ratio

Between groups[dependent] 268.667 2 134.333 5.33a

error[dependent] 151.333 6 25.222

Total[dependent] 420.000 8

	 Table 28.3	 Analysis of variance summary table for scores on the dependent variable

a Significant at the 5% level.

➜
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3.	 Calculate the total number of scores for the covariate, N = 9.

4.	 Calculate the correction factor using the following formula:

G2

N
=

3802

9
= 16 044.444

5.	 Obtain the sum of squared scores for the covariate by taking the sum of the squared scores minus the 
correction factor. This is 17 026 - 16 044.444 = 981.556. This is entered into the ANOVA sum-
mary table for the covariate (Table 28.5).

6.	 Enter the degrees of freedom for the total sum of squares for the dependent variable. This is always 
N - 1 or the number of scores - 1 = 9 - 1 = 8.

7.	 The sum of squares between groups (SS[between]) can be calculated as follows using the correction 
factor which has already been calculated, the totals of each column and the number of scores in each 
column for the covariate (e.g. N1):

SS[between] =
T1

2

N1
+

T2
2

N2
+

T3
2

N3
- G2

N
= 1052

3
+ 1062

3
+ 1692

3
- 16 044.444 = 896.223

	 This value of the between-groups sum of squares for the covariate is entered into the ANOVA sum-
mary table (Table 28.5).

8.	 Also, enter the degrees of freedom for the between-groups sum of squares for the covariate = columns   
- 1 = c - 1 = 3 - 1 = 2.

9.	 Calculate the error (i.e. error or within) sum of squares (SS[error]) by subtracting the between-groups 
sum of squares from the total sum of squares:

SS[error] = SS[total] - SS[between] = 981.556 - 896.223 = 85.333

�The degrees of freedom for error are the number of scores minus the number of columns 
=  N - c = 9 - 3 = 6.

Group 1 Group 2 Group 3

38 40 60

32 34 52

35 32 57

	 Table 28.4	 Scores on the covariate

Source of variation Sum of squares Degrees of  
freedom

Mean square  
(variance estimate)

F-ratio

Between groups[covariate] 896.223 2 448.112 31.51
a

error[covariate] 85.333 6 14.222

Total[covariate] 981.556 8

	 Table 28.5	 Analysis of variance summary table for scores on the covariate

a
 Significant at the 0.1% level.
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Calculating the covariation summary table. This is very similar to the calculation of the unrelated ANOVA 
but is based on the cross-products of the dependent variable and covariate scores (Table 28.6). Basically 
it involves multiplying each dependent variable score by the equivalent covariate score. In this way it is 
similar to the calculation of the Pearson correlation coefficient which involves the calculation of the covari-
ance. Table 28.6 can be used to calculate a summary table for the cross-products (Table 28.7). The calcula-
tion is analogous to that for ANOVA in steps 1 and 2 above. The only substantial difference is that it 
involves calculation of the cross-products of X *  Y instead of X2.

1.	 Calculate the overall (or grand) total of the X scores:

GX = 27 + 15 + 22 + 30 + 27 + 24 + 40 + 29 + 35 = 249

2.	 Calculate the overall (or grand) total of the Y scores:

GY = 38 + 32 + 35 + 40 + 34 + 32 + 60 + 52 + 57 = 380

3.	 Calculate the number of scores for the dependent variable, N = 9.

4.	 Calculate the correction factor by substituting the already calculated values:

Correction factor =
GX * GY

N
= 249 * 380

9
= 94 620

9
= 10 513.333

Step 3

Group 1 Group 2 Group 3

X 
Dependent

Y  
Covariate

X *  Y X 
Dependent

Y  
Covariate

X *  Y X  
Dependent

Y  
Covariate

X *  Y

27 38 1026 30 40 1200 40 60 2400

15 32 480 27 34 918 29 52 1508

22 35 770 24 32 768 35 57 1995

ΣX = 64 ΣY = 105 ΣXY = 2276 ΣX = 81 ΣY = 106 ΣXY = 2886 ΣX = 104 ΣY = 169 ΣXY = 5903

ΣXΣY = 64 * 105 = 6720 ΣXΣY = 81 * 106 = 8586 ΣXΣY = 104 * 169 = 17 576

N1 = 3 N2 = 3 N3 = 3

grand total of all X scores = ΣX = GX = 64 + 81 + 104 = 249

grand total of all Y scores = ΣY = GY = 105 + 106 + 169 = 380

	 Table 28.6	 Data and cross-products table

Source of variation Sum of squares Degrees of  
freedom

Mean square  
(variance estimate)

F-ratio

Between groups[covariation] 447.334 2

error[covariation] 104.333 5 Not needed here Not needed here

Total[covariation] 551.667 8

	 Table 28.7	 Summary table for the covariation

➜
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5.	 Calculate the number of scores for each group (N1, N2, N3). In our example these are all 3 as the group 
sizes are equal, but this does not have to be so.

6.	 Total degrees of freedom for the data table = the number of scores - 1 = 9 - 1 = 8.

7.	 Multiply each X score by the equivalent Y score to give the cross-products and sum these cross-
products to give ΣXY which is the sum of cross-products:

 ΣXY = (27 * 38) + (15 * 32) + (22 * 35) + (30 * 40) + (27 * 34) + (24 * 32)

+ (40 * 60) + (29 * 52) + (35 * 57)

 = 1026 + 480 + 770 + 1200 + 918 + 768 + 2400 + 1508 + 1995

 = 11 065

8.	 Obtain the total sum of covariation by subtracting the correction factor from the sum of 
cross-products:

 Total sum of covariation = aXY -
GX * GY

N
 = 11065 - 10 513.333

 = 551.667

9.	 These values of the total sum of covariation (551.667) and the degrees of freedom (8) can be entered 
into Table 28.7 (the summary table for covariation).

10.	 â•›�Sum the scores on the dependent variable and covariate separately for each of the groups as in 
Table 28.6. This gives us ΣX1, ΣX2, ΣX3, ΣY1, ΣY2, ΣY3, since we have three groups in our instance.

11.	 â•›The sum of the covariation between groups is calculated as follows:

 Sum of covariation between groups = aX1aY1

N1
+ aX2aY2

N2
+ aX3aY3

N3
-

GXGY

N

 =
64 * 105

3
+

81 * 106
3

+
104 * 169

3
- 10 513.333

 =
6720

3
+

8586
3

+
17 576

3
- 10 513.333

 = 2240.000 + 2862.000 + 5858.667 - 10 513.333

 = 447.334

12.â•›�â•›â•›�â•›�The degrees of freedom for the covariation between groups is the number of  groups - 1 = 3 - 1 = 2.

13. �	�These values of the sum of covariation between groups and degrees of freedom between groups can 
be entered in Table 28.7.

14. 	�The sum of the covariation of error can be obtained now by subtracting the sum of the between-
groups covariation from the total covariation:

 Sum of the covariation of error = Total of covariation - Covariation between groups

 = 551.667 - 447.334

 = 104.333
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15.  This value of the covariation for error can now be entered into Table 28.7.

16.  �The degrees of freedom for error are calculated in a way which removes one degree of freedom for the 
covariation. This is simply the total number of scores - the number of groups - 1 = 9 - 3 - 1 = 5. 
This can be entered in Table 28.7.

The above calculation steps for covariation are only superficially different from those for the analysis  
of variance in steps 1 and 2. They are actually different only so far as variance and covariance differ  
(pp. 109–110).

Calculating the ANCOVA summary table, i.e. the dependent table with the covariate partialled out. This 
is achieved by taking away the variation in the scores due to the covariate from the variation in the depend-
ent variable. Once we have the three summary tables (dependent variable, covariate and cross-products) 
then it is a fairly simple matter to calculate the adjusted dependent variable sums of squares and enter 
them into Table 28.8, the summary table for a one-way ANCOVA.

The formulae are:

 SSError[adjusted] = SSError[dependent] -
(Error[covariation])2

SSError[covariate]

 SSTotal[adjusted] = SSTotal[dependent] -
(Total[covariation])2

SSError[covariate]

Be very careful to distinguish between the covariation and the covariate.
These calculations are as follows:

 SSError[adjusted] = SSError[dependent] -
(Error[covariation])2

SSError[covariate]

 = 151.333 - 104.3332

85.333

 = 151.333 -
10 885.375

85.333

 = 151.333 - 127.563

 = 23.77

Step 4

Source of variation Sum of squares Degrees of  
freedom

Mean square  
(variance estimate)

F-ratio

between[adjusted] 86.175 2 43.088 43.088
4.754

= 9.06
a

error[adjusted] 23.770 5 4.754

Total[adjusted] 109.945 8

	 Table 28.8	 ANCOVA summary table

a Significant at the 5% level.

➜
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 SSTotal[adjusted] = SSTotal[dependent] -
(Total[covariation])2

SSError[covariate]

 = 420.000 -
551.6672

981.556

 = 420.000 -
304 336.479

981.556
 = 420.000 - 310.055

 = 109.945
Enter these values into the ANCOVA summary table (Table 28.8) and the between sum of squares 

obtained by subtracting the error sum of squares from the total sum of squares.
Note that the degrees of freedom for the error term in the ANCOVA summary table are listed as 5. 

This is because we have constrained the degrees of freedom by partialling out the covariate. The formula 
for the degrees of freedom for the adjusted error is number of scores - number of groups 
- 1 = 9 - 3 - 1 = 5.

The F-ratio in the ANCOVA summary table is calculated in the usual way. It is the between mean square 
divided by the error mean square. This is 9.06. Note that this is the same value as that produced by SPSS 
in Screenshot 28.8 for ‘Condition’. The significance of this is obtained from Significance Table 25.1 for 2 
and 5 degrees of freedom (or Appendix J if other levels of significance are required). We look under the 
column for 2 degrees of freedom and the row for 5 degrees of freedom. This indicates that our F-ratio is 
above the minimum value for statistical significance and is therefore statistically significant.

Adjusting group means. No analysis of variance can be properly interpreted without reference to the means 
of the data table. This is not simple with ANCOVA as the means in the data are the means un-adjusted 
for the covariate. Consequently it is necessary to adjust the means to indicate what the mean would be 
when the effect of the covariate is removed. The formula for this is as follows:

 Adjusted group mean = Unadjusted group mean

 -
(Error[covariance])

SSError[covariate]
* (Group mean[covariate]) - Grand mean[covariate]

The unadjusted group means are merely the means of the scores on the dependent variable for each of 
the three groups in our example. These can be calculated from Table 28.2. The three group means are: 
group 1 = 21.333, group 2 = 27.000 and group 3 = 34.667.

The group means for the covariate can be calculated from Table  28.4. They are 
group 1 = 35.000, group 2 = 35.333 and group 3 = 56.333.

The grand mean of the covariate is simply the mean of all of the scores on the covariate in Table 28.4 
which equals 42.222 for our example.

The sums of squares for error have already been calculated. The sum of squares for error for the cross-
products is 104.333 and is found in Table 28.7. The sum of squares for error for the covariate is 85.333 
and is found in Table 28.5.

We can now substitute all of these values into the formula and enter these values into Table 28.9.

Group 1: Adjusted mean = 30.17 obtained as follows:

 21.333 - c 104.333
85.333

* (35.000 - 42.222) d = 21.333 - [1.223 * (-7.222)]

 = 21.333 - (-8.833)

 = 30.166

Step 5

Step 6
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Group 2: Adjusted mean = 35.43 obtained as follows:

 27.000 - c 104.333
85.333

* (35.333 - 42.222) d = 27.000 - [1.223 * (-6.889)]

 = 27.000 - (-8.425)

 = 35.425

Group 3: Adjusted mean = 17.41 obtained as follows

 34.667 - c 104.333
85.333

* (56.333 - 42.222) d = 34.667 - (1.223 * 14.111)

 = 34.667 - 17.258

 = 17.41

Notice how the adjusted means in Table 28.9 show a completely different pattern from the unadjusted 
means in this case.

The simplest way of testing which of the adjusted means are different from the others is to use the Fisher 
protected LSD (least significant difference) test (Huitema, 1980). It is convenient since the component 
parts have largely been calculated by now. This test gives us an F-ratio with always one degree of freedom 
for the comparison and N - the number of groups - 1 = 9 - 3 - 1 = 5 in our example for the error. 
Because we have three groups, there are three possible comparisons between pairs of groups. We will show 
the calculation in full for the comparison between groups 1 and 2:

F =
(Adjusted group1 mean - Adjusted group2 mean)2

Mean square error adjusted * £ ¢ 1
N1

+ 1
N2

≤ + ° (Covariate group1 mean - Covariate group2 mean)2

Sum of squares of error for the covariate
¢ §

 

where:

Adjusted group1 mean is found in Table 28.9.

Adjusted group2 mean is found in Table 28.9.

Mean square error adjusted is found in Table 28.8.

Covariate group1 mean is found by consulting Table 28.4 and dividing the sum of covariate scores for 
group 1 by the number of scores for group 1 = aY/N = 105 , 3 = 35.000.

Covariate group2 mean is found in exactly the same way. Consult Table 28.4 and divide the sum of covari-
ate scores for group 2 by the number of  scores = 106 , 3 = 35.333.

Step 7

➜

Means Group 1  
Psychotherapy

Group 2  
Antidepressants

Group 3  
Control

Unadjusted 21.33 27.00 34.67

Adjusted 30.17 35.43 17.41

	 Table 28.9	 Unadjusted and adjusted means for depression
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Sum of squares of error for the covariate is found in Table 28.5.

 F =
(30.17 - 35.43)2

4.754J ¢1
3

+ 1
3
≤ +

(35.000 - 35.333)2

85.333
R

 = 5.262

4.754J (0.333 + 0.333) +
(-0.333)2

85.333
R

 = 27.668

4.754¢0.666 + 0.111
85.333

≤
 = 27.668

4.754(0.666 + 0.001)

 = 27.668
4.754(0.667)

= 27.668
3.171

= 8.725

This value of the F-ratio with 1 and 5 degrees of freedom is statistically significant at the 5% level. So the 
adjusted means of group 1 and group 2 are significantly different from each other.

We also carried out the comparisons between group 1 and group 3 (the obtained F-ratio was not sig-
nificant at the 5% level) and group 2 and group 3 (the obtained F-ratio was statistically significant at the 
5% level).

Interpreting the results

The analysis of covariance makes it clear that the post-test measures of depression differ overall once the pre-test differ-
ences are controlled. However, by considering the means of the adjusted levels of depression it seems clear that the 
depression scores of the control group were actually lower than those of either of the treatment groups. In other words, 
once pre-test levels of depression are adjusted for, then the obvious interpretation is that depression is actually being 
increased by the treatment rather than being reduced relative to the control group. The multiple comparisons test indicates 
that the significant differences are between the anti-depressant group and the control group and the psychotherapy group 
and the control group. The two treatment groups did not differ significantly from each other.

Reporting the results

This analysis may be written up according to the APA (2010) Publication Manual’s recommendations as follows: ‘Analysis 
of covariance (ANCOVA) was applied to the three groups (psychotherapy, anti-depressant and no-treatment control) in 
order to see whether the different treatments had an effect on post-test levels of depression controlling for pre-test depres-
sion. There was found to be a significant effect of the type of treatment, F(2, 5) = 9.06, p 6 .05. The unadjusted means 
indicated that depression was higher in the control group (M = 34.67) than with psychotherapy (M = 21.33) or with 
anti-depressant treatment (M = 27.00). However, this seems to be the result of the influence of the covariate (pre-therapy 
levels of depression as measured at the pre-test) since the adjusted means for the groups indicate that the least depression 
is found in the untreated control group (M = 17.41), compared with the psychotherapy group (M = 30.27) and the 
anti-depressant group (M = 35.11). Thus, the two treatment conditions increased depression relative to the control 
group. This was confirmed in a comparison of the adjusted means using the Fisher protected LSD test. The analysis 
indicated that group 1 (psychotherapy) and group 2 (anti-depressant) differed significantly, F(1, 5) = 8.73, p 6 .05. 
Group 2 (anti-depressant) and group 3 (control condition) differed significantly, F(1, 5) = 12.09, p 6 .05. Group 1 
(psychotherapy) and group 3 (control) did not differ significantly, F(1, 5) = 5.98, p ns.’
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●	 Relying on ANCOVA to deal with the problems due to employing non-randomised allocation to the cells of 
the ANOVA ignores the basic reason for doing randomised experiments in the first place – that the researcher 
does not know what unknown factors influence the outcome of the research. Random allocation to conditions 
is the only practical and sound way of fully controlling for variables not included in the design.

●	 It is not wise to use ANCOVA to try to correct for the sloppiness of your original design or procedures. 
Although, especially when using computers, you can include many covariates, it is best to be careful when 
planning your research to reduce the need for this. In randomised experiments, probably the control of the 
pre-test measure is the only circumstance requiring ANCOVA. Of course, there are circumstances in which 
pre-tests are undesirable, especially as they risk sensitising participants as to the purpose of the study or 
otherwise influencing the post-test measures.

Key points

ANCOVA

Cumming and co-workers (2012) studied the effect of physically maturing early in adolescence on the physical 
activity of girls. Research has suggested that girls reduce their amounts of physical activity during adolescence 
and the health-related issues that this entails are obvious. Is there a role for early maturation in this? The study 
compared early and late maturing adolescent girls with an average age of 12.7 years. The dependent variables 
were health-related matters such as physical activity behaviour, physical self-concept, and health-related quality 
of life. In each case it was expected that early maturing girls would score lower. The analysis employed several 
ANCOVA analyses comparing early and late maturing girls on these variables. Chronological age was included 
as the covariate since obviously maturation and age correlate together. Although the size of the differences 
tended to be small to moderate, the ANCOVAs repeatedly showed that early maturing girls scored lower on the 
health-related variables. It is noteworthy that early maturing girls rated themselves lower in terms of body 
attractiveness. This may have a bearing on their lower levels of involvement in physical activity.

Estevis, Basso and Combs (2012) investigated the effect of practice on the Wechsler Adult Intelligence Scale–IV. 
The participants were given the test at the start of the study and again a few months later. For some it was three 
months later and for the others it was six months later. They used various subscales from the test including 
Verbal Comprehension, Working Memory, Perceptual Reasoning and Processing Speed as well as the Full Scale 
IQ. They analysed the data using an ANCOVA design in which test versus retest and the various subscales were 
the related factors and three months versus six months was the independent factor. Gender was entered as the 
covariate. Bonferroni adjustment was employed to deal with the repeated significance testing problem. The 
interval between testing and retesting did not have a significant effect.

Wright and Hardie (2012) write that the previous research on the relationship between handedness and anxiety 
fails to indicate a clear conclusion. One reason for expecting a relationship between anxiety and handedness is 
that the right-hand side hemisphere of the brain is involved in negative emotional states and inhibition. Anxiety 
is often classified as being situational in nature or alternatively as a personality trait of the individual. The 
researchers found that left-handed people have statistically significantly higher scores on state anxiety, which 
supports the idea of the role of the right hemisphere. No trait anxiety differences were found but trait and state 
anxiety were significantly correlated. So ANCOVA was employed with trait anxiety as the control variable because 
of this correlation. The handedness relationship to state anxiety remained even in this analysis. The authors 
suggest that left-handers are more reactive personalities and so respond with state anxiety to the new situation 
that they were experiencing in the research laboratory as part of the research.

Research examples
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Computer Analysis

Analysis of covariance using SPSS

Interpreting and reporting the output

●	 Firstly check that the covariate is related to the dependent variable. If not, then do not use ANCOVA.  
Also the relation between the covariate and the dependent variable should be similar across the 
conditions of the independent variable. This assumption is known as homogeneity of regression lines. 
Otherwise the effect of controlling will be different for each condition.

●	 Using APA (2010) style, one might write: ‘Analysis of covariance (ANCOVA) in which the effect of 
treatment on post-treatment depression was examined controlling for pre-treatment depression.  
The treatment effect was significant, F(2, 5) = 9.06, p 6 .05, hp

 2 = .78. The Fisher protected  
LSD test showed the adjusted post-treatment mean for the anti-depressant group (M = 35.52)  
was significantly higher than that for the psychotherapy group (M = 30.27) and the no-treatment  
control group (M = 17.21).’ 

	 Figure 28.2	 SPSS steps for ANCOVA
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	 Screenshot 28.1	 Data in ‘Data View’

	 Screenshot 28.5	 Select more options
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	 Screenshot 28.2	 On ‘Analyze’ select ‘Univariate. . . ’

	 Screenshot 28.3	 Select variables for analysis

	 Screenshot 28.7	 Important output – descriptives 
after adjusting for pre-test

	 Screenshot 28.6	 Important output – basic descriptives

	 Screenshot 28.4	 Select model
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Recommended further reading

Cramer, D. (2003). Advanced quantitative data analysis (Chapter 11). Buckingham, UK: Open 
University Press.

Glantz, S. A., & Slinker, B. K. (1990). Primer of applied regression and analysis of variance. New 
York, NY: McGraw-Hill.

	 Screenshot 28.9	 LSD pairwise comparisons

	 Screenshot 28.8	 ANCOVA summary table
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●	 The multivariate analysis of variance (MANOVA) is very much like the analysis of variance 
(ANOVA). The big difference is that it uses several different dependent variables at the same 
time. These dependent variables are all score variables. The independent variable is a cate-
gory variable (or variables). That is, MANOVA is very much like ANOVA except for the depend-
ent variables.

●	 There are versions of MANOVA which are equivalent to the various ANOVA designs covered 
in Chapters 23 to 25. Thus it is possible to have one-way MANOVAs, two-way and more 
(factorial) MANOVAs, and MANCOVAs in which the effects of one or more covariates can be 
removed from the data. Related designs are possible but beyond the scope of this book, as 
is MANCOVA.

●	 Essentially MANOVA combines the dependent variables to see whether the different groups 
(conditions) differ in terms of their ‘means’ on this combined set of dependent variables.

●	 A MANOVA summary table is produced which includes a multivariate test of significance. 
Commonly these include Pillai’s trace, Wilks’ lambda, Hotelling’s trace and Roy’s largest root. 
Computer software such as SPSS gives all of these making the output look a little 
complex.

●	 Consideration has to be given to what is to be gained by using MANOVA. For example, where 
the dependent variables are highly correlated and have a single underlying dimension, the 
scores on the dependent variables could be totalled and used as the score variable (i.e. the 
dependent variable) in ANOVA instead. This may yield a slightly more powerful test but only 
in these circumstances where the dependent variables correlate substantially.

●	 If MANOVA is significant, then this indicates that the groups in the study differ in terms of 
a combination(s) of the dependent variables. This leaves the researcher to examine the data 
in more detail by doing ANOVAs on the individual dependent variables or, much better, 

Multivariate analysis of 
variance (MANOVA)

Chapter 29

Overview

M29 Introduction to Statistics in Psychology with SPSS 29099.indd   395 04/01/2017   18:15



396	 CHAPTER 29â•‡ Multivariate analysis of variance (MANOVA)

	 29.1	 Introduction

ANOVA looks for differences in group means on a single dependent variable. The depend-
ent variable is always a score variable. MANOVA is essentially similar but examines the 
influence of the group participants on a set of several dependent variables simultaneously. 
Again, each dependent variable is a score variable. As a very simple example, the research 
question may be whether a new drug, Therazine supplement, affects motor skills in 
patients with Alzheimer’s disease (see Table 29.1). Thus, at random, some patients are 
given Therazine, others are given a placebo (inactive) pill and others are given nothing at 

discriminant function analysis which will allow you to better know just how the dependent 
variables have been combined for the MANOVA. This is dealt with in Chapter 30.

●	 If MANOVA fails to reach statistical significance, then no further analyses are needed or are 
appropriate. The hypothesis that the groups are distinguishable on the basis of the set of 
dependent variables has been rejected because of this lack of significance.

●	 If you are planning to use MANOVA before collecting your data, problems may be avoided by 
making sure that each of your groups (or cells) has the same number of participants. If you 
do this then violating the assumptions of MANOVA is less of a problem.

Preparation

Revise Chapters 23 to 25 on analysis of variance (ANOVA). MANOVA adds little to this in terms 
of conceptual difficulty and so cannot be adequately carried out without understanding ANOVA 
which is also part of the MANOVA procedures.

	 Table 29.1	 Data table for a study of effects of Therazine on motor skills

Group (independent variable)

Therazine condition Placebo condition No treatment condition

RTa Sp Hd W RT Sp Hd W RT Sp Hd W

8b 5 7 7 1 3 2 2 4 3 5 4

7 7 6 5 4 5 3 3 1 2 3 6

9 8 5 9 7 2 1 2 3 5 2 6

7 5 8 8 2 5 6 1 1 4 6 2

a RT = reaction time, Sp = clarity of speech, Hd = steadiness of hand and W = writing speed. Scores are from four cases in each column.
b The scores are for the four dependent variables.
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Hotelling’s two sample t2

You may have a very simple study with just two groups 
(e.g. experimental and control conditions) yet have sev-
eral dependent variables which relate to your hypothe-
sis. Such designs are usually analysed using the t-test 
(Chapter  14). There is a multivariate version of the 
t-test for research designs in which there are just two 
groups of participants but where there are several 

dependent variables. This is known as Hotelling’s two 
sample t2. (If you want to do this analysis, just remem-
ber it is the same as MANOVA, which reduces effec-
tively to Hotelling’s two sample t2 if you just have two 
groups in your study. So simply follow the MANOVA 
procedures.) This is, of course, much the same as for the 
t-test and ANOVA.

Box 29.1	 Focus on

all. Now there are many different motor skills that the researcher might wish to assess in 
this study – for example, reaction time, clarity of speech, steadiness of the hand and writ-
ing speed. All of these motor skills seem related conceptually, at least, to the research 
question and it would seem somewhat short-sighted simply to select one. MANOVA 
allows the researcher to include a number of variables which may be affected by the drug 
treatment.

Better and clearer outcomes will be achieved in your analysis if you avoid the trap of 
throwing variables into the MANOVA simply because you have these data available. 
Carefully selecting the dependent variables because they have a strong conceptual or theo-
retical bearing on the research question will yield dividends. For example, as the Alzhei-
mer research is about motor skills then adding in variables about social class or social 
networking to the list of dependent variables would add nothing to the MANOVA 
analysis.

Thus, MANOVA is simply an extension of the analysis of variance to cover circum-
stances where there are multiple dependent variables measured in the form of scores. In 
the analysis of variance (Chapters 23 to 27) we have seen that it is possible to analyse 
research designs with the following:

●	 Just one independent variable. This is known as a one-way analysis of variance. The 
independent variable is that which forms the different groups. (See Table 23.1 for an 
example.)

●	 Two or more independent variables. It would be possible to extend our Alzheimer 
study to include more than one independent variable. So the next step might be to 
have a second independent variable. We previously referred to this design as a two-
way ANOVA design. If we added a third grouping variable (independent variable) 
then this would be termed a three-way ANOVA design and so forth. These two-
way, three-way and so forth designs are sometimes referred to as factorial designs, 
of course.

●	 Any of the above designs with additional covariates controlled for. So, for example, 
age of participants might be added as a covariate in the above designs. This is known 
as the analysis of covariance (ANCOVA) (Chapter 28).

MANOVA can deal with all three of the above types of design and more. If you have only 
two groups then Hotelling’s two-sample t2 may be appropriate (Box 29.1).
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There are two obvious questions to ask about MANOVA at this stage:

1.	Just why would one wish to analyse several different dependent variables at the same 
time rather than do a number of separate ANOVAs?

2.	Just how does one combine several dependent variables?

The answers to these questions are not simple or straightforward but are important things 
to understand:

●	 Why not do several ANOVAs?â•‡ The answer to this question partly lies in the common 
comment in statistics that the more tests of significance one carries out then the more 
likely that significant findings emerge by chance. These do not represent real differences 
and, consequently, are not meaningful. So the more ANOVAs one does on one’s data 
the more likely that a statistically significant finding will emerge. The consequence of 
multiple testing of this sort has been dealt with elsewhere when dealing with multiple 
comparisons (Chapter 26). But multiple testing of this sort can create other difficulties 
which do not at first appear to be statistical in nature. The purpose of research is not 
primarily to obtain significant findings but to provide an account or narrative or theo-
retical explanation which links together the findings of the researcher. Thus if the 
findings are not reliable then one may be trying to explain chance findings thinking 
that they are meaningful findings which represent something which is happening in the 
real world.

One obvious solution may strike you. Why not apply the Bonferroni adjustment 
(Section 26.3) to the significance levels of the ANOVAs carried out on each dependent 
variable? That is, adjust the probability levels to take into account the number of 
comparisons made. This is sensible thinking but not entirely satisfactory in this case 
because multiple significance testing is the biggest problem when the dependent vari-
ables correlate with each other poorly (or not at all). Where the dependent variables 
correlate highly then the risk of a spurious significant ANOVA is not so great. More 
technically, there is a risk of Type I errors (accepting the hypothesis when it is in fact 
false) which increases when the dependent variables do not correlate with each other 
beyond a minimal level. So the use of MANOVA can be thought of as a way of replac-
ing several ANOVAs with one blanket test on a set of dependent variables. It thus 
protects against Type I errors.

●	 How to combine dependent variables?â•‡ At first sight, the answer to this question seems 
self-evident if the scores are positively correlated – just add up the scores for each 
participant to give a total score. In this way, one has generated a single dependent vari-
able which can be entered into a regular ANOVA and there would be no reason to 
bother with MANOVA. There are circumstances in which this would be a good way 
to proceed. However, the drawback is that by doing something like this you risk losing 
some of the information contained in your data. If this is not clear then imagine you 
ask your participants six questions, the answers to which are scored on a five-point 
Likert scale from strongly disagree to strongly agree. Then you give a score from 1 to 
5 for each of the different points on the rating scales. Finally you add up each indi-
vidual’s scores to give a total score. Usually, information is lost from the data by doing 
so. So if someone scores 17 on the scale you simply do not know from that total what 
answers they gave. There are many possible ways of scoring 17 on the six questions. 
The total score does represent something, but it has lost some of the detail of the origi-
nal replies. Hence, ANOVA carried out on the total scores also loses information from 
the original data.

This is not always a problem. It is a problem when more than one dimension underlies 
scores on the various dependent variables. If the correlations between our dependent 
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variables show some high correlations but also some low correlations then it is likely that 
more than one dimension underlies our scores. However, if the variables are all highly 
intercorrelated and constitute a single underlying dimension, totalling the scores and then 
subjecting the resultant total scores to ANOVA may be extremely effective. It also has the 
advantage that there is no loss of degrees of freedom in the analysis – loss of degrees of 
freedom can be a problem in MANOVA, but this is dependent on the total picture of the 
analysis and there is no simple way of balancing the different advantages and disadvan-
tages of the different approaches.

On a sort of loss–gains analysis, if your dependent variables are highly correlated then 
more is lost than gained through the use of MANOVA. MANOVA is somewhat more 
abstract than ANOVA so perhaps best avoided if there is not a clear gain. It would also 
be legitimate to use just one dependent variable if it is highly intercorrelated with the other 
dependent variables. However, since psychological measures tend to be unreliable, one 
cannot generally expect extremely high intercorrelations between variables. Furthermore, 
there is no advantage of this over the summation approach of adding up the dependent 
variables to get a total score if the variables correlate highly.

	 29.2	 MANOVA’s two stages

Actually MANOVA is a two-stage process. These stages are usually separate in the com-
puter programs most of us do our statistical analyses with nowadays. SPSS does have a 
method for doing MANOVA in the GLM procedures, but that only does half the job. In 
addition, you probably will need to carry out a discriminant function analysis which is a 
different SPSS procedure. Let us look at these two stages in turn.

	 ■	 Stage 1: MANOVA

In ANOVA the researcher wants to know whether the different groups defined by the 
independent variable(s) are associated with different mean scores on the dependent vari-
able. This is generally discussed in terms of the sums of squares associated with the dif-
ferent group means compared with the estimated sums of squares due to error variance. 
The ratio between the sums of squares due to the different groups of participants and the 
sum of squares due to error provides the basis of the statistical significance testing using 
the F-ratio or something similar. We have illustrated the calculation of this from basics in 
previous chapters on ANOVA. This is a somewhat tedious and unnecessary process given 
that the work is better done by computers.

Much the same process is involved in MANOVA except that we have several dependent 
variables to examine at the same time. So the question is whether the various groups are 
different in terms of the means that they have on several dependent variables. Once again, 
these differences in means are turned into sums of squares. But there is a big problem in 
doing this for a MANOVA design. It is not merely that there are several dependent vari-
ables, but also the several dependent variables may well be correlated with each other – 
that is, they measure, in part, the same thing. The analysis needs to make allowance for 
the extent to which the dependent variables are correlated. If it did not do so then the 
analysis would be claiming the same variance several times over. The extent of this 
depends on the size of the correlations between variables and the number of variables 
which correlate. Once the sums of squares associated with the different groups in the 
research design have been calculated, then multivariate tests of significance are computed 
and a significance level(s) provided. If the analysis is significant, then this shows that the 
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groups of participants differ in terms of their scores over the set of dependent variables 
combined. It does not tell us which dependent variables are responsible for the differences. 
That is the job of the second stage.

Things are more complicated than this, of course. Life is never simple halfway through 
a statistics textbook. Like all tests of significance, MANOVA was subject to a set of 
assumptions by the person who developed the procedures. Parts of the computer output 
for MANOVA simply tell the user whether these assumptions have been met.

	 ■	 Stage 2: The relative importance of each dependent variable

From the MANOVA procedure, we know whether the groups in our research are different 
overall on the several dependent variables combined. That is the basic test of the hypoth-
esis. Of course, if the multivariate test of significance in MANOVA is not significant, this 
basically is the end of the story. The researcher has drawn a blank in terms of his or her 
hypothesis and the null hypothesis is preferred over the alternative hypothesis. Even if we 
get a significant result from the multivariate test of significance, we remain at something 
of a loss as to what our analysis means since this tells us nothing as such about which 
groups vary and on what variables. We really need to understand something more about 
the pattern of variables on which the groups differ – that is, what combinations of vari-
ables tend to produce differences in group means?

A less than perfect but intuitively reasonable approach to this is to do a number of 
ANOVAs – one for each dependent variable. Hold on a minute, you may be thinking, 
didn’t we decide at the start of the chapter that it was not a good idea to do this? The 
problem was the multitude of tests of significance being employed and this was part of 
the reason for opting for MANOVA in the first place. But MANOVA gives us protection 
from Type I errors (accepting the hypothesis when it is in fact false) so we do not need to 
worry. If the MANOVA is not significant then the analysis is protected from the risk of 
Type I error simply because no further analyses are carried out on the individual depend-
ent variables.

If the MANOVA is statistically significant, then this supposedly ‘protects’ the analysis 
from Type I errors and indicates that it is legitimate to do ANOVAs on each of the various 
dependent variables. In other words, a significant MANOVA puts a cap on the risk of 
finding a significant result by chance – that is, the Type I error. Unfortunately, this is just 
not adequate for a number of reasons. The main one is that often there is one variable 
which is affected by the independent variable and the rest of the dependent variables are 
not affected. In these circumstances, the significant MANOVA protects the affected 
dependent variable from Type I errors, but the other variables are not protected. So one 
of the ANOVAs would be protected but the rest not. Quite what will happen depends on 
the details of the data and analysis. Some textbooks still recommend doing this second 
stage analysis but there is an alternative approach, so you may choose that instead (unless 
your local statistical expert advises otherwise, in which case it would be politic to follow 
their advice).

Another problem with it is that even if you test each dependent variable separately, in 
the end you do not quite know what was affected by the independent variable(s). Although 
you could name the various significant dependent variables, this does not tell you what 
it is about the dependent variable which is affected. That is, what do the dependent vari-
ables have in common which produces the differences between the groups of 
participants?

Ideally, the problem of finding which dependent variables are influential on the find-
ings is addressed through the use of discriminant function analysis (see Box 29.2 and 
Chapter 30). In this chapter, we will simply describe the MANOVA procedure followed 
up by ANOVAs.
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	 29.3	 Doing MANOVA

If you have mastered the basics of ANOVA then you may regard MANOVA, in its 
essence, as just a small step further. Ignoring discriminant function analysis for now, 
the major problem in implementing MANOVA lies in seeing the wood for the trees 
in terms of the computer output. But by this stage, this is probably a familiar difficulty 
which you can deal with since you are used to SPSS and other computer output. The 
reason that MANOVA is essentially easy is that the only new thing that you really 
need to know is that there are things known as multivariate tests. These are analogous 
to the F-ratios (or Levene’s test which is used by SPSS) which we are familiar with 
from ANOVA. Actually there are several multivariate tests which, despite being dif-
ferently calculated, do much the same sort of thing – tell you if your group ‘means’ 
are different on the set of dependent variables as a whole. These multivariate tests 
include Pillai’s trace, Wilks’ lambda, Hotelling’s trace and Roy’s largest root. These 
are the ones that SPSS calculates for you. You don’t have to choose between them – 
the computer computes them all for you. Figure 29.1 gives the key steps in under-
standing a MANOVA analysis.

Let’s look at the research summarised in Table 29.2. This is basically a one-way 
MANOVA design in which we have a single independent variable – the group – but sev-
eral dependent variables. So apart from having several dependent variables, this is much 
the same as the design in Chapter 23  for one-way ANOVA. The study investigates the 
efficiency of team-building sessions with a sports psychologist, team-building sessions 
with a sports coach or no team building. Participants were randomly assigned to these 
three different conditions. Gender is regarded as a second independent variable. There 
are equal numbers of male and female participants. If you can, it is best to have equal 
group sizes for MANOVA as it helps you to avoid problems (see later). Three dependent 
measures were used: 1) the difference between the liking ratings for the participant’s 
favourite and least favourite team member which is believed to be a measure of team 
cohesion, 2) the number of voluntary gym sessions the player attends and 3) the number 
of games each player plays in a season.

	 Figure 29.1	 Conceptual steps for understanding MANOVA
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The three dependent variables correlate at the levels indicated in Table 29.3. As can 
be seen, all three measures intercorrelate positively, but there is some considerable 
variation in the size of the correlations. This suggests that more than one dimension 
underlies these variables. The variables cannot convincingly be totalled in this case given 
the wide range in the size of the correlations. So a MANOVA analysis seems 
appropriate.

	 Table 29.2	 Data for the MANOVA analysis

Group (independent variable)

Team building with sports psychologist
Dependent variables

Team building with sports coach
Dependent variables

No team building controls
Dependent variables

Likea Gym Game Like Gym Game Like Gym Game

9b 12 14 4 6 15 9 6 10

5 9 14 5 4 12 1 2 5

8 11 12 4 9 15 6 10 12

4 6 5 3 8 8 2 5 6

9 12 3 4 9 9 3 6 7

9 11 14 5 3 8 4 7 8

6 13 14 2 8 12 1 6 13

6 11 18 6 9 11 4 9 12

8 11 22 4 7 15 3 8 15

8 13 22 4 8 28 3 2 14

9 15 18 5 7 10 2 8 11

7 12 18 4 9 9 6 9 10

8 10 13 5 18 18 3 8 13

6 11 22 7 12 24 6 14 22

a like = difference between ratings of most and least liked team members, gym = number of gym sessions voluntarily attended and 
game = number of games played.
b The scores are the scores on the three dependent variables.

	 Table 29.3	 Correlations between the three dependent variables

Difference between 
ratings of most/least 
liked team members

Number of gym 
sessions voluntarily 

attended

Number of games 
played

Difference between 
ratings of most/least 
liked team members

– .60 .30

Number of gym sessions 
voluntarily attended

– .51

Number of games played –

M29 Introduction to Statistics in Psychology with SPSS 29099.indd   402 04/01/2017   18:15



	 29.3â•‡ Doing MANOVA	 403

The MANOVA analysis of the data produces primarily a MANOVA summary table 
which is similar to the ANOVA summary table in Chapter 23. There are even values of the 
F-ratio much as in ANOVA. However, this is based on different calculations from ANOVA 
since it is applied to the multivariate test (e.g. Pillai’s trace, Wilks’ lambda, Hotelling’s trace 
and Roy’s largest root). Pillai’s trace is probably the one to rely on because it is more robust 
and less affected by the data not meeting its requirements. To keep the tables as simple as 
possible, we have confined our analysis to Pillai’s trace only. In MANOVA you do not 
calculate the sums of squares but the value of Pillai’s trace (and possibly the others). The 
MANOVA summary table (Table 29.4) gives the results of this analysis. Apart from that, 
you will find much the same statistics as for analysis of variance.

So it should be self-evident from Table 29.4  that we have a significant effect of group 
(type of team building). Generally speaking, Pillai’s trace gives much the same outcome 
as Wilks’ lambda, Hotelling’s trace and Roy’s largest root. It does not much matter which 
you choose – and, of course, you can use all four if you so wish though this will clutter 
your report to no advantage. If you do not get any significant findings then this is the end 
of MANOVA – you do not go any further since your hypothesis has been rejected.

Of course, if you have significant findings, then you need to know what they indicate. 
There are several steps in order to do this.

	 ■	 Step 1

The simplest interpretation would be to conclude that there are differences on the com-
posite of the three dependent variables related to the independent variables (groups). This 
may in any research study be sufficient to confirm the hypothesis. In our particular exam-
ple, there are differences in the ‘means’ of the composite of the three dependent variables 
due to the independent variable group (condition).

	 ■	 Step 2

In order to have a better understanding of more precisely what is going on in the data, 
you need the corresponding univariate ANOVAs to the MANOVA. SPSS gives you these 
as part of the basic output from MANOVA. An example is given in Table 29.5. As you 
can see, there is an ANOVA for each dependent variable. It may look confusing at first, 
but by taking one dependent variable at a time a basic understanding of one-way ANOVA 
will suffice. What seems clear from Table 29.5 is that two of the three dependent variables 
show virtually identical significant patterns. That is, the summary table shows that the 
two main effects for 1) difference between ratings of most and least liked team members 
and 2) number of gym sessions voluntarily attended are significant. The third dependent 
variable, number of games played, does not reach significance. This would suggest that 
the significant MANOVA is largely the result of the first two variables rather than the 
third variable. But it should be noted that you may obtain a significant MANOVA yet 
none of the ANOVAs is statistically significant. This means exactly what it says, but you 

	 Table 29.4	 Result of multivariate tests

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s trace .94 184.71 3.00 37.00 .00

Group’s Pillai’s trace .49 4.11 6.00 76.00 .00
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also need to realise that a linear combination of the dependent variables is related to group 
membership despite the fact that individually the dependent variables may fail to be 
related to group membership. Using these methods, you do not know much about that 
linear combination of variables. Discriminant function analysis would help you with this 
(see Chapter 30 and Box 29.2).

Discriminant function analysis and MANOVA
In the present chapter, we have concentrated on the very 
basics of MANOVA. A significant MANOVA means that 
the groups defined by your independent variable are differ-
ent in terms of the composite of the dependent variables 
you have used. The next question is just what aspects of the 
dependent variable(s) are responsible for the significant 
MANOVA. The approach used in the present chapter is to 
do a number of ANOVA analyses for the different depend-
ent variables. This tells you if the means for your groups 
are different for any of the dependent variables. The trou-
ble with this is that one is left somewhat unclear about the 
nature of the underlying combination variable derived from 
the several dependent variables.

An improvement in understanding can be achieved 
using discriminant function analysis (which is covered in 
detail in Chapter 30). This analysis helps you to under-
stand how your dependent variables were combined to 
give the significant MANOVA. These combinations of 
variables are known as discriminant functions. In other 
words, the analysis creates artificial variables which it 
derives from one or more of the original dependent 

variables. This is usually done on a computer program 
such as SPSS as the calculations are tedious to do by hand 
– and you would be ill-advised to spend time doing so 
with the attendant risk of computational errors. There is 
one centroid (which is a sort of mean score) for each 
group of participants on each of the discriminant func-
tions. Discriminant functions are obviously abstractions 
from the original dependent variables and, as such, they 
cannot be expected to be as clear initially as the variables 
that you included in the set of dependent variables. Inter-
pretation is involved and using your intelligence, insight, 
and other thinking skills may come unexpected to those 
who wish to believe that statistics is a purely mechanical 
process.

There can be several discriminant functions based on a 
set of dependent variables as already indicated. If there is 
just one dependent variable, as in ANOVA, then there is 
just one discriminant function which is the same as that 
single dependent variable. With two dependent variables 
there can be two discriminant functions and so forth. The 
number of discriminant functions is the smaller number of 

Box 29.2	 Focus on

	 Table 29.5	 Part of a table of the individual ANOVAs for the three dependent variables

Dependent variable Sum of 
squares

Degrees of 
freedom

Mean 
square

F-ratio Significance

Number of games 
played

98.14 2 49.07 1.67 0.20

Difference between 
ratings of most liked 
and least liked team 
members

97.19 2 48.60 15.71 0.00

Number of gym 
sessions voluntarily 
attended

122.33 2 61.16 6.86 0.03
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	 ■	 Step 3

A table of estimated marginal means is helpful at this stage. SPSS generates separate 
tables for each of the main effects and each interaction. In the present case, we have 
reproduced only the estimated marginal means for the significant main effect (the team 
building variable). This can be seen in Table 29.6. It is clear from this that scores on 
each of the first two dependent variables are lowest for the control, second highest for 
team building by a coach, and highest for team building by the psychologist. It is not 
immediately obvious which of the three dependent variables best discriminates the three 
conditions.

the number of dependent variables or one less than the 
number of groups. Each discriminant function that emerges 
in an analysis is unrelated to the other discriminant func-
tions that emerge. That is, discriminant functions do not 
correlate with each other.

The term discriminant function seems odd at first, but 
it means just what it says on the label. It is a mathemati-
cal equation (function) which discriminates things. What 
does it discriminate? Well, it is the mathematical function 
of the dependent variables which best discriminate 
between the different groups (i.e. levels of the independ-
ent variable). Basically the calculation (computer) works 
out the pattern of weights to give to each of the depend-
ent variables in order to produce the maximum discrimi-
nation between the various groups on the discriminant 
function. Of course, there are many different possible 
discriminant functions since it is basically a pattern of 
weights to apply to the different dependent variables, but 
only one function will give the greatest degree of dis-
crimination between the different groups. In other words, 
discriminant function analysis produces a new measure 

(function) which maximises the difference between the 
groupings of participants on that measure (function).

As indicated, there may be several discriminant func-
tions. The first discriminant function essentially emerges 
from the original data whereas the second discriminant 
function is calculated on the data after the first discrimi-
nant function has been taken into account. The third dis-
criminant function is calculated from the data after the first 
and second discriminant functions have been removed.

There is a conceptual problem when we move from 
MANOVA to discriminant function analysis. In MANOVA 
we tend to speak of the scores as being the dependent vari-
able and the variable on which the groups differ is the 
independent variable. Well, discriminant function analysis, 
like the various forms of regression, works the other way 
round. In this case, the score variables become the inde-
pendent variables and the dependent variable is the vari-
able on which the different groups are categorised. Yes, 
this is confusing, but if you concentrate on the nature of 
the variable in question (category variable or score) then 
Chapter 30 should be straightforward.

	 Table 29.6	 Estimated marginal means for groups on each dependent variable

Difference between 
ratings of most and 

least liked team 
members

Number of gym 
sessions voluntarily 

attended

Number of games 
played

Teamwork training by 
sports psychologist

7.29 11.21 14.93

Teamwork training by 
coach

4.43 8.36 13.86

Control – no teamwork 
training

3.79 7.14 11.29
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Remember that this is a down-to-basics account of MANOVA. We do not pretend 
that it offers the most sophisticated approach. You might wish, especially, to check 
whether your data actually meet the requirements of MANOVA in terms of the charac-
teristics of the data. One quite important thing is the Box’s test of equality of the covari-
ance matrix. We don’t need to know too much about this test, but we do need to know 
what to do if the test is statistically significant. The Box’s test is illustrated in Table 29.7. 
If it yields a significant value (as it does in our case), this means that the covariances are 
not similar, which violates one of the assumptions on which MANOVA was built. This 
can affect the probability levels obtained in the MANOVA. However, this is crucial only 
if the MANOVA significance levels just reach the .05 level of significance. If your 
MANOVA findings are very significant then there is not a great problem. You should 
not worry if the different cells (groupings) of your MANOVA have equal sample sizes 
as violating the requirements of the MANOVA makes no practical difference to the 
significance level in this case. If you have very different sample sizes and your findings 
are close to the boundary between statistical significance and statistical non-significance, 
then you should worry more – one solution is to equate the sample sizes by randomly 
dropping cases from cells as necessary. But this could have as much effect on your find-
ings as violating the equal covariances principle anyway. So bear this in mind when 
designing your MANOVA.

	 29.4	 Reporting your findings

If your MANOVA was not significant, you could write the following, after the APA 
(2010) Publication Manual’s recommendations: ‘MANOVA was used to test the hypoth-
esis that team work training had an effect on sporting behaviours, but the null hypothesis 
was supported, Pillai’s F(6, 76) = 1.08, p ns.’

However, since the findings were significant, you could write: ‘MANOVA showed that 
teamwork training was effective in improving sporting behaviours, Pillai’s 
F(6, 76) = 4.11, p 6 .01. The individual dependent variables were subject to ANOVAs in 
order to assess whether the three dependent variables showed the same trend. For the meas-
ure of the difference between favourite and least favourite team member measure it was 
found that the psychologist teamwork sessions (M = 7.29) were superior to the coach team 
work sessions (M = 4.43) and the control condition (M = 3.79), F(2, 39) = 15.71, p 6 .01. 
The mean number of gym sessions attended was higher for the psychologist (M = 11.21) 
than the coach (M = 8.36) and control (M = 7.14), F(2, 39) = 6.86, p 6 .05.’ The value 
of Pillai’s F was obtained form Screenshot 29.5.

	 Table 29.7	 Box’s M test for covariance homogeneity (equality)

Box’s M 18.70

F 1.38

df1 12

df2 7371

Significance 0.17
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MANOVA

Guzman and Kingston (2012) studied sport dropout. At one point in time, variables believed to be predictors of 
sport dropout were measured and whether the individual had persisted with the sport or dropped out was 
assessed after 19 months. The participants were 857 young athletes with a mean age of around 15 years. Part 
of the study involved a MANOVA analysis. The design was dropout or persistence * male or female * age 
(three categories). The several dependent variables analysed at the same time were psychological need satisfac-
tion from sport, intention to practise sport, perceived conflict between sport and study, and the self-determi-
nation index. Drop-out was related to these dependent variables in MANOVA as was age. There were no 
interaction effects.

Lowe and Ang (2012) were interested in the experience of test anxiety (fear of evaluation) in elementary stu-
dents in the USA and Singapore. Culture and gender were the independent variables, making this a 2 * 2 design. 
MANOVA was used for the statistical analysis because several dependent variables were employed – physiologi-
cal hyperarousal, social concerns, task-irrelevant behaviour and worry. The MANOVA (and additional regular 
ANOVAs) showed that Singapore males had more test anxiety than US males whereas the US females scored 
more highly than the Singapore females on the overall test anxiety scale and the physiological hyperarousal 
subscale. Singapore males had higher anxiety on the Worry subscale.

Casidy (2012) chose to examine differences in the personality of consumers which were related to the variables 
of a) fashion consciousness – which is the individual’s involvement in fashionable dressing and so forth and b) 
prestige sensitivity – preference for the high-priced, higher-quality, designer clothes. The data were collected 
from undergraduate students using self-completion questionnaires. She included items from what she calls the 
big five scales used to measure consumer personality in the literature. Using cluster analysis, she found four 
clusters of highly related items in the responses of the students to these items. These clusters she identified as 
‘openness to experience, extraversion, agreeableness and consciousness’. The data were analysed using MANOVA. 
The independent variables in this study were each of the personality clusters. The multiple dependent variables 
were fashion consciousness and prestige sensitivity. There were personality differences in terms of the prestige 
sensitivity/fashion consciousness dependent variable.

Research examples

●	 MANOVA basically deals with a very simple problem – the risk of falsely accepting a hypothesis because you 
have carried out multiple tests of significance.

●	 Try to avoid an unfocused approach to MANOVA. It is not a particularly useful technique for sorting out what 
to do with numerous dependent variables that you have measured merely because you could.

●	 MANOVA is not appropriate if all of your dependent variables are highly intercorrelated. It may be better in 
these circumstances to combine the dependent variables to give a total score which is then analysed using 
ANOVA, for example.

●	 A complete MANOVA would preferably involve a discriminant function analysis. This is described in 
Chapter 30.

Key points
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less (Screenshot 29.5).

Name the variables in ‘Variable View’ of the ‘Data Editor’.
in ‘Data View’ of the ‘Data Editor’

Computer Analysis

Multivariate analysis of variance using SPSS

Interpreting and reporting the output

●	 A number of different multivariate tests are given in the Multivariate Tests output. Pillai’s trace is as 
good as any for most purposes. For the Tests for Between-Subjects Effects output you only need to 
concentrate on the row for Group in this example.

●	 You could write: ‘MANOVA showed that teamwork training was effective in improving sporting 
behaviours, Pillai’s F(6, 76) = 4.11, p 6 .01, hp

 2 = .25.’

	 Figure 29.2	 SPSS steps for MANOVA
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	 Screenshot 29.2	 On ‘Analyze’ select ‘Multivariate. . . ’	 Screenshot 29.1	 Data in ‘Data View’

	 Screenshot 29.3	 Select variables for analysis 	 Screenshot 29.4	 Select options
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	 Screenshot 29.5	 Important output

Recommended further reading

Diekhoff, G. (1992). Statistics for the social and behavioral sciences (Chapter 15). Dubuque, IL: 
Wm. C. Brown.

Hair, J. F., Jr, Anderson, R. E., Tatham, R. L., & Black, W. C. (2009). Multivariate data analysis 
(7th ed., Chapter 6). Upper Saddle River, NJ: Pearson Prentice Hall.

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed., Chapter 7). Boston, 
MA: Allyn & Bacon.
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●	 Discriminant function analysis uses a set of score variables to assess the extent to which 
they are associated with the different groups in a study. In other words, it asks the question 
of whether it is possible to discriminate between groupings of participants (conditions) on 
the basis of a set of independent variables.

●	 It is similar to logistic regression (Chapters 42 and 43) in terms of what it does, though it 
cannot use category variables as predictor variables and is based on more restrictive 
assumptions.

●	 The main use of discriminant function analysis is following a significant MANOVA  
(Chapter 29). It serves as a way of understanding what combinations of a set of variables 
best differentiate the different groups (conditions) in a study.

●	 A discriminant function is a variable derived from a set of variables which maximises the 
differences between the groups on that set of variables. It computes a set of weights which 
are applied to each variable in the set of score variables. More than one discriminant func-
tion may emerge.

●	 It is important to avoid extremely highly correlated variables since this creates high collinear-
ity which distorts the analysis and puts the meaning of the findings in doubt. If two variables 
highly correlate then one could be omitted from the analysis (it contains no different infor-
mation from the other variable with which it correlates highly). To check, the omitted variable 
could then be used instead of that variable and the analysis repeated and the two outcomes 
compared.

●	 Discriminant function analysis can classify participants into groups on the basis of their 
‘scores’ on the discriminant functions. This classification can then be compared with the 
group that the participants actually belong to.

Discriminant (function) 
analysis – especially in 
MANOVA

Chapter 30

Overview
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	 30.1	 Introduction

Discriminant function analysis once did the job for which logistic regression is now the 
preferred technique. For most purposes, logistic regression is better than discriminant 
function analysis since its underlying basic assumptions are less demanding (restricting). 
Both techniques tell the researcher whether different groups of participants (categories of 
the dependent variable) can be accurately classified on the basis of a number of other 
variables (the independent variables) in combination. For discriminant function analysis, 
these other variables must be score variables (logistic regression can handle nominal or 
category variables in addition). The main (perhaps only) reason why discriminant func-
tion analysis is included in this textbook is its role in relation to MANOVA (see Chap-
ter 29). In many ways, discriminant function analysis and MANOVA are built on the 
same basic mathematical calculations. Consequently, it is not surprising that when 
MANOVA cannot answer a particular question, discriminant function analysis is used to 
fill in the information gap. Apart from that, we would not recommend its use. Its role in 
relation to MANOVA is to indicate the combination of variables which best discriminate 
between the different groups of participants. In order to do this, a researcher must exam-
ine what the discriminant functions which significantly discriminate between the groups 
actually represent. This is done by seeing which variables correlate best with the discri-
minant function. In this regard, it is a little like factor analysis (Chapter 33).

Table 30.1 illustrates a study for which discriminant function analysis is appropriate. 
It deals with three drug conditions (including one no-treatment control). Much the same 
data were previously discussed in Chapter 29 on MANOVA, though notice that we have 
reversed the labelling of the independent variable and the dependent variables. There are 
four independent variables (reaction time, clarity of speech, steadiness of hand and writing 
speed). The dependent variable is the drug condition. The research question is basically 
what pattern or combination of the independent variables best classifies individuals in 
terms of the group to which they belong. That is, can we predict group membership 
accurately on the basis of the scores we have on the independent variables?

Some authorities describe discriminant function analysis as the reverse of MANOVA. 
This is a reasonable description, especially since the independent and dependent variables 
are reversed between MANOVA and discriminant function analysis. In MANOVA, the 
categories of the independent variable become the dependent variable in discriminant 

●	 Discriminant function analysis has concepts which are new – especially those of centroids 
and canonical correlation. But a centroid is nothing more than the mean of a group on a 
discriminant function (which is just a special sort of variable) and canonical correlation is 
just a correlation coefficient but between one set of variables and another set of variables.

Preparation

Read Chapter 29 on MANOVA, but understanding something about regression (Chapters 9 
and 34) and especially logistic regression (Chapters 42 and 43) will be beneficial.
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function analysis. The dependent variables (the score variables) in MANOVA become the 
independent variables in discriminant function analysis. There is a strong relationship 
between ANOVA and multiple regression – indeed many calculations of ANOVA actually 
use regression techniques. The strongest indication of that is the use of the term intercept 
(from regression) in some ANOVA analyses. There is also a very strong relationship 
between MANOVA and discriminant function analysis, as we have indicated.

Of course, what is really confusing is the use of the terms independent and dependent 
variables, which should not be taken to indicate that one thing causes the other. Predictor 
and criterion variables are another way of saying the same thing.

No matter, in discriminant function analysis the independent variables are the score 
variables whereas the dependent variable consists of the different groups of participants. 
So essentially in discriminant function analysis we are trying to predict which group of 
participants individuals belong to on the basis of a number of predictor variables. Another 
way of saying exactly the same thing is to suggest that discriminant function analysis seeks 
to find whether the different groups of participants are different in terms of their means 
on the independent variables. This is often expressed in terms of the means of each group 
on the discriminant functions. These means are called centroids. Though this sounds like 
a radically new concept, it merely indicates the group mean on a discriminant function.

One thing is vital to understand. A discriminant function is basically a way of totalling 
or combining the scores on the independent variables. Instead of adding the scores on 
variables A, B, C and D as follows:

A + B + C + D, etc.

in discriminant function analysis, each score variable is given a different weight (w) so 
that the formula for the discriminant function is:

w1A + w2B + w3C + w4D, etc.

This is little different from the formula for multiple regression (Chapter 34), though we 
have omitted a constant from the above for the purposes of clarity. Of course, there are 
any number of different sets of weights that can be applied. However, in discriminant 
function analysis the discriminant function used is the one which best discriminates  
(differentiates) the various groups of participants. Only one discriminant function can 
meet this criterion. One could think of the discriminant function as simply a variable 
based on a combination of other variables, just as factors in factor analysis are variables  

Group (dependent variable)

Therazine condition 
Independent variables

Placebo condition 
Independent variables

No-treatment condition 
Independent variables

RTa Sp Hd W RT Sp Hd W RT Sp Hd W

8b 5 7 7 1 3 2 2 4 3 5 4

7 7 6 5 4 5 3 3 1 2 3 6

9 8 5 9 7 2 1 2 3 5 2 6

7 5 8 8 2 5 6 1 1 4 6 2

	 Table 30.1	 Data table for a study of effects of Therazine on motor skills

a  RT = Reaction time, Sp = clarity of speech, Hd = steadiness of hand and W =writing speed. Scores are from four cases in each column.
b  The scores are for the four independent variables.
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(see Chapter 33). Just so long as you remember that this combination variable is one that 
maximises differences between the groups (conditions) in the study then you cannot go 
far wrong.

It is a little more complicated than that since there can be several discriminant functions 
calculated for any set of data. The first discriminant function maximises the differences 
between the groups of participants (on that discriminant function). In other words, the 
discriminant function is the weighted combination of the predictor variables that maxim-
ises the difference between the groups of participants (i.e. conditions of the study). Thus 
it is the function (weighted combination of variables) that best discriminates the groups 
in the study. There may remain important variation in the data after this has been done. 
So a second discriminant function may sometimes be calculated based on the original data 
minus variation due to the first discriminant function. The process can continue to pro-
duce further discriminant functions depending on the number of groups to differentiate 
and the number of predictor variables (score variables). The discriminant functions are 
unrelated to each other – that is to say, they are independent of each other or orthogonal. 
Basically this means that discriminant functions from an analysis do not correlate.

Actually, discriminant function analysis does not handle more than one dependent 
variable at a time. This is no great problem as the main effects from the MANOVA can 
be dealt with one at a time (the main effects of MANOVA are independent of each other).

It is important, so as not to be flustered when you come across new terminology, to 
know that discriminant function analysis works largely using canonical correlations. These 
are similar to multiple correlations (see Chapter 34) which are the correlation of several 
variables with one other variable. Canonical correlation is the correlation of a set of several 
variables with another set of several variables. In discriminant function analysis there are 
several independent variables and also several dependent variables since there are usually 
several different groups. Don’t worry. We have read claims that canonical analysis has the 
dubious distinction of being the hardest multivariate concept to understand. Actually, 
apart from knowing that there is such a thing as canonical correlations, there is not a great 
deal more that you need to know about the computer output for discriminant function 
analysis that you probably don’t know already from other parts of this book.

There is a limit to the number of discriminant functions that can be produced for any 
set of data. The number of groups being discriminated minus 1 is one criterion and the 
number of (score) variables in the analysis is the other criterion. Whichever is the smaller 
of the two is the maximum number of discriminant functions.

	 30.2	 Doing the discriminant function analysis

Table 30.2 gives the discriminant function analysis version of the data that we used in 
Chapter 29 to illustrate the steps in a MANOVA analysis. Chapter 29 left the MANOVA 
analysis incomplete since it lacked a discriminant function analysis, which adds to our 
ability to understand what is happening in our data. In the following discussion we con-
centrate solely on using discriminant function analysis to identify group membership in 
terms of team-building procedures. We know from MANOVA (Chapter 29) that we have 
a significant effect of the teamwork condition on the scores on the set of three dependent 
variables. In the MANOVA chapter, the fact that we had found a significant MANOVA 
freed us to do several ANOVAs to see which of the dependent variables (score variables) 
were influenced by the particular group to which participants belonged. We found that 
teamwork training did not seem to have an influence on the number of games played, but 
it did have an influence on the other two dependent variables. In other words, we already 
know quite a bit from the MANOVA. This should be remembered now that we move on 
to the discriminant function analysis. And don’t forget that when we say independent 
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variable in discriminant function analysis we would call it a dependent variable in 
MANOVA and vice versa. So the group variable is labelled the dependent variable in 
Table 30.2 and the independent variables are the scores. Figure 30.1 gives the key steps 
in discriminant function analysis.

	 ■	 Step 1

Before we start a discriminant function analysis, there is one important thing to repeat. 
Highly correlated score variables should be avoided. This is because of the problem of 
collinearity (discussed in Chapter 34). Basically you need to check the correlations 
between all of the score variables to make sure that this is not the case. Just compute a 
correlation matrix between all of your score variables to see whether there are any highly 
correlated items. In discriminant function analysis, the score variables are the independent 
or predictor variables. We are thinking of correlations of the order of maybe .7 and above. 
The question, then, is what you can do about this situation. The higher the correlation 
the more the two variables are assessing more or less the same thing in terms of the vari-
ation in scores. So it would be reasonable to do the analysis leaving out one of the two 
highly correlated variables and any others you find. There is no harm in this since the two 
variables are virtually the same and so leaving one of them out is no real handicap. Of 
course, if you wish, you could reinstate those variables and leave out the other variables 
which you had previously included. Almost certainly, you will find virtually no difference 
in terms of the two analyses except for the names of the variables involved.

Group (dependent variable)

Team building with sports psychologist 
Independent variables

Team building with sports coach 
Independent variables

No team building controls 
Independent variables

Likea Gym Game Like Gym Game Like Gym Game

9b 12 14 4 6 15 9 6 10

5 9 14 5 4 12 1 2 5

8 11 12 4 9 15 6 10 12

4 6 5 3 8 8 2 5 6

9 12 3 4 9 9 3 6 7

9 11 14 5 3 8 4 7 8

6 13 14 2 8 12 1 6 13

6 11 18 6 9 11 4 9 12

8 11 22 4 7 15 3 8 15

8 13 22 4 8 28 3 2 14

9 15 18 5 7 10 2 8 11

7 12 18 4 9 9 6 9 10

8 10 13 5 18 18 3 8 13

6 11 22 7 12 24 6 14 22

	 Table 30.2	 Data for the discriminant function analysis

a  �Like = difference  between ratings of most and least liked team members, Gym = number of gym sessions voluntarily attended and Game = 
number of games played.

b  The scores are the scores on the three independent variables.
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	 ■	 Step 2

Having run your data through SPSS or some other program which does discriminant func-
tion analysis, the next thing to do is to look for the eigenvalues in the output. Note that 
for our example, the maximum number of discriminant functions possible is the number 
of groups -1 which is 3 - 1, which is 2 discriminant functions. (The number of variables 
is the other formula but this is bigger than 2 in this case, so it is ignored.) The first discri-
minant function is the most discriminating between the groups and the later discriminant 
functions are the most discriminating after the earlier discriminant functions have been 
removed from the data. Table 30.3 gives the characteristic eigenvalue information that is 
provided. For discriminant function 1, we can see that the eigenvalue is 0.87. This is indica-
tive of the amount of variation in the data which is accounted for by the first discriminant 
function. Looking at the column for % of variance, this corresponds to 97% of the total 
variance. This is not the total of the variance in the data but the total of the variance 
explained by the discriminant functions. It is, in other words, the reliable variance explained 
and excludes error variance. Thus in this example the total of the two eigenvalues is 
0.87 + 0.03 = 0.90. Thus the proportion of variance explained = 0.87 , 0.90, which 
equals .97; expressed as a percentage this becomes the figure of 97% of the total variance 
explained in the penultimate column in Table 30.3. Don’t be misled into thinking that the 
research has identified a weighted set of variables (the discriminant function) which 
explains 97% of the variation in the data. That would be phenomenal. What it means is 
that the researcher has found a discriminant function that explains the reliable variance 
(i.e. with error variance ignored), which is much less impressive.

Function Eigenvalue % of variance Canonical correlation

Discriminant function 1 0.87 97 .68

Discriminant function 2 0.03   3 .16

	 Table 30.3	 Eigenvalues and variance explained by each discriminant function

	 Figure 30.1	 Conceptual steps for understanding discriminant function analysis
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Also notice that a cumulative % of variance explained figure is given. Since the maxi-
mum number of discriminant functions possible is two where one has three groups, then 
it is hardly surprising that those two discriminant functions account for all of the variation 
that could be accounted for by the discriminant functions. It is all the reliable variance that 
can be explained. The final column in Table 30.3 gives the canonical correlation for the 
first discriminant function as being .68. If you interpret this much as you would do any 
correlation, it is clear that it is quite a substantial correlation and indicative of a strong 
relationship between the predictor (score) variables and the groups of participants. In 
contrast, the second discriminant function not only explains very little of the variance but 
the canonical correlation is fairly low at .16. Again, if this were an ordinary correlation 
coefficient we would regard the value as fairly low. This is exactly the same for the canoni-
cal correlation. So we are left with the impression that there is one substantial discriminant 
function and a rather unsubstantial second discriminant function for these data.

	 ■	 Step 3

A crucial part of the analysis is the information on Wilks’ lambda (Table 30.4). The table 
can be a little confusing at first. What the analysis basically does is to indicate whether 
or not your discriminant function analysis is statistically significant. It does so by first of 
all giving the significance of all of your discriminant functions together. So where you see 
in the first column 1 through 2 this includes all of the discriminant functions in the analy-
sis. For our example, the maximum is 2, so that row reads 1 through 2. If we had four 
groupings then this would read 1 through 3 because 3 is the maximum number of discri-
minant functions with four groupings (see above). The next row in our example reads 
just 2. This is the test for the second discriminant function alone. So, as we can see, dis-
criminant functions 1 and 2 together are very significant at 0.00, but discriminant func-
tion 2 on its own is not significant. Of course, this means that the discriminant functions 
do not individually have to be statistically significant in order that you have a significant 
discriminant function analysis overall. The table for Wilks’ lambda becomes more com-
plex with increasing numbers of discriminant functions. But, despite this, the key is the 
first row in the table since if that is not significant then you need proceed no further in 
examining the output. (You probably would not have done the discriminant function 
analysis anyway since the MANOVA that you probably have computed previously would 
have indicated a lack of significance in your data already.)

If the Wilks’ lambda is statistically significant then this indicates that the means (cen-
troids) of the different groups on the discriminant function(s) are statistically different. The 
value of lambda can range from 0 to 1. It is the amount of variation in the discriminant 
function which cannot be accounted for by the different groups (conditions). The value of 
lambda will increase as you go down the column for lambda since the discriminant func-
tions lower down the list involve variance which cannot be explained by differences 
between the groups in the analysis. We know that already, since they are the discriminant 
functions which are poorest at differentiating the groups in the analysis.

Test of function(s) Wilks’ lambda Chi-square df Sig.

Discriminant functions 1 
through 2

.52 24.69 6 .00

Discriminant function 2 .97 1.01 2 .61

	 Table 30.4	 Values of Wilks’ lambda
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	 ■	 Step 4

The main point of doing the discriminant function analysis following MANOVA is to 
understand which of your predictor (independent) variables are associated with the discri-
minant functions that have been calculated. In other words, just what weights are given to 
the predictor variables in calculating each of the discriminant functions? Merely knowing 
the weights as such is not very helpful since the weights depend on the exact scale and range 
of scores on each variable. These may be different for each of your predictor variables, so 
it is better to have a standardised version of the weights (coefficients) as this then allows 
meaningful comparison. These standardised weights can be seen in Table 30.5. The big 
weights given to the first discriminant function are for ‘difference between ratings of most 
and least liked team members’ (.85). The number of gym sessions voluntarily attended has 
a smaller relative weight (.30). It is also notable that ‘number of games played’ has a near 
zero weight (- .04). Thus, the first discriminant function is most clearly identified with the 
variable concerning the most and least favourite team member, though there is also a com-
ponent of the discriminant function which is associated with the voluntary attendance at 
gym session. The second discriminant function, which we already have seen is in itself not 
statistically significant, has its major weighting solely for number of games played.

Alternatively, we could look at the correlations between the predictor variables and the 
standardised discriminant functions (the structure matrix). Although the values of the cor-
relations in Table 30.6 naturally differ from the weights shown in Table 30.5, the direction 
of the results is similar. The variable that is most highly correlated with the first standardised 
discriminant function in Table 30.6 is the difference between the most and least liked team 
members (.97). This variable also has the largest weight (.85) on the first standardised 
discriminant function in Table 30.5. The variable that is most highly correlated with the 
second discriminant function in Table 30.6 is the number of games played (.96). This vari-
able also has the greatest weight (1.00) on the second discriminant function in Table 30.5.

So the picture seems to be that the first discriminant function consists largely of ‘dif-
ference between ratings of most and least liked team members’ with a smaller contribution 
from ‘number of gym sessions voluntarily attended’. The second discriminant function is 
the ‘number of games played’, though it is fairly clear by now that this function is unim-
portant relative to the first discriminant function and non-significant statistically.

Although this interpretation makes sense and fits the statistical analysis, it has to be 
said that the discriminant function analysis does not shed a great deal of light on the 
combination of predictor variables which best discriminate between the groups. It is not 
like, say, exploratory factor analysis (Chapter 33) which can unveil patterns which are 
meaningful and informative. This is partly because that is not really the job of discrimi-
nant function analysis. More light may be shed if you have more variables than in this 
case. However, if you have many variables (such as where you have administered a lengthy 

Group (condition) Function

Discriminant function 1 Discriminant function 2

Difference between ratings of most 
and least liked team members

.85 - .31

Number of gym sessions voluntarily 
attended

.30 .05

Number of games played - .04 1.00

	 Table 30.5	 Standardised coefficients for the different discriminant functions
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questionnaire) then it would be wise to subject this questionnaire to factor analysis ini-
tially rather than throw all of the variables into a discriminant function analysis.

	 ■	 Step 5

Since the discriminant scores are variables of a special sort, it is useful to examine the 
mean ‘scores’ for each discriminant function for each group of participants. These are 
shown in Table 30.7. Remember that discriminant functions are just variables so each 
participant can be scored on each discriminant function. Thus it is possible to find the 
average score for each group on the discriminant functions. This basically tells us which 
groups are high and low on each discriminant function. So in terms of the first discrimi-
nant function, the teamwork talk by the sports psychologist generates the highest mean 
(remember that the discriminant function is largely about the ‘difference between the most 
and least favourite team member’). The other two groups are more similar to each other 
on this discriminant function. The second discriminant function (number of games played 
was the most associated variable) seems to suggest that the teamwork talk by the team 
coach produced higher scores. However, this second discriminant function is to be dis-
counted because of its lack of significance.

Group (condition) Discriminant function 1 Discriminant function 2

Difference between ratings of most and least 
liked team member

.97 .09

Number of gym sessions voluntarily attended .64 .38

Number of games played .27 .96

	 Table 30.6	 �Structure matrix of the correlation of the predictors and the standardised 
discriminant functions

Group Discriminant function 1 Discriminant function 2

Team psychologist 1.24 -0.04

Team coach -0.42 0.21

Control -0.83 -0.17

	 Table 30.7	 Means (centroids) for the groups (conditions) on each discriminant function

	 ■	 Step 6

Finally, we need to ask to what extent the discriminant functions can be used to accurately 
classify participants in terms of the group that they were in. This is done by comparing 
the predicted group based on the discriminant functions with the actual group member-
ship. Examining Table 30.8, it can be seen that the accuracy of the prediction depends on 
which group one is considering. The discriminant functions accurately classified 78.6% 
of the 14 participants who underwent the team-building sessions with the psychologist, 
but only 28.6% of the 14 participants who had team-building sessions with the coach 
were correctly classified. For the control group, accuracy was 57.1% since 8 out of the 
14 members of the control group were accurately classified by the discriminant functions. 

M30 Introduction to Statistics in Psychology with SPSS 29099.indd   419 04/01/2017   18:18



420	 CHAPTER 30â•‡ Discriminant (function) analysis – especially in MANOVA

Fifty per cent of those allocated to the coach teamwork condition were actually misclas-
sified as being in the control condition.

	 ■	 Step 7

There is an alternative way of doing the discriminant function analysis – using a stepwise 
process. Stepwise processes are discussed in Chapter 34. In SPSS, this involves pressing 
one additional button. Stepwise would have advantages in terms of simplicity of the 
output. This is because it chooses the biggest discriminant functions and does not include 
any discriminant function which is not statistically significant. Thus in the above tables, 
only one discriminant would be mentioned because only the first discriminant function 
is significant. This is a considerable saving of effort, of course. Unfortunately, and this 
may be sufficient reason for you not to use stepwise, this is not the same model as the 
original MANOVA employed. In that MANOVA, essentially all discriminant functions 
were used as the basis of the calculation (though it would not be apparent that this was 
what was happening) – that is, the significant MANOVA is based on all of the discrimi-
nant functions. So there is no reason why this should change for the discriminant function 
analysis. But by using stepwise you are probably violating the MANOVA model. Some 
textbooks, nevertheless, advise the use of stepwise discriminant function analysis. In truth, 
it probably makes very little difference to the way you understand your analysis.

	 30.3	 Reporting your findings

One way of summarising the results of this analysis according to the APA (2010) Publica-
tion Manual’s recommendations is as follows: ‘A direct discriminant analysis was carried 
out using the three predictors of the difference between the most and least liked team 
member, the number of gym sessions voluntarily attended and the number of games played 
to determine which of these variables best discriminate between teams built with a sports 
psychologist, teams built with a coach and teams built with neither of these (the control 
condition). Two discriminant functions were calculated, explaining about 97% and 3% 
of the variance, respectively. Wilks’ lambda was significant for the combined functions, 
x2(6, N = 42) = 24.69, p 6 .001 but was not significant when the first function was 
removed, x2(2, N = 42) = 1.01, p = .605. The first discriminant function maximally 
differentiated the psychologist’s teamwork training from the other two groups and cor-
related most highly with the difference between the most and least liked members (.97) 
and the number of gym sessions attended (.64). The second discriminant function maxi-
mally distinguished the coach’s team from the other two groups and loaded most strongly 
with the number of games played (.96). SPSS gives a table called Classification Result 
which tabulates how accurately participants have been classified by the discriminant 

Actual group membership Predicted group membership

Psychologist 
teamwork

Coach teamwork Controls

Psychologist teamwork 11 (78.6%) 2 (14.3%) 1 (7.1%)

Coach teamwork 3 (21.4%) 4 (28.6%) 7 (50.0%)

Controls 4 (28.6%) 2 (14.3%) 8 (57.1%)

	 Table 30.8	 Accuracy of the classification based on the discriminant functions
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functions which we have not included. From this table, about 55% of the cases were cor-
rectly classified compared with 33% expected by chance. About 79% of the psychologist’s 
team members were correctly identified with 14% misclassified as the coach’s team mem-
bers. Fifty-seven per cent of the control team members were correctly identified with 29% 
misclassified as the psychologist’s team members. Twenty-nine per cent of the coach’s team 
members were correctly identified with 50% misclassified as the control team members.’

Discriminant function analysis

Although discriminant function analysis is included in this book largely to help with the interpretation of MANOVA, 
it can be used in its own right as in the examples below. However, we would recommend using logistic regression 
in these circumstances.

Gannon and Barrowcliffe (2012) used a group of both university students and community participants. The 
participants were asked to indicate confidentially whether they have ever been involved in firesetting. At inter-
vals they were also asked to complete a new Fire Setting Scale and Fire Proclivity Scale. Eleven per cent admitted 
firesetting. Using discriminant function analysis an attempt was made to see whether the firesetters could be 
effectively discriminated from the non-firesetters using the two scales. Just one subscale from the Fire Propensity 
Scale known as the propensity behavioural index significantly discriminated between the two groups of partici-
pants. The overall hit rate was 91% but only 72% of the firesetters were correctly classified.

Gray, LaPlante and Shaffer (2012), using records of actual Internet gambling, were able to study a group of 
gamblers who had triggered an irresponsible gambling alert with a matched group of controls who had had the 
same amount of exposure to gambling on the Internet but did not trigger concerns. Discriminant function 
analysis was used to differentiate the two groups. It was found that indices reflecting the intensity of the gam-
bling activity best differentiated the two groups. These indices included the total number of bets made, the 
number of Euros per bet and the number of bets per betting day especially for live sports betting.

Ridenour, McCoy and Dean (1996) investigated the possibility of malingering by patients under neuropsychologi-
cal assessment. One possible reason for the malingering was the involvement of an insurance claim. Some 
participants were asked to fake symptoms on the Neuropsychological Symptom Inventory whereas other 
reported honestly. The items of the Inventory were used in a discriminant function analysis in an attempt to see 
whether the two groups could be differentiated on the basis of their replies. Overall, participants were correctly 
classified according to their group membership. There were just over 2% false positives.

Research examples

●	 Although discriminant function analysis is a general technique to assess the accuracy with which different 
groups can be classified on the basis of a set of score variables, it is not the best technique for doing so. It is 
important in relation to MANOVA since discriminant function analysis and MANOVA are based on very similar 
assumptions and mathematics.

●	 Check out logistic regression (Chapters 42 and 43) if you simply want to know which variables accurately 
classify groups of participants. Discriminant function analysis has drawbacks compared to logistic 
regression.

●	 Only where you have a significant MANOVA do you need to consider using discriminant function analysis.

Key points
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Computer Analysis

Discriminant function analysis using SPSS

Interpreting and reporting the output

●	 The main task of interpreting the data is to identify how many significant discriminant functions there 
are from the Wilks’ lambda output table. In this case there are two significant discriminant functions. The 
Structure Matrix then tells you how each of the variables loads on each of the discriminant functions.

●	 A detailed approach to reporting these findings is given in Section 30.3. This draws on additional output 
tables. Refer to this section to find help on how to report your findings.

	 Figure 30.2	 SPSS steps for a discriminant function analysis

Select ‘Define Range. . .’ Put the lowest group number code in the ‘Minimum’ box and the
highest in the ‘Maximum’ box. Select ‘Continue’.

‘Independents:’ box and select ‘Statistics’.

Select ‘Classify’, ‘Compute from group sizes’, ‘Summary table’, ‘Continue’ and ‘OK’
(Screenshot 30.3).

Name the variables in ‘Variable View’ of the ‘Data Editor’.
in ‘Data View’ of the ‘Data Editor’. This is

the same as for Chapter 29.
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	 Screenshot 30.2	 Select variables

	 Screenshot 30.4	 Wilks’ lambda output
	 Screenshot 30.5

	 Structure Matrix table giving 
correlations of each variable with 
the functions

	 Screenshot 30.3	 Select options

	 Screenshot 30.1	 On ‘Analyze’ select ‘Discriminant. . . ’
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●	 Leaving consideration of the statistical analysis for your study until the last minute is not a 
good idea. Making it integral with the planning of your research is the ideal but many find it 
difficult to give it that priority.

●	 It is a good discipline to sketch out the statistical analysis of your data at a minimum as early 
as possible. It may help you discover analytic problems while something can be done to cor-
rect them.

●	 Choosing an appropriate statistical analysis depends on a clear statement of what you want 
the analysis to achieve (e.g. the hypotheses or relationships to be tested), clearly identifying 
what variables are nominal (category) variables and what are score variables, and whether 
you are looking for correlations or for differences in mean scores.

●	 Researchers need to understand that they may need to be creative in their approach to the 
analysis. It is essential to feel free to manipulate the data to create new variables or develop 
composite measures based on several items.

Statistics and  
analysis of experiments

Chapter 31

Overview

Preparation

Make sure that you understand hypotheses (Chapter 11) and nominal category data versus 
numerical score data (Chapter 2).
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	 31.1	 Introduction

Feeling jaded and listless? Don’t know what stats to use to analyse your study? Make 
money from home. Try Professor Warburton’s Patent Stats Pack. All the professional 
tricks revealed. Guaranteed not to fail. Gives hope where there is no hope. Professor 
Warburton’s Stats Pack troubleshoots the troubleshooters.

Since the death of Professor Warburton in 1975, through thrombosis of the wallet, his 
Patent Stats Pack had been feared lost. Libraries on three continents were searched. Mirac-
ulously it was discovered after many years in Australia in a trunk under the bed of a dingo 
farmer. Auctioned recently at Sotheby’s to an unknown buyer – reputedly a German 
antiquarian – it broke all records. Controversy broke out when scholars claimed that 
Professor Warburton was a fraud and never held an academic appointment in his life. To 
date, it has not been possible to refute this claim.

These are vile slurs against Professor Warburton whom many regard as the founder of 
the postmodernist statistics movement and the first person to deconstruct statistics. We 
have exclusive rights to the Patent Stats Pack, so judge for yourself.

	 31.2	 The Patent Stats Pack

	 ■	 Principle 1

Practically nothing needs to be known about statistical calculations and theory to choose 
appropriate procedures to analyse your data. The characteristics of your research are the 
main considerations – not knowledge of statistics books.

	 ■	 Principle 2

Ideally you should not undertake research without being able to sketch out the likely 
features of your tables and diagrams.

	 ■	 Principle 3

You can make a silk purse out of a sow’s ear. First catch your silk pig. . . . A common 
mistake is thinking that the data as they are collected are the data as they will be ana-
lysed. Sometimes, especially when the statistical analysis has not been planned prior to 
collecting data, you may have to make your data fit the available statistical techniques. 
Always remember that you may need to alter the format of your data in some way in 
order to make them suitable for statistical analysis or a particular analysis. These 
changes include:

●	 adding scores from several variables to get a single overall or composite variable

●	 separating a variable into several different components (especially where you have 
collected data as frequencies in nominal categories and have allowed multiple 
answers).
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	 31.3	 Checklist

Years of experience providing statistical advice suggest that rarely is the statistical analysis 
the basic problem – far more important is the inadequate conceptualisation which under-
lies the research design (see Box 31.1). Statistics is of some help – but limited – even where 
a research design was inadequate in some way. It is far better to get your research design 
clear before you start. Profound knowledge of statistical techniques is probably not the 
most important skill of the researcher. Instead, apparently simple skills such as being able 
to understand how one’s research aims can be met using your chosen research questions 
are more important. Just what is there in the research design which allows one to answer 
the research question? If you can’t answer this question satisfactorily then there is likely 
to be some sort of conceptual muddle which is hindering your process. If you knew virtu-
ally nothing about statistics, how could you use your data to answer your research ques-
tion? For example, you might answer this question by saying draw a scattergram between 
this variable and that variable or the average score in one group should be higher than 
the average score in another group. That is, just what would you look for in your data to 
answer your research question?

Of course, prevention is better than cure in statistical analysis. Sometimes it is easy to 
see the root cause of the conceptual muddle which has resulted in someone seeking sta-
tistical advice. It is hard to be clear about concepts, and the more concepts involved in a 
study then the greater the capacity for muddle. It is important to be able to write your 
ideas down, but it is equally or even more important to be able to talk about your ideas 
to other people. By talking about your plans to your research supervisor, colleagues and 
friends then you are actively engaging with the all-important building blocks of your 
study. It may be embarrassing to do so, sometimes, but this might encourage a re-think 
if it proves problematic to communicate your ideas clearly to others. Some non-statistical 
steps which are important for a good statistical analysis are given in Figure 31.1.

So what can be done where the statistical analysis does not seem to flow from your 
research design? The following are some of the major considerations which will help you 
choose an appropriate statistical analysis for your data.

Where to get advice
One should be wary about from where to get statistical 
advice. A little knowledge can be a dangerous thing and 
this applies to statistical advice as much as anything. 
Sometimes a sort of blind panic sets in whereby, for exam-
ple, a student feels that they cannot cope with the demands 
of a quantitative analysis of their data and so becomes 
reliant on anyone who will listen and appears to know a 
little more than they do. It is easy to impress by bandying 
about statistical terminology and alluding to the inherent 
problems of various statistical techniques. None of this is 
particularly helpful to the person with a pressing need to 
get on with analysing their data. What we are trying to 

say, hopefully subtly, is that in our experience students’ 
difficulties with statistical analysis are made worse by 
being given wrong or impractical advice given the circum-
stances. Worse still, sometimes this third party advice is 
communicated with such conviction that the hapless stu-
dent is torn between this advice and what they know 
about statistics in general already. Consequently, because 
they lack confidence in their statistical ability, this contra-
dictory advice pushes them into a tail-spin from which it 
is difficult to recover. Whatever, a clear head and suffi-
cient time are needed to sort out your statistical 
analysis.

Box 31.1	 Focus on
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	 Figure 31.1	 Important things in order to get your statistical analysis right

in talking through
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1.	Write down your hypothesis. Probably the best way of doing this is to simply fill in the 
blanks in the following:

‘My hypothesis is that there is a relationship between variable 1 ___  
and variable 2 ___’

	 Do not write in the names of more than two variables. There is nothing to stop you 
having several hypotheses. Write down as many hypotheses as seems appropriate – but 
only two variable names per hypothesis. Treat each hypothesis as a separate statistical 
analysis at least for now.

If you cannot name the two variables you see as correlated then it is possible that 
you wish only to compare a single sample with a population. In this case check out the 
single-sample chi-square (Chapter 18) or the single-sample t-test (Screenshots 13.2 and 
14.2).

2.	If you cannot meet the requirements of 1 above then you are possibly confused about 
the purpose of the research. Go no further until you have sorted this out – do not blame 
statistics for your conceptual muddle. Writing out your hypotheses until they are clear 
may sound like a chore, but it is an important part of statistical analysis. Your first 
attempts may be hopelessly inadequate but they can be improved upon. You need to 
start from somewhere.

3.	Classify each of the variables in your hypothesis into either of the following 
categories:

a)	numerical score variables

b)	nominal (category) variables – and count the number of categories.

4.	Based on 3, decide which of the following statements is true of your hypothesis:

a)	 I have two numerical score variables. (Yes/No)

	 (if yes then go to 5)

b)	I have two nominal category variables. (Yes/No)

	 (if yes then go to 6)

c)	 I have one nominal category variable and one numerical score variable. (Yes/No)

	 (if yes then go to 7)

5.	If you answered yes to 4(a) above (i.e. you have two numerical score variables) then 
your statistical analysis involves the correlation coefficient. This might include Pearson 
correlation, Spearman correlation or regression. Turn to Chapter 36 on the analysis of 
questionnaire research for ideas of what is possible.

6.	If you answered yes to 4(b), implying that you have two nominal category variables, 
then your statistical analysis has to be based on contingency tables using chi-square or 
closely related tests. The range available to you is as follows:

a)	chi-square

b)	Fisher exact probability test for 2 * 2 or 2 * 3 contingency tables, especially if the 
samples are small or expected frequencies low

c)	 the McNemar test if you are studying change in the same sample of people

d)	at the more advanced level, logistic regression (Chapters 42 and 43) and log-linear 
analysis (Chapter  41) may be appropriate where you have many nominal 
variables.
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The only problem you are likely to experience with such tests is if you have allowed 
the participants in your research to give more than one answer to a question. If you 
have, then the solution is to turn each category into a separate variable and code each 
individual according to whether or not they are in that category. This is referred to as 
dummy coding and is covered in detail later in this book (Chapter 42). So, for example, 
in a frequency table such as Table 31.1 it is pretty obvious that multiple responses have 
been allowed since the total of the frequencies is in excess of the sample size of 50. This 
table could be turned into four new tables:

●	 Table 1: The number of vegetarians (19) versus the number of non-vegetarians (31)

●	 Table 2: The number of fast food preferrers (28) versus the non-fast food preferrers (22)

●	 Table 3: Italian preferrers (9) versus Italian non-preferrers (41)

●	 Table 4: Curry preferrers (8) versus non-curry preferrers (42).

7.	If you answered yes to 4(c) then the nominal (category) variable is called the independ-
ent variable and the numerical score variable is called the dependent variable. The 
number of categories for the independent variable partly determines the statistical tests 
you can apply:

a)	If you have two categories for the independent (nominal category) variable then:

●	 the t-test is a suitable statistic (Chapters 13 and 14)

●	 the one-way analysis of variance is suitable (Chapters 23 and 24).

	 The choice between the two is purely arbitrary as they give equivalent results. 
Remember to check whether your two sets of scores are independent or corre-
lated/related. If your scores on the dependent variable are correlated then it is 
appropriate to use the related or correlated versions of the t-test (Chapter 13) and 
the analysis of variance (Chapter 23).

b)	If you have three or more categories for the independent (nominal category) variable 
then your choice is limited to the one-way analysis of variance. Again, if your 
dependent variable features correlated or related scores, then the related or corre-
lated one-way analysis of variance can be used (Chapter 24).

Sometimes you may decide that you have two or more independent variables for each 
dependent variable. Here you are getting into the complexities of the analysis of variance 
and you need to consult Chapters 25 and 27 for advice.

Food type Frequency

Vegetarian 19

Fast food 28

Italian 9

Curry 8

	 Table 31.1	 Food preferences of a sample of 50 teenagers
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	 31.4	 Special cases

	 ■	 Multiple items to measure the same variable

Sometimes instead of measuring a variable with a single question or with a single tech-
nique, that variable is measured in several ways. Most likely is that a questionnaire has 
been used which contains several questions pertaining to the same thing. In these circum-
stances, you will probably want to combine these questions to give a single numerical 
score on that variable. The techniques used to do this include the use of standard scores 
and factor analysis (which are described in Chapters 6 and 33). Generally by combining 
these different indicators of a major variable together to give a single score you improve 
the reliability and validity of your research. The combined scores can be used as a single 
variable and analysed with t-tests or analyses of variance, for example.

	 ■	 Assessing change over time

The simplest way of studying change over time is to calculate the difference between the 
first testing and the second testing. This is precisely what a repeated measures t-test, for 
example, does. However, these difference scores can themselves be used in whatever way 
you wish. In particular, it would be possible to compare difference scores from two or 
more different samples in order to assess if the amount of change over time depended on 
gender or any other independent variable. In other words, it is unnecessary to have a 
complex analysis of variance design which includes time as one independent variable and 
gender as the other.

●	 Nobody ever learnt to play a musical instrument simply by reading a book and never practising. It takes time 
to become confident in choosing appropriate statistical analyses.

●	 Simple statistical analyses are not automatically inferior to complex ones.

●	 Table 31.2 should help you choose an appropriate statistical procedure for your experimental data as may 
Table 1.1. It is designed to deal only with studies in which you are comparing the means of two or more groups 
of scores. It is not intended to deal with correlations between variables.

Key points
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Type of data One sample  
compared with 

known population

Two  
independent 

samples

Two related 
samples

Two or more 
independent 

samples

Two or more 
related samples

Two or more 
independent 

variables

Nominal  
(category) data

One-sample 
chi-square

Chi-square McNemar test Log-linear Not in this booka Chi-square

Numerical 
score data

One-sample t-test Unrelated 
t-test,  
unrelated 
one-way 
ANOVA

Related t-test, 
related one-
way ANOVA

Unrelated 
ANOVA

Related ANOVA Two-way, etc. 
ANOVA

Numerical 
score data 
which violate 
assumptions 
of parametric 
tests

Not in this booka Mann–  
Whitney 
U-test

Wilcoxon 
matched pairs 
test

Kruskal–  
Wallis  
(Appendix B2)

Friedman  
(Appendix B2)

Not in this booka

	 Table 31.2	 Aid to selecting appropriate statistical analyses for different experimental designs

a These are fairly specific nonparametric tests which are rarely used (see Box 31.2). 

Problematic data
If it becomes clear that the basic assumptions of paramet-
ric tests are violated by your data (which for all practical 
purposes means that the distribution of scores is very 
skewed), then you might wish to employ a nonparametric 
equivalent (Chapter 21 and Appendix B2). However, you 
may wish to look at bootstrapping procedures (see Box 
21.1), which are not as reliant on symmetrical and nor-
mally distributed data as conventionally many of the 
parametric tests are. Bootstrapping makes no more 

assumptions about the nature of the data than can be seen 
from your data. The big advantage of bootstrapping pro-
cedures is that they can be applied to many conventional 
parametric techniques. Bootstrapping is a welcome recent 
feature in SPSS. The use of a computer package is essential 
for bootstrapping procedures which involve vast numbers 
of samples drawn randomly from your data set (which is 
multiplied numerous times in order to get a large 
sample).

Box 31.2	 Focus on
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Computer Analysis

Selecting subsamples of your data using SPSS

You may want to investigate the statistics in a subset of your data. For example, you may want to look at the cor-
relation between music and maths scores in the four groups of younger and older girls and boys. To do this you 
need to select out each group in turn and conduct the correlation. One way of doing is to use ‘Select Cases’ 
(Screenshots 31.1 and 31.2) where you specify the age and sex of the group you want to analyse as shown in 
Screenshot 31.3 which selects females (coded as 1) and age equal to or less than 9.

	 Figure 31.2	 SPSS steps for selecting subsamples 

Select ‘If condition is satisfied’ and ‘If. . .’ (Screenshot 31.2).

Select ‘Continue’ and then ‘OK’.

In the top right hand box list the variables and the values you want to include or exclude
(Screenshot 31.3).

Select ‘Data’ and ‘Select Cases. . .’ (Screenshot 31.1).

If helpful save as a syntax file.
Output

Analysis

Data
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	 Screenshot 31.1	 On ‘Data’ select ‘Select Cases. . . ’ 	 Screenshot 31.2	 Select ‘If condition is satisfied’ and ‘If. . . ’

	 Screenshot 31.3	 Enter expression with variable names and value/s to be selected
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Computer Analysis

Recoding groups for multiple comparison tests using SPSS

If you have conducted a factorial analysis of variance and found a significant interaction between two of the 
factors, you may want to see which groups differ significantly from each other. To do this, you would need to 
compare the means of two groups at a time. Suppose, for example as in Chapter 25, you are looking at the effects 
on errors made of three levels of sleep deprivation (4, 12 and 24 hours) and two levels of alcohol (alcohol and 
no alcohol), you will have six groups and 15 comparisons to make. As your groups are coded according to your 
two variables (alcohol and sleepdep), you need to combine them to create a third group (group). Perhaps the 
most flexible way of doing this is to create a syntax file (Screenshot 31.4) with a set of syntax commands as shown 
in Screenshot 31.5 and to run this set of commands. This will give you six groups (Screenshot 31.6) which you 
can analyse with the multiple comparison tests of a one-way analysis of variance.

	 Figure 31.3	  SPSS steps for recoding groups for multiple comparison tests 

In the 'Syntax Editor' type in the following kind of commands: if old variable one = a value &
old variable two = a value compute new variable = new value. (Screenshot 31.5).
Select ‘Run’ and ‘All’.

Select 'File', 'New' and 'Syntax' (Screenshot 31.4).

The new variable and its values are in 'Data View' of the 'Data Editor' (Screenshot 31.6).
Output

Analysis

Data
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	 Screenshot 31.5	 Enter syntax commands in ‘Syntax’ window

	 Screenshot 31.4	 On ‘File’ select ‘Syntax’

	
Screenshot 31.6

	 ‘Data View’ with the values 
of the new variable
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●	 Partial correlation is used to statistically adjust a correlation between two variables to take 
into account the possible influence of a third (or confounding) variable or variables. These 
are sometimes known as control variables.

●	 That is, partial correlation deals with the third-variable problem in which additional variables 
may be the cause of spurious relationships or hide (suppress) the relationship between two 
variables.

●	 If one control variable is used then we have a first-order partial correlation. If two control 
variables are used then the result is a second-order partial correlation. And so forth.

●	 A zero-order correlation is the original unmodified correlation between two variables.

●	 Partial correlation may be helpful in trying to assess the possibility that a relationship is a 
causal relationship though it cannot supply definitive proof.

Overview

Partial correlation
Spurious correlation, third or confounding 
variables, suppressor variables

Chapter 32

Revise the Pearson correlation coefficient (Chapter 8) if necessary. Make sure you know what 
is meant by a causal relationship.

Preparation
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	 32.1	 Introduction

The partial correlation coefficient is particularly useful when trying to make causal state-
ments from field research. It is not so useful in experimental research where different 
methods are used to establish causal relationships. Look at the following research outlines 
taking as critical a viewpoint as possible:

●	 Project 1â•‡ Researchers examine the published suicide rates in different geographical 
locations in the country. They find that there is a significant relationship between 
unemployment rates in these areas and suicide rates. They conclude that unemploy-
ment causes suicide.

●	 Project 2â•‡ Researchers examine the relationship between shoe size and liking football 
matches. They find a relationship between the two but claim that it would be nonsense 
to suggest that liking football makes your feet grow bigger.

Although both of these pieces of research are superficially similar, the researchers draw 
rather different conclusions. In the first case it is suggested that unemployment causes sui-
cide whereas in the second case the researchers are reluctant to claim that liking football 
makes your feet grow bigger. The researchers in both cases may be correct in their interpre-
tation of the correlations, but should we take their interpretations at face value? The short 
answer is no, since correlations do not demonstrate causality in themselves (see Box 32.1).

In both cases, it is possible that the relationships obtained are spurious (or artificial) ones 
which occur because of the influence of other variables which the researcher may not have 
considered. So, for example, the relationship between shoe size and liking football might 
be due to gender – men tend to have bigger feet than women and tend to like football more 
than women do. So the relationship between shoe size and liking football is merely a con-
sequence of gender differences. The relationship between unemployment and suicide, simi-
larly, could also be due to the influence of a third variable. In this case, the variable might 
be social class. If we found, for example, that being from a lower social class was associated 
with a greater likelihood of unemployment and with being more prone to suicide, this would 
suggest that the relationship between unemployment and suicide was due to social class 
differences, not because unemployment leads directly to suicide (see Box 32.2).

Partial correlation is a statistically precise way of calculating what the relationship 
between two variables would be if one could take away the influence of one (or more) 
additional variable(s). Sometimes this is referred to as controlling for a third variable or 
partialling out a third variable. In essence it revises the value of your correlation coeffi-
cient to take into account third variables.

Causality
This is intended as a timely reminder of things discussed in 
depth earlier in this book. Partial correlation can never con-
firm that a causal relationship exists between two variables. 
The reason is that partialling out a third, fourth or fifth 
variable does not rule out the possibility that there is an 
additional variable which has not been considered which is 

the cause of the correlation. However, partial correlation 
may be useful in examining the validity of claims about 
specified variables which might be causing the relationship. 
Considerations of causality are a minor aspect of partial 
correlation.

Box 32.1	 Focus on
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	 32.2	 Theoretical considerations

Partial correlation can be applied to your own data if you have the necessary correlations 
available. However, partial correlation can also be applied to published research without 
necessarily obtaining the original data itself – so long as the appropriate correlation coef-
ficients are available. All it requires is that the values of the correlations between your 
two main variables and the possible third variable are known. It is not uncommon to have 
the necessary tables of correlations published in books and journal articles, although the 
raw data (original scores) are rarely included in published research.

A table of correlations between several variables is known as a correlation matrix. Table 32.1 
is an example featuring the following three variables: numerical intelligence test score (which 
we have labelled X in the table), verbal intelligence test score (which we have labelled Y in the 
table) and age (which we have labelled C in the table) in a sample of 30 teenagers.

Notice that the diagonal from top left to bottom right consists of 1.00 repeated three 
times. This is because the correlation of numerical score with itself, verbal score with itself 
and age with itself will always be a perfect relationship (r = 1.00) – it has to be since you 
are correlating exactly the same numbers together. Also notice that the matrix is symmetri-
cal around the diagonal. This is fairly obvious since the correlation of the numerical score 
with the verbal score has to be the same as the correlation of the verbal score with the 
numerical score. More often than not a researcher would report just half of Table 32.1, so 
the correlations would look like a triangle. It doesn’t matter which triangle you choose, 
although it is usual to display the lower left triangle as we read from left to right.

Remember that we have used the letters X, Y and C for the different columns and rows 
of the matrix. The C column and C row are the column and row, respectively, for the 
control variable (age in this case).

Not only is partial correlation an important statistical tool in its own right, it also 
forms the basis of other techniques such as multiple regression (Chapter 34).

Mediator and moderator variables
There is a crucial conceptual distinction in research which 
has a bearing on our discussion of partialling or control-
ling for third variables. This is the difference between 

Box 32.2	 Key concepts

moderator and mediator variables. This is not a statistical 
issue, as such, but a key issue in relation to research 
design and methodology. A knowledge of statistics, 

	 Table 32.1	 Correlation matrix involving three variables

Variable X
Numerical score

Variable Y
Verbal score

Variable C
Age in years

Variable X Numerical score 1.00 .97 .80

Variable Y Verbal score .97 1.00 .85

Variable C Age In years .80 .85 1.00

➜
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however, is helpful in understanding the distinction and 
putting it into effect. Put crudely, a mediator variable is a 
variable which explains the relationship between two 
other variables (usually best expressed as the independent 
and dependent variable). For example, imagine that there 
is a correlation between annual income (independent vari-
able) and happiness (dependent variable) such that richer 
people are happier. Although this relationship would be 
interesting, it is somewhat unsatisfactory from a psycho-
logical and theoretical point of view since we do not know 
the psychological processes which create the relationship. 
So we might imagine another variable, extensiveness of 
social network, which might be influenced by annual 
income and might lead to greater happiness. We know 
from previous research that a supportive social network 
contributes to happiness. Now the reason why income 
may be associated with happiness may be because having 
more money allows one to socialise more and that the 
more one socialises the more likely it is that one forms an 
extensive social network. The variable, extensiveness of 
social network, can be described as a mediator variable 
since it mediates the relationship between income and 
happiness.

The way that we have described this implies a causal 
relationship. That is, basically, higher income (independent 
variable) influences social networking (the mediator vari-
able) which then influences happiness (the dependent vari-
able) (see Figure  32.1). This is only established in 
randomised studies as is any causal relationship. That is, in 
order to really establish a causal relationship the researcher 
would have to randomly allocate participants to the richer 
and poorer conditions and study the effects of this on both 
the mediator variable (social networking) and the depend-
ent variable (happiness). Without randomisation, the 
causal interpretation is much more tentative. For instance, 
it is perfectly possible that people with extensive social net-
works have higher incomes as a consequence of their ability 
to network rather than vice versa.

A moderator variable is something quite different. It is 
a variable which reveals that the relationship between the 

independent and dependent variable is not consistent 
throughout the data. Imagine that, once again, the 
researcher is investigating the relationship between 
income (independent variable) and happiness (the depend-
ent variable). However, this time the researcher is inter-
ested in whether the genders differ in terms of the size of 
the relationship. Imagine that for men the correlation 
between income and happiness is .6 but that for women 
the correlation is very small, only .0. This implies quite 
different conclusions for men and for women. In one case 
there is quite a substantial correlation and in the other 
case no correlation. In other words, gender moderates the 
relationship between income and happiness. Quite clearly, 
how we understand the relationship between income and 
happiness would be different for men and women. A mod-
erator variable does not explain the relationship, of 
course. We would have to consider further the explana-
tion of why the relationship is different in women and 
men. It could be, for example, that women’s social net-
works are more influenced by having children and so mix-
ing with other women with children than men’s social 
networks. Perhaps men’s social networks are more 
affected by having the money to go to the pub, the golf 
club or the yacht club, for instance. This, of course, is to 
begin to ask why gender moderates the relationship 
between income and happiness – notice that we are hint-
ing at possible mediating variables. Moderator variables, 
in themselves, are not directly about establishing causal 
relationships so randomisation is not an issue for the 
research design. Chapter 39 covers moderator variables 
in detail.

Quite clearly, the techniques that we have described 
in this chapter are ways of studying moderator and 
mediator variables. But there are other techniques 
described in this book which can also contribute. For 
example, interactions in ANOVA (Chapter 25) can be 
regarded as evidence of moderator effects as explained 
in Chapter 39 on moderator variables. The same is true 
for significant log-linear interactions (Chapter 41). The 
appropriate statistics really depend on whether you have 
score or category variables or both. However, it is the 
research design which influences whether or not a vari-
able is conceived as a moderator or mediator variable. 
For example, if a variable cannot be influenced by the 
independent variable, then it can only be conceived as a 
moderator variable. For example, income (independent 
variable) cannot affect a person’s gender so gender can-
not be a mediator variable between income and happi-
ness. It can, however, be a moderator variable in the 
relationship between income and happiness.

	 Figure 32.1	 Possible circumstances for partial  
correlation mediated by a third variable
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	 32.3	 Doing partial correlation

In order to understand partial correlation better, it is useful to understand the gist of how 
the calculation is done. Once you have the correlation coefficients involved in the partial 
correlation, the rest of the calculation is fairly quick. Computer programs for the partial 
correlation will normally calculate the correlations for you. Explaining statistics 32.1 
works out the relationship between verbal and numerical scores in Table 32.1 controlling 
for age (rXY.C).

How the partial correlation coefficient works
The calculation is based on the correlations found in Table 32.1. The formula is as follows:

rXY.C =
rXY - (rXC * rYC)

21 - rXC
2  21 - rYC

2

where

rXY.C = correlation of verbal and numerical scores with age controlled as denoted by C
rXY = correlation of numerical and verbal scores (=  .97)
rXC = correlation of numerical scores and age (the control variable) (=  .80)
rYC = correlation of verbal scores and age (the control variable) (=  .85).

Using the values taken from the correlation matrix in Table 32.1 we find that

 rXY.C =
.97 - (.80 * .85)

21 - .80221 - .852

 =
.97 - (.68)

21 - .6421 - .72

 = .29

2.362.28
= .29

.60 * .53
= .29

.32
= .91

Thus controlling for age has hardly changed the correlation coefficient – it decreases only very slightly from .97 to .91.

Interpreting the results

A section on interpretation follows. However, when interpreting a partial correlation you need to consider what the 
unpartialled correlation is. This is the baseline against which the partial correlation is understood. Although usually we 
would look to see if partialling reduces the size of the correlation, it can increase it.

Reporting the results

The following is one way of reporting this analysis: ‘Since age was a correlate of both verbal and numerical ability, it 
was decided to investigate the effect of controlling for age on the correlation. After partialling, the correlation of .97 
declined slightly to .91. However, this change is very small and so age had little or no effect on the correlation between 
verbal and numerical abilities.’

Explaining statistics 32.1
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	 32.4	 Interpretation

What does the result of Explaining statistics 32.1 mean? The original correlation between 
numerical and verbal scores of .97 is reduced to .91 when we control for age. This is a 
very small amount of change and we can say that controlling for age has no real influence 
on the original correlation coefficient.

The following is the original pattern of relationships between the three variables: the 
partial correlation essentially removes all the variation between verbal scores and age and 
also between numerical scores and age. This is rather like making these correlations zero. 
But, in this case, when we make these correlations zero we still find that there is a very 
substantial correlation between verbal and numerical scores:

This is an important lesson since it suggests that controlling for a third variable does not 
always affect the correlation, despite the fact that in this case the control variable age had 
quite substantial relationships with both verbal and numerical ability scores. This should be 
a warning that simply showing that two variables are both correlated with a third variable 
does not in itself establish that the third variable is responsible for the main correlation.

Despite this, often the partial correlation coefficient substantially changes the size of the 
correlation coefficient. Of course, it is important to know that a third variable does not 
change the correlation value. In contrast, the example in Section 32.7 and Explaining 
statistics 32.3 shows a major change following partialling.

How the statistical significance of the partial 
correlation works
The calculation of statistical significance for the partial correlation can be carried out simply using tables of the signifi-
cance of the Pearson correlation coefficient such as Significance Table 11.1 or the table in Appendix C. However, in order 
to do this you will need to adjust the sample size by subtracting three. Thus if the sample size is 10 for the Pearson cor-
relation, it is 10 - 3 = 7 for the partial correlation coefficient with one variable controlled. So in our example in 

Explaining statistics 32.2
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	 32.5	 Multiple control variables

It may have struck you that there might be several variables that a researcher might wish 
to control for at the same time. For example, a researcher might wish to control for age 
and social class at the same time, or even age, social class and gender. This can be done 
relatively easily on SPSS but is rather cumbersome to do by hand. On SPSS it is simply a 
matter of adding in more control variables.

There are a number of terms that are used which are relatively simple if you know what 
they mean:

●	 Zero-order correlationâ•‡ – the correlation between your main variables (e.g. rXY).

●	 First-order partial correlationâ•‡ –  the correlation between your main variables control-
ling for just one variable (e.g. rXY.C).

●	 Second-order partial correlationâ•‡ –  the correlation between your main variables con-
trolling for two variables at the same time (the symbol for this might be rXY.CD).

Not surprisingly, we can extend this quite considerably; for example, a fifth-order partial 
correlation involves five control variables at the same time (e.g. rXY.CDEFG). The principles 
remain the same no matter what order of partial correlation you are examining.

	 32.6	 Suppressor variables

Sometimes you might find that you actually obtain a low correlation between two vari-
ables which you had expected to correlate quite substantially. In some instances this is 
because a third variable actually has the effect of reducing or suppressing the correlation 
between the two main variables. Partial correlation is useful in removing the inhibitory 
effect of this third variable. In other words, it can sometimes happen that controlling the 
influence of a third variable results in a larger correlation. Indeed, it is possible to find 

Table 32.1, which was based on a sample of 30 teenagers, we obtain the 5% significant level from the table in Appendix 
C by finding the 5% value for a sample size of 30 - 3 = 27. The minimum value for statistical significance at the 5% 
level is .382 (two-tailed).

Interpreting the results

The statistical significance of the partial correlation coefficient is much the same as for the Pearson correlation coefficient 
on which it is based. A statistically significant finding means that the partial correlation coefficient is unlikely to have 
been drawn from a population in which the partial correlation is zero.

Reporting the results

The statistical significance of the partial correlation may be reported in exactly the same way as for any correlation coef-
ficient. The degrees of freedom are different since they have to be adjusted for the number of control variables. If the 
sample size for the correlation is 10, then subtract three to give seven degrees of freedom if just one variable is being 
controlled for. In other words, subtract the total number of variables including the two original variables plus all of the 
control variables. So if there were four control variables in this example, the degrees of freedom become 10 - 2 - 4 = 4.

M32 Introduction to Statistics in Psychology with SPSS 29099.indd   445 04/01/2017   20:25



446	 CHAPTER 32â•‡ Partial correlation: Spurious correlation, third or confounding variables, suppressor variables

that an initially negative correlation becomes a positive correlation when the influence of 
a third variable is controlled. Figure 32.2 outlines the key steps in partial correlation.

	 32.7	 Example from the research literature

Baron and Straus (1989) took the officially reported crime rates for rapes from most US 
states and compared these with the circulation figures for soft-core pornography in these 
areas. The correlation between rape rates and the amounts of pornography over these states 
was .53. (If this confuses you, the correlations are calculated ‘pretending’ that each state is 
like a person in calculating the correlation coefficient.) The temptation is to interpret this 
correlation as suggesting that pornography leads to rape. Several authors have done so.

However, Howitt and Cumberbatch (1990) took issue with this. They pointed out that 
the proportions of divorced men in these areas also correlated substantially with both 
pornography circulation rates and rape rates. The data are listed in Table 32.2.

It might be the case that rather than pornography causing rape, the apparent relation-
ship between these two variables is merely due to the fact that divorced men are more 
likely to engage in these ‘alternative sexual activities’. It is a simple matter to control for 
this third variable, as set out in Explaining statistics 32.3.

	 Figure 32.2	 Conceptual steps for understanding partial correlation

	 Table 32.2	 Correlation between rape, pornography and divorce

Variable X
Rape rates

Variable Y
Pornography 

circulation

Variable C
Proportion of 
divorced men

Variable X: Rape rates 1.00 .53 .67

Variable Y: Pornography circulation 1.00 .59

Variable C: Proportion of divorced men 1.00
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Another example of how the partial correlation works
The formula is:

rXY.C =
rXY - (rXC * rYC)

21 - rXC
2  21 - rYC

2

where

rXY.C = correlation of rape rates with pornography controlling for proportion of divorced men
rXY = correlation of rape and pornography (=  .53)
rXC = correlation of rape and proportion of divorced men (=  .67)
rYC = correlation of pornography and proportion of divorced men (=  .59).

Using the values taken from the correlation matrix in Table 32.2 we find that:

rXY.C =
.53 - (.67 * .59)

21 - .672 21 - .592

In this case, the correlation when the third variable is taken into account has changed substantially to become much nearer 
zero. It would be reasonable to suggest that the partial correlation coefficient indicates that there is no causal relationship 
between pornography and rape – quite a dramatic change in interpretation from the claim that pornography causes rape. 
The argument is not necessarily that the proportion of divorced men directly causes rape and the purchase of pornography. 
However, since it is an unlikely hypothesis that rape and pornography cause divorce then the fact that partialling out divorce 
reduces greatly the correlation between rape and pornography means that our faith in the original ‘causal’ link is reduced.

Explaining statistics 32.3

	 32.8	 Example from a student’s work

It is becoming increasingly common to teach children with special educational needs in 
classrooms along with other children rather than in special schools. Butler (1995a) meas-
ured the number of characteristics a sample of 14 teachers possessed which have been 
held to be of special importance in the effective teaching of special needs children. These 
qualities would include ‘empathy towards special needs children’, ‘attitude towards inte-
grating special needs children’ and about ten others.

In order to assess the quality of the learning experience, the student researcher time-
sampled children’s task-centred behaviour – the number of time periods during which the 
child was concentrating on the task in hand rather than, say, wandering around the class-
room causing a nuisance. The researcher rated one special needs child and one ‘normal’ child 
from each teacher’s class. She found that there was an unusually very high correlation of .96 
between the number of qualities that a teacher possessed and the amount of time that the 
special needs children spent ‘on task’ (df = 12, p 6 .01). Interestingly, the correlation of 
the measure of teacher qualities with the behaviour of normal children in the class was  
only .23. The student used partial correlation to remove the task-oriented behaviour of the 
‘normal’ children in order to control for the extent to which teacher qualities had a beneficial 
effect on ordinary teaching. This made absolutely no difference to the correlation between 
the number of qualities the teacher possessed and the amount of time special needs children 
spent on educational tasks. In other words, the student could be confident that she had 
identified qualities of teachers which were especially beneficial to special needs children.
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In terms of the research design there might be some worries, as the student was well aware. 
In particular, in an ideal research design there would be a second observer rating the behaviour 
of the children in order to check the consistency of the ratings among different observers.

Partial correlation

Gotwals and colleagues (2012) argue that sport perfectionist research has not established whether or not 
perfectionism is adaptive or maladaptive. They distinguish between perfectionist striving and perfectionist con-
cerns. It is clear that perfectionist concerns are maladaptive but not so for perfectionist strivings. They system-
atically reviewed 31 studies which contained 201 correlations of perfectionism. When normal correlations are 
considered the evidence was slightly in favour of the view that perfectionist strivings lead to adaptive charac-
teristics in sport rather than maladaptive ones. However, the results of partial correlation analysis added a great 
deal of clarity. The researchers correlated perfectionist strivings with adaptive/maladaptive measures but con-
trolled for perfectionist concerns. This materially altered the interpretation since perfectionist strivings were 
overwhelmingly associated with adaptive characteristics. That is, perfectionist strivings are a good thing espe-
cially when the negative aspect of perfectionist concerns is eliminated from the strivings measure.

Nair, Collins and Napolitano (2012) point out that in women smoking can sometimes be regarded as a maladap-
tive means of weight control. Indeed, they perceive benefits in smoking such as weight control, enhanced mood 
and anxiety, even though physical activity has much the same influence. The researchers used what they call a 
cue reactivity paradigm which involved looking at one’s own body in a mirror and verbal accompaniments to 
increase body concerns. Smoking was measured using indices such as the women’s urge to smoke and the 
latency until their first smoke after the exposure sessions using the mirror, etc. They could then engage in intense 
physical activity. Partial correlations controlling for body mass index, nicotine dependency, withdrawal and 
depressive symptoms showed that the amount of time engaging in intense physical activity was associated with 
a lower self-reported urge to smoke. The time to the first puff did not show this relationship.

Potter, Hartman and Ward (2009) point out that there is a role of depression and anxiety in the memory com-
plaints of older adults. Their study explored the influence of perceived stress, life events and activity level on 
memory complaints made by older women in a healthy population. Fifty-four women completed self-report 
questionnaires dealing with these key variables. The General Frequency of Forgetting Scale was used to measure 
memory complaints and various reasonably well-established scales to measure the other variables. It was shown 
using partial correlation that high levels of perceived stress were correlated with more memory complaints after 
controlling for the influence of depression and anxiety. However, recent life events and activity level were not 
involved in memory complaints. The authors regard perceived stress as a psychological variable which affects 
the person’s assessment of their cognitive abilities.

Research examples

●	 If you are doing a field rather than a laboratory project, check your research hypotheses. If they appear to 
suggest that one variable causes another then consider using partial correlation. It can potentially enhance 
one’s confidence about making causal interpretations if a significant correlation remains after partialling. 
However, caution should still be applied since there always remains a risk that an additional variable sup-
presses the relationship between your two main variables.

●	 Do not forget that even after partialling out third variables, any causal interpretation of the correlation coefficient 
remaining has to be tentative. No correlation coefficient (including partial correlation coefficients) can establish 
causality in itself. You establish causality largely through your research design, not the statistics you apply.

Key points
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Computer Analysis

Partial correlation using SPSS

●	 Do not overlook the possibility that you may need to control more than one variable.

●	 Do not assume that partial correlation has no role except in seeking causal relationships. Sometimes, for 
example, the researcher might wish to control for male–female influences on a correlation without wishing 
to establish causality. Partial correlation will reveal the strength of a non-causal relationship having controlled 
for a third variable. Causality is something the researcher considers; it is not something built into a correlation 
coefficient as such.

●	 Do not forget to test the statistical significance of the partial correlation – as shown above, it is very easy.

Interpreting and reporting the output

●	 Usually you will wish to compare the partial correlation with the original (zero order) correlation. The 
output table contains the original correlations at the top and the correlations with age partialled out 
towards the bottom of the table.

●	 We could write: ‘Because age was correlated with both verbal and numerical ability, age was 
controlled in this relationship using partial correlation. The correlation of .92 declined to .78 on 
partialling (Screenshot 32.5). The partial correlation was not significant at the 5% level

‘Controlling for:’ box (Screenshot 32.3).

listwise’ is needed. Select ‘Continue’ (Screenshot 32.4).

Name the variables in ‘Variable View’ of the ‘Data Editor’.
in ‘Data View’ of the ‘Data Editor’

	 Figure 32.3	 SPSS steps for partial correlation
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	 Screenshot 32.4	 Select options

	 Screenshot 32.2	 On ‘Analyze’ select ‘Partial. . . ’	 Screenshot 32.1	 Data in ‘Data View’

	 Screenshot 32.3	 Select variables for analysis

	 Screenshot 32.5	 Important output
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●	 Factor analysis is used largely when the researcher has substantial numbers of variables 
seemingly measuring similar things. The question is just what pattern underlies this complex 
pattern of intercorrelations. It has proven particularly useful with questionnaires though not 
exclusively so.

●	 It examines the pattern of correlations between the variables and calculates new variables 
(factors) which account for the correlations. In other words, it reduces data involving a number 
of variables down to a smaller number of factors which encompass the original variables.

●	 Factors are simply variables. The correlations of factors with the original variables are known as 
factor loadings, although they are merely correlation coefficients. Hence they range from -1.0 
through .0 to +1.0. It is usual to identify the nature of each factor by examining the original 
variables which correlate highly with it. Normally each factor is identified by a meaningful name.

●	 Because the process is one of reducing the original variables down to the smallest number 
of factors, it is important not to have too many factors. The scree plot may be used to identify 
those factors which are likely to be significantly different from a chance factor.

●	 Rotation is the procedure by which the original, mathematically defined factors are trans-
formed into more easily interpreted ones. One procedure for doing this is to maximise the 
number of large and small factor loadings while minimising the number of moderate factor 
loadings. Rotation is akin to twisting the axes of a scatterplot around without moving the 
data points so that the data points lie in new positions in relation to those axes.

●	 Factor scores provide a way of treating factors like any other variable. They are similar to stand-
ard or z-scores in that they have symmetrical numbers of positive and negative values and their 
mean is .00. They can be used to compare groups in terms of their mean factor scores.

Factor analysis
Simplifying complex data

Chapter 33

Overview

Preparation

Review variance (Chapter  4), correlation coefficient (Chapter  8) and correlation matrix 
(Chapter 32).
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	 33.1	 Introduction

Researchers frequently collect large amounts of data. Sometimes, speculatively, they add 
extra questions to a survey without any pressing reason. Having data on so many variables, 
it becomes difficult to make sense of the complexity of the data. With questionnaires, one 
naturally seeks patterns in the correlations between questions. However, the sheer number 
of interrelationships makes this hard. Take the following brief questionnaire:

Item 1: It is possible to bend spoons by rubbing them.

Agree strongly Agree Neither Disagree Disagree strongly

Item 2: I have had ‘out of body’ experiences.

Agree strongly Agree Neither Disagree Disagree strongly

Item 3: Satanism is a true religion.

Agree strongly Agree Neither Disagree Disagree strongly

Item 4: Tarot cards reveal coming events.

Agree strongly Agree Neither Disagree Disagree strongly

Item 5: Speaking in tongues is a peak religious experience.

Agree strongly Agree Neither Disagree Disagree strongly

Item 6: The world was saved by visiting space beings.

Agree strongly Agree Neither Disagree Disagree strongly

Item 7: Most people are reincarnated.

Agree strongly Agree Neither Disagree Disagree strongly

Item 8: Astrology is a science, not an art.

Agree strongly Agree Neither Disagree Disagree strongly

Item 9: Animals have souls.

Agree strongly Agree Neither Disagree Disagree strongly

Item 10: Talking to plants helps them to grow.

Agree strongly Agree Neither Disagree Disagree strongly

Agree strongly could be scored as 1, Agree scored as 2, Neither as 3, Disagree as 4 and 
Disagree strongly as 5. This turns the words into numerical scores. Correlating the 
answers to each of these 10 questions with each of the others for 300 respondents gener-
ates a large correlation matrix (a table of all possible correlations between all of the pos-
sible pairs of questions). Ten questions will produce 10 * 10 or 100 correlations. 
Although the correlation matrix is symmetrical about the diagonal from top left to bottom 
right, there remain 45 different correlations to examine. Such a matrix might be much 
like the one in Table 33.1.
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It is not easy to make complete sense of this; the quantity of information makes overall 
interpretation difficult. Quite simply, large matrices are too much for our brains to com-
prehend. This is where factor analysis can be beneficial. It is a technique which helps you 
overcome the complexity of correlation matrices. In essence, it takes a matrix of correla-
tions and generates a much smaller set of ‘supervariables’ which characterise the main 
trends in the correlation matrix. These supervariables or factors are generally much easier 
to understand than the original matrix.

	 33.2	 A bit of history

Factor analysis is not a new technique – it dates back to shortly after the First World 
War. It originally was an invention largely of psychologists to serve a very specific 
purpose in the field of mental testing. There are numerous psychological tests of dif-
ferent sorts of intellectual ability. The original purpose of factor analysis was to 
detect which sorts of mental skills tend to go together and which are distinct abilities. 
It has proven more generally useful and is used in the development of psychological 
tests and questionnaires. Personality, attitude, intelligence and aptitude tests are 
often based on it since it helps select which items from the tests and measures to 
retain. By using factors, it is possible to obtain ‘purer’ measures of psychological 
variables than is possible by arbitrarily and subjectively deciding what can be com-
bined with what else in order to measure a construct that the researcher wants to 
measure. Not surprisingly, then, some theorists used it extensively. The personality 
theories of researchers Raymond Cattell and Hans Eysenck (Cramer, 1992) were 
heavily dependent on factor analysis. Initially these researchers would spend weeks 
if not months doing the calculations by hand so factor analytic studies were not very 
common. Now far more complex analyses can be carried out in seconds. In the last 
100 years, techniques for factor analysis have developed in many ways so the level 
of technical complexity can be fairly high. Despite this, the most important thing to 
learn is the process of interpreting factors which requires psychological knowledge 
and insight, combined with an ability to synthesise ideas.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10

Item 1 1.00 .50 .72 .30 .32 .20 .70 .30 .30 .10

Item 2 .50 1.00 .40 .51 .60 .14 .17 .55 .23 .55

Item 3 .72 .40 1.00 .55 .64 .23 .12 .17 .22 .67

Item 4 .30 .51 .55 1.00 .84 .69 .47 .44 .56 .35

Item 5 .32 .60 .64 .84 1.00 .14 .77 .65 .48 .34

Item 6 .20 .14 .23 .69 .14 1.00 .58 .72 .33 .17

Item 7 .70 .17 .12 .47 .77 .58 1.00 .64 .43 .76

Item 8 .30 .55 .17 .44 .65 .72 .64 1.00 .27 .43

Item 9 .30 .23 .22 .56 .48 .33 .43 .27 1.00 .12

Item 10 .10 .55 .67 .35 .34 .17 .76 .43 .12 1.00

	 Table 33.1	 Correlation matrix of 10 items

M33 Introduction to Statistics in Psychology with SPSS 29099.indd   453 04/01/2017   20:28



454	 CHAPTER 33â•‡ Factor analysis: Simplifying complex data

	 33.3	 Concepts in factor analysis

In order to understand factor analysis, it is useful to start with a simple and highly stylised 
correlation matrix such as the one in Table 33.2. You can probably detect that there are 
two distinct clusters of variables. Variables A, C and E all tend to correlate with each 
other pretty well. Similarly, variables B, D and F all tend to correlate with each other. 
Notice that the members of the first cluster (A, C, E) do not correlate well with members 
of the second cluster (B, D, F) – they would not be very distinct clusters if they did. In 
order to make the clusters more meaningful, we need to decide what variables contribut-
ing to the first cluster (A, C, E) have in common; next we need to explore the similarities 
of the variables in the second cluster (B, D, F). Calling the variables by arbitrary letters 
does not help us very much. But what if we add a little detail by identifying the variables 
more clearly and relabelling the matrix of correlations as in Table 33.3?

Interpretation of the clusters is now possible. Drawing the clusters from the table  
we find:

First cluster
 variable A = skill at batting
 variable C = skill at throwing darts
 variable E = skill at juggling

Second cluster
 variable B = skill at doing crosswords
 variable D = skill at doing the word game Scrabble
 variable F = skill at spelling

Variable A Variable B Variable C Variable D Variable E Variable F

Variable A 1.00 .00 .91 - .05 .96 .10

Variable B .00 1.00 .08 .88 .02 .80

Variable C .91 .08 1.00 - .01 .90 .29

Variable D - .05 .88 - .01 1.00 - .08 .79

Variable E .96 .02 .90 - .08 1.00 .11

Variable F .10 .80 .29 .79 .11 1.00

	 Table 33.2	 Stylised correlation matrix between variables A to F

Batting Crosswords Darts Scrabble Juggling Spelling

Batting 1.00 .00 .91 - .05 .96 .10

Crosswords .00 1.00 .08 .88 .02 .80

Darts .91 .08 1.00 - .01 .90 .29

Scrabble - .05 .88 - .01 1.00 - .08 .79

Juggling .96 .02 .90 - .08 1.00 .11

Spelling .10 .80 .29 .79 .11 1.00

	 Table 33.3	 Stylised correlation matrix with variable names added
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Once this ‘fleshing out of the bones’ has been done, the meaning of each cluster is 
somewhat more apparent. The first cluster seems to involve a general skill at hand–eye 
coordination; the second cluster seems to involve verbal skill.

This sort of interpretation is easy enough in clear-cut cases like this and with small 
correlation matrices. Life and statistics, however, are rarely that simple. Remember that 
in Chapter 32 on partial correlation we found that a zero correlation between two vari-
ables may become a large positive or negative correlation when we take away the influ-
ence of a third variable or a suppressor variable which is hiding the true relationship 
between two main variables. Similar sorts of things can happen in factor analysis. Factor 
analysis enables us to handle such complexities which would be next to impossible by just 
inspecting a correlation matrix.

Factor analysis is a mathematical procedure which reduces a correlation matrix con-
taining many variables into a much smaller number of factors or supervariables. A super-
variable cannot be measured directly and its nature has to be inferred from the relationships 
of the original variables with the abstract supervariable. However, in identifying the 
clusters above we have begun to grasp the idea of factors. The abilities which made up 
cluster 2 were made meaningful by suggesting that they had verbal skill in common. (In 
factor analysis the factors are latent variables underlying variables which can be directly 
measured.)

The output from a factor analysis based on the correlation matrix presented above 
might look rather like Table 33.4. What does this table mean? There are two things to 
understand:

●	 Factor 1 and factor 2 are like the clusters of variables we have seen above. They are 
really variables, but we are calling them supervariables because they take a large num-
ber of other variables into account. Ideally there should only be a small number of 
factors to consider.

●	 The numbers under the columns for factor 1 and factor 2 are called factor loadings. 
Really they are nothing other than correlation coefficients recycled with a different 
name. So the variable ‘skill at batting’ correlates .98 with the supervariable which is 
factor 1. ‘Skill at batting’ does not correlate at all well with the supervariable which is 
factor 2 (the correlation is nearly zero at - .01). Factor loadings follow all of the rules 
for correlation coefficients so they vary from -1.00 through .00 to +1.00.

Factor 1 is interpreted in much the same way as we interpreted the clusters earlier. 
We find the variables which correlate best with the supervariable or factor in ques-
tion by looking at the factor loadings for each of the factors in turn. Usually you will 
hear phrases like ‘batting, darts and juggling load highly on factor 1’. All this means 

Variable Factor 1 Factor 2

Skill at batting .98 - .01

Skill at crosswords .01 .93

Skill at darts .94 .10

Skill at Scrabble - .07 .94

Skill at juggling .97 - .01

Skill at spelling .15 .86

	 Table 33.4	 Factor loading matrix
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is that they correlate highly with the supervariable, factor 1. Since we find that bat-
ting, darts and juggling all correlate well with factor 1, they must define the factor. 
We try to see what batting, darts and juggling have in common – once again we 
would suggest that hand–eye coordination is the common element. Thus the factor 
might be called hand–eye coordination. Obviously there is a subjective element in 
this since not everyone would interpret the factors identically. However, this is using 
your psychological skills and not being a statistician.

In order to interpret the meaning of a factor we need to decide which items are 
the most useful in identifying what the factor is about. Although every variable may 
have something to contribute, those with the highest loadings on a factor probably 
are the most important for the interpretation. So where does one draw the line 
between useful factor loadings and not so useful? Generally speaking, you will not 
go far wrong if you take factor loadings with an absolute value of .50 and above as 
being important in assessing the meaning of the factor, especially with a smaller 
sample but with a very small sample this figure could be .70. Now this is a rule of 
thumb and with a very big sample size then smaller factor loadings may be taken 
into account. Generally speaking, this is not a vital issue but it would be silly to try 
to interpret loadings like .2 except where the sample approaches 1000 (see Box 33.1).

When you have identified the highly loading items on the factor, write them out as a 
group on a piece of paper. Then peruse these items over and over again until you are able 
to suggest what these items seem to have in common or what it is they represent. There 
are no rules for doing this and, of course, different researchers may well come up with 
different interpretations of exactly the same list of items. This is not a problem anymore 
than it is whenever we try to label any sort of concept.

Often a distinction is strongly made between factor analysis (of which there are several 
types) and principal components analysis. In many cases the ‘solutions’ (factor structures) 
which they produce are more-or-less indistinguishable. Only when the number of varia-
bles is relatively small and the communalities (see later) are small can differences occur. 
As it is so easy on SPSS to do both with just a few key strokes it is simple to make the 
comparison for yourself when you have appropriate data.

	 33.4	 Decisions, decisions, decisions

This entire section can be ignored by the faint-hearted who are not about to carry out a 
factor analysis.

Now that you have an idea of how to interpret a factor loading matrix derived from 
a factor analysis, it is time to add a few extra complexities. These are essential when 
you are actually planning and carrying out a factor analysis. It cannot be stressed 
too much that factor analysis is more interpretative, subjective and judgemental than 
most statistical techniques you have studied so far. This is not solely because of the 
subjectivity of interpreting the meaning of factors. There are many variants of factor 
analysis and quite a few choices to make when you do the analysis. By and large these 
are easily coped with as they merely involve selecting the best options for you, leaving 
the computer to do the hard work. However, there are five issues that should be 
raised as they underlie the choices to be made.
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Data issues in factor analysis
One crucial question is what sample size is appropriate for 
a factor analysis. There is no simple answer to this. Well, 
nothing straightforward anyway. Often it is suggested that 
for every variable in the analysis there should be several 
times more participants. Commonly the figure of ten times 
the number of variables is stipulated as an adequate sample 
size to yield reliable outcomes from a factor analysis. (Reli-
ability means in this case stability of the factor structure 
over different studies.) However, as the advice we have seen 
ranges from just 2 to 20 participants per variable, you have 
quite a lot of discretion! The main alternative approach has 
been to stipulate a minimum number of participants for a 
factor analysis. Again, though, different sources recommend 
different things. We have seen sample sizes between 100 and 
1000 participants. For some student work, these are over-
whelming numbers of participants. With the best will in the 
world, many student researchers would be hard pressed to 
obtain samples of this sort of size. Fellow students, for 
example, are often unwilling to spend half an hour complet-
ing yet another questionnaire for someone’s student project 
when they have other things to do. Does this mean that 
students should never carry out a factor analysis?

It is not just a problem for students. Professional 
researchers may have problems in getting samples big 
enough to meet some of these criteria. This is not sloth on 
their part. Specific sorts of samples are notoriously difficult 
to obtain. How much effort would be involved in getting a 
sample of 100 serial killers in the United Kingdom? Again, 
should researchers ignore factor analysis as an analytic 
technique in these circumstances? There are no equally 
effective alternatives to factor analysis.

One can interpret all of this as implying that one should 
simply get as big a sample as possible given your resources 
bearing in mind that the more variables you include the 
bigger the sample size should be. Big samples lead to more 
stability in the analysis, but big in this case means about 500 
participants, which is a substantial study. A sample size of 
300 would be adequate in the eyes of most researchers. 
Your work is almost certain to be acceptable to most 
researchers if it is based on the lower figure of 300 partici-
pants. The smaller your sample size is below this, the more 
your work is likely to be criticised by someone. So you may 
need to justify your decision to use factor analysis on a 
smaller sample.

The important thing is to be aware of the limitations of 
your sample size. Discuss them in any report you write to 
demonstrate that you are aware of the issues. One would 
not claim to have obtained a reliable factor structure based 
on a single study so any factor structure needs more research 
to assess its reliability. You may find some support for your 
factor structure in the previous research literature. Many 
student projects, because of the limitations of resources, are 
best conceived as pilot studies not simply because of the 
tendency for students to use small samples. So the study is 
more exploratory in nature than decisive. There are a few 
things which you should bear in mind that help you cope 
better with small sample sizes or might be used to argue that 
your findings might be reliable despite the small sample:

●	 It is bad practice to simply throw any bunch of variables 
into a factor analysis. The axiom ‘junk in, junk out’ 
applies here. Be selective about which variables you use. 
The computer will cope but you are the hot seat of hav-
ing to interpret its output. Confine yourself to variables 
which you feel are likely to be good measures of a  
particular important concept. Selectivity leads to fewer 
variables for the factor analysis and less issues about 
small sample sizes.

●	 Be especially vigilant when you carry out your basic 
examination of your data using descriptive statistics prior 
to the factor analysis. For example, variables that have 
little variability; variables that produce the same response 
from the vast majority of participants because, for exam-
ple, they are rarely agreed with; variables for which many 
of your participants fail to give an answer; and variables 
that participants have difficulty understanding may be 
omitted from the factor analysis. In other words, get rid 
of variables which are in some way problematic as they 
contribute junk (error) to your data. You would be well 
advised to do this anyway for any data. SPSS will gener-
ate a plethora of descriptive statistics.

●	 The bigger the typical correlation there is between your 
variables, the more reliable the factor analysis is likely 
to be. Hence a smaller sample size might be a little 
more acceptable where intercorrelations are high. Sim-
ilarly, the bigger the communality estimates, the 
smaller the sample size can be. If your communalities 

Box 33.1	 Focus on
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	 ■	 Rotated or unrotated factors?
Factor analysis (including principal components analysis) is a mathematically based tech-
nique which has the following characteristics:

●	 The factors are extracted in order of magnitude from the largest to smallest in terms 
of the amount of variance explained by the factor. Since factors are variables they will 
have a certain amount of variance associated with them.

●	 Each of the factors explains the maximum amount of variance that it possibly can.

The amount of variance ‘explained’ by a factor is related to something called the eigen-
value. This is easy to calculate since it is merely the sum of the squared factor loadings of 
a particular factor. Thus the eigenvalue of a factor for which the factor loadings are .86, 
.00, .93, .00, .91 and .00 is .862 + .002 + .932 + .002 + .912 + .002 which equals 2.4.

But maximising each successive eigenvalue or amount of variance is a purely mathematical 
choice which may not offer the best factors for the purposes of understanding the conceptual 
underlying structure of a correlation matrix. For this reason, a number of different criteria 
have been suggested to determine the ‘best’ factors. These are collectively known as rotation 
or factor rotation. The way in which this is done is to adjust the factor structure in various 
ways. One method, Varimax, for example, involves maximising the number of high factor 
loadings on a factor and minimising the number of low loadings (much as in our stylised 
example). Quartimax, another method, seeks to minimise the number of factors needed to 
‘explain’ each variable in the analysis. Rotation is not simple because a factor analysis gener-
ates several factors – adjustments to one factor can adversely affect the satisfactoriness of the 
other factors. This process is called rotation because in pre-computer days it involved rotating 
(or twisting) the axes on a series of scattergrams until a satisfactory or ‘simple’ (i.e. more easily 
interpreted) factor structure was obtained. The data points stay in the same place but the axes 
are rotated which means that the factor loadings on each axis (or factor) change. Nowadays 
we do not use graphs to obtain this simple structure since procedures such as Varimax do this 
for us. Principal components are the unadjusted factors which explain the greatest amounts 
of variance but are not always particularly easy to interpret psychologically.

These are quite abstract ideas and you may still feel a little confused as to which to use. 
Experimentation by statisticians suggests that the rotated factors tend to reveal underlying 
structures a little better than unrotated ones. We would recommend that you use rotated 
factors until you find a good reason not to.

	 ■	 Orthogonal or oblique rotation?

Routinely researchers will use orthogonal rotations rather than oblique rotations. The 
difference is not too difficult to grasp if you remember that factors are in essence variables, 
albeit supervariables:

●	 Orthogonal rotation simply means that none of the factors or supervariables is actually 
allowed to correlate with the others. This mathematical requirement is built into the 

are all at least .6 or greater then a small sample of 
around the 100 mark would be OK. Communality esti-
mates are discussed elsewhere in this chapter.

●	 The more variables that you have for each factor you 
extract then the more stable the factor structure is 
likely to be.

There are other criteria that you can apply which con-
cern the reliability of the individual factors. For example, 
if you have a factor with ten or more statistically significant 
loadings of .4 or larger with a substantial sample, that fac-
tor will tend to be reliable even with a sample of 200 or a 
little less (see Table 33.5 for values for statistically signifi-
cant loadings).
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computational procedures. You can choose between Varimax, Quartimax and Equa-
max on SPSS. They will not give you identical outcomes because they work in different 
ways.

●	 Oblique rotation means that the factors or supervariables are allowed to correlate with 
each other (although they can end up uncorrelated) if this helps to simplify the inter-
pretation of the factors. Computer procedures such as Promax and Oblimin are avail-
able on SPSS to produce correlated or oblique factor structures. The case for using 
oblique rotation is that there is no reason to expect that psychological constructs will 
be unrelated to each other. Psychological variables like depression relate to many oth-
ers, for example. Since oblique rotation will not make factors correlate with each other 
if it is not appropriate, some researchers prefer this form of rotation. Once again, you 
can quickly compare oblique and orthogonal outcomes using SPSS. There may well be 
little difference.

In computer output you may find both a factor structure matrix and a factor pattern 
matrix. If your factors are orthogonal then these two matrices will be identical. The factor 
structure matrix consists of factor loadings in the form of correlation coefficients much 
as we have discussed throughout this chapter. The factor pattern matrix consists of regres-
sion coefficients. Since standardised regression weights and correlation coefficients for 
the same data are identical then the two matrices are the same. But oblique rotation 
changes things. Where there has been oblique (but not orthogonal) rotation then the pat-
tern and a structure matrix are not the same basically because the factors correlate. The 
factor loadings as correlation coefficients are not the same as the regression coefficients 
where the factors have been allowed to correlate with each other. It is possible to use the 
regression weights from the factor pattern matrix to reproduce the original variables. The 
factor structure matrix cannot be used in this way when oblique rotation is applied. 
However, concentrate on the factor structure matrix as this is the one which involves 
factor loadings as correlation coefficients.

There is something known as second-order factor analysis which can be done if you 
have correlated factors. Since the oblique factors are supervariables which correlate with 
each other, it is possible to produce a correlation matrix of the correlations between fac-
tors. This matrix can then be factor analysed to produce new factors. Since second-order 
factors are ‘factors of factors’ they are very general indeed. You cannot get second-order 
factors from uncorrelated factors since the correlation matrix would contain only zeros. 
Some of the classic controversy among factor analysts is related to the use of such second-
order factors.

	 ■	 How many factors?

We may have misled you into thinking that factor analysis reduces the number of variables 
that you have to consider. It can, but not automatically so, because in fact without some 
intervention on your part you could have as many factors as variables you started off 
with. This would not be very useful as it means that your factor matrix is as complex as 
your correlation matrix. Furthermore, it is difficult to interpret all of the factors since the 
later ones tend to be junk and consist of nothing other than error variance.

You need to limit the number of factors to those which are ‘statistically significant’. 
There are no commonly available and universally accepted tests of the significance of a 
factor. However, one commonly accepted procedure is to ignore any factor for which the 
eigenvalue is less than 1.00 (this is the Kaiser test). The reason for this is that a factor with 
an eigenvalue of less than 1.00 is not receiving its ‘fair share’ of variance by chance. What 
this means is that a factor with an eigenvalue under 1.00 cannot possibly be statistically 
significant – although this does not mean that those with an eigenvalue greater than 1.00 
are actually statistically significant. For most purposes it is a good enough criterion 
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although skilled statisticians might have other views. Some suggest that the figure should 
be an eigenvalue of .7 whereas others suggest a figure above 1.0. It is best to stick with 
the conventional figure of 1.0.

Another procedure is the scree test. This is based simply on a graph of the amount of 
variance explained by successive factors in the factor analysis. The point at which the 
curve flattens out indicates the start of the non-significant factors. It may sound difficult 
to do this but almost invariably the point of flattening out is obvious. You can see an 
example of a scree plot produced by SPSS in Screenshot 33.5. If you are uncertain, then 
try the competing numbers of factors in several factor analyses (and rotations).

One final criterion for the number of factors worth trying is that of trivial factors. 
These are factors which have less than two or three variables loading above the level of 
significance. This cut point is a loading of .4 but varies according to sample size. You may 
find factors which only have bigger loadings on just one variable or they may have no 
loadings above the cut point. When these trivial factors start emerging in the factor struc-
ture then you have enough factors. They will be the factors with the smaller eigenvalues 
as they account for little variance. Some values for the statistical significance of a factor 
loading for different sample sizes are given in Table 33.5. More sample sizes are to be 
found in Pituch and Stevens (2016).

Getting the number of factors right matters most of all when one is going to rotate 
the factors to a simpler structure. If you have too many factors the variance tends to be 
shared very thinly. The criteria given above for the number of factors may well give 
slightly different numbers. They are different criteria after all. There is nothing wrong 
with trying the various numbers of factors that the different criteria suggest especially 
as these are quickly calculated on SPSS and similar computer programs. So try the effect 
of varying the number of factors just to see what happens. There is generally little point 
in trying more factors than either the scree or eigenvalues tests suggest. A researcher’s 
preference is usually for a factor structure which has the least possible number  
of factors.

	 ■	 Communality

Although up to this point we have said that the diagonal of a correlation matrix from top 
left to bottom right will consists of ones, an exception is usually made in factor analysis. 
The reason for this is quite simple if you compare the two correlation matrices in 
Tables 33.6 and 33.7.

You will notice that matrix 1 contains substantially higher correlation coefficients than 
matrix 2. Consequently the ones in the diagonal of matrix 2 contribute a disproportion-
ately large amount of variance to the matrix compared to the equivalent ones in matrix 

Sample size Minimum factor loading

600 .2

300 .3

200 .4

100 .5

	 Table 33.5	 Minimum value of a factor loading to be statistically significant at various sample sizes
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1 (where the rest of the correlations are quite large anyway). The factors obtained from 
matrix 2 would largely be devoted to variance coming from the diagonal. In other words, 
the factors would have to correspond more or less to variables A, B and C. This is hardly 
a satisfactory simplification of the correlation matrix. Since most psychological data tend 
to produce low correlations, we need to do something about the problem. The difficulty 
is obviously greater when the intercorrelations between the variables tend to be small than 
where they tend to be large. This is simply because the value in the diagonal is dispropor-
tionately larger than the correlations.

The solution usually adopted is to substitute different values in the diagonal of the 
correlation matrix in place of the ones seen above. These replacement values are called 
the communalities. Theoretically, a variable can be thought of as being made of three 
different types of variance:

●	 Specific varianceâ•‡  Variance which can only be measured by that variable and is specific 
to that variable.

●	 Common varianceâ•‡  Variance which a particular variable has in common with other 
variables.

●	 Error varianceâ•‡  Just completely random variance which is not systematically related 
to any other source of variance.

A correlation of any variable with itself is exceptional in that it consists of all of these 
types of variance (that is why the correlation of a variable with itself is 1.00), whereas a 
correlation between two different variables consists only of variance that is common to 
the two variables (common variance).

Communality is in essence the correlation that a variable would have with itself based 
solely on common variance. Of course, this is a curious abstract concept. Obviously it is 
not possible to know the value of this correlation directly since variables do not come 
ready broken down into the three different types of variance. All that we can do is esti-
mate the communality as best we can. The highest correlation that a variable has with 
any other variable in a correlation matrix is used as the communality. This is shown in 
Table 33.8.

Variable A Variable B Variable C

Variable A 1.00 .50 .40

Variable B .50 1.00 .70

Variable C .40 .70 1.00

	 Table 33.6	 Correlation matrix 1

Variable A Variable B Variable C

Variable A 1.00 .12 .20

Variable B .12 1.00 .30

Variable C .20 .30 1.00

	 Table 33.7	 Correlation matrix 2
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So if we want to know the communality of variable A we look to see what its 
highest correlation with anything else is (in this case it is the .50 correlation with 
variable B). Similarly we estimate the communality of variable B as .70 since this is 
its highest correlation with any other variable in the matrix. Likewise the communal-
ity of variable C is also .70 since this is its highest correlation in the matrix with 
another variable. We then substitute these communalities in the diagonal of the 
matrix as shown in Table 33.9.

These first estimates can be a little rough and ready. Normally in factor analysis, follow-
ing an initial stab using methods like this, better approximations are made by using the 
‘significant’ factor loading matrix in order to ‘reconstruct’ the correlation matrix. For any 
pair of variables, the computer multiplies their two loadings on each factor, then sums the 
total. Thus if part of the factor loading matrix was as shown in Table 33.10, the correlation 
between variables A and B is (.50 * .40) + (.70 * .30) = .20 + .21 = .41. This is not 
normally the correlation between variables A and B found in the original data but one based 
on the previously estimated communality and the significant factors. However, following 
such a procedure for the entire correlation matrix does provide a slightly different value for 
each communality compared with our original estimate. These new communality estimates 
can be used as part of the factor analysis. The whole process can be repeated over and over 
again until the best possible estimate is achieved. This is usually referred to as a process of 
iteration – successive approximations to give the best estimate.

This method of calculating communality is easily grasped and was the method that 
would have been used for some of the classic work of intelligence and personality in 
psychology. Of course there are other ways which are not so intuitive, such as by using 
multiple regression (Chapter 34). So if you have variables A, B, C, D and E to take a small 

Variable A Variable B Variable C

Variable A 1.00 .50 .40

Variable B .50 1.00 .70

Variable C .40 .70 1.00

	 Table 33.8	 Correlation matrix 1 (communality italicised in each column)

Variable A Variable B Variable C

Variable A .50 .50 .40

Variable B .50 .70 .70

Variable C .40 .70 .70

	 Table 33.9	 Correlation matrix 1 but using communality estimates in the diagonal

Factor 1 Factor 2

Variable A .50 .70

Variable B .40 .30

	 Table 33.10	 Part of a factor loading matrix

M33 Introduction to Statistics in Psychology with SPSS 29099.indd   462 04/01/2017   20:28



	 33.4â•‡ Decisions, decisions, decisions	 463

illustration, it is possible to estimate the communality of variable A by using variables B, 
C, D and E as predictors in a multiple regression to predict A. The multiple correlation 
squared (multiple R2) obtained by this calculation provides the initial estimate of the 
communality for variable A. Of course, SPSS and other statistical packages take care of 
these calculations. You do not have to use communalities. Principal components analysis 
does not.

	 ■	 Factor scores

We often carry out a factor analysis to determine whether we can group a larger number 
of variables such as questionnaire items into a smaller set of ‘supervariables’ or factors. 
For example, we may have made up 10 questions to measure the way in which people 
express anxiety and a further 10 questions to assess how they exhibit depression. Sup-
pose that the results of our factor analysis show that all or almost all of the 10 questions 
on anxiety load most highly on one of these factors and all or almost all of the 10 ques-
tions on depression load most highly on the other factor. This result would suggest that 
rather than analyse each of the 20 questions separately we could combine the answers 
to the 10 questions on anxiety to form one measure of anxiety and combine the answers 
to the 10 questions on depression to form a measure of depression. In other words, rather 
than have 20 different measures to analyse, we now have two measures. This greatly 
simplifies our analysis.

The most common way of combining variables which are measured on the same scale 
is simply to add together the numbers which represent that scale. This is sometimes 
referred to as a summative scale. For example, if respondents only had to answer ‘Yes’ 
or ‘No’ to each of our 20 questions, then we could assign a number to an answer which 
indicated the greater presence (or absence) of either anxiety or depression. We could 
assign the number 2 to show the presence of either anxiety or depression and the number 
1 to show the absence of either anxiety or depression. Alternatively, we could assign the 
number 1 to indicate the presence of either anxiety or depression and the number 0 to 
the absence of either. We would then add together the numbers for the anxiety items to 
form a total or overall anxiety score and do the same for the depression items. If we had 
assigned the number 2 to indicate the presence of either anxiety or depression, then the 
total score for these two variables would vary between a minimum score of 10 and a 
maximum score of 20. Alternatively, if we had assigned the number 1 to reflect the pres-
ence of either anxiety or depression, then the total score for these two variables would 
vary between a minimum score of 0 and a maximum score of 10.

Another way of assigning numbers to each of the variables or items that go to make up 
a factor is to use the factor score for each factor. There are various ways of producing factor 
scores and this is generally done with the computer program which carries out the factor 
analysis. A factor score may be based on all the items in the factor analysis. The items which 
load or correlate most highly on a factor are generally weighted the most heavily. So, for 
example, anxiety items which load or correlate most highly with the anxiety factor will 
make a larger contribution to the factor score for that factor. Factor scores may be positive 
or negative but will have a mean of zero. The main advantage of factor scores is that they 
are more closely related to the results of the factor analysis. In other words, scores represent 
these factors more accurately. Their disadvantage is that the results of a factor analysis of 
the same variables are likely to vary according to the method used and from sample to 
sample so that the way that the factor scores are derived is likely to vary. Unless we have 
access to the data, we will not know how the factor scores were calculated.

One key thing to remember about factor scores is that they allow you to use the factors 
as if they were like any other variable. So they can be correlated with other variables, for 
example, or they might be used as the dependent variable in ANOVA.
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	 33.5	 Exploratory and confirmatory factor analysis

So far, we have presented factor analysis as a means of simplifying complex data 
matrices. In other words, factor analysis is being used to explore the structure (and, 
as a consequence, the meaning) of the data. This is clearly a very useful analytical 
tool. Of course, the danger is that the structure obtained through these essentially 
mathematical procedures is assumed to be the basis for a definitive interpretation of 
the data. This is problematic because of the inherent variability of most psychological 
measurements which suggest that the factors obtained in exploratory factor analysis 
may themselves be subject to variability.

As a consequence, it has become increasingly common to question the extent to 
which exploratory factor analysis can be relied upon. One development from this is the 
notion of confirmatory factor analysis. Put as simply as possible, confirmatory factor 
analysis is a means of confirming that the factor structure obtained in exploratory factor 
analysis is robust and not merely the consequence of the whims of random variability 
in one’s data. Obviously it would be silly to take the data and re-do the factor analysis. 
That could only serve to check for computational errors. However, one could obtain a 
new set of data using more or less the same measures as in the original study. Then it 
is possible to factor analyse these data to test the extent to which the characteristics of 
the original factor analysis are reproduced in the fresh factor analysis of fresh data. In 
this way, it may be possible to confirm the original analysis. Box 33.2 contains more 
information about confirmatory factor analysis. Figure 33.1 gives the key steps in 
exploratory factor analysis.

	 Figure 33.1	 Conceptual steps for exploratory factor analysis
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Confirmatory versus exploratory factor analysis
Most of this chapter discusses factor analysis as a means of 
exploring data. Probably this process is best regarded as a 
way of throwing up hypotheses about the nature of relation-
ships between variables than definitive evidence that the 
underlying structure of the data is that indicated by the fac-
tors. There are a number of reasons why one should be 
careful about exploratory factor analyses such as the ones 
described in this chapter. One reason is that sometimes we 
have to interpret the factors on the basis of very limited 
information. Another reason is that the results of a factor 
analysis are somewhat dependent on the choice of method 
of factor analysis adopted. So when some authorities write 
of factor analysis as being a good hypothesis-generating tool 
rather than a good hypothesis-confirming tool, the reasons 
for caution become obvious as well as the reasons for the 
great popularity of factor analysis. It is probably going too 
far to describe exploratory factor analysis as ‘shotgun 
empiricism’ or ‘empiricism gone mad’. Anyone who has car-
ried out an exploratory factor analysis will realise that iden-
tifying the nature of a factor is a somewhat creative act 
– and often based on relatively little information.

So why confirmatory factor analysis? The reasons are 
not to do with the inadequacies of the factor analysis 
methods described in this chapter. Factor analysis is gener-
ally regarded as a very powerful analytic technique. The 
problem lies more with the way in which it is employed 
rather than its computational procedures. Ideally, in 
research, knowledge and understanding should be built on 
previous research. Out of this previous research, ‘models’ 
or sets of variables are built up which effectively account 
for observed data. Frequently factor analysis is used simply 
to explore the data and to suggest the underlying nature 
of the relationships between variables. As a consequence, 
there is no model or hypothesis to test. It is at the stage at 
which there is a clear model or hypothesis that analyses 
can be used to properly test that model or hypothesis. So 
the reason why factor analysis cannot be used for model 
and hypothesis testing is that there is nothing to be tested. 
If there was a model or hypothesis available, then factor 
analysis could be used to test that model or hypothesis. 
This is a traditional approach which uses principal axes 

Box 33.2	 Key concepts

factor analysis. The researcher would include ‘indicator 
variables’ in the data to be factor analysed. These indicator 
variables would have predicted relationships with the fac-
tors. For example, if a factor is proposed to be ‘feminist 
attitudes’ an appropriate indicator variable for this might 
be gender since it might be a reasonable supposition that 
females would be more inclined towards feminist views. 
Gender would load heavily on the factor if the factor and 
its relationship with the indicator variable were as expected 
by the researcher.

The modern approach is to use some sort of structural 
equation modelling procedure such as employed by the 
computer software LISREL, though there are others. The 
researcher must begin with a hypothesis about the rela-
tionships between variables and factors as well as which 
(if any) factors are interrelated with each other. The 
hypothesis is based on a reserve of theoretical and empiri-
cal resources which have been built up from previous 
investigations in that research field. Typically the 
researcher will have an idea of how many different factors 
are required to account for the data which ultimately con-
sist of a correlation matrix of relationships between vari-
ables. The researcher will have hypotheses about what 
variables will correlate with which factors or which factors 
will correlate with each other. Of course, a number of dif-
ferent models will always be potentially viable for any 
given set of data. Hence the researcher will have more than 
a single model to compare.

Models are specified by the research by fixing (or free-
ing) certain specific characteristics of the model. This could 
be the number of factors or the size of the correlation 
between factors or any other aspect deemed appropriate. 
These various models are compared for their adequacy by 
assessing how well the different models may fit the data. 
The best-fitting model is, of course, the preferred model – 
though if there is any competition then the simplest (most 
parsimonious) model will be selected. Of course, there may 
be a better model that the researcher has not formulated or 
tested. The fit of the models to the data is assessed by a 
number of statistics including the chi-square/degrees of 
freedom or a number of alternative statistics.
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	 33.6	 Example of factor analysis from the literature

Butler (1995b) points out that children at school spend a lot of time looking at the work 
of their classmates. Although the evidence for this is clear, the reasons for their doing so 
are not researched. She decided to explore children’s motives for looking at the work of 
other children and proposed a four-component model of the reasons they gave. Some 
children could be concerned mainly about learning to do the task and developing their 
skills and mastery of a particular type of task; other children might be more concerned 
with the quality of the product of their work. Furthermore, a child’s motivation might be 
to evaluate themselves (self-evaluation); on the other hand, their primary motivation 
might be in terms of evaluating the product of their work on the task. In other words, 
Butler proposed two dichotomies which might lead to a fourfold categorisation of motiva-
tions for looking at other children’s work (Table 33.11).

Product improvement Self-improvement

Performance oriented Doing better than others with little effort Comparing task skills with those of others

Mastery oriented Wanting to learn and improve Checking whether own work needs improving

	 Table 33.11	 Butler’s model of reasons to look at the work of others

Based on this sort of reasoning, the researcher developed a questionnaire consisting of 
32 items, ‘Why I looked at other children’s work’. Raters allocated a number of items to 
each of the above categories and the best eight items in each category were chosen for this 
questionnaire.

An example of a question from this questionnaire is:

I wanted to see if my work is better or worse than others.

The children’s answers had been coded from 1 to 5 according to their extent of agree-
ment with the statements.

Each child was given a page of empty circles on which they drew many pictures using 
these circles as far as possible. When this had been completed, they answered the ‘Why I 
looked at other children’s work’ questionnaire. The researcher’s task was then to establish 
whether her questionnaire actually consisted of the four independent ‘reasons’ for looking 
at the work of other children during the activity.

An obvious approach to this questionnaire is to correlate the scores of the sample of 
children on the various items on the questionnaire. This produced a 32 * 32 correlation 
matrix which could be factor analysed to see whether the four categories of motives for 
looking at other children’s work actually emerged:

Principal-components analysis1 with oblique rotation2 yielded five factors with eigen-
values greater than 1.03 which accounted for 62% of the variance4. . .  Three factors 
corresponded to the mastery-oriented product improvement (MPI), performance-ori-
ented product improvement (PPI), and performance-oriented self-evaluation (PSE) 
categories, but some items loaded high on more than one factor5. Items expected a 
priori to load on a mastery-oriented self-evaluation (MSE) category formed two 
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factors. One (MSE) conformed to the original conceptualization, and the other (check-
ing procedure [CP]) reflected concern with clarifying task demands and instructions. 
(Butler, 1995b, p. 350, superscripts added)

The meaning of the superscripted passages is as follows:

1	 Principal components analysis was the type of factor analysis employed – it means that 
communalities were not used. Otherwise the term ‘principal axes’ is used where com-
munalities have been estimated.

2	 Oblique rotation means that the factors may well correlate with each other. That is, if 
one correlates the factor loadings on each factor with the factor loadings on each of 
the other factors, a correlation matrix would be produced in which the correlations 
may differ from zero. Orthogonal rotation would have produced a correlation matrix 
of the factors in which the correlation coefficients are all zero.

3	 This means that there are five factors which are potentially statistically significant – the 
minimum value of a potentially significant eigenvalue is 1.0 although this is only a 
minimum value and no guarantee of statistical significance.

4	 These five factors explain 62% of the variance, apparently. That is, the sum of the 
squared factor loadings on these five factors is 62% of the squared correlation coef-
ficients in the 32 * 32 correlation matrix. Doing this is problematic for oblique rota-
tion as the factors are correlated which means that the variance of a factor is not 
specific to that factor.

5	 In factor analysis, some items may load on more than one factor – this implies that 
they are measuring aspects of more than one factor.

Table 33.12 gives an adapted version of the factor analysis table in which some items 
have been omitted for simplicity’s sake in the presentation. You will notice that many factor 
loadings are missing. This is because the researcher has chosen not to report low factor 
loadings on each factor. This has the advantage of simplifying the factor loading matrix 
by emphasising the stronger relationships. The disadvantage is that the reporting of the 
analysis is incomplete and it is impossible for readers of the report to explore the data 
further. (If the original 32 * 32 correlation matrix had been included then it would be 
possible to reproduce the factor analysis and carry out variants on the original analysis.)

The researcher has inserted titles for the factors in the matrix. Do not forget that these 
titles are arbitrary and are the researcher’s interpretation. Consequently, you may wish 
to consider the extent to which her titles are adequate. The way to do this is to examine 
the set of questions which load highly on each of the factors to see whether a radically 
different interpretation is possible. Having done this you may feel that Butler’s interpreta-
tions are reasonable. Butler’s difficulty is that she has five factors when her model would 
predict only four. While this means that she is to a degree wrong, her model is substan-
tially correct because the four factors she predicted appear to be present in the factor 
analysis. The problem is that some of the questionnaire items do not appear to measure 
what she suggested they should measure.

Some researchers might be tempted to re-do the factor analysis with just four factors. 
The reason for this is that the proper number of factors to extract in factor analysis is not 
clear-cut. Because Butler used a minimal cut-off point for significant factors (eigenvalues 
of 1.0 and above), she may have included more factors than she needed. It would 
strengthen Butler’s argument if such a re-analysis found that four factors reproduced 
Butler’s model better. However, we should stress that factor analysis does not lead to 
hard-and-fast solutions and that Butler would be better confirming her claims by the 
analysis of a fresh study using the questionnaire.
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	 33.7	 Reporting the results

There is no standard way of reporting the results of a factor analysis which will suffice 
irrespective of circumstances. However, it is essential to report the type of factor analysis, 
the type of rotation, how the number of factors was determined, and the relative impor-
tance of the factors in terms of variance explained or eigenvalues. Although the original 
author’s description is given above, the following is another way of writing much the same:

A principal components factor analysis was conducted on the correlation matrix of 
the 32 items on the ‘Why I looked at other children’s work’ questionnaire. Five  
factors were extracted which accounted for 62% of the variance overall. Three of 
these factors corresponded to components of the proposed model. Oblique rotation 
of the factors was employed which yielded the factor structure given in Table 33.12. 
One factor was identified as mastery-oriented product improvement (MPI), another 
was performance-oriented product improvement (PPI) and a third was performance-
oriented self-evaluation (PSE). These are as the model predicted. The fourth category 
predicted by the model (mastery-oriented self-evaluation (MSE)) was also identified 

Factor loadings with absolute values less than .30 are not reported.
Source: Table adapted from Butler (1995b).

	 Table 33.12	 Butler’s factor loading matrix

Item: I wanted to see . . .  Performance-oriented 
self-evaluation

Mastery-oriented 
product 

improvement

Checking 
procedures

Performance-
oriented 
product 

improvement

Mastery 
oriented 

self-evaluation

Who had the most ideas .61 – – - .37 –

Whose work was best .74 – – – –

If others had better ideas than me .68 – – – –

Whether there were ideas I hadn’t  
thought of

– .68 – – .34

Ideas which would help me develop my 
own ideas

– .68 – – –

If I’d understood what to do – – .85 – –

Whether my drawings were 
appropriate

– – .86 – –

If I was working at the appropriate 
speed

– – – – .63

How I was progressing on this new task – – – – .70

I didn’t want to hand in poor work – – – .67 –

I didn’t want my page to be emptier 
than others’

– – – .74 –
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but some of the items expected to load on this actually formed the fifth factor, check-
ing procedures.

Notice that some aspects of this description would be fairly general to any factor analy-
sis, but there are other aspects which are idiosyncratic in nature and due to the distinctive 
characteristics and purposes of this particular study. Ideally, you should study reports of 
factor analyses which are similar to yours (coming from the same area of research) for 
more precise examples of how your work could be reported.

Factor analysis

Gibbs and Powell (2012) studied the beliefs of teachers in the efficacy of their teaching skills in dealing with 
children’s classroom behaviour as well as the question of whether the use of exclusion as a sanction was associ-
ated with this. Over 200 primary and nursery school teachers in the UK completed questionnaires assessing 
their efficacy beliefs. They used principal components factor analysis on the efficacy belief items together with 
a scree test to estimate the proper number of factors and were guided too by previous research findings. Promax 
rotation to simple structure was also applied. Three factors accounted for the teachers individual efficacy beliefs. 
These were labelled a) classroom management, b) children’s engagement and c) instructional strategies. For 
individual efficacy beliefs, none of the factors was associated with school exclusions. However, an analysis of 
collective efficacy beliefs showed some evidence of an association with exclusion.

Motes and colleagues (2008) discuss the research on spatial memory for moving targets. This seems to suggest 
that this ability is frequently based on the implied direction of momentum of the target and implied gravity. 
Implied gravity is illustrated by the fact that after viewing a drawing of a flowerpot on a table and then viewing 
a flowerpot without support then the position of the flowerpot is often judged to be lower than it actually it is 
– i.e. a shift in the direction of gravity. Similar effects are created by downwardly or horizontally moving targets. 
They set up a situation in which participants viewed targets moving horizontally in a left–right direction and 
then, finally disappearing. Alternatively, as a control, they were briefly shown a stationary target. Both targets 
disappeared. The participants in the research were then asked to show the point at which the target disappeared. 
The vertical (gravity) error was measured and could be negative or positive according to whether it was in the 
direction of gravity. The horizontal (momentum) error was measured and could be negative or positive depend-
ing on whether the error was in the direction of momentum or not. The misplacements in the location identified 
were subjected to a principal components factor analysis in which rows were the participants and the columns 
were the horizontal and vertical displacement for each target activity. Overall, the analysis indicated that two 
underlying dimensions account for this variability. That is, the expected implied gravity and implied direction of 
momentum.

Pechey and Halligan (2011) studied anomalous experiences such as hearing voices when there was nobody 
around. They occur in psychiatric conditions and in non-patients also. The researchers studied the distribution 
and relationships of self-reported anomalous experiences in a sample of 1000 UK non-clinical participants. 
Nearly half of the sample of the general population reported that anomalous experiences occurred sometimes 
or often. In order to know whether there were common underlying factors to delusional beliefs, the researchers 

Research examples

➜

M33 Introduction to Statistics in Psychology with SPSS 29099.indd   469 04/01/2017   20:28



470	 CHAPTER 33â•‡ Factor analysis: Simplifying complex data

●	 Do not be afraid to try out factor analysis on your data. It is not difficult to do if you are familiar with using 
simpler techniques on a computer.

●	 Do not panic when faced with output from a factor analysis. It can be very lengthy and confusing because it 
contains things that mere mortals simply do not want to know. Usually the crucial aspects of the factor analy-
sis are to be found towards the end of the output. If in doubt, do not hesitate to contact your local expert 
– computer output is not always user friendly.

●	 Take the factor analysis slowly – it takes a while to build your skills sufficiently to be totally confident.

●	 Do not forget that interpreting the factors can be fairly subjective – you might not always see things as other 
people do and it might not be you who is wrong.

●	 Factor analysis can be applied only to correlations calculated using the Pearson correlation formula.

Key points

carried out exploratory factor analysis. As an indication of the stability of the factor structure they analysed two 
halves of the sample separately. Principal components factor analysis was carried out. The Kaiser test which 
counts factors with an eigenvalue of 1.00 or more suggested two factors but a scree test indicated just one 
factor. So a single component solution was adopted which accounted for about a third or more of the variance 
explained. The experiences which loaded most highly on this single factor included 1) seen or sensed a ghost, 
2) sensed when a friend or family member was in trouble, 3) seen things which other people cannot, and 4) felt 
that familiar objects appeared different even though they knew they hadn’t changed. These had factor loadings 
of about .6 or greater.
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Computer Analysis

Principal components analysis using SPSS

Interpreting and reporting the output

●	 Factor analysis produces a lot of output on SPSS and we can only present a small amount. It is  
important to make sure that you obtain the ‘right’ number of factors which you do using the scree plot. 
Where the curve flattens then the factors are not significant. The interpretation of the factors is based 
on an examination of which variables correlate with the factor (what do these have in common?) and  
to a lesser extent those which do not correlate with the factor.

●	 You might write: ‘The variables were subjected to a principal components analysis and rotated using  
the Varimax method. Two factors met the requirements of the scree test and these seemed to be a 
factor on which sensory motor skills loaded highly and another factor on which verbal skills loaded 
highly.’

	 Figure 33.2	 SPSS steps for exploratory factor analysis
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	 Screenshot 33.5	 Scree plot

	 Screenshot 33.2	 On ‘Analyze’ select ‘Factor. . . ’

	 Screenshot 33.3	 Select variables for analysis 	 Screenshot 33.4	 Rotated factor loading output

	 Screenshot 33.1	 Data in ‘Data View’
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Recommended further reading

Bryman, A., & Cramer, D. (2011). Quantitative data analysis with IBM SPSS 17, 18 and 19: A 
guide for social scientists (Chapter 11). London, UK: Routledge.

Child, D. (1970). The essentials of factor analysis. London, UK: Holt, Rinehart & Winston.

Kline, P. (1994). An easy guide to factor analysis. London, UK: Routledge.

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed., Chapter 13). New 
York, NY: Allyn & Bacon.
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●	 So far we have studied regression and correlation in which just two variables are used – vari-
able X and variable Y. We can consider variable X the independent or predictor variable and 
variable Y the dependent or criterion variable.

●	 The terms independent and dependent variable do not imply a causal relationship between 
the two variables.

●	 Multiple regression and correlation are extensions of the two variable regressions to include 
several different X variables (X1, X2, X3,. . . ). Only one Y variable is involved. If we wish to 
relate how well a student does in an examination, we may wish to correlate examination 
performance with intelligence. This would be simple or bivariate correlation (or regression). 
If we add in an additional predictor variable – amount of preparation – then we would expect 
higher correlations with examination performance.

●	 Multiple regression and correlation basically indicate the best predictor of the Y variable, 
then the next best predictor (correlate) and so forth. They indicate how much weight to give 
to each predictor to yield the best prediction or correlation.

●	 There are many versions of multiple regression which are appropriate in different circum-
stances and which work in slightly different ways.

●	 Usually there are two versions of multiple regression. One works with the original scores and 
yields unstandardised regression or b-weights. Another version works with the scores turned 
into z-scores. This yields standardised regression or beta (b) weights which are essentially 
correlation coefficients. The advantage of beta weights is that they are standardised values 
and so independent of the variance of the original variables. This means that they can be 
compared directly.

Multiple regression and 
multiple correlation

Chapter 34

Overview
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	 34.1	 Introduction

Traditionally, psychologists have assumed that the primary purpose of research is to isolate 
the influence of one variable on another. So researchers might examine whether paternal 
absence from the family during childhood leads to poor mathematical skills in children. 
The fundamental difficulty with this is that other variables which might influence a child’s 
mathematical skills are ignored. In real life, away from the psychology laboratory, varia-
bles do not act independently of each other. An alternative approach is to explore the 
complex pattern of variables which may relate to mathematical skills. Numerous factors 
may be involved in mathematical ability including maternal educational level, the quality 
of mathematical teaching at school, the child’s general level of intelligence or IQ, whether 
or not the child went to nursery school, the gender of the child and so forth. We rarely 
know all the factors which might be related to important variables such as mathematical 
skills before we begin research; so we will tend to include some variables in our studies 
which turn out to be poor predictors of the criterion. Multiple regression quite simply helps 
us choose empirically the most effective set of predictors for any criterion.

Multiple regression can be carried out with scores or standardised scores (z-scores). 
Standardised multiple regression has the advantage of making the regression values 
directly analogous to correlation coefficients. The consequence of this is that it is easy to 
make direct comparisons between the influence of different variables. In unstandardised 
multiple regression the variables are left in their original form. Standardised and unstand-
ardised multiple regression are usually done simultaneously by computer programs 
including SPSS (see Box 34.1).

Preparation

Revise Chapter 9 on simple regression and the standard error in relation to regression. You 
should also be aware of standard scores from Chapter 6 and the coefficient of determination 
for the correlation coefficient in Chapter 8. Optimal understanding of this chapter is aided if 
you have insight into the basic concepts of partial correlation and zero-order correlation 
described in Chapter 32.

Box 34.1	

Standardised or unstandardised regression weights
Regression can involve the raw scores or standard scores. 
Computers will usually print out both sorts.

Regression involving ‘standard scores’ gives regression 
coefficients (weights) which can more readily be com-
pared in terms of their size since they range between +1.0 
and -1.0 like simple correlation coefficients (i.e. Pearson 
correlation). In other words, the predictor variables are 
comparable irrespective of the units of measurement on 

Focus on 

which they were originally based. This is just like any 
other standard scores (Chapter 6). The regression weights 
for this are usually called beta (b).

Regression involving ‘non-standardised scores’ or raw 
scores is about the ‘nuts and bolts’ of prediction. The 
unstandardised regression coefficient (weight) can take, theo-
retically, any positive or negative value. Like our account of 
simple regression, it provides predicted numerical values for 

➜
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	 34.2	 Theoretical considerations

The techniques described in this chapter concern linear multiple regression which assumes 
that the relationships between variables fall approximately on a straight line.

Multiple regression is an extension of simple (or bivariate) regression (Chapter 9). In 
simple regression, a single dependent variable (or criterion variable) is related to a single 
independent variable (or predictor variable). For example, marital satisfaction may be 
regressed against the degree to which the partners have similar personalities. In other 
words, can marital satisfaction be predicted from the degree of personality similarity 
between partners? In multiple regression, on the other hand, the criterion is regressed 
against several potential predictors. For example, to what extent is marital satisfaction 
related to various factors such as socio-economic status of both partners, similarity in 
socio-economic status, religious affiliation, similarity in religious affiliation, duration of 
courtship, age of partners at marriage and so on? Of course, personality similarity might 
be included in the list of predictors studied.

Multiple regression serves two main functions:

1.	To determine the minimum number of predictors needed to predict a criterion. Some of 
the predictors which are significantly related to the criterion may also be correlated with 
each other and so may not all be necessary to predict the criterion. Say, for example, 
that the two predictors of attraction to one’s spouse and commitment to one’s marriage 
both correlate highly with each other and that both these variables were positively 
related to the criterion of marital satisfaction (although marital commitment is more 
strongly related to marital satisfaction than is attraction to the spouse). If most of the 
variation between marital satisfaction and attraction to the spouse was also shared with 
marital commitment, then marital commitment alone may be sufficient to predict mari-
tal satisfaction. Another example of this would be the industrial psychologist who 
wished to use psychological tests to select the best applicants for a job. Obviously a lot 
of time and money could be saved if redundant or very overlapping tests could be 
weeded out, leaving just a minimum number of tests which predict worker quality.

2.	To explore whether certain predictors remain significantly related to the criterion when 
other variables are controlled or held constant. For example, marital commitment 
might be partly a function of religious belief so that those who are more religious may 
be more satisfied with their marriage. We may be interested in determining whether 
marital commitment is still significantly related to marital satisfaction when strength 
of religious belief is controlled.

When trying to understand multiple regression, it is useful to remember the main fea-
tures of simple regression. These are listed below as a quick summary of what you need 
to know already so that you can study this chapter effectively. Generally speaking, mul-
tiple regression as dealt with in this chapter is a relatively straightforward extension of 
simple regression:

●	 Simple regression can be represented by the scatterplot in Figure 34.1 in which 
values of the criterion are arranged along the vertical axis and values of the predictor 

the criterion variable based on an individual’s scores on the 
various predictor variables. However, the size of the regression 
coefficient (weight) is no indication of the importance of the 

unstandardised predictor since the size is dependent on the 
units of measurement involved. The unstandardised regres-
sion weight is usually given the symbol b.
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are arranged along the horizontal axis. For example, marital satisfaction may be the 
criterion and personality similarity the predictor. Each point on the scatterplot indi-
cates the position of the criterion and predictor scores for a particular individual in 
the sample. The relationship between the criterion and the predictor is shown by 
the slope of the straight line through the points on the scattergram. This best-fitting 
straight line is the one which minimises the sum of the (squared) distances between 
the points and their position on the line. This slope is known as the regression line 
or the line of best fit and the slope of this line is given by the regression 
coefficient.

●	 The intercept constant is the point at which the regression line intersects or cuts the 
vertical axis, in other words, the value on the vertical axis when the value on the hori-
zontal axis is zero. Confusingly, in multiple regression this is sometimes referred to as 
the coefficient of the intercept. It is a constant and so is not variable.

●	 To determine the predicted score of the criterion from a particular score of the 
predictor, we draw a line parallel to the vertical axis from the score on the hori-
zontal axis to the regression line. From here we draw a second line parallel to the 
horizontal axis to the vertical axis, which gives us the predicted score of the cri-
terion. More precisely, we can use the regression weights to make our prediction. 
In this, we simply multiply the regression weight by the score that we are interested 
in on the independent variable and add the regression weight (i.e. cut point) for 
the intercept. This gives us our predicted score.

●	 Unless there is a perfect relationship between the predictor and the criterion, the 
predicted score of the criterion will usually differ from the actual score for a par-
ticular case.

●	 Unlike the correlation coefficient, regression is dependent on the variability of the 
units of measurement involved. This makes regressions on different samples and 
different variables very difficult to compare. However, we can standardise the 
scores on the predictor and the criterion variables. By expressing them as standard 
scores (i.e. z-scores), each variable will have a mean of 0 and a standard deviation 
of 1. Furthermore, the intercept or intercept constant will always be 0 in these 
circumstances.

	 Figure 34.1	 Simple scatterplot
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478	 CHAPTER 34â•‡ Multiple regression and multiple correlation

	 ■	 Regression equations
Simple regression is usually expressed in terms of the following regression equation as we 
have already mentioned in the brief notes on simple regression:

  	 Y 	â•…  = 	â•…â•…â•…    a 		 + 	â•…â•…â•…â•‡      bX
predicted score on				    regression coefficient
criterion variable	 intercept constant	 * predictor score 

In other words, to predict a particular criterion score, we multiply the particular score of 
the predictor by the regression coefficient and add to it the intercept constant. Note that 
the values of the intercept constant and the regression coefficient remain the same for the 
equation, so the equation can be seen as describing the relationship between the criterion 
and the predictor.

When the scores of the criterion and the predictor are standardised to z-scores, the 
regression coefficient is the same as Pearson’s correlation coefficient and ranges from 
+1.00 through .00 to -1.00. Regression weights standardised in this way are known as 
beta weights.

In multiple regression, the regression equation is the same except that there are several 
predictors and each predictor has its own (partial) regression coefficient (Figure 34.2):

Y = a + b1X1 + b2X2 + b3X3 + c

A partial regression coefficient expresses the relationship between a particular predictor 
and the criterion controlling for, or partialling out, the relationship between that predictor 
and all the other predictors in the equation. This ensures that each predictor variable 
provides an independent contribution to the prediction.

The relationship between the criterion and the predictors is often described in terms of 
the percentage of variance of the criterion that is explained or accounted for by the predic-
tors. (This is much like the coefficient of determination for the correlation coefficient.) One 
way of illustrating what the partial regression coefficient means is through a Venn diagram 
(Figure 34.3) involving the criterion Y and the two predictors X1 and X2. Each of the circles 
signifies the amount of variance of one of the three variables. The area shaded in  
Figure 34.3a is common only to X1 and Y, and represents the variance of Y that it shares 
with variable X1. The shaded area in Figure 34.3b is shared only by X2 and Y, and signifies 
the amount of variance of Y that it shares with variable X2. Often a phrase such as ‘the 
amount of variance explained by variable X’ is used instead of ‘the amount of variance 
shared by variable X’. Both terms signify the amount of overlapping variance.

	 ■	 Selection

Since multiple regression is particularly useful with a large number of predictors, such an 
analysis potentially would involve many regression equations. That is to say, one might 

	 Figure 34.2	 Simple regression and multiple regression formula
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	 Figure 34.3	 Venn diagrams illustrating partial regression coefficients

stipulate a wide variety of different ‘models’ to examine in the multiple regression. Obvi-
ously the complexity of the analysis could be awesome. In practice, however, a researcher 
does not need to consider every possible regression equation when carrying out multiple 
regression. This involves deciding the broad analysis strategy for the multiple regression 
and stipulating this as part of the analysis and when running multiple regression on a 
computer package. A number of different approaches have been suggested for selecting 
and testing predictors. These approaches include hierarchical (or blockwise) selection and 
stepwise selection. Hierarchical selection enters predictors into the regression equation 
on some practical or theoretical consideration. Stepwise selection employs statistical cri-
teria to choose the smallest set of predictors which best predict the variation in the crite-
rion. In contrast to these methods, entering all predictors into the regression equation is 
known as standard or simultaneous multiple regression or Entry on SPSS. Finally, setwise 
regression compares all possible sets of predictors such as all predictors singly, in pairs, 
in trios and so on until the best set of predictors is identified.

●	 Hierarchical selectionâ•‡  Predictors are entered singly or in blocks according to some 
practical or theoretical rationale. For example, potentially confounding variables 
such as sociodemographic factors may be statistically controlled by entering them 
first into the regression equation. Alternatively, similar variables may be grouped (or 
‘blocked’) together and entered as a block, such as a block of personality variables, 
a block of attitude variables and so on. The computer tells us the net influence of 
each block in turn.
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●	 Stepwise selectionâ•‡  The predictor with the highest zero-order correlation is entered 
first into the regression equation if it explains a significant proportion of the variance 
of the criterion. The second predictor to be considered for entry is that which has the 
highest partial correlation with the criterion. If it explains a significant proportion of 
the variance of the criterion, it is entered into the equation. At this point, the predictor 
which was entered first is examined to see if it still explains a significant proportion of 
the variance of the criterion. If it no longer does so, it is dropped from the equation. 
The analysis continues with the predictor which has the next highest partial correlation 
with the criterion. The process stops when no more predictors are entered into or 
removed from the equation.

Box 34.2 gives an overview of some of the possibilities for multiple regression analyses. 
Figure 34.4 shows the key steps in a multiple regression.

	 Figure 34.4	 Conceptual steps for a multiple regression

Different approaches to multiple regression
Among the choices of methods for multiple regression are 
the following:

●	 Single-stage entry of all predictors and all predictors are 
employed whether or not they are likely to be good pre-
dictors (i.e. irrespective of their potential predictive 
power).

●	 Blocks:â•‡  There are circumstances in which the researcher 
does not wish to enter all of the variables at the same 
time. Instead, it is possible to enter the predictors in  

sets, one set at a time. These are sets specified by the 
researcher and are usually called blocks. There can be any 
number of variables in a block from a minimum of one. 
There are a number of advantages to this. Putting varia-
bles into blocks allows the variables in the block to be 
analysed together, either before or after other variables. 
One might put variables into blocks because they are 
similar in some way. For instance, they may be a particu-
lar type of variable (e.g. health variables, education vari-
ables, social class variables could all form separate 

Box 34.2	 Focus on
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	 34.3	 Assumptions of multiple regression

There are a lot of assumptions underpinning the use of multiple regression which, at first 
sight, are rather off-putting. However, this is true of many of the techniques discussed in this 
book, though multiple regression tends to attract attention in this regard. You should be 
aware of the most important of these assumptions and requirements and take action if there 
is a problem. Sometimes they seem to amount to statistical overkill so we will just concentrate 
on the main things that a competent psychologist would be aware of and take note of:

●	 Linearity assumption: it is called linear regression so the expectation is that each of the 
predictors has a linear relationship with the dependent variable. Examining the scat-
terplots for the predictors against the dependent variables may suggest a non-linear 
relationship (that is a curved relationship). Such relationships can be made linear some-
times by transforming the variables using logarithmic and other transformations. Small 
deviations from the assumption of linearity do not affect the analysis much.

blocks). Another use is to ‘control’ for certain variables 
first – that is, age and social class may be entered as the 
first block. This is often done as a way of controlling for 
the influence of demographic variables. If the first block 
included demographic variables such as gender, age and 
social class, this is the equivalent of partialling them out 
of the analysis (see Chapter 32). Once this is done, one 
can compare the outcome of this block with what hap-
pens when other predictors are introduced. This is known 
as hierarchical multiple regression.

●	 Finding best predictors:â•‡  The analysis may proceed on 
a stepwise basis by finding the best predictors in a set of 
predictors and eliminating the poor predictors. This is 
particularly appropriate where the main objective of the 
researcher is to predict with the highest possible accu-
racy – rather than to find explanatory models of influ-
ences on the dependent variable.

●	 Reverse (backwards) elimination of predictors:â•‡  In this 
the first model is initially employed. That is, the model 
in our earlier example is calculated. All of the predictor 
variables are included. Having done that, the worst pre-
dictor is dropped. Usually this is the least significant 
predictor. Essentially the model is recalculated on the 
basis of the remaining predictors. Then the remaining 
worst predictor is dropped and again the model recal-
culated. The researcher is looking to see whether drop-
ping a variable or variables actually substantially 
worsens the model. This is not simply a matter of the 
goodness-of-fit of the model to the data; some models 
may be better at predicting one value of the dependent 

variable rather than the other. If one is trying to avoid 
letting men out of prison early if they are likely to re-
offend, the model which maximises the number of 
recidivists (re-offenders) correctly identified may be pre-
ferred over the model which misclassifies recidivists as 
likely to be non-recidivists. This is obviously a complex 
judgement based on a wide variety of considerations.

●	 There are models which mix blocks and stepwise 
approaches.

●	 In this chapter, we largely deal with individual predic-
tors acting alone or their combined effects on the 
dependent variable. Following the General Linear 
Model (see Box 9.1), this essentially means that the 
analysis adds a standard amount to the prediction of the 
dependent variable for each increment in each of the 
predictor (independent) variables. In other words, the 
effects of the independent variables are additive. It is, 
however, possible to deal with interactions between pre-
dictors in multiple regression just as we do in analysis 
of variance (ANOVA). This is discussed in detail in 
Chapter 39 which deals with moderator variables.

Except for the simple case where the maximum possible 
accuracy of prediction is required and all variables may be 
entered en masse, the choice of approach is a matter of 
judgement that partly comes with experience and practice. 
It does no harm to try out a variety of approaches on one’s 
data, especially if one is inexperienced with the techniques. 
Of course, one has to be able to justify the final choice  
of model.
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●	 It is assumed in linear regression that the residuals are normally distributed. The residu-
als are the difference between what the regression analysis predicts a person’s score on 
the predicted (or outcome) variable should be and the actual score they have on that 
variable. It is possible to get a frequency distribution of the residuals on SPSS by select-
ing ‘Regression’ then ‘Linear. . . ’ (Screenshot  34.2), ‘Plots. . . ’ (Screenshot  34.3) and 
‘Histogram’. Check the output from this labelled Histogram. Ideally this will show an 
approximately normal (bell-shaped) distribution.

●	 Outliers can be a problem with any analysis. So when you examine your data initially 
by doing individual scatterplots of each independent variable against the dependent 
variable, be on the look-out for possible outliers which would distort the analysis. Once 
again, it is possible to use SPSS to check by selecting ‘Regression’ then ‘Linear. .  .  ’ 
(Screenshot   34.2), ‘Statistics.  .  .  ’ (Screenshot   34.3), ‘and ‘Casewise diagnostics’ 
(Screenshot  34.4). Outliers could be dealt with by deletion, etc. if appropriate.

If your analysis violates various assumptions of linear regression, there is a relatively 
straightforward solution – that is, use a robust version of regression which is not based 
on the same assumptions. One such robust method is bootstrapping which SPSS will do 
for you. (See also Box 21.1 about bootstrapping.) Put simply, bootstrapping involves 
repeatedly randomly sampling from the available data (which is multiplied many times 
to yield a large population) in order to build up a sampling distribution. You might also 
wish to use bootstrapping to see if it produces markedly different results from the original 
analysis. Similarity of outcomes in reassuring. Bootstrapping is only available for Entry 
methods of multiple regression on SPSS including hierarchical models. Selecting ‘Regres-
sion’ then ‘Linear. . . ’ (Screenshot  34.2), ‘Enter’ and ‘Bootstrap. . . ’ (Screenshot  34.3), 
and ‘Perform bootstrapping’. At this stage you should deselect anything that may remain 
selected under ‘Statistics. . . ’, ‘Plots. . . ’ and ‘Save. . . ’ as these can prevent the analysis 
from completing. The main output table you need is the Bootstrap for Coefficients table. 
The regression weights remain the same, but the significance levels and confidence inter-
vals are different. Differences between the original analysis and the bootstrap analysis 
usually do not alter the interpretation of the regression but they can if the assumptions 
of multiple regression are violated.

As with all statistics, you need to consider the appropriate sample size for a multiple 
regression. Obviously a bigger sample size is better than a smaller one so long as it is not 
too wasteful of resources. There are rules of thumb suggesting a particular ratio of par-
ticipants to predictors. These ratios can vary greatly according to source from a low of 
10*  to as much as 40* . Since a sample of 100 can be quite a data collection feat in 
student research then selectivity in the use of predictor variables is needed. The temptation 
is, of course, to put in as many predictor variables as you have available, which is not the 
best strategy. The consequence of doing so is to bump up the number of cases you need 
considerably. The better the fit of the model to the data the smaller can be the sample size 
because the error variation (residuals) is smaller. You could use G*Power (discussed in 
Chapter 40) to calculate the appropriate sample size especially if you know the likely 
effect size. The bigger the effect size the smaller the sample.

	 34.4	 Stepwise multiple regression example

Since we will need to use standard multiple regression to carry out path analysis in the 
next chapter, we will illustrate stepwise multiple regression in the present chapter. There 
is quite a lot of hostility to stepwise multiple regression from statisticians, and some psy-
chologists echo this. Nevertheless, it is not uncommon to see it used in studies, so you 
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need to know about how it works. Our example asks whether a person’s educational 
achievement (the criterion variable) can be predicted from their intellectual ability, their 
motivation to do well in school and their parents’ interest in their education (the predictor 
variables). The minimum information we need to carry out a multiple regression is the 
number of people in the sample and the correlations between all the variables, though 
you would normally work with the actual scores when carrying out a multiple regression. 
It has been suggested that with stepwise regression it is desirable to have 40 times more 
cases than predictors. Since we have three predictors, we will say that we have a sample 
of 120 cases. (However, much reported research fails to follow this rule of thumb.) In 
order to interpret the results of multiple regression it is usually necessary to have more 
information than this, but for our purposes the fictitious correlation matrix presented in 
Table 34.1 should be sufficient.

The calculation of multiple regression with more than two predictors is complicated 
and so will not be shown. However, the basic results of a stepwise multiple regression 
analysis are given in Table 34.2. What this simple example shows is that only two of the 
three ‘predictors’ actually explain a significant percentage of variance in educational 
achievement. That they are significant is assessed using a t-test. The values of t are given 
in Table 34.2 along with their two-tailed significance levels. A significance level of .05 or 
less is regarded as statistically significant.

The two significant predictor variables are intellectual ability and school motivation. 
The first variable to be considered for entry into the regression equation is the one with 
the highest zero-order correlation with educational achievement. This variable is intel-
lectual ability. The proportion of variance in educational achievement explained or pre-
dicted by intellectual ability is the square of its correlation with educational achievement 
which is .49 (.72 = .49). The next predictor to be considered for entry into the regression 
equation is the variable which has the highest partial correlation with the criterion (after 
the variance due to the first predictor variable has been removed). These partial correla-
tions have not been presented; however, school motivation is the predictor variable with 
the highest partial correlation with the criterion variable educational achievement.

The two predictors together explain .52 of the variance of educational achievement. 
The figure of the total proportion of variance explained is arrived at by squaring the 

Educational  
achievement

Intellectual  
ability

School  
motivation

Intellectual ability .70

School motivation .37 .34

Parental interest .13 .11 .34

	 Table 34.1	 Correlation matrix for a criterion (educational achievement) and three predictors

Predictor variables r b B t Significance

Intellectual ability .70 0.83 .65 9.56 .001

School motivation .37 0.17 .16 2.42 .02

Constant = -0.17, R2 = .52, Adjusted R2 = .51, R =  .72

	 Table 34.2	 Some regression results – significant predictors only

M34 Introduction to Statistics in Psychology with SPSS 29099.indd   483 06/01/2017   15:54



484	 CHAPTER 34â•‡ Multiple regression and multiple correlation

overall R (the multiple correlation) which is .722 or .52. The multiple correlation is likely 
to be bigger the smaller the sample and for more predictors. Consequently, this figure is 
usually adjusted for the size of the sample and the number of predictors, which reduces 
it in size somewhat. Finally, the partial regression or beta coefficients for the regression 
equation containing the two predictors are also shown in Table 34.2 and are .65 for intel-
lectual ability and .16 for school motivation. There is also a constant (usually denoted as 
a) which is - .17 in this instance. The constant is the equivalent to the cut-off point 
described in Chapter 9. We can write this regression equation as follows:

Educational achievement =  a + (0.83 * intellectual ability) + (0.17 *
school motivation)

According to our fictitious example, intellectual ability is more important than school 
motivation in predicting educational achievement (see Boxes 34.3 and 34.4).

Multicollinearity
There is a concept, multicollinearity, which needs consid-
eration when planning a multiple regression analysis. It is 
a problem when the researcher is using multiple regression 
to build psychological models in which the predictors are 
relevant to the theory. It is not a problem when simply 
using the predictors to make the best possible prediction. 
In terms of research design, it is a well-known phenomenon 
that if you measure several different variables using the 
same type of method then there is a tendency for the vari-
ables to intercorrelate simply because of that fact. If all of 
your measures are based on self-completion questionnaires 
or on ratings by observers then you may find strong inter-
correlations as a consequence. Multicollinearity can hap-
pen for other reasons, of course. Multicollinearity mainly 
refers to the situation in which two predictor variables cor-
relate very highly with each other. Correlations between 
any of the predictor variables bigger than r = .8 are indica-
tive of multicollinearity but there can be multicollinearity 
without this. Most commonly, small sampling fluctuations 
may result in one of the two-predictor variables appearing 
to be a powerful predictor while the other may appear to 
be a relatively weak predictor. Imagine two variables, A 
and B, both of which predict the dependent variable, which 
correlate with each other at, say, r = .9. However, because 
variable A, say, has a minutely better correlation with the 
criterion it is selected first by the computer. Variable B con-
sequently seems to be a far worse predictor. Multicollinear-
ity can cause an unwary researcher confusion since, for 
example, known good predictors from past research sud-
denly do not predict or just one of them does. If 

Box 34.3	 Key concepts

multicollinearity is apparent then be very careful about 
claiming that one of the predictors is far better than 
another. Quite clearly, care should be exercised to ensure 
that your predictor measures do not intercorrelate highly.

SPSS can help you check for multicollinearity using the 
collinearity diagnostics procedure. To do this select ‘Regres-
sion’ then ‘Linear. . . ’ (Screenshot  34.2), ‘Statistics. . .’ 
(Screenshot  34.3), and ‘Collinearity diagnostics’ (Screen-
shot  34.4). The relevant output can be found in the Coef-
ficients output table. (Screenshot 34.5) Look for the 
column head VIF, which is the amount by which the vari-
ance of a regression weight is increased because the predic-
tor is correlated with other predictors. The minimum value 
that it can have is 1. If you find a big value for VIF then 
collinearity is an issue. Different experts say different things 
but we have seen values for VIF between 2.5 and 10 being 
mentioned as the point at which collinearity rears its ugly 
head.

There is no need to become paralysed with fear if evi-
dence of multicollinearity is found. Here are a few possible 
strategies:

●	 The obvious cure is simply to delete from the analysis 
one of the pair of variables showing a high correlation. 
After due consideration, you may decide that one of the 
predictors is conceptually more important than the 
other so retain that one. Of course both predictors may 
be important to your theoretical model so you may not 
wish to do this.
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	 34.5	 Reporting the results

Multiple regression can be performed in a variety of ways for a variety of purposes. Con-
sequently, there is no standard way of presenting results from a multiple regression analy-
sis. However, there are some things which are best routinely mentioned. In particular, the 
reader needs to know the variables on which the analysis was conducted, the particular 
form of the multiple regression used, regression weights and the main pattern of predic-
tors. Other information may be added as appropriate. By all means consult journal articles 
in your field of study for other indications as to style. We would say the following when 
reporting the simple example in Section 34.4:

●	 Combine the highly correlated variables if it seems logi-
cal to do so. This may be as simple as adding together 
each person’s scores on the two variables to make a sin-
gle combined variable. For example, you might be using 
several measures of depression in which case combining 
them into one variable would seem quite sensible.

●	 You could do a principal components analysis on the 
predictor variables (see Chapter 33). This will give you 
a small number of components (factors) which could 
replace the original predictors. The factor scores for the 
components would be used in the multiple regression.

●	 Be on the look-out for things you may have done inadvert-
ently which resulted in the multicollinearity. If you made 
a predictor D by combining Variables A, B and C, then 
make sure that you haven’t used any of Variables A, B and 
C as predictors in the regression analysis as well as D. You 
should also be careful if you create dummy variables from 
a categorical predictor. The number of dummy variables 
at most is one less than the number of categories. If the 
categorical variable has three categories X, Y and Z then 
there are two possible dummy variables X versus not X 
and Y versus not Y. You would not include Z versus not 
Z. See Section 42.2 for a discussion of dummy variables.

Prediction in multiple regression
Prediction in regression is often not prediction at all. This 
can cause some confusion. In everyday language, predic-
tion is indicating what will happen in the future on the 
basis of some sign in the present. Researchers, however, 
often use regression analysis with no intention of predict-
ing future events. Instead, they collect data on the relation 
between a set of variables (let’s call them X1, X2 and X3) 
and another variable (called Y). They think that the X 
variables may be correlated with Y. The data on all of 
these variables are available to the researcher. The analy-
sis proceeds essentially by calculating the overall correla-
tion of the several X variables with the Y variable. The 
overall correlation of a set of variables with another single 
variable is called multiple correlation. If there is a multiple 
correlation between the variables then this means that we 

can use the value of this correlation together with other 
information to estimate the value of the Y variable from 
a pattern of X variables. Since the multiple correlation is 
rarely a perfect correlation, then our estimate of Y is 
bound to be a little inaccurate. Explained this way, we 
have not used the concept of prediction. If we know the 
multiple correlation between variables based on a particu-
lar sample of participants, we can use the size of the cor-
relation to estimate the value of Y for other individuals 
based on knowing their pattern of scores on the X varia-
bles. That is the task of multiple regression. Prediction in 
multiple regression, then, is really estimating the unknown 
value of Y for an individual who was not part of the origi-
nal research sample from that individual’s known pattern 
of scores on the X variables.

Box 34.4	 Focus on
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A stepwise multiple regression was carried out in order to investigate the best pattern 
of variables for predicting educational achievement. Intellectual ability was selected 
for entry into the analysis first and explained 49% of the variance in educational 
achievement. School motivation was entered second and together with intellectual 
ability explained 52% of the variance in educational achievement. Greater educational 
attainment was associated with greater intellectual ability and school motivation. A 
third variable, parental interest, was not included in the analysis as it was not a signifi-
cant, independent predictor of educational achievement.

	 34.6	 Example from the published literature

Munford (1994) examined the predictors of depression in African-Americans. The 
research involved her administering the following measures:

1.	Beck Depression Inventory.

2.	Rosenberg Self-esteem Scale.

3.	Hollingshead two-factor index of social position – this is a measure of the occupational 
social class and educational standards (i.e. a measure of social class).

4.	Gender (self-reported sex) of the individual.

5.	Racial Identity Attitude Scale which measures several different stages in the develop-
ment of racial identity:

1.	Pre-encounter: the stage before black people become exposed to racism. It is the 
stage at which they accept the definitions of themselves imposed by the white racist 
community

2.	Encounter: the stage where identity is challenged by direct experiences of racism

3.	Immersion: the individual is learning to value his or her own race and culture

4.	Internalisation: the individual has achieved a mature and secure sense of his or her 
own race and identity.

As one might expect, Munford was interested in the relationship between depression 
as measured by the Beck Depression Inventory (the criterion variable) and the remaining 
variables (the predictor variables). She computed a correlation matrix between all of the 
variables, but as this involved 28 different correlation coefficients it is obvious that she 
needed a means of simplifying its complexity. She subjected her correlation matrix to a 
stepwise regression which yielded the outcome shown in Table 34.3.

Predictor R2 increments R2 (adjusted) total Beta F

Self-esteem .37 .37 134.10

Pre-encounter .02 .39 8.97

Encounter .01 .41 4.71

Gender .01 .42 4.77

	 Table 34.3	 �Summary of stepwise multiple regression: self-esteem, gender, social class and 
racial identity attitudes as predictors of depression

Source: Adapted from Munford (1994).
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As you can see, many of the predictors are not included in the table, indicating that 
they were not significant independent predictors of depression (thus social class and 
internalisation, for example, are excluded). Self-esteem is the best predictor of depres-
sion – those with the higher self-esteem tended to have lower depression scores. One 
cannot tell this directly from the table as it presents squared values which would have 
lost any negative signs. We have to assess the direction of the relationship from the sign 
of the regression coefficient. This sign is negative.

Although pre-encounter, encounter and gender all contribute something to the predic-
tion, the increment in the amount of variation explained is quite small for each of them. 
Thus R2 for pre-encounter is only .02 which means (expressed as a percentage) that the 
increase in variation explained is only 2% (i.e. .02 * 100%).

Beta F in essence reports F-ratios (Chapter 23) for each of the predictor variables. All 
of those presented are statistically significant since otherwise the variable in question 
would not correlate significantly with depression.

Multiple regression

Ang and Huan (2006) tested whether depression mediated the relation between academic stress and thoughts 
of killing oneself (suicidal ideation) in adolescents. Academic stress was significantly correlated with both 
depression and suicidal ideation. To determine whether depression mediated the relation between academic 
stress and suicidal ideation, they regressed suicidal ideation on both depression and academic stress. The stand-
ardised partial regression coefficient between academic stress and suicidal ideation was smaller than the cor-
relation between them but was still significant which suggested that depression was a partial rather than a 
complete mediator of the relation between them.

Childs and Klimoski (1986) carried out a standard multiple regression to determine whether a biographical data 
inventory given to students on real-estate courses would predict their career success two years later. Career 
success was measured in terms of a composite index of earnings, job prestige and career identification. Twenty-
four per cent of the variance in career success was explained by the five factors of the biographical data inven-
tory. These factors were educational achievement, social orientation, interpersonal confidence, economic 
stability and work ethic orientation.

Lounsbury and his colleagues (2003) conducted a hierarchical multiple regression to determine whether five 
personality factors and work drive would predict the grades students obtained on a course once intelligence 
had been taken into account. In the first analysis they present, intelligence was entered in the first step of the 
regression, the five personality variables were entered in the second step, and work drive was entered in the 
third step. Intelligence accounted for a significant 16% of the variance in course grades. The five personality 
variables accounted for a significant additional 7% of the variance and work drive a significant further 4%. As 
they found work drive to explain a significant percentage of the variance in course grades, they checked to see 
whether the five personality variables would explain a significant amount of the variance if they were entered 
after work drive which they did not. When work drive was entered in the second step, it explained a significant 
8% of the variance with the five personality variables explaining a non-significant further 3%.

Nicholas and his colleagues (2009) were interested in which pain variables were related to depression in patients 
with chronic pain once age, gender and pain duration had been controlled. After entering these three variables in 
the first step of the regression to control for them, they carried out a forward entry multiple regression in which 

Research examples

➜
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●	 Multiple regression is only practicable in most cases using a computer since the computations are 
numerous.

●	 Normally one does not have to compute the correlation matrix independently between variables. The com-
puter program usually does this on the raw scores. There may be a facility for entering correlation matrices 
which might be useful once in a while when you are reanalysing someone else’s correlation matrix.

●	 Choose hierarchical selection for your multiple regression if you are trying to test theoretical predictions or 
if you have some other rationale. One advantage of this is that you can first of all control for any social or 
demographic variables (gender, social class, etc.) which might influence your results. Then you can choose 
your remaining predictors in any order which you think best meets your needs.

●	 Choose stepwise selection methods in circumstances in which you simply wish to choose the best and small-
est set of predictors. This would be ideal in circumstances in which you wish to dispense with time-consuming 
(and expensive) psychological tests, say in an industrial setting involving personnel selection. The main con-
siderations here are entirely practical.

●	 Avoid construing the results of multiple regression in cause and effect terms.

Key points

variables were selected in terms of their statistical significance. The first three variables of age, gender and pain 
duration explained a significant 5% of the variance in depression. The first variable with the highest statistical 
significance which was statistically significant was catastrophising, which is a tendency for patients to despair about 
their pain. This variable explained a significant further 39% of the variance in depression. There were four other 
variables which explained further significant amounts of variance and there were three which did not.
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Computer Analysis

Stepwise multiple regression using SPSS

Interpreting and reporting the output

●	 The most important part of the output is the Coefficients table. This has produced a two predictor  
model involving Ability and Motivation as the important predictors. The B weights are both positive  
and so indicate positive relationships. Both are statistically significant. The beta weights are  
standardised versions of the B weights.

●	 You might write: ‘The data were subjected to a stepwise multiple regression analysis in order to  
ascertain what were the best predictors of school achievement. A two-variable model was indicated in 
which Ability was found to have a B weight of .83 and motivation a B weight of .17. Intellectual ability  
was entered first and explained 49 per cent of the variance in educational achievement, 
F(1, 118) = 113.76, p = .001. School motivation was entered second and explained a further 2 per 
cent, F(1, 117) = 5.85, p = .017. Greater educational attainment was associated with greater 
intellectual ability and school motivation.’

	 Figure 34.5	 â•›SPSS steps for stepwise multiple regression
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	 Screenshot 34.4	 Select options	 Screenshot 34.3	 Select variables for analysis

	 Screenshot 34.1	 Part of the data in ‘Data View’

	 Screenshot 34.5	 Most important output

	 Screenshot 34.2	 On ‘Analyze’ select ‘Linear. . . ’
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Recommended further reading

Cramer, D. (2003). Advanced quantitative data analysis (Chapters 5 and 6). Buckingham, UK: Open 
University Press.

Glantz, S. A., & Slinker, B. K. (1990). Primer of applied regression and analysis of variance. New 
York, NY: McGraw-Hill.

Pedhazur, E. J. (1982). Multiple regression in behavioral research: Explanation and prediction (2nd 
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●	 Path analysis is based on multiple regression, but its conceptualisation of the predictors 
(independent variables) is more complex.

●	 The primary objective of path analysis is to indicate likely relationships between the inde-
pendent variables as predictors of the dependent variable.

●	 There are numerous possible relationships among the predictor variables. Variable X1 may 
affect variable X2, or variable X2 may affect variable X1, or they may both affect each other 
(a bidirectional relationship).

●	 The relationships between variables in path analysis are present as path coefficients. These 
are essentially correlation coefficients based on the beta weights (standardised regression 
coefficients) calculated in multiple regression.

●	 Path analysis is about trying to establish a causal model of how predictor variables are 
combined to affect the level of the dependent variable.

Path analysis

Chapter 35

Overview

Preparation

Path analysis requires that you understand the basic principles of multiple regression 
(Chapter 34).
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	 35.1	 Introduction

As modern psychology has increasingly drawn from real issues and non-laboratory research 
methods, the problems of establishing what variables affect what other variables have 
changed. The methodological sophistication of laboratory experiments in which causal 
linkages are determined by random assignment of individuals to an experimental and con-
trol group has been supplemented by a strong wish to understand people better in their 
natural environment. Causal modelling is merely a generic name for attempts to explore the 
patterns of interrelationships between variables in order to suggest how some variables 
might be causally influencing others. Of course, some suggestions might be rather better 
than others; some theoretical links might not fare well against actual empirical data. In path 
analysis, it is possible to estimate how well a particular suggested pattern of influences fits 
the known data. The better the model or causal pattern is supported by the actual data then 
the more likely we are to believe that the model is a useful theoretical development.

There is no suggestion intended that path analysis will always provide indisputable 
evidence strongly favouring one particular causal model over a number of other possibili-
ties. It is not a question of showing that one model is the best model. Path analysis simply 
seeks to describe a particular path which explains the relationships among the variables 
well and precisely; the researcher may have overlooked other variables when planning the 
study or analysing it and it is feasible that these variables, if they had been included, would 
radically change our understanding of what is happening in the data. Thought is part of 
the process just as much as statistics, so, as an example, we can exclude some causal 
pathways on logical grounds. For example, a causal influence has to precede changes in 
the variable of interest. If it does not, it cannot be a cause. So changes in a causal influence 
need to precede changes in the variable being explained (the dependent variable). Thus, 
childhood experiences might possibly influence our adult behaviour and so it is reasonable 
to include childhood experiences as influences on adult behaviour. But the reverse pattern 
is not viable. Our childhood experiences cannot possibly be caused by things that happen 
to us in our adult years; the temporal sequence is wrong. In other words, some causal 
models are not convincing simply because they are not logically feasible whereas other 
models may be possible by logical criteria of this sort.

	 35.2	 Theoretical considerations

Path analysis involves specifying the assumed causal relationships among several varia-
bles. Take, for example, the variables:

●	 marital satisfaction

●	 love between a couple and

●	 remaining married.

A reasonable assumption which might lead to a causal model is that couples who love 
one another are more likely to be satisfied with their marriage and consequently are more 
likely to stay together. Such a pattern of influences (or causal model) can be drawn as a 
path diagram such as the one in Figure 35.1. This is little more than a flow diagram 
indicating the direction of influence of one variable on another. In this particular model 
(and it clearly is just one of several possibilities), variables to the left (marital love) are 
thought to influence variables towards the right (marital satisfaction and remaining mar-
ried). Right-facing arrows between variables indicate the causal direction. So the model 
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is quite simply that marital love causes marital satisfaction which in turn is responsible 
for remaining married.

Of course, the temptation is simply to correlate scores on the three variables in this 
model. Suppose that we find that they all intercorrelate – then what? Well this might 
appear to be evidence in support of the suggested model, but it would also support many 
other models based on these three variables. The main point is that relationships between 
variables do not, in themselves, establish that marital love really causes marital satisfac-
tion. Just taking two variables at a time results in four possible causal relationships:

●	 As suggested by our model, marital love may increase marital satisfaction.

●	 The opposite effect may occur with marital satisfaction heightening marital love.

●	 Both variables may affect each other, marital love bringing about marital satisfaction 
and marital satisfaction enhancing marital love. This kind of relationship is variously 
known as a two-way, bidirectional, bilateral, reciprocal or non-recursive 
relationship.

●	 The relationship may not really exist but may appear to exist because both variables 
are affected by some further confounding factor(s). For example, both marital love and 
marital satisfaction may be weaker in emotionally unstable people and stronger in 
emotionally stable people. This creates the impression that marital love and marital 
satisfaction are related when they are not, because emotionally unstable people are 
lower in both marital love and marital satisfaction while emotionally stable people are 
higher in both. This fourth sort of relationship is known as a spurious relationship.

In path analysis, a distinction is often made between exogenous and endogenous 
variables:

●	 An exogenous variable is one for which assumed causes have not been measured or 
tested as part of the model. In other words, it refers to those variables which do not 
have arrows pointing to them in a path diagram.

●	 An endogenous variable is one for which one or more possible causes have been meas-
ured and have been put forward in the causal model. In other words, endogenous vari-
ables have arrows pointing to them in the path diagram.

So, in the above model, marital love is an exogenous variable while marital satisfaction 
and remaining married are endogenous variables.

There will be some variation in endogenous variables which is unaccounted for or 
unexplained by causal variables in the model. This unexplained variance in an endogenous 
variable is indicated by vertical arrows pointing towards that variable as shown in the 
path diagram in Figure 35.2. For example, the variance in marital satisfaction not 
explained by marital love is represented by the vertical arrow from e2. Similarly, the vari-
ance in remaining married unaccounted for by marital satisfaction is depicted by the verti-
cal arrow from e3. The e stands for error – the term used to describe unexplained variance. 
The word residual is sometimes used instead to refer to the variance that remains to be 
explained and the phrase disturbance term is also applied, in path analysis, to exactly the 
same concept. It is important to realise that e refers to the influence of unknown factors 
rather than random error. In other words, the variance e may eventually be explained by 
a more complex model.

	 Figure 35.1	 Possible path from marital love to remaining married
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In this model, marital love is assumed to have an indirect effect on remaining married 
through its effect on marital satisfaction. However, marital love may also have a direct 
effect on remaining married as shown in the path diagram of Figure 35.3.

	 ■	 Path coefficients

The values of the direct effects are expressed as path coefficients. They are usually the 
standardised beta coefficients taken from the sort of multiple regression analysis which 
was introduced in the previous chapter. In other words, they can essentially be understood 
as analogous to correlation coefficients. The values of the paths reflecting error (or resid-
ual) variance are known as error or residual path coefficients.

We will use the following symbols:

●â•… p1 for the path coefficient for the direct effect of marital love on marital satisfaction

●â•… p2 for the direct effect of marital love on remaining married

●â•… p3 for the direct effect of marital satisfaction on remaining married

●â•… p4 for the path reflecting the error variance for marital satisfaction

●â•… p5 for the path reflecting the error variance for remaining married.

These are illustrated in Figure 35.4.

	 Figure 35.2
	 Influence of endogenous variables on relationship between marital love and 

remaining married

	 Figure 35.3	 Direct effect between marital love and remaining married

	 Figure 35.4	 Path coefficients
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To calculate these path coefficients we need to calculate the following two regression 
equations, which are essentially the same as for the multiple regression discussed in the 
previous chapter:

marital satisfaction = a + p1 marital love

remaining married = b + p2 marital love + p3 marital satisfaction

(Actually, in practice, a and b will always be zero and so may be ignored. The symbols a 
and b are intercept coefficients for the two regression equations. Intercept coefficients are 
the points at which the regression lines cut the vertical axis. They are identified with dif-
ferent symbols in our example simply because they refer to different regression equations 
with different variables. However, they will always take a value of .00 if we are using 
standardised multiple regression as we do in path analysis. We can, therefore, omit or 
ignore them for present purposes.)

Suppose that the correlation between marital love and marital satisfaction is .50, 
between marital love and remaining married .40 and between marital satisfaction and 
remaining married .70 for a sample of 100 couples. These are correlations which have 
been made up for the purposes of this example. We have carried out our multiple regres-
sion using this correlation matrix. This is possible, for example, with SPSS though one 
has to use syntax commands. Normally the researcher will have the raw data available 
so the regression analysis will be based on this. So the path coefficients about to be dis-
cussed are based on this analysis of the correlation matrix. (Because means and standard 
deviations were not entered with the correlation matrix as they are unknown, the so-called 
unstandardised coefficients in the output will be standardised ones. This is fine as these 
are the only ones we are interested in.) The path coefficients are the standardised beta 
coefficients for these two equations which are:

marital satisfaction = a + .50 marital love

remaining married = b + .07 marital love + .67 marital satisfaction

In other words, the path coefficient for p1 is .50, for p2, .07 and for p3, .67 as shown 
in Figure 35.5.

Since there is only one predictor variable in the first regression, the standardised beta 
coefficient of .50 is the same as the zero-order correlation of .50 between marital love (the 
predictor variable) and marital satisfaction (the criterion variable). (If there are several 
predictors then partial regression coefficients would be involved.) Note that the path coef-
ficient between marital love and remaining married is virtually zero (.07) and statistically 
not significant. This means that marital love does not directly affect remaining married. 
The path coefficient (.67) between marital satisfaction and remaining married differs little 
from the correlation (.70) between them. This indicates that the relationship between 
marital satisfaction and remaining married is not due to the spurious effect of marital love.

To determine an indirect effect (such as that between marital love and remaining mar-
ried which is mediated by marital satisfaction), the path coefficient between marital love 
and marital satisfaction (.50) is multiplied by the path coefficient between marital satisfac-
tion and remaining married (.67). This gives an indirect effect of .335 (.50 * .67 = .335). 
To calculate the total effect of marital love on remaining married, we add the direct effect 

	 Figure 35.5	 Actual values of path coefficients inserted
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of marital love on remaining married (.07) to its indirect effect (.335) which gives a sum 
of .405. The total effect of one variable on another should be, within rounding error, the 
same as the zero-order correlation between the two variables. As we can see, the total 
effect of marital love on remaining married is .405, which is very close to the value of the 
zero-order correlation of .40. In other words, path analysis breaks down or decomposes 
the correlations between the endogenous and exogenous variables into their component 
parts, making it easier to understand or work out what might be happening. So, for 
example, the correlation between marital love and remaining married is decomposed into 
(a) the indirect effect of marital love on remaining married and (b) the direct effects of 
marital love on marital satisfaction and of marital satisfaction on remaining married. 
Doing this shows us that although the correlation between marital love and remaining 
married is moderately strong (.40), this relationship is largely mediated indirectly through 
marital satisfaction. It will always be far easier to see this by drawing up a path diagram 
than in the computer output.

The correlation between marital satisfaction and remaining married can also be decom-
posed into the direct effect we have already calculated (.67) and a spurious component 
due to the effect of marital love on both marital satisfaction and remaining married. This 
spurious component is the product of the direct effect of marital love on marital satisfac-
tion (.50) and of marital love on remaining married (.07) which gives .035 
(.50 * .07 = .035). This is clearly a small value. We can reconstitute the correlation 
between marital satisfaction and remaining married by summing the direct effect (.67) 
and the spurious component (.035) which gives a total of .67 + .035 = .705. This value 
is very similar to the original correlation of .70.

To calculate the proportion of variance not explained in an endogenous variable we 
subtract the adjusted multiple R-squared value for that variable from 1. The adjusted 
multiple R-squared value is .24 for marital satisfaction and .48 for remaining married. So 
.76 (1 - .24 = .76) or 76% of the variance in marital satisfaction is not explained, and 
.52 (1 - .48) or 52% of the variance in remaining married is not explained. In path 
analysis, it is a basic assumption that the variables representing error are unrelated to any 
other variables in the model (otherwise it would not be error). Consequently, the error 
path coefficient is the correlation between the error and the endogenous variable which 
can be obtained by taking the square root of the proportion of unexplained variance in 
the endogenous variable. In other words, the residual path coefficient is .87 for marital 
satisfaction and .72 for remaining married (Figure 35.6).

Where there is a relationship between two variables whose nature is not known or 
specified, this relationship is depicted in a path diagram by a curved double-headed arrow. 
Suppose, for example, the two exogenous variables of similarity in personality and simi-
larity in physical attractiveness, which were assumed to influence marital satisfaction, 
were known to be related, but this relationship was thought not to be causal. This rela-
tionship would be shown in a path diagram as in Figure 35.7.

	 Figure 35.6	 Residual path coefficients
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The correlation between these two exogenous variables is not used in calculating the 
effect of these two variables on marital satisfaction and remaining married. Figure 35.8 
shows the key steps in a path analysis.

	 ■	 Generalisation

To determine whether our path analysis is generalisable from the sample to the popula-
tion, we calculate how well our model reflects the original correlation matrix between the 
variables in that model using the large sample chi-square test. This will not be described 
here other than to make these two points:

●	 If this chi-square test is statistically significant, then this means that the model does not 
fit the data.

●	 Other things being equal, the larger the sample, the more likely it is that the chi-square 
test is statistically significant and the model is to be rejected.

	 Figure 35.7	 Unspecified relationship

	 Figure 35.8	 Conceptual steps for understanding a path analysis
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In terms of our model in Figure 35.6, we can see that the recomposed correlations for 
the model are very similar to the original correlations between the three variables as 
shown in Table 35.1. This is not always true, as explained in Box 35.1.

Pairs of variables Original  
correlations

Recomposed  
correlations

Marital love and marital satisfaction .50 .500

Marital love and remaining married .40 .405

Marital satisfaction and remaining married .70 .705

	 Table 35.1	 Original and recomposed correlations

Identification

Although in Table 35.1 we give an example where the cor-
relations between the variables and the recomposed cor-
relations based on path analysis are very similar, not all 
models which emerge in path analysis demonstrate this 
feature. It is always true when the model is just-identified. 
Identification is an important concept in path analysis. 
There are three types of identification:

●	 Just-identifiedâ•‡  This means that all the variables in 
the path analysis model put forward by the researcher 
are connected by unidirectional paths (single-headed 
arrows). Actually, even with the arrows entirely 
reversed in direction this would still be the case. 
Since the standardised beta coefficients are essen-
tially correlation coefficients, this entirely reversed 
model would fit our data just as well as our preferred 
model. In other words, the recomposed correlations 
for this reversed just-identified model are just the 
same as for the forward model. The reconstituted 
correlations for any just-identified model are similar 
to the original correlations. Consequently it is not 
possible to use the match between the model and the 
data as support for the validity of the model.

●	 Under-identifiedâ•‡  In this, there are assumed to be one 
or more bidirectional pathways (double-headed arrows 
between variables) in the model. For example, the 

Box 35.1	 Key concepts

relationship between marital love and marital satisfac-
tion may be thought of as being reciprocal, both varia-
bles having an influence on each other. Since it is 
impossible to provide an estimate of the influence of 
marital love on marital satisfaction which is entirely 
independent of the influence of marital satisfaction on 
marital love, it is not possible to say what the unique 
estimate for these pathways would be. Consequently, 
we would need to modify our model to avoid this. That 
is, we need to re-specify it as a just-identified or an over-
identified model in order to deal with this problem.

●	 Over-identifiedâ•‡  In an over-identified model, it is 
assumed that some pairs of variables do not relate. 
Using our example, an over-identified model assumes 
that there is no relationship between two pairs of vari-
ables. For instance, take the following model which 
postulates that marital love does not lead directly to 
remaining married:

marital love S marital satisfaction S remaining 
married

	 This is over-identified because a third possible pathway 
between marital love and remaining married has not 
been suggested (that is, the direct pathway from marital 
love to remaining married). Thus there are more varia-
bles (three) than pathways (two).
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	 35.3	 Example from published research

Path analysis can be as simple or as complex as the researchers’ theories about the inter-
relationships between variables in their research. Increasing the numbers of variables 
under consideration rapidly accelerates the complexity in the path diagram. Not only does 
the analysis look more daunting if many variables are involved, but the path diagram 
becomes harder to draw. In this section we will discuss a path analysis by Wagner and 
Zick (1995) of the causes of blatant ethnic prejudice as a typical example of path analysis 
in psychology. It is fairly well known and established that there is a relationship between 
people’s level of formal education and their expressions of prejudice: the more prejudiced 
tend to have the least formal education. This suggests that there is something about educa-
tion which leads to less prejudice, but what is the mechanism involved? Does education 
act directly to reduce prejudice or does it do so indirectly through some mediating variable 
(Figure 35.9)? Thus there are two possible paths: (1) the direct path from formal educa-
tion to blatant prejudice and (2) the indirect path which involves a mediating variable(s).

As we have indicated, the apparent complexity of this path diagram can be increased 
if several mediating variables are used rather than just one. Furthermore, if several direct 
variables are used instead of formal education alone, the diagram will become increasingly 
complex. Wagner and Zick (1995) collected information in a number of European coun-
tries on several potential mediating variables linking formal education and blatant 
prejudice:

●	 Individual (relative) deprivationâ•‡  The feeling of an individual that he or she is eco-
nomically deprived compared with other people.

●	 Group (relative) deprivationâ•‡  The feeling that one’s social group (e.g. ethnic group) 
has fared badly economically compared with the rest of society.

●	 Perceived incongruencyâ•‡  The incompatibility between an ethnic group’s values and 
those dominant in society.

●	 Political conservatismâ•‡  The individual’s position on the political left-wing to right-
wing dimension.

●	 National prideâ•‡  Pride in being a member of the national group (e.g. French or 
German).

●	 Contact with foreign peopleâ•‡  The numbers of foreign people living in one’s 
neighbourhood.

Although this list of mediating variables far from exhausts the possibilities, it does 
identify a number of variables which are related to blatant ethnic prejudice according to 
a number of empirical studies.

	 Figure 35.9
	 Path diagram of the direct and indirect influence of formal education on 

blatant prejudice
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In addition, the researchers had other measures which they could have included in the 
path diagram (e.g. gender and age) but omitted because the researchers did not consider 
them relevant to their immediate task. However, they were used by the researchers as 
control variables, as we shall see. There was another variable, social strata, which was a 
measure of social class. This was included in the path diagram by the researchers as social 
class was actually affected by a person’s level of education.

There is no mystery about the path diagram; it is merely one of several path diagrams 
which the researchers could have studied. Most of the possibilities were ignored and 
the researchers concentrated on why those with the most formal education tend to 
express the least blatant prejudice. Drawing the diagram is a paper-and-pencil task 
based on elaborating the simple path diagram in Figure 35.9. Wagner and Zick’s path 
diagram is shown in Figure 35.10. It includes both direct and indirect (mediated) rela-
tionships. Arrows pointing more or less towards the right are the only ones included as 
these indicate possible causal directions. Having drawn the elaborated diagram, the 
researchers inserted the values of the relationships between the variables (i.e. path coef-
ficients which are in essence correlation coefficients) next to the appropriate arrows. 
These path coefficients were obtained, of course, using multiple regression. The 
researchers omitted arrows (pathways) when the path coefficient did not reach statisti-
cal significance. However, because the sample was big (N = 3788), very small values 
were significant at the 5% level. A correlation of .04 is statistically significant, but its 
coefficient of determination or amount of variation shared by the two variables is .042 
or .0016 or 0.16%. The square of e = .83 in Figure 35.10 indicates how much variation 
in blatant prejudice is unexplained by the path diagram.

The path coefficients themselves are to be found in Table 35.2. As you can see, this 
contains a lot of information. These are the main considerations that you need to bear in 
mind when considering this table:

●	 A zero-order correlation is merely the Pearson correlation coefficient as described in 
Chapter  8. First-order, second-order, etc. correlations are partial correlations as 
described in Chapter 32.

●	 The upper triangle of the matrix in the table is merely a correlation matrix involving 
the range of measures in the path diagram with age and gender added.

●	 Correlation coefficients are not used in the path analysis but are used in a multiple 
regression to obtain the beta weights.

	 Figure 35.10	 Significant path on blatant prejudice (from Wagner and Zick, 1995, Fig 1, p. 52)
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Wagner and Zick (1995) carried out a simultaneous multiple regression on the correla-
tion matrix in order to predict blatant prejudice from age, gender, formal education, social 
strata and the mediating variables (individual deprivation, group deprivation, etc.). Stand-
ard or simultaneous multiple regression is called the enter method on SPSS. It simply 
means that all of the predictor variables are included in the analysis at the same time 
rather than being entered in stepwise order, for example, such as where the variable 
explaining the most variance is dealt with as a priority.

The beta weights from this multiple regression are indicated by a letter a in the lower 
half of the matrix in Table 35.2.

The coefficients marked b in the lower half of the matrix in Table 35.2 are partial correla-
tions which take away the effects of age, gender, education and social strata from the rela-
tionships between the pairs of variables. That is, one needs to insert in the indirect pathways 
the correlations having removed the influence of age, gender, education and social strata. 
In other words, the coefficients marked b are the partial correlation coefficients controlling 
for age, gender, education and social strata simultaneously, they are fourth-order correlation 
coefficients. Although this procedure is perfectly adequate, it is more conventional to use 
hierarchical multiple regression to achieve much the same end. This would involve having 
the four control variables as the first block in a hierarchical multiple regression. This essen-
tially controls for these variables in the later blocks of the analysis.

	 35.4	 Reporting the results

Path analysis is a difficult procedure to apply and few students would carry out such 
analysis at undergraduate level. Even at the postgraduate level, novices to path analysis 
would probably be wise to seek some experienced support. Part of the difficulty in writing 
a simple way of reporting the results of a path analysis is that the reasons for this particu-
lar analysis can be complex and dependent on elaboration of previous theory. Neverthe-
less, readers may find it helpful to read Wagner and Zick’s description of the results of 
their path analysis:

The path analysis shows that the predictors of ethnic prejudice mentioned above are 
determined by formal education, even though some of the direct paths from educa-
tion are relatively weak. However, for individual and group relative deprivation, and 
for political conservatism, social strata mediates part of the determination by formal 
education. The influence of mediating variables means that the covariation of formal 
education and ethnic prejudice can be partially explained especially by variations in 
social strata, group deprivation, incongruency, conservatism and acceptance of con-
tact with foreigners. In addition to this, the path analysis indicates a strong direct 
path from education to blatant prejudice which cannot be explained by the media-
tion variables measured. A chi-square analysis shows that a restricted model without 
the assumption of a direct path from education to prejudice is significantly worse 
than the full model presented (chi@square = 84.02, df = 1). Thus, the path analysis 
demonstrates that part of the educational differences in ethnic outgroup rejection 
can be accounted for by the mediating psychological variables, even though a sub-
stantial proportion of the covariance of respondents’ education and outgroup rejec-
tion remained unexplained. 

(Wagner and Zick, 1995, pp. 53–4).
Major points which might clarify the Wagner and Zick quotation include:

●	 Education influences variables which influence blatant prejudice. Often the influences 
are very weak. Most studies would use far smaller sample sizes so the tiny coefficients 
sometimes obtained in the study would be dismissed as not significant.
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●	 The chi-square tests whether the indirect paths model is significantly improved by 
adding in the direct path from formal education to blatant prejudice. The results of the 
analysis suggest that the direct plus indirect effects model is superior to the indirect 
effects alone model.

Path analysis

Kuhnle, Hofer and Kilian (2012) describe how a number of studies have shown the importance of self-control 
to achieving positive outcomes in life especially in terms of learning and academic performance. They theorised 
that school students who manifest the highest levels of self-control 1) would be more effective at balancing 
their academic and leisure time satisfactorily and 2) would protect their studying from the negative influence 
of distractions. Nearly 700 schoolchildren with an average age of 13 completed a questionnaire measuring 1) 
self-control, 2) subjective life balance and 3) flow while studying as well as school grades. The same question-
naire was completed on two occasions – once at the beginning of the school year and again at its end. The 
analysis employed structural equation modelling. Self-control was important in predicting school grades, life 
balance and flow. (Flow is the experience of concentration on the task unaffected by things like other tasks to 
be done or negative emotions – the student can isolate themselves from distractions like phone calls and talking 
with other people.) The researchers argue that self-control helps young people to be prepared and coordinated 
in various areas of life including school.

Lamoureux and colleagues (2012) explored a model in which child sexual abuse as a consequence of 1) its effect 
on resiliency resources (self-esteem and self-efficacy) and 2) psychological distress affects adulthood interper-
sonal functioning and sexual risk. A sample of nearly 700 inner-city women were interviewed twice (the inter-
views were six months apart). It was found that childhood sexual abuse influenced interpersonal problems via 
its effect on psychological distress. In contrast, child sexual abuse affected HIV/sexual risk via its effect on 
resiliency resources.

Maguire-Jack, Gromoske and Berger (2012) used data from the Fragile Families and Child Wellbeing national 
representative sample study of 3870 children in the USA. They wanted to know whether smacking children at 1 
and 3 years of age leads to lower cognitive skills and worse behaviour problems at the ages of 3 and 5 years. 
Various correlates which did not change over time were controlled for. Path analysis showed that smacking at 
age 1 led to higher levels of behavioural problems in the form of externalising behaviour at the age of 5 years. 
The path was largely mediated through ongoing smacking at age 3. No association was found between early 
smacking at the age of 1 year and cognitive skills at the age of 3 and 5 years.

Research examples

●	 Path analysis requires a degree of mastery of statistical concepts which many students will not achieve during 
their degree course. Anyone who is convinced that it is appropriate for their research will need to consult 
supplementary sources and any local expert who might be available.

●	 The complexity of path analysis should not be allowed to interfere with one’s critical faculties. A path analysis 
cannot be any better than the quality of the data which go into it.

●	 Path analysis involves exploring data in ways which seem alien to those who feel that statistics should be a 
hard-and-fast discipline in which there is only one right way of doing things. It is an example of a statistical 
technique which is an exploratory tool rather than a fixed solution to a fixed problem.

Key points
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Computer Analysis

Hierarchical multiple regression using SPSS

Interpreting and reporting the output

●	 SPSS produces a great deal of statistics. For a simple path analysis involving three variables, the 
correlations between these three variables need to be noted. For a mediator relation to be present, the 
correlations with the mediator should be significant. The standardised regression coefficient between 
the predictor variable and the criterion variable controlling for the mediating variable needs to be 
examined. If this standardised regression is substantially different from the correlation between the 
predictor and the criterion variable, it suggests there is a mediating effect.

●	 According to the American Psychological Association (2010) Publication Manual, one way of reporting 
the results of the analysis illustrated is as follows: ‘As the relation between intellectual ability and 
educational achievement, r(118) = .70, 2-tailed p 6 .001, was little affected when school motivation 
was controlled, B = .65, t(117) = 9.56, 2-tailed p 6 .001, school motivation was not considered to 
mediate the relation between intellectual ability and educational achievement. Greater educational 
attainment was associated with greater intellectual ability.’ These values are given in Screenshot 35.5.

	 Figure 35.11	 SPSS steps for the hierarchical or ‘Enter’ regression procedure
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	 Screenshot 35.2	 On ‘Analyze’ select ‘Linear. . . ’	 Screenshot 35.1	 Part of the data in ‘Data View’

	 Screenshot 35.3	 Select variables for analysis 	 Screenshot 35.4	 Select statistics

	 Screenshot 35.5	 Key output
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Recommended further reading

Bryman, A., & Cramer, D. (2011). Quantitative data analysis with IBM SPSS 17, 18 & 19: A guide 
for social scientists (Chapter 10). London, UK: Routledge.

Cramer, D. (2003). Advanced quantitative data analysis (Chapter 7). Buckingham, UK: Open  
University Press.

Pedhazur, E. J. (1982). Multiple regression in behavioral research: Explanation and prediction (2nd 
ed., Chapter 15). New York, NY: Holt, Rinehart & Winston.
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●	 One of the hardest things facing newcomers to research is the transition between the con-
tents of statistics textbooks and the process of data collection and analysis. This chapter 
seeks to clarify how to develop an appropriate statistical analysis in circumstances in which 
planning has been less than perfect. Ideally, the data analysis should be planned in advance 
at the same time as the data collection is planned, but this is probably asking too much of 
student researchers in general. They have a number of research skills to bring together and 
little or no experience of doing so.

●	 A researcher needs clear understanding of what they are trying to achieve in their research. 
Hence it is important to clarify the broad research question and any hypotheses that derive 
from this. Hypotheses are merely statements of relationships that one wishes to explore.

●	 The data need to be mapped to identify the characteristics of variables. This is a basic 
requirement but easily forgotten in the complexity and confusion of planning research. Iden-
tifying which of your variables are score variables and which are nominal (category) variables 
is not merely important but essential. Many of the choices in the statistical analysis depend 
on this. Nominal (category) variables with just two categories can be treated as scores by 
giving the values 1 and 2 to the two values.

●	 Data may need recoding to make the analysis acceptable. This is generally quickly done by 
computer programs such as SPSS.

●	 Ineffective variables should be removed through a process of data cleaning. For example, 
variables with too little variance can contribute little.

●	 Data analysis consists of presenting descriptive statistics on the major variables and finding 
the extent of relationships among variables. This may be more or less complex.

Analysis of a 
questionnaire/survey 
project

Chapter 36

Overview

Preparation

Review correlation (Chapter 8) and regression (Chapter 9).
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	 36.1	 Introduction

How does one go about analysing questionnaire and/or survey projects? This style of 
research is adopted for a lot of student research projects. The key feature and a potential 
difficulty is the number of variables involved; this type of research tempts researchers to 
write lengthy questionnaires with numerous items. It takes little effort to write a question, 
even less to write a poor question. Still less time is required to answer the questions if they 
are in a closed-ended format in which just one option is circled. An exploratory or pilot 
study will not always identify faulty questions and, more often than not, the pressures on 
students’ time are such that pilot studies are rudimentary and based on very few individu-
als. So inadequacies are often built in from the very beginning.

Some students, wanting to get closer to the experiences of the participants in their research, 
choose to ask the questions themselves rather than have a self-completion questionnaire. This 
form of open questioning can have many advantages in terms of the quality of data collected 
in some studies. However, the basic problem remains very much the same – too much data. 
The difference is that with the open-ended interview approach the data have to be coded in 
a form suitable for statistical analysis unless the plan is to carry out a qualitative analysis if 
the data are suitably in depth or ‘rich’ (Howitt, 2016). Any sort of coding process presents 
the researcher with its own problems – largely what coding categories to use which is rarely 
self-evident and whether the categories used are easily and reliably used by the coders. Pro-
found disagreements between the coders suggest either that the categories are inadequate in 
some way or that they need to be very much more carefully defined.

Of course, there are student projects which utilise ready-made questionnaires pur-
chased from a supplier of psychological tests and measures, downloaded from the Web, 
or found in books and journal articles. Although there are numerous questions involved, 
these are reduced to a single ‘score’ or measurement (or sometimes a small number of 
sub-scores) in the standardisation processes employed by the original researchers. So the 
groundwork of turning the questionnaire into a small number of ‘scores’ or a single score 
has already been done by its writers and will not be elaborated upon here. Using estab-
lished measurement methods may be helpful though sometimes such questionnaires may 
need adapting to be of maximum use by the researcher. For example, the questions may 
be too American for use in Britain without modification. But modifying the questions 
means that the value of the original standardisation process is reduced.

	 36.2	 Research project

Sarah Freeman is a bright young psychology student who has partied for most of her time 
at university. When it is time to plan a research project she has little background knowl-
edge of psychological research and theory. Stuck for a final-year project, she designs a 
piece of research based on her main interest in life – thinking about sex. Her project 
explores the hypothesis that a religious upbringing leads to sexual inhibitions. Naturally, 
her supervisor is reluctant to let Sarah loose on the public at large and so insists that the 
research is carried out on a consenting sample of fellow students. Pressured by deadlines 
for coursework essays, she hastily prepares a questionnaire which she pushes under bed-
room doors in the Elisha Briggs Hall of Residence. Participants in the research are 
requested to return the completed questionnaires to her via the student mail system as 
soon as possible.

Her questionnaire is a simple enough affair. Sarah’s questions – with spelling corrected 
– are as follows.
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  1. My gender is

Male Female

  2. My degree course is ______________________

  3. I am ___ years of age

  4. My religion is 
_____________________________

  5. I would rate my religious faith 
as:

Very strong Strong Neither Weak Very weak

  6. I attend a place of worship ___ per year

  7. My faith in God is important 
to me

Strongly agree Agree Neither Disagree Strongly disagree

  8. I am a virgin

Agree Disagree

  9. I am sexually promiscuous

Strongly agree Agree Neither Disagree Strongly disagree

10. I fantasise about sex with several partners at the same time

Strongly agree Agree Neither Disagree Strongly disagree

11. I feel guilty after sex with more than three people at the same time

Strongly agree Agree Neither Disagree Strongly disagree

12. Oral sex is an abomination

Strongly agree Agree Neither Disagree Strongly disagree

13. Sadomasochism is appealing to me

Strongly agree Agree Neither Disagree Strongly disagree

14. I like sex

Once a week Twice a week Every day Every morning and 
evening

All the time

15. Pornography

Is disgusting Is a stimulant Is best 
home-made

Suddenly Sarah sees the light of day – just a few months before she finishes at university 
and is launched onto the job market. Paying back her student loan is on the horizon. 
Despite being due for submission, her project is in a diabolical mess. Suddenly there is no 
more partying for her – she has become a serious-minded student (well, sort of) and she 
is determined to resurrect her flagging and ailing attempts at research. No longer does she 
burn the candle at one end – she now burns it at both ends trying to make sense of sta-
tistics and research methods books. Pretty dry stuff it all is. If only she had spent some 
time on statistics in her misspent youth she would not have been in this hole. Can she get 
out of the mess?

The short answer is no. The longer answer is that she could improve things consider-
ably with a well-thought-out analysis of her data. Research has to be carefully planned 
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to be at its most effective. She needed to consider her hypotheses, methods and statistical 
analysis in advance of even collecting the data. Sarah is now paying for the error of her 
ways. One positive aspect of all this is that Sarah can at least show that she is aware of 
the major issues and problems with her sort of research.

	 36.3	 Research hypothesis

Although statistics is not particularly concerned about the details of the hypotheses under-
lying research, a clear statement of the purposes of the research often transforms the 
analysis of haphazardly planned research. To repeat ourselves, of course, it is by far the 
best to plan meticulously before doing your research. However, this does not always hap-
pen in research – even in research by professionals.

Simply stated, Sarah’s research aims to discover whether there is a relationship between 
religious upbringing and sexual inhibitions. The trouble with this is that it is unclear quite 
what is meant by a religious upbringing – does it matter which sort of religion or how 
intensely it is part of family life? Furthermore, it is unclear what she means by sexual 
inhibitions – for example, not carrying out certain activities might be the result of inhibi-
tions, but it may also be that the person does not find them arousing at all. So something 
needs to be done to sort out the tangles that Sarah built into her study.

Given the limited range of questions which Sarah included in her questionnaire, we 
might suggest to her that she has several measures of religiousness:

●	 The first is what religion they claim to be. The range is wide and includes Roman 
Catholic, Protestant, Muslim and a variety of other religions. Is it possible for Sarah 
to make suggestions as to which religions are most likely to encourage sexual repres-
sion? Perhaps she thinks that Roman Catholicism and Islam are the religions most 
likely to inculcate sexual inhibitions? If so, she could formulate a hypothesis which 
relates aspects of the type of religion to sexual inhibition.

●	 There is a question about actual attendance at church. It could be that involvement in 
the religious community is a key variable in the influence of religion on sexual inhibi-
tions. This might be specified as a hypothesis. Religious belief and church attendance 
can be differentiated in this way. Different hypotheses might be generated for the two 
different types of measure.

●	 There are two questions which involve the importance of religious beliefs in the lives 
of the respondents. Again, a hypothesis might specify importance of religious beliefs 
as the important element in the possible relationship.

In terms of her measures of sexual activity, there are some very obvious things to point 
out. The first is that it is very difficult to relate any of the sex questions to sexual inhibi-
tion as such. Some of the questions deal with frequency of sexual activities, some deal 
with sexual fantasy and others deal with somewhat ‘unusual’ sexual practices. Probably 
Sarah is stuck with a fatal flaw in her research – that is, she failed to operationalise her 
concept properly; she may not have turned her idea of sexual inhibitions into a measure 
of that thing. It may or may not be that her measures do reflect sexual inhibitions; how 
can she argue that they are? This is really a matter of the validity of her measures for her 
purposes. At the level of the superficial validity of the questions we may have our doubts. 
Clearly Sarah might have done better to include some questions which ask about sexual 
inhibitions. In the circumstances, it might be appropriate for Sarah to reformulate her 
hypothesis to suggest that religious upbringing influences sexual behaviours and sexual 
fantasy. At least this might make more sense in terms of her questionnaire. Unfortunately 
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there is a downside to this – sexual inhibition seemed to be a psychologically interesting 
concept in this context. Notice that the difficulties should have been spotted very early 
on. Had she written her hypotheses down when she was planning her research, Sarah or 
someone else might have spotted that she was missing something vital.

	 36.4	 Initial variable classification

It is useful for novice researchers to classify the variables that they have collected into 
category variables and numerical scores:

●	 You should remember that psychologists frequently turn answers on a verbal scale into 
numerical scores. So questions 5, 7 and 9–14 of Sarah’s questionnaire all have fixed 
answer alternatives. Although they do not involve numbers, it is conventional in psycho-
logical research to impose a numerical scale of 1 to 5 onto these answer categories. The 
reason for this is that the categories have verbal labels which imply increasing quantities 
of something. Scaling from 1 to 5 is arbitrary but has been shown to work pretty well in 
practice in a great deal of research. It is so commonplace as to be routine.

●	 Some variables which appear at first to be just nominal categories can be turned into 
numerical scores simply and easily. The classic example of this in research is the vari-
able gender, which consists of just two categories: male and female. Innumerable 
research reports code the gender variable numerically as 1 = male and 2 = female. 
The logic is obvious, the numerical codings implying different quantities of the variable 
femaleness (or maleness). However, such variables can legitimately be treated in either 
way. This may help with the data analysis.

So, with these points in mind, we can classify each of our variables as ‘category’ or 
‘numerical score’ or ‘other’ – meaning anything we are uncertain about (as in Table 36.1).

Nominal or category variables Numerical score variables Other

Question 1: Gendera Question 1: Gendera

Question 2: Degree course

Question 3: Age

Question 4: Religion

Question 5: Faith

Question 6: Attend

Question 7: God

Question 8: Virgin

Question 9: Promiscuous

Question 10: Fantasise

Question 11: Guilty

Question 12: Oral

Question 13: Sadomasochism

Question 14: Like sex

Question 15: Pornography

	 Table 36.1	 Sarah’s 15 questions classified as category or score variables

a Means that the variable may be placed in more than one column.
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This is quite promising in terms of statistical analysis as 12 out of the 15 variables can 
be classified as numerical scores, so allowing some of the more powerful correlational 
statistical techniques to be used if required. This still leaves three variables classified as 
categories. These are the degree course the student is taking, their religion and their views 
on pornography. These are probably quite varied in terms of their answers anyway. So, 
Sarah may find that there may be 20 or more different degree courses included in the list 
of replies with only a few students in each of these 20 or more categories. Similarly, the 
religion question could generate a multiplicity of different replies. As they stand, these 
three variables are of little use in statistical analysis – they need to be recoded in some 
way. The problem is that with many categories for some of the variables, the size of any 
tables, etc. based on them can be enormous and, consequently, unwieldy. A focused and 
compact analysis usually works best in statistics.

	 36.5	 Further coding of data

It is difficult to know why Sarah included the degree course question – it does not seem 
to have much to do with the issues at hand – so one approach is to discreetly ignore it. 
This is not uncommon in psychological research, though it is not to be encouraged. Prob-
ably a better approach is to recode the answers in a simple but appropriate way. One 
thing which could be done is to recode them as science or arts degree courses. In other 
words, the degree course could be coded as 1 if it is science and 2 if it is arts. If this is 
done then the variable could be classified as a numerical score much as the gender variable 
could be.

The religion question is more of a problem. Given that the answers will include Catho-
lics, Mormons, Baptists and many more, the temptation might be to classify the variable 
simply as religion given versus no religion given. However, this may not serve Sarah’s 
purposes too well since it may be that the key thing is whether the religion is sexually 
controlling or not. One approach that Sarah could take is to obtain the services of people 
who are knowledgeable about various religions. They could be asked to rate the religions 
in terms of their degree of sexual control over their members. This could be done on a 
short scale such as:

Very sexually controlling	â•… Sexually controlling	 Not sexually controlling

This would transform the religion variable into a numerical scale if ratings were applied 
from 0 to 2, for example. Those not mentioning a religion might be deemed to be in the 
‘not sexually controlling’ category. Obviously Sarah should report the degree of agree-
ment between the raters of the religion (i.e. the inter-rater reliability). How to do this is 
discussed in Chapter 38.

Of course, Sarah might decide to categorise the religions in a category form:

1.	None

2.	Catholic

3.	Protestant

4.	Muslim

5.	Other.

Unfortunately, this classification retains the nominal category characteristics of the origi-
nal data although reducing the numbers of categories quite substantially. Another 
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approach that is discussed elsewhere is to turn each of the categories of religion into 
dummy variables. This means creating a new variable for religious or not, another new 
variable for Catholic or not, another new variable for Protestant or not and so forth. The 
problem with this is that it generates many additional potential comparisons which are 
both untidy and increase the problem of Type I errors due to multiple comparisons. Of 
course, Sarah can’t remember what a Type I error is.

The question about pornography seems to be a natural nominal category variable given 
the response alternatives. Perhaps it is best to treat it as such, although it could be recoded 
in such a way that the ‘is a stimulant’ and ‘is best home-made’ answers are classified 
together as being pro-pornography while the ‘is disgusting’ answer is given a different 
score. There are no hard-and-fast rules about these decisions and at some stage you have 
to come to terms with the fact that some choices seem almost arbitrary. Nevertheless, you 
should try to base your decisions on reasoned rational argument as far as possible. The 
project needs to be coherent after all.

	 36.6	 Data cleaning

There is little point in retaining variables in your research which contain little or no vari-
ance. It is particularly important with analyses of questionnaire-type materials to system-
atically exclude useless variables since they can create misleading impressions at a later 
stage.

The important steps are as follows:

1.	Draw up or print out frequency counts of the values of each variable you have. This 
can be done as frequency tables or histograms/bar charts. It should become obvious to 
you if virtually every participant in the research gives much the same answer to a ques-
tion. Consider deleting such non-discriminating questions. If you retain such questions, 
then your analysis is on shaky grounds because it is putting a lot of reliance on the 
answers of just a few people.

2.	In the case of variables which have a multiplicity of different values, you might consider 
recoding these variables into a small number of ranges. This might apply in the case of 
the age question in Sarah’s research. But there is no point in doing this unless the sta-
tistical analysis benefits in some way by doing so. For example, using a small number 
of ranges may help show peculiarities in the distributions of age.

3.	Where you find empty or virtually empty response categories then consider combining 
categories. Some categories may contain just a few cases. These are probably useless 
for your overall analysis.

	 36.7	 Data analysis

	 ■	 Relatively simple approach

If Sarah follows our advice, all or virtually all of the variables will be coded as numerical 
scores. Any variables not coded in this way will have to be analysed by statistics suitable 
for category data – this might be the chi-square but more likely they will be treated as 
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different values of the independent variable for the analysis of variance or a similar test. 
We would recommend, as far as possible within the requirements of your hypotheses, that 
all variables are transformed into numerical scores.

Accepting this, it would be a relatively simple matter to calculate the correlations 
between all of the variables in Sarah’s list and each other. The trouble with this is that it 
results in a rather large correlation matrix of 15 * 15 correlation coefficients – in other 
words a table of 225 coefficients. Although the table will be symmetrical around the 
diagonal of the matrix, this still leaves over 100 different correlations. It is not the purpose 
of statistical analysis to pour complexity on your analysis; statistics are there to simplify 
as far as is possible.

In Sarah’s research, the sex questions are quite numerous. She has eight different ques-
tions about sexual matters. Obviously it would be satisfactory if there were some way of 
combining these different answers in order that a single measure of ‘sexual inhibition’ 
could be developed. One simple thing that might be done is simply to add the scores on 
the questions together. This would require the following:

●	 That the different questions are scored in the same direction. Looking at Sarah’s ques-
tionnaire we see that, for example, the question ‘I like sex’ if scored numerically from 
left to right would give a bigger score to those who liked sex most often. However, the 
answers to the question on sadomasochism if scored numerically from left to right 
would give a lower score to those who liked sadomasochistic sex. It is necessary to 
recode her answers in such a way that they are consistent. In this case, all the answers 
which are more sexual could be rescored as necessary to make the high scores 
pro-sex.

●	 That the standard deviations of scores on questions to be added together are similar, 
otherwise the questions with the biggest standard deviations will swamp the others. If 
they differ radically, then it is best to convert each score on a variable to a standard 
score and then add up answers to several questions (Chapter 6). There is a case for 
Sarah to adopt the more sophisticated approach as this would suggest that she has 
learnt something in her time at university.

A similar sort of thing could be done with the three religious questions, although it might 
be equally appropriate, given their relatively small number, to treat them as three separate 
variables.

In order to test her hypotheses, Sarah could correlate the sex and religion variables 
together. A significant relationship in the predicted direction would support Sarah’s 
hypotheses. (It would be equally appropriate to apply t-tests or analyses of variance with 
religion as the independent variable and sex questions as the dependent variables.)

The advantage of using correlations is that it is then possible to control for (or partial 
out) obvious background variables which might influence the relationships found. In this 
study gender and age are of particular interest since both of them might relate to our main 
variables of interest. Partial correlation could be used to remove the influence of gender 
and age from the correlation between religion and sexual inhibition.

	 ■	 More complex approach

Given the number of questions Sarah has included on her questionnaire, it is arguable 
that she ought to consider using factor analysis on the sex questions to explore the pattern 
of interrelations between the variables. She may well find that the answers to the sex 
questions tend to cluster together to form small groups of questions which tend to meas-
ure separate aspects of sex. For example, questions which deal with unusual sexual prac-
tices might be grouped together.
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Factor analysis would identify the important clusters or factors. In addition, factor 
analysis will usually give factor scores which are weighted scores for each individual on 
each factor separately. These are expressed on the same scale and so are comparable. In 
other words, they have already been expressed in terms of standard scores.

It is then possible to relate scores on the religion variable(s) with scores on each of the 
factors just as before. Partialling out gender and age might also be appropriate.

	 ■	 Alternative complex approach

Sarah could also employ multiple regression (Chapter 34). Probably the best approach is 
to use religion as the dependent (criterion) variable(s) and the separate sex variables as 
the independent (predictor) variables. In this way, it is possible to find out which of the 
sex variables contribute to the prediction of the religious experiences of the participants 
in childhood. Sarah may find that only certain of the questions are particularly and inde-
pendently related to religion. Actually, Sarah could control for age and gender by forcing 
them into the regression early in the analysis.

●	 Although statistics can help structure poor data, it is impossible to remedy all faults through statistics. 
Research design and planning are always vital.

●	 Statistics is useful in simplifying complex data into a small number of variables. Unfortunately, for most practi-
cal purposes it is impossible to do this without resorting to computer analysis. This is because of the sheer 
number of variables to be analysed.

●	 Do not let your partying outstrip your studying.

Key points

Computer Analysis

Adding and averaging components of a measure using SPSS

If we have a measure consisting of a number of components such as a multi-item questionnaire, we need to add 
and possibly average them to form an overall score. If some of the components are missing, we need to decide 
how many non-missing or valid components we are going to include to form an overall score. To do this on SPSS, 
we select ‘Compute Variable. . . ’ (Screenshot 36.1). In the ‘Compute Variable’ dialog box (Screenshot 36.2), we 
enter the name of the new variable (‘scale’) and the numeric expression which in this case is the mean based on 
three or more valid responses (‘mean.3’) together with the items in parentheses. If the items are next to each 
other as in this case, we can enter the first item (‘item1’) followed by ‘to’ and the last item (‘item4’). If the items 
are not together we list them all, separating each by a comma and a space. If we wanted the sum instead of the 
mean of the items we would use this word instead. The new variable is shown in ‘Data View’ (Screenshot 36.3). 
We can see that two items have no scale score because they have less than three valid responses. If the new 
variable is widely separated from its components, it may be easier to use ‘Case Summaries. . .’ (Screenshot 36.4) 
and enter the variables we want in the ‘Summarize Cases’ dialog box (Screenshot 36.5) to be displayed and 
checked in the ‘Case Summaries’ table (Screenshot 36.6).
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Screenshot 36.1

	 On ‘Transform’ select 
‘Compute Variable. . . ’ 	 Screenshot 36.2	 Enter expression in ‘Compute Variable’ box

	 Figure 36.1	  SPSS steps for adding and averaging components of a measure
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	 Screenshot 36.4	 On ‘Analyze’ select ‘Case Summaries. . . ’

	 Screenshot 36.5	 Select variables in ‘Summarize Cases’ box

	 Screenshot 36.3	 ‘Data View’ with new variable

	 Screenshot 36.6	 ‘Case Summaries’ output table
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●	 A review of the findings of previous research is a typical component of any research report. 
However, this is a very difficult thing to do adequately given the availability of large numbers 
of research studies which may have been carried out on the topic.

●	 Meta-analysis provides a way of handling the complexity of the multiple research studies 
available on many topics and to make systematic statistical summaries.

●	 It consists of methods of assessing the size of relationships between variables or differences 
between sample means. The finding of each study is converted into a standard measure of 
effect such as a Pearson correlation coefficient or Cohen’s d. We concentrate on the correla-
tion coefficient because of its familiarity. It is easy to convert the Pearson correlation to 
Cohen’s d and vice versa.

●	 Effect sizes from several studies may be combined to give an overall effect size.

●	 Furthermore, studies may be coded in a number of ways such as the type of study, the num-
ber of participants and even the geographic location of the study. The relationship between 
these variables and effect size can be calculated. The findings may suggest that, for example, 
laboratory studies reveal greater effects than field studies.

Meta-analysis
Combining and exploring statistical findings 
from previous research

Chapter 37

Overview

Preparation

Review effect size (Chapter 17). In particular, make sure that you understand the difference 
between statistical significance and effect size.

M37 Introduction to Statistics in Psychology with SPSS 29099.indd   521 05/01/2017   15:25



522	 CHAPTER 37â•‡ Meta-analysis: Combining and exploring statistical findings from previous research

	 37.1	 Introduction

Meta-analysis is a general term to describe statistical techniques which allow a researcher 
to statistically analyse the pattern of findings from a variety of published and unpublished 
studies into a particular research question. Most statistical analyses investigate the data 
from a single research study. However, when we review the research literature we fre-
quently find a number of studies researching similar hypotheses and similar variables. 
Such studies can vary enormously in terms of the method they employ (for example, field 
studies versus laboratory studies) or the populations they sample (for example, students 
versus the general population). Sometimes a number of studies may find positive evidence 
in favour of the hypothesis whereas others support the reverse trend. The main objectives 
of meta-analysis are as follows:

●	 To assess the strength of relationships over a range of studies and, if possible, to com-
bine these into a single overall indicator of the relationship.

●	 To assess the influence of various characteristics of pertinent studies (the type of sam-
ple, the type of method, etc.) on the strength of the relationships found in the 
studies.

Meta-analysis is a highly organised literature review process compared with the normal 
literature reviews found in journal articles and the like. There is another very structured 
review process known as the systematic review. This employs rigorous database search 
and article summarising methods but its primary objective, however, is not statistical. 
Sometimes the systematic review and meta-analysis are combined but this is not neces-
sarily so. The objective is to structure literature reviews such that they are freed from the 
influence of the whims of the researcher. Systematic reviews are discussed in Howitt and 
Cramer (2017).

Meta-analysis involves some new concepts. Although relatively rare in student work, 
a meta-analysis is a feasible proposition where time and resources are available for a 
thorough literature search. A crucial feature of any research study is the process of review-
ing the available empirical literature on a particular topic. To date, meta-analysis has not 
routinely been applied to these reviews although some elements of it would be easy to 
incorporate. Usually a meta-analysis is carried out as an independent exercise because of 
a number of difficulties in its use:

●	 Because meta-analysis is a study of studies, it is necessary to obtain copies of relevant 
reports and publications dealing with the statistical analysis of the relationship in ques-
tion. Sometimes these may have to be obtained, say, from other libraries (or from the 
researchers themselves if the study has been recently published). Sometimes publica-
tions will be untraceable. The process of obtaining research reports costs time. Since 
there may be a bias towards the publishing of significant research findings, ideally a 
meta-analysis should also include unpublished research findings. These can be even 
more difficult to identify and obtain.

●	 The meta-analyst needs to be familiar with computerised database searches. Unless a 
variety of databases are searched using a variety of appropriate keywords, important 
research studies may be overlooked. Published articles and books may be sources of 
additional studies which have not been found using the databases.

●	 There is inconsistency in the reporting of research findings. Sometimes important pieces 
of information are missing. A meta-analysis can be done with minimal information – 
sample size and significance level are all that are required. If effect size were routinely 
reported for every research study there would be no problem and, increasingly, journals 
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are requiring this information. Nevertheless, meta-analysts may have to use a range of 
formulae to transpose published findings into measures of effect size. This is clearly 
important when a review includes studies from the past when the contents of journal 
articles were subject to fewer formal requirements than today.

●	 There is a good deal of non-computer work involved in meta-analysis. Meta-analysis 
is not available on any of the standard statistical packages. However, much of the work 
is computationally easy with just a few simple hand calculations. Computers can be 
useful in later stages of the analysis, but they are far from essential.

●	 Meta-analysis involves defining the variables and types of study of interest with some 
precision. This requires some understanding of the field of study which is difficult to 
achieve within the timescale of student projects.

It is to be hoped that readers will not be too deterred by the above comments. After all, 
they simply imply diligence, planning, hard work and understanding of the chosen field 
of research. These are reasonable targets for any researcher whether or not using 
meta-analysis.

Criticisms of meta-analysis usually apply equally to conventional reviews of the empiri-
cal studies. So, for example, problems of retrieval of studies, biases favouring the publica-
tion of statistically significant findings in research publications, glossing over details in 
particular studies and similar issues are common to both meta-analytic and other attempts 
to synthesise the literature.

This chapter provides a practical introduction to meta-analysis which should be suf-
ficient to guide students through the major stages involved. It does not pretend to be an 
exhaustive coverage. It should provide a foundation for a meta-analysis and to studying 
its techniques further. Figure 37.1 gives the key steps to consider in understanding 
meta-analysis.

	 Figure 37.1	 Conceptual steps for understanding meta-analysis
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	 37.2	 Pearson correlation coefficient as the effect size

Effect size is the central concept in meta-analysis. It means exactly what it says – the size 
of the effect of one variable on a second. In other words, the effect size indicates the 
amount of relationship between one variable and another variable in a standardised way. 
This should not be confused with a causal effect, though in controlled experiments it may 
actually mean causal effect. Ultimately, and largely for practical reasons, the most con-
venient measure of effect size is the Pearson correlation coefficient between the two vari-
ables (say the independent variable and the dependent variable). In Chapter 17, the 
correlation coefficient was used as a measure of effect size (i.e. the strength of the relation-
ship between the two variables). Effect size is not the same as statistical significance, which 
is about generalising from a sample to a population. The larger the correlation coefficient 
between two variables, the larger the effect of one variable on the other.

Chapter 17 also showed just how easy it is to convert a number of different statistical 
tests such as the t-test and chi-square into a Pearson correlation coefficient. It is the ease 
of such conversions that ensures the Pearson correlation coefficient’s practical utility as a 
measure of effect size. Irrespective of the nature of the statistical analysis reported by the 
researcher in the primary report, it is highly likely that a correlation coefficient can be 
obtained from this information. The minimum information required, remember, is merely 
the significance level and sample size.

Do not assume that effect size is useful only when comparing independent variables 
and dependent variables in experimental studies. Meta-analysis can be used in virtually 
any type of study. Also, remember that the techniques can be useful when combining the 
results of just two studies.

	 37.3	 Other measures of effect size

There are other, perhaps more common, measures of effect size. Cohen’s d is probably 
the most common measure of effect size reported. Its major disadvantage is that it can be 
more difficult to calculate from the statistical analyses usually presented in reports of 
psychological research. Cohen’s d is the difference between the mean of one group of 
participants and the mean of the other group adjusted by dividing by the standard devia-
tion of the scores. In other words, it is the difference between the two groups standardised 
by dividing by the standard deviation. Just as we can turn any score into a z-score by 
dividing the score by the standard deviation, we can generate a standardised effect score 
by dividing the unstandardised effect size (for example, the difference between the experi-
mental and control group) by the size of the standard deviation of the scores. Expressed 
as a formula, Cohen’s d is usually given as:

Cohen’s d =
mean of Group A - mean of Group B

standard deviations of both groups of scores pooled together

The standard deviation is obtained by subtracting the experimental group scores from 
the experimental group’s mean and subtracting the control group scores from the control 
group’s mean. These difference scores are then pooled (combined) as a first step in com-
puting their standard deviation. Actually, this is not Cohen’s formulation since he simply 
recommended using the standard deviation of one of the populations on the assumption 
that both populations should have the same standard deviation. It is possible to find on 
the Web a number of programs and applets which will calculate Cohen’s d for you. 
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G*Power (discussed in Chapter 40) can do this as part of power analysis. (See the Com-
puter Analysis section at the end of this chapter.) Although there is a similarity, it is not 
true to say that Cohen’s d is the same as the t-test despite overlaps in their calculation. In 
the t-test, the division is by the standard error of the difference between the sample means; 
in Cohen’s d, the division is by the standard deviation of the pooled groups of scores. (In 
essence the two standard deviations are combined arithmetically.)

Although Cohen’s d is commonly used in meta-analysis, it is not quite as flexible in use 
as the Pearson correlation coefficient. Most important is the fact that it is much easier to 
estimate the Pearson correlation coefficient from the minimal information that researchers 
sometimes supply. We saw in Chapter 17 how we can calculate a correlation coefficient 
from a range of tests of significance. This is not so easy with Cohen’s d. Furthermore, the 
conversion of a correlation coefficient to Cohen’s d is easy using the table we provide later 
in this chapter. Consequently, it is probably best to work with correlation coefficients and 
then convert them to Cohen’s d should this seem appropriate.

	 37.4	 Effects of different characteristics of studies

Modern meta-analyses are not simply about determining the effect size over a range of 
studies. They also try to estimate what characteristics of studies may be responsible for 
large effect sizes and what characteristics of studies may be responsible for smaller effect 
sizes. It is usual to select a range of possible study variables which may be related to effect 
size. These may include:

●	 gender of the participants

●	 size of the study

●	 quality of the study as rated by a panel of psychologists or from the prestige of the 
journal in which the study was published

●	 whether the study involved behavioural rather than attitudinal measures

●	 sex of the researcher

●	 whether the study was a laboratory experiment or field study

●	 any other variable that the meta-analyst judges to be pertinent and which can be 
assessed from the primary published reports of studies or by other means such as rat-
ings by experts.

This list is not the ideal or complete list. The study variables you choose may be very 
different from the above list which should not simply be routinely applied without further 
consideration.

The selection of study variables is a subjective matter in the sense that it depends on 
knowledge, skill and a degree of insight. These are much the same characteristics that are 
required by any researcher. Note that the information the meta-analyst wants may not be 
given in the available research reports – for example, the researcher may not have analysed 
data for males and females separately.

The basic procedures for investigating the influence of study variables on effect size are 
very simple. So if a meta-analyst wished to study effect size in studies involving female 
participants compared with those involving male participants, the following effect sizes 
could be calculated:

●	 Overall (combined) effect size for relevant studies irrespective of the gender of the 
participants.
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●	 Overall (combined) effect size for female participant studies.

●	 Overall (combined) effect size for male participant studies.

It may well be that the overall effect size is more or less the same for both males and 
females. However, the male and female effect sizes could be very different. Such a simple 
analysis may be insufficient for the analyst’s particular purposes. For example, the analysis 
would be a little more complicated if the analyst wished to compare the effect sizes for 
young males, young females, older males and older females. This would involve the cal-
culation of effect sizes for the four different age/gender combinations (see Table 37.1).

Not all meta-analyses investigate the influence of study characteristics. Carry out such 
an analysis only if it is relevant to your purposes and meaningful in terms of the range of 
types of study found in the relevant literature search.

	 37.5	 First steps in meta-analysis

	 ■	 Step 1: Define the variables of interest to you

Decide precisely which two variables you are investigating in your meta-analysis. (Other 
pairs of variables can also be considered and treated in the same way in parallel.) This is 
in essence deciding the nature of the research hypothesis to be tested.

	 ■	 Step 2: Plan your database search

Plan your search for relevant studies involving your chosen variables. This search should 
involve a computer search of the relevant databases. Perusing studies referred to in rele-
vant research publications may generate additions to your list of relevant studies. Of 
course, you may wish to omit certain types of study because they are not relevant or do 
not meet other criteria. It is important to do this using stipulated criteria rather than on 
whims. If possible, seek out unpublished studies.

	 ■	 Step 3: Obtain research reports

Obtain copies of research reports containing the statistical analyses of the relevant studies. 
These may be available in your local university or college library, but sometimes they have 

Young Older

Males r = .32 r = .13

r = .45 r = .03

r = .35 r = - .04

Females r = .22 r = .05

r = .12 r = .15

r = .15 r = .11

	 Table 37.1	 Meta-analysis table for different age and gender combinations
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to be ordered from other libraries. The authors of recently published studies may be 
contacted by mail or email to obtain copies of reports. Databases usually contain an 
adequate address for the senior author and, nowadays, the records on databases fre-
quently include an email address for the corresponding authors. Remember that at the 
very minimum, you need a significance level and sample size to calculate an effect size.

Sometimes a previous meta-analytic study may supply you with details of otherwise 
unobtainable studies. It may be possible to use the effect sizes reported in this earlier 
meta-analysis. Cohen’s d is easily converted to r (and vice versa) by using Table 37.2. This 
table also serves as a ready reference to compare effect sizes expressed as r with those 
given as Cohen’s d.

	 ■	 Step 4: Calculating effect sizes for each study

A standard measure of effect size should be calculated for each of the relationships 
between the variables for each study reviewed. Our chosen measure of effect size is the 
Pearson correlation coefficient or r. Some studies may report this value or some other 
measure of effect size, but usually they do not. Where effect sizes are not reported they 
need to be calculated by the meta-analyst.

It is usually possible to use the test of significance reported in the original analysis to 
calculate the effect size r. Table 37.3 gives this conversion for common tests of signifi-
cance. We have already seen some of these in Chapter 17.

However, sometimes this information is missing from the primary source. This is less 
of a problem with modern research publications but it is nevertheless useful to know what 

Pearson r Cohen’s d Pearson r Cohen’s d Pearson r Cohen’s d Pearson r Cohen’s d Pearson r Cohen’s d

.00 0.00 .20 0.41 .40 0.87 .60 1.50 .80 2.67

.01 0.02 .21 0.43 .41 0.90 .61 1.54 .81 2.76

.02 0.04 .22 0.45 .42 0.93 .62 1.58 .82 2.87

.03 0.06 .23 0.47 .43 0.95 .63 1.62 .83 2.98

.04 0.08 .24 0.49 .44 0.98 .64 1.67 .84 3.10

.05 0.10 .25 0.52 .45 1.01 .65 1.71 .85 3.23

.06 0.12 .26 0.54 .46 1.04 .66 1.76 .86 3.37

.07 0.14 .27 0.56 .47 1.06 .67 1.81 .87 3.53

.08 0.16 .28 0.58 .48 1.09 .68 1.85 .88 3.71

.09 0.18 .29 0.61 .49 1.12 .69 1.91 .89 3.90

.10 0.20 .30 063 .50 1.15 .70 1.96 .90 4.13

.11 0.22 .31 0.65 .51 1.19 .71 2.02 .91 4.39

.12 0.24 .32 0.68 .52 1.22 .72 2.08 .92 4.69

.13 0.26 .33 0.70 .53 1.25 .73 2.14 .93 5.06

.14 0.28 .34 0.72 .54 1.28 .74 2.20 .94 5.51

.15 0.30 .35 0.75 .55 1.32 .75 2.27 .95 6.08

.16 0.32 .37 0.77 .56 1.35 .76 2.34 .96 6.86

.17 0.35 .37 0.80 .57 1.39 .77 2.41 .97 7.98

.18 0.37 .38 0.82 .58 1.42 .78 2.49 .98 9.85

.19 0.39 .39 0.85 .59 1.46 .79 2.58 .99 14.04

	 Table 37.2	 Equivalent effect sizes expressed as Cohen’s d and Pearson correlation coefficient
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to do when even minimum information is missing. If you know the sample size and the 
significance level, then the following formula can be used to approximate the effect size 
irrespective of the particular test of significance involved. The significance levels should 
be converted to their one-tailed equivalents if they are given as two-tailed probabilities 
because the absolute value of z refers to one tail of the standard normal distribution. The 
sign of the z-score needs to be noted.

r =
z

2N

The value of z for the significance level is obtained by consulting Table 37.4. So, if the 
significance level for a particular study is 0.7% (i.e. the probability is .007), then the value 
of z obtained from Table 37.4 is 2.326. Assuming that the one-tailed significance level is 
based on 40 participants, the effect size is:

r = 2.326

240
= 2.326

6.325
= .37

This is a good approximation given the limited information required. The formula has 
obvious advantages for use with uncommon tests of significance or those for which a 
conversion formula to r is not available. It can also be used to convert nonparametric 
significance levels to effect sizes. Of course, significance levels are not always reported 
very precisely, which may cause problems especially when the findings are not significant 
at the 5% level. Just what is the effect size for this? Some authors report it as an effect 
size of zero, though clearly this is not likely to be the case. Others take it as the 50% or 
.5 level of significance. In these circumstances, it would be better to estimate the effect 
size from the formulae in Table 37.3 if at all possible.

At the end of this step, you should have values or estimated values of the effect size for 
each of the studies you are using in your meta-analysis. If you are unable to give an effect 
size because of incomplete information in the original report of a study or because the 

Statistic Formula for converting to  
Pearson correlation

Notes

t-test
rbis = B

t2

t2 + df

Can be used for a related or unrelated t-test

chi-square
r = C

chi@square

N

Only use this formula for a 2 * 2 chi-square

Cohen’s d Convert to r using Table 37.2 Useful if no source of data from a study is 
available other than another meta-analysis

Nonparametric test r =
z

2N

Alternatively convert to parametric 
equivalent and substitute this value in 
formula (see Section 17.4)

Pearson correlation coefficient and variants No conversion necessary These are already the value of the effect size

Most common tests of significance and when 
only significance level and sample size given

r =
z

2N

Convert the significance level to z using 
Table 37.4. Then divide by the square root  
of the sample size involved

	 Table 37.3	 Converting various tests of significance to a correlation coefficient
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report was unobtainable, it will have to be omitted. This omission should be mentioned 
in your report of your meta-analysis.

	 ■	 Step 5: Combining effect sizes over a number of studies

One aim of meta-analysis is to combine the findings of several studies (or a selected subset 
of studies such as those involving female participants) into a single composite effect size. 
The obvious way of doing this is to average the effect sizes. However, the simple numerical 
average of the effect sizes can give a distorted value, particularly when some of the values 
of the correlation coefficients are large. Instead, we average the effect sizes by converting 
each r into a z-score (zr) for the correlation coefficient using Table 37.5. This table is of 
the correlation coefficient expressed as a normal distribution. It is different from the 
z-distribution so take care. You need the purple columns to find your value of the correla-
tion coefficient r and the required value of zr is to the right of this in the blue column. The 
several values of zr are then summed and averaged by dividing by the number of values. 
This average can then be turned back into the combined effect size by using Table 37.5 
in the reverse mode. (That is, you look for your value of the combined zr in the right-hand 
side (blue) of the pairs of columns and find the value of r to the left of this.)

p z p z p z p z p z

.000 01 4.265 .19 0.878 .40 0.253 .61 -0.279 .82 -0.915

.00 01 3.719 .20 0.842 .41 0.228 .62 -0.306 .83 -0.954

.001 3.090 .21 0.806 .42 0.202 .63 -0.332 .84 -0.995

.01 2.326 .22 0.772 .43 0.176 .64 -0.359 .85 -1.036

.02 2.054 .23 0.739 .44 0.151 .65 -0.385 .86 -1.080

.03 1.881 .24 0.706 .45 0.126 .66 -0.413 .87 -1.126

.04 1.751 .25 0.675 .46 0.100 .67 -0.440 .88 -1.175

.05 1.645 .26 0.643 .47 0.075 .68 -0.468 .89 -1.227

.06 1.555 .27 0.613 .48 0.050 .69 -0.496 .90 -1.282

.07 1.476 .28 0.583 .49 0.025 .70 -0.524 .91 -1.341

.08 1.405 .29 0.553 .50 0.000 .71 -0.553 .92 -1.405

.09 1.341 .30 0.524 .51 -0.025 .72 -0.583 .93 -1.476

.10 1.282 .31 0.496 .52 -0.050 .73 -0.613 .94 -1.555

.11 1.227 .32 0.468 .53 -0.075 .74 -0.643 .95 -1.645

.12 1.175 .33 0.440 .54 -0.100 .75 -0.675 .96 -1.751

.13 1.126 .34 0.413 .55 -0.126 .76 -0.706 .97 -1.881

.14 1.080 .35 0.385 .56 -0.151 .77 -0.739 .98 -2.054

.15 1.036 .36 0.359 .57 -0.176 .78 -0.772 .99 -2.326

.16 0.995 .37 0.332 .58 -0.202 .79 -0.806

.17 0.954 .38 0.306 .59 -0.228 .80 -0.842

.18 0.915 .39 0.279 .60 -0.253 .81 -0.878

	 Table 37.4	 z-distribution for converting one-tailed probability levels to z-scores

Find the appropriate significance or probability level p-value from the table, the required z-score is adjacent to the right.
Reverse this process if you wish to convert your z-score back to a significance or probability level.
Remember that a probability needs to be multiplied by 100% to get the percentage probability.
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r zr r zr r zr r zr r zr r zr r zr

.01 0.10 .41 0.436 .801 1.101 .841 1.225 .881 1.380 .921 1.596 .961 1.959

.02 0.020 .42 0.448 .802 1.104 .842 1.228 .882 1.385 .922 1.602 .962 1.972

.03 0.030 .43 0.460 .803 1.107 .843 1.231 .883 1.389 .923 1.609 .963 1.986

.04 0.040 .44 0.472 .804 1.110 .844 1.235 .884 1.394 .924 1.616 .964 2.000

.05 0.050 .45 0.485 .805 1.113 .845 1.238 .885 1.398 .925 1.623 .965 2.014

.06 0.060 .46 0.497 .806 1.116 .846 1.242 .886 1.403 .926 1.630 .966 2.029

.07 0.070 .47 0.510 .807 1.118 .847 1.245 .887 1.408 .927 1.637 .967 2.044

.08 0.080 .48 0.523 .808 1.121 .848 1.249 .888 1.412 .928 1.644 .968 2.060

.09 0.090 .49 0.536 .809 1.124 .849 1.253 .889 1.417 .929 1.651 .969 2.076

.10 0.100 .50 0.549 .810 1.127 .850 1.256 .890 1.422 .930 1.658 .970 2.092

.11 0.110 .51 0.563 .811 1.130 .851 1.260 .891 1.427 .931 1.666 .971 2.110

.12 0.121 .52 0.576 .812 1.133 .852 1.263 .892 1.432 .932 1.673 .972 2.127

.13 0.131 .53 0.590 .813 1.136 .853 1.267 .893 1.437 .933 1.681 .973 2.146

.14 0.141 .54 0.604 .814 1.139 .854 1.271 .894 1.442 .934 1.689 .974 2.165

.15 0.151 .55 0.618 .815 1.142 .855 1.274 .895 1.447 .935 1.697 .975 2.185

.16 0.161 .56 0.633 .816 1.145 .856 1.278 .896 1.452 .936 1.705 .976 2.205

.17 0.172 .57 0.648 .817 1.148 .857 1.282 .897 1.457 .937 1.713 .977 2.227

.18 0.182 .58 0.663 .818 1.151 .858 1.286 .898 1.462 .938 1.721 .978 2.249

.19 0.192 .59 0.678 .819 1.154 .859 1.290 .899 1.467 .939 1.730 .979 2.273

.20 0.203 .60 0.693 .820 1.157 .860 1.293 .900 1.472 .940 1.738 .980 2.298

.21 0.213 .61 0.709 .821 1.160 .861 1.297 .901 1.478 .941 1.747 .981 2.323

.22 0.224 .62 0.725 .822 1.163 .862 1.301 .902 1.483 .942 1.756 .982 2.351

.23 0.234 .63 0.741 .823 1.166 .863 1.305 .903 1.488 .943 1.764 .983 2.380

.24 0.245 .64 0.758 .824 1.169 .864 1.309 .904 1.494 .944 1.774 .984 2.410

.25 0.255 .65 0.775 .825 1.172 .865 1.313 .905 1.499 .945 1.783 .985 2.443

.26 0.266 .66 0.793 .826 1.175 .866 1.317 .906 1.505 .946 1.792 .986 2.477

.27 0.277 .67 0.811 .827 1.179 .867 1.321 .907 1.510 .947 1.802 .987 2.515

.28 0.288 .68 0.829 .828 1.182 .868 1.325 .908 1.516 .948 1.812 .988 2.555

.29 0.299 .69 0.848 .829 1.185 .869 1.329 .909 1.522 .949 1.822 .989 2.599

.30 0.310 .70 0.867 .830 1.188 .870 1.333 .910 1.528 .950 1.832 .990 2.647

.31 0.321 .71 0.887 .831 1.191 .871 1.337 .911 1.533 .951 1.842 .991 2.700

.32 0.332 .72 0.908 .832 1.195 .872 1.341 .912 1.539 .952 1.853 .992 2.759

.33 0.343 .73 0.929 .833 1.198 .873 1.346 .913 1.545 .953 1.863 .993 2.826

.34 0.354 .74 0.951 .834 1.201 .874 1.350 .914 1.551 .954 1.875 .994 2.903

.35 0.365 .75 0.973 .835 1.204 .875 1.354 .915 1.557 .955 1.886 .995 2.995

.36 0.377 .76 0.996 .836 1.208 .876 1.358 .916 1.564 .956 1.897 .996 3.106

.37 0.388 .77 1.020 .837 1.211 .877 1.363 .917 1.570 .957 1.909 .997 3.250

.38 0.400 .78 1.045 .838 1.214 .878 1.367 .918 1.576 .958 1.921 .998 3.453

.39 0.412 .79 1.071 .839 1.218 .879 1.371 .919 1.583 .959 1.933 .999 3.800

.40 0.424 .80 1.098 .840 1.221 .880 1.376 .920 1.589 .960 1.946

	 Table 37.5	 Extended table of Fisher’s zr transformation of the correlation coefficient
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Thus if we wish to calculate the average effect size from three studies with the following 
effect sizes:

 study A: r = .3

 study B: r = .7

 study C: r = .5

we convert each to their zr by using Table 37.5. These values are 0.310, 0.867 and 0.549, 
respectively. The numerical average of these is (0.310 + 0.867 + 0.549)/3 = 0.575. But 
this is the average zr. We can then reconvert this value to an overall effect size by using 
Table 37.5 in reverse. The effect size r for the three studies combined is therefore .52.

It is possible that a particular study has findings in the reverse direction from those of 
the majority. In this case, its effect size is given a negative value. Thus the overall effect 
size will be reduced.

	 ■	 Step 6: Statistical significance of the combined studies

The significance level of the combined studies can also be assessed. Once again, the simple 
numerical average of the probability levels is misleading. Intuitively we may appreciate 
that this simple average makes no allowance for the greatly increased effective sample size 
obtained by combining studies. There are numerous different ways of combining signifi-
cance levels from a range of studies to give an overall significance level, each having dif-
ferent advantages or disadvantages. The simplest and one of the most satisfactory methods 
is to convert each significance level into a z-score using Table 37.4. Rather than divide by 
the number of z-scores to obtain the average, the sum of the z-scores is divided by the 
square root of the number of z-scores:

z =
a z

2N

Thus if the significance levels from a set of studies are .08, .15 and .02, each of these is 
converted to a z-score using Table 37.4. This gives us z-scores of 1.405, 1.036 and 2.054, 
respectively. These z-scores are summed and divided by the square root of the number of 
z-scores:

z =
1.405 + 1.036 + 2.054

23
=

4.495
1.732

= 2.595

This average z is converted back into a significance level using Table 37.4. In this case, 
this gives a combined significance level of .001 (or 1.0%).

Note that if the findings of a study are in the reverse direction from those of the major-
ity, the corresponding z-score is given a negative sign. Once again, this tends to reduce 
the overall significance level.

	 ■	 Step 7: Comparing effect sizes from studies with different 
characteristics

Finally, what if one wished to compare effect sizes between studies with different charac-
teristics? For example, what if one wanted to know whether studies involving female 
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participants differed from those involving male participants in terms of their effect size? 
The easiest way of doing this is to turn your data into a table like Table 37.6. In this table, 
the effect sizes for the male and female studies are listed in separate columns. It is then a 
relatively simple matter to compare these two sets of effect-size ‘scores’ using the Mann–
Whitney U-test (Explaining statistics 21.3) or the t-test (Explaining statistics 14.1). This is 
an approximate procedure in the eyes of some experts since all studies are considered equal 
although they may differ in terms of the sample size. Despite criticisms of such an approach, 
it uses familiar statistics and may well be sufficiently powerful for most purposes.

There is a significant difference between these two groups as assessed by either the 
Mann–Whitney U-test or the unrelated t-test. Thus the effect sizes are greater in studies 
which involved female participants than in studies involving male participants. If you 
choose the t-test, it might be advantageous to convert your effect sizes to zr values since 
this will reduce the undue influence of extreme values a little.

Effect sizes of studies of males Effect sizes of studies of females

.27 .41

.15 .52

.22 .43

.29 .47

Mean = .23 Mean = .46

	 Table 37.6	 Illustrating the comparison of effect sizes for different study characteristics

	 37.6	 Illustrative example

There is evidence that men’s physiological responses to sexually explicit pictures may 
differentiate sex offenders from non-offenders and non-sex offenders. Physiological 
response in these studies is assessed by plethysmographs which measure either changes in 
the volume of the penis or changes in the circumference of the penis. The latter measure 
is generally not well regarded. The data reported are fictitious but help to illustrate the 
processes involved in meta-analysis.

	 ■	 Step 1: Define the variables of interest to you

In this case, the researchers wished to review the available studies which might indicate 
whether physiological responses to sexual images could be used to differentiate sex 
offenders from other men. Consequently the independent variable was sex offender versus 
non-offender or non-sex offender and the dependent variable was measured by scores on 
a plethysmograph assessment of the men’s response to erotic pictures.

	 ■	 Step 2: Plan your database search

The researchers searched the psychological abstract database (PsycINFO – this database 
is discussed in Chapter 5 of Howitt and Cramer, 2017) and also the medical science 
database using the keywords plethysmograph, sex offender, rapist, paedophile and 
molester. Additionally, as the field is relatively small, the researchers chose to write to one 
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hundred researchers in the field requesting relevant research reports, either published or 
unpublished.

	 ■	 Step 3: Obtain research reports

The researchers found nine studies from their database search to be obtained from their 
own or other university libraries. These are listed in column 1 of Table 37.7 but they also 
received two additional unpublished studies from their request to key researchers. 
Table 37.7 also includes information relevant to calculating the effect size gleaned from 
these reports and information about possible study variables.

	 ■	 Step 4: Calculating an effect size for each study

Table 37.7 lists the information obtained from each study relevant to calculating the effect 
size. The formula (or table) used is mentioned and the final column provides effect sizes 
expressed as r for each of the studies. Edwards’s study, however, is so lacking in the sta-
tistical detail provided that it has been deleted from this meta-analysis.

	 ■	 Step 5: Combining effect sizes over a number of studies

The meta-analyst combined the effect sizes for all of the studies by converting each effect 
r into a zr, averaging these and finally converting back to an effect size. This involves 
turning each effect size correlation into a Fisher zr using Table 37.5. The effect sizes in 
order are .24, .54, .52, .37, .19, .34, .49, .34, .22 and .50 according to Table 37.7.

Remember that the final study has been discarded from the analysis. The average of 
the corresponding zr is:

average zr

= 0.245+0.604+0.576+0.388+0.192+0.354+0.536+0.354+0.224+0.549
10

 =
4.022

10
= 0.4022

This value of zr according to Table 37.5 corresponds to an average of the effect sizes 
of .38 (this is obtained by looking for the average zr of 0.4022 in the body of Table 37.5 
and reading off the value of r which corresponds to this value of the averaged zr).

This process could be repeated to obtain, say, the overall effect size of the volume 
measure and the circumference measure separately.

	 ■	 Step 6: Statistical significance of the combined studies

The overall significance of the combined studies is obtained by turning each significance 
level into the corresponding z-score using Table 37.4. The various z-scores are then 
summed and divided by the square root of the number (N) of significance levels employed. 
Note that for two studies the significance level is not reported or is not precise enough. 
Thus the calculation is based on just nine studies. The formula for z is:

z = a z

2N
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This gives:

 = 1.645 + 2.326 + 1.960 + 1.282 + 2.326 + 1.960 + 1.440 + 3.090 + 1.881

29

 =
17.908

3
= 5.97

Remember that this is the value of z which has to be converted back to a significance 
level using Table 37.4. Thus the combined significance level is .000 01 or 0.001%.

	 ■	 Step 7: Comparing effect sizes from studies with different 
characteristics

Because there is some question whether the circumference measure is as good as the vol-
ume measure, the overall effect sizes were calculated for the circumference measure studies 
and the volume measure studies separately. This yielded the data in Table 37.8.

Comparing these overall effect sizes, it would seem that there are some grounds for 
thinking that circumference studies produce the smallest effect size, implying that they 
are inferior at identifying sex offenders from other men. This comparison is significant at 
only the .067 level with a Mann–Whitney test but significant at .04 with the unrelated 
t-test. Using zr instead of the effect size made no substantial difference to the outcome. 
This seems reasonably strong evidence that the volume measure tends to produce greater 
effects than the circumference measures.

A similar analysis comparing the effect of having a prisoner versus a non-prisoner 
control group showed no significant difference in terms of effect size using the same tests 
of significance.

Effect sizes of studies involving  
volume measure

Effect sizes of studies involving  
circumference measure

.54 .24

.37 .52

.49 .19

.50 .34

.34

.22

Mean = .48 Mean = .31

	 Table 37.8	 Effect size data for volume measures and circumference penile measures compared

	 37.7	 Comparing a study with a previous study

Meta-analysis is useful when you are replicating another researcher’s study as it provides 
a method of combining the results of the two studies. Furthermore, you can test to see if 
your effect size is significantly different from that found in the previous research. The 
formula involves converting each effect size to zr using Table 37.5 and then subtracting 
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one from the other and making other calculations involving N (the sample sizes) as in the 
following formula:

z =
r1 - r2

A
1

N1 - 3
+ 1

N2 - 3

Thus if the effect sizes under consideration are .43 (with N = 25) and .62 (with N = 47)  
then these are first converted to zr using Table 37.5. This gives us values of .460 and .725. 
The calculation is then:

 z =
0.460 - 0.725

A
1

25 - 3
+

1
47 - 3

 =
-0.265

A
1
22

+
1

44

 =
-0.265

20.0455 + 0.0227

 =
-0.265

20.0682

 =
-0.265
0.261

 = -1.015

This value of z (not zr) is turned into a significance level by using Table 37.4. This gives 
a probability value of .15 (or 15%) which is not statistically significant. Our conclusion 
in this case would be that the effect sizes of the two studies are similar and certainly not 
significantly different from each other. We could go on to report the effect size of the 
combined studies and the combined significance levels using the methods described 
above.

Of course, this formula can be used to compare any two correlation coefficients with 
each other to see whether they are significantly different.

	 37.8	 Reporting the results

Meta-analytic studies are almost always substantial research studies in their own right. 
Consequently, many of the requirements of reporting a meta-analytic study are the very 
same requirements that one would require when writing a substantial report such as a 
journal article. You may find the detailed account of writing psychological reports in the 
authors’ companion volume (Howitt and Cramer, 2017) invaluable in reporting a meta-
analysis as a consequence. Because there may be details of a large number of studies to 
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tabulate, then special care may be required in generating the tables using, say, Excel or 
Word. SPSS would not be particularly helpful in this regard. Since any meta-analysis needs 
to make reference to previous relevant meta-analytic studies, often there is a model already 
available for one to consult to get an idea of the sort of style to adopt.

None of this should be a deterrent to using meta-analytic techniques as part of the 
literature review, say, for any study you are writing up. As we have seen, many of the 
calculations are relatively simple and straightforward by hand. It is perfectly feasible to, 
say, add in effect sizes for the findings of relevant previous research as you report them. 
Not only would this be good practice but it would also change the emphasis from statisti-
cal significance to that of effect size.

Meta-analysis

Freund and Kasten (2012) explain that we have perceptions of our cognitive abilities which are involved in the 
self-concept because they relate our abilities to the abilities of other people. This process of self- and other-
evaluation may be regarded as a continuous feature of our lives and is employed in formal settings too (e.g. the 
careers guidance setting where psychometric measurements are available). The researchers performed a meta-
analysis based on 41 published studies of the relationship between self-estimated and psychometrically assessed 
cognitive abilities. This involved 41 published studies and a total of 154 effect sizes obtained from them. The 
overall relationship between the self-estimated and psychometric cognitive abilities was a correlation of .33. 
Among other things, the analysis also showed that the relationship was greater when mathematical abilities 
were the focus as opposed to more global cognitive abilities.

Sedlmeier and co-workers (2012) carried out a meta-analysis of the psychological effects of meditation. Their 
main focus was on nonclinical groups of people using meditation, i.e. psychologically healthy adults. But there 
were problems since a big proportion (75%) of the studies they identified were excluded for reasons such as 
psychological measures were not used or that the study did not involve nonclinical samples. So the study itself 
was based on the remaining 163 studies which met the study criteria. The average effect size was r = .28. Taking 
the 125 studies which were published in reviewed journals the average effect size remained much the same at 
r = .27. The effects of meditation were large for emotionality and relationship problems with smaller effects 
for measures of attention and smaller still for cognitive variables. The details of the findings varied for different 
approaches (transcendental meditation, mindfulness meditation, etc.). The authors tried a number of possible 
mediating variables such as length of time doing meditation and age but little of sufficient clarity to draw con-
clusions emerged from this.

Taylor, Rastle and Davis (2013) point out that reading in many language systems depends on both knowledge 
of the word (e.g. sew) and a knowledge of how to generate sounds from spellings such as when pseudowords 
are read (e.g. gew). The neural basis for these skills has been discussed by researchers but Taylor et al. propose 
that such skills depend on a) the degree of engagement of a brain region brought about by the stimulus word 
and b) the amount of effort involved in processing that stimulus. Predictions from this were assessed with a 
meta-analysis of neuroimaging studies of reading. Among other things, the meta-analysis of the studies revealed 
that real words compared with pseudowords led to the activation of the left anterior fusiform gyrus of the brain. 
Pseudowords compared to words generated activity in a more anterior part of the left fusiform gyrus and the 
occipitotemporal cortex.

Research examples
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Computer Analysis

Some meta-analysis software

The basic calculations for meta-analysis are essentially straightforward and well within the capabilities of anyone 
prepared to give this chapter careful study. Although some of the calculations can benefit from computer assis-
tance, the common statistical computer packages will only be of occasional help with a meta-analysis. SPSS does 
not deal with meta-analysis. Generally speaking, this program provides no particular help in relation to meta-
analysis. There are a number of commercial software options available to help with meta-analysis though these 
may or may not be available to you at your university or college, for example.
Of more immediate practical help may be the following free meta-analytic software:

●	 Meta-Stat – A tool for the meta-analysis of research studies by Lawrence M. Rudner, Gene V. Glass, David L. 
Evartt and Patrick J. Emery. This is documented and can be downloaded at echo.edres.org:8080/meta/
metastat.htm

●	 Statistics software for meta-analysis by Ralf Schwarzer. This is documented and can be downloaded at 
userpage.fu-berlin.de/health/meta_e.htm

●	 The meta-analysis calculator. This can be used as an applet at www.lyonsmorris.com/lyons/metaAnalysis/
index.cfm

●	 The MIX program for meta-analysis which uses Microsoft’s Excel spreadsheet. Details and downloads are 
available at www.mix-for-meta-analysis.info/about/index.html

Of course, a search of the Internet will find others. 
Screenshots 37.1 to 37.6 illustrate the calculation of effect sizes using the G*Power program. G*Power is discussed 
in more detail in Chapter 40. The steps are fairly intuitive but for more information see Chapter 40 and the 
G*Power documentation referred to there. 

●	 This account of meta-analysis should convince you of the importance of reporting effect sizes for all studies 
you carry out. The most useful effect size formula is simply the Pearson’s correlation coefficient between two 
variables.

●	 When carrying out a literature review, it is a positive advantage to report the effect sizes for all of the impor-
tant studies. This is more important than reporting statistical significance alone.

●	 Experience will show that the difference between significant and non-significant findings can be very small 
indeed when their effect sizes are compared. Consequently, you need to consider near-significant results 
carefully when evaluating the research literature.

Key points
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	 Screenshot 37.2	 Enter value of statistic

	 Screenshot 37.5
	 Enter if effect was in predicted 

direction

	 Screenshot 37.4
	 Enter number of cases (subjects) if 

there is another group

	 Screenshot 37.1	 Select test

	 Screenshot 37.3	 Enter number of cases (subjects)

	 Screenshot 37.6	 Output

Recommended further reading

Howitt, D., & Cramer, D. (2017). Introduction to research methods in psychology (Chapter 5). 
Harlow, UK: Pearson.

Rosenthal, R. (1991). Meta-analytic procedures for social research. Newbury Park, CA: Sage  
(especially Chapters 1–4).
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●	 Reliability as discussed in this chapter is about the consistency of a psychological scale or 
similar measurements. That is, are all components of the scale measuring similar things?

●	 One of the conventional ways of achieving internal consistency is to ensure that all items 
correlate with the sum of the items on the scale. This is known as item analysis. A typical 
method is item–whole or, more clearly, item–total analysis. Any item which does not correlate 
significantly with the total (of all of the items) is deleted because it is not measuring the 
same thing as the total score.

●	 Split-half reliability is little more than the correlation between the total of one half of the 
items and the total of the other half of the items. If the two halves are measuring the same 
thing then they should correlate highly. Sometimes the sum of the odd-numbered items is 
correlated with the sum of the even-numbered items.

●	 Alpha reliability is the average of every possible split-half reliability that could be calculated 
on a scale. This overcomes the influence of the particular selection of items chosen for each 
half can have on split-half reliability.

●	 Kappa is a measurement of the agreement between raters or observers. That is, it assesses 
inter-rater or inter-observer agreement.

Reliability in scales and 
measurement
Consistency and agreement

Chapter 38

Overview

Preparation

The concept of correlation (Chapter 8) is an essential prerequisite to understanding the 
assessment of reliability. Chapter  24 on the correlated scores analysis of variance and  
Chapter 33 on factor analysis may also help with particular sections of this chapter.
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	 38.1	 Introduction

An important role for statistics is in assessing the adequacy of psychological scales and 
measures. Usually in psychology, but not always, measures consist of several different 
components added together to give a total score on that measure. Thus many attitude and 
personality tests consist of a large number of questionnaire items which are combined to 
give a total score on some dimension of attitude or personality. Although the analysis of 
such scales using factor analysis (Chapter 33) is an important and necessary part of mod-
ern psychological test and measure construction, factor analysis is not the only approach 
to understanding the structure of a test or measure. In many circumstances, a researcher 
may be concerned simply to obtain a fairly general measure of a particular psychological 
variable. In these circumstances, relatively simple checks on the structure of the measure 
may suffice. So, for example, a questionnaire designed to measure ‘love’ for one’s partner 
might consist of several different questions. The researcher needs to know the extent to 
which the items measure much the same thing. Generally speaking, if the items measure 
aspects of love then we would expect that they would intercorrelate with each other to a 
modest level at least. However, since it is the overall or total score on the measure of love 
which matters then for a good scale we would expect that:

●	 scores on each item correlate with the total score (this is item–total or item–whole 
correlation)

●	 scores based on half of the items of the scale would correlate with scores based on the 
remainder of the scale (this is called split-half reliability which can be elaborated into 
Cronbach’s coefficient alpha).

The procedures described in this chapter are about the internal consistency of psychologi-
cal measures. Internal consistency is the extent to which all of the items constituting a 
measure are measuring much the same thing. If they are measuring similar things, each 
item should correlate with the other items in the measure. Although this is referred to as 
reliability, it is a very different matter from reliability across two different points in time, 
for example. Figure 38.1 gives the key steps in understanding reliability.

	 38.2	 Item-analysis using item–total correlation

Look at Table 38.1. It contains scores on four different items for ten different participants. 
There is also a total score given in the total column consisting of the scores on each of 
item 1, item 2, item 3 and item 4. So the second participant has a total score of 
2 + 1 + 1 + 2 = 6. The correlations between the scores of the ten participants for item 
1 and the total score can be calculated with the Pearson correlation formula (Explain-
ing statistics 8.1) or using a computer package, of course. The value of the correlation 
is .74 which suggests that item 1 is a fairly good measure of what the total score on 
the measure is measuring. The other items may be treated in the same way in order to 
see whether this is true of all of them.

Generally speaking, we would be happy with this scale given the relatively high item–
total or item–whole correlation.

Notice that when an item is excluded from the total score, its correlation with this 
adjusted total score is reduced. Thus, in Table 38.2 the correlation of item 1 with the 
total score (based on summing items 2, 3 and 4) is .49 as opposed to a correlation of 
.74 when all items are included. This more refined analysis does nothing to revise our 
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opinion of the scale. Generally speaking, the items which seem to be the poorest are 
items 1 and 4 which have the lowest item–total correlations with the item removed from 
the total.

Of course, four-item scales are unusual in psychological research. Normally we have 
many items. If we had a lot more items, we might be inclined to try to shorten the scale 
a little, perhaps to make it more appealing to participants. The technique for doing 
this is simple. Delete the low-correlating items and re-do the analysis based on the 
shortened scale. Although our example is a short scale, if we wanted to reduce its 

	 Table 38.1	 Data from ten cases from a four-item questionnaire

Person Item 1 Item 2 Item 3 Item 4 Total score

1 1 3 5 6 15

2 2 1 1 2 6

3 1 1 1 1 4

4 5 2 4 2 13

5 6 4 3 2 15

6 5 4 5 6 20

7 4 5 3 2 14

8 2 1 2 1 6

9 1 2 1 1 5

10 1 1 2 2 6

Inter-rater reliability is more
problematic since the issue is
whether different raters are

correlated with or agree with
one another.

	 Figure 38.1	 Conceptual steps for understanding reliability
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length then we would probably wish to delete item 1 since it has the lowest correlation 
with the total score.

Table 38.3 gives the outcome of shortening the scale in this way. You will see that 
compared with the correlations in Table 38.2, the shortened scale has increased item–total 
correlations. In this sense, a better scale has been achieved by shortening it. The difficulty 
is that we can carry on deleting items and improving the internal consistency of the items 
but this may result in a shorter scale than we want. Usually it is best to exclude only the 
poorest of items. By doing so we leave a scale which covers a wide range of the aspects 
of the thing being measured. The appropriate scale length involves a degree of 
judgement.

A standard statistical package such as SPSS reduces the work in calculating item–total 
(item–whole) correlations of various sorts and makes shortening the number of items in 
the scale easy.

The results of this analysis can be written up as follows: ‘An item–whole analysis was 
carried out on the items on the scale. As can be seen from Table 38.2, each item had a 
satisfactory correlation with the total score on all of the items combined. After the item–
whole correlations had been recalculated with the item removed from the total score, there 
was a decline in the item–whole correlations. However, the relationships remained sub-
stantial and it was decided not to shorten the scale given that it consists of just four items.’

	 38.3	 Split-half reliability

A computationally less demanding way of assessing the internal structure of a question-
naire is split-half reliability. Remember that internal reliability refers to the extent to 
which all of the items in a questionnaire (or similar measure) are assessing much the same 
thing. Split-half reliability simply involves computing scores based on half of the items 

	 Table 38.2	 Correlations of items with the total score on the scale

Correlation with total score Correlation with total score 
excluding item in question

Item 1 .74 .49

Item 2 .84 .71

Item 3 .91 .84

Item 4 .76 .55

	 Table 38.3	 Correlations of shortened-scale items with the total score on that scale

Correlation with total score Correlation with total score 
excluding item in question

Item 2 .77 .56

Item 3 .94 .87

Item 4 .90 .73
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and scores based on the other half of the items. The correlation between the scores for 
these two halves is the split-half reliability (more or less, but read on).

There are no rules for deciding which of the items should be in which half. There are 
common practices, however. Odd–even reliability is based on taking the odd-numbered 
items (1, 3, 5, etc.) as one set and the even-numbered items (2, 4, 6, etc.) as the other set. 
Alternatively, the first half of the items could be correlated with the second half. But there 
would be nothing against selecting the halves at random.

How the split-half reliability works
Taking the data in Table 38.1, we could sum items 1 and 2 for the total of the first half and sum items 3 and 4 for the 
total of the second half. The correlation between the two halves is .477.

There is a further step. The difficulty is that we are correlating a scale half the length of our original scale with another 
scale half the length of our scale. Because of this, the reliability will be lower than for the full length scale. Fortunately, 
it is quite easy to compute the reliability of a full scale from the reliability of half of the scale using the following 
formula:

full scale reliability =
n * known reliability

1 + [(n - 1) * known reliability]

where n is the ratio by which the number of items is to be increased or decreased.
Since we know the reliability of the half scale (rhh) is .477, the full scale reliability is:

full scale reliability = 2 * .477
1 + .477

= 0.954
1.477

= .65

Thus the value of the split-half reliability is .65 when corrected to the full scale length. Standard computer statistics pack-
ages such as SPSS can do most of the hard work for you.

Reporting the results

The results of this analysis may be written up as follows: ‘The split-half reliability of the scale was found to be .65. 
This is a somewhat low value but given the exploratory nature of this research, the scale was nevertheless employed.’ 
(As a rule of thumb, a value of about .7 or above would generally be seen as adequate evidence of reliability for 
general use.)

Explaining statistics 38.1

	 38.4	 Alpha reliability

There is a problem with split-half reliability – its value will depend on which items are 
selected for each half. The odd–even reliability will not be the same as that found by 
comparing the first half of the items with the second half, for example. There is an 
obvious solution: calculate every possible split-half reliability having every possible 
combination of items in each half and then simply take the average of these. The average 
of all possible split-half reliabilities from a scale is known as coefficient alpha. We will 
calculate this from first principles and an alternative approach based on the analysis of 
variance.
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Table 38.4 contains all of the possible ways of splitting four items into two halves. 
There are only three different ways of doing this with our short scale:

●	 The total of items 1 and 2 compared with the total of items 3 and 4.

●	 The total of items 1 and 3 compared with the total of items 2 and 4.

●	 The total of items 1 and 4 compared with the total of items 2 and 3.

The reliability coefficients for these three different possibilities are to be found in 
Table 38.5. The average of the split-half coefficients corrected (adjusted) for length is 
coefficient alpha. So the average of .642 +  . 844 +  .946 (or coefficient alpha) is .81. It is 
generally accepted that a coefficient alpha of .7 or above is satisfactory for psychological 
research.

This calculation may be feasible with a short scale of four items and a sample of ten 
individuals, but what, say, if the scale consisted of 100 items? The number of ways of 
sorting these 100 items into two separate sets of 50 is huge. Obviously the conceptually 
correct approach given so far would take too much computation time. The alternative 
hand-computation method is not quite so cumbersome but still time-consuming. Basically 
it involves carrying out one-way analysis of variance for correlated scores on the data on 
each of the items. Thus the data would look like Table 38.6. Following through the pro-
cedure described in Explaining statistics 22.1 would lead to the ANOVA summary table 

	 Table 38.4	 Scores for all possible split-halves from four items

Person Split-half version 1 Split-half version 2 Split-half version 3

Items 
1 + 2

Items 
3 + 4

Items 
1 + 3

Items 
2 + 4

Items 
1 + 4

Items 
2 + 3

1 4 11 6 9 7 8

2 3 3 3 3 4 2

3 2 2 2 2 2 2

4 7 6 9 4 7 6

5 10 5 9 6 8 7

6 9 11 10 10 11 9

7 9 5 7 7 6 8

8 3 3 4 2 3 3

9 3 2 2 3 2 3

10 2 4 3 3 3 3

	 Table 38.5	 Correlations between split-halves and with corrections for shortened length

Pearson correlation Corrected for scale length

Items 1 + 2 with items 3 + 4 .477 .642

Items 1 + 3 with items 2 + 4 .730 .844

Items 1 + 4 with items 2 + 3 .898 .946
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presented in Table 38.7. Values from this table are then substituted in the following 
computational formula for coefficient alpha:

 coefficient alpha =
between@people variance - error variance

between@people variance

 =
7.84 - 1.48

7.84
=

6.36
7.84

= .81

This would be generally accepted as evidence of a satisfactory level of internal consist-
ency since coefficients alpha above .7 are regarded as sufficient. The results of this analysis 
may be written up as follows: ‘Coefficient alpha was calculated for the scale and found 
to be .81 which is generally accepted to be satisfactory.’

It should be fairly obvious that the hand calculation of coefficient alpha even with this 
ANOVA method has little to recommend it. It might be useful to anyone who has access 
to a computer program for the correlated ANOVA but not to one which computes coef-
ficient alpha directly. It need hardly be said that the use of a computer package such as 
SPSS which includes coefficient alpha is highly recommended.

	 Table 38.6	 Data on four-item questionnaire for ten cases arranged as for correlated one-way ANOVA

Person Item 1 Item 2 Item 3 Item 4

1 1 3 5 6

2 2 1 1 2

3 1 1 1 1

4 5 2 4 2

5 6 4 3 2

6 5 4 5 6

7 4 5 3 2

8 2 1 2 1

9 1 2 1 1

10 1 1 2 2

Cell mean 2.8 2.4 2.7 2.5

	 Table 38.7	 ANOVA summary table on four-item questionnaire data

Source of variation Sum of squares Degrees of 
freedom

Mean square  
(or variance 

estimate)

F-ratio Significance

Between treatments  
(i.e. between items)

1.00 3 not needed not needed not needed

Between people (i.e. 
individual differences)

70.60 9 7.84

Error (i.e. residual) 40.00 27 1.48

M38 Introduction to Statistics in Psychology with SPSS 29099.indd   546 05/01/2017   15:28



	 38.5â•‡ Agreement among raters	 547

	 38.5	 Agreement among raters

Not all research involves psychological scales. Some research involves ratings by a pair 
of judges or even a panel of judges or assessors. Sometimes rating is used because it is 
felt that self-completion questionnaires might be inappropriate. Let us take the concept 
of dangerousness, i.e. the risk posed to members of the public by the release of sex 
offenders or psychiatric hospital patients. One might be very unhappy about using self-
completion questionnaires in these circumstances. It might be considered preferable to 
have expert clinical psychologists, forensic psychologists and psychiatrists interview the 
sex offenders or patients to assess the dangerousness of these people on release into the 
community. Let us assume that we have one clinical psychologist, one forensic psycholo-
gist and one psychiatrist who are used in a study of 12 sex offenders. Having inter-
viewed each offender, read all case notes and obtained any further information they 
required, each of the three professionals rates each offender on a three-point dangerous-
ness index:

●	 a rating of 1 means that there is no risk to the public

●	 a rating of 2 means that there is a moderate risk to the public

●	 a rating of 3 means that there is a high risk to the public.

Their ratings of the 12 offenders are shown in Table 38.8.
Table 38.9 shows the Pearson correlations between the ratings of the three profession-

als. The figures seem to suggest a very high level of relationship between the forensic 
psychologist’s and the psychiatrist’s ratings. A correlation of .83 is, after all, a very strong 
relationship. The difficulty with this only becomes apparent when we examine Table 38.10 
which gives agreements between the forensic psychologist and the psychiatrist. This is 
constructed by tabulating the forensic psychologist’s ratings against those of the psychia-
trist. The frequencies in the diagonal represent agreements, all other frequencies represent 
a degree of disagreement.

	 Table 38.8	 Data from the three professionals for each of the 12 sex offenders

Clinical psychologist Forensic psychologist Psychiatrist

Offender 1 2 3 3

Offender 2 3 3 3

Offender 3 3 3 3

Offender 4 1 1 1

Offender 5 2 1 2

Offender 6 3 3 3

Offender 7 1 2 3

Offender 8 1 3 3

Offender 9 2 2 3

Offender 10 3 3 3

Offender 11 3 3 3

Offender 12 2 3 3
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At first sight it still might appear that there is strong agreement between the two sets 
of ratings. A total of 9 out of the 12 ratings suggest perfect agreement. So what is the 
problem? A closer examination of Table 38.10 suggests that virtually all of the agree-
ment occurs when the two experts rate the sex offender as a high risk to the public 
(rating 3). For the other two ratings they agree only one time out of four. This is a much 
lower level of agreement. Of course, if the experts rated all of the offenders as a high 
risk to the public then the agreement would be perfect – although they would not appear 
to be discriminating between levels of risk. If it were decided to release only sex offend-
ers rated as a low risk to the public, only one sex offender would be released on the 
basis of the combined ratings of the psychiatrist and forensic psychologist. In other 
words, correlation coefficients are not very helpful when the exact agreement of raters 
is required.

The index of agreement between raters needs to have the following characteristics:

●	 It provides an index of the extent of overlap of ratings.

●	 It should be sensitive to the problem that agreement is rather meaningless if both raters 
are using only one rating and do not vary their ratings.

Kappa is a useful index of agreement between a pair of raters since it is responsive to both 
of these things. The kappa coefficient is calculated from the following formula:

kappa =
total frequency of agreement - expected total frequency of agreement by chance

number of things rated -  expected total frequency of agreement by chance

Kappa can take negative values if the raters agree at less than chance level. It is zero if 
there is no agreement greater or lesser than chance. Coefficients approaching +1.00 
indicate very good agreement between the raters.

	 Table 38.9	 Correlations between the ratings of various professions

Forensic psychologist Psychiatrist

Clinical psychologist .55 .44

Forensic psychologist – .83

	 Table 38.10	 �Agreements and disagreements between the forensic psychologist and the psychiatrist 
on ratings of sex offenders

Forensic psychologist’s ratings Psychiatrist’s ratings

1 2 3

1 1 1 0

2 0 0 2

3 0 0 8
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How kappa coefficient works
The above data on the ratings of the forensic psychologist and the psychiatrist will be used to calculate kappa for their 
ratings.

Draw up a crosstabulation table of the data for the two raters and insert the marginal totals (i.e. the sum 
of frequencies for each row, the sum of frequencies for each column and the overall sum). This is shown 
in Table 38.11.

Step 1

Explaining statistics 38.2

Calculate the frequencies of agreement. These are the frequencies in the diagonal of Table 38.11. They 
have been given in bold. So the frequency of agreements is 1 + 0 + 8 = 9.

Calculate the expected frequency of agreement by firstly calculating the following for each of the 
diagonals:

expected frequency =
column total * row total

total

Thus the expected frequency of agreement for ratings of 3 is the product of the column total of 10 and 
the row total of 8 divided by the overall total of 12. This is 80 , 12 or 6.667. Table 38.12 contains the 
results of these calculations.

Step 2

Step 3

	 Table 38.11	� Agreements and disagreements between the forensic psychologist and the psychiatrist on ratings of sex 
offenders with marginal totals added

Forensic 
psychologist’s 

ratings

Psychiatrist’s ratings Marginal totals

1 2 3

1 1 1 0 2

2 0 0 2 2

3 0 0 8 8

Marginal totals 1 1 10 Total = 12
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The expected total frequency of agreement by chance is therefore:

0.167 + 0.167 + 6.667 = 7.001.

We can then substitute the values in the formula:

 kappa =
total frequency of agreement -  expected total frequency of agreement by chance

number of thing rated - expected total frequency of agreement by chance

 =
9 - 7.001
12 - 7.001

=
1.999
4.999

= .40

Interpreting the results

Notice that although the actual agreement seems high at 9 of the 12 ratings, coefficient kappa implies fairly low agree-
ment. This reflects the relative lack of variability in the experts’ ratings and the tendency for both to rate the offenders 
as 3 rather than any other value. Consequently, we can appreciate that coefficient kappa is superior to the simple propor-
tion of agreement in assessing the reliability of ratings.

Reporting the results

The results of this analysis can be written up as follows: ‘Coefficient kappa was calculated on the relationship between 
the forensic psychologist’s and the psychiatrist’s ratings of dangerousness. Despite there being a high level of agreement 
overall, it was found that kappa was only .40, suggesting that much of the apparent agreement was in fact due to both 
professionals using the highest dangerousness rating much of the time.’

Step 4

Step 5

	 Table 38.12	 Expected frequencies for agreement

Forensic 
psychologist’s ratings

Psychiatrist’s ratings Marginal totals

1 2 3

1 0.167 2

2 0.167 2

3 6.667 8

Marginal totals 1 1 10 Total = 12
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Reliability using Cronbach’s alpha and kappa

Helvik and colleagues (2011) carried out a psychometric study of the Hospital Anxiety and Depression Scale for 
the medically hospitalised elderly. Few studies had been carried out using this scale employing clinical samples of 
the elderly. The participants in the research were 484 elderly patients between 65 and 101 years of age. The coef-
ficient alpha for the entire scale was .78 and for the depression subscale of the test it was .71. Coefficient alphas 
at this level are generally considered to indicate satisfactory internal consistency by researchers.

Ingravallo and co-workers (2008) discuss impairment of job performance due to narcolepsy and indicate that 
there is a lack of accepted criteria for its assessment. Narcolepsy is a chronic neurological condition in which 
the brain cannot maintain day-time–night-time sleep cycles properly and sleepiness can occur frequently in 
circumstances not conducive to employment. In Italy there are benefits available but in order for the sufferer 
to receive them their case has to go through a medical commission. Fifteen narcolepsy claimees were assessed 
by four different commissions in simulated assessments. The different commissions were unaware of the deci-
sion making of the other commissions in the study. Inter-observer reliability using kappa ranged from .10 to .35 
for decisions concerning disability benefits. The raw agreement levels for the pairs of medical commissions 
ranged from 20.0% to 53.4%. The lack of agreed criteria for identifying narcolepsy is an obvious problem.

Laaksonen and colleagues (2012) report work on an interview-based scale concerning suitability for psycho-
therapy which was intended to assess suitability for long- and short-term therapy. The scale was used with 326 
psychiatric outpatients to obtain baseline measures. The usefulness of the Suitability for Psychotherapy Scale 
to assess changes in symptoms at a one year follow-up was also measured. Kappa coefficient was used to meas-
ure the extent of agreement between interviewers and a reference decision. In general, the agreement level was 
in the range of fair to good. Mostly the kappa coefficients ranged from .41 to .62 between interviewers and 
between interviewers and the reference.

Vassari and Crosby (2008) were concerned about the internal consistency reliability of the well-established UCLA 
Loneliness Scale (Revised). This scale has been widely used and it is associated with several distressing or nega-
tive psychological states. The authors were interested in knowing the reliability of this measure over a wide range 
of studies using the Loneliness Scale. Eighty studies were found which reported Cronbach alpha reliability coef-
ficients. They used a variety of meta-analysis known as Reliability Generalisation to do this. The mean internal 
consistency reliability coefficient across all of the samples in the studies was .87 indicating a good level of 
internal consistency. However, the variability of alpha was quite considerable over studies and ranged from .53 
to .95. Further analysis suggested that coefficient alphas varied according to 1) type of article, 2) where the 
report was published and 3) the standard deviations involved.

Research examples

●	 Although the methods employed in calculating internal reliability are straightforward, great care is needed 
to differentiate between internal reliability as assessed by the methods described in this chapter and meas-
ures of external reliability which are very different. External reliability includes the correlation between scores 
on a measure at two different points in time (i.e. test–retest reliability).

●	 The difference between a correlation between scores and agreement between scores is very important. Remem-
ber that there can be a strong correlation between two variables with absolutely no match in the scores.

Key points
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Computer Analysis

Cronbach’s alpha and kappa using SPSS

Interpreting and reporting the output

●	 It is generally accepted that a value of alpha of about .7 or larger indicates that a scale has 
satisfactory reliability. See main text of chapter for more on item analysis using item-total 
statistics.

●	 We would write something like: ‘The alpha reliability of the scale was .81 which indicates satisfactory 
internal reliability for the scale.’

	 Figure 38.2	 SPSS steps for Cronbach’s alpha internal reliability and kappa

M38 Introduction to Statistics in Psychology with SPSS 29099.indd   552 05/01/2017   15:28



	 â•‡ Recommended further reading	 553

	 Screenshot 38.1	 Item data in ‘Data View’
	 Screenshot 38.2	� On ‘Analyze’ select ‘Reliability  

Analysis. . . ’

	 Screenshot 38.3	 Select variables for analysis 	 Screenshot 38.4	 Select options

	 Screenshot 38.5	 Value of alpha output 	 Screenshot 38.6	 Item–total statistics

Recommended further reading

Tinsley, H. E. A., & Weiss, D. J. (1975). Interrater reliability and agreement of subjective judgments. 
Journal of Counseling Psychology, 22, 358–376.
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●	 A moderator effect is where the size of the relationship between one variable and another 
variable is different for the different values of a third variable. The moderating effect is also 
known as an interaction effect.

●	 Where all of the variables are score variables then it is recommended that hierarchical mul-
tiple regression is used to identify interactions which indicate moderator effects. This 
method makes full use of the information contained in the scores.

●	 The interaction term is created by multiplying the two predictors together. It is recommended 
that the means of the two predictors should be made to be zero by the predictors being 
centred or standardised. One reason for this is to reduce the size of the correlations between 
the predictors and the interaction.

●	 The two predictors are entered in the first step (block 1) of the hierarchical multiple regres-
sion and the interaction in the second step (block 2). There is a moderator effect if the 
interaction explains a significant proportion of the variance in the criterion.

●	 To interpret the interaction, values of the criterion are predicted for widely separated values 
of the two predictors such as their mean and one standard deviation above and below their 
mean.

●	 Whether these regression coefficients differ significantly from zero can be determined but 
not whether the slopes differ significantly from each other.

●	 Moderator effects of categorical variables on a continuous or score variable can be tested 
with the analysis of variance (ANOVA). If an interaction is found between the independent 
and moderator variables then this indicates a moderator effect, but it remains important to 
determine which group means differ significantly from each other and the direction of these 
differences.

Influence of moderator 
variables on relationships 
between two variables

Chapter 39

Overview
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	 39.1	 Introduction

There are various circumstances in which a relationship between two variables is in some 
way affected by a third variable. Two types of third variables are mediator variables and 
moderator variables. We discussed mediating variables in Chapters 32 and 35, but it is 
worthwhile reminding ourselves of what a mediator variable is. Take a look at  
Figure 39.1. It indicates that there is a relationship between the level of stress experienced 
by an individual and how depressed they feel. The more stress, the more depression. A 
mediating variable is a third variable which is responsible for the relationship between 
the main variables – stress and depression in this case. One reason why stress might lead 
to depression is that stress reduces one’s available time to engage in close social relation-
ships with friends and family and that it is the absence of close relationships which leads 
to depression shown in Figure 39.2. In other words, stress in our example does not 
directly lead to depression but it causes changes in a third variable (social relationships) 
which then affects depression. In this case, social relationships would be a mediator vari-
able for the relationship between stress and depression.

You should have a working knowledge of z-scores (Chapter 6), simple regression (Chapter 9), 
two-way analysis of variance (Chapter 25) and multiple regression (Chapter 34).

Preparation

	 Figure 39.1	 Stress and depression

	 Figure 39.2	 Social relationships as the variable moderating between stress and depression
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This chapter deals with another type of third variable – moderator variables. These are 
conceptually quite distinct from mediator variables, though a variable which is a modera-
tor variable may also be a mediating variable in another context. How do you know 
whether a variable is a moderator variable? Quite simply, if the main relationship you are 
interested in is different for different levels of the third variable then this third variable is 
having a moderating effect – and so it is a moderator variable. A simple example of a 
moderator might be gender if it were found to be the case, say, that there is no relation-
ship between stress and depression in women but a strong relationship between the two 
in men. Gender is having a moderating effect on the relationship between stress and 
depression. Male and female are different levels of the variable gender. So we would say 
that gender is a moderator variable in this case.

Another possible moderator variable for the relationship between stress and depression 
might be the variable social support – this refers to the extent to which an individual has 
family and friends which provide them with a warm, supportive social environment. 
Figure 39.3 illustrates the interrelationships between stress and depression and social 
support. Stress, depression and social support, we shall assume, have each been measured 
using a psychological scale so each variable consists of scores.

But just what is the nature of the relationships involved? There are several possible 
options:

●	 stress leads directly to depression

●	 depression leads to stress

●	 both of these are true

●	 stress leads the individual to be more isolated (lack social support) and this lack of 
social support leads to depression

●	 depression leads the individual to be more isolated (lack social support) which makes 
them susceptible to stress.

It is very difficult to decide which of the first three might be the case. However, the last 
two options are examples of mediating variables – that is, the reason why stress leads to 

	 Figure 39.3	 Stress, social support and depression
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depression is because stress affects social support, which then leads to depression. Or a 
similar argument might apply in which depression affects social support which then leaves 
the individual susceptible to stress. Partial correlation (Chapter 32) and other statistical 
techniques (Chapter 35) can help you decide whether social support is mediating the 
relationship between stress and depression.

However, remember that moderator variables are very different from mediating vari-
ables, though they are easily confused semantically unless one is very careful. One 
would say that social support is a moderating variable if the extent of the relationship 
between stress and depression is not the same for people with excellent social support 
networks, people with moderate social support networks and people whose social sup-
port networks are poor – they have few friends and family who they can turn to in time 
of difficulty. This is illustrated in Figure 39.4. As you can see, for that group of indi-
viduals who have poor social support there is a strong relationship between stress and 
depression. If social support is moderate or excellent, then there is little or no relation-
ship between stress and depression. In other words, then, the relationship between stress 
and depression depends on the level of social support (excellent, moderate or poor) 
experienced by participants in the study. In this example, individuals who lack social 
support seem to be vulnerable to depression when under stress. Those who have moder-
ate or excellent social support networks seem not to be vulnerable to depression when 
they are stressed. That is, social support has a sort of cushioning effect preventing stress 
leading to depression. This is perfectly sensible since social support is associated with 
helping with problems and preventing difficulties from getting worse. So social support 
as a moderating variable in the relationship between stress and depression would seem 
to make good psychological sense.

Another way of visualising this situation is in terms of Table 39.1. This table 
indicates that where there is a high level of stress but poor social support then the 
mean of the depression score is very high. In all other cells the level of depression is 
much the same. In other words, only where social support is poor do high levels of 
stress lead to high levels of depression. Of course, the outcome could be more com-
plex than this. Nevertheless, this is the basic situation which leads to the suggestion 
that there is a moderator variable, social support, different levels of which lead to 
different relationships between stress and depression. In this example, there is no 
relationship between stress and depression except in circumstances in which social 
support is poor.

	 Figure 39.4	 Social support as a moderator variable in the relationship between stress and depression
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Of course, there may well be other potential moderator variables which could be 
included in the analysis – we simply need to work out what they may be, measure them 
and then establish that they do play this sort of role. But this does rely on the researcher 
having bright ideas about likely moderator variables. We may also look for moderator 
variables (interactions) in circumstances where we expect variable A to be related to vari-
able B but nevertheless find that in reality the relationship between the two variables is 
weak. It is appropriate in these circumstances to think of the sorts of reasons why we 
would expect a stronger relation than the one we found. We have mentioned simple 
instances of this, but gender, age group, occupational group and so forth might be con-
sidered. What is a possibility really depends on what is being studied – and perhaps some 
insight on the part of the researcher. Figure 39.5 gives the key steps to consider in under-
standing moderator variables.

	 Table 39.1	� Mean depression scores for groups formed on the basis of level of social support and 
level of stress

Poor social support Moderate social 
support

Excellent social 
support

Low level of stress 6.20 5.60 5.65

Medium level of stress 6.10 4.60 5.30

High level of stress 12.25 5.60 6.25

	 Figure 39.5	 Conceptual steps for understanding moderator variables
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	 39.2	 Statistical approaches to finding moderator effects

You may have spotted something – that is, surely what is being referred to as a moderator 
variable here is part of what we called an interaction in analysis of variance (ANOVA). This 
is absolutely correct. It also suggests one way of examining one’s data to see if there is a 
moderator variable – that is, simply carry out a two-way analysis of variance on the data of 
a sort which resulted in Table 39.1. If there is a significant interaction then there is a mod-
erator effect. Chapter 25 discusses a two-way independent samples ANOVA design which 
corresponds to Table 39.1. However, it should be noted that if the stress and social support 
categories are based on score data, then there is information in the data which is being lost 
by simply classifying the scores into high, medium and low categories. (That is to say, for 
example, that although the people in the high category would have different scores, this 
information about order is lost when they have been classified into the high social support 
category.) This is bad form in statistical analysis. However, if the study had involved vari-
ables measured in terms of nominal categories rather than scores, then the ANOVA approach 
is the accepted approach. Since the data which psychologists collect are usually in the form 
of scores rather than nominal categories, then a different form of analysis would be preferred 
in most cases. The alternative method – the one used where the independent variable (e.g. 
stress) and the moderator variable (social support) are score variables – is based on hierar-
chical multiple regression which is presented in Chapter 34. In other words, both the 
ANOVA approach and the hierarchical multiple regression approaches are very substan-
tially the same analyses discussed in other chapters. The big difference is that the way in 
which we are conceptualising the analysis is somewhat different.

To summarise:

●	 If all of your variables are score variables then the best way to look for moderator 
effects is to use the hierarchical multiple regression approach.

●	 If your predictor and moderator variables are measured using a nominal (i.e. category 
or categorical) classification scheme but your dependent variable is a score, then you 
can use the ANOVA approach.

However, you might wish to take note of the following:

●	 Sometimes researchers use the ANOVA approach where all of their variables are scores. 
They merely categorise the moderator and the independent variables into high, medium 
and low categories. You may find this approach intuitively more appealing.

●	 You might be wondering what you can do if all of your variables are nominal category 
ones. Well you can’t apply the two approaches described in this data for the obvious reason 
that the dependent variable is also a nominal category. You might wish to check out Chap-
ter 41 on log-linear analysis since this can help you deal with these circumstances.

We will discuss the hierarchical multiple regression approach first and then go on to the 
ANOVA method.

	 39.3	
Hierarchical multiple regression approach to identifying 
moderator effects (or interactions)

The multiple regression approach to identifying moderator variables involves many of the 
ideas that were discussed in Chapter 34 on multiple regression and multiple correlation 
and, to a lesser extent, Chapter 35 on path analysis. If you have read those chapters then 
there should be few nasty surprises in what follows. However, there are new things in this 
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section, particularly a) the use of standardisation of variables and b) the introduction of 
a new predictor variable – the interaction. The interaction is where the moderator effect 
is found (see Box 39.1). So standardisation and interaction are given particular attention 
in the following discussion.

We did not standardise variables for the multiple regressions described in Chapters 34 and 
35, so why do we need to now? Standardisation usually means in statistics turning scores 
into z-scores and this applies in this case. That is, for each of our variables every score is 
turned into a z-score (using the methods described in Chapter 6, though we will describe the 
process again in this chapter). There is a technical reason for this standardisation which boils 
down to the fact that if this is not done, then the chances of detecting a moderator effect 
where one exists are reduced. A more detailed explanation depends on understanding how 
the regression calculation is actually done, so read the following explanation at your peril. 
In multiple regression where there are two or more predictors, the regression weights or 
regression coefficients are calculated setting the value of the other predictor variable at 0.  
For the raw scores, depending on what is being measured, the value of 0 could be anywhere 
in the distribution – i.e. it could represent a very big, a medium or a very low score. So it 
makes sense to involve the more typical scores in the middle of the distribution. So if we 
have ensured that a score of 0 is equivalent to the middle value of the distribution of scores 
by using z-scores where the middle of the distribution is 0, then we have ensured that the 
value of the ‘other’ variable is set at the mid-point of the distribution.

The other new thing in this chapter is the use of the interaction term in multiple regres-
sion. Although interactions have been discussed in Chapter 25 in relation to the analysis 
of variance (ANOVA), we have not previously discussed them in relation to multiple 
regression. It has to be said that there is a far closer relationship between ANOVA and 
multiple regression than appears on the surface. And if you understood interaction in terms 
of ANOVA then this should help you with it in relation to multiple regression. Essentially, 
the interaction term is created as a new computed variable simply by multiplying the score 

Interaction in multiple regression
Interaction can be seen as a multiplicative effect in multiple 
regression. That is, different levels of the predictor varia-
bles have an effect on the scores which is greater than can 
be understood in terms of the individual effects of the pre-
dictor variables. This is much as we described interactions 
in ANOVA in Chapter 25. The individual predictor varia-
bles have an additive effect on the dependent variable – that 
is, each predictor variable has a certain influence on the 
dependent variable and their combined influence is simply 
the sum of their separate influences. Of course, it is possible 
that the relationship between two variables is not a simple 
linear (and therefore additive) one. So sometimes, but 
rarely, you will find other relationships explored – 
the square of the scores on one variable in relation to the 
square of the scores on another variable, for example.

However, it is possible that the influence of the predic-
tor variable is not simply additive (or even based on a 

Box 39.1	 Key concepts

squared or quadrupled relationship) but multiplicative 
instead. That is, the effects of the predictor variables are 
multiplied together and not simply added together. As a 
consequence, when we seek to understand the influence 
of the predictor variables on the dependent variable in 
multiple regression, we look for the additive effects and 
also the multiplicative or interaction effects. That is why, 
quite simply, to get the interaction in multiple regression 
we multiply the scores on the independent variables 
together. Of course, the interaction is partly predictable 
from the independent variables which went to make up 
the interaction, but not entirely so. So if the simple effects 
of the independent variables are removed first, then we 
have the ‘pure’ multiplicative effect. This is precisely what 
happens in the calculations – the main effects of the vari-
ables acting individually are removed, which leaves a 
‘pure’ interaction effect.
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	 Table 39.2	 �Correlations between the variables and their interaction in raw scores and in 
standardised form

Raw scores Standardised scores

Social support Stress Social support Stress

Stress - .26 - .26

Interaction    .29 .83 - .00 .02

on one variable (stress) and the score on the moderator variable (social support). The 
interaction is really a new variable and is treated as such in multiple regression.

In order to understand why we standardise in this context, it is informative to compare 
the correlations between the three predictor variables (independent, moderator and inter-
action) in their unstandardised and standardised forms. Table 39.2 gives the correlations 
between the three raw variables involved in the multiple regression and then, separately, 
between the three standardised versions of the same variables for our data. It can be seen 
that the correlations between the two predictor variables and the interaction of the two 
predictor variables are larger for the raw scores than for the standardised versions of the 
same variables and their interaction. The correlation between stress and social support 
for the raw scores is - .26 and exactly the same for the standardised scores. This is not 
surprising since these correlations are based on exactly the same data apart from the fact 
that they have been standardised in one case. What is more interesting is that the correla-
tions between the interaction and the predictor variable change from the raw scores to 
the standardised scores. The correlations with the interactions are much lower for the 
standardised scores than for the raw scores. This means that the problem of multicol-
linearity has been virtually eliminated by using standardised scores rather than the original 
unstandardised raw scores. The correlations of social support and stress with the interac-
tion are .29 and .83 for the raw data, but in the standardised scores these correlations 
decline to - .00 and .02 – essentially zero correlations in both cases. The reduction in 
multicollinearity means that the interaction of the two predictor variables (which indicates 
a moderator effect) is more likely to be identified.

In hierarchical multiple regression, as with any form of regression, the basic task is to 
assess the extent to which a set of predictor variables (independent variables if you prefer) 
is related to the criterion (or dependent variable). In our example, stress and social support 
would be independent or predictor variables and depression would be the dependent or 
criterion variable. Although social support is believed to be a moderator variable in this 
research, it is also a predictor variable for the purposes of the hierarchical multiple regres-
sion. The interaction, as we have seen, is obtained quite simply by multiplying the scores 
for the two independent variables (stress and social support). An interaction would normally 
be indicated by the term stress * social support or whatever is appropriate. The interaction 
term is essentially treated as an additional predictor variable – which is precisely what it is. 
However, in the multiple regression the interaction is dealt with after the effects of the 
independent and moderator variables acting independently have been taken into account.

The hierarchical multiple regression procedure is essentially as illustrated in Figure 39.6. 
The basic principles of the hierarchical multiple regression process are as follows:

●	 The independent or predictor variables are entered in blocks.

●	 The first block is used in the analysis first and the second, third, etc. in strict order 
following that. In our example, there are only two blocks.

●	 There has to be a minimum of one independent variable in each block.
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In other words, there are priorities in hierarchical multiple regression which are deter-
mined by the order of blocks of variables. Each block may have just one independent 
variable in it, but it may have more according to the researcher’s purpose. As Figure 39.6 
indicates, the first block includes both the stress and the social support variables. The 
second block involves the interaction of the two variables – that is, the interaction term 
or, in other words, a predictor variable which is created from the multiplication of the 
stress and social support scores. By multiplying stress and social support together we get 
a new variable which is normally referred to as the interaction of stress with social sup-
port. If the interaction is statistically significant in the multiple regression analysis then 
we have a moderator effect; if not then there is no moderator effect.

To reiterate, in our example, the first block comprises both the stress and the social 
support variables. This stage of the analysis seeks to find out what influence stress and 
social support, acting separately, have on the dependent variable – i.e. depression. By 
analysing these in the first block, their influence on the interaction term is taken into 
account just as the main effects are taken into account first in ANOVA. The second block 
is the interaction of stress and social support. This is calculated by multiplying each indi-
vidual’s score on the stress variable by their score on the social support variable. In our 
example, we have just one potential moderator variable, but we could have two or three 
if we so wished. The problem with multiple moderators is that there are multiple interac-
tions in this case since the number of potential interactions increases disproportionately 
the more potential moderator variables we have. This is reminiscent of what happens in 
ANOVA when you have too many independent variables. In a phrase, the result is infor-
mation overload. So be parsimonious in terms of the number of moderator variables you 
include in your analysis.

If the hierarchical multiple regression does produce a significant interaction then this 
is indicative of a moderator effect. Unfortunately, it does not tell us just what the modera-
tor effect is. To see what the form of the interaction is, it is necessary to carry out further 
analyses. It is suggested by some statisticians that this is done by predicting the scores on 
the dependent or criterion variable (i.e. depression) for low, medium and high scores on 
the independent variable and the moderator variable using the unstandardised regression 
coefficients (Aiken and West, 1991). The advantage of this method is that it takes into 
account particular scores when determining the significance of the interaction term (i.e. 
moderator effect) and does not bundle together participants into somewhat arbitrarily 
defined groups.

Multiple regression assumes that the relationship between the criterion and the interac-
tion can be represented by a straight line although nonlinear relations can sometimes be 
tested if an appropriate transformation method is available for turning the nonlinear 
relationships into linear ones (Aiken and West, 1991). However, this is beyond the scope 
of this chapter and you should consult Aiken and West if you need more information.

	 Figure 39.6	 Structure of a hierarchical multiple regression to test for interactions (moderator variables)
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Identifying moderator variables using the hierarchical 
multiple regression approach
The amount of data needed to study moderator variables is large. So instead of presenting the data in a table we have 
provided an SPSS file of the data on the website for this book. The steps in hierarchical multiple regression for moderator 
variables are summarised in Figure 39.7.

Explaining statistics 39.1

	 Figure 39.7
	 Conceptual steps for understanding the use of hierarchical multiple regression to 

identify moderator effects

When using hierarchical multiple regression to identify moderator variables, the usual practice is to 
standardise each of the variables (the independent variable, the dependent variable and the moderator 
variable). The interaction is based on the standardised independent and moderator variables. Multicol-
linearity problems are likely to occur if one uses the raw scores to calculate the interaction term and 
these are likely to reduce the statistical significance of the interaction and risk making it non-significant. 
In general, it is less likely that a moderator effect will be detected if there are multicollinearity 
problems.

In the approach to moderating variables used in this chapter, standard scores are used in order to 
eliminate collinearity influences. However, there are two possible methods for dealing with collinearity:

Step 1

➜
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1.	 Instead of using the raw scores, the scores are ‘centred’ to make 0 the mean value of the variables. 
This can be done simply by taking the mean score on the variable away from each score. This needs 
to be carried out for both the moderator and the independent variables, but it is not necessary for 
the dependent variable. The formula for centring is:

centred score = individual score - mean score

2.	 The alternative to this uses standardised scores (i.e. z-scores). This ensures that the mean score on 
each variable is 0.00, just as the previous method. This is regarded as the preferred approach (e.g. 
Aiken and West, 1991). It is the method we describe in this chapter. Essentially the standard scores 
approach adds an extra stage to the calculation in that each centred score is divided by the standard 
deviation of the scores. This gives us the standardised score or z-score. We calculated z-scores in 
Chapter 6 if you need to refresh yourself on these. Thus to standardise scores on each variable we 
simply apply the following formula to obtain the standardised values:

z@score = individual score - mean score
standard deviation of scores

	 Scores standardised in this way will have a mean of 0.00 and a standard deviation of 1.00 (this 
is always true of z-scores as explained in Chapter 6). The criterion or dependent variable should 
also be standardised if the z-score method is employed rather than the centring approach (e.g. 
Aiken and West, 1991).

Although it is easy to turn a score into a z-score by a hand calculation, there are many such calculations 
to be done so a computer package is essential. Turning scores into standard scores is easy with a computer 
program like SPSS – it merely requires ticking a box in the ‘Descriptive’ analysis routine. The new variable 
based on z-scores will appear as a new column in the data with a slightly different variable name.

It is equally easy to calculate the interaction variable by multiplying each z-score for the moderator vari-
able by the corresponding z-score for the independent variable. On SPSS the ‘Compute’ procedure will do 
this for you, of course (see Computer Analysis in Chapter 36). Once again, the outcome of these calcula-
tions will be shown as a new variable on the ‘Data View’ spreadsheet of SPSS. You will need to give this 
new variable a meaningful name. Otherwise it is easy to get confused by the eventual computer output.

So, now we have three standardised variables – the independent variable, the moderator variable and the 
dependent variable – plus the interaction term which is essentially a variable created by multiplying the 
first two variables together. The next step is to carry out a hierarchical multiple regression on these vari-
ables. The structure of this analysis is summarised in Figure 39.6. In hierarchical multiple regression dif-
ferent sets of variables are entered into the analysis in blocks. The variables in block 1 will be dealt with 
together and before variables in block 2. There is a minimum of one variable in each block. The point of 
this is that the interaction term needs to be analysed after the two independent variables have been dealt 
with since the interaction is essentially what is left over after the effects of the two independent variables 
have been ‘removed’.

Given the general advice that a large sample size is needed when looking for moderator effects it is 
probably wise to use a computer package to do this calculation too.

Table 39.3 summarises the outcome of running a hierarchical multiple regression analysis on the data. 
From this table you can obtain values for the intercept, the regression weights for each variable and 
their statistical significance. Since we are mainly interested in moderator effects, the significance level 
of the interaction term in Table 39.3 is most important since it tells us whether or not we have a sig-
nificant moderator effect. However, the table also has the values of the regression weights needed for 
us to identify just what the nature of the moderator effect is. It is clear that all of the regression weights 
are statistically significant in this example (except for the intercept which can be ignored).

Step 2

Step 3

Step 4
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The most important thing in Table 39.3 is the statistical significance of the interaction. The interaction 
is what indicates the presence or not of a moderator effect. If the interaction is not statistically significant, 
then there is no moderator effect – i.e. social support is not a moderator variable for these data. However, 
if there is a significant interaction then you do have a moderator effect. Unfortunately, this does not tell 
us precisely what the nature of this moderator effect is. (This is analogous to the situation in ANOVA 
where a significant ANOVA does not tell you just where the differences between the cell means lie.) So 
there is another step that needs to be carried out.

The problem at this point is that the output from the hierarchical multiple regression merely gives us 
regression weights and their significance levels. What it does not tell us is just what parts of the data 
show markedly different trends from the other parts of the data differentiated by different levels of 
the moderator variable. The solution adopted is to choose a high score, a medium score and a low 
score on both the independent variable (stress) and the moderator variable (social support). This gives 
us nine possible combinations of high, medium and low stress and high, medium and low social sup-
port. So in other words, some fairly arbitrary values for the high, medium and low scores are chosen. 
The high, medium and low scores are defined simply as the score one standard deviation above the 
mean, a score at the mean and a score one standard deviation below the mean. Of course, expressed 
as standard scores (z-scores) these are +1, 0 and -1, respectively. Don’t forget that scores on the 
independent, dependent and moderator variables have been turned into z-scores at an earlier stage. 
So the score corresponding to a high score is already +1, a medium score is already 0 and a low score 
is already -1.

What happens next is the regression weights shown in Table 39.3 are used to predict the most likely 
score on the dependent variable, depression, for each of the nine combinations of high, medium and low 
stress scores with high, medium and low social support scores. We will look at the formula for calculating 
the estimated depression scores in the next paragraph. However, it is important to understand that these 
nine predicted depression scores are examined to find out just where the interaction effect is. That is, one 
is looking for just where exceptionally large or small predicted scores are to be found. Having found these, 
then one has identified the location of the moderator effect – that is, what combination of high, medium 
or low scores on stress and high, medium and low predicted scores on social support are associated with 
these exceptionally high or low predicted scores on depression?

In order to predict the depression score from the independent variable (X), the moderator variable (M) 
and the interaction (XM), we simply apply the following formula (which is an extension of what we saw 
in Chapter 34):

Yn = a + b1X + b2M + b3XM

Step 5

	 Table 39.3	 Regression summary table

B (regression weight) t Sig.

Intercept (constant) -0.05 0.69 .49

Stress (standardised) 0.21 2.86 .01

Social support 
(standardised)

-0.21 2.87 .01

Interaction -0.19 2.86 .01

The dependent variable is depression.

➜
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That is, we multiply the relevant X, M and XM scores by the relevant regression weight from Table 39.3 
plus the constant or intercept and this gives us the best prediction of the depression score based on our 
predictors.

The following lists the elements of the above formula for clarity:

Yn = the predicted score on the dependent variable

a = the intercept (cut-point) for the regression line – it is a constant for any particular analysis so is the 
same in every case

b1 = the regression weight for the predictor (independent variable)

X = the score (z-score) on the predictor variable (i.e. +1, 0 or -1)

b2 = the regression weight for the moderator variable

M = the score (z-score) on the moderator variable (i.e. +1, 0 or -1)

b3 = the regression weight for the interaction

XM = the interaction of the independent and moderator variables – this is not a z-score though it is the 
product of the two z-scores

So, in order to work out the predicted value of the dependent variable for each of the nine combinations 
of high, medium and low scores for the two variables, we calculate the above equation nine times which 
gives nine estimated scores on the dependent variable (depression) for each of the possible combinations 
of the high, medium and low scores for the independent variable (stress) and the moderator variable (social 
support).

Well, that is what we do in theory, but there is a problem using the above formula. The problem basi-
cally is that we do not know precisely what the interaction term means. We do not know which scores it 
is made up from. For example, for a particular interaction value – say 2.00 – there are many different 
values of the moderator and the independent variable which multiplied together would give a value of 
2.00. So it could be, for example, 1 on the moderator variable and 2 on the independent variable – but 
equally it could be 2 on the moderator variable and 1 on the independent variable. Both of these give a 
value of 2.00. Fortunately, it is possible to rewrite the equation so that it does not involve the use of the 
interaction term. The formula for regression given above can be rearranged (by anyone clever enough) to 
yield the following version of that original formula:

a + (b1 + b3M)X + b2M

This formula is the one which is actually used in the calculation as you can see in Table 39.4.
The nine calculations are illustrated in the nine cells of Table 39.4. As you can see:

●	 The prediction formula is the same in each cell, of course.

●	 The constant or intercept a is the same throughout for this particular analysis (it is -0.05).

●	 The various regression weights are the same throughout.

●	 Only M (the value of the moderator variable) and X (the value of the independent variable) vary 
in the formulae. They will be +1, 0 or -1 according to the particular cell in question. The scores 
are entered as appropriate depending on the row and column of the cell in question. The value 
that goes into the calculation can be found at the top of the relevant row and the top of the rel-
evant column.

The predicted mean depression scores can be plotted on a graph (Figure 39.8) in order to illustrate the 
predicted score’s relationship to different levels of stress and social support. It is quite obvious that  
the slopes in Figure 39.8 are very different. The blue slope for low social support is quite steep whereas 
the red slope for high social support is quite flat. It is clear that the graph indicates that for individuals 
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Table 39.4

	 �Illustrating the three levels of the predictor and moderator variable and the calculation of the expected mean 
on the dependent variable

High score on predictor 
variable (X) (i.e. score at +1 
standard deviation)

a + (b1 + b3M)X + b2M
= -0.05 + (0.21

+ -0.19 * 1) * 1
+ -0.21 * 1

= - .24

a + (b1 + b3M)X + b2M
= -0.05 + (0.21

+ -0.19 * 0) * 1
+ -0.21 * 0

= - .16

a + (b1 + b3M)X + b2M
= -0.05 + (0.21

+ -0.19 * -1) * 1
+ -0.21 * -1

= - .56

Medium score on predictor 
variable (X) (i.e. score at 
mean)

a + (b1 + b3M)X + b2M
= -0.05 + (0.21

+ -0.19 * 1) * 0
+ -0.21 * 1

= - .26

a + (b1 + b3M)X + b2M
= -0.05 + (0.21

+ -0.19 * 0) * 0
+ -0.21 * 0

= - .05

a + (b1 + b3M)X + b2M
= -0.05 + (0.21

+ -0.19 * -1) * 0
+ -0.21 * -1

= - .16

Low score on predictor 
variable (X) (i.e. score at -1 
standard deviation)

a + (b1 + b3M)X + b2M
= -0.05 + (0.21

+ -0.19 * 1) * -1
+ -0.21 * 1

= - .28

a + (b1 + b3M)X + b2M
= -0.05 + (0.21

+ -0.19 * 0) * -1
+ -0.21 * 0  

= - .26

a + (b1 + b3M)X + b2M
= -0.05 + (0.21

+ -0.19 * -1) * -1
+ -0.21 * -1

= - .24

with high levels of social support, the level of stress made no difference to the level of depression. On the 
other hand, for those who have low social support, it is clear that as stress levels increase then so does depres-
sion. The lines are straight lines because they represent a linear (straight line) relationship between stress and 
depression. Although it is possible to calculate a numerical value for each slope, unfortunately there is no 
statistical test to establish whether the slopes of these lines differ significantly. In order to carry the analysis 
further then we adopt the procedure described in Step 6. However, it is important to point out that what our 

➜

	 Figure 39.8	 Plot of predicted depression scores based on output from hierarchical multiple regression
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eyes see in Figure 39.8 should convince us that the interaction or moderator effect is largely to do with 
low levels of social support.

Although one might expect to be able to test statistically whether the slopes in Figure 39.8 differ from 
each other, actually there are no available statistical techniques to differentiate these slope coefficients (e.g. 
Cohen et al., 2003). Hence we did not calculate these coefficients as there is no point in doing so. One 
solution to this problem involves dividing the sample into two approximately equal sized groups in terms 
of the moderator variable. So there is a high (above the mean) and low (below the mean) group on the 
moderator variable. Basically the idea is to see whether the correlations between the independent variable 
and the dependent variable are different for the high and low groups. In Section 37.7 we discuss how to 
test for significant differences between correlations. So it is, first of all, simply a matter of dividing your 
data into two groups on the basis of being high or low on the moderator variable (social support). This 
can be done on SPSS by using the ‘Recode’ procedure to divide the social support scores into two groups. 
The correlation between the independent variable and the dependent variable is then calculated for the 
high group followed by the low group. Finally, the formula for the significance of the difference between 
two correlation coefficients can be applied. This is not available on SPSS though applets for doing the 
calculation are available on the web.

Step 6

However, it is not too complicated to calculate the significance of the difference between two correla-
tion coefficients. The test is a variant of the z-test and it is also discussed in Chapter 37. Although the usual 
advice is to divide the sample to give equal sized groups, you might wish to modify this if you think that 
the moderator effect occurs towards the higher end or the lower end of the moderator variable. In this 
case, you might wish to adjust the split point. Using the mid-point of the social support variable resulting 
in the following Pearson correlations between stress and depression:

●	 for the high social support group the correlation is .002 (p = .989, N = 84)

●	 for the low social support group the correlation is .375 (p = .001, N = 96).

These two correlations have to be transformed into standardised (z) correlations using Table 37.5. The 
formula for the test of the difference between the two correlation coefficients is as follows:

z =
zr1 - zr2

A
1

N1 - 3
+

1
N2 - 3

In this equation, zr1 and zr2 are the two standardised correlation coefficients obtained by using Table 37.5. 
The standardised value of r = .002 is .000 and for r = .375 the standardised value is .400. These can be 
substituted in the formula along with the relevant sample sizes (N1 = 84, N2 = 96):

 z =
0.000 - 0.400

A
1

84 - 3
+

1
96 - 3

 =
-0.400

A
1
81

+
1

93

 =
-0.400

20.012 + 0.011

 =
-0.400

20.023

 =
-0.400
0.152

 = -2.63

M39 Introduction to Statistics in Psychology with SPSS 29099.indd   568 05/01/2017   15:37



	 39.4â•‡ ANOVA approach to identifying moderator effects (i.e. INTERACTIONS)	 569

Interpreting the results

z must equal {1.96 or more to be statistically significant at the .05 level with a two-tailed test of significance (1.65 or 
more for the one-tailed test of significance–refer to Significance Table 6.1). In other words, this analysis confirms that 
there is a significant difference between the correlations for high scorers on social support and low scorers on social sup-
port. The low social support group shows a strong correlation between stress and depression whereas there is a virtually 
zero correlation for the group high on social support.

One disadvantage of this method is that it involves dividing the sample into two smaller samples, which means that 
the correlations and the difference between them are less likely to be statistically significant. Of course, if you wanted a 
quick assessment of your data in terms of possible moderator effects, the approach taken in this step would give you a 
good indication of any moderator effects though it is not as powerful as going through the full process including the 
hierarchical multiple regression.

Reporting the results

One way of reporting the multiple regression results is as follows: ‘Baron and Kenny (1986) have suggested that a mod-
erator effect is most appropriately tested with multiple regression. Such an effect is indicated if the interaction of the two 
predictor variables explains a significant increment in the variance of the criterion variable while the two predictor vari-
ables are controlled. Aiken and West (1991) recommended that the criterion and the two predictor variables be stand-
ardised. Following these recommendations, a significant proportion of the variance in depression was accounted for by 
the interaction of stress and social support after the individual variables comprising the interaction were controlled, 
R2 change = .04, p 6 .01. To interpret the significant interaction three separate unstandardised regression lines were 
plotted between standardised stress, standardised social support and the standardised level of depression at the mean and 
at one standard deviation above and below the mean of standardised stress and standardised social support. The relation 
between stress and depression was strongest at low levels of social support.’

	 39.4
	 ANOVA approach to identifying moderator effects  

(i.e. interactions)

The ANOVA approach is used where the independent variable and the moderator variable 
are in the form of nominal categories. Sometimes it is used to analyse data which have 
been collected in the form of scores. In this case, the scores have to be divided into three 
separate groups indicating high, medium and low scores for both the independent variable 
and the moderator variable. It is best to use three groups of scores since non-linear rela-
tionships can be identified whereas they cannot with only two groups. This grouping 
system can be seen in Table 39.1 which is simply a table of mean scores on depression for 
high, medium and low scoring groups of the independent and moderator variables. Gener-
ally speaking, it is best not to do this since information is lost from the data by doing so. 
On the other hand, the ANOVA approach does have some advantages in terms of being 
clearer and less complex.
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Identifying moderator effects using the ANOVA 
approach for nominal independent and moderator 
variables

This calculation is based on the example already discussed in the previous section. However, the essential 
features of the analysis of this study can be seen in Table 39.1. Unless one or more of your predictor vari-
ables is qualitative in nature – that is, a nominal/category variable – then you need to categorise the scores 
on your variable as being in the high, medium and low categories in terms of their size. Although you 
could use just two categories – such as high and low scores – this is inadvisable if you have a substantial 
sample size though you may need to try it if not. It is possible to use the ‘Recode’ procedure on SPSS to 
categorise a score variable into groups.

The next step is to run the ANOVA calculation. We have a 3 * 3 ANOVA design of the sort described in 
Chapter 25. Chapter 25 includes an explanation of the procedure and instructions on how to carry out 
the analysis by hand. However, we will not repeat these instructions for this particular example. Instead, 
we will present the results of a computer analysis as outlined in Figure 39.9 since testing for moderator 
effects tends to involve substantial sample sizes.

Step 1

Step 2

Explaining statistics 39.2

	 Figure 39.9	 Plot of means of depression scores for the stress and social support groups
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The mean scores for each of the cells of the ANOVA analysis can be found in Table 39.1. However, it is 
generally easier to interpret the meaning of the mean scores in a significant interaction by plotting them 
in a graph where the dependent variable is represented by the vertical axis: one of the predictors is indi-
cated by relatively widely separated points on the horizontal axis and the other predictor is shown by 
different coloured lines. This kind of graph is shown in Figure 39.9 where the horizontal axis represents 
the three levels of stress and the separate lines represent the three levels of social support. Figure 39.9 plots 
the mean depression scores of the nine groups formed on the basis of the three levels of stress and the three 
levels of social support. What seems clear from this plot is that there is one group – high stress and poor 
social support – which has a particularly high mean score on depression. The other eight groups, although 
their means do vary a little, have similar means. To anyone familiar with ANOVA, this pattern is very 
suggestive of a strong interaction between stress and social support. Differences in stress level alone and 
differences in social support level alone do not have much bearing on depression – in general, the depres-
sion is more or less the same for each of the stress and each of the social support groups. The exception, 
as we have seen, is the one group with high stress but poor social support. In other words, Figure 39.9 
demonstrates a clear moderator effect.

You also need to check out the analysis of variance (ANOVA) summary table based on this analysis 
(Table 39.5). The significance levels for the variables stress and social support and the interaction between 
them are all statistically significant. However, it is the interaction which shows whether or not there is a 
moderator effect. A significant interaction effect indicates the presence of a moderator effect. You will see 
that the row for the interaction of stress and social support is statistically significant at the .00 level, which 
indicates strongly the presence of a moderator effect. In this case, this is clear and unproblematic. However, 
note that the main effects for stress and social support are also both statistically significant. On the face 
of things, this seems to suggest that stress and social support, acting separately, each have an effect. This 
is a case where one should be somewhat cautious in the light of what Figure 39.9 suggests about the group 
means in general – that most of the means are about the same with the one exception. It is important to 
remember that ANOVA adopts a particular model for analysing data in which main effects such as stress 
and social support take precedence in the analysis to any interactions. So what is happening here is that 
some of the variation due to the interaction is being misleadingly allocated to the main effects. Despite 
this, in this particular case there is no doubt that there is a significant moderator effect which is what you 
need to know. A problem would arise if the main effects had been significant and the interaction non-
significant – the plot of means as in Figure 39.9 is clearly the key to identifying the risk of assuming 
erroneously that there is no interaction and, hence, no moderator effect. The way in which ANOVA 
favours main effects was explained in Chapter 25.

Step 3

Step 4

Source of  
variance

Sum of  
squares

Degrees of  
freedom

Mean square F-ratio Sig.

Stress 248.74 2 124.37 13.67 .00

Social 
support

294.54 2 147.27 16.19 .00

Interaction 270.06 4 67.51 7.42 .00

Error 1555.65 171 9.10

	 Table 39.5
	 �ANOVA summary table giving significance levels for the effects of stress and 

social support on depression

➜
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One relatively simple way of checking whether there truly are main effects is to compare appropriate pairs 
of cells in the ANOVA table. Remember that a main effect should apply to all pairs of cells in Table 39.1. 
So if there is a main effect of stress, then the group with excellent social support should have significantly 
different depression in the low stress condition from the medium stress condition and so forth. That is, 
the main effect of stress should apply at each different level of social support. Table 39.6 illustrates this. 
The vertical arrows indicate the cells which should be different from each other if there is a main effect of 
stress. The horizontal arrows indicate the cells which should be different from each other if there is a main 
effect of social support. Of course, this is the perfect scenario and, of course, in reality things will not be 
so perfect. One quick and simple way of checking is to run a post hoc multiple comparison test such as 
the Scheffé test on all of the cells. To do this, you need to turn the ANOVA into a one-way ANOVA with, 
in this case, nine separate cells. On a computer, one could simply add another column indicating which of 
the nine groups each score of the dependent variable (depression) belonged to. That is, a code of 1 to 9 is 
added to the data to indicate which of the nine groups each score is from. When this analysis is carried 
out on this data, the outcome is simple. None of the cell means differs from each other except for the high 
level of stress with poor social support. The mean of this cell is significantly higher than all other means 
in the table, just as we would expect from the plots in Figure 39.9. In other words, there are no main effects 
– just the interaction demonstrating that social support is, indeed, a moderator variable. This is exactly 
what one would expect from the pattern of means. Of course, this is, in part, a matter of judgement about 
the data, but ANOVA analyses can need interpretation if misleading conclusions are to be avoided.

Reporting the results

One way of reporting the ANOVA results is as follows: ‘ANOVA was used to seek for moderator effects in the data. A 
moderator effect is indicated by a significant interaction in the ANOVA. The 3 * 3 ANOVA on the data indicated main 
effects on depression for stress, F(2, 171)3 = 13.67, p 6 .001, hp

 2 = .14, and social support, F(2, 171) = 16.19,
 p 6 .001, hp

 2 = .16, were statistically significant. However, more importantly in this context, it was found that the 
interaction of stress and social support was also statistically significant, F(4, 171) = 67.51, p 6 .001, hp

 2 = .15. This 
interaction effect indicates that social support moderates the relationship between stress and depression. In order to 
identify more precisely the nature of the moderator effect, multiple comparison tests were made between the means of 
the nine groups. It became clear that the relationship between stress and depression was strong only for participants who 
lacked social support.’

Step 5

Poor social support Moderate social support Excellent social support

Low level of stress 6.20 5.60 5.65

Medium level of 
stress

6.10 4.60 5.30

High level of stress 12.25 5.60 6.25

	 Table 39.6	 Illustrating significant differences in mean scores if there are main effects
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Moderator variables

Ang and colleagues (2012) examined whether adolescents’ perceptions of parents’ knowledge of their online 
activities would moderate the positive relation between loneliness and problematic Internet use. They found 
that the positive relation between loneliness and problematic Internet use was stronger in adolescents who 
thought that their parents did not know than in those who thought they did know.

Sprung, Sliter and Jex (2012) examined spirituality as a moderator of the relation between being aggressive at 
work and various outcomes. Spirituality was partly defined as finding meaning in one’s life. They found that 
spirituality moderated the relation between physical aggression and workplace stress. The positive relation 
between physical aggression and workplace stress was greater in those with higher spirituality than those with 
lower spirituality which was contrary to what they had hypothesised.

Wang and Huguley (2012) looked at whether parental racial socialisation practices moderated the relation 
between racial discrimination and various educational outcomes among African-American adolescents. Parental 
racial socialisation practices were measured with four questions which asked parents to indicate how often they 
had talked or engaged in activities with children that promoted feelings of racial knowledge, pride and connec-
tion. They found that the negative relation between teacher discrimination and grade point average was moder-
ated by parental racial socialisation practices. This relation was more negative in children whose parents engaged 
less often in racial socialisation practices than those who engaged more often.

Warren and colleagues (2012) determined whether stress would moderate the positive relationship of talk about 
being too fat to body dissatisfaction and drive for thinness. They found that stress did moderate these relation-
ships. Contrary to what they had predicted these positive relationships were stronger in those with less stress 
than those with more stress.

Ziegler and Britta Diehl (2012) investigated whether job ambivalence moderates the positive relation between 
job satisfaction and job performance. Job ambivalence was defined as having positive and negative feelings 
about one’s job. They found that job ambivalence moderated the relation between job satisfaction and job per-
formance. The positive relation between job satisfaction and job performance was stronger in managers who 
were less rather than more ambivalent about their job.

Research examples

●	 The most appropriate way of determining whether there is a moderating or interaction effect between two 
continuous (score) variables is a hierarchical multiple regression.

●	 This analysis involves the standardisation of the measures into z-scores which overcomes some technical 
problems raised by using raw data.

●	 Another name for moderator effect is interaction, and the assessment of moderator effects is based on the 
identification of interactions through either multiple regression or ANOVA.

●	 It is not possible to do the calculations in their entirety just using a standard computer package such as SPSS. 
There is a certain amount of hand calculations to do or doing computations on SPSS using the ‘Compute’ 
procedure, for example.

●	 To interpret the interaction from a multiple regression, it is recommended that the slope or regression coef-
ficient of the criterion on one of the predictors is calculated for three widely separated values of the other 
predictor such as its mean and one standard deviation above and below the mean.

Key points
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	 Screenshot 39.2	 On ‘Analyze’ select ‘Linear. . . ’

Computer Analysis

Regression moderator analysis using SPSS

	 Screenshot 39.1	 Part of the data in ‘Data View’ with 
standardised scores

	 Figure 39.10	 SPSS steps for a moderator analysis with hierarchical multiple regression
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	 Screenshot 39.5	 Model summary table output

	 Screenshot 39.3	 Enter variables for analysis 	 Screenshot 39.4	 Select statistics

Recommended further reading

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions.  
Newbury Park, CA: Sage.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation 
analysis for the behavioral sciences (3rd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
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●	 The main purpose of statistical power analysis is to guide the planning of research. In par-
ticular, it seeks to optimise the sample size(s) used such that it is neither so small that sig-
nificant results are impossible nor so large that time and other resources are used 
unnecessarily.

●	 Statistical power is the likelihood that the research study will detect an effect (i.e. trend, 
correlation or difference) in the sample(s) selected when one exists in reality (in the statisti-
cal population).

●	 The probability of deciding that there is an effect when in reality there is none is known as 
the Type I error and it is usually given the symbol alpha (a). Statistical significance testing 
gives a low probability figure – usually .05 – to keep the risk of Type I errors to a reasonable 
minimum.

●	 The probability of failing to detect an effect when one exists is known as the Type II error. It 
is usually designated as beta (b).

●	 Statistical power is, therefore, simply 1 - b. Usually a figure of .80 is regarded as very 
satisfactory.

●	 Statistical power is interrelated with three things: a) the standardised effect size (such as 
Cohen’s d or the correlation coefficient), b) the alpha (a) or significance level and c) the 
sample(s) size involved in the study. The larger that any of these values is, the more power 
there is in the study. It is possible, though a little complex, to calculate statistical power if 
the other three things are known or can be estimated rationally.

●	 Furthermore, the researcher can calculate the required sample size(s) based on the required 
or estimated statistical power, the expected effect size and the significance level required. 
These calculations are best carried out using programs available on the web for ease.

Statistical power analysis
Getting the sample size right

Chapter 40

Overview
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	 40.1	 Introduction

One of the commonest questions asked by students planning research is ‘What sample 
size do I need? Would 25 be enough?’ Such questions are probably motivated by a number 
of factors:

●	 Keeping the amount of work on data collection to a minimum since time is at a pre-
mium and collecting data is not always a speedy matter. Often there seems to be small 
reward for spending a great deal of time collecting data compared to, say, spending 
that time reviewing the research literature or working on the report.

●	 Giving themselves a reasonable chance of obtaining statistical significance which 
always feels like the preferred option when it comes to writing up a research report or 
submitting a dissertation. This even applies to professional research where it is well 
known and documented that it is easier to publish research based on statistically sig-
nificant findings than non-significant ones.

Now these are perfectly understandable reasons for asking the sample size question. 
However, unlike many topics in statistics, this is a question unlikely to provoke a com-
pletely satisfactory answer from psychologists. Among the likely answers are:

●	 Get as big a sample as you can.

●	 You can probably get away with 50 (or some other number) participants.

●	 It is impossible to say – depends on too many things.

Each of these is inadequate in its own way. Taking them in turn we can consider why this 
is the case:

●	 Get as big a sample as you canâ•‡  The suggestion that a researcher should get the largest 
possible sample is wasteful at best. Although student research generally has mainly time 
costs, research in general is a surprisingly costly activity. With some types of study, the 
financial cost of each additional participant may run to several hundred pounds or dollars. 

●	 Statistical power calculations carried out before the main study is conducted are regarded 
as valuable. Questions have been asked, however, about using statistical power calculations 
after the data have been analysed. That is, statistical power analysis is uncontroversial in 
terms of planning a study but its use is more controversial as part of the analysis of the data.

●	 Conceptually, statistical power analysis is quite sophisticated and relies on a mature under-
standing of decision-making in research and the applicability of research findings. It requires 
the researcher to shed some faith in the significance testing model in favour of understand-
ing decision-making in research and its application.

Preparation

This is a relatively advanced technique which can only be built on a thorough understanding 
of the use of statistics in research. You need a thorough understanding of the statistical tests 
that you will use in your research together with knowledge of sampling distributions and 
sampling error.
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The researcher’s time is expensive, in the first place, but there may well be substantial 
additional costs in terms of things like travel, transcription, equipment usage and so forth. 
Such expenditure is justifiable if the money is being well spent, but what if it is not?

Imagine that you were the chair of a research committee allocating research funds 
to eager researchers: you would have many responsibilities. You would need to be satis-
fied that the research you fund is feasible and of potential value, that the research 
design, etc. is optimal and so forth. Furthermore, it is also important that the research 
is not unnecessarily expensive. Hence you would want a reasoned explanation for the 
researcher’s chosen sample size so as not to waste money. Clearly, the sample size 
should be as big as necessary to answer the research question effectively. This optimum 
is dependent on various factors including the size of the effect in the study. Ordinary 
statistics such as the correlation coefficient and the t-test are indicative of the size of 
the effect – we are discussing the size of the correlation coefficient and the value of the 
t-test here not their statistical significance. But it is also dependent on the extent to 
which we are prepared to risk Type I and Type II errors (Chapter 11). A Type I error 
is accepting the hypothesis when it is, in fact, false and a Type II error is rejecting the 
hypothesis when it is, in fact, true. These are dealt with in Figure 40.1. The concept of 
power (as in the title of this chapter) simply refers to the probability of not making a 
Type II error – if there is actually a trend or difference in reality.

There is another reason why aiming for the largest sample size possible is regarded as 
unsatisfactory. This is because with very large sample sizes, the slightest relationship or 
trend in the data is likely to be statistically significant. Now if statistical significance is a 
researcher’s sole criterion of importance then this means that extremely unimpressive 
trends (effects) in the data will be elevated to a level of importance which they do not 
warrant. For example, although a correlation of .70 is needed to be significant at the 5% 
level with a sample of 10, it only takes a correlation of .20 to be significant with 100 
participants and a correlation of .06 to be significant with 1000 participants. In other 
words, a very small relationship in the data may achieve the status of statistical signifi-
cance and all that entails if the sample size is sufficiently large. Of course, a good researcher 
will modify their interpretation of their analysis in the light of such considerations.

It is probably worth mentioning at this stage that there is a view among statisticians 
that the null hypothesis is unlikely to be exactly true, so a study with an extremely large 
sample size is very likely to produce a statistically significant trend. Obviously, such 
statistically significant but relatively minuscule trends are unlikely to be of much real 
interest to researchers.

	 Figure 40.1	 Type I and Type II errors

M40 Introduction to Statistics in Psychology with SPSS 29099.indd   578 05/01/2017   15:39



	 40.1â•‡ Introduction	 579

●	 You can probably get away with 50 (or some other number) participantsâ•‡  What about 
the second suggestion that there is a sample size which is likely to ‘do the trick’? This 
has some merit in that it implies that there is a sample size likely to detect ‘statistically 
significant effects’ where they exist and that it does not demand that the researcher 
samples beyond what is necessary. However, just where has the proposed sample size 
come from? If it is based on considerable experience in the particular area of research 
in question then it is probably of some value as it is based on inside information about 
what sample size ‘works’ in a particular field of research. For example, a student who 
is carrying out a research project in a field of research in which their supervisor is 
expert might well get useful advice on sample size from them. Similarly, if a student is 
carrying out research which is very similar to that already published then there may be 
a case for considering using a similar sample size. This approach may seem a little 
rough and ready but, failing anything else, it is informative. The trouble is that it is 
only worth considering if it is based on relevant experience. The central problem is that 
the optimum sample size which is just big enough to meet the requirements of a) being 
big enough to potentially produce statistical significant outcomes and b) not being 
unnecessarily large depends on quite sophisticated statistical ideas which do not readily 
lend themselves to ‘plucking’ numbers out of the air. Of course, such suggestions about 
sample size may be based on rather different considerations – the idea that a certain 
sample size demonstrates that the student or researcher has put in sufficient effort to 
achieve satisfactory outcomes. This is an irrational emotional approach which is, there-
fore, difficult to justify in this context.

●	 It is impossible to say – depends on too many thingsâ•‡  We can turn now to the final 
suggestion that optimum sample size depends on too many factors, many of which 
are unknown to the researcher, and so cannot be estimated. This runs counter to 
everything that you will learn about in this chapter. While the proper estimation of 
appropriate sample size is not as common among psychologists as it perhaps ought 
to be, it is not too difficult to estimate this despite the estimate involving some of the 
sort of intelligent guesswork (i.e. inference and estimation) for which statistics is 
infamous.

One reason why you need to know about statistical power analysis is that it is increas-
ingly expected in terms of professional level research. For one thing, journals are increas-
ingly demanding that researchers include power as part of the statistical analyses 
submitted for publication. For another, as we have seen, those funding research are also 
increasingly likely to ask for estimates of the optimum sample size based on power cal-
culations for reasons of economy and the viability of a study. There are other reasons 
too. If a researcher is carrying out research into the effectiveness of a particular form of 
psychotherapy using a control group, this means that some people participating in the 
research will not receive the treatment because they have been allocated to the control 
group. So using a sample size which is unnecessarily big will mean that if the treatment 
is shown to be effective then the excess of people in the control group will not get treat-
ment. As a consequence, they may suffer a distressing condition for much longer than 
perhaps is necessary. In other words, research which goes on beyond what is necessary 
can be counterproductive.

Statistical power is simply the likelihood that a study will detect a trend (or effect) in the 
data in circumstances in which, in reality, there is a trend. The concept of power is reviewed 
in Box 40.1. Remember that research deals with samples so reality, in this case, refers to 
the actual trend in the population which can be regarded as the baseline of truth or reality. 
Of course, this is largely an abstract concept since the researcher only knows about their 
sample(s) of data, not what is actually happening in the population. So we are talking esti-
mation and inference once again. There are two basic risks in research which are taught to 
students very early on in their statistics courses. The most familiar is the idea that the 
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sample(s) of data collected for the study sometimes will show a trend or a relationship when 
in reality there is no trend or relationship in the population from which the data were col-
lected. This is known as a Type I error and is illustrated in Figure 40.2. Significance testing 
tries to minimise the risk of the Type I error by imposing the .05 or .01 significance criterion 
which refers to the level of risk of a Type I error that the researcher is prepared to take. Type 
I error is involved in power analysis because power depends partly on the significance level 
you choose for your study. The other risk is that of making a Type II error. This is failing 
to find a trend or relationship in the study when in reality there is a trend or relationship. 
The Type II error is also illustrated in Figure 40.2.

This somewhat formal account also involves H0, which is the null hypothesis, and H1, 
which is the alternative hypothesis. You can regard the null hypothesis and alternative 
hypothesis in the way that they are discussed in experimental design, but they are simply 
the situation in which there is no trend at all in the data and the situation where there is 
a trend in the data. You implicitly consider Type I error every time you carry out a signifi-
cance test. On the other hand, Type II error is likely to be much less familiar as its impor-
tance is often neglected. Indeed, this chapter is probably the first occasion when 
understanding it is of crucial importance. The concept of statistical power is essentially 
the opposite of that of the Type II error. Thus statistical power is the probability of not 
making Type II error if there is a trend or relationship in the data. If the probability of 
making a Type II error is .15 then the power of the analysis (or the probability of not 
making a Type II error) is 1.00 - .15 = .85.

There is one important point that needs to be stressed. Power is calculated on the basis 
that the hypothesis (H1) is true – in other words it only concerns the circumstances in 
which it is assumed that there is a relationship or trend in the population. So statistical 
power is the likelihood of detecting a trend or relationship in circumstances in which there 
is in reality a trend or a relationship exists. If you think about it, much the same applies 
for the Type I error – the probabilities are in terms of the likelihood of making an error 
if in reality the null hypothesis is true.

Statistical power is affected by other aspects of the research, most of which should be 
very familiar to you by now. You might find it easier to think about the factors which will 
reduce the likelihood of making a Type II error and consequently increase the power of 

	 Figure 40.2
	 Possible correct and incorrect (errors) decisions that a researcher can make based on 

their data
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Statistical power
The concept of statistical power is not quite what it seems. 
It is very much a conceptual matter which can be appreci-
ated only if the basic concepts of statistical testing are 
understood. If you have reached this chapter then probably 
you have mastered at least some of the essential basic ideas. 
So be warned that statistical power is not a common-sense 
notion in itself. Nor is it possible to suggest that the more 
power there is the better. Research is essentially about find-
ing trends in whatever the researcher’s field of interest is. It 
is traditional in psychology to conduct research by measur-
ing the size of a correlation between two variables or the 
size of a difference between group means, for example. 
Then the researcher calculates the likelihood that a trend 
of this particular size could be obtained as a result of sam-
pling fluctuations. If this is unlikely, the researcher will 
declare that their results are statistically significant. Usually 
a relatively arbitrary probability level of .05 or .01 is used 
to assess statistical significance. Sometimes this is expressed 
as the 5% level of significance or the 1% level of signifi-
cance. This is little other than the likelihood that the 
researcher has selected a sample(s) which appears to show 
a trend or relationship which does not represent the true 
situation – that is, there is no correlation or difference in 
the population from which the sample(s) was selected 
though there does appear to be one in the sample being 
studied. The level of significance (.05, .01) simply repre-
sents the extreme uncharacteristic samples which will be 
found due to sampling fluctuations despite the reality that 
there is no correlation or difference. Certain things might 
be mentioned in respect of significance testing:

●	 Discussion of the concept of Type I error is fairly com-
monplace in analyses of research data though this is usu-
ally in terms of statistical significance. A Type I error is 
where the researcher accepts that there is a trend (correla-
tion or difference) based on what can be seen in their data 
though this is an erroneous decision. The .05 and .01  
levels of significance are probabilities that the researcher 
may have made a Type I error – if there is in reality no 
correlation or difference. If the researcher chooses the 
.01 level of significance then this means that there is less 
chance of making a Type I error than if they had chosen 
the .05 level of significance. In this sense, the .01 level 
of significance can be seen as more stringent than the 
.05 level of significance. But it is only one part of the 

Box 40.1	 Key concepts

picture despite statistical significance frequently being 
used as if it were the gold standard in research.

●	 Every psychology student will know that statistical 
significance is related to such things as sample size (the 
bigger the sample size the more likely a trend in the 
data is to be statistically significant – all other things 
being equal) and the size of the correlation or differ-
ence (the bigger the trend in the data the more likely 
one is to obtain statistical significance – all other things 
being equal).

All of this is likely to be very familiar. Nevertheless, it is not 
what power is about. Statistical power is more about a part 
of decision-making in research which is commonly taught 
but tends to be overlooked in the quest to achieve the status 
of statistical significance.

So although psychologists should know about the con-
cept of the Type II error, it is often not actively considered 
when making decisions based on their research. The Type II 
error is the likelihood that a researcher has collected data 
which suggest that there is not a trend when in reality there 
is a trend. Sampling error is responsible for Type II errors 
just as it is for Type I errors. However, it is the sampling 
distribution of the population in which there is a real trend, 
i.e. not of the hypothetical population distribution of the 
null hypothesis of no trends. So a Type II error is where the 
sample(s) on which a research study was based do not seem 
to show the trend which actually exists in reality.

Now both Type I and Type II errors are bad news in 
research for very different but feasible reasons. The concen-
tration on Type I errors is unfortunate, but statistics is a 
complex discipline and inevitably things will get simplified 
if their importance is not understood. Research is largely 
about establishing that there are trends and relationships 
in whatever is being studied rather than showing that there 
are no trends and relationships. Rarely do researchers set 
out to establish that there is no trend or relationship in 
their data. Quite the reverse – they are usually keen to show 
them in their data. If you make a Type II error you are 
essentially claiming that there is no relationship when there 
is one. Given that this is simply not what researchers want 
(no matter how objective and dispassionate some claim to 
be), then greater clarity about the implications of Type II 
errors seems to be essential.

➜

M40 Introduction to Statistics in Psychology with SPSS 29099.indd   581 05/01/2017   15:39



582	 CHAPTER 40â•‡ Statistical power analysis: Getting the sample size right

the analysis. These factors can all be seen in Figure 40.3, which lists things that will affect 
statistical power (and the risk of making a Type II error). Most of these you could prob-
ably guess were involved anyway:

●	 The bigger the sample size then the greater the power of your study (and the less likely 
it is that a Type II error will be made), all other things being equal. This makes intuitive 
sense since a study with bigger samples is more likely to detect trends or relationships 
where they exist than one using smaller samples. One reason is that the bigger the 
sample then the smaller the sampling error (or spread of sample means taken from the 
population).

●	 The bigger the significance level (i.e. alpha or a) you choose for your test of signifi-
cance, the greater the power of your study (and once again the less likely it is that you 
will make a Type II error) all other things being equal. Now alpha is the significance 
level that you choose when assessing the statistical significance of the trend or relation-
ship in your data. If you select an alpha of .05 then this is bigger than an alpha of .01. 
Thus an analysis using the .05 level of significance has more power than one using the 
.01 level of significance – all other things being equal. It is important, though, to 
remember that the significance level does not have to be .05 and can vary depending 
on a range of circumstances associated with the research, although it is a sound fall-
back choice. Also remember that the significance level is the probability of identifying 
a trend or relationship in the data when there is no trend or relationship in reality due 
to sampling fluctuations (i.e. the risk of a Type I error). It is fairly obvious that where 
the researcher accepts a greater risk of making a Type I error (finding a trend where 
there isn’t one) then the risk of Type II error will be lower as a consequence. But we 
will return to this shortly.

Statistical power is essentially the opposite side of the 
coin to the Type II error. Statistical power concerns the 
ability of a research study to detect a relationship when 
there is indeed, in reality, a relationship. A Type II error is, 
in contrast, the likelihood of failing to detect a relationship 
where one exists in reality. So statistical power is really the 
extent to which the researcher is likely not to be making a 
Type II error – but remember that the phrase ‘if the hypoth-
esis suggests that there is a relationship in reality’ always 
needs to be appended to the definitions of both power and 
Type II errors. So statistical power = 1 - the probability 
of making a Type II error. If the probability of making a 
Type II error in a particular study is .20, the power of the 
study to detect a real trend or difference is 1.00 - .20 = .80. 
Remember that 1.00 in probability theory (Chapter 19) 
refers to a single event or instance. So in this case the 1.00 
refers to a single instance of a researcher’s decision to 
decide either that there is a trend or that there is not a trend 
in the data. The .80, therefore, is the probability that this 
decision has been in favour of concluding that there is a 
trend or difference when one actually exists in reality out-
side of the researcher’s study.

The Type II error and power both depend on the dis-
tribution of samples taken at random from the population 

in which there is a trend or difference. Some of these sam-
ples will depart quite markedly from what is happening 
in the population from which the samples were taken. 
Any of these samples which are in the range of the non-
statistically significant samples according to the null 
hypothesis of zero differences or correlations would be 
erroneously identified as coming from the population 
where the null hypothesis is true. The amount of overlap 
between the two sampling distributions will obviously 
affect the size of the Type II error and the statistical 
power. This can be seen in Figure 40.3.

This boils down to the following. Statistical power 
reflects the risk that the researcher will fail to show the 
relationship or difference which was the real purpose of the 
research. Imagine that the researcher was searching for a 
cure for cancer – accepting the null hypothesis erroneously 
might lead to the abandonment of this line of research 
which might have led to a cure for cancer. This would be 
an extremely serious consequence – some might say much 
more serious than mistakenly thinking that one had found 
a potential cure for cancer when, in truth, your treatment 
did not work. These are clearly complex arguments which 
are far more socially important than dry discussions of 
Type I and Type II errors.
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●	 The bigger the size of the effect in a study (i.e. the stronger the relationship or the 
greater the trend or the bigger the difference between the mean scores for each 
group) then the greater the power your study has (and the lower the risk of making 
a Type II error) – all other things being equal. If you consider that the size of the 
effect in a study is indicated by the size of the correlation or the size of the t-statistic, 
for example, then once again this should not surprise you. A correlation of .6 is 
more likely to be statistically significant than one of .3, for example, for a given 
sample size. This means that the researcher is more likely to accept that there is a 
relationship or trend in the data. Since power is the likelihood of identifying a trend 
or relationship in a study when one exists in reality, it is not unexpected that sample 
size relates to power. It is usual in power calculations to use a standardised measure 
of effect size, most commonly Cohen’s d, but sometimes a correlation coefficient is 
used as this is standardised too. See Box 40.2 for a more detailed discussion of 
measures of effect size.

Other things influence power, in particular the variability in the data. The greater the 
variability in the data, however, the lower the power in the study. This is because 
increased variability reduces the chance that your findings will be statistically significant. 
Remember that power is the likelihood of detecting a relationship or trend in your study 
when there is one in reality. Thus if the possibility of significant findings is reduced 
because of higher variability in the data then the power is reduced because the trend or 
relationship will not be detected even though in reality there is one. However, this is not 
necessarily an important feature of power calculations since the standardised measures 
of effect size (e.g. the Pearson correlation coefficient and Cohen’s d) which are used in 
power analysis take this into account in their calculation. Nevertheless, the variability 
in the data is something which the researcher can often do something about – anything 
that can be done to reduce this variability increases the power of the analysis. For exam-
ple, the researcher can standardise their methods of conducting the research and also use 
well-constructed tests and other measures as both these things will reduce variability and 
consequently increase power. That is, reduce, if they can, any unwanted source of vari-
ability in the study.

All of these aspects intertwine in a study to produce the power of your analysis. Fur-
thermore, the analysis is different for different statistical procedures (tests of significance), 

	 Figure 40.3	 Components of statistical power calculations
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which means that the calculation of statistical power can be a little complex. There are 
two main ways to deal with this and make statistical power accessible to researchers: a) 
produce tables for every test of significance which results in numerous tables to consult 
and b) use computer programs in which the researcher enters key aspects of their study 
(sample size, effect size and the significance level [i.e. alpha level] involved) and the cal-
culation is left to the computer. Of course, alternative c) is to do the calculations yourself 
by hand though this is not a particularly helpful option.

Figure 40.4 is important. It shows the (theoretical) distribution of samples taken from 
the population. The curve on the left, in red, is the distribution of differences between 
sample means (of a given size) if the null hypothesis that there is no trend in the data is 
correct. It is therefore the sampling distribution according to the null hypothesis:

●	 Notice that the mean or midpoint of this curve is 0.0 as you would expect if the null 
hypothesis is true since there should be no difference between the samples except that 
due to sampling error.

●	 The pink area is the portion of this curve selected to be the significance level for testing 
the hypothesis. The pink area is bigger for a .05 significance test than for a .01 signifi-
cance test. That is, the vertical green line will be further to the left for .05 significance 
than for .01 significance.

The curve with the dotted blue line is not so familiar. It is the distribution of differences 
between sample means if the hypothesis is true – that is, if in reality there is a trend in the 
data. The mean of the dotted blue curve is about 2.3; that is, the effect of being in one 
group compared to the other. If this is standardised then it is an effect size.

There are a number of things that may be obvious from Figure 40.4:

	 Figure 40.4	 Power, significance and Type I errors based on G*Power output
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Effect size
An effect size is the extent of the trend demonstrated by a 
study. Effect is a slightly odd word in the context of most 
research since it implies the influence or impact of one vari-
able on another variable. However, effect size is really 
about the relationship between two variables rather than 
anything to do with cause and effect. It refers essentially to 
two things:

●	 The size of the relationship (i.e. correlation) between 
two variablesâ•‡  The most familiar measure of this is the 
Pearson correlation coefficient which can be used as a 
measure of the effect size. In Chapter 37 the Pearson 
correlation coefficient is used as the measure of effect 
size for meta-analysis as we are very familiar with it. 
The Pearson correlation coefficient is a standardised 
measure of the relationship between two variables. That 
is, one can meaningfully compare correlation coeffi-
cients even when they are taken from different studies. 
The bigger the correlation between two variables the 
bigger the effect size.

●	 The difference between the mean scores of different 
groups of scoresâ•‡  For example, this could be the 

Box 40.2	 Key concepts

difference between the mean of the experimental and 
control group. Although such differences do indicate the 
actual effect, it is not used as a measure of effect size 
because it is dependent on the variation in the data. In 
other words, differences in themselves are not standard-
ised measures.

If the difference between two means is to be used as a 
measure of effect size then that difference needs to be 
standardised so that differences in means may be compared 
from study to study. You should be familiar with some 
forms of standardisation by now. They basically involve 
adjusting by the variability in the data. The commonest 
way of doing this is to use Cohen’s d as a measure of effect 
size. Cohen’s d is simply the difference between the two 
mean scores (X1 - X2) divided by the standard deviation 
of the population:

Cohen’s d =
X

1
- X2

standard deviation of population

Cohen originally suggested dividing by the standard 
deviation based on one or other group of scores. The 

●	 The part of the blue dotted curve which is shaded in blue to the left of the pink shaded 
area indicates the extent of Type II error in this particular study. The power of this 
particular study is indicated by the remainder of the blue dotted curve. This includes 
the area of statistical significance for the red curve.

●	 If the size of the effect of the study is increased (i.e. by mentally moving the blue dotted 
curve to the right) the power would increase as there would be less of the blue dotted 
curve to the left of the pink alpha area. Move the curve to the left and the power would 
decrease.

●	 If variability in the study were to be reduced, then the curves would have less spread 
and power would increase as a consequence.

●	 If the significance level changes then the pink alpha area will be bigger or smaller. It is 
smaller if the significance level is .01, which will have the effect of increasing the Type 
II error and so decreasing the power of the analysis. It is larger if the significance level 
is .05 which means that the Type II error will be smaller and the power greater, as a 
consequence.

What cannot be seen from Figure 40.4 is the influence of sample size on power. However, 
if you remember (from Chapter 10) that the sampling distribution for larger samples is 
smaller than for smaller samples then it can be understood why sample size influences 
power by reducing the spread of the sampling distribution, all other things being equal.

➜
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assumption was that the two standard deviations should be 
equal. But, of course, they are likely to be different to some 
extent in practice. Consequently, it is more usual to pool 
(combine) the two standard deviations when calculating 
Cohen’s d, much as it is when calculating the value of t for 
a t-test. But this actually leads to a situation in which there 
are various formulae for combining the two standard devi-
ations since there is more than one way of doing this. The 
commonest formula for Cohen’s d which involves pooling 
standard deviations is as follows:

X1 - X2

C
(n1 - 1)s2

1 + (n1 - 1)s2
2

n1 + n2

The two standard deviations are listed as s1 and s2 in the 
above and their respective sample sizes are given as n1 and n2.

Should you wish to calculate the effects size for your 
study then there a number of effect size calculators 

available free on the Web which involve entering some 
information based on your data following which the effect 
size is given. Simply type the words ‘effect size calculator’ 
into your favourite search engine and make your selection 
from the sites that this generates. G*Power, which is used 
in this chapter to calculate power, will also calculate the 
appropriate measure of effect size for the particular test of 
significance that you are using. The information required 
is readily available from the output of the t-test on pro-
grams such as SPSS. Alternatively, you could calculate the 
effect size as a correlation coefficient (using SPSS or any 
other statistics program or by hand using the procedures 
described in Chapter 17). The dependent variable of the 
study is one variable in the calculation and the other vari-
able is the group to which the participant in question 
belongs which is coded 1 for the control group and coded 
2 for the experimental group, etc. If you want the effect size 
as a value of Cohen’s d then Table 40.1 could be used to 

Pearson Cohen’s Pearson Cohen’s Pearson Cohen’s Pearson Cohen’s Pearson Cohen’s

r d r d r d r d r d

.00 0.00 .20 0.41 .40 0.87 .60 1.50 .80 2.67

.01 0.02 .21 0.43 .41 0.90 .61 1.54 .81 2.76

.02 0.04 .22 0.45 .42 0.93 .62 1.58 .82 2.87

.03 0.06 .23 0.47 .43 0.95 .63 1.62 .83 2.98

.04 0.08 .24 0.49 .44 0.98 .64 1.67 .84 3.10

.05 0.10 .25 0.52 .45 1.01 .65 1.71 .85 3.23

.06 0.12 .26 0.54 .46 1.04 .66 1.76 .86 3.37

.07 0.14 .27 0.56 .47 1.06 .67 1.81 .87 3.53

.08 0.16 .28 0.58 .48 1.09 .68 1.85 .88 3.71

.09 0.18 .29 0.61 .49 1.12 .69 1.91 .89 3.90

.10 0.20 .30 0.63 .50 1.15 .70 1.96 .90 4.13

.11 0.22 .31 0.65 .51 1.19 .71 2.02 .91 4.39

.12 0.24 .32 0.68 .52 1.22 .72 2.08 .92 4.69

.13 0.26 .33 0.70 .53 1.25 .73 2.14 .93 5.06

.14 0.28 .34 0.72 .54 1.28 .74 2.20 .94 5.51

.15 0.30 .35 0.75 .55 1.32 .75 2.27 .95 6.08

.16 0.32 .36 0.77 .56 1.35 .76 2.34 .96 6.86

.17 0.35 .37 0.80 .57 1.39 .77 2.41 .97 7.98

.18 0.37 .38 0.82 .58 1.42 .78 2.49 .98 9.85

.19 0.39 .39 0.85 .59 1.46 .79 2.58 .99 14.04

	 Table 40.1	 Equivalent effect sizes expressed as Cohen’s d and Pearson correlation coefficient
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	 40.2	 Types of statistical power analysis and their limitations

There are a number of ways in which statistical power is used in research. These divide 
into a) the prospective (a priori) use which is part of the planning of a research study and 
b) the retrospective (post hoc) use where statistical power is calculated as part of the 
analysis of the data. These are illustrated in Figure 40.5. It should be quickly pointed out 
that opinion is divided on the value of different aspects of power analysis. Most  

	 Figure 40.5	 Uses of power analysis

convert the resulting correlation coefficient to the equiva-
lent value of Cohen’s d as explained in the next 
paragraph.

There is a close relationship between Cohen’s d and the 
Pearson correlation coefficient. This is to be seen in 
Table 40.1. This allows a value of Cohen’s d effect size to 
be converted to a Pearson correlation coefficient and vice 
versa. In Table 40.1 the left hand columns contain values 
of the Pearson correlation coefficient (Pearson r) and the 
right hand columns contain the values of Cohen’s d. If you 
wish to find the equivalent Cohen’s d for a Pearson r of .40, 
simply find the .40 in the columns and look to its right in 
that row. You will find that a Pearson r of .40 corresponds 
to a Cohen’s d of 0.87. If you have a Cohen’s d of 2.20 then 

you look at the column to the left of this where you will 
find that the corresponding Pearson r value is .74. If you 
have values which go to more than two decimal places then 
you will need to round down to two decimal places before 
you use the table. If the precise value is not in the table then 
use the nearest value instead. Such a conversion from 
Cohen’s d to a correlation coefficient is useful if you are not 
very familiar with Cohen’s d. In these circumstances the 
Pearson r will almost certainly be more meaningful to you.

There are other measures of effect size when comparing 
two groups (Glass’s ∆ and Hedges’s g) though Cohen’s d 
tends to be the most commonly used. There are also other 
measures of effect size to deal with analysis of variance 
(ANOVA) designs.
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statisticians acknowledge that the prospective uses of statistical power are of value when 
planning substantial research projects. On the other hand, some question the value of 
retrospective power analyses. Some of the arguments are quite vehement.

The argument for the prospective use of power analysis as part of the planning of a 
research study has largely been made earlier in this chapter. However, one argument might 
be particularly difficult for those trained in psychological research. Psychologists tend to 
stress the importance of finding statistically significant differences or relationships, often 
forgetting other considerations. In brief, it is good to get statistically significant results. 
Certainly, there is a view that significant research findings are easier to get published. 
Statistical power analysis puts a very different gloss on the research and basically argues 
that only relationships or differences of a certain magnitude are important and worthy of 
consideration and that sample size, in particular, should be geared to making it likely that 
significant trends will be found in the data where they exist in reality. In other words, for 
a particular area of research or a particular research study, what is the size of effect which 
the researcher is warranted in searching for? And, given this, what is the size of sample(s) 
which can detect an effect of this magnitude? If a researcher’s sole criterion for effective 
research is that statistically significant findings are obtained then very large sample sizes 
should normally do the trick. What emerges, though, is likely to be of trivial or no value. 
There is an argument in the statistical literature that null hypotheses are never (or hardly 
ever) true – take a large enough sample and a statistically significant difference or correla-
tion will be found even if it involves sampling thousands of cases. Unfortunately, this is 
a fairly accurate caricature of some research in psychology though it is essentially mind-
less. Of course, statistics textbooks often inadvertently and unintentionally reinforce the 
view that statistical significance is a holy grail in research. Planning research should be a 
much more thoughtful process than this implies.

Another prospective use of power analysis is where a pilot study has been carried out 
on a relatively modest number of participants in order to make sure that the procedures 
of the study work well enough to encourage the researcher to consider a later larger-scale 
study. It is likely to be possible to use the basic information from this pilot study concern-
ing effect size to allow an intelligent approach to deciding an optimal sample size for the 
subsequent large-scale study. This is a thoughtful intelligent approach to planning research 
which should be encouraged.

The argument about the retrospective use of statistical power analysis is, as mentioned, 
somewhat more controversial and acrimoniously presented. It boils down to the question 
of what value such retrospective power analyses are to the researcher. This retrospective 
power analysis is known as observed power and is calculated as part of some of the sta-
tistical routines on SPSS, for example. Quite obviously, if your study produces statistically 
significant findings then the study had sufficient statistical power for the particular sample 
size used – otherwise you would not have obtained statistically significant results. It might 
also be of some interest to quantify the power of your study when considering the effect 
size. For example, you might find that your study had a very large power value. This 
suggests that you may have used a far too large sample size given the effect size. In other 
words, any future studies could involve a smaller sample size which brings consequent 
economies to the research. Power analysis could tell you the size of sample that future 
similar studies require. This, though, is rather like the case of using pilot studies discussed 
above and amounts to good practice for much the same reasons.

Controversy arises when retrospective power analysis has been used to make a rather 
different sort of argument. Some researchers have argued that if a study fails to obtain 
significant findings, a power analysis can be used to help decide what is going on in the 
data as a sort of data analysis method. Imagine that the power analysis suggests that the 
study involves adequate statistical power yet the findings are not statistically significant. 
Basic statistics courses tell us that in these circumstances where we have not obtained 
statistical significance we reject the hypothesis and accept the null hypothesis of no 

M40 Introduction to Statistics in Psychology with SPSS 29099.indd   588 05/01/2017   15:39



	 40.3â•‡ Doing power analysis	 589

difference or no relationship. Now retrospective power analysis (observed power) is some-
times used to suggest that where a) there is no evidence in support of the hypothesis and, 
consequently, b) the null hypothesis should be accepted then if the observed power is low 
then this suggests that the evidence in support of the null hypothesis should be regarded 
as weak. That is, the argument goes that the study was incapable of rejecting the null 
hypothesis because of its low power. The problem with this argument is that there is a 
direct relationship between the observed power and the probability (significance) level 
found using a test of significance. In other words, discussing observed power is a long-
winded way of saying things which the significance level already indicates. One further 
criticism of using observed power (erroneously) in this way is that there are acceptable 
methods of testing the strength of the null hypothesis. For example, it is possible to test 
whether two group means are statistically equivalent rather than simply ‘not significantly 
different’ as in the case of conventional significance testing (Hoenig and Heisey, 2001). 
The controversy, in summary, is about whether observed power statistics add anything 
to the interpretation of non-significant research findings. Nevertheless, psychology jour-
nals are increasingly likely to require the reporting of observed power statistics.

The message from this seems to be clear. Power analysis as part of the planning process 
for a research study is generally regarded favourably by both researchers and statisticians 
as an important tool. It helps ensure clarity about what is an adequate effect size for a 
particular study but also encourages consideration of what would be an adequate sample 
size. In contrast, however, retrospective power analysis should be used with great caution 
because it is only of very limited value and is not a tool for data analysis as such. Indeed, 
the retrospective use of power analysis is most acceptable in circumstances where it poten-
tially contributes to the planning of further research studies – but that is the case for 
prospective power analysis.

	 40.3	 Doing power analysis

It must be understood that the following are interdependent:

●	 statistical power

●	 sample size

●	 effect size

●	 statistical significance.

If three of these four things are known for a particular test of significance then it is 
possible to work out the fourth. Usually it is statistical power or sample size which is 
calculated from the other three using power analysis programs. Although it is feasible to 
do these calculations without the aid of a computer, there is little point in spending time 
on this when one has better things to do with one’s time. Type the words power analysis 
calculator into your preferred Internet search engine and any number of resources for 
doing particular aspects of power analysis will be listed. Mostly they will do what you 
need, though some have a more specialised function than others. You can download 
G*Power from the Web, which is our preferred program, but there are others available. 
The authors of this have kindly allowed us to include it on the book’s website so you 
should have access to it permanently. Some other programs are in the form of applets on 
web pages so you do the calculation on screen but the program is not downloaded on 
your computer.
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You will probably have noticed a stumbling block. What is the value for statistical 
power, effect size and statistical significance if I want to use statistical power analysis to 
calculate the appropriate sample size? Where can I find these? The answer is, in general, 
that you can’t find them but you will have to rationally decide what the appropriate values 
for each of these are. Let us go through the different aspects of the power calculation in 
turn:

●	 The level of statistical significance is traditionally set at .05 in psychology. This is 
often described as an arbitrary value and it is. There is no logic in choosing it except 
that it stipulates a pretty low value of probability that the researcher will choose to 
accept the hypothesis erroneously when the null hypothesis of no trend is in reality 
true. That is, there is only a 1 in 20 chance (5%) of accepting the hypothesis when 
it is, in fact, false in reality. But is this value always an adequate criterion? What if 
the research was about a cure for hay fever and a decision whether or not to spend 
a very large amount of money on research and development rested on the outcome 
of the study? In these circumstances, would it not be wiser to adopt a more stringent 
significance level (e.g. .01) in place of .05? The answer is probably yes. On the other 
hand, if the planned research is more exploratory and in a field where there is little 
previous research, then maybe a less stringent significance level of .10 might be 
adopted. For example, if the study was being carried out on a shoestring for purposes 
with no such immediate consequence as the spending of huge sums of money, then 
surely the risk of prematurely abandoning research on this topic (because the study 
fails to obtain significant results) might be more serious than the consequences of 
reaching by chance the erroneous conclusion that the hypothesis was true. Quite 
clearly, these are not really statistical decisions but ones, nevertheless, of some impor-
tance to the researcher.

Of course, it is possible to explore the effect on sample size of the various possible 
levels of significance to see if it makes any practical difference to your research. (It 
should be added that it is possible to calculate significance against not the usual zero 
effect model of the null hypothesis but against a low level size of effect which is of no 
practical interest to the researcher – that is, a size of effect which, although tangible, 
is so small that it is not worthwhile when making decisions based on the outcome of 
the research. For example, if it is known that an inexpensive drug such as aspirin has 
a particular size of effect then this effect might be set as the baseline against which to 
evaluate a new much more expensive drug. Such procedures are discussed in Murphy 
and Myors, 2004.)

●	 The required level of the effect size must be estimated for your proposed study. This 
can be based on one of several sources of information:

●	 If there have been similar studies using the measures that you are planning to use in 
your study, then the effect sizes from these previous studies may be used. Obviously 
the more similar the other study(ies) to yours the better this estimate is likely to be.

●	 Alternatively, a more general approach could be used. For example, Lipsey and 
Wilson (1993) collated effect sizes from a range of different sizes of study. They 
found that treatment programmes for juvenile delinquents in terms of future delin-
quency, worksite anti-smoking programmes in terms of rates of quitting smoking 
and small versus large school class sizes in terms of measures of achievement typi-
cally had small effect sizes of Cohen’s d values of .20 or less. On the other hand, 
behaviour therapy compared to placebo controls on various outcome measures and 
enrichment programmes for gifted children in terms of cognitive, creativity and 
affective outcomes had effect sizes of .5 or so – that is medium size effect sizes. 
Finally, psychotherapy in terms of various outcomes and positive reinforcement in 
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the classroom had effect sizes of .85 or more – that is, large effect sizes. Cohen 
(1988) stipulated a small effect as a Cohen’s d of .20, a medium effect as a Cohen’s 
d of .50 and a large effect as a Cohen’s d of .80. So if a particular type of research 
is known to generally produce a particular effect size then this could be used.

●	 One could simply look at the consequences of using Cohen’s three levels of effect 
size in terms of sample size. It may be that each of them indicates a sample size 
which is feasible in terms of the proposed research. Otherwise, the conservative 
approach would be to take a Cohen’s d of .20 (the smallest of his effect sizes) as the 
basis for the sample size calculation.

●	 The level of power required needs to be at a minimum .50 – otherwise the study is 
likely not to reject the null hypothesis. There is, of course, very little point in designing 
a study which is more than likely to support the null hypothesis. It is conventional – 
and no more than that – to regard a power of .80 or greater as adequate. This means 
that if there is truly a trend or difference in the data that it has an 80% chance of being 
identified by the researcher using a particular significance level and sample size(s). 
There is no reason why a higher level of power cannot be chosen, if this is considered 
appropriate by the researcher.

	 40.4	 Calculating power

Since one cannot use SPSS to carry out most aspects of statistical power analysis we will 
use G*Power, which is a free-to-download and flexible program that carries out a variety 
of statistical power analysis calculations. Of course, SPSS output does contain relevant 
information to be entered into these additional programs. The SPSS company does have 
a power analysis program SamplePower® 3.0, but this is not generally available at uni-
versities, etc. in the way SPSS is and it is quite expensive to purchase. So it is just as well 
to turn to other software which is available in some variety. Many of the programs have 
to be purchased and so it makes sense to opt for the free resources available on the Web. 
G*Power is a serious competitor for commercially available software and it is well 
regarded. It is also flexible in terms of the number of different research designs that it can 
deal with. For this reason, we have adopted G*Power as our primary resource for this 
chapter. Figure 40.6 illustrates the active interface of G*Power, but expect slight variations 
according to circumstances.

G*Power does a wide variety of power analyses for a variety of statistical tests which 
are organised into ‘Test families’ such as those based on the t-test and those based on the 
F-distribution. The term ‘Test family’ can be seen immediately under the big white box 
in the screenshot (Figure 40.6). Select the Test family you require from the drop-down list 
which appears when you hover your mouse cursor over this box. Then select the ‘Statisti-
cal test’ you require from the drop-down menu. Finally select the ‘Type of power analysis’ 
again from a drop-down menu. Since these drop-down menus each offer a variety of 
options, it is worthwhile checking out what is available by trying out a number of these 
options. So, as you can see in Figure 40.6, the following have been selected but, of course, 
the choices made depend on the design of the study:

●	 Test family: t-test

●	 Statistical test:â•‡  Means: difference between two independent means (two-groups)

●	 Type of power analysis:â•‡  A priori: Compute required sample size – given a, power and 
effect size.
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These particular selections indicate the following: The analysis corresponds to an unre-
lated t-test comparing the difference between two means. The power analysis is intended 
for planning a new study (i.e. A priori) and it is required that the optimum sample size is 
computed based on the significance level (a), required level of power and the effect size. 
This would be a reasonable standard option for statistical power analysis when compar-
ing, say, an experimental group with a control group – or for comparing the means of 
any two groups, for that matter.

It is obvious that you then need to enter (overwrite) the Input Parameters in the white 
boxes. We will return to the question of just what you need to enter into each of the input 
boxes a little later, but we need to concentrate on the box labelled Effect size first of all 
as this is the most complex. There are various different measures of effect size to deal with 
different research designs. However, once you have selected the Test family, Statistical test 
and Type of power analysis, G*Power indicates what measure of Effect size is to be used. 
If you have relevant data, Effect size can be calculated from this. G*Power will calculate 
the relevant type of Effect size for you if you ask it to do so. However, this calculation is 
not based on the raw data but on things like the sample means and standard deviations 
(depending on the research design that you are dealing with). Consequently, this informa-
tion needs to be calculated by you before you can enter it into G*Power.

Figure 40.7 shows the side-menu or drawer revealed on screen when you click on the 
‘Determine 1’ button next to ‘Effect size d’. In this screenshot, the information has 

	 Figure 40.6	 Screenshot of the G*Power interface
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already been entered into the appropriate boxes. Notice, however, that you need to 
select different options according to whether your sample sizes are equal or different. 
Although the calculation of these figures could be carried out by hand, it is probably 
more convenient to obtain them using SPSS or some other statistical analysis program. 
For example, to calculate the effect size for two independent groups using Cohen’s d, 
you need to enter the means and standard deviations for the two samples into G*Power. 
These are part of the output of SPSS for the unrelated t-test. The means and standard 
deviations (SD) have been entered using SPSS t-test output. You probably will wish to 
click on the ‘Calculate and transfer to main window’ button as it saves you copying it 
yourself into the ‘Input Parameters’.

Of course, it is more likely that you have no data from which to calculate Effect size 
unless you have conducted a pilot study. Consequently, you might be well advised to 
examine previous research studies to see if a typical effect size can be identified. Meta-
analyses are particularly useful in this regard. Failing that, you may wish to use the 
‘standard’ high, medium and low effect sizes which have been recommended by Cohen 
(1988) and others. When you hover your mouse cursor over the ‘Effect size’ box in 
G*Power these standard sizes will appear on screen.

So that is one important Input Parameter dealt with. The following are suggestions as 
to what goes into the input boxes seen in Figure 40.6. The calculation is based on the 
study we used to illustrate the unrelated t-test in Chapter 14. If the researcher has no 
strong basis for predicting the direction of the outcome of the research, a two-tailed test 
is selected. One could select a one-tailed test if this were appropriate.

●	 The effect size has been entered as a Cohen’s d of 1.2645161 in Figure 40.6. This is a 
calculated value based on the data in the study that we are using. If no such calculation 
is possible then you could enter other values according to whether you expect a small 
(0.2), medium (0.5) or large effect (0.8). Alternatively, if this were possible, the effect 
size could be based on data such as when a pilot study has been carried out or the typi-
cal effect size for similar research.

	 Figure 40.7	 Effect size calculator side-menu on G*Power
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●	 The significance level (‘a err prob’) is the conventional significance level of .05 though, 
of course, another value could be selected if there were reasons to be more or less 
stringent about avoiding rejecting the null hypothesis.

●	 The required power has been set at .80 which is a realistic but nevertheless high require-
ment and difficult to exceed in practice in psychological research. Consequently it is 
generally accepted as a reasonable level to choose. Of course it could be lower but not 
below .50 as explained earlier.

●	 The ‘Allocation ratio’ is simply the ratio of the two sample sizes. If you want these to 
be equal then the allocation ratio is 1. But, say, you wanted one group bigger than the 
other then you would have to juggle with this ratio. Probably there is little point in 
doing so for most research though sometimes researchers prefer to have small control 
groups relative to the experimental group.

Once your Input Parameters have been inserted in the relevant boxes, then press the 
‘Calculate’ button. The interface will change to something like you see in the screenshot 
in Figure 40.8. The interface also includes a graphical representation of the power analy-
sis. We discussed a similar graphical representation earlier (Figure 40.4) so refer to this 
discussion if you need clarification (p. 582).

Remember that Figure 40.8 refers to the t-test analysis reported in Explaining statistics 
14.1. The most important thing is that it suggests that a sample size of 22 could generate 
the .80 level of power that we stipulated. That is, 11 in each group. The ‘Actual power’ 
simply is the consequence of turning the sample sizes into whole numbers whereas the 
calculation would produce decimals. So the ‘Actual power’ is the power based on a total 

	 Figure 40.8	 G*Power interface showing the output parameters and graph
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sample size of 22 rather than the Input Parameters that we entered, which can result in 
fractions for the sample sizes. One of the main reasons why the required sample size is 
quite low at 22 (11 in each group) is because the effect size (Cohen’s d = 1.26) is so large. 
It corresponds to a correlation of .53 between the independent and dependent variable. 
Now if this really were a pilot study then the implications are obviously very clear – how-
ever, this is data made up for the purpose of demonstrating the unrelated t-test so we 
should not get too excited. Pretending that it was a real pilot study then the researcher 
could be excused for feeling delighted. The effect is a very strong one requiring a sample 
size of only 22 in total to detect it with a power requirement of .80. This is about as good 
as it gets. Even if we increased the required power to .95 and made the significance level 
more stringent at .01, then G*Power tells us that a total sample size of only 50 is needed. 
That is to say, with just about the most demanding criteria for a power analysis, the 
required sample size is relatively small in this case. Try for yourself the effects of a low 
effect size of, say, .2 on the required sample size. You will find that the required sample 
size is massive to obtain the statistical significance at the required power.

Power analysis encourages more careful thought in planning research and how it 
requires the researcher to evaluate what sorts of research outcomes have practical implica-
tions for decision-making following the completion of the proposed study. This is a very 
different sort of approach from that of relying solely on significance testing as the holy 
grail of research. Obviously, power analysis forces the researcher into considering the 
bigger picture of research, especially when important decisions about social interventions, 
therapy and so forth are contingent on the outcome of the research.

	 40.5	 Reporting the results

As might be expected, reporting the outcomes of a power analysis depends on what sort 
of analysis it is. If you simply wish to indicate the power of a statistical analysis that you 
have carried out, you could add immediately after you have reported statistical signifi-
cance something like: ‘The observed power of this analysis was 0.7.’ Especially if the 
power was low, you might wish to comment on the size of the observed power. On the 
other hand, if you have carried out a power analysis in advance of the study, then the 
appropriate place to discuss this is where you discuss your samples in the Methods section 
of your report. The following might serve as a template for what you write in these 
circumstances:

Power analysis was used to estimate the appropriate sample size(s) for the study. An 
examination of the research literature suggests that the typical effect size in similar 
studies is of the order of Cohen’s d=0.5. For example, Smith and Lawson (2007) found 
an effect size of 0.47 in their study and Brown (2010) reports an effect size of 0.63. 
While Edwinston (2002) does not give an effect size, it can be calculated as 0.53 from 
their reported statistical analysis. It was decided to adopt the power level of 0.80 fol-
lowing what is considered satisfactory by authorities in the field (e.g. Cohen, 1988). 
The conventional .05 significance level was adopted as it was not thought that Type I 
errors were an important consideration, especially given that previous research had 
consistently detected significant trends in this sort of research (e.g. Green, 2006; 
Kirkham, 2002). A one-tailed significance test was used given the clear evidence from 
previous research that the experimental condition produces higher means than the 
control condition. Based on these parameters, the optimal sample size was 102 (51 in 
each group). A total of 55 participants were, in fact, run in the experimental condition 
and 53 in the control condition.
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Statistical power

Schimmack (2012) takes note of the evidence that despite numerous warnings about the statistical power of 
research in psychology, the typical statistical power of studies has not improved as a consequence. What has 
changed, however, over the years is the number of separate studies reported in a single paper. One possible 
implication of this is that multiple studies of modest statistical power result in a high probability of non- 
significant findings because the power of an analysis decreases the more significance tests that are applied. The 
statistically unacceptable but common practices employed by some researchers may be partially responsible. 
For example, HARKing (hypothesising after the results are known) can be involved in the problem. Because 
research is very expensive and because non-significant findings are difficult or impossible to publish, researchers 
design very complex studies which are capable of testing multiple hypotheses. There is a good chance that one 
of these hypotheses will appear to be supported but only because Type I error increases but is ignored. Thus 
something publishable may come out of the research even though it has little value otherwise. Schimmack 
provides information on the total number of participants required in multiple study articles to achieve 80% 
statistical power and to produce significant results in all of the studies. The study design involved in this exercise 
was a simple between-subjects experiment. These details do not matter so much as the fact that for a small 
effect size (Cohen’s d = .2) then for one study the total sample size would need to be 788, for five studies 6750 
and for ten studies 15 820. One doesn’t need to know much about psychological research to realise that these 
numbers of participants would be remarkable.

Simpson and Karageorghis (2006) carried out a study of the motivating effect and otherwise on athletic per-
formance. Of significance here, they conducted a power analysis in order to decide a satisfactory sample size 
for their experimental group. Using alpha at .05, a two-tailed significance test, power set at .70, and an expected 
effect size in the moderate range, the appropriate sample size was calculated at 35.

Woods and colleagues (2006) point out the possible problems of the statistical power of studies using novel 
neuropsychological interventions using clinical populations such as Parkinsonism sufferers. Such studies often 
have rather limited sample sizes. They examined the literature of the cognitive consequences of deep brain 
stimulation of the subthalamic nucleus. Using the findings of 30 different studies of this, they found that the 
studies only had adequate statistical power to detect real trends where the effect size was very large. However, 
for small, medium and large effect sizes there was too little power in the studies to detect real trends in the 
population. In other words, there was a significant risk of Type II errors.

Research examples

●	 Statistical power analysis is best used to inform the planning of research studies. It is less useful after data 
have been collected as part of the data analysis.

●	 Different statistical tests require power calculations to be done differently. In particular, the measure of 
(standardised) effect size will differ.

●	 Statistical power analysis includes assumptions and estimates which cannot be standardised for all circum-
stances as this would defeat its purpose. So reporting a power analysis may involve justifying the estimates 
and decisions that you have taken.

Key points
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Computer Analysis

Power analysis with G*Power

SPSS does compute some power values, but it is not very helpful for the bulk of the analyses outlined in this 
chapter. Exceptionally, this chapter contains a detailed illustration of using G*Power to calculate statistical power. 
Nevertheless, you may find the quick summary in Figure 40.9 a useful memory aid. Please check the following 
link for updates on G*Power and further documentation: www.gpower.hhu.de/. Although G*Power is free, its 
authors would appreciate that you cite one or both of the following papers in any published papers you produce 
using it in your research:

●	 Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests 
for correlation and regression analyses. Behavior Research Methods, 41, 1149–1160.

●	 Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis 
program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

	 Figure 40.9	 Computer steps for power analysis using G*Power
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Interpreting and reporting the output

●	 Although this is often not done, ideally we need to carry out a power analysis to determine the  
size of the sample we need.

●	 The results of this power analysis are reported in the Method section of your write-up or report  
where you are discussing the sample. We might write something like: ‘Statistical power analysis  
was used to estimate an appropriate sample size. Because of the lack of previous research in this  
field, it was decided to use Cohen’s high, medium and low effect sizes in order to explore the 
consequences of this on the appropriate sample size. It was decided that the significance (alpha)  
level would be kept high at 10% as would the power at 90%. It was felt to be much more important  
for this study to avoid Type II errors because of the risks of falsely accepting the null hypothesis.’

	 Screenshot 40.1	 Opening window
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Part 6

Advanced qualitative or 
nominal techniques
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●	 The analysis of nominal (category) data using chi-square is severely limited by the fact that 
a maximum of only two variables can be used in any one analysis.

●	 Log-linear can be conceived as an extension of chi-square to cover greater numbers of 
variables.

●	 Log-linear uses the likelihood ratio chi-square (rather than the Pearson chi-square we are 
familiar with from Chapter 18). This involves natural or Napierian logarithms.

●	 The analysis essentially examines the adequacy of the various possible models. The simplest 
model merely involves the overall mean frequency – that is, the model does not involve any 
influence of the variables either acting individually or interactively in combination. The most 
complex models involve in addition the individual effects of the variables (main effects) as 
well as all levels of interactions between variables. If there are three variables, there would 
be three main effects, plus several two-way interactions plus one three-way interaction.

●	 A saturated model is the most complex model and involves all of the possible components. 
As a consequence, the saturated model always explains the data completely, but at the price 
of not being the simplest model to fit the actual data. It is essentially a conceptual and com-
putational device.

Log-linear methods
Analysis of complex contingency tables

Chapter 41

Overview

Preparation

If you are hazy about contingency tables then look back to the discussion in Chapter 7. Also 
revise chi-square (Chapter 18) since it is involved in log-linear analyses. Log-linear shares con-
cepts such as main effect and interaction with ANOVA which ought to be reviewed as general 
preparation (especially Chapter 25).
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	 41.1	 Introduction

In essence, log-linear methods are used for the analysis of complex contingency (or cross-
tabulation) tables. Data in Chapter 18 which were analysed using chi-square could be 
subjected to log-linear procedures although with no particular benefits in that case. Log-
linear goes further than this and comes into its own when dealing with three or more 
variables. Log-linear analysis identifies how the variables acting alone or in combination 
influence the frequencies in the cells of the contingency table. The frequencies can be 
regarded as if they are the dependent variable.

Some basic ideas need to be mentioned:

●	 Interactionsâ•‡  Like analysis of variance (ANOVA), log-linear analysis uses the concept 
of interactions between two or more variables. The concept is a little difficult to under-
stand at first especially if you have not read our earlier discussions of interaction. It 
refers to the effects of the variables that cannot be explained by the effects of these 
variables acting separately. Interactions involve variables acting in combination. Much 
of this chapter is devoted to explaining the concept in more detail.

●	 Modelsâ•‡  A model in log-linear analysis is a statement (which can be expressed as a 
formula) which explains how the variables such as gender, age and social class result 
in the cell frequencies found in the contingency table. For example, one model might 
suggest that the pattern of frequencies in the contingency table is the result of the 
independent influences of the variable gender and the variable age. There are prob-
ably other contending models for all but the simplest cases. An alternative model for 
this example is that the data are the result of the influence of variable social class 
plus the influence of variable gender plus the combined influence of variable gender 
interacting with the variable age. Table 41.1 gives the components of models for 
different numbers of variables in the contingency table. We will return to this later, 
but notice how the components include a constant (or the average frequency) plus 
the main effects of the variables plus interactive effects of the variables. Log-linear 
analysis helps a researcher to decide which of the possible models (i.e. which selection 
of the components in Table 41.1) is the best for the actual data. These different 
components will become clearer as we progress through this chapter. Model building 
can serve different purposes. Unless you have theoretical reasons for being interested 
in a particular model, then log-linear methods allow you to build up the model purely 
empirically.

●	 Goodness-of-fitâ•‡  This is simply the degree of match between the actual data and those 
values predicted on the basis of the model. Chi-square is a common measure of good-
ness-of-fit. Chi-square is zero if the observed data are exactly the same as the expected 
(or predicted) data. The bigger the value of chi-square, the greater the misfit between 
obtained and expected values. In Chapter 18, a significant value of chi-square caused 
us to reject the ‘model’ specified by the null hypothesis. A good-fitting model would 
have a chi-square value approximating zero whereas a badly fitting model would have 
a large chi-square value.

●	 Pearson chi-squareâ•‡  This is the version of chi-square used in Chapter 18 although 
common practice is simply to call it chi-square. The formula for the Pearson chi-
square is:

Pearson chi@square = a (observed - expected)2

expected

The Pearson chi-square is used in log-linear analysis but it is not essential.
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●	 Likelihood ratio chi-squareâ•‡  This is the more common formula when doing log-linear 
analysis:

Likelihood ratio chi@square = 2 * aobserved frequency * ln of 
observed frequency
expected frequency

The term ln is a symbol for natural logarithm. Don’t worry if you know nothing about 
natural logarithms. Although tables of natural logarithms are available, it is easier to 
obtain them from a scientific calculator (or the calculator built into Windows, for 
instance). Observed frequency refers to the obtained data and expected frequency 
refers to the values expected according to the particular model being tested.

●	 Differences between Pearson and likelihood ratio chi-square The formulae give 
slightly different values of chi-square for small sample sizes but converge as the sample 
sizes get large. Both formulae are often computed as measures of goodness-of-fit by 
computer programs for log-linear analysis. Nevertheless, it is best to concentrate on 
likelihood ratio chi-square in log-linear analysis because of its additive properties. This 
means that different components of chi-square can be added together to give the com-
bined effect of different components of the chosen model. The Pearson chi-square does 
not act additively so cannot be used in this way, hence its comparative unimportance 
in log-linear analysis.

	 Table 41.1	 Possible model components for different sizes of contingency table

Component of model 1 2 3 4 5

Overall mean (equal 
frequencies)

yes yes yes yes yes

Main effects A A + B A + B + C A + B + C + D A + B + C + D + E

Two-way interactions — A * B A * B A * B A * B

A * C A * C A * C

B * C A * D A * D

B * C A * E

B * D B * C

C * D B * D

B * E

C * D

C * E

Three-way interactions A * B * C A * B * C A * B * C

A * B * D A * B * D

A * C * D A * B * E

B * C * D A * C * D

A * C * E

A * D * E

B * C * D

B * C * E

B * D * E

C * D * E

Four-way interactions A * B * C * D A * B * C * D

A * B * C * E

A * B * D * E

B * C * D * E
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	 41.2	 Two-variable example

The distinctive approach of log-linear analysis can take a little time to absorb. Its char-
acteristic logic is probably best explained by re-analysing an example from Chapter 18. 
The study of favourite types of television programme of males and females (Explaining 
statistics 18.1) will be presented using the log-linear perspective. The data are given in 
Table 41.2, but they are exactly the same as the data in Table 18.8. The two variables 
were gender and favourite type of programme. In the (Pearson) chi-square analysis 
(Explaining statistics 18.1) there is a gender difference in favourite type of television 
programme. Another way of putting this is that there is an interaction between a person’s 
gender and their favourite type of television programme. (In Chapter 18, it was found 
that gender and favourite type of programme acting separately were insufficient to 
account for the data. The expected frequencies in that chapter are the frequencies expected 
on the basis of gender and programme effects having separate and unrelated effects. Also 
in Chapter 18, a significant value of chi-square meant that the distribution of cell frequen-
cies could not be explained on the basis of this independent influence of gender and 
favourite programme type. The different genders had different preferences. This would 
be an interaction in terms of log-linear analysis.)

A log-linear analysis of the data in Table 41.2 would examine possible underlying 
models (combinations of the variables) which might predict the obtained data. Theoreti-
cally, there are a number of possibilities according to log-linear analysis:

●	 Equal frequencies modelâ•‡  This suggests that the observed cell frequencies are merely 
the total of cell frequencies divided equally between the cells. Since there are 119 
observations in Table  41.2 and six cells then we would expect a frequency of 
119 , 6 = 19.833 in each cell. Obviously this model, even if it fits the data best, is 
virtually a non-model.

●	 Main effects modelâ•‡  This suggests that the observed cell frequencies are the conse-
quence of the separate effects of the variables which add together to give their overall 
effect. Although this might seem an important possibility if you recall main effects for 
ANOVA, in log-linear analysis, main effects are often trivial. The object of log-linear 
analysis is to account for the pattern of observed frequencies in the data. In Table 41.2 
note that there are slightly unequal numbers of males and females (60 males and 59 
females) but, more importantly, the choices of the different programme types are une-
qual. That is, the different values of gender (male and female) and favourite television 
programme (soap opera, crime drama and neither) are not equally represented. For the 
main effect of gender, the inequality is small (60 males versus 59 females), but it is 
somewhat larger for the main effect of favourite television programme (44 choosing 
soap operas, 47 choosing crime dramas and 28 choosing neither). The main effects 
merely refer to these inequalities which may be uninteresting in terms of the primary 
purpose of the analysis. In our example, a researcher is likely not to be particularly 
interested in these main effects but much more interested if the interaction between 

	 Table 41.2	 Data to be modelled using log-linear analysis

Soap opera Crime drama Neither

Males observed = 27 observed = 14 observed = 19

Females observed = 17 observed = 33 observed = 9
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gender and favourite programme type explains the data. In order for there to be no 
main effects, each of the categories of each of the variables would have to have the 
same frequency. This is rare in research.

●	 The interaction(s)â•‡  An interaction is the effect of the interrelationship between the 
variables. In the present example, because we have only two variables, there is just one 
interaction which could be termed the gender * favourite TV programme interaction. 
You will see from Table 41.1 that had there been more variables there would be more 
interactions to investigate. The number of interactions escalates with increasing num-
bers of variables (much as it does for ANOVA). Interactions interest researchers 
because they indicate the associations or correlations between variables.

The interactions and main effects are combined in log-linear analysis in order to see 
what main effects and what interactions are necessary to best account for (fit with) the 
observed data.

Log-linear analysis for this simple example involves the consideration of several differ-
ent models.

	 ■	 Step 1: Equal frequencies model

In a manner of speaking, this is the no-model model. It tests the idea that the cell frequen-
cies require no explanation since they are equally distributed. This is not the same as the 
null hypothesis predictions made in Chapter 18 since these predicted not equal frequencies 
but proportionate frequencies according to the marginal totals. The equal frequencies 
model simply assumes that all of the cells of the contingency table have equal frequencies. 
Since we have a total frequency of 119 in the six cells of our analysis, the equal frequen-
cies model predicts (expects) that there should be 119 , 6 or 19.833 in each cell as shown 
in Table 41.3. The likelihood ratio chi-square applied to this table is calculated in 
Table 41.4. Remember that the natural logarithms are obtained from a scientific calcula-
tor or one you find as a program on your computer. The use of natural logarithms is only 
important for understanding the basic calculation of log-linear.

The fit of the equal frequencies model to the data is poor. The likelihood ratio chi-
square is 19.418. This is the amount of misfit of that particular model to the data. (It is 
also the amount by which the main effects and the interactions can increase the fit of the 
best model to the data.)

The differences between the values expected according to the model and what is actu-
ally found in the data are known as the residuals. The residuals can be used to assess the 
fit of the model to the data in addition to the likelihood ratio chi-squares. Often, residuals 
are standardised so that comparisons can be made easily between the different cells, in 

	 Table 41.3	 Contingency table for testing the equal frequencies model, i.e. the expected frequencies

Soap opera Crime drama Neither Total

Males observed = 27 observed = 14 observed = 19

expected = 19.833 expected = 19.833 expected = 19.833

Females observed = 17 observed = 33 observed = 9

expected = 19.833 expected = 19.833 expected = 19.833

Total 119
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which case they are known as standardised or adjusted residuals. The smaller the residuals 
the better the fit of the model to the data.

	 ■	 Step 2: Saturated model

The log-linear analysis of these data could be carried out in a number of ways since 
there are a variety of different models that could be tested. In general, we will concen-
trate on the procedures which would commonly be employed when using computer 
programs such as SPSS. Often these compute the saturated model for you. A saturated 
model is one which includes all of the possible components as shown in Table 41.1 
which, consequently, accounts perfectly for the data. That is, the values predicted by 
the saturated model are exactly the same as the data. Any model based on all of the 
components by definition accounts for the data perfectly. Since there is always a perfect 
correspondence or fit between the observed data and the predictions based on the likeli-
hood ratio chi-square for the saturated model, this chi-square is always zero for the 
saturated model.

Table 41.5 gives the data and the expected frequencies for the saturated model. Notice, 
as we have already indicated, that the observed and expected frequencies for any cell of 
the contingency table are identical for this model. We will not bother to do this calcula-
tion. It is worth noting that computer programs often routinely increase the observed 
values by 0.5. This is done to avoid undesirable divisions by zero in the calculation while 
making very little difference to the calculation otherwise.

	 Table 41.4	 Calculation of the fit of the equal frequencies model

Observed frequency Expected frequency 
according to equal 
frequencies model

Observed ÷ expected Natural logarithm of 
observed ÷ expected

Observed 
frequency : natural 

logarithm of 
observed ÷ expected

27 19.833 1.361 0.308 8.329

14 19.833 0.706 -0.348 -4.876

19 19.833 0.958 -0.043 -0.815

17 19.833 0.857 -0.154 -2.620

33 19.833 1.664 0.509 16.802

  9 19.833 0.454 -0.790 -7.111

total = 9.709

Likelihood ratio chi@square = 2 * total = 2 * 9.709 = 19.418

	 Table 41.5	 Contingency table for testing the saturated model

Soap opera Crime drama Neither Total

Males observed = 27 observed = 14 observed = 19

expected = 27.000 expected = 14.000 expected = 19.000

Females observed = 17 observed = 33 observed = 9

expected = 17.000 expected = 33.000 expected = 9.000

Total 119
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	 ■	 Step 3: Preparing to test for the main effects components of 
the model

The perfectly fitting model of the data (the saturated model) involves all possible compo-
nents. It is not quite as impressive as the perfect fit suggests. We do not know what it is 
about our model which caused such a good fit. It could be the effects of gender, the effects 
of the type of programme, or the effects of the interaction of gender with type of pro-
gramme, or any combination of these three possibilities. It could even mean that the equal 
frequencies model is correct if we had not already rejected that possibility. Further explo-
ration is necessary to assess which of these components are contributing to the goodness-
of-fit of the data to that predicted by the model. Any component of the model which does 
not increase the goodness-of-fit of the model to the data is superfluous since it does noth-
ing to explain the data. (To anticipate a common practice in log-linear analysis, the corol-
lary of this is also true: components are only retained if they decrease the fit of the model 
when they are removed.)

(Usually in the initial stages of log-linear analyses using a computer, similar compo-
nents of the model are dealt with collectively. That is, the main effects of gender and 
favourite programme type are dealt with as if they were a unit of analysis. Had there been 
more than one interaction, these would also be dealt with collectively. At a later stage, it 
is usual to extend the analysis to deal with the combined components individually. That 
is, the data are explored in more detail in order to assess what main effects are actually 
influencing the data.)

To reiterate what we have already achieved we can say that we have examined two 
extremes of the model-building process: the saturated model and the equal frequencies 
model. We have established that the equal frequencies model is a poor fit to the data on 
this occasion (the saturated model is always a perfect fit). The misfit of the equal frequen-
cies model to the data (likelihood ratio chi@square = 19.418) is the amount of improve-
ment in fit achieved by the saturated model.

	 ■	 Step 4: TV programme type main effect

Main effects are one level of components in the saturated model. Understanding their 
calculation is fairly simple. Let us take the main effect of programme type. In order to 
predict the frequencies in the data based solely on the effects of the different programme 
type we simply replace each cell by the average of the frequencies in cells referring to that 
programme type. This in effect means that for our example we combine the data frequen-
cies for the males and females who prefer soap operas and average this total by the num-
ber of cells involved (i.e. two cells). Twenty-seven males and 17 females claim to prefer 
soap operas so the total is 44, which is divided between the two cells involved in this case. 
This gives us a predicted frequency on the basis of the main effects model for programme 
type of 22.00 in each of the soap opera cells. This is shown in Table 41.6. The predicted 
value for crime drama is 14 + 33 divided by 2 which equals 23.50. The predicted value 
for the neither category is 19 + 9 divided by 2 = 14.00. Again these can be seen in 
Table 41.6.

Now one can calculate the goodness-of-fit of this model simply by calculating the 
likelihood ratio chi-square for the data in Table 41.6. Just follow the model of the calcula-
tion in Table 41.4. The value of the likelihood ratio chi-square is 13.849. Compare this 
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with the misfit based on the equal frequencies model (likelihood ratio chi@square = 19.418). 
It seems that there has been an improvement of 19.418 - 13.849 = 5.569 in the fit due 
to the programme main effect. (Remember that the bigger the likelihood ratio chi-square 
then the poorer the fit of the model to the data.) Because the likelihood ratio chi-square 
has additive properties, this difference of 5.569 is the contribution of the main effect of 
programme type.

	 ■	 Step 5: Gender main effect

Because the frequencies of males and females in the data are nearly equal, there clearly is 
a minimal main effect due to the variable gender in this case. Nevertheless, this minimal 
value needs to be calculated. A similar procedure is adopted to calculate the main effects 
of gender. This time we need to sum the frequencies over the three different programme 
types for each gender separately and average this total frequency by the three programme 
types. Thus the sum of the observed frequencies for males in each of the three different 
programme type conditions is (27 + 14 + 19) , 3 = 60 , 3 = 20. This gives a pre-
dicted value per male cell of 20. This is entered in Table 41.7. Similarly, the calculation 
for females is to sum the three observed frequencies and divide by the number of female 
cells. This is (17 + 33 + 9) , 3 = 59 , 3 = 19.667. Again these values are entered in 
Table 41.7.

The likelihood ratio chi-square for the main effect of gender in Table 41.7 is 19.405. 
Compared with the value of 19.418 for the equal frequencies model, there is virtually no 
change, indicating the smallness of the gender difference in row frequencies. The improve-
ment in fit due to gender alone is only 0.013.

	 Table 41.6	 Table of data and expected frequencies based solely on the main effect of programme type

Soap opera Crime drama Neither Total

Males observed = 27 observed = 14 observed = 19

expected = 22.000 expected = 23.500 expected = 14.000

Females observed = 17 observed = 33 observed = 9

expected = 22.000 expected = 23.500 expected = 14.000

Total 44 47 28 119

	 Table 41.7	 Table of data and expected frequencies based on the main effect of gender type

Soap opera Crime drama Neither Total

Males observed = 27 observed = 14 observed = 19 60

expected = 20.000 expected = 20.000 expected = 20.000

Females observed = 17 observed = 33 observed = 9 59

expected = 19.667 expected = 19.667 expected = 19.667

Total 119
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	 ■	 Step 6: Main effects of programme type plus gender

This can now be obtained. It involves taking each cell in turn and working out the effect 
on the frequencies of the programme type and the gender concerned. This is done relative 
to the frequencies from the equal frequencies model (that is, 119 , 6 = 19.833 in every 
case). So, looking at Table 41.6, the expected frequency for soap operas is 22.000. This 
means that being a soap opera cell increases the frequency by 22.000 - 19.833 = 2.167 
as shown in Table 41.8. It may sound banal, but in order to add in the effect of being a 
soap opera cell we have to add 2.167 to the expected frequencies under the equal frequen-
cies model. Similarly, being a crime drama cell increases the frequency to 23.500 from 
our baseline equal frequencies expectation of 19.833. Being a crime drama cell increases 
the frequency by 23.500 - 19.833 = 3.667.

In contrast, being in the neither category tends to decrease the frequencies in the cell 
compared with the equal frequencies expectation of 19.833. From Table 41.6 we can see 
that the expected frequencies in the neither column due to programme type are 14.000, 
which is below the equal frequencies expectation of 19.833 as shown in Table 41.8. Thus, 
being a neither cell changes frequencies by 14.000 - 19.833 = -5.833. That is, being 
neither decreases frequencies by -5.833. In order to adjust the equal frequencies expecta-
tions for the programme type main effect, we have to add 2.167 to the soap opera cells, 
add 3.667 to the crime drama cells and subtract 5.833 from (that is add -5.833 to) the 
neither cells. This can be seen in Table 41.8.

We also need to make similar adjustments for the main effect of gender although 
these are much smaller. Compared with the equal frequencies value of 19.833, the male 
cells have an expected frequency of 20.000 which is an increase of 0.167. In order to 
adjust the equal frequencies baseline of 19.833 for a cell being male we therefore have 
to add 0.167. This can be seen in Table 41.8. For female cells, the expected frequency 
is 19.667, a reduction of 0.166. In short, we add -0.166 for a cell being female. This 
is also shown in Table 41.8. (Of course, the additions and subtractions for the males 
and females should be identical, which they are within the limits of calculation 
rounding.)

At this point there is a big problem. That is, the values of the expected frequencies based 
on the main effects model give the wrong answers according to computer output. For that 
matter, it does not give the same expected frequencies as given in the equivalent Pearson 
chi-square calculation we did in Chapter 18. Actually, the computer prints our expected 
frequencies which are the same as those calculated in Chapter 18. The problem is that we 

	 Table 41.8	 �Table of expected (predicted) frequencies based on adding the main effects of programme type and gender to the 
equal frequencies expectation

Soap opera Crime drama Neither Total

Males observed = 27 observed = 14 observed = 19 60

expected = 19.833

+ 2.167 + 0.167 = 22.167a

expected = 19.833 + 3.667

+ 0.167 = 23.667a

expected = 19.833 + -5.833

+ 0.167 = 14.167a

Females observed = 17 observed = 33 observed = 9 59

expected = 19.833 + 2.167

+ -0.166 = 21.834a

expected = 19.833 + 3.667

+ -0.166 = 23.334a

expected = 19.833 + -5.833

+ -0.166 = 13.834a

Total 119

a These hand-calculated values are very approximate and do not correspond to the best values for reasons discussed in the text.
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are not actually doing what the computer is doing. Think back to the two-way analysis of 
variance. These calculations worked as long as you have equal numbers of scores in each 
of the cells. Once you have unequal numbers, then the calculations have to be done a dif-
ferent way (and best of all by computer). This is because you are not adding effects pro-
portionately once you have different cell frequencies. In log-linear analysis, the problem 
arises because the marginal totals are usually unequal for each variable. This inequality 
means that simple linear additions and subtractions of main effects such as we have just 
done do not give the best estimates. That is in essence why a computer program is vital in 
log-linear analysis. Better estimates of expected frequencies are made using an iterative 
process. This means that an approximation is calculated but then refined by re-entering 
the approximation in recalculations. This is done repeatedly until a minimum criterion of 
change is found between calculations (i.e. between iterations). Computer programs allow 
you to decide on the size of this change and even the maximum number of iterations.

Now that we have some idea of how the adjustments are made for the main effects, 
even though we must rely on the computer for a bit of finesse, we will use the computer-
generated values to finish off our explanation. Table 41.9 contains the observed and 
expected values due to the influence of the main effects as calculated by the computer’s 
iterative process.

The value of the likelihood ratio chi-square for the data in Table 41.9 is, according to 
the computer, 13.841 (which is significant at .001 with df = 2, and is slightly different 
to the hand-calculated value which involves rounding errors). At this point, we can obtain 
the value of the gender*programme type interaction. We now know the following:

●	 The fit of the saturated model which includes main effects plus the interaction is 0.000.

●	 The fit of the model based on the two main effects is 13.841.

●	 The fit of the model based on the equal frequencies model is 19.418.

It becomes a simple matter of subtraction to work out the improvement in fit due to the 
different components. Thus:

The increase in fit due to the two main effects = 19.418 - 13.841 = 5.577

The increase in fit due to the interaction = 13.841 - 0.000 = 13.841

These numerical values are likelihood ratio chi-squares. Only the interaction is statistically 
significant out of these major components. The main effect of programme type taken on 
its own would be statistically significant as it includes fewer degrees of freedom and has 
nearly the same likelihood ratio chi-square value (Degrees of freedom are explained in 
detail in Box 41.1.). This is of no real interest as it merely shows that different proportions 

	
Table 41.9

	 �Table of expected (predicted) frequencies based on adding the main effects of programme type and gender to the 
equal frequencies expectation as obtained by the iterative computer process

Soap opera Crime drama Neither Total

Males observed = 27 observed = 14 observed = 19 60

expected = 22.18 expected = 23.70 expected = 14.72

Females observed = 17 observed = 33 observed = 9 59

expected = 21.82 expected = 23.30 expected = 13.88

Total 44 47 28 119
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of people were choosing the different programme types as their favourites. In short, the 
interesting part of the model is the interaction which is statistically significant. Formally, 
this model is expressed simply as:

constant (i.e. equal frequency cell mean) + programme main effect + A*B interaction

As the interaction is fairly simple, it is readily interpreted with the help of Table 41.8. 
So we can conclude that in order to model the data effectively we need the two-variable 
interaction. This we did in essence in Chapter 18 when interpreting the Pearson chi-square 
analysis of those data. Remember that the interaction is based on the residuals in that 
table (i.e. the differences between the observed and expected frequencies). As can be 
clearly seen, males are less inclined to choose crime dramas than women but are more 
inclined to choose soap operas.

	 41.3	 Three-variable example

Interactions become a little more difficult to understand. In any case, only when there are 
three or more variables does log-linear analysis achieve much more than the Pearson chi-
square described in Chapter 18. Consequently it is important to study one of these more 
complex examples. Even though log-linear analysis usually requires the use of a computer 
using the iterative procedures, quite a lot can be achieved by trying to understand approxi-
mately what the computer is doing when it is calculating several second-order and higher-
order interactions when the data have three or more variables.

Table 41.1 gives the possible model components of any log-linear analysis for one to 
five variables. It is very unlikely that anyone would wish to use log-linear analysis when 
they have just one variable, but it is useful to start from there just so that the patterns 
build up more clearly in the table. Computer programs can handle more variables than 
five, but we are constrained by space and, moreover, log-linear analyses of ten variables 
are both atypical of psychological research designs and call for a great deal of statistical 
sophistication – especially experience with simpler log-linear analyses.

Degrees of freedom
Using the computer means that you never need to actually 
calculate the degrees of freedom. However, if you under-
stand their calculation from chi-square in Chapter 18, then 
you should have few problems with their calculation for 
log-linear. When reading degrees of freedom in tables, they 
will often include extra degrees of freedom for lower-level 
interactions or main effects. Adjustments may have to be 
made. Here are a few examples:

●	 Total degrees of freedom are always the number of 
cells - 1.

●	 Degrees of freedom for the equal frequencies model = 1.

●	 Degrees of freedom for a main effect

=
total degrees of freedom

number of different categories of the main effect

●	 Degrees of freedom for the saturated model = 0.

Remember that the degrees of freedom for all of the 
main effects, for example, are not the same as the degrees 
of freedom for any of the main effects taken separately.

Box 41.1	 Focus on
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Basically, the more variables you have the more components there will be to the model. 
All models consist of main effects plus interactions. The variables involved in model-
building are those which might possibly cause differences between the frequencies in the 
different cells. These variables have to be measurable by the researcher too for them to 
be in the analysis. Also note that the more variables in a model, the more complex the 
interactions.

Our example involves three variables. If you look in the column for three variables in 
Table 41.1 you will find listed all of the possible components of the model for these data. 
In this column there are three main effects (one for each of the variables), three two-way 
interactions between all possible distinct pairs taken from the three variables and one 
three-way interaction. The analysis is much the same as for our earlier two-variable 
example, but there are more components to add in. In particular, the meaning of the 
interactions needs to be clarified as there are now four of them rather than just one. 
Remember that it is usual to take similar levels of the model together for the initial model 
fitting. Thus all the main effects are combined; all of the second-order interactions (two-
variable interactions) together; all of the third-order (three-variable interactions) together 
and so forth. Only when this analysis is done is it usual to see precisely which combina-
tions at which levels of the model are having an effect.

Our example involves the relationship between gender, sexual abuse and physical 
abuse in a sample of psychiatric patients. The data are to be found in Table 41.10 which 
gives the three-way crosstabulation or contingency table for our example. The numbers 
in the cells are frequencies. Each of the variables has been coded as a dichotomy: a) 
female or male, b) sexually abused or not and c) physically abused or not. (Variables 
could have more than two categories, but this is not the case for these particular data.) 
The researchers are interested in explaining the frequencies in the table on the basis of 
the three variables – gender, sexual abuse and physical abuse – acting individually (main 
effects) or in combination (interactions). This would be described as a three-way contin-
gency table because it involves three variables. It is worthwhile remembering that the 
more variables and the more categories of each variable the greater the sample size needs 
to be in order to have sufficient frequencies in each cell.

Two of the possible models are easily tested. They are the equal frequencies and the 
saturated models, which are the extreme possibilities in log-linear analyses. The equal 
frequencies model simply involves the first row of Table 41.10 and no other influences. 
The saturated model includes all sources of influence in the table for the column for three 
variables.

	
Table 41.10

	 �Three-way contingency showing the relationship between gender, sexual abuse and physical abuse in a sample of 
psychiatric hospital patients

Variable B Variable C Variable A Gender Margin totals

Sexual abuse Physical abuse Female Male

Sexually abused Yes 45 55 100

No 40 60 100

Not sexually abused Yes 55 45 100

No 80 20 100

Margin totals 220 180 400
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	 ■	 Step 1: Equal frequencies model

The equal frequencies model is, in a sense, the worst-fit scenario for a model. It is what the 
data would look like if none of the variables in isolation or combination was needed to 
explain the data. The equal frequencies model merely describes what the data would look 
like if the frequencies were equally distributed through the cells of the table. As there are 
eight cells and a total of 400 observations, under the equal frequencies model it would be 
expected that each cell contains 400 , 8 = 50 cases. This model and the calculation of its 
fit with the observed data for which we are developing a model are shown in Table 41.11.

Just a reminder – the likelihood ratio chi-square is zero if the model fits the data exactly 
and increasingly bigger with greater amounts of misfit between the data and the data as 
predicted by the model. The chi-square value for the equal frequencies model is an indi-
cation of how much the variables and their interaction have to explain. The value of 
44.58 obtained for the likelihood ratio chi-square on the equal frequencies model indi-
cates that the data are poorly explained by that model. That is, there is a lot of variation 
in the frequencies which remains to be explained by models other than the equal frequen-
cies model. Notice that the equal frequencies model only contains the mean frequency 
which is one of the potential components of all models. The equal frequencies value is 
sometimes called the constant. If it is zero or nearly zero then the equal frequencies 
model fits the data well. Do not get too excited if the equal frequencies model fits badly 
since the variation in frequencies between the cells might be explained by the main 
effects. To reiterate, main effects in the log-linear analysis are often of very little interest 
to psychologists. Only rarely will real-life data have no main effects in log-linear analysis 
since main effects occur when the categories of a variable are unequally distributed. In 
our data in Table 41.10, the marginal totals for physical abuse and sexual abuse are the 
same since equal numbers had been abused as had not been abused. Nevertheless, there 
is a possible main effect for gender since there are more females in the study than males. 
Whether or not this gender difference is significant has yet to be tested. So whatever the 
final model we select, it has already been clearly established that there is plenty of vari-
ation in the cell means to be explained by the main effects acting independently and the 
two-way interactions of pairs of these variables plus the three-way interaction of all of 
the variables.

	 Table 41.11	 Calculation of the likelihood ratio chi-square for the equal frequencies model

Observed frequency Expected frequency 
according to the equal 

frequencies model

Observed ÷ expected Natural logarithm of 
observed ÷ expected

Observed 
frequency : natural 

logarithm of 
observed ÷ expected 

45 50.0 0.90 -0.1054 -4.743

40 50.0 0.80 -0.2231 -8.924

55 50.0 1.10 0.0953 5.242

80 50.0 1.60 0.4700 37.600

55 50.0 1.10 0.0953 5.242

60 50.0 1.20 0.1823 10.938

45 50.0 0.90 -0.1054 -4.741

20 50.0 0.40 -0.9163 -18.326

total = 22.290

Likelihood ratio chi@square = 2 * sum of final column = 2 * 22.290 = 44.580
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	 ■	 Step 2: Saturated model

This model involves all of the possible variables acting separately and in combination. It 
includes all components given in Table 41.1 for a given number of variables. For a three-
way contingency table the saturated model includes the mean frequency per cell (i.e. 
constant) plus the main effects plus the three two-variable interactions plus the three-
variable interaction. Predictions based on the saturated model are exactly the same as the 
data themselves – they have to be since the saturated model includes every possible com-
ponent of the model and so there is no other possible source of variation.

It is hardly worth computing the saturated model as it has to be a perfect fit to the data 
thus giving a likelihood ratio chi-square of 0.000. A zero value like this indicates a perfect 
fit between the observed data and the expectations (predictions) based on the model. 
Remember that for the saturated model, most computer programs will automatically add 
0.5 to the observed frequencies to avoid divisions by zero, which are unhelpful mathemati-
cally. This addition of 0.5 to each of the frequencies is not always necessary so some 
computer programs will give you the choice of not using it. Its influence is so negligible 
that the analysis is hardly affected.

	 ■	 Step 3: Building up the main-effects model

The process of building up a model in log-linear analysis is fairly straightforward once 
the basic principles are understood, as we have seen. The stumbling block is the calcula-
tion of expected frequencies when marginal frequencies are unequal. They are unequal 
most of the time in real data. In these circumstances, only an approximate explanation 
can be given of what the computer is doing. Fortunately, as we have already seen, we can 
go a long way using simple maths.

Table 41.12 contains the expected frequencies based on different components of the 
model. Remember that the expected frequencies are those based on a particular model or 
component of the model. The first column contains the data (which are exactly the same 
as the predictions based on the saturated model already discussed). The fifth column gives 
the expected frequencies based on the equal frequencies model. This has already been 
discussed – the frequencies are merely the total frequencies averaged over the number of 
cells.

The next three cells have the major heading ‘Main effects’, and there are separate 
columns for the main effect of gender, the main effect of sexual abuse and the main effect 
of physical abuse. The fourth column headed ‘All’ is for the added effect of these three 
main effects. How are these expected (predicted) values calculated? They are simply the 
averages of the appropriate cells. Thus for females, the four cells in Table 41.12 are 45, 
40, 55 and 80, which totals 220. Thus if the cells in the female column reflect only the 
effects of being female then we would expect all four female cells to contain 
220 , 4 = 55.00 cases. In Table 41.12, the expected frequencies under gender for the 
four female cells are all 55.00. Similarly for the four remaining cells in that column which 
all involve males, the total male frequency is 180 so we would expect 180 , 4 or 45.00 
in each of the male cells.

Exactly the same process is applied to the sexual abuse column. Two hundred of the 
cases were sexually abused in childhood whereas 200 were not. Thus we average the 200 
sexually abused cases over the four cells in Table 41.12 which involve sexually abused 
individuals (i.e. 200 , 4 = 50.00). Then we average the 200 non-sexually abused indi-
viduals over the four cells containing non-sexually abused individuals (i.e. 
200 , 4 = 50.00). Because there are equal numbers of sexually and non-sexually abused 
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individuals, no main effect of sexual abuse is present and all of the values in the sexual 
abuse column are 50.00.

Given that there are also 200 physically abused and 200 non-physically abused cases, 
it is not surprising to find that all of the expected frequencies are 50.00 in the physical 
abuse column too. The reasoning is exactly the same as for sexual abuse in the previous 
paragraph.

The combined main effects column labelled ‘All’ is easily computed for our example. 
It is simply the combined individual effects of the three separate main effects. So it is the 
effect of gender plus sexual abuse plus physical abuse. Thus being female adds a frequency 
of five compared with the equal frequencies model figure of 50.00, being sexually abused 
adds zero and being physically abused adds zero. For example, for the first row which 
consists of 45 females who had been sexually abused and physically abused, we take the 
equal frequencies frequency of 50.00 and add 5 for being female, +0 for being sexually 
abused and +0 for being physically abused. This gives the expected figure of 55.00 under 
the all main effects column.

To give another example, take the fifth row down where the data give a frequency of 
55. This row refers to males who had been sexually abused and physically abused. Being 
male subtracts 5.00 from the equal frequency value, being sexually abused adds nothing 
and being physically abused also adds nothing. So our expected value is 
50 - 5 + 0 + 0 = 45, the expected value for all of the main effects added together.

	 ■	 Step 4: Two-variable interactions

The two-way interactions are not difficult to estimate either. The two-way interaction for 
gender*sexual abuse is obtained by combining the physical abuse categories. In our exam-
ple, there are some who have been physically abused and some who have not among the 
females who had been sexually abused. Of these sexually abused females, 45 had been 
physically abused and 40 had not been physically abused. Combining these two frequen-
cies and averaging them across the two relevant cells gives us:

45 + 40
2

= 85
2

= 42.5

This is the value that you see under the gender*sexual abuse interaction for the first two 
rows.

If you need another example, take the last two rows which have values in the data 
column of 45 and 20. These rows consist of the males who had not been sexually abused. 
One row is those who had been physically abused and the other those who had not been 
physically abused. The two-way interaction of gender*sexual abuse is obtained by adding 
together the two different physical abuse categories and entering the average of these into 
the last two rows. So the frequencies are 45 and 20 which equals 65, which divided 
between the two relevant cells gives us 32.5. This is the value that you see for the 
gender*sexual abuse interaction for the final two rows.

What about the next interaction – gender*physical abuse? The calculation is basically 
the same. The only difficulty is that the rows corresponding to the cells we are interested 
in are physically further apart in the table. The gender*physical abuse interaction is 
obtained by combining the sexual abuse categories (i.e. the sexually abused and non-
sexually abused). Let us take the females who had not been physically abused. These are 
the second and fourth rows. If we look at the observed values in the data these are fre-
quencies of 40 and 80. The average of these is 60, and this is the value you find in the 
second and fourth rows of the gender*physical abuse interaction.
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The sexual abuse*physical abuse interaction is calculated in a similar way – this time 
we combine the male and female groups for each of the four sexual abuse*physical abuse 
combinations. Take the sexually and physically abused individuals. These are to be found 
in rows 1 and 5. The data (observed) values for these rows are 45 and 55. This averages 
at 50.00 – the value of the entry for this two-way interaction in the first and fifth rows. 
(Actually all of the rows for this particular column have the same value indicating a lack 
of a sexual abuse*physical abuse interaction.)

The combined effects of the three two-way interactions cannot be seen directly from 
the table. This is because the values are based on an iterative process which involves 
several computational stages which are best done by the computer. The values in the last 
column of Table 41.12 are taken from SPSS computer output. Although we will not be 
showing this calculation here because of its complexity, we can show the essential logic 
although, as you will see, it gives slightly the wrong answers. All effects in log-linear 
analysis are additive so we should be able to combine the three two-way interactions in 
order to obtain the sum of the three two-way interactions.

This is quite simple. Compared with the equal frequencies mean frequency of 50.00 
for each cell, what is the effect of each interaction? Taking the first row, we can see that 
the gender*sexual abuse interaction changes the score by -7.50 (i.e. 42.5 - 50.00), the 
gender*physical abuse interaction changes the score by 0.00 (i.e. 50.00 - 50.00) and the 
sexual abuse*physical abuse interaction changes the score by 0.00 (50.00 - 50.00). Add-
ing these separate effects to the equal frequencies mean frequency of 50.00 we get:

50.00 + (-7.50) + 0.00 + 0.00 = 42.50

This at first sight is the wrong answer since it is nowhere near the 37.23 obtained from 
the computer.

What we have not allowed for is the fact that these interactions also include the effect 
of the main effects. The main effects for this row combined to give a prediction of 55.00 
compared with the equal frequencies mean of 50.00. That is to say, the main effects are 
increasing the prediction for this row by 5.00. This would have to be taken away from 
the prediction based on the interaction to leave the pure effects of the two-way interac-
tions. So our value 42.50 contains 5.00 due to the main effects; getting rid of the main 
effects gives us the prediction of 37.50 based on the two-way interactions. This is pretty 
close to the 37.23 predicted by the model, but not sufficiently so. The unequal marginal 
totals necessitate the adjustments made automatically by the iterative computer program. 
Had our marginal totals been a lot more unequal then our fit to the computer’s value 
would have been much poorer. Simple methods are only suitable as ways of understanding 
the basics of the process.

If you would like another example of how the entries are computed, look at the final 
row of Table 41.12. The predicted value based on all the two-way interactions is 27.77. 
How is that value achieved? Notice that the two-way gender*sexual abuse interaction 
prediction is 32.50, which is 17.50 less than that according to the equal frequencies model 
prediction of 50.00; the gender*physical abuse prediction is 40.00, which is 10.00 less 
and the sexual abuse*physical abuse prediction is 50.00, exactly the same. So to get the 
prediction based on the three two-way interactions together, the calculation is the equal 
frequencies mean (50.00) + (-17.50) + (-10.00) + 0.00 = 22.50, but then we need to 
take away the influence of all the main effects, which involves adding 5.00 this time. Thus 
we end up with a prediction of 27.50. Again this is not precisely the computer predicted 
value but it is close enough for purposes of explanation. Remember, it is only close 
because the main effects are small or zero.

What is the normal output of a computer program such as SPSS? The important point 
to remember is that it is usual to explore the model first of all as combined effects – the 
sum of the interactions, the sum of the main effects – rather than the individual 
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620	 CHAPTER 41â•‡ Log-linear methods: Analysis of complex contingency tables

components in the first analysis. For the data in Table 41.10 we obtained the information 
in Tables 41.13 and 41.14 from the computer by stipulating a saturated model.

What do Tables 41.13 and 41.14 tell us? Remember that when we assessed the fit of 
the data based on the equal frequencies model we obtained a likelihood ratio chi-square 
value of 44.580. This large value indicates a large misfit of the model to the data. (The 
smaller the size of chi-square the better the fit.) Notice that this value of chi-square is 
exactly the same (within the errors of rounding) as the chi-square value in Table 41.13 
for the contribution of the main effects, two-way interactions and three-way interactions. 
Thus 44.580 is the improvement in the fit of the model created by including the three 
different levels of effect together.

If we take just the two-way and three-way interactions (omitting the main effects from 
the model), the improvement is a little less at 40.573 according to Table 41.13. Remember 
that the likelihood ratio chi-square is linear, so you can add and subtract values. Conse-
quently, the improvement in fit due to the main effects is 44.579 - 40.573 = 4.006. 
Within the limits of rounding error, this is the same value as for the sum of all of the main 
effects in Table 41.14 (i.e. 4.007).

If we take only the three-way interaction in Table 41.13 (i.e. omitting the two-way 
interaction and main effects from the model), we get a value of 10.713 for the amount of 
misfit. This is the value given in Table 41.14.

Where does the value for the two-way interactions come from? We have just found 
that the value for the main effect is 4.006 and the value for the three-way interaction is 
10.713. If we take these away from the chi-square of 44.580 we get 
44.580 - 4.006 - 10.713 = 29.861 for the contribution of the two-way interactions to 
the fit (exactly as can be found in Table 41.14 within the limits of rounding error).

It looks as if a good model for the data can exclude the main effects which are failing 
to contribute significantly to the goodness-of-fit even though the value of the likelihood 

	 Table 41.14	 Tests that the levels of effect are zero

Level of effects Types of effect involved Degrees of  
freedom

Likelihood ratio 
chi-square

Probability

1 all the main effects only 3 4.007 .2607

2 all the two-way 
interactions only

3 29.860 .0000

3 three-way interaction only 1 10.713 .0011

	 Table 41.13	 Tests of the increase in fit for the main effects and higher-order effects

Level of effects Types of effect involved Degrees of freedom Likelihood ratio 
chi-square

Probability

3 three-way interaction 1 10.713 .0011

2 (and above) all the two-way 
interactions + the 
three-way interaction

4 40.573 .0000

1 (and above) all the main 
effects + the two-way 
interaction + the 
three-way interaction 
only

7 44.579 .0000
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ratio chi-square is 4.007. Thus a model based on the two-way and three-way interactions 
accounts for the data well.

	 ■	 Step 5: Which components account for the data?

This analysis has demonstrated the substantial contributions of the two-way and three-
way interactions to the model’s fit to the data. Since there is only one three-way interac-
tion in this case, then there is no question what interaction is causing this three-way effect. 
There are three different two-way interactions for this model, not all of which may be 
contributing to the fit to the data. The way of checking for the relative influence of the 
different two-way interactions is to repeat the analysis but omitting one of the two-way 
interactions. This is easy to do on most computer programs. Doing this for the data in 
Table 41.10, we obtain the following:

●	 Based solely on gender*sexual abuse: chi@square = 15.036, df = 4, p = .005.

●	 Based solely on gender*physical abuse: chi@square = 36.526, df = 4, p = .000.

●	 Based solely on sexual abuse*physical abuse: chi@square = 44.579, df = 4, p = .000.

Working backwards, compared with the value of 44.580 for the misfit between the 
data and the equal frequencies model, there is no improvement in the fit by adding in 
the sexual abuse*physical abuse interaction since the value of the likelihood ratio chi-
square does not change (significantly) from that value of 44.580. This means that the 
sexual abuse*physical abuse interaction contributes nothing to the model fit and can be 
dropped from the model.

Considering solely the gender*physical abuse interaction, there is a moderate improve-
ment in fit. The maximum misfit of 44.580 as assessed by the likelihood ratio chi-square 
reduces to 36.526 when the gender*physical abuse interaction is included. This suggests 
that this interaction is quite important in the model and should be retained.

Finally, using solely the gender*sexual abuse interaction, the likelihood ratio chi-
square value declines to 15.036 from the maximum of 44.579, suggesting that the 
gender*sexual abuse interaction has a substantial influence and improves the fit of the 
model substantially.

It should be remembered that there is a main effect for gender in all of the above two-
way interactions except for the sexual abuse*physical abuse interaction where it is not 
present. (Check the marginal totals for the expected frequencies to see this.) In order to 
understand just how much change in fit is due to the two-way interaction, we need to 
adjust for the main effect of gender which we have already calculated as a likelihood ratio 
chi-square of 4.007. So to calculate the likelihood ratio chi-square of the gender*physical 
abuse interaction we have to take 36.526 from 44.580, which gives a value for the 
improvement in fit of 8.055. This value is the improvement in fit due to the gender main 
effect and the gender*physical abuse interaction. So for the improvement in fit due to the 
gender*physical abuse interaction only, we take 8.055 and subtract 4.007 to give a value 
of 4.048. This value is only roughly correct because of the unequal marginals involved, 
which means that a better approximation will be achieved through an iterative process.

Table 41.15 gives the results of an analysis starting with the saturated model and gradu-
ally removing components. If a removed component is having an effect on the fit there will 
be a non-zero value for the chi-square change for that row which needs to be tested for 
significance. The saturated model is a perfect fit (i.e. chi@square = 0.000), but taking away 
the three-way interaction increases the misfit to 10.713. This change (10.713 - 0.000) is 
the influence of the three-way interaction on the degree of fit. Taking away the interaction 
of gender*sexual abuse gives a chi-square change of 25.812 which indicates that the 
gender*sexual abuse interaction is having a big effect on the fit of the model.
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When we take away sexual abuse*physical abuse there is a 0.000 chi-square change. 
This indicates that this interaction is doing nothing to improve the fit of the model. Thus 
the sexual abuse*physical abuse interaction may be dropped from the model.

Similarly, the row of Table 41.15 where the main effect of sexual abuse is dropped has 
a zero likelihood ratio chi-square, indicating that the main effect of sexual abuse can be 
dropped from the model. Also the final row where the main effect of physical abuse is 
dropped also shows no change, implying that this main effect can be dropped from the 
model. Actually, only two of the components are statistically significant at the 5% level 
so that the model could be built on these solely. Our model then becomes:

mean frequency (i.e. equal frequencies mean) + gender*sexual abuse interaction + 
gender*sexual abuse*physical abuse interaction.

	 ■	 Step 6: More on the interpretation of log-linear analysis

By this stage, it should be possible to attempt fitting a log-linear model. Of course, a little 
practice will be necessary with your chosen computer in order to familiarise yourself with 
its procedures. This is not too technical in practice with careful organisation and the crea-
tion of systematic tables to record the computer output. If these things are not done, the 
sheer quantity of frequently redundant computer output will cause confusion.

Specifying the best-fitting model using likelihood ratio chi-squares is not a complete 
interpretation of the model. This is much as the value of Pearson chi-square in Chapter 18 
is insufficient without careful examination of the data. An important concept in this 
respect is that of residuals. A residual is merely the difference between the data and the 
data predicted on the basis of the model. These can be expressed merely as the data value 
minus the modelled value. So residuals may take positive or negative values and there is 
one residual per cell. Not only this, since in a log-linear analysis you may be comparing 
one or more components of the model with the data then several sets of residuals will 
have to be computed, and so you may be calculating different residuals for different 

	 Table 41.15	 Amounts of fit due to different components of the model

Model Likelihood ratio chi-square Degrees of freedom Prob. Chi-square change

Saturated   â•›0.000 –

All two-way interactions + all 
main effects (i.e. minus three-
way interaction)

10.713 1 .001 10.713a

Previous row less gender*sexual 
abuse

36.526 2 .000 25.812a

Previous row less sexual 
abuse*physical abuse

36.526 3 .000 0.000

Previous row less gender*physical 
abuse

40.573 4 .000 4.048

Previous row less sexual abuse 40.573 5 .000 0.000

Previous row less gender 44.579 6 .000 4.006

Previous row less physical abuse 44.579 7 .000 0.000

a Change significant at the 5% level.
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components of the model or different models. Residuals can be standardised so that values 
are more easily compared one with another.

The good news is twofold. There is no difficulty in calculating simple residuals, and 
computers generally do it for you anyway as part of calculating the model fit. If you look 
back to Table 41.12, you can easily calculate the residuals by subtracting any of the pre-
dicted model values from the actual data. The residuals for the saturated model are all 
zero, of course, indicating a perfect fit. The residuals for the equal frequencies model are 
-5.00, -10.00, 5.00, 30.00, 5.00, 10.00, -5.00 and -30.00; that is, the value of the 
frequency for that cell in the data -50.000 in each case.

The other helpful thing when interpreting log-linear models is the estimated cell fre-
quencies based on different components of the model. Remember that not only can you 
calculate these fairly directly but they are usually generated for you by the computer. The 
important thing about these estimated cell frequencies is that they tell you the trends in 
the data caused by, say, the interactions. For example, look at Table 41.12 and the column 
for the gender*sexual abuse interaction. You can see there that there are relatively few 
females who had been sexually abused and relatively more males who had been sexually 
abused in these data. It is best to compare these frequencies with the ones for the effects 
of the three main effects since the interaction figures actually include the effects of the 
main effects. Thus this comparison removes the main effects from the interaction. Fig-
ure 41.1 gives the key steps in log-linear analysis.

	 Figure 41.1	 Conceptual steps for log-linear analysis
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	 41.4	 Reporting the results

With something as complex as a log-linear analysis, you might expect that writing up the 
results of the analysis will be complex. Indeed it can be, and expect to write much more 
about your analysis than you would, for example, writing up the results of a correlation 
coefficient or a t-test. The purposes of log-linear analysis can be very varied, stretching 
from a fairly empirical examination of the data of the sort described earlier to testing the 
fit of a theoretical model to the actual data. Obviously there is no single sentence that can 
be usefully employed for describing the outcome of a log-linear analysis. Nevertheless 
certain things are very important. They are:

●	 A table giving the data and the residuals for each of the models that you examine. 
Without this, the reader cannot assess precisely the form of the fit of the models to the 
data. Table 41.12 would be a useful format for doing this.

●	 A table giving indications of the improvement in fit due to each component of the 
model. This will almost invariably be the likelihood ratio chi-square. Table 41.15 could 
be adapted to your particular data.

The text should discuss the final model which you have selected on the basis of your log-
linear analysis. This model could be expressed in terms of the components of the model 
which contribute significantly to the fit or, alternatively, as the lambda values mentioned 
in Box 41.2. Earlier in this chapter we indicated the models for our two examples in a 
simple form.

Lambda and hierarchical models
Lambda

Often in log-linear analysis, the models are specified in 
terms of lambda (l). This is simply the natural log of the 
influence of each of the different sorts of component of the 
cell frequencies. Thus a model may be built up from a suc-
cession of lambdas. These are given superscripts to denote 
what type of effect is involved: lA is the main effect of vari-
able A and lA*B is the effect of the interaction of variables 
A and B. So an equation involving these and other compo-
nents might be:

Model = l + lA + lB + lA*B

This simply means that we add to the natural logarithm 
of the equal-cell mean or constant (l), the natural loga-
rithm of the main effects of the variable A (remember that 
this has positive and negative values), the natural logarithm 

of the main effects of the variable B and the natural loga-
rithm of the interaction of the variables A*B.

Hierarchical models

Hierarchical models imply lower-order components and 
do not specify what these lower-order components are. 
Thus a hierarchical model may specify a four-variable 
interaction A*B*C*D. Any component involving A, B, C 
and D is assumed to be a component of that model. So the 
main effects A, B, C and D, the two-way interactions A*B, 
A*C, A*D, B*C, B*D and C*D, and the three-way inter-
actions A*B*C, A*B*D, A*C*D and B*C*D are auto-
matically specified as possible components in a hierarchical 
model. Notice that our examples employ a hierarchical 
approach.

Box 41.2	 Focus on
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Log-linear methods

Ahrens and colleagues (2007) conducted qualitative interviews with over 100 female rape survivors. However, 
the researchers felt that a quantitative analysis would be helpful in this case and chose to use log-linear analysis 
to help them better understand what happens when victims decide to report the events to their informal social 
network rather than a formal social network for victims. They analysed the sort of support provider, the victim’s 
reasons for disclosure, social reactions to the disclosure and the impact of the disclosure on the survivor. Positive 
rather than negative reactions were commonest with help from informal support providers but negative reac-
tions were commonest following help from formal support providers. However, this was not the case when the 
formal support providers initiated the support provision themselves. In this case, exclusively positive reactions 
were experienced by the victims.

Bridges and colleagues (2001) used a variation of Milgram’s famous lost letter technique in which letters are 
deliberately lost in the street in order to see whether details of the addressee affect return rates. They compared 
an ‘emotive’ address (Advocates for Battered and Abused Lesbians) with non-emotive ones. Hierarchical log-
linear analysis was used to analyse the variables of 1) returned versus not, 2) geographical location, 3) com-
munity size (city versus town) and 4) emotive versus non-emotive addressees. The findings showed complex 
relationships. Return rates were higher for Ohio than Florida/Alabama, higher for city than town and higher for 
the control addressees than the ‘emotive’ addressee.

Tracey and colleagues (1984) presented a random sample of university students with one of eight different 
descriptions of workshop programmes. The programs varied according to 1) whether the workshop dealt with 
exam or relationship skills, 2) whether the workshop was about skills enhancement or skills deficit reduction 
and 3) whether the orientation was towards self-change or changing the external environment for oneself (this 
the authors term ‘focus of effect’). Log-linear analysis was used in several ways. For example, information 
requests versus no requests were accounted for by a model which involved the interaction of gender*focus of 
effect.

Research examples

●	 It is recommended that before analysing your own data with log-linear, you reproduce our analyses in order 
to become familiar with the characteristics of your chosen computer program.

●	 Confine yourself to small numbers of variables when first using log-linear analysis. Although computers may 
handle, say, ten variables, you may find it difficult without a lot of experience.

●	 Log-linear analysis can include score variables if these are treated as frequencies.

●	 Log-linear analysis is not as commonly used in psychological research as it is in other disciplines. The reason 
is the preference of psychologists for using score variables.

Key points
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Computer Analysis

Log-linear analysis using SPSS

Interpreting and reporting the output

●	 Log-linear analysis is not the most familiar statistical technique in psychology and understanding it 
needs care and effort. The main text for this chapter goes through the process of understanding 
log-linear output in some detail. It helps if you ignore most of the Step Summary table and 
concentrate on its final row as this gives the final model.

●	 There is no standard way of presenting the result of a log-linear analysis but you could, for example, 
write something like ‘A log-linear analysis was carried out to determine the best model to fit the 
data. The interactions of physical abuse with gender and sexual abuse were the components which 
best accounted for the data. Their removal significantly affected the fit of the model to the data.’

	 Figure 41.2	 SPSS steps for log-linear analysis
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Recommended further reading

Agresti, A. (1996). An introduction to categorical data analysis (Chapters 1–4). New York, NY: Wiley.

Anderson, E. B. (1997). Introduction to the statistical analysis of categorical data (Chapters 2–4). 
Berlin, Germany: Springer.

	 Screenshot 41.1	 Part of the data in ‘Data View’ 	 Screenshot 41.2	 On ‘Analyze’ select ‘Model Selection. . . ’

	 Screenshot 41.3	 Main output
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●	 Multinomial logistic regression is a form of multiple regression in which a number of predic-
tors are used to predict values of a single nominal dependent or criterion variable.

●	 There may be any number of values (categories) of the dependent variable with a minimum 
of 3. It can be used with just two categories but binomial logistic regression (Chapter 43) 
would be more appropriate in these circumstances.

●	 It is used to assess the most likely group (category) to which a case belongs on the basis of 
a number of predictor variables. That is, the objective is to find the pattern of predictor vari-
ables that identify of which category an individual is most likely to be a member.

●	 Multinomial logistic regression uses nominal or category variables as the criterion or depend-
ent variable. The independent or predictor variables may be score variables or nominal 
(dichotomised) variables. In this chapter we concentrate on nominal variables as 
predictors.

●	 The concept of the dummy variable is crucial in multinomial logistic regression. A dummy 
variable is a way of dichotomising a nominal category variable with three or more different 
values. A new variable is computed for each category ( just one!) and participants coded as 
having that characteristic or not. The code for belonging to the category is normally 1 and 
the code for belonging to any of the other categories is normally 0.

●	 Multinomial logistic regression produces B-weights and constants just as in the case of other 
forms of regression. However, the complication is that these are applied to the logit. This is 
the natural (or Napierian) logarithm of the odds ratio (a close relative of probability). This 
allows the computation of the likelihood that an individual is in a particular category of the 
dependent or criterion variable given his or her pattern on the predictor variables.

Multinomial logistic 
regression
Distinguishing between several different 
categories or groups

Chapter 42

Overview
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	 42.1	 Introduction

A simple example should clarify the purpose of multinomial logistic regression. Profes-
sionals who work with sex offenders would find it helpful to identify the patterns of 
characteristics which differentiate between three types – rapists, incestuous child abusers 
and paedophiles. The key variable would be type of sex offence, and rapists, incestuous 
child abusers and paedophiles would be the three different values (categories) of this 
nominal (category) variable. In a regression, type of sex offender would be called the 
dependent variable or the criterion or the predicted variable. Just what is different 
between the three groups of offenders – that is, what differentiates the groups defined 
by the different values of the dependent variable? The researcher would collect a number 
of measures (variables) from each of the participants in the study in addition to their 
offence type. These measures are really predictor variables since the researcher wants to 
know whether it is possible to assess which sort of offender an individual is on the basis 
of information about aspects of their background. Such predictors are also known as 
independent variables in regression.

Imagine the researcher has information on the following independent variables (predic-
tor variables). They are all nominal/category variables in this example, but it is possible 
to use score variables or a mixture of score and nominal/category variables as predictors. 
The dependent variable has to be a nominal/category variable (see Box 42.1):

●	 age of offender (younger versus older; i.e. 30 plus)

●	 physically abused when a child

●	 sexually abused when a child

●	 depression (low depression versus high depression) measured on the DASS (Depression 
Anxiety Stress Scale)

●	 offender spent a period of childhood in children’s homes

●	 mother’s hostility as assessed by a family experiences scale (mother not hostile versus 
mother hostile)

●	 father’s hostility as assessed by a family experiences scale (father not hostile versus 
father hostile).

●	 A classification table is produced which basically describes the accuracy of the predictors in 
placing participants correctly in the category or group to which they belong.

Preparation

Make sure you are familiar with Chapter  18 on chi-square and Chapters  9 and 34 on 
regression.
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These data could be analysed in a number of ways. One very obvious choice would  
be to carry out a succession of chi-square tests. The type of offender could be one of the 
variables and any of the variables in the above list could be the predictor variable. An 
example of this is shown in Table 42.1. If we turn the numbers in the table into percent-
ages, proportionately fewer rapists but more paedophiles had a hostile father. Similar 
analyses could be carried out for each of the predictor variables in the list.

There is not a great deal wrong with this approach – it would readily identify the 
specific variables on which the three offender groups differ (and those on which they 
did not differ). One could also examine how any of the three offender groups differed 
from the others on any of the predictor variables. Since the analysis is based on chi-
square, then partitioning would help to test which groups differ from the others (Chap-
ter 18) in terms of any of the predictors.

The obvious problem with the chi-square approach is that it handles a set of predictors 
one by one. This is fine if we only have one predictor, but we have several predictor varia-
bles. A method of handling all of the predictor variables at the same time would have obvi-
ous advantages. Predictor variables are often correlated and this overlap also needs to be 
taken into account (as it is with multiple regression – see Chapters 34 and 35). That is, 
ideally the pattern of variables that best predicts group membership should be identified.

In many ways, multinomial logistic regression is the more general case of binomial 
logistic regression described in Chapter 43. The dependent variable in multinomial logistic 
regression can have one of several (not just two) nominal values. Nevertheless the two 

Rapists Incestuous  
offender

Paedophile

Father hostile to offender as a child 30 50 40

Father not hostile to offender 40 30 10

	 Table 42.1	 Example of how the offender groups could be compared on the predictors

Using score variables in logistic regression
Although we concentrate on nominal or category variables 
as the independent or predictor variables in logistic regres-
sion in this chapter, this is because it is conceptually harder 
to deal with them than score variables as independent vari-
ables. So for pedagogic reasons, we have not considered 
score variables directly in this chapter. However, score vari-
ables can be used as the independent or predictor variables 
and can be mixed with nominal/category variables in 

logistic regression. Conceptually, you should have no dif-
ficulty going on to using score variables in this way once 
you have mastered the material in this chapter and 
Chapter 43. You may have more difficulty running the 
analyses on SPSS since it uses somewhat idiosyncratic ter-
minology to refer to the two types of variable and it is not 
even consistent between the binomial logistic regression 
and multinomial logistic regression.

Box 42.1	 Focus on
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forms of logistic regression share many essential characteristics. For example, the depend-
ent variable is membership of a category (e.g. group) in both cases. However, not all of 
the sophisticated regression procedures which are available for binomial logistic regres-
sion can be used in multinomial logistic regression. Because of this, multinomial logistic 
regression is actually easier than binomial logistic regression. Nevertheless, there is a 
disadvantage for the more advanced user since there are few model-building options (no 
stepwise, no forward selection, no backward selection). This makes multinomial logistic 
regression simpler. Sometimes multinomial logistic regression is described as being rather 
like doing two or more binomial logistic regressions on the data. It could replace binomial 
logistic regression for the dichotomous category case – that is, when the dependent vari-
able consists of just two categories.

	 42.2	 Dummy variables

A key to understanding multinomial logistic regression lies in the concept of dummy vari-
ables. In our example, there are three values of the dependent variable, category A, cat-
egory B and category C. These three values could be converted into two dichotomous 
variables and these dichotomous variables are known as dummy variables:

●	 Dummy variable 1â•‡  Category A versus categories B and C.

●	 Dummy variable 2â•‡  Category B versus categories A and C.

Dummy variables are as simple as that. The two values of each dummy variable are nor-
mally coded 1 and 0.

What about the comparison of category C with categories A and B? Well, no such 
dummy variable is used. The reason is simple. All of the information that distinguishes 
category C from categories A and B has already been provided by the first two dummy 
variables. The first dummy variable explains how to distinguish category C from category 
A, and the second dummy variable explains how to distinguish category C from category 
B. The third dummy variable is not used because it would overlap completely with the 
variation explained by the first two dummy variables. This would cause something called 
multicollinearity, which means that some predictors intercorrelate highly with each other. 
So, in our example, only two of the dummy variables can be used. Multicollinearity 
should be avoided in any form of regression as it is the cause of a great deal of confusion 
in the interpretation of the findings.

�The choice of which dummy variable to omit in dummy coding is arbitrary. The out-
come is the same in terms of prediction and classification whatever variable is 
omitted.

If you are struggling with dummy variables and collinearity consider the following. 
Imagine the variable gender which consists of just two values – male and female. Try to 
change gender into dummy variables. One dummy variable would be ‘male or not’ and 
the other dummy variable would be ‘female or not’. There would be a perfect negative 
correlation between these two dummy variables – they are simply different ways of meas-
uring the same thing. So one dummy variable has to be dropped since it has already been 
accounted for by the other dummy variable. If there are more than two dummy variables 
then the same logic applies although the dropped dummy variable is accounted for by 
several dummy variables, not just one.
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	 42.3	 What can multinomial logistic regression do?

Multinomial logistic regression can help:

●	 identify a small number of variables which effectively distinguish between groups or 
categories of the dependent variable

●	 identify the other variables which are ineffective in terms of distinguishing between 
groups or categories of the dependent variable

●	 make actual predictions of which group an individual will be a member (i.e. what 
category of the dependent variable) on the basis of their known values on the predictor 
variables.

What are we hoping to achieve with our multinomial logistic regression? The main things 
are:

●	 whether our predictors actually predict the offence categories at better than the chance 
level

●	 the constants and regression weights that need to be applied to the predictors to opti-
mally allocate the offenders to the actual offending group

●	 a classification table that indicates how accurately the classification is based on the 
predictors compared to the known category of offence

●	 to identify the pattern of predictor variables which classifies the offenders into their 
offence category most accurately.

This list is more or less the same as would be applied to any form of regression.
Some researchers would use a different technique (discriminant analysis or discriminant 

function analysis) to analyse our data (see Box 42.2). However, multinomial logistic 
regression does an arguably better job since it makes fewer (unattainable?) assumptions 
about the characteristics of the data. More often than not, there will be little difference 
between the two in terms of your findings. In those rare circumstances when substantially 
different outcomes emerge, the multinomial logistic regression is preferred because of its 
relative lack of restrictive assumptions about the data. In other words, there is no advan-
tage in using discriminant function analysis but there are disadvantages.

Figure 42.1 outlines the key steps in multinomial logistic regression.

Difference between discriminant function analysis and 
logistic regression
Discriminant function analysis is very similar in its applica-
tion to multinomial logistic regression. There is no particu-
lar advantage of discriminant function analysis which is in 
some circumstances inferior to multinomial logistic 

Box 42.2	 Key concepts

regression. It could be used for the data in this chapter on 
different types of sex offenders. However, it is more char-
acteristically used when the independent variables are score 
variables. It would help us to find what the really 
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important factors are in differentiating between the three 
groups of sex offenders. The dependent variable in discri-
minant function analysis consists of the various categories 
or groups which we want to differentiate.

The discriminant function is a weighted combination of 
predictors which maximise the differentiation between the 
various groups which make up the dependent variable. So the 
formula for a discriminant function might be as follows:

Discriminant (function) score
= constant + b1x1 + b2x2 + b3x3 + b4x4

+ b5x5 + b6x6

The bs in the formula above are merely regression 
weights (just like in multiple regression) and x1, etc. are an 
individual’s scores on each of the predictor variables. As 
with multiple regressions, regression weights may be 
expressed in unstandardised or standardised form. When 
expressed in standardised form, the relative impact of the 
different predictors is more accurately indicated. In our 
example, there will be two discriminant functions because 
there are three groups to differentiate. The number of 

discriminant functions is generally one less than the num-
ber of groups. However, if the number of predictors is less 
than the number of discriminant functions, the number of 
discriminant functions may be reduced.

The centroid is the average score on the discriminant 
function of a person who is classified as belonging to one 
of the groups. If the analysis involves just two groups, 
there are two centroids. For a two-group discriminant 
function analysis there are two centroids. Cut-off points 
are provided which help the researcher identify to which 
group an individual belongs. This cut-off point lies half-
way between the two centroids if both groups are equal 
in size. The cut-off point is weighted towards one of the 
centroids in the case of unequal group size. A classifica-
tion table (in this context also known as a confusion 
matrix or prediction table) indicates how good the dis-
crimination between the groups is in practice. Such a table 
gives the known distribution of groups compared to how 
the discriminant function analysis categorises the indi-
viduals. Chapter 30 covers discriminant function analysis 
in relation to MANOVA.

	 Figure 42.1	 Conceptual steps for understanding multinomial logistic regression
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	 42.4	 Worked example

The data used are shown in Table 42.2. To make the output realistic, these 20 cases have 
been entered ten times to give a total sample of 200 cases. This is strictly improper as a 
statistical technique, of course, but helpful for pedagogic reasons.

It is not feasible to calculate multinomial logistic regression by hand. Inevitably a com-
puter program has to be used. Consequently, the discussion refers to a computer analysis 
rather than to computational steps to be followed. Figure 42.2 reminds us of the basic task 
in multinomial logistic regression. The predictors are scores and/or nominal variables. The 
criterion being predicted is always a nominal variable but one with more than two catego-
ries or values. Since nominal variables have no underlying scale by definition, the several 
nominal categories are essentially re-coded individually as present or absent. In this way, 
each value is compared with all of the other values. It does not matter which comparison 
is left out and, of course, computer programs largely make the choices for you. Figure 42.3 
takes the basic structure and applies it directly to our study of offenders in order to make 
things concrete. Remember that one dummy variable is not used in the analysis.

Our list of independent or predictor variables actually only includes two-value varia-
bles (binary or dichotomous variables). We could use more complex nominal variables as 
predictors. However, they would have to be made into several dummy variables just as 
the dependent variable is turned into several dummy variables. Score variables can also 
be used as independent variables though we have not done so.

Age DASS Mother  
hostile

Father  
hostile

Children’s  
home

Physical  
abuse

Sexual  
abuse

Type of  
offence

1 younger low high low no yes no rapist

2 younger low high low no yes yes rapist

3 older low high low no yes yes rapist

4 older high high high yes no no incest

5 older high high high yes yes yes rapist

6 younger low high low no no no rapist

7 older high low high no yes yes rapist

8 older high low high yes no no incest

9 younger low low high yes no yes incest

10 older high high low no yes yes incest

11 older high low low yes no yes incest

12 younger high low high no yes no rapist

13 older high low high yes no yes incest

14 older high high low yes yes yes incest

15 older low high high no yes yes incest

16 younger high high low yes no no paedophile

17 older high low high yes no yes paedophile

18 older low high high no no yes paedophile

19 younger high low high yes yes yes paedophile

20 older low low high yes no no paedophile

etc.

	 Table 42.2	 Data for the multinomial logistic regression
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	 Figure 42.2	 Multinomial logistic regression

	 Figure 42.3	 Structure of the example

Remember that the dependent variable in this case is the type of offence. There are 
three different types, categories or values of sex offender in the study. Hence there are 
two dummy variables listed (out of the maximum of three possible). Dummy variable 1 
is rapist versus not (not implies the offender is an incestuous child abuser or a paedophile). 
Dummy variable 2 is incestuous child abuser versus not (not implies the offender is a 
rapist or a paedophile). The choice of which dummy variable to leave out of the analysis 
is purely arbitrary, makes no difference to the outcome and, typically, is automatically 
chosen by the computer program.

	 42.5	 Accuracy of the prediction

Once the analysis has been run through an appropriate computer program, a useful start-
ing point is the classification table (that is, an accuracy assessment). Sometimes this is an 
option that you will have to select rather than something automatically produced by the 
program. The classification table is a crosstabulation (or contingency) table which com-
pares the predicted allocation of the offenders to the three offender groups to which they 
are known to belong. Usually, such tables include percentage figures to indicate the degree 
of accuracy of the prediction. Classification tables make a lot of sense intuitively and help 
clarify what the analysis is achieving. Table 42.3 is such a classification table for our data. 
We have yet to look at the calculation steps that allow this table to be generated. This 
comes later.

For the rapists, the analysis is rather accurate. Indeed, the overwhelming majority of 
rapists have been correctly identified as being rapists. Hence the row percentage correctly 
classified for rapists is 85.7%. This calculation is simply the number of correctly identified 
rapists (60) expressed as a percentage of the number of rapists in total (70). So the accuracy 
for the prediction for rapists is 60 , 70 * 100% = 0.857 * 100% = 85.7%. None of 
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the rapists was predicted to be a paedophile though some were predicted to be incestuous 
offenders. The other two categories of offender were not differentiated to the same level 
of accuracy. For the incestuous offenders, 62.5% were correctly identified as being incestu-
ous offenders. The paedophiles were relatively poorly predicted – only 40% of paedophiles 
were correctly identified. Interestingly, the paedophiles are only ever wrongly classified as 
being incestuous offenders, they are never wrongly classified as rapists.

So it would appear that the model (pattern of predictors of offence category) is reason-
ably successful at distinguishing the offender types. Nevertheless, the identification of 
incestuous offenders and paedophiles is not particularly good. Obviously, if we were to 
persist in our research then we would seek to include further predictor variables that were 
better at differentiating the incestuous and paedophile groups.

	 42.6	 How good are the predictors?

Calculating multinomial logistic regression using a computer program generates a variety 
of statistical analyses apart from the classification table discussed so far. We need to turn 
to other aspects of this multinomial logistic regression output in order to identify just how 
successful each predictor is and what predictors should be included in the model. The 
classification table gives no indication of this since it does not deal with the individual 
predictor variables.

Is the prediction better than chance? At some point in the analysis, there should be a 
table or tables including output referring to, say, ‘Cox and Snell’ or ‘Nagelkerke’ or 
‘McFadden’ or to several of these. These may be described as pseudo R-square statistics. 
They refer to the amount of variation in the dependent variable which is predicted by the 
predictor variables collectively. The maximum value of this, in theory, is 1.00 if the rela-
tionship is perfect; it will be 0.00 if there is no relationship. They are pseudo-statistics 
because they appear to be like R-square (which is the square of the multiple correlation 
between the independent and dependent variable – see p. 481) but they are only actually 
analogous to it. One simply cannot compute a Pearson correlation involving a nominal 
variable with more than two values (categories). The nearer the pseudo-statistic is to a 
perfect relationship of 1.00 the better the prediction (just as it would with a proper 
R-square). The value for ‘Cox and Snell’ is .546, the value for Nagelkerke is .617 and the 
value for McFadden is .365. So the relationship between the predictors and the criterion 
is moderate (see Table 42.4). We would interpret these values more or less as if they were 
analogous to a squared Pearson correlation coefficient.

Observed Predicted to be  
rapist offender

Predicted to be  
incestuous

Predicted to be  
a paedophile

Percentage  
correct for row

Actually a rapist 60 10 0 85.7%

Actually an incestuous offender 20 50 10 62.5%

Actually a paedophile 0 30 20 40.0%

Column percentage 40.0% 45.0% 15.0% Overall percentage 
correct = 65%

	 Table 42.3	 Predicted versus actual offence category of offenders

M42 Introduction to Statistics in Psychology with SPSS 29099.indd   636 05/01/2017   15:46



	 42.6â•‡ How good are the predictors?	 637

Pseudo-statistic

Cox and Snell .546

Nagelkerke .617

McFadden .365

	 Table 42.4	 Pseudo R-square statistics

Another table will be found in the computer output to indicate how well the model 
improves fit over using no model at all (Table 42.5). This is also an indication of 
whether the set of predictors actually contributes to the classification process over and 
above what random allocation would achieve. This is known as the model fit (but really 
is whether the modelled predictions are different from purely random predictions). This 
involves a statistic called -2 log likelihood which is discussed in Box 42.3. Often the 
value for the intercept is given (remember this is a regression so there is a constant of 
some fixed value). Table 42.5 illustrates this aspect of the output. The chi-square value 
is calculated using the -2 log likelihood statistic. This amounts to a measure of the 
amount of change due to using the predictors versus not using the predictors. As can 
be seen, there is a significant change, so it is worthwhile using the model. (It is signifi-
cant at the .001 level. That is, it is a change in predictive power which is significant at 
better than the 5% level or .05 level.)

There is yet another statistic that is worth considering – the goodness-of-fit of the 
model to the data. The model is not merely intended to be better than no model at all but, 
ideally, it will fit or predict the actual data fairly precisely. A chi-square test can be per-
formed comparing the fit of the predicted data to the actual data. In this case, of course, 
the ideal outcome is no significant difference between the actual data and those predicted 
from the model. This would indicate that it is pointless searching for additional predictors 
to fit the model – assuming that the sample is fairly large so sampling fluctuations may 
not be too much of a problem. In this example, the model makes predictions which are 
significantly different from the obtained classification of the offender. The incomplete 
match between the data and the predicted data is not surprising given the classification 
table (Table 42.3). This does not mean that the model is no good, merely that it could be 
better. Table 42.6 gives the goodness-of-fit statistics. Probably in psychology and the 
social sciences, it is unrealistic to expect any model to predict the actual data perfectly. 
Moderate levels of fit would be acceptable.

So which are the best predictors? It was clear from Table 42.5 that the predictors 
improve the accuracy of the classification. However, this is for all of the predictors. It does 
not tell us which predictors (components of the model) are actually responsible for this 

Model components −2 log likelihood  
statistica

Chi-square for  
change

Degrees of  
freedom

Significance

Intercept (i.e. constant) only 407.957

Final model 248.734 159.224 14 .001

	 Table 42.5	 �Model fitting information indicating whether the prediction actually changes significantly from the values if the 
predictors were not used

a See Box 42.3 for a discussion of this statistic.
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improvement. To address that issue, it is necessary to examine the outcomes of a number 
of likelihood ratio tests. Once again these use the -2 log likelihood calculation, but the 
strategy is different. There is a succession of such tests that examine the effect of removing 
one predictor from the model (set of potential predictors). The change in the -2 log likeli-
hood statistic consequent on doing this is distributed like the chi-square distribution. 
Table 42.7 shows such a set of calculations for our data. Notice that in general little 
changes (i.e. the chi-square values are small) in a number of cases – DASS anxiety and 
hostility of the mother. Removing these variables one at a time makes no difference of 
any importance in the model’s ability to predict. In other words, neither DASS anxiety 
nor hostility of the mother is a useful predictor.

Other predictors can be seen to be effective predictors simply because removing them 
individually makes a significant difference to the power of the model. That is, the model 

Change in the −2 log likelihood
Logistic regression uses a statistic called -2 log likelihood. 
This statistic is used to indicate a) how well both the model 
(the pattern of predictors) actually fits the obtained data, 
b) the change in fit of the model to the obtained data if a 
predictor is removed from the model and c) the extent to 
which using the model is an improvement on not using the 
model. These uses are different although the same statistic 
is used in assessing them.

There is a similarity, however. All of them involve the 
closeness of fit between different versions of the classifica-
tion table. Earlier in studying statistics, we would have used 
chi-square in order to assess the significance of these dis-
crepancies between one classification table and another. 
Actually that is more or less what we are doing when we 
use the -2 log likelihood statistic. This statistic is distrib-
uted like the chi-square statistic. Hence, you will find refer-
ence to chi-square values close to where the -2 log 
likelihood statistic is reported. The -2 is there because it 
ensures that the log likelihood is distributed according to 
the chi-square distribution. It is merely a pragmatic 
adjustment.

Box 42.3	 Key concepts

Just like chi-square, then, a 0 value of the -2 log likeli-
hood is indicative that the two contingency tables involved 
fit each other perfectly. That is, the model fits the data 
perfectly, dropping a predictor makes no difference to the 
predictive power of the analysis, or the model is no differ-
ent from a purely chance pattern. All of these are more 
similar than they might at first appear. Similarly, the bigger 
the value of the -2 log likelihood statistic, the more likely 
is there to be a significant difference between the versions 
of the contingency table. That is, the model is less than 
perfect in that it does not reproduce the data exactly 
(though it may be a fairly useful model); the variable which 
has been dropped from the model should not be dropped 
since it makes a useful contribution to understanding the 
data; or the model is better than a chance distribution – 
that is, makes a useful contribution to understanding the 
pattern of the data on the dependent variable.

The statistic usually reported is the change in the -2 log 
likelihood. The calculation of the degrees of freedom is a 
little less straightforward than for chi-square. It is depend-
ent on the change in the number of predictors associated 
with the change in the -2 log likelihood.

Chi-square Degrees of freedom Significance

Pearson goodness-of-fit statistic 228.010 22 .001

	 Table 42.6	 Goodness-of-fit of the actual offence category to the predicted offence category
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with any of these predictors taken away is a worse fit to the data than when the predic-
tor is included (i.e. the full model). Although we have identified the good predictors, 
this is not the end of the story since we cannot say what each of the good predictors is 
good at predicting – remember that we have several (two in this example) dummy vari-
ables to predict. The predictors may be good for some of the dummy variables but not 
for others.

	 42.7	 Prediction

So how do we predict to which group an offender is likely to belong given his particular 
pattern on the predictor variables? This is very much the same question as asking which 
of the predictor variables have predictive power. It is done in exactly the same way that 
we would make the prediction in any sort of regression. That is we multiply each of the 
‘scores’ by its regression weight, add up all of these products and, finally, add the intercept 
(i.e. constant) (see Chapter 34 for this sort of calculation). In logistic regression we are 
actually predicting category membership or, in other words, which value of the dependent 
or criterion variable the offender has. Is he a rapist, incestuous offender or paedophile? 
This is done mathematically by calculating something known as ‘the logit’ (see also Chap-
ter 43 on binomial logistic regression). The logit is the natural logarithm of something 
known as the odds ratio. The odds ratio relates very closely and simply to the probability 
that an offender is in one category rather than the others. A key thing to note is that 
multinomial logistic regression, like multiple regression (Chapter 34), actually calculates 
a set of regression weights (B) which are applied to the logit. It also calculates a constant 
or cut-point as in any other form of regression.

Table 42.8 gives the regression values calculated for our data. There are a number of 
things to bear in mind:

●	 The table is in two parts because there is more than one dependent variable to predict 
– that is, there are two dummy variables. If there were three dummy variables then this 
table would be in three parts and so forth.

●	 The dichotomous variables are each given a regression weight (B) value for each value. 
The value coded 1 has a numerical value which may be positive or negative. The other 

Predictor −2 log likelihood of reduced  
model; i.e. without the  

predictor to the left

Chi-square Degrees of freedom Significance

Intercept (constant) 248.734

Age 267.272 18.538 2 .000

DASS 249.454 0.721 2 .697

Mother’s hostility 248.932 0.199 2 .905

Father’s hostility 256.089 7.355 2 .025

Children’s home 259.677 10.943 2 .004

Physical abuse 287.304 38.571 2 .000

Sexual abuse 263.914 15.181 2 .001

	 Table 42.7	 Likelihood ratio tests
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Category Predictor B
Standard 

error
Wald

Degrees of 
freedom

Sig.

Rapist – not Intercept -0.260 1.158 0.050 1 .822

Age (younger) -0.159 0.678 0.055 1 .814

Age (older) 0 0

DASS (lower) 0.575 0.735 0.612 1 .434

DASS (higher) 0 0

Mother’s hostility (lower) -0.328 0.791 0.171 1 .679

Mother’s hostility (higher) 0 0

Father’s hostility (lower) 0.838 0.863 0.943 1 .332

Father’s hostility (higher) 0 0

Children’s home (yes) -1.576 0.815 3.739 1 .053*
Children’s home (no) 0 0

Physically abused (yes) 20.540 0.713 830.866 1 .000*
Physically abused (no) 0 0

Sexually abused (yes) -18.570 0.000 ∞ 1

Sexually abused (no) 0 0

Incestuous child 
abuser – not

Intercept -0.314 0.813 0.150 1 .699

Age (younger) -1.970 0.542 13.187 1 .000*
Age (older) 0 0

DASS (lower) 0.086 0.562 0.024 1 .878

DASS (higher) 0 0

Mother’s hostility (lower) -0.014 0.505 0.01 1 .977

Mother’s hostility (higher) 0 0

Father’s hostility (lower) 1.486 0.615 5.836 1 .016*
Father’s hostility (higher) 0 0

Children’s home (yes) 0.479 0.704 0.463 1 .496

Children’s home (no) 0 0

Physically abused (yes) 0.652 0.582 1.255 1 .263

Physically abused (no) 0 0

Sexually abused (yes) 0.498 0.498 1.003 1 .317

Sexually abused (no) 0 0

	 Table 42.8	 Constants and regression weights for predictors used

*Wald test is significant at better than the .05 level.

value is given a regression weight of 0 every time. That is, by multiplying the numerical 
value by 0 we are always going to get 0. In other words, one of the values of a dichoto-
mous predictor has no effect on the calculation.

●	 There is a statistic called the Wald statistic in Table 42.8. This statistic is based on the 
ratio between the B-weight and the standard error and these values are computed in 
Screenshot 42.5. Thus for the first dummy variable it is 0.055. This is not statistically 
significant (p = .814). Sometimes the output will be a little misleading since if the stand-
ard error is 0.00 then it is not possible to calculate the Wald statistic as it is an infinitely 
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large value. Any value divided by 0 is infinitely large. An infinitely large value is statisti-
cally significant, but its significance value cannot be calculated. The significance values 
of the Wald statistic indicate which of our predictors is statistically significant.

	 42.8	 Interpreting the results

It is fairly self-evident that the features which distinguish the three groups of offenders 
are as follows:

●	 Rapists (as opposed to incestuous and paedophile offenders) are less likely to have been 
in a children’s home (B = -1.576, the minus sign meaning that the reverse of spending 
some time in a children’s home is true). This is significant at .053 which is just about 
significant. The rapists were also more likely to have been physically abused 
(B = 20.540 and the sign is positive). This is much more statistically significant and 
the best predictor of all. Finally, the rapists were less likely to have been sexually 
abused. There is no significance level reported for this because the standard error is 
0.000 which makes the Wald statistic infinitely large. Hence a significance level cannot 
be calculated but really it is extremely statistically significant.

●	 Incestuous abusers (as opposed to rapists and paedophile offenders) are more likely to 
be in the young group and to have a father low on hostility.

The findings are presented in Table 42.9. There were two dummy variables so there are two 
dimensions to the table. This table probably will help you to understand why only two 
dummy variables are needed to account for the differences between three groups.

Younger age group: 
Father not hostile

Older age group:  
Father hostile

Children’s home: Not physically 
abused, but sexually abused

incestuous abuser paedophile

Never in children’s home: Physically 
abused, but not sexually abused

rapist

	 Table 42.9	 Differentiating characteristics of the three offender types

	 42.9	 Reporting the results

As with some other more advanced statistical procedures, there is no standard way of 
presenting the outcome of a multinomial logistic regression. One way of reporting the 
broad findings of the analysis would be as follows:

A multinomial logistic regression was conducted using six dichotomous predictors to 
predict classification on the multinomial dependent variable offence type (paedophile, 
incestuous offender, rapist). The predictors were capable of identifying the offender 
group at better than the chance level. Two regression patterns were identified – one for 
rapists versus the other two groups, the second for incestuous offenders versus the other 
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two groups. The pseudo@r2 (Cox and Snell) was .55, indicating a moderate fit between 
the total model and data although the fit was less than perfect. Rapists were differenti-
ated from the other two groups by not having spent time in a children’s home, being 
physically abused but not being sexually abused. Incestuous offenders were significantly 
differentiated from the other two groups by being in the younger age group and their 
father not being hostile to them as children. Rapists were correctly identified with a 
high degree of accuracy (85.7% correct). Incestuous offenders were less accurately 
identified (62.5% correct). Paedophiles were more likely to be wrongly classified (accu-
racy 40.0% correct) but as incestuous offenders rather than rapists. The regression 
weights are to be found in Table 42.8.

Multinomial logistic regression

Griffin and Hesketh (2008) asked what factors predict post-retirement work intentions. They used multinomial 
logistic regression to predict membership of various groups - 1) not work, voluntary work, 2) part-time paid 
employment and 3) voluntary work plus part-time work. The predictors included the participants’ evaluations of 
pre-retirement work, attitudes to retirement, demographics and so forth. Positive evaluations of pre-retirement 
work predicted both volunteer work and paid-work post retirement. The variables gender, health, and retirement 
satisfaction were associated with volunteer work and higher levels of education were predictive of paid work.

Huisman, van Houwelingen and Kerkhof (2010) were interested in whether patients with particular psychiatric 
diagnoses were more likely to kill themselves with a particular method. They found that psychiatric diagnosis, 
gender and the status of patients as in- or out-patient were significantly related to the method of suicide used. 
They used multinomial logistic regression to determine which of these variables were related to suicide method 
when examined together. The dependent variable was suicide method with the four categories of 1) self-poi-
soning, 2) jumping before a train, 3) jumping from a high place and 4) all other methods apart from hanging, 
which as the most common method was chosen to be the reference category. They reported a number of sig-
nificant findings. For example, ‘compared to suicide by hanging, patients who poisoned themselves were more 
likely to have a substance-related disorder (Or = 4.13), to be in outpatient treatment (Or = 3.22) and less 
likely to be male (Or = 0.23)’ (p. 96). OR is odds ratio.

Kogan (2004) examined the factors that predicted disclosure in women who had unwanted sexual experiences 
in their childhood or adolescence. The dependent variables were the timing of disclosure and the person 
Â�disclosed to. Timing of disclosure consisted of the three categories of 1) immediate, 2) delayed and 3) non-
disclosure, with immediate disclosure being the reference category. Person disclosed to contained the three 
categories of adult, peers only and non-disclosure, with adult being the reference category. Multinomial logistic 
regressions were carried out on these two dependent variables separately. Predictors of these two dependent 
variables included age at which the experience first occurred which was then re-categorised into four groups: 
whether the person knew the other person, whether they were family and so on. Various significant findings 
were reported. For example, ‘participants who knew their perpetrator were 3.1 times more likely to non-disclose 
and 3.7 times more likely to delay disclosure than to disclose within a month’ (p. 157).

Lampropoulos, Schneider and Spengler (2009) wished to investigate the factors associated with different sorts 
of outcomes of counselling services provided as part of the training of counsellors at an American university. 
Drop-out rates, in particular, have been studied in relation to counselling but the research was too varied in 
outcome to allow its generalisation to student counselling services. Three types of outcome were included in 
the new study: 1) clients who failed to return for treatment after the initial intake appointment (intake drop-
outs); 2) clients who ended treatment later than this yet did not complete the counselling therapy treatment 

Research examples
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programme (i.e. therapy drop-outs), and 3) clients who completed their course of therapy (i.e. completers). These 
three groups made up the dependent variable for the multinomial logistic regression employed by the research-
ers. The predictors were based on information collected 1) before intake to the programme and 2) the termina-
tion report by the counsellor. The predictors of intake drop-out were lower age and lower income and the 
therapist’s initial assessment of how difficult it would be to work with the client. The predictors for therapy 
drop-out were the GAF (Global Assessment of Functioning) scores but no other predictor. The lower the func-
tioning the more likely that the client would be in the therapy drop-out group.

Niemeier and colleagues (2007) used a database on traumatic brain injury patients. They employed the Wiscon-
sin Card Sort Test as their measure of executive function. One aspect of this was perseveration. They used the 
categories achieved on the Wisconsin test as the dependent variable of a multinomial logistic regression. The 
predictor variables were gender, minority status, level of education, prior substance abuse, cause of injury and 
length of coma. The longer the coma, being male and being from a minority group predicted severity of the 
perseveration symptom.

Testa, Van Zile-Tamsen and Livingston (2007) looked at various factors which might predict later sexual victimi-
sation in women. The dependent variable consisted of four groups: 1) no victimisation, which was the reference 
group, 2) victimisation by someone they knew well (intimate partner), 3) victimisation by someone they did not 
know well (non-intimate perpetrator) and 4) victimisation by someone they knew well plus someone they did 
not know well. They carried out a multinomial logistic regression with 11 predictors such as how assertive they 
were in refusing sex. A number of these predictors distinguished these groups. For example, women who were 
victimised by someone they did not know well were more likely to be single, engage in heavy episodic drinking 
and have more consensual sexual partners.

●	 The power of multinomial logistic regression to help identify differences among psychologically interesting 
– but different – groups of individuals means that it has far greater scope within psychological research than 
has yet been fully appreciated by researchers.

●	 The unfamiliarity of some of the concepts should not be regarded as a deterrent. The key features of the 
analysis are accessible to any researcher no matter how statistically unskilled.

Key points
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Computer Analysis

Multinomial logistic regression using SPSS

Interpreting and reporting the output

●	 The Parameter Estimates table (Screenshot 42.5) provides the regression data for predicting the 
different types of offending. Each of the predictors is presented twice and you can ignore the rows 
which have 0b towards the beginning under the B (regression weight) column. The significant predictors 
can be found from the Sig. column. Check the B weight for the direction of the relationship as you would 
with any form of regression.

●	 A brief write-up might be: ‘Multinomial logistic regression showed that only some of the six predictors 
effectively predicted offence type (rapist, paedophile or incestuous abusers). The pseudo-r2 (Cox and 
Snell) was .55 indicating a moderate fit between the model and the data. Rapists were different from  
the other types of offenders in that they had not spent time in a children’s home and had been 
physically abused but not sexually abused. Incestuous offenders tended to be younger and their  
fathers were not hostile to them as a child.’

	 Figure 42.4	 SPSS steps for binomial logistic regression
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Screenshot 42.2

	 On ‘Analyze’ select ‘Multinomial 
Logistic. . . ’ 	 Screenshot 42.4	 Select statistics

	 Screenshot 42.1	 Part of the data in ‘Data View’

	 Screenshot 42.5	 Parameter Estimates table output	 Screenshot 42.3	 Select variables
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●	 Binomial (or binary) logistic regression is a form of multiple regression which is applied when 
the dependent variable is dichotomous – that is, has only two different possible values.

●	 A set of predictors is identified which assesses the most likely of the two nominal categories 
a particular case falls into.

●	 The predictor variables may be any type of variable, including scores. However, in this chap-
ter we concentrate on using dichotomous predictor variables.

●	 As in multiple regression, different ways of entering predictor variables are available. What 
is appropriate is determined partly by the purpose of the analysis. Blocks may be used in 
order to control for, or partial out, demographic variables for example.

●	 Classification tables compare the categories cases actually belong to with the categories 
predicted on the basis of the independent variables.

●	 Like other forms of regression, logistic regression generates B-weights (or slope) and a 
constant. However, these are used to calculate something known as the logit rather than 
scores. The logit is the natural logarithm of odds for the category. The percentage predicted 
in each category of the dependent variable can be calculated from this and compared with 
the actual percentage.

●	 As in all multivariate forms of regression, the final regression calculation provides informa-
tion about the significant predictors among those being employed.

Binomial logistic 
regression

Chapter 43

Overview

Preparation

Look back at Chapter 9 on simple regression, Chapter 18 on chi-square and Chapter 34 on 
multiple regression. Chapter 42 on multinomial logistic regression may be helpful in consolidat-
ing understanding of the material in this chapter.
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	 43.1	 Introduction

Binomial (or binary) logistic regression may be used to:

●	 determine a small group of variables which characterise the two different groups or 
categories of cases

●	 identify which other variables are ineffective in differentiating these two groups or 
categories of cases

●	 make actual predictions about which of the two groups a particular individual is likely 
to be a member given that individual’s pattern on the other variables.

A simple way to understand binomial logistic regression is to regard it as a variant of 
linear multiple regression (Chapter 34). Binomial logistic regression, however, uses a 
dependent variable which is nominal and consists of just two nominal categories. 
By employing a weighted pattern of predictor variables, binary logistic regression assesses 
a person’s most likely classification on this binary dependent variable. This prediction is 
expressed as a probability or using some related concept. Other examples of possible 
binomial dependent variables include:

●	 success or failure in an exam

●	 suffering schizophrenia or not

●	 going to university or not.

If the dependent variable has three or more nominal categories, then multinomial logistic 
regression should be used (Chapter 42). In other words, if there are three or more groups 
or categories, multinomial logistic regression is the appropriate approach. 

Often, but not necessarily, the independent variables are also binary nominal category 
variables. So gender and age group could be used as the predictor variables to estimate 
whether a person will own a mobile phone or not, for example.

Because the dependent variable is nominal data, regression weights are calculated 
which help calculate the probability that a particular individual will be in category A 
rather than category B of the dependent variable. More precisely:

●	 The regression weights and constant are used to calculate the logit.

●	 This in its turn is the natural logarithm of something called the odds.

●	 Odds are not very different from probability and are turned into probabilities using a 
simple formula.

This is a little daunting at first, but it is not that difficult in practice – especially given that 
one rarely would need to calculate anything by hand!

You may find it helpful to turn to Box 43.1 on simple logistic regression. Studying this 
will introduce you to most of the concepts in binomial logistic regression without too 
much confusing detail and complexity. Simple logistic regression would not normally be 
calculated since it achieves nothing computationally which is not more simply done in 
other ways. Box 43.2 explains natural logarithms.
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Simple logistic regression
In this chapter we are looking at binomial logistic regres-
sion and applying it to predicting recidivism (re-offending 
by prisoners). We will take a simple example of this which 
uses one independent variable (whether the prisoner has 
previous convictions) and one dependent variable (whether 
or not prisoners re-offend). Table 43.1 illustrates such data. 
The table clearly shows that prisoners who have previous 
convictions are much more likely to re-offend than prison-
ers who have not got previous convictions (i.e. first-time 
offenders). If a prisoner has previous convictions, the odds 
are 40 to 10 that they will re-offend. This equates to a 
percentage of 80% (i.e. 40/(40 + 10) * 100%). If a pris-
oner has no previous convictions then the odds are 15 to 
30 that they will re-offend. This equates to a percentage of 
33.33% (i.e. 15/(15 + 30) * 100%).

It would be a simple matter of predicting recidivism 
from these figures. Basically if a prisoner has previous con-
victions then they are very likely to re-offend (80% likeli-
hood), but if they have no previous convictions then they 
are unlikely to re-offend (33% likelihood). Table 43.2 illus-
trates what we would expect on the basis of the data in 
Table 43.1. There is virtually no difference between the two 
tables – we have merely added the percentage of correct 
predictions for each row, that is, how easy the prediction is 

in this simple case. Notice we are more accurate at predict-
ing re-offending in those with previous convictions than we 
are at predicting no re-offending in those with no previous 
convictions. That is how simple the prediction is with just 
a single predictor variable.

In logistic regression, simply for mathematical computa-
tion reasons, calculations are carried out using odds rather 
than probabilities. However, odds and probability are 
closely related. The odds of re-offending if the prisoner has 
previous convictions is simply the numbers re-offending 
divided by the numbers not re-offending. That is, the odds 
of re-offending if the prisoner has prior convictions are 
40 , 10 = 4.0. On the other hand, if the prisoner has no 
previous convictions, the odds for re-offending are 
15 , 30 = 0.50.

A simple formula links probability and odds so it is very 
easy to convert odds into probabilities (and vice versa if 
necessary):

 probability (of re@offending) = odds/(1 + odds)

 = 4.0/(1 + 4.0)

 = 4.0 , 5.0

 = .80

 ( = 80% as a percentage)

Box 43.1	 Focus on

	 Table 43.1	 Tabulation of previous convictions against re-offending

Re-offends No re-offending

Previous conviction 40 10

First offender 15 30

	 Table 43.2	 Classification table including percentage of correct predictions

Re-offends No re-offending Row correct

Previous conviction 40 10 80.0%

First offender 15 30 66.7%
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It should be stressed that in reality things are even easier 
since, apart from explanations of logistic regression such 
as this, all of the calculations are done by the computer 
program.

The concept of odds ratio occurs frequently in discus-
sions of logistic regression. An odds ratio is simply the ratio 
of two sets of odds. Hence the odds ratio for has previous 
offences against not having previous offences is simply 
4.0 , 0.50 = 8.0. This means that if a prisoner has previ-
ous convictions he is eight times more likely to re-offend 
than a prisoner who has no previous convictions. Of 
course, there are other odds ratios. For example, if the pris-
oner has no previous convictions he is 0.50 , 4.0 = 0.125 
times as likely to re-offend than if he has previous convic-
tions. An odds ratio of 0.125 seems hard to decipher, but 
it is merely the decimal value of the fraction 1 , 8. That 
seems more intuitively obvious to understand than the deci-
mal. All that is being said is that there is eight times more 
chance of having outcome A than outcome B – which is the 
same thing as saying that there is an eighth of a chance of 
having outcome B rather than outcome A.

The actual calculations in logistic regression revolve 
around a concept known as the logit. A logit is simply the 
natural logarithm of the odds (or odds ratio). Box 43.2 
gives an explanation of natural logarithms. For a short 
table of natural logarithms see Table 43.3. Most scientific 
calculators will provide the natural logarithm of any num-
ber – they are also known as Napierian logarithms.

If we run the data from Table 43.1 through the logistic 
regression program, a number of tables are generated. One 
of the most important tables will contain a B-weight and a 
constant. These are somewhat analogous to the b-weight 
and the constant that are obtained in linear regression 
(Chapter 9) and multiple regression (Chapter 34). For our 
data the B is 2.079 and the constant is -0.693. (If you try 
to reproduce this calculation using a computer program 
such as SPSS be very careful since programs sometimes 
impose different values for the cells from those you may be 
expecting.) The constant and B-weight are applied to the 
values of the dependent variable in order to indicate the 
likelihood of each of the two values occurring in offenders 
with previous convictions. Remember that the dependent 
variable is coded either 1 (if the offender has previous con-
victions) or 0 (if the offender has no previous convictions). 
The result of this calculation then gives us the logit from 
which a probability of either outcome may be calculated, 
though normally there is no need to do so.

So, if we wish to know the likelihood of re-offending, 
the dependent variable in our example variable has a value 
of 1 if the offender re-offends after release from prison. The 
logit (of the odds that the offender will re-offend) is calcu-
lated as:

 constant + (1 * B) = -0.693 + (1 * 2.079)

 = -0.693 + 2.079 = 1.386

	 Table 43.3	 Some odds and their corresponding natural logarithm values

Odds (or odds ratio) Natural logarithm  
(logit)

Odds (or odds ratio) Natural logarithm  
(logit)

0.10 -2.30 1.50 0.41

0.20 -1.61 2.00 0.69

0.25 -1.39 3.00 1.10

0.30 -1.20 4.00 1.39

0.40 -0.92 5.00 1.61

0.50 -0.69 6.00 1.79

0.60 -0.51 7.00 1.95

0.70 -0.36 8.00 2.08

0.80 -0.22 9.00 2.20

0.90 -0.11 10.00 2.30

1.00 0.00 100.00 4.61

➜
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This value of the logit can be turned into odds using the table 
of natural logarithms (Table 42.3). The odds for a logit of 
1.386 is 4.00. This is no surprise as we calculated the odds 
for re-offending earlier in this box using very simple meth-
ods. Expressed as a probability, this is 4.00/(1 + 4.00) =  
4.00 , 5.00 = .80 = 80%as a percentage.

On the other hand, if the predictor variable has a value 
of 0 (i.e. the offender does not re-offend after leaving 
prison) then the calculation of the logit is as follows:

 logit = constant + (0 * B) = -0.693 + (0 * 2.079)

 = -0.693 + 0 = -0.693

Again Table 43.3 can be consulted to convert this logit (natu-
ral logarithm of the odds) into the odds. We find that the 
odds for a logit of 0.693 is 0.50. Remember what this means. 
We have calculated the odds that a prisoner who has no 
previous offences will re-offend on release to be 0.50. We 

can express this as a probability by applying the earlier for-
mula. This is 0.50/(1 + 0.50) = 0.50 , 1.50 = .33or 
33% as a percentage. Thus, the probability of re-offending 
(if the prisoner has previous convictions) is .67 (or 67%) and 
the probability of not re-offending is .33 or 33%.

Unfortunately, binomial multiple regression is not 
quite that simple but only because it employs several 
predictor (independent variables) which may well be to 
a degree associated. Consequently, the prediction 
becomes much more complex and cannot be done with-
out the help of a computer program because it is incred-
ibly computationally intensive. But the main difference 
in practical terms is not great since the user rarely has 
to do even the most basic calculation. Instead of one 
B-weight, several regression weights may be 
produced – one for each predictor variable. This merely 
extends the calculation a little as you will see in the 
main text for this chapter.

Natural logarithms
We do not really need to know about natural logarithms to 
use logistic regression, but the following may be helpful to 
those who want to dig a little deeper. Natural logarithms 
are also known as Napierian logarithms. A logarithm is 
simply the exponential power to which a particular base 
number (that can be any number) has to be raised in order 
to give the number for which the logarithm is required. Let 
us assume, for example, that the base number is 2.00 and 
we want to find the logarithm for the number 4.00. We 
simply have to calculate e (the exponential or power) in the 
following formula:

2.00e = 4.00

It is probably obvious that in order to get 4.00, we have to 
square 2.00 (i.e. raise to the power of 2). So the logarithm 
to the base 2.00 for the number 4.00 is 2. Similarly, the loga-
rithm of 8 to the base 2.00 is 3 and the logarithm of 16 is 4. 
Natural logarithms have as their base 2.71828. Table 43.3 
gives some natural logarithms for a selection of numbers.

Box 43.2	 Key concepts

Natural logarithms are vital to the calculation of logis-
tic regression because it is based on the Poisson distribu-
tion. Poisson distributions are largely used to calculate 
probabilities of rare occurrences in large populations. 
Multiple regression is based on the normal distribution, 
logistic regression is based on the Poisson distribution. 
One feature of logarithms is that they can be applied to 
any numerical measures in order to compact the distribu-
tion by making the large values relatively much smaller 
without affecting the small values so much. This can be 
seen in Table 43.3. Notice that if we take the odds ratios 
for 1 through to 100, the logit values only increase from 0 
to 4.61. Also noteworthy is that the natural log of 1.00 
(the point at which both outcomes are equally probable) 
is 0.0. In terms of the calculations, the main consequence 
of this is that the logistic regression B-weights have a 
greater influence when applied to a logit close to the mid-
point (i.e. log of the odds ratio of 1.00) than they do 
higher on the natural logarithm scale.
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	 43.2	 Typical example

A typical use of binomial logistic regression would be in the assessment of the likeli-
hood of re-offending if a prisoner is released from prison. This re-offending (i.e. recidi-
vism) could be assessed as a binomial (i.e. dichotomous) variable. In this case, the 
variable re-offending simply takes one of two values – the prisoner re-offends or the 
prisoner does not re-offend (Table 43.4). (If one, for example, counted the number of 
times each prisoner re-offended in that period then regular multiple regression 
(Chapter 34) would be more appropriate since this would amount to a numerical 
score.) Decision-making about prisoner release is improved by knowing which of a set 
of variables are most associated with re-offending. Such variables (i.e. independent 
variables) might include:

●	 age (over 30 years versus 29 and under)

●	 whether they had previously been in prison

●	 whether they received treatment (therapy) in prison

●	 whether they express contrition (regret) for their offence

●	 whether they are married

●	 type of offender (sex offender or not).

Data on these variables plus re-offending (recidivism) are to be found in Table 43.5. 
There are only 19 different cases listed, but they have been reproduced five times to give 
a ‘sample’ of 95 cases. This helps make the output of the analysis more realistic for peda-
gogic purposes, though statistically and methodologically it is otherwise totally unjusti-
fied. Nevertheless, readers may find it easier to duplicate our analysis on the computer 
because one block of data can be copied several times. The basic structure of our data for 
this regression analysis is shown in Figure 43.1.

Although we have selected binary (i.e. dichotomous) variables as the predictors in our 
example, score variables can also be used as predictors in binomial logistic regression.  
Box 43.3 discusses score variables as predictors in logistic regression further. Equally, one 
could use nominal variables with three or more values though these have to be turned 
into dummy variables for the purpose of the analysis (see Section 42.2). A dummy variable 
is a binary variable taking the values of 0 or 1. Any nominal (category) variable having 
three or more values may be converted into several dummy variables. More than one type 
of variable can be used in any analysis. That is, the choice of types of predictor variables 
is very flexible. One thing is not flexible – the dependent variable can only be dichoto-
mous; i.e. only two alternative values of the dependent variable are possible. As with any 

	 Table 43.4	 Step 1 classification table

Predicted  
recidivist

Predicted  
non-recidivist

Percentage  
row correct

Actually re-offends 40   5 88.9%

Actually does not re-offend â•›  5 45 90.0%
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	 Table 43.5	 �Data for the study of recidivism – the data from 19 cases is reproduced five times to give realistic sample sizes but only 
to facilitate explanation

Recidivism Age Previous 
prison term

Treatment Contrite Married Sex  
offender

1 yes younger yes no no no yes

2 yes older yes no no no yes

3 yes older yes yes no no yes

4 yes older yes yes no yes no

5 yes younger yes no no no no

6 yes younger no yes yes no no

7 yes older no yes yes yes yes

8 yes younger yes no no no yes

9 yes younger no no no yes yes

10 yes older no no no no no

11 no younger no yes yes no no

12 no older no yes yes no no

13 no older yes yes yes yes yes

14 no younger no yes yes yes yes

15 no younger no yes yes no yes

16 no younger no no yes yes no

17 no older no no no yes no

18 no older yes yes yes no no

19 no older yes yes yes no no

etc. yes younger yes no no no yes

	 Figure 43.1	 Structure of an example

Score variables as predictors in logistic regression
It is important to realise that score variables can be used as 
the independent or predictor variables in binomial logistic 
regression. In this chapter, we concentrate on nominal (cat-
egory) variables as independent/predictor variables to 
avoid cluttering the chapter overly. Score variables used in 
this way can be interpreted more or less as a binomial 

category/nominal variable would be, so do not add any real 
complexity. The difficulties come in relation to using a pro-
gram such as SPSS to carry out the analysis when the user 
has to specify which predictor variables are score variables 
and which are category/nominal variables (see also 
Box 42.1).

Box 43.3	 Focus on
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sort of regression, we work with known data from a sample of individuals. The relation-
ships are calculated between the independent variables and the dependent variable using 
the data from this sample. The relationships (usually expressed as B-weights) between the 
independent and dependent variables are sometimes generalised to further individuals 
who were not part of the original sample. In our example, knowing the characteristics of 
prisoners who re-offend, we would be less likely to release a particular prisoner showing 
the pattern of characteristics which is associated with re-offending.

The terms independent and dependent variable are frequently used in regression. The 
thing being ‘predicted’ in regression is often termed the dependent variable. It is important 
not to confuse this with cause-and-effect sequences. Variations in the independent vari-
ables are not assumed to cause the variation in the dependent variable. There might be a 
causal relationship, but not necessarily so. All that is sought is an association. To antici-
pate a potential source of confusion, it should be mentioned that researchers sometimes 
use a particular variable as both an independent and a dependent variable at different 
stages of an analysis.

The data in Table 43.5 could be prepared for analysis by coding the presence of a 
feature as 1 and the absence of a feature as 0. In a sense, it does not matter which 
category of the two is coded 1. However, the category coded 1 will be regarded as the 
category having influence or being influenced. In other words, if recidivism is coded 1 

	 Table 43.6	 Data from Table 43.5 coded in binary fashion as 0 and 1 for each variable

Recidivism Age Previous 
prison term

Treatment Contrite Married Sex  
offender

1 1 0 1 0 0 0 1

2 1 1 1 0 0 0 1

3 1 1 1 1 0 0 1

4 1 1 1 1 0 1 0

5 1 0 1 0 0 0 0

6 1 0 0 1 1 0 0

7 1 1 0 1 1 1 1

8 1 0 1 0 0 0 1

9 1 0 0 0 0 1 1

10 1 1 0 0 0 0 0

11 0 0 0 1 1 0 0

12 0 1 0 1 1 0 0

13 0 1 1 1 1 1 1

14 0 0 0 1 1 1 1

15 0 0 0 1 1 0 1

16 0 0 0 0 1 1 0

17 0 1 0 0 0 1 0

18 0 1 1 1 1 0 0

19 0 1 1 1 1 0 0

etc. 1 0 1 0 0 0 1
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then the analysis is about predicting recidivism. If non-recidivism is coded 1 then the 
analysis is about predicting non-recidivism. You just need to make a note of what 
values you have coded 1 in order that you can later understand what the analysis 
means. If you do not use codes 0 and 1 then the computer program often will impose 
them (SPSS does this, for example) and you will need to consult the output to find out 
what codings have been used for each of the values. The coding of the data can be seen 
by comparing the entries for Tables 43.5 and 43.6 (e.g. a code of 1 is given if the person 
is a recidivist).

	 43.3	 Applying the logistic regression procedure

Logistic binary regression is only ever calculated using computers. The key steps involved 
are outlined in Figure 43.2. The output largely consists of three aspects:

●	 Regression calculations involving a constant and B-weights as for any form of regres-
sion. Table 43.7 gives the constant and B-weights for our calculation.

●	 Classification tables which show how well cases are classified by the regression calcula-
tion. These are to be found in Table 43.8.

	 Figure 43.2	 Conceptual steps for understanding binomial logistic regression
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●	 Goodness-of-fit statistics which indicate, among other things, how much improvement 
(or worsening) is achieved in successive stages of the analysis. Some examples of these 
are presented in the text and in Table 43.9.

As with most forms of multiple regression, it is possible to stipulate any of a number 
of methods of doing the analysis. Entering all of the independent variables at one time is 
merely one of these options. Entering all predictors at the same time generally produces 

	 Table 43.7	 Regression models for step 1 and step 2

B Standard error Wald Degrees of 
freedom

Significance

Step 1

Age (younger) -2.726 0.736 13.702 1 .000

Previous 
convictions – yes

-1.086 0.730 2.215 1 .137

Treatment – no 19.362 8901.292 0.000 1 .998

Contrite – no 41.459 11325.913 0.000 1 .997

Married – no -0.307 0.674 0.208 1 .648

Sex offender – no -20.641 7003.92 0.000 1 .998

Constant 23.802 7003.92 0.000 1 .997

Step 2

Age (younger) -2.699 0.731 13.625 1 .000

Previous 
convictions – yes

-1.153 0.708 2.648 1 .104

Treatment – no 19.428 8895.914 0.000 1 .998

Contrite – no -41.375 11337.365 0.000 1 .997

Sex offender – no -20.475 7028.411 0.000 1 .998

Constant 23.542 7020.411 0.000 1 .997

	 Table 43.8	 Classification tables having eliminated worst predictor

Not predicted recidivist Predicted recidivist Percentage correct

Step 1: includes all predictor variables – age, previous imprisonment, treatment, contrition, married and sex offender

Not recidivist 45 5 90.0%

Recidivist 5 40 88.9%

Overall correct 89.5%

Step 2: married is dropped at this stage so age, previous imprisonment, contrition and sex offender remain in the analysis

Not recidivist 45 5 90.0%

Recidivist 5 40 88.9%

Overall correct 89.5%

The analysis terminated at this stage.
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the simplest-looking computer output. Some of the alternatives to this method are dis-
cussed in Box 42.2 on discriminant function analysis on pp. 630–631 as they apply to 
many different forms of regression. To illustrate one of the possibilities, we will carry out 
backwards elimination analysis as our approach to the analysis of the data. There are 
several types of backwards elimination. Our choice is to use backwards stepwise condi-
tional, which is one of the options readily available on SPSS. The precise mechanics of 
this form of analysis are really beyond a book of this nature.

In backwards elimination there is a minimum of three steps:

●	 Step 0 includes no predictors. Since we know the distribution of values on the 
dependent variable – in this case recidivism – then this would help us make an intel-
ligent guess or prediction as to whether prisoners are likely to re-offend. Our study 
involves a sample of 95 prisoners. It emerged that 45 of them re-offended whereas 
the other 50 stayed on the straight and narrow. Hence, if we were to make a predic-
tion in the absence of any other information, it would be that a prisoner will not 
re-offend since this is the commonest outcome. This is shown in Table 43.10. Such 
a classification table indicates the accuracy of the prediction. If we predict that no 
prisoner will re-offend, then we are 100% correct for those who do not re-offend, 
and 0% correct (totally wrong) for those who do re-offend. The overall accuracy for 
the classification table (Table 43.8) is 52.6%. This is calculated from the total of 
correct predictions as a percentage of all predictions. That is, 
50 , 95 * 100% = 0.526 * 100% = 52.6%.

	 Table 43.9	 Omnibus tests of model coefficients

Chi-square Degrees of freedom Significance

Step 1

Step 70.953 6 .000

Block 70.953 6 .000

Model 70.953 6 .000

Step 2

Step -0.210 1 .647

Block 70.743 5 .000

Model 70.743 5 .000

	
Table 43.10

	� Classification table based solely on distribution of re-offending – the step 0 
classification table

Best prediction:  
re-offends

Best prediction:  
does not re-offend

% accuracy

Actually re-offends 0 45 0%

Actually no 
re-offending

0 50 100%

Overall accuracy = 52.6%
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●	 Step 1 (in backwards elimination) includes all of the predictors. That is, they are all 
entered at the same time. This step is to be found in Tables 43.7 and 43.8. This is a 
perfectly sound regression analysis in its own right. It is the simplest approach in order 
to maximise the classificatory power of the predictors.

●	 Step 2 involves the first stage of the backwards elimination. We obtain step 2 simply 
by eliminating the predictor which, if dropped from the step 1 model, makes no appre-
ciable difference to the fit between the data and the predicted data (i.e. married – not). 
If omitting this predictor makes no difference to the outcome, it may be safely removed 
from the analysis. This is also illustrated in Tables 43.7 and 43.8. Dropping a variable 
means that the other values all have to be recalculated.

There may be further steps if it is possible to drop further ineffective predictors. The 
elimination of predictor variables in backwards elimination is not absolute. Instead, a 
predictor variable may be allowed back into the set of predictors at a later stage when 
other predictors have been eliminated. The reason for this is that the predictors are gener-
ally somewhat intercorrelated. As a consequence, the elimination of one predictor variable 
requires the recalculation of the predictive power associated with the other predictor 
variables. This means that sometimes a predictor which has previously been dropped from 
the analysis will return to the analysis at a later stage. There are no examples of the re-
entry of variables previously dropped in our analysis – actually the analysis is now com-
plete using our chosen method. Other methods of backwards elimination may involve 
more steps. There are criteria for the re-entry and dropping of predictors built into the 
statistical routine – the values of these may be varied.

The steps (step 0, step 1, step 2, etc.) could also be referred to as ‘models’. A model 
is simply a (mathematical) statement describing the relationship of a set of predictors 
with what is being predicted. There are usually several ways of combining all or some 
of the predictor variables. What is the best model depends partly on the data but equally 
on the researcher’s requirements. Often the ideal is a model that includes the minimum 
set of predictors that are correlated with (or predict) the dependent (predicted) 
variable.

Table 43.9 gives the goodness-of-fit statistics for the step 1 and step 2 models to the 
step 0 model. The significant value of chi-square indicates that the step 1 model is very 
different from the step 0 model. However, there is very little difference between the step 
1 and step 2 models. Dropping the variable marital status from step 1 to give the step 2 
model makes very little difference to the value of the chi-square – certainly not a signifi-
cant difference. The computer output can be consulted to see the change if a particular 
predictor is removed though we have not reproduced such a table here. At step 2, having 
removed marital status makes a very small and non-significant change in fit. Indeed, 
marital status is selected for elimination because removing it produces the least change 
to the predictive power of the model. The chi-square value is -0.210 (the difference in 
the chi-square values) which indicates that the model is slightly less different from the 
step 0 model, but this chi-square is not significant (the probability is .647). Hence marital 
status was dropped from the model in step 2 because it makes little difference to the fit, 
whether included or not. The computer program then assesses the effect of dropping 
each of the predictors at step 2. Briefly no further predictors could be dropped without 
significantly affecting the fit of the model to the data. So there is no step 3 to report in 
this example.

Table 43.8 gives the classification tables for steps 1 and 2. (Step 0 can be seen in 
Table 43.10.) At the step 1 stage, all of the predictors are entered. Comparing the step 0 
and step 1 classification tables reveals that step 1 appears to be a marked improvement 
over the step 0 model. That is, the predictor variables in combination improve the predic-
tion quite considerably. There are only 10 (i.e. 5 + 5) misclassifications and 85 (40 + 45) 
correct predictions using the step 1 model – an overall correct prediction rate of 
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85 , 95 * 100% = 89.5%. If we released early, say, those prisoners predicted not to 
re-offend on the basis of our predictors then, overwhelmingly, they will not re-offend. At 
step 2, the classification table is exactly the same as for step 1. While the underlying model 
is clearly slightly different (see Table 43.7), in practical terms this is making no tangible 
difference in this case.

There is just one more useful statistic to be pulled from the computer output. This 
is known as the ‘pseudo R2’ (see Section 42.6). It is roughly analogous to the multiple 
R2 statistic used in multiple regression. It is a single indicator of how well the set of 
predictors predict. There are a number of such pseudo R2. The Cox and Snell 
R-square and the Nagelkerke R-square are common ones. Several different ones may 
be given in the computer output. Although this is not shown in any of the tables, the 
value for the Cox and Snell R-square at step 2 is .525. This suggests a reasonably 
good level of prediction but there is clearly the possibility of finding further predic-
tors to increase predictive power.

	 43.4	 Regression formula

For most purposes, the above is sufficient. That is, we have generated reasonably powerful 
models for predicting the pattern of our data. The only really important task is making 
predictions about individuals based on their pattern on the predictor variables. If your 
work does not require individual predictions then there is no need for the following. 
Although we talk of prediction in relation to regression, this is often not the researcher’s 
objective. Most typically, they are simply keen to identify the pattern of variables most 
closely associated with another variable (the dependent variable).

The predictor variables in our example are as follows:

●	 age – younger and older

●	 previous prison sentence or none

●	 treatment for offence or none

●	 contrition over offence or not

●	 marital status – married or not

●	 sex offender or not.

The dependent variable is recidivism (or not) following discharge from prison.
It is important to recall that all of the variables were coded in binary fashion using the 

following. That is:

●	 variables were coded as 1 if the characteristic is present

●	 variables were coded as 0 if the characteristic is absent.

By using these values, the predictors act as weights. It is important to note that multiplying 
by 0 means that we had nothing when we multiply values of 0 by their logistic regression 
weights. Computer programs such as SPSS usually recode binary variables for you in this 
way though care needs to be taken to check the output to find out just how the recoding 
has been done.

The basic formula for the prediction is:

predicted logit = constant + (B1 * X1) + (B2 * X2) + etc.
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That is, the formula predicts the logarithm of the odds of re-offending (recidivism) for 
an individual showing a particular pattern on the independent variables. X refers to the 
‘score’ on a predictor variable (1 or 0 for a binary variable) which has to be multiplied 
by the appropriate regression weight (B). There is also a constant. It should be empha-
sised that this formula gives the predicted logit for a particular pattern of values on the 
independent variables. In other words, it is part of the calculation of the likelihood that 
a particular individual will re-offend though the predicted logit must be turned into 
odds and then probabilities before the likelihoods are known. It should be very clear 
from our step 2 model (Table 43.7) that the risk of re-offending is greater if the prisoner 
is young, has previous convictions, is undergoing treatment, is not contrite and is not 
a sex offender.

Just what is the likelihood that an individual with a particular pattern on the predic-
tor variables will re-offend? Let us take a concrete example – an individual whose 
pattern is that he is younger, has previously been in prison, has undergone treatment, 
is not contrite and is not a sex offender. Younger, is not contrite and not a sex offender 
are coded 0 and has previously been in prison and has undergone treatment are 
coded 1. Using these codes and the regression weights form Table 43.7, the formula 
for the predicted logit then is:

 logit = 23.542 + (0 * -2.699) + (1 * -1.153) + (1 * 19.428) + (0 * -41.375)

+ (0 * -20.475)

 = 23.542 + (0) + (-1.153) + (19.428) + (0) + (0)

 = 41.817

This value for the logit of 41.817 translates approximately to odds of 3.733 of being in 
the re-offender rather than non-re-offender group with that pattern on the predictor vari-
able. (That is, the natural logarithm of 3.733 is 41.817.) An odds ratio of 3.733 gives a 
probability of 3.733/(1 + 3.733) = 3.733 , 4.733 = .79 or 79%. This is rather approx-
imate as the calculation has been subject to a rounding error. So a person with this par-
ticular pattern on the predictor variables is likely to re-offend.

	 43.5	 Reporting the results

The reporting of any regression is somewhat dependent on the purpose of the analysis. 
Consequently, only the broad outlines can be given here. The final model has been chosen 
though there would be reason to choose some of the others in some circumstances. The 
following may be helpful as a structure for reporting one’s findings:

A binomial logistic regression was conducted in order to find the set of predictors 
which best distinguish between the offending and re-offending group. All the predictor 
variables were binary coded as was the criterion predictors, offender group. The analy-
sis employed backwards elimination of variables. The final model to emerge included 
five predictors of recidivism – being young, having previously been in prison, having 
undergone treatment, not being contrite and not being a sex offender. This model had 
a pseudo r -square of .53 using the Cox and Snell statistic which indicates that the fit 
of the model to the data possibly could be improved with the addition of further pre-
dictors. The success rate of the model was 90.0% for predicting non-re-offending and 
88.9% for predicting re-offending.
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●	 Given the power of binomial logistic regression to find the pattern of variables which are best able to dif-
ferentiate two different groups of individuals in terms of their psychological characteristics, it might be 
regarded as a fundamental technique for any study comparing the characteristics of two groups of individuals. 
In other words, it is much more effective to use logistic regression than to carry out numerous t-tests on 
individual variables.

●	 Binomial logistic regression has great flexibility in the variety of variables used so long as the groups being 
compared are just two in number.

Key points

Binomial logistic regression

Dakwar and co-workers (2011) studied independent depression and substance-induced depression (the bino-
mial dependent variable) in substance abusers. It is difficult to distinguish the two in clinical settings. Data were 
collected in a structured interview. Independent depression was found to be more likely if the individual’s Ham-
ilton Depression Scale score was higher and if there were a co-morbid diagnosis of post-traumatic stress 
disorder.

Ford, Howard and Oyebode (2012) investigated a number of psychological aspects of coeliac disease. This is an 
autoimmune medical condition which requires a lifelong diet free from gluten in the food. The condition has a 
number of unpleasant gastrointestinal ramifications and the other health risks associated. As a consequence, it 
can have a negative impact on the sufferer’s feelings of psychological well-being. Some 288 sufferers were 
recruited for a postal questionnaire study which included dimensions such as health-related quality of life, self-
efficacy, illness perceptions and dietary self-management. The researchers employed logistic regression to look 
at the factors which were associated with adherence to the gluten-free diet. The dependent variable was the 
measure of adherence to the diet split at the median to create two groups. Self-efficacy was lower in those who 
failed to adhere to the gluten-free diet. The measure of psychological well-being was unrelated to sticking to 
the diet or not.

Gonzales and Hewell (2012) used hierarchical logistic regression to distinguish solitary binge drinkers from social 
binge drinkers (the two binomial dependent categories). The ‘predictor’ variables were a number of suicide-
related measures. It was found that suicide attempt history and the extremity of suicidal thoughts (ideation) 
were more likely in solitary binge drinkers.

Kenne, Boros and Fischbein (2010) studied factors associated with substance-dependent patients leaving detox-
ification against medical advice. This is a wasteful and costly outcome. The dependent variable was completion 
versus leaving against medical advice patients. Binomial logistic regression showed that ‘the against medical 
advice leavers’ were more likely to be unemployed and to claim that drug use did not impair their health. One 
suggestion is that extra effort could be made to identify those likely to leave treatment and put extra effort into 
retaining them in treatment.

Research examples

M43 Introduction to Statistics in Psychology with SPSS 29099.indd   660 05/01/2017   15:49



	 â•‡ Computer Analysis	 661

Computer Analysis

Binomial logistic regression using SPSS

Interpreting and reporting the output

●	 It is important that you know how the dependent variable has been coded so check in the output for 
this. The Variables in the Equation output table (Screenshot 43.5) is the most important in terms of 
interpretation. Only the variable Age is a significant predictor. The output removes the variable 
Married in Step 2 but doing this makes no difference and the analysis stops. Thus only Age is a 
significant predictor of the dependent variable which is Recidivist.

●	 A brief report of the analysis might be: ‘A backward conditional binomial logistic regression analysis 
examined which of the predictor variables predicted recidivism significantly. The only significant 
predictor was Age.’

	 Figure 43.3	 SPSS steps for binomial logistic regression
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Screenshot 43.4

	 Define categorical variables as 
categorical

	 Screenshot 43.1	 Part of the data in ‘Data View’ 	 Screenshot 43.2	 On ‘Analyze’ select ‘Binary Logistic. . . ’

	
Screenshot 43.3

	 Select variables and type of 
regression for analysis

	 Screenshot 43.5	 Important output
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Testing for excessively 
skewed distributions

The use of nonparametric tests (Mann–Whitney U-test, Wilcoxon matched pairs test) 
rather than parametric tests (unrelated t-test, related t-test) is conventionally recom-
mended by some textbooks when the distribution of scores on a variable is significantly 
skewed (Chapter 21). There are a number of difficulties with this advice, particularly just 
how one knows that there is too much skew. It is possible to test for significant skewness. 
One simply computes skewness and then divides this by the standard error of the skew-
ness. If the resulting value equals or exceeds 1.96 then your skewness is significant at the 
5% level (two-tailed test) and the null hypothesis that your sample comes from a sym-
metrical population should be rejected.

	 A.1	 Skewness

The formula for skewness is:

skewness =
¢ad3≤N

SD3 * (N - 1) * (N - 2)

Notice that much of the formula is familiar: N is the number of scores, d is the deviation 
of each score from the mean of the sample, and SD is the estimated standard deviation 
of the scores (i.e. you use N - 1 in the formula for standard deviation as described in 
Chapter 12).

What is different is the use of cubing. To cube a number you multiply it by itself twice. 
Thus the cube of 3 is 3 * 3 * 3 = 27. A negative number cubed gives a negative number. 
Thus the cube of -4 is (-4) * (-4) * (-4) = -64.

We will take the data from Table 6.1 to illustrate the calculation of skewness. For 
simplicity’s sake we will be using a definitional formula which involves the calculation of 
the sample mean. Table A.1 gives the data in column 1 as well as the calculation steps to 
be followed. The number of scores N equals 9.

APPENDIX A
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For Table A.1,

 estimated standard deviation (SD) = H
ad2

N - 1

 = 6.652

Substituting this value and the values from the table in the formula for skewness we get:

 skewness =
1260 * 9

6.6523 * (9 - 1) * (9 - 2)

 = 11340
16 483.321

 = 0.688

(Skewness could have a negative value.)

	 A.2	 Standard error of skewness

The standard error of skewness involves calculating the value of the following formula 
for our particular sample size (N = 9):

 standard error of skewness = B
6 * N * (N - 1)

(N - 2) * (N + 1) * (N + 3)

 = A
432
840

 = 20.514

 = 0.717

	 Table A.1	 Steps in the calculation of skewness

Column 1
Age (years)

Column 2
Scores – sample mean

Column 3
Square values in column 2

Column 4
Cube values in column 2

20 20 - 23 = -3 9 -27

25 25 - 23 = 2 4 8

19 19 - 23 = -4 16 -64

35 35 - 23 = 12 144 1728

19 19 - 23 = -4 16 -64

17 17 - 23 = -6 36 -216

15 15 - 23 = -8 64 -512

30 30 - 23 = 7 49 343

27 27 - 23 = 4 16 64

ΣX = sum of scores = 207 Σd2 = 354 Σd3 = 1260

X = mean score = 23
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The significance of skewness involves a z-score:

 z =
skewness

standard error of skewness

 =
0.688
0.717

 = 0.96

This value of z is lower than the minimum value of z (1.96) required to be statistically 
significant at the 5% level with a two-tailed test. Thus the scores are not extremely 
skewed. This implies that you may use parametric tests rather than nonparametric tests 
for comparisons involving this variable. Obviously you need to do the skewness test for 
the other variables involved.

For the related t-test, it is the skewness of the differences between the two sets of scores 
which needs to be examined, not the skewnesses of the two different sets of scores.
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Large-sample formulae 
for the nonparametric 
tests

Sometimes you may wish to do a nonparametric test when the sample sizes exceed the 
tabulated values of the significance tables in Chapter 21. In these circumstances we would 
recommend using a computer. The reason is that ranking large numbers of scores is 
extremely time consuming and you risk making errors. However, if a computer is not 
available to do the analyses, you can make use of the following large-sample formulae for 
nonparametric tests.

	 B1.1	 Mann–Whitney U-test

z =
U -

n1n2

2

C¢ n1n2

N(N - 1)
≤ ¢N3 - N

12
- Σ t3 - 1

12
≤

U is as calculated in Chapter 21, n1 and n2 are the sizes of the two samples, and N is the 
sum of n1 and n2. t is a new symbol in this context: the number of scores tied at a par-
ticular value. Thus if you have three scores of 6 in your data, t = 3 for the score 6.

Notice that Σ precedes the part of the formula involving t. This indicates that for every 
score which has ties you need to do the calculation for the number of ties involved and 
sum all of these separate calculations. Where there are no ties, this part of the formula 
reduces to zero.

The calculated value of z must equal or exceed 1.96 to be statistically significant with 
a two-tailed test.

APPENDIX B1
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	 B1.2	 Wilcoxon matched pairs test

z =
T -

N(N + 1)
4

B
N(N + 1)(2N + 1)

24

T is the value of the Wilcoxon matched pairs statistic as calculated in Chapter 21. N is 
the number of pairs of scores in that calculation.

As before, z must equal or exceed 1.96 to be statistically significant with a two-tailed 
test.
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Nonparametric tests for 
three or more groups

Several nonparametric tests were described in Chapter 21. However, these dealt with 
circumstances in which only two sets of scores were compared. If you have three or 
more sets of scores there are other tests of significance which can be used. These are 
nowhere near so flexible and powerful as the analyses of variance described in 
Chapters 23–28.

	 B2.1	 Kruskal–Wallis three or more unrelated conditions test

The Kruskal–Wallis test is used in circumstances where there are more than two groups 
of independent or unrelated scores. All of the scores are ranked from lowest to highest 
irrespective of which group they belong to. The average rank in each group is exam-
ined. If the null hypothesis is true, then all groups should have more or less the same 
average rank.

Imagine that the reading abilities of children are compared under three conditions: 1) 
high motivation, 2) medium motivation and 3) low motivation. The data might be as in 
Table B2.1. Different children are used in each condition so the data are unrelated. The 
scores on the dependent variable are on a standard reading test.

The scores are ranked from lowest to highest, ignoring the particular group they are 
in. Tied scores are given the average of the ranks they would have been given if they were 
different (Chapter 21). The results of this would look like Table B2.2, which also 
includes:

●	 Row A: the mean rank in each condition

●	 Row B: the square of the sum of the ranks in each condition

●	 �Row C: the square of the sum of ranks from row B divided by the number of scores in 
each condition

●	 Row D: R which equals the sum of the squares of the sums of ranks divided by the 
sample size, i.e. the sum of the figures in row C.

APPENDIX B2
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The statistic H is calculated next using the following formula:

H =
12R

N(N + 1)
- 3(N + 1)

	 Table B2.1	 Reading scores under three different levels of motivation

High motivation Medium motivation Low motivation

17 10 3

14 11 9

19 8 2

16 12 5

18 9 1

20 11 7

23 8 6

21 12

18 9

10

	 Table B2.2	 Scores in Table B2.1 ranked from smallest to largest

Row High motivation Medium motivation Low motivation

20 12.5 3

18 14.5 10

23 7.5 2

19 16.5 4

21.5 10 1

24 14.5 6

26 7.5 5

25 16.5

21.5 10

12.5

A Mean ranks =
198

9
= 22.0 Mean ranks =

122
10

= 12.20 Mean ranks =
31
7

= 4.43

B Sum of ranks2 = 1982 = 39 204 Sum of ranks2 = 1222 = 14 884 Sum of ranks2 = 312 = 961

C Mean ranks2 = 39 204
9

= 4356.00 Mean ranks2 =
14 884

10
= 1488.40 Mean ranks2 =

961
7

= 137.29

D R = sum of calculations in row C = 4356.00 + 1488.40 + 137.29 = 5981.69
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where R is the sum of the mean rank squared in Row D in Table B2.2 and N is the number 
of scores ranked. Substituting,

 H =
12 * 5981.69

26(26 + 1)
- 3(26 + 1)

 =
71780.28

702
- 81

 = 102.251 - 81

 = 21.25

The distribution of H approximates that of chi-square. The degrees of freedom are the 
number of different groups of scores minus one. Thus the significance of H can be 
assessed against Significance Table 18.1 which tells us that our value of H needs to equal 
or exceed 6.0 to be significant at the 5% level (two-tailed test). Thus we reject our null 
hypothesis that reading was unaffected by levels of motivation.

	 B2.2	 Friedman three or more related samples test

This test is used in circumstances in which you have three or more related samples of 
scores. The scores for each participant in the research are ranked from smallest to largest 
separately. In other words the scores for Joe Bloggs are ranked from 1 to 3 (or however 
many conditions there are), the scores for Jenny Bloggs are also ranged from 1 to 3 and 
so forth for the rest. The test essentially examines whether the average ranks in the several 
conditions of the experiment are more or less equal, as they should be if the null hypoth-
esis is true.

Table B2.3 gives the scores in an experiment to test the recall of pairs of nonsense syl-
lables under three conditions – high, medium and low distraction. The same participants 
were used in all conditions of the experiment.

Table B2.4 shows the scores ranked from smallest to largest for each participant in the 
research separately. Ties are given the average of the ranks that they would have otherwise 
been given.

●	 Row A gives the sums of the ranks for each condition or level of distraction.

●	 Row B gives the square of each sum of ranks for each condition.

●	 Row C gives the total, R, of the squared sums of ranks from row B.

	 Table B2.3	 Scores on memory ability under three different levels of distraction

Low distraction Medium distraction High distraction

John 9 6 7

Mary 15 7 2

Shaun 12 9 5

Edmund 16 8 2

Sanjit 22 15 6

Ann 8 3 4
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The value of R is entered in the following formula:

x2
r =

12R
nK(K + 1)

- 3n(K + 1)

where n is the number of participants (i.e. of rows of scores) = 6, and K is the number 
of columns of data (i.e. of different conditions) = 3. Therefore,

 x2
r =

12 * 488
6 * 3 * (3 + 1)

- 3 * 6 * (3 + 1)

 =
5856

72
- 72

 = 9.33

The statistical significance of x2
r  is assessed using the chi-square table (Significance 

Table 18.1). The degrees of freedom are the number of conditions - 1 = 3 - 1 = 2. 
This table tells us that a value of 6.0 or more is needed to be statistically significant at the 
5% level (two-tailed test). Thus, it appears that the null hypothesis that the conditions 
have no effect should be rejected in favour of the hypothesis that levels of distraction 
influence memory.

	 Table B2.4	 Scores ranked separately for each participant

Low distraction Medium distraction High distraction

John 3 1 2

Mary 3 2 1

Shaun 3 2 1

Edmund 3 2 1

Sanjit 3 2 1

Ann 3 1 2

Row A Sum of ranks = 18 Sum of ranks = 10 Sum of ranks = 8

Row B Square = 182 = 324 Square = 102 = 100 Square = 82 = 64

Row C R = sum  of above  squares = 324 + 100 + 64 = 488
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COMPUTER ANALYSIS

Kruskal–Wallis and Friedman nonparametric tests using SPSS

	 Figure B2.1	 SPSS steps for Kruskal–Wallis and Friedman nonparametric tests

Interpreting and reporting the output

●	 We could report the Kruskal–Wallis results for the data in Screenshot B2.5 for the data in Table B2.1 
as follows: ‘The Kruskal–Wallis test found that the reading scores in the three motivation conditions 
differed significantly, x2(2) = 21.31, two-tailed p = .001.’ We would then follow this with reporting 
the results of further tests to determine which groups differed significantly and in what direction.

●	 We could report the Friedman results of the data in Screenshot B2.6 for the data in Table B2.3 as 
follows: ‘There was a significant difference in recall in the three conditions, Friedman 
x2(n = 6) = 9.33, p 6 .009.’ We would then need to report the results of further tests to 
determine which groups differed significantly and in what direction.
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	 Screenshot B2.1	 On ‘Analyze’ select ‘K 
Independent Samples. . . ’

	 Screenshot B2.2	 Select variables and test for 
unrelated samples

	 Screenshot B2.3	 On ‘Analyze’ select ‘K Related 
Samples. . . ’ 	 Screenshot B2.4	 Select variables for related samples

	 Screenshot B2.5	 Kruskal–Wallis output 	 Screenshot B2.6	 Friedman output
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Extended table of 
significance for the 
Pearson correlation 
coefficient

The following table gives both two-tailed and one-tailed values for the significance of the 
Pearson correlation coefficient. Ignoring the sign of the correlation coefficient obtained, 
your value has to be equal to, or be larger than, the value in the table in order to be sta-
tistically significant at the level of significance stipulated in the column heading.

APPENDIX C

Sample size Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

3 .988 .997 1.000 1.000

4 .900 .950 .980 .990

5 .805 .878 .934 .959

6 .729 .811 .882 .917

7 .669 .754 .833 .875

8 .621 .707 .808 .834

9 .582 .666 .750 .798

10 .549 .632 .715 .765

11 .521 .602 .685 .735

12 .497 .576 .658 .708

13 .476 .553 .634 .684

14 .458 .532 .612 .661

15 .441 .514 .592 .641

16 .426 .497 .574 .623

17 .412 .482 .558 .606
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Sample size Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

18 .400 .468 .543 .590

19 .389 .456 .529 .575

20 .378 .444 .516 .561

21 .369 .433 .503 .549

22 .360 .423 .492 .537

23 .352 .413 .482 .526

24 .344 .404 .472 .515

25 .337 .396 .462 .505

26 .330 .388 .453 .496

27 .323 .382 .445 .487

28 .317 .374 .437 .479

29 .311 .367 .430 .471

30 .306 .361 .423 .463

31 .301 .355 .416 .456

32 .296 .349 .409 .449

33 .291 .344 .403 .442

34 .287 .339 .397 .436

35 .283 .334 .392 .430

36 .279 .329 .386 .424

37 .275 .325 .381 .418

38 .271 .320 .376 .413

39 .267 .316 .371 .408

40 .264 .312 .367 .403

41 .260 .308 .362 .398

42 .257 .304 .358 .393

43 .254 .301 .354 .389

44 .251 .297 .350 .384

45 .248 .294 .346 .380

46 .246 .291 .342 .376

47 .243 .288 .338 .372

48 .240 .285 .335 .368

49 .238 .282 .331 .365

50 .235 .279 .328 .361

51 .233 .276 .325 .358

52 .231 .273 .322 .354

53 .228 .271 .319 .351

54 .226 .268 .316 .348

55 .224 .266 .313 .345

56 .222 .263 .310 .341

57 .220 .261 .307 .339

58 .218 .259 .305 .336

59 .216 .256 .302 .333

60 .214 .254 .300 .330

61 .213 .252 .297 .327

➜
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Sample size Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

62 .211 .250 .295 .325

63 .209 .248 .293 .322

64 .207 .246 .290 .320

65 .206 .244 .288 .317

66 .204 .242 .286 .315

67 .203 .240 .284 .313

68 .201 .239 .282 .310

69 .200 .237 .280 .308

70 .198 .235 .278 .306

71 .197 .234 .276 .304

72 .195 .232 .274 .302

73 .194 .230 .272 .300

74 .193 .229 .270 .298

75 .191 .227 .268 .296

76 .190 .226 .266 .294

77 .189 .224 .265 .292

78 .188 .223 .263 .290

79 .186 .221 .261 .288

80 .185 .220 .260 .286

81 .184 .219 .258 .285

82 .183 .217 .257 .283

83 .182 .216 .255 .281

84 .181 .215 .253 .280

85 .180 .213 .252 .278

86 .179 .212 .251 .276

87 .178 .211 .249 .275

88 .176 .210 .248 .273

89 .175 .208 .246 .272

90 .174 .207 .245 .270

91 .174 .206 .244 .269

92 .173 .205 .242 .267

93 .172 .204 .241 .266

94 .171 .203 .240 .264

95 .170 .202 .238 .263

96 .169 .201 .237 .262

97 .168 .200 .236 .260

98 .167 .199 .235 .259

99 .166 .198 .234 .258

100 .165 .197 .232 .256

200 .117 .139 .164 .182

300 .095 .113 .134 .149

400 .082 .098 .116 .129

500 .074 .088 .104 .115

1000 .052 .062 .074 .081
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Table of significance for 
the Spearman correlation 
coefficient

The following table gives both two-tailed and one-tailed values for the significance of the 
Spearman correlation coefficient. Ignoring the sign of the correlation coefficient obtained, 
your value has to equal or be larger than the value in the table in order to be statistically 
significant at the level of significance stipulated in the column heading. If there are ties 
then the significance level becomes increasingly inaccurate.

APPENDIX D

Sample size Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

5 .900 – – –

6 .829 .886 .943 –

7 .714 .786 .893 –

8 .643 .738 .833 .881

9 .600 .683 .783 .833

10 .564 .648 .745 .858

11 .520 .620 .737 .814

12 .496 .591 .703 .776

13 .475 .566 .673 .743

14 .456 .544 .646 .714

15 .440 .524 .623 .688

16 .425 .506 .602 .665

17 .411 .490 .583 .644

18 .399 .475 .565 .625

19 .388 .462 .549 .607

➜
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Sample size Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

20 .377 .450 .535 .591

21 .368 .438 .521 .576

22 .359 .428 .508 .562

23 .351 .418 .497 .549

24 .343 .409 .486 .537

25 .336 .400 .476 .526

26 .329 .392 .466 .515

27 .323 .384 .457 .505

28 .317 .377 .448 .496

29 .311 .370 .440 .487

30 .305 .364 .433 .478

31 .300 .358 .425 .470

32 .295 .352 .418 .462

33 .291 .346 .412 .455

34 .286 .341 .406 .448

35 .282 .336 .400 .442

36 .278 .331 .394 .435

37 .274 .327 .388 .429

38 .270 .322 .383 .423

39 .267 .318 .378 .418

40 .263 .314 .373 .412

41 .260 .310 .368 .407

42 .257 .306 .364 .402

43 .254 .302 .360 .397

44 .251 .299 .355 .393

45 .248 .295 .351 .388

46 .245 .292 .347 .384

47 .243 .289 .344 .380

48 .240 .286 .340 .376

49 .237 .283 .336 .372

50 .235 .280 .333 .368

51 .233 .277 .330 .364

52 .230 .274 .326 .361

53 .228 .272 .323 .357

54 .226 .269 .320 .354

55 .224 .267 .317 .350

56 .222 .264 .314 .347

57 .220 .262 .311 .344

58 .218 .260 .309 .341

59 .216 .257 .306 .338

60 .214 .255 .303 .335

61 .212 .253 .301 .332

62 .211 .251 .298 .330
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Sample size Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

63 .209 .249 .296 .327

64 .207 .247 .294 .324

65 .206 .245 .291 .322

66 .204 .243 .289 .319

67 .202 .241 .287 .317

68 .201 .239 .285 .315

69 .199 .238 .283 .312

70 .198 .236 .280 .310

71 .197 .234 .278 .308

72 .195 .233 .277 .306

73 .194 .231 .275 .303

74 .193 .229 .273 .301

75 .191 .228 .271 .299

76 .190 .226 .269 .297

77 .189 .225 .267 .295

78 .187 .223 .266 .293

79 .186 .222 .264 .292

80 .185 .221 .262 .290

81 .184 .219 .261 .288

82 .183 .218 .259 .286

83 .182 .216 .257 .284

84 .181 .215 .256 .283

85 .179 .214 .254 .281

86 .178 .213 .253 .279

87 .177 .211 .251 .278

88 .176 .210 .250 .276

89 .175 .209 .248 .274

90 .174 .208 .247 .273

91 .173 .207 .246 .271

92 .172 .205 .244 .270

93 .172 .204 .243 .268

94 .171 .203 .242 .267

95 .170 .202 .240 .266

96 .169 .201 .239 .264

97 .168 .200 .238 .263

98 .167 .199 .237 .261

99 .166 .198 .235 .260

100 .165 .197 .234 .259

200 .117 .139 .165 .183

300 .095 .113 .135 .149

400 .082 .098 .117 .129

500 .074 .088 .104 .115

1000 .052 .062 .074 .081
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Degrees of 
freedom

Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

1 6.314 12.706 31.820 63.657

2 2.920 4.303 6.965 9.925

3 2.353 3.182 4.541 5.841

4 2.132 2.776 3.747 4.604

5 2.015 2.571 3.365 4.032

6 1.943 2.447 3.143 3.708

7 1.895 2.365 2.998 3.500

8 1.860 2.306 2.897 3.355

9 1.833 2.262 2.821 3.250

10 1.813 2.228 2.764 3.169

11 1.796 2.201 2.718 3.106

12 1.782 2.179 2.681 3.055

13 1.771 2.160 2.650 3.012

14 1.761 2.145 2.625 2.977

15 1.753 2.132 2.603 2.947

16 1.746 2.120 2.583 2.921

17 1.740 2.110 2.567 2.898

18 1.734 2.101 2.552 2.878

Extended table of 
significance for  
the t-testÂ�

The following table gives two-tailed and one-tailed significance values for the t-test. 
The value of t which you obtain (ignoring sign) in your calculation has to equal or be 
larger than the listed value in order to be statistically significant at the level of signifi-
cance given in each column heading.

For the related t-test the degrees of freedom are the number of pairs of scores - 1.
For the unrelated t-test the degrees of freedom are the number of scores - 2.

APPENDIX E
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		  APPENDIX Eâ•‡ Extended table of significance for the t-testÂ�	 681

Degrees of 
freedom

Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

19 1.729 2.093 2.539 2.861

20 1.725 2.086 2.528 2.845

21 1.721 2.080 2.518 2.831

22 1.717 2.074 2.508 2.819

23 1.714 2.069 2.500 2.807

24 1.711 2.064 2.492 2.797

25 1.708 2.064 2.485 2.787

26 1.706 2.055 2.479 2.779

27 1.703 2.052 2.473 2.771

28 1.701 2.048 2.467 2.763

29 1.699 2.045 2.462 2.756

30 1.697 2.042 2.457 2.750

31 1.696 2.039 2.453 2.744

32 1.694 2.037 2.449 2.739

33 1.692 2.035 2.445 2.733

34 1.691 2.032 2.441 2.728

35 1.690 2.030 2.438 2.724

36 1.688 2.028 2.434 2.720

37 1.687 2.026 2.431 2.715

38 1.686 2.024 2.429 2.712

39 1.685 2.023 2.426 2.708

40 1.684 2.021 2.423 2.704

41 1.683 2.020 2.421 2.701

42 1.682 2.018 2.418 2.698

43 1.681 2.017 2.416 2.695

44 1.680 2.017 2.414 2.692

45 1.679 2.014 2.412 2.690

46 1.679 2.013 2.410 2.687

47 1.678 2.012 2.408 2.685

48 1.677 2.011 2.408 2.682

49 1.677 2.010 2.405 2.680

50 1.676 2.009 2.403 2.678

51 1.675 2.008 2.402 2.676

52 1.675 2.007 2.400 2.674

53 1.674 2.006 2.399 2.672

54 1.674 2.005 2.397 2.670

55 1.673 2.004 2.396 2.668

56 1.672 2.003 2.395 2.667

57 1.672 2.002 2.394 2.665

58 1.672 2.002 2.392 2.663

59 1.671 2.001 2.391 2.662

60 1.671 2.000 2.390 2.660

61 1.670 2.000 2.389 2.659

62 1.670 1.999 2.388 2.658

➜
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682	 APPENDIX Eâ•‡ Extended table of significance for the t-testÂ�

Degrees of 
freedom

Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

63 1.669 1.998 2.387 2.656

64 1.669 1.998 2.386 2.655

65 1.669 1.997 2.385 2.654

66 1.668 1.997 2.384 2.652

67 1.668 1.996 2.383 2.651

68 1.668 1.995 2.383 2.650

69 1.667 1.995 2.382 2.649

70 1.667 1.994 2.381 2.648

71 1.667 1.994 2.380 2.647

72 1.666 1.994 2.379 2.646

73 1.666 1.993 2.379 2.645

74 1.666 1.993 2.378 2.644

75 1.665 1.992 2.377 2.643

76 1.665 1.992 2.376 2.642

77 1.665 1.991 2.376 2.641

78 1.665 1.991 2.375 2.640

79 1.664 1.990 2.375 2.640

80 1.664 1.990 2.374 2.639

81 1.664 1.990 2.373 2.638

82 1.664 1.989 2.373 2.637

83 1.663 1.989 2.372 2.636

84 1.663 1.989 2.372 2.636

85 1.663 1.988 2.371 2.635

86 1.663 1.988 2.370 2.634

87 1.663 1.988 2.370 2.634

88 1.662 1.987 2.369 2.633

89 1.662 1.987 2.369 2.632

90 1.662 1.987 2.369 2.632

91 1.662 1.986 2.368 2.631

92 1.662 1.986 2.368 2.630

93 1.661 1.986 2.367 2.630

94 1.661 1.986 2.367 2.629

95 1.661 1.985 2.366 2.629

96 1.661 1.985 2.366 2.628

97 1.661 1.985 2.365 2.627

98 1.661 1.984 2.365 2.627

99 1.660 1.984 2.365 2.626

100 1.660 1.984 2.364 2.626

200 1.653 1.972 2.345 2.601

300 1.650 1.968 2.339 2.592

400 1.649 1.966 2.336 2.588

500 1.648 1.965 2.334 2.586

1000 1.646 1.962 2.330 2.581

∞ 1.645 1.960 2.326 2.576
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Table of significance  
for chi-square

The following table gives one-tailed and two-tailed significance values for chi-square. The 
obtained value of chi-square has to equal or exceed the listed value to be statistically 
significant at the level in the column heading.

APPENDIX F

Degrees of freedom 5% 1%

1 (1-tailed)a 2.705 5.412

1 (2-tailed) 3.841 6.635

2 (2-tailed) 5.992 9.210

3 (2-tailed) 7.815 11.345

4 (2-tailed) 9.488 13.277

5 (2-tailed) 11.070 15.086

6 (2-tailed) 12.592 16.812

7 (2-tailed) 14.067 18.475

8 (2-tailed) 15.507 20.090

9 (2-tailed) 16.919 21.666

10 (2-tailed) 18.307 23.209

11 (2-tailed) 19.675 24.725

12 (2-tailed) 21.026 26.217

a It is correct to carry out a one-tailed chi-square only when there is just one degree of freedom.
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N Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

5 0

6 0 0

7 0 0

8 1 0 0

9 1 1 0

10 1 1 0

11 2 1 0

12 2 2 1

13 3 2 1

14 3 2 1

15 3 3 2

16 4 3 2

17 4 4 2

18 5 4 3

19 5 4 3

20 5 5 3

21 6 5 4

22 6 5 4

23 7 6 5

24 7 6 5

25 7 7 5

Extended table of 
significance for  
the sign test

Your value must be smaller than or equal to the listed value to be significant at the level 
stipulated in the column heading.

APPENDIX G
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	 APPENDIX G Extended table of significance for the sign test	 685

N Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

26 8 8 6

27 9 8 6

28 9 8 7

29 10 9 7

30 10 9 7

31 10 10 8

32 11 10 8

33 11 10 9

34 12 11 9

35 12 11 9

36 13 12 10

37 13 12 10

38 13 12 11

39 14 13 11

40 14 13 11

41 15 14 12

42 15 14 12

43 16 15 13

44 16 15 13

45 16 15 13

46 17 16 14

47 17 16 14

48 18 17 15

49 18 17 15

50 19 18 15

51 19 18 16

52 20 18 16

53 20 19 17

54 20 19 17

55 21 20 17

56 21 20 18

57 22 21 18

58 22 21 19

59 23 21 19

60 23 22 19

61 24 22 20

62 24 23 20

63 24 23 21

64 25 24 21

65 25 24 22

66 26 25 22

67 26 25 22

68 27 25 23

➜
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686	 APPENDIX G Extended table of significance for the sign test

N Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 2%
One-tailed: 1%

Two-tailed: 1%
One-tailed: 0.5%

69 27 26 23

70 28 26 24

71 28 27 24

72 28 27 24

73 29 28 25

74 29 28 25

75 30 29 26

76 30 29 26

77 31 29 27

78 31 30 27

79 32 30 27

80 32 31 28

81 33 31 28

82 33 32 29

83 33 32 29

84 34 32 30

85 34 33 30

86 35 33 30

87 35 34 31

88 36 34 31

89 36 35 32

90 37 35 32

91 37 36 33

92 38 36 33

93 38 36 34

94 38 37 34

95 39 37 34

96 39 38 35

97 40 38 35

98 40 39 36

99 41 39 36

100 41 40 37

200 88 86 81

300 135 132 127

400 183 180 174

500 231 228 221

1000 473 468 459
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Table of significance for 
the Wilcoxon matched 
pairs test

Your value must be smaller than or equal to the listed value to be significant at the level 
stipulated in the column heading.

APPENDIX H

Number of  
pairs of scores

Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 1%
One-tailed: 0.5%

6 2 0 –

7 4 2 –

8 6 4 0

9 8 6 2

10 11 8 3

11 14 11 5

12 17 14 7

13 21 17 10

14 26 21 13

15 31 25 16

16 36 30 20

17 42 35 24

18 47 40 28

19 54 46 33

20 60 52 37

21 68 59 42

22 76 66 47

23 84 74 54

24 92 81 60

25 101 90 67

26 111 98 74

➜
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688	 APPENDIX Hâ•‡ Table of significance for the Wilcoxon matched pairs test

Number of  
pairs of scores

Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 1%
One-tailed: 0.5%

27 121 107 82

28 131 117 90

29 141 127 99

30 153 137 108

31 164 148 117

32 176 159 127

33 188 171 137

34 201 183 147

35 215 195 158

36 228 208 169

37 242 222 181

38 257 235 193

39 272 250 206

40 288 264 219

41 304 279 232

42 320 295 246

43 337 311 260

44 354 327 275

45 372 344 290

46 390 361 305

47 409 379 321

48 428 397 337

49 447 415 354

50 467 434 371

51 488 454 389

52 508 474 407

53 530 494 425

54 551 515 444

55 574 536 463

56 596 558 483

57 619 580 503

58 643 602 524

59 667 625 545

60 692 649 566

61 716 673 588

62 742 697 610

63 768 722 633

64 794 747 656

65 821 773 679

66 848 799 703

67 876 825 728

68 904 852 752

69 932 880 778
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	 APPENDIX Hâ•‡ Table of significance for the Wilcoxon matched pairs test	 689

Number of  
pairs of scores

Two-tailed: 10%
One-tailed: 5%

Two-tailed: 5%
One-tailed: 2.5%

Two-tailed: 1%
One-tailed: 0.5%

70 961 908 803

71 991 936 829

72 1021 965 856

73 1051 994 883

74 1082 1024 910

75 1113 1054 938

76 1145 1084 967

77 1178 1115 995

78 1210 1147 1025

79 1243 1179 1054

80 1277 1211 1084

81 1311 1244 1115

82 1346 1278 1146

83 1381 1311 1177

84 1416 1346 1209

85 1452 1380 1241

86 1488 1415 1274

87 1525 1451 1307

88 1563 1487 1340

89 1600 1523 1374

90 1639 1560 1409

91 1677 1598 1444

92 1717 1636 1479

93 1756 1674 1515

94 1796 1713 1551

95 1837 1752 1588

96 1878 1792 1625

97 1919 1832 1662

98 1961 1872 1700

99 2004 1913 1739

100 2047 1955 1778

200 8702 8444 7944

300 20101 19628 18710

400 36294 35565 34154

500 57308 56290 54318

1000 235222 232344 226772
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Tables of significance for 
the Mann–Whitney 
U-test

	
Table I.1

	�   �5% significant values level for the Mann–Whitney  
U-statistic (one-tailed test)

See Table I.1 opposite: Your value must be in the listed ranges for your sample sizes to be 
significant at the 5% level; i.e. to accept the hypothesis. In addition, you should have 
predicted which group would have the smaller sum of ranks.

	
Table I.2

	   �1% significant values level for the Mann–Whitney 
U-statistic (two-tailed test)

See Table I.2 on page 692: Your value must be in the listed ranges for your sample sizes 
to be significant at the 1% level; i.e. to accept the hypothesis at the 1% level.151–220

APPENDIX I
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	 APPENDIX Iâ•‡ Tables of significance for the Mann–Whitney U-test	 691
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692	 APPENDIX Iâ•‡ Tables of significance for the Mann–Whitney U-test
	

Ta
bl

e 
I.2

	
1%

 s
ig

ni
fic

an
t v

al
ue

s 
le

ve
l f

or
 th

e 
M

an
n–

W
hi

tn
ey

 U
-s

ta
tis

tic
 (t

w
o-

ta
ile

d 
te

st
)

Sa
m

pl
e 

si
ze

 
fo

r s
m

al
le

r 
gr

ou
p

Sa
m

pl
e 

si
ze

 fo
r l

ar
ge

r g
ro

up

5
6

7
8

9
10

11
12

13
14

15
20

5
0

0–
1

0–
1

0–
2

0–
3

0–
4

0–
5

0–
6

0–
7

0–
7

0–
8

0–
13

25
29

–3
0

34
–3

5
38

–4
0

42
–4

5
46

–5
0

50
–5

5
54

–6
0

58
–6

5
63

–7
0

67
–7

5
87

–1
00

6
0–

1
0–

2
0–

3
0–

4
0–

5
0–

6
0–

7
0–

9
0–

10
0–

11
0–

12
0–

18

29
–3

0
34

–3
6

39
–4

2
44

–4
8

49
–5

4
54

–6
0

59
–6

6
63

–7
2

68
–7

8
71

–8
2

78
–9

0
10

2–
12

0

7
0–

1
0–

3
0–

4
0–

6
0–

7
0–

9
0–

10
0–

12
0–

13
0–

15
0–

16
0–

24

34
–3

5
39

–4
2

45
–4

9
50

–5
6

56
–6

3
61

–7
0

67
–7

7
72

–8
4

78
–9

1
83

–9
8

89
–1

05
11

6–
14

0

8
0–

2
0–

4
0–

6
0–

7
0–

9
0–

11
0–

13
0–

15
0–

17
0–

18
0–

20
0–

30

38
–4

0
44

–4
8

50
–5

6
57

–6
4

63
–7

2
69

–8
0

75
–8

8
81

–9
6

87
–1

04
94

–1
12

10
0–

12
0

13
0–

16
0

9
0–

3
0–

5
0–

7
0–

9
0–

11
0–

13
0–

16
0–

18
0–

20
0–

22
0–

24
0–

36

42
–4

5
49

–5
4

56
–6

3
63

–7
2

70
–8

1
77

–9
0

83
–9

9
90

–1
08

97
–1

17
10

4–
12

6
10

1–
13

5
14

4–
18

0

10
0–

4
0–

6
0–

9
0–

11
0–

13
0–

16
0–

18
0–

21
0–

24
0–

26
0–

29
0–

42

46
–5

0
54

–6
0

61
–7

0
69

–8
0

77
–9

0
84

–1
00

92
–1

10
99

–1
20

10
6–

13
0

11
4–

14
0

12
1–

15
0

15
8–

20
0

11
0–

5
0–

7
0–

10
0–

13
0–

16
0–

18
0–

21
0–

24
0–

27
0–

30
0–

33
0–

48

50
–5

5
59

–6
6

67
–7

7
75

–8
8

83
–9

9
92

–1
10

90
–1

11
10

8–
13

2
11

6–
14

3
12

4–
15

4
13

2–
16

5
17

2–
22

0

12
0–

6
0–

9
0–

12
0–

15
0–

18
0–

21
0–

24
0–

27
0–

31
0–

34
0–

37
0–

54

54
–6

0
63

–7
2

72
–8

4
81

–9
6

90
–1

08
99

–1
20

10
8–

13
2

11
7–

14
4

12
5–

15
6

13
4–

16
8

14
3–

18
0

18
6–

24
0

13
0–

7
0–

10
0–

13
0–

17
0–

20
0–

24
0–

27
0–

31
0–

34
0–

38
0–

42
0–

60

58
–6

5
68

–7
8

78
–9

1
87

–1
04

97
–1

17
10

6–
13

0
11

6–
14

3
12

5–
15

6
13

5–
16

9
14

4–
18

2
15

3–
19

5
20

0–
26

0

14
0–

7
0–

11
0–

15
0–

18
0–

22
0–

26
0–

30
0–

34
0–

38
0–

42
0–

46
0–

67

63
–7

0
71

–8
2

83
–9

8
94

–1
12

10
4–

12
6

11
4–

14
0

12
4–

15
4

13
4–

16
8

14
4–

18
2

15
4–

19
6

16
4–

21
0

21
3–

28
0

15
0–

8
0–

12
0–

16
0–

20
0–

24
0–

29
0–

33
0–

37
0–

42
0–

46
0–

51
0–

73

67
–7

5
78

–9
0

89
–1

05
10

0–
12

0
11

1–
13

5
12

1–
15

0
13

2–
16

5
14

3–
18

0
15

3–
19

5
16

4–
21

0
17

4–
22

5
22

7–
30

0

20
0–

13
0–

18
0–

24
0–

30
0–

36
0–

42
0–

48
0–

54
0–

60
0–

67
0–

73
0–

10
5

87
–1

00
10

2–
12

0
11

6–
14

0
13

0–
16

0
14

4–
18

0
15

8–
20

0
17

2–
22

0
18

6–
24

0
20

0–
26

0
21

3–
28

0
22

7–
30

0
29

5–
40

0

So
ur

ce
: T

he
 a

bo
ve

 ta
bl

e 
ha

s 
be

en
 a

da
pt

ed
 fr

om
 T

ab
le

 I 
of

 F
un

da
m

en
ta

ls
 o

f b
eh

av
io

ra
l s

ta
tis

tic
s, 

Th
e 

M
c G

ra
w

 H
ill

 C
om

pa
ni

es
 In

c.
 (R

un
yo

n,
 R

.P
. a

nd
 H

ab
er

, A
., 

19
89

), 
w

ith
 p

er
m

is
si

on
.

Z10 Introduction to Statistics in Psychology with SPSS 29099.indd   692 05/01/2017   16:04



Tables of significance 
values for the 
F-distribution

	 J.1 	 5% significance values for the F-distribution (one-tailed test)

Your value has to equal or be larger than the tabled value to be significant at the 5% level 
for an effect to be significant.

APPENDIX J

Degrees of freedom for 
error or within-cells 

mean square  
(or variance estimate)

Degrees of freedom for between-treatments mean square (or variance estimate)

1 2 3 4 5 ∞

1 161.448 199.500 215.707 224.583 230.162 254.314

2 18.513 19.000 19.165 19.247 19.297 19.496

3 10.128 9.553 9.277 9.118 9.014 8.527

4 7.709 6.945 6.592 6.389 6.257 5.628

5 6.608 5.787 5.410 5.193 5.051 4.365

6 5.988 5.144 4.758 4.534 4.388 3.669

7 5.592 4.738 4.347 4.121 3.972 3.230

8 5.318 4.459 4.067 3.838 3.688 2.928

9 5.118 4.257 3.863 3.634 3.482 2.707

10 4.965 4.103 3.709 3.479 3.326 2.538

13 4.668 3.806 3.411 3.180 3.026 2.207

15 4.544 3.683 3.288 3.056 2.902 2.066

20 4.352 3.493 3.099 2.867 2.711 1.844

30 4.171 3.316 2.923 2.690 2.534 1.623

60 4.002 3.151 2.759 2.526 2.369 1.390

∞ 3.842 2.996 2.605 2.372 2.215 1.000
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694	 APPENDIX J Tables  of significance values for the F-distribution

	 J.2	 1% significance values for the F-distribution (one-tailed test)

Your value has to equal or be larger than the tabled value to be significant at the 1% level 
for an effect to be significant.

Degrees of freedom 
for error or within-cells 

mean square  
(or variance estimate)

Degrees of freedom for between-treatments mean square (or variance estimate)

1 2 3 4 5 ∞

1 4052.180 4999.500 5403.350 5624.580 5763.650 6365.860

2 98.503 99.000 99.167 99.250 99.300 99.500

3 34.117 30.817 29.457 28.710 28.238 26.126

4 21.198 18.000 16.695 15.977 15.522 13.464

5 16.259 13.274 12.060 11.392 10.967 9.021

6 13.745 10.925 9.780 9.149 8.746 6.880

7 12.247 9.547 8.452 7.847 7.461 5.650

8 11.259 8.650 7.591 7.007 6.632 4.859

9 10.562 8.022 6.992 6.423 6.057 4.311

10 10.045 7.560 6.553 5.995 5.637 3.909

13 9.074 6.701 5.740 5.206 4.862 3.166

15 8.684 6.359 5.417 4.894 4.556 2.869

20 8.096 5.849 4.939 4.431 4.103 2.422

30 7.563 5.391 4.510 4.018 3.699 2.007

60 7.078 4.978 4.126 3.650 3.339 1.607

∞ 6.635 4.606 3.782 3.320 3.018 1.000
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	 APPENDIX J Tables of significance values for the F-distribution	 695

	 J.3
	 10% significance values for the F-distribution for testing 

differences between two groups (one-tailed test)

This table is only to be used for determining whether an F-value which is not significant 
at the 5% level for two groups is significant at the 10% level which is the equivalent to 
a one-tailed t-test. You should only do this if you have good grounds for predicting the 
direction of the difference between the two means. Your value has to equal or be larger 
than the tabled value to be significant at the one-tailed 10% level for the t-test.

Degrees of freedom for error or within-cells 
mean square (or variance estimate)

Minimum value of F-ratio to be significant  
at the 10% level

1 39.864

2 8.527

3 5.539

4 4.545

5 4.061

6 3.776

7 3.590

8 3.458

9 3.361

10 3.285

13 3.137

15 3.074

20 2.975

30 2.881

60 2.792

∞ 2.706
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Degrees of 
freedom

Number of comparisons being made

1 2 3 4 5 6 7 8 9 10

1 12.706 25.452 38.188 50.923 63.657 76.390 89.124 101.856 114.589 127.321

2 4.303 6.205 7.649 8.860 9.925 10.886 11.769 12.590 13.360 14.089

3 3.182 4.177 4.857 5.392 5.841 6.231 6.580 6.895 7.185 7.453

4 2.776 3.495 3.961 4.315 4.604 4.851 5.067 5.261 5.437 5.598

5 2.571 3.163 3.534 3.810 4.032 4.219 4.382 4.526 4.655 4.773

6 2.447 2.969 3.288 3.521 3.708 3.863 3.997 4.115 4.221 4.317

7 2.365 2.841 3.128 3.335 3.500 3.636 3.753 3.855 3.947 4.029

8 2.306 2.752 3.016 3.206 3.355 3.479 3.584 3.677 3.759 3.833

9 2.262 2.685 2.933 3.111 3.250 3.364 3.462 3.547 3.622 3.690

10 2.228 2.634 2.870 3.038 3.169 3.277 3.368 3.448 3.518 3.581

11 2.201 2.593 2.820 2.981 3.106 3.208 3.295 3.370 3.437 3.497

12 2.179 2.560 2.780 2.934 3.055 3.153 3.236 3.308 3.371 3.428

13 2.160 2.533 2.746 2.896 3.012 3.107 3.187 3.257 3.318 3.373

14 2.145 2.510 2.718 2.864 2.977 3.069 3.146 3.213 3.273 3.326

15 2.132 2.490 2.694 2.837 2.947 3.036 3.112 3.177 3.235 3.286

16 2.120 2.473 2.673 2.813 2.921 3.008 3.082 3.146 3.202 3.252

17 2.110 2.458 2.655 2.793 2.898 2.984 3.056 3.119 3.174 3.222

Table of significance 
values for t when making 
multiple t-tests

The following table gives the 5% significance values for two-tailed t-tests when you are 
making up to 10 unplanned comparisons. The number of comparisons you decide to make 
is up to you and does not have to be the maximum possible. This table can be used in any 
circumstances where you have multiple t-tests.

APPENDIX K
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		  APPENDIX Kâ•‡ Table of significance values for t when making multiple t-tests	 697

Degrees of 
freedom

Number of comparisons being made

1 2 3 4 5 6 7 8 9 10

18 2.101 2.445 2.639 2.774 2.878 2.963 3.034 3.095 3.149 3.197

19 2.093 2.433 2.625 2.759 2.861 2.944 3.014 3.074 3.127 3.174

20 2.086 2.423 2.613 2.744 2.845 2.927 2.996 3.055 3.107 3.153

21 2.080 2.414 2.601 2.732 2.831 2.912 2.980 3.038 3.090 3.135

22 2.074 2.406 2.591 2.720 2.819 2.898 2.966 3.023 3.074 3.119

23 2.069 2.398 2.582 2.710 2.807 2.886 2.953 3.010 3.059 3.104

24 2.064 2.391 2.574 2.700 2.797 2.875 2.941 2.997 3.047 3.091

25 2.060 2.385 2.566 2.692 2.787 2.865 2.930 2.986 3.035 3.078

26 2.055 2.379 2.559 2.684 2.779 2.856 2.920 2.975 3.024 3.067

27 2.052 2.373 2.553 2.676 2.771 2.847 2.911 2.966 3.014 3.057

28 2.048 2.369 2.547 2.670 2.763 2.839 2.902 2.957 3.005 3.047

29 2.045 2.364 2.541 2.663 2.756 2.832 2.894 2.949 2.996 3.038

30 2.042 2.360 2.536 2.657 2.750 2.825 2.887 2.941 2.988 3.030

31 2.039 2.356 2.531 2.652 2.744 2.818 2.880 2.934 2.981 3.022

32 2.037 2.352 2.526 2.647 2.739 2.812 2.874 2.927 2.974 3.015

33 2.035 2.348 2.522 2.642 2.733 2.807 2.868 2.921 2.967 3.008

34 2.032 2.345 2.518 2.638 2.728 2.801 2.863 2.915 2.961 3.002

35 2.030 2.342 2.515 2.633 2.724 2.797 2.857 2.910 2.955 2.996

36 2.028 2.339 2.511 2.630 2.720 2.792 2.853 2.905 2.950 2.990

37 2.026 2.336 2.508 2.626 2.715 2.788 2.848 2.900 2.945 2.985

38 2.024 2.334 2.505 2.622 2.712 2.784 2.844 2.895 2.940 2.980

39 2.023 2.331 2.502 2.619 2.708 2.780 2.839 2.891 2.936 2.976

40 2.021 2.329 2.499 2.616 2.704 2.776 2.836 2.887 2.931 2.971

41 2.020 2.327 2.496 2.613 2.701 2.772 2.832 2.883 2.927 2.967

42 2.018 2.325 2.494 2.610 2.698 2.769 2.828 2.879 2.923 2.963

43 2.017 2.323 2.491 2.607 2.695 2.766 2.825 2.875 2.920 2.959

44 2.015 2.321 2.489 2.605 2.692 2.763 2.822 2.872 2.916 2.955

45 2.014 2.319 2.487 2.602 2.690 2.760 2.819 2.869 2.913 2.952

46 2.013 2.317 2.485 2.600 2.687 2.757 2.816 2.866 2.910 2.949

47 2.012 2.316 2.483 2.598 2.685 2.755 2.813 2.863 2.907 2.946

48 2.011 2.314 2.481 2.595 2.682 2.752 2.810 2.860 2.904 2.943

49 2.010 2.312 2.479 2.593 2.680 2.750 2.808 2.857 2.901 2.940

50 2.009 2.311 2.477 2.591 2.678 2.747 2.805 2.855 2.898 2.937

51 2.008 2.309 2.476 2.589 2.676 2.745 2.803 2.853 2.896 2.934

52 2.007 2.308 2.474 2.588 2.674 2.743 2.801 2.850 2.893 2.932

53 2.006 2.307 2.472 2.586 2.672 2.741 2.798 2.848 2.891 2.929

54 2.005 2.306 2.471 2.584 2.670 2.739 2.797 2.846 2.889 2.927

55 2.004 2.304 2.469 2.583 2.668 2.737 2.795 2.844 2.887 2.925

56 2.003 2.303 2.468 2.581 2.667 2.735 2.793 2.842 2.885 2.922

57 2.003 2.302 2.467 2.579 2.665 2.734 2.791 2.840 2.882 2.920

58 2.002 2.301 2.465 2.578 2.663 2.732 2.789 2.838 2.881 2.918

59 2.001 2.300 2.464 2.577 2.662 2.730 2.787 2.836 2.879 2.916

➜
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698	 APPENDIX Kâ•‡ Table of significance values for t when making multiple t-tests

Degrees of 
freedom

Number of comparisons being made

1 2 3 4 5 6 7 8 9 10

60 2.000 2.299 2.463 2.575 2.660 2.729 2.786 2.834 2.877 2.915

61 2.000 2.298 2.462 2.574 2.659 2.727 2.784 2.833 2.875 2.913

62 1.999 2.297 2.461 2.573 2.658 2.726 2.782 2.831 2.873 2.911

63 1.998 2.296 2.460 2.571 2.656 2.724 2.781 2.829 2.872 2.909

64 1.998 2.295 2.459 2.570 2.655 2.723 2.779 2.828 2.870 2.908

65 1.997 2.295 2.458 2.569 2.654 2.721 2.778 2.826 2.869 2.906

66 1.997 2.294 2.457 2.568 2.652 2.720 2.777 2.825 2.867 2.905

67 1.996 2.293 2.456 2.567 2.651 2.719 2.775 2.824 2.866 2.903

68 1.995 2.292 2.455 2.566 2.650 2.718 2.774 2.822 2.864 2.902

69 1.995 2.291 2.454 2.565 2.649 2.716 2.773 2.821 2.863 2.900

70 1.994 2.291 2.453 2.564 2.648 2.715 2.772 2.820 2.862 2.899

71 1.994 2.290 2.452 2.563 2.647 2.714 2.770 2.818 2.860 2.898

72 1.994 2.289 2.451 2.562 2.646 2.713 2.769 2.817 2.859 2.896

73 1.993 2.289 2.450 2.561 2.645 2.712 2.768 2.816 2.858 2.895

74 1.993 2.288 2.450 2.560 2.644 2.711 2.767 2.815 2.857 2.894

75 1.992 2.287 2.449 2.559 2.643 2.710 2.766 2.814 2.856 2.893

76 1.992 2.287 2.448 2.559 2.642 2.709 2.765 2.813 2.854 2.891

77 1.991 2.286 2.447 2.558 2.641 2.708 2.764 2.812 2.853 2.890

78 1.991 2.285 2.447 2.557 2.640 2.707 2.763 2.811 2.852 2.889

79 1.990 2.285 2.446 2.556 2.640 2.706 2.762 2.810 2.851 2.888

80 1.990 2.284 2.445 2.555 2.639 2.705 2.761 2.809 2.850 2.887

81 1.990 2.284 2.445 2.555 2.638 2.705 2.760 2.808 2.849 2.886

82 1.989 2.283 2.444 2.554 2.637 2.704 2.759 2.807 2.848 2.885

83 1.989 2.283 2.444 2.553 2.636 2.703 2.759 2.806 2.847 2.884

84 1.989 2.282 2.443 2.553 2.636 2.702 2.758 2.805 2.846 2.883

85 1.988 2.282 2.442 2.552 2.635 2.701 2.757 2.804 2.845 2.882

86 1.988 2.281 2.442 2.551 2.634 2.701 2.756 2.803 2.845 2.881

87 1.988 2.281 2.441 2.551 2.634 2.700 2.755 2.803 2.844 2.880

88 1.987 2.280 2.441 2.550 2.633 2.699 2.755 2.802 2.843 2.880

89 1.987 2.280 2.440 2.550 2.632 2.699 2.754 2.801 2.842 2.879

90 1.987 2.280 2.440 2.549 2.632 2.698 2.753 2.800 2.841 2.878

91 1.986 2.279 2.439 2.548 2.631 2.697 2.752 2.800 2.841 2.877

92 1.986 2.279 2.439 2.548 2.630 2.696 2.752 2.799 2.840 2.876

93 1.986 2.278 2.438 2.547 2.630 2.696 2.751 2.798 2.839 2.876

94 1.986 2.278 2.438 2.547 2.629 2.695 2.750 2.797 2.838 2.875

95 1.985 2.277 2.437 2.546 2.629 2.695 2.750 2.797 2.838 2.874

96 1.985 2.277 2.437 2.546 2.628 2.694 2.749 2.796 2.837 2.873

97 1.985 2.277 2.436 2.545 2.627 2.694 2.748 2.795 2.836 2.873

98 1.984 2.276 2.436 2.545 2.627 2.693 2.748 2.795 2.836 2.872

99 1.984 2.276 2.435 2.544 2.626 2.692 2.747 2.794 2.835 2.871

100 1.984 2.276 2.435 2.544 2.626 2.692 2.747 2.793 2.834 2.871

∞ 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.734 2.773 2.807
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−2 log likelihood (ratio) test: Used in logistic regression, it is a 
form of chi-square test which compares the goodness of fit 
of two models where one model is a part of (i.e. nested or a 
subset ofâ•›) the other model. The chi-square is the difference 
in the -2 log likelihood values for the two models.

A priori test: A test of the difference between two groups of 
scores when this comparison has been planned ignorant of 
the actual data. This contrasts with a post hoc test which is 
carried out after the data have been collected and which has 
no particularly strong expectations about the outcome.

Adjusted mean: A mean score when the influence of one or 
more covariates have been removed, especially in analysis 
of covariance.

Alpha level: The level of risk that the researcher is prepared to 
mistakenly accept the hypothesis on the basis of the available 
data. Typically this is set at a maximum of 5% or .05 and is, 
of course, otherwise referred to as the level of significance.

Analysis of covariance (ANCOVA): A variant of the analysis 
of variance (ANOVA) in which scores on the dependent 
variable are adjusted to take into account (control) a 
covariate(s). For example, differences between conditions 
of an experiment at pre-test can be controlled for.

Analysis of variance (ANOVA): An extensive group of tests of 
significance which compare means on a dependent variable. 
There may be one or more independent (grouping) varia-
bles or factors. ANOVA is essential in the analysis of most 
laboratory experiments.

Association: A relationship between two variables.

Bar chart: A picture in which frequencies are represented by 
the height of a set of bars. It should be the areas of a set of 
bars but SPSS ignores this and settles for height.

Bartlett’s test of sphericity: A test used in MANOVA of 
whether the correlations between the variables differ sig-
nificantly from zero.

Beta level: The risk that we are prepared to accept rejecting 
the null hypothesis when it is in fact true.

Beta weight: The standardised regression weight in multiple 
regression. It corresponds to the correlation coefficient in 
simple regression.

Between-groups design: Basically a design where different par-
ticipants are allocated to different groups or conditions.

Between-subjects design: see Between-groups design.
Bimodal: A frequency distribution with two modes.
Bivariate: Involving two variables as opposed to univariate 

which involves just one variable.
Bivariate correlation: A correlation between two variables.
Block: A subset of variables which will be analysed together 

in a sequence of blocks.
Bonferroni adjustment: A method of adjusting significance 

levels for the fact that many statistical analyses have been 
carried out on the data.

Bootstrapping: A method of creating sampling distributions 
from the basic sample which is reproduced numerous times 
to approximate the ‘population’. This allows repeated sam-
pling and hence the calculation of sampling distributions 
for all sorts of statistics.

Boxplot: A diagram indicating the distribution of scores on a 
variable. It gives the median in a box, the left and right 
hand sides of which are the lower and upper values of the 
interquartile range. Lines at each side of the box identify 
the largest and smallest scores.

Box’s M: A statistical test which partly establishes whether the 
data meet the requirements for a MANOVA analysis. It 
examines the extent to which the covariances of the depend-
ent variables are similar for each of the groups in the analy-
sis. Ideally, then, Box’s M should not be significant. The test 
is used in MANOVA though its interpretation is complex.

Case: The basic unit of analysis on which data are collected 
such as individuals or organisations.

Categorical variable: A nominal or category variable.
Category variable: A variable which consists of categories 

rather than numerical scores. The categories have no par-
ticular quantitative order. However, usually on SPSS they 
will be coded as numbers.

Cell: The intersection of one category of a variable with 
another category of one or more other variables. So if a 
variable has categories A, B and C and the other variable 
has categories X, Y and Z, then the cells are A with X, A 

Glossary
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with Y, A with Z, B with X, B with Y, etc. It is a term fre-
quently used in ANOVA as well as with chi-square tables 
(i.e. crosstabulation and contingency tables).

Chart: A graphical or pictorial representation of the charac-
teristics of one’s data.

Chart Editor window: In SPSS it is a window which can be 
opened up to refine a chart.

Chi-square distribution: A set of theoretical probability distri-
butions which vary according to the degrees of freedom 
and which are used to determine the statistical significance 
of a chi-square test.

Chi-square test, Pearson’s: A test of goodness-of-fit or associa-
tion for frequency data. It compares the observed data with 
the estimated (or actual) population distribution (this is 
usually based on combining two or more samples).

Cluster analysis: A variety of techniques which identify the 
patterns of variables or cases that tend to be similar to 
each other. No cluster analysis techniques are dealt with 
in this book as they are uncommon in psychology. Often 
factor analysis, which is in this book, does a similar job.

Cochran’s Q test: A test of whether the frequencies of a dichot-
omous variable differ significantly for more than two 
related samples or groups.

Coefficient of determination: The square of Pearson’s correla-
tion coefficient. So a correlation of .4 has a coefficient of 
determination of .16. It is useful especially since it gives a 
numerically more accurate representation of the relative 
importance of different correlation coefficients than the 
correlation coefficients themselves do.

Common variance: The variance that two or more variables 
share.

Communality: The variance that a particular variable in an 
analysis shares with other variables. It is distinct from 
error variance and specific variance (which is confined 
to a particular variable). It mainly appears in factor 
analysis.

Component matrix: A table showing the correlations between 
components and variables in factor analysis.

Compute: In SPSS, this procedure allows the researcher to 
derive new variables from the original variables. For exam-
ple, it would be possible to sum the scores for each partici-
pant on several variables.

Condition: One of the groups in ANOVA or the t-test.
Confidence interval: A more realistic way of presenting the 

outcomes of statistical analysis than, for example, the mean 
or the standard deviation would be. It gives the range 
within which 95% or 99% of the most common means, 
standard deviations, etc. would lie. Thus instead of saying 
that the mean is 6.7 we would say that the 95% confidence 
interval for the mean is 5.2 to 8.2.

Confirmatory factor analysis: A test of whether a particular 
model or factor structure fits a set of data satisfactorily.

Confounding variable: Any variable which clouds the inter-
pretation of a correlation or any other statistical relation-
ship. Once the effects of the confounding variable are 
removed, the remaining relationship presents a truer pic-
ture of what is going on in reality.

Contingency table: A frequency table giving the frequencies in 
all of the categories of two or more nominal (category) 
variables tabulated together.

Correlation coefficient: An index which gives the extent and 
the direction of the linear association between two 
variables.

Correlation matrix: A matrix of the correlations of pairs of 
variables.

Count: The number of times (frequency) a particular observa-
tion (score or category, for example) occurs.

Counterbalancing: If some participants take part in condition 
A of a study first, followed by condition B later, then to 
counterbalance any time or sequence effects other partici-
pants should take part in condition B first followed by con-
dition A second.

Covariance: The variance which two or more score variables 
have in common (i.e. share). It is basically calculated like 
variance but instead of squaring each score’s deviation 
from the mean the deviation of variable X from its mean is 
multiplied by the deviation of variable Y from its mean.

Covariate: A variable which correlates with the variables that 
are the researcher’s main focus of interest. In the analysis 
of covariance it is the undesired influence of the covariate 
which is controlled for.

Cox and Snell’s R2:The amount of variance in the criterion 
variable accounted for by the predictor variables. It is used 
in logistic regression.

Cramér’s V: Also known as Cramér’s phi, this correlation coef-
ficient is usually applied to a contingency or crosstabula-
tion table greater than 2 rows * 2 columns.

Critical value: Used when calculating statistical significance 
with statistical tables such as those in the Appendices. It is 
the minimum value of the statistical calculation which is 
statistically significant (i.e. which rejects the null 
hypothesis).

Cronbach’s alpha: A measure of the extent to which cases 
respond in a similar or consistent way on all the variables 
that go to make up a scale.

Data Editor window: The data spreadsheet in which data 
items are entered in SPSS.

Data handling: The various techniques to deal with data from 
a study excluding its statistical analysis. It would include 
data entry into the spreadsheet, the search for errors in data 
entry, recoding variables into new values, computing new 
variables and so forth.

Data View: The window in SPSS which allows you to see the 
data spreadsheet.

Degrees of freedom: The number of components of the data 
that can vary while still yielding a given population value 
for characteristics such as mean scores. All other things 
being equal, the bigger the degrees of freedom the more 
likely it is that the research findings will be statistically 
significant.

Dependent variable: A variable which potentially may be 
affected or predicted by other variables in the analysis. It is 
sometimes known as the criterion or outcome variable.
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Descriptive statistics: Indices which describe the major char-
acteristics of variables or the relationships between varia-
bles. It includes measures of central tendency (mean, 
median and mode for example) and measures of spread 
(range, variance, etc.).

Deviation: Usually the difference between a score and the 
mean of the set of scores.

Dialog or Dialogue box: A rectangular picture in SPSS which 
allows the user to select various procedures.

Dichotomous: A nominal (category) variable with just two 
categories. Gender (male/female) is an obvious example.

Direct Oblimin: A rotation procedure for making factors in a 
factor analysis more meaningful or interpretable. Its essen-
tial characteristic is that the factors are not required to be 
uncorrelated (independent) of each other.

Discriminant (function) analysis: A statistical technique for 
score variables which maximises the difference(s) between 
two or more groups of participants on a set of variables. It 
generates a set of ‘weights’ which are applied to these 
variables.

Discriminant function: Found mainly in discriminant (func-
tion) analysis. A derived variable based on combining a set 
of variables in such a way that groups are as different as 
possible on the discriminant function. More than one dis-
criminant function may emerge but each discriminant func-
tion is uncorrelated with the others.

Discriminant score: An individual’s score on a discriminant 
function.

Dummy coding: Used when analysing nominal (category) data 
to allow such variables to be used analogously to scores. 
Each category of the nominal (category) variable is made 
into a separate dummy variable. If the nominal (category) 
variable has three categories A, B and C then two new vari-
ables, say A versus not A and B versus not B are created. The 
categories may be coded with the value 1 and 0. It would not 
be used where a variable has only two different categories.

Dummy variable: A variable created by dummy coding.

Effect size: A measure of the strength of the relationship 
between two variables. Most commonly used in meta-anal-
ysis. The Pearson correlation coefficient is a very familiar 
measure of effect size. Also commonly used is Cohen’s d. 
The correlation coefficient is recommended as the most 
user-friendly measure of effect size as it is very familiar to 
most of us and easily understood.

Eigenvalue: The variance accounted for by a factor. It is simply 
the sum of the squared factor loadings. The concept is also 
used for discriminant functions.

Endogenous variable: Any variable in path analysis that can 
be explained on the basis of one or more variables in that 
analysis.

Eta: A measure of association for non-linear (curved) 
relationships.

Exact significance: The precise significance level at and beyond 
which a result is statistically significant.

Exogenous variable: A variable in path analysis which is not 
accounted for by any other variable in that analysis.

Exploratory factor analysis: The common form of factor 
analysis which finds the major dimensions of a correlation 
matrix using weighted combinations of the variables in 
the study. It identifies combinations of variables which 
can be described as one or more superordinate variable or 
factor.

Exponent or power: A number with an exponent or power 
superscript is multiplied by itself by that number of times. 
Thus 32 means 3 * 3 whereas 43 means 4 * 4 * 4.

Extraction: The process of obtaining factors in factor analysis.

F-ratio: The ratio of two variances. It can be used to test 
whether these two variances differ significantly using the 
F-distribution. It can be used on its own but is also part of 
the t-test and ANOVA.

Factor matrix: A table showing the correlations between  
factors and the variables.

Factor scores: Standardised scores for a factor. They provide 
a way of calculating an individual’s score on a factor which 
precisely reflects that factor.

Factor, factor analysis: A variable derived by combining other 
variables in a weighted combination. A factor seeks to syn-
thesise the variance shared by variables into a more general 
variable to which the variables relate.

Factor, in analysis of variance: An independent or subject varia-
ble but is best regarded as a variable on which groups of par-
ticipants are formed. The variances of these groups are then 
compared using ANOVA. A factor should consist of a nomi-
nal (category) variable with a small number of categories.

Factorial ANOVA: An analysis of variance with two or more 
independent or subject variables.

Family error rate: The probability or significance level for a 
finding when a family or number of tests or comparisons 
are being made on the same data.

Fisher test: Tests of significance (or association) for 2 * 2 and 
2 * 3 contingency tables.

Frequency: The number of times a particular category occurs.
Frequency distribution: A table or diagram giving the frequen-

cies of values of a variable.
Friedman’s test: A nonparametric test for determining whether 

the mean ranks of three or more related samples or groups 
differ significantly.

Goodness-of-fit index: A measure of the extent to which a 
particular model (or pattern of variables) designed to 
describe a set of data actually matches the data.

Graph: A diagram for illustrating the values of one or more 
variables.

Grouping variable: A variable which forms the groups or con-
ditions which are to be compared.

Harmonic mean: The number of scores, divided by the sum of 
the reciprocal (1/x) of each score.

Help: A facility in software with a graphical interface such as 
SPSS which provides information about its features.

Hierarchical agglomerative clustering: A form of cluster analy-
sis, at each step of which a variable or cluster is paired with 
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the most similar variable or cluster until one cluster 
remains.

Hierarchical or sequential entry: A variant of regression in 
which the order in which the independent (predictor) vari-
ables are entered into the analysis is decided by the analyst 
rather than mathematical criteria.

Hierarchical regression: see Hierarchical or sequential entry.
Histogram: A chart which represents the frequency of particu-

lar scores or ranges of scores in terms of a set of bars. The 
height of the bar represents the frequency of this score or 
range of scores in the data.

Homogeneity of regression slope: The similarity of the regres-
sion slope of the covariate on the criterion variable in the 
different groups of the predictor variable.

Homogeneity of variance: The similarity of the variance of the 
scores in the groups of the predictor variable.

Homoscedasticity: The similarity of the scatter or spread of 
the data points around the regression line of best fit in dif-
ferent parts of that line.

Hypothesis: A statement expressing the expected or predicted 
relationship between two or more variables.

Icicle plot: A graphical representation of the results of a cluster 
analysis in which crosses (x) are used to indicate which 
variables or clusters are paired at which stage.

Identification: The extent to which the parameters of a struc-
tural equation model can be estimated from the original 
data.

Independence: Events or variables being unrelated to each 
other.

Independent groups design: A design in which different cases 
are assigned to different conditions or groups.

Independent t-test: A parametric test for determining whether 
the means of two unrelated or independent groups differ 
significantly.

Independent variable: A variable which may affect (predict) 
the values of another variable(s). It is used to form the 
groups in experimental designs. It is also used in regres-
sion for the variables used to predict the dependent 
variable.

Inferential statistics: Statistical techniques which help predict 
the population characteristics from the sample 
characteristics.

Interaction: This describes outcomes in research which cannot 
be accounted for on the basis of the separate influences of 
two or more variables. So, for example, an interaction 
occurs when two variables have a significant influence 
when combined.

Interaction graph: A graph showing the relationship of the 
means of two or more variables.

Interquartile range: The range of the middle 50% of a distribu-
tion. By ignoring the extreme quarter in each direction 
from the mean, the interquartile range is less affected by 
extreme scores.

Interval data: Data making up a scale in which the distance or 
interval between adjacent points is assumed to be the same 
or equal but where there is no meaningful zero point.

Just-identified model: A structural equation model in which 
the data are just sufficient to estimate its parameters.

Kaiser or Kaiser–Guttman criterion: A statistical criterion in 
factor analysis for determining the number of factors or 
components for consideration and possible rotation in 
which factors or components with eigenvalues of one or 
less are ignored.

Kendall’s tau (@): An index of the linear association between 
two ordinal variables. A correlation coefficient for non-
parametric data in other words.

Kolmogorov–Smirnov test for two samples: A nonparametric 
test for determining whether the distributions of scores on 
an ordinal variable differ significantly for two unrelated 
samples.

Kruskal–Wallis test: A nonparametric test for determining 
whether the mean ranked scores for three or more unre-
lated samples differ significantly.

Kurtosis: The extent to which the shape of a bell-shaped curve 
is flatter or more elongated than a normal distribution.

Latent variable: An unobserved variable that is measured by 
one or more manifest variables or indicators.

Level: Used in analysis of variance to describe the different 
conditions of an independent variable (or factor). The term 
has its origins in agricultural research where levels of treat-
ment would correspond to, say, different amounts of ferti-
liser being applied to crops.

Levels of measurement: A four-fold hierarchical distinction 
proposed for measures comprising nominal, ordinal, equal 
interval and ratio.

Levene’s test: An analysis of variance on absolute differences 
to determine whether the variances of two or more unre-
lated groups differ significantly.

Likelihood ratio chi-square test: A form of chi-square which 
involves natural logarithms. It is primarily associated with 
log-linear analysis.

Line graph: A diagram in which lines are used to indicate the 
frequency of a variable.

Linear association or relationship: This occurs when there is a 
straight line relationship between two sets of scores. The 
scattergram for these data will be represented best by a 
straight line rather than a curved line.

Linear model: A model which assumes a linear relationship 
between the variables.

LISREL: The name of a particular software designed to carry 
out linear structural relationship analysis also known as 
structural equation modelling.

Loading: An index of the size and direction of the association 
of a variable with a factor or discriminant function of 
which it is part. A loading is simply the correlation between 
a variable and the factor or discriminant function.

Log likelihood: An index based on the difference between the 
frequencies for a category variable(s) and what is predicted 
on the basis of the predictors (i.e. the modelled data). The 
bigger the log likelihood the poorer the fit of the model to 
the data.
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Logarithm: The amount to which a given base number (e.g. 
10) has to be multiplied by itself to obtain a particular 
number. So in the expression 32, 2 would be the logarithm 
for the base 3 which makes 9. Sometimes it is recom-
mended that scores are converted to their logarithms if this 
results in the data fitting the requirements of the statistical 
procedure better.

Logistic or logit regression: A version of multiple regression in 
which the dependent, criterion or outcome variable takes 
the form of a nominal (category) variable. Any mixture of 
scores and nominal (category) variables can act as predic-
tors. The procedure uses dummy variables extensively.

Log-linear analysis: A statistical technique for nominal (cate-
gory) data which is essentially an extension of chi-square 
where there are three or more independent variables.

Main effect: The effect of an independent or predictor variable 
on a dependent or criterion variable.

Manifest variable: A variable which directly reflects the meas-
ure used to assess it.

Mann–Whitney test: A nonparametric test for seeing whether 
the number of times scores from one sample are ranked 
significantly higher than scores from another unrelated 
sample.

Marginal totals: The marginal totals are the row and column 
total frequencies in crosstabulation and contingency tables.

Matched-subjects design: A related design in which partici-
pants are matched in pairs on a covariate or where partici-
pants serve as their own control. In other words, a repeated 
or related measures design.

Matrix: A rectangular array of rows and columns of data.
Mauchly’s test: A test for determining whether the assumption 

that the variance–covariance matrix in a repeated measures 
analysis of variance is spherical or circular.

Maximum likelihood method: A method for finding estimates 
of the population parameters of a model which are most 
likely to give rise to the pattern of observations in the sam-
ple data.

McNemar test: A test for assessing whether there has been a 
significant change in the frequencies of two categories on 
two occasions in the same or similar cases.

Mean: The everyday numerical average score. Thus the mean 
of 2 and 3 is 2.5.

Mean square: A term for variance estimate used in analysis of 
variance.

Measure of dispersion: A measure of the variation in the scores 
such as the variance, range, interquartile range and stand-
ard error.

Median: The score which is halfway in the scores ordered from 
smallest to largest.

Mediating variable: One which is responsible for the relation-
ship between two other variables.

Mixed ANOVA: An ANOVA in which at least one independ-
ent variable consists of related scores and at least one other 
variable consists of uncorrelated scores.

Mixed design: see Mixed ANOVA.
Mode: The most commonly occurring score or category.

Moderating or moderator effect: A relationship between two 
variables which differs according to a third variable. For 
example, the correlation between age and income may be 
moderated by a variable such as gender. In other words, the 
correlation for men and the correlation for women between 
age and income is different.

Multicollinearity: When two or more independent or predictor 
variables are highly correlated.

Multimodal: A frequency distribution having three or more 
modes.

Multiple correlation or R: A form of correlation coefficient 
which correlates a single score (A) with two or more other 
scores (B + C) in combination. Used particularly in multi-
ple regression to denote the correlation of a set of predictor 
variables with the dependent (or outcome) variable.

Multiple regression: A parametric test to determine what pat-
tern of two or more predictor (independent) variables is 
associated with scores on the dependent variable. It takes 
into account the associations (correlations) between the 
predictor variables. If desired, interactions between predic-
tor variables may be included.

Multivariate: Involving more than two variables.
Multivariate analysis of variance (MANOVA): A variant of 

analysis of variance in which there are two or more dependent 
variables combined. MANOVA identifies differences between 
groups in terms of the combined dependent variable.

Nagelkerke’s R2: The amount of variance in the criterion vari-
able accounted for by the predictor variables.

Natural or Napierian logarithm: The logarithms calculated 
using 2.718 as the base number.

Nested model: A model which is a simpler subset of another 
model and which can be derived from that model.

Nonparametric test: A statistical test of significance which 
requires fewer assumptions about the distribution of values 
in a sample than a parametric test.

Normal distribution: A mathematical distribution with very 
important characteristics. However, it is easier to regard it 
as a bell-shaped frequency curve. The tails of the curve 
should stretch to infinity in both directions but this, in the 
end, is of little practical importance.

Numeric variables: Variables for which the data are collected 
in the form of scores which indicate quantity.

Oblique factors: In factor analysis, oblique factors are ones 
which, during rotation, are allowed to correlate with each 
other. This may be more realistic than orthogonal rotations. 
One way of looking at this is to consider height and weight. 
These are distinct variables but they correlate to some 
degree. Oblique factors are distinct but they can correlate.

Odds: Obtained by dividing the probability of something 
occurring by the probability of it not occurring.

Odds ratio: The number by which the odds of something 
occurring must be multiplied for a one unit change in a 
predictor variable.

One-tailed test: A version of significance testing in which a strong 
prediction is made as to the direction of the relationship.  
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This should be theoretically and empirically well founded on 
previous research. The prediction should be made prior to 
examination of the data.

Ordinal data: Numbers for which little can be said other than 
the numbers give the rank order of cases on the variable 
from smallest to largest.

Orthogonal: Essentially means at right angles.
Orthogonal factors: In factor analysis, orthogonal factors are 

factors which do not correlate with each other.
Outcome variable: A word used especially in medical statistics 

to denote the dependent variable. It is also the criterion 
variable. It is the variable which is expected to vary with 
variation in the independent variable(s).

Outlier: A score or data point which differs substantially from 
the other scores or data points. It is an extremely unusual 
or infrequent score or data point.

Output window: The window of computer software which 
displays the results of an analysis.

Over-identified model: A structural equation model in which 
the number of data points is greater than the number of 
parameters to be estimated, enabling the fit of the model to 
the data to be determined.

Paired comparisons: The process of comparing each variable 
mean with every (or most) other variable mean in pairs.

Parameter: A characteristic such as the mean or standard devia-
tion which is based on the population of scores. In contrast, a 
statistic is a characteristic which is based on a sample of scores.

Parametric: To do with the characteristics of the population.
Parametric test: A statistical test which assumes that the scores 

used come from a population of scores which is normally 
distributed.

Part or semi-partial correlation: The correlation between two 
variables (X and Y) when a third variable Z is held constant 
for either X or Y but not both.

Partial correlation: The correlation between a criterion and a 
predictor when the criterion’s and the predictor’s correla-
tion with other predictors have been partialled out.

Participant: Someone who takes part in research. A more  
appropriate term than the archaic and misleading ‘subject’.

PASW Statistics: The name for SPSS in 2008–9.
Path diagram: A diagram in which the relationships (actual or 

hypothetical) between variables are presented.
Pathway: A line in a path diagram depicting a relationship 

between two variables.
Phi: A measure of association between two binomial or dichot-

omous variables.
Pivot table: A table in SPSS which can be edited.
Planned comparisons: Testing whether a difference between 

two groups is significant when there are strong grounds for 
expecting such a difference.

Point-biserial correlation: A correlation between a score vari-
able and a binomial (dichotomous) variable – i.e. one with 
two categories.

Population: All of the scores from which a sample is taken. It 
is erroneous in statistics to think of the population as peo-
ple since it is the population of scores on a variable.

Post hoc test: A test to see whether two groups differ signifi-
cantly when the researcher has no strong grounds for pre-
dicting or expecting that they will. Essentially they are 
unplanned tests which were not stipulated prior to the col-
lection of data.

Power: In statistics the ability of a test to reject the null 
hypothesis when it is false.

Principal components analysis: Primarily a form of factor 
analysis in which the variance of each variable is set at the 
maximum value of 1 as no adjustment has been made for 
communalities. Probably best reserved for instances in 
which the correlation matrix tends to have high values 
which is not common in psychological research.

Probability distribution: The distribution of outcomes 
expected by chance.

Promax: A method of oblique rotation in factor analysis.

Quantitative research: Research which at the very least 
involves counting the frequency of categories in the main 
variable of interest.

Quartimax: A method of orthogonal rotation in factor analysis.

Randomisation: The assignment of cases to conditions using 
some method of assigning by chance.

Range: The difference between the largest and smallest score 
of a variable.

Ratio data: A measure for which it is possible to say that a score 
is a multiple of another score such as 20 being twice 10. Also 
there should be a zero point on the measure. This is a holy 
grail of statistical theory which psychologists will never find 
unless variables such as time and distance are considered.

Recode: Giving a value, or set of values, another value such as 
recoding age into ranges of age.

Regression coefficient: The weight which is applied to a predic-
tor variable to give the value of the dependent variable.

Related design: A design in which participants provide data in 
more than one condition of the experiment. This is where 
participants serve as their own controls. More rarely, if 
samples are matched on a pairwise basis to be as similar as 
possible on a matching variable then this also constitutes a 
related design if the matching variable correlates with the 
dependent variable.

Related factorial design: A design in which there are two or 
more independent or predictor variables which have the 
same or similar cases in them.

Reliability: Internal reliability is the extent to which items 
which make up a scale or measure are internally consistent. 
It is usually calculated either using a form of split-half reli-
ability in which the score for half the items is correlated 
with the score for the other half of the items (with an 
adjustment for the shortened length of the scale) or using 
Cronbach’s alpha (which is the average of all possible split-
half reliabilities). A distinct form of reliability is test–retest 
reliability which measures consistency over time.

Repeated measures ANOVA: An analysis of variance which is 
based on one or more related factors having the same or 
similar cases in them.
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Repeated measures design: A design in which the groups of the 
independent variables have the same or similar cases in them.

Residual: The difference between an observed and expected 
score.

Residual sum of squares: The sum of squares that are left over 
after other sources of variance have been removed.

Rotation: see Rotation of factors.
Rotation of factors: This adjusts the factors (axes) of a factor 

analysis in order to make the factors more interpretable. To 
do so, the numbers of high and low factor loadings are max-
imised whereas the numbers of middle-sized factor loadings 
are made minimal. Originally it involved plotting the axes 
(factors) on graph paper and rotating them physically on the 
page, leaving the factor loadings in the same points on the 
graph paper. As a consequence, the factor loadings change 
since these have not moved but the axes have.

Sample: A selection or subset of scores on a variable. Samples 
cannot be guaranteed to be representative of the population 
but if they are selected at random then there will be no 
systematic difference between the samples and the 
population.

Sampling distribution: The theoretical distribution of a par-
ticular size of sample which would result if samples of that 
size were repeatedly taken from that population.

Saturated model: A model (set of variables) which fully 
accounts for the data. It is a concept used in log-linear 
analysis.

Scattergram: see Scatterplot.
Scatterplot: A diagram or chart which shows the relationship 

between two score variables. It consists of a horizontal and 
a vertical scale which are used to plot the scores of each 
individual on both variables.

Scheffé test: A post hoc test used in analysis of variance to test 
whether two group means differ significantly from each 
other.

Score statistic: A measure of association in logistic 
regression.

Scree test: A graph of the eigenvalues of successive factors in 
a factor analysis. It is used to help determine the ‘signifi-
cant’ number of factors prior to rotation. The point at 
which the curve becomes flat and ‘straight’ determines the 
number of ‘significant’ factors.

Select cases: The name of an SPSS procedure for selecting sub-
samples of cases based on one or more criteria such as the 
gender of participants.

Sign test: A nonparametric test which determines whether the 
number of positive and negative differences between the 
scores in two conditions with the same or similar cases dif-
fer significantly.

Significance level: The probability level at and below which an 
outcome is assumed to be unlikely to be due to chance.

Simple regression: A test for describing the size and direction 
of the association between a predictor variable and a crite-
rion variable.

Skew: A description given to a frequency distribution in which 
the scores tend to be in one tail of the distribution.  

In other words, it is a lop-sided frequency distribution com-
pared to a normal (bell-shaped) curve.

Sort cases: The name of an SPSS procedure for ordering cases 
in the data file according to the values of one or more 
variables.

Spearman’s correlation coefficient: A measure of the size and 
direction of the association between two variables rank 
ordered in size.

Sphericity: Similarity of the correlations between the depend-
ent variable in the different conditions.

Split-half reliability: The correlation between the two halves 
of a scale adjusted for the number of variables in each scale.

SPSS: A statistical computer package which in 2008–9 was 
renamed PASW Statistics. In 2010 it was renamed SPSS 
Statistics. It is still generally referred to as SPSS.

Squared Euclidean distance: The sum of the squared differ-
ences between the scores on two variables for the 
sample.

Standard deviation: Conceptually, the average amount by 
which the scores differ from the mean.

Standard error: Conceptually, the average amount by which 
the means of samples differ from the mean of the 
population.

Standard or direct entry: A form of multiple regression in 
which all of the predictor variables are entered into the 
analysis at the same time.

Standardised coefficients or weights: The coefficients or 
weights of the predictors in an equation are expressed in 
terms of their standardised scores.

Stepwise entry: A form of multiple regression in which varia-
bles are entered into the analysis one step at a time. In this 
way, the most predictive predictor is chosen first, then the 
second most predictive predictor is chosen second having 
dealt with the variance due to the first predictor and  
so forth.

Sum of squares: The total obtained by adding up the squared 
differences between each score and the mean of that set of 
scores. The ‘average’ of this is the variance.

Syntax: Statements or commands for carrying out various pro-
cedures in computer software.

Test–retest reliability: The correlation of a measure taken at 
one point in time with the same (or very similar) measure 
taken at a different point in time.

Transformation: Ways of adjusting the data to meet the 
requirements for the data for a particular statistical tech-
nique. For example, the data could be changed by taking 
the square root of each score, turning each score into a 
logarithm and so forth. Trial and error may be required to 
find an appropriate transformation.

Two-tailed test: A test which assesses the statistical signifi-
cance of a relationship or difference in either direction.

Type I error: Accepting the hypothesis when it is actually false.
Type II error: Rejecting the hypothesis when it is actually true.

Under-identified model: A structural equation model in which 
there are not enough data points to estimate its parameters.
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Unique variance: Variance of a variable which is not shared 
with other variables in the analysis.

Univariate: Involving one variable.
Unplanned comparisons: Comparisons between groups which 

were not stipulated before the data were collected but after 
its collection.

Unstandardised coefficients or weights: The coefficients or 
weights which are applied to scores (as opposed to stand-
ardised scores).

Value label: The name or label given to the value of a variable 
such as ‘Female’ for ‘1’.

Variable label: The name or label given to a variable.
Variable name: The name of a variable.
Variable View: The window in SPSS Data Editor which shows 

the names of variables and their specification.
Variance: The mean of the sum of the squared difference 

between each score and the mean of the set of scores. It 
constitutes a measure of the variability or dispersion of 
scores on a quantitative variable.

Variance–covariance matrix: A matrix containing the variance 
of the variables (in the diagonal) and the covariances 
between pairs of variables in the rest of the table.

Variance estimate: The variance of the population of scores 
calculated from the variance of a sample of scores from 
that population.

Variance ratio: The ratio between two variances, commonly 
referred to in ANOVA (analysis of variance).

Varimax: In factor analysis, a procedure for rotating the 
factors to simplify understanding of the factors which 
maintains the zero correlation between all of the 
factors.

Wald statistic: The ratio of the beta coefficient to its standard 
error. Used in logistic regression.

Weights: An adjustment made to reflect the size of a variable 
or sample.

Wilcoxon signed-rank test: A nonparametric test for assessing 
whether the scores from two samples that come from the 
same or similar cases differ significantly.

Wilks’ lambda: A measure, involving the ratio of the 
within-groups to the total sum of squares, used to deter-
mine if the means of variables differ significantly across 
groups.

Within-subjects design: A correlated or repeated measures design.

Yates’s continuity correction: An outmoded adjustment to a 
2 * 2 chi-square test held to improve the fit of the test to 
the chi-square distribution.

z-score: A score expressed as the number of standard devia-
tions a score is from the mean of the set of scores.
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analysis of variance (ANOVA) 225–7
approximation for nonparametric tests 225
chi-square 223–4
key points 230
large, medium or small? 227–8
meta-analysis 522–3, 524–30
method and statistical efficiency 228–9
Pearson correlation coefficient as 522
reporting 204, 207, 227
research examples 229
statistical power analysis 581, 583–5, 588–9
statistical significance 222–3
in studies 223–5
t-test 224–5
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effects of different characteristics of studies 523–4
eigenvalues 456, 699
Elcheroth, G. 44
Emami, H. 182
Emery, Patrick J. 536
endogenous variable 492, 699
Engedal, K. 549
equal frequencies model 604, 605–6, 612–13

proportionate frequencies 605
equal-interval measurement 28, 29, 30
Erdfelder, E. 595
Estevis, E. 391
estimated standard deviation 82
eta 225–7, 699
Evartt, David L. 536
exact significance 699
exogenous variable 492, 699
exploratory and confirmatory factor analysis 418, 462–3, 

699
exponent 699
extraction 699
Eysenck, Hans J. 8451
Eysenck, S. B. G. 8
 
F-distribution table of significance values 691–3
F-ratio 399, 401, 403, 699

significance 353
see also variance ratio test

factor 699
factor analysis 8, 413, 449–71, 699

computer analysis 469–70
concepts 453–5
data issues in 452–3
decisions 455–61
exploratory and confirmatory factor analysis 462–3
history 451
key points 468
literature example 464–6
principal components analysis 469–70
reporting results 464–7
research examples 467–8
second-order 457

factor loadings 454–5
factor matrix 699
factor scores 699
factorial ANOVA 699
factorials 242
family error rate 699
Farajzadegan, Z. 182
Faul, F. 595
Fayed, N. 136
Fernández-Calvo, B. 89
Fidell, L. S. 410 424, 471, 489
Figini, D. 44
findings 639

see also meta-analysis; statistical power analysis
Fischbein, R. L. 658
Fisher exact probability test 242–3, 246

literature example 245–6
research examples 246–7

Fisher’s z 528
Fisher test 699
Fitneva, S. A. 375

Ford, S. 658
Frank, G. K. W. 304
frequencies 26–7, 699

computer analysis 75–6
percentage 37
simple 37

frequency curves 70–3
bimodal and multimodal frequency distributions 70
cumulative frequency curves 70–2
percentiles 72–3

frequency data see chi-square
frequency distribution 699
Freund, P. A. 535
Friedman test 274, 668–9, 699

computer analysis 670–1
Fritz, C. O. 74
 
G*Power 523, 587, 589–93, 595–7
Gallagher, P. 136
Gander, P. H. 375
Gannon, T. A. 161, 421
Gardner, R. C. 4
Garfield, J. 6
Geenen, R. 120
General Linear Model (GLM) 129
generalising and inferring see samples from populations
Gervais, S. J. 229
Gibbs, S. 467
Gillis, J. S. 120
Gips, J. 73–4
Glantz, S. A. 374, 378, 394, 489
Glass, Gene V. 536
Goni, M. 247
Gonzales, V. M. 658
goodness-of-fit 602, 699
Gordon, S. 3, 4
Gosset, William 7
Gotwals, J. K. 446
graph 699
Gray, H. M. 421
Green, P. 89, 593
Griffin, B. 640
Gromoske, A. N. 502
grouping variable 699
Groves, A. 43
Guzman, J. F. 407
Gwandure, C. 199
 
Hair, J. F., Jr 410, 424
Halligan, P. 467–8
Hanna, D. 6
Hannaford, P. C. 218, 274
Hardie, S. M. 391
Hardy, C. 169
Harinck, F. 346
harmonic mean 699
Harpole, L. L. 169
Hartman, M. 446
Heisey, D. M. 587
Help 699
Helvik, A.-S. 549
Hesketh, B. 640
Hewell, V. M. 658
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hierarchical agglomerative clustering 699–700
hierarchical entry 700
hierarchical models 622
hierarchical multiple regression approach to identifying 

moderator effects 557–67
computer analysis 503–4

hierarchical regression 700
hierarchical selection 477
histograms 41–2, 700

compound 100–1
and frequency curves 65–6

Hobfoll, S. E. 502
Hoenig, J. M. 587
Hofer, M. 502
Hoicka, E. 261
Holland, S. 121, 571
homogeneity of regression slope 700
homogeneity of variance 700
homoscedasticity 700
Horselenberg 61
Hotelling’s trace 401, 403
Hotelling’s two sample t2 397
Howard, R. 658
Howell, D. 361, 364
Howitt, D. 444, 507, 520, 530, 534, 537
Huan, V. S. 136, 218, 485, 571
Hubbard, T. L. 467
Hughes, J. S. 246
Huguley, J. P. 571
Huisman, A. 219, 246, 640
Huitema, B. E. 389
Hunter, P. G. 320
hypothesis 700
 
icicle plot 700
identification 497, 700
independence 700
independent groups design 700
independent t-test 700
independent variable 700
inference see statistical significance of correlation coefficient
inferential statistics 24, 144, 700
Ingravallo, F. 549
initial variable classification 510–11
interaction graph 700
interactions 602, 605, 700

moderator effects 558, 559–60
internal consistency of scales and measurements 540
interquartile range 53, 54–6, 700
inter-rater reliability 545–8
interval data 700
interval measurement 28, 29, 30
interval scores 11
Introduction to Research Methods in Psychology 534
item analysis using item–total correlation 540–1
iteration 460
Ivancevich, J. M. 358
 
Jackson, A. P. 502
Jafari, N. 182
Jenkins, P. E. 102, 304
Jex, S. M. 571
Judica, A. 89

Juhl, J. 219
just-identified model 497, 700
 
Kaiser or Kaiser–Guttman criterion 700
Kaiser test 457
Kam, L. Y. K. 320
kappa coefficient

calculation 546–8
computer analysis 550–1
research examples 549

Karageorghis, C. I. 594
Kasten, N. 535
Kendall’s tau 700
Kenne, D. R. 658
Kenny, D. A. 567
Kenyon, M. 61, 74, 121, 274
Kerlinger, F. N. 255
Kilian, B. 502
Kingston, K. 407
Kirkham 593
Klaassen, R. 136
Klassen, A. F. 136
Klimoski, R. J. 485
Kline, P. 471
Knekt, P. 549
Kogan, S. M. 246–7, 640
Kois, L. 247
Kolmogorov–Smirnov test for two samples 700
Kruskal–Wallis test 274, 666–8, 700

computer analysis 670–1
Kuhnle, C. 502
kurtosis (steepness/shallowness) 68, 69–70, 700

leptokurtic curve 69
mesokurtic curve 69
platykurtic curve 69
research examples 73–4

 
Laakso, M. L. 229
Laaksonen, M. A. 549
Lalleman, K. 61
Lalonde, R. N. 4
Lam, N. H. 375
lambda 622
Lamoureux, B. E. 502
Lampropoulos, G. K. 640–1
Lang, A.-G. 595
LaPlante, D. A. 421
large-sample formulae for nonparametric tests 664–5

Mann–Whitney U-test 664
Wilcoxon matched pairs test 665

latent variable 700
Lautamo, T. 229
Law, K. 305
Lawson 593
learning statistics

difficulties 4–6
research 3–4

Lees-Hayley 89
Lesher, K. 641
level 700
levels of measurement 700
Levene’s test 401, 700
Levine, T. R. 229
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likelihood ratio chi-square 603, 700
Likert questionnaires 41
limitations of statistics 9–11
Lindfors, O. 549
Lindholm, B. W. 358
line graph 700
linear association or relationship 700
linear model 700
Ling, J. 61
Linley, P. A. 74
Lipsey, M. W. 588
LISREL 700
Livianos, L. 102, 305
loading 700
log likelihood 700
log-linear methods 601–25

analysis 620–1, 701
computer analysis 624–5
differences between Pearson and likelihood ratio 

chi-square 603
goodness-of-fit 602
interactions 602
likelihood ratio chi-square 603
models 602
natural logarithm 603
Pearson chi-square 602, 603
research examples 623
see also analysis of complex contingency tables

logarithm 6, 701
Loghmani, A. 182
logistic regression procedure 652–6, 701

backwards elimination analysis 654–5
logit 637, 647–8
López-Rolón, A. 89
Lounsbury, J. W. 121, 485
Louvet, E. 161
Louw, J. 320
Lowe, P. 407
 
MacCabe, J. H. 304–5
Mack, M. G. 182
Maguire-Jack, K. 502
main effects model 604–5, 607–11, 614–15, 701
manifest variable 701
Mann–Whitney U-test 271–3, 530, 664, 701

computer analysis 275–7
effect size 225
table of significance 688–90

MANOVA see multivariate analysis of variance 
marginal totals 701
Mariscuilo, L. A. 277
Marwitz, J. H. 641
matched sets 310–11
matched-subjects design 175, 701
matching 174–5
mathematical ability 4–6
mathematics anxiety 4–5
matrix 701
Matthews, N. L. 247
Mauchly’s test 701
maximum likelihood method 701
Maxwell, A. E. 250
McCoy, K. D. 421

McFadden’s r2 634, 635
McGorry, P. 43
McKiernan, A. 247, 320
McLemore, C. 169
McNemar test 245, 267, 701
McSweeney, M. 277
mean 701
mean deviation 56
mean, median and mode 50–4

arithmetic mean 50–1
comparison 54
confidence intervals 214
median 51–2
mode 52–3
reporting 207

mean square 701
measure of dispersion 701
measurement theory

interval/equal-interval measurement 28, 29, 30
nominal categorisation 28, 29, 30
ordinal (rank) measurement 28, 29, 30
ratio measurement 28, 29, 30

measurement types 26–30
measurement theory 28–30
nominal/categorical/category measurement 26
score/numerical measurement 26, 27

median 51–2, 701
mediator variables 439–40, 553–5, 701
Meeten, F. 61, 102, 261, 305
Mercer, S. H. 169
meta-analysis 519–37

calculator 536
comparison of studies 533–4
computer analysis 536–7
difficulties 520–1
effects of different characteristics of studies 523–4
example 530–3
first steps in meta-analysis 524–30
key points 536
objectives 520
other measures of effect size 522–3
Pearson correlation coefficient as effect size 522
reporting results 534–5
research examples 535

Meta-Analyst 536
Meta-Stat 536
Meyer, C. 102, 304
Meyer, M. M. 227
Mitchell, R. R. 169
Mitsumatsu, H. 209
MIX 536
mixed ANOVA 701
mixed designs and repeated measures 701

fixed vs random effects 364
risks in related subjects designs 374–5

mode 52–3, 701
model 602, 655
model building 8
moderator variables and effects 439–40, 552–73, 701

ANOVA approach 567–70
calculation: identifying moderator effects using 

hierarchical multiple regression  
approach 561–7

Z15 Introduction to Statistics in Psychology with SPSS 29099.indd   719 05/01/2017   16:15



720	 Index

moderator variables and effects (Continued)
calculation: identifying moderator effects using ANOVA 

approach 568–70
computer analysis 572–3
hierarchical multiple regression approach 557–67
key points 571
research design issue 560
research examples 571
statistical approaches 557

Morris, P. E. 74
Moscovitch, M. 219
Motes, M. A. 467
Mulrine, H. M. 375
multicollinearity 482–3, 629, 701
multifactorial ANOVA 354–5
multimodal 701
multinomial logistic regression 626–43

change in –2 log likelihood 636
computer analysis 642–3
discriminant function analysis 630–1
dummy variables 629
findings 639
key points 641
pattern of variables 628
prediction 637–9
prediction accuracy 633–4
predictors 634–7
reporting findings 639–40
research examples 640–1
score variables 628
uses 630–1
Wald statistic 638–9
worked example 632–3

multiple comparison tests, recoding groups for 434
multiple control variables 443

first-order partial correlation 443
second-order partial correlation 443
zero-order correlation 443

multiple correlation see multiple regression and multiple 
correlation

multiple items to measure same variable 431
multiple regression and multiple correlation 413, 472–89, 

701
assumptions 497–80
computer analysis 487–8
hierarchical selection 477
key points 486
literature example 484–5
multicollinearity 482–3
prediction and 483
regression equations 475–7
reporting results 483–4
research design issues 477, 478–9
research examples 485–6
selection 477–8
setwise selection 477, 478
stepwise selection 477, 478, 480–2, 487–8
theory 473–9

multiple responses 34
multiplication rule 253, 255
multivariate 701
multivariate analysis of variance (MANOVA) 395–410, 701

combining dependent variables 398

computer analysis 408–10
discriminant function analysis and 404–5
key points 407
reporting findings 406
research examples 407
vs several ANOVAs 398
two stages 399–400
using 401–6

multivariate tests 401–3
Munford, M. B. 484–5
Munro, N. 182
Murphy, K. R. 588
Murray, R. A. 375
Mutsvunguma, P. 199
Myors, B. 588
 
Nagelkerke’s R2 634, 635, 656, 701
Nair, U. S. 446
Napierian logarithms see natural logarithms
Napolitano, M. A. 446
natural logarithms 603, 647, 648, 701

Poisson distribution 648
negative (–) values 6, 57–8, 88
nested model 701
Neuman–Keuls test 353
Nicholas, M. K. 485–6
Niemeier, J. P. 641
nominal categories 98–100
nominal categories/numerical scores 100–1

compound histogram 100–1
crosstabulation tables 100

nominal categorisation 28, 29, 30
nominal (category) data 35, 36–40

bar charts 38, 39–40
frequencies 36
percentage frequencies 37
pie diagrams 38–9
simple frequencies 37

nominal variables see category variables
nonparametric statistical tests 11, 264, 265,  

266–73, 701
effect size 225
related samples 266–71
unrelated samples 271–3
see also large-sample formulae for nonparametric tests

nonparametric statistics see ranking tests
nonparametric tests for three or more groups 666–71

computer analysis 670–1
Friedman three or more related samples test 668–71
Kruskal–Wallis three or more unrelated conditions test 

666–8, 670–1
non-recursive relationships 492
normal curve 10–11, 66–7, 701

research design issue 67
Norman, G. J. 136
null hypothesis 153–5
number of factors 457–8
numeric variables 701
numerical indexes 49
numerical mean see arithmetic mean
numerical score data 40–3

bands of scores 41–2
histogram 41–2
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numerical scores 96–8
scattergram 96–7

 
oblique factors 701
oblique rotation 456–7
observed power 586–7
odds 701
odds ratio 647, 701
Oltmanns, T. F. 120
one-tailed test 701–2
one-tailed vs two-tailed significance testing 257–62

computer analysis 262
further requirements 260–1
key points 261
research examples 261
theory 258–60

ordinal data 702
ordinal (rank) measurement 11, 28, 29, 30
orthogonal 702
orthogonal factors 702
orthogonal rotation 456–7
Otgaar, R. 61
outcome variable 702
outliers, identifying 53–4, 702
output window 702
over-identified model 497, 702
Oyebode, J. 658
 
paired comparisons 702
Palmieri, P. A. 502
parameters 147, 702
parametric 702
parametric tests 264, 702
Parker, A. 121, 571
Parsons, T. D. 594
part correlation 702
partial correlation 437–48, 702

calculation 445
calculation: partial correlation coefficient 441
calculation: statistical significance of partial  

correlation 442–3
computer analysis 447–8
interpretation 442
key points 446–7
literature example 444
multiple control variables 443
research design issue 439
research examples 446
student example 445–6
suppressor variables 443–4
theory 439–40

participant 702
Passmore, J. 199–200
PASW Statistics 702
path analysis 490–505

computer analysis 503–4
generalisation 496–7
key points 502
path coefficients 493–6
reporting results 501–2
research design issue 497
research examples 498–501, 502
theory 491–7

path coefficients 493–6
path diagram 702
pathway 702
pattern of variables 628
Pearson, J. 247
Pearson chi-square 602, 603, 698
Pearson correlation coefficient 106, 111–13, 155–9, 216–17, 

525
calculation 111–13, 157–8
critical values 157
as effect size 223, 522
extended table of significance 672–4
research examples 120–1
statistical power analysis 581, 583, 584, 585
statistical significance of 157–8, 161
see also correlation coefficients

Pechey, R. 467–8
Pedhazur, E. J. 489, 505
percentage frequencies, calculation 37
percentages, reporting 207
percentiles 72–3
Perlman, D. 320–1
Peters, M. 74
phi 702
pictogram 40
pie diagrams 38–9
Pillai’s trace 401, 403
Pituch, K. A. 458
pivot table 702
planned (a priori) vs unplanned (post hoc) comparisons  

353, 702
Plomin, R. 102, 287
point-biserial correlation 702
point estimates 211
Poisson distribution 648
populations 702

see also samples from populations
post hoc statistical power analysis 585–7
post hoc test 702
Potter, G. G. 446
Powell, B. 467
power 699, 702

see also statistical power analysis
Power, M. J. 304
Pradat-Diehl, P. 161
predicted score 217–18
prediction 637–9

accuracy 633–4
see also regression

predictors 634–7
pre-test/post-test design 364–5
principal component analysis 702

computer analysis 469–70
probability 251–6

calculation: addition rule 254
calculation: multiplication rule 255
implications 254
key points 255
principles 252–3
regression to the mean 252
repeated significance testing 254
significance testing across different  

studies 254
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probability distribution 702
promax 702
pseudo r2 statistics 634–5, 656
Publication Manual of the American Psychological 

Association 204, 206–8
 
quantitative research 702
quartimax 702
questionnaire/survey project 506–16
 
Ramos, F. 89
random effects 364
random samples 145, 146–7

computer analysis 148–9
standard error 146

randomisation 702
range 54–6, 702
rank measurement (ordinal) 28, 29, 30
ranking tests 263–77

calculation: Mann–Whitney U test 271–3
calculation: sign test 267–8
calculation: Wilcoxon matched pairs test 269–70
computer analysis 275–7
key points 275
nonparametric statistical tests 266–73
parametric tests 264
research examples 274
theory 264–6
three or more groups of scores 274

Rastle, K. 535
ratio data 702
ratio measurement 28, 29, 30
ratio scores 11
reciprocal relationships 492
recode 702
regression 126–39, 217, 472–89

calculation 132–4
calculation: confidence intervals for predicted score 

217–18
computer analysis 137–9
equations 129–34
formula 656–7
key points 137
line 127–8, 129–31
to the mean 252
reporting 208
research design issues 131, 134
research examples 136
standard error 134–6
see also multiple regression and multiple correlation

regression coefficient 702
regression equations 129–34, 475–7

least squares solutions 130
Rehman, H. 199–200
related factorial design 702
related measures designs 174, 702
related research designs 13
related samples

sign test 267–8
Wilcoxon matched pairs test 268–71

related t-test (correlated/paired t-test) 172–85
calculation 179–81
cautionary note 181–2

computer analysis 184–5
confidence intervals 215–16
degrees of freedom 177, 178
dependent and independent variables 175
key points 183
related (correlated/paired) t-test 173, 184–5
repeated measures designs 174
research design issues 174–5
research examples 182
theory 176–81

relationship between significance and confidence intervals 
213–14

calculation: confidence intervals for population mean 
based on single sample 214

calculation: related t-test 215–16
calculation: confidence intervals for unrelated t-test 215
calculation: Pearson correlation coefficient 216–17

relationships between variables 93–104
computer analysis 103–4
diagrammatic and tabular presentation 95
key points 102
nominal categories 98–100
nominal categories/numerical scores 100–1
numerical scores 96–8
research examples 102

reliability in scales and measurement 538–51, 702
agreement between raters 545–8
alpha reliability 542–4
calculation: kappa coefficient 547–8
calculation: split-half reliability 542
computer analysis 550–1
internal consistency of scales and measurements 540
item-analysis using item–total correlation 540–1
key points 549
research examples 549
split-half reliability 541–2

repeated measures ANOVA 702
repeated measures designs 174, 703
repeated significance testing 254
reporting statistical analyses 203–9, 657

analysis of variance (ANOVA): one-way unrelated/
uncorrelated 303–4

APA style 206–8
confidence intervals 219
discriminant function analysis 420–1
effect size 227
key points 209
multivariate analysis of variance (MANOVA) 406
research examples 209
results 464–7, 483–4, 501–2, 534–5, 593, 622, 639–40
shortened forms 205–6
significance levels see significance level reporting
statistical significance 205

research hypothesis 509–10
project 507–9

research methods and statistical efficiency 228–9
residual 492, 605–6, 620–1, 703
residual sum of squares 703
Ridenour, T. A. 421
Rienecke Hoste, R. 102, 304
Rippeth, J. D. 594
Risen, J. L. 227
risks in related subjects designs 374–5
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Robins, T. H. 623
Roche, B. 287
Rohling, M. 89
Rohmer, O. 161
Rojo, L. 102, 305
Rosenthal, R. 537
rotated or unrotated factors 456, 703
Rothbard, N. 43
rounding errors 199
Routledge, C. 219
Rowe, M. L. 209
Roy’s largest root 401, 403
Rubin, J. 219
Rudner, Lawrence M. 536
Ruggeri, K. 6
Ruscio, J. 287
Rypma, B. 467
 
sample size 7–9
samples 24, 703

development of sampling 7
samples from populations 143–9

computer analysis 148–9
confidence intervals 147
inferential statistics 144
key points 148
random samples 146–7
theory 144–5

sampling distribution 703
Saraydarian, L. 247
saturated model 606, 613, 703
scattergram 703

computer analysis 124–5
crosstabulation (contingency) tables 97
frequencies 97
overlaps 97
regression line 96

Schau, C. 4
Scheffé test 353, 703
Schimmack, U. 594
Schlauch, R. C. 321
Schneider, M. K. 640–1
Schreurs, B. G. 44
Schruijer, S. G. L. 346
Schulenberg, S. E. 200
Schwarzer, Ralf 536
score/numerical measurement 25–6, 27
score variables 12–13
scores 50–4

central tendency 50
logistic regression 628, 652, 703 
see also shapes of distributions of scores

scree test 458, 703
Sedlmeier, P. 535
Sefl, T. 623
Selbæk, G. 549
select cases 703
semi-partial correlation 702
sequential entry 700
setwise selection 477, 478
Shaffer, H. J. 421
Shafran, R. 74, 274
shapes of distributions of scores 64–76

computer analysis 75–6
distorted curves 68–70
histograms and frequency curves 65–6
key points 75
normal curve 66–7
other frequency curves 70–3
research examples 73–4

Shepherd, A. M. 43
Sherry, P. 623
shortened forms in research reports 205–6
Siegel, S. 277
Sierra, P. 102, 305
sign test 266, 267–8, 271, 703

extended table of significance 682–4
Signal, T. L. 375
significance level reporting 703
significance testing 7, 116, 141–277

across different studies 254
chi-square 231–50
confidence intervals 210–20
effect size 221–30
one-tailed vs two-tailed 257–62
probability 251–6
ranking tests 263–77
related (correlated/paired) t-test 172–85
reporting statistical analyses 203–9
samples from populations 143–9
standard error 164–71
statistical significance of correlation coefficient 150–63
unrelated (uncorrelated/independent) t-test 186–202

simple logistic regression 646–8, 703
Simpson, S. 594
Singhal, A. 320
Siy, J. O. 207
Skancke, R. H. 549
skewness 68–9, 703

negative skew 68–9
positive skew 68–9
research examples 73–4
see also testing for excessively skewed distributions

Skinner, B. F. 43
Skipper, Y. 200
Slinker, B. K. 374, 378, 394, 489
Sliter, M. T. 571
Smith 593
Smith-Bell, C. A. 44
sort cases 703
Spearman’s rho correlation coefficient 116–19, 159–61, 266, 

703
calculation: with/without tied ranks 117, 118–19
research examples 120–1
statistical significance 159–61
table of significance 675–7
see also correlation coefficients

Spengler, P. M. 640–1
sphericity 703
Spinelli, D. 89
Spini, D. 44
split-half reliability 541–2, 703

calculation 542
spread of scores

range and interquartile range 53, 54–6
variance 56–60
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Sprung, J. M. 571
SPSS 14, 703

adding and averaging components of a measure 515–16
Analyze and Transform drop-down menus 18–19
ANCOVA 392–4
binomial logistic regression 659–60
chi-square 248–50
confidence intervals 220
correlated ANOVA 322–3
correlation coefficients 122–5
Cronbach’s alpha and kappa 550–1
crosstabulation and compound bar charts 103–4
data entry basics 31–2
descriptive statistics 62–3
discriminant function analysis 422–3
frequencies 75–6
Friedman test 670–1
Kruskal–Wallis test 670–1
log-linear analysis 624–5
MANOVA 408–10
Measure drop-down menu 29
meta-analysis 536–7
mixed design ANOVA 376–8
moderator variables 572–3
multinomial logistic regression 642–3
multiple comparison tests 359–61
one-tailed vs two-tailed significance testing 262
one-way analysis of variance 306–7
partial correlation 447–8
path analysis 503–4
principal components analysis 469–70
random samples 148–9
ranking tests 275–7
recoding groups for multiple comparison tests 434
regression 137–9
related (correlated/paired) t-test 184–5
reliability in scales and measurement 550–1
scattergrams 124–5
selecting subsamples of data 432–3
standard deviation and z-scores 90–2
standard error 170–1
statistical significance of correlation coefficient 162–3
stepwise multiple regression 487–8
tables and diagrams 45–7
two-way analysis of variance 348–50
unrelated t-test 201–2
Variable View 29
variance ratio (F-ratio) test 288–9

SPSS essentials xxv
spurious correlation, third or confounding variables, 

suppressor variables see partial correlation
spurious relationships 492
square root of a number 6
squared Euclidean distance 703
squaring a number 6
standard deviation 60, 77–92, 193–5, 703

calculation 81–2
calculation: converting score into z-score 83–4
calculation: table of standard normal distribution 86–7
computer analysis 90–2
estimated standard deviation 82
key points 90
reporting 207

research examples 89
standard normal distribution 85–8
theoretical background 78–82
z-score 82–3
z-score: important feature 88
z-score: use 84–5
see also standard error

standard entry 703
standard error 134–6, 164–71, 193–5, 211–12, 703

calculation 168–9
computer analysis 170–1
confidence interval 135–6
estimated standard deviation and standard error 167–9
key points 169
random samples 146
research examples 169
sampling distribution 166
theory 165–6
unrelated t-test 177, 193–5

standard normal distribution 85–8
calculation 86–7

standardisation, moderator effects 558–9
standardised coefficients or weights 703
Stasiewicz, P. R. 321
statistical approaches to finding moderator effects 557
statistical efficiency and research methods 228–9
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