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Preface

The primary biostatistical tools in modern medical research are single-outcome,
multiple-predictor methods: multiple linear regression for continuous out-
comes, logistic regression for binary outcomes, and the Cox proportional haz-
ards model for time-to-event outcomes. More recently, generalized linear mod-
els and regression methods for repeated outcomes have come into widespread
use in the medical research literature. Applying these methods and interpret-
ing the results requires some introduction. However, introductory statistics
courses have no time to spend on such topics and hence they are often rel-
egated to a third or fourth course in a sequence. Books tend to have either
very brief coverage or to be treatments of a single topic and more theoretical
than the typical researcher wants or needs.

Our goal in writing this book was to provide an accessible introduction
to multipredictor methods, emphasizing their proper use and interpretation.
We feel strongly that this can only be accomplished by illustrating the tech-
niques using a variety of real datasets. We have incorporated as little theory
as feasible. Further, we have tried to keep the book relatively short and to
the point. Our hope in doing so is that the important issues and similarities
between the methods, rather than their differences, will come through. We
hope this book will be attractive to medical researchers needing familiarity
with these methods and to students studying statistics who would like to see
them applied to real data. The methods we describe are, of course, the same
as those used in a variety of fields, so non-medical readers will find this book
useful if they can extrapolate from the predominantly medical examples.

A prerequisite for the book is a good first course in statistics or biostatistics
or an understanding of the basic tools: paired and independent samples t-tests,
simple linear regression and one-way ANOVA, contingency tables and χ2 (chi-
square) analyses, Kaplan–Meier curves, and the logrank test.

We also think it is important for researchers to know how to interpret the
output of a modern statistical package. Accordingly, we illustrate a number
of the analyses with output from the Stata statistics package. There are a
number of other packages that can perform these analyses, but we have chosen
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this one because of its accessibility and widespread use in biostatistics and
epidemiology.

This book grew out of our teaching a two-quarter sequence to post-
graduate physicians training for a research career. We thank them for their
feedback and patience. Partial support for this came from a K30 grant from
the National Institutes of Health awarded to Stephen Hulley, for which we are
grateful.

We begin the book with a chapter introducing our viewpoint and style
of presentation and the big picture as to the use of multipredictor methods.
Chapter 2 presents descriptive numerical and graphical techniques for multi-
predictor settings and emphasizes choice of technique based on the nature of
the variables. Chapter 3 briefly reviews the statistical methods we consider
prerequisites for the book.

We then make the transition in Chapter 4 to multipredictor regression
methods, beginning with the linear regression model. This chapter also covers
confounding, mediation, interaction, and model checking in the most detail.
Chapter 5 deals with predictor selection, an issue common to all the multi-
predictor models covered. In Chapter 6 we turn to binary outcomes and the
logistic model, noting the similarities to the linear model. Ties to simpler, con-
tingency table methods are also noted. Chapter 7 covers survival outcomes,
giving clear indications as to why such techniques are necessary, but again em-
phasizing similarities in model building and interpretation with the previous
chapters. Chapter 8 looks at the accommodation of correlated data in both
linear and logistic models. Chapter 9 extends Chapter 6, giving an overview
of generalized linear models. Finally, Chapter 10 is a brief introduction to the
analysis of complex surveys.

The text closes with a summary, Chapter 11, attempting to put each of
the previous chapters in context. Too often it is hard to see the “forest” for
the “trees” of each of the individual methods. Our goal in this final chapter
is to provide guidance as to how to choose among the methods presented in
the book and also to realize when they will not suffice and other techniques
need to be considered.

San Francisco, CA Eric Vittinghoff
October, 2004 David V. Glidden

Stephen C. Shiboski
Charles E. McCulloch
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1

Introduction

The book describes a family of statistical techniques that we call multipredic-
tor regression modeling. This family is useful in situations where there are
multiple measured factors (also called predictors, covariates, or independent
variables) to be related to a single outcome (also called the response or de-
pendent variable). The applications of these techniques are diverse, including
those where we are interested in prediction, isolating the effect of a single
predictor, or understanding multiple predictors. We begin with an example.

1.1 Example: Treatment of Back Pain

Korff et al. (1994) studied the success of various approaches to treatment for
back pain. Some physicians treat back pain more aggressively, with prescrip-
tion pain medication and extended bed rest, while others recommend an earlier
resumption of activity and manage pain with over-the-counter medications.
The investigators classified the aggressiveness of a sample of 44 physicians in
treating back pain as low, medium, or high, and then followed 1,071 of their
back pain patients for two years. In the analysis, the classification of treat-
ment aggressiveness was related to patient outcomes, including cost, activity
limitation, pain intensity, and time to resumption of full activity,

The primary focus of the study was on a single categorical predictor, the
aggressiveness of treatment. Thus for a continuous outcome like cost we might
think of an analysis of variance, while for a categorical outcome we might
consider a contingency table analysis and a χ2-test. However, these simple
analyses would be incorrect at the very least because they would fail to recog-
nize that multiple patients were clustered within physician practice and that
there were repeated outcome measures on patients.

Looking beyond the clustering and repeated measures (which are covered
in Chap. 8), what if physicians with more aggressive approaches to back pain
also tended to have older patients? If older patients recover more slowly (re-
gardless of treatment), then even if differences in treatment aggressiveness
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have no effect, the age imbalance would nonetheless make for poorer out-
comes in the patients of physicians in the high-aggressiveness category. Hence,
it would be misleading to judge the effect of treatment aggressiveness without
correcting for the imbalances between the physician groups in patient age and,
potentially, other prognostic factors – that is, to judge without controlling for
confounding. This can be accomplished using a model which relates study
outcomes to age and other prognostic factors as well as the aggressiveness of
treatment. In a sense, multipredictor regression analysis allows us to examine
the effect of treatment aggressiveness while holding the other factors constant.

1.2 The Family of Multipredictor Regression Methods

Multipredictor regression modeling is a family of methods for relating multiple
predictors to an outcome, with each member of the family suitable for a
different type of outcome. The cost outcome, for example, is a numerical
measure and for our purposes can be taken as continuous. This outcome could
be analyzed using the linear regression model, though we also show in Chapter
9 why a generalized linear model might be a better choice.

Perhaps the simplest outcome in the back pain study is the yes/no indica-
tor of moderate-to-severe activity limitation; a subject’s activities are limited
by back pain or not. Such a categorical variable is termed binary because
it can only take on two values. This type of outcome is analyzed using the
logistic regression model.

In contrast, pain intensity was measured on a scale of ten equally spaced
values. The variable is numerical and could be treated as continuous, although
there were many tied values. Alternatively it could be analyzed as a categor-
ical variable, with the different values treated as ordered categories, using
extensions of the logistic model.

Another potential outcome might be time to resumption of full activity.
This variable is also continuous, but what if a patient had not yet resumed
full activity at the end of the follow-up period of two years? Then the time to
resumption of full activity would only be known to exceed two years. When
outcomes are known only to be greater than a given value (like two years), the
variable is said to be right-censored – a common feature of time-to-event data.
This type of outcome can be analyzed using the Cox proportional hazards
model.

Furthermore, in the back pain example, study outcomes were measured
on groups, or clusters, of patients with the same physician, and on multiple
occasions for each patient. To analyze such hierarchical or longitudinal out-
comes, we need to use extensions of the basic family of regression modeling
techniques suitable for repeated measures data. Related extensions are also
required to analyze data from complex surveys.

The various regression modeling approaches, while differing in important
statistical details, also share important similarities. Numeric, binary, and cat-
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egorical predictors are accommodated by all members of the family, and are
handled in a similar way: on some scale, the systematic part of the outcome
is modeled as a linear function of the predictor values and corresponding
regression coefficients. The different techniques all yield estimates of these
coefficients that summarize the results of the analysis and have important
statistical properties in common. This leads to unified methods for selecting
predictors and modeling their effects, as well as for making inferences to the
population represented in the sample. Finally, all the models can be applied
to the same broad classes of practical questions involving multiple predictors.

1.3 Motivation for Multipredictor Regression

Multipredictor regression can be a powerful tool for addressing three impor-
tant practical questions. These include prediction, isolating the effect of a
single predictor, and understanding multiple predictors.

1.3.1 Prediction

How can we identify which patients with back pain will have moderate-to-
severe limitation of activity? Multipredictor regression is a powerful and gen-
eral tool for using multiple measured predictors to make useful predictions
for future observations. In this example, the outcome is binary and thus a
multipredictor logistic regression model could be used to estimate the pre-
dicted probability of limitation for any possible combination of the observed
predictors. These estimates could then be used to classify patients as likely
to experience limitation or not. Similarly, if our interest was future costs, a
continuous variable, we could use a linear regression model to predict the
costs associated with new observations characterized by various values of the
predictors.

1.3.2 Isolating the Effect of a Single Predictor

In settings where multiple, related predictors contribute to study outcomes, it
will be important to consider multiple predictors even when a single predictor
is of interest. In the von Korff study the primary predictor of interest was
how aggressively a physician treated back pain. But incorporation of other
predictors was necessary for the clearest interpretation of the effects of the
aggressiveness of treatment.

1.3.3 Understanding Multiple Predictors

Multipredictor regression can also be used when our aim is to identify mul-
tiple independent predictors of a study outcome – independent in the sense
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that they appear to have an effect over and above other measured variables.
Especially in this context, we may need to consider other complexities of how
predictors jointly influence the outcome. For example, the effect of injuries on
activity limitation may in part operate through their effect on pain; in this
view, pain mediates the effect of injury and should not be adjusted for, at least
initially. Alternatively, suppose that among patients with mild or moderate
pain, younger age predicts more rapid recovery, but among those with severe
pain, age makes little difference. The effects of both age and pain severity
will both potentially be misrepresented if this interaction is not taken into
account. Fortunately, all the multipredictor regression methods discussed in
this book easily handle interactions, as well as mediation and confounding,
using essentially identical techniques. Though certainly not foolproof, multi-
predictor models are well suited to examining the complexities of how multiple
predictors are associated with an outcome of interest.

1.4 Guide to the Book

This text attempts to provide practical guidance for regression analysis. We
interweave real data examples from the biomedical literature in the hope of
capturing the reader’s interest and making the statistics as easy to grasp
as possible. Theoretical details are kept to a minimum, since it is usually
not necessary to understand the theory to use these methods appropriately.
We avoid formulas and keep mathematical notation to a minimum, instead
emphasizing selection of appropriate methods and careful interpretation of
the results.

This book grew out a two-quarter sequence in multipredictor methods for
physicians beginning a career in clinical research, with a focus on techniques
appropriate to their research projects. For these students, mathematical ex-
plication is an ineffective way to teach these methods. Hence our reliance on
real-world examples and heuristic explanations.

Our students take the course in the second quarter of their research train-
ing. A beginning course in biostatistics is assumed and some understanding
of epidemiologic concepts is clearly helpful. However, Chapter 3 presents a
review of topics from a first biostatistics course, and we explain epidemiologic
concepts in some detail throughout the book.

Although theoretical details are minimized, we do discuss techniques of
practical utility that some would consider advanced. We treat extensions of
basic multipredictor methods for repeated measures and hierarchical data, for
data arising from complex surveys, and for the broader class of generalized
linear models, of which logistic regression is the most familiar example. We
address model checking as well as model selection in considerable detail.

The orientation of this book is to parametric methods, in which the sys-
tematic part of the model is a simple function of the predictors, and sub-
stantial assumptions are made about the distribution of the outcome. In our
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view parametric methods are usually flexible and robust enough, and we show
how model adequacy can be checked. The Cox proportional hazards model
covered in Chapter 7 is a semi-parametric method which makes few assump-
tions about an important component of the systematic part of the model,
but retains most of the efficiency and many of the advantages of fully para-
metric models. Generalized additive models, briefly reviewed in Chapter 6, go
an additional step in this direction. However, fully nonparametric regression
methods in our view entail losses in efficiency and ease of interpretation which
make them less useful to researchers. We do recommend a popular bivariate
nonparametric regression method, LOWESS, but only for exploratory data
analysis.

Our approach is also to encourage exploratory data analysis as well as
thoughtful interpretation of results. We discourage focusing solely on P -values,
which have an important place in statistics but also important limitations. In
particular, P -values measure the strength of the evidence for an effect, but
not its size. In our view, data analysis profits from considering the estimated
effects, using confidence intervals to quantify their precision.

We recommend that readers begin with Chapter 2, on exploratory meth-
ods. Since Chapter 3 is largely a review, students may want to focus only
on unfamiliar material. Chapter 4, on multipredictor regression methods for
continuous outcomes, introduces most of the important themes of the book,
which are then revisited in later chapters, and so is essential reading. Sim-
ilarly, Chapter 5 covers predictor selection, which is common to the entire
family of regression techniques. Chapters 6 and 7 cover regression methods
specialized for binary and time-to-event outcomes, while Chapters 8–10 cover
extensions of these methods for repeated measures, counts and other special
types of outcomes, and complex surveys. Readers may want to study these
chapters as the need arises. Finally, Chapter 11 reprises the themes considered
in the earlier chapters and is recommended for all readers.

For interested readers, Stata code and selected data sets used in examples
and problems, plus errata, are posted on the website for this book:

http://www.biostat.ucsf.edu/vgsm



 

 

 

 

 



2

Exploratory and Descriptive Methods

Before beginning any sort of statistical analysis, it is imperative to take a
preliminary look at the data with three main goals in mind: first, to check
for errors and anomalies; second, to understand the distribution of each of
the variables on its own; and third, to begin to understand the nature and
strength of relationships among variables. Errors should, of course, be cor-
rected, since even a small percentage of erroneous data values can drasti-
cally influence the results. Understanding the distribution of the variables,
especially the outcomes, is crucial to choosing the appropriate multipredictor
regression method. Finally, understanding the nature and strength of relation-
ships is the first step in building a more formal statistical model from which
to draw conclusions.

2.1 Data Checking

Procedures for data checking should be implemented before data entry begins,
to head off future headaches. Many data entry programs have the capability
to screen for egregious errors, including values that are out the expected range
or of the wrong “type.” If this is not possible, then we recommend regular
checking for data problems as the database is constructed.

Here are two examples we have encountered recently. First, some values of
a variable defined as a proportion were inadvertently entered as percentages
(i.e., 100 times larger than they should have been). Although they made up less
than 3% of the values, the analysis was completely invalidated. Fortunately,
this simple error was easily corrected once discovered. A second example in-
volved patients with a heart anomaly. Those whose diagnostic score was poor
enough (i.e., exceeded a numerical threshold) were to be classified according
to type of anomaly. Data checks revealed missing classifications for patients
whose diagnostic score exceeded the threshold, as well as classifications for pa-
tients whose score did not, complicating planned analyses. Had the data been
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screened as they were collected, this problem with study procedures could
have been avoided.

2.2 Types Of Data

The proper description of data depends on the nature of the measurement. The
key distinction for statistical analysis is between numerical and categorical
variables. The number of diagnostic tests ordered is a numerical variable, while
the gender of a person is categorical. Systolic blood pressure is numerical,
whereas the type of surgery is categorical.

A secondary but sometimes important distinction within numerical vari-
ables is whether the variable can take on a whole continuum or just a discrete
set of values. So systolic blood pressure would be continuous, while number
of diagnostic tests ordered would be discrete. Cost of a hospitalization would
be continuous, whereas number of mice able to successfully navigate a maze
would be discrete. More generally,

Definition: A numerical variable taking on a continuum of values is
called continuous and one that only takes on a discrete set of values
is called discrete.

A secondary distinction sometimes made with regard to categorical vari-
ables is whether the categories are ordered or unordered. So, for example,
categories of annual household income (<$20,000, $20,000–$40,000, $40,000–
$100,000, >$100,000) would be ordered, while marital status (single, married,
divorced, widowed) would be unordered. More exactly,

Definition: A categorical variable is ordinal if the categories can be
logically ordered from smallest to largest in a sense meaningful for the
question at hand (we need to rule out silly orders like alphabetical);
otherwise it is unordered or nominal.

Some overlap between types is possible. For example, we may break a nu-
merical variable (such as exact annual income in dollars and cents) into ranges
or categories. Conversely, we may treat a categorical variable as a numerical
score, for example, by assigning values one to five to the ordinal responses
Poor, Fair, Good, Very Good, and Excellent. In the following sections, we
present each of the descriptive and exploratory methods according to the
types of variables involved.

2.3 One-Variable Descriptions

We begin by describing techniques useful for examining a single variable at a
time. These are useful for uncovering mistakes or extreme values in the data
and for assessing distributional shape.
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2.3.1 Numerical Variables

We can describe the distribution of numerical variables using either numerical
or graphical techniques.

Example: Systolic Blood Pressure

The Western Collaborative Group Study (WCGS) was a large epidemiological
study designed to investigate the association between the “type A” behavior
pattern and coronary heart disease (Rosenman et al., 1964). We will revisit
this study later in the book, focusing on the primary outcome, but for now
we want to explore the distribution of systolic blood pressure (SBP).

Numerical Description

As a first step we obtain basic descriptive statistics for SBP. Table 2.1 gives de-
tailed summary statistics for the systolic blood pressure variable, sbp. Several

Table 2.1. Numerical Description of Systolic Blood Pressure
. summarize sbp, detail

systolic BP
-------------------------------------------------------------

Percentiles Smallest
1% 104 98
5% 110 100

10% 112 100 Obs 3154
25% 120 100 Sum of Wgt. 3154

50% 126 Mean 128.6328
Largest Std. Dev. 15.11773

75% 136 210
90% 148 210 Variance 228.5458
95% 156 212 Skewness 1.204397
99% 176 230 Kurtosis 5.792465

features of the output are worth consideration. The largest and smallest val-
ues should be scanned for outlying or incorrect values, and the mean (or
median) and standard deviation should be assessed as general measures of
the location and spread of the data. Secondary features are the skewness and
kurtosis, though these are usually more easily assessed by the graphical means
described in the next section. Another assessment of skewness is a large dif-
ference between the mean and median. In right-skewed data the mean is quite
a bit larger than the median, while in left-skewed data the mean is much
smaller than the median. Of note: in this data set, the largest observation is
more than six standard deviations above the mean!
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Graphical Description

Graphs are often the quickest and most effective way to get a sense of the
data. For numerical data, three basic graphs are most useful: the histogram,
boxplot, and normal quantile-quantile (or Q-Q) plot. Each is useful for differ-
ent purposes. The histogram easily conveys information about the location,
spread, and shape of the frequency distribution of the data. The boxplot is
a schematic identifying key features of the distribution. Finally, the normal
quantile-quantile (Q-Q) plot facilitates comparison of the shape of the distri-
bution of the data to a normal (or bell-shaped) distribution.

The histogram displays the frequency of data points falling into various
ranges as a bar chart. Fig. 2.1 shows a histogram of the SBP data from WCGS.
Generated using an earlier version of Stata, the default histogram uses five
intervals and labels axes with the minimum and maximum values only. In this
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Fig. 2.1. Histogram of the Systolic Blood Pressure Data

figure, we can see that most of the measurements are in the range of about 100
to 150, with a few extreme values around 200. The percentage of observations
in the first interval is about 47.4%.

However, this is not a particularly well-constructed histogram. With over
3,000 data points, we can use more intervals to increase the definition of the
histogram and avoid grouping the data so coarsely. Using only five intervals,
the first two including almost all the data, makes for a loss of information,
since we only know the value of the data in those large “bins” to the limits
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of the interval (in the case of the first bin, between 98 and 125), and learn
nothing about how the data are distributed within those intervals. Also, our
preference is to provide more interpretable axis labeling. Fig. 2.2 shows a
modified histogram generated using the current version of Stata that provides
much better definition as to the shape of the frequency distribution of SBP.
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Fig. 2.2. Histogram of the Systolic Blood Pressure Data Using 15 Intervals

The key with a histogram is to use a sufficient number of intervals to
define the shape of the distribution clearly and not lose much information,
without using so many as to leave gaps, give the histogram a ragged shape,
and defeat the goal of summarization. With 3,000 data points, we can afford
quite a few bins. A rough rule of thumb is to choose the number of bins to
be about 1 + 3.3 log10(n), (Sturges, 1926) where n is the sample size (so this
would suggest 12 or 13 bins for the WCGS data). More than 20 or so are rarely
needed. Fig. 2.2 uses 15 bins and provides a clear definition of the shape as
well as a fair bit of detail.

A boxplot represents a compromise between a histogram and a numeri-
cal summary. The boxplot in Fig. 2.3 graphically displays information from
the summary in Table 2.1, specifically the minimum, maximum, and 25th,
50th (median), and 75th percentiles. This retains many of the advantages of
a graphical display while still providing fairly precise numerical summaries.
The “box” displays the 25th and 75th percentiles (the lower and upper edges
of the box) and the median (the line across the middle of the box). Extend-
ing from the box are the “whiskers” (this colorful terminology is due to the
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Fig. 2.3. Boxplot of the Systolic Blood Pressure Data

legendary statistician John Tukey, who liked to coin new terms). The bottom
whisker extends to the minimum data value, 98, but the maximum is above
the upper whisker. This is because Stata uses an algorithm to try to deter-
mine if observations are “outliers,” that is, values a large distance away from
the main portion of the data. Data points considered outliers (they can be
in either the upper or lower range of the data) are plotted with symbols and
the whisker only extends to the most extreme observation not considered an
outlier.

Boxplots convey a wealth of information about the distribution of the
variable:

• location, as measured by the median
• spread, as measured by the height of the box (this is called the

interquartile range or IQR)
• range of the observations
• presence of outliers
• some information about shape.

This last point bears further explanation. If the median is located to-
ward the bottom of the box, then the data are right-skewed toward larger
values. That is, the distance between the median and the 75th percentile
is greater than that between the median and the 25th percentile. Likewise,
right-skewness will be indicated if the upper whisker is longer than the lower
whisker or if there are more outliers in the upper range. Both the boxplot
and the histogram show evidence for right-skewness in the SBP data. If the
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direction of the inequality is reversed (more outliers on the lower end, longer
lower whisker, median toward the top of the box), then the distribution is
left-skewed.

Our final graphical technique, the normal Q-Q plot, is useful for comparing
the frequency distribution of the data to a normal distribution. Since it is easy
to distinguish lines that are straight from ones that are not, a normal Q-Q
plot is constructed so that the data points fall along an approximately straight
line when the data are from a normal distribution, and deviate systematically
from a straight line when the data are from other distributions. Fig. 2.4 shows
the Q-Q plot for the SBP data. The line of the data points shows a distinct
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Fig. 2.4. Normal Q-Q Plot of the Systolic Blood Pressure Data

curvature, indicating the data are from a non-normal distribution.
The shape and direction of the curvature can be used to diagnose the

deviation from normality. Upward curvature, as in Fig. 2.4, is indicative of
right-skewness, while downward curvature is indicative of left-skewness. The
other two common patterns are S-shaped. An S-shape as in Fig. 2.5 indicates
a heavy-tailed distribution, while an S-shape like that in Fig. 2.6 is indicative
of a light-tailed distribution.

Heavy- and light-tailed are always in reference to a hypothetical normal
distribution with the same spread. A heavy-tailed distribution has more ob-
servations in the middle of the distribution and way out in the tails, and fewer
a modest way from the middle (simply having more in the tails would just
mean a larger spread). Light-tailed means the reverse: fewer in the middle and
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Fig. 2.5. Normal Q-Q Plot of Data From a Heavy-Tailed Distribution
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Fig. 2.6. Normal Q-Q plot of Data From a Light-Tailed Distribution
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far out tails and more in the mid-range. Heavy-tailed distributions are gen-
erally more worrisome than light-tailed since they are more likely to include
outliers.

Transformations of Data

A number of the techniques we describe in this book require the assumption
of approximate normality or, at least, work better when the data are not
highly skewed or heavy-tailed, and do not include extreme outliers. A common
method for dealing with these problems is to transform such variables. For
example, instead of the measured values of SBP, we might instead use the
logarithm of SBP. We first consider why this works and then some of the
advantages and disadvantages of transformations.

Transformations affect the distribution of values of a variable because they
emphasize differences in a certain range of the data, while de-emphasizing
differences in others. Consider a table of transformed values, as displayed in
Table 2.2. On the original scale the difference between .01 and .1 is .09, but

Table 2.2. Effect of a log10 Transformation

Value Difference log10 value Difference

0.01 0.09 -2 1
0.1 0.9 -1 1
1 9 0 1
10 90 1 1
100 900 2 1
1000 – 3 –

on the log10 scale, the difference is 1. In contrast, the difference between 100
and 1,000 on the original scale is 900, but this difference is also 1 on the log10
scale. So a log transformation de-emphasizes differences at the upper end of
the scale and emphasizes those at the lower end. This holds for the natural
log as well as log10 transformation. The effect can readily be seen in Fig. 2.7,
which displays histograms of SBP on the original scale and after natural log
transformation. The log-transformed data is distinctly less right-skewed, even
though some skewness is still evident. Essentially, we are viewing the data on
a different scale of measurement.

There are a couple of other reasons to consider transforming variables,
as we will see in later sections and chapters: transformations can simplify
the relationships between variables (e.g., by making a curvilinear relationship
linear), can remove interactions, and can equalize variances across subgroups
that previously had unequal variances.

A primary objection to the use of transformations is that they make the
data less interpretable. After all, who thinks about medical costs in log dol-
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Fig. 2.7. Histograms of Systolic Blood Pressure and Its Natural Logarithm

lars? In situations where there is good reason to stay with the original scale
of measurement (e.g., dollars) we may prefer alternatives to transformation
including generalized linear models and weighted analyses. Or we may appeal
to the robustness of normality-based techniques: many perform extremely well
even when used with data exhibiting fairly serious violations of the assump-
tions.

In other situations, with a bit of work, it is straightforward to express the
results on the original scale when the analysis has been conducted on a trans-
formed scale. For example, Sect. 4.7.5 gives the details for log transformations
in linear regression.

A compromise when the goal is, for example, to test for differences be-
tween two arms in a clinical trial is to plan ahead to present basic descriptive
statistics in the original scale, but perform tests on a transformed scale more
appropriate for statistical analysis. After all, a difference on the transformed
scale is still a difference between the two arms.

Finally we remind the reader that different scales of measurement just take
a bit of getting used to: consider pH.

2.3.2 Categorical Variables

Categorical variables require a different approach, since they are less amenable
to graphical analyses and because common statistical summaries, such as
mean and standard deviation, are inapplicable. Instead we use tabular de-
scriptions. Table 2.3 gives the frequencies, percents, and cumulative percents
for each of the behavior pattern categories for the WCGS data. Note that
cumulative percentages are really only useful with ordinal categorical data
(why?).

When tables are generated by the computer, there is usually little latitude
in the details. However, when tables are constructed by hand, thought should
be given to their layout; Ehrenberg (1981) is recommended reading. Three
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Table 2.3. Frequencies of Behavior Patterns
behavioral |
pattern (4 |

level) | Freq. Percent Cum.
------------+-----------------------------------

A1 | 264 8.37 8.37
A2 | 1325 42.01 50.38
B3 | 1216 38.55 88.93
B4 | 349 11.07 100.00

------------+-----------------------------------
Total | 3154 100.00

easy-to-follow suggestions from that article are to arrange the categories in
a meaningful way (e.g., not alphabetically), report numbers to two effective
digits, and to leave a gap every three or four rows to make it easier to read
across the table. Table 2.4 illustrates these concepts. With the table arranged

Table 2.4. Characteristics of Top Medical Schools

School Rank NIH research Tuition Average
($10 millions) ($thousands) MCAT

Harvard 1 68 30 11.1
Johns Hopkins 2 31 29 11.2
Duke 3 16 31 11.6

Penn 4(tie) 33 32 11.7
Washington U. 4(tie) 25 33 12.0
Columbia 6 24 33 11.7

UCSF 7 24 20 11.4
Yale 8 22 30 11.1
Stanford 9(tie) 19 30 11.1
Michigan 9(tie) 20 29 11.0

Source: US News and World Report (http://www.usnews.com, 12/6/01)

in order of the rankings, it is easy to see values that do not follow the pattern
predicted by rank, for example, out-of-state tuition.

2.4 Two-Variable Descriptions

Most of the rest of this book is about the relationships among variables. An
example from the WCGS is whether behavior pattern is related to systolic
blood pressure. In investigating the relationships between variables, it is often
useful to distinguish the role that the variables play in an analysis.
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2.4.1 Outcome Versus Predictor Variables

A key distinction is whether a variable is being predicted by the remaining
variables, or whether it is being used to make the prediction. The variable
singled out to be predicted from the remaining variables we will call the out-
come variable; alternate and interchangeable names are response variable or
dependent variable. The variables used to make the prediction will be called
predictor variables. Alternate and equivalent terms are covariates and in-
dependent variables. We slightly prefer the outcome/predictor combination,
since the term response conveys a cause-and-effect interpretation, which may
be inappropriate, and dependent/independent is confusing with regard to the
notion of statistical independence. (“Independent variables do not have to be
independent” is a true statement!)

In the WCGS example, we might hypothesize that change in behavior
pattern (which is potentially modifiable) might cause change in SBP. This
would lead us to consider SBP as the outcome and behavior pattern as the
predictor.

2.4.2 Continuous Outcome Variable

As before, it is useful to consider the nature of the outcome and predictor
variables in order to choose the appropriate descriptive technique. We begin
with continuous outcome variables, first with a continuous predictor and then
with a categorical predictor.

Continuous Predictor

When both the predictor and outcome variables are continuous, the typical
numerical description is a correlation coefficient and its graphical counterpart
is a scatterplot. Again considering the WCGS study, we will investigate the
relationship between SBP and weight.

Table 2.5 shows the Stata command and output for the correlation coef-
ficient, while Fig. 2.8 shows a scatterplot. Both the graph and the numerical
summary confirm the same thing: there is a weak association between the

Table 2.5. Correlation Coefficient for Systolic Blood Pressure and Weight
. correlate sbp weight (obs=3154)

| sbp weight
-------------+------------------

sbp | 1.0000
weight | 0.2532 1.0000

two variables, as measured by the correlation of 0.25. The graph conveys im-
portant additional information. In particular, there are quite a few outliers,
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Fig. 2.8. Scatterplot of Systolic Blood Pressure Versus Weight

including an especially anomalous data point with high blood pressure and
the lowest weight in the data set.

The Pearson correlation coefficient r, more fully described in Sect. 3.2, is
a scale-free measure of association that does not depend on the units in which
either SBP or weight is measured. The correlation coefficient varies between –1
and 1, and correlations of absolute value 0.7 or larger are considered strong as-
sociations in many contexts. In fields where data are typically noisy, including
our SBP example, much smaller correlations may be considered meaningful.

It is important to keep in mind that the Pearson correlation coefficient
only measures the strength of the linear relationship between two variables.
To determine whether the correlation coefficient is a reasonable numerical
summary of the association, a graphical tool that helps to assess linearity in
the scatterplot is a scatterplot smoother. Fig. 2.9 shows a scatterplot smooth
superimposed on the graph of SBP versus weight. The figure was generated
by the Stata command lowess sbp weight, bw(0.25) (with a few embel-
lishments to make it look nicer). This uses the LOWESS technique to draw
a smooth (but not necessarily straight) line representing the average value of
the variable on the y-axis as a function of the variable on the x-axis. LOWESS
is short for LOcally WEighted Scatterplot Smoother. The bw(0.25) option
specifies that for estimation of the height of the curve at each point, 25% of
the data nearest that point should be used. This is all just a fancy way of
drawing a flexible curve through a cloud of points. Fig. 2.9 shows that the re-
lationship between SBP and weight is very close to linear. The small upward
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Fig. 2.9. LOWESS Smooth of Systolic Blood Pressure Versus Weight

bend at the far left of the graph is mostly due to the outlying observation at
the lowest weight and is a warning as to the instability of LOWESS (or any
scatterplot smoother) at the edges of the data.

Choice of bandwidth is somewhat subjective. Small bandwidths like 0.05
often give very bumpy curves, which are hard to interpret. At the other ex-
treme, bandwidths too close to one force the curve to be practically a straight
line, obviating the advantage of using a scatterplot smoother. See Problem
2.6.

Categorical Predictor

With a continuous outcome and a categorical predictor, the usual strategy
is to apply the same numerical or graphical methods used for one-variable
descriptions of a continuous outcome, but to do so separately within each
category of the predictor. As an example, we describe the distribution of SBP
in WCGS, within levels of behavior pattern. Table 2.6 shows the most direct
way of doing this in Stata. Alternatively, the table command can be used
to make a more compact display, with command options controlling which
statistics are listed. The results are shown in Table 2.7.

Side-by-side boxplots, as shown in Fig. 2.10, are an excellent graphical
tool for examining the distribution of SBP in each of the behavior pattern
categories and making comparisons among them. The four boxplots are quite
similar. They each have about the same median, interquartile range, and a
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Table 2.6. Summary Data for Systolic Blood Pressure by Behavior Pattern
. bysort behpat: summarize sbp

_______________________________________________________________________________
-> behpat = A1

Variable | Obs Mean Std. Dev. Min Max
-------------+-----------------------------------------------------

sbp | 264 129.2462 15.29221 100 200

_______________________________________________________________________________
-> behpat = A2

Variable | Obs Mean Std. Dev. Min Max
-------------+-----------------------------------------------------

sbp | 1325 129.8891 15.77085 100 212

_______________________________________________________________________________
-> behpat = B3

Variable | Obs Mean Std. Dev. Min Max
-------------+-----------------------------------------------------

sbp | 1216 127.5551 14.78795 98 230

_______________________________________________________________________________
-> behpat = B4

Variable | Obs Mean Std. Dev. Min Max
-------------+-----------------------------------------------------

sbp | 349 127.1547 13.10125 102 178

Table 2.7. Descriptive Statistics for Systolic Blood Pressure by Behavior Pattern
. table behpat, contents(mean sbp sd sbp min sbp max sbp)

----------------------------------------------------------
Behaviora |
l Pattern | mean(sbp) sd(sbp) min(sbp) max(sbp)
----------+-----------------------------------------------

A1 | 129.2462 15.29221 100 200
A2 | 129.8891 15.77085 100 212
B3 | 127.5551 14.78795 98 230
B4 | 127.1547 13.10125 102 178

----------------------------------------------------------

slight right-skewness. At least on the basis of this figure, there appears to be
little relationship between SBP and behavior pattern.

2.4.3 Categorical Outcome Variable

With a categorical outcome variable, the typical method is to tabulate the
outcome within levels of the predictor variable. To do so first requires break-
ing any continuous predictors into categories. Suppose, for example, we wished
to treat behavior pattern as the outcome variable and weight as the predic-
tor. We might first divide weight into four categories: ≤140 pounds, >140–170,
>170–200, and >200. As with histograms, we need enough categories to avoid
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Fig. 2.10. Boxplots of Systolic Blood Pressure by Behavior Pattern

loss of information, without defining categories that include too few observa-
tions. Familiar clinical categories are often useful (e.g., glucose <110, 110–125,
>125). In this table we have requested percentages for each column to facili-

Table 2.8. Behavior Pattern by Weight Category
. tabulate behpat wghtcat, column

behavioral |
pattern (4 | wghtcat

level) | < 140 140-170 170-200 > 200 | Total
-----------+--------------------------------------------+----------

A1 | 20 125 98 21 | 264
| 8.62 8.13 8.37 9.86 | 8.37

-----------+--------------------------------------------+----------
A2 | 100 612 514 99 | 1325

| 43.10 39.79 43.89 46.48 | 42.01
-----------+--------------------------------------------+----------

B3 | 90 610 443 73 | 1216
| 38.79 39.66 37.83 34.27 | 38.55

-----------+--------------------------------------------+----------
B4 | 22 191 116 20 | 349

| 9.48 12.42 9.91 9.39 | 11.07
-----------+--------------------------------------------+----------

Total | 232 1538 1171 213 | 3154
| 100.00 100.00 100.00 100.00 | 100.00

tate the comparison of the percentages in each behavior pattern between the
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weight categories. Row percentages or percentages out of the total of 3,154
could also have been requested.

In choosing cutoff points for categorical variables it is entirely fair to look
at the distribution of that variable to try to obtain, for example, roughly
equal sample sizes in each of the categories. Splitting the data into 3, 4, 5, or
10 groups of equal size is a common approach. However, fishing for cutpoints
that prove a point is an easy way to arrive at misleading conclusions.

A different strategy with a categorical outcome and a continuous predictor
is to “turn the problem around” and treat the continuous variable as the
outcome, using the methods of the previous section. If the only goal is to
determine whether the two variables are associated, this may suffice. But
when the categorical variable is clearly the outcome, this may lead to awkward
models and hard-to-interpret conclusions.

2.5 Multivariable Descriptions

Description of more than two or three variables simultaneously quickly be-
comes difficult. One approach is to look at pairwise associations, e.g., for
categorical variables, looking at a series of two-way tables, taking each pair
of variables in turn. If a number of the variables are continuous, a correlation
matrix (giving all the pairwise correlations) or a scatterplot matrix (giving
all the pairwise plots) can be generated. Table 2.9 and Fig. 2.11 show these
for the variables SBP, age, weight, and height. The correlation matrix shows

Table 2.9. Correlation Matrix for Systolic Blood Pressure, Age, Weight, and Height

. correlate sbp age weight height (obs=3154)

| sbp age weight height
-------------+------------------------------------

sbp | 1.0000
age | 0.1657 1.0000

weight | 0.2532 -0.0344 1.0000
height | 0.0184 -0.0954 0.5329 1.0000

that SBP is very weakly correlated with age and weight and essentially un-
correlated with height.

The scatterplot matrix supports the correlation calculation. If one of the
variables is clearly the outcome variable it is useful to list this variable first in
the command. That way the first row of the matrix shows the outcome variable
on the y-axis, plotted against each of the predictor variables on the x-axis.
The matrix of scatterplots for these four variables additionally displays the
modest positive correlation between weight and height, indicating the people
come in all sizes and shapes!
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Fig. 2.11. Scatterplot Matrix of Systolic Blood Pressure, Age, Weight, and Height

Multi-way tables that go beyond pairwise relationships can be generated
with multiple categorical variables. For example, Table 2.10 shows whether
or not the subject had a coronary event (chd69), by behavior pattern within
weight category. Options in the Stata command are used to obtain the row

Table 2.10. CHD Events and Behavior Pattern by Weight Category
. table chd69 behpat wghtcat, row col

----------------------------------------------------------------------------------
| wghtcat and behavioral pattern (4 level)
| ------------- < 140 ------------- ------------ 140-170 ------------

CHD event | A1 A2 B3 B4 Total A1 A2 B3 B4 Total
----------+-----------------------------------------------------------------------

no | 18 93 84 22 217 115 559 582 184 1,440
yes | 2 7 6 15 10 53 28 7 98

|
Total | 20 100 90 22 232 125 612 610 191 1,538

----------------------------------------------------------------------------------

----------------------------------------------------------------------------------
| wghtcat and behavioral pattern (4 level)
| ------------ 170-200 ------------ ------------- > 200 -------------

CHD event | A1 A2 B3 B4 Total A1 A2 B3 B4 Total
----------+-----------------------------------------------------------------------

no | 81 438 422 108 1,049 20 87 67 17 191
yes | 17 76 21 8 122 1 12 6 3 22

|
Total | 98 514 443 116 1,171 21 99 73 20 213

----------------------------------------------------------------------------------
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and column totals. With some study, it is possible to extract information from
this three-way table, but it is more difficult than with a one- or two-way table.
An advantage of a three-way table is the ability to assess interaction, the topic
of Sect. 4.6. That is, is the relationship between CHD and behavior pattern
the same for each weight category?

Analogous graphical displays are also possible. For example, we could look
at the relationship between SBP and weight separately by behavior pattern,
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Fig. 2.12. Scatterplot of SBP Versus Weight by Behavior Pattern

as displayed in Fig. 2.12. This indicates that the relationship seems to be the
same for each behavior pattern, indicating a lack of interaction.
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2.6 Problems

Problem 2.1. Classify each of the following variables as numerical or cate-
gorical. Then further classify the numerical variables as continuous or discrete,
and the categorical variables as ordinal or nominal.

1. gender
2. race
3. age (in years)
4. age in categories (0–20, 21–35, 36–45, 45–60, 60–85, 85+)
5. zipcode
6. toxicity (mild, moderate, life-threatening, dead)
7. number of hospitalizations in the past year
8. change in HIV-RNA
9. weeks on treatment

10. treatment (placebo vs. estrogen)

Problem 2.2. Generate pseudo-random data from a normal distribution us-
ing a computer program or statistics package. In Stata this can be done using
the generate command and the function invnorm(uniform()). Now gener-
ate a normal Q-Q plot for these data. Do this for several samples of size 10,
50, and 200. How well do the Q-Q plots approximate straight lines? This is
valuable practice for judging how well an actual data set can be expected to
approximate a straight line.

Problem 2.3. Generate pseudo-random samples of size 50 from a normal dis-
tribution (see Problem 2.2 for how to do this in Stata). Construct histograms
of the data using 5, 7, and 15 bins. What do you notice? Do the shapes look
like a normal distribution?

Problem 2.4. Warfarin is a drug used to prevent blood clots, for example in
patients with irregular heartbeat and after heart surgery. However, too much
warfarin can cause unusual bleeding or bruising, so calibration of the dose
is important. A study contrasting calibration times (in hours) in two ethnic
groups had the following results. For the sample of 18 Caucasians, the times
were 2, 4, 6, 7, 8, 9, 10, 10, 12, 14, 16, 19, 21, 24, 26, 30, 35, 44, and 70; for
the 18 Asian–Americans, the times were 2, 2, 3, 3, 4, 5, 5, 6, 6, 6, 7, 7, 8, 9,
10, 12, 19, and 32.

1. Display the data numerically to compare the two ethnic groups.
2. Display the data graphically to compare the two ethnic groups.
3. Describe the distribution of the data within ethnic group.
4. Log transform the data and repeat the graphical display. How do

the displays with and without log transformation compare?
5. Can you think of other variables you might want to adjust for to

help understand the ethnic differences better?
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Problem 2.5. The timing of various stages in the contraction of the heart,
determined by electro-cardiogram (EKG), can be used to diagnose heart prob-
lems. A commonly measured time interval in the contraction of the ventricles
is the so-called QRS wave. A study was conducted to see if longer QRS times
were related to the ability to induce rapid heart rhythms (called inducible
ventricular tachycardia or IVT), which have been associated with adverse
outcomes. In a study of 53 subjects, the 18 with IVT had QRS times (in
milliseconds) of 70, 75, 86, 90, 96, 102, 110, 114, 116, 117, 120, 130, 136, 142,
145, 152, 170, and 182. The 35 patients without IVT had QRS times of 40,
50, 65, 70, 76, 78, 80, 82, 85, 88, 88, 89, 90, 94, 95, 96, 98, 98, 100, 102, 105,
107, 109, 110, 114, 115, 120, 125, 130, 135, 138, 150, 165, 170, and 180.

1. Display the data numerically to help understand whether QRS
time is related to IVT.

2. Display the data graphically to help understand whether QRS
time is related to IVT.

3. QRS time is commonly considered as abnormal if the value is
greater than 120 msec. Generate a numerical display to help un-
derstand if abnormal QRS is related to IVT.

4. What are the advantages and disadvantages of treating QRS as
binary (above 120 msec) instead of continuous?

Problem 2.6. Using the WCGS data set, generate a LOWESS (or equivalent)
scatterplot smooth of SBP versus weight, comparable to Fig. 2.9. Next try the
plot with bandwidths of 0.05, 0.15, and 0.50. How do they compare? Which
is most useful for judging the linearity or lack of linearity of the relationship?
The WCGS data are available at http://www.biostat.ucsf.edu/vgsm.
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Basic Statistical Methods

Statistical analyses involving multiple predictors are generalizations of sim-
pler techniques developed for investigating associations between outcomes and
single predictors. Although many of these should be familiar from basic statis-
tics courses, we review some of the key ideas and methods here as background
for the methods covered in the rest of the book and to introduce some basic
notation.

Sects. 3.1–3.3 review basic methods for continuous outcomes, including
the t-test and one-way analysis of variance, the correlation coefficient and
the linear regression model for a single predictor. Sect. 3.4 focuses on contin-
gency table methods for investigating associations between binary outcomes
and categorical predictors, including a discussion of basic measures of asso-
ciation. Sect. 3.5 introduces descriptive methods for survival time outcomes,
including Kaplan–Meier survival curves and the logrank test. In Sect. 3.6 we
introduce the use of the bootstrap as a method to obtain confidence inter-
vals for estimates in situations where traditional methods are inappropriate.
Finally, Sect. 3.7 discusses the importance of properly interpreting negative
findings from statistical analyses, focusing on the use of point estimates and
confidence intervals rather than P -values.

3.1 t-Test and Analysis of Variance

The t-test and one-way analysis of variance (ANOVA) are basic tools for
assessing the statistical significance of differences between the average values
of a continuous outcome across two or more samples. Both the t-test and
one-way ANOVA can be seen as methods for assessing the association of a
categorical predictor – binary in the case of the t-test, with more than two
levels in the case of one-way ANOVA – with a continuous outcome. Both are
based in statistical theory for normally distributed outcomes, but work well
for many other types of data; and both turn out to be special cases of linear
regression models.
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3.1.1 t-Test

The basic t-test is used in comparing two independent samples. The t-statistic
on which the test is based is the difference between the two sample averages,
divided by the standard error of that difference. The t-test is designed to work
in small samples, whereas Z-tests are not. Table 3.1 shows the result of a t-
test comparing average fasting glucose levels among women without diabetes,
according to exercise. This is the first of many examples in Chapters 3 and 4
using data from the Heart and Estrogen/Progestin Study (HERS), a clinical
trial of hormone therapy for prevention of recurrent heart attacks and death
among 2,763 post-menopausal women with existing coronary heart disease
(CHD) (Hulley et al., 1998). Average glucose is 97.4 mg/dL among the 1,191
women who do not exercise as compared to 95.7 mg/dL among the 841 women
who do. The difference of 1.7 mg/dL is statistically significant (P = 0.0001)
in the two-sided test shown in the column headed Ha: diff != 0 (!= is Stata
notation for “not equal to.”) The P -value gives the probability – under the
null hypothesis that mean glucose levels are the same in the two populations
being compared – of observing a t-statistic more extreme, or larger in absolute
value, than the observed value.

Table 3.1. t-Test of Difference in Average Glucose by Exercise
. ttest glucose if diabetes == 0, by(exercise)

Two-sample t test with equal variances

------------------------------------------------------------------------------
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+--------------------------------------------------------------------

no | 1191 97.36104 .2868131 9.898169 96.79833 97.92376
yes | 841 95.66825 .3258672 9.450148 95.02864 96.30786

---------+--------------------------------------------------------------------
combined | 2032 96.66043 .2162628 9.74863 96.23631 97.08455
---------+--------------------------------------------------------------------

diff | 1.692789 .4375862 .8346243 2.550954
------------------------------------------------------------------------------
Degrees of freedom: 2030

Ho: mean(no) - mean(yes) = diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = 3.8685 t = 3.8685 t = 3.8685

P < t = 0.9999 P > |t| = 0.0001 P > t = 0.0001

3.1.2 One- and Two-Sided Hypothesis Tests

In clinical research, unlike some other areas of science, two-sided hypothesis
tests are almost always used. In the two-sided t-test, we are testing the null
hypothesis (Ho) of equal population means against the alternative hypothesis
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(Ha) that the one mean is either smaller or larger than the other. The two-
sided test is appropriate, for example, when a new treatment might turn out
to be beneficial or to have adverse effects.

In contrast, only one of these alternatives is considered in a one-sided test.
As a result, the smaller of the one-sided P -values is half the magnitude of the
two-sided P -value. The resulting advantage of the one-sided test is that at a
given significance level, less evidence in favor of the alternative hypothesis is
required to reject the null. For example, using a one-sided test in a sample of
100 observations, we would declare statistical significance at the 5% level if
the t-statistic exceeds 1.66; using a two-sided test it would need to exceed 1.98
(in absolute value). A direct benefit is that a somewhat smaller sample size is
required when a study is designed to be analyzed using a one-sided test.

Use of a one-sided test is sometimes motivated by prior information that
makes only one of the alternatives of interest. An example might be in testing
an existing treatment known to be safe for evidence of benefit on a new end-
point. One-sided tests are also used in non-inferiority trials comparing a new
to a standard treatment; in this setting the alternative hypothesis is that the
new treatment performs almost as well or better than the standard treatment,
as against the null hypothesis of clearly performing worse.

However, in part because they make it possible to reject the null hypoth-
esis on weaker evidence, one-sided tests are not commonly used in clinical
research. Even in non-inferiority trials where one-sided tests are clearly ap-
propriate, a standard text on the conduct of clinical trials (Friedman et al.,
1998) recommends that the tests be carried out at a significance level of 2.5%.
Thus to claim non-inferiority, the same strength of evidence would required
as in a two-sided test. Furthermore, Fleiss (1988) argues that the other alter-
native ought generally to be of interest, and that in treatment trials adverse
effects can rarely be ruled out with sufficient certainty to justify a one-sided
test.

The Stata ttest command gives P -values for both one-sided tests as well
as the two-sided test. In Table 3.1, the one-sided P -value on the right (Ha:
diff > 0) gives the probability (again, under the null hypothesis) of observing
a t-statistic larger than the observed value, while the one on the left (Ha: diff
< 0) gives the probability of observing one that is smaller. In this example,
there is strong evidence (P = 0.0001) that the mean glucose level is higher in
the population of women who do not exercise, as compared to those who do,
and essentially no evidence (P = 1.0) that it is smaller.

3.1.3 Paired t-Test

The paired t-test is for use in settings where individuals or observations are
linked across the two samples. Examples include measurements taken at two
time points on the same individuals, or on other naturally linked pairs, as in
a clinical trial where one eye is treated and the other serves as a control. In
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this case, the two samples are not independent and failure to take account of
the pairwise relationships wastes information and is potentially erroneous.

The paired t-test procedure first computes the pairwise differences for
each individual or linked pair. In the first example, this is the change in
the outcome from the first time point to the second, and in the second, the
difference between the outcomes for the treated and control eyes. Then a t-
test is used to assess whether the population mean of these paired differences
differs from zero. An increase in power results because between-individual
variability is eliminated in the first step. The paired t-test is also implemented
using the ttest command in Stata. The more complicated case where we want
to examine the influence of some other factor on within-individual changes is
covered in Sect. 8.3.

3.1.4 One-Way Analysis of Variance (ANOVA)

Suppose that we need to compare sample averages across the arms of a clinical
trial with multiple treatments, or more generally across more than two inde-
pendent samples. For this purpose, one-way analysis of variance (ANOVA) and
the F -test take the place of the t-test. The F -test, presented in more detail in
Sect. 4.3, assesses the null hypothesis that the mean value of the outcome is
the same across all the populations sampled from, against the alternative that
the means differ in at least two of the populations. For example, the one-way
ANOVA shown in Table 3.2, the F -test for Between groups (P = 0.0371),
suggests that mean systolic blood pressure (SBP) differs by ethnicity in the
population represented in the HERS cohort.

Table 3.2. One-Way ANOVA Assessing Differences in SBP by Ethnicity
. oneway sbp ethnicity, tabulate

| Summary of systolic blood pressure
ethnicity | Mean Std. Dev. Freq.

------------+------------------------------------
White | 134.78376 18.831686 2451

Afr Amer | 138.23394 19.992518 218
Other | 135.18085 21.259767 94

------------+------------------------------------
Total | 135.06949 19.027807 2763

Analysis of Variance
Source SS df MS F Prob > F

------------------------------------------------------------------------
Between groups 2384.26992 2 1192.13496 3.30 0.0371
Within groups 997618.388 2760 361.455938

------------------------------------------------------------------------
Total 1000002.66 2762 362.057443
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3.1.5 Pairwise Comparisons in ANOVA

The statistically significant F -test in the one-way ANOVA indicates the over-
all importance of ethnicity for predicting SBP. In addition, Stata implements
the Bonferroni, Scheffé, and Sidak procedures for assessing the statistical sig-
nificance of all possible pairwise differences between groups, without inflation
of the overall or experiment-wise type-I error rate (EER), which can arise
from testing multiple null hypotheses. These and other methods for control-
ling the EER are discussed in Sect. 4.3.4. All three methods implemented in
the oneway command show that the difference in average SBP between the
African American and white groups is statistically significant after correction
for multiple comparisons, but that the other pairwise differences are not.

3.1.6 Multi-Way ANOVA and ANCOVA

Multi-way ANOVA is an extension of the one-way procedure to deal simulta-
neously with more than one categorical predictor, while analysis of covariance
(ANCOVA) is commonly defined as an extension of ANOVA that includes
continuous as well as categorical predictors. The t- and F -tests retain their
central importance in these procedures. However, one-way ANOVA and the
t-test implicitly estimate the different population means by the sample aver-
ages; in contrast, the population means in multi-way ANOVA and ANCOVA
are usually modeled. Thus these procedures are most easily understood as
multipredictor linear regression models, which are covered in Chapter 4.

3.1.7 Robustness to Violations of Assumptions

The t- and F -tests are fairly robust to violations of the normality assumption,
especially in larger samples. By robust we mean that the type-I error rate,
or probability of rejecting the null hypothesis when it holds, is not seriously
affected. They are primarily sensitive to outliers, which tend to decrease effi-
ciency and make it harder to detect real differences between groups. Thus the
effect is conservative, in the sense of making it more likely that we will accept
the null hypothesis when some real difference exists.

Large samples reduce sensitivity of the t-test to the assumption that the
outcome is normally distributed because the distribution of the difference be-
tween the sample averages, which directly underlies the test, converges to a
normal distribution even when the outcome itself has some other distribu-
tion. Analogous large-sample behavior holds for the regression coefficients es-
timated in multipredictor linear models as well as the other regression models
that are the primary topic of this book.

When sample sizes are unequal, the t-test is less robust to violations of the
assumption of equal variance across samples. Violations of this assumption
can seriously affect the type-I error rate, and not always in a conservative
direction. In contrast, the overall F -test in ANOVA loses efficiency, but the
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type-I error rate is generally not increased. However, subsequent pairwise
comparisons using t-tests remain vulnerable.

In the two-sample case, this problem is easily addressed using a version of
the t-test for unequal variances. This is based on a modified estimate of the
standard error of the difference in sample averages. In the analysis shown in
Table 3.1, the standard deviation of glucose is 9.9 mg/dL among women who
do not exercise, as compared to 9.5 mg/dL among the women who do. In this
case the re-analysis allowing for unequal variances, shown in Table 3.3, gives
qualitatively the same result (P = 0.0001). We recommend systematic use of
this version of the t-test, since the increase in robustness comes at very little
cost in efficiency. Analogous extensions of ANOVA in which the variance is
allowed to vary by group are also possible, though not implemented in the
Stata oneway or anova commands.

Table 3.3. t-Test Allowing for Unequal Variances
. ttest glucose if diabetes == 0, by(exercise) unequal;

Two-sample t test with unequal variances

------------------------------------------------------------------------------
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+--------------------------------------------------------------------

no | 1191 97.36104 .2868131 9.898169 96.79833 97.92376
yes | 841 95.66825 .3258672 9.450148 95.02864 96.30786

---------+--------------------------------------------------------------------
combined | 2032 96.66043 .2162628 9.74863 96.23631 97.08455
---------+--------------------------------------------------------------------

diff | 1.692789 .4341096 .8413954 2.544183
------------------------------------------------------------------------------
Satterthwaite’s degrees of freedom: 1858.33

Ho: mean(no) - mean(yes) = diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = 3.8995 t = 3.8995 t = 3.8995

P < t = 1.0000 P > |t| = 0.0001 P > t = 0.0000

One commonly recommended solution for violations of the normality as-
sumption is to use nonparametric Wilcoxon rank-sum or Kruskal–Wallis tests
rather than the t-test or one-way ANOVA. Two other nonparametric methods
are discussed below in Sect. 3.2 on the correlation coefficient. While they avoid
specific parametric distributional (i.e., normality) assumptions, these meth-
ods are not assumption-free. For example, the Wilcoxon and Kruskal–Wallis
tests are based on the assumption that the outcome distributions being com-
pared differ in location (mean and/or median) but not in scale (variance) or
shape, as might be captured by a histogram. Furthermore, these two tests do
not provide an interpretable measure of the strength of the association. More
generally, nonparametric methods sometimes result in loss of efficiency, and
do not easily accommodate multiple predictors, unlike the regression meth-
ods which are the focus of this book. As an alternative to nonparametric
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approaches, transformations discussed in Sect. 4.7 can be used to “normalize”
a continuous outcome, thus correcting a violation of the normality assump-
tion. More important, we show that this assumption can be relaxed in larger
samples.

3.2 Correlation Coefficient

The Pearson correlation coefficient r is a scale-free measure of linear associa-
tion between two variables x and y, and is defined as follows:

r(x, y) =
Cov(x, y)

SD(x)SD(y)

=
∑n

i=1(xi − x̄)(yi − ȳ)/(n − 1)√∑n
i=1(xi − x̄)2/(n − 1)

√∑n
i=1(yi − ȳ)2/(n − 1)

. (3.1)

In (3.1), Cov(x, y) is the sample covariance of x and y, x̄ and ȳ are their sample
means, SD(x) and SD(y) their standard deviations, and n is the sample size.
The covariance reflects the degree to which observations on the two variables
differ from their respective means in the same degree and direction. Dividing
by the standard deviations of x and y in (3.1) makes r(x, y) scale-free in the
sense that it always takes on values between –1 and 1 and does not vary with
the units of measurement used for either variable (Problem 3.2).

The correlation coefficient is a measure of linear association, in a sense
that will become clearer in Sect. 3.3 on the simple linear model. Values of r
near zero denote the absence of linear association, while values near 1 mean
that x and y increase almost in lockstep, their paired values in a scatterplot
falling close to a straight line with increasing slope. Correlations between –1
and zero mean that y tends to decrease as x increases. Note that powerful
nonlinear associations between x and y – for example, if y is proportional to
x2 – are often consistent with correlations near zero; in the example, this can
happen if x̄ ≈ 0.

Spearman Rank Correlation Coefficient

Like the t-test (and the coefficients of the linear regression model described
below), the correlation coefficient is sensitive to outliers. In this case, a robust
alternative is the Spearman correlation coefficient, which is equivalent to the
Pearson coefficient applied to the ranks of x and y. This measure of correlation
also takes on values between –1 and 1. By rank we mean position in the ordered
sequence of the values of a variable; if x takes on values 1.2, 0.5, 18.3, and
2.7, then the ranks of these values are 2, 1, 4, and 3, respectively. Thus the
rank of the outlier 18.3 is only 1 unit larger than the rank of the next largest
value 2.7, the same distance that separates the ranks of any two sequential
values of x, thus depriving the outlier of undue influence in estimating the
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correlation between x and y. Ties are handled by computing the average rank
of the tied values. Ranks are used in a range of nonparametric methods, in no
small part because of their robustness when the data include outliers. Their
disadvantage is that any information contained in the measured values of the
outcome beyond the ranks is lost.

Kendall’s τ

Another rank-based alternative to Pearson’s correlation coefficient is Kendall’s
τ , defined as the difference in the number of concordant and discordant pairs of
data points, as a proportion of the number of evaluable pairs. In the absence
of ties, the pair of data points (xi, yi) and (xj , yj) for observations i and
j is concordant if xi > xj and yi > yj , or if xi < xj and yi < yj , and
discordant otherwise. It is easy to see that we need only know the ranks of
the x and y values, not their actual values, to evaluate the conditions for
concordance. If the numbers of concordant and discordant pairs are about
equal, then τ ≈ 0; essentially this means that the fact that xi > xj gives little
information about whether yi > yj . But as the proportion of concordant pairs
grows, τ approaches 1, reflecting the fact that the ordering of the x pairs is
highly associated with the ordering of the y pairs. Conversely, if most pairs are
discordant, then τ approaches –1; again, the orderings of the x and y pairs are
highly associated. Kendall’s τ is sometimes used as a measure of correlation
for time-to-event outcomes (Chap. 7).

3.3 Simple Linear Regression Model

Here we present the simple linear regression model with a continuous outcome
and a single continuous predictor variable.

3.3.1 Systematic Part of the Model

The main purpose of this model is to determine how the average value of
the continuous outcome y varies with the value of a single predictor x. The
average values of the outcome are assumed to lie on a “regression line” or “line
of means.” Fig. 3.1 shows values of baseline systolic blood pressure (SBP) by
age in the HERS trial of hormone therapy. To make the idea of a line of
means more concrete, the square symbols in the plot show the average SBP
within each decile of age. Naturally, there is some noise in these local means,
although much less than in the raw data. Moreover, the continuous regression
line, assumed to be linear, captures the increasing trend rather well. Its slope
represents the systematic dependence of the outcome on the predictor, and is
thus usually the focus of interest.

The formula for the regression line is simple and has interpretable param-
eters:
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Fig. 3.1. Linear Regression Model for SBP and Age

E[y|x] = average value of SBP for a given age
= β0 + β1age

= 105.7 + 0.44age. (3.2)

In (3.2), E[y|x] is shorthand for the Expected or average value of the outcome
y at a given value of the predictor x. β1 gives the slope of the regression
line, and is interpretable as the change in average SBP for a one-year increase
in age. The estimate of β1 from the sample shown in the plot suggests that
among women with heart disease, average SBP increases 0.44 mmHg for each
one-year increase in age. This estimate is the best fitting value in a sense
explained below in Sect. 3.3.4.

It is also easy to see that the estimate of the intercept parameter β0 = 105.7
gives the average value of the outcome when age is zero. While not meaning-
less in this case, these data obviously provide no direct information about
SBP at age zero. This illustrates the more general point that while regression
models are often approximately true within the range of the observed data,
extrapolation is usually risky. “Centering” the predictor by subtracting off a
value within the range of the data can resolve this problem. One reasonable
choice in this example would be the sample average age of 67; then the cen-
tered age variable would have value zero for women at age 67, and the new
intercept, 135.2 mmHg, estimates average SBP among women this age. The
slope estimate is unaffected by centering the age variable.
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3.3.2 Random Part of the Model

It is also clear from Fig. 3.1 that at any given age, SBP varies considerably.
Possible sources of this variability include measurement error, diurnal pat-
terns, and a potentially broad range of unmeasured determinants of SBP,
including the immediate circumstances when the measurement was made.
These factors are combined in an error term ε, so that for observation i

SBPi = mean SBP for subjects of agei + errori

= β0 + β1agei + εi. (3.3)

The statistical assumptions of the linear regression model concern the distri-
bution of ε. Specifically, we assume that εi ∼ i.i.d N (0, σ2

ε), meaning that ε
is independently and identically distributed and has a

• normal distribution
• mean zero at every value of age
• constant variance σ2

ε at every value of age
• values that are statistically independent.

In Sect. 4.7 we will see that the first assumption may sometimes be relaxed.
The second assumption is important to checking whether the relationship
between a numerical predictor and the outcome is linear, as assumed in (3.2),
(3.3), and Fig. 3.1; violations can be examined and repaired using methods
also introduced in Sect. 4.7. The third assumption, of constant variance, is
sometimes called homoscedasticity ; data which violate this assumption are
called heteroscedastic, and can be dealt with using methods also discussed in
Sect. 4.7 as well as Chapter 9. Chapters 8 and 10 introduce methods for data
where the fourth assumption, of independence, does not hold. Some examples
include samples with repeated measures on individuals, cluster samples where
patients are selected from within a sample of physician practices, and complex
survey samples such as the National Health and Nutrition Examination Survey
(NHANES).

3.3.3 Assumptions About the Predictor

In contrast to the outcome, no distributional assumptions are made about
the predictor in the linear regression model. In the case of the linear model
with a single continuous predictor, we do not assume that the predictor has
a normal distribution, although we will see in Sect. 4.7 that outlying values
of the predictor can cause trouble in some circumstances. In addition, bi-
nary, categorical, and discrete numeric variables including counts are easily
accommodated as predictors in these models.

Although we do not need to make assumptions about the distribution of
the predictor, these models do perform better when it is relatively variable.
For example, it would be more difficult to estimate the age trend in average
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SBP if the sample were limited to women aged 65–70. For binary and categor-
ical predictors, the analogous limitation is that the subgroups defined by the
predictor should not be too small. The impact of the variability of the predic-
tor, or lack of it, is reflected in the standard error of the regression coefficient,
as shown below in Sect. 3.3.7.

Finally, when we want to assess the relationship of the outcome with the
true values of the predictor, we effectively assume that the predictors are mea-
sured without error. This is often not very realistic, and the effects of violations
are the subject of ongoing statistical research. Random measurement errors
unrelated to the outcome result in attenuation of estimated slope coefficients
toward zero, sometimes called regression dilution bias (Frost and Thompson,
2000). Despite some loss of efficiency, reasonable estimation is often possible in
the presence of mild-to-moderate error in the measurement of the predictors.
Moreover, for prediction of new outcomes, values of the predictor measured
with error may suffice.

3.3.4 Ordinary Least Squares Estimation

The model (3.3) refers to the population of women with heart disease from
which the sample shown in Fig. 3.1 was drawn. The regression line in the
figure is an estimate of the population regression line that was found using
ordinary least squares (OLS). Of all the lines that could be drawn though the
scatterplot of the data to represent the trend in SBP with increasing age, the
OLS estimate minimizes the sum of the squared vertical differences between
the data points and the line.

Since the regression line is uniquely determined by β0 and β1, the inter-
cept and slope parameters, fitting the regression model amounts to finding
estimates β̂0 and β̂1 which meet the OLS criterion. In addition to being easy
to compute, these OLS estimates have desirable statistical properties. If model
assumptions hold, β̂0 and β̂1 are unbiased estimates of the population param-
eters.

Definition: An estimate is unbiased if, over many repeated samples
drawn from the population, the average value of the estimates based
on the different samples would equal the population value of the pa-
rameter being estimated.

OLS estimates are also minimally variable and well behaved in large sam-
ples when the distributional assumptions concerning ε are not precisely met.
However, a drawback of the OLS estimation criterion is sensitivity to outliers,
which arises from squaring the vertical differences (Problem 3.1). Sect. 4.7
will show how to diagnose and deal with influential points.

Table 3.4 shows Stata results for an OLS regression of SBP on age. The
estimate of β1, the slope coefficient (Coef.) for age, is 0.44 mmHg per year,
and the intercept estimate β̂0 is 105.7 mmHg ( cons).
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Table 3.4. OLS Regression of SBP on Age
. reg SBP age

Source | SS df MS Number of obs = 276
-------------+------------------------------ F( 1, 274) = 5.58

Model | 2179.70702 1 2179.70702 Prob > F = 0.0188
Residual | 106991.347 274 390.47937 R-squared = 0.0200

-------------+------------------------------ Adj R-squared = 0.0164
Total | 109171.054 275 396.985652 Root MSE = 19.761

------------------------------------------------------------------------------
sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | .4405286 .186455 2.36 0.019 .0734621 .8075952

_cons | 105.713 12.40238 8.52 0.000 81.2969 130.129
------------------------------------------------------------------------------

3.3.5 Fitted Values and Residuals

The OLS estimates β̂0 and β̂1 in turn determine the fitted value ŷ correspond-
ing to every data point:

ŷi = β̂0 + β̂1xi. (3.4)

It should be plain that the fitted value ŷi lies on the estimated regression line
at the point where x = xi. For a woman at the average age of 67, the fitted
value is

105.713 + 0.4405286 × 67 = 135.2 mmHg. (3.5)

The residuals are defined as the difference between observed and fitted values
of the outcome:

ri = yi − ŷi. (3.6)

The residuals are the sample analogue of ε, the error term introduced earlier
in Sect. 3.3, and as such are particularly important in fitting the model, in
estimating the variability of the parameter estimates, and in checking model
assumptions and fit (Sect. 4.7).

3.3.6 Sums of Squares

Various sums of squares are central to understanding OLS estimation and to
reading the Stata regression model output in Table 3.4. First is the total sum
of squares (TSS):

TSS =
n∑

i=1

(yi − ȳ)2, (3.7)

where ȳ is the sample average of the outcome y. TSS captures the total vari-
ability of the outcome about its mean. In Table 3.4, TSS = 109,171 and
appears in the row and column labeled Total and SS (for Sum of Squares),
respectively.
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In an OLS model, TSS is split into two components. The first is the model
sum of squares (MSS), or the part of the variability of the outcome about its
mean that can be accounted for by the model:

MSS =
n∑

i=1

(ŷi − ȳ)2. (3.8)

The second component of outcome variability, the part that cannot be ac-
counted for by the model, is the residual sum of squares (RSS):

RSS =
n∑

i=1

(yi − ŷi)2. (3.9)

By definition, RSS is minimized by the fitted regression line. In Table 3.4 MSS
and RSS appear in the rows labeled Model and Residual of the SS column.
The identity TSS = MSS + RSS is a central property of OLS, but more
difficult to prove than it may seem.

3.3.7 Standard Errors of the Regression Coefficients

MSS and RSS also play an important role in estimating the standard errors
of β̂0 and β̂1 and in testing the null hypothesis of central interest, H0: β1 = 0.
These standard errors depend on the variance of ε – that is, the variance of the
outcome about the regression line – which is estimated in our single predictor
model by

V̂ar(ε) = s2
y|x = RSS/(n − 2). (3.10)

In Table 3.4 s2
y|x equals 390.5, and appears in the column and row labeled MS

(for Mean Square) and Residual, respectively.
The variance of β̂1 is estimated by

V̂ar(β̂1) =
s2

y|x
(n − 1)s2

x

, (3.11)

where s2
x is the sample variance of the predictor x. The square root of the

variance of an estimate is referred to as its standard error (SE). In Table
3.4, the standard error of the estimated slope coefficient for age, found in the
column labeled Std.Err., is approximately 0.187.

From the numerator and denominator of (3.11), it is clear that the vari-
ance of the slope estimate increases with the residual outcome variance not
explained by the model, but decreases with larger sample size and with the
variance of the predictor (as we pointed out earlier in Sect. 3.3.3). In our
example of SBP and age, estimation of the trend in age is helped by the rel-
atively large age range in the sample. It should also be intuitively clear that
the precision of the slope estimate is increased in samples where the data are
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tightly clustered about the regression line – in other words, if the residual
variance of the outcome is small. Fig. 3.1 shows that this is not the case with
our example; SBP varies widely about the regression line at every value of
age.

3.3.8 Hypothesis Tests and Confidence Intervals

When the outcome is normally distributed, the parameter estimates β̂0 and β̂1
have a normal distribution, and the ratio of the slope estimate to its standard
error has a t-distribution with n−2 degrees of freedom. This leads directly to
a test of the null hypothesis of no slope: that is, H0: β1 = 0, or in substantive
terms, no systematic relationship between predictor and outcome. In Table
3.4, the t-statistic and corresponding P -value for age are shown in the columns
labeled t and P>|t|. In the example, we are able to reject the null hypothesis
that SBP does not change with age at the usual 5% level of significance
(P = 0.019).

The t-distribution also leads to 95% confidence intervals for the popula-
tion parameter β1, shown in Table 3.4 in the columns labeled [95% Conf.
Interval]. The confidence interval does not include 0, in accord with the re-
sult of the t-test of the null hypothesis. Under the assumptions of the model,
a confidence interval computed this way would, on average, include the pop-
ulation value of the parameter in 95 of 100 random samples. In a more intu-
itive interpretation, we could exclude with 95% confidence age trends in SBP
smaller than 0.07 mmHg/year or larger than 0.81 mmHg/year.

Relationship Between Hypothesis Tests and Confidence Intervals

Hypothesis tests and confidence intervals provide overlapping information
about the parameter or association being assessed. Common ground is that
when a two-sided test is statistically significant at P < 0.05, then the cor-
responding 95% confidence interval will exclude the null parameter value.
However, the P -value, especially if it is small, does give a more direct sense
of the strength of the evidence against the null hypothesis. Likewise, only the
confidence interval provides information about the range of parameter values
that are consistent with the data. In Sect. 3.7 below, we argue that confidence
intervals are particularly important in the interpretation of negative findings
– that is, cases where the null hypothesis is not rejected. Both the P -value
and the confidence interval are important for understanding statistical re-
sults in depth, and getting beyond the simple question of whether or not an
association is statistically significant. This overlapping relationship between
hypothesis tests and confidence intervals holds in many settings in addition
to linear regression.
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Hypothesis Tests and Confidence Intervals in Large Samples

The hypothesis tests and confidence intervals in this section follow from ba-
sic statistical theory for data with normally distributed outcomes. However,
linear regression models are commonly used with outcomes that are at best
approximately normal, even after transformation. Fortunately, in large sam-
ples the t-tests and confidence intervals for β̂0 and β̂1 are valid even when the
underlying outcome is not normal. How large a sample is required depends on
how far and in what way the outcome departs from normality. If the outcome
is uniformly distributed, meaning that every value in its range is equally likely,
then the t-tests and confidence intervals may be valid with as few as 30–50
observations. However, with long-tailed outcomes, samples of at least 100 and
sometimes much larger may be required for hypothesis tests and confidence
intervals to be valid.

3.3.9 Slope, Correlation Coefficient, and R2

The slope coefficient estimate β̂1 in a simple linear model is systematically
related to the sample Pearson correlation coefficient r, reviewed in Sect. 3.2:

r = β̂1SD(x)/SD(y), (3.12)

where SD(x) and SD(y) are the standard deviations of the predictor and
outcome, respectively. Thus we can get r from β̂1 by factoring out the scales
on which x and y are measured (Problem 3.3), scales which are reflected in
the standard deviations. Furthermore, the t-test of H0: β1 = 0 is equivalent
to a test of H0: r = 0.

However, the correlation coefficient is not simply interchangeable with the
slope coefficient in a simple linear model. In particular, the slope coefficient
distinguishes the roles of the predictor x and outcome y, with differing as-
sumptions applying to each, and would change if those roles were reversed,
but r(x, y) = r(y, x). Note that reversing the roles of predictor and outcome
becomes even more problematic with multipredictor models. In addition, the
slope coefficient β1 depends on the units in which both predictor and outcome
are measured, so that if either or both were measured in different units, β1
would change. For example, our estimate of the age trend in SBP would be 4.4
mmHg per decade if age were measured in ten-year units. While both versions
are interpretable, this dependence on the scale of both predictor and outcome
can make it difficult to assess the strength of the association. In addition the
dependence on scale would make it hard to judge whether age is a stronger
predictor of SBP than other variables. From this point of view, the scale-free
correlation coefficient r is easier to interpret.

The correlation coefficient r and thus the slope coefficient β1 are also
systematically related to the coefficient of determination R2

R2 = r2 =
MSS
TSS

. (3.13)
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R2 is interpretable as the proportion of the total variability of the outcome
(TSS) that is accounted for by the model (MSS). As such, it is useful for
comparing models (Sect. 5.3). In Table 3.4 the value of R-squared is only
0.0200, which you can easily verify is equal to MSS/TSS = 2,179/109,171.
This shows that age only explains a very small proportion of the variability
of SBP, even though it is a statistically significant predictor in a sample of
moderate size.

3.4 Contingency Table Methods for Binary Outcomes

In Chapter 2 we reviewed exploratory techniques for categorical outcome vari-
ables. We expand that review here to include contingency table methods for
assessing associations between binary outcomes and categorical predictors.

3.4.1 Measures of Risk and Association for Binary Outcomes

In the Western Collaborative Group Study (WCGS) (Rosenman et al., 1964)
of coronary heart disease (CHD) introduced in Chapter 2, an association of
interest to the original investigators was the relationship between CHD risk
and the presence/absence of corneal arcus senilis among participants upon en-
try into the study. Because each participant could be unambigously classified
as having developed CHD or not during the ten-year course of the study, the
indicator variable that takes on the value one or zero according to whether
or not participants developed the disease is a legitimate binary outcome for
the analysis. Corneal arcus is a whitish annular deposit around the iris that
occurs in a small percentage of older adults, and is thought to be related to
serum cholesterol level. Table 3.5 presents the results of a basic two-by-two
table analysis for this example. The results were obtained using the cs com-
mand in Stata, which provides a number of useful quantities in addition to
a simple crosstabulation of the binary CHD outcome chd69 with the binary
indicator of the presence of arcus.

The Risk estimates (0.108 and 0.069) summarize outcome risk for indi-
viduals with and without arcus and are simply the observed proportions of
individuals with CHD in these groups at the baseline visit of the study. The
output also includes several standard epidemiological measures of association
between outcome risk and the predictor variable, along with corresponding
95% confidence intervals. These are numerical comparisons of the risk esti-
mates between the two groups defined by the predictor.

The Risk difference or excess risk is defined as the difference between
the estimated risk in the groups defined by the predictor. For the table, we
can verify that the risk difference is

0.1084 − 0.0692 = 0.039
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Table 3.5. Two-by-Two Contingency Table for CHD and Arcus
. cs CHD69 arcus, or

| arcus senilis |
| Exposed Unexposed | Total

-----------------+------------------------+----------
Cases | 102 153 | 255

Noncases | 839 2058 | 2897
-----------------+------------------------+----------

Total | 941 2211 | 3152
| |

Risk | .1083953 .0691995 | .080901
| |
| Point estimate | [95% Conf. Interval]
|------------------------+----------------------

Risk difference | .0391959 | .0166915 .0617003
Risk ratio | 1.566419 | 1.233865 1.988603

Attr. frac. ex. | .3616011 | .1895387 .4971343
Attr. frac. pop | .1446404 |

Odds ratio | 1.63528 | 1.257732 2.126197 (Cornfield)
+-----------------------------------------------

chi2(1) = 13.64 Pr>chi2 = 0.0002

The Risk ratio or relative risk is the ratio of these risks – for the example
in the table,

0.1084/0.0692 = 1.57.

The Odds ratio is the ratio between the corresponding odds in the two
groups. The odds of an outcome occurring are computed as the probabil-
ity of occurrence divided by the complementary probability that the event
does not occur. Since the denominators of these two probabilities are identi-
cal, the odds can be also be calculated as the ratio of the number of outcomes
to non-outcomes. Frequently used in games of chance, “even odds” obtains
when these two probabilities are equal.

In Table 3.5, the odds of CHD occurrence in the two arcus groups are
0.1084/(1 − 0.1084) = 102/839 and 0.0692/(1 − 0.0692) = 153/2058, respec-
tively. The ratio of these two numbers yields the estimated odds ratio (1.635)
comparing the odds of CHD occurrence among participants with arcus to the
odds of those without this condition. Although the odds ratio is somewhat less
intuitive as a risk measure than the risk difference and relative risk, we will
see that it has properties that make it useful in a wide range of study designs,
and (in Chapter 6) that it is fundamental in the definition and interpretation
of the logistic regression model.

Finally, note that Table 3.5 provides two auxiliary summary measures of
attributable risk (i.e., Attr. frac. ex. and Attr. frac. pop), which esti-
mate the fraction of outcomes which can be attributed to the predictor in the
subgroup with the predictor (sometimes referred to as “exposed” individuals)
and in the overall population, respectively. Although these measures can eas-
ily be estimated from the data in the table, their validity and interpretability
depends on a number of factors, including study design and the causal con-
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nections between measured and unmeasured predictors and the outcome. See
Rothman and Greenland (1998) for further discussion of these measures.

In the last example we saw that the observed outcome proportions for
groups defined by different values of a predictor are the fundamental compo-
nents of the three summary measures of association: the excess risk, relative
risk, and odds ratio. To discuss these further, it will be useful to have symbolic
definitions. Following the notation introduced in Sect. 3.3 for a continuous out-
come measure, we will denote the binary outcome variable CHD by y, and let
the values 1 and 0 represent individuals with and without the outcome, respec-
tively. We will symbolize the outcome probability for an individual associated
with a particular value x of a single predictor as

P (x) = Pr(y = 1|x)

and estimate this using the proportion of individuals with the outcome y = 1
among all those in the sample with the value x of the predictor. For example,
P (0) and P (1) symbolize the outcome probability or risk associated with two
levels of the binary predictor arcus in Table 3.5 (where we follow the usual
convention that individuals possessing the characteristic have the values x = 1,
and individuals without the characteristic have x = 0). The following equation
defines all three summary risk measures introduced above using this notation:

ER = P (1) − P (0)
RR = P (1)/P (0)

OR =
P (1)/ [1 − P (1)]
P (0)/ [1 − P (0)]

, (3.14)

where ER, RR, and OR denote the excess risk, relative risk, and odds ratio,
respectively.

Like the correlation coefficient, these measures provide a convenient single
number summary of the direction and magnitude of the association. The major
distinction between them is that the ER is a measure of the difference in risk
between the two groups (with no difference indicated by a value of zero), while
both the RR and OR compare the risks in relative terms (with no difference
indicate by a value of one). Note that because the component risks range
between zero and one, the ER can take on values between −1 and 1. By
contrast, the RR and OR range between 0 and ∞.

Relative measures are appealing because they are dimensionless, and con-
vey a clear impression of how outcome risk is increased/decreased by exposure.
The RR in particular is favored by epidemiologists because of its interpretabil-
ity as a ratio of risks. However, relative measures are less desirable when the
goal is to convey the “importance” of a particular risk in absolute terms:
In the example, the estimated RR for the risk of CHD is approximately 1.6
times higher for men with arcus. The ER tells us that this corresponds to a
4% difference in absolute risk. Note that if the risk of the outcome were ten
times lower in both groups we would have the same estimated RR, but the
corresponding ER would also be ten times smaller (or 0.4%).
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A further feature of the RR worth remembering is that its maximum value
is constrained by the level of risk in the comparison group. For example, if
Pr(0) = 0.5, RR ≤ 2 must hold. The OR has the advantages of a relative
measure, and in addition is not constrained by the level of the risk in the
reference group. However, being based on the odds of the outcome rather
than the probability, the OR lacks the intuitive interpretation of RR. The only
exception is when the outcome risk is quite small. For such rare outcomes,
the OR closely approximates the RR and can be interpreted similarly. (This
property can be seen from the above definition by noting that if outcome risk
is close to zero, then [1−Pr(0)] and [1−Pr(1)] will both be approximately one.)
Unfortunately, the odds ratio is often inappropriately reported as a relative
risk even when this condition isn’t met (Holcomb et al., 2001). Because the
value of the OR is always more extreme than the value of the RR (except when
both equal one), this can be misleading. For these reasons, we recommend that
the measure of association reported in research findings be that actually used
in the analysis.

A final important property of all three measures of association introduced
above is that their interpretation depends on the underlying study design. In
the WCGS example the outcome risks represent the incidence proportion of
CHD over the entire duration of the study (approximately ten years). The
measures of association in the table should be interpreted accordingly. By
contrast, the sexually transmitted infection example mentioned at the begin-
ning of this chapter referred to a cross-sectional sample. Outcome risk in this
setting is measured by the prevalence of the outcome among the groups de-
fined by the predictor. In this case, the terms “prevalence odds,” “prevalence
ratio,” and “excess prevalence” provide unambiguous alternative labels for
OR, RR, and ER, respectively.

The relative merits of the ER, RR, and OR are discussed at length in
most epidemiology textbooks (e.g., Rothman and Greenland, 1998). For our
purposes, they are equally valid and the choice is dependent on the nature and
goals of the research investigation. In fact, for prospective and cross-sectional
study designs, we’ll see that we can freely convert between measures. (Case-
control designs are a special case which will be covered in Sect. 6.3.) However,
from the standpoint of regression modeling, we’ll see in Chapter 6 that the
OR has clear advantages.

3.4.2 Tests of Association in Contingency Tables

Addressing the research question posed in the example presented in Table 3.5
involves more than simply summarizing the degree of the observed associa-
tion between CHD and arcus. We would also like to account for uncertainty
in our estimates before concluding that the association reflects more than just
a chance finding in this particular sample of individuals. The 95% confidence
intervals associated with the measures of association in the table help in this
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regard. For example, the fact that the confidence interval for the odds ratio ex-
cludes the value 1.0 allows us to conclude that the true value for this measure
is greater than one, and indicates a statistically significant positive associa-
tion between the presence of arcus and CHD occurrence. This corresponds to
testing the null hypothesis that the true odds ratio is not equal to one, with
the alternative hypothesis being that this odds ratio is different than one. The
fact that the value of one is excluded from the confidence interval corresponds
to rejection of this hypothesis at the 5% significance level. Of course, estab-
lishing the possible causal connection between these two variables is a more
complex issue.

The χ2 (chi-squared) test of association is an alternative way to make
inferences about an observed association. Note that the result of this test
(presented in Table 3.5) agrees with the conclusions drawn for the 95% confi-
dence intervals for the various measures of association. The statistic addresses
the null hypothesis of no association, and is computed using the squared dif-
ferences between the observed proportions of individuals in each cell of the
two-way table and the corresponding proportions that would be expected if
the null hypothesis were true. Large values of the statistic indicate departure
from this hypothesis, and the associated P -value is computed using the χ2

distribution with degrees of freedom specified. The χ2 statistic for a two-by-
two table is less appealing as a measure of association than the alternative
measures discussed above. However, in cases where predictors have more than
two levels (as discussed below) and a single summary measure of association
can’t be calculated, the χ2 statistic is useful as a global indicator of whether
or not an association may be present.

The validity of the χ2 test is dependent on available sample size; like
many commonly used statistical tests, the validity of the reference χ2 distri-
bution for the test statistic is approximate, with the approximation improving
with increasing number of observations. Consequently, for small sample sizes,
approximate P -values and associated inferences may be unreliable. An alter-
native in these cases is to base inferences on exact methods. Table 3.6 presents
an example from a cross-sectional study of sexual transmission of human im-
munodeficiency virus (HIV) in monogamous female partners of males infected
from contaminated blood products (O’Brien et al., 1994). The outcome of this
study was HIV status of the female partner at recruitment. Males were known
to have been infected first (via medical records) and exposure of females was
limited to contact with male partners. The available sample size (n = 31) was
limited by the availability of couples meeting the strict eligibility criteria.

Table 3.6 addresses the hypothesis that more rapid disease progression
in the males (as indicated by an AIDS diagnosis occurring at or before the
time of recruitment of the couple) is associated with sexual transmission of
HIV to the female (represented by the binary indicator hivp). In addition
to observed counts, the table includes proportions of the outcome by AIDS
diagnosis in the male partners, and the measures of association described
above. The table also presents the results of Fisher’s exact test. Similar to the
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Table 3.6. Female Partner’s HIV Status by AIDS Diagnosis of Male Partner
. cs hivp aids, or exact

| AIDS diag. in male |
| [1=yes/0=no] |
| Exposed Unexposed | Total

-----------------+------------------------+----------
Cases | 3 4 | 7

Noncases | 2 22 | 24
-----------------+------------------------+----------

Total | 5 26 | 31
| |

Risk | .6 .1538462 | .2258065
| |
| Point estimate | [95\% Conf. Interval]
|------------------------+----------------------

Risk difference | .4461538 | -.0050928 .8974005
Risk ratio | 3.9 | 1.233644 12.32933

Attr. frac. ex. | .7435897 | .1893933 .9188926
Attr. frac. pop | .3186813 |

Odds ratio | 8.25 | 1.200901 57.1864 (Cornfield)
+-----------------------------------------------

1-sided Fisher’s exact P = 0.0619
2-sided Fisher’s exact P = 0.0619

χ2 test, the Fisher test addresses the hypothesis of independence of outcome
and predictor. However, the P -value is computed exactly, conditioning on the
observed marginal totals. The P -value for the χ2 test applied to the data in
Table 3.6 (not shown) is 0.029. Similarly, the lower 95% confidence limits for
the RR and OR exclude the value one, also indicating a statistically significant
association. By contrast, the (two-sided) P -value for the Fisher’s exact test for
Table 3.6 is 0.062, indicating failure to reject the hypothesis of independence
at the 5% level.

A commonly cited rule-of-thumb is that the Fisher’s exact test should
be used whenever any of the expected cell counts are less than 5. Note that
Fisher’s exact test applies to tables formed by variables with more than two
categories. Although it can almost always be used in place of the χ2 test, the
associated computations can be lengthy for large sample sizes, especially for
tables with dimensions larger than 2 × 2. Given the increased speed of mod-
ern desktop computers and the availability of more computationally efficient
algorithms, we recommend using the exact P -value whenever it can easily be
computed (i.e., in a matter of minutes) or is provided, and especially in cases
where either actual or expected minimum cell counts are less than 5.

3.4.3 Predictors With Multiple Categories

In the WCGS study discussed above, one potentially important predictor of
CHD risk is age at entry into the study. Despite the fact that this can be
considered as a continuous variable for the purpose of analyses, we might be-
gin investigating the relationship by grouping age into multiple categories and
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summarizing CHD risk in the resulting groups. Table 3.7 shows the results ob-
tained by dividing subjects into five-year age intervals using a constructed five-
level categorical variable AGEC. With the exception of the first two columns,

Table 3.7. CHD Events by Age in WCGS Cohort

. tabulate chd69 agec, col chi2

| agec
CHD event | 35-40 41-45 46-50 51-55 56-60 | Total

-----------+-------------------------------------------------------+----------
no | 512 1,036 680 463 206 | 2,897

| 94.29 94.96 90.67 87.69 85.12 | 91.85
-----------+-------------------------------------------------------+----------

yes | 31 55 70 65 36 | 257
| 5.71 5.04 9.33 12.31 14.88 | 8.15

-----------+-------------------------------------------------------+----------
Total | 543 1,091 750 528 242 | 3,154

| 100.00 100.00 100.00 100.00 100.00 | 100.00

Pearson chi2(4) = 46.6534 Pr = 0.000

the estimated percentages of individuals with CHD in the second row of the
table clearly increase with increasing age. In addition, the accompanying χ2

test indicates that age and CHD risk are associated.
As mentioned above, the conclusion of association based on the χ2 test

does not reveal anything about the nature of the relationship between these
variables. More insight could be gained by computing measures of association
between age and CHD risk. However, unlike the two-by-two table case, the
fact that age is represented with five levels means that a single measure will
not suffice here. In fact, odds ratios can be computed to compare any two
age groups. For example, the ER, RR, and OR comparing CHD risk in 56
to 60-year-olds with that in 35 to 40-year-olds are calculated by applying the
formulas in (3.14) as follows:

ER = (36/242) − (31/543) = 0.092

RR =
36/242
31/543

= 2.606

OR =
36/242
206/242
31/543
512/543

= 2.886. (3.15)

The results in Table 3.8 further reinforce our observation that CHD risk
is increasing with increasing age. The odds ratios in the table are all com-
puted using the youngest age group as the reference category. The pattern of
increase in estimated odds ratios mirrors that seen in Table 3.7. Note that
each odds ratio in the table is accompanied by a 95% confidence interval and
associated hypothesis test. In addition, two global tests providing additional
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information are provided: The Test of homogeneity addresses the null hy-
pothesis that odds ratios do not differ across age categories. In this case, the
P -value indicates rejection, confirming the observed difference in the odds ra-
tios mentioned above. Since age can be viewed as a continuous variable, and
the categorical version considered here is ordinal, more specific alternatives
to non-homogeneity of odds are of greater scientific interest. The Score test
for trend in Table 3.8 addresses the alternative hypothesis that there is a
linear trend in the odds of CHD with increasing age categories. The statisti-
cally significant results indicate support for this hypothesis, and represent a
stronger conclusion than non-homogeneity. Note that this test is not applica-
ble to nominal categorical variables.

Table 3.8. Odds Ratios for CHD Events by Age Group
. tabodds chd69 agec, or

---------------------------------------------------------------------------
agec | Odds Ratio chi2 P>chi2 [95% Conf. Interval]

-------------+-------------------------------------------------------------
35-40 | 1.000000 . . . .
41-45 | 0.876822 0.32 0.5692 0.557454 1.379156
46-50 | 1.700190 5.74 0.0166 1.095789 2.637958
51-55 | 2.318679 14.28 0.0002 1.479779 3.633160
56-60 | 2.886314 18.00 0.0000 1.728069 4.820876

---------------------------------------------------------------------------
Test of homogeneity (equal odds): chi2(4) = 46.64

Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 40.76
Pr>chi2 = 0.0000

Despite the useful information gained from the analysis in Tables 3.7 and
3.8, we may be concerned that our conclusions depend on the arbitrary choice
of grouping age into five categories. Increasing the number of age categories
may provide more information on how risk varies with age, but will also re-
duce the number of individuals in each category and lead to more variable
estimates of risk in each group. This dilemma is one of the primary motiva-
tions for introducing a regression model for the dependence of outcome risk on
a continuous predictor variable. Another motivation (which will be explored
briefly below and more fully in Chapter 6) arises when we consider the joint
effects on risk of multiple (categorical and/or continuous) predictor variables.

3.4.4 Analyses Involving Multiple Categorical Predictors

A common feature of observational clinical and epidemiological studies is that
investigators do not experimentally control the distributions of characteris-
tics of interest among participants in the sample. Unlike randomized trials in
which random allocation serves to balance the distributions of characteristics
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across treatment arms, observational data are usually characterized by differ-
ing distributions across subgroups defined by predictors of primary interest.
For example, observational studies of the relationship between dietary factors
and cancer typically adjust for age since it is frequently related to both diet
and cancer risk. A fundamental part of drawing inferences regarding the re-
lationship between the outcome and key predictors in observational studies
is to consider the potential influence of these other characteristics. This topic
will be covered in detail from regression models in Chapter 5. Here we give a
brief introduction for binary outcomes and categorical predictors.

Consider the cross-tabulation of a binary indicator 20-year mortality and
self-reported smoking presented in Table 3.9. These data represent women

Table 3.9. Twenty-Year Vital Status by Smoking Behavior
. cs vstatus smoker [freq = nn], or

| smoker |
| Exposed Unexposed | Total

-----------------+------------------------+----------
Cases | 139 230 | 369

Noncases | 443 502 | 945
-----------------+------------------------+----------

Total | 582 732 | 1314
| |

Risk | .2388316 .3142077 | .2808219
| |
| Point estimate | [95% Conf. Interval]
|------------------------+----------------------

Risk difference | -.075376 | -.1236536 -.0270985
Risk ratio | .7601076 | .6347365 .9102415

Prev. frac. ex. | .2398924 | .0897585 .3652635
Prev. frac. pop | .1062537 |

Odds ratio | .6848366 | .5354784 .8758683 (Cornfield)
+-----------------------------------------------

chi2(1) = 9.12 Pr>chi2 = 0.0025

participating in a health survey in Whickham, England in 1972–1974 (Van-
derpump et al., 1996). Deaths were ascertained via follow-up of participants
over a 20-year period. The results indicate a statistically significant negative
association between smoking and mortality (where Cases denote deceased
women).

Before concluding that this somewhat unintuitive inverse relationship be-
tween smoking and mortality may reflect a real association in the population
being studied, we need to consider the possibility that it may be due to the
influence of other characteristics of women in the sample. The standard ap-
proach for controlling for the influence of additional categorical predictors in
contingency tables is via a stratified analysis, where a relationship of interest
is examined in subgroups defined by a additional variable (or variables).

Table 3.10 presents the same analysis stratified by a three-level categor-
ical variable agegrp representing three categories of participant age (as as-
certained in the original survey). The age-specific odds ratios and associated
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Table 3.10. Twenty-year Vital Status by Smoking Behavior, Stratified by Age
. cs vstatus smoker [freq = nn], or by(agegrp)

agegrp | OR [95% Conf. Interval] M-H Weight
-----------------+-------------------------------------------------

18-44 | 1.776666 .8727834 3.615113 5.568471 (Cornfield)
45-64 | 1.320359 .8728567 1.997089 19.55856 (Cornfield)

64+ | 1.018182 .4240727 2.43359 4.772727 (Cornfield)
-----------------+-------------------------------------------------

Crude | .6848366 .5354784 .8758683
M-H combined | 1.357106 .9710409 1.896662

-------------------------------------------------------------------
Test of homogeneity (M-H) chi2(2) = 0.945 Pr>chi2 = 0.6234

Test that combined OR = 1:
Mantel--Haenszel chi2(1) = 3.24

Pr>chi2 = 0.0719

95% confidence intervals indicate a positive (but not statistically significant)
association between smoking and vital status in two of the three age groups.
The crude odds ratio reproduces the result obtained in Table 3.9, while the
age-adjusted (M-H combined, or Mantel–Haenszel) estimate is computed via a
weighted average of the the age-specific estimates, where the stratum-specific
weights are given in the right table margin (M-H Weight). Because this esti-
mate is based on separate estimates made in each age stratum, the weighted
average adjusts for the influence of age.

Comparison of the crude estimate with the adjusted estimate reveals that
adjusting for age reverses the direction (and alters the significance) of the
unadjusted result. Considering that none of the stratum-specific estimates in-
dicate reduced risk associated with smoking, the crude estimate is surprising.
This seemingly paradoxical result is often referred to as Simpson’s paradox. To
aid in further interpretation, Table 3.10 also includes results from two hypoth-
esis tests of properties of the stratum-specific and combined odds ratios. The
test of homogeneity addresses the null hypothesis that the three age-specific
odds ratios are identical. Rejection of this hypothesis would provide evidence
that the stratum-specific odds ratios differ, and may indicate a differential
effect of smoking on mortality across different age groups. This phenomenon
is also known as interaction or effect modification. In this case, the results
indicate that the data do not support rejecting the null hypothesis in favor
of the alternative hypothesis of differing age-specific odds ratios. We conclude
that there is no strong evidence of interaction and that the age-specific odds
ratios are similar.

The second test result presented in Table 3.10 addresses the null hypothesis
that the true age-adjusted (“combined”) odds ratio for the association between
vital status and smoking is different than one. This hypothesis is meaningful
if we have already failed to reject the hypothesis of homogeneity. In this case,
we have already concluded that we do not have strong evidence that the
age-specific odds ratios differ, and the results of the test for an age-adjusted
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association indicate failure to reject the null hypothesis at the 5% significance
level. We conclude that the observed unadjusted negative association between
vital status and smoking is at least partially explained by age adjustment. In
fact, adjusting for age results in a positive association between smoking and
vital status, that is more in accordance with our expectations that smokers
may experience more health problems.

The results of the Whickham example are an instance of a more general
phenomenon in observational studies known as confounding. In the example,
the seemingly paradoxical finding of a positive association (albeit not statis-
tically significant) after adjustment for age can be explained by differences
between age groups in the proportion of women who were smokers (women in
the intermediate age group were more likely to smoke than women in the other
groups), and the fact that mortality was much higher in the older women. Of
course, other measured or unmeasured factors may also influence the relation-
ship between smoking and vital status. A complete analysis would consider
these. Also, it would be a good idea to consider alternate measures of age and
smoking if available (e.g. treating them as continuous variables in a regres-
sion model). The phenomena of confounding and interaction will be discussed
extensively in the regression context in the remaining chapters of the book.

3.5 Basic Methods for Survival Analysis

In the previous section we considered binary outcomes – that is, whether or
not an event has occurred. Survival data represents an extension in which we
take into account the time until the event occurs – or until the end of follow-up,
if the event has not yet occurred at that point. These more complex outcomes
are studied using techniques collectively known as survival analysis. The term
reflects the origin of these methods in demographic studies of life expectancy.

3.5.1 Right Censoring

To illustrate the special characteristics of survival data, we consider a study
of 6-mercaptopurine (6-MP) as maintenance therapy for children in remission
from acute lymphoblastic leukemia (ALL) (Freireich et al., 1963). Forty-two
patients achieved remission from induction therapy and were then randomized
in equal numbers to 6-MP or placebo. The survival time studied was from
randomization until relapse. At the time of the analysis, all 21 patients in the
placebo group had relapsed, whereas only 9 of 21 patients in the 6-MP group
had.

One crucial characteristic of these survival times is that for the 12 patients
in the 6-MP group who remained in remission at the time of the analysis, the
exact time to relapse was unobserved; it was only known to exceed the follow-
up time. For example, one patient had only been under observation for six
weeks, so we only know that the relapse time is longer than that. Such a
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survival time is said to be right-censored – “right” because on a graph the
relapse time would lie somewhere to the right of the censoring time of six
weeks.

Definition: A survival time is said to be right-censored at time t if it
is only known to be greater than t.

Table 3.11 displays follow-up times in the leukemia study. Asterisks mark the
right-censored remission times.

Table 3.11. Weeks in Remission Among Leukemia Patients

Placebo: 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,
12,15,17 22,23

6-MP: 6,6,6,6*,7,9*,10,10*,11*,13,16,17*,
19*,20*,22,23,25*,32*,32*,34*,35*

Because of the censoring, we could not validly estimate the effects of 6-
MP on time to relapse simply by comparing average follow-up times in the
two groups (say, with a t-test). This simple approach would not work because
the right-censored follow-up times in the 6-MP group are shorter, possibly
much shorter, than the actual unobserved times to relapse for these patients.
Furthermore, five of the right-censored values in the 6-MP group exceed the
largest follow-up time in the placebo group; to ignore this would be throwing
away valuable evidence for the effectiveness of the treatment. Survival analysis
makes it possible to analyze right-censored data like these without bias or
losing information contained in the length of the follow-up times.

3.5.2 Kaplan–Meier Estimator of the Survival Function

Suppose we would like to describe the probability of remaining in remission
during each of the first 10 weeks of the leukemia study. This probability is
called the survival function.

Definition: The survival function at time t, denoted S(t), is the prob-
ability of being event-free at t; equivalently, the probability that the
survival time is greater than t.

We will first show how the survival function can be estimated for the 21
placebo patients. Because there is no right-censoring in the placebo group,
we could simply estimate the survival function by the sample proportion in
remission for each week. However, we will use a more complicated method be-
cause it accommodates right-censored data. This method depends on writing
the survival function in any given week as a chain of conditional probabilities.
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In Table 3.12 the placebo data are summarized by consecutive one-week
intervals. The number of subjects who remain both in remission and in follow-
up at the start of the week is given in the second column. The third and fourth
columns list the numbers who relapse and who are censored during the week,
respectively. Since none are censored, the number in follow-up is reduced only
during weeks when a patient relapses. From the table, we see that in the first

Table 3.12. Follow-Up Table for Placebo Patients in the Leukemia Study

Week of No. No. No. Conditional prob. Survival
follow-up followed relapsed censored of remission function

1 21 2 0 19/21 = 0.91 0.91
2 19 2 0 17/19 = 0.90 0.90 × 0.91 = 0.81
3 17 1 0 16/17 = 0.94 0.94 × 0.81 = 0.76
4 16 2 0 14/16 = 0.88 0.88 × 0.76 = 0.67
5 14 2 0 12/14 = 0.86 0.86 × 0.67 = 0.57
6 12 0 0 12/12 = 1.00 1.00 × 0.57 = 0.57
7 12 0 0 12/12 = 1.00 1.00 × 0.57 = 0.57
8 12 4 0 8/12 = 0.67 0.67 × 0.57 = 0.38
9 8 0 0 8/8 = 1.00 1.00 × 0.38 = 0.38
10 8 0 0 8/8 = 1.00 1.00 × 0.38 = 0.38

week, 19 of 21 patients remained in remission, so a natural estimate of the
probability of being in remission in the first week is 19/21 = 0.91. In the
second week, 2 of the 19 placebo patients still in remission in the first week
relapsed, and the remaining 17 remained in remission. Thus the probability
of not relapsing in the second week, conditional on not having relapsed in the
first, is estimated by 17/19 = 0.90. It follows that the overall probability of
remaining in remission in the second week is estimated by 19/21 × 17/19 =
17/21 = 0.81. Likewise, the probability of remaining in remission in the third
week is estimated by 19/21 × 17/19 × 16/17 = 16/21 = 0.76. In this case
where there is no censoring, our chain of conditional probabilities reduces to
the overall sample proportion in remission at the end of every week. You can
easily verify that after ten weeks, the survival function estimate given by the
chain of conditional probabilities is equal to the sample proportion still in
remission.

Now we show how the survival function estimate based on the chain of
conditional probabilities accommodates the censoring in the 6-MP group, as
shown in Table 3.13. The problem we have to address is that two 6-MP sub-
jects are censored prior to week 10. Since it is unknown whether they would
have relapsed before the end of that week, we can no longer estimate the sur-
vival function at week 10 by the sample proportion still in remission at that
point.
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Table 3.13. Follow-Up Table for 6-MP Patients in the Leukemia Study

Week of No. No. No. Condition. prob. Survival
follow-up followed relapsed censored of remission function

1 21 0 0 21/21 = 1.00 1.00
2 21 0 0 21/21 = 1.00 1.00 × 1.00 = 1.00
3 21 0 0 21/21 = 1.00 1.00 × 1.00 = 1.00
4 21 0 0 21/21 = 1.00 1.00 × 1.00 = 1.00
5 21 0 0 21/21 = 1.00 1.00 × 1.00 = 1.00
6 21 3 1 18/21 = 0.86 0.86 × 1.00 = 0.86
7 17 1 0 16/17 = 0.94 0.94 × 0.86 = 0.81
8 16 0 0 16/16 = 1.00 1.00 × 0.81 = 0.81
9 16 0 0 16/16 = 1.00 1.00 × 0.81 = 0.81
10 16 0 1 16/16 = 1.00 1.00 × 0.81 = 0.81

The rows of Table 3.13 for weeks 6 and 7 show how the method works with
right-censored data. In week 6, three patients are observed to relapse, and one
is censored (by assumption at the end of the week). Thus the probability of
remaining in remission in week 6, conditional on having remained in remission
in week 5, is 18/21 = 0.86. Then we estimate the probability of remaining in
remission in week 7, conditional on having remained in remission in week 6,
as 16/17: in short, the patient censored during week 6 has disappeared from
the denominator, and does not contribute to the calculations for any subse-
quent week. Using this method for dealing with the censored observations,
the conditional probabilities can still be estimated. As a result, we obtain a
valid estimate of the probability of remaining in remission at the end of week
10, even though it is unknown whether the two censored patients remained in
remission at that time.

In essence we have estimated the survival functions in the placebo and
6-MP groups using the well-known Kaplan–Meier estimator to deal with right
censoring. In this example, the follow-up times have been grouped into weeks,
but the method also applies to cases where they are observed more exactly.
In Sect. 7.5.4 we examine the important assumption of independent censoring
which underlies these procedures.

3.5.3 Interpretation of Kaplan–Meier Curves

Plots of the Kaplan–Meier estimates of S(t) for the 6-MP and placebo groups
in the leukemia study are shown in Fig. 3.2. Note that the curves drop at
observed relapse times and are flat in the intervening periods. As a result,
we can infer periods of high risk, when the survival curve descends rapidly,
as well as periods of lower risk, when it remains relatively flat. In particular,
placebo patients appear to be at high risk of relapse in the first five weeks.
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Fig. 3.2. Survival Curves by Treatment for Leukemia Patients

In addition, the estimated survival function for the 6-MP group is above
the placebo curve over the entire follow-up period, giving evidence for higher
probability of remaining in remission, or equivalently longer times in remission
and lower risk of relapse in patients treated with 6-MP. In Sect. 3.5.6 below
we show how to test the null hypothesis that the survival functions are the
same in the two groups.

3.5.4 Median Survival

The Kaplan–Meier results may also be used to obtain estimates of the median
survival time, defined as the time at which half the relevant population has ex-
perienced the outcome event. In the absence of censoring, with every survival
time observed exactly, the median survival time could be simply estimated by
the sample median of survival times: that is, the earliest time at which half
the study participants have experienced the event. From Table 3.12 we can
see that median time to relapse is eight weeks in the placebo group – the first
week in which at least half the sample (12/21) have relapsed.

In the presence of censoring, however, we need to use the Kaplan–Meier
estimate Ŝ(t) to estimate the median. In this case, the median survival time
is estimated by the earliest time at which the Kaplan–Meier curve dips below
0.50. In the leukemia example, Fig. 3.2 shows that estimated median time to



3.5 Basic Methods for Survival Analysis 59

relapse is 23 weeks for 6-MP group, as compared to eight weeks for placebo –
more evidence for the effectiveness of 6-MP as maintenance therapy for ALL.

By extension, other quantiles of the distribution of survival times can be
obtained from the Kaplan–Meier estimate Ŝ(t). The pth quantile is estimated
as the earliest time at which the Kaplan–Meier curve drops below 1 − p. For
instance, the lower quartile (i.e., the 0.25 quantile) is the earliest time at which
the curve drops below 1 − 0.25 = 0.75. The lower quartiles for the 6-MP and
placebo groups are 13 and 4 weeks, respectively. However, a limitation of the
Kaplan–Meier estimate is that when the curve does not reach 1 − p, the pth
percentile cannot be estimated. For example, Fig. 3.2 makes it clear that for
the 6-MP group, quantiles of the distribution of remission times larger than
the 0.6th cannot be estimated using the Kaplan–Meier method.

Note that while we can estimate the median and other quantiles of the
distribution of survival times using the Kaplan–Meier results, we are unable
to estimate the mean of the distribution in the typical case, as in the 6-MP
group, where the longest follow-up time is censored (Problem 3.7).

A final note: graphs are useful for giving overall impressions of the survival
function, but it can difficult to read quantities from them (e.g., median survival
time or Ŝ(t) for some particular t). To obtain precise values, the results in
Tables 3.12 and 3.13 can be printed in Stata using the sts list and stsci
commands.

3.5.5 Cumulative Incidence Function

Another useful summary of survival data is the probability of having experi-
enced the outcome event by time t. In terms of our leukemia example, this
would mean estimating the probability of having relapsed by the end of each
week of the study.

Definition: The cumulative incidence function at time t, denoted F (t),
is the probability that the event has occurred time by t, or equivalently,
the probability that the survival time is less than or equal to t. Note
that F (t) = 1 − S(t).

The cumulative incidence function is estimated by the complement of the
Kaplan–Meier estimate of the survival function: that is, F̂ (t) = 1 − Ŝ(t). If
t has the same value τ for all study participants, then F (τ) is interpretable
as the outcome risk discussed in Sect. 3.4 on contingency table methods for
binary outcomes. The cumulative incidence plots shown in Fig. 3.3 are also
easily obtained in Stata.

Note that parametric methods can also be used to estimate survival dis-
tributions, as well quantities that are not immediately available from the
Kaplan–Meier approach (e.g., the mean and specified quantiles). However,
because they rest on explicit assumptions about the form of these distribu-
tions, they are somewhat less robust than the methods presented here. For
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Fig. 3.3. Cumulative Incidence Curves by Treatment for Leukemia Patients

example, the mean can be poorly estimated in situations where a large pro-
portion of the data are censored, with the result that the right tail of the
survival function is only “known” by extrapolation.

3.5.6 Comparing Groups Using the Logrank Test

The Kaplan–Meier estimator provides an interpretable description of the sur-
vival experience of two treatment groups in the study of 6-MP as maintenance
therapy for ALL. With those descriptions in hand, how do we go on to compare
differences in relapse between the treatments?

The primary tool for the comparison of the survival experience of two
or more groups is the logrank test. The null hypothesis for this test is that
the survival distributions being compared are equal at all follow-up times. In
the leukemia example, this implies that the population survival curves for 6-
MP and placebo coincide. The alternative hypothesis is that the two survival
curves differ at one or more points in time. Like the Kaplan–Meier estimator,
the logrank test accommodates right-censoring. It works by comparing ob-
served numbers of events in each group to the number expected if the survival
functions were the same. The comparison accounts for differences in length of
follow-up in calculating the expected numbers of events. Results are shown in
Table 3.14.
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Table 3.14. Logrank Test for Leukemia Example

Log-rank test for equality of survival functions
------------------------------------------------

| Events Events
group | observed expected
--------+-------------------------
6 MP | 9 19.25
Placebo | 21 10.75
--------+-------------------------
Total | 30 30.00

chi2(1) = 16.79
Pr>chi2 = 0.0000

There are a total of 30 events in the sample, 21 in the placebo group
and 9 in the 6-MP group. The column labeled Events expected gives the
expected number of events in the two groups under the null hypothesis of equal
survival functions. In the leukemia data, average follow-up was considerably
shorter in the placebo group and hence fewer events would be expected in that
group. Clearly there were many more events than expected among placebo
participants, and many fewer than expected in the 6-MP group. The resulting
χ2 statistic of 16.8 is statistically significant (P < 0.00005), in accord with
our informal earlier impression that 6-MP is effective maintenance therapy for
patients with ALL.

The logrank test is easily generalized to the comparison of more than two
groups. The logrank test statistic for K > 2 groups follows an approximate
χ2 distribution with K − 1 degrees of freedom. In this more general case, the
null hypothesis is

H0 : S1(t) = . . . = SK(t) for all t (3.16)

where Sk(t) is the survival function for the kth group at time t. In analogy to
the F -test discussed in Sect. 4.3.3, the alternative hypothesis is that some or
all of the survival curves differ at one or more points in time.

When the null hypothesis is rejected, visual inspection of the Kaplan–
Meier plots can help to determine where the important differences arise. An-
other common procedure for understanding group differences is to conduct
pairwise logrank tests. This requires cautious interpretation; see Sect. 4.3.4
for approaches to handling potential difficulties with multiple comparisons.

Like some other nonparametric methods reviewed earlier in this chapter,
and as its name implies, the logrank test only uses information about the ranks
of the survival times rather than their actual values. The semi-parametric Cox
proportional hazards model covered in Chapter 7 also works this way. In every
instance, the nonparametric approach reduces the need for making restrictive
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and sometimes hard-to-verify assumptions, with a view toward making esti-
mates more robust.

There is an extensive literature on testing differences in survival between
groups. These tests have varying levels of similarity to the logrank test. The
most popular are extensions of the Wilcoxon test for censored data; these
tests can be viewed as a weighted versions of the logrank test. Such weighting
can make sense, for example, if early events are judged to be particularly
important.

Chapter 7 covers censoring and other types of missing data in greater
depth, and also presents more comprehensive methods of analysis for survival
data, including the multipredictor Cox proportional hazards regression model.

3.6 Bootstrap Confidence Intervals

Bootstrapping is a widely applicable method for obtaining standard errors and
confidence intervals in cases where approximate methods for computing valid
confidence intervals have been developed but not conveniently implemented
in statistical packages; other situations where development of such methods
has turned out to be intractable; and data sets where the assumptions un-
derlying the established methods are badly enough violated that the resulting
confidence intervals would be unreliable.

In general, standard errors and confidence intervals reflect the sampling
distribution of statistics of interest, such as regression coefficient estimates:
that is, their relative frequency if we repeatedly drew independent samples of
the same size from the source population, and recalculated the statistics in
each new sample. In standard problems such as linear regression, the sampling
distribution of the regression coefficient estimates is well known on theoretical
grounds, provided the data meet underlying assumptions.

Bootstrap procedures approximate the sampling distribution of statistics
of interest by a resampling procedure. Specifically, the actual sample is treated
as if it were the source population, and bootstrap samples are repeatedly
drawn from it. Bootstrap samples of the same size as the actual sample – a
key determinant of precision – are obtained by resampling with replacement,
so that in a given bootstrap sample some observations appear more than once,
some once, and some not at all. We use the sample to represent the population
and hence resampling from the actual data mimics drawing repeated samples
from the source population.

Then, from each of a large number of bootstrap samples, the statistics of
interest are computed. For example, if our focus was on the difference between
the coefficient estimates for a predictor of interest before and after adjustment
for a covariate, the two models would be estimated in each bootstrap sample,
and the difference between the two coefficient estimates tabulated across sam-
ples. The result would be the bootstrap distribution of the difference, which
can in turn be regarded as an estimate of its actual sampling distribution.
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Confidence intervals for the statistic of interest would then be computed from
the bootstrap distribution. Stata calculates bootstrap confidence intervals us-
ing three procedures:

• Normal approximation If the bootstrap distribution of the statistic
of interest is reasonably normal, it may be enough to compute its
standard deviation, then compute a conventional confidence inter-
val centered on the observed statistic, simply substituting the boot-
strap SD for the usual model-based standard error of the statistic.
The bootstrap SD is a relatively stable estimate of the standard
error, since it is based on the complete set of bootstrap samples,
so a relatively small number of bootstrap samples may suffice.
However, we often resort to the bootstrap precisely because the
sampling distribution of the statistic of interest is unlikely to be
normal, particularly in the tails. Thus this method is less reliable
for constructing confidence intervals than for estimating the stan-
dard error of the statistic.

• Percentile Method The confidence interval for the statistic of in-
terest is constructed from the relevant quantiles of the bootstrap
distribution. Because the extreme percentiles of a sample are very
noisy estimates of the corresponding percentiles of a population
distribution, a much larger number of bootstrap samples is re-
quired. If 1,000 samples were used, then a 95% CI for the statistic
of interest would span the 25th to 975th largest bootstrap esti-
mates.

• Bias-Corrected Percentile Method The percentile-based confidence
interval is shifted to account for bias, as evidenced by a difference
between the observed statistic and the median of the bootstrap
estimates. Again, a relatively large number of bootstrap samples
is required.

Table 3.15 shows Stata output for the simple linear regression model for SBP
shown earlier in Table 3.4, now with a bootstrap confidence interval. In this
instance, all three bootstrap results are fairly consistent with the parametric
95% CI (0.73–0.81 mmHg). See Sects. 4.5.3, 6.5.1, 7.5.1, and 8.6.1 for other
examples where bootstrap confidence intervals are computed.

3.7 Interpretation of Negative Findings

Confidence intervals obtained either by standard parametric methods or by
the bootstrap play a particularly important role when the data do not enable
us to reject a null hypothesis of interest. It is easy to overstate such negative
findings. Recall that P > 0.05 does not prove the null hypothesis; it only
indicates that the observed result could have arisen by chance, not that it
necessarily did. A negative result worth discussing is best interpreted in terms
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Table 3.15. Bootstrap Confidence Interval for Association of Age With SBP

. reg SBP age

Source | SS df MS Number of obs = 276
-------------+------------------------------ F( 1, 274) = 5.58

Model | 2179.70702 1 2179.70702 Prob > F = 0.0188
Residual | 106991.347 274 390.47937 R-squared = 0.0200

-------------+------------------------------ Adj R-squared = 0.0164
Total | 109171.054 275 396.985652 Root MSE = 19.761

------------------------------------------------------------------------------
sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | .4405286 .186455 2.36 0.019 .0734621 .8075952

_cons | 105.713 12.40238 8.52 0.000 81.2969 130.129
------------------------------------------------------------------------------

. bootstrap ‘"reg SBP age"’ _b, reps(1000)

command: reg SBP age
statistics: b_age = _b[age]

Bootstrap statistics Number of obs = 276
Replications = 1000

------------------------------------------------------------------------------
Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
-------------+----------------------------------------------------------------

b_age | 1000 .4405287 -.0078003 .1744795 .0981403 .782917 (N)
| .0655767 .7631486 (P)
| .0840077 .7690148 (BC)

------------------------------------------------------------------------------
Note: N = normal

P = percentile
BC = bias-corrected

of the point estimate and confidence interval. In the following example, we
can distinguish four possible cases, in increasing order of the strength of the
negative finding. Suppose that a 20% reduction risk of recurrent heart attacks
would justify the risks and costs of a possible new treatment, but that a risk
reduction of only 5% would not meet this standard. The four cases are–

• The estimated risk reduction was large enough to be substantively
important, but the confidence interval spanned the null value and
was thus too wide to provide strong evidence for effectiveness. Ex-
ample: treatment reduced recurrence risk an estimated 20% (95%
CI –1% to 37%). In this case we might conclude that the study
gives inconclusive evidence for the potential importance of the
treatment; but it would be also important to note that the confi-
dence interval includes effects too small to be worthwhile.

• The estimated risk reduction was too small to be important, but
the confidence interval extended to values that could be important.
Example: treatment reduced recurrence risk an estimated 5% (95%
CI –15% to 22%). In this case the point estimate provides little
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support for the importance of the treatment, but the confidence
interval does not clearly rule out a potentially important effect.

• The estimated risk reduction was too small to be important, and
while the confidence interval did not include the null (i.e., P <
0.05), it did exclude values that could be important. Example:
treatment reduced recurrence risk an estimated 3% (95% CI: 1%
to 5%). In this case, we can definitively say that the treatment
does not have a clinically important benefit, even though we can
also rule out no effect.

• The estimated risk reduction was too small to be important, and
the confidence interval both included the null and excluded values
that could be important. Example: treatment reduced recurrence
risk an estimated 1% (95% CI –2% to 4%). Again, we can defini-
tively say that the treatment does not have a clinically important
benefit.

This approach using the point estimate and confidence interval is prefer-
able to interpretations based on ex post facto power calculations, which are
driven by assumptions about the true effect size, and often inappropriately
based on treating the observed effect size as if it were the true population
value (Hoenig and Heisey, 2001). A variant of this approach is to suggest that
with a larger sample, the observed effect would have been statistically signif-
icant. But of course the confidence interval for most negative findings tells
us that the true effect size may well be nil or worse, which a larger sample
might also firmly establish. In contrast to these problematic interpretations,
the point estimate and confidence interval can together be used to summarize
what the data at hand have to tell us about the strength of the association
and the precision of our information about it.

3.8 Further Notes and References

Among the best introductory statistics books are Freedman et al. (1991), De-
vore and Peck (1986), and Pagano and Gavreau (1993). Consult these for more
complete coverage of basic statistical inference, analysis of variance, and linear
regression. Good references on methods for the analysis of contingency tables
include Fleiss et al. (2003) and Jewell (2004). Two applied survival analysis
texts with a biomedical orientation are Miller et al. (1981) and Marubini and
Valsecchi (1995). Finally, for a review of bootstrap methods, see Efron and
Tibshirani (1986, 1993).

3.9 Problems

Problem 3.1. An alternative to OLS is least absolute deviation (LAD) re-
gression, in which the regression line is selected to minimize the sum of the
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absolute vertical differences (rather than squared differences) between the line
and the data. Explain how this might reduce sensitivity to outliers.

Problem 3.2. To create a new age variable age10 in units of ten years, we
would divide the original variable age (in years) by ten, so that a woman of
age 67 would have age10 = 6.7. Similarly, the standard deviation of age10
is changed by the same factor: that is, the SD of age is 6.38, so the SD of
age10 is 0.638. Suppose we want to estimate the effect of age in SD units, as
is commonly done. How do we compute the new variable and what is its SD?

Problem 3.3. Using (3.12) and a statistical analysis program, demonstrate
with your own data that the slope coefficient in a univariate linear model with
continuous predictor and outcome is a rescaled transformation of the sample
correlation between predictor and outcome.

Problem 3.4. The correlation coefficient is a measure of linear association.
Suppose x takes on values evenly over the range from –10 to 10, and that
E[y|x] = x2. In this case the correlation of x and y is zero, even though there
is clearly a systematic relationship. What does this suggest about the need
to test model assumptions? Using a statistical package, generate a random
sample of 100 values of x uniformly distributed on [–10, 10], compute E[y|x]
for each value of x, add randomly generated standard normal errors to get
the 100 values of y, and check the sample correlation of x and y.

Problem 3.5. Verify the estimates for the excess risk, relative risk, and odds
ratio for the HIV example presented in Table 3.6.

Problem 3.6. The data presented below are from a case-control study of
esophageal cancer. (The study and data are described in more detail in Sect.
6.3.)

. tabulate case ditob

Case |
status |

(1=case, | tobacco
0=control) | 0-9 g/day 10+ g/day | Total
-----------+----------------------+----------

0 | 255 520 | 775
1 | 9 191 | 200

-----------+----------------------+----------
Total | 264 711 | 975

The rows (labeled according to Case status) represent 200 cancer cases
and 775 cancer-free controls selected from the same population as the cases.
The columns represent a binary indicator of reported consumption of more
than ten grams of tobacco per day.
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Compute the odds ratio comparing the risk of cancer in individuals who
report consuming more than ten grams of tobacco per day with the the corre-
sponding risk in the group reporting less or no consumption. Next, compute
the odds ratio comparing the proportion of individuals reporting higher levels
of consumption among cases with that among the controls. Comment.

Problem 3.7. Suppose we could estimate the value of the survival function
S(t) for every possible survival time from t = 0 onward. Clearly S(t) → 0 as
t becomes large. It can be shown that the mean survival time is equal to the
area under this “complete” survival curve. Why are we unable to estimate
mean survival from the Kaplan–Meier result when the largest follow-up time
is censored? To gain insight, contrast the survival curves for the 6-MP and
placebo groups in Fig. 3.2.

Problem 3.8. In the leukemia study, the probability of being relapse-free at
20 weeks, conditional on being relapse-free at 10 weeks, can be estimated
by the Kaplan–Meier estimate for 20 weeks, divided by the corresponding
estimate for 10 weeks. In the placebo group, those estimates are 0.38 and 0.10
respectively. Verify that the estimated conditional probability of remission at
week 20, conditional on being in remission at week 10, is 0.25. In the 6-MP
group, estimated probabilities of remaining in remission are 0.81, 0.63, and
0.45 at 10, 20, and 30 weeks, respectively. Use these values to estimate the
probabilities of remaining in remission at 20 and 30 weeks, conditional on
being in remission at 10 weeks.

3.10 Learning Objectives

1. Be familiar with the t-test (including versions for paired and unequal-
variance data), one-way ANOVA, the correlation coefficient r, and some
nonparametric alternatives.

2. Describe the assumptions and mechanics of the simple linear model for
continuous outcomes, and interpret the results.

3. Define the basic measures of association (i.e., excess risk, relative risk, and
odds ratio) for binary outcomes.

4. Be familiar with standard contingency table approaches to evaluating as-
sociations between binary outcomes and categorical predictors, including
the χ2 test and the Mantel–Haenszel approach to estimating odds ratios
adjusted for the confounding influence of additional predictors.

5. Define right-censoring.
6. Interpret Kaplan–Meier survival and cumulative incidence curves.
7. Calculate median survival from an estimated survival curve.
8. Interpret the results of a logrank test.
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Linear Regression

Post-menopausal women who exercise less tend to have lower bone mineral
density (BMD), putting them at increased risk for fractures. But they also
tend to be older, frailer, and heavier, which may explain the association be-
tween exercise and BMD. People whose diet is high in fat on average have
higher low-density lipoprotein (LDL) cholesterol, a risk factor for coronary
heart disease (CHD). But they are also more likely to smoke and be over-
weight, factors which are also strongly associated with CHD risk. Increasing
body mass index (BMI) predicts higher levels of hemoglobin Hba1c, a marker
for poor control of glucose levels; however, older age and ethnic background
also predict higher Hba1c.

These are all examples of potentially complex relationships in observa-
tional data where a continuous outcome of interest, such as BMD, SBP, and
Hba1c, is related to a risk factor in analyses that do not take account of other
factors. But in each case the risk factor of interest is associated with a num-
ber of other factors, or potential confounders, which also predict the outcome.
So the simple association we observe between the factor of interest and the
outcome may be explained by the other factors.

Similarly, in experiments, including clinical trials, factors other than treat-
ment may need to be taken into account. If the randomization is properly
implemented, treatment assignment is on average not associated with any
prognostic variable, so confounding is usually not an issue. However, in strati-
fied and other complex study designs, multipredictor analysis is used to ensure
that confidence intervals, hypothesis tests, and P -values are valid. For exam-
ple, it is now standard practice to account for clinical center in the analysis of
multi-site clinical trials, often using the random effects methodology to be in-
troduced in Chapter 8. And with continuous outcomes, stratifying on a strong
predictor in both design and analysis can account for a substantial proportion
of outcome variability, increasing the efficiency of the study. Multipredictor
analysis may also be used when baseline differences are apparent between the
randomized groups, to account for potential confounding of treatment assign-
ment.
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Another way the predictor–outcome relationship can depend on other fac-
tors is that an association may not be the same in all parts of the population.
For example, the association of lipoprotein(a) levels with risk of CHD events
appears to vary by ethnicity. Hormone therapy has a smaller beneficial effect
on LDL levels among post-menopausal women who are also taking statins,
and its effect on BMD may be greater in younger post-menopausal women.
These are examples of interaction, where the association of a factor of primary
interest with a continuous outcome is modified by another factor.

The problem of sorting out complex relationships is not restricted to con-
tinuous outcomes; the same issues arise with the binary outcomes covered in
Chapter 6, survival times in Chapter 7, and repeated measures in Chapter 8.
A general statistical approach to these problems is needed.

The topic of this chapter is the multipredictor linear regression model, a
flexible and widely used tool for assessing the joint relationships of multiple
predictors with a continuous outcome variable. We begin by illustrating some
basic ideas in a simple example (Sect. 4.1). Then in Sect. 4.2 we present the
assumptions of the multipredictor linear regression model and show how the
simple linear model reviewed in Chapter 3 is extended to accommodate multi-
ple predictors. Sect. 4.3 shows how categorical predictors with multiple levels
are coded and interpreted. Sect. 4.4 describes how multipredictor regression
models deal with confounding; in particular Sect. 4.4.1 uses a counterfactual
view of causal effects to show how and under what conditions multipredictor
regression models might be used to estimate them. These themes recur in
Sects. 4.5 and 4.6 on mediation and interaction, respectively. Sect. 4.7 intro-
duces some simple methods for assessing the fit of the model to the data and
how well the data conform to the underlying assumptions of the model. In
Chapter 5 we discuss the difficult problem of which variables and how many
to include in a multipredictor model.

4.1 Example: Exercise and Glucose

Glucose levels above 125 mg/dL are diagnostic of diabetes, while levels in
the range from 100 to 125 mg/dL signal increased risk of progressing to this
serious and increasingly widespread condition. So it is of interest to determine
whether exercise, a modifiable lifestyle factor, would help people reduce their
glucose levels and thus avoid diabetes.

To answer this question definitively would require a randomized clinical
trial, a difficult and expensive undertaking. As a result, research questions like
this are often initially looked at using observational data. But this is compli-
cated by the fact that people who exercise differ in many ways from those
who do not, and some of the other differences might explain any unadjusted
association between exercise and glucose level.

Table 4.1 shows a simple linear model using a measure of exercise to predict
baseline glucose levels among 2,032 participants without diabetes in the HERS
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Table 4.1. Unadjusted Regression of Glucose on Exercise
. reg glucose exercise if diabetes == 0

Source | SS df MS Number of obs = 2032
-------------+------------------------------ F( 1, 2030) = 14.97

Model | 1412.50418 1 1412.50418 Prob > F = 0.0001
Residual | 191605.195 2030 94.3867954 R-squared = 0.0073

-------------+------------------------------ Adj R-squared = 0.0068
Total | 193017.699 2031 95.0357946 Root MSE = 9.7153

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
exercise | -1.692789 .4375862 -3.87 0.000 -2.550954 -.8346243

_cons | 97.36104 .2815138 345.85 0.000 96.80896 97.91313
------------------------------------------------------------------------------

clinical trial of hormone therapy (Hulley et al., 1998). Women with diabetes
are excluded because the research question is whether exercise might help to
prevent progression to diabetes among women at risk, and because the causal
determinants of glucose may be different in that group. Furthermore, glucose
levels are far more variable among diabetics, a violation of the assumption
of homoscedasticity, as we show in Sect. 4.7.3 below. The coefficient estimate
(Coef.) for exercise shows that average baseline glucose levels were about 1.7
mg/dL lower among women who exercised at least three times a week than
among women who exercised less. This difference is statistically significant
(t = −3.87, P < 0.0005).

However, women who exercise are slightly younger, a little more likely to
use alcohol, and in particular have lower average body mass index (BMI),
all factors associated with glucose levels. This implies that the lower average
glucose we observe among women who exercise could be due at least in part to
differences in these other predictors. Under these conditions, it is important
that our estimate of the difference in average glucose levels associated with
exercise be “adjusted” for the effects of these potential confounders of the
unadjusted association. Ideally, adjustment using a multipredictor regression
model provides an estimate of the causal effect of exercise on average glucose
levels, by holding the other variables constant. In Sect. 4.4 below, the ratio-
nale for estimation of causal effects using multipredictor regression models is
explained in more detail.

From Table 4.2 we see that in a multiple regression model that also in-
cludes – that is, adjusts for – age, alcohol use (drinkany), and BMI, average
glucose is estimated to be only about 1 mg/dL lower among women who ex-
ercise (95% CI 0.1–1.8, P = 0.027), holding the other three factors constant.
The multipredictor model also shows that average glucose levels are about 0.7
mg/dL higher among alcohol users than among non-users. Average levels also
increase by about 0.5 mg/dL per unit increase in BMI, and by 0.06 mg/dL for
each additional year of age. Each of these associations is statistically signifi-
cant after adjustment for the other predictors in the model. Furthermore, the
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Table 4.2. Adjusted Regression of Glucose on Exercise
. reg glucose exercise age drinkany BMI if diabetes == 0;

Source | SS df MS Number of obs = 2028
-------------+------------------------------ F( 4, 2023) = 39.22

Model | 13828.8486 4 3457.21214 Prob > F = 0.0000
Residual | 178319.973 2023 88.1463042 R-squared = 0.0720

-------------+------------------------------ Adj R-squared = 0.0701
Total | 192148.822 2027 94.7946828 Root MSE = 9.3886

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
exercise | -.950441 .42873 -2.22 0.027 -1.791239 -.1096426

age | .0635495 .0313911 2.02 0.043 .0019872 .1251118
drinkany | .6802641 .4219569 1.61 0.107 -.1472513 1.50778

BMI | .489242 .0415528 11.77 0.000 .4077512 .5707328
_cons | 78.96239 2.592844 30.45 0.000 73.87747 84.04732

------------------------------------------------------------------------------

association of each of the four predictors with glucose levels is adjusted for
the effects of the other three, in the sense of taking account of its correlation
with the other predictors and their adjusted associations with glucose levels.
In summary, the multipredictor model for glucose levels shows that the unad-
justed association between exercise and glucose is partly but not completely
explained by BMI, age, and alcohol use, and that exercise remains a statis-
tically significant predictor of glucose levels after adjustment for these three
other factors – that is, when they are held constant by the multipredictor
regression model.

Still, we have been careful to retain the language of association rather than
cause and effect, and in Sect. 4.4 and Chapter 5 will suggest that adjustment
for additional potential confounders would be needed before we could consider
a causal interpretation of the result.

4.2 Multiple Linear Regression Model

Confounding thus motivates models in which the average value of the outcome
is allowed to depend on multiple predictors instead of just one. Many basic
elements of the multiple linear model carry over from the simple linear model,
which was reviewed in Sect. 3.3. In Sects. 4.4.1–4.4.9 below, we show how
this model is potentially suited to estimating causal relationships between
predictors and outcomes.

4.2.1 Systematic Part of the Model

For the simple linear model with a single predictor, the regression line is
defined by
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E[y|x] = average value of outcome y given predictor value x

= β0 + β1x. (4.1)

In the multiple regression model, this generalizes to

E[y|x] = β0 + β1x1 + β2x2 + · · · + βpxp, (4.2)

where x represents the collection of p predictors x1, x2, . . . xp in the model,
and β1, β2, . . . βp are the corresponding regression coefficients.

The right-hand side of model (4.2) has a relatively simple form, a linear
combination of the predictors and coefficients. Analogous linear combinations
of predictors and coefficients, often referred to as the linear predictor, are
used in all the other regression models covered in this book. Despite the
simple form of (4.2), the multipredictor linear regression model is a flexible
tool, and with the elaborations to be introduced later in this chapter, usually
allows us to represent with considerable realism how the average value of
the outcome varies systematically with the predictors. In Sect. 4.7, we will
consider methods for examining the adequacy of this part of the model and
for improving it.

Interpretation of Adjusted Regression Coefficients

In (4.2), the coefficient βj , j = 1, · · · , p gives the change in E[y|x] for an in-
crease of one unit in predictor xj , holding other factors in the model constant;
each of the estimates is adjusted for the effects of all the other predictors. As
in the simple linear model, the intercept β0 gives the value of E[y|x] when
all the predictors are equal to zero; “centering” of the continuous predictors
can make the intercept interpretable. If confounding has been persuasively
ruled out, we may be willing to interpret the adjusted coefficient estimates as
representing causal effects.

4.2.2 Random Part of the Model

As before, individual observations of the outcome yi are modeled as varying
by an error term εi about an average determined by their predictor values xi:

yi = E[yi|xi] + εi

= β0 + β1x1i + β2x2i + · · · + βpxpi + εi, (4.3)

where xji is the value of predictor variable xj for observation i. We again
assume that εi ∼ i.i.d N (0, σ2

ε); that is, ε is normally distributed with mean
zero and the same standard deviation σε at every value of x, and that its
values are statistically independent.
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Fitted Values, Sums of Squares, and Variance Estimators

From (4.2) it is clear that the fitted values ŷi, defined for the simple linear
model in Equation (3.4), now depend on all p predictors and the correspond-
ing regression coefficient estimates, rather than just one predictor and two
coefficients. The resulting sums of squares and variance estimators introduced
in Sect. 3.3 are otherwise unchanged in the multipredictor model.

In the glucose example, the residual standard deviation, shown as Root
MSE, declines from 9.7 in the unadjusted model (Table 4.1) to 9.4 in the model
adjusting for age, alcohol use, and BMI (Table 4.2).

Variance of Adjusted Regression Coefficients

Including multiple predictors does affect the variance of β̂j , which now de-
pends on an additional factor rj , the multiple correlation of xj with the other
predictors in the model. Specifically,

V̂ar(β̂j) =
s2

y|x
(n − 1)s2

xj
(1 − r2

j )
. (4.4)

where, as before, s2
y|x is the residual variance of the outcome and s2

xj
is the

variance of xj ; rj is equivalent to r =
√

R2 from a multiple linear model in
which xj is regressed on all the other predictors. The term 1/(1−r2

j ) is known
as the variance inflation factor, since Var(β̂j) is increased to the extent that
xj is correlated with other predictors in the model.

However, inclusion of other predictors, especially powerful ones, also tends
to decrease s2

y|x, the residual or unexplained variance of the outcome. Thus the

overall impact of including other predictors on Var(β̂j) depends on both the
correlation of xj with the other predictors and how much additional variability
they explain. In the glucose example, the standard error of the coefficient
estimate for exercise declines slightly, from 0.44 to 0.43, after adjustment for
age, alcohol use, and BMI. This reflects the reduction in residual standard
deviation previously described, as well as a variance inflation factor in the
adjusted model of only 1.03.

t-Tests and Confidence Intervals

The t-tests of the null hypothesis H0: βj = 0 and confidence intervals for βj

carry over almost unchanged for each of the βs estimated by the model, only
using (4.4) rather than (3.11) to compute the standard error of the regression
coefficient, and comparing the t-statistic to a t-distribution with n − (p + 1)
degrees of freedom (p is the number of predictors in the model, and an extra
degree of freedom is used in estimation of the intercept β0).

However, there is a substantial difference in interpretation, since the results
are now adjusted for other predictors. Thus in rejecting the null hypothesis
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H0: βj = 0 we would be making the stronger claim that, in the population,
xj predicts y, holding the other factors in the model constant. Similarly, the
confidence interval for βj refers to the parameter which takes account of the
other p − 1 predictors in the model.

We have just seen that Var(β̂j) may not be increased by adjustment. How-
ever, in Sect. 4.4 we will see that including other predictors in order to control
confounding commonly has the effect of attenuating the unadjusted estimate
of the association of xj with y. This reflects the fact that the population pa-
rameter being estimated in the adjusted model is often closer to zero than
the parameter estimated in the unadjusted model, since some of the unad-
justed association is explained by other predictors. If this is the case, then
even if Var(β̂j) is unchanged, it may be more difficult to reject H0: βj = 0 in
the adjusted model. In the glucose example, the adjusted coefficient estimate
for exercise is considerably smaller than the unadjusted estimate. As a result
the t-statistic is reduced in magnitude from –3.87 to –2.22 – still statistically
significant, but less highly so.

4.2.3 Generalization of R2 and r

The coefficient of determination R2 = MSS / TSS retains its interpretation as
the proportion of the total variability of the outcome that can be accounted
for by the predictor variables. Under the model, the fitted values summarize
all the information that the predictors supply about the outcome. Thus the
multiple correlation coefficient r =

√
R2 now represents the correlation be-

tween the outcome y and the fitted values ŷ. It is easy to confirm this identity
by extracting the fitted values from a regression model and computing their
correlation with the outcome (Problem 4.3). In the glucose example, R2 in-
creases from less than 1% in the unadjusted model to 7% after inclusion of
age, alcohol use, and BMI, a substantial increase in relative if not absolute
terms.

4.2.4 Standardized Regression Coefficients

In Sect. 3.3.9 we saw that the slope coefficient β1 in a simple linear model is
systematically related to the Pearson correlation coefficient (3.12); specifically,
r = β1σx/σy, where σx and σy are the standard deviations of the predictor and
outcome. Moreover, we pointed out that the scale-free correlation coefficient
makes it easier to compare the strength of association between the outcome
and various predictors across single-predictor models. In the context of a mul-
tipredictor model, standardized regression coefficients play this role. Obtained
using the beta option to the regress command in Stata, the standardized
regression coefficient β̂s

j for predictor xj is defined in analogy to (3.12) as

β̂s
j = β̂jSD(xj)/SD(y), (4.5)
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where SD(xj) and SD(y) are the sample standard deviations of predictor xj

and the outcome y. These standardized coefficient estimates are what would
be obtained from the regression if the outcome and all the predictors were first
rescaled to have standard deviation 1. Thus they give the change in standard
deviation units in the average value of y per standard deviation increase in
the predictor. Standardized coefficients make it easy to compare the strength
of association of different continuous predictors with the outcome within the
same model.

For binary predictors, however, the unstandardized regression coefficients
may be more directly interpretable than the standardized estimates, since the
unstandardized coefficients for such predictors simply estimate the differences
in the average value of the outcome between the two groups defined by the
predictor, holding the other predictors in the model constant.

4.3 Categorical Predictors

In Chapter 3 the simple regression model was introduced with a single con-
tinuous predictor. However, predictors in both simple and multipredictor re-
gression models can be binary, categorical, or discrete numeric, as well as
continuous numeric.

4.3.1 Binary Predictors

The exercise variable in the model for LDL levels shown in Table 4.1 is an
example of a binary predictor. A good way to code such a variable is as
an indicator or dummy variable, taking the value 1 for the group with the
characteristic of interest, and 0 for the group without the characteristic. With
this coding, the regression coefficient corresponding to this variable has a
straightforward interpretation as the increase or decrease in average outcome
levels in the group with the characteristic, with respect to the reference group.

To see this, consider the simple regression model for average glucose values:

E[glucose|x] = β0 + β1exercise (4.6)

With the indicator coding of exercise (1 = yes, 0 = no), the average value
of glucose is β0 +β1 among women who do exercise, and β0 among the rest. It
follows directly that β1 is the difference in average glucose levels between the
two groups. This is consistent with our more general definition of βj as the
change in E[y|x] for a one-unit increase in xj . Furthermore, the t-test of the
null hypothesis H0: β1 = 0 is a test of whether the between-group difference in
average glucose levels is statistically significant. In fact this unadjusted model
is equivalent to a t-test comparing glucose levels in women who do and do not
exercise. A final point: when coded this way, the average value of the exercise
variable gives the proportion of women who exercise.
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A commonly used alternative coding for binary variables is (1 = yes, 2
= no). With this coding, the coefficient β1 retains its interpretation as the
between-group difference in average glucose levels, but now among women
who do not exercise as compared to those who do, a less intuitive way to
think of the difference. Furthermore, with this coding the coefficient β0 has
no straightforward interpretation, and the average value of the binary variable
is not equal to the proportion of the sample in either group. However, overall
model fit, including fitted values of the outcome, standard errors, and P -
values, are the same with either coding (Problem 4.1).

4.3.2 Multilevel Categorical Predictors

The 2,763 women in the HERS cohort also responded to a question about
how physically active they considered themselves compared to other women
their age. The five-level response, designated physact, ranged from “much
less active” to “much more active,” and was coded in order from 1 to 5.
This is an example of an ordinal variable, as described in Chapter 2, with
categories that are meaningfully ordered, but separated by increments that
may not be accurately reflected in the numerical codes used to represent them.
For example, responses “much less active” and “somewhat less active” may
represent a larger difference in physical activity than “somewhat less active”
and “about as active.”

Multilevel categorical variables can also be nominal, in the sense that
there is no intrinsic ordering in the categories. Examples include ethnicity,
marital status, occupation, and geographic region. With nominal variables it
is even clearer that the numeric codes often used to represent the variable in
the database cannot be treated like the values of a numeric variable such as
glucose.

Categories are usually set up to be mutually exclusive and exhaustive, so
that every member of the population falls into one and only one category.
In that case both ordinal and nominal categories define subgroups of the
population.

Both types of categorical variables are easily accommodated in multi-
predictor linear and other regression models, using indicator or dummy vari-
ables. As with binary variables, where two categories are represented in the
model by a single indicator variable, categorical variables with K ≥ 2 levels
are represented by K−1 indicators, one for each of level of the variable except
a baseline or reference level. Suppose level 1 is chosen as the baseline level.
Then for k = 2, 3, . . . , K, indicator variable k has value 1 for observations be-
longing to the category k, and 0 for observations belonging to any of the other
categories. Note that for K = 2 this also describes the binary case, in which
the “no” response defines the baseline or reference group and the indicator
variable takes on value 1 only for the “yes” group.

Stata automatically defines indicator variables using the xi: command
prefix in conjunction with the i. variable prefix. By default it uses the level
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Table 4.3. Coding of Indicators for a Multilevel Categorical Variable

Indicator variables
physact Iphysact 2 Iphysact 3 Iphysact 4 Iphysact 5

Much less active 0 0 0 0
Somewhat less active 1 0 0 0
About as active 0 1 0 0
Somewhat more active 0 0 1 0
Much more active 0 0 0 1

with the lowest value as the reference group; for text variables this means
using the first in alphabetic order. Following the Stata convention for the
naming of the four indicator variables, Table 4.3 shows the values of the four
indicator variables corresponding to the five response levels of physact. Each
level of physact is defined by a unique pattern in the four indicator variables.

Furthermore, the corresponding βs have a straightforward interpretation
For the moment, consider a simple regression model in which the five levels
of physact are the only predictors. Then

E[glucose|x] = β0 + β2 Iphysact 2 + · · · + β5 Iphysact 5. (4.7)

For clarity, the βs in (4.7) are indexed in accord with the levels of physact,
so β1 does not appear in the model. Letting the four indicators take on values
of 0 or 1 as appropriate for the five groups defined by physact, we obtain

E[glucose|x] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β0 physact = 1
β0 + β2 physact = 2
β0 + β3 physact = 3
β0 + β4 physact = 4
β0 + β5 physact = 5.

(4.8)

From (4.8) it is clear that the intercept β0 gives the value of E[glucose|x]
in the reference or much less active group (physact = 1). Then it is just a
matter of subtracting the first line of (4.8) from the second to see that β2
gives the difference in the average glucose in the somewhat less active group
(physact = 2) as compared to the much less active group. Accordingly the
t-test of H0: β2 = 0 is a test of whether average glucose levels are the same
in the much less and somewhat less active groups (physact = 1 and 2). And
similarly for β3, β4, and β5.

Four other points are to be made from (4.8).

• Without other predictors, or covariates, the model is equivalent
to a one-way ANOVA (Problem 4.10). Also the model is said to
be saturated and the population group means would be estimated
under model (4.8) by the sample averages. With covariates, the
estimated means for each group would be adjusted for between-
group differences in the covariates included in the model.
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• The parameters of the model can be manipulated to give the es-
timated mean in any group, using (4.8), or to give the estimated
differences between any two groups. For instance, the difference
in average outcome levels between the much more and somewhat
more active groups is equal to β5 −β4 (why?). All regression pack-
ages make it straightforward to estimate and test hypotheses about
these linear contrasts. This implies that choice of reference group
is in some sense arbitrary. While a particular choice may be best
for ease of presentation, possibly because contrasts with the se-
lected reference group are of primary interest, alternative reference
groups result in essentially the same model (Problem 4.4).

• The five estimated group means can take on almost any pattern
with respect to each other, in either the adjusted or unadjusted
model. In contrast, if physact were treated as a score with integer
values 1 through 5, the estimated means would be constrained to
lie on a straight regression line.

Table 4.4 shows results for the model with physact treated as a categorical
variable, again using data for women without diabetes in HERS. In the regres-
sion output, β̂0 is found in the column and row labeled Coef. and cons; we
see that average glucose in the much less active group is approximately 98.4
mg/dL. The differences between the reference group and the two most active
groups are statistically significant; for instance, the average glucose level in
the much more active group ( Iphysact 5) is 3.3 mg/dL lower than in the
much less active group (t = −2.92, P = 0.003).

Using (4.8), the first lincom command after the regression computes the
estimated mean in the somewhat less active group, equal to the sum of β̂0
( cons) and β̂2 ( Iphysact 2), or 97.6 mg/dL (95% CI 96.5–98.6 mg/dL). We
can also use the lincom command to assess pairwise differences between two
groups when neither is the referent. For example, the second lincom result
in Table 4.4 shows that average glucose is 2.1 mg/dL lower in among women
in the much more active (physact = 5) group as compared to those who
are about as active (physact = 3), and that this difference is statistically
significant (t = −2.86, P = 0.004). The last two results in the table are
explained below.

4.3.3 The F -Test

Although every pairwise contrast between levels of a categorical predictor is
readily available, the t-tests for these multiple comparisons provide no overall
evaluation of the importance of the categorical variable, or more precisely a
single test of the null hypothesis that the mean level of the outcome is the
same at all levels of this predictor. In the example, this is equivalent to a test
of whether any of the four coefficients corresponding to physact differ from
zero. The testparm result in Table 4.4 (F (4, 2027) = 4.43, P = 0.0014) shows
that glucose levels clearly differ among the groups defined by physact.
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Table 4.4. Regression of Glucose on Physical Activity
. xi: reg glucose i.physact if diabetes == 0;
i.physact _Iphysact_1-5 (naturally coded; _Iphysact_1 omitted)

Source | SS df MS Number of obs = 2032
-------------+------------------------------ F( 4, 2027) = 4.43

Model | 1673.09022 4 418.272554 Prob > F = 0.0014
Residual | 191344.609 2027 94.3979322 R-squared = 0.0087

-------------+------------------------------ Adj R-squared = 0.0067
Total | 193017.699 2031 95.0357946 Root MSE = 9.7159

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Iphysact_2 | -.8584489 1.084152 -0.79 0.429 -2.984617 1.267719
_Iphysact_3 | -1.226199 1.011079 -1.21 0.225 -3.20906 .7566629
_Iphysact_4 | -2.433855 1.010772 -2.41 0.016 -4.416114 -.4515951
_Iphysact_5 | -3.277704 1.121079 -2.92 0.003 -5.476291 -1.079116

_cons | 98.42056 .9392676 104.78 0.000 96.57853 100.2626
------------------------------------------------------------------------------
. lincom _cons + _Iphysact_2;
( 1) _Iphysact_2 + _cons = 0

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | 97.56211 .5414437 180.19 0.000 96.50027 98.62396

------------------------------------------------------------------------------

. lincom _Iphysact_5 - _Iphysact_3;
( 1) - _Iphysact_3 + _Iphysact_5 = 0

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -2.051505 .717392 -2.86 0.004 -3.458407 -.6446024

------------------------------------------------------------------------------

. testparm _I*;
( 1) _Iphysact_2 = 0
( 2) _Iphysact_3 = 0
( 3) _Iphysact_4 = 0
( 4) _Iphysact_5 = 0

F( 4, 2027) = 4.43
Prob > F = 0.0014

. test - _Iphysact_2 + _Iphysact_4 + 2 * _Iphysact_5 = 0;
( 1) - _Iphysact_2 + _Iphysact_4 + 2 _Iphysact_5 = 0

F( 1, 2027) = 12.11
Prob > F = 0.0005

4.3.4 Multiple Pairwise Comparisons Between Categories

When the focus is on the difference between a single pre-specified pair of
subgroups, the overall F -test is of limited interest and the t-test for the single
contrast between those subgroups can be used without inflation of the type-I
error rate. All levels of the categorical predictor should still be retained in
the analysis, however, because residual variance can be reduced, sometimes
substantially, by splitting out the remaining groups. Furthermore, this avoids
combining the remaining subgroups with either of the pre-specified groups,
focusing the contrast on the comparison of interest.
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However, it is frequently of interest to examine multiple pairwise differ-
ences between levels of a categorical predictor, especially when the overall F -
test is statistically significant, and in some cases even when it is not. Examples
include comparisons between treatments in a clinical trial with more than one
active treatment arm, or in longitudinal data, to be discussed in Chapter 8,
when between-treatment differences are evaluated at multiple points in time.

For this case, various methods are available for controlling the experiment-
wise type-I error rate (EER) for the wider set of comparisons. These meth-
ods differ in the trade-off made between power and the breadth of the cir-
cumstances under which the type-I error rate is protected. One of the most
straightforward is Fisher’s least significant difference (LSD) procedure, in
which the pairwise-comparisons are carried out using t-tests at the nomi-
nal type-I error rate, but only if the overall F -test is statistically significant;
otherwise the null hypothesis is accepted for all the pairwise comparisons.
This protects the EER under the complete null hypothesis that all the group-
specific population means are the same. However, it is subject to inflation of
the EER under partial null hypotheses – that is, when there are some real
population differences between subgroups.

More conservative procedures that protect the EER under partial null hy-
potheses include setting the level of the pairwise tests required to declare
statistical significance equal to α/k (Bonferroni) or 1 − (1 − α)1/k (Sidak),
where α is the desired EER and k is the number of pre-planned comparisons
to be made. The Sidak correction is slightly more liberal for small values
of k, but otherwise equivalent. The Scheffé method is another, though very
conservative, method in which differences can be declared statistically signif-
icant only when the overall F -test is also statistically significant. The Tukey
honestly significant difference (HSD) and Tukey-Kramer methods are more
powerful than the Bonferroni, Sidak, or Scheffé approaches and also perform
well under partial null hypotheses.

A special case arises when only comparisons with a single reference group
are of interest, as might arise in a clinical trial with multiple treatments and a
single placebo control. In this situation, Dunnett’s test achieves better power
than alternatives designed for all pairwise comparisons, while still protecting
the EER under partial null hypotheses. It also illustrates the general principle
that controlling the EER for a smaller number of contrasts is less costly in
terms of power, so that it makes sense to control only for the contrasts of
interest. Compare this approach to Scheffé’s, which controls the EER for all
possible linear contrasts but at a considerable expense in power.

The previous alternatives provide simultaneous inference on all the pair-
wise comparisons considered. Various step-down and step-up multiple-stage
testing procedures attempt to improve power using testing of cleverly se-
quenced hypotheses that only continues as long as the test results are statisti-
cally significant. The Duncan and Student-Newman-Keuls procedures fall in
this class. However, neither protects the EER under partial null hypotheses.
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As noted in Sect. 3.1.5, the Bonferroni, Sidak, and Scheffé procedures are
available with the oneway ANOVA in Stata, but not in the regression regress
command used for linear regression. Thus using these methods in examining
estimates provided by a multipredictor linear model may require help from a
statistician.

4.3.5 Testing for Trend Across Categories

The coefficient estimates for the categories of physact shown in Table 4.4
decrease in order, so a linear trend in physact might be an adequate rep-
resentation of the association with glucose. Tests for linear trend across the
values of physact are best performed using a linear contrast in the coefficients
corresponding to the various levels of the categorical predictor. As compared
to a simpler approach in which the numeric values of the categorical variable
are treated as a score, this approach is more efficient, in that the model cap-
tures both trend and departures from it, reducing the residual variance that
makes regression effects harder to detect.

Table 4.5. Linear Contrasts Used for Testing Trend

Number of levels Linear contrast

3 β3 = 0
4 −β2 + β3 + 3β4 = 0
5 −β2 + β4 + 2β5 = 0
6 −3β2 − β3 + β4 + 3β5 + 5β6 = 0

Table 4.5 summarizes linear contrasts that would be used for testing trend
when the categorical variable has 3–6 levels with evenly spaced numeric codes
(e.g., 1, 2, 3, 4, 5), and the category with the lowest numeric code is treated as
the reference. As in the physact example, βk is the coefficient corresponding
to the indicator for category k. These contrasts can be motivated as the slope
coefficients from a regression in which the group means are modeled as linear
in the sequential numeric codes for the categorical variable. Note that for a
categorical variable with only three levels, the t-test for β3, the coefficient for
the category with the largest numeric code, provides the test for trend. These
formulas are valid for all the other models in this book.

In the physact example, shown in Table 4.4, we tested the hypothesis H0:
−β2 + β4 + 2β5 = 0. The result (F (1, 2027) = 12.11, P = 0.0005) leaves little
doubt that there is a declining trend in glucose levels with increasing values
of physact.

The pattern in average glucose across the levels of a categorical variable
could be characterized by both a linear trend and a departure from trend.
Given a statistically significant trend according to the test of the linear con-
trast, it is easy to test for such a departure. This test uses a model in which
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Table 4.6. Model Assessing Departures from Linear Trend
. xi: reg glucose physact i.physact if diabetes == 0;
i.physact _Iphysact_1-5 (naturally coded; _Iphysact_1 omitted)

Source | SS df MS Number of obs = 2032
-------------+------------------------------ F( 4, 2027) = 4.43

Model | 1673.09022 4 418.272554 Prob > F = 0.0014
Residual | 191344.609 2027 94.3979322 R-squared = 0.0087

-------------+------------------------------ Adj R-squared = 0.0067
Total | 193017.699 2031 95.0357946 Root MSE = 9.7159

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
physact | -.8194259 .2802698 -2.92 0.003 -1.369073 -.269779

_Iphysact_2 | -.039023 .9015677 -0.04 0.965 -1.807119 1.729073
_Iphysact_3 | .4126531 .6739888 0.61 0.540 -.90913 1.734436
_Iphysact_4 | .024423 .6366194 0.04 0.969 -1.224074 1.27292
_Iphysact_5 | (dropped)

_cons | 99.23999 1.184013 83.82 0.000 96.91798 101.562
------------------------------------------------------------------------------
. testparm _I*;
( 1) _Iphysact_2 = 0
( 2) _Iphysact_3 = 0
( 3) _Iphysact_4 = 0
( 4) _Iphysact_5 = 0

Constraint 4 dropped
F( 3, 2027) = 0.26

Prob > F = 0.8511

the categorical variable appears both as a score (i.e., is treated as a continuous
predictor) and as a set of indicators. In Table 4.6 the F -test for the joint effect
of physact as a categorical variable (F (3, 2027) = 0.26, P = 0.85) shows that
there is little evidence for departures from a linear trend in this case.

It is important to note that in Table 4.6, both the coefficient and the t-
test for the effect of physact as a score (β̂ = −0.82, t = −2.92, P = 0.003)
are not easily interpretable, because their values depend on which additional
indicator is dropped from the model. The test for trend must be carried out
using the linear contrast described earlier.

4.4 Confounding

In Table 4.1, the unadjusted coefficient for exercise estimates the difference
in mean glucose levels between two subgroups of the population of women with
heart disease. But this contrast ignores other ways in which those subgroups
may differ. In other words, the analysis does not take account of confounding
of the association we see. Although the unadjusted contrast may be useful
for describing subgroups, it would be risky to infer any causal connection be-
tween exercise and glucose on this basis. In contrast, the adjusted coefficient
for exercise in Table 4.2 takes account of the fact that women who exercise
also have lower BMI and are slightly younger and more likely to report alcohol
use, all factors which are associated with differences in glucose levels. While
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this adjusted model is clearly rudimentary, the underlying premise of multi-
predictor regression analysis of observational data is that with a sufficiently
refined model (and good enough data), we can estimate causal effects, free or
almost free of confounding.

To understand what confounding means, and to see how and under what
conditions a multipredictor regression model might be able to overcome it,
requires that we first state more clearly what we mean by the causal effect of
a predictor variable. What would it mean, in more precise terms, for exercise
to have a causal effect on glucose?

4.4.1 Causal Effects and Counterfactuals

To simplify the discussion, we focus on a binary predictor, a generic “expo-
sure.” Now suppose that we could run an experiment in which every member
of a population is exposed and the value of the outcome observed; then, turn-
ing back the clock, we observe the outcome in the absence of exposure for
every member of the population. Because we can never really turn back the
clock, one of the two experimental outcomes for every individual is an unob-
servable counterfactual. However, this counterfactual experiment is central to
our definition of the causal effect of the exposure.

Definition: The causal effect of an exposure on a continuous outcome
is the difference in population mean values of the outcome in the
presence as compared to the absence of exposure, when the actual
and counterfactual outcomes are observed for every member of the
population as if by experiment, holding all other variables constant.
If the means differ, then the exposure is a causal determinant of the
outcome.

Three comments:

• The causal effect is defined as a difference in population means.
This does not rule out variation in the causal effects of exposure
at the individual level, possibly depending on the values of other
variables. It might even be the case that exposure increases out-
come levels for some members of the population and decreases
them for others, yet the population means under the two condi-
tions are equal. That is, we could have individual causal effects in
the absence of an overall population causal effect.

• In our counterfactual experiment, turning back the clock to observe
the outcome for each individual under both conditions means that
the individual characteristics and experimental conditions that
help determine the outcome are held constant, except for expo-
sure. Thus the exposed and unexposed population means represent
averaging over the same distribution of individual characteristics
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and experimental conditions. In other words, all other causal de-
terminants of outcome levels are perfectly balanced in the exposed
and unexposed populations.

• Holding other variables constant does not imply that other causal
effects of exposure are held constant after the experiment is initi-
ated. These other effects may include mediators of the causal effect
of exposure on the outcome (Sect. 4.5).

4.4.2 A Linear Model for the Counterfactual Experiment

To gain insight into our counterfactual experiment, we can write down expres-
sions for Y1 and Y0, the outcomes under exposure and in its absence, using
notation introduced earlier. In the following, X1 is the indicator of exposure,
with 0 = unexposed and 1 = exposed. For simplicity, we also assume that all
the other determinants of the outcome – that is, the personal characteristics
and experimental conditions held constant within individuals when we turn
back the clock in the counterfactual experiment – are captured by another bi-
nary variable, X2, which also has a causal effect on the outcome in the sense
of our definition. Thus, for individual i the outcome under exposure is

y1i = β0 + βc
1 + βc

2x2i + ε1i. (4.9)

In (4.9)

• β0 represents the mean of the outcome when X1 = X2 = 0.
• βc

1 is the causal effect of X1: that is, the difference in popula-
tion mean values of the outcome in the counterfactual experiment
where X1 is varied and X2 is held constant.

• βc
2 is the causal effect of X2, defined analogously as the difference in

population means in a second counterfactual experiment in which
X1 is held constant and X2 is varied.

• Variable x2i is the observed value of X2 for individual i.
• The error term ε1 has mean zero and is assumed not to depend

on X1 or X2. It captures variation in the causal effects across
individuals as well as error in the measurement of the outcome.

Thus the population mean value of the outcome under exposure is

E[Y1] = E[β0 + βc
1 + βc

2X2 + ε1]
= β0 + βc

1 + βc
2E[X2], (4.10)

where E[X2] is the mean value of X2 across all members of the population.
Similarly, the outcome for individual i in the absence of exposure is

y0i = β0 + βc
2x2i + ε0i, (4.11)

and the population mean outcome under this experimental condition is
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E[Y0] = E[β0 + βc
2X2 + ε0]

= β0 + βc
2E[X2]. (4.12)

Crucially, in the counterfactual experiment, X2 has the same mean E[X2] un-
der both the exposed and unexposed conditions, because it is held constant
within individuals, each of whom contributes both an actual and counter-
factual outcome. Subtracting (4.12) from (4.10), the difference in population
means is

E[Y1] − E[Y0] = β0 + βc
1 + βc

2E[X2] − β0 − βc
2E[X2]

= βc
1. (4.13)

Thus the linear model reflects the fact that in the counterfactual experiment,
the difference in population means is equal to βc

1, the causal effect of X1, even
in the presence of the other causal effects represented by X2.

To illustrate using our first example, suppose that β0, the mean glucose
value when X1 = X2 = 0, is 100 mg/dL; ηc

1, the causal effect of exercise
is to lower glucose levels an average of 2 mg/dL; that βc

2, the causal effect
of X2 (which may represent younger age, lower BMI, alcohol use, as well as
other factors) is to lower glucose 4 mg/dL; and that E[X2], in this case the
proportion of women with X2 = 1, is 0.5. Now consider comparing the coun-
terfactual population means. Using (4.10), mean glucose under the exercise
condition would be

β0 + βc
1 + (βc

2 × 0.5) = 100 − 2 − (4 × 0.5) = 96 mg/dL. (4.14)

In the absence of exercise, mean glucose would be

β0 + (βc
2 × 0.5) = 100 − (4 × 0.5) = 98 mg/dL. (4.15)

Thus, using (4.13), or subtracting (4.15) from (4.14), the difference in the
counterfactual means would be

βc
1 = −2 mg/dL. (4.16)

Now suppose we could sample randomly from this population of individuals
and observe both actual and counterfactual outcomes for each, and that we
used the simple linear model

E[Y |x] = β0 + β1x1 (4.17)

to estimate the causal effect of exposure. Equation (4.13) implies that fitting
the simple linear model (4.17) would result in an unbiased estimate of the
causal effect βc

1. By unbiased we mean that that over many repeated samples
drawn from the population, the average or expected value of the estimates
based on each sample would equal the population causal effect. Equivalently,
using our notation for expected values,
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E[β̂1] = βc
1. (4.18)

Thus if we could sample from the counterfactual experiment the difference in
sample averages under the exposed and unexposed conditions would provide
an unbiased estimate of the causal effect of exercise on glucose.

4.4.3 Confounding of Causal Effects

In reality, of course, causal effects cannot be estimated in counterfactual ex-
periments. The outcome is generally observable for each individual under only
one of the two conditions. In place of a counterfactual experiment, we usually
have to compare mean values of the outcome in two distinct populations, one
composed of exposed individuals and the other of unexposed. In doing so,
there is no longer any guarantee that the mean values of X2 would be equal
in the exposed (X1 = 1) and unexposed (X1 = 0) populations. Note that this
inequality would mean that X1 and X2 are correlated.

However, since both βc
1 and βc

2 represent causal effects, we can still use
(4.10) and (4.12) to express the two population means. Letting E1[X2] denote
the mean of X2 in the exposed, the mean outcome value in that population is

E[Y1] = β0 + βc
1 + βc

2E1[X2]. (4.19)

Similarly, with E0[X2] denoting the mean of X2 among the unexposed, the
mean of the outcome in that population is

E[Y0] = β0 + βc
2E0[X2]. (4.20)

This implies that

E[Y1] − E[Y0] = β0 + βc
1 + βc

2E1[X2] − β0 − βc
2E0[X2]

= βc
1 + βc

2(E1[X2] − E0[X2]). (4.21)

Thus the difference in population means is now arbitrarily different from the
causal effect, depending on the difference between E1[X2] and E0[X2] and on
the magnitude of βc

2, the population causal effect of X2. From this it follows
that if we sampled randomly from the combined exposed and unexposed pop-
ulations, an estimate of β1 found using the simple linear model (4.17) ignoring
X2 would usually be biased for βc

1, the causal effect of X1 on Y . In short, our
estimate of the causal effect of X1 would be confounded by the causal effect
of X2.

Definition: Confounding is present when the difference in mean values
of the outcome between populations defined by a potentially causal
variable of interest is not equal to its causal effect on that outcome. In
terms of our binary exposure, this can be expressed as E[Y1]−E[Y0] �=
βc

1. As a consequence, the regression coefficient estimate for the causal
variable given by fitting a simple linear model to a random sample of
data from the combined population will be biased for the causal effect.
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The effect of such confounding can be large and go in either direction.
Returning to our first example, we again suppose that β0, the mean glucose
value in the population with X1 = X2 = 0 is 100 mg/dL; βc

1, the causal effect
of exercise is to lower glucose levels an average of 2 mg/dL; and that βc

2, the
causal effect of the potential confounder X2 is to lower glucose 4 mg/dL. Now
consider comparing populations where E1[X2], the proportion with X2 = 1
among women who exercise, is 0.8; but E0[X2], the corresponding proportion
among women who do not, is only 0.2. Then, using (4.19), mean glucose in
the population of women who exercise would be

β0 + βc
1 + (βc

2 × 0.8) = 100 − 2 − (4 × 0.8) = 94.8 mg/dL. (4.22)

In the population of women who do not exercise, mean glucose would be

β0 + (βc
2 × 0.2) = 100 − (4 × 0.2) = 99.2 mg/dL. (4.23)

Thus, using (4.21), or subtracting (4.23) from (4.22), the difference in popu-
lation means would be

βc
1 + βc

2 × (0.8 − 0.2) = −2 − (4 × 0.6) = −4.4 mg/dL. (4.24)

So the difference in population means would be considerably larger than the
population causal effect of exercise. It follows that an unadjusted estimate of
the causal effect using the simple linear model (4.17) would on average be
substantially too large. In sum, under the plausible assumption that the other
determinants of glucose have a real causal effect, (that is, βc

2 �= 0), then only if
the mean of X2 were the same in both the exposed and unexposed populations
– that is, E1[X2] = E0[X2] – would the simple unadjusted comparison of
sample averages – or population means – be free of confounding.

4.4.4 Randomization Assumption

The condition under which the difference in population means is equal to
the causal effect can now be stated in terms of counterfactual outcomes: this
equality will hold if the process determining whether individuals belong to
the exposed or unexposed population is independent of their actual and coun-
terfactual outcomes under those two conditions (exposure and its absence).
In the glucose example, this would imply that exercising (or not) does not
depend in any way on what glucose levels would be under either condition.
This is known as the randomization assumption.

In general this assumption is met in randomized experiments, since in that
setting, exposure – that is, treatment – is determined by a random process
and does not depend on future outcomes. But in the setting of observational
data where multipredictor regression models are most useful, this assumption
clearly cannot be assumed to hold. In the HERS cohort, the randomization
assumption holds for assignment to hormone therapy. However, in the glucose



4.4 Confounding 89

example, the randomization assumption is violated when the co-determinants
of glucose differ according to exercise. Essentially this is because the other
factors captured by X2 are causal determinants of glucose levels (or proxies
for such determinants) and correlated with exercise.

4.4.5 Conditions for Confounding of Causal Effects

There are two conditions under which a covariate X2 may confound the differ-
ence in mean values of an outcome Y in populations defined by the primary
causal variable X1:

• X2 is a causal determinant of Y , or a proxy for such determinants.
• X2 is a causal determinant of X1, or they share a common causal

determinant.

We note that age is one commonly used proxy for underlying causal effects.
Further, if X1 is a causal determinant of X2, rather than the opposite, then
X2 would mediate rather than confound the causal effects of X1. Mediation
is discussed in more detail below in Sect. 4.5. Finally, bi-directional causal
pathways between X1 and X2 would require more complex methods beyond
the scope of this book.

4.4.6 Control of Confounding

The key to understanding how a multiple regression model can control for
confounding when the randomization assumption does not hold is the concept
of holding other causal determinants of the outcome constant. This is easiest to
see in our example where all the causal determinants of the outcome Y other
than X1 are captured by the binary covariate X2. The underlying argument
is that within levels of X2, we should be able to determine the causal effect
of X1, since within those strata X2 is the same for all individuals and thus
cannot explain differences in mean outcome levels according to X1. Under the
two-predictor linear model

E[Y |x] = β0 + β1x1 + β2x2, (4.25)

it is straightforward to write down the population mean value of the outcome
for the four groups defined by X1 and X2. For purposes of illustration, we
assume as in the previous example that β0 = 100 mg/dL, βc

1 = −2 mg/dL,
and βc

2 = −4 mg/dL. The results are shown in Table 4.7.
Examining the effect of X1 while holding X2 constant thus means com-

paring groups 1 and 2 as well as groups 3 and 4. It is easy to see that in
both cases the between-group difference in E[y|x] is simply βc

1, or –2 mg/dL.
We have made it possible to hold X2 constant by modeling its effect, β2

2 .
Furthermore, under our assumption that all causal determinants of Y other
than X1 are captured by X2, the randomization assumption holds within the
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Table 4.7. Linear Model for Causal Effects of X1 and X2

Group X1 X2 E[y|x] Population mean

1 0 0 β0 100 mg/dL
2 1 0 β0 + βc

1 98 mg/dL
3 0 1 β0 + βc

2 96 mg/dL
4 1 1 β0 + βc

1 + βc
2 94 mg/dL

strata defined by X2. As a result, the regression parameters β2
1 and β2

2 are
interpretable as causal effects.

By extension from this simple example, the rationale for using multiple
regression to control for confounding is the prospect of obtaining unbiased
estimates of the causal effects of predictors of interest by modeling the effects
of confounding variables. Furthermore, these arguments for the potential to
control confounding using the multipredictor linear model can be extended,
with messier algebra, to settings where there is more than one causal co-
determinant of the outcome, where any or all of the predictor variables are
continuous, counts, or multi-level categories, rather than binary, and where
the outcome is binary or a survival time, as discussed in later chapters.

4.4.7 Range of Confounding Patterns

In our hypothetical causal example comparing distinct rather than counterfac-
tual populations, the causal effect of X1 is smaller than the simple difference
between population means. We also saw this pattern in the estimate for the
effect of exercise on glucose levels after adjustment for age, alcohol use, and
BMI.

However, qualitatively different patterns can arise. We now consider a
small hypothetical example where x1, the predictor of primary interest, is
binary and coded 0 and 1, and the potential confounder, x2, is continuous. At
one extreme, the effect of a factor of interest may be completely confounded by
a second variable. In the upper left panel of Fig. 4.1, x1 is shown to be strongly
associated with y in unadjusted analysis, as represented in the scatterplot.
However, the upper right panel shows that the unadjusted difference in y can
be entirely explained by the continuous covariate x2. The regression lines for
x2 are the same for both groups defined by x1; in other words, there is no
association with x1 after adjustment for x2.

At the other extreme, we may find little or no association in unadjusted
analysis, because it is masked or negatively confounded by another predictor.
The lower panels of Fig. 4.1 show this pattern. On the left, there is clearly
no association between the binary predictor x1 and y, but on the right the
regression lines for x2 are very distinct for the groups defined by x1. In short,
the association between x1 and y is unmasked by adjustment for x2. Negative
confounding can occur under the following circumstances:
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Fig. 4.1. Complete and Negative Confounding Patterns

• the predictors are inversely correlated, but have regression coeffi-
cients with the same sign.

• the two predictors are positively correlated, but have regression
coefficients with the opposite sign.

The example shown in the lower panels of Fig. 4.1 is of the second kind.

4.4.8 Diagnostics for Confounding in a Sample

In Sects. 4.4.3 and 4.4.5 a definition and conditions for confounding were
stated in terms of causal relationships defined by counterfactual differences in
population means, which are clearly not verifiable. Randomized experiments
provide the best approximation to these conditions, since the randomization
assumption holds in that context. However, many epidemiologic questions
about the causes of disease cannot be answered by experiments. In an ob-
servational sample, we do our best to control confounding by modeling the
effects of potential confounders in multipredictor regression models.

In this context, we have to assess the potential for confounding in terms
of associations between predictors and outcomes, an assessment best carried
out within a hypothesized causal framework to help us distinguish potential
confounders from mediators, defined below in Sect. 4.5. There are four useful
diagnostics for potential confounding of the effect of a predictor of interest:

• The potential confounder must be associated with the outcome.
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• The potential confounder must be associated with the predictor of
interest.

• Adjustment for the potential confounder must affect the magni-
tude of the coefficient estimate for the predictor of interest. Note
that this change could be in either direction, and may even involve
change in sign; attenuation is the most common pattern, but in-
creases in the absolute value of the coefficient are consistent with
negative confounding.

• The potential confounder must make sense in terms of the hypo-
thetical causal framework. In particular it should be plausible as
a causal determinant of the predictor of interest, or as a proxy for
such a determinant, and at the same time, it should clearly not
represent a causal effect of the predictor of interest.

The first two diagnostics are the sample analogs of the conditions for con-
founding of causal effects given in Sect. 4.4.5. The third condition is the sam-
ple analog of a discrepancy between the causal effect of exposure, defined as
the difference in mean values of the outcome between counterfactual popula-
tions, and the simple but potentially confounded difference between outcome
means in distinct populations defined by exposure. If the fourth condition
does not hold, we might see a similar pattern of associations and change in
coefficients, but a different analysis is appropriate, as explained below in Sect.
4.5 on mediation.

4.4.9 Confounding Is Difficult To Rule Out

The problem of confounding is more resistant to multipredictor regression
modeling than the simple two-predictor causal model in Sect. 4.4.6 might
suggest. We assumed in that case that all causal determinants of Y other
than X1 were completely captured in the binary covariate X2 – a substantial
idealization. Of course, the multipredictor linear model (4.2) can (within lim-
its imposed by sample size) include many more than two predictors, giving
us considerable freedom to model the effects of other causal determinants.
Nonetheless, for the multipredictor linear model to control confounding suc-
cessfully and estimate causal effects without bias, all potential confounders
must have been–

• recognized and assessed by design in the study,
• measured without error, and
• accurately represented in the systematic part of the model.

Logically, of course, it is not possible to show that all confounders have been
measured, and in some cases it may be clear that they have not. Furthermore,
the hypothetical causal framework may be uncertain, especially in the early
stages of an investigating a research question. Also, measurement error in
predictors is common; this may arise in some some cases because the study



4.4 Confounding 93

has only measured proxies for the causal variables which actually confound
a predictor of interest. Finally, Sect. 4.7 will show that accurate modeling of
systematic relationships cannot be taken for granted.

4.4.10 Adjusted vs. Unadjusted β̂s

In Sect. 4.4.3 we emphasized that confounding induces bias in unadjusted (or
inadequately adjusted) estimates of the causal effects that are commonly the
focus of our attention. This implies that unadjusted parameter estimates are
always biased and adjusted estimates less so. But there is a sense in which
this is misleading. In fact the two estimate different population quantities.
The observed difference in average glucose levels between women who do and
do not exercise is clearly interpretable, though it almost surely does not have
a causal interpretation. Thus it should not be expected to have the same value
as the causal parameter.

4.4.11 Example: BMI and LDL

With a more formal definition of confounding now in hand, we turn to a rel-
atively simple example, again using data from the HERS cohort. Body mass
index (BMI) and LDL cholesterol are both established heart disease risk fac-
tors. It reasonable to hypothesize that BMI is a causal determinant of LDL. An
unadjusted model for BMI and LDL is shown in Table 4.8. The unadjusted es-
timate shows that average LDL increases .42 mg/dL per unit increase in BMI
(95% CI: 0.16–0.67 mg/dL, P = 0.001). However, age, ethnicity (nonwhite),
smoking, and alcohol use (drinkany) may confound this unadjusted associ-
ation. These covariates may either represent causal determinants of LDL or
be proxies for such determinants, and are correlated with but almost surely
not caused by BMI, and so may confound the BMI–LDL relationship. After
adjustment for these four demographic and lifestyle factors, the estimated in-
crease in average LDL is 0.36 mg/dL per unit increase in BMI, an association
that remains highly statistically significant (P = 0.007). In addition, average
LDL is estimated to be 5.2 mg/dL higher among nonwhite women, after ad-
justment for between-group differences in BMI, age, smoking, and alcohol use.
The association of smoking with higher LDL is also statistically significant,
and there is some evidence for lower LDL among older women and those who
use alcohol.

In this example, smoking is a negative confounder, because women with
higher BMI are less likely to smoke, but both are associated with higher
LDL. Negative confounding is further evidenced by the fact that the adjusted
coefficient for BMI is larger (0.36 vs. 0.32 mg/dL) in the fully adjusted model
shown in Table 4.8 than in a model adjusted for age, nonwhite, and drinkany
but not for smoking (reduced model not shown).

The covariates in the adjusted model shown in Table 4.8 can all be shown
to meet sample diagnostic criteria for potential confounding of the effect of
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Table 4.8. Unadjusted and Adjusted Regressions of LDL on BMI
. reg LDL bmi

Source | SS df MS Number of obs = 2747
-------------+------------------------------ F( 1, 2745) = 10.14

Model | 14446.0223 1 14446.0223 Prob > F = 0.0015
Residual | 3910928.63 2745 1424.74631 R-squared = 0.0037

-------------+------------------------------ Adj R-squared = 0.0033
Total | 3925374.66 2746 1429.48822 Root MSE = 37.746

------------------------------------------------------------------------------
LDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
BMI | .4151123 .1303648 3.18 0.001 .1594894 .6707353

_cons | 133.1913 3.7939 35.11 0.000 125.7521 140.6305
------------------------------------------------------------------------------

. reg LDL bmi age nonwhite smoking drinkany

Source | SS df MS Number of obs = 2745
-------------+------------------------------ F( 5, 2739) = 5.97

Model | 42279.1877 5 8455.83753 Prob > F = 0.0000
Residual | 3881903.3 2739 1417.27028 R-squared = 0.0108

-------------+------------------------------ Adj R-squared = 0.0090
Total | 3924182.49 2744 1430.09566 Root MSE = 37.647

------------------------------------------------------------------------------
LDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
BMI | .3591038 .1341047 2.68 0.007 .0961472 .6220605
age | -.1897166 .1130776 -1.68 0.094 -.4114426 .0320095

nonwhite | 5.219436 2.323673 2.25 0.025 .6631081 9.775764
smoking | 4.750738 2.210391 2.15 0.032 .4165363 9.08494

drinkany | -2.722354 1.498854 -1.82 0.069 -5.661351 .2166444
_cons | 147.3153 9.256449 15.91 0.000 129.165 165.4656

------------------------------------------------------------------------------

BMI. For example, LDL is 5.2 mg/dL higher and average BMI 1.7 kg/m2

higher among nonwhite women, and the adjusted effect of BMI is 13% smaller
than the unadjusted estimate. Note that while the associations of ethnicity
with both BMI and LDL are statistically significant in this example, ethnicity
might still meaningfully confound BMI even if the differences were not nom-
inally signficant. Evidence for this would still be provided by the substantial
(≥ 10%) change in the coefficient for BMI after adjustment for ethnicity,
according to a useful (albeit ultimately arbitrary) rule of thumb (Greenland,
1989). Recommendations for inclusion of potential confounders in multipredic-
tor regression models are given in Chapter 5.

Fig. 4.2 shows the unadjusted regression line for LDL and BMI, together
with the adjusted lines specific to the white and nonwhite women, holding the
other variables constant at their respective means. Two comments about Fig.
4.2:

• Some of the upward slope of the unadjusted regression line reflects
the fact that women with higher BMI are more likely to be non-
white, younger, and not to use alcohol – all factors associated with
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Fig. 4.2. Unadjusted and Adjusted Regression Lines

higher LDL. Despite the negative confounding by smoking, when
these all these effects are accounted for using the multipredictor
regression model, the slope for BMI is attenuated.

• The adjusted regression lines for white and nonwhite women are
parallel, both with the same slope of 0.36 mg/dL per unit increase
in BMI. Similar patterns are assumed to hold for adjusted regres-
sion lines specific to subgroups defined by smoking and alcohol use.
Accordingly, the lines are separated by a vertical distance of 5.2
mg/dL at every value of BMI – the adjusted difference in average
LDL by ethnicity. This pattern reflects the fact that the model
does not allow for interaction between BMI and ethnicity. We as-
sume that the slope for BMI is the same in both ethnic groups,
and, equivalently, that the difference in LDL due to ethnicity is the
same at every value of BMI. Testing the no-interaction assumption
will be examined in Sect. 4.6 below.

4.5 Mediation

In Sect. 4.4.5 we presented conditions under which a covariate X2 may con-
found the difference in mean values of an outcome Y in populations defined
by the primary causal variable X1:

• X2 is a causal determinant of Y , or a proxy for such determinants.
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• X2 is a causal determinant of X1, or they share a common causal
determinant.

However, if X1 is a causal determinant of X2, then X2 would not confound X1
even if the first condition held; rather this would be an instance of mediation
of the causal effects of X1 on Y via its causal effects on X2. That is, X2
is affected by X1 and in turn affects Y . For example, statin drugs reduce
low-density LDL cholesterol levels, which in turn appear to reduce risk of
heart attack; in this model, reductions in LDL mediate the protective effect
of statins. The causal pathway from increased abdominal fat to development
of diabetes and heart disease may operate through – that is, be mediated by –
chemical messengers made by fat cells. The protective effect of bisphosponate
drugs against fracture is mediated in part by the increases in bone mineral
density (BMD) achieved by the drugs.

Definition: A mediating variable is a predictor hypothesized to lie on
the causal pathway between a predictor of interest and the outcome,
and thus to mediate the predictor’s effects.

With both mediation and confounding, the mediator/confounder is asso-
ciated with both the predictor of interest and the outcome, and adjustment
for it typically attenuates the estimated association of the primary predictor
with the outcome. At the extreme, a mediating variable based on continuous
monitoring of a common pathway at a point near the final outcome may al-
most completely remove the effects of antecedent predictors; an example is
heart failure and death from coronary heart disease.

However, in contrast to confounding, the coefficient for the primary predic-
tor before adjustment for the proposed mediator has the more direct interpre-
tion as the overall causal effect, while the coefficient adjusted for the mediator
represents its direct causal effect via other pathways that do not involve the
mediator. In this instance, the adjusted analysis is used to estimate the direct
effect of the primary predictor via other pathways, its indirect effect via the
mediator, and the degree of mediation. In the context of clinical trials, the
relative change in the coefficient for treatment after adjustment for a medi-
ator is sometimes referred to as the proportion of treatment effect explained,
or PTE (Freedman et al., 1992). A new approach to estimation of PTE has
been developed by Li et al. (2001).

4.5.1 Modeling Mediation

If a potential mediator is identified on a priori grounds, then a series of models
can be used to examine whether–

• the predictor of interest also predicts the mediator;
• the mediator predicts the outcome in a model controlling for the

predictor of interest;
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• addition of the mediator to a multipredictor model for the outcome
attenuates the estimated coefficient for the predictor of interest.

If all three elements of this pattern are present, then the data are consistent
with the mediation hypothesis. However, because this pattern also reflects
what is typically seen with confounding, the two causal models must be dis-
tinguished on non-statistical grounds.

Estimation of the overall and direct effects of the predictor of interest, as
well as its indirect effects via the proposed mediator, has many potential diffi-
culties. For example, longitudinal data would clearly provide stronger support
the hypothesized causal model by potentially showing that changes or differ-
ences in the predictor of interest are associated with subsequent changes in
the mediator, which in turn predict the outcome still later in time. However,
as discussed in Sect. 7.3.1, longitudinal analyses set up to examine such tem-
poral patterns can be misleading if the mediator also potentially confounds
the association between the primary predictor and outcome (Hernan et al.,
2001). Furthermore, bias in estimation of the direct effects of the primary
predictor can arise from uncontrolled confounding of the association between
the mediator and the outcome (Robins and Greenland, 1992; Cole and Her-
nan, 2002) – even in clinical trials where the primary predictor is randomized
treatment assignment.

4.5.2 Confidence Intervals for Measures of Mediation

In principle, confidence intervals for PTE or for the difference in coefficient
estimates for the same predictor before and after adjustment for a mediator
are straightforward to compute, particularly for linear models; they have also
been developed for evaluating mediation using logistic (Freedman et al., 1992;
Li et al., 2001) and Cox proportional hazards models (Lin et al., 1997). How-
ever, unlike simple comparisons of coefficients estimated in the same model,
assessing mediation involves comparing coefficient estimates from two differ-
ent models estimated using the same data. As a result, the two estimates
are correlated, making confidence intervals more difficult to compute. Since
standard statistical packages generally do not provide them, this would re-
quire the analyst to carry out computations requiring moderately advanced
programming skills. An alternative is provided by bootstrap procedures, which
were introduced in Sect. 3.6.

4.5.3 Example: BMI, Exercise, and Glucose

In Sect. 4.1 we saw that the association of exercise and glucose levels among
women at risk for diabetes was substantially confounded by age, alcohol use,
and BMI. In that model, BMI was shown to be a powerful predictor of glucose
levels, with each kg/m2 increase in BMI associated with a 0.49 mg/dL increase
in average glucose (95% CI 0.41–0.57, P < 0.0005). In fact, most of the
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attenuation of the coefficient for exercise in the adjusted model was due to
controlling for BMI, as is easily demonstrated by re-fitting the adjusted model
omitting BMI.

In treating BMI as a confounder of exercise, we implicitly assumed that
higher BMI makes women less likely to exercise: in short, BMI is a causal
determinant of exercise. Of course, exercise might also be a determinant of
BMI, which would considerably complicate the picture. However, exercise vig-
orous enough to result in weight loss was very uncommon in this cohort of
older post-menopausal women with heart disease; furthermore, exercise was
weakly associated (P = 0.06) with a small increase in BMI of 0.12 kg/m2

over the first year of the study, after adjusting for age, ethnicity, smoking,
and self-report of poor or fair health. Thus the potential causal pathway from
exercise to decreased BMI appears negligible in this population.

Accordingly, we examined the extent to which the effects of BMI on glu-
cose levels might be mediated through its effects on likelihood of exercise.
In implementing the series of models set out in Sect. 4.5.1, we first used a
multipredictor logistic regression model (Chap. 6) to show that each kg/m2

increase in BMI is associated with an 8% decrease in the odds of exercise
(95% CI 4–10%, P < 0.0005). We have already observed that exercise is asso-
ciated with a decrease in average glucose of about 1 mg/dL (95% CI 0.1–1.9,
P = 0.027), after adjusting for BMI as well as age and alcohol use. However,
the coefficient for BMI is only slightly attenuated when exercise is added to
the model, from 0.50 to 0.49 mg/dL per kg/m2 increase in BMI, a decrease of
only 2.9%. As shown in Table 4.9, a bias-corrected bootstrap confidence in-
terval for the percentage decrease in the BMI coefficient due to mediation by
exercise, the equivalent of PTE, was 0.3–6.0%, showing that the attenuation
was not just due to chance. Nonetheless, this analysis suggests that only a
very small part of the effect of BMI on glucose levels is mediated by its effects
on likelihood of exercising. Note that a short program had to be “defined” in
order to fit the nested models before and after adjustment for exercise in each
bootstrap sample and then compute PTE.

Of note, there was little evidence of bias in the estimate of PTE in this
example, since bias correction did not affect the percentile-based confidence
interval. However, the interval based on the normal approximation was some-
what different from either percentile-based CI, running from 0.1 to 5.7% and
thus indicating some departure from normality in the sampling distribution
of PTE; this is not uncommon with ratio estimates. Of course, the qualitative
interpretation would be unchanged.

4.6 Interaction

In Sect. 4.4.5 we outlined the conditions under which a two-predictor linear
model could be successfully used to eliminate confounding of the effects of
a primary predictor X1 by a confounder X2. We presented the two-predictor
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Table 4.9. Bootstrap Confidence Interval for PTE

. program define mediate, rclass
1. version 8.0
2. tempname bg0
3. reg glucose BMI age10 drinkany if diabetes == 0
4. scalar ‘bg0’ = _b[BMI]
5. reg glucose exercise BMI age10 drinkany if diabetes == 0
6. return scalar pte = (‘bg0’ - _b[BMI]) / ‘bg0’ * 100
7. end

. bootstrap "mediate" r(pte), reps(1000)
command: mediate
statistic: _bs_1 = r(pte)

Bootstrap statistics Number of obs = 2028
Replications = 1000

------------------------------------------------------------------------------
Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
-------------+----------------------------------------------------------------

_bs_1 | 1000 2.900681 .0546537 1.406885 .1398924 5.661469 (N)
| .3417959 6.031512 (P)
| .3424993 6.032569 (BC)

------------------------------------------------------------------------------
Note: N = normal

P = percentile
BC = bias-corrected

model (4.25) under the tacit assumption that causal effect of X1 on Y was the
same within both strata defined by X2. However, this may not hold. In this
section we show how linear models can be used to model the interaction and
thereby estimate causal effects that differ according to the level of a covariate.

4.6.1 Causal Effects and Interaction

In Sect. 4.4.2 we recognized that individual causal effects of exposure might
vary across individuals from the overall population causal effect. In that con-
text we assumed that the two differ for each individual by an amount that has
mean zero and does not depend on either X1 or X2. However, suppose that in
our counterfactual experiment, the population causal effect of X1 does differ
systematically according to the value of X2. We could continue to compare
the actual and counterfactual outcomes for each individual, thus holding all
other variables constant, but in this case find that the causal effects, defined
as the difference in population mean values of the outcome under exposure as
compared to its absence, now vary across the strata of the population defined
by X2.

Definition: Interaction means that the causal effect of a predictor on
the outcome differs according to the level of another predictor.

Interaction is also referred to as effect modification or moderation, and must
be distinguished from mediation (Baron and Kenny, 1986).
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4.6.2 Modeling Interaction

Continuing with our example of a primary predictor X1 and a single covariate
X2, it is straightforward to model the interaction between X1 and X2 using a
three-predictor linear model. As before, the randomization assumption must
hold within the two strata defined by X2, so that the stratum-specific dif-
ference in population means is equal to the causal effect of X1 within each
stratum. But in this case we do not assume that the causal effects of X1 are
the same in both strata. To allow for the interaction, we use the following
three-predictor linear model:

E[Y |x] = β0 + β1x1 + β2x2 + β3x1x2, (4.26)

where x1x2 simply denotes the product of the two predictors, equal to one
only in the case where X1 = X2 = 1. It is again straightforward to write
down the population mean values of the outcome for the four groups defined
by X1 and X2. We assume as in the previous example that βc

1 = −2 mg/dL,
βc

2 = −4 mg/dL, and β0 = 100 mg/dL. But now in addition we assume that
βc

3 = −2 mg/dL. The results are shown in Table 4.10.

Table 4.10. Interaction Model for Causal Effects of X1 and X2

Group X1 X2 X1X2 E[y|x] Population mean

1 0 0 0 β0 100 mg/dL
2 1 0 0 β0 + β1 98 mg/dL
3 0 1 0 β0 + β2 96 mg/dL
4 1 1 1 β0 + β1 + β2 + β3 92 mg/dL

Examining the effect of X1 while holding X2 constant again means com-
paring groups 1 and 2 as well as groups 3 and 4. Now we do so not only
to eliminate confounding, but also because the causal effects differ. In this
case, when X2 = 0, the between-group difference in E[y|x] is simply β1, or
–2 mg/dL. However, when X2 = 1, the difference is β1 + β3, or –4 mg/dL.
We hold X2 constant by modeling its effect with the parameter β2, and allow
for the interaction by modeling the difference in the causal effects of X1 with
the parameter β3. Again, assuming that the causal determinants of Y other
than X1 are captured by X2, the randomization assumption holds within the
strata defined by X2. As a result, β1 = βc

1 and β3 = βc
3, so the regression

parameters remain interpretable as causal effects.

4.6.3 Overall Causal Effect in the Presence of Interaction

It is important to point out that even when the causal effect of X1 differs
according to the level of X2, the overall causal effect of X1 remains well-
defined in the counterfactual experiment as the difference in population mean
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values of the outcome in the presence as compared to the absence of exposure
defined by X1. In fact this overall causal effect is simply the weighted average
of its causal effects within the strata defined by X2, with weights defined by
the proportions of the total population with X2 = 0 and 1. This is not very
different from averaging over the individual causal effects, except that in this
case X2 has a systematic effect on them. Furthermore, an estimate of β1 using
the two-predictor linear model (4.25) would be unbiased for this overall causal
effect, provided the four groups in Table 4.7 are sampled in proportion to their
relative sizes in the population.

However, in settings where an important interaction operates – especially
where the causal effects differ in direction across strata – the overall causal
effect is sometimes difficult to interpret. In addition, estimation and compar-
ison of the stratum-specific causal effects will usually be of greater interest.

4.6.4 Example: Hormone Therapy and Statin Use

As an example of interaction, we examined whether the effect of hormone
therapy (HT) on LDL cholesterol differs according to baseline statin use, using
data from HERS. Suppose both assignment to hormone therapy and use of
statins at baseline are coded using indicator variables. Then the product term
for assessing interaction is also an indicator, in this case with value 1 only
for the subgroup of women who reported using statins at baseline and were
randomly assigned to hormone therapy. Now consider the regression model

E[LDL|x] = β0 + β1HT + β2statins + β3HTstatins, (4.27)

where HT is the indicator of assignment to hormone therapy, statins the
indicator of baseline statin use, and HTstatins the product term.

Table 4.11. Model for Interaction of HT and Statins

Group HT statins HTstatins E[LDL|x]

1 0 0 0 β0

2 1 0 0 β0 + β1

3 0 1 0 β0 + β2

4 1 1 1 β0 + β1 + β2 + β3

Table 4.11 shows the values of (4.27) for each of the four groups of women
defined by HT and statins. The difference in E[y|x] between groups 1 and 2 is
β1, the effect of HT among women not using statins. Similarly, the difference
in E[y|x] between groups 3 and 4 is β1 + β3, the effect of HT among statin
users. So the interaction term β3 gives the difference in treatment effects in
these two groups. Accordingly, a t-test of H0: β3 = 0 is a test for the equality
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of the effects of HT among statin users as compared to non-users. Note that
within the strata defined by baseline statin use, the randomization assumption
can clearly be assumed to hold for HT, the indicator for random treatment
assignment.

Taking analogous differences between groups 1 and 3 or 2 and 4 would
show that β2 gives the difference in average LDL among statin users as com-
pared to non-users among women assigned to placebo, while β2 + β3 gives
the analogous difference among women assigned to HT. However, in this case
the randomization assumption does not hold, implying that that unbiased es-
timation of the causal effects of statin use would require careful adjustment
for confounding by indication – that is, for the prognostic factors that lead
physicians to prescribe this treatment.

Table 4.12. Interaction of Hormone Therapy and Statin Use
. gen HTstatins = HT * statins
. reg LDL1 HT statins HTstatins

Source | SS df MS Number of obs = 2608
-------------+------------------------------ F( 3, 2604) = 52.68

Model | 227141.021 3 75713.6735 Prob > F = 0.0000
Residual | 3742707.78 2604 1437.29177 R-squared = 0.0572

-------------+------------------------------ Adj R-squared = 0.0561
Total | 3969848.80 2607 1522.76517 Root MSE = 37.912

------------------------------------------------------------------------------
LDL1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
HT | -17.72836 1.870629 -9.48 0.000 -21.39643 -14.06029

statins | -13.80912 2.15213 -6.42 0.000 -18.02918 -9.589065
HTstatins | 6.244416 3.076489 2.03 0.042 .2118044 12.27703

_cons | 145.1567 1.325549 109.51 0.000 142.5575 147.756
------------------------------------------------------------------------------
. lincom HT + HTstatins
( 1) HT + HTstatins = 0.0

------------------------------------------------------------------------------
LDL1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -11.48394 2.442444 -4.70 0.000 -16.27327 -6.694615

------------------------------------------------------------------------------

Table 4.12 shows that there is some evidence for a smaller effect of HT on
LDL among women reporting statin use at study baseline. The coefficient for
HT, or β̂1, shows that among women who did not report statin use at baseline,
average cholesterol at the first annual HERS visit was almost 18 mg/dL lower
in the HT arm than in placebo, a statistically significant subgroup treatment
effect. To obtain the estimate of the effect of HT among baseline statin users,
we sum the coefficients for HT and HTstatins (that is, β̂1 + β̂3) using the
lincom command. This shows that the treatment effect among baseline statin
users was only –11.5 mg/dL, although this was also statistically significant.
The difference (β̂3) of 6.2 mg/dL between the two treatment effects was also
statistically significant (t = 2.03, P = .042). Finally, the results for variable
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statins indicate that among women assigned to placebo, baseline statin use
is a statistically significant predictor of LDL levels at the first annual visit.

4.6.5 Example: BMI and Statin Use

While it is often hard to obtain unbiased estimates of the causal effects of
treatments like statins using observational data, a more tractable question of
interest is whether the causal relationships of variables related to statin use
may be modified by use of these drugs. Or it may be of interest simply to
find out whether other risk factors differentially predict outcomes of interest
according to use of related medications.

For example, the association between BMI and baseline LDL cholesterol
levels was shown in Sect. 4.4.11 to be statistically significant after adjustment
for demographics and lifestyle factors. However, treatment with statins may
modify this association, possibly by interrupting the causal pathway between
higher BMI and increased LDL. This would imply that BMI is less strongly
associated with increased average LDL among statin users than among non-
uses.

In examining this interaction, centering the continuous predictor variable
BMI about its mean value of 28.6 kg/m2 makes the parameter estimate for
statin use more interpretable, as we show below. Then, to implement the anal-
ysis, we would first compute the product term statcBMI = statins × cBMI,
where cBMI is the new centered BMI variable. Note that because statins
is an indicator variable coded 1 for users and 0 for non-users, the product
variable statcBMI is by definition equal to cBMI in statin users, but equal to
zero for non-users. We then fit a multipredictor regression model including
all these three predictors, as well as the potential confounders adjusted for
previously. The resulting model for baseline LDL is

E[LDL|x] = β0 + β1statins + β2cBMI + β3statcBMI

+β4age + β5nonwhite + β6smoking + β7drinkany. (4.28)

Thus among women who do not use statins,

E[LDL|x] = β0 + β2cBMI

+β4age + β5nonwhite + β6smoking + β7drinkany, (4.29)

and the slope associated with cBMI in this group is β2. In contrast, among
statin users

E[LDL|x] = β0 + β1statins + β2cBMI + β3statcBMI

+β4age + β5nonwhite + β6smoking + β7drinkany

= β0 + β1statins + (β2 + β3)cBMI
+β4age + β5nonwhite + β6smoking + β7drinkany. (4.30)
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In this group, the slope associated with BMI is β2+β3; so clearly the interaction
parameter β3 gives the difference between the two slopes.

The model also posits that the difference in average LDL between statin
users and non-users depends on BMI. Subtracting (4.29) from (4.30), the dif-
ference in average LDL in statin users as compared to non-users is β1+β3cBMI.
However, we may be reluctant to interpret this result as an unbiased estimate
of the causal effects of statin use in view of the potential for uncontrolled
confounding by indication.

Table 4.13. Interaction Model for BMI and Statin Use
. reg LDL cBMI statins statcBMI age nonwhite smoking drinkany

Source | SS df MS Number of obs = 2745
-------------+------------------------------ F( 7, 2737) = 22.85

Model | 216681.484 7 30954.4978 Prob > F = 0.0000
Residual | 3707501 2737 1354.58568 R-squared = 0.0552

-------------+------------------------------ Adj R-squared = 0.0528
Total | 3924182.49 2744 1430.09566 Root MSE = 36.805

------------------------------------------------------------------------------
LDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
statins | -16.25301 1.468788 -11.07 0.000 -19.13305 -13.37296

cBMI | .5821275 .160095 3.64 0.000 .2682082 .8960468
statcBMI | -.701947 .2693752 -2.61 0.009 -1.230146 -.1737478

age | -.1728526 .1105696 -1.56 0.118 -.3896608 .0439556
nonwhite | 4.072767 2.275126 1.79 0.074 -.3883702 8.533903
smoking | 3.109819 2.16704 1.44 0.151 -1.139381 7.359019

drinkany | -2.075282 1.466581 -1.42 0.157 -4.950999 .8004354
_cons | 162.4052 7.583312 21.42 0.000 147.5356 177.2748

------------------------------------------------------------------------------

. lincom cBMI + statcBMI;
( 1) cBMI + statcBMI = 0

------------------------------------------------------------------------------
LDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -.1198195 .2206807 -0.54 0.587 -.5525371 .3128981

------------------------------------------------------------------------------

Table 4.13 shows the results of the interaction model for statin use and
BMI. The estimated coefficients have the following interpretations:

• statins: Among women with cBMI = 0, or equivalently, with BMI
= 28.6 kg/m2, statin use was associated with LDL levels that were
more than 16 mg/dL lower on average. Note that if we had not
first centered BMI, this coefficient would be an estimate of the
statin effect in women with BMI = 0.

• cBMI: Among women who do not use statins, the increase in aver-
age LDL is 0.58 mg/dL per unit increase in BMI. The association
is statistically signficant (t=3.64, P < 0.0005).

• statcBMI: The slopes for the average change in LDL per unit in-
crease in BMI differ by approximately –0.70 mg/dL according to
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baseline statin use. That is, the increase in average LDL asso-
ciated with increases in BMI is much less rapid among women
who use statins. Moreover, the interaction is statistically signifi-
cant (t = −2.61, P = 0.009).

• lincom is used to estimate the slope for BMI among statin users,
equal to the sum of the slope among non-users plus the estimated
difference in slopes. The estimate of -.12 mg/dL per unit increase
in BMI is not statistically significant (t = −0.54, P = 0.59), but
the 95% confidence interval (–0.55 to 0.31 mg/dL per unit increase
in BMI) is consistent with effects comparable in magnitude to the
point estimate for non-users.

Fig. 4.3 shows the estimated regression lines in the two groups, demonstrating
that the parallel lines assumption is no longer constrained to hold in the
interaction model. In summary, the analysis suggests that any adverse causal
effects of higher BMI on LDL may be blocked by statin use.
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Fig. 4.3. Stratum-Specific Regression Lines

4.6.6 Interaction and Scale

Interaction models like (4.26) are often distinguished from simpler additive
models typified by (4.25), which do not included product terms such as x1x2.
Moreover, the simpler additive model is generally treated as the default in
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predictor selection, with a product term being added only if there is more-
or-less persuasive evidence that it is needed. It is important to recognize,
however, that the need for interaction terms is dependent on the scale on
which the outcome is measured (or, in the models discussed in later chapters,
the scale on which its mean is modeled).

In Sects. 4.7.2 and 4.7.3 below we examine changes of the scale on which the
outcome is measured to address violations of the linear model assumptions of
normality and constant variance. Log transformation of the outcome, among
the most commonly used changes of scale, effectively means modeling the
average value of the outcome on a relative rather than absolute scale, as
we show in Sect. 4.7.5 below. Similarly, in the analysis of before-and-after
measurements of a response to treatment, we have the option of modeling
percent rather than absolute change from baseline.

The issue of the dependence of interaction on scale arises in a similar but
subtly different way with the other models discussed later in this book. For
example, in logistic regression (Chap. 6) the logit transformation of E[Y |x] is
modeled, while in some generalized linear models (GLMs; Chap. 9), including
the widely used Poisson model, the log of E[Y |x] is modeled. Note that mod-
eling E[log(Y )|x], as we might do in a linear model, is different from modeling
log(E[Y |x]) in the Poisson model. In these cases, the default model is additive
on a multiplicative scale, as explained in Chapters 6, 7, and 9.

The need to model interaction depends on outcome scale because the sim-
pler additive model can only hold exactly on one such scale, and may be an
acceptable approximation on some scales but not others. This is in contrast
to confounding; if X2 confounds X1, then it does so on every outcome scale.
In the case of the linear model, the dependence of interaction on scale means
that transformation of the outcome will sometimes succeed in eliminating an
interaction.

4.6.7 Example: Hormone Therapy and Baseline LDL

The effect of hormone therapy on LDL cholesterol in the HERS trial was de-
pendent on baseline values of LDL, with larger reductions seen among women
with higher baseline values. An interaction model for absolute change in LDL
from baseline to the first annual visit is shown in Table 4.14. Note that base-
line LDL is centered in this model in order to make the coefficient for hormone
therapy (HT) easier to interpret. The coefficients in the model have the follow-
ing interpretations:

• HT: Among women with the average baseline LDL level of 135
mg/dL, the effect of HT is to lower LDL an average of 15.5 mg/dL
over the first year of the study.

• cLDL0: Among women assigned to placebo, each mg/dL increase in
baseline LDL is associated with a 0.35 mg/dL greater decrease in
LDL over the first year. That is, women with higher baseline LDL
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Table 4.14. Interaction Model for HT Effects on Absolute Change in LDL

. reg LDLch HT cLDL0 HTcLDL0

Source | SS df MS Number of obs = 2597
-------------+------------------------------ F( 3, 2593) = 258.81

Model | 721218.969 3 240406.323 Prob > F = 0.0000
Residual | 2408575.51 2593 928.876015 R-squared = 0.2304

-------------+------------------------------ Adj R-squared = 0.2295
Total | 3129794.48 2596 1205.62191 Root MSE = 30.477

------------------------------------------------------------------------------
LDLch | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
HT | -15.47703 1.196246 -12.94 0.000 -17.82273 -13.13134

cLDL0 | -.3477064 .0225169 -15.44 0.000 -.3918593 -.3035534
HTcLDL0 | -.0786871 .0316365 -2.49 0.013 -.1407226 -.0166517

_cons | -4.888737 .8408392 -5.81 0.000 -6.537522 -3.239953
------------------------------------------------------------------------------

experience greater decreases in the absence of treatment; this is in
part due to regression to the mean and in part to greater likelihood
of starting use of statins.

• HTcLDL0: The effect of HT is to lower LDL an additional 0.08
mg/dL for each additional mg/dL in baseline LDL. In short, larger
treatment effects are seen among women with higher baseline val-
ues. The interaction is statistically significant (P = 0.013).

Table 4.15. Interaction Model for HT Effects on Percent Change in LDL

. reg LDLpctch HT cLDL0 HTcLDL0

Source | SS df MS Number of obs = 2597
-------------+------------------------------ F( 3, 2593) = 165.33

Model | 233394.163 3 77798.0542 Prob > F = 0.0000
Residual | 1220171.82 2593 470.563756 R-squared = 0.1606

-------------+------------------------------ Adj R-squared = 0.1596
Total | 1453565.98 2596 559.925263 Root MSE = 21.692

------------------------------------------------------------------------------
LDLpctch | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
HT | -10.79035 .8514335 -12.67 0.000 -12.45991 -9.120789

cLDL0 | -.2162436 .0160265 -13.49 0.000 -.2476697 -.1848176
HTcLDL0 | .0218767 .0225175 0.97 0.331 -.0222773 .0660307

_cons | -1.284976 .5984713 -2.15 0.032 -2.458506 -.1114456
------------------------------------------------------------------------------

Inasmuch as the reduction in LDL caused by HT appears to be greater
in proportion to baseline LDL, it is reasonable to ask whether the HT effect
on percent change in LDL might be constant across baseline LDL levels. In
that case, modeling an interaction between HT and the baseline value would
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not be necessary. This turns out to be the case, as shown in Table 4.15. In
particular, the interaction term HTcLDL0 is no longer statistically significantly
(P = 0.331) and could be dropped from the model. Note that the coefficient
for HT now estimates the average percent change in LDL due to treatment,
among women at the average baseline level. In summary, analyzing percent
rather than absolute change in LDL eliminates the interaction between HT
and baseline LDL.

4.6.8 Details

There are several other more general points to be made about dealing with
interaction in multipredictor regression models.

• Interactions between two multilevel categorical predictors require
extra care in coding and interpretation. Simple computation of
product terms involving a categorical predictor will almost always
give mistaken results. The xi: command prefix and i. variable
prefix in Stata handle this situation, but must be used with care.
Furthermore, if one of the predictors has R levels and the other S
levels, then the F -test for interaction would have (R − 1)(S − 1)
degrees of freedom. Many different patterns are subsumed by the
alternative hypothesis of interaction, only a few of which may be
of interest or biologically plausible.

• Interactions between two continuous variables are also tricky, espe-
cially if the two predictors are highly correlated. Both main effects
in this case are hard to interpret. “Centering” of both variables on
their respective sample means (Problem 4.7) resolves the interpre-
tative problem only in part, since the coefficient for each predictor
still refers only to the case where the value of other predictor is at
its sample mean. Both the linearity of the interaction effect and
the need for higher order interactions would need to be checked.

• In examining interactions, it is not enough to show that the pre-
dictor of primary interest has a statistically significant association
with the outcome in a subgroup, especially when it is not a sta-
tistically significant predictor overall. So-called subgroup analysis
of this kind can severely inflate the type-I error rate, and has a
justifiably bad reputation in the analysis of clinical trials. Showing
that the subgroup-specific regression coefficients are statistically
different by testing for interaction sets the bar higher, is less prone
to type-I error, and thus more persuasive (Brookes et al., 2001).

• Methods have been developed (Gail and Simon, 1985) for assessing
qualitative interaction, in which the sign of the coefficient for the
predictor of interest differs across subgroups. This was nearly the
case in the interaction of BMI and statin use. A more specific
alternative of this kind is often easier to detect.
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• Interaction can be hard to detect if the interacting variables are
highly correlated. For example, it would be difficult to assess the
interaction between two types of exposure if they occurred together
either little or most of the time. This was not the case in the
second HERS example, because statin use was reported by 36%
of the cohort at baseline, and was uncorrelated with assignment
to HT by virtue of randomization. However, in an observational
cohort it might be much less common for women to report use of
both medications. In that case, oversampling of dual users might
be used if the interaction were of sufficient interest.

4.7 Checking Model Assumptions and Fit

In the simple linear model (4.1) as well as the multipredictor linear model
(4.2), it has been assumed so far that E[y|x] changes linearly with each con-
tinuous predictor, and that the error term ε has a normal distribution with
mean zero and constant variance for every value of the predictors. We have
also implicitly assumed that model results are not unduly driven by any small
subset of observations. Violations of these assumptions have the potential to
bias regression coefficient estimates and undermine the validity of confidence
intervals and P -values.

In this section, we show how to assess the validity of the linearity assump-
tion for continuous predictors and suggest modifications to the model which
can make it more reasonable. We also discuss assessments of normality, how to
transform the outcome in order to make this assumption approximately hold,
and discuss conditions under which it may be relaxed. We then discuss depar-
tures from the assumption of constant variance and methods for addressing
them. All these procedures rely heavily on the transformations of both predic-
tor and outcome that were introduced in Chapter 2. Finally, we show how to
deal with influential points. Throughout, we emphasize the severity of depar-
tures, since model assumptions rarely hold exactly, and small departures are
often benign, especially in large data sets. Nonetheless, careful attention to
meeting model assumptions can prevent us from being seriously misled, and
sometimes increase the efficiency of our analysis into the bargain.

4.7.1 Linearity

In modeling the effect of BMI on LDL, we have assumed that the regression
is a straight line. However, this may not be an adequate representation of
the true relationship. For example, we might find that average LDL stops
increasing, or increases more slowly, among women with BMI in the upper
reaches of its range – a ceiling effect. Analogously, the inverse relationship
between BMI and HDL (“good”) cholesterol may depart from linearity, with
floor effects among very heavy women.
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Component-Plus-Residual (CPR) Plots

In unadjusted analysis, checks for departures from linearity could be carried
out using LOWESS, the nonparametric scatterplot smoother introduced in
Chapter 2. This smoother approximates the regression line under the weaker
assumption that it is smooth but not necessarily linear, with the degree of
smoothness under our control, via the bandwidth. If the linear fit were sat-
isfactory, the LOWESS curve would be close to the model regression line;
that is, the nonparametric estimate found under the weaker assumption of
smoothness would agree with the estimate found when linearity is assumed.

However, the direct approach of adding a LOWESS smooth to a scat-
terplot of predictor versus outcome is only effective for simple linear models
with a single continuous predictor. For multipredictor regression models the
analogous plot would have to accommodate p + 1 dimensions, where p is the
number of predictors in the model – hard to imagine even for p = 2. Moreover,
nonparametric smoothers work less well in higher dimensions.

Fortunately, the residuals from a regression model make it possible to ex-
amine the linearity of the adjusted association between a given predictor and
the outcome, after taking account of the other predictors in the model. The
basic idea is to plot the residuals versus each continuous predictor in the
model; then a nonparametric smoother is used to detect departures from a
linear trend in the average value of the residuals across the values of the pre-
dictor. This is a residual versus predictor (RVP) plot, obtained in Stata using
the rvpplot command. However, for doing this check in Stata, we recommend
the closely related component plus residual (CPR) plot, mainly because the
cprplot command allows LOWESS smooths, which we find more informative
and easier to control than the smooths available with rvpplot.

Fig. 4.4 shows CPR plots for multipredictor regression models for LDL and
HDL, each adjusting the estimated effect of BMI for age, ethnicity, smoking,
and alcohol use. If the linear fits for BMI were satisfactory, then there would be
no nonlinear pattern across values of BMI in the component-plus-residuals.
For LDL, shown on the left, the linear and LOWESS fits agree quite well,
but for HDL, there is a substantial divergence. Thus the linearity assumption
is rather clearly met by BMI in the model for LDL, but not in the model
for HDL. The curvature in the relationship between BMI and HDL can be
approximated by adding a quadratic term in BMI to the multipredictor linear
model. The augmented model is then

E[HDL|x] = β0 + β1BMI + β2BMI2

+β3age + β4nonwhite + β5smoking + β6drinkany, (4.31)

where BMI2 is the square of BMI. A CPR plot for the relationship between
BMI and HDL in this model is shown in Fig. 4.5. Except at the extremes of
the range of BMI, where the LOWESS smooth would usually be unreliable,
the quadratic fit is clearly an improvement on the simpler model. Moreover,
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Fig. 4.4. CPR Plots for Multiple Regressions of LDL and HDL on BMI

Fig. 4.5. CPR Plot for HDL Model with Quadratic Term in BMI
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both the linear and quadratic terms in BMI are statistically significant (both
P < 0.0005), and R2 increases from 0.074 to 0.081, a gain of 9%.

Smooth Transformations of the Predictors

In the example of HDL and BMI, the departure from linearity was approx-
imately addressed by adding a quadratic term in BMI to the model. This
solution is often useful when the regression line estimated by the LOWESS
smooth is convex or concave, and especially if the line becomes steeper at
either side of the CPR plot.
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Fig. 4.6. Linearizing Predictor Transformations

However, other transformations of the predictor may sometimes be more
successful and should be considered. Fig. 4.6 shows some of the predictor
transformations commonly used to linearize the association between the pre-
dictor and the outcome. The upper left panel shows the typical curvature
captured by adding a quadratic term in the predictor to the model. On the
upper right, both quadratic and cubic terms have been included; in general
such higher order polynomial tranformations are useful for S-shapes. A draw-
back is that these lines often fit badly in the tails of the predictor distribution
if the data there are sparse. The lower panels show the log and square root
transformations, which are useful in situations where the regression line in-
creases more slowly with increasing values of the predictor, as we might expect
in cases of floor or ceiling effects, and more generally where the slope becomes
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less steep. In Sect. 4.7.5 below, we discuss interpretation of the regression co-
efficients for a log-transformed predictor. Each of these transformations would
work just as well for modeling the mirror image of the nonlinear shape, re-
versed top-to-bottom.

Categorizing the Predictor

Another transformation useful in exploratory analysis is to categorize the con-
tinuous predictor, either at cutpoints selected a priori or at percentiles that
ensure adequate representation in each category. Then the model is estimated
using indicators for all but the reference category of the transformed predic-
tor, as in the physact example in Sect. 4.3. Clearly the transformed variable
is ordinal in this case. This method models the association between the ordi-
nal categories and the outcome as a step function (Fig. 4.7). Although this
approach is unrealistic in not providing a smooth estimate of the regression
line, and also less efficient, it has the advantage of flexibility, in that each
step can be of any height. Such transformations are also easy to understand,
especially when the categories are defined by familiar clinical cutpoints. In
contrast, smooth transformations, in particular polynomials, are harder to
motivate, present, and interpret.
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Fig. 4.7. Categorical Transformation of BMI

A final note: while diagnostics for nonlinearity using RVP and CPR plots
do not carry over to the logistic, Cox, and generalized linear models presented
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in later chapters, departures from linearity can be addressed using quadratic
terms as well as smooth and categorical transformations in all of these settings.

Evaluation

The choice of transformation will in a few cases be suggested by an under-
standing of mechanism or to make results more interpretable, but more often
it will be made on the basis of what appears to fit best. Comparison of the
LOWESS smooth in CPR plots with the transformations in Fig. 4.6 can help
identify the best candidate transformations. After the revised model is esti-
mated, repeating the diagnostic using a new CPR plot then provides an initial
check on the adequacy of the transformation: there should be no remaining
pattern in the residuals, and the smooth should be close to the linear fit. In
cases where a quadratic or quadratic plus cubic term is added to the model,
we can use t- or F -tests to evaluate the statistical significance of the addition
to the model. This works because the original model is “nested” in the final
model, in the sense that the predictors in the smaller model are a subset of
those in the larger model. In other cases, for example, when we substitute the
log-transformed for the untransformed predictor, the original and final models
are not nested, so this testing procedure does not apply, although alternatives
are available (Vuong, 1989). In both cases, however, we can check whether R2

improves substantially with the transformation.

4.7.2 Normality

In Sect. 4.1 we stated that in the multipredictor linear model, the error term
ε is assumed to have a normal distribution. Confidence intervals for regression
coefficients and related hypothesis tests are based on the assumption that the
coefficient estimates have a normal distribution. If ε has a normal distribu-
tion, and other assumptions of the multipredictor linear model are met, then
ordinary least squares estimates of the regression coefficients can be shown to
have a normal distribution, as required.

However, it can be shown that the regression coefficients are approximately
normal in larger samples even if ε does not have a normal distribution. In
that case, characterizing the distribution of the residuals is helpful for assess-
ing whether the sample is large enough to trust the confidence intervals and
hypothesis tests, since larger samples are required for this approximation to
hold when departures from the normality of the errors are relatively serious.
As with the t-test reviewed in Sect. 3.1, outliers are the principal worry with
such departures, with the potential to erode the power of the model to detect
real effects.
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Residual Plots

Various graphical methods introduced in Chapter 2 are useful for assessing
the normality of ε. In using these tools, it is important to distinguish between
the distribution of the outcome y and the distribution of the residuals, which
are the sample analogue of ε. The point here is that the residuals may be
normally distributed when y is not, and conversely. Since our assumptions
concern the distribution of ε, it is important to apply the diagnostic tools to
the residuals rather than to the outcome variable itself.
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Fig. 4.8. Residuals With Untransformed LDL

Fig. 4.8 shows four useful graphical tools for assessing the normality of
the residuals, in this case from our multipredictor regression model for LDL.
In the upper panels the histogram and boxplot both suggest a somewhat
long tail on the right. The lower left panel presents a nonparametric estimate
of the distribution of the residuals obtained using the kdensity, normal
command in Stata. For comparison, the solid line in that panel shows the
normal distribution with the same mean and standard deviation. Comparing
these two curves suggests some skewing to the right, with a long right and
short left tail; but overall the shapes are quite close. Finally, as explained in
Chapter 2, the upward curvature of the normal quantile-quantile (Q-Q) plot
on the lower right is also diagnostic of right-skewness.

Interpretation of the results shown in Fig. 4.8 depends on the sample size.
With 2,763 observations, there is little reason for concern about the moderate
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right-skewness. Given such a large data set, the distribution of the parameter
estimates is likely to be well approximated by the normal, despite the mild
departure from normality in the residuals. However, in a small data set, say,
with 50 or fewer observations, the long right tail might be reason for concern,
in part because it could make parameter estimates less precise and tests less
powerful.

Testing for Departures From Normality

Various statistical tests are available for assessing the normality of the resid-
uals, but have the drawback of being sensitive to sample size, often failing to
reject the null hypothesis of normality in small samples where meeting this
assumption is most important, and conversely rejecting it even for small vio-
lations in large data sets where inferences are relatively robust to departures
from normality. For this reason, we do not recommend use of these tests;
instead, the graphical methods just described should be used to judge the
potential seriousness of the violation in the light of the sample size.

Log, Power, and Other Transformations of the Outcome

Transforming the outcome is often successful for reducing the skewness of
residuals. The rationale is that the more extreme values of the outcome are
usually the ones with large residuals (defined as ri = yi − ŷi); if we can “pull
in” the outcome values in the tail of the distribution toward the center, then
the corresponding residuals are likely to be smaller too.

One such transformation is to replace the outcome y with log (y). A con-
stant can be added to an outcome variable with negative or zero values, so
that all values are positive, though this may complicate interpretation. The
log tranformation is now conventionally used to analyze viral load in studies
of HIV and hepatitis infections, triglyceride levels in studies of cardiovascular
disease, and in many other contexts. Fig. 4.9 shows that after log transfor-
mation of LDL, there is no more evidence of right-skewness; in fact there is
slight evidence of too long a tail on the left. It should also be noted that
there is no qualitative change in inferences for BMI. In Sect. 4.7.5 below, we
discuss interpretation of regression coefficients in models where the outcome
is log-transformed.

Power transformations are a flexible alternative to the log transformation.
In this case, y is replaced by yk. Smaller values of k “pull in” the right tail
more strongly. As an example, square (k = 1/2) and cube (k = 1/3) root
transformations were commonly used in analyzing CD4 lymphocyte counts
in studies of HIV infection, since the distribution is very long-tailed on the
right. Adding a constant so that all values of the outcome are non-negative
will sometimes be necessary in this case too. The ladder command in Stata
systematically searches for the power transformation of the outcome which is
closest to normality.
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Fig. 4.9. Residuals With Log-Transformed LDL

A more difficult problem arises if both tails of the distribution of the
residuals are too long, since neither log nor fractional power transformations
will fix both tails. In this case one solution is the rank transformation, in which
each outcome is replaced by its rank in the ordering of all the outcomes, as in
the computation of the Spearman correlation coefficient (Sect. 3.2); this does
not achieve normality but may reduce the loss of power. Another possibility is
trimming the tails; for example, “Winsorizing” the outcome involves replacing
outcome values more than 2 or 3 standard deviations from the average by that
limiting value.

Generalized Linear Models (GLMs)

Some outcome variables cannot be satisfactorily transformed, or there may be
compelling reasons to analyze them on the original scale. A good alternative
is provided by the generalized linear models (GLMs) discussed in Chapter
9. A less efficient alternative is to dichotomize the outcome and analyze it
using logistic models; alternatively, more than two outcome categories can be
analyzed using proportional-odds or continuation-ratio models (Ananth and
Kleinbaum, 1997; Greenland, 1994), as briefly described in Chapter 6.

4.7.3 Constant Variance

An additional assumption concerning ε is homoscedasticity, meaning that its
variance σ2

ε is constant across observations. When this assumption is violated,
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the validity of confidence intervals and P -values can be affected. In particular,
between-group contrasts can be misleading if σ2

ε differs substantially across
the subgroups being compared, especially if the subgroups differ in size. Fur-
thermore, in contrast to violations of the assumption that the residuals are
normally distributed, heteroscedasticity is no less a problem in large samples
than in small ones. Finally, while violations do not make the coefficient biased,
some precision can be lost.
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Fig. 4.10. Checking for Constant Residual Variance

Residual Plots

Diagnostics for violations of the constant variance assumption also use the
residual versus predictor (RVP) plots used to check linearity of response to
continuous predictors, as well as analogously defined residual versus fitted
(RVF) plots. If the constant variance assumption is met, then the vertical
spread of the residuals should be similar across the ranges of the predictors and
fitted values; in contrast, heteroscedasticity is signaled by horizontal funnel
shapes. Since the residuals of the LDL analysis gave no evidence of trouble,
we examined the residuals from the companion model for HDL, which was
shown in Sect. 4.7.1 to need a quadratic term in BMI to meet the linearity
assumption.

Fig. 4.10 shows scatterplots of the residuals of the regression of HDL on
BMI and its square, as well as age, ethnicity, smoking, and alcohol use. The
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plot against BMI shows somewhat wider range on the left, although this may
partly be due to the fact that there are more observations on the left, and
so more likely a few large residuals purely by chance. This evidence for non-
constant variance is mirrored in the slightly wider spread on the right in the
facing plot of the residuals against the fitted values.

Sub-Sample Variances

Constancy of variance across levels of categorical predictor can be checked by
comparing the sample variance of the residuals for each category. In this exam-
ple, the variance was essentially identical across groups defined by ethnicity,
smoking, and alcohol use.

In contrast, in our analysis of the influence of exercise on glucose levels in
Sect. 4.1, violation of the assumption of constant variance was one of several
motivations for excluding women with diabetes. If they had been included, the
variance of the residuals would have varied between this group of 734 women
and the remainder of the HERS cohort by a factor of 26 (2,332 vs. 90). Even
after log transformation of glucose, the variance would still have differed by
a factor of 10 (0.097 vs. 0.0094). This pattern reflects the fact that diabetes
is characterized by loss of control over glucose levels, and also variation in
the use of medications that control them. These large differentials in residual
variance would call into question inferences drawn from comparisons between
women with and without diabetes.

Testing for Departures From Constant Variance

Statistical methods available for testing the assumption of homoscedasticity
share the sensitivity to sample size described earlier for tests of normality.
The resulting potential for giving false reassurance in small samples leads
us to recommend against the use of these formal tests. Instead, we need to
examine the severity of the violation.

When Departures May Cause Trouble

Violations of the assumption of constant variance should be addressed in cases
where the variance of the residuals–

• changes by a factor of 2 or more across the range of the fitted values
or a continuous predictor, judging from the LOWESS smooth of
the squared residuals;

• differs by a factor of 2 or more between subgroups that differ in
size by a factor of 2 or more;

• differs by a factor of 3 or more between subgroups that differ in
size by a factor of less than 2.

Note that smaller differences in the standard deviation of the residuals would
give reason for transformation.
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Variance-Stabilizing Outcome Transformations

In simple cases where multiple predictors do not need to be taken into account,
we could use t-tests with the unequal option to compare subgroups, allowing
for the unequal variances. However, multipredictor modeling is often crucial;
furthermore, use of a t-test with unequal variances would not address smooth
dependence of σ2

ε either on E[y|x] or on a continuous predictor. In that case,
non-constant variance can sometimes be addressed using a variance-stabilizing
transformation of the outcome, including the log and square root transfor-
mations. As shown in Fig. 4.11, log transformation of HDL reduces, though
it does not completely eliminate, the evidence for non-constant variance we
found in Fig. 4.10. However, in this case our qualitative conclusions would be
unchanged by log transformation of HDL.
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Fig. 4.11. Rechecking Constant Variance After Log-Transforming HDL

GLMs

The square root transformation has been widely used to stabilize the variance
of counts. However, this has now been largely supplanted by GLMs such as the
Poisson and negative binomial regression models (Chap. 9). As in other GLMs,
including the logistic model (Chap. 6), the variance of the Poisson outcome
is modeled as a function of its mean. In particular, this would potentially
be useful in cases where a LOWESS smooth of the squared residuals, an



4.7 Checking Model Assumptions and Fit 121

alternative diagnostic for heteroscedasticity, increased in proportion to the
fitted values. GLMs represent the primary alternative when transformation
of the outcome fails to rectify substantial violations of the assumption of
constant variance.

4.7.4 Outlying, High Leverage, and Influential Points

We have already pointed out that outlying observations with relatively large
residuals can cause trouble, in part by inflating the variance of coefficient es-
timates, making it harder to detect statistically significant effects. In this sec-
tion we consider high-leverage points, which could be described as x-outliers,
since they tend to have extreme values of one or more predictors, or represent
an unusual combination of predictor values. The importance of high-leverage
points is that they are also potentially influential, in the sense that one or
more of the coefficient estimates would change by an unduly large amount if
the influential points were omitted from the data set. This can happen when
a high-leverage point also has a large residual.

Definitions: High leverage points are x-outliers with the potential to
exert undue influence on regression coefficient estimates. Influential
points are points that have exerted undue influence on the regression
coefficient estimates.

Ultimately, our concern is that changes in coefficient estimates resulting
from the omission of one or a few influential points could qualitatively af-
fect the conclusions drawn from the analysis. This could arise if associations
that were clearly statistically significant become clearly non-significant, or vice
versa, including interaction and quadratic terms, or if associations change sub-
stantially in magnitude or direction. We would have good reason to mistrust
substantive conclusions that were dependent on a few observations in this
way. Similarly, in regression models oriented to prediction of future outcomes
(Sect. 5.2), prediction error might be substantially affected.

Outlying, high leverage, and influential points are illustrated in Fig. 4.12.
In all three of these small samples (n = 26), a problematic data point, marked
with an X, is included. The solid and dashed lines in each plot show the
regression lines estimated with and without the point, as a graphical measure
of influence. The sample shown on the upper left includes an outlier with a
very large positive residual. However, the leverage of the outlier is minimal,
because it is in the center of the distribution of x. Accordingly, the slope
estimate is unaffected by omission of this data point, Note that the point is
influential for the intercept estimate, but this parameter may be of less direct
interest.

In the upper right panel, the point at the extreme right has high leverage,
but because this data point is fairly consistent with the prediction based on
the other 25 data points, its influence is limited, and the estimated slope and
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Fig. 4.12. Outlying, High-Leverage, and Influential Points

its statistical significance are almost unchanged by by omission of the high-
leverage point. Certainly our qualitative interpretation of the slope would be
unaffected.

In contrast, the point at the extreme right in the lower left panel has
the same leverage as the point in the upper right panel, but in this case its
influence is very strong, moving the slope estimate by more than 2 standard
errors. The slope remains positive and statistically significant in this instance,
so our qualitative interpretation would be similar, but in some circumstances
omission of such a data point could make a non-significant result highly sta-
tistically significant, or vice versa. In part this reflects the small sample size,
since a high leverage point is has a better chance of outweighing a relatively
small number of other observations.

DFBETAs

To check for sensitivity of the conclusions of an analyis to a small number
of high-leverage observations, we first need to identify potentially influential
points. Of the various statistics for quantifying influence that have been de-
fined, we recommend using DFBETA statistics, which quantify how much
each of the coefficients would change if each observation were omitted from
the data set. In linear regression, these statistics are exact; for logistic and
Cox models, accurate approximations are available. DFBETA statistics are in
standard error units – effectively on the same scale as the t-statistic, which
is equal to β̂ divided by its standard error. If the analysis is focused on one
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predictor of primary interest, then clearly the DFBETAs for that predictor
are of central concern.
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Fig. 4.13. DFBETAs for Data Sets Shown in Fig. 4.12

Boxplots are convenient for identifying a small set of extreme outliers
among the DFBETA values for each predictor. DFBETAs often have a very
small inter-quartile range, so that a substantial set of observations may lie
beyond the whiskers of the plot. Thus we need to look for a small number of
extreme values that are set off from the rest. Fig. 4.13 shows boxplots of the
DFBETA statistics for the single predictor in the three data sets shown in
Fig. 4.12. These plots clearly indicate the single influential point.

If a small set of observations meeting diagnostic criteria for undue influ-
ence is identified, the accuracy of those data points should first be checked
and clearly erroneous observations corrected, or if this is impossible, deleted.
Then if any of the apparently influential points are retained, a final step is
sensitivity analyses in which the final model is rerun omitting some or all of
the retained influential points. For example, suppose we have identified ten
influential points that are not due to data errors, and that these include two
observations with absolute DFBETAs greater than 2, three observations with
values between 1 and 2, and five more with values between 0.5 and 1. Then a
convenient ad hoc procedure would be to delete the two worst observations,
then the worst five, and finally all ten potentially influential points. In each
model, we would check whether the important conclusions of the analysis were
affected. In prediction models, sensitivity would be assessed in terms of esti-
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mated prediction error (Sect. 5.2). In summary, we emphasize the underlying
theme of sensitivity to the omission of a small number of points, relative to
sample size; if we omit 10% or 20% of the data and the conclusions change,
this would probably not indicate undue sensitivity.
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Fig. 4.14. DFBETAs for LDL Model

Fig. 4.14 below shows boxplots of DFBETAs for the multiple regression of
LDL on BMI, age, ethnicity, smoking, and alcohol use. As compared to the
clearly influential point shown in Fig. 4.13, the largest DFBETAs are much
less extreme. Examination of the four observations with DFBETAs > 0.2
identified women with high LDL values (between 346 and 393 mg/dL).

Table 4.16. Sensitivity of LDL Model to Omission of Four Most Influential Points

Predictor All observations Omitting four observations
variable β̂ 95% CI P -Value β̂ 95% CI P -Value

BMI 0.36 0.10, 0.62 0.007 0.34 0.08, 0.60 0.010
Age –1.89 –4.11, 0.32 0.090 –1.86 –4.03, 0.31 0.090
Nonwhite 5.22 0.66, 9.78 0.025 4.19 –0.27, 8.66 0.066
Smoking 4.75 0.42, 9.08 0.032 3.78 –0.47, 8.03 0.072
Alcohol Use –2.72 –5.66, 0.22 0.069 –2.64 –5.51, 0.23 0.072



4.7 Checking Model Assumptions and Fit 125

The sensitivity of model results to the omission of these four points is
summarized in Table 4.16.The changes are mostly minor, in particular for
BMI, the predictor of primary interest. The P -values for ethnicity and smoking
shift from nominally statistically significant to borderline significant, but these
are not variables of primary interest and in any case our conclusions should
not be unduly influenced by small shifts of this kind.

A potential weakness of these procedures is that DFBETAs capture the
influence of omitting one observation at a time, but do not tell us how the
omission of various sets of points, some of which may have small DFBETAs,
will affect our conclusions. Unfortunately, user-friendly diagnostics for check-
ing sensitivity to omission of sets of observations have not been developed, in
part because the computational burden is too great.

Addressing Influential Points

If substantive conclusions are qualitatively affected by omission of influential
points in the sensitivity analysis, this should be reported. In addition, it is
often worthwhile to consider in substantive terms why these points have high
leverage and are influential. For example, the WCGS data include an influ-
ential point with an extreme but accurately recorded cholesterol level of 645
mg/dL, which resulted from familial hypercholesterolemia, a rare condition.
For research questions concerning the effects of cholesterol levels in the usual
range determined by common risk factors, it would be reasonable to delete
this point. But in many circumstances, deletion of influential points is hard
to justify persuasively.

In that case, it may also be worth considering a more complex model
that better accommodates the influential points. In Fig. 4.12, for example, a
quadratic term would almost certainly reduce the influence of the observation
causing trouble. Alternatively, interaction terms might accommodate influen-
tial data points characterized by an unusual combination of two predictor val-
ues. Nonetheless, changing the model in such a substantial way to accommo-
date one or a few data points should be undertaken with caution, with atten-
tion to the plausibility of the modified model, and the results clearly presented
as data-driven, sensitive to influential points, and hypothesis-generating.

4.7.5 Interpretation of Results for Log-Transformed Variables

In Sect. 4.7 we discussed log-transforming predictors to achieve linearity, and
proposed log transformation of the outcome as a means of normalizing the
residuals or stabilizing their variance. Even if substantive interpretation and
P -values are often not much changed, these transformations have a substantial
effect on the estimated regression coefficients and their literal interpretation.

For both predictors and outcomes, log transformation changes the focus
from absolute to relative or percentage change. Recall that for a predictor and
outcome on their measured scale, the regression coefficient is interpretable as
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the change in the average value of the outcome for every unit increase in the
predictor; for both predictor and outcome, we mean change on the measured,
or absolute, scale.

Log Transformation of the Predictor

First consider log transformation of the predictor. In this case, the regression
coefficient multiplied by log(1.01) can be interpreted as the change in the
average value of the outcome for every 1% increase in the predictor. This is
valid whether we use the natural log or logarithms with other bases. In a linear
model using the natural log (ln) transformation of weight to predict systolic
blood pressure (SBP), the estimated coefficient for ln weight is 3.004517. Thus
we estimate that average SBP increases 3.004517× ln(1.01) ≈ 0.03 mmHg for
each 1% increase in weight. Similarly, if we multiply β̂ by ln(1.05) or ln(1.1)
we obtain the estimates that average SBP increases 0.15 mmHg for each 5%
increase in weight and 0.29 mmHg for each 10% increase.

Within limits, we can approximate these results without using a calculator.
Specifically, if the predictor is natural log-transformed, we can estimate the
increase in the average value of the outcome per 1% increase in the predictor
simply by β̂/100. This follows because ln(1.01) ≈ 0.01. But this shortcut
is not valid for logarithms with other bases, and analogous calculations for
larger percentage increases in the predictor get progressively less accurate and
should not be attempted by this means.

Log Transformation of the Outcome

Similarly, with natural log transformation of the outcome, 100(eβ̂ − 1) is in-
terpretable as the percentage increase in the average value of the outcome
per unit increase in the predictor. If base-10 logs were used to transform the
outcome, then 100(10β̂ − 1) has this interpetation. The coefficient for BMI
in a linear model for the natural log transformation of triglyceride (TGL) is
0.0133487, so the model predicts a 100(e0.0133487 − 1) = 1.34% increase in
TGL per unit increase in BMI.

Again, we can approximate these results without a calculator under some
circumstances. When the outcome is natural log-transformed, we can approx-
imate the percentage change in the average value of the outcome per unit
increase in the predictor by 100β̂. But this is acceptably accurate only if β̂ is
smaller than 0.1 in absolute value, and is again not valid using log transfor-
mations with other bases.

Log Transformation of Both Predictor and Outcome

If both predictor and outcome are transformed using natural logs, then
100(eβ̂ ln(1.01) − 1) can be interpreted as the percentage increase in the av-
erage value of the outcome per 1% increase in the predictor. With the log10
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transformation, 100(10β̂ log10(1.01) − 1) has this interpretation. In this case,
the back-of-the-envelope approximation for the percent increase in outcome
for each 1% increase in the predictor is simply β̂; this is accurate if both pre-
dictor and outcome are natural log-transformed and β̂ is smaller than 0.1 in
absolute value.

4.7.6 When to Use Transformations

Our graphical diagnostics for linearity, normality, and constant variance do
not provide clearcut decision rules analogous to P < 0.05, and we do not
recommend formal statistical tests in this context. Furthermore, addressing
these violations will in many cases involve using transformations of predic-
tors or outcomes that may make the results harder to interpret. A natural
criterion for assessing the necessity for transformation is whether important
substantive results differ qualitatively before and after transformation. If not,
it may be reasonable not to use the transformations. Our example using BMI
and diabetes to predict HDL is probably a case in point: while log transforma-
tion of HDL corrected departures from both normality and constant variance,
the conclusions were unchanged. But if substantial differences do arise, then
using transformed variables to meet model assumptions more closely helps us
to avoid misleading results.

4.8 Summary

The multipredictor linear model is a straightforward extension of the simple
linear model for continuous outcomes. Inclusion of multiple predictors in the
model makes it possible to adjust for confounding variables, examine medi-
ation, check for and model interactions, and increase efficiency, especially in
experiments, by accounting for design factors. It is important to check the
assumptions of the linear model and to use transformations of predictor and
outcome variables as necessary to meet them more closely, especially in small
samples. It is also important to recognize common data types where linear
regression is not appropriate; these include binary, time-to-event, count, and
repeated measures or clustered outcomes, and are addressed in subsequent
chapters.

4.9 Further Notes and References

For more detailed information on the linear regression model, first-rate books
include Weisberg (1985) and Draper and Smith (1981). Jewell (2004), in par-
ticular Chapter 8, gives an excellent introduction – to which we are indebted –
to issues of causality in observational studies; Rothman and Greenland (1998)
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also address these issues in some detail. A cutting-edge book in this area, un-
fortunately of considerable difficulty, is van der Laan and Robins (2003). A
standard book on regression diagnostics is Belsey et al. (1980), while Cleveland
(1985) covers graphical methods for model checking in detail. See Breiman
(2001) for a skeptical view of the sensitivity of the methods presented here
for detecting lack of fit.

Splines and Generalized Additive Models

The Stata package implements a convenient and often more biologically plau-
sible alternative to the categorical transformations presented in Sect. 4.7.1 for
addressing departures from linearity, called the linear spline. We again specify
cutpoints, usually called knots in this context. The resulting fitted regression
line is continuous at each of the knots and linear in the intervals between them.
The mkspline command in Stata can be used to set up the transformed pre-
dictor variables, one for each interval defined by the cutpoints. As with the
categorical transformation, selection of the knots is a non-trivial problem.

Methods have also been developed for fitting linear as well as logistic
(Chap. 6) and other generalized linear models (Chap. 9) in which the adjusted
response to each predictor can be flexibly modeled as a smooth (piecewise
cubic rather than piecewise linear) spline, or alternatively using a LOWESS
curve. In both cases the degree of smoothness is under the control of the
analyst. Known as generalized additive models (Hastie and Tibshirani, 1986,
1999), implementations in the R statistical package make it easy to model and
test the statistical significance of departures from linearity. Implementations
in R of smooth spline transformations of predictors are also available for the
Cox model, discussed in Chapter 7.

4.10 Problems

Problem 4.1. Using the Western Collaborative Group Study (WCGS) data
for middle-aged men at risk for heart disease, fit a multipredictor model for to-
tal cholesterol (chol) that includes the binary predictor arcus, which is coded
1 for the group with arcus senilis, a milky ring in the iris associated with high
cholesterol levels, and 0 for the reference group. Save the fitted values. Now re-
fit the model with the code for the reference group changed to 2. Compare the
coefficients, standard errors, P -values, and fitted values from the two models.
The WCGS data are available at http://www.biostat.ucsf.edu/vgsm.

Problem 4.2. Using (4.2), show that βj gives the difference in E[y|x] for a
one-unit increase in xj , no matter what the values of xj or the other predictors.
Hint: Write the value of (4.2) for xj = x and then for xj = x+1, for arbitrary
(unspecified) values of the other predictors, all of which are held fixed, and
subtract the first value from the second.
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Problem 4.3. Using the WCGS data referenced in Problem 4.1, extract the
fitted values from the multipredictor linear regression model for cholesterol
and show that the square of the sample correlation between the fitted values
and the outcome variable is equal to R2. In Stata the following code saves
the predicted values from the regression model in Table 4.2 to a new variable
yhat:

. reg glucose exercise BMI smoking drinkany

. predict yhat

Then use the pwcorr and display commands to get the correlation between
yhat and the predictor and square it.

Problem 4.4. Give an alternative coding for the unadjusted model predicting
glucose from the five-level physical activity variable in which no intercept
parameter is included in the model. In this case, there is no reference group,
and all five group-specific indicators are included in the model. What is the
interpretation of the βs in this model? How could the Stata lincom command
be used to compare groups?

Problem 4.5. Use the test command in Stata or an equivalent command
in another statistical package to show that F = t2 for a pairwise contrast
between any other level of a categorical predictor and the reference group
used in the model.

Problem 4.6. In the model including an interaction between BMI and statin
use, define a second new BMI variable so that estimates for BMI specific
to women who do and do not use statins can be obtained directly from the
regression coefficients, rather than having to compute sums of the coefficients
for one of these groups. Define the values of the new BMI variable in the two
groups, and then write down the regression equations analogous to (4.28),
(4.29), and (4.30). Explain why the statin use variable needs to be included
in this model.

Problem 4.7. If we “center” age – that is, replace it with a new variable
defined as the deviation in age from the sample mean, what would be the
interpretation of the intercept in the model for SBP (3.2)? If BMI had not
been centered, how would the interpretation of the statin use variable change
in the model in Sect. 4.6.5 allowing for interaction in predicting LDL?

Problem 4.8. Consider the associations between exercise and glucose levels
among women without diabetes. What are the interpretations of the coefficient
for exercise–

• in a simple linear model for glucose levels
• in a multipredictor linear regression model for glucose adjusting

for all known confounders of the exercise association



130 4 Linear Regression

Suppose factor X had been identified as a mediator of the exercise/glucose
association. What would be the interpretation of the exercise coefficient in
a multipredictor regression model that also adjusted for factor X, supposing
that the exercise coefficient remained statistically significantly different from
zero?

Problem 4.9. Suppose that in a clinical trial of the effects of a new treat-
ment on glucose levels, the randomization is stratified on diabetes, an im-
portant predictor of this outcome. By virtue of randomization, the treatment
is uncorrelated with diabetes. Using (4.4), explain why including diabetes in
the analysis should provide a more efficient estimate of the treatment effect.
Would it be a good idea to check for interaction between treatment and dia-
betes in this analysis? Why?

Problem 4.10. Using Stata (or another statistical package) and the WCGS
data set referenced above in Problem 4.1 (or your own data set), verify that
you get equivalent results from

• a t-test and a simple linear model with one binary predictor
• one-way ANOVA and a linear model with one multilevel categori-

cal predictor.

Problem 4.11. What is the difference between showing that an interaction is
statistically significant and showing that an association is statistically signifi-
cant in one group but not in the other? Describe a pattern where the second
condition holds but there would clearly be no interaction. Is that pattern of
clinical interest?

Problem 4.12. Consider a predictor of interest for an important outcome in
your field of expertise. Are there other predictors that might be hypothesized
a priori to interact with the predictor of interest? Why?

Problem 4.13. Suppose a quadratic term in BMI is added to the model for
HDL to rectify the departure from linearity and improve fit. How would you
summarize this more complex association in presentations or a paper?

Problem 4.14. Consider a right-skewed outcome variable that could be ade-
quately normalized using an unfamiliar fractional power transformation (say,
the cube root). A simpler alternative is just to dichotomize the variable. Why
would you expect this to be a costly choice in terms of efficiency? Now con-
sider birth weights. Why might analysis of an indicator of low birth weight be
worth the loss of efficiency in this case?

Problem 4.15. Suppose you fit a model with an influential point. With the
point, the association of interest is just statistically significant, and without
it, it is clearly not. What would you do?
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4.11 Learning Objectives

1. Describe situations in which multipredictor analysis is needed. Given an
analysis situation, decide if linear regression is appropriate.

2. Translate research questions appropriate for a regression model into spe-
cific questions about model parameters.

3. Use linear regression models to test hypotheses about relationships be-
tween variables, including confounding, mediation, and interaction.

4. Describe the linear regression model, its key assumptions, and their im-
plications.

5. Explain why the estimates are called least squares estimates.
6. Define regression line, fitted value, residual, and influence.
7. State the relationships between

• correlation and regression coefficients
• the two-sample t-test and a regression model with one binary

predictor
• ANOVA and a regression model with categorical predictors.

8. Know how a statistical package is used to estimate the parameters in
a regression model and make diagnostic plots to assess how well model
assumptions are met.

9. Interpret regression model output output including regression parame-
ter estimates, hypothesis tests, confidence intervals, and statistics which
quantify the fit of the model.

10. Interpret regression coefficients when the predictor, outcome, or both are
log-transformed.
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Predictor Selection

Walter et al. (2001) developed a model to identify older adults at high risk of
death in the first year after hospitalization, using data collected for 2,922 pa-
tients discharged from two hospitals in Ohio. Potential predictors included de-
mographics, activities of daily living (ADLs), the APACHE-II illness-severity
score, and information about the index hospitalization. A “backward” se-
lection procedure with a restrictive inclusion criterion was used to choose a
multipredictor model, using data from one of the two hospitals. The model
was then validated using data from the other hospital. The goal was to se-
lect a model that best predicted future events, with a view toward identifying
patients in need of more vigorous monitoring and intervention.

Grodstein et al. (2001) evaluated the efficacy of hormone therapy (HT) for
secondary prevention of coronary heart disease (CHD), using observational
data for 2,489 women with previous myocardial infarction or documented
coronary artery disease in the Nurse’s Health Study (NHS), a prospective
cohort followed from 1976 forward. In addition to measures of the use of HT,
a set of known CHD risk factors were controlled for, including age, body mass
index (BMI), smoking, hypertension, LDL cholesterol levels, parental heart
disease history, diet, and physical activity. The goal of predictor selection was
to obtain a minimally confounded estimate of the effect of HT on risk of CHD
events.

The Heart and Estrogen/Progestin Replacement Study (HERS), a ran-
domized clinical trial addressing the same research question, was conducted
among 2,763 post-menopausal women with clinically evident heart disease
(Hulley et al., 1998). As in the NHS, a wide range of predictors were measured
at study entry. Yet in the pre-specified analysis of the main HERS outcome,
the only predictor was treatment assignment. The goal was to obtain a valid
test of the null hypothesis as well as an unbiased estimate of the effectiveness
of assignment to HT.

Orwoll et al. (1996) examined independent predictors of axial bone mass
using data from the Study of Osteoporotic Fractures (SOF). SOF was a large
(n = 9,704) observational cohort study designed to address multiple research
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questions about osteoporosis and fractures among ambulatory women age
65 and up. Predictors considered by Orwoll had been identified in previous
studies, and included weight, use of medications such as HT and diuretics,
smoking history, alcohol and caffeine use, calcium intake, physical activity,
and various measures of physical function and strength. All variables that
were statistically significant at P < .05 in models adjusting for age were
included in the final multipredictor linear regression model. The goal was to
identify all important predictors of bone mass.

In each of these examples, many more potential predictor variables had
been measured than could reasonably be included in a multivariable regres-
sion model. The difficult problem of how to select predictors was resolved
differently, to serve three distinct inferential goals:

1. Prediction. Here the primary issue is minimizing prediction error
rather than causal interpretation of the predictors in the model.
The prediction error of the model selected by Walter et al. (2001)
was evaluated using an independent data set from a second hos-
pital.

2. Evaluating a predictor of primary interest. In pursuing this infer-
ential goal, a central problem in observational data is confounding,
which relatively inclusive models are more likely to minimize. Pre-
dictors necessary for face validity as well as those that behave like
confounders should be included in the model. Randomized exper-
iments like HERS represent a special case where the predictor of
primary interest is the intervention; confounding is not usually an
issue, but covariates are sometimes included in the model for other
reasons.

3. Identifying the important independent predictors of an outcome.
This is the most difficult of the three inferential goals, and one in
which both causal interpretation and statistical inference are most
problematic. Pitfalls include false-positive associations, the poten-
tial complexity of causal pathways, and the difficulty of identifying
a single best model. We also endorse inclusive models in this con-
text, and recommend a selection procedure that affords increased
protection against false-positive results. Cautious interpretation
of weak associations is key to this approach.

In summary–

Definition: Predictor selection is the process of choosing appropriate
predictors for inclusion in a multipredictor regression model. A good
model should be substantively motivated, appropriate to the inferen-
tial goal and sample size, interpretable, and persuasive.
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5.1 Diagramming the Hypothesized Causal Model

Many potential confounders, effect modifiers, and mediators can be identified
a priori from previous research. It can be useful to formalize this prior knowl-
edge in a diagram of the hypothesized causal model. While most important
for models oriented to causal interpretation, diagrams can also help select
variables which are likely to be most useful for prediction.

Fig. 5.1 shows some conventional ways of diagraming causal relationships,
illustrating the case with a predictor of primary interest. Causal links between
predictors, or between predictor and outcome, are shown by arrows pointing
from cause to effect. An arrow may represent negative (e.g., HT reduces LDL)
and well as positive causal pathways. A statistical association between vari-
ables not directly linked as cause and effect is shown by two-headed arrows; in
many cases this association reflects a common causal antecedent. Confounders
are linked by an arrow to the outcome, and to the variables they confound by
single or two-headed arrows (Fig. 5.1A, B). An interaction is represented by
an arrow from the effect modifier which intersects the arrow for the modified
causal effect (Fig. 5.1C). Mediation is represented by an arrow from the pri-
mary predictor to the mediator, and another arrow from mediator to outcome;
where more than one causal pathway from predictor to outcome is hypothe-
sized, multiple arrows can be used, some of them passing through mediators,
some not (Fig. 5.1D).

Fig. 5.2 shows a hypothetical causal model relating HT use in a population
and CHD events. Most CHD risk factors are shown as causally related to CHD
events, but as correlates of HT use, since the links between voluntary use of HT
seem unlikely to be direct. Some of the correlations are shown with question
marks, and could easily be evaluated in the data. There are also many inter-
relationships among the risk factors. For example, BMI and age increase risk of
diabetes, which in turn increases lipid (cholesterol) levels and hypertension;
furthermore, all these factors are shown as potentially affecting CHD risk
directly, as well as through the hypothesized mediating relationships. BMI is
shown as possibly causing decreased exercise, as well as responding to it, a
complexity that would be difficult to sort out using observational data.

Even though just a subset of the possible causal pathways, mediating re-
lationships, and associations among known risk factors, HT, and CHD risk
are shown in Fig. 5.2, the diagram suggests that the causal pathways lead-
ing to heart disease events are complex. The utility of causal diagrams is in
helping to think through hypotheses in advance of selecting predictors for a
multipredictor regression model. In the following sections, we examine how
the relationships shown in a causal diagram can be implemented in predic-
tor selection for three inferential goals: prediction of new events, assessing
a predictor of primary interest, and identifying the important independent
predictors of an outcome.
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Fig. 5.2. Hypothesized Causal Relationships for HT and CHD Events

5.2 Prediction

In selecting a good prediction model, candidate predictors should be compared
in terms of prediction error.

Definition: Prediction error (PE) measures how well the model is able
predict the outcome for a new, randomly selected observation that
was not used in estimating the parameters of the prediction model.

5.2.1 Bias–Variance Trade-off

Inclusive models that minimize confounding may not work as well for predic-
tion as models with smaller numbers of predictors. This can be understood
in terms of the bias–variance trade-off. Bias in predictions is often reduced
when more variables are included in the model, provided they are measured
and modeled adequately. But as less important covariates are added to the
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model, precision may start to erode, without commensurate decreases in bias.
The larger models may be overfitted to the idiosyncrasies of the data at hand,
and thus less able to predict new, independent observations. The bottom line
is that a smaller model which gives slightly biased estimates of the regres-
sion coefficients may predict the outcome for new observations better than
a larger but less precisely estimated model. The model which optimizes the
bias–variance trade-off is by definition the model which minimizes prediction
error, the natural criterion for selecting among candidate prediction models.

5.2.2 Estimating Prediction Error

R2, interpretable as the proportion of variance explained by a linear regres-
sion model, increases with each additional covariate, even if it adds minimal
information about the outcome. At the extreme, R2 = 1 in a model with
one predictor for each observation. Thus the model that maximizes R2 is un-
likely to minimize PE, essentially because the same observations are used to
estimate the model and assess its predictiveness.

Better estimates of PE are based on generalized cross-validation (GCV),
a class of methods that work by using different, independent sets of obser-
vations to estimate the model and to evaluate PE. The most straightforward
example of cross-validation is the learning set/test set (LS/TS) approach, in
which the parameter estimates are obtained from the learning set and PE is
evaluated in the test set. In linear regression, computing PE is straightfor-
ward, using β̂ from the learning set to compute the predicted value ŷ and
corresponding residual for each observation in the test set. In some imple-
mentations, the learning and test sets are obtained by splitting a single data
set, often with two-thirds of the observations randomly assigned to the learn-
ing set. Other implementations, as in Walter’s analysis of post-hospitalization
mortality among high-risk older adults, use an independent sample as the test
set. This may give more generalizable estimates of PE, since the test set is
not sampled under exactly the same circumstances as the learning set. LS/TS
is less efficient than some alternatives but easier to implement.

An alternative to LS/TS is leave-one-out or jackknife methods, in which
all but one observation are used to estimate the model, and then PE is eval-
uated for the omitted observation. In linear regression models, this estimate
of PE can be computed and averaged over every observation with minimal
extra computation. The resulting predicted residual sum of squares (PRESS)
is available from most regression packages. In logistic and Cox models, ex-
act leave-one-out estimates of PE are time-consuming to compute, but fast
one-step approximations are available. The best prediction model minimizes
PRESS.

Midway between LS/TS and the jackknife is h-fold cross-validation (hCV).
The data set is divided into h mutually exclusive subsets and a measure of
PE is evaluated in each subset, using parameter estimates obtained from the
remaining observations. A global estimate of PE is then found by averaging
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over the h subset estimates. Setting h = 10 is often recommended. This short-
cut generally gives better estimates of PE than the leave-one-out jackknife
method.

Alternative measures theoretically motivated by PE include adjusted R2,
which works by penalizing R2 for the number of predictors in the model. Thus
when a variable is added, adjusted R2 increases only if the increment in R2

outweighs the added penalty. Mallow’s Cp the Akaike Information Criterion
(AIC), and the Bayesian Information Criterion (BIC) are analogs which im-
pose stiffer penalties for each additional variable, and thus lead to selection of
smaller models. These measures are easily obtained in most regression pack-
ages; in Stata the regress command prints adjusted R2 by default. The best
prediction model is taken to be the one that maximizes adjusted R2, Cp, AIC,
or BIC.

5.2.3 Screening Candidate Models

An efficient way to evaluate candidate prediction models is the best subsets
procedure, which exhaustively examines models including various numbers
of candidate predictors. A hypothetical causal diagram can be used to sug-
gest variables that should be in the initial list, which can be supplemented by
alternative predictive measures (eg, waist hip ratio instead of BMI) and trans-
formations. Though not yet available in Stata, implementations in other sta-
tistical packages make it possible to select candidate models directly in terms
of approximate measures of PE, such as adjusted R2 and Mallow’s Cp. Where
an automated best subsets procedure is unavailable, it is possible, though po-
tentially tedious, to implement the procedure by hand, comparing candidate
models suggested by the causal diagram in terms of a cross-validation estimate
of PE.

Note that estimated PE will be biased low for the selected model, because
models have been compared in terms of the cross-validation PE measure.
Nonetheless, a model selected by this criterion is likely to predict better than
a model that maximizes R2 or models selected to achieve the other inferential
goals described in Sects. 5.3 and 5.4.

5.2.4 Classification and Regression Trees (CART)

Sophisticated methods for selecting optimal prediction models have been de-
veloped in the last 20 years. Among the most important are tree-based meth-
ods (Breiman et al., 1984). Using recursive partitioning, a sample is repeatedly
subdivided on the basis of predictor variables into groups that are as internally
homogeneous as possible, in terms of the outcome. For a continuous outcome,
this means minimizing the within-group variance, while maximizing the dif-
ferences between groups; for a categorical outcome, it means finding groups
that are composed of one outcome category to the greatest extent possible.
The partitioning is recursive because the two groups formed by the first split
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are themselves potentially split into two groups each, then the resulting four
groups potentially split, and so on until the resulting groups meet criteria for
homogeneity or minimum size. Each split is based on an exhaustive search
for the partition based on a single predictor that gives the greatest increase
in homogeneity. When a tree has been fully grown, cross-validation is used to
prune it back in such a way as to minimize PE. This reflects the fact that
smaller, slightly biased models often predict better than larger, more variable
ones. The resulting tree has the form of a diagnostic flowchart; at least one
CART-based decision tree is in widespread use in helping to decide which
emergency room patients with chest pain should be admitted for probable
heart attack (Goldman et al., 1996).

5.3 Evaluating a Predictor of Primary Interest

In observational data, the main problem in evaluating a predictor of primary
interest is to rule out confounding of the association between this predictor
and the outcome as persuasively as possible. Potential confounders to be con-
sidered include factors identified in previous studies or hypothesized to matter
on substantive grounds, as well as variables that behave like confounders by
the statistical measures described in Sect. 4.4.

Three classes of covariates would not be considered for inclusion in the
model: covariates which are essentially alternative measures of either the out-
come or the predictor of interest, and those hypothesized to mediate its effect.
A diagram of the proposed causal model can be useful for clarifying hypothe-
ses about these relationships, which can be complex, and selecting variables
for consideration. In Fig. 5.2 lipids both mediate and possibly confound the
association of HT with CHD events. A possible argument for including lipids
in the model is that the resulting estimate for HT would not include the com-
ponent of the effect mediated through the lipid pathway, implying that the
total effect of HT would be larger.

In contrast, mediation of one confounder by another would not affect the
estimate for the primary predictor nor its interpretation. In Fig. 5.2 there are
many apparent mediating relationships between CHD risk factors. Similarly,
high correlation between pairs of adjustment of confounding variables would
not necessarily be a compelling reason for removing one of them, if both are
seen as necessary on substantive or statistical grounds; the reason is that
collinearity between confounding variables will not affect the estimate for
the primary predictor or its precision. Covariates which are in some sense
alternative measures of the outcome are not always easy to recognize, but
should usually be excluded. For example, it would be problematic to include
diabetes in a model for glucose, because diabetes is largely defined by elevated
glucose. Another example is history of a potentially recurrent outcome like
falling in a model for subsequent incidence of the outcome. In both examples,
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addition of the alternative outcome measure as a predictor to the model tends
to attenuate the estimates for other, more interpretable predictors.

5.3.1 Including Predictors for Face Validity

Some variables in the hypothesized causal model may be such well-established
causal antecedents of the outcome that it makes sense to include them, es-
sentially to establish the face validity of the model and without regard to the
strength or statistical significance of their associations with the primary pre-
dictor and outcome in the current data set. The risk factors controlled for in
the Nurse’s Health Study analysis of the effects of hormone therapy on CHD
risk are well-understood and meet this criterion.

5.3.2 Selecting Predictors on Statistical Grounds

In many areas of research, the potential confounders of a predictor of inter-
est may be less well established, so that in the common case where there
are many such potential confounders, a priori selection of a reasonable sub-
set to adjust for is not a realistic option. However, the inclusion of too many
predictors may unacceptably inflate the standard errors of the regression coef-
ficients, especially in smaller samples; in logistic and Cox models bias can also
be induced when too many parameters are estimated. We discuss collinear-
ity and the numbers of predictors that can safely be included in Sects. 5.5.1
and 5.5.2. Because of these potential problems, we would like to eliminate
variables that are effectively not confounders in the data at hand, because
they demonstrate little or no independent association with the outcome af-
ter adjustment. Similarly, hypothesized interactions that turn out not to be
important on statistical grounds would be eliminated, almost always before
either of the interacting main effects are removed.

To do this, we recommend using a backward selection procedure. Our pref-
erence for backward selection rather than forward or stepwise procedures is
explained in Sect. 5.5.3. However, to rule out confounding more effectively,
we recommend a liberal criterion for removal: in particular, only removing
variables with P -values ≥ 0.2 (Maldonado and Greenland, 1993). A compa-
rably effective alternative is to retain variables if removing them changes the
coefficient for the predictor of interest by more than 10% or 15% (Greenland,
1989; Mickey and Greenland, 1989). These inclusive rules are particularly im-
portant in small data sets, where even important confounders may not meet
the usual criterion for statistical significance.

5.3.3 Interactions With the Predictor of Primary Interest

A potentially important check on the validity of the selected model is to as-
sess interactions between the primary predictor and important covariates, in
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particular those that are biologically plausible. Especially for a novel or con-
troversial main finding, it can add credibility to show that the association is
similar across subgroups. There is no reason for concern if the association is
statistically significant in one subgroup but not in the complementary group,
provided the subgroup-specific estimates are similar. However, if a substan-
tial and credible interaction is found, particularly such that the association
with the predictor of interest differs qualitatively across subgroups, then the
analysis would need to take account of this complexity. For example, Kanaya
et al. (2004) found an interaction between change in obesity and hormone
therapy in predicting CHD and mortality risk which substantively changed
the interpretation of the finding. However, since such exploratory analyses
are susceptible to false-positive findings, this unexpected and hard-to-explain
interaction was cautiously interpreted.

5.3.4 Example: Incontinence as a Risk Factor for Falling

Brown et al. (2000) examined urinary incontinence as a risk factor for falling
among 6,049 ambulatory, community-dwelling women in the SOF cohort also
studied by Orwoll. The hypothesis was that incontinence might cause falling
because of hasty trips to the bathroom, especially at night. But it was impor-
tant to rule out confounding by physical decline, which is strongly associated
with both aging and incontinence. The final model included all predictors
which were associated with the outcome at P < 0.2 in univariable analysis and
remained statistically significant at that level after multivariable adjustment.
Alternative and more inclusive models with different sets of predictors were
also assessed. After adjustment for 12 covariates (age; history of non-spine
fracture and falling; living alone; physical activity; use of a cane, walker, or
crutch; history of stroke or diabetes; use of two classes of drugs; a physical
performance variable; and BMD) weekly or more frequent urge incontinence
was independently associated with a 34% increase in risk of falling (95% con-
fidence interval 6–69%, P = .01).

In this example, falling was defined as a binary outcome, to be discussed
in Chapter 6. In addition, because the outcome was observed over multiple
time intervals for each SOF participant, methods presented in Chapter 8 for
longitudinal repeated measures were used. A subsequent example in Sect. 5.5.2
uses a Cox proportional hazards model, to be covered in Chapter 7. In using
these varied examples, we underscore the fact that predictor selection issues
are essentially the same for all the regression models covered in this book.

5.3.5 Randomized Experiments

In clinical trials and other randomized experiments, the intervention is the
predictor of primary interest. Other predictors are, in expectation, uncorre-
lated with the intervention, by virtue of randomization. Thus, in the regression
model used to analyze an experiment, covariates do not usually need to be
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included to rule out confounding of assignment to the intervention. However,
there are several other reasons for including covariates in the models used to
analyze experiments.

Making valid inferences in stratified designs. Design variables in strati-
fied designs need to be included to obtain correct standard errors, confidence
intervals, and P -values. At issue is the potential for clustering of outcomes
within strata, potentially violating the assumption of independence (Chap.
8). Thus analyses of multicenter clinical trials now commonly take account of
clinical center, even though random and equal allocation to treatment within
center ensures that treatment is in expectation uncorrelated with this factor.
Clustering within center can arise from differences in the populations studied
and in the implementation of the intervention.

Increasing precision and power in experiments with continuous outcomes.
Adjusting for important baseline predictors of a continuous outcome can in-
crease the precision of the treatment effect estimate by reducing the residual
error; because the covariates are in expectation uncorrelated with treatment,
the variance inflation factor described in Sect. 4.2.2 is usually negligible. How-
ever, Beach and Meier (1989) use simulations to suggest that adjustment may
on average increase squared error of the treatment effect estimate in smaller
studies or when the selected covariates are not strongly predictive of the out-
come. They also explore the difficulties in selecting a reasonable subset of the
many baseline covariates typically measured, and conclude that adjusting for
covariates which are both imbalanced and strongly predictive of the outcome
has the largest expected effect on the statistical significance of the treatment
effect estimate. We support adjustment for important prognostic covariates
in trials with continuous endpoints, but also endorse the stipulation of Hauck
et al. (1998) that the adjusted model should be pre-specified in the study
protocol, to prevent post hoc “shopping” for the set of covariates which gives
the smallest treatment effect P -value.

“De-attenuating” the treatment effect estimate and increasing power in ex-
periments with binary or failure time outcomes. In contrast to linear models for
continuous outcomes, omission of important but balanced predictors, includ-
ing the stratification variables mentioned previously, from a logistic (Neuhaus
and Jewell, 1993; Neuhaus, 1998) or Cox model (Gail et al., 1984; Schmoor
and Schumacher, 1997; Henderson and Oman, 1999) used to analyze binary
or failure time outcomes attenuates the treatment effect estimate. Hypothesis
tests remain valid when the null hypothesis holds (Gail et al., 1988), but power
is lost in proportion to the importance of the omitted covariates (Lagakos and
Schoenfeld, 1984; Begg and Lagakos, 1993). Note, however, that adjustment
for imbalanced covariates can potentially move the treatment effect estimate
away from as well as toward the null value, and can decrease both precision
and power.

In their review, Hauck et al. (1998) recommend adjustment for influential
covariates in trials analyzed using logistic and Cox models. Their rationale
is not only increased efficiency, but also that the adjusted or de-attenuated
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treatment effect estimates are more nearly interpretable as subject-specific – in
contrast to population-averaged, a distinction that we explain in Sect. 8.5. We
cautiously endorse adjustment for important covariates in trials with binary
and failure time endpoints, but only if the adjusted model can be pre-specified
and adjustment is likely to make the results more, not less convincing to the
intended audience.

Adjusting for baseline imbalances. Adjusted analyses are often conducted
when there are apparent imbalances between groups, which can arise by
chance, especially in small studies, or because of problems in implementing
the randomization. The treatment effect estimate can be badly biased when
strongly predictive covariates are imbalanced, even if the imbalance is not sta-
tistically significant. It is of course not possible to pre-specify such covariates,
but adjustment is commonly undertaken in secondary analyses to demonstrate
that the inferences about the treatment effect are not qualitatively affected
by any apparent baseline imbalance. Note that the precision and statistical
significance of the treatment effect estimate can be eroded by adjustment in
this case, whether the endpoint is continuous, binary, or a failure time.

However, a difficult problem can arise when the selection of covariates to
adjust for makes a substantive difference in interpretation, as Beach and Meier
(1989) show in a re-analysis of time-to-event data from the Chicago Breast
Cancer Surgery Study (Meier et al., 1985). In this small trial (n = 112), where
the unadjusted treatment effect estimate just misses statistical significance
(P = 0.1), different sets of covariates give qualitatively different results, with
some adjusted models showing a statistically significant treatment effect and
others weakening and even reversing the direction of the estimate.

5.4 Identifying Multiple Important Predictors

When the focus is on evaluating a predictor of primary interest, covariates are
included in order to obtain a minimally confounded estimate of the association
of the main predictor with the outcome. A good model rules out confounding
of that association as persuasively as possible. However, broadening the focus
to multiple important predictors of an outcome can make selecting a single
best model considerably more difficult.

For example, inferences about most or all of the predictors retained in the
model are now of primary interest, so overfitting and false-positive results are
more problematic, particularly for novel associations not strongly motivated
a priori. Effect modification or interaction will usually be of interest, but
systematically assessing the large number of possible interactions can easily
lead to false-positive findings, some at least not easily rejected as implausible.
It may also be difficult to choose between alternative models that each include
one variable from a collinear pair or set. Mediation is also more difficult to
handle, to the extent that both the overall effect of a predictor as well as its
direct and indirect effects may be of interest. In this case, multiple, nested
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models may be required, as outlined in Sect. 4.4. Especially in the earlier
stages of research, modeling these complex relationships is difficult, prone to
error, and likely to be an iterative process.

Fig. 5.2 shows how complex the relationships between multiple predictors
can be. In an analysis of a range of CHD risk factors, not focused on the
effect of HT, considerable care would have to be taken in dealing with me-
diation, in particular via pathways involving diabetes. For example, diabetes
mediates some of the effects of BMI and age, and its effects on CHD events
are in turn partly mediated by lipids and hypertension. In the cohort of par-
ticipants in the HERS trial of hormone therapy for coronary heart disease
(Vittinghoff et al., 2003), BMI predicts CHD events in unadjusted but not
adjusted analysis. Because the attenuation of the estimate after adjustment
probably results from mediation rather than confounding, and since obesity
is a modifiable risk factor, weight control was nonetheless recommended as a
means of CHD risk reduction. Diabetes is a powerful independent predictor
of CHD events even after adjustment for mediators including lipids and hy-
pertension, suggesting that other causal pathways are involved. It might also
be necessary to consider effect modification by other medications not shown
in the diagram; for example, if blood pressure differentially predicted CHD
events in women according to their use of anti-hypertensive medications. In
this complex framework, a series of models, possibly including interactions
with treatment, might be necessary to give a full and interpretable picture.

In our view, simplying the problem by treating each of the candidate
predictors in turn as a predictor of primary interest, using the procedures from
the previous section, is not a satisfactory solution. This can result in as many
different models as there are predictors of interest, especially if covariates are
retained because removing them changes the coefficient of the predictor of
interest. Such a description of the data is uneconomical and hard to reconcile
with an internally consistent causal model. Furthermore, missing values can
result in the different models being fit to different subsets of the data.

Given the complexities of assessing multiple independent predictors, the
causal diagrams introduced in Sect. 5.1 can be especially useful in sorting
out hypotheses about relationships among candidate predictors, which may
include interaction and mediation as well as confounding.

5.4.1 Ruling Out Confounding Is Still Central

In exploratory analyses to identify the important predictors of an outcome,
confounding remains a primary concern – in this case for any of the indepen-
dent predictors of interest. Thus some of the same strategies useful when a
single predictor is of primary interest are likely to be useful here. In particu-
lar, relatively large models that include variables thought necessary for face
validity, as well as those that meet a liberal backward selection criterion, are
preferable. However, as in the previous section, small sample size and high
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correlation between predictors may limit the number of variables that can be
included. We discuss these issues in more detail in Sects. 5.5.1 and 5.5.2.

5.4.2 Cautious Interpretation Is Also Key

What principally differs in this context is that any of the associations in the
final model may require substantive interpretation, not just the association
with a primary predictor. This may justify a more conservative approach to
some minor aspects of the model; for example, poorly motivated and implau-
sible interactions might more readily be excluded. In addition, choices among
any set of highly correlated predictors would need to be made.

However, we do not recommend “parsimonious” models that only include
predictors that are statistically significant at P < 0.05 or even stricter criteria,
because the potential for residual confounding in such models is substantial.
We also do not recommend explicit correction for multiple comparisons, since
in an exploratory analysis it is far from clear how many comparisons to correct
for, and by how much.

A better approach is to interpret the results of a larger model cautiously,
especially novel, implausible, weak, and borderline statistically significant as-
sociations. In some cases it may make sense to focus the presentation of results
on a subset of the predictors in the model, leaving the remaining control vari-
ables essentially in the background, as in the case of a single primary predictor.

5.4.3 Example: Risk Factors for Coronary Heart Disease

Vittinghoff et al. (2003) used multipredictor Cox models to assess the associ-
ations between risk factors and coronary heart disease (CHD) events among
2,763 post-menopausal women with established CHD. Risk factors consid-
ered included many of those shown in Fig. 5.2. Because of the large number
(n = 361) of outcome events, it was possible to include all previously identified
risk factors that were statistically significant at P < 0.2 in unadjusted models
and not judged redundant on substantive grounds in the final multipredictor
model. Among the 11 risk factors judged to be important on both substantive
and statistical grounds were six noted by history (nonwhite ethnicity, lack of
exercise, treated diabetes, angina, congestive heart failure, ≥ 2 previous heart
attacks) and five that were measured (high blood pressure, lipids including
LDL, HDL, and Lp(a), and creatinine clearance).

For face validity and to rule out confounding, the final model also con-
trolled for other known or suspected CHD risk factors, including age, smok-
ing, alcohol use, and obesity, although these were not statistically significant
in the adjusted analysis. Mediation of obesity and diabetes, both shown to
be associated with risk in single-predictor models, was covered in the dis-
cussion section of the paper. The model also controlled for a wide range of
CHD-related medications, but because these effects were not of direct interest
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and hard to interpret, estimates were not presented. However, interactions be-
tween risk factors and relevant treatments were examined, on the hypothesis
that treatments might modify the association between observed risk factor
levels and future CHD risk; the final model included interactions that were
statistically significant at P < 0.2.

5.4.4 Allen–Cady Modified Backward Selection

Flexible predictor selection procedures, including conventional backward se-
lection, are known to increase the probability of making at least one type-I
error. A backward selection procedure (Allen and Cady, 1982) based on a rank-
ing of the candidate variables by importance can be used to help avoid false-
positive results, while still reducing the number of covariates in the model.
In this procedure, a set of variables may be forced into the model, including
predictors of primary interest, as well as confounding variables thought im-
portant for face validity. The remaining candidate variables would then be
ranked in order of importance. Starting with an initial model including all
covariates in these two sets, variables in the second set would be deleted in
order of ascending importance until the first variable meeting a criterion for
retention is encountered. Then the selection procedure stops.

This procedure is special in that only the remaining variable hypothesized
to be least important is eligible for removal at each step, whereas in con-
ventional backward selection, any of the predictors not being forced into the
model is eligible. False-positive results are less likely because there is only one
pre-specified sequence of models, and selection stops when the first variable
not meeting the criterion for removal is encountered. In contrast, conventional
stepwise procedures and especially best subsets search over broader classes of
models.

5.5 Some Details

5.5.1 Collinearity

In Sect. 4.2 we saw that s2
βj

, the variance of the regression coefficient estimate
for predictor xj , increases with rj , the multiple correlation between xj and
the other predictors in the model. When rj is large, the estimate of βj can be-
come quite imprecise. Consider the case where two predictors are fairly highly
correlated (r ≥ 0.80). When both are included in the model, the precision of
the estimated coefficient for each can be severely degraded, even when both
variables are statistically significant predictors in simpler models that include
one but not both. In the model including both, an F -test for the joint effect
of both variables may be highly statistically significant, while the variable-
specific t-tests are not. This pattern indicates that the two variables jointly
provide important information for predicting the outcome, but that neither
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is necessary over and above the other. With modern computers, problems in
estimating the independent effects of highly correlated predictors no longer
arise from numeric inaccuracy in the computations. Rather, the information is
coming from both variables jointly, which makes them both seem unimportant
in t-tests evaluating their individual contributions.

Definition: Collinearity denotes correlation between predictors high
enough to degrade the precision of the regression coefficient estimates
substantially for some or all of the correlated predictors.

How we deal with collinear predictors depends in part on our inferential
goals. For a prediction model, inclusion of collinear variables is unlikely to de-
crease prediction error, which provides a straightforward criterion for choosing
one or the other.

Alternatively, suppose that one of two collinear variables is a predictor
of primary interest, and the other is a confounder that must be adjusted
for on substantive grounds. If the predictor of interest remains statistically
significant after adjustment, then the evidence for an independent effect is
usually convincing. In small data sets especially it would be necessary to
demonstrate that the finding is not the result of a few influential points, and
where the data do not precisely meet model assumptions, to show that the
inferences are robust, possibly using the bootstrap methods introduced in
Sect. 3.6. Alternatively, if the effects of the predictor of interest are clearly
confounded by the adjustment variable, we would also have a clearcut result.
However, in cases where neither is statistically significant after adjustment, we
may need to admit that the data are inadequate to disentangle their effects.

In contrast, where the collinearity is between adjustment variables and
does not involve the predictor of primary interest, then inclusion of the
collinear variables can sometimes be justified. In this case information about
the underlying factor being adjusted for may be increased, but the precision
of the estimate for the predictor of interest is unaffected. To see this, consider
evaluating the effect of diabetes on HDL, adjusting for BMI. In Sect. 4.7, we
found that a quadratic term in BMI added signficantly to the model. However,
BMI and its square are clearly collinear (r = 0.99). If instead we first “center”
BMI (that is, subtract off its sample mean before computing its square), the
collinearity disappears (r = 0.46). However, the estimate for diabetes and its
standard error are unchanged whether or not we center BMI before comput-
ing the quadratic term. In short, collinearity between adjustment variables is
unlikely to matter.

Finally, when we are attempting to identify multiple independent pre-
dictors, an attractive solution is to choose on substantive grounds, such as
plausibility as a causal factor. Otherwise, it may make sense to choose the
predictor that is measured more accurately or has fewer missing values. As
in the case of a predictor of primary interest, the multivariable model may
sometimes provide a clear indication of relative importance, in that one of the
collinear variables remains statistically significant after adjustment, while the
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others appear to be unimportant. In this case the usual course would be to
include the statistically significant variable and drop the others.

5.5.2 Number of Predictors

The rationale for inclusive predictor selection rules, whether we are assessing a
predictor of primary interest or multiple important independent predictors, is
to obtain minimally confounded estimates. However, this can make regression
coefficient estimates less precise, especially for highly correlated predictors.
At the extreme, model performance can be severely degraded by the inclusion
of too many predictors.

Rules of thumb have been suggested for number of predictors that can be
safely included as a function of sample size or number of events. A commonly
used guideline prescribes ten observations for each predictor; with binary or
survival outcomes the analogous guideline specifies ten events per predictor
(Peduzzi et al., 1995, 1996; Concato et al., 1995). The rationale is to obtain
adequately precise estimates, and in the case of the logistic and Cox models,
to ensure that the models behave properly.

However, such guidelines are too simple for regular use, although they are
useful as flags for potential problems. Their primary limitation is that the
precision of coefficient estimates depends on other factors as well as the num-
ber of observations or events per predictor. In particular, recall from Sect.
4.2 that the variance of an estimated regression coefficient in a linear model
depends on the residual variance of the outcome, which is generally reduced
by the inclusion of important covariates. Precision also depends on the mul-
tiple correlation between a predictor of interest and other variables in the
model. Thus addition of covariates that are at most weakly correlated with
the primary predictor but explain substantial outcome variance can actually
improve the precision of the estimate for the predictor of interest. In contrast,
addition of just one collinear predictor can degrade its precision unacceptably.
In addition, the allowable number of predictors depends on effect size, with
larger effects being more robust to multiple adjustment than smaller ones.

Rather than applying such rules categorically, we recommend that prob-
lems potentially stemming from the number of predictors be assessed by check-
ing for high levels of correlation between a predictor of interest and other
covariates, and for large increases in the standard error of its estimated re-
gression coefficient when additional variables are included. For logistic and
Cox models, consistency between Wald and likelihood ratio (LR) test results
is another useful measure of whether there are enough events to support the
number of predictors in the model. Additional validation of a relatively inclu-
sive final model is provided if a more parsimonious model with fewer predictors
gives consistent results, in particular for the predictor of interest. If problems
do become apparent, a first step would be to make the criterion for retention
in backward selection more conservative, possibly P < 0.15 or P < 0.10. It



150 5 Predictor Selection

would also make sense to consider omitting variables included for face validity
which do not appear to confound a predictor of primary interest.

Table 5.1. Cox Models for DVT-PE

Predictor RH (95% Confidence Interval) P -values
variable 11-Predictor Model 5-Predictor Models Wald LR

HT vs. placebo 2.7 (1.4–5.2) 2.7 (1.4–5.1) 0.002 0.001
≥ 53 at LMP 3.6 (2.0–6.4) 3.3 (1.8–5.8) < 0.001 < 0.001
Inpatient surgery 4.3 (2.1–8.7) 4.7 (2.3–9.5) < 0.001 < 0.001
Hospitalization 5.6 (2.9–11) 6.7 (3.6–13) < 0.001 < 0.001
Hip fracture 5.9 (0.8–46) 6.6 (0.9–51) 0.09 0.18
Leg fracture 17.3 (5.1–58) 14.1 (4.2–47) < 0.001 < 0.001
Cancer 4.1 (1.7–9.7) 3.5 (1.5–8.4) 0.002 0.006
Nonfatal MI 6.0 (2.3–16) 4.4 (1.7–11) < 0.001 0.002
Stroke/TIA 0.9 (0.1–6.5) 0.9 (0.1–6.4) 0.88 0.88
Aspirin use 0.4 (0.2–0.7) 0.4 (0.2–0.6) 0.003 0.004
Statin use 0.4 (0.2–0.9) 0.4 (0.2–0.7) 0.02 0.02

An analysis of risk factors for deep-vein thrombosis and pulmonary em-
bolism (DVT-PE) among post-menopausal women in the HERS cohort (Grady
et al., 2000) is an example of stable results despite violation of the rule of
thumb that the number of events per predictor should be at least 10. In this
survival analysis of 47 DVT-PE events, 11 predictors were retained in the final
model, so that there were only 4.3 events per predictor. However, the largest
pairwise correlation between the selected risk factors was only 0.16 and most
were below 0.02. As shown in Table 5.1, estimates from the 11-predictor model
were consistent with those given by 5-predictor models, in accord with the rule
of thumb, which omitted the less important predictors. Although confidence
intervals were wide for the strongest and least common risk factors, this was
also true for the 5-predictor models. Finally, P -values for the Wald and LR
tests based on the larger model were highly consistent.

5.5.3 Alternatives to Backward Selection

Some alternatives to backward selection include best subsets, which was al-
ready described; sequential procedures, including forward and stepwise selec-
tion; and bivariate screening.

• Forward selection begins with the null model with only the in-
tercept, then adds variables sequentially, at each step adding the
variable that promises to make the biggest additional contribution
to the current model.

• Stepwise methods augment the forward procedure by allowing vari-
ables to be removed if they no longer meet an inclusion criterion
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after other variables have been added. Stata similarly augments
backward selection by allowing variables to re-enter after removal.
As compared to best subsets, these three sequential procedures
are more vulnerable to missing good alternative models that hap-
pen not to lie on the sequential path. This implies that plausible
alternatives to models selected by stepwise procedures should be
examined.

• In bivariate screening candidate predictors are evaluated one at a
time in single-predictor models. In some cases all predictors that
meet the screening criterion are included in the final model; in
other cases, screening is used as a first step to reduce the number
of predictors then considered in a backward, forward, stepwise, or
best subsets selection procedure. Orwoll et al. (1996) used a variant
of this procedure, including all variables statistically significant at
P < 0.05 in two-predictor models adjusting for age.

Note that only observations with complete data on all variables under consid-
eration are used in automated selection procedures. The resulting subset can
be substantially smaller than the data set used in the final model, and un-
representative. When implemented by hand, different subsets are commonly
used at different steps, for the same reason, and this can also affect results.
Findings which depend on the inclusion or exclusion of subsets of observations
should be carefully checked.

Why We Prefer Backward Selection

The principal advantage of backward selection is that negatively confounded
sets of variables are less likely to be omitted from the model (Sun et al., 1999),
since the complete set is included in the initial model. Best subsets shares
this advantage. In contrast, forward and stepwise selection procedures will
only include such sets if at least one member meets the inclusion criterion in
the absence of the others. Univariate screening will only include the complete
set if all of them individually meet the screening criterion; moreover, this
difficulty is made worse if a relatively conservative criterion is used to reduce
the number of false-positive findings in an exploratory analysis.

5.5.4 Model Selection and Checking

Sect. 4.7 focused on methods for checking the linear model which make use
of the residuals from a multipredictor model rather than examining bivariate
relationships. There we took as a given that the predictors had already been
selected. However, transformation of the outcome or of continuous predictors
can affect the apparent importance of predictors. For example, in Sect. 4.6.7
we saw that the need for an interaction between treatment with HT and the
baseline value of the outcome LDL was eliminated by analyzing treatment ef-
fects on percent rather absolute change from baseline. Alternatively, detection



152 5 Predictor Selection

of important nonlinearities in the model checking step can uncover associa-
tions that were masked by an initial linear specification. As a consequence,
predictor selection should be revisited after changes of this kind are made.
And then, of course, a modified model would need to be rechecked.

5.5.5 Model Selection Complicates Inference

Underlying the confidence intervals and P -values which play a central role
in interpreting regression results is the assumption that the predictors to be
included in the model were determined a priori without reference to the data
at hand. In confirmatory analyses in well-developed areas of research, includ-
ing phase-III clinical trials, prior determination of the model is feasible and
important. In contrast, at earlier stages of research, data-driven predictor
selection and checking are reasonable, even obligatory, and certainly widely
used. However, some of the issues raised for inference include the following–

• The chance of at least one type-I error can greatly exceed the nom-
inal level used to test each term, leading to false-positive results
with too-small P -values and too-narrow confidence intervals.

• In small data sets precision and power are often poor, so impor-
tant predictors may well be omitted from the model, especially if
a restrictive inclusion criterion is used. Conversely, in large data
sets unimportant predictors are commonly included, reinforcing
the need for cautious interpretation of novel, implausible, weak,
and borderline statistically significant findings.

• Parameter estimates can be biased away from the null, owing to
selection of estimates that are large by chance (Steyerberg et al.,
1999).

• Choices between predictors can be poorly motivated, especially
between collinear variables. Univariate screening provides no guid-
ance for this problem. Moreover, predictor selection is potentially
sensitive to addition or deletion of a few observations, especially
when the predictors are highly correlated. Altman and Andersen
(1989) propose bootstrap methods for assessing this sensitivity.

Predictor selection driven by P -values is subject to these pitfalls whether it is
automated or implemented by hand. How seriously do these problems affect
inference for our three inferential goals?

• Prediction. In CART, a prediction method introduced in Sect.
5.2.4, candidate cutpoints are exhaustively screened for a poten-
tially large set of candidate predictors, and high-order interactions
are routinely included in the model. Breiman (2001) briefly re-
views other modern methods which even more aggressively search
over candidate models. However, use of GCV measures of predic-
tion error as a criterion for predictor selection effectively protects
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against both overfitting and invalid inferences. In short, predic-
tor selection does not adversely affect modern procedures for this
inferential goal.

• Evaluating a predictor of primary interest. Iterative model check-
ing and selection should likewise have relatively small effects on
inference about a predictor of primary interest, since it is included
by default in all candidate models. In fact, iterative checking and
predictor selection should result in better control of confounding,
a primary aim for this inferential goal. However, when the pri-
mary predictor is of borderline statistical significance, the issue of
P -value shopping raised in Sect. 5.3.5 needs to be conscientiously
handled, and sensitivity of results to predictor selection reported.

• Identifying multiple important predictors. Model selection most
clearly complicates inference for this inferential goal, since con-
fidence intervals and P -values for any of the predictors are po-
tentially of direct interest. Note that inclusion of variables for face
validity, use of a loose inclusion criterion (P < 0.2), and the Allen–
Cady procedure all reduce the potential impact of predictor selec-
tion on inference. Nonetheless, selection procedures should only be
used with prior consideration of hypothesized relationships, care-
ful examination of alternative models with other sets of predic-
tors, checks on model fit and robustness, skeptical review of the
findings for plausibility, and cautious interpretation of the results,
especially novel, borderline statistically significant, and weak as-
sociations.

5.6 Summary

We have identified three inferential goals, and recommend predictor selection
procedures appropriate to each of them.

For prediction, we recommend using best subsets, where available, to iden-
tify a range of candidate models, selecting the model that optimizes a gener-
alized cross-validation measure of prediction error. A causal diagram is useful
for identifying the potentially predictive variables to consider for inclusion.

For evaluating a predictor of primary interest, we recommend diagram-
ming the relationships among all potential confounders, effect modifiers, and
mediators of the relationship between the primary predictor and outcome. The
selected model should include all generally accepted confounders required to
ensure its face validity. Other potential confounders that turn out not to be
important on statistical grounds can optionally be removed from the model
using a backward selection procedure, but with a liberal inclusion criterion
to minimize the potential for confounding. Especially in smaller data sets,
care must be taken with the inclusion of covariates highly correlated with the
predictor of interest, since these can unduly inflate the standard errors of the
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estimate of its effect. Negative findings for the primary predictor should be
carefully interpreted in terms of the point estimate and confidence interval,
as described in Sect. 3.7.

For identifying multiple important predictors of an outcome, we recom-
mend a procedure similar to that used for a single predictor of primary inter-
est. A preliminary diagram of the hypothesized relationships between variables
can be particularly useful. Strongly motivated covariates may be included by
default to ensure the face validity of the model. The Allen–Cady modification
of the backward selection procedure is useful for selecting from among the
remaining candidate variables while limiting false-positive results. Negative,
weak, and/or borderline statistically significant associations retained in the
final model as much to control confounding of other associations as for their
intrinsic plausibility and importance should be interpreted with particular
caution.

5.7 Further Notes and References

Predictor selection may be the most controversial subject covered in this
book. Book-length treatments include Miller (1990) and Linhart and Zuc-
chini (1986), while regression texts including Weisberg (1985) and Hosmer
and Lemeshow (2000) address predictor selection issues at least briefly. The
central place we ascribe to ruling out confounding in the second and third
inferential goals owes much to Rothman and Greenland (1998), a standard
reference in epidemiology that decribes how substantive considerations can
be brought to bear on predictor selection.

Both the theory and application of causal diagrams and models have been
advanced substantially in recent years (Pearl, 1995; Greenland et al., 1999)
and give additional insights into situations where confounding can be ruled
out a priori. However, these more advanced methods appear to be most useful
in problems where causal pathways are more clearly understood than is our
usual experience. Jewell (2004) and Greenland and Brumback (2002) explore
the connections between causal diagrams, counterfactuals, and some model
selection issues.

Chatfield (1995) reviews work on the influence of predictor selection on
inference, while Buckland et al. (1997) propose using weighted averages of the
results from alternative models as a way of incorporating the extra variability
introduced by predictor selection in computing confidence intervals. These
would be particularly applicable to the second inferential goal of evaluating a
predictor of central interest.

For a sobering view of the difficulty of validly modeling causal pathways
using the procedures covered in this book and particularly this chapter, see
Breiman (2001). From this point of view, computer-intensive methods vali-
dated strictly in terms of prediction error not only give better predictions but
may also be more reliable guides to “variable importance” – another term for
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our third inferential goal of identifying important predictors, and with obvious
implications for assessing a predictor of central interest.

Developments in Prediction

Breiman (2001) describes modern methods that do not follow the paradigm,
motivated by the bias–variance trade-off, that smaller models are better for
prediction. The newer methods tend to keep all the predictors in play, while us-
ing various methods to avoid overfitting and control variance; cross-validation
retains its central role throughout.

So-called shrinkage procedures also play an important role in prediction,
especially those made on the basis of small data sets. In this approach over-
fitting is avoided and prediction improved by shrinking the estimated regres-
sion coefficients toward zero, rather than eliminating weak predictors from
the model. Analogous shrinkage of predictions for observations in the data at
hand is used in the random effects models presented in Chapter 8. A vari-
ant of shrinkage is the LASSO method, short for least absolute shrinkage and
selection operator (Tibshirani, 1997).

An alternative to direct shrinkage implements penalties in the fitting pro-
cedure against coefficient estimates which violate some measure of smooth-
ness. This achieves something like shrinkage of the estimates and thus better
predictions; see Le Cessie and Van Houwelingen (1992) and Verweij and Van
Houwelingen (1994) for applications to logistic and Cox regression. These
methods derive from ridge regression (Hoerl and Kennard, 1970), a method
for obtaining slightly biased but stabler estimates in linear models with highly
correlated predictors.

See Steyerberg et al. (2000) and Harrell et al. (1996) for guides to imple-
menting prediction procedures in the logistic and survival analysis contexts,
respectively.

5.8 Problems

Problem 5.1. Characterize the following contexts for predictor selection as
prediction, evaluation of a primary predictor of interest, or identifying the
important predictors of an outcome:

• examining the effect of treatment on a secondary endpoint in an
RCT

• determining which newborns should be admitted to the neonatal
intensive care unit (NICU)

• comparing a measure of treatment success between two surgical
procedures for stress incontinence using data from a large longitu-
dinal cohort study

• identifying risk factors for incident hantavirus infection.
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Problem 5.2. Consulting Stata documentation, describe how the sw: com-
mand prefix with options lockterm1, hier, and pr() can be used to imple-
ment the Allen–Cady procedure.

Problem 5.3. Think of an outcome under preliminary investigation in the
area of your expertise. Following Allen and Cady’s prescriptions, try to rank
predictors of this outcome in order of importance. Are there any variables
that you would include by default?

Problem 5.4. Do any of the variables you have selected in the previous prob-
lem potentially mediate the effects of others in your list? If so, how would this
affect your decision about what to include in the initial model? What series
of models could you use to examine mediation? (See Sect 4.5.)

Problem 5.5. Suppose you included an indicator for diabetes in a multi-
variable model estimating the independent effect of exercise on glucose. How
would you interpret the estimate for exercise? Would you want to consider in-
teractions between exercise and diabetes in this model? How would you deal
with use of insulin and oral hypoglycemics?

Problem 5.6. Why are univariate screening and forward selection more likely
to miss negatively confounded variables than backward deletion and best sub-
sets?

Problem 5.7. Give an example of a “biologically plausible” relationship that
has turned out to be false. Give an example of a biologically implausible
relationship that has turned out to be true.

Problem 5.8. Suppose you were using a logistic model to examine the associ-
ation between a predictor and outcome of interest, and to rule out confounding
you needed to include one or two more predictors than would be allowed by
the rule of 10 events per variable. In comparing models with and without the
two extra predictors, what might signal that you were asking the bigger model
to do too much? How would the correlation between the extra variables and
the predictor of interest influence your thinking?

5.9 Learning Objectives

1. Diagram hypothetical relationships among confounders, effect modifiers,
mediators, and outcome.

2. Describe and implement strategies for predictor selection for
• prediction
• evaluation of a primary predictor
• identifying multiple important predictors.

3. Be familiar with the drawbacks of predictor selection procedures.
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Logistic Regression

Patients testing positive for a sexually transmitted disease at a clinic are com-
pared to patients with negative tests to investigate the effectiveness of a new
barrier contraceptive. One-month mortality following coronary artery bypass
graft surgery is compared in groups of patients receiving different dosages
of beta blockers. Many clinical and epidemiological studies generate outcomes
which take on one of two possible values, reflecting presence/absence of a con-
dition or characteristic at a particular time, or indicating whether a response
occurred within a defined period of observation. In addition to evaluating a
predictor of primary interest, it is important to investigate the importance of
additional variables that may influence the observed association and therefore
alter our inferences about the nature of the relationship. In evaluating the ef-
fect of contraceptive use in the first example, it would be clearly important to
control for age in addition to behaviors potentially linked to infection risk. In
the second example, a number of demographic and clinical variables may be
related to both the mortality outcome and treatment regime. Both of these
examples are characterized by binary outcomes and multiple predictors, some
of which are continuous.

Methods for investigating associations involving binary outcomes using
contingency table methods were briefly covered in Sect. 3.4. Although these
techniques are useful for exploratory investigations, and in situations where
the number of predictor variables of interest is limited, they can be cum-
bersome when multiple predictors are being considered. Further, they are not
well suited to situations where predictor variables may take on a large number
of possible values (e.g., continuous measurements). Similar to the way linear
regression techniques expanded our arsenal of tools to investigate continuous
outcomes, the logistic regression model generalizes contingency table methods
for binary outcomes. In this chapter, we cover the use of the logistic model to
analyze data arising in clinical and epidemiological studies. Because the ba-
sic structure of the logistic model mirrors that of the linear regression model,
many of the techniques for model construction, interpretation, and assessment
will be familiar from Chapters 4 and 5.



158 6 Logistic Regression

6.1 Single Predictor Models

Recall the example in Sect. 3.4 investigating the association between coro-
nary heart disease (CHD) and age for the Western Collaborative Group Study
(WCGS). Table 6.1 summarizes the observed proportions (P ) of CHD diag-
noses for five categories of age, along with the estimated excess risk (ER),
relative risk (RR), and odds ratio (OR). The last three measures are com-
puted according to procedures described in Sect. 3.4, using the youngest age
group as the baseline category. The estimates show a tendency for increased
risk of CHD with increasing age. Although this information provides a useful
summary of the relationship between CHD risk and age, the choice of five-year
categories for age is arbitrary. A regression representation of the relationship
would provide an attractive alternative and obviate the need to choose cate-
gories of age.

Table 6.1. CHD for Five Age Categories in the WCGS Sample

Age group P 1 − P ER RR OR

35–40 0.057 0.943 0.000 1.000 1.000
41–45 0.050 0.950 -0.007 0.883 0.877
46–50 0.093 0.907 0.036 1.635 1.700
51–55 0.123 0.877 0.066 2.156 2.319
56–60 0.149 0.851 0.092 2.606 2.886

Recall that in standard linear regression we modeled the average of a
continuous outcome variable y as a function of a single continuous predictor
x using a linear relationship of the form

E [y|x] = β0 + β1x.

We might be tempted to use the same model for a binary outcome variable.
First, note that if we follow convention and code the values of a binary out-
come as one for those experiencing the outcome and zero for everyone else,
the observed proportion of outcomes among individuals characterized by a
particular value of x is simply the mean (or “expected value”) of the binary
outcome in this group. In the notation introduced in Sect. 3.4, we symbolize
this quantity by P (x). The linear model for our binary outcome might then
be expressed as

P (x) = E [y|x] = β0 + β1x. (6.1)

This has exactly the same form as the linear regression model; the expected
value of the outcome is modeled as a linear function of the predictor. Further,
changes in the outcome associated with a specified changes in the predictor
x have an excess risk interpretation: For example, if x is a binary predictor
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taking on the values 0 or 1, the effect of increasing x one unit is to add an
increment β1 to the outcome. From equation (6.1),

P (1) − P (0) = β1.

Referring back to Definition (3.14) in Sect. 3.4, we see that this is the excess
risk associated with a unit increase in x. Models with this property are often
referred to as additive risk models (Clayton and Hills, 1993).

There are several limitations with the linear model (6.1) as a basis for
regression analysis of binary outcomes. First, the statistical machinery which
allowed us to use this linear model to make inferences about the strength of
relationship in Chapter 4 required that the outcome variable follow an approx-
imate normal distribution. For a binary outcome this assumption is clearly
incorrect. Second, the outcome in the above model represents a probability
or risk. Thus any estimates of the regression coefficients must constrain the
estimated probability to lie between zero and one for the model to make sense.
The first of these problems is statistical, and addressing it would require gener-
alizing the linear model to accommodate a distribution appropriate for binary
outcomes. The second problem is numerical. To ensure sensible estimates, our
estimation procedure would have to satisfy the constraints mentioned. An-
other issue is that in many settings, it seems implausible that outcome risk
would change in a strictly linear fashion for the entire range of possible val-
ues of a continuous predictor x. Consider a study examining the likelihood
of a toxicity response to varying levels of a treatment. We would not expect
the relationship between likelihood of toxicity and dose to be strictly linear
throughout the range of possible doses. In particular, the likelihood of toxi-
city should be zero in the absence of treatment and increase to a maximum
level, possibly corresponding to the proportion of the sample susceptible to
the toxic effect, with increasing dose.

Fig. 6.1 presents four hypothetical models linking the probability P (x)
of a binary outcome to a continuous predictor x. In addition to the linear
model (A), there is the exponential model (B) that constrains risk to increase
exponentially with x, the “step function” model (C) that allows irregular
change in risk with increasing values of x, and the smooth S-shaped curve
in (D) known as the logistic model. The exponential model is also known
as log linear because it specifies that the logarithm of the outcome risk is
linear in x. It presents a problem similar to that noted for the linear model
above: Namely, that risk is not obviously constrained to be less than one
for large values of β0 + β1x. Model (C) has the desirable properties that
risks are clearly constrained to fall in the interval [0, 1], and that the nature
of the increase in the interval can be flexibly represented by different “step”
heights. However, it lacks smoothness, a property that is biologically plausible
in many instances. By contrast, the logistic model allows for a smooth change
in risk throughout the range of x, and has the property that risk increases
slowly up to a “threshold” range of x, followed by a more rapid increase and
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Fig. 6.1. Risk Models for a Binary Outcome and Continuous Predictor

a subsequent leveling off of risk. This shape is consistent with many dose-
response relationships (illustrated by the toxicity example from the previous
paragraph). As we will see later in this chapter, all of these models represent
valid alternatives for assessing how risk of a binary outcome changes with the
value of a continuous predictor. However, most of our focus will be on the
logistic model.

In addition to a certain degree of biological plausibility, the logistic model
does not pose the numerical difficulties associated with the linear and log-
linear models, and has a number of other appealing properties that will be
described in more detail below. For these reasons, it is by far the most widely
used model for binary outcomes in clinical and epidemiological applications,
and forms the basis of logistic regression modeling. However, adoption of the
logistic model still implies strong assumptions about the relationship between
outcome risk and the predictor. In fact, expressed on a transformed scale, the
model prescribes a linear relationship between the logarithm of the odds of
the outcome and the predictor.

The logistic model plotted in Fig. 6.1(D) is defined by the equation

P (x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
. (6.2)
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In terms of the odds of the outcome associated with the predictor x, the model
can also be expressed as

P (x)
1 − P (x)

= exp(β0 + β1x). (6.3)

Consider again the simple case where x takes on the values 0 or 1. From the
last equation, the ratio of the odds for these two values of x are

P (1)/ [1 − P (1)]
P (0)/ [1 − P (0)]

= exp(β1). (6.4)

Expressed in this form, we see that the logistic model specifies that the ratio of
the odds associated with these two values of x is given by the factor exp(β1).
Equivalently, the odds for x = 1 are obtained by multiplying the odds for x = 0
by this factor. Because of this property, the logistic model is an example of a
multiplicative risk model (Clayton and Hills, 1993). (Note that the log-linear
model is also multiplicative in this sense, but is based on the outcome risks
rather than the odds.)

Although not easily interpretable in the form given in equations (6.2) and
(6.3), expressed as the logarithm of the outcome odds (as given in equation
(6.3)), the model becomes linear in the predictor

log
[

P (x)
1 − P (x)

]
= β0 + β1x. (6.5)

This model states that the log odds of the outcome is linearly related to x,
with intercept coefficient β0 and slope coefficient β1 (i.e., the logistic model
is an additive model when expressed on the log odds scale). The logarithm of
the outcome odds is also frequently referred to as the logit transformation of
the outcome probability.

In the language introduced in Chapters 3 and 4, equations (6.2), (6.3), and
(6.5) define the systematic part of the logistic regression model, linking the
average P (x) of the outcome variable y to the predictor x. The random part
of the model specifies the distribution of the outcome variable yi, conditional
on the observed value xi of the predictor (where the subscript i denotes the
value for a particular subject). For binary outcomes, this distribution is called
the binomial distribution and is completely specified by the mean of yi condi-
tional on the value xi. To summarize, the logistic model makes the following
assumptions about the outcome yi:

1. yi follows a Binomial distribution;
2. the mean E [y|x] = P (x) is given by the logistic function (6.2);
3. values of the outcome are statistically independent.

These assumptions closely parallel those associated with the linear re-
gression (in Sect. 3.3), the primary difference being the use of the binomial
distribution for the outcome y. Note that the assumption of constant variance
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of y across different values of x is not required for the logistic model. Another
difference is that the random aspect of the logistic model is not included as an
additive term in the regression equation. However, it is still an integral part
of estimation and inference regarding model coefficients. (This is discussed
further in Sect. 6.6.)

As we will see in the rest of this chapter, both of the alternative expressions
(6.2) and (6.5) for the logistic model are useful: the linear logistic form (6.5)
is the basis for regression modeling, while the (nonlinear) logistic form (6.2)
is useful when we want to express the outcome on its original scale (e.g. to
estimate outcome risk associated with a particular value of x).

One of the most significant benefits of the linear logistic formulation (6.5)
is that the regression coefficients are interpreted as log odds ratios. These can
be expressed as odds ratios via simple exponentiation (as demonstrated above
in equation (6.4)), providing a direct generalization of odds ratio methods for
frequency tables to the regression setting. This property follows directly from
the definition of the model, and is demonstrated in the next section. Finally,
we note that there are a number of alternative regression models for binary
outcomes that share similar properties to the logistic model. Although none
of these comes close to the logistic model in terms of popularity, they offer
useful alternatives in some situations. Some of these will be discussed in Sect.
6.5.

6.1.1 Interpretation of Regression Coefficients

Table 6.2 shows the fit of the logistic model (6.5) for the relationship between
CHD risk and age in the WCGS study. The coefficient labeled cons in the
table is the intercept (β0), and the coefficient labeled age is the slope (β1)
of the fitted logistic model. Since the outcome for the model is the log odds
of CHD risk, and the relationship with age is linear, the slope coefficient β1
gives the change in the log odds of chd69 associated with a one-year increase
in age. We can verify this by using the formula for the model (6.5) and the
estimated coefficients to calculate the difference in risk between a 55- and a
56-year-old individual:

log
[

P (56)
1 − P (56)

]
− log

[
P (55)

1 − P (55)

]

= (−5.940 + 0.074 × 56) − (−5.940 + 0.074 × 55) = 0.074.

This is just the coefficient β1 as expected; performing the same calculation on
an arbitrary one-year age increase would produce the same result (as shown
at the end of this section). The corresponding odds ratio for any one-year
increase in age can then be computed by simple exponentiation:

exp(0.074) = 1.077.

This odds ratio indicates a small (approximately 8%) but statistically signif-
icant increase in CHD risk for each one-year age increase. We can estimate
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Table 6.2. Logistic Model for the Relationship Between CHD and Age
. logistic chd69 age, coef

Logit estimates Number of obs = 3154
LR chi2(1) = 42.89
Prob > chi2 = 0.0000

Log likelihood = -869.17806 Pseudo R2 = 0.0241

------------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | .0744226 .0113024 6.58 0.000 .0522703 .0965748

_cons | -5.939516 .549322 -10.81 0.000 -7.016167 -4.862865
------------------------------------------------------------------------------

the (clinically more relevant) odds ratio associated with a ten-year increase
in age the same way, yielding:

exp(0.074 × 10) = 2.105.

Following the same approach we can use equation 6.5 to calculate the log
odds ratio and odds ratio for an arbitrary ∆ unit increase in a predictor x as
follows:

log

⎡
⎣ P (x+∆)

1−P (x+∆)
P (x)

1−P (x)

⎤
⎦ = β1∆ ,

P (x+∆)
1−P (x+∆)

P (x)
1−P (x)

= exp(β1∆). (6.6)

In addition to computing odds ratios, the estimated coefficients can be used
in the logistic function representation of (6.2) to estimate the probability of
having CHD during study follow-up for a individual with any specified age.
For a 55-year-old individual:

P (55) =
exp(−5.940 + 0.074 × 55)

1 + exp(−5.940 + 0.074 × 55)
.

Of course, such an estimate only makes sense for ages near the values used in
fitting the model.

The output in Table 6.2 also gives standard errors and 95% confidence in-
tervals for the model coefficients. The interpretation of these is the same as for
the linear regression model. The fact that the lower bound of the interval for
the coefficient of age excludes zero indicates statistically significant evidence
that the true coefficient is different than zero. Similar to linear regression,
the ratio of the coefficients to their standard errors forms the Wald (z) test
statistic for the hypothesis that the true coefficients are different than zero.
The logarithm of the likelihood for the fitted model along with a likelihood
ratio statistic LR chi2(1) and associated P -value (Prob > chi2) are also pro-
vided. Maximum likelihood is the standard method of estimating parameters
from logistic regression models, and is based on finding the estimates which
maximize the joint probability (or likelihood – see Sect. 6.6) for the observed
data under the chosen model.
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The likelihood ratio statistic given in the table compares the likelihood
from the fitted model with the corresponding model excluding age, and ad-
dresses the hypothesis that there is no (linear) relationship between age and
CHD risk. The associated P -value is obtained from the χ2 distribution with
one degree of freedom (corresponding to the single predictor used in the
model). (Note that the Pseudo R2 value in the table is intended to provide
a measure paralleling that used in linear regression models, and is related to
the likelihood ratio statistic. Because the latter measure is more widely used
and reported, we will not mention Pseudo R2 further in this book.)

As an additional illustration of the properties of the logistic model, Table
6.3 presents a number of quantities calculated directly from the coefficients in
Table 6.2 and equations (6.2) and (6.5). For the ages 40, 50, and 70, the table

Table 6.3. Effects of Age Differences of 1 and 10 Years, by Reference Age

Age (x) P (x) P (x + 1) odds(x) odds(x + 1) OR RR ER

40 0.049 0.053 0.052 0.056 1.077 1.073 0.004
50 0.098 0.105 0.109 0.117 1.077 1.069 0.007
60 0.186 0.198 0.229 0.247 1.077 1.062 0.012

Age (x) P (x) P (x + 10) odds(x) odds(x + 10) OR RR ER

40 0.049 0.098 0.052 0.109 2.105 1.996 0.049
50 0.098 0.186 0.109 0.229 2.105 1.899 0.088
60 0.186 0.325 0.229 0.482 2.105 1.746 0.139

gives the estimated response probabilities and odds. These are also calculated
for one- and ten-year age increases so that corresponding odds ratios can
be computed. As prescribed by the model, the odds ratios associated with a
fixed increment change in age remain constant across the age range. Estimates
of RR and ER are also computed for one- and ten-year age increments to
illustrate that the fitted logistic model can be used to estimate a wide variety
of quantities in addition to odds ratios. Note that the estimated values of ER
and RR are not constant with increasing age (because the model does not
restrict them to be so). Note also that although measures such as ER and
RR can be computed from the logistic model, the resulting estimates will not
in general correspond to those obtained from a regression model defined on a
scale on which ER or RR is assumed constant. We will return to this topic
when we consider alternative binary regression approaches in Sect. 6.5.

6.1.2 Categorical Predictors

Similar to the conventional linear regression model, the logistic model (6.5) is
equally valid for categorical risk factors. For example, we can use it to look
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again at the relationship between CHD risk and the binary predictor arcus
senilis as shown in Table 6.4. Note that the regression output in Table 6.4 sum-

Table 6.4. Logistic Model for CHD and Arcus Senilis
. logistic chd69 arcus

Logistic regression Number of obs = 3152
LR chi2(1) = 12.98
Prob > chi2 = 0.0003

Log likelihood = -879.10783 Pseudo R2 = 0.0073

------------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
arcus | 1.63528 .2195035 3.66 0.000 1.257 2.127399

------------------------------------------------------------------------------

marizes the model fit in terms of the odds ratio for the included predictor, and
does not include estimates of the regression coefficients. (This is the default
option in many statistical packages such as Stata.) Note also that the esti-
mated odds ratio and corresponding 95% confidence interval are virtually the
same as the results obtained in Table 3.5. Because arcus is a binary predictor
(coded as one for individuals with the condition and zero otherwise), entering
it directly into the model as if it were a continuous measurement produces the
desired result: the coefficient represents the log odds ratio associated with a
one-unit increase in the predictor. (In this case, only one, single unit increase
is possible by definition.) For two-level categorical variables with levels coded
other than zero or one, care must be taken so that they are appropriately
treated as categories (and not continuous measurements) by the model-fitting
program. Finally, note that if we wish to estimate the probability of CHD, we
must re-fit the model requesting the regression coefficients, since the intercept
β0 is not provide by default in Stata.

Categorical risk factors with multiple levels are treated similarly to the
procedure introduced in Sect. 4.3 for linear regression. In this way we can re-
peat the analysis in Table 6.1, dividing study participants into five age groups
and taking the youngest group as the reference. In order to estimate odds
ratios for each of the four older age groups compared to the youngest group
we need to construct four indicator variables. Stata does this automatically,
as shown in Table 6.5. Note that the estimated odds ratios correspond very
closely with those estimated earlier. In fact, because we are estimating a pa-
rameter for each age category except the youngest (reference) group, we are
not imposing any restrictions on the parameters (i.e., the logistic assumption
does not come into play as it does for continuous predictors). Thus we would
expect the estimated odds ratios to be identical to those estimated using the
contingency table approach.

The likelihood ratio test for this model compares the likelihood for the
model with three indicator variables for age with that from the corresponding
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Table 6.5. Logistic Model for CHD and Age as a Categorical Factor
. xi: logistic chd69 i.agec
i.agec _Iagec_0-4 (naturally coded; _Iagec_0 omitted)

Logistic regression Number of obs = 3154
LR chi2(4) = 44.95
Prob > chi2 = 0.0000

Log likelihood = -868.14866 Pseudo R2 = 0.0252

------------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Iagec_1 | .8768215 .2025403 -0.57 0.569 .5575566 1.378902
_Iagec_2 | 1.70019 .3800503 2.37 0.018 1.097046 2.634935
_Iagec_3 | 2.318679 .5274959 3.70 0.000 1.484546 3.621493
_Iagec_4 | 2.886314 .7462191 4.10 0.000 1.738907 4.790829

------------------------------------------------------------------------------

model with no predictors. In contrast to the individual Wald tests provided
for each level of age, the likelihood ratio test examines the overall effect of
age represented as a three-level predictor. The results indicate that inclusion
of age affords a statistically significant improvement in the fit of the model.

Estimating regression coefficients for levels of a categorical predictor usu-
ally involves selecting a reference category. In the example in Table 6.5, this
was chosen automatically by Stata as the age category with the smallest nu-
merical label. (A similar procedure is followed by most major statistical pack-
ages.) In cases where a reference group different from the default is of interest,
most statistics packages (including Stata and SAS) have methods for changing
the default, or the model can be re-fit using a recoded version of the predic-
tor. Note that it is also possible to compute odds ratios comparing arbitrary
groups from the coefficients obtained using the default reference group. For
example, the odds ratio comparing the fourth age group in Table 6.5 to the
third can be shown to be 2.88

2.32 = 1.24. (This calculation is left as an exercise.)
Another important consideration in selecting a reference group for a cat-

egorical predictor are the sample sizes in each category. As a general rule,
when individuals are unevenly distributed across categories it is desirable to
avoid making the smallest group the reference category. This is because stan-
dard errors of coefficients for other categories will be inflated due to the small
sample size in the reference group.

A final issue that arises in fitting models with categorical predictors formed
based on an underlying continuous measurement is the choice of how many
categories, and how these should be defined. In the example in Table 6.5,
the choice of five-year age groups was somewhat arbitrary. In many cases,
categories will correspond to pre-existing hypotheses or be suggested by con-
vention (e.g., ten-year age categories in summaries of cancer rates). In the
absence of such information, a good practice is to choose categories of equal
size based on quantiles of the distribution of the underlying measure.
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How many categories a given model will support depends on the overall
sample size as well as the distribution of outcomes in the resulting groups.
In the WCGS sample, a logistic model including a coefficient for each unique
age (assigning the youngest age as the reference group) yields reasonable es-
timates and standard errors. There are 266 individuals in the smallest group.
(A much simpler model that fits the data adequately can also be constructed
using the methods discussed in Sect. 6.4.2.) Care must be taken in defining
categories to ensure that there are adequate numbers in the sub-groups (pos-
sibly by collapsing categories). In general, avoid categorizations that result in
categories that are homogeneous with respect to the outcome or that contain
fewer than ten observations. Problems that arise when this is not the case are
discussed in Sect. 6.4.4.

6.2 Multipredictor Models

Clinical and epidemiological studies of binary outcomes typically focus on the
potential effects of multiple predictors. When these are categorical and few
in number, contingency table techniques suffice for data analyses. However,
for larger numbers of potential predictors and/or when some are continuous
measurements, regression methods have a number of advantages. For example,
the WCGS study measured a number of potential predictors of coronary heart
disease, including total serum cholesterol, diastolic and systolic blood pressure,
smoking, age, body size, and behavior pattern. The investigators recognized
that these variables all may contribute to outcome risk in addition to being
potentially associated with each other, and that in assessment of the influence
of a selected predictor, it might be important to control for the potential
confounding influence of others. Because there are a number of candidate
predictors, some of which can be viewed as continuous measurements, multiple
regression techniques are very appealing in analyzing such data.

The logistic regression model for multiple predictor variables is a direct
generalization of the version for a single predictor introduced above (6.5). For
a binary outcome y, and p predictors x1, x2, · · · , xp, the systematic part of the
model is defined as follows:

log
[

P (x1, x2, · · · , xp)
1 − P (x1, x2, · · · , xp)

]
= β0 + β1x1 + β2x2 + · · · + βpxp. (6.7)

This can be re-expressed in terms of the outcome probability as follows:

P (x1, x2, · · · , xp) =
exp(β0 + β1x1 + β2x2 + · · · + βpxp)

1 + exp(β0 + β1x1 + β2x2 + · · · + βpxp)
. (6.8)

As with standard multiple linear regression, the predictors may include contin-
uous and categorical variables. The multiple-predictor version of the logistic
model is based on the same assumptions underlying the single predictor ver-
sion. (These are presented in Sect. 6.3.c.) In addition, it assumes that multiple
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predictors are related to the outcome in an additive fashion on the log odds
scale. The interpretation of the regression coefficients is a direct generalization
of that for the simple logistic model:

• For a given predictor xj , the coefficient βj gives the change in log
odds of the outcome associated with a unit increase in xj , for arbi-
trary fixed values for the remaining predictors x1, · · · , xj−1, xj+1, · · · , xp.

• The exponentiated regression coefficient exp(βj) represents the
odds ratio associated with a one unit change in xj .

Table 6.6 presents the results of fitting a logistic regression model ex-
amining the impact on CHD risk of age, cholesterol (mg/dL), systolic blood
pressure (mmHg), body mass index (computed as weight in kilograms divided
by the square of height in meters) and a binary indicator of whether or not
the participant smokes cigarettes, using data from the WCGS sample. This
model is of interest because it addresses the question of whether a select group
of established risk factors for CHD are independent predictors for the WCGS
study.

Table 6.6. Multiple Logistic Model for CHD Risk
. logistic chd69 age chol sbp bmi smoke, coef

Logistic regression Number of obs = 3141
LR chi2(5) = 159.80
Prob > chi2 = 0.0000

Log likelihood = -807.19249 Pseudo R2 = 0.0901

------------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | .0644476 .0119073 5.41 0.000 .0411097 .0877855

chol | .0107413 .0015172 7.08 0.000 .0077675 .013715
sbp | .0192938 .0040909 4.72 0.000 .0112759 .0273117
bmi | .0574361 .0263549 2.18 0.029 .0057814 .1090907

smoke | .6344778 .1401836 4.53 0.000 .3597231 .9092325
_cons | -12.31099 .977256 -12.60 0.000 -14.22638 -10.3956

------------------------------------------------------------------------------

Twelve observations were dropped from the analysis in Table 6.6 because
of missing cholesterol values. An additional observation was dropped because
of an unusually high cholesterol value (645 mg/dL). Note that all predictors
are entered as continuous measurements in the model. The coefficient for any
one one of these (e.g., chol) gives the log odds ratio (change in the log odds)
of CHD for a unit increase in the predictor, adjusted for the presence of the
others. The small size of the coefficients for these measures reflects the fact
that a unit increase on the measurement scale is a very small change, and
does not translate to a substantial change in the log odds.

Log odds ratios associated with larger increases are easily computed as
described in Sect. 6.1. Lower bounds of 95% confidence intervals for coefficients
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of all included predictors exclude zero, indicating that each is a statistically
significant independent predictor of outcome risk (as measured by the log
odds). Of course, additional assessment of this model would be required before
it is adopted as a “final” representation of outcome risk for this study. In
particular, we would want to evaluate whether the linearity assumption is met
for continuous predictors, evaluate whether additional confounding variables
should be adjusted for, and check for possible interactions. These topics are
discussed in more detail below.

As an example of an application of the fitted model in Table 6.6, consider
calculating the log odds of developing CHD within ten years for a 60-year-
old smoker, with 253 mg/dL of total cholesterol, systolic blood pressure of
136 mmHg, and a BMI of 25. Applying equation (6.7) with the estimated
coefficients from Table 6.6,

log
[

P (60, 253, 136, 25, 1)
1 − P (60, 253, 136, 25, 1)

]
= −12.311 + .0644 × 60 + .0107 × 253

+ .0193 × 136 + .0574 × 25 + .6345 × 1
= −1.046.

A similar calculation gives the corresponding log odds for a similar individual
of age 50:

log
[

P (50, 253, 136, 25, 1)
1 − P (50, 253, 136, 25, 1)

]
= −12.311 + .0644 × 50 + .0107 × 253

+ .0193 × 136 + .0574 × 25 + .6345 × 1
= −1.690.

Finally, the difference between these gives the log odds ratio for CHD associ-
ated with a ten year increase in age for individuals with the specified values
of all of the included predictors:

−1.046 − (−1.690) = 0.644.

Closer inspection reveals that this result is just ten times the coefficient for age
in Table 6.6. In addition, we see that we could repeat the above calculations
for any ten-year increase in age, and for any fixed values of the other predictors
and obtain the same result. Thus, the formula (6.6) for computing log odds
ratios for arbitrary increases in a single predictor applies here as well. The odds
ratio for a ten-year increase in age (adjusted for the other included predictors)
is given simply by

exp(0.0644 × 10) = exp(.644) = 1.90.

Interpretation of regression coefficients for categorical predictors also follow
that given for single predictor logistic models. For example, the coefficient
(0.633) for the binary predictor variable smoke in Table 6.6 is the log odds
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ratio comparing smokers to non-smokers for fixed values of age, chol, sbp,
and bmi. The corresponding odds ratio

exp(0.633) = 1.88

measures the proportionate increase in the odds of developing CHD for smok-
ers compared to non-smokers adjusted for age, cholesterol, systolic blood pres-
sure and BMI.

The estimated coefficients for the first four predictors in Table 6.6 are
all very close to zero, reflecting the continuous nature of these variables and
the fact that a unit change in any one of them does not translate to a large
increase in the estimated log odds of CHD. As shown above, we can easily
calculate odds ratios associated with clinically more meaningful increases in
these predictors. An easier approach is to decide on the degree of change that
we would like the estimates to reflect and fit a model based on predictors
rescaled to reflect these decisions. For example, if we would like the model to
produce odds ratios for ten-year increases in age, we should represent age as
the rescaled predictor age 10 = age/10. Table 6.7 shows the estimated odds

Table 6.7. Multiple Logistic Model With Rescaled Predictors
. logistic chd69 age_10 chol_50 bmi_10 sbp_50 smoke

Logistic regression Number of obs = 3141
LR chi2(5) = 159.80
Prob > chi2 = 0.0000

Log likelihood = -807.19249 Pseudo R2 = 0.0901

------------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age_10 | 1.904989 .2268333 5.41 0.000 1.508471 2.405735

chol_50 | 1.710974 .1297976 7.08 0.000 1.474584 1.985259
bmi_10 | 1.775995 .4680613 2.18 0.029 1.059518 2.976972
sbp_50 | 2.623972 .5367141 4.72 0.000 1.757326 3.918016
smoke | 1.886037 .2643914 4.53 0.000 1.432933 2.482417

------------------------------------------------------------------------------

ratios from the model including rescaled versions of the first four predictors in
Table 6.6. (The numbers after the underscores in the variable names indicate
the magnitude of the scaling.) We also “centered” these predictors before
scaling them by subtracting of the mean value for each. (Centering predictors
is discussed in Sect. 3.3.1 and Sect. 4.6.) Note that the log-likelihood and
Wald test statistics for this model are identical to their counterparts in Table
6.6.

6.2.1 Likelihood Ratio Tests

In Sect. 6.1, we briefly introduced the concept of the likelihood, and the like-
lihood ratio test for logistic models. The likelihood for a given model is in-
terpreted as the joint probability of the observed outcomes expressed as a
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function of the chosen regression model. The model coefficients are unknown
quantities and are estimated by maximizing this probability (hence the name
maximum-likelihood estimation). For numerical reasons, maximum-likelihood
estimation in statistical software is usually based on the logarithm of the like-
lihood. An important property of likelihoods from nested models (i.e., models
in which predictors from one are a subset of those contained in the other) is
that the maximized value of the likelihood from the larger model will always
be at least as large as that for the smaller model.

Although the likelihood (or log-likelihood) for a single model does not have
a particularly useful interpretation, the likelihood ratio statistic assessing the
difference in likelihoods from two nested models is a valuable tool in model
assessment (analogous to the F tests introduced in the Chap. 4). It is espe-
cially useful when investigating the contribution of more than one predictor,
or for predictors with multiple levels.

For example, consider assessment of the contribution of self-reported be-
havior pattern to the model summarized in Table 6.7. In the WCGS study,
investigators were interested in “type A” behavior as an independent risk fac-
tor for coronary heart disease. Behavior was classified as either type A or type
B, with each type subdivided into two further levels A1, A2, B1 and B2 (coded
as 1,2,3 and 4, respectively). The expanded model addresses the question of
whether behavior pattern contributes to CHD risk when other established risk
factors are accounted for.

Table 6.8 displays the results of including the four-level categorical vari-
able behpat in the model from Table 6.7. The natural coding of the variable

Table 6.8. Logistic Model for WCGS Behavior Pattern
. xi: logistic chd69 age_10 chol_50 sbp_50 bmi_10 smoke i.behpat
i.behpat _Ibehpat_1-4 (naturally coded; _Ibehpat_1 omitted)

Logistic regression Number of obs = 3141
LR chi2(8) = 184.57
Prob > chi2 = 0.0000

Log likelihood = -794.81 Pseudo R2 = 0.1040

------------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age_10 | 1.83375 .2198681 5.06 0.000 1.449707 2.319529

chol_50 | 1.704097 .1301391 6.98 0.000 1.467201 1.979243
sbp_50 | 2.463505 .5086517 4.37 0.000 1.643621 3.692369
bmi_10 | 1.739414 .4620339 2.08 0.037 1.033479 2.927551
smoke | 1.830672 .2583097 4.29 0.000 1.38837 2.413882

_Ibehpat_2 | 1.068257 .2363271 0.30 0.765 .6924157 1.648103
_Ibehpat_3 | .5141593 .1245592 -2.75 0.006 .3198065 .8266243
_Ibehpat_4 | .572071 .1826116 -1.75 0.080 .3060107 1.069457

------------------------------------------------------------------------------
. estimates store mod1

results in type A1 behavior being taken as the reference level. Examination
of the coefficients and associated 95% confidence intervals for the remaining



172 6 Logistic Regression

indicators reveals that although the second category of type A behavior ap-
pears not to differ from the reference level, both categories of type B behavior
do display statistically significant differences, and are associated with lower
outcome risk.

The likelihood ratio statistic is computed as twice the difference between
log-likelihoods from the two models, and can be referred to the χ2 distribution
for significance testing. Because the likelihood for the larger model must be
larger than the likelihood for the smaller (nested) model, the difference will
always be positive. Twice the difference between the log-likelihood for the
model including behpat (Table 6.8) and that for the model excluding this
variable (Table 6.6) is

2 × [−794.81 − (−807.19)] = 24.76.

This value follows a χ2 distribution, with degrees of freedom equal to the
number of additional variables present in the larger model (three in this case).
Statistical packages like Stata can often be used to compute the likelihood
ratio test directly by first fitting the larger model (in Table 6.8), and saving
the likelihood in the user-defined variable (in this case, in the variable mod1
created in the last line of the table). Next, the reduced model eliminating
behpat is fit, followed by a command to evaluate the likelihood ratio test as
displayed in the Table 6.9. (See Table 6.6 for the full regression output for
this model.) The result agrees with the calculation above, and the associated
P -value indicates that collectively, the four-level categorical representation of
behavior pattern makes a statistically significant independent contribution to
the model.

Table 6.9. Likelihood Ratio Test for Four-Level WCGS Behavior Pattern
. lrtest mod1

likelihood-ratio test LR chi2(3) = 24.76
(Assumption: . nested in mod1) Prob > chi2 = 0.0000

The similarity between the two odds ratios for type A (the reference level
and the indicator Ibehpat 2) and type B (the indicators Ibehpat 3 and
Ibehpat 4) behavior in Table 6.8 suggests that a single binary indicator
distinguishing the A and B patterns might suffice. Note that the logistic model
that represents behavior pattern as a two-level indicator (with type B behavior
as the reference category) is actually nested within the model in Table 6.8.
(The model including the two-level representation is a special case of the
four-level version when the coefficients for the two levels of type B and type
A behavior, respectively are identical.) Table 6.10 displays the fitted model
and likelihood ratio test results for this reduced model including the two-level
binary indicator dibpat. The fact that the difference between the likelihoods
for the two models is not statistically significant confirms our suspicion that
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modeling the effect of behavior pattern as a two-level predictor is sufficient to
capture the contribution of this variable.

Table 6.10. Likelihood Ratio Test for Two-Level WCGS Behavior Pattern

. logistic chd69 age_10 chol_50 sbp_50 bmi_10 smoke dibpat

Logistic regression Number of obs = 3141
LR chi2(6) = 184.34
Prob > chi2 = 0.0000

Log likelihood = -794.92603 Pseudo R2 = 0.1039

------------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age_10 | 1.830252 .2190623 5.05 0.000 1.44754 2.314146

chol_50 | 1.702406 .1299562 6.97 0.000 1.465835 1.977157
sbp_50 | 2.467919 .5084376 4.38 0.000 1.648039 3.695681
bmi_10 | 1.732349 .4596114 2.07 0.038 1.029917 2.913859
smoke | 1.829163 .2580698 4.28 0.000 1.387265 2.411822

dibpat | 2.006855 .289734 4.82 0.000 1.512259 2.663212
------------------------------------------------------------------------------
. lrtest mod1

likelihood-ratio test LR chi2(2) = 0.23
(Assumption: . nested in mod1) Prob > chi2 = 0.8904

As demonstrated above, the likelihood ratio test is a very useful tool in
comparing nested logistic regression models. In moderate to large samples,
the results from the likelihood ratio and Wald tests for the effects of single
predictors will agree quite closely. However, in smaller samples the results of
these two tests may differ substantially. In general, the likelihood ratio test
is more reliable than the Wald test, and is preferred when both are available.
Finally, note that because the likelihood is computed based on the observa-
tions used to fit the model, it is important to ensure that the same obser-
vations are included in each candidate model considered in likelihood ratio
testing. Likelihoods from models fit on differing sets of observations are not
comparable. A more complete discussion of the concepts of likelihood and
maximum-likelihood estimation is given in Sect. 6.6.

6.2.2 Confounding

A common goal of multiple logistic regression modeling is to investigate the
association between a predictor and the outcome, controlling for the possible
influence of additional variables. For example, in evaluating the observed as-
sociation between behavior pattern (considered in the previous section) and
CHD risk, it is important to consider the potential effects of additional vari-
ables that might be related to both behavior and CHD occurrence. Recall from
Chapter 4 that regression models account for confounding of an association
of primary interest by including potential confounding variables in the same
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model. In this section we briefly review these issues in the logistic regression
context.

Consider again the assessment of behavior pattern as a predictor of CHD
in the WCGS example considered in the previous section. In the analysis
summarized in Table 6.10, we concluded that a two-level indicator (dibpat)
distinguishing type A and B behaviors adequately captures the effects of this
variable on CHD (in place of a more complex, four-level summary of behavior).
In light of the discussion in Sect. 5.3, we should consider the possible causal
relationships of the additional variables in the model with both the outcome
and behavior pattern before concluding that the association is adequately
adjusted for confounding.

Table 6.11. Logistic Model for Type A Behavior Pattern and Selected Predictors

. logistic dibpat age_10 chol_50 sbp_50 bmi_10 smoke

Logistic regression Number of obs = 3141
LR chi2(5) = 53.80
Prob > chi2 = 0.0000

Log likelihood = -2150.1739 Pseudo R2 = 0.0124

------------------------------------------------------------------------------
dibpat | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age_10 | 1.324032 .0881552 4.22 0.000 1.16205 1.508594

chol_50 | 1.084241 .0464136 1.89 0.059 .9969839 1.179135
sbp_50 | 1.461247 .1876433 2.95 0.003 1.136104 1.879442
bmi_10 | 1.123846 .1672474 0.78 0.433 .8395252 1.504459
smoke | 1.26933 .0930786 3.25 0.001 1.099403 1.465522

------------------------------------------------------------------------------

Recall that to be a confounder of an association of primary interest, a vari-
able must be associated with both the outcome and the predictor forming the
association. From Table 6.10, all of the predictors in addition to dibpat are
independently associated with the CHD outcome. Since dibpat is a binary
indicator, we can examined its association with these predictors via logistic
regression as well. Table 6.11 presents the resulting model. With the exception
of BMI (bmi 10), all appear to be associated with behavior pattern. In de-
ciding which variables to adjust for in summarizing the CHD-behavior patter
association, it is worth considering the possible causal relationships to help
identify distinguish variable with confounding influence from those that could
be potential mediators or effect modifiers.

The causal diagram illustrated in Figure 5.2 is partially applicable to the
present situation (e.g., if we substitute type 2 behavior for exercise), and il-
lustrates clearly that causal connections are likely to be very complex. For
example, cholesterol and SBP (hypertension) could be viewed as mediating
variables in the pathway between behavior and CHD. Similarly, smoking and
BMI may play either a confounding or mediating role. The unadjusted odds
ratio (95% CI) for the association between type A behavior and CHD for this
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group of individuals is 2.36 (1.79, 3.10). By contrast, the adjusted odds ratio
in Table 6.10 is 2.01 (95% CI 1.51, 2.66). Note that dropping any of the ad-
justment factors from the model singly results in little change to the estimated
OR for type A behavior (less than 5%). Thus if any of these variables acts as
a mediator, the influence appears to be weak. This suggests that the influence
of type A behavior on CHD may act partially through another unmeasured
pathway. (Or that this characterization of behavior is itself only a marker for
more important behavioral characteristics.) In this case, adjustment for the
other variables is appropriate. When we also consider the importance of the
adjustment factors as predictors of CHD, it makes sense to include them. See
Sect. 5.3 for further discussion of these issues. Finally, before concluding that
we have adequately modeled the relationship between behavior pattern and
CHD we need to account for possible interactions between included predictors
(Sect. 6.2.3), and conduct diagnostic assessments of the model fit (Sect. 6.4).

6.2.3 Interaction

Recall from Chapter 4 that an interaction between two predictors in a regres-
sion model means that the degree of association between each predictor and
the outcome varies according to levels of the other predictor. The mechanics
of fitting logistic regression models including interaction terms is quite similar
to standard linear regression (see Sect. 4.6). For example, to fit an interaction
between two continuous predictors x1 and x2, we include the product x1x2 as
an additional predictor in a model containing x1 and x2 as shown in equation
(6.9):

log
[

P (x1, x2, x1 × x2)
1 − P (x1, x2, x1x2)

]
= β0 + β1x1 + β2x2 + β3x1 × x2. (6.9)

Fitting interactions between categorical predictors and between continuous
and categorical predictors also follows the procedures outlined in Chapter 4.
However, because of the log odds ratio interpretation of regression coefficients
in the logistic model, interpreting results of interactions is somewhat different.
We review several examples below.

For an illustrative example of a two-way interaction between two binary
indicator variables from the WCGS study, consider the regression model pre-
sented in Table 6.12. The fitted model includes the indicator arcus for arcus
senilis (defined in Sect.3.4), a binary indicator bage 50 for participants over
the age of 50, and the product between them, bage 50arcus. The research
question addressed is whether the association between arcus and CHD is age-
dependent. The statistically significant result of the Wald test for the coeffi-
cient associated with the product of the indicators for age and arcus indicates
that an interaction is present. This means that we cannot interpret the co-
efficient for arcus as a log odds ratio without specifying whether or not the
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Table 6.12. Logistic Model for Interaction Between Arcus and Age as a Categorical
Predictor

. logistic chd69 bage_50 arcus bage_50arcus, coef

Logistic regression Number of obs = 3152
LR chi2(3) = 40.33
Prob > chi2 = 0.0000

Log likelihood = -865.43251 Pseudo R2 = 0.0228

------------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
bage_50 | .8932677 .1721237 5.19 0.000 .5559115 1.230624

arcus | .6479628 .1788636 3.62 0.000 .2973966 .9985291
bage_50arcus | -.5920552 .2722265 -2.17 0.030 -1.125609 -.058501

_cons | -2.882853 .1089259 -26.47 0.000 -3.096344 -2.669362
------------------------------------------------------------------------------

participant is older than 50. (A similar result holds for the interpretation of
bage 50.) The procedure for obtaining the component odds ratios is similar
to the methods for obtaining main and interaction effects for linear regression
models, and is straightforward using the regression model. If we represent
arcus and bage 50 and x1 as x2 in equation (6.9), we can compute the log
odds for any combination of values of these predictors using coefficients from
Table 6.12. For example, the log odds of CHD occurrence for an individual
over 50 years old without arcus is given by

log
[

P (0, 1, 0)
1 − P (0, 1, 0)

]
= β0 + β2

= −2.883 + 0.893 = −1.990.

Similarly, the log odds for an individual between 39 and 49 years old without
arcus is

log
[

P (0, 0, 0)
1 − P (0, 0, 0)

]
= β0.

With these results, we see that the five expressions below define the component
log odds ratios in the example:

log
[

P (1, 0, 0)
1 − P (1, 0, 0)

]
− log

[
P (0, 0, 0)

1 − P (0, 0, 0)

]
= β1 = 0.648

log
[

P (1, 1, 1)
1 − P (1, 1, 1)

]
− log

[
P (0, 1, 0)

1 − P (0, 1, 0)

]
= β1 + β3 = 0.056

log
[

P (0, 1, 0)
1 − P (0, 1, 0)

]
− log

[
P (0, 0, 0)

1 − P (0, 0, 0)

]
= β2 = 0.893 (6.10)

log
[

P (1, 1, 1)
1 − P (1, 1, 1)

]
− log

[
P (1, 0, 0)

1 − P (1, 0, 0)

]
= β2 + β3 = 0.301

log
[

P (1, 1, 1)
1 − P (1, 1, 1)

]
− log

[
P (0, 0, 0)

1 − P (0, 0, 0)

]
= β1 + β2 + β3 = 0.949.
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The corresponding odds ratios are then easily calculated by exponentiation,
as shown in Table 6.13.

Table 6.13. Component Odds Ratios for Arcus-Age Interaction Model

Odds ratio Groups compared

exp(β1) = 1.91 arcus vs. no arcus, age 39-49
exp(β1 + β3) = 1.06 arcus vs. no arcus, age 50-59
exp(β2) = 2.44 age 50-59 vs. age 39-49, no arcus
exp(β2 + β3) = 1.35 age 50-59 vs. age 39-49, arcus
exp(β1 + β2 + β3) = 2.58 arcus and age 50-59 vs. no arcus and ages 39-49

Referring back to Table 6.12, we see that all of the component odds ratios
aren’t immediately obvious from standard regression output. However, the log
odds ratio and associated 95% confidence intervals for arcus among individ-
uals in the younger age group and for older individuals among those without
arcus can be read directly. This is because when we set either variable to zero
(the reference level), the interaction term evaluates to zero and is eliminated.
Estimated log odds ratios corresponding to the non-reference levels of these
variables involve the interaction term, and differ from their counterparts by the
value of its coefficient (–0.592). Standard errors and 95% confidence intervals
for these estimates require additional calculations that cannot be completed
without further information about the fitted model. Fortunately, many sta-
tistical packages have facilities that greatly simplify these calculations. Table
6.14 illustrates the use of the lincom command in Stata to compute the odds
ratio comparing the odds of CHD in individuals of age 50 and over with the
odds among those under 50, among individuals with arcus. By specifying the

Table 6.14. Example Odds Ratio for Arcus-Age Interaction Model
. lincom bage_50 + bage_50arcus

( 1) bage_50 + bage_50arcus = 0

------------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | 1.351497 .2850367 1.43 0.153 .8939077 2.043324

correct combination of coefficients (corresponding to those in Table 6.13), the
output in the Table 6.14 provides the desired odds ratio estimate along with
the 95% confidence interval. Results of the accompanying hypothesis test that
the underlying log odds ratio is zero are also provided.

Interactions between a continuous and categorical variable are handled in
a similar fashion to those involving binary predictors. In the previous example,
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the categorization of age was somewhat arbitrary. In fact, because age was
represented by two categories, essentially the same results could have been ob-
tained using frequency table techniques (as illustrated in Table 3.9). A more
complete assessment of the interaction can be obtained by considering age as
a continuous variable (previously considered in Table 6.2 ). For example, this
would allow us to investigate whether increase in CHD risk with increasing
age differs in individuals with and without arcus. The logistic model address-
ing this question is displayed in Table 6.15. With this form of the logistic

Table 6.15. Logistic Model for Interaction Between Arcus and Age as Continuous

. xi: logistic chd69 i.arcus*age, coef
i.arcus _Iarcus_0-1 (naturally coded; _Iarcus_0 omitted)
i.arcus*age _IarcXage_# (coded as above)

Logistic regression Number of obs = 3152
LR chi2(3) = 53.33
Prob > chi2 = 0.0000

Log likelihood = -858.93362 Pseudo R2 = 0.0301

------------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Iarcus_1 | 2.754185 1.140113 2.42 0.016 .5196041 4.988765

age | .089647 .0148903 6.02 0.000 .0604624 .1188315
_IarcXage_1 | -.0498298 .023343 -2.13 0.033 -.0955812 -.0040784

_cons | -6.788086 .7179936 -9.45 0.000 -8.195327 -5.380844
------------------------------------------------------------------------------

command in Stata, we instruct the program to include an interaction term
between the two variables. This is accomplished by inclusion of the product
of arcus and age ( IarcXage 1 ) as well as the individual predictors age and
Iarcus 1. For a fixed age (e.g., 55), the log odds ratio associated with having
arcus is calculated as follows, using the estimated coefficients from Table 6.15:

log
[

P (1, 55, 55)
1 − P (1, 55, 55)

]
− log

[
P (0, 55, 0)

1 − P (0, 55, 0)

]

= (−6.788 + 2.754 + (0.090 − 0.050) × 55) − (−6.788 + 0.090 × 55)
= (2.754 − 0.050 × 55) = 0.014.

We see that this corresponds to an odds ratio of exp(0.014) = 1.01, which is
similar to that calculated for the corresponding age group in Table 6.13. We
can obtain this estimate and its 95% confidence interval directly as shown in
Table 6.16.

Note that because age is represented as a continuous variable, its value
must be specified in interpreting the effect of arcus on the log odds of CHD
risk. Similarly, among individuals with arcus, log odds ratios can be computed
for any specified increase in age. Fig. 6.2 displays the estimated log odds as
a function of age, separately for individuals with and without arcus. The
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Table 6.16. Logistic Model for Interaction Between Arcus and Age as a Continuous
Predictor

. lincom _Iarcus_1 + _IarcXage_1*55

( 1) _Iarcus_1 + 55 _IarcXage_1 = 0

------------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | 1.013637 .2062327 0.07 0.947 .6802966 1.51031

------------------------------------------------------------------------------

equations for these two lines can be obtained directly from the coefficients
in Table 6.15 and are printed below for individuals with and without arcus,
respectively:

log
[

P (age)
1 − P (age)

]
= (−6.788 + 2.754) + (0.090 − 0.050) × age

= −4.034 + 0.040 × age.

and

log
[

P (age)
1 − P (age)

]
= −6.788 + 0.0896 × age.

Fig. 6.2 displays the results obtained above, indicating that CHD risk is higher
for younger participants with arcus. However, older participants with arcus
seem to be at somewhat lower risk than those without arcus. Of course, fur-
ther interpretation of these equations should be preceded by thorough check-
ing of the linearity of the relationship between age and the log odds of the
outcome, including whether more complicated, higher-order interaction terms
are needed.

Recall the discussion in Sect. 6.1 where we motivated the logistic model as
an example of a multiplicative risk model (see equation (6.4)). By contrast,
the excess risk model (introduced in equation (6.1) and discussed further in
Sect. 6.5.2) is an example of an additive risk model. In addition to defining
two distinct ways in which a predictor can act to modify outcome risk, this
distinction turns out to be very important in the context of interaction: For a
specified outcome and predictor pair, it is possible to have interaction under
the multiplicative model and not under the additive model, and vice versa.

For example, if we fit the additive risk model to the data from the age/arcus
example in Table 6.15, the Wald test P -value for inclusion of the product
term (age 50arcus) is 0.15. (The corresponding value from the logistic model
was 0.03.) The implications of this are that we should not necessarily regard
interaction as mirroring a biological mechanism, but rather as a property of
the data and model being fit. In the example, we would want to account for the
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Fig. 6.2. Log Odds of CHD and Age for Individuals With and Without Arcus
Senilis

interaction if we were using the logistic model but not necessarily if we were
analyzing the WCGS data using the additive model. The additive regression
model is described further in Sect. 6.5.2. Also, see Clayton and Hills (1993)
and Jewell (2004) for more detailed discussions of the distinction between
multiplicative and additive interaction.

6.2.4 Prediction

Frequently, the goal of fitting a logistic model is to predict risk of the binary
outcome given a set of risk factors. Recall that in Sect. 6.2.1, we fit a logistic
model for the binary coronary heart disease (CHD) outcome in the WCGS
sample, using age, cholesterol level, systolic blood pressure, body mass index
(BMI), a binary indicator of current cigarette smoking (with non-smokers
composing the reference group), and an indicator of type A behavior as pre-
dictors. Table 6.10 summarizes the results. Table 6.17 presents an expanded
version of this model that includes two additional predictors bmichol and
bmisbp for the interactions between BMI and serum cholesterol level and BMI
and systolic blood pressure (both centered and scaled as described in Sect.
6.2). These were both found to make statistically significant contributions to
the model in further analyses investigating two way interactions between the
original predictors in Table 6.10 .

As shown in Sect. 6.2, the estimated coefficients from the model in Table
6.17 can be used directly in the logistic formula (6.8) to compute the log
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Table 6.17. Expanded Logistic Model for CHD Events
. logistic chd69 age_10 chol_50 sbp_50 bmi_10 smoke dibpat bmichol bmisbp, coef

Logistic regression Number of obs = 3141
LR chi2(8) = 198.15
Prob > chi2 = 0.0000

Log likelihood = -788.01957 Pseudo R2 = 0.1117

------------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age_10 | .5949713 .1201092 4.95 0.000 .3595615 .830381

chol_50 | .5757131 .07779 7.40 0.000 .4232474 .7281787
sbp_50 | 1.019647 .2066014 4.94 0.000 .6147159 1.424579
bmi_10 | 1.048839 .2998176 3.50 0.000 .4612074 1.636471
smoke | .6061929 .1410533 4.30 0.000 .3297335 .8826523

dibpat | .7234267 .1448996 4.99 0.000 .4394288 1.007425
bmichol | -.8896932 .2746471 -3.24 0.001 -1.427992 -.3513948
bmisbp | -1.503455 .631815 -2.38 0.017 -2.74179 -.2651208
_cons | -3.416061 .1504717 -22.70 0.000 -3.71098 -3.121142

------------------------------------------------------------------------------

odds (or the corresponding probability) of CHD for an arbitrary individual
by specifying the desired values for the predictors. Table 6.18 displays a few
such predictions (labeled prchd) for five individuals in the WCGS sample
(obtained using the predict command in Stata).

Table 6.18. Sample Predictions From the Logistic Model in Table 6.17
+---------------------------------------------------------------------+
| chd69 age chol sbp bmi smoke dibpat prchd |
|---------------------------------------------------------------------|

1. | no 49 225 110 19.78795 smoker A1,A2 .0433952 |
2. | no 42 177 154 22.9551 smoker A1,A2 .0708145 |
3. | no 42 181 110 23.62529 nonsmoker B3,B4 .0082533 |
4. | no 41 132 124 23.109 smoker B3,B4 .0089318 |
5. | yes 59 255 144 21.52041 smoker B3,B4 .1926046 |

|---------------------------------------------------------------------|

6.2.5 Prediction Accuracy

In some applications, we may be interested in using a logistic regression model
as a tool to classify outcomes of newly observed individuals based on values of
measured predictors. For the WCGS example just considered, this may involve
deciding on treatment strategy based on prognosis as measured by the pre-
dicted probability from the logistic model in Table 6.17. Similar to the goals
of developing diagnostic tests for detecting diseases, this approach requires us
to choose a cut-off or threshold value of the predicted outcome probability
above which treatment would be initiated. A fundamental consideration in
choosing this threshold is in evaluating the degree of misclassification of out-
comes incurred by the choice. For a binary outcome, misclassification can be
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quantified by calculating the proportion of individuals incorrectly classified
as either having the outcome or not. These are known as the false-positive
and false-negative rates, respectively, and are standard measures of prediction
error in the logistic regression context. (Recall that prediction error was in-
troduced in Sect. 5.2.) Rather than state prediction performance in terms of
misclassification, the following complementary measures are frequently used
in assessment of prediction rules for binary outcomes:

Sensitivity The proportion of individuals with the outcome that are cor-
rectly classified, calculated as the complement of the false-negative rate.

Specificity The proportion of individuals without the outcome that are
correctly classified, calculated as the complement of the false-positive rate.

As the threshold value of a prediction rule varies between zero and one,
these quantities can be calculated and compared to evaluate overall perfor-
mance. A receiver operating characteristic (ROC) curve plots the sensitivity
against the false-positive rate (i.e., one minus the specificity) for a range of
thresholds to help visualize test performance. Figure 6.3 shows the ROC curve
for the current example (obtained using the lroc command in Stata), along
with a diagonal reference line, usually interpreted as representing the ROC
curve for a test that is no better than the flip of a coin.
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Fig. 6.3. ROC Curve for Logistic Prediction of CHD Events
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ROC curves for tests with overall good performance (i.e., low misclassifica-
tion rates for both positive and negative outcomes) will lie close to the left and
topmost margins of the plot. In Figure 6.3, a test with a sensitivity of around
75% is close to optimal in this sense. (The threshold value corresponding to
a sensitivity of 0.75 – and a specificity 0f 0.64 – in Figure 6.3 is about 0.07.)
Note that in most practical situations, assessment of test performance has a
subjective component: The cost of misclassifying an individual as positive may
be deemed more serious than the alternative situation, or vice versa. These
considerations weigh into evaluation of test results. The area under an ROC
curve (also known as the c-statistic) provides an overall measure of classifi-
cation accuracy (representing the overall proportion of individuals correctly
classified), with the value of one representing perfect accuracy. In the present
case, the value of 0.754 does not indicate very impressive performance.

A clear limitation with the example above is that the individuals used to
evaluate the performance are the same as those used to fit the model on which
the classification rule is based. Alternative techniques that do not share this
limitation include cross-validation and learning set/test set validation (both
described in Sect. 5.2). Finally, note that although logistic regression is a
valid approach for development of prediction tools, alternative techniques are
available. Classification trees (discussed briefly in Sect. 5.2) are very useful in
this context, and involve fewer assumptions than the logistic approach. See
Goldman et al. (1996) for an example of their application in a clinical context.

6.3 Case-Control Studies

In situations where binary outcomes are rare or difficult to observe, it is not
always feasible to collect a large enough sample to investigate the relation-
ship between the outcome and predictors of interest. Consider the problem of
evaluating dietary risk factors for stomach cancer. Because this disease is rel-
atively rare (accounting for approximately 2% of annual cancer deaths in the
U.S.), only a very large cross-sectional or prospective sample would include
sufficient numbers of cases to evaluate associations with predictors of interest.
Case-control studies address this problem by recruiting a fixed number of indi-
viduals with the outcome of interest (the cases) and a number of comparable
control individuals free of the outcome. Retrospective histories of predictor
variables of interest are then collected via questionnaire after recruitment.

A well-known example of a case-control study is the Ille-et-Vilaine study
of cancer conducted in France between 1972 and 1974. It includes 200 cases
and 775 comparable controls, and was designed to investigate alcohol, diet,
and tobacco consumption as risk factors for esophageal cancer in men. This is
known as an unmatched study since cases and controls were sampled separately
in predetermined numbers. An alternative type of case-control study is based
on matching a fixed number of controls to each sampled case based on selected
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characteristics. Methods for matched studies are different and will be covered
briefly below in Sect. 6.3.1.

Because the overall proportion of individuals is fixed by design in a case-
control study (e.g., 200/995, or approximately five controls per case for Ille-
et-Vilaine), it is not meaningful to make direct comparisons of outcome risk
(estimated as the proportion of individuals with the outcome) between groups
defined by predictor variables, as is conventional in studies where participants
are not sampled based on their outcome status. Rather, analyses are based
on the distribution of predictors variables compared across case/control sta-
tus. At first glance, this approach does not seem to address the fundamental
question of whether or not the predictor is associated with increased risk of
developing the outcome. For example, observing that self-reported alcohol
consumption differed between cases and controls in Ille-et-Vilaine does not
seemingly translate into a clear statement about esophageal cancer risk as-
sociated with alcohol use. Further, application of conventional measures of
association to settings where the role of the outcome and predictor are re-
versed seemingly leads to unintuitive results. For example, observing that
individuals with esophageal cancer risk are twice as likely (in terms of the
relative risk) as cancer-free individuals to report a specified degree of alcohol
consumption does not state the association in a way that makes the possible
causal connection clear.

Recall that our definitions of the relative risk, excess risk, and odds ratios in
Chapter 3 were stated in terms of the outcome probabilities. This limits their
usefulness in retrospective settings such as case-control studies. However, it is
a unique property of the odds ratio that it retains its validity as a measure
of outcome risk, even for case-control sampling. To demonstrate this for a
simple example, Table 6.19 presents odds ratios for the Ille-et-Vilaine study
estimated using the tabodds procedure in Stata. The first part of the table
gives the odds of the binary case-control status indicator case compared in
two groups defined by the binary indicator ditob of moderate to heavy level
of smoking (10+ grams/day of tobacco smoked), and the second part gives
the corresponding odds ratio comparing moderate-to-heavy level of smoking
between cases and controls. The estimated odds ratios are identical. This
property does not hold for the excess risk and relative risk.

We can also demonstrate this property directly using the definition of
the odds ratio. Table 6.20 presents a hypothetical 2 × 2 table for a binary
outcome and predictor in terms of the frequencies of n individuals in the
four possible cross-categorizations (labeled a, b, c and d). We estimate the
outcome probability among individuals with and without the predictor with
the proportions a/(a + c) and b/(b + d), respectively, and the corresponding
odds of the outcome as

a/(a + c)
c/(a + c)

and
b/(b + d)
d/(b + d)

. (6.11)

The resulting odds ratio is then ad/bc.
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Table 6.19. Odds Ratio for Smoking and Esophageal Cancer
. tabodds case ditob, or

---------------------------------------------------------------------------
ditob | Odds Ratio chi2 P>chi2 [95% Conf. Interval]

-------------+-------------------------------------------------------------
0-9 g/day | 1.000000 . . . .
10+ g/day | 10.407051 64.89 0.0000 5.119049 21.157585

---------------------------------------------------------------------------

. tabodds ditob case, or

---------------------------------------------------------------------------
case | Odds Ratio chi2 P>chi2 [95% Conf. Interval]

-------------+-------------------------------------------------------------
0 | 1.000000 . . . .
1 | 10.407051 64.89 0.0000 5.119049 21.157585

---------------------------------------------------------------------------

Similarly, we can estimate the exposure probability among individuals with
and without the outcome as a/(a + b) and c/(c + d), and the corresponding
odds as above. It is easy to verify that the odds ratio based on these is also
ad/bc. This property of the odds ratios is central to the wide use of case-
control studies, and suggests that logistic regression may be applicable as
well. The additional fact that the odds ratio approximates the relative risk
for rare outcomes (e.g., many forms of cancer) increases its appeal.

Table 6.20. Outcome by Predictor Status for a Case-Control Study

Predictor Outcome Total
Yes a b a + b

No c d c + d

Total a + c b + d n

Recall that in the logistic regression model, the intercept coefficient β0
is interpreted as the “baseline” log odds of outcome risk obtained when no
predictors are included in the model (or, equivalently, when all predictors
take on the value zero). As we have stated above, this quantity cannot be
meaningfully estimated from case-control studies. As a result, the intercept
coefficient in logistic regression models for case-control data can not be in-
terpreted as providing an estimate of baseline risk in the population from
which the sample was drawn. It is a remarkable fact that the logistic model is
nonetheless directly applicable to data from case-control studies, and that es-
timated regression coefficients for included predictors provide valid estimates
of log odds ratios, sharing the interpretation from other study types. Note
that the logistic is the only binary regression model with this property.

A primary hypothesis underlying the Ille-et-Vilaine study was that alcohol
consumption was related to esophageal cancer. Alcohol consumption was mea-
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sured in average total daily consumption in grams, estimated directly from
questionnaire responses on a number of different types of alcoholic beverages.
The investigators recognized that age and smoking were potential confounding
influences, and should be accounted for in assessing the association between
alcohol consumption and cancer risk. (Dietary factors were also considered,
but are not discussed here.)

Table 6.21 presents the results of a logistic regression model fit to these
data, including a four-level categorization alcgp of average daily alcohol con-
sumption and controlling for the dichotomous indicator ditob of moderate-
to-heavy smoking (introduced above) and age (in years) as a continuous pre-
dictor. The lowest level of alcohol consumption (0–39 grams/day) is taken as
the reference category, and the three included indicators represent 40–79, 80–
119, and 120+ grams/day, respectively. Note that omitting the coef option to
the logistic command, Stata returns odds ratio estimates rather than the
regression coefficients, and the intercept is not included. The results indicate
a clear increase in cancer risk with increasing alcohol consumption, and that
this effect is evident when age and smoking are accounted for.

Table 6.21. Logistic Model for Alcohol Consumption and Esophageal Cancer
. xi: logistic case i.alcgp ditob age
i.alcgp _Ialcgp_1-4 (naturally coded; _Ialcgp_1 omitted)

Logit estimates Number of obs = 975
LR chi2(5) = 280.80
Prob > chi2 = 0.0000

Log likelihood = -354.34556 Pseudo R2 = 0.2838

------------------------------------------------------------------------------
case | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ialcgp_2 | 4.063502 1.024362 5.56 0.000 2.479261 6.660068
_Ialcgp_3 | 7.526931 2.138601 7.10 0.000 4.312896 13.13611
_Ialcgp_4 | 32.07349 11.5861 9.60 0.000 15.80016 65.1075

ditob | 7.375744 2.732351 5.39 0.000 3.568432 15.24524
age | 1.068417 .0087666 8.07 0.000 1.051372 1.085738

------------------------------------------------------------------------------

Estimated odds ratios in Table 6.21 are larger than 1.0, and lower bounds
of the associated 95% confidence intervals exclude 1.0, indicating that each
of the predictors is associated with statistically significant increases in risk of
esophageal cancer. Further, since esophageal cancer is relatively rare in the
general population on which this study was conducted, interpreting the odds
ratios as estimated relative risks is approximately correct. A single summary of
the contribution of alcohol consumption to a model including age and smoking
can be obtained by fitting the same model excluding the indicators for alcohol,
and performing a likelihood ratio test, as shown in Table 6.22. This procedure
assumes that the full model including alcohol in Table 6.21 is fit first, and the
model log-likelihood is stored for future reference as mod1 (in the first line of
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Table 6.22. Likelihood Ratio Test for Contribution of age
. est store mod1
. logistic case ditob age

Logistic regression Number of obs = 975
LR chi2(2) = 152.11
Prob > chi2 = 0.0000

Log likelihood = -418.68894 Pseudo R2 = 0.1537

------------------------------------------------------------------------------
case | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
ditob | 9.463852 3.362354 6.33 0.000 4.716825 18.9883

age | 1.055568 .0073642 7.75 0.000 1.041232 1.0701
------------------------------------------------------------------------------
. lrtest mod1

likelihood-ratio test LR chi2(3) = 128.69
(Assumption: . nested in mod1) Prob > chi2 = 0.0000

the output in Table 6.22). The results indicate a substantial contribution of
the categorical summary alcgp of alcohol consumption to the overall fit of the
model as summarized by the large log-likelihood ratio statistic (128.7). Further
analyses might investigate the relationship between alcohol, smoking, and
the log odds of cancer risk in more detail, possibly including these variables
as continuous measures. We would naturally want to evaluate the linearity
assumption implicit in including the variables (and age) in this form as well.

6.3.1 Matched Case-Control Studies

Consider the issues that would arise in designing a case-control study in-
vestigating esophageal cancer in a different population than Ille-et-Vilaine,
possibly focusing on exposures other than alcohol as potential risk factors:
We certainly would like to take into account known confounding factors such
as those considered above as part of our design. If there are many such vari-
ables, we may be concerned that they will not be well represented in our
chosen sample, and/or that analyses accounting for their influence may be
overly complex. If we could recruit study subjects accounting for their pro-
files for these suspected confounders, we might be able to avoid some of these
difficulties. This is the rationale for matching. We can build in control for con-
founding by incorporating knowledge of known confounders into the design of
the study. By matching cases with controls that have the same values of these
variables, we ensure control for confounding by comparing cases and controls
within strata defined by the matching factors. In one of the simplest matched
designs, disease cases are paired with controls into matched sets having similar
values of the matching variables.

Because cases and controls within matched sets are sampled together based
on shared values of the matching variables, the structure of the overall sample
differs from that of an unmatched study. If we were to try to account for the
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sampling design via a standard logistic model that accounted for the matched
sets with indicator variables, the number of parameters would frequently be
too large for reliable estimation. For example, in a matched pair study with
200 matched pairs, as many as 199 parameters would be needed to account
for the matching criteria. Clearly another regression approach is called for.

Regression modeling for matched data is based on a modification of the
maximum-likelihood estimation approach used for the conventional logistic
model (and described in more detail in Sect. 6.6). The conditional logistic re-
gression model avoids estimating parameters accounting for the matching via
conditioning. The parameters for predictors in this model have the log odds
ratio interpretation familiar from the standard logistic model. The result is
that we can conduct regression analyses exactly as before. However, the vari-
ables used in matching are controlled for automatically and not used directly
in modeling. The clogit command in Stata provides a very convenient way
to fit conditional logistic regression models. Most major statistical packages
have similar facilities.

Matching is not always a good idea and should never be undertaken lightly.
Effective matching (in cases where matching variables are strong confounders)
can yield more precise estimates of the disease/exposure relationship. How-
ever, in cases where the matching variables do not actually confound the
relationship between the exposure of interest and the outcome, the matching
can lead to estimates with decreased precision relative to those obtained from
an unmatched study. Further, satisfying matching criteria can be difficult and
may result in a loss of cases. Good basic references for statistical analysis of
data from matched case-control studies include Breslow and Day (1984) and
Jewell (2004).

6.4 Checking Model Assumptions and Fit

Chapter 4 (Sect. 4.7) presented a number of techniques for assessing model
fit and assumptions for linear regression models. Here we cover many of the
same topics for logistic models. Fortunately, many of the issues and techniques
are similar and the methods from linear models apply more or less directly.
However, the binary nature of the outcomes considered here make construction
and interpretation of graphical methods of assessment more complex. We focus
here on issues that differ from the approaches discussed in Sect. 4.7.

6.4.1 Outlying and Influential Points

Similar to the definition of residuals for linear regression (in Sect. 4.7), stan-
dardized Pearson residuals for logistic regression models are based on com-
paring observed values of the outcome variable with predictions from a fitted
model. However, because outcomes in logistic models are binary, the values of
these residuals cluster in two groups corresponding to the two values of the
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outcome. This makes graphical displays of residuals more difficult to inter-
pret than in the linear regression case. An exception occurs when there are
relatively few unique covariate patterns in the data (e.g., when predictors are
categorical) and residuals and predictions can be grouped.

Figure 6.4 shows standardized Pearson residuals for the model in Table
6.17, plotted against the ordered observation number for the individual sub-
jects. This index plot allows observations with unusually large residuals rela-

−
2

0
2

4
6

8
S

ta
nd

ar
di

ze
d 

P
ea

rs
on

 R
es

id
ua

ls

0 1000 2000 3000
Observation Number

Fig. 6.4. Standardized Pearson Residuals for Logistic Model in Table 6.17

tive to other observations to be identified and investigated as potential out-
liers. The grouping of residuals based on outcome status is evident from the
plot. In this case, although a number of observations have fairly large residuals
(i.e., greater than two), none appear to be indicative of outlying observations.
A number of other plots based on residuals are possible. In our experience,
these are less useful in general than the investigation of influential points
discussed in the next paragraph.

Diagnostic techniques for identifying influential observations in logistic re-
gression models are also quite similar in definition and interpretation to their
counterparts for linear regression. Most statistical packages that feature lo-
gistic regression allow computation of influence statistics that measure how
much the estimated coefficients for a fitted model would change if the observa-
tion were deleted. Figure 6.5 shows influence statistics (often called DFBETA
values) for the model in Table 6.17, plotted against the estimated outcome
probabilities.
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Fig. 6.5. Influence Statistics for Logistic Model in Table 6.17

Two observations appear to have more influence than the rest. The most
extreme observation is for an individual who is a non-smoker with CHD,
characterized by below average cholesterol (188) and a very high BMI value
(39). Deletion of either observation (or both) resulted in no noticeable changes
to model coefficients. Since there is no reason to suspect that any of the data
are incorrect, both observations were retained.

6.4.2 Linearity

In Table 6.2 we fit a simple logistic regression model relating coronary heart
disease (CHD) risk and age for the WCGS data. In addition to providing a
simple description of the relationship, the model makes it easy to compute the
log odds associated with an arbitrary value of age. However, as in simple linear
regression (Sect. 4.7), the uncritical adoption of the assumption that variables
are linearly related to the outcome can lead to biased estimates and incorrect
inferences. LOWESS scatterplot smoothing methods (introduced in Chap. 2)
offer an exploratory approach to assessing the form of the relationship between
the log odds of the outcome and age that obviates the need to impose a
particular parametric form. In the case of binary outcomes, these average the
outcome proportions (or the corresponding log odds) over groups whose size
is specified the bandwidth of the selected smoothing method. Fig. 6.6 displays
the log odds estimated by LOWESS (obtained using the lowess command in
Stata with the logit option) along with the linear logistic fit. The latter
is represented by the dashed line, obtained by simply plotting the log odds
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Fig. 6.6. Assessing Linearity in the Relationship Between CHD Risk and Age

estimated by the model for all the (3,154) individuals in the sample. The
smoothed estimated is given by the dotted line. The plotted points are the
estimated log odds for each of the 20 unique ages in the sample.

Although not conclusive, the results indicate that the linear logistic model
fits the data reasonably well. However, the smoothed estimate suggests an
initial decrease in the log odds of CHD risk for ages less than 42, followed
by a fairly regular increase. The decrease might be due to elevated CHD risk
among younger participants. In fact, 7% of the 39-year-olds (n = 266) in the
study had CHD compared to 4% of the 40-year-old participants. The initial
decline in the smoothed estimate is clearly influenced by the observed 2% rate
of CHD among the 42-year-olds as well. A reasonable approach to evaluating
this further would be to test for particular departures from linearity by adding
a polynomial terms in age or using linear splines (similar to the approach
described in Sect. 4.9). Table 6.23 displays results from a model including a
quadratic term in age (centered to reduce possible collinearity with the linear
term). The Wald test statistic clearly indicates that the addition of this term
does not afford a statistically significant improvement in the fit over the linear
model. We can conclude that the linear model is adequate.

If the role of age in modeling is primarily as an adjustment factor, we would
also want to examine whether the assumption of linearity impacts inferences
about other predictors. Adoption of the linear form is acceptable if no impacts
are seen, but predictions of outcome risk based on the linear model may
yield biased results for ages not well represented in the data. Diagnostics for
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Table 6.23. Logistic Model Incorporating a Quadratic Effect of Age
. logistic chd69 age agesq, coef

Logistic regression Number of obs = 3154
LR chi2(2) = 42.96
Prob > chi2 = 0.0000

Log likelihood = -869.14333 Pseudo R2 = 0.0241

------------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | .0769963 .0150015 5.13 0.000 .0475938 .1063987

agesq | -.0005543 .0021066 -0.26 0.792 -.0046831 .0035745
_cons | -6.04301 .678737 -8.90 0.000 -7.37331 -4.71271

------------------------------------------------------------------------------

checking linearity in the context of multiple predictor models are somewhat
less well developed for logistic models than for linear models. For example,
tools like the component plus residual (CPR) plots presented in Sect. 4.7 are
not generally available. However, the techniques presented here in combination
with likelihood ratio comparisons of models are usually sufficient to diagnose
and correct nonlinearity problems. The increased availability of nonparametric
regression approaches for binary regression (discussed briefly in Sect. 6.5) is
rapidly expanding the arsenal of available tools in this area.

6.4.3 Model Adequacy

The techniques discussed above address potential nonlinearity in the relation-
ship between the log odds of the outcome and the predictor, but implicitly
assume that the logistic model is correct. Recall from Sect. 4.7 that transfor-
mations of the outcome variable can be used to ensure that the distribution
of the errors in a regression model are normally distributed. In a similar way,
we can investigate the adequacy of the logistic model.

Specification Tests

A simple (and rather crude) approach to evaluating whether a given logistic
model provides an adequate description of the data is through the use of a
specification test. The linktest procedure in Stata is an example. Table 6.24
presents the results of applying linktest immediately after fitting the model
in Table 6.17. This test involves fitting a second model, using the estimated
right-hand side (i.e., the linear predictor) from the previously fitted model
as a predictor. We would expect that the Wald test result for this predictor
(labeled hat) to be statistically significant if the original model provided a
reasonable fit. The model fit by linktest also includes the square of this
predictor (labeled hatsq). The Wald test for inclusion of the latter variable
is used to evaluate the hypothesis that the model is adequate; that is, the
inclusion of the squared linear predictor should not improve prediction if the
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Table 6.24. Link Test for Logistic Model in Table 6.17
. linktest

Logit estimates Number of obs = 3141
LR chi2(2) = 200.40
Prob > chi2 = 0.0000

Log likelihood = -786.89258 Pseudo R2 = 0.1130

------------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_hat | .5646788 .306056 1.85 0.065 -.0351799 1.164538

_hatsq | -.1002356 .0688901 -1.46 0.146 -.2352576 .0347865
_cons | -.3983753 .3230497 -1.23 0.218 -1.031541 .2347904

------------------------------------------------------------------------------

original model was adequate. Rejection indicates that the model is inade-
quate, and that an alternative binary regression model should be considered.
It may also indicate that important predictors have been omitted. The test
can not distinguish between these two alternative explanations. It also does
not suggest what alternate model form might be preferable.

In the example, the P -value for the Wald test for the predictor hatsq does
not provide strong evidence of inadequacy of the logistic model. However, the
fact that the P -value for the predictor hat in Table 6.24 is also not very small
provides some indication that the overall fit may not be very good. (This is
consistent with the large residuals noted in Sect 6.4.1.)

Possible alternatives to the logistic model were discussed in Sect. 6.1, and
will be covered in more detail in Sect. 6.5. Because these typically involve
the use of specialized methods of estimation and result in coefficients with
different interpretations, they are rarely used in practice. Fortunately, differ-
ences between results from alternative models are often small, and the logistic
model applies in a very wide range of problems involving binary outcomes.
Problems with fit can frequently be addressed using judicious selection and
appropriate transformations of predictors.

Goodness of Fit Tests

Another approach to assessing model adequacy is provided by goodness of fit
tests. The Hosmer–Lemeshow test is an example of this approach applicable
to binary regression models such as the logistic. The test works by form-
ing groups of the ordered, estimated outcome probabilities (e.g., ten equal-
size groups based on deciles of the distribution of the outcome probabilities)
and evaluating the concordance of the expected outcome frequencies in these
groups with their empirical counterparts. The underlying hypothesis is that
the estimated and observed frequencies agree. Thus, a statistically significant
finding (i.e., rejection) indicates lack of fit. A non-significant finding rules out
gross lack of fit.
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Table 6.25 displays results of the Hosmer–Lemeshow test for the regression
model fitted in Table 6.17. The table option requests that the observed and
expected frequencies of the binary outcome (ones and zeros) for the requested
groups be printed as well. The non-significant results do not indicate evidence

Table 6.25. Hosmer–Lemeshow Goodness of Fit Test
. lfit, group(10) table

Logistic model for chd69, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)
+--------------------------------------------------------+
| Group | Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------+--------+-------+-------+-------+-------+-------|
| 1 | 0.0160 | 1 | 3.3 | 314 | 311.7 | 315 |
| 2 | 0.0251 | 6 | 6.5 | 308 | 307.5 | 314 |
| 3 | 0.0344 | 11 | 9.3 | 303 | 304.7 | 314 |
| 4 | 0.0450 | 12 | 12.5 | 302 | 301.5 | 314 |
| 5 | 0.0575 | 18 | 16.0 | 296 | 298.0 | 314 |
|-------+--------+-------+-------+-------+-------+-------|
| 6 | 0.0728 | 10 | 20.4 | 304 | 293.6 | 314 |
| 7 | 0.0963 | 28 | 26.5 | 286 | 287.5 | 314 |
| 8 | 0.1268 | 44 | 34.7 | 270 | 279.3 | 314 |
| 9 | 0.1791 | 50 | 46.7 | 264 | 267.3 | 314 |
| 10 | 0.5996 | 76 | 80.3 | 238 | 233.7 | 314 |
+--------------------------------------------------------+

number of observations = 3141
number of groups = 10

Hosmer--Lemeshow chi2(8) = 11.36
Prob > chi2 = 0.1824

for gross lack-of-fit. Increasing the number of groups to 20 yields a larger P -
value (0.35), illustrating the sensitivity of the test to the number of groups
chosen, and raising the possibility that judicious choice of group size may allow
an investigator to choose the number of groups resulting in the most favorable
P -value. To avoid this subjectivity, ten groups are generally recommended.

The Hosmer–Lemeshow test has a number of serious limitations. First, it
is not sensitive to a number of sources of lack of fit such as misspecification
of the model, and lacks power in these situations as a consequence. Further,
the results of the test depend on the number of groups specified as well as
the distribution of predictor values within these groups. Thus, failure to find
a statistically significant result does not necessarily mean that the model fits
the data well. This test is most useful as a very crude way to screen for fit
problems, and should not be taken as a definitive diagnostic of a “good” fit.
Use in conjunction with a specification test (such as the one described above)
may provide a bit broader screen to detect problems. However, results of
either approach should not be relied on to guarantee model fit in the absence
of supplementary investigations, including diagnostic assessment of residuals
and influential observations.
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6.4.4 Technical Issues in Logistic Model Fitting

In some cases, measures of association for binary outcomes such as odds ra-
tios and relative risks take on the value zero, or are infinite. This happens
when subgroups formed by the predictors are homogeneous with respect to
outcome status. This translates to estimation problems in regression models,
where parameters are typically represented as the logarithm of the underlying
association measures.

Table 6.26 presents an example from the WCGS study using a four-level
categorization of cholesterol level (0–150, 151–200, 201–250, and 251+) as a
predictor of CHD outcome. Note the extremely large estimated odds ratios and

Table 6.26. Logistic Model for CHD and Categorized Cholesterol Level
. xi:logistic chd69 i.cholc
i.cholc _Icholc_0-3 (naturally coded; _Icholc_0 omitted)

Logistic regression Number of obs = 3142
LR chi2(3) = 68.19
Prob > chi2 = 0.0000

Log likelihood = -855.50635 Pseudo R2 = 0.0383

------------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Icholc_1 | 5509191 1108599 77.14 0.000 3713667 8172836
_Icholc_2 | 8621442 . . . . .
_Icholc_3 | 1.91e+07 2719171 117.76 0.000 1.44e+07 2.52e+07

------------------------------------------------------------------------------
note: 89 failures and 0 successes completely determined.

the note explaining that “89 failures and 0 successes completely determined.”
Examination of the data reveals that there are no observed CHD cases among
the 89 individuals with cholesterol in the default reference category (0–150
mg/dL). Because the odds of CHD are zero for this group, it is not possible
to estimate valid odds ratios for the other categories. Choosing an alternate
reference group allows valid estimates to be made. However, the odds ratio of
zero for the lowest category still causes a fitting issue: the log odds ratio is
infinite, and the parameter can not be estimated.

The problems raised in this example can be easily addressed by choosing
a different categorization of cholesterol. However, identifying and resolving
problems with fitted models is not always this straightforward. In small sam-
ples, frequently no amount of regrouping or re-categorizing will eliminate these
issues. In these situations the likelihood ratio test may still be valid and ex-
act contingency tables or logistic regression may be alternatives. However, we
recommend that a statistician be consulted to diagnose the exact nature of
the problem and suggest solutions.
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6.5 Alternative Strategies for Binary Outcomes

A review of current clinical and epidemiological research studies involving bi-
nary outcomes will reveal that the overwhelming majority of regression anal-
yses are based on the logistic model. In some instances, specific knowledge
about a disease-exposure relationship may suggest a different model. Alterna-
tively, it may be desirable to summarize observed associations using measures
such as the relative risk or excess risk in preference to the odds ratio. Because
the logistic model yields only the latter, there are situations where alterna-
tive regression approaches may be preferred. Finally, diagnostic evaluations
may lead to the conclusion that the logistic model is simply not right for a
particular data set. In this section we review some examples of alternative
approaches to binary regression. We also briefly discuss models for categorical
outcomes with more than two levels.

6.5.1 Infectious Disease Transmission Models

Recall the CDC transmission study data discussed in Sect. 3.4 (O’Brien et al.,
1994). The goal of this study was to investigate risk factors for sexual trans-
mission of HIV in susceptible female partners of previously infected males. Al-
though the outcomes were restricted to prevalent HIV serostatus measured at
enrollment, the infection dates of the male partners were approximately known
from transfusion records. In addition, self-reported information on number of
unprotected sexual contacts was also collected. These data pertain to contacts
that occurred between the time of infection of the male partner and the time
of enrollment. (Note that monogamy was an eligibility criterion, to reduce the
possibility of infection from other sources.)

Unlike many chronic diseases, the mechanism of acquisition of many infec-
tious diseases is well understood. In these cases, simple probabilistic transmis-
sion models linking outcomes with exposures are frequently used to quantify
infection risk. One of the most basic such models links the cumulative proba-
bility of escaping infection following a series of exposed contacts. The model
assumes that each contact carries an identical risk λ of infection, and that
outcomes of successive contacts are independent. Under these assumptions,
the chance of escaping infection following k contacts is

(1 − λ)k,

with the complementary probability of being infected following k contacts
given by

P (k) = 1 − (1 − λ)k.

This model corresponds well to the observed data from the CDC study: each
female partner can be characterized by the binary infection status and the re-
ported number of exposed contacts k (the predictor), with the outcome prob-
ability given above. This suggests that a binary regression approach linking
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these two variables would be ideal for estimating the per-contact transmis-
sion probability λ. Unfortunately, the logistic model does not provide a direct
estimate. By contrast, an alternative transformation of P (k), known as the
complementary log–log, provides a model with a more appealing structure:

log{− log [1 − P (k)]} = log [− log(1 − λ)] + log(k). (6.12)

This model is similar to the familiar linear model

log{− log [1 − P (x)]} = β0 + β1x, (6.13)

where the intercept coefficient β0 = log [− log(1 − λ)], but includes the pre-
dictor x = log(k) as a fixed offset, with corresponding coefficient β1 = 1
as specified by model 6.12. Predictors with fixed coefficients are referred to
as offsets, and can be easily accommodated by standard statistical software
packages. (Part of the model evaluation procedure in this case may include
checking whether this is reasonable in terms of fit.) Similar to the logistic
model, an inverse transformation allows us to represent this model on the
probability scale as follows:

P (x) = 1 − exp [− exp(β0 + β1x)] , (6.14)

Table 6.27 shows the results of fitting model 6.12 using the generalized lin-
ear model estimation program glm in Stata, which we explain in greater detail
in Chapter 9. Note that the logarithm of the number of contacts logcontacts
appears as an offset, and no coefficient for this predictor was estimated.

An additional calculation inverting the complementary log–log transform
of the intercept cons provides the estimate of λ:

λ = 1 − exp [− exp(−7.033)] = 0.0009.

The approximate 95% confidence interval (0.0004, 0.0019) can be obtained
via a similar calculation applied to confidence limits given in the regression
output. Because of the small sample size (n = 31), the approximate confidence
intervals may not be reliable. For comparison, Table 6.27 also gives bias-
corrected 95% bootstrap confidence intervals (calculated using 1000 bootstrap
samples) for the same model. The bias-corrected confidence interval (0.0003,
0.0018) for the parameter λ can be obtained from the interval for the intercept
coefficient β0 (represented by b cons in the table) via the calculation used for
the approximate interval. The lower bound of this interval is only slightly more
conservative than the approximate interval, but otherwise they are remarkably
similar. The bootstrap interval should still be considered a better summary
of uncertainty about λ.

Clearly, model 6.12 is very simple, and a number of the underlying assump-
tions are questionable (e.g., that the per-contact risk λ is constant). However,
it is a useful “null” model to which more complex alternatives may be com-
pared. Further, the parameter λ is an important ingredient in more complex
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Table 6.27. Complementary Log-Log Regression Model for Per-Contact Risk
. glm hivp, family(binomial) link(cloglog) offset(logcontacts)

Generalized linear models No. of obs = 31
Optimization : ML: Newton-Raphson Residual df = 30

Scale parameter = 1
Deviance = 40.8340195 (1/df) Deviance = 1.361134
Pearson = 84.90572493 (1/df) Pearson = 2.830191

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(-ln(1-u)) [Complementary log-log]
Standard errors : OIM

Log likelihood = -20.41700975 AIC = 1.381743
BIC = -62.18559663

------------------------------------------------------------------------------
hivp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_cons | -7.033126 .3803284 -18.49 0.000 -7.778556 -6.287696

logcontacts | (offset)
------------------------------------------------------------------------------

. bootstrap "glm hivp, family(binomial) link(cloglog) offset(logcontacts)" _b _se,
reps(1000)

command: glm hivp, family(binomial) link(cloglog) offset(logcontacts)
statistics: b_cons = [hivp]_b[_cons]

Bootstrap statistics Number of obs = 31
Replications = 1000

------------------------------------------------------------------------------
Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
-------------+----------------------------------------------------------------

b_cons | 1000 -7.033126 -.0629388 1.163788 -8.216878 -6.296359
------------------------------------------------------------------------------

mathematical epidemic models. This model is also interesting because it is
an example of a proportional hazards model. These arise frequently in studies
where controlling for duration of follow-up is an important consideration in
data analyses, and are the subject of the next chapter. Finally, model 6.13
and the conventional logistic model are examples of the family of generalized
linear models that includes most of the regression models considered in this
book.

6.5.2 Regression Models Based on Excess and Relative Risks

A recent study of prevalent human T-cell leukemia/lymphoma virus (HTLV)
infection in infants born to mothers in the United Kingdom identified a num-
ber of factors associated with infection, including the parent’s country of birth
and ethnicity of the mother (Ades et al., 2000). The authors found that a re-
gression model based on excess risk provided a better fit to the data than the
logistic model, and reported their results accordingly.
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Recall the linear regression model defined in equation (6.1) that relates
risk for a binary outcome to a single predictor x:

P (x) = β0 + β1x.

As noted in Sect. 6.1, the coefficient β1 measures the excess risk (or risk
difference) associated with a unit increase in x. This model is often termed the
”additive risk model” because the effect of any unit increase in the predictor x
is to add an increment β1 to the outcome risk. This was the model employed
in the HTLV example. Although it provides a valid alternative to logistic
regression, it is important to keep in mind the potential problems with fitting
and interpretation (raised in Sect. 6.1).

As discussed in Sect. 3.4, the odds ratio is known to approximate the rela-
tive risk in the rare outcome setting. Consequently, odds ratios are frequently
reported as relative risks in research findings. Unfortunately, this practice is
not limited to rare outcomes, and has been the subject of considerable debate
in the research literature (Holcomb et al., 2001). This has led many investi-
gators to advocate that regression models based on the relative risk be used
in preference to the logistic model (other than in case-control designs where
standard regression approaches other than the logistic model do not directly
apply). This is possible using the following regression model:

log [P (x)] = β0 + β1x. (6.15)

This is the log linear model discussed in Sect. 6.1. The regression coefficient
β1 has the interpretation of the logarithm of the relative risk associated with a
unit increase in x. Analogous to the procedure for obtaining odds ratios from
logistic models, exponentiated coefficients yield relative risk estimates in this
case. Although this model can be fit with many standard software packages,
it may present numerical difficulties because of the constraint that the sum of
terms on the right-hand side must be no greater than zero for the results to
make sense (due to the constraint that the outcome probability P (x) must lie
in the interval [0, 1]). As a result, convergence of standard fitting algorithms
may be unreliable in some cases.

Alternative approaches for obtaining adjusted relative risks from odds ra-
tios estimated using logistic regression have been proposed in the literature
(Zhang and Yu, 1998). These are based on simple transformations of the es-
timated coefficients similar to the illustrative calculations demonstrated in
Sect. 6.1.1. Unfortunately, such calculations can produce incorrect estimates
for models including multiple predictors and should be avoided in favor of
fitting appropriately defined regression models as described above (McNutt
et al., 2003).

Table 6.28 presents the results of fitting four alternative generalized linear
models for the relationship between coronary heart disease and age using the
WCGS data. (Results were obtained with the Stata generalized linear models
procedure glm, also applied in Table 6.27.) These correspond to the alternative
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formulations considered in this section (i.e., equations (6.1), (6.2), (6.13), and
(6.15)). Results for the intercept parameter β0 are similar. Note that the esti-
mated regression coefficients cannot be directly compared because the models
are based on different representations of the outcome. However, since all of
them are based on the same number of parameters, comparison of the likeli-
hoods provides a cursory look at how well they describe the data in relative
terms. Although the likelihood for the logistic model is slightly larger, there is
very little overall difference between the models. Similarly, the estimated co-
efficients for the log, complementary log–log, and logit models are remarkably
similar. (The coefficients for the excess risk model differ because the outcome
is modeled without transformation.) Finally, the estimated probabilities for a
55-year-old individual (P (55)) are also quite similar. Based on these results,
there would be no particular reason to prefer any alternatives over the logistic
model.

Table 6.28. Generalized Linear Models for CHD Risk (P ) and Age (x)

Model β1 (95% CI) Log-likelihood P (55)

P (x) 0.005(0.004, 0.007) -869.96 0.130
log [P (x)] 0.067(0.048, 0.087) -869.24 0.136
log{− log [1 − P (x)]} 0.072(0.050, 0.092) -869.21 0.136
log{P (x)/ [1 − P (x)]} 0.074(0.052, 0.097) -869.18 0.136

The results in Table 6.28 illustrate that a variety of models other than the
logistic may be appropriate for a given problem. However, given the ease of
interpretation, wide use, and software availability of the logistic model, it is
by far the most common choice in practice. In general, we advocate fitting
the logistic model unless another model is preferable on scientific grounds.
Lack of fit can often be dealt with via the techniques discussed in Sect. 4.7,
obviating the need to investigate alternative model formulations. Finally, note
that the approaches discussed here are not directly applicable to data from
case-control studies (Scott and Wild, 1997).

6.5.3 Nonparametric Binary Regression

The examples of alternative techniques for binary regression considered above
represent only a small subset of the available possibilities for estimating the
relationship between a binary outcome and a predictor variable. The goal of
nonparametric regression methods is to provide estimates of this relationship
based on minimal assumptions about its form.

Recall the assessment of linearity for the logistic model for the relationship
between coronary heart disease and age in the WCGS data in Sect. 6.4.2.
The smoothed LOWESS estimate displayed in Figure 6.6 is an example of
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a nonparametric logistic regression model for this relationship. Although the
assumption that the predictor is related to the disease outcome in an additive
fashion via the log odds is retained, this technique allowed us to relax the
assumption that the relationship is linear by assuming only that the change
in CHD risk with age has a certain degree of smoothness. This can prove
very useful in exploring the form of the relationship between outcome and
predictor, but does not yield readily interpretable parameter estimates or
generalize easily to models including more than one predictor. The class of
generalized additive models provide an extension to the LOWESS technique,
allowing multiple predictors to be fit simultaneously, each of which can be
represented as a smooth function (Hastie and Tibshirani, 1990). Although
very useful in evaluating outcome-predictor relationships, these models are
frequently difficult to fit and interpret.

Methods for significance testing, confidence intervals, and model evalua-
tion are less well developed for nonparametric alternatives than for conven-
tional logistic regression. In addition, decisions about degree of smoothness
and interpretation of resulting estimates is often very complex. Finally, prac-
tical implementations of nonparametric binary regression that handle multi-
ple predictors are not widely available in standard statistical packages. For
these reasons, we recommend that flexible parametric approaches be used in
accounting for nonlinearities in the relationship between predictor and out-
come, and that nonparametric alternatives be used primarily for exploratory
purposes.

Classification trees (Breiman et al., 1984) are another popular approach
to nonparametric binary regression. As discussed in Sect. 5.2 and Sect. 6.2.4,
these lack the linear and additive structure shared by other approaches, and
are extremely useful in developing flexible prediction tools for using measured
characteristics to correctly distinguish binary outcomes. However, classifica-
tion trees can also be used to explore complex relationships between multiple
predictors and a binary response. Because they do not yield estimates of asso-
ciation parameters, interpretation of the contribution of individual predictors
to the outcome risk is complex. However, like the nonparametric regression
approaches discussed above, they are very useful tools in exploratory analyses
and can be very helpful in discovering and interpreting interaction.

6.5.4 More Than Two Outcome Levels

Research studies frequently yield outcomes that have multiple categories. (See
Chap. 2 for definitions of categorical variable types.) Consider the back pain
example introduced in Sect. 1.1, where pain intensity was measured on an
ordered, ten-point scale. In addition to the ordinal categorical outcome just
considered, nominal categorical outcome measures are also commonplace in
clinical research. For example, the outcome in a study of cancer outcomes
by cell type is a nominal categorical variable. Both type of outcomes can be
investigated using contingency table methods. The limitations of these when
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multiple predictors are involved are clear. For certain questions, considering
a binary representation might also be reasonable. For example, to investigate
factors that distinguish patients suffering from severe pain from all others
in the pain example. In this case, logistic regression is an appropriate tool to
consider. However, there is clearly information lost in reducing ten levels down
to two. In the remainder of this section we briefly review regression methods
for nominal and ordinal categorical outcomes.

Ordinal Categorical Outcomes

The proportional odds model is a commonly used generalization of the logis-
tic model that accommodates a multilevel categorical response with ordered
categories. Rather that modeling the probability of response in a particular
category, this model is based on the cumulative probability that the response
is not greater than a chosen category. The dependence of this response on
predictors is identical to the form of the logistic model. For the back pain
example, (assuming a ten-level response and a single predictor x), the form of
this model for a response probability of severity no greater than 5 is given by

log
[
Pr(y ≤ 5)
Pr(y > 5)

]
= α5 − βx.

A similar expression applies to all ten levels of the response. (We assume that
the levels of the response are coded 1, 2, · · · , 10.)

Note that the intercept parameter α5 is unique to this response level, and
represents the probability of a response of no more than 5 among individuals
with x = 0. Because the response is expressed as a cumulative probability, the
intercept coefficients are constrained as α1 ≤ α2 ≤ · · · ≤ α10. The coefficient
β is interpreted as the log odds ratio associated with a unit increase in x,
assumed to be constant across response levels. (i.e., response levels are parallel,
each with slope β.) This assumption amounts to a strong restriction on the
effect of the predictor on the response, and needs to be validated.

Note that there are many alternatives to the proportional odds model,
including the continuation ratio model. We refer the reader to the references
provided below for additional information on these.

Nominal Categorical Outcomes

When there is no natural ordering implicit in a categorical response, or when
the assumptions implicit in the models above do not apply to an ordinal
outcome, the polytomous logistic model can be for regression analyses. For
a single predictor x, the model specifies that each response level follows a
logistic regression model for x, with a selected level specified as the reference.
The regression coefficients for each level are unique; so for the pain example
the model would include nine intercept and slope coefficients. For level 5, and
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specifying the first level as the reference category, the model would take the
form

log
[
Pr(y = 5)
Pr(y = 1)

]
= α5 + β5x.

Thus, the log odds ratio for a unit increase in x is given by β5. Because
this model does not involve the restrictions implicit in the proportional odds
model, it is an attractive alternative when the proportional odds assumption is
not satisfied. However, because of the potentially large number of parameters
and the flexibility of choice for the reference group, the polytomous logistic
model can be challenging to interpret.

The models outlined here represent a few of those available for analyzing
categorical responses. For further information on these and other models, in-
cluding examples and a description of available software resources, see Ananth
and Kleinbaum (1997) and Greenland (1994).

6.6 Likelihood

One of the common themes uniting methods presented in this book is the
principle of using observed data to estimate unknown quantities of interest.
The majority of the methods presented are regression models relating outcome
and predictor variables measured on a sample of individuals. The principal
unknown quantities in the models are the regression parameters. Once these
are estimated, inferences can be made about the true values of these parame-
ters and related quantities of interest such as predicted outcomes. All available
information about the parameters is contained in the observed data. A stan-
dard approach to estimating parameters in models like the ones covered here
is known as maximum-likelihood estimation. Although not required for ap-
plications, a basic understanding of this topic helps in unifying the concepts
underlying estimation and inference in most of the regression models covered
in this book. Here we provide a brief discussion of some of the key ideas in
the binary regression context.

The likelihood associated with a set of independent observations of an out-
come is just the product of their respective probabilities of occurrence under
the assumed model relating outcomes to predictors. Because this represents
the joint probability of observing all of the outcomes in the sample, the likeli-
hood can then be interpreted as a measure of support provided for the model
by the data. The maximum-likelihood estimate of the parameter(s) is the most
likely value for the parameter(s) given the observed data (i.e., the value that
yields the maximum value of the likelihood).

To take a very simple example from the binary outcome context, consider
the problem of estimating the prevalence of HIV for the sample of 31 female
partners of previously infected males from the CDC transmission study con-
sidered in the examples presented above and in Sect. 3.4. The assumed model
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is that the actual prevalence in the target population is represented by a con-
stant that we can symbolize by P (similar to the definition introduced earlier
in this chapter). We can think of P as the probability that a randomly sam-
pled individual will test positive. The corresponding probability of observing
a negative is 1−P . However, P is unknown. The observed data consist of the
31 indicators of HIV status, and the likelihood, as defined above, is just the
product of the individual outcome probabilities:

P 7 × (1 − P )23.

The likelihood is formed as the product of the individual outcome proba-
bilities because these are independent events. It is a function of the unknown
constant P , with the observed infection indicators providing the number of
positive and negative individuals. Fig. 6.7 presents a plot of this function for
a range of values for P . The maximum-likelihood estimator of P is just the
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Fig. 6.7. Likelihood Function for HIV Prevalence

value of P that maximizes the likelihood function. This value is indicated in
the figure. The maximum can be found easily in this example using calculus.
Not surprisingly, it corresponds exactly to the intuitive estimate of the ac-
tual prevalence of HIV-positive individuals in the sample of 31: Because there
are seven such individuals in the sample, the estimated prevalence is 0.226.
For more complicated models (e.g., regression models with multiple predic-
tors) computing the maximum typically involves iterative calculations on a
computer.
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Likelihood functions for binary regression models are defined following the
procedure used above, but the outcome probability P for each individual is
replaced with the form defined by the logistic model (equation 6.2). To take
another example from the CDC study, consider a regression model relating
HIV status of the female partners to a binary indicator of presence of an
AIDS diagnosis in the male. (This example was already considered in Sect.
3.4.) Following our conventional notation, we will represent the outcome as Y
and the predictor as x. The observed data now include both Y and the binary
predictor x for each individual in the sample. The likelihood takes exactly the
same form as in the last example, except the constant P is replaced with the
expression for the logistic model, substituting in each individual’s value of the
predictor (i.e. xi for the ith individual):

31∏
i=1

[
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

]Yi

×
[
1 − exp(β0 + β1xi)

1 + exp(β0 + β1xi)

]1−Yi

.

Since both Y and x (the indicator of AIDS status) are observed, the only
unknown quantities are the regression parameters β0 and β1. These are gener-
ally estimated using an iterative maximization algorithm. Fig. 6.8 presents a
plot of the logarithm of this function for a range of values for P . Because the
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206 6 Logistic Regression

likelihood function depends on two unknown parameters, it has the form of a
“surface” when plotted in three dimensions. The two-dimensional figure rep-
resents the contours of this surface as seen from above. The maximum value
is indicated, and the corresponding maximum-likelihood estimates for β0 and
β1 are –1.705 and 2.110, respectively.

Because likelihoods are formed from the product of outcome probabilities
for all individuals in a sample, the numerical value of a given likelihood de-
pends on the sample size and is not particularly interpretable by itself. How-
ever, comparing likelihoods from nested models is a direct way to evaluate
improvements in fit. This is the basis of the likelihood ratio test.

Finally, we note that although the discussion here is limited to the binary
outcome context, estimation methods for most of the regression models pre-
sented in this book are likelihood-based. For example, least squares estimation
and F -testing for comparing nested models in linear regression and analysis
of variance models are examples of likelihood methods. Further, likelihood
methods are fundamental to the family of generalized linear models discussed
in Chapter 9.

6.7 Summary

The logistic regression model extends frequency table techniques for investi-
gating the association between a binary outcome and categorical predictor to
include continuous predictors and allow simultaneous consideration of multi-
ple (continuous and categorical) predictors.

Modeling techniques for logistic regression mirror those for linear regres-
sion, allowing many of the concepts and methods learned in Chapters 4 and
5 to be applied directly to studies involving binary outcomes. However, in-
terpretation of logistic regression models is slightly more complex due to the
model’s nonlinear relationship between outcome risk and predictors. In par-
ticular, regression coefficients need to be transformed to be interpretable as
odds ratios.

Although a powerful and useful tool, there are a number of situations where
logistic regression is not the best method for analyzing binary outcome data.
As we have seen in several examples, when attention is restricted to one or a
few categorical predictors, regression techniques are not needed. Another ex-
ample arises in studies yielding binary outcomes that are duration-dependent.
In such studies, additional information about the time to development of an
outcome is often available in addition to whether or not the outcome occurs.
Further, duration of follow-up between individuals may vary and is informa-
tive about the amount of time each was observed to be “at risk” of outcome
development. Although the WCGS data arose from such a study, complete
follow-up of participants allows a comparable assessment of whether or not
the outcome occurred for each. Thus, use of logistic regression is warranted.
However, this will not allow us to answer questions regarding differences in
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how quickly participants experienced outcomes after study onset without con-
sideration of additional data. The methods covered in Chapter 7 are more
appropriate for answering these types of questions.

6.8 Further Notes and References

There are a number of excellent text books on logistic regression, including
Breslow and Day (1984), Hosmer and Lemeshow (2000), Kleinbaum (2002),
and Collett (2003). All of these provide more details and cover a broader
range of topics than provided here. Although we have focused on Stata in our
example analyses, most modern statistical software packages provide extensive
facilities for fitting and interpretation of logistic models, including R, SAS, S-
PLUS, and SPSS. Exact logistic regression and contingency table methods
are available in the programs StatXact and LogXact.

Throughout this chapter we have concentrated on analysis of data where
the outcomes and predictors were measured without substantial error and
missing observations were not considered a major problem. In many studies
we cannot assume that this is the case. There is an extensive literature on the
impacts of misclassified outcomes and measurement error in predictors in the
context of logistic regression (Carroll et al., 1995; Magder and Hughes, 1997).

Missing data are an issue in most studies involving binary outcomes, and
arise through a variety of mechanisms. When relatively few observations are
involved, the problem can be handled via the default procedure in most avail-
able software programs (i.e., to eliminate any observations with one or more
missing values among the predictors). The validity of this approach rests on
the assumption that the individuals dropped from the analysis are “missing
completely at random.” However, when a substantial fraction of observations
involve missing values, more care is required. In addition to the obvious prob-
lem of the reduction in power incurred by dropping observations there are sub-
stantial concerns that the results based on the remaining complete data may
be biased. There are a number of approaches to handling missing observations,
including sensitivity analyses, imputation and modified maximum-likelihood
estimation methods. (See Jewell (2004) for a more complete discussion.) These
tend to be complex to apply and are not generally well represented in standard
software.

6.9 Problems

Problem 6.1. Verify that the numerical average (mean) of the following sam-
ple of 25 binary outcomes equals the proportion of positive outcomes (ones)
in the sample:

(1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0)
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Problem 6.2. Use the regression coefficients from the logistic model pre-
sented in Table 6.2 in the logistic formula (6.2) to estimate the quantities
in Table 6.3 for a 65-year-old individual. Use additional calculations to add a
new section to Table 6.3 for an age increment of five years.

Problem 6.3. Perform the basic algebra necessary to verify the properties of
the logistic regression coefficient β1 stated in equation (6.6).

Problem 6.4. The output in the Table 6.29 provides the regression coeffi-
cients corresponding to the model fitted in Table 6.5. Use the coefficients and

Table 6.29. Logistic Model for CHD and Age
. xi: logistic chd69 i.agec, coef
i.agec _Iagec_0-4 (naturally coded; _Iagec_0 omitted)

Logistic regression Number of obs = 3154
LR chi2(4) = 44.95
Prob > chi2 = 0.0000

Log likelihood = -868.14866 Pseudo R2 = 0.0252

------------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Iagec_1 | -.1314518 .2309937 -0.57 0.569 -.5841912 .3212876
_Iagec_2 | .5307399 .223534 2.37 0.018 .0926212 .9688585
_Iagec_3 | .8409976 .2274985 3.70 0.000 .3951088 1.286886
_Iagec_4 | 1.05998 .2585371 4.10 0.000 .5532569 1.566704

_cons | -2.804337 .1849626 -15.16 0.000 -3.166857 -2.441817
------------------------------------------------------------------------------

calculations similar to those illustrated in Sect. 6.1.1 to compute the log odds
ratio comparing CHD risk in the fourth age category ( Iagec 4) with the third
( Iagec 3). Also, compute the odds ratio for this comparison. Comment on
how we might obtain a estimated standard error and 95% confidence interval
for this quantity.

Problem 6.5. For the fitted logistic regression model in Table 6.6, calculate
the log odds for a 60-year-old smoker with cholesterol, SBP, and BMI values
of 250 mg/dL , 150 mmHg, and 20, respectively. Now calculate the log odds
for an individual with a cholesterol level of 200 mg/dL, holding the values of
the other predictors fixed. Use these two calculations to estimate an odds ratio
associated with a 50 mg/dL increase in cholesterol. Repeat the above calcula-
tions for a 70-year-old individual with identical values of the other predictors.
Comment on any differences between the two estimated odds ratios.

Problem 6.6. Use the regression output in Table 6.15 and a calculation sim-
ilar to that presented in equation (6.11) to compute the odds ratio comparing
the odds of CHD in a 55-year-old individual with arcus to the corresponding
odds for a 40-year-old who also has arcus.
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Problem 6.7. Use the WCGS data set to fit the regression model presented
in Table 6.17. Perform the Hosmer–Lemeshow goodness of fit test for the
following number of groups: 10, 15, 20, and 25. Comment on the differences.
The data set is available at http://www.biostat.ucsf.edu/vgsm.

Problem 6.8. Verify that the odds ratio formed from the two odds presented
in equation (6.11) is given by ad/bc. Verify that the same odds ratio is obtained
if the two component odds are computed based on the probability of exposure
conditional on outcome status.

Problem 6.9. Compute the approximate 95% confidence interval for the fol-
lowing per-contact infection risk based on the intercept coefficient and asso-
ciated standard errors given in Table 6.27:

1 − exp [− exp(−7.033)] .

6.10 Learning Objectives

1. Describe situations in which logistic regression analysis is needed.
2. Translate research questions appropriate for a logistic regression model

into specific questions about model parameters.
3. Use logistic regression models to test hypotheses about relationships be-

tween a binary outcome variable and a continuous or categorical predictor.
4. Describe the logistic regression model, its key assumptions, and their im-

plications.
5. State the relationships between–

• odds ratios and logistic regression coefficients
• a two×two table analysis of the association between a binary outcome

and single categorical predictor and a logistic regression model for the
same variables.

6. Know how a statistical package is used to fit a logistic regression model
to continuous and categorical predictors

7. Interpret logistic regression model output, including–
• regression parameter estimates, hypothesis tests, confidence intervals
• statistics which quantify the fit of the model.
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Survival Analysis

Children receiving a kidney transplant may be followed to identify predic-
tors of mortality. Specifically, is mortality risk lower in recipients of kidneys
obtained from a living donor? If so, is this effect explained by the time the
transplanted kidney is in transport or how well the donor and recipient match
on characteristics that affect immune response? Similarly, HIV-infected sub-
jects may be followed to assess the effects of a new form of therapy on incidence
of opportunistic infections. Or patients with liver cirrhosis may be followed to
assess whether liver biopsy results predict mortality.

The common interest in these studies is to examine predictors of time to
an event. The special feature of the survival analysis methods presented in this
chapter is that they take time directly into account: in our examples, time to
transplant rejection, incidence of opportunistic infections, or death from liver
failure. Basic tools for the analysis of such time-to-event data were reviewed
in Sect. 3.5. This chapter covers multipredictor regression techniques for the
analysis of outcomes of this kind.

7.1 Survival Data

7.1.1 Why Linear and Logistic Regression Won’t Work

In Sect. 3.5 we saw that a defining characteristic of survival data is right-
censoring:

Definition: A survival time is said to be right-censored at time t if it
is only known to be greater than t.

Because of right-censoring, survival times cannot simply be analyzed as contin-
uous outcomes. But survival data also involves an outcome event, so why isn’t
logistic regression applicable? The reason is unequal length of follow-up. In
Chapter 6 the logistic model was used to study coronary heart disease events
among men in the Western Collaborative Group Study (Rosenman et al.,
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1964). But in that study, the investigators were able to determine whether
each one of the study participants experienced the outcome event at any time
in the well-defined ten-year follow-up period; follow-up was constant across
participants.

In contrast, follow-up times were quite variable in ACTG 019 (Volberding
et al., 1990), a randomized double-blind placebo-controlled clinical trial of
zidovudine (ZDV) for prevention of AIDS and death among patients with HIV
infection. Between April 1987 and July 1989, 453 patients were randomized
to ZDV and 428 to placebo. When the data were analyzed in July 1989,
some had been in the study for less than a month, while others had been
observed for more than two years. These data could only be forced into the
logistic framework by restricting attention to the events that occur within the
shortest observed follow-up time – a huge waste of information.

7.1.2 Hazard Function

In Sect. 3.5 we introduced the survival function and its complement, the cumu-
lative incidence function, as useful summaries of the distribution of a survival
time.

Definition: The survival function at time t, denoted S(t), is the prob-
ability of being event-free at t. The cumulative incidence function at
time t, denoted F (t) = 1 − S(t), is the complementary probability
that the event has occurred time by t.

Another useful summary is the hazard function h(t).

Definition: The hazard function h(t) is the short-term event rate for
subjects who have not yet experienced the outcome event.

The hazard function is systematically related to both the survival and cumu-
lative incidence functions.

Table 7.1 shows mortality rates for children who have recently undergone
kidney transplantation, on each of the first ten days after surgery, using data
from the United Network for Organ Sharing (UNOS). At the beginning of fifth
day after surgery, for example, 9,653 children remained alive and in the study,
and of these, 3 died during the next 24 hours, yielding an estimated death
rate of 0.31 deaths per 1,000 subjects per day. From the rightmost column of
the table, it appears that the mortality rate declines over the first ten days,
although the estimates spike on days 8 and 10.

In Fig. 7.1, daily death rates, smoothed by LOWESS, are used to estimate
the mortality hazard for a much longer time period, the first 12 years after
transplantation. The mortality hazard declines rapidly over the course of the
first two years, reaching a plateau approximately three years after transplan-
tation.
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Table 7.1. Mortality Among Pediatric Kidney Transplant Recipients

Days since No. in No. No. Death rate per
transplant follow-up died censored 1,000 subject-days

1 9,752 7 14 7/9,752 × 1,000 = 0.72
2 9,731 5 8 5/9,731 × 1,000 = 0.51
3 9,718 5 12 5/9,718 × 1,000 = 0.51
4 9,701 7 41 7/9,701 × 1,000 = 0.72
5 9,653 3 54 3/9,653 × 1,000 = 0.31
6 9,596 2 57 2/9,596 × 1,000 = 0.21
7 9,537 0 50 0/9,537 × 1,000 = 0.00
8 9,487 4 49 4/9,487 × 1,000 = 0.42
9 9,434 1 49 1/9,434 × 1,000 = 0.11
10 9,384 3 28 3/9,384 × 1,000 = 0.32

                            

         




0 2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

Years Since Transplant

D
ai

ly
 D

ea
th

 R
at

e 
pe

r 
T

ho
us

an
d

 P
at

ie
nt

s

Fig. 7.1. Mortality Rate for Pediatric Kidney Transplant Recipients

7.1.3 Hazard Ratio

We now compare the hazard functions for children whose transplanted kidney
was provided by a living donor, commonly a family member, and those for
whom the source was recently deceased. Fig. 7.2 shows LOWESS-smoothed
death rates for the recipients of kidneys from living and recently deceased
donors. The mortality rate is considerably lower among the recipients of kid-
neys from living donors at all time points, but the curves are similar in shape.
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Fig. 7.2. Smoothed Mortality Rates for Recipients by Kidney Donor Type

Table 7.2. Smoothed Death Rates (per 1,000 Days) by Donor Type

Years since Smoothed rates Death
transplantation Cadaveric Living rate ratio

0.25 0.235 0.098 2.40
0.50 0.193 0.082 2.36
1.00 0.138 0.061 2.27
2.00 0.088 0.038 2.30
3.00 0.061 0.027 2.25
4.00 0.063 0.026 2.37
5.00 0.065 0.032 2.03

Table 7.2 gives the values of the LOWESS-smoothed death rates shown
in Fig. 7.2 for selected time points, which estimate the hazard functions in
each group, as well as the death rate ratio, an estimate of the hazard ratio.
We could write the hazard ratio as

HR(t) = hc(t)/hl(t), (7.1)

where hc(t) is the hazard function in the recipients of kidneys from recently
deceased donors, and hl(t) is the corresponding hazard function in the refer-
ence group, the recipients of kidneys from living donors.



7.2 Cox Proportional Hazards Model 215

7.1.4 Proportional Hazards Assumption

The results in Table 7.2 show that while the mortality hazards decline over
time in both groups of pediatric kidney transplant recipients, the hazard ratio
is almost constant. In other words the hazard in the comparison group is a
constant proportion of the hazard in the reference group.

Definition: Under the proportional hazards assumption the hazard ra-
tio does not vary with time. That is, HR(t) ≡ HR.

Provided the hazards are proportional in this sense, the effect of donor source
on post-transplant mortality risk can be summarized by a single number.
This simplification is important but not necessary for the Cox proportional
hazards model described in the next section. A rough analog is multiple linear
regression without interaction terms. In Sect. 7.4.2 below we show how the
proportional hazards assumption can be checked and violations addressed by
including interactions between time and the predictors causing trouble. This
is implemented using time-dependent covariates, an extension of the basic Cox
model introduced in Sect. 7.3.1.

7.2 Cox Proportional Hazards Model

The Cox proportional hazards regression model is a flexible tool for assess-
ing the relationship of multiple predictors to a right-censored, time-to-event
outcome, and has much in common with linear and logistic models. To un-
derstand how the Cox model works, we first consider the broader class of
proportional hazards models.

7.2.1 Proportional Hazards Models

In the linear model for continuous outcomes, covered in Chapters 3 and 4, the
linear predictor β1x1 + . . . + βpxp, which captures the effects of predictors, is
linked directly to the conditional mean of the outcome, E[y|x]:

E[y|x] = β0 + β1x1 + . . . + βpxp. (7.2)

In the logistic model for binary outcomes, covered in Chapter 6, the linear
predictor is linked to the conditional mean through the logit transformation:

log
p(x)

1 − p(x)
= β0 + β1x1 + . . . + βpxp. (7.3)

In (7.3), p(x) = E[y|x] is the probability of the outcome event for a observa-
tions with predictor values x = (x1, . . . , xp).

In proportional hazards regression models, the linear predictor is linked
through the log transformation to the hazard ratio introduced in Sect. 7.1.3.
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If the hazard ratio obeys the proportional hazards assumption, and thus does
not depend on time, we can write

log [HR(x)] = log
h(t|x)
h0(t)

= β1x1 + . . . + βpxp. (7.4)

In (7.4), h(t|x) is the hazard at time t for an observation with covariate value
x, and h0(t) is the baseline hazard function, defined as the hazard at time t for
observations with all predictors equal to zero. As with the intercept in linear
and logistic regression, this may mean that the baseline hazard does not apply
to any possible observation, and argues for centering continuous predictors.

Solving (7.4) for h(t|x) gives

h(t|x) = h0(t) exp(β1x1 + . . . + βpxp)
= h0(t)HR(x). (7.5)

Note that exponentiating the linear predictor ensures that HR(x) cannot be
negative, as required. Furthermore, taking the log of both sides of (7.5), we
obtain

log[h(t|x)] = log[h0(t)] + β1x1 + . . . + βpxp. (7.6)

This shows that the log baseline hazard plays the role of the intercept in other
regression models, though in this case it can change over time. Furthermore,
(7.6) defines a log-linear model, which implies that the log of the hazard is
assumed to change linearly with any continuous predictors.

Note also that (7.5) defines a multiplicative model, in the sense that the
predictor effects act to multiply the baseline hazard. This is like the logistic
model, where the linear predictor acts multiplicatively on the baseline odds. In
contrast, (7.2) shows that in the linear model the predictor effects are additive
with respect to the intercept β0.

7.2.2 Parametric vs. Semi-Parametric Models

We have two options in dealing with the baseline hazard h0(t). One is to
model it with a parametric function, as in the Weibull or exponential survival
models. In this case the baseline hazard h0(t) is specified by a small number
of additional parameters, which are estimated along with β1, β2, . . . , βp. If the
baseline hazard is specified correctly, this approach is efficient, handles right-
censoring as well as more complicated censoring schemes with ease, and makes
it simple (though still risky) to extrapolate beyond the data. Of course the
adequacy of the model for the baseline hazard has to be checked.

In contrast to parametric models, the Cox model does not require us to
specify a parametric form for the baseline hazard, h0(t). Because we still
specify (7.4) as the model for the log hazard ratio, the Cox model is consid-
ered semi-parametric. Nonetheless, estimation of the regression parameters
β1, β2, . . . , βp is done without having to estimate the baseline hazard func-
tion. The nonparametric Breslow estimate of the hazard function (Kalbfleisch
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and Prentice, 1980) available from Stata is after-the-fact and based on the
coefficient estimates. The Cox model is more robust than parametric propor-
tional hazards models because it is not vulnerable to misspecification of the
baseline hazard. Furthermore, the robustness is commonly achieved with little
loss of precision in the estimated predictor effects.

Proportionality and Multiplicativity

Fig. 7.2 and the summary statistics in Table 7.2 showed that the two mortality
hazards for pediatric recipients of kidney transplants from living and recently
deceased donors were very nearly proportional over time, in the sense that
the ratio of the LOWESS-smoothed death rates was virtually constant. So
the Cox model appears appropriate for these data, because the proportional
hazards assumption appears to be met for this important predictor. Table 7.3
shows the unadjusted Cox model hazard ratio estimate for txtype, a binary
indicator identifying the group receiving transplants from recently deceased
donors. The estimated hazard ratio of 2.1 (95% CI 1.6–2.6, P < 0.0005) is

Table 7.3. Cox Model for Type of Donor
stcox txtype

No. of subjects = 9752 Number of obs = 9752
No. of failures = 461
Time at risk = 15621.88767 LR chi2(1) = 34.07
Log likelihood = -2452.7587 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
txtype | 2.056687 .2606945 5.69 0.000 1.604259 2.636707

------------------------------------------------------------------------------

quite consistent with the estimates shown in Table 7.2, and suggests that
receiving a transplant from a recently deceased donor roughly doubles the
mortality risk at every point over the 12 years of follow-up.

Another important determinant of mortality after kidney transplant is the
age of the recipient. Using results from a Cox model with age as continuous
(results not shown), Fig. 7.3 shows fitted hazards for 6-, 11-, and 21-year-
olds. The hazards for the three groups differ proportionally. However, it is
important to point out that the perfect proportionality of the hazard functions
plotted in Fig. 7.3 is imposed under the fitted model, like the perfectly parallel
regression lines for the additive linear model without interaction terms shown
in Fig. 4.2. This is in contrast to the apparently proportional relationship
between the independently smoothed death rates in Fig. 7.2, which are based
only on the data.

While the hazard ratio is assumed to be constant over time in the basic
Cox model, under this multiplicative model the between-group differences in
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Fig. 7.3. Hazard Functions for 6-, 11-, and 21-Year-Old Transplant Recipients

the hazard can easily be shown to depend on h0(t) and thus on time. This
is reflected in the fact that the hazard functions in Fig. 7.3 are considerably
farther apart immediately after transplant when the baseline hazard (for 11-
year-olds in this case) is higher.

DPCA Study of Primary Biliary Cirrhosis (PBC)

To illustrate interpretation of Cox model results, we consider a cohort of 312
participants in a placebo-controlled clinical trial of D-penicillamine (DPCA)
for primary biliary cirrhosis (PBC) (Dickson et al., 1989). PBC destroys bile
ducts in the liver, causing bile to accumulate. Tissue damage is progressive
and ultimately leads to liver failure. Time from diagnosis to end-stage liver
disease ranges from a few months to 20 years. During the approximate ten-
year follow-up period, 125 study participants died.

Predicting survival in PBC patients is important for clinical decision mak-
ing. The investigators collected data on age as well as baseline laboratory
values and clinical signs including serum bilirubin levels, enlargement of the
liver (hepatomegaly), accumulation of water in the legs (edema), and visible
veins in the chest and shoulders (spiders) – all signs of liver damage.
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7.2.3 Hazard Ratios, Risk, and Survival Times

Table 7.4 displays a Cox model for the effects of treatment with DPCA (rx)
and bilirubin (bilirubin) on mortality risk in the PBC cohort. The haz-

Table 7.4. Cox Model for Treatment and Bilirubin
stcox rx bilirubin

LR chi2(2) = 85.79
Log likelihood = -597.08411 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
rx | .8181612 .1500579 -1.09 0.274 .5711117 1.172078

bilirubin | 1.163459 .0154566 11.40 0.000 1.133556 1.194151
------------------------------------------------------------------------------

ard ratio for treatment, 0.82, means that estimated short-term mortality risk
among patients assigned to DPCA was 82% of the risk in the placebo group.
This ratio is assumed to be constant over the ten years of follow-up. Likewise,
the hazard ratio for bilirubin levels means that for each mg/dL increase in
bilirubin, short term risk is increased by a factor of 1.16.

More broadly, (7.6) implies that in a model with predictors x1, x2, . . . , xp,
coefficient βj is the increase in the log hazard ratio for a one-unit increase in
predictor xj , holding the values of the other predictors constant. It follows
that expβj is the hazard ratio for a one-unit increase in xj . Below we show
how this applies to continuous as well as binary and categorical predictors.
Furthermore, for predictors with hazard ratios less than 1 (β < 0), increasing
values of the predictors are associated with lower risk and longer survival
times. Conversely, when hazard ratios are greater than 1 (β > 0), increasing
values of the predictor are associated with increased risk and shorter survival
times. In using the term risk in this context, it is important to keep in mind
the definition of the hazard as a short-term rate and distinguish risk in this
sense from cumulative risk over a defined follow-up period.

7.2.4 Hypothesis Tests and Confidence Intervals

In the Cox model, as in the logistic model, the estimated coefficients have an
approximate normal distribution when there are adequate numbers of events
in the sample. The normal approximation is better for the coefficient estimates
than for the hazard ratios, so hypothesis tests and confidence intervals are
based on calculations involving the coefficients and their standard errors. If
there are fewer than 15–25 events, the normal approximation is suspect and
bootstrap confidence intervals may work better; see Sect. 7.5.1 below. Table
7.5 displays the Cox model for the effects of DPCA and bilirubin on mortality
risk with results on the coefficient rather than the hazard ratio scale.
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Table 7.5. Cox Model for Treatment and Bilirubin Showing Coefficients
stcox rx bilirubin, nohr

LR chi2(2) = 85.79
Log likelihood = -597.08411 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
rx | -.2006959 .1834088 -1.09 0.274 -.5601705 .1587787

bilirubin | .1513976 .0132851 11.40 0.000 .1253594 .1774358
------------------------------------------------------------------------------

For each predictor in the model, Wald Z-tests are the default used by
Stata to test the null hypothesis H0: β = 0, or equivalently that the hazard
ratio equals 1. Under the null, the ratio of the coefficient estimate to its
standard error tends to a standard normal, or Z, distribution with mean 0
and standard deviation 1. In Table 7.5 the Z-statistics and associated P -
values for rx and bilirubin appear in the columns headed |z| and P >
|z| respectively. The evidence for the efficacy of DPCA is not persuasive
(P = 0.27), but there is strong evidence that bilirubin levels are associated
with mortality risk (P < 0.0005). You can verify that the test results in Table
7.4 are identical to those in Table 7.5 and refer to the Z-test involving the
actual coefficients and their standard errors, and not to a Z-test involving the
ratio of the hazard ratio to its standard error (Problem 7.1).

Since Cox regression is a likelihood-based method, tests for predictors can
also be obtained using the likelihood ratio (LR) tests introduced in Sect. 6.2.1
for the logistic regression model. The procedure is the same in this setting,
comparing twice the difference in log-likelihoods for nested models to a χ2

distribution with degrees of freedom equal to the between-model difference
in the number of parameters. For instance, to obtain an LR test of the null
hypothesis that the hazard ratio for treatment is 1, we would compare the
log-likelihood for the model in Table 7.4 to the log-likelihood for a model with
bilirubin as the only predictor. These log-likelihoods are –597.1 and –597.7,
yielding a LR test statistic of 2[(−597.1)−(−597.7)] = 1.2, with an associated
P -value of 0.27.

In this case the Wald and LR results are essentially identical. In most
situations these tests give results which are similar but not exactly the same.
The results be will closest when the sample size is large or the estimated
hazard ratio is near 1. However, in data sets with few events, the LR test
gives more accurate P -values, and so is recommended in that context. As
noted in Sect. 5.5.2, qualitative discrepancies between the two test results
may indicate that the model includes too many predictors for the number of
events.

A 95% confidence interval (CI) for each β is obtained by computing β̂±
1.96 SE(β̂). Stata and other packages usually make it possible to compute
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confidence intervals with other significance, or α, levels; this just involves
replacing 1.96 with the upper 1 − α/2 percentile of the Z distribution.

In turn, confidence intervals for the hazard ratios are obtained by exponen-
tiating the upper and lower limits of the CIs for the coefficients, again because
the normal approximation is better on the coefficient scale. From Table 7.4,
the confidence interval for rx, the indicator for treatment with DPCA, shows
that the data are consistent with risk reductions as large as 43%, but also
with risk increases of 17%. It is also clear that the increase in risk associated
with each mg/dL increase in bilirubin is rather precisely estimated (95% CI
for the hazard ratio 1.13–1.19).

You can also verify that the confidence intervals in Table 7.4 are not equal
to the estimated hazard ratio plus or minus 1.96 times its standard error
(Problem 7.1). For rx, that calculation would yield (0.52–1.11) rather than
(0.57–1.17). In reasonably large samples like this one, the two intervals are
usually very similar. However, since the intervals based on exponentiating the
confidence limits for the coefficients are more accurate in small samples, they
are the ones used in Stata.

7.2.5 Binary Predictors

Interpretation of the binary predictor rx is simplified by coding assignment to
the DPCA arm as 1 and to placebo as 0. Then the exponentiated coefficient
gives the hazard ratio for treatment versus placebo (and retains its literal
interpretation as the hazard ratio for a one-unit increase in the predictor).
Some alternative codings, (e.g., placebo = 1 and treatment = 2) would give
the same results in this instance, but would complicate interpretation in the
presence of an interaction involving the binary predictor. This would also make
the baseline hazard harder to interpret; in the DPCA example, the baseline
hazard would not refer to either the placebo or the treatment group. Thus,
we recommend the 0/1 coding for all binary predictors in this context as well
(Problem 7.2).

7.2.6 Multilevel Categorical Predictors

Patients in the PBC study underwent a liver biopsy to determine their level of
tissue damage. The scores ranged from 1 to 4, with increasing values reflecting
greater damage. As in the linear and logistic models, the Stata command
prefix xi: and variable prefix i. ensures that variable histology is treated
as categorical in the Cox model. By default, the group with the lowest score
is used as the reference category. Results are shown in Table 7.6. Estimated
hazard ratios with respect to the reference group are 5.0, 8.6, and 21.4 for the
groups with ratings of 2, 3, and 4, respectively, suggesting a steady increase
in the hazard with higher ratings.

In addition to the default comparisons with the selected reference group,
pairwise comparisons between any two categories can be obtained using the
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Table 7.6. Categorical Fit for Histology
xi: stcox i.histology

LR chi2(3) = 52.72
Log likelihood = -613.62114 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ihistol_2 | 4.987976 5.143153 1.56 0.119 .6610611 37.63631
_Ihistol_3 | 8.580321 8.685371 2.12 0.034 1.179996 62.39165
_Ihistol_4 | 21.38031 21.57046 3.04 0.002 2.959663 154.4493

------------------------------------------------------------------------------

testparm _Ihistol*

( 1) _Ihistol_2 = 0
( 2) _Ihistol_3 = 0
( 3) _Ihistol_4 = 0

chi2( 3) = 43.90
Prob > chi2 = 0.0000

lincom _Ihistol_4 - _Ihistol_3, hr

( 1) - _Ihistol_3 + _Ihistol_4 = 0

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | 2.491785 .4923268 4.62 0.000 1.691727 3.67021

------------------------------------------------------------------------------

lincom command, as shown in Table 7.6 for groups 3 and 4. The hazard in
group 4 is 2.5 times higher than in group 3 (95% CI 1.7–3.7, P < 0.0001).

Categories With No Events

In our example, the default reference category is sensible and does not cause
problems. However, categories may sometimes include no events, because the
group is small or cumulative risk is low. Hazard ratios with respect to a ref-
erence category with no events are infinite, and the accompanying hypothesis
tests and confidence intervals are hard to interpret. In this case, selecting an
alternative reference group can correct the problem, although the hazard ra-
tio, Wald test, and confidence interval for the category without events, with
respect to the new reference category, will remain difficult to interpret.

Global Hypothesis Tests

As in logistic models, global hypothesis tests for the overall effect of a mul-
tilevel categorical predictor can be conducted using Wald or likelihood ra-
tio (LR) χ2 tests, with degrees of freedom equal to the number of cate-
gories minus 1. The Wald test result (χ2 = 43.9, P < 0.00005), obtained
using the testparm command, is displayed in Table 7.6. The LR test result
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(χ2 = 52.7, P < 0.00005) also appears in the upper right corner of the table.
Note that if covariates were included in the model, this default Stata output
would refer to a test of the overall effect of all covariates in the model, not
just histology; thus a LR test focused on the overall effect of histology
would require combining the results of models with and without this predic-
tor. Finally, a logrank test, as in Sect. 3.5.6, is available; this yields a χ2 of
53.8 (P < 0.0001). The tests agree closely and all show that the groups with
different histology scores do not have equal survival.

The statistical significance of pairwise comparisons should be interpreted
with caution, especially if the global hypothesis test is not statistically signif-
icant, as discussed in Sect. 4.3.4. With a large number of categories, multiple
comparisons can lead to inflation of the type-I error rate; in addition, some
comparisons may lack power due to small numbers in either of the categories
being compared.

Ordinal Predictors and Tests for Trend

The histology score is ordinal, suggesting a more specific question: does the
log mortality hazard increase linearly with higher histology ratings? This
question can be addressed using tests for trend across categories like those
introduced in Sect. 4.3.5. Note that these tests, like other hypothesis tests for
the Cox model, are conducted using the coefficients and their standard errors,
rather than the relative hazards. Thus for the Cox model these linear trend
tests assess log-linearity of the hazard ratios. From Table 4.5, the trend test
for a four-category variable such as histology is

−β2 + β3 + 3β4 = 0. (7.7)

Results presented in Table 7.7 (χ2 = 10.23, P = 0.0014) confirm an increasing
linear trend across histology categories.

Table 7.7. Linear Trend Test for Histology
. test -1* _Ihistol_2 + _Ihistol_3 +3* _Ihistol_4=0

( 1) - _Ihistol_2 + _Ihistol_3 + 3 _Ihistol_4 = 0

chi2( 1) = 10.23
Prob > chi2 = 0.0014

It is also possible to check whether the linear trend adequately captures
the pattern of the coefficients across categories, or whether there are also
important departures from this trend. To do this, we use a model with both
categorical and log-linear terms for histology, as shown in Table 7.8. Then
a Wald test for the joint effect of the categorical terms, obtained using the
testparm command, can be used to assess the departure from log-linearity.
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Table 7.8. Test of Departure From Linear Trend
xi: stcox histology i.histology

LR chi2(3) = 52.72
Log likelihood = -613.62114 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
histol | 2.77548 .9333879 3.04 0.002 1.435756 5.365316

_Ihistol_2 | 1.797158 1.282043 0.82 0.411 .4439793 7.274612
_Ihistol_3 | 1.113852 .4188115 0.29 0.774 .5330565 2.327457

------------------------------------------------------------------------------

testparm _Ih*

( 1) _Ihistol_2 = 0
( 2) _Ihistol_3 = 0

chi2( 2) = 1.24
Prob > chi2 = 0.5385

The result (χ2 = 1.24, P = 0.54) suggests that a linear trend across categories
is an adequate description of the association between histology score and
mortality risk. However, it is not uncommon for both trend and departure
from trend to be statistically significant, signaling a more complex pattern in
risk.

7.2.7 Continuous Predictors

Age at enrollment of participants in the PBC study was recorded in years.
The Cox model shown in Table 7.9 shows that the hazard ratio for a one-year
increase in age is 1.04 (95% CI 1.02–1.06, P < 0.0005).

Table 7.9. Cox Model for Age in One-Year Units
stcox age

LR chi2(1) = 20.51
Log likelihood = -629.72592 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | 1.04081 .0091713 4.54 0.000 1.022989 1.058941

------------------------------------------------------------------------------

The hazard ratio for continuous predictors is affected by the scale of mea-
surement, and a one-unit increase may not have a meaningful interpretation.
In the PBC study ages range from 26 to 78; thus, a one-year difference is age
is small compared to the range of values. A five-year increase in age might
provide a more clinically interpretable result (Problem 7.4).

Using (7.5) we can write down the ratio of the hazards for any two patients
who differ in age by k years – that is, for a patient at age x + k compared
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with another at age x:

h0(t)eβ(x+k)

h0(t)eβx
=

eβ(x+k)

eβx

= eβ(x+k)−βx

= eβk. (7.8)

Thus a k-unit change in a predictor multiplies the hazard by exp(βk), no
matter what reference value x is considered. Obviously, exp(β) is the hazard
ratio for a one-unit increase in the predictor.

Applying (7.8), with β̂ = log(1.04081) being the log of the hazard ratio
for age from Table 7.9, the hazard ratio for an increase in age of five years
is exp(β̂5) = 1.22. The same transformation can be applied to the confidence
limits for age giving a 95% CI for a five-year increase in age of 1.12–1.33.
Equivalently, we could raise the hazard ratio estimate for an increase of one
unit to the fifth power, that is, [exp(β)]k, and apply the same operation to
the confidence limits (Problem 7.5).

The hazard ratio for a five-unit change can also be obtained by defining a
new variable age5 equal to age in years divided by 5. The Cox model for age5
appears in Table 7.10. Note that the Wald and LR test results are identical

Table 7.10. Cox Model for Age in Five-Year Units
stcox age5

LR chi2(1) = 20.51
Log likelihood = -629.72592 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age5 | 1.221397 .0538127 4.54 0.000 1.120352 1.331556

------------------------------------------------------------------------------

in Tables 7.9 and 7.10; changes in the scale of a continuous variable do not
affect these tests.

Hazard ratios can be interpreted in terms of percent changes in risk. It is
easy to see from Table 7.9 that estimated mortality risk among PBC patients
increases about 4% for every year increase in age. We could also compute the
percent increase risk associated with larger increases in age. A k-unit increase
in the predictor implies a 100(exp β̂k − 1)% change in risk. Note that this is
the back transformation presented in Sect. 4.7.5 for linear regression models
with log-transformed outcomes. Using the log of the hazard ratio estimate
from Table 7.9 in place of β̂, this calculation gives 22% for the increase in
mortality risk associated with a five-year increase in age, a result we could get
more directly from Table 7.10.
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7.2.8 Confounding

The definition of confounding in Sect. 4.4 is not specific to the linear regres-
sion model. The conceptual issues and statistical framework for dealing with
confounding are similar across all regression models covered in this book. To
illustrate these concepts for the Cox model, we examined the association be-
tween bilirubin levels and survival among patients in the DPCA trial. We first
fit the simple Cox model which appears in Table 7.11. For each one-point in-
crease in baseline bilirubin, the hazard is increased by 16% – the same result
as shown in Table 7.4 where the estimate is adjusted for treatment assignment
(why?). However, patients with higher bilirubin may also be more likely to

Table 7.11. Unadjusted Cox Model for Bilirubin
stcox bilirubin

LR chi2(1) = 84.59
Log likelihood = -597.6845 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
bilirubin | 1.160509 .0151044 11.44 0.000 1.131279 1.190494

------------------------------------------------------------------------------

have hepatomegaly, edema, or spiders – other signs of liver damage which are
correlated with elevated bilirubin levels but not mediators of its effects, and
all associated with higher mortality risk. Table 7.12 shows the estimated effect
of bilirubin on mortality risk adjusted for hepatomegaly, edema, and spiders.

Table 7.12. Adjusted Cox Model for Bilirubin
stcox bilirubin edema hepatom spiders

LR chi2(4) = 118.82
Log likelihood = -580.56805 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
bilirubin | 1.118276 .0166316 7.52 0.000 1.086149 1.151353

edema | 2.126428 .4724983 3.40 0.001 1.375661 3.286927
hepatom | 2.050617 .434457 3.39 0.001 1.353765 3.106173
spiders | 1.474788 .28727 1.99 0.046 1.00676 2.160393

------------------------------------------------------------------------------

The adjusted hazard ratio for a one-point increase in bilirubin is 1.12 (95%
CI 1.09–1.15, P < 0.0005). This coefficient represents the effect of a one-unit
change in bilirubin while holding edema, hepatomegaly, and spiders constant.
The other predictors, which may reflect other aspects of PBC-associated dam-
age to the liver, account for about 25% of the unadjusted effect of bilirubin,
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and clearly contribute independent information about mortality risk. The at-
tenuation of the unadjusted hazard ratio for bilirubin in the adjusted model
is typical of confounding.

7.2.9 Mediation

Mediation can also be addressed using the Cox model, using the strategies
outlined in Sect. 4.5. The key element is comparing the estimated effects
of the predictor of interest before and after adjustment for the hypothesized
mediators. Lin et al. (1997) give a complete statistical framework for assessing
mediation using the Cox model, including tests and confidence intervals for
PTE, the proportion of the treatment effect explained (Sect 4.5).

7.2.10 Interaction

The concept of interaction presented in Sect. 4.6 is also common to other mul-
tipredictor models. To illustrate its application to the Cox model, we checked
for interaction between two binary variables in the PBC data, treatment with
DPCA (rx), and the presence of liver enlargement or hepatomegaly (hepatom).
This analysis examines the hypothesis that treatment is differentially effective
according to this baseline covariate. As in linear and logistic models, interac-
tion is handled by including product terms in the model. Defining rxhepa as
the product of rx and hepatom, the resulting interaction model is shown in
Table 7.13.

Table 7.13. Cox Model With Interaction
stcox rx hepatom rxhepa

LR chi2(3) = 40.54
Log likelihood = -619.7079 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
rx | .8365301 .2778607 -0.54 0.591 .4362622 1.604041

hepatom | 2.865553 1.735658 1.74 0.082 .8742547 9.392452
rxhepa | 1.099791 .4343044 0.24 0.810 .5071929 2.384775

------------------------------------------------------------------------------

. lincom rx + rxhepa, hr
( 1) rx + rxhepa = 0

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .9200085 .1963396 -0.39 0.696 .6055309 1.397807

------------------------------------------------------------------------------
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Table 7.14. Cox Model With Interaction

group rx hepatom rxhepa h(t|x)

1 0 0 0 h0(t)
2 1 0 0 h0(t) exp(β1)
3 0 1 0 h0(t) exp(β2)
4 1 1 1 h0(t) exp(β1 + β2 + β3)

= h0(t) exp(β1) exp(β2) exp(β3)

Table 7.14 shows the hazard functions for the four groups defined by treat-
ment and hepatomegaly (Problem 7.6). The coefficients β1, β2, and β3 corre-
spond to the predictors rx, hepatom and rxhepa, respectively. We obtain the
hazard ratios of interest by taking ratios of the hazard functions for the dif-
ferent rows. Specifically, the ratio of the hazard for group 2 to the hazard for
group 1, or exp(β1) gives the effect of DPCA in the absence of hepatomegaly.
In Table 7.13, the estimated hazard ratio for rx is 0.84 (95% CI 0.44–1.60,
P = 0.6).

Similarly, the ratio of the hazard for group 4 to the hazard for group 3, or
exp(β1) exp(β3), gives the effect of DPCA in the presence of hepatomegaly.
From Table 7.13, the estimate can be calculated as the product of the hazard
ratios for rx and rxhepa, or 0.8365301× 1.099791 = 0.9. This estimate, along
with a 95% confidence interval (0.61–1.40) and P -value (0.7), can also be
obtained using the lincom command shown in Table 7.13.

It follows that the interaction hazard ratio exp(β3) gives the ratio of the
DPCA treatment effects among patients with and without hepatomegaly. In
Table 7.13, the estimated hazard ratio for rxhepa is 1.1 (95% CI 0.5–2.4,
P = 0.81). The Z-test of H0: β3 = 0 assesses the equality of the effects of
DPCA in the two groups.

To interpret these negative findings fully, as discussed in Sect. 3.7, both the
point estimates and confidence intervals need to be considered. Both stratum-
specific treatment effect estimates as well as the interaction are weakly neg-
ative, in the sense that the point estimates represent almost no effect or in-
teraction, but the confidence limits are consistent with fairly large effects. In
view of the weak evidence for interaction, the overall – also negative – finding
for treatment with DPCA is the more sensible summary.

Similar methods can be used to obtain estimates of the effect of hep-
atomegaly stratified by treatment assignment: that is, by comparing groups
3 and 1, then 4 and 2. However, unlike the DPCA effect estimates, these
estimates are potentially confounded (why?) and so are of less interest.

Interactions involving continuous or multilevel categorical predictors can
also be modeled using product terms, but as Sect. 4.6 explains, care must be
taken with these more complex cases.
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7.2.11 Adjusted Survival Curves for Comparing Groups

Suppose we would like to examine the survival experience of pediatric recipi-
ents of kidney from living as compared to recently deceased donors, using the
UNOS data. Kaplan–Meier curves, introduced in Sect. 3.5.2, would be a good
place to start and are shown in Fig. 7.4.
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Fig. 7.4. Kaplan–Meier Curves for Transplant Recipients by Donor Type

In accord with the hazard ratio of 2.1 estimated by the unadjusted Cox
model shown in Table 7.3, the curves show superior survival in the group
with living donors. However, there are two potentially important confounders
of this effect. First, living donors are more likely to be related and thus are
closer tissue matches, as reflected in the number of matching human leukocyte
antigen (HLA) loci (range 0–6). Second, cold ischemia time (essentially the
time spent in transport) is shorter for kidneys obtained from living donors.
After adjustment for these two factors, the hazard ratio for donor type is
reduced to 1.3 (95% CI 0.9–1.9, P = 0.19). On the scale of the coefficients,
almost two-thirds of the association of donor type with mortality risk is ex-
plained by cold ischemia time and number of HLA matches.

To see how adjusted survival curves might be constructed, first recall that
adjustment for these covariates implies that adjusted curves for the two groups
should differ only by donor type, with the other covariates being held constant.
Curves meeting these criteria can be obtained using the coefficient estimates
from the Cox model and an estimate of the baseline survival function, Ŝ0(t),
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Fig. 7.5. Adjusted Survival Curves for Transplant Recipients by Donor Type

based on the Breslow baseline hazard estimate described earlier. Like the
baseline hazard, the baseline survival function refers to observations with all
predictor values equal to zero. Then, for an observation with predictor values
(x1, . . . , xp), the estimated survival function follows:

{Ŝ0(t)}exp(β̂1x1+...+β̂pxp). (7.9)

That is, we raise the baseline survival to the exp(β̂1x1 + . . . + β̂pxp) power.
To evaluate (7.9), we need to specify a value for each of the predictors. In our
example with three predictors, we would need to choose and hold constant
values for x2 (cold ischemia time) and x3 (number of matching HLA loci),
then generate the two curves by varying the predictor x1 (recently deceased
versus living donor).

It is conventional to use values for the adjustment variables which are close
to the “center” of the data. Thus we centered cold ischemia time at its mean
value of 10.8 hours and number of matching variable HLA loci at its median,
three. With this centering, the baseline hazard and survival functions now refer
to observations with cold ischemia time of 10.8 hours, three matching HLA
loci, and a living donor. Then our adjusted estimate of the survival function
for the group with living donors, holding the covariates constant at the chosen
values, is Ŝ0(t), while the corresponding estimate for the group with recently
deceased donors is {Ŝ0(t)}exp(β̂1). These adjusted curves, obtained in Stata
using the stcurve command, are shown in Fig. 7.5. The differences between
the survival curves are, as expected, narrower after adjustment. Note that the
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adjusted survival curves could also have be estimated using a stratified Cox
model, as discussed in Sect. 7.3.2.

7.2.12 Predicted Survival for Specific Covariate Patterns

The estimated survival function (7.9) is also useful for making predictions for
specific covariate patterns (Problem 7.7). For example, consider predicting
survival for a PBC patient based on hepatomegaly status and bilirubin level,
the two strongest predictors in the model shown in Table 7.12. Fig. 7.6 displays
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Fig. 7.6. Predicted Survival Curve for PBC Covariate Pattern

the predicted survival curve for a PBC patient with hepatomegaly and a
bilirubin level of 4.5 mg/dL. From the curve, the median survival function for
this covariate pattern is 6.3 years. Survival probabilities at key time points
can likewise be read from the plot: at five years, predicted survival for this
covariate pattern is below 60%, and by ten years, it has dropped to less than
20%. However, mean survival cannot be estimated in this case, because the
longest follow-up time in the PBCA data is censored (Sect. 3.5).

7.3 Extensions to the Cox Model

7.3.1 Time-Dependent Covariates

So far we have only considered fixed predictors measured at study baseline,
such as bilirubin in the DPCA study. However, multiple bilirubin measure-
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ments were made over the ten years of follow-up, and these could provide
extra prognostic information. A special feature of the Cox model is that these
valuable predictors can be included as time-dependent covariates (TDCs).

Definition: A time-dependent covariate in a Cox model is a predictor
whose values may vary with time.

In some cases, use of TDCs is critical to obtaining reasonable effect esti-
mates. For example, Aurora et al. (1999) followed 124 patients to study the
effect of lung transplantation on survival in children with cystic fibrosis. The
natural time origin in this study is the time of listing for transplantation,
not transplantation itself, because the children are most comparable at that
point. However, waiting times for a suitable transplant can be long, and there
is considerable mortality among children on the waiting list.

In this context, lung transplantation has to be treated as a TDC. To see
this, consider the alternative in which transplantation is modeled as a fixed
binary covariate, in effect comparing mortality risk in the group of children
who undergo transplantation during the study to risk among those who do
not. This method can make transplantation look more protective than it really
is. Here is how the artefact comes about:

• Because transplanted patients must survive long enough to un-
dergo transplantation, and waiting times can be long, the survival
times measured from listing forward will on average be longer in
the transplanted group even if transplantation has no protective
effect.

• Because of this, children in the transplanted group are selected for
better prognosis. So the randomization assumption discussed in
Sect. 4.4.4 does not hold.

• Children are counted as having received a transplant from the
time of listing forward, in many cases well before transplantation
occurs. As a result they appear to be protected by a procedure
that has not yet taken place. This illustrates the general principle
that we can get into trouble by using information from the future
to estimate current risk.

Treating transplantation as a TDC avoids this artefact. For each child we de-
fine an indicator of transplantation X(t), which takes on value 0 before trans-
plantation and 1 subsequently. For children who are not observed to undergo
transplantation, X(t) retains its original value of 0. Thus in an unadjusted
model, the hazard at time t can be written as

h(t|x) = h0(t) exp{βX(t)}
=

{
h0(t) before transplantation
h0(t) exp(β) at or after transplantation. (7.10)
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So now, all children are properly classified at t as having undergone trans-
plantation or not, and we avoid the artefact that comes from treating trans-
plantation as a fixed covariate. Note that Kalbfleisch and Prentice (1980) cite
additional conditions concerning the allocation of transplants that must be
met for the randomization assumption to hold and an unbiased estimate of
the effect of transplantation to be obtained.

The transplantation TDC is relatively simple, because it is binary and
cannot change back in value from 1 to 0. In practice, however, use of TDCs
in Cox models is complicated. Some of the potential difficulties include the
following:

• In most prospective studies, predictors like bilirubin will only be
measured occasionally, but we need a value at each event time. A
commonly used approach is to evaluate X(t) using the most recent
measurement before t. More difficult is a two-stage approach in
which we first model the mean trajectory of the TDC for each
subject. Then in the second stage we can set X(t) equal to its
expected value at t, based on the first-stage model. However, fitting
and inference are both complicated in this procedure (DeGruttola
and Tu, 1994; Wulfsohn and Tsiatis, 1997; Self and Pawitan, 1992).

• While X(t) cannot legitimately be evaluated using information
from the future, it oftentimes should be evaluated using all avail-
able information up until t. Consider two PBC patients, one with
bilirubin values of 0.8 and 3.5 at baseline and year two, and the
other with values of 2.5 and 3.5 at those times. In evaluating a
TDC for bilirubin at year two, it might not be adequate to ac-
count only for the most recent values. A commonly used approach
is to include the baseline value as a fixed covariate along with the
change since baseline as a TDC. But other combinations of base-
line and time-dependent covariates summarizing history up to t
may be more appropriate.

• Mediation can be evaluated using TDCs, but must be handled
carefully. For example, we could assess mediation of the effects of
ZDV via its effects on CD4 counts in the ACTG 019 trial by com-
paring the unadjusted coefficient estimate for treatment to an es-
timate adjusted for a TDC defined using post-randomization CD4
values. However, in observational studies where the inferential goal
is to identify multiple important predictors of an outcome event,
mediating relationships can severely complicate the use and inter-
pretation of TDCs. Moreover, note that if randomization had failed
to balance the groups properly, then only baseline CD4 should be
adjusted for; adjusting for the post-randomization values would
result in an attenuated estimate for ZDV that captures only its
effects via other pathways.
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• One TDC may both confound and mediate the effects of another
TDC. Suppose we wanted to evaluate the effect of highly active
anti-retroviral therapy (HAART) on progression to diagnosis of
AIDS, and that follow-up data were available from an observa-
tional cohort. Then, as in the lung transplantation example, treat-
ment with HAART would need to be modeled as a TDC. However,
an unadjusted estimate would almost always be confounded by in-
dication, since in this setting patients with more advanced disease
are more likely to be treated. Suppose that we try to control for
prognosis at the time of initiation of HAART by including CD4
count and HIV viral load, both powerful prognostic variables, as
TDCs. Now consider what happens if we continue to update the
TDCs for these adjustment variables after HAART is begun. It is
well known that the protective effects of HAART are mediated via
its effects on CD4 count and viral load. Thus we would only ob-
tain an estimate of the effects of HAART via other pathways. See
Hernan et al. (2001) for a solution to this problem using marginal
structural models.

• The TDCs most likely to cause trouble are internal covariates
which reflect subject-level causal processes. In contrast, external
covariates like calendar time, season of the year, or air pollution
pose fewer difficulties (Kalbfleisch and Prentice, 1980).

• Ideally TDCs are measured at regularly scheduled visits, so acer-
tainment does not depend on prognosis. Missing visits can induce
bias if the missingness is related to the value of the TDC that
would have been obtained. Likewise, ascertainment of TDCs by
clinical chart review can be fraught with pitfalls.

• Fitting a model with TDCs in Stata involves making a long data
set that reflects changes in the TDCs. For the lung transplantation
example, this would be straightforward, requiring only a second
record for children who undergo transplantation during follow-up.
But in more complicated situations, many records may be required
for each observation if the value of the TDC potentially changes
continuously. The PHREG procedure in SAS is an exception in
making it easy to use TDCs without first making a long data set.

In view of these difficulties, we recommend working closely with an experi-
enced biostatistician to implement Cox models with TDCs.

7.3.2 Stratified Cox Model

Suppose we want to model the effect of edema among patients with PBC in
the DPCA cohort. We could do this using the binary predictor edema, coded
1 for patients with edema and 0 for others. Then in an unadjusted model
the hazard for patients with edema is h(t|x) = h0(t) exp(β), while for other
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patients it is just h0(t). So the hazard for patients with edema is modeled as
a constant proportion exp(β) of the baseline hazard h0(t).

However, we will show in Sect. 7.4.2 below that the proportional hazards
assumption does not hold for edema. We can accommodate the violation by
fitting a stratified Cox model in which a separate baseline hazard is used for
patients with and without edema. Specifically, we let

h(t|edema = 1) = h01(t) (7.11)

for patients with edema, and

h(t|edema = 0) = h00(t) (7.12)

for other patients. Now the hazards for the two groups can differ arbitrarily.
Generalizing from edema to a stratification variable with two or more lev-

els, and to a model with covariates (x1, . . . , xp), the hazard for an observation
in stratum j would have the form

h0j(t) exp(β1x1 + . . . + βpxp). (7.13)

Note that in this model we assume that the effect of each of the covariates
is the same across strata; below we examine methods for relaxing this as-
sumption. It is also important to point out that while the stratified, adjusted
survival curves presented in Sect. 7.2.11 above can give a clear visual im-
pression of the effect of the stratification variable after adjustment, current
methods for the stratified Cox model do not allow us to estimate or test the
statistical significance of its effect. Thus stratification could be used in our
example to adjust for edema, but might be less useful if edema were a pre-
dictor of primary interest. In Sect. 7.4.2 below we show how time-dependent
covariates can be used to obtain valid estimates of the effects of a predictor
which violates the proportional hazards assumtion.

Stratification is also useful in the analysis of stratified randomized trials.
We pointed out in Sect. 5.3.5 that we need to take account of the stratification
to make valid inferences. But we also need to avoid making an unwarranted
assumption of proportional hazards for the stratification variable that could
potentially bias the treatment effect estimate.

The stratified Cox model is easy to implement in Stata as well as other
statistical packages. In ACTG 019 participants were randomized within two
strata defined by baseline CD4 count. To conduct the stratified analysis, we
defined strcd4 as an indicator coded 1 for the stratum with baseline CD4
count of 200–499 cells/mm3 and 0 for the stratum with baseline CD4 of less
than 200. The stratified model for the effect of ZDV treatment (rx) is shown in
Table 7.15. In this instance, the estimated 54% reduction in risk for treatment
with ZDV is the same as an estimate reported below in Sect. 7.5.3, which was
adjusted for rather than stratified on CD4.
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Table 7.15. Cox Model for Treatment With ZDV, Stratified by Baseline CD4
stcox rx, strata(strcd4)

LR chi2(1) = 7.36
Log likelihood = -276.45001 Prob > chi2 = 0.0067

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
rx | .4646665 .1362697 -2.61 0.009 .2615261 .8255963

------------------------------------------------------------------------------
Stratified by strcd4

Number of Strata

Stratification is a flexible approach to adjustment for a nominal categorical
variable with a large number of levels. An example is in a multicenter random-
ized trial with many centers. For stratification to work well, there do need to
be a reasonable number of events in each stratum. When the number of strata
gets large, there can be some loss of efficiency in estimation of the treatment or
other covariate effects, since the stratified model does not “borrow strength”
across strata. Nonetheless, Glidden and Vittinghoff (2004) showed that in this
situation the stratified Cox model performs better than an unstratified model
in which the covariate is treated as a nominal categorical predictor.

Interaction Between Stratum and a Predictor of Interest

In Table 7.15, the model assumes that the ZDV effect is the same in both
strata. It is possible, however, that patients with less severe HIV disease, as
reflected in higher CD4 counts, may respond better to ZDV. Such an interac-
tion between stratum and treatment can be examined by including a product
term between the treatment and stratum indicators. Note that in the strati-
fied model only the product term inter and the treatment indicator rx term
are entered as predictors, while strcd4 is still incorporated as a stratification
factor. In Table 7.16 we see only weak evidence for a protective effect of ZDV
in the stratum with lower baseline CD4 (hazard ratio 0.71, 95% CI 0.32–1.65,
P = 0.43). From the lincom result there is more persuasive evidence for pro-
tection in the stratum with higher CD4 (hazard ratio 0.32, 95% CI 0.14–0.74,
P = 0.008). There is weak but not convincing evidence for interaction (hazard
ratio 0.45, 95% CI 0.14–1.48, P = 0.19), so the overall estimate shown above
in Table 7.15 may be the preferable summary estimate of the effect of ZDV.

Stratified and Adjusted Survival Curves

In Sect. 7.2.11 we presented adjusted survival curves for pediatric kidney
transplant recipients according to donor type, based on an adjusted model in
which the effect of donor type was modeled as proportional. We can also obtain
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Table 7.16. Stratified Fit With Interaction Term
. stcox rx inter, strata(strcd4)

LR chi2(2) = 9.14
Log likelihood = -275.56324 Prob > chi2 = 0.0104

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
rx | .7124052 .305808 -0.79 0.430 .307142 1.652399

inter | .4508514 .2728073 -1.32 0.188 .1377136 1.476012
------------------------------------------------------------------------------

Stratified by strcd4
. lincom rx + inter, hr

( 1) rx + inter = 0

-----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf.Interval]

-------------+---------------------------------------------------------------
(1) | .3211889 .136976 -2.66 0.008 .1392362 .7409156

-----------------------------------------------------------------------------
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Fig. 7.7. Stratified Survival Curves for Edema Adjusted for Age

adjusted survival curves according to the levels of a stratification factor. We
will show in Sect. 7.4.2 that the effects of baseline edema on mortality risk
among PBC patients in the DPCA cohort were not proportional. Suppose we
would like to compare the survival curves according to edema, adjusting for
age. As in the earlier example, we need to specify a value for age in order to
estimate the survival curves, and make a similar choice in centering age on its
mean of 50. Under the stratified Cox model, the survivor function for a PBC
subject with centered agec is given by
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[S0j(t)]exp(βagec). (7.14)

The adjusted survival curves for the edema (j = 1) and no edema (j = 0)
strata, adjusted to age 50 (i.e., agec = 0), are therefore S01(t) and S00(t)
respectively. Fig. 7.7 shows shorter survival in patients with edema at base-
line. However, these stratum-specific survival functions also suggest that the
multiplicative effect of edema on the mortality hazard is not constant over
time. We examine this more carefully in Sect. 7.4.2.

7.4 Checking Model Assumptions and Fit

Two basic assumptions of the Cox model are log-linearity and proportional
hazards. Just as with other regression models, these assumptions can be ex-
amined, and extensions of the model can be used to deal with violations and
model more complex effects.

7.4.1 Log-Linearity

In Sect. 7.2.1, we saw that equation (7.6) defines a log-linear model in which
each unit change in a continuous predictor is assumed to have the same effect
on the log of the hazard. This implies that the hazard ratio is log-linear in
the continuous predictors.

Unlike the linear model, but like the logistic, diagnostics for violations of
log-linearity using plots of residuals do not work very well for the Cox model.
However, violations of this assumption are easy to accommodate, using the
same tools covered in Sect. 4.7.1 for the linear model. Thus a workable method
for assessing violations of log-linearity is to assess more complicated models
for improvements in fit. For example, we can add polynomial terms in the
predictor in question to the model and then check effect sizes and P -values
to determine whether the higher order terms are important; or the predictor
can be log-transformed and the log-likelihoods informally compared (Problem
7.3). Alternatively, the continuous predictor can be categorized using well-
chosen cutpoints; then log-linearity is checked using the methods outlined
above in Sect. 7.2.2 for assessing both trend and departures from trend in
ordinal predictors. Linear splines (Sect. 4.9) are another alternative imple-
mented in Stata.

7.4.2 Proportional Hazards

The adjusted Cox model shown in Table 7.12 shows that mortality risk is
increased about twofold in PBC patients with edema at baseline. However,
Fig. 7.7 suggests that edema may violate the proportional hazards assumption:
specifically, the increase in risk is greatest in the first few years and then
diminishes. Thus the effect of edema on the hazard is time-dependent. A
transformed version of Fig. 7.7 turns out to be more useful for examining
violations of the proportional hazards assumption.
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Log-Minus-Log Survival Plots

To illustrate the use of transformed survival plots for assessing proportionality
for binary or categorical predictors, we consider the treatment indicator (rx)
in the DPCA trial. This method exploits the relationship between the survival
and hazard functions. If proportional hazards hold for rx, then by (7.9)

S1(t) = [S0(t)]exp(β), (7.15)

where S0(t) is the survival function for placebo patients and S1(t) is the
corresponding survival function for the DPCA-treated patients. Then, the
log-minus-log transformation of (7.15) gives

log{− log[S1(t)]} = β + log{− log[S0(t)]}. (7.16)

Thus when proportional hazards holds, the two transformed survival functions
will be a constant distance β apart, where β is the log of the hazard ratio for
treatment with DPCA.

This result enables us to use a simple graphical method for examining
the proportional hazards assumption. Specifically, log-minus-log transformed
Kaplan–Meier estimates of the survival functions for the placebo and DPCA
groups are plotted against follow-up time. In Stata, this plot is implemented in
the stphplot command. The log-minus-log survival plot for DPCA is shown
in Fig. 7.8.
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In assessing the log-minus-log survival plot for evidence of non-proportionality,
the patterns to look for are convergence, divergence, or crossing of the curves
followed by divergence. Convergent curves suggest that the difference between
the groups decreases with time, and vice versa. If the curves converge, cross,
and then diverge, then the non-proportionality may be more important; for
example, this might indicate that treatment is harmful early on but protective
later. In Fig. 7.8, however, the curves for DPCA and placebo remain close over
the entire follow-up period and do not suggest non-proportionality.
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Fig. 7.9. Log-Minus-Log Survival Plot for Edema

In contrast, the log-minus-log survival plot for edema in Fig. 7.9 shows
rather clear evidence of a violation of proportionality. While there is a pro-
nounced difference between the groups at all time points, showing that pa-
tients with edema have poorer survival, the difference between the groups
diminishes with follow-up. Specifically, the distances between the curves –
that is, the implied log hazard ratios – are 4.7, 1.8, 1.1, and 1.0 at years 1, 4,
7, and 10, respectively.

Smoothing the Hazard Ratio

Log-minus-log survival plots are good diagnostic tools for violations of the
proportional hazards assumption. To address such a violation, however, we
may need more information about how the log-hazard ratio changes with
follow-up time. We can do this using a nonparametric, smoothed estimate of
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the hazard ratio against time, analogous to the LOWESS estimates of the
regression function used in diagnosing problems in linear models in Sect 4.7.
If the smoothed estimate of the hazard ratio is nearly constant, then the
assumption of proportional hazards is approximately satisfied. Conversely,
when curvature is pronounced, the shape of the smooth helps us determine
how to model the hazard ratio as a function of time.

The method works as follows. As in checking the linear model, the Cox
model with all the important predictors is first estimated. Then we obtain
scaled Schoenfeld residuals; in Stata this is done using scaledsch option for
the stcox command, which generates a residual for each observation and pre-
dictor. Then the Schoenfeld residuals for each predictor are smoothed against
time using LOWESS, providing a nonparametric estimate of the log hazard
ratio for that predictor as it changes over time. In Stata the plot can be gener-
ated using the stphtest command with the plot option. Fig. 7.10 shows the
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Fig. 7.10. Smoothed Estimate of Log Hazard Ratio for Edema

smoothed Schoenfeld residual plot for edema. A non-constant trend is readily
apparent: the log-hazard ratio decreases steadily over the first four years and
then remains constant.

A final note: relatively influential points are identifiable from the plots
of the Schoenfeld residuals. DFBETA statistics, the influence measure we
recommend for the linear and logistic models, are defined for the Cox model,
but not directly available in Stata. See Sect. 4.7.4 for approaches to dealing
with this problem.
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Schoenfeld Test

Schoenfeld (1980) provides a test for violation of proportional hazards which
is closely related to the diagnostic plot using LOWESS smooths of scaled
Schoenfeld residuals just described. The test assesses the correlation between
the scaled Schoenfeld residuals and time. This is equivalent to fitting a simple
linear regression model with time as the predictor and the residuals as the
outcome, and the parametric analog of smoothing the residuals against time
using LOWESS. If the hazard ratio is constant, the correlation should be zero.

Table 7.17. Schoenfeld Tests of Proportional Hazards Assumption
stphtest, detail

Test of proportional hazards assumption

Time: Time
----------------------------------------------------------------

| rho chi2 df Prob>chi2
------------+---------------------------------------------------
rx | -0.06393 0.51 1 0.4766
------------+---------------------------------------------------
global test | 0.51 1 0.4766
----------------------------------------------------------------

Test of proportional hazards assumption

Time: Time
----------------------------------------------------------------

| rho chi2 df Prob>chi2
------------+---------------------------------------------------
edema | -0.35779 14.40 1 0.0001
------------+---------------------------------------------------
global test | 14.40 1 0.0001
----------------------------------------------------------------

The Schoenfeld tests for rx and edema are shown in Table 7.17. Positive
values of the correlation rho suggest that the log hazard ratio increases with
time and vice versa. In accord with the graphical results, the Schoenfeld test
finds strong evidence for a declining log hazard ratio for edema (rho = -0.36,
P = 0.0001), but does not suggest problems with rx (rho = -0.07, P = 0.5).

The Schoenfeld test is most sensitive in cases where the log hazard ratio is
linearly increasing or decreasing with time. However, because the test is based
on a linear regression model, it is sensitive to a few large residual values.
Such values should be evident on the scatterplot of the scaled Schoenfeld
residuals against time. Useful examples and discussion of the application of
the Schoenfeld test appear in Sect. 6.5 of Therneau and Grambsch (2000).

Graphical Diagnostics Versus Testing

We have described both graphical and hypothesis testing methods for exam-
ining the proportional hazards assumption. The Schoenfeld test is widely used
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and gives two easily interpretable numbers that quantify the violation of the
proportional hazards assumption. However, as pointed out in Sect. 4.7, such
tests may lack power to detect important violations in small samples, while
in large samples they may find statistically significant evidence of model vio-
lations which do not meaningfully change the conclusions. While also lacking
sensitivity in small samples, graphical methods give extra information about
the magnitude and nature of model violation, and should be the first-line
approach in examining the fit of the model.

Stratification

The stratified Cox model introduced in Sect. 7.3.2 is an attractive option
for handling binary or categorical predictors which violate the proportional
hazards assumption. We explained there that no assumption is made about the
relationships between the stratified hazard functions specific to the different
levels of the predictor. Because the resulting fit to the stratification variable
is unrestricted, this is a particularly good way to rule out confounding of
a predictor of interest by a covariate that violates the proportional hazards
assumption. However, because no estimates, confidence intervals, or P -values
are obtained for the stratification variable, this approach is less useful for any
predictor of direct interest.

Note that we can apply this approach to a continuous variable by first
categorizing it. How many categories to use involves a trade-off (Problem 7.8).
Using more strata more effectively controls confounding, but as we suggested
in Sect. 7.3.2, precision and power can suffer if the confounder is stratified
too finely, because strength is not borrowed across strata. Five or six strata
generally suffice, but there should be at least 5–7 events per stratum.

Modeling Interactions With Time

In this section we briefly outline a widely used approach to addressing vio-
lations of the proportional hazards assumption using interactions with time,
and implemented using time-dependent covariates (TDCs), as described above
in Sect. 7.3.1. We return to the edema example and show how the declining
hazard ratio can be modeled. To begin, let h1(t) and h0(t) denote the hazard
functions for PBC patients with and without edema. Because proportional
hazards does not hold, the hazard ratio

HR(t) =
h1(t)
h0(t)

(7.17)

is a function of t. To address this, we define β(t) = log{HR(t)} as a coefficient
for edema which changes with time. This is equivalent to a hazard function
of the form

h(t|edema) = h0(t) exp{β(t)edema} (7.18)
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where as before edema is a 0/1 indicator of the presence of edema. This can
be modeled in one of two ways.

• We can model the log hazard ratio for edema as a linear function
of time. This is implemented using a main effect, edema, plus an
interaction term, edemat, defined as a TDC, the product of edema
and t. That is, we set

β(t)edema = (β0 + β1t)edema
= β0edema + β1tedema

= β0edema + β1edemat. (7.19)

Alternatively, we could model the log hazard ratio as linear in log
time, defining the product term with log(t) in place of t; this might
be preferable in the edema example, since the decline in the log
hazard ratio shown in Fig. 7.10 grows less steep with follow-up
(Sect. 4.7.1).

• We can split follow-up time into sequential periods and model the
log hazard ratio for edema as a step function with a different value
in each period. For example, we could estimate one log hazard ratio
for edema in years 0–4, and another in years 5–10, again motivated
by Fig. 7.10. We could do this by defining two TDCs:
– edema04, equal to 1 during the first four years for patients with

edema, and 0 otherwise.
– edema5on, equal to 1 during subsequent follow-up for patients

with edema, and 0 otherwise.
Then we set

β(t)edema = β1edema04 + β2edema5on. (7.20)

This approach is analogous to categorizing a continuous predictor
to model nonlinear effects (Sect. 4.7.1).

The first alternative is more realistic because it models the hazard ratio for
edema as a smooth function of time. But it is harder to implement because
the TDC edemat changes continuously for patients with edema from random-
ization forward; up to one record for every distinct time at which an outcome
event occurs would be required for these patients in the “long” data set used
for the analysis in Stata. (Implementation is considerably easier in SAS.) In
contrast, the second alternative is less realistic but easier to implement, only
requiring two records for patients with edema and more than four years of
follow-up, and one record per patient otherwise.
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7.5 Some Details

7.5.1 Bootstrap Confidence Intervals

The ACTG 019 data set includes 880 observations but only 55 failures. We
can check the validity of the standard confidence intervals in the Cox model
for ZDV treatment (rx) and baseline CD4 cell count (cd4) using the boot-
strap (Sect. 3.6). The results are reported on the coefficient scale in Table
7.18. The standard and bias-corrected bootstrap confidence intervals, based

Table 7.18. Cox Model for ZDV and CD4 With Bootstrap Confidence Intervals
stcox rx cd4, nohr

No. of subjects = 880 Number of obs = 880
No. of failures = 55
Time at risk = 354872

LR chi2(2) = 34.46
Log likelihood = -314.17559 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
rx | -.7851153 .2930517 -2.68 0.007 -1.359486 -.2107446

cd4 | -.0065752 .0012376 -5.31 0.000 -.0090009 -.0041495
------------------------------------------------------------------------------

. bootstrap ‘"stcox rx cd4"’ _b, reps(1000)

command: stcox rx cd4
statistics: b_rx = _b[rx]

b_cd4 = _b[cd4]

Bootstrap statistics Number of obs = 880
Replications = 1000

------------------------------------------------------------------------------
Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
-------------+----------------------------------------------------------------

b_rx | 1000 -.7851154 -.0221124 .2900748 -1.354341 -.2158895 (N)
| -1.388345 -.2682095 (P)
| -1.372091 -.2503596 (BC)

b_cd4 | 1000 -.0065752 -.0001226 .0014062 -.0093347 -.0038157 (N)
| -.0095451 -.0039595 (P)
| -.009454 -.0038239 (BC)

------------------------------------------------------------------------------
Note: N = normal

P = percentile
BC = bias-corrected

on 1,000 resampled data sets, yield very similar results, confirming that the
semi-parametric model works well in this case, even though there are only
moderate numbers of events.
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7.5.2 Prediction

Evaluating prediction error using some form of cross-validation, as described
in Sect. 5.2, is more complicated with time-to-event outcomes. Comparing
observed to expected survival times is ruled out for censored observations
in the test set; moreover, as we explained above in Sect. 7.2.12, expected –
that is, mean – survival times are usually undefined under the Cox model.
Comparing the occurrence of events in the test set with predictions based on
the learning set, as with binary outcomes analyzed using a logistic model,
is relatively tractable, but complicated by variations in follow-up time, in
particular extrapolations for any follow-up times in the test set that exceed
the longest times in the learning set.

Dickson et al. (1989) showed one way in which predictions based on a
Cox model can be cross-validated using a test data set. To see how this was
done, note that the survival curves for different covariate patterns, like the
one estimated in the previous section using (7.9), differ only in the value of the
linear predictor x1β1+. . .+xpβp, termed the risk score in this context. You can
verify that the higher the risk score, the poorer the predicted survival. The
risk score was used to group patients into four predicted survival categories,
choosing cut points which gave approximately equal numbers of events in the
four groups. The investigators then validated the model by calculating the risk
score for a new set of PBC patients, using the coefficient estimates from the
original model, and grouping the new observations based on the cutpoints they
had developed. Finally, they showed that the predicted curves were similar to
Kaplan–Meier survival curves based only on data for the four groups in the
test set.

Begg et al. (2000) compare three methods for assessing predictiveness for
survival of tumor staging and grading systems among cancer patients.

7.5.3 Adjusting for Non-Confounding Covariates

If a covariate is strongly predictive of survival but uncorrelated with a predic-
tor of interest, omitting it from a Cox model will nonetheless attenuate the
estimated hazard ratio for the predictor of interest, as discussed in Sect. 5.3.5
(Gail et al., 1984; Schmoor and Schumacher, 1997; Henderson and Oman,
1999). Omitting important covariates from logistic models also induces such
attenuation. Although the gain in precision is usually modest at best, it can
be advantageous to include such a prognostic factor in order to avoid the
attenuation.

A compelling example is provided by ACTG 019, the randomized clinical
trial of ZDV for prevention of AIDS and death in HIV infection discussed ear-
lier in this chapter. As expected in a clinical trial, there was no between-group
difference in mean baseline CD4 count, known to be an important prognostic
variable. Thus by definition, baseline CD4 count could not have confounded



7.5 Some Details 247

the effect of ZDV. However, when CD4 count is added to the model, the es-
timated reduction in risk of progression to AIDS or death afforded by ZDV
goes from 49% to 54%, an increase of about 12%. More discussion of whether
to adjust for covariates in a clinical trial is given in Sect. 5.3.5.

7.5.4 Independent Censoring

To deal with right-censoring, we have to make the assumption of indepen-
dent censoring. The essence of this assumption is that after adjustment for
covariates, future event risk for a censored subject does not differ from the
risk among other subjects who remain in follow-up and have the same covari-
ate values. Under this assumption, subjects are censored independent of their
future risk.

To see how this assumption may be violated, consider a study of mor-
tality risk among patients followed from admission to the intensive care unit
until hospital discharge. Suppose no survival information is available after
discharge, so subjects have to be censored at that time. In general subjects
are likely to be discharged because they have recovered and are thus at lower
risk than patients who remain hospitalized. Unless we can completely cap-
ture the differences in risk using baseline and time-dependent covariates, the
assumption of independent censoring would be violated.

Dependent censoring can also arise from informative loss to follow-up. In
prospective cohorts it is not unlikely that prognosis for dropouts differs from
that for participants remaining in follow-up in ways that can be difficult to
capture with variables routinely ascertained.

It can also be difficult to diagnose dependent censoring definitively, because
that would require precisely the information that is missing – for example,
mortality data after discharge from the ICU. But that is a case where an ex-
perienced investigator might recognize on substantive grounds that censoring
is likely to be dependent. Furthermore, the problem could be addressed in that
study by ascertaining mortality for a reasonable period after discharge. Sim-
ilarly, losses to follow-up are best addressed by methods to maximize study
retention; but it also helps to collect as much information about censored
subjects as possible. Valid modeling in the presence of dependent censoring
requires statistical methods that are still under development and well beyond
the scope of this book.

7.5.5 Interval Censoring

We also assume that the time of events occurring during the study is known
more or less exactly. This is almost always the case for well-documented events
like death, hospitalization, or diagnosis of AIDS. But the timing of many
events is not observed with this level of precision. For example, in prospective
cohort studies of people at risk for HIV infection, it is common to test par-
ticipants for infection at semi-annual visits (Buchbinder et al., 1996). Thus
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the actual time of an incident infection is only known up to an interval of
possible values; in technical terms, it is interval-censored between the last
visit at which the participant tested negative and the first at which the result
was positive. Another example is development of abnormal cellular changes
in the cervix, which must be assessed by clinical exam. These exams may be
performed periodically, perhaps months or even years apart. As with HIV in-
fection, newly observed changes may have occurred at any time since the last
exam. Interval-censored data are common and require specialized methods of
analysis, again beyond the scope of this book.

7.5.6 Left Truncation

This chapter deals solely with right-censored survival data in which obser-
vation begins at the predefined origin of the survival times (i.e., t = 0). In
ACTG 019 and as well as the leukemia trial described in Sect. 3.5, the natural
origin is time of randomization. In studies of risk factors for progression of a
disease, the natural origin is time of disease onset. For example, in studies of
HIV disease, it is time of HIV infection.

However, if study participants are not followed prospectively from the time
origin forward, the survival times are said to be left-truncated. In the early
years of the AIDS epidemic, for example, participants in cohort studies of HIV
infection were for the most part already infected at recruitment in the mid-
1980s. Simply using time of recruitment as the time origin in such prevalent
cohorts can induce bias under a range of circumstances (Brookmeyer and Gail,
1987; Brookmeyer et al., 1987).

In contrast, for many participants in the San Francisco City Clinic Co-
hort (SFCCC), time of infection was known from analysis of blood samples
stored in the course of an earlier study of a candidate hepatitis-B vaccine
conducted in the late 1970s, at about the time the HIV epidemic began in
San Francisco. To be included in an analysis of risk factors associated with
progression to AIDS (Vittinghoff et al., 2001), SFCCC participants had to
survive and remain AIDS-free during the period from their infection, mostly
before 1981, until recruitment into the SFCCC, which began in 1984. The
effect of this delay was selectively to exclude from the analysis men whose
disease progressed most rapidly; this subset had either died or progressed to
AIDS before information on risk factors could be collected at the baseline
SFCCC visit. The survival analysis of risk factors was conducted on the natu-
ral time-scale with origin at HIV infection. However, special methods beyond
the scope of this chapter were required to account for the left truncation of
these survival times. Survival analyses that ignore the fact that observation
begins at some t > 0 can give badly biased parameter estimates. Methods for
handling left truncation are easily implemented in many statistical packages
including Stata.
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7.6 Summary

This chapter has shown how right-censored survival data can be analyzed
using the Cox model. This model has much in common with other regression
models: in particular, issues of confounding, mediation, and interaction are
dealt with in similar ways. The Cox model summarizes predictor effects in
terms of their multiplicative effect on the hazard rate. A feature of note is the
ability of the Cox model to accommodate time-dependent covariates.

7.7 Further Notes and References

The Cox model has proven popular because it is computationally feasible,
does not require us to specify the baseline hazard, and is flexible. Alternatives
include the accelerated failure time model and the proportional odds model.
These models are less popular and statistical techniques for these models are
less well developed. By contrast, there are extensively developed techniques
for parametric survival regression. Parametric models require us to make as-
sumptions about the form of the baseline hazard function and have proved
less popular because the parametric assumptions sacrifice robustness without
substantial efficiency gains.

Some more complex survival data settings were not discussed in this chap-
ter. For instance, there may be more than a single event per subject, yielding
clustered or hierarchical survival data. While data like these can be analyzed
using the standard methods by ignoring events after the first, important in-
formation may be discarded. See Wei and Glidden (1997) for an overview of
possible approaches, including analogs of the marginal and random effects
models described for repeated continuous and binary outcomes in Chapter
8. In addition, left truncation and interval censoring were discussed only in
passing. The Cox model can be extended to accommodate both, and there is
an extensive literature in this area.

Sometimes time-to-event data can be more effectively handled using an al-
ternative framework. In particular, consider cohort studies in which interval-
censored outcomes are ascertained at each follow-up visit. One alternative is
to use the continuation ratio model, referenced in Chapter 6, for time to the
first such event. This can be seen as a discrete-time survival model, where the
time scale is measured in visits (or intervals). Where appropriate, another,
often more powerful, alterative is to use a logistic model for repeated binary
measures, covered in Chapter 8. Finally, some time-to-event data has no cen-
sored values. In that situation, techniques covered in Chapter 9 can provide a
useful regression framework for dealing with the skewness and heteroscedas-
ticity such data are likely to exhibit.

Applied book-length treatments on survival analysis are available by Miller
et al. (1981) and Marubini and Valsecchi (1995). These two texts strike a nice
balance in their completeness and orientation toward biomedical applications.
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The texts by Klein and Moeschberger (1997) and Therneau and Grambsch
(2000) are very complete in their coverage of tools for survival analysis in
general and the Cox model in particular, but are geared toward statisticians.

Stata provides extensive capabilities for fitting and assessing Cox models.
A complete suite of parametric survival analysis methods are also provided.
The flexible stset command handles complex patterns of censoring and trun-
cation. However, the PHREG procedure in SAS makes TDCs easier to handle.

7.8 Problems

Problem 7.1. Divide the hazard ratio for bilirubin by its standard error
in Table 7.4 and compare the result to the listed value of z. Also compute
a confidence interval for this hazard ratio by adding and subtracting 1.96
times its standard error from the hazard ratio estimate. Are the results very
different from the confidence interval listed in the output, which is based on
computations on the coefficient scale?

Problem 7.2. In the ACTG 019 data, treatment rx is coded ZDV = 1 and
placebo = 0. Define a new variable rx2 which is coded ZDV = 12 and placebo
= 11; this can be done using the Stata command generate rx2=rx+10. Fit
a Cox model with rx2 as the only predictor, then fit a second Cox model
with rx as the only predictor. How do the two results compare? Now define
rx3 coded placebo = 1, ZDV = 0 (Stata command generate rx3 = 1 - rx).
How does this fit compare with the one for rx? Why? The ACTG 019 data
set is available at http://www.biostat.ucsf.edu/vgsm.

Problem 7.3. Using the PBC data set, calculate the hazard ratio for val-
ues of albumin = 2.5, 3.5, and 4.0, using albumin = 3 as the reference
level, under the assumption of log-linearity. The PBC data set is available
at http://www.biostat.ucsf.edu/vgsm.

Problem 7.4. For the PBC data set, fit a model with cholesterol and biliru-
bin. Interpret the results, as you would in a paper, reporting the hazard ratios
for a 100 mg/dL increase in cholesterol and a 10 mg/dL increase in bilirubin.
Is the relationship between cholesterol and survival confounded by bilirubin?

Problem 7.5. Calculate a hazard ratio and confidence interval for a five-year
increase in age by computing the fifth power of the estimated hazard ratio
and its confidence limits, using the results for a one-year increase in Table 7.9.

Problem 7.6. For the ACTG 019 data set, write out the Cox model allowing
for an interaction between ZDV treatment rx and the baseline CD4 cell count
cd4.

• Express the test of the null hypothesis of no interaction between
CD4 and treatment in terms of the parameters of the model.
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• Again using the parameters of the model, what is the hazard ra-
tio for a ZDV-treated subject with x CD4 cells compared with a
placebo-treated subject with x CD4 cells?

• Fit the model. Does there appear to be an interaction between
treatment and CD4 stratum? If so, what is the interpretation?

• What are the hazard ratios for ZDV as compared to placebo for
patients with 500, 109, and 50 CD4 cells, respectively?

Problem 7.7. Using equation (7.9), you can calculate the probability of
survival at time t, the odds, and the odds ratio (OR) for survival in ex-
posed and reference groups. Calculate the OR for times t1, t2 and t3 when
S0(t1) = 0.95, S0(t2) = 0.90 and S0(t3) = 0.80. Try hazard ratio (i.e., eβ) val-
ues of both 2 and 10. Comment on the relationship between the hazard ratio
and the OR for survival. How is it affected by the magnitude of the hazard,
baseline survival probability, and time?

Problem 7.8. We can also control for the effect of bilirubin in the PBC mor-
tality data using stratification rather than adjustment. One way to categorize
bilirubin is by quantile. In Stata, for example, you can create a categorical
variable for quintile of bilirubin using the command xtile cat5=bilirubin,
nq(5). Try fitting a Cox model for cholesterol stratified by bilirubin,
stratified at 2, 3, 10, and 50 levels. What is the trade-off in increasing the
number of levels? What number of levels works best? (Hint: Balance adjust-
ment against the size of the standard error).

Problem 7.9. Using the PBC data set, apply the methods of Sect. 7.4.2 for
examining proportional hazards to the variable hepatomegaly and interpret
the results.

7.9 Learning Objectives

1. Define right-censoring, hazard function, proportional hazards, and time-
dependent covariates.

2. Be able to
• convert a predictor to a new unit scale
• derive the hazard ratio between two groups defined by their

predictor values
• interpret hazard ratio estimates, Wald test P -values, and con-

fidence intervals
• calculate and interpret the likelihood-ratio test comparing two

nested Cox models
• detect and model interaction using the Cox model
• detect non-proportional hazards using log-minus-log and smoothed

hazard ratio plots, and the Schoenfeld test
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• use stratification to control for a covariate with non-proportional
effects.

3. Understand
• when to use survival techniques
• why the semi-parametric form of the Cox model is desirable
• why the Cox model is “multiplicative”
• how the stratified Cox model relaxes the proportional hazard

assumption
• recognize settings which are beyond the scope of this chap-

ter, including left truncation, interval and dependent censor-
ing, and repeated-events data.
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Repeated Measures and Longitudinal Data
Analysis

Knee radiographs are taken yearly in order to understand the onset of os-
teoarthritis. Echocardiograms are measured 1, 3, and 6 days after admission
to the hospital for a brain hemorrhage. Groups of patients in a urinary incon-
tinence trial are assembled from different treatment centers. Susceptibility to
tuberculosis is measured in family members. All of these are examples of what
is called repeated measures data or hierarchical or clustered data. Such data
structures are quite common in medical research and a multitude of other
fields.

Two features of this type of data are noteworthy and significantly impact
the modes of statistical analysis. First, the outcomes are correlated across
observations. Yearly radiographs on a person are more similar to one another
than to radiographs on other people. Echocardiograms on the same person
over time are more similar to one another than to those on other people. And
groups of patients from a single center may yield similar responses because of
treatment protocol variations from center to center, the persons or machines
providing the measurements, or the similarity of individuals that choose to
participate in a study at that center.

A second important feature of this type of data is that predictor variables
can be associated with different levels of a hierarchy. Consider a study of the
choice of type of surgery to treat a brain aneurysm either by clipping the
base of the aneurysm or implanting a small coil. The study is conducted by
measuring the type of surgery a patient receives from a number of surgeons
at a number of different institutions. This is thus a hierarchical data set with
multiple patients clustered within a surgeon and multiple surgeons clustered
within a hospital. Predictor variables can be specific to any level of this hier-
archy. We might be interested in the volume of operations at the hospital, or
whether it is a for-profit or not-for-profit hospital. We might be interested in
the years of experience of the surgeon or where she was trained. Or we might
be interested in how the choice of surgery type depends on the age and gender
of the patient.
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Accommodation of these two features of the data, predictors specific to
different levels in the data structure, and correlated data, are the topics of
the chapter. We begin by illustrating the basic ideas in a simple example
and then describe hierarchical models through two examples. In Sect. 8.4
we introduce the first of the methods of dealing with correlation structures,
namely, generalized estimating equations. Sect. 8.5 introduces an example
that we use throughout the rest of the chapter to illustrate the use of the
models. Sect. 8.6 considers an alternative to generalized estimating equations,
called random effects modeling, and the remaining sections contrast these
approaches.

8.1 A Simple Repeated Measures Example: Fecal Fat

Lack of digestive enzymes in the intestine can cause bowel absorption prob-
lems. This will be indicated by excess fat in the feces. Pancreatic enzyme
supplements can be given to ameliorate the problem. The data in Table 8.1
come from a study to determine if the form of the supplement makes a differ-
ence (Graham, 1977).

Table 8.1. Fecal Fat (g/day) for Six Subjects

Subject Pill type Subject
number None Tablet Capsule Coated average

1 44.5 7.3 3.4 12.4 16.9
2 33.0 21.0 23.1 25.4 25.6
3 19.1 5.0 11.8 22.0 14.5
4 9.4 4.6 4.6 5.8 6.1
5 71.3 23.3 25.6 68.2 47.1
6 51.2 38.0 36.0 52.6 44.5

Pill type
average 38.1 16.5 17.4 31.1 25.8

We can think of this as either a repeated measures data set, since there are
four measurements on each patient or, alternatively, as a hierarchical data set,
where observations are clustered by patient. This simple example has as its
only predictor pill type, which is specific to both the person and the period of
time during which the measurement was taken. We do not have predictors at
the patient level, though it is easy to envision predictors like age or a history
of irritable bowel syndrome.

We identify a continuous outcome variable, fecal fat, and a single categor-
ical predictor of interest, pill type. If we were to handle this analysis using the
tools of Chapter 3, the appropriate technique would be a one-way ANOVA,



8.1 A Simple Repeated Measures Example: Fecal Fat 255

with an overall F -test, or, perhaps better, a pre-planned set of linear contrasts.
Table 8.2 gives the one-way ANOVA for the fecal fat example.

Table 8.2. One-Way ANOVA for the Fecal Fat Example
anova fecfat pilltype

Number of obs = 24 R-squared = 0.2183
Root MSE = 18.9649 Adj R-squared = 0.1010

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 2008.6017 3 669.533901 1.86 0.1687
|

pilltype | 2008.6017 3 669.533901 1.86 0.1687
|

Residual | 7193.36328 20 359.668164
-----------+----------------------------------------------------

Total | 9201.96498 23 400.085434

Following the prescription in Chapter 3, the F -test indicates (P = 0.1687)
that there are not statistically significant differences between the pill types.
But this analysis is incorrect. The assumptions of the one-way ANOVA require
that all observations be independent, whereas we have repeated measures
on the same six subjects, which are undoubtedly correlated. The one-way
ANOVA would be appropriate if we had collected data on six different subjects
for each pill type.

Should we have conducted the experiment with different subjects for each
pill type? Almost certainly not. We gain precision by comparing the pill types
within a subject rather than between subjects. We just need to accommodate
this fact when we conduct the analysis. This is analogous to the gain in using
a paired t-test.

In this situation, the remedy is simple: we conduct a two-way ANOVA,
additionally removing the variability between subjects. Table 8.3 gives the
two-way ANOVA.

The results are now dramatically different, with pill type being highly
statistically significant. In comparing Tables 8.2 and 8.3 we can see that a
large portion (about 5,588 out of 7,193 or almost 78%) of what was residual
variation in Table 8.2 has been attributed to subject-to-subject variation in
Table 8.3, thus sharpening the comparison of the pill types.

This is an illustration of a very common occurrence: failure to take into
account the correlated nature of the data can have a huge impact on both the
analysis strategy and the results.
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Table 8.3. Two-Way ANOVA for the Fecal Fat Example
anova fecfat subject pilltype

Number of obs = 24 R-squared = 0.8256
Root MSE = 10.344 Adj R-squared = 0.7326

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 7596.98166 8 949.622708 8.88 0.0002
|

subject | 5588.37996 5 1117.67599 10.45 0.0002
pilltype | 2008.6017 3 669.533901 6.26 0.0057

|
Residual | 1604.98332 15 106.998888

-----------+----------------------------------------------------
Total | 9201.96498 23 400.085434

8.1.1 Model Equations for the Fecal Fat Example

We next write down model equations appropriate for the fecal fat example
to represent more precisely the differences between the two analyses from the
previous section. The analysis in Table 8.2 follows the one-way ANOVA model
from Chapter 3.

FECFATij = fecal fat measurement for person i with pill type j

= µ + PILLTYPEj + εij , (8.1)

where, as usual, we would assume εij ∼ i.i.d N (0, σ2
ε), meaning that it is

independently and identically distributed with mean zero and variance σ2
ε

(Sect. 3.3.2).
As noted above, there is no account taken of the effect of each subject.

We would expect some subjects to generally have higher values and others to
generally have lower values. To accommodate this we include a subject effect
in the model, which simultaneously raises or lowers all the measurements on
that subject:

FECFATij = fecal fat measurement for person i with pill type j

= µ + SUBJECTi + PILLTYPEj + εij , (8.2)

with

εij ∼ i.i.d N (0, σ2
ε).

To this we add one more piece. We assume that the subject effects are
also selected from a distribution of possible subject effects: SUBJECTi ∼
i.i.d N (0, σ2

subj), independently of εij .
This additional piece serves two purposes. First, it captures the idea that

the subjects in our experiment are assumed to be a random sample from a
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larger population of subjects to which we wish to draw inferences. Otherwise,
the conclusions from our experiment would be scientifically uninteresting, as
they would apply only to a select group of six subjects. Second, the inclusion
of a subject effect (along with an assigned distribution) models a correlation
in the outcomes. Once we have added this subject effect to our model, we
must accordingly modify the analysis to become the two-way ANOVA shown
in Table 8.3.

8.1.2 Correlations Within Subjects

The main reason the results in Tables 8.2 and 8.3 differ so dramatically is
the failure of the analysis in 8.2 to accommodate the repeated measures or
correlated nature of the data. How highly correlated are measurements within
the same person? The model given in (8.2) gives us a way to calculate this.
The observations on the same subject are modeled as correlated through their
shared random subject effect. The larger the subject effects in relation to the
error term, the larger the correlation (relatively large subject effects means the
observations on one subject are quite different than those on another subject,
but, conversely, that observations within a subject tend to be similar). More
precisely, there is a covariance between two observations on the same subject:

cov(FECFATij , FECFATik) = cov(SUBJECTi, SUBJECTi)
= var(SUBJECTi) (8.3)
= σ2

subj .

The first equality in (8.3) is because the µ and pill-type terms are assumed to
be fixed constants and do not enter into the covariance calculation. The εij

terms drop out because they are assumed to be independent of the subject
effects and of each other. The second equality is true because the covariance
of any term with itself is a variance and the last equality is just the notation
for the variance of the subject effects.

As we recall from Chapter 3, this is just one ingredient in the calculation
of the correlation. We also need to know the standard deviations for the
measurements. Model (8.2) also indicates how to calculate the variance and
hence the standard deviation:

var(FECFATij) = var(SUBJECTi) + var(εij)
= σ2

subj + σ2
ε (8.4)

so that

SD(FECFATij) =
√

σ2
subj + σ2

ε ,

which is assumed to be the same for all observations. The result, (8.4), is
noteworthy by itself, since it indicates that the variability in the observations
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is being decomposed into two pieces, or components, the variability due to
subjects and the residual, or error, variance.

We are now in a position to calculate the correlation as the covariance
divided by the standard deviations:

corr(FECFATij , FECFATik) =
cov(FECFATij , FECFATik)

SD(FECFATij)SD(FECFATik)

=
σ2

subj√
σ2

subj + σ2
ε

√
σ2

subj + σ2
ε

=
σ2

subj

σ2
subj + σ2

ε

. (8.5)

While the methods of the calculations are not so important, the intuition and
results are. Namely, that subject-to-subject variability simultaneously raises
or lowers all the observations on a subject, thus inducing a correlation and
that the variability of an individual measurement can be separated into that
due to subjects and residual variance.

Looking at the ANOVA table in Table 8.3 we have an estimate of σ2
ε , which

is approximately 107.00. But what about an estimate for σ2
subj? It would be

almost correct to calculate the variance of the subject averages in the last
column of Table 8.1, but this would be a bit too large since each subject
average also has a small amount of residual variation as well. Taking this into
account (see Problem 8.1), gives an estimate of 252.67.

Using this in (8.5) gives a correlation of 0.70 = 252.67/(252.67 + 107.00),
not a particularly high value. So even a moderate value of the correlation can
have a fairly dramatic effect on the analysis, which is why it is so important
to recognize repeated measures or clustered data situations. In this instance
the analysis ignoring the correlation led to results that were not statistically
significant and inflated P -values. Unfortunately, the effect of ignoring the
correlation can also make the P -values appear incorrectly small, as will be
demonstrated below. So ignoring the correlation does not always produce a
“conservative” result.

In this example, we are mainly interested in comparing the effect of the
different pill types and the correlation within subjects must be accommodated
in order to perform a proper analysis. The correlation is more of a nuisance.
In other studies the correlation will be the primary focus of the analysis, such
as repeatability or validation studies or in analysis of familial aggregation of a
disease. In the knee osteoarthritis example, the same radiographs were sent to
different reading centers to check consistency of results across the centers. One
of the primary parameters of interest was the correlation of readings taken on
the same image.
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8.1.3 Estimates of the Effects of Pill Type

What about estimating the effects of the various pill types or differences be-
tween them? The simple averages across the bottom of Table 8.1 give the
estimates of the mean fecal fat values for each pill type. There is nothing
better we can do in this balanced-data experiment. The same is true for com-
paring different pill types. For example, the best estimate of the difference
between a coated capsule and a regular capsule would be the simple differ-
ence in means: 31.07 − 17.42 = 13.65. That is, we do nothing different than
we would with a one-way ANOVA (in which all the observations are assumed
independent). This is an important lesson that we extend in Sect. 8.4: the
usual estimates based on the assumption of independent data are often quite
good. It is the estimation of the standard errors and the tests (like the F -test)
that go awry when failing to accommodate correlated data.

8.2 Hierarchical Data

Common methods for the assessment of individual physicians’ performance at
diabetes care were evaluated in Hofer et al. (1999). They studied 232 physi-
cians from three sites caring for a total of 3,642 patients, and evaluated them
with regard to their ability to control HbA1c levels and with regard to resource
utilization. Various methods for obtaining physician level predictions are com-
pared including age- and sex-adjusted averages, the calculation of residuals
after adjusting for the case-mix of the patients, and hierarchical modeling.
They find that the first two methods overstate the degree to which physicians
differ. This could have adverse consequences in falsely suggesting that some
physicians (especially those with small numbers of patients) are over-using
resources or ineffectively treating patients.

As we will see explicitly later in the chapter, hierarchical analysis is more
effective in this situation because it “borrows strength” across physicians in
order to improve the predicted values for each physician. Said another way,
we can use knowledge of the variation between and within physicians in order
to quantify the degree of unreliability of individual physician’s averages and,
especially for those with small numbers of patients, make significant adjust-
ments.

8.2.1 Analysis Strategies for Hierarchical Data

As has been our philosophy elsewhere in this book, the idea is to use simpler
statistical methods unless more complicated ones are necessary or much more
advantageous. That raises the basic question: do we need hierarchical mod-
els and the attendant more complicated analyses? An important idea is the
following. Observations taken within the same subgroup in a hierarchy are
often more similar to one another than to observations in different subgroups,



260 8 Repeated Measures Analysis

other things being equal. Equivalently, data which are clustered together in
the same level of the hierarchy (data on the same physician, or on the same
patient or in the same hospital) are likely to be correlated. The usual statisti-
cal methods (multiple regression, basic ANOVA, logistic regression, and many
others) assume observations are independent. And we have seen in Sect. 8.2
the potential pitfalls of completely ignoring the correlation.

Are there simple methods we can use that accommodate the correlated
data? Simpler approaches that get around the issue of correlation include
separate analyses for each subgroup, analyses at the highest level in the hier-
archy, and analyses on “derived” variables. Let us consider examples of each of
these approaches using the back pain example introduced in Chapter 1 (Korff
et al., 1994).

Analyses for Each Subgroup

Analysis for each subgroup would correspond to doing an analysis for each of
the 44 doctors separately. If there were sufficient data for each doctor, this
might be effective for some questions, for example, the frequency with which
patients for that physician understood how to care for their back. For other
questions it would be less satisfactory, for example, how much more it cost to
treat older patients. To answer this question we would need to know how to
aggregate the data across doctors. For yet other questions it would be useless.
For example, comparing practice styles is a between-physician comparison and
any within-physician analysis is incapable of addressing it.

Analysis at the Highest Level in the Hierarchy

An analysis at the highest level of the hierarchy would proceed by first sum-
marizing the data to that level. As an example, consider the effect of practice
style on the cost of treatment. Cost data would be averaged across all times
and patients within a physician, giving a single average value. A simple anal-
ysis could then be performed, comparing the average costs across the three
types of physicians. And by entering into the analysis a single number for each
physician, we avoid the complication of having correlated data points through
time on the same patient or correlated data within a physician.

There are several obvious drawbacks to this method. First, there is no
allowance for differences in patient mix between physicians. For example, if
those in the aggressive treatment group also tended to have older, higher-cost
patients we would want to adjust for that difference. We could consider hav-
ing additional variables such as average age of the patients for each physician
to try to accommodate this. Or a case mix difference of another type might
arise: some physicians might have more complete follow-up data and have
different proportions of data at the various times after the index visit. Ad-
justing for differences of these sorts is one of the key reasons for considering
multipredictor models.
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A second drawback of analysis at the highest level of the hierarchy is
that some physicians will have large numbers of patients and others will have
small numbers. Both will count equally in the analysis. This last point bears
some elaboration. Some data analysts are tempted to deal with this point by
performing a weighted analysis where the physician receives a weight propor-
tional to the number of observations that went into their average values or
the number of patients that contributed to the average. But this ignores the
correlated nature of the data. If the data are highly correlated within a physi-
cian, then additional patients from each physician contribute little additional
information and all physicians’ averages should be weighted equally regardless
of how many patients they have. At the other extreme, if each patient counts
as an independent data point, then the averages should be weighted by the
numbers of patients.

If the data are correlated but not perfectly correlated, the proper answer
is somewhere in between these two extremes: a physician with twice as many
patients as another should receive more weight, but not twice as much. To
determine precisely how much more requires estimation of the degree of cor-
relation within a physician, i.e., essentially performing a hierarchical analysis.

Analysis on “Derived Variables”

A slightly more sophisticated method than simple averaging is what is some-
times called the use of “derived variables.” The basic idea is to calculate a
simple, focused variable for each cluster or subgroup that can be used in a
more straightforward analysis. A simple and often effective example of this
method is calculation of a change score. Instead of analyzing jointly the be-
fore and after treatment values on a subject (with a predictor variable that
distinguishes them) we instead calculate the change score.

Here are two other examples of this methodology. In a pharmacokinetic
study we might sample a number of subjects over time after administration of
a drug and be interested in the average value of the drug in the bloodstream
and how it changes with different doses of the drug. One strategy would be
to analyze the entire data set (all subjects and all times), but then we would
need to accommodate the correlated nature of the data across time within a
person. A common alternative is to calculate, for each person, the area under
the curve (AUC) of the concentration of the drug in the bloodstream versus
time. This AUC value would then be subjected to a simpler analysis comparing
doses (e.g., a linear regression might be appropriate). In the fecal fat example,
the derived variable approach is quite effective. Suppose we were interested in
the effect of coating a capsule. We can calculate the six differences between
the capsule and the coated capsule (one for each person) and do a one-sample
or paired t-test on the six differences. (See Problem 8.5). For the back pain
example, the derived variable approach is not as successful. The unbalanced
nature of the data makes it difficult to calculate an effective derived variable.
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In summary, the use of hierarchical analysis strategies is clearly indicated
in any of three situations:

1. when the correlation structure is of primary interest;
2. when we wish to “borrow strength” across the levels of a hierarchy

in order to improve estimates; and
3. when dealing with highly unbalanced correlated data.

8.3 Longitudinal Data

In longitudinal studies we are interested in the change in the value of a variable
within a “subject” and we collect data repeatedly through time. For example,
a study of the effects of alcohol might record a measure of sleepiness before
and after administration of either alcohol or placebo. Interest is in quanti-
fying the effect of alcohol on the change in sleepiness. This is often a good
design strategy since each subject acts as his or her own control, allowing the
elimination of variability in sleepiness measurements from person to person or
even occasion to occasion within a person. For this strategy to be effective, the
before and after measurements need to be at least moderately strongly posi-
tively correlated (otherwise, taking differences increases the variability rather
than reducing it).

8.3.1 Analysis Strategies for Longitudinal Data

In simple situations there is a straightforward approach to analyzing such
data – calculate the difference scores (subtract the before measurement from
the after measurement) as a derived variable and perform an analysis on the
differences. In the alcohol example, we could simply perform a two-sample
t-test using the difference scores as data to compare the alcohol and placebo
subjects.

We consider three approaches to analysis of before/after data that are
commonly used: 1) analysis of difference scores, 2) repeated measures analysis,
and 3) analysis using the after measurement as the outcome and using the
baseline measurement as a covariate or predictor. The justification for this
last strategy is to “adjust for” the baseline value before looking for differences
between the groups. How do these approaches compare?

8.3.2 Example: Birthweight and Birth Order

We consider an analysis of birthweights of first-born and last-born infants from
mothers (each of whom had five children) from vital statistics in Georgia. We
are interested in whether birthweights of last-born babies are different from
first-born and whether this difference depends on the age of the woman when
she had her first-born.
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For the first question we begin with the basic descriptive statistics given
in Table 8.4, where lastwght in the variable containing the last-born birth-
weights, initwght indicates the first-born, and delwght are the differences
between last- and first-born within a woman. These show that last-born tend
to be about 191 g heavier than first-born (the same answer is obtained whether
you average the differences or take the difference between the averages). To

Table 8.4. Summary Statistics for First- and Last-Born Babies
summ initwght lastwght delwght

Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------

initwght | 1000 3016.555 576.2185 815 4508
lastwght | 1000 3208.195 578.3356 1210 5018
delwght | 1000 191.64 642.3062 -1551 2700

accommodate the correlated data we either perform a one-sample t-test on
the differences or, equivalently, a paired t-test of the first and last births. A
paired t-test gives a t-statistic of 4.21, with 199 degrees of freedom (since there
are 200 mothers) with a corresponding P -value that is approximately 0.

What about the relationship of the difference in birthweight to the
mother’s initial age? For this, we conduct a simple linear regression of the dif-
ference in birthweight regressed on initial age, where we have centered initial
age (cinitage) by subtracting the mean initial age. The results are displayed
in Table 8.5 with the interpretation that each increase of one year in initial

Table 8.5. Regression of Difference in Birthweight on Centered Initial Age
regress delwght cinitage

Source | SS df MS Number of obs = 200
-------------+------------------------------ F( 1, 198) = 0.39

Model | 163789.382 1 163789.382 Prob > F = 0.5308
Residual | 82265156.7 198 415480.589 R-squared = 0.0020

-------------+------------------------------ Adj R-squared = -0.0031
Total | 82428946.1 199 414215.809 Root MSE = 644.58

------------------------------------------------------------------------------
delwght | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
cinitage | 8.891816 14.16195 0.63 0.531 -19.03579 36.81942

_cons | 191.64 45.57854 4.20 0.000 101.7583 281.5217
------------------------------------------------------------------------------

age is associated with an additional 8.9 g difference between the first and last
birthweights. This is not statistically significant (P = 0.53). When centered
age is used, the intercept term ( cons) is also the average difference.

To conduct a repeated measures analysis the data are first reordered to
have a single column of data containing the birthweights and an additional
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column, birth order, to keep track of whether it is a first or last birth. The
output for the repeated measures analysis using only the first and last births
is displayed in Table 8.6, for which we leave the details to the next section.
However many of the elements are similar to the regression analysis in Table
8.5. The term, IbirXcini∼5, is the interaction of birth order and centered
initial age. It thus measures how the difference in birthweights between first-
and last-born is related to centered initial age, that is, whether the difference
score is related to initial age, the same question as the regression analysis.
As is evident, the estimated coefficient is identical and the standard error is
virtually the same. They are not exactly the same because slightly different
modeling techniques are being used (regression versus GEE, short for gen-
eralized estimating equations). The overall difference between first and last
born is also displayed in the repeated measures analysis (again with the same
coefficient and a very similar standard error and P -value) and is associated
with the birth order term in the model. Finally, the average for first births
is displayed as the intercept (see Problem 8.8). So, at a cost of more com-
plication, the repeated measures analysis answers both questions of interest.

Table 8.6. Repeated Measures Regression of Birthweight on Birth Order and
Centered Initial Age

xi: xtgee bweight i.birthord cinitage i.birthord*cinitage, i(momid)

GEE population-averaged model Number of obs = 400
Group variable: momid Number of groups = 200
Link: identity Obs per group: min = 2
Family: Gaussian avg = 2.0
Correlation: exchangeable max = 2

Wald chi2(3) = 26.47
Scale parameter: 323645.4 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ibirthord_5 | 191.64 45.35007 4.23 0.000 102.7555 280.5245

cinitage | 25.13981 12.4992 2.01 0.044 .6418238 49.6378
_IbirXcini˜5 | 8.891816 14.09096 0.63 0.528 -18.72596 36.50959

_cons | 3016.555 40.22719 74.99 0.000 2937.711 3095.399
------------------------------------------------------------------------------

A different sort of analysis is to conduct a multiple regression with two
predictor variables, initial age (centered) and first-born birthweight. The idea
is to “adjust” the values of last-born weight by the first-born weight and then
look for an effect due to initial age. Table 8.7 gives the results of that analysis,
which are quite different than the previous analyses. Now, initial age has a
much larger coefficient and is statistically significant (P = 0.036).

The intuitive explanation for why this analysis is so different starts with
the observation that the coefficient for birthweight of the first-born is approx-
imately .363. So, using BWk to denote the birthweight of the kth born child,
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Table 8.7. Regression of Final Birthweight on Centered Initial Age, Adjusting for
First Birthweight

regress lastwght cinitage initwght if birthord==5

Source | SS df MS Number of obs = 200
-------------+------------------------------ F( 2, 197) = 19.33

Model | 10961363.1 2 5480681.54 Prob > F = 0.0000
Residual | 55866154.3 197 283584.54 R-squared = 0.1640

-------------+------------------------------ Adj R-squared = 0.1555
Total | 66827517.4 199 335816.67 Root MSE = 532.53

------------------------------------------------------------------------------
lastwght | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
cinitage | 24.90948 11.81727 2.11 0.036 1.604886 48.21408
initwght | .3628564 .0660366 5.49 0.000 .232627 .4930858

_cons | 2113.619 202.7309 10.43 0.000 1713.817 2513.42
------------------------------------------------------------------------------

we can think of the fitted model as

BW5 = 2113.619 + .363BW1 + 24.909 Centered initial age (8.6)

or, taking BW1 to the left side of the equation,

BW5 − .363BW1 = 2113.619 + 24.909 Centered initial age. (8.7)

That is, this analysis is not purely looking at differences between last and
first birthweight since we are only subtracting off a fraction of the initial
birthweight. Since birthweights are more highly correlated with initial age
than is the difference, this stronger relationship reflects that fact that the
results are close to a regression of BW5 on initial age.

In observational studies, such as this one, using baseline values of the
outcome as a covariate is not a reliable way to check the dependence of the
change in outcome on a covariate. In randomized studies, where there should
be no dependence between treatment effects and the baseline values of the
outcome, this may be a more reasonable strategy.

8.3.3 When To Use Repeated Measures Analyses

In the Georgia birthweight example, we see that analysis by difference scores or
by a repeated measures analysis give virtually identical and reasonable results.
The analysis using the baseline value as a covariate is more problematic to
interpret.

If the analysis of difference scores is so straightforward, why consider the
more complicated repeated measures analysis? For two time points and no
(or little) missing data, there is little reason to use the repeated measures
analysis. However, in the birthweight example there are three intermediate
births we have ignored that should be included in the analysis. In the alco-
hol example it would be reasonable to measure the degree of sleepiness at
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numerous time points after administration of alcohol (or placebo) to track
the speed of onset of sleepiness and when it wears off. When there are more
than two repeated measures, when the measurements are recorded at differ-
ent times and/or when there is missing data, repeated measures analysis can
more easily accommodate the data structure than change score analyses. We
now consider methods for multiple time points.

8.4 Generalized Estimating Equations

There are two main methods for accommodating correlated data. The first
we will consider is a technique called generalized estimating equations, often
abbreviated GEE. A key feature of this method is the option to estimate
the correlation structure from the data without having to assume it follows a
pre-specified structure.

Before embarking on an analysis we will need to consider five aspects of
the data:

1. What is the distributional family (for fixed values of the covari-
ates) that is appropriate to use for the outcome variable? Exam-
ples are the normal, binary, and binomial families.

2. Which predictors are we going to include in the model?
3. In what way are we going to link the predictors to the data?

(Through the mean? Through the logit of the risk? Some other
way?)

4. What correlation structure will be used or assumed temporarily
in order to form the estimates?

5. Which variable indicates how the data are clustered?

The first three of these decisions we have been making for virtually every
method described in this book. For example, the choice between a logistic and
linear regression hinges on the distribution of the outcome variable, namely,
logistic for binary outcome and linear for continuous, approximately normal
outcomes. Chapter 5 discusses the choice of predictors to include in the model
(and is a focus of much of this book) and the third has been addressed in
specific contexts, e.g, the advantage of modeling the log odds in binary data.
The new questions are really the fourth and fifth and have to do with how
we will accommodate the correlations in the data. We start by considering an
example.

8.4.1 Birthweight and Birth Order Revisited

We return to the Georgia birthweight example and now consider all five births.
Recall that we are interested in whether birthweight increases with birth order
and mothers’ age. Fig. 8.1 shows a plot of birthweight versus birth order with
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Fig. 8.1. Plot of Birthweight Versus Birth Order

both the average birthweights for a given birth order and a LOWESS smooth
superimposed. Inspection of the plot suggests we can model the increase as
a linear function. A simple linear regression analysis of birthweight versus
birth order gives a t-statistic for the slope coefficient of 3.61, which is highly
statistically significant. But this analysis would be wrong (why?).

Recall that the paired t-test using just the first and last births gave a t-
statistic of 4.21, even more highly statistically significant. This is perhaps a
bit surprising since it discards the data from the three intermediate births.

The explanation for this apparent paradox is that the paired t-test, while
using less of the data, does take advantage of the fact that birth order is a
within-mother comparison. It exploits the correlation of birthweights within
a mom in order to make a more precise comparison. Of course, an even better
analysis is to use all of the data and accommodate the correlated structure of
the data, which we now proceed to do.

Analysis

To analyze the Georgia babies data set we need to make the decisions outlined
above. The outcome variable is continuous, so a logical place to start is to
assume it is approximately normally distributed. Fig. 8.2 shows boxplots of
birthweight by birth order, suggesting that the normality and equal variance
assumptions are reasonable. Fig. 8.1 has suggested entering birth order as a
linear function, which leaves us with the accommodation of the correlation
structure.
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Fig. 8.2. Boxplots of Birthweight (g) Versus Birth Order

The data are correlated because five birthweights come from each mother
and hence the clustering aspect is clear, leaving us with the decision as to
how to model the correlation of measurements taken through time. Fig. 8.3
gives a matrix plot of each birthweight against each of the others, while Table
8.8 gives the values of the correlation coefficients. Correlations with the first
birthweight might be a bit lower, but the graphs suggest that a tentative
assumption of all the correlations being equal would not be far off.

Table 8.8. Correlation of Birthweights for Different Birth Orders
. corr bweight1 bweight2 bweight3 bweight4 bweight5 (obs=200)

| bweight1 bweight2 bweight3 bweight4 bweight5
-------------+---------------------------------------------

bweight1 | 1.0000
bweight2 | 0.2282 1.0000
bweight3 | 0.2950 0.4833 1.0000
bweight4 | 0.2578 0.4676 0.6185 1.0000
bweight5 | 0.3810 0.4261 0.4233 0.4642 1.0000

8.4.2 Correlation Structures

Dealing with correlated data typically means making some type of assump-
tion about the form of the correlation among observations taken on the same
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Fig. 8.3. Matrix Plot of Birthweights for Different Birth Orders

subject, in the same hospital, on the same mouse, etc. For the Georgia babies
data set in the previous section, we noted that assuming all the correlations
to be equal might be a reasonable assumption. This form of correlation is
termed exchangeable and means that all correlations (except those variables
with themselves) are a common value, which is typically estimated from the
data. This type of structure is suitable when there is nothing to distinguish
one member of a cluster from another (e.g., patients within a physician) and
is the genesis for its name (patients within a doctor can be regarded as in-
terchangeable or exchangeable). This sort of assumption is appropriate in the
absence of other data structure, such as measurements taken through time or
space.

If measurements are taken through time on the same person it may be that
observations taken more closely in time are more highly correlated. Another
common correlation structure is the autoregressive structure, which exhibits
this feature. In the simplest form of an autoregressive process (first order or
AR(1)) the correlation between observations one time unit apart is a given
value ρ, that between observations two time units apart ρ2, three time units
apart ρ3, etc. Simple arithmetic calculation shows this drops off rapidly to
zero (e.g., 0.65 = 0.08), so this assumption would only be appropriate if the
correlation between observations taken far apart in time was small and would
not be appropriate in cases where stable-over-time characteristics generated
the association. For example, systolic blood pressure would be relatively stable
over time for an individual. Even though observations taken more closely
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together in time would be slightly more highly correlated, an exchangeable
correlation structure might come closer to the truth than an autoregressive
one.

Other, less structured, assumptions can be made. In Stata, other options
are unstructured, nonstationary, and stationary. All are related to the idea
of observations within a cluster being ordered, such as by time. As its name
suggests, the unstructured form estimates a separate correlation between ob-
servations taken on each pair of “times.” The nonstationary form is similar,
but assumes all correlations for pairs separated far enough in time are zero.
The stationary form assumes equal correlation for all observations a fixed time
apart and, like nonstationary, assumes correlations far enough apart in time
have correlation zero. For example, stationary of order 2 would assume that
observations taken at time points 1 and 3 would have the same correlation as
time points 2 and 4, but this might be different from the correlation between
observations taken at times 2 and 3. Also, correlations for observations 3 or
more time periods apart would be assumed to be zero.

If the correlation structure is not the focus of the analysis, it might seem
that the unstructured form is best, since it makes no assumptions about the
form of the correlation. However, there is a cost: even with a small number
of time points, we are forced to estimate quite a large number of correlations.
For instance, with measurements on five time points for each subject, there
are ten separate correlations to estimate. This can cause a decrease in the
precision of the estimated parameters of interest, or, worse yet, a failure in
being able to even fit the model.

This is especially true in situations where the data are not collected at rigid
times. For example, in the Nutritional Prevention of Cancer trials (Clark et al.,
1996), long-term follow-up was attempted every six months. But the intervals
varied widely in practice and quickly were out of synchronization. Estimation
of the correlations between all pairs of distinct times would require literally
hundreds of estimated correlations. Use of the unstructured, and, to some
extent, the stationary and nonstationary correlation assumptions should be
restricted to situations where there are large numbers of clusters, e.g., subjects,
and not very many distinct pairs of observation times.

Diagnosis and specification of the “correct” correlation structure is very
difficult in practice. One method of addressing these problems is via a working
correlation assumption and the use of “robust” standard errors, which is the
next topic.

8.4.3 Working Correlation and Robust Standard Errors

Given the difficulty of specifying the “correct” correlation structure, a com-
promise is possible using what are called robust standard errors. The idea is
to make a temporary or working assumption as to the correlation structure
in order to form the estimates but to adjust those estimates properly for the
correlation in the data. For example, we might temporarily assume the data
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are independent and conduct a standard logistic regression. The estimates
from the logistic regression will be fairly good, even when used with corre-
lated data, but the standard errors will be incorrect, perhaps grossly so. The
solution is to use the estimates but empirically estimate their proper standard
errors. Another possibility is to make a more realistic assumption, such as an
exchangeable working correlation structure; in some circumstances a gain in
efficiency may result.

Then, after the model coefficients have been estimated using the work-
ing correlation structure, within-subject residuals are used to compute robust
standard errors for the coefficient estimates. Because these standard errors are
based on the data (the residuals) and not the assumed working correlation
structure, they give valid (robust) inferences for large sized samples as long
as the other portions of the model (distribution, link and form of predictors)
are correctly specified, even if our working correlation assumption is incorrect.
Use of robust standard errors is not quite the same as using an unstructured
correlation since it bypasses the estimation of the correlation matrix to obtain
the standard errors directly. Avoiding estimation of a large number of correla-
tions is sometimes an advantage, though in cases where both approaches can
be used they often give similar results.

The key to the use of this methodology is to have sufficient numbers of
subjects or clusters so that the empirical estimate of the correlation is ade-
quate. The GEE approach, which goes hand in hand with estimation using
robust standard errors, will thus work best with relatively few time points
and relatively more subjects. It is hard to give specific guidelines, but this
technique could be expected to work well with 100 subjects, each measured at
5 time points but much less well with 20 subjects, each measured at 12 time
points, especially if the times were not the same for each subject.

8.4.4 Hypothesis Tests and Confidence Intervals

Hypothesis testing with GEE uses Wald tests, in which the estimates divided
by their robust standard errors are treated as approximately normal to form Z-
statistics. Likewise, approximate confidence intervals are based on normality
by calculating the estimate plus or minus 1.96 standard errors. Table 8.9
shows the analysis with an exchangeable working correlation structure and
robust standard errors. Some comments are in order about the form of the
command. xtgee is a regression type command with numerous capabilities.
In its basic form, exhibited in Table 8.9, it performs a linear regression (link of
identity) of birthweight (bweight) on birth order (birthord) and mother’s age
at first birth (initage) with an assumed exchangeable correlation structure
(corr(exch)) within mother (i(momid)). The robust option requests the use
of robust standard errors.

For the sake of comparison, Table 8.10 gives the analysis without robust
standard errors. There is little difference, though this is to be expected since
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Table 8.9. Generalized Estimating Equations Model With Robust Standard Errors

. xtgee bweight birthord initage, i(momid) corr(exch) robust

Iteration 1: tolerance = 7.180e-13

GEE population-averaged model Number of obs = 1000
Group variable: momid Number of groups = 200
Link: identity Obs per group: min = 5
Family: Gaussian avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(2) = 27.95
Scale parameter: 324458.3 Prob > chi2 = 0.000

(standard errors adjusted for clustering on momid)
------------------------------------------------------------------------------

| Semi-robust
bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
birthord | 46.608 10.02134 4.65 0.000 26.96653 66.24947
initage | 26.73226 10.1111 2.64 0.008 6.914877 46.54965

_cons | 2526.622 177.2781 14.25 0.000 2179.164 2874.081
------------------------------------------------------------------------------

Table 8.10. Generalized Estimating Equations Model Without Robust Standard
Errors

. xtgee bweight birthord initage, i(momid) corr(exch)

Iteration 1: tolerance = 7.180e-13

GEE population-averaged model Number of obs = 1000
Group variable: momid Number of groups = 200
Link: identity Obs per group: min = 5
Family: Gaussian avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(2) = 30.87
Scale parameter: 324458.3 Prob > chi2 = 0.000

(standard errors adjusted for clustering on momid)
------------------------------------------------------------------------------

| Semi-robust
bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
birthord | 46.608 9.944792 4.69 0.000 27.11657 66.09943
initage | 26.73226 8.957553 2.98 0.003 9.175783 44.28874

_cons | 2526.622 162.544 15.54 0.000 2208.042 2845.203
------------------------------------------------------------------------------

the preliminary look at the data suggested that the exchangeable assumption
would be a reasonable one.

Looking at the analysis with the robust standard errors, the interpretation
of the coefficient is the same as for a linear regression. With each increase of
initial age of one year, there is an associated increase in average birthweight
of about 26.7 g. This result is highly statistically significant, with a P -value
of 0.008.

Lest the reader think that the analysis is impervious to the correlational
assumptions, Table 8.11 shows what happens to the estimates and standard
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Table 8.11. Results for Initial Age by Type of Working Correlation and Standard
Error

Working Robust Coefficient Standard Z-statistic P -value
Correlation SE? estimate error
Independence No 26.73 5.60 4.78 0.000
Exchangeable No 26.73 8.96 2.98 0.003
Autoregressive(1) No 27.41 7.82 3.51 0.000

Independence Yes 26.73 10.11 2.64 0.008
Exchangeable Yes 26.73 10.11 2.64 0.008
Autoregressive(1) Yes 27.41 9.69 2.83 0.005

errors under three different correlation structures both with and without the
use of robust standard errors. As expected, the estimates are all similar (the
independence and exchangeable are equal because of the balanced nature of
the data – five observations per mom with the same values of birth order),
though there are slight variations depending on the assumed working correla-
tion. The estimates are unaffected by the use of robust standard errors.

However, the standard errors and hence Wald statistics and P -values are
quite different. Those using the incorrect assumptions of independence or
autoregressive structure (given in the rows without robust standard errors)
are too small, yielding Wald statistics and P -values that are incorrect (P -
values falsely small in this case, though they can, in general, be incorrect
in either direction). Looking at the rows corresponding to the use of robust
standard errors shows how the incorrect working assumptions of independence
or autoregressive get adjusted and are now much more alike. As with any
different methods of estimation slight differences do, however, remain.

8.4.5 Use of xtgee for Clustered Logistic Regression

As mentioned above, xtgee is a very flexible command. Another of its capa-
bilities is to perform logistic regression for clustered data. We again analyze
the Georgia birthweight data but instead use as our outcome the binary vari-
able low birthweight (lowbrth), which has value one if the birthweight is less
than 3,000 g and zero otherwise. Since the data are binary, we adapt xtgee
for logistic regression by specifying family(binomial) and link(logit). As
before, we specify i(momid) to indicate the clustering, corr(exch) for an
exchangeable working correlation, and robust to calculate robust standard
errors; also we add the option ef to get odds ratios instead of log odds. Table
8.12 displays the analysis. The estimated odds ratio for birth order is about
0.92, with the interpretation that the odds of a low-birthweight baby decrease
by 8% with each increase in birth order. We see that initage is still statis-
tically significant, but less so than in the analysis of actual birthweight. This
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Table 8.12. Generalized Estimating Equation Logistic Model
. xtgee lowbrth birthord initage, i(momid) corr(exch) family(binomial) link(logit)
> robust ef

Iteration 1: tolerance = .00603648
Iteration 2: tolerance = .00003423
Iteration 3: tolerance = 1.861e-07

GEE population-averaged model Number of obs = 1000
Group variable: momid Number of groups = 200
Link: logit Obs per group: min = 5
Family: binomial avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(2) = 10.64
Scale parameter: 1 Prob > chi2 = 0.0049

(standard errors adjusted for clustering on momid)
------------------------------------------------------------------------------

| Semi-robust
lowbrth | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
birthord | .9204098 .03542 -2.16 0.031 .8535413 .9925168
initage | .9148199 .0312663 -2.60 0.009 .8555464 .9781999

------------------------------------------------------------------------------

serves as a warning as to the loss of information possible by unnecessarily
dicohotomizing a variable.

8.5 Random Effects Models

The previous section discussed the use of generalized estimating equations for
the accommodation of correlated data. This approach is limited in that–

1. It is restricted to a single level of clustering.
2. It is not designed for inferences about the correlation structure.
3. It does not give predicted values for each cluster or level in the

hierarchy.

A different approach to this same problem is the use of what are called random
effects models.

First we need to consider two different modeling approaches that go by the
names marginal and conditional. These are two common modeling strategies
with which to incorporate correlation into a statistical model:

Marginal: Assume a model, e.g., logistic, that holds averaged over all
the clusters (sometimes called population-averaged). Coefficients
have the interpretation as the average change in the response (over
the entire population) for a unit change in the predictor. Alterna-
tively, we can think of the coefficient as the difference in the mean
values of randomly selected subjects that differ by one unit in the
predictor of interest (with all the others being the same).
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Conditional: Assume a model specific to each cluster (sometimes
called subject-specific). Coefficients have the interpretation as the
change in the response for each cluster in the population for a
unit change in the predictor. Alternatively, we can think of the
coefficient as representing the change within a subject when the
predictor of interest is increased by one (holding all the others
constant).

In the conditional modeling approach marginal information can be obtained
by averaging the relationship over all the clusters.

On the face of it these would seem to be the same. But they are not.
Here is a hypothetical example. Suppose we are modeling the chance that a
patient will be able to withstand a course of chemotherapy without serious
adverse reactions. Patients have very different tolerances for chemotherapy, so
the curves for individual subjects are quite different. Those patients with high
tolerances are shifted to the right of those with low tolerances (see Fig. 8.4).
The individual curves are subject-specific or conditional on each person. The
population average or marginal curve is the the average of all the individual
curves and is given by the solid line in Fig. 8.4 and has quite a different slope
than any of the individual curves. This emphasizes that is important to keep

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 T

ox
ic

 R
ea

ct
io

n

Chemotherapy Dose

Fig. 8.4. Marginal Versus Conditional Logistic Models

straight which type of model is being used so as to be able to provide proper
interpretations and comparisons.
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The generalized estimating equations approach most always (always when
using xtgee) fits a marginal model. Random effects models typically adopt
the conditional approach.

Conditional models are usually specified by declaring one or more of the
categorical predictors in the model to be random factors. (Otherwise they are
called fixed factors.) Models with both fixed and random factors are called
mixed models.

Definition: If a distribution is assumed for the levels of a factor it is
a random factor. If the values are fixed, unknown constants (to be
estimated as model coefficients) it is a fixed factor.

The declaration of a factor to be random has several ramifications:

• Scope of inference: Inferences can be made on a statistical basis
to the population from which the levels of the random factor have
been selected.

• Incorporation of correlation in the model: Observations that share
the same level of the random effect are being modeled as correlated.

• Accuracy of estimates: Using random factors involves making extra
assumptions but gives more accurate estimates.

• Estimation method: Different estimation methods must be used.

How do we decide in practice as to which factors should be declared random
versus fixed? The decision tree in Table 8.13 may be useful in deciding whether
the factor is to be considered as fixed or random.

8.5.1 Re-Analysis of Birthweight and Birth Order

For the Georgia babies data set, a random effects assumption for the moms is
quite reasonable. We want to regard these particular moms as a sample from a
larger sample of moms. Correspondingly the moms’ effects on birthweights are
easily envisioned as being selected from a distribution of all possible moms.

Stata has a number of commands for conducting random effects analyses;
we will focus on two of them: xtreg and xtlogit. The command structure
is similar to that for xtgee except that we specify mle to do the maximum
likelihood estimation for the random effects model.

The random effects model we fit is similar to that of (8.2):

BWEIGHTij = birthweight of baby j for mom i

= β0 + MOMi + β1BIRTHORDij + β2INITAGEi + εij ,

with

εij ∼ i.i.d N (0, σ2
ε) (8.8)

MOMi ∼ i.i.d N (0, σ2
u).
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Table 8.13. Decision Tree for Deciding Between Fixed and Random

Is it reasonable to assume levels of the factor come from
a probability distribution?

� �
No Yes

� �
Treat factor as fixed Treat factor as random

�
Where does interest lie?

� �
Only in the distribution of
the random effects

In both the distribution and
the realized values of the
random effects�

�
Estimate parameters of the
distribution of the random
effects

Estimate parameters of the
distribution of the random
effects and calculate predic-
tors of realized values of the
random effects

Table 8.14. Random Effects Linear Regression Model for Birthweight
. xtreg bweight birthord initage, i(momid) mle

Random-effects ML regression Number of obs = 1000
Group variable (i): momid Number of groups = 200
Random effects u_i ˜ Gaussian Obs per group: min = 5

avg = 5.0
max = 5

Wald chi2(2) = 30.38
Log likelihood = -7659.9893 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
birthord | 46.608 9.944555 4.69 0.000 27.11703 66.09897
initage | 26.73226 8.957566 2.98 0.003 9.175756 44.28877

_cons | 2526.622 162.5441 15.54 0.000 2208.042 2845.203
-------------+----------------------------------------------------------------

/sigma_u | 355.894 23.5171 15.13 0.000 309.8014 401.9867
/sigma_e | 444.7446 11.11795 40.00 0.000 422.9538 466.5354

-------------+----------------------------------------------------------------
rho | .3903754 .0349168 .3239581 .4601633

------------------------------------------------------------------------------
Likelihood ratio test of sigma_u=0:chibar2(01)=207.81 Prob>=chibar2=0.000
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Table 8.14 gives the analysis fitting this clustered data linear regression model.
For a linear regression model, the random effects assumption is equivalent to
an exchangeable correlation structure as demonstrated in (8.5). Furthermore,
for linear models with identity link functions, the marginal and conditional
models are equivalent. Hence the random effects analysis reproduces the anal-
ysis with an assumed exchangeable correlation structure as given in Table
8.10.

We do, however, have extra output in the random effects analysis. First,
the standard deviation of the mom effects, sigma u, is equal to 355.9, and
the within-mom correlation, rho, is 0.39. The interpretation of the standard
deviation of the mom effects is the standard deviation in the average birth-
weight across moms. Second is an estimate of the residual standard deviation
of 444.7. And third, a test of whether the mom to mom variation can be con-
sidered to be zero, which can be easily rejected using a χ̄2 test (given at the
bottom of the Stata output and labeled chibar2, short for chi-bar-squared),
which has a P -value of approximately 0.

8.5.2 Prediction

One of the advantages of the random effects approach is the ability to generate
predicted values for each of the random effects, which we do not get to observe
directly. For our example, this means predicted values for each of the mom
effects, MOMi.

First, let us consider how we might go about estimating the mom effect
from first principles. The first mom in the data set had an initial age of 15 and
hence, using the estimated coefficients from Table 8.14, has predicted values
for the five births (in g) of 2,974, 3,021, 3,067, 3,114, and 3,161 – for example
the first of these is 2.974 = 2,526.622 + 46.608(1) + 26.732(15) – and actual
values of 3,720, 3,260, 3,910, 3,320, and 2,480, respectively. Her residuals,
defined as actual minus predicted, were 746, 239, 843, 206, and −681, with
an average of 241. So we might guess that this mom has babies that are, on
average, about 241 g heavier than the “average” mom.

Using software to get the predicted effect (deviation from average) for the
first mom gives 206, only about 76% of the raw data value. Calculation for
the other moms shows that all the predicted values are closer to zero than the
raw data predicts. Why?

Predicted values from random effects models are so-called shrinkage esti-
mators because they are typically less extreme than estimates based on raw
data. The shrinkage factor depends on the degree of similarity between moms
and, for simple situations, is given by

shrinkage factor =
σ2

u

σ2
u + σ2

ε/ni
, (8.9)

where ni is the sample size for the ith cluster. In our case this is approximately
correct and that factor is equal to (taking the estimates from Table 8.14)



8.5 Random Effects Models 279

shrinkage factor =
355.8942

355.8942 + 444.74462/5

=
126660.5

126660.5 + 39, 559.6
= 0.76. (8.10)

It is instructive to consider the form of (8.9). Since all the terms in the
equation are positive, the shrinkage factor is greater than zero. Further, since
the denominator is bigger than the numerator by the factor σ2

ε/ni, the shrink-
age factor is less than 1. So it always operates to shrink the estimate from the
raw data to some degree.

What is the magnitude of the shrinkage? If σ2
u is much larger than σ2

ε/ni

then the shrinkage factor is close to 1, i.e., almost no shrinkage. This will
occur when–

• subjects are quite different (i.e., σ2
u is large);

• results are very accurate and σ2
ε is small;

• the sample size per subject, ni, is large.

So little shrinkage takes place when subjects are different or when answers are
accurate or when there is much data.

On the other hand, in cases where subjects are similar (and hence σ2
u is

small) there is little reason to believe that any individual person deviates from
the overall. Or in cases of noisy data (σ2

ε large) or small sample sizes, random
fluctuations can make up the majority of the raw data estimate of the effect
and are naturally de-emphasized with this shrinkage approach.

The advantage of the shrinkage predictions are twofold. First, they can
be shown theoretically to give more accurate predictions than those derived
from the raw data. Second (which is related), they use the data to balance
the subject-to-subject variability, the residual variance, and the sample size
to come up with the best combination of the subject-specific information and
the overall data.

Examples of uses of this prediction technology include prediction for
prostate cancer screening (Brant et al., 2003) and the use of shrinkage esti-
mators in the rating of individual physicians (Hofer et al., 1999) in treatment
of diabetes.

8.5.3 Logistic Model for Low Birthweight

Turning to the binary outcome variable lowbrth we use the Stata command
xtlogit. This model is similar to (8.8) with the needed changes for a logistic
model for binary data. This model is:

LOWBRTHij = 1 if baby j for mom i is < 3,000 g and 0 otherwise
∼ Bernoulli(pij)

with
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logit(pij) = β0 + MOMi + β1BIRTHORDij + β2INITAGEi, (8.11)

and

MOMi ∼ i.i.d N (0, σ2
u).

This analysis is given in Table 8.15 where we use the option re to invoke

Table 8.15. Random Effects Logistic Regression Model for Low Birthweight
. xtlogit lowbrth birthord initage, i(momid) re or nolog

Random-effects logistic regression Number of obs = 1000
Group variable (i): momid Number of groups = 200

Random effects u_i ˜ Gaussian Obs per group: min = 5
avg = 5.0
max = 5

Wald chi2(2) = 11.96
Log likelihood = -588.0519 Prob > chi2 = 0.0025

------------------------------------------------------------------------------
lowbrth | OR Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
birthord | .8872496 .0500749 -2.12 0.034 .7943382 .9910286
initage | .8798436 .0406491 -2.77 0.006 .8036736 .9632328

-------------+----------------------------------------------------------------
/lnsig2u | .9532353 .2088377 .543921 1.36255

-------------+----------------------------------------------------------------
sigma_u | 1.610617 .1681788 1.312535 1.976396

rho | .4408749 .0514794 .3436825 .5428204
------------------------------------------------------------------------------
Likelihood-ratio test of rho=0: chibar2(01) = 123.25 Prob >= chibar2 = 0.000

the random effects analysis and the option or to get odds ratios. This gives
somewhat different results than the GEE analysis, as expected, since it is
fitting a conditional model. More specifically (as predicted from Figure 8.4)
the coefficients in the conditional analysis are slightly farther from 1 than the
marginal coefficients, for example the odds ratio for birth order is now 0.89
as compared to 0.92 in the marginal model. The tests are, however, virtually
the same, which is not unusual.

The interpretation of the birthord coefficient in the conditional model
is that the odds of a low birthweight baby decreases by about 11% for each
increase of birth order of one for each woman.

This is opposed to the interpretation of the odds-ratio estimate from the
marginal fit given in Table 8.12 of 0.92. The interpretation in the marginal
model is the decrease in the odds (averaged across all women) is about 8%
with an increase in birth order of one.
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8.5.4 Marginal Versus Conditional Models

The previous section has demonstrated that, for nonlinear models like the
logistic model, it is important to distinguish between marginal and conditional
models since the model estimates are not expected to be equal. Conditional
models have a more mechanistic interpretation, which can sometimes be useful
(being careful, or course, to remember that many experiments do not strongly
support mechanistic interpretations, no matter what model is fit). Marginal
models have what is sometimes called a “public health” interpretation since
the conclusions only hold averaged over the entire population of subjects.

8.6 Example: Cardiac Injury Following Brain
Hemorrhage

Heart damage in patients experiencing brain hemorrhage has historically been
attributed to pre-existing conditions. However, more recent evidence suggests
that the hemorrhage itself can cause heart damage through the release of
norepinephrine following the hemorrhage. To study this, Tung et al. (2004)
measured cardiac troponin, an enzyme released following heart damage, at up
to three occasions after patients were admitted to the hospital for a specific
type of brain hemorrhage (subarachnoid hemorrhage or SAH).

The primary question was whether severity of injury from the hemorrhage
was a predictor of troponin levels, as this would support the hypothesis that
the SAH caused the cardiac injury. To make a more convincing argument in
this observational study, we would like to show that severity of injury is an
independent predictor, over and above other circulatory and clinical factors
that would predispose the patient to higher troponin levels. Possible clinical
predictors included age, gender, body surface area, history of coronary artery
disease (CAD), and risk factors for CAD. Circulatory status was described
using systolic blood pressure, history of hypertension (yes/no) and left ven-
tricular ejection fraction (LVEF), a measure of heart function. The severity
of neurological injury was graded using a subject’s Hunt-Hess score on admis-
sion. This score is an ordered categorical variable ranging from 1 (little or no
symptoms) to 5 (severe symptoms such as deep coma).

The study involved 175 subjects with at least one troponin measurement
and between 1 and 3 visits per subject. Fig. 8.5 shows the histogram of tro-
ponin levels. They are severely right-skewed with over 75% of the values equal
to 0.3, the smallest detectable value and many outlying values. For these rea-
sons, the variable was dicohotomized as being above or below 1.0. Table 8.16
lists the proportion of values above 1.0 for each of the Hunt-Hess categories
and Table 8.17 gives a more formal analysis using GEE methods, but includ-
ing only the predictor Hunt-Hess score and not using data from visits four
or greater (there were too few observations to use those for the later visits).
The reference group for the Hunt-Hess variable in this analysis is a score of 1,
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Fig. 8.5. Histogram of Cardiac Troponin Levels

Table 8.16. Proportion of Troponin Levels over 1.0 and Sample Size by Hunt-Hess
Score

. table hunt, c(mean CTover1 n CTover1)

----------------------------------------
Initial |
Hunt-Hess | mean(CTover1) N(CTover1)
----------+-----------------------------

1 | .0318471 157
2 | .0615385 65
3 | .1269841 126
4 | .1692308 65
5 | .6818182 22

----------------------------------------

corresponding to the least injury. So the odds of heart damage, as evidenced
by troponin values over 1, is over two times higher for a Hunt-Hess score of 2
as compared to 1 and the odds go up monotonically with the estimated odds
of heart damage for a Hunt-Hess score of 5 being over 70 times those of a
score of 1. Even though the odds ratio of a score of 5 is poorly determined,
the lower limit of the 95% confidence interval is still over 16.

The primary goal is to assess the influence of a single predictor variable,
Hunt-Hess score, which is measured only once per subject. Since it is only
measured once, rather than repeatedly, a marginal model and the use of GEE
methods is attractive. Since we are interested in a single predictor we will be
more liberal in including predictors for adjustment. We certainly would like
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Table 8.17. Effect of Hunt-Hess Score on Elevated Troponin Levels
. xi: xtgee CTo i.hunt if stday<4, i(stnum) family(binomial) ef

GEE population-averaged model Number of obs = 434
Group variable: stnum Number of groups = 168
Link: logit Obs per group: min = 1
Family: binomial avg = 2.6
Correlation: exchangeable max = 3

Wald chi2(4) = 39.03
Scale parameter: 1 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
CTover1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ihunt_2 | 2.036724 1.669731 0.87 0.386 .4084194 10.15682
_Ihunt_3 | 4.493385 2.820396 2.39 0.017 1.313088 15.37636
_Ihunt_4 | 6.542645 4.347658 2.83 0.005 1.778774 24.065
_Ihunt_5 | 70.66887 52.16361 5.77 0.000 16.63111 300.286

------------------------------------------------------------------------------

to adjust for the amount of time after the SAH occurred, as captured by the
visit number, stday, since troponin levels drop over time. We also want to
adjust for fundamental differences that might be due to age, sex, and body
surface area (bsa), which may be related to troponin levels.

In addition we choose to adjust for pre-existing conditions that might
influence the troponin levels, including left ventricular ejection fraction (lvef),
systolic blood pressure (sbp), heart rate (hr), and history of hypertension
(hxhtn). Quadratic functions of left ventricular ejection fraction (lvef2) and
systolic blood pressure (sbp2) are included to model nonlinear (on the logit
scale) relationships.

Table 8.18 gives the output after dropping some non-statistically signifi-
cant predictors from the model and using the xtgee command. It also gives
an overall test of whether troponin levels vary with Hunt-Hess score. Even
after adjustment for a multitude of characteristics, the probability of an ele-
vated troponin level is associated with Hunt-Hess score. However, the picture
is a bit different as compared to the unadjusted analysis. Each of the cate-
gories above 1 has an estimated elevated risk of troponin release, but it is not
a monotonic relationship. Also, only category 5, the most severely damaged
group, is statistically significantly different from category 1.

What is the effect of adjusting for the large number of predictors in this
model? Table 8.19 gives the analysis after adjusting only for stday. We see
that the pattern of estimated odds ratios as well as the standard errors are
similar to the unadjusted analysis, though the unadjusted analysis might have
overestimated the association with Hunt-Hess score slightly.

8.6.1 Bootstrap Confidence Intervals

We might also be concerned about the stability of the results reported in
Table 8.18 given the modest-sized data set with a binary outcome and the



284 8 Repeated Measures Analysis

Table 8.18. Adjusted Effect of Hunt-Hess Score on Elevated Troponin Levels
. xi: xtgee CTo i.hunt i.stday sex lvef lvef2 hxhtn sbp sbp2 if stday<4, i(stnum)
> family(binomial) ef

GEE population-averaged model Number of obs = 408
Group variable: stnum Number of groups = 165
Link: logit Obs per group: min = 1
Family: binomial avg = 2.5
Correlation: exchangeable max = 3

Wald chi2(12) = 44.06
Scale parameter: 1 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
CTover1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ihunt_2 | 1.663476 1.334533 0.63 0.526 .3452513 8.014895
_Ihunt_3 | 1.830886 1.211797 0.91 0.361 .5003595 6.699471
_Ihunt_4 | 1.560879 1.241708 0.56 0.576 .3282638 7.421908
_Ihunt_5 | 74.9901 69.48432 4.66 0.000 12.19826 461.0098

_Istday_2 | .5258933 .2163491 -1.56 0.118 .2348112 1.177813
_Istday_3 | .374303 .1753685 -2.10 0.036 .1494232 .9376232

sex | 8.242845 6.418322 2.71 0.007 1.791785 37.92001
lvef | 5.66e-14 5.59e-13 -3.09 0.002 2.28e-22 .000014

lvef2 | 1.68e+08 1.30e+09 2.45 0.014 43.94656 6.41e+14
hxhtn | 3.11661 1.572135 2.25 0.024 1.15959 8.376457

sbp | 1.143139 .0771871 1.98 0.048 1.001438 1.30489
sbp2 | .9995246 .0002293 -2.07 0.038 .9990753 .9999742

------------------------------------------------------------------------------

. testparm _Ihunt*

( 1) _Ihunt_2 = 0
( 2) _Ihunt_3 = 0
( 3) _Ihunt_4 = 0
( 4) _Ihunt_5 = 0

chi2( 4) = 23.87
Prob > chi2 = 0.0001

Table 8.19. Effect of Hunt-Hess Score on Elevated Troponin Levels Adjusting
Only for stday

. xi: xtgee CTo i.hunt i.stday if stday<4, i(stnum) family(binomial) ef

GEE population-averaged model Number of obs = 434
Group variable: stnum Number of groups = 168
Link: logit Obs per group: min = 1
Family: binomial avg = 2.6
Correlation: exchangeable max = 3

Wald chi2(6) = 40.75
Scale parameter: 1 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
CTover1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ihunt_2 | 2.136339 1.711752 0.95 0.343 .4442634 10.27306
_Ihunt_3 | 4.312505 2.68268 2.35 0.019 1.274157 14.59609
_Ihunt_4 | 6.41448 4.228072 2.82 0.005 1.762367 23.34676
_Ihunt_5 | 60.09793 44.25148 5.56 0.000 14.19385 254.4595

_Istday_2 | .5564922 .1968294 -1.66 0.098 .2782224 1.113079
_Istday_3 | .5170812 .2016593 -1.69 0.091 .2407654 1.110512

------------------------------------------------------------------------------
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large number of predictors. This is exactly a situation in which bootstrapping
can help understand the reliability of standard errors and confidence intervals.

Correspondingly, we conducted a bootstrap analysis and we focus on the
stability of the result for the comparison of Hunt-Hess score of 5 compared to
a value of 1. Bootstrapping is conducted for the log odds (which can be trans-
formed easily back to the odds scale) since that is the basis of the calculation
of confidence intervals.

A complication with clustered data is what to resample. By default, boot-
strapping will resample the individual observations. However, the basis of
sampling in this example (which is common to clustered data situations) is
subjects. We thus need to resample subjects not observations. Fortunately,
this can be controlled within Stata by using a cluster option on the boot-
strap command. Table 8.20 gives a portion of the output for two coefficients,
namely, the comparison of Hunt-Hess score 5 with 1 and the comparison of

Table 8.20. Bootstrap Confidence Intervals for Adjusted Hunt-Hess Model
. bootstrap ‘"xi: xtgee CTo i.hunt i.stday sex lvef lvef2 hxhtn sbp sbp2 if stday
> <4, i(stnum) family(bin)"’ _b, reps(1000) cluster(stnum)

Bootstrap statistics Number of obs = 408
N of clusters = 165
Replications = 1000

------------------------------------------------------------------------------
Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
-------------+----------------------------------------------------------------

...

b__Ihunt_5 | 743 4.317356 .6467686 1.36048 1.646507 6.988205 (N)
| 3.108775 7.89118 (P)
| 2.635067 6.01446 (BC)

b__Istday_2 | 743 -.6426569 -.2134325 .4667512 -1.558967 .2736533 (N)
| -1.816595 .04441 (P)

...

------------------------------------------------------------------------------
Note: N = normal

P = percentile
BC = bias-corrected

study day 2 with 1. The bias-corrected bootstrap for the Hunt-Hess compar-
ison gives a confidence interval ranging from 2.64 to 6.01 for the log odds,
which corresponds to a confidence interval from 13.9 (which is the exponen-
tial of 2.635) to 409.3. This compares with the interval from 12.2 to 461.0
from Table 8.18 in the original analysis. The results are quite similar and give
qualitatively the same results, giving us confidence in our original analysis.
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8.7 Summary

The main message of this chapter has been the importance of incorporating
correlation structures into the analysis of clustered, hierarchical, longitudinal
and repeated measures data. Failure to do so can have serious consequences.
Two main methods have been presented, generalized estimating equations and
random effects models.

8.8 Further Notes and References

For those readers desiring more detailed information on longitudinal and re-
peated measures analyses, there are a number of book-length treatments, es-
pecially for continuous, approximately normally distributed data. Notable en-
tries include Raudenbush and Bryk (2001), Goldstein (2003), Verbeke and
Molenberghs (2000), McCulloch and Searle (2000), Diggle et al. (2002), and
Fitzmaurice et al. (2004). Unfortunately many are more technical than this
book.

Missing data

The techniques in this chapter handle unequal sample sizes and unequal spac-
ing of observations in time with aplomb. However, sample sizes are often un-
equal and observation times unequal because of missing outcome data. And
data are often missing for a reason related to the outcome under study. As ex-
amples, sicker patients may not show up for follow-up visits, leading to overly
optimistic estimates based on the data present. Or those patients staying in
the hospital longer may be the sicker ones (with the better-off patients having
been discharged). This might lead us to the erroneous conclusion that longer
stays in the hospital produce poorer outcomes, so why check in in the first
place?

To a limited extent, the methods in this chapter cover the situation in
which the missing data are systematically different from the data available. If
the fact that data are missing is related to a factor in the model (i.e., more
missing data for males, which is also a factor in the model) then there is
little to worry about. However, the methods described here do not cover the
situation where the missing data are related to predictors not in the model
and can give especially misleading results if the fact the data are missing is
related to the value of the outcome that would have been measured.

Not surprisingly, it is difficult to build a reliable model for observations
that are missing in ways not predictable from the data on hand. At best,
models which attempt to correct for such missing data (called informative
missing data or data that are not missing at random) can be regarded as
sensitivity analyses. There is an extensive literature on these models, codified
in the book-length treatment by Little and Rubin (2002). Methods of analysis
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include various imputation (or filling in missing data) strategies, building
subsidiary models for the reasons why the data are missing (e.g., Diggle and
Kenward, 1994), and inverse weighting strategies (e.g., Preisser et al., 2000).

Computing

Stata has a wide array of clustered data techniques, but they are mainly lim-
ited to one level of clustering. So, for example, they can handle repeated mea-
sures data on patients, but not repeated measures data on patients clustered
within doctors. Other software packages and their extensions have additional
capabilities. For continuous, approximately normally distributed data, SAS
Proc MIXED can handle a multitude of models (Littell et al., 1996) and SAS
Proc GENMOD can fit models using generalized estimating equations and, for
binary data, can fit two-level clustered binary data with a technique called al-
ternating logistic regression (Carey et al., 1993). An add-in package for Stata,
called GLLAMM (Rabe-Hesketh et al., 2004) extends Stata’s capability to
two levels and allows outcomes of disparate distributions. MLWin and HLM
are two other clustered data packages with additional capabilities.

8.9 Problems

Problem 8.1. Using the fecal fat data in Table 8.1 calculate the sample vari-
ance of the subject averages. Subtract from this the residual variance estimate
from Table 8.3 divided by four (why four?) to verify the estimate of σ2

subj given
in the text.

Problem 8.2. Using the fecal fat data in Table 8.1 verify the F -tests dis-
played in Tables 8.2 and 8.3.

Problem 8.3. From your own area of interest, describe a hierarchical data set
including the outcome variable, predictors of interest, the hierarchical levels in
the data set and the level at which each of the predictors is measured. Choose
a data set for which not all of the predictors are measured at the same level
of the hierarchy.

Problem 8.4. Could you successfully analyze the data from the fecal fat
example using the idea of “analysis at the highest level of the hierarchy”?
Briefly say why or why not.

Problem 8.5. For the fecal fat example of Table 8.1 analyze the difference
between capsule and coated capsules in two ways. First use the “derived vari-
able” approach to perform a paired t-test. Second, in the context of the two-
way ANOVA of Table 8.3, test the contrast of coated vs. standard capsule.
How do the two analyses compare? What differences do you note? Why do
they come about? What are the advantages and disadvantages of each?
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Problem 8.6. Use formula (8.5) to verify the calculation of the correlation
(rho) displayed in Table 8.14.

Problem 8.7. Consider an example (like the Georgia birthweight example)
with before and after measurements on a subject. If the variability of the
before and after measurements each have variance σ2 and correlation ρ, then
it is a fact that the standard deviation of the difference is σ

√
2(1 − ρ).

1. The correlation of the first and last birthweights is about .381.
Using Table 8.4, verify the above formula (approximately).

2. If we were to compare two groups, based on the difference scores or
just the last birthweights (say, those with initial age greater than
17 versus those not), which analysis would have a larger variance
and hence be less powerful? By how much?

Problem 8.8. The model corresponding to the analysis for Table 8.6 has
an intercept, a dummy variable for the fifth birth, a continuous predictor
of centered age (age minus the average age) and the product of the dummy
variable and centered age.

1. Write down a model equation.
2. Verify that the intercept is the average for the first born, and that

the coefficient for the dummy variable is the difference between
the two groups, both of these when age is equal to its average.

3. Verify that the coefficient for the product measures how the change
in birthweight from first to last birth depends on age.

Problem 8.9. Verify the calculation of the predicted values and residuals in
Sect. 8.7.1.

Problem 8.10. Compare the bootstrap-based confidence interval for the
comparison of study day 1 and study day 2 from Table 8.20 to the confi-
dence interval from the original analysis reported in Table 8.18. Do the agree
substantively? Do they lead to different conclusions?

8.10 Learning Objectives

1. Recognize a hierarchical data situation and explain the consequences of
ignoring it.

2. Decide when hierarchical models are necessary versus when simpler anal-
yses will suffice.

3. Define the terms hierarchical, repeated measures, clustered, longitudinal,
robust variance estimator, working correlation structure, generalized esti-
mating equations, fixed factor, and random factor.

4. Interpret Stata output for generalized estimating equation and random
effects analyses in hierarchical analyses for linear regression or logistic
regression problems.
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5. Explain the difference between marginal and conditional models.
6. Decide if factors should be treated as fixed or random.
7. Explain the use of shrinkage estimators and best prediction for random

factors.
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Generalized Linear Models

A new program for depression is instituted in the hopes of reducing the number
of visits to the emergency room in the year following treatment. Predictors
include (among many others) treatment (yes/no), race, and drug, and alcohol
usage indices. A common and minimally invasive treatment for jaundice in
newborns is exposure to light. Yet the cost of this (mainly because of longer
hospital stays) was estimated as long ago as 1984 at over $600 per infant.
Predictors of the cost include race, gestational age, and birthweight.

These analyses require special attention both because of the nature of the
outcome variable (counts in the depression example and costs, which are pos-
itive and right-skewed, for the jaundice example) and because the models we
would typically employ are not the straightforward linear models of Chapter
4.

On the other hand, many features of constructing an analysis are the same
as we have seen previously. We have a mixture of categorical (treatment,
race) and continuous predictors (drug usage, alcohol usage, gestational age,
birthweight). There are the same issues of determining the goals of inference
(prediction, risk estimation, and testing of specific parameters) and winnowing
down of predictors to arrive at a final model as we discussed in Chapter 5.
And we can use tests and confidence intervals in ways that are quite similar
to those for previously described analyses.

We begin this chapter by discussing the two examples in a bit more detail
and conclude with a look at how those examples, as well as a number of earlier
ones, can be subsumed under the broader rubric of generalized linear models.

9.1 Example: Treatment for Depression

A new case-management program for depression is instituted in a local hos-
pital that often has to care for the poor and homeless. A characteristic of
this population is that they often access the health care system by arriving
in the emergency room – an expensive and overburdened avenue to receive
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treatment. Can the new treatment reduce the number of needed visits to the
emergency room as compared to standard care? The recorded outcome vari-
able is the number of emergency room visits in the year following treatment.

The primary goal of the analysis is to assess the treatment program, but
emergency room usage varies greatly according to whether the subjects are
drug or alcohol users. A secondary goal is to assess racial differences in usage
of the emergency room and impact of the new treatment.

9.1.1 Statistical Issues

From a statistical perspective, we need to be concerned with the nature of
the outcome variable: in the data set that motivated this example, about
one-third of the observations are 0 (did not return to the emergency room
within the year) and over half are either 0 or 1. This is highly non-normal and
cannot be transformed to be approximately normal – any transformation by
an increasing function will merely move the one-third of the observations that
are exactly 0 to another numerical value, but there will still be a “lump” of
observations at that point consisting of one-third of the data. For example, a
commonly recommended transformation for count data with zeros is log(y+1).
This transformation leaves the data equal to 0 unchanged since log(0 + 1) =
0 and moves the observations at 1 to log(1 + 1) = log(2), not appreciably
reducing the non-normality of the data. Over half the data take on the two
values 0 and log(2).

Even if we can handle the non-normal distribution, a typical linear model
(as in Chap. 4) for the mean number of emergency room visits will be un-
tenable. The mean number of visits must be a positive number and a linear
model, especially with continuous predictors, may, for extreme values of the
covariates, predict negative values. This is the same problem we encountered
with models for the probability of an event in Sect. 6.3.

Another bothersome aspect of the analysis is that this is a hard-to-follow,
transient population in generally poor health. It is not at all unusual to have
subjects die or be unable to be contacted for obtaining follow-up information.
So some subjects are only under observation (and hence eligible for showing
up for emergency room visits) for part of the year.

Since not all the subjects are followed for the same periods of time, it is
natural to think of a multiplicative model. In other words, if all else is equal,
a subject that is followed for twice as long as another subject will have, on
average, twice the emergency room utilization. This consideration, as well as
the desire to keep the mean response positive, leads us to consider a model
for the log of the mean response. Note that this is different from the mean of
the log-transformed responses (See Problem 9.1, also Sects. 4.6.6 and 4.7.5).

9.1.2 Model for the Mean Response

To begin to write down the model more carefully, define Yi as the number
of emergency room visits for patient i and let E[Yi] represent the average
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number of visits for a year. For the moment we will ignore the fact that the
observation periods are unequal. The model we are suggesting is

log E[Yi] = β0 + β1RACEi + β2TRTi + β3ALCHi + β4DRUGi, (9.1)

or equivalently (using an exponential, i.e., anti-log)

E[Yi] = exp{β0 + β1RACEi + β2TRTi + β3ALCHi + β4DRUGi}, (9.2)

Where β0 is an intercept, RACEi is 1 for non-whites and 0 for whites, TRTi is
1 for those in the treatment group and 0 for usual care, ALCHi is a numerical
measure of alcohol usage and DRUGi is a numerical measure of drug usage.
We are primarily interested in β2, the treatment effect.

Since the mean value is not likely to be exactly zero (otherwise there is
nothing to model), using the log function is mathematically acceptable (as
opposed to trying to log transform the original counts, many of which are
zero). Also, we can now reasonably hypothesize models like (9.1) that are
linear (for the log of the mean) in ALCHi and DRUGi since the exponential
in (9.2) keeps the mean value positive.

This is a model for the number of emergency room visits per year. What
if the subject is only followed for half a year? We would expect their counts
to be, on average, only half as large. A simple way around this problem is to
model the mean count per unit time instead of the mean count, irrespective
of the observation time. Let ti denote the observation time for the ith patient.
Then the mean count per unit time is E[Yi]/ti and (9.1) can be modified to
be

log(E[Yi]/ti) = β0 + β1RACEi + β2TRTi + β3ALCHi + β4DRUGi, (9.3)

or equivalently (using the fact that log[Y/t] = log Y − log t)

log E[Yi] = β0 + β1RACEi + β2TRTi + β3ALCHi + β4DRUGi + log ti. (9.4)

The term log ti on the right-hand side of (9.4) looks like another covariate
term, but with an important exception: there is no coefficient to estimate
analogous to the β3 or β4 for the alcohol and drug covariates. Thinking com-
putationally, if we used it as a predictor in a regression-type model, a sta-
tistical program like Stata would automatically estimate a coefficient for it.
But, by construction, we know it must enter the equation for the mean with
a coefficient of exactly 1. For this reason it is called an offset instead of a
covariate and when we use a package like Stata, it is designated as an offset
and not a predictor.

9.1.3 Choice of Distribution

Lastly, we turn to the non-normality of the distribution. Typically we describe
count data using the Poisson distribution. Directly modeling the data with a
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distribution appropriate for counts recognizes the problems with discreteness
of the outcomes (e.g, the “lump” of zeros). While the Poisson distribution is
hardly ever ultimately the correct distribution to use in practice, it gives us
a place to start.

We are now ready to specify a model for the data, accommodating the
three issues: non-normality of the data, mean required to be positive, and
unequal observation times. We start with the distribution of the data. Let
λi denote the mean rate of emergency room visits per unit time, so that the
mean number of visits for the ith patient is given by λiti. We then assume
that Yi has a Poisson distribution with log of the mean given by

log E[Yi] = log[λiti]
= log λi + log ti (9.5)
= β0 + β1RACEi + β2TRTi + β3ALCHi + β4DRUGi + log ti.

This shows us that the main part of the model (consisting of all the terms
except for the offset log ti) is modeling the rate of emergency room visits per
unit time:

log[λi] = β0 + β1RACEi + β2TRTi + β3ALCHi + β4DRUGi, (9.6)

or, exponentiating both sides,

λi = exp{β0 + β1RACEi + β2TRTi + β3ALCHi + β4DRUGi}. (9.7)

9.1.4 Interpreting the Parameters

The model in (9.7) is a multiplicative one, as we saw for the Cox model, and
has a similar style of interpretation. Recall that RACEi is 1 for non-whites and
0 for whites and suppose the race coefficient is estimated to be β̂1 = −0.5. The
mean rate per unit time for a white person divided by that of a non-white
(assuming treatment group, and alcohol and drug usage indices are all the
same) would be

exp{β0 + 0 + β2TRT + β3ALCH + β4DRUG}
exp{β0 − 0.5 + β2TRT + β3ALCH + β4DRUG}

=
eβ0e0eβ2TRTeβ3ALCHeβ4DRUG

eβ0e−0.5eβ2TRTeβ3ALCHeβ4DRUG

=
e0

e−0.5

= e0.5 ≈ 1.65. (9.8)

So the interpretation is that, after adjustment for treatment group and alcohol
and drug usage, whites tend to use the emergency room at a rate 1.65 that of
the non-whites. Said another way, the average rate of usage for whites is 65%
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higher than that for non-whites. Similar, multiplicative, interpretations apply
to the other coefficients.

In summary, to interpret the coefficients when modeling the log of the
mean, we need to exponentiate them and interpret them in a multiplicative
or ratio fashion. In fact, it is often good to think ahead to the desired type of
interpretation. Proportional increases in the mean response due to covariate
effects are sometimes the most natural interpretation and are easily incorpo-
rated by planning to use such a model.

9.1.5 Further Notes

Models like the one developed in this section are often called Poisson regression
models, named after the distribution assumed for the counts. A feature of the
Poisson distribution is that the mean and variance are required to be the same.
So, if the mean number of emergency room visits per year is 1.5, for subjects
with a particular pattern of covariates, then the variance would also be 1.5 and
the standard deviation would be the square root of that or about 1.23 visits
per year. Ironically, the Poisson distribution often fails to hold in practice since
the variability in the data often exceeds that of the mean. A common solution
(where appropriate) is to assume that the variance is proportional to the
mean, not exactly equal to it, and estimate the proportionality factor, which
is called the scale parameter , from the data. For example, a scale parameter
of 2.5 would mean that the variance was 2.5 times larger than the mean and
this fact would be used in calculating standard errors, hypothesis tests, and
confidence intervals. When the scale parameter is greater than 1, meaning that
the variance is larger than that assumed by the named distribution, the data
are termed overdispersed. Another solution is to choose a different distribution.
For example, the Stata package has a negative binomial (a different count
data distribution) regression routine, in which the variance is modeled as a
quadratic function of the mean.

The use of log time as an offset in model (9.5) may seem awkward. Why
not just divide each count by the observation period and analyze Yi/ti? The
answer is that it makes it harder to think about and specify the proper distri-
bution. Instead of having count data, for which there are a number of statisti-
cal distributions to choose from, we would have a strange, hybrid distribution,
with “fractional” counts, e.g., with an observation period of 0.8 of a year, we
would could obtain values of 0, 1.25 (which is 1 divided by 0.8), 2.5, 3.75, etc.
With a different observation period, a different set of values would be possible.

9.2 Example: Costs of Phototherapy

About 60% of newborns become jaundiced, i.e., the skin and whites of the
eyes turn yellow in the first few days after birth. Newborns become jaundiced
because they have an increase in bilirubin production due to increased red
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blood cell turnover and because it takes a few days for their liver (which helps
eliminate bilirubin) to mature. Newborns are treated for jaundice because of
the possibility of bilirubin-induced neurological damage. What are the costs
associated with this treatment and are costs also associated with race, the
gestational age of the baby, and the birthweight of the baby?

Our outcome will be the total cost of health care for the baby during its
first month of life. Cost is a positive variable and is almost invariably highly
skewed to the right. A common remedy is to log transform the costs and then
fit a multiple regression model. This is often highly successful as log costs are
often well-behaved statistically, i.e., approximately normally distributed and
homoscedastic. This is adequate if the main goal is to test whether one or
more risk factors are related to cost.

However, if the goal is to understand the determinants of the actual cost
of health care, then it is only the mean cost that is of interest (since mean cost
times the number of newborns is the total cost to the health care system). One
strategy is to perform the analysis on the log scale and then back transform
(using an exponential) to get things back on the original cost scale.

However, since the log of the mean is not the same as the mean of the log,
back-transforming an analysis on the log scale does not directly give results
interpretable in terms of mean costs. Instead they are interpretable as models
for median cost (Goldberger, 1968). The reasoning behind this is as follows.
If the log costs are approximately normally distributed, then the mean and
median are the same. Since monotonic transformations preserve medians (the
log of the median value is the median of the log values) back-transforming
using exponentials gives a model for median cost. There are methods for
getting estimates of the mean via adjustments to the back transformation
(Bradu and Mundlak, 1970) but there are also alternatives.

One alternative is to adopt the approach of the previous section: model
the mean and assume a reasonable distribution for the data. What choices
would we need to make for this situation?

A reasonable starting point is to observe that the mean cost must be posi-
tive. Additive and linear models for positive quantities can cause the problem
of negative predicted values and hence multiplicative models incorporating
proportional changes are commonly used. For cost, this is often a more natu-
ral characterization, i.e., “low birthweight babies cost 50% more than normal
birthweight babies” and is likely to be more stable than modeling absolute
changes in cost (locations with very different costs of care are unlikely to have
the same differences in costs, but may have the same ratio of costs). As in
the previous section, that would lead to a model for the log of the mean cost
(similar to but not the same as log-transforming cost).

9.2.1 Model for the Mean Response

More precisely, let us define Yi as the cost of health care for infant i during its
first month and let E[Yi] represent the average cost. Our model would then
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be
log E[Yi] = β0 + β1RACEi + β2TRTi + β3GAi + β4BWi, (9.9)

or equivalently (using an exponential)

E[Yi] = exp{β0 + β1RACEi + β2TRTi + β3GAi + β4BWi}, (9.10)

where β0 is an intercept, RACEi is 0 for whites and 1 for non-whites, TRTi

is 1 for those receiving phototherapy and 0 for those who do not, GAi is the
gestational age of the baby, and BWi is its birthweight. We are primarily
interested in β2, the phototherapy effect.

9.2.2 Choice of Distribution

The model for the mean for the jaundice example is virtually identical to
that for the depression example in Sect. 9.2. But the distributions need to be
different since cost is a continuous variable, while number of emergency room
visits is discrete. There is no easy way to know what distribution might be
a good approximation for such a situation, without having the data in hand.
However, it is often the case that the standard deviation in the data increases
proportionally with the mean. This situation can be diagnosed by looking at
residual plots (as described in Chap. 4) or by plotting the standard deviations
calculated within subgroups of the data versus the means for those subgroups.
In such a case, a reasonable choice is the gamma distribution, which is a
flexible distribution for positive, continuous variables that incorporates the
assumption that the standard deviation is proportional to the mean.

When we are willing to use a gamma distribution as a good approximation
to the distribution of the data, we can complete the specification of the model
as follows. We assume that Yi has a gamma distribution with mean, E[yi],
given by

log E[Yi] = β0 + β1RACEi + β2TRTi + β3GAi + β4BWi. (9.11)

9.2.3 Interpreting the Parameters

Since the model is a model for the log of the mean, the parameters have
the same interpretation as in the previous section. For example if β̂2 = 0.5
(positive since phototherapy increases costs) then the interpretation would be
that, adjusting for race, gestational age and birthweight, the cost associated
with babies receiving phototherapy was exp(0.5) ≈ 1.65 as high as those not
receiving it.

9.3 Generalized Linear Models

The examples in Sects. 9.2 and 9.3 have been constructed to emphasize the
similarity of the models (compare subsections 9.1.4 and 9.2.3) for two very
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different situations. So even with very different distributions (Poisson versus
gamma) and different statistical analyses, they have much in common.

A number of statistical packages, including Stata, have what are called
generalized linear model commands that are capable of fitting linear, logistic,
Poisson regression and other models. The basic idea is to let the data analyst
tailor the analysis to the data rather than having to transform or otherwise
manipulate the data to fit an analysis. This has significant advantages in
situations like the phototherapy cost example where we want to model the
outcome without transformation.

Fitting a generalized linear model involves making a number of decisions:

1. What is the distribution of the data (for a fixed pattern of covari-
ates)?

2. What function will be used to link the mean of the data to the
predictors?

3. Which predictors should be included in the model?

In the examples in the preceding sections we used Poisson and gamma
distributions, we used a log function of the mean to give us a linear model
in the predictors and our choice of predictors was motivated by the subject
matter. Note that choices on the predictor side of the equation are largely
independent of the first two choices.

In previous chapters, we have covered linear and logistic regression. In
linear regression we modeled the mean directly and assumed a normal dis-
tribution. This is using an identity link function, i.e., we modeled the mean
identically, without transforming it. In logistic regression, we modeled the log
of the odds, i.e., log(p/[1− p]), and assumed a binomial or binary outcome. If
the outcome is coded as zero for failure and one for success, then the average
of the zeros and ones is p, the probability of success. In that case we used a
logit link to link the mean, p, to the predictors.

Generalized linear model commands give large degrees of flexibility in the
choice of each of the features of the model. For example, current capabilities
in Stata are to handle six distributions (normal, binomial, Poisson, gamma,
negative binomial, and inverse gaussian), and ten link functions (including
identity, log, logit, probit, power functions)

9.3.1 Example: Risky Drug Use Behavior

Here is an example of modeling risky drug use behavior (sharing syringes)
among drug users. The outcome is the number of times the drug user shared
a syringe (shsyr) in the past month (values ranged from 0 to 60!) and we will
consider a single predictor, whether or not the drug user was homeless. Table
9.1 gives the results assuming a Poisson distribution. The Stata command,
glm, specifies a Poisson distribution and a log link. The output contains a
number of standard elements, including estimated coefficients, standard er-
rors, Z-tests, P -values, and confidence intervals. The homeless coefficient is
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highly statistically significant, with a value of about 0.605, meaning that be-
ing homeless is associated with exp(0.605) ≈ 1.83 times more use of shared
syringes.

Table 9.1. Count Regression Example Assuming a Poisson Distribution
. xi: glm shsyr i.homeless, family(poisson) link(log)
i.homeless _Ihomeless_0-1 (naturally coded; _Ihomeless_0 omitted)

Iteration 0: log likelihood = -305.54178
Iteration 1: log likelihood = -297.95538
Iteration 2: log likelihood = -297.9521
Iteration 3: log likelihood = -297.9521

Generalized linear models No. of obs = 27
Optimization : ML: Newton-Raphson Residual df = 25

Scale param = 1
Deviance = 496.8993451 (1/df) Deviance = 19.87597
Pearson = 599.1655782 (1/df) Pearson = 23.96662

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
Standard errors : OIM

Log likelihood = -297.9520971 AIC = 22.21867
BIC = 414.5034234

------------------------------------------------------------------------------
shsyr | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ihomeless_1 | .6047529 .1218444 4.96 0.000 .3659422 .8435636

_cons | 2.186051 .1059998 20.62 0.000 1.978296 2.393807
------------------------------------------------------------------------------

However, these data are highly variable and the Poisson assumption of
equal mean and variance is dubious. If we specify the scale(x2) option,
which estimates the scale parameter using the Pearson residuals, then the
standard errors are increased by the square root of 23.9662, or about 4.9
times. In the terminology of generalized linear models, these data are highly
overdispersed, because the variance is much larger than that assumed for
a Poisson distribution. Table 9.2 gives the results with the scaled standard
errors, which are no longer statistically significant.

This example serves as a warning not to make strong assumptions, such
as those embodied in using a Poisson distribution, blindly. It is wise at least
to make a sensitivity check by estimating the scale parameter for count data
as well as for binomial data with denominators other than 1 (with binary
data, with a denominator of 1, no overdispersion is possible). Also, when
there are just a few covariate patterns and subjects can be grouped according
to their covariate values, it is wise to plot the variance within such groups
versus the mean within the group to display the variance to mean relationship
graphically.
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Table 9.2. Count Regression Example With Scaled Standard Errors
. xi: glm shsyr i.homeless, family(poisson) link(log) scale(x2)
i.homeless _Ihomeless_0-1 (naturally coded; _Ihomeless_0 omitted)

Iteration 0: log likelihood = -305.54178
Iteration 1: log likelihood = -297.95538
Iteration 2: log likelihood = -297.9521
Iteration 3: log likelihood = -297.9521

Generalized linear models No. of obs = 27
Optimization : ML: Newton-Raphson Residual df = 25

Scale param = 1
Deviance = 496.8993451 (1/df) Deviance = 19.87597
Pearson = 599.1655782 (1/df) Pearson = 23.96662

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]
Standard errors : OIM

Log likelihood = -297.9520971 AIC = 22.21867
BIC = 414.5034234

------------------------------------------------------------------------------
shsyr | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ihomeless_1 | .6047529 .5964981 1.01 0.311 -.5643619 1.773868

_cons | 2.186051 .5189296 4.21 0.000 1.168968 3.203135
------------------------------------------------------------------------------
(Standard errors scaled using square root of Pearson X2-based dispersion)

9.3.2 Relationship of Mean to Variance

The key to use of a generalized linear model program is the specification of the
relationship of the mean to the variance. This is the main information used
by the program to fit a model to data when a distribution is specified. As
noted above, this relationship can often be assessed by residual plots or plots
of subgroup standard deviations versus means. Table 9.3 gives the assumed
variance to mean relationship, distributional name, and situations in which
the common choices available in Stata would be used.

9.3.3 Nonlinear Models

Not every model fits under the generalized linear model umbrella. Use of
the method depends on finding a transformation of the mean for which the
predictors enter as a linear model, which may not always be possible. For
example, a common model in drug pharmacokinetics is to model the mean
concentration of the drug in blood, Y, as a function of time, t, using the
following model:

E[Y ] = µ1 exp{−λ1t} + µ2 exp{−λ2t}. (9.12)

In addition to time, we might have other predictors such as drug dosage or
gender of the subject. However, there is no transformation that will form a
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Table 9.3. Common Distributional Choices for Generalized Linear Models in Stata

Distribution Variance to Mean a Sample situation
Normal Constant σ2 Linear regression
Binomial σ2 = nµ(1 − µ) Successes out of n trials
ODb Binomial σ2 ∝ nµ(1 − µ) Clustered success data
Poisson σ2 = µ Count data, variance equals mean
OD Poisson σ2 ∝ µ Count data, variance proportional

to mean
Negative binomial σ2 = µ + µ2/k Count data, variance quadratic in

the mean
Gamma σ ∝ µ Continuous data, standard devia-

tion proportional to mean

aMean is denoted by µ and the variance by σ2

bOver-dispersed

linear predictor, even without the inclusion of dose and gender effects, and so
a generalized linear model is not possible.

9.4 Summary

The purpose of this chapter has been to outline the topic of generalized lin-
ear models, a class of models capable of handling a wide variety of analysis
situations. Specification of the generalized linear model involves making three
choices:

1. What is the distribution of the data (for a fixed pattern of covari-
ates)? This must be specified at least up to the the variance to
mean relationship.

2. What function will be used to link the mean of the data to the
predictors?

3. Which predictors should be included in the model?

Generalized linear models are similar to linear, logistic, and Cox models in that
much of the work in specifying and assessing the predictor side of the equation
is the same no matter what distribution or link function is chosen. This can be
especially helpful when analyzing a study with a variety of different outcomes,
but similar questions as to what determines those outcomes. For example, in
the depression example we might also be interested in cost, with a virtually
identical model and set of predictors.

9.5 Further Notes and References

There are a number of book-length treatments of generalized linear models,
including Dobson (2001) and McCullagh and Nelder (1989). In Chapter 8 we
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extended the logistic model to accommodate correlated data by the use of
generalized estimating equations and by including random effects. The gener-
alized linear models described in this chapter can similarly be extended and
the xtgee command in Stata and GENMOD procedure in SAS can be used
with a variety of distributions for generalized estimating equations fits. Ran-
dom effects models can be estimated for a number distributions using the
cross-sectional time-series commands in Stata (these commands are prefixed
by xt) and with the NLMIXED procedure in SAS.

9.6 Problems

Problem 9.1. We made the point in Sect. 9.2 that a log transformation would
not alleviate non-normality. Yet we model the log of the mean response. Let’s
consider the differences.

1. First consider the small data set consisting of 0, 1, 0, 3, 1. What
is the mean? What is the log of the mean? What is the mean of
the logs of each data point?

2. Even if there are no zeros, these two operations are quite different.
Consider the small data set consisting of 2, 3, 32, 7, 11. What is
the log of the mean? What is the mean of the logs of the data?
Why are they different?

3. Repeat the above calculation, but using medians.

Problem 9.2. What would you need to add to model (9.5) to assess whether
the effect of the treatment was different in whites as compared to non-whites?

Problem 9.3. Suppose the coefficient for β̂2 in (9.6) was −0.2. Provide an
interpretation of the treatment effect.

Problem 9.4. For each of the following scenarios, describe the distribution
of the outcome variable (Is it discrete or approximately continuous? Is it
symmetric or skewed? Is it count data?) and which distribution(s) might be
a logical choice for a generalized linear model.

1. A treatment program is tested for reducing drug use among the
homeless. The outcome is injection drug use frequency in the past
90 days. The values range from 0 to 900 with an average of 120, a
median of 90, and a standard deviation of 120. Predictors include
treatment program, race (white/non-white), and sex.

2. In a study of detection of abnormal heart sounds the values of
brain natriurtic peptide (BNP) in the plasma are measured. The
outcome, BNP, is sometimes used as a means of identifying pa-
tients who are likely to have signs and symptoms of heart failure.
The BNP values ranged from from 5 to 4,000 with an average
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of 450, a median of 150, and a standard deviation of 900. Pre-
dictors include whether an abnormal heart sound is heard, race
(white/non-white), and sex.

3. A clinical trial was conducted at four clinical centers to see if
alendronate (a bone-strengthening medication) could prevent ver-
tebral fractures in elderly women. The outcome is total number
of vertebral fractures over the follow-up period (intended to be
5 years for each woman). Predictors include drug versus placebo,
clinical center, and whether the woman had a previous fracture
when enrolled in the study.

Problem 9.5. For each of the scenarios outlined in Problem 9.4, write down
a preliminary model by specifying the assumed distribution, the link function,
and how the predictors are assumed to be related to the mean.

9.7 Learning Objectives

1. State the advantage of using a generalized linear models approach.
2. Given an example, make reasonable choices for distributions and link func-

tions.
3. Given output from a generalized linear models routine, state whether pre-

dictors are statistically significant and provide an interpretation of their
estimated coefficients.
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Complex Surveys

Suppose we wanted to estimate the prevalence of diabetes among adults in
the U.S., as well as the effects of diabetes risk factors in this broad target
population, both with minimum bias – that is, in such a way that the estimates
were truly representative of the target population. Observational cohorts that
might be used for these purposes are usually convenience samples, and are
often selected from subsets of the population at elevated risk. This would
make it difficult to generalize sample diabetes prevalence to the broader target
population. We might be more comfortable assuming that sample associations
between risk factors and diabetes were valid for the broader population, but
the assumption would be hard to check (Problem 10.1).

Observational studies as well as randomized trials use convenience samples
for compelling reasons, among them reducing cost and optimizing internal
validity. But when unbiased representation of a well-defined target population
is of paramount importance, special methods for obtaining and analyzing the
sample must be used. Crucial features of such a study are that all members of
the target population must have some chance of being selected for the sample,
and that the probability of inclusion can be defined for each element of the
sample. Using data from a sample which meets these two criteria, we could in
principle compute unbiased estimates of the number and percent prevalence
of diabetes cases in the U.S. adult population, as well as of the effects of
measured diabetes risk factors.

Studies implemented by the National Center for Health Statistics (NCHS),
including the National Health and Nutrition Examination Survey (NHANES),
the National Hospital Discharge Survey (NHDS), and the National Ambula-
tory Medical Care Survey (NAMCS), are prominent examples of surveys that
meet these criteria.

However, obtaining representative samples, even from a local population of
interest, as in the San Francisco Men’s Health Study (Winkelstein et al., 1987),
is a difficult and expensive undertaking. To reduce costs, a complex sampling
design is often used. Essentially this means initially sampling clusters, known
as primary sampling units (PSUs), rather than individuals; only at some later
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stage are individual study participants selected. This is in contrast to a simple
random sample (SRS), in which individuals are directly and independently
sampled.

From Chapter 8, it should be clear that the initial sampling of clusters
may affect precision, because outcomes for the observations within a cluster
are positively correlated in most cases. The change in precision means that
for many purposes a larger sample will be required to achieve a given level of
statistical certainty. Nonetheless, the complex survey design is cost-effective,
because cluster sampling can be implemented in concentrated geographic ar-
eas, rather than having to cover the entire area where the target population
is found. Moreover, some of the information required to define probability
of inclusion need only be obtained for the selected clusters. Especially for
nationally representative samples, the savings can be considerable.

In multi-stage designs, there may be several levels of cluster sampling; for
example, counties may initially be sampled, and then census tracts within
counties, city blocks with census tracts, and households within blocks. Only
at the final stage are individual study participants sampled within house-
holds. The rationale is again to reduce costs by making the survey easier to
implement.

An additional feature of many complex surveys is that clusters may be
selected from within mutually exclusive and exhaustive strata, usually geo-
graphic, which cover the entire target population. To the extent that subsets
of the target populations are more similar within than across strata, the result
is increased precision.

Another feature of many complex surveys is unequal probability of inclu-
sion. In some cases, subgroups of special interest may be oversampled: that is,
they are sampled at higher rates, so that they comprise a larger proportion of
the sample than they do of the target population. The rationale is to ensure
adequate precision of estimates both within the subgroup and in contrast-
ing the subgroup to other parts of the larger population, by increasing their
numbers in the sample.

As a result of their design, complex surveys can provide almost unbiased
and often very precise estimates of the parameters of a target population. How-
ever, to obtain these estimates and compute valid standard errors, confidence
intervals, and P -values, such surveys have to be analyzed using methods that
take account of the special features of the design. In particular, the analysis
must account for

• stratification
• cluster sampling
• probability of inclusion.

Fortunately a number of software packages make it straightforward to carry
out descriptive as well as multipredictor regression analyses using complex
survey data. These packages include

• Stata (Stata Corp., College Station, TX; www.stata.com),
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• SUDAAN (Research Triangle Institute, Research Triangle Park,
NC; www.rti.org),

• SAS (SAS Institute, Cary, NC; www.sas.com),
• WESVAR (Westat, Inc., Rockville MD; www.westat.com).

In the following sections we give an overview of how these packages account
for the special features of a complex design.

10.1 Example: NHANES

The National Health and Nutrition Examination Survey (NHANES) is a se-
ries of complex, multi-stage probability samples representative of the civilian,
non-institutionalized U.S. population. Interviews and physical exams are used
to ascertain a wide range of demographic, risk-factor, laboratory, and disease
outcome variables. In NHANES III, conducted between 1988 and 1994, the
PSUs were primarily counties. Thirteen large PSUs were selected with cer-
tainty, and the remaining 68 were selected with probability proportional to
PSU population size, two from each of 34 geographic strata. At the second
stage of cluster sampling in NHANES III, area segments, often composed of
city or suburban blocks, were selected. In the first half of the survey, spe-
cial segments were defined for new housing built since the 1980 census, so
that no portion of the target population would be systematically excluded;
in the second half, more recent information from the 1990 census made this
unnecessary. The third stage of sampling was households, which were carefully
enumerated within the area segments. At the fourth and final stage, survey
participants were selected from within households.

At each stage sampling rates were controlled so that the probability of
inclusion for each participant could be precisely estimated. Children and peo-
ple over 65 as well as African Americans and Mexican Americans were over-
sampled. Almost 34,000 people were interviewed and of these roughly 31,000
participated in the physical exam. NHANES data are available from the NCHS
website http://www.cdc.gov/nchs and can be properly analyzed using any
of the four major software packages with routines for complex surveys. Data
from NHANES III have been used in many epidemiologic and clinical inves-
tigations.

10.2 Probability Weights

We pointed out that in selecting a representative sample, every member of the
target population has to have some chance of being selected for the sample.
To put it another way, no part of the target population can be systemati-
cally excluded. In addition, we said that for every element of the sample, the
probability of having been selected must be known. Essentially this is what
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is meant by a “probability sample.” Analysis of such samples makes use of
information about probability of inclusion to produce unbiased estimates of
the parameters of the target population.

To see how this works, consider a simple random sample of size 100, drawn
at random from a target population of size 100,000. In this simple case, each
member of the sample had a one-in-a-thousand chance of being included in the
sample. We would say that the sampling fraction, another term for the proba-
bility of inclusion, was 0.001 for this sample, and constant across observations.
Furthermore, we could think of each member of the sample as “representing”
1,000 members of the target population.

If we wanted to estimate the percent prevalence of diabetes in the target
population, the proportion with diabetes in the sample would work fine in this
case, for reasons that we explain below. Likewise the average age of the sample
would be an unbiased estimate of mean age in the population. But consider
the more interesting case of estimating the number of diabetics in the popu-
lation. Suppose there were five diabetics in the sample. Since each represents
1,000 members of the target population, an unbiased (though obviously noisy)
estimate of the population number of diabetics would be 5,000.

Essentially what we have done is to compute a “weighted” sum of the
number of the diabetics in the sample, where each gets weight 1,000, or the
number in the population that each sample participant represents. Formally,
the weight is the reciprocal of the sampling fraction of 0.001. Note that the
overall sum of these sample “probability” weights equals the population size.

Definition: Probability weights are the reciprocal of the probability of
inclusion, and are intepretable as the number of elements in the target
population which each sampled observation “represents.”

Now consider the more typical case where the probability of inclusion varies
across participants. To make this concrete, suppose that women and men each
number 100,000 in the target population, but that the sample includes 100
women and 200 men, for sampling fractions of 0.001 and 0.002, respectively.
In this sample each woman represents 1,000 women in the population, but
each man represents only 500 men.

In this case, to estimate means for the whole target population, we would
need to use weighted sample averages. These would no longer equal their
unweighted counterparts, in which women would be under-represented. The
formula for the weighted average is

Êw[Y ] =
∑

i wiyi∑
i wi

, (10.1)

where Êw[Y ] denotes the weighted average of the outcome variable Y , yi

is the value of Y for participant i, and wi is the corresponding probability
weight. You can demonstrate for yourself that if all the weights are equal
(wi ≡ w), then the weighted average reduces to the usual sample average∑

i yi/n (Problem 10.2).
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Furthermore, if Y were a binary indicator variable coded 1 = diabetic
and 0 = non-diabetic, then (10.1) also holds for estimating the population
proportion with diabetes. As we pointed in Sect. 4.3, this equivalence between
averages and proportions only holds with the 0-1 indicator coding of Y .

In addition, with this coding of Y , the weighted estimate of the total
number in the population with diabetes is simply

∑
wiyi – the sum of the

weights for the diabetics in the sample.
Analogous weighting in inverse proportion to sampling probabilities is eas-

ily extended to multipredictor linear, logistic, and Cox regression analyses.
And all statistical packages suitable for analyses of complex survey data make
it easy to account for the weights.

In every case, taking account of the weights, which are included in the
NHANES, NHDS, NAMCS, and other NCHS data sets, is essential for obtain-
ing unbiased estimates. The differences between the weighted and unweighted
estimates can be considerable. For example, the unweighted proportion with
diabetes among adult respondents in NHANES III is 7.4%, but the weighted
proportion is 4.8%. While this is not an immediately striking difference in per-
centage point terms, the corresponding unweighted estimate of the number of
adult diabetics at the time of NHANES III was 12.5 million, as compared to
a weighted estimate of 8.1 million – obviously not a trivial difference.

In NHANES as in many complex surveys, the probability weights are ad-
justed to account for non-response in such a way as to minimize the potential
for bias. The non-response rates in NHANES III were 17% for the interview
and 21% for the physical exam – acceptably low for a contemporary survey,
but substantial enough to introduce bias. The potential for bias arises because
the non-responders usually differ systematically from responders; that is, the
non-responders are not missing completely at random.

Specifically, the adjustment of the weights is carried out within relatively
homogeneous demographic subgroups, within which it is reasonable to suppose
that the non-responders more nearly resemble the responders. In formal terms,
we assume that within subgroups, the data for the non-responders are missing
at random. In practical terms, the weights for the responders are inflated
by a fixed factor for each subgroup such that the adjusted weights for the
responders sum to the subgroup total of the original probability weights for
both responders and non-responders. In NHANES a second post-stratification
adjustment is made to ensure that the weights sum appropriately to regional
totals for the target population, which are known from the U.S. Census.

A final note on probability weights: these should be distinguished from
variance weights, which are used when the variance of the outcome differs
across observations. This happens when the outcome is an average of multiple
measurements, as is commonly done with noisy variables like blood pressure.
In a sample where the number of measurements contributing to the average
varies across participants, outcomes based on larger numbers of measurements
will be relatively precise. An efficient analysis will weight the more precise
outcomes more heavily – in proportion to the number of measurements each



310 10 Complex Surveys

represents. Variance weights (in Stata called analytic weights or aweights)
do this. Use of variance weights has the same effect on point estimates as use
of probability weights, but the resulting standard errors, confidence intervals,
and P -values would not be correct for complex survey data.

Taking account of the probability weights in analyzing a complex survey
is primarily required to ensure that the resulting estimates are unbiased (or
nearly so) for the parameters of the target population. The survey regres-
sion routines in Stata, SUDAAN, and SAS accommodate probability weights.
Closely related to the generalized estimating equation (GEE) methods with
independence working correlation introduced in Chapter 8, these routines give
estimates (but not standard errors) identical to the estimates that would be
obtained from standard regression routines that accommodate weights. A sec-
ondary effect is that weighting may inflate the standard errors, but this is only
substantial if the weights are highly variable across observations.

10.3 Variance Estimation

In contrast to accounting for the probability weights, which is required mainly
to avoid bias, taking account of the stratification and clustering of observa-
tions due to the complex sampling design is required solely to get the standard
errors, confidence intervals, and P -values right, and has no effect on the point
estimates. Unlike the point estimates, standard errors accounting for the spe-
cial characteristics of a complex survey do differ from what would be obtained
in standard weighted regression routines, sometimes in ways that are crucial
to the conclusions of the analysis. In fact, they are essentially the “robust”
standard errors provided by GEE regression routines, and thus account, as
with longitudinal and hierarchical data, for clustering. In Stata, the main dif-
ference is that for testing whether each estimated regression coefficient differs
from zero, the survey routines use a t-test with degrees of freedom equal to
the number of PSUs minus the number of strata, rather than the asymptotic
Z-test used in GEE. In addition, stratification is taken into account, but the
effect is usually slight. For reference, this method of obtaining standard errors,
confidence intervals, and P -values is referred to as Taylor series linearization.

Table 10.1 shows three logistic models for prevalent diabetes estimated
using data from NHANES III. The predictors are age (per 10 years), ethnicity,
and sex. The reference group for ethnicity is whites. Note that the odds-
ratio estimates given by unweighted logistic regression (Model 1) differ both
quantitatively and qualitatively from the results of the weighted and survey
analyses (Models 2 and 3), which are identical. In the unweighted model,
women appear to be at about 20% higher risk, but this does not hold up after
accounting for probability of inclusion; similarly, the increased risk among
African Americans and Mexican Americans is less substantial after accounting
for the weights. The standard errors differ across all three models, in part
because the survey model takes proper account of clustering within PSUs. In
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Table 10.1. Unweighted, Weighted, and Survey Logistic Models for Diabetes
* Model 1: Unweighted logistic model ignoring weights and clustering

Logit estimates Number of obs = 18140
LR chi2(5) = 1148.81
Prob > chi2 = 0.0000

Log likelihood = -4206.1375 Pseudo R2 = 0.1202
------------------------------------------------------------------------------

diabetes | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age10 | 1.679618 .0284107 30.66 0.000 1.624847 1.736235
aframer | 2.160196 .1651838 10.07 0.000 1.859535 2.50947
mexamer | 2.784521 .2125534 13.42 0.000 2.39759 3.233896

othereth | 1.25516 .2297553 1.24 0.214 .8767739 1.796843
female | 1.200066 .0713788 3.07 0.002 1.068013 1.348447

------------------------------------------------------------------------------

* Model 2: Weighted logistic model, still ignoring clustering

Logit estimates Number of obs = 18140
LR chi2(5) = 783.05
Prob > chi2 = 0.0000

Log likelihood = -3092.1644 Pseudo R2 = 0.1124
------------------------------------------------------------------------------

diabetes | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age10 | 1.704453 .0344345 26.39 0.000 1.638282 1.773297
aframer | 1.823747 .1883457 5.82 0.000 1.489559 2.232912
mexamer | 1.915197 .3011782 4.13 0.000 1.407201 2.606579

othereth | 1.031416 .1599616 0.20 0.842 .7610644 1.397803
female | .9805769 .0706968 -0.27 0.786 .8513584 1.129408

------------------------------------------------------------------------------

* Model 3: survey model accounting for weights, stratification, and clustering.

pweight: wtpfqx6 Number of obs = 18140
Strata: sdpstra6 Number of strata = 49
PSU: sdppsu6 Number of PSUs = 98

Population size = 1.685e+08
F( 5, 45) = 80.86
Prob > F = 0.0000

------------------------------------------------------------------------------
diabetes | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age10 | 1.704453 .0479718 18.95 0.000 1.610726 1.803634

aframer | 1.823747 .1840178 5.96 0.000 1.489031 2.233704
mexamer | 1.915197 .1934744 6.43 0.000 1.563321 2.346276

othereth | 1.031416 .2259485 0.14 0.888 .6641163 1.601855
female | .9805769 .0921773 -0.21 0.836 .8117843 1.184466

------------------------------------------------------------------------------

summary, accounting for probability of inclusion affects the point estimates
and secondarily the standard errors, while accounting for stratification and
clustering only affects the latter.

Stata makes it easy to run a regression analysis taking account of the
special features of a complex survey. Variables giving the stratum, PSU, and
probability weight for each observation are first specified using the svyset
command. Then logistic regression is run using the svylogit command, which
is similar in almost every respect to the logit and logistic commands used
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for ordinary logistic regression analysis of a binary outcome from a simple
random sample. Analogous svy regression commands are provided for linear,
Poisson, negative binomial, and other commonly used regression models.

10.3.1 Design Effects

Because of positive correlation with clusters, the standard errors of param-
eter estimates from a complex survey are often (but not always) inflated as
compared to estimates from a simple random sample of the same size. This
inflation can be summarized by a design effect:

Definition: The design effect is the ratio of the true variance of a pa-
rameter estimate from a complex survey to the variance of the estimate
if it were based on data from a simple random sample.

Note that design effects can vary for different parameters estimated in the
same survey, because some predictors may be more highly concentrated and
outcomes more highly correlated within clusters than others. Furthermore,
design effects in regression may vary with the degree to which the regression
effect is estimated by contrasting observations within as opposed to between
clusters, as we show below.

Most of the survey routines in Stata optionally provide estimates of the
design effect for each parameter estimate. In the survey logistic model for
prevalent diabetes shown in Table 10.1, the design effects are 2.7 for age, 0.9
for African American, 0.4 for Mexican American, 2.0 for other ethnicity, and
1.7 for sex. The increase in precision for the coefficient for Mexican Americans
results from the strong concentration of this subgroup in a few PSUs, so that
the comparison with whites rests primarily on within-cluster contrasts. In
contrast, women are about half of respondents in all PSUs, so that more
of the information for the comparison with men comes from between-PSU
contrasts (Problems 10.3 and 10.4).

Design effects have a useful interpretation in sample size planning, speci-
fying an inflation factor for a sample size estimate based on methods which
assume a simple random sample. For instance, standard methods show that
a sample of 626 would provide 80% power to detect the effect of an exposure
on a binary outcome if half the sample is exposed and the true population
prevalence of the outcome in the unexposed and exposed groups is 20% and
30%, respectively. In a complex survey with an estimated design effect of 1.5,
a typical value, a sample size of 626 × 1.5 = 939 would be required to provide
80% power. In this context, 626 is called the effective sample size for the sur-
vey. Note that estimation of the design effect in advance is difficult, requiring
hard-to-come-by prior estimates of within-cluster outcome correlations and
the distribution of predictors across clusters.
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10.3.2 Simplification of Correlation Structure

We pointed out earlier that NHANES is a multi-stage complex survey, mean-
ing that area segments are selected within PSUs, then blocks with segments
and households within blocks, before individuals are finally selected. In effect
clusters are nested within clusters. For the NCHS surveys, multi-stage design
is typical. However, only the stratum and PSU identifiers are provided with
the NHANES III data; in part to protect the confidentiality of survey respon-
dents, no information is provided about area segment or block. Moreover, the
survey routines in Stata and SAS, like their more general GEE routines, make
no provision for using the extra information about the true correlation struc-
ture, if it were provided. SUDAAN is an exception in this regard, making
it possible to account more completely for the effects of multi-stage cluster
sampling.

The implicit assumption of the standard error estimates in the Stata and
SAS survey routines is that observations within a PSU are exchangeable and
thus equally correlated with all other observations in the same PSU. However,
it is reasonable to expect that within-cluster homogeneity and thus correlation
would increase at each stage of the cluster sampling; all observations within
a PSU might be correlated, but observations from different area segments
would not in general be as highly correlated as observations sampled from
the same block. Under the simplified model, the correlation within PSUs can
be thought of as an average over these different levels of correlation. While
this approximation may be robust, its effects on the size of standard errors
and resulting confidence intervals and P -values depends on the specifics of the
case. In particular, it will depend on the degree to which information about
the comparison being made comes from within or between the nested clusters.

10.3.3 Other Methods of Variance Estimation

NHANES 2000, next in the series after NHANES III, began collecting data in
1999 and will continue though 2005, using a similar complex multi-stage de-
sign. A nationally representative sample of approximately 5,000 participants is
obtained each year, and data for the first two years were available in mid-2003.
Because the sample was still relatively small, the stratum and PSU identifiers
were not included in the public data set at that point, to protect the confi-
dentiality of study participants. (Stratum and PSU were made available with
the recent release of data from the first four years.) Other surveys that do not
provide stratum and PSU identifiers include the National Hospital Discharge
Survey (NHDS), and until recently, the National Ambulatory Medical Care
Survey (NAMCS).

Effectively this means that Stata and SAS cannot be used to analyze the
data from any of these surveys correctly. From the NHDS, constants for com-
puting relative standard errors are provided with the documentation, so that
approximate confidence intervals for means and proportions can be calculated,



314 10 Complex Surveys

but regression analysis is not possible. In NAMCS, which systematically sam-
ples patient visits within medical practices sampled within strata and PSU,
it is possible to treat the practice as the PSU, but borderline statistically
significant inferences would need to be regarded with extra caution (Problem
10.5).

NHANES 2000 does provide variables required to use an alternative
method of variance estimation that is implemented in the SUDAAN and WES-
VAR packages. Briefly, this jackknife method uses a re-sampling procedure to
estimate variability. The complete sample is split into 52 groups in such a
way as to reflect the complex sampling structure but obscure geographic lo-
cation. A total of 52 sets of jackknife weights are provided. One of these 52
weights is set to zero for all the members of one of the 52 disjoint groups,
and adjusted for the remaining 51 groups, using adjustment methods already
described for dealing with non-response. The analysis is then carried out 53
times, once with the original weights and once with each of the 52 sets of jack-
knife weights. It should be clear that the group with jacknife weights equal
to zero will be omitted from that analysis. Then the variance of the overall
estimates is estimated by variability among the jacknife estimates, appropri-
ately scaled (Rust, 1985; Rust and Rao, 1996). A related method for variance
estimation called balanced repeated replication (BRR) is also implemented in
SUDAAN and WESVAR, but is beyond the scope of this chapter.

10.4 Summary

Complex surveys, unlike many convenience samples, can provide representa-
tive estimates of the parameters of a target population. However, to obtain
these estimates and compute valid standard errors, confidence intervals, and
P -values, such surveys have to be analyzed using methods that take account of
the special features of the design, including stratification, multi-stage cluster
sampling, and varying probability of inclusion. A number of software packages
make it straightforward to carry out multipredictor regression analyses using
complex survey data.

10.5 Further Notes and References

Book-length introductions to complex survey sampling include Korn and
Graubard (1999) and Scheaffer (1996). Standard references for survey data
include Cochran (1977) and Kish (1995).

Missing Data

Missing data are an even more important problem in complex surveys than
in other areas of statistics, and one that we have only touched on briefly in
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describing adjustment of probability weights for non-response. While we are
often reasonably comfortable estimating the associations between variables
in the subsets of convenience samples that provide complete data, unbiased
estimation of population totals and proportions is much more vulnerable to
missing data, especially when the response of interest is sensitive. For example,
the Centers for Disease Control and Prevention abandoned the idea of using
probability surveys to estimate prevalence of HIV infection in the face of
preliminary evidence from a feasibility study that non-response bias would
invalidate the resulting estimates (Horvitz et al., 1990).

In addition to unit non-response – sampled people who are completely
missing from the survey, but accounted for in the adjustment of the weights
for non-response – there is also item non-response, or missing responses on
particular questions by study participants. One of the most important ap-
proaches to item non-response has been multiple imputation (Rubin, 1987,
1996). In this approach, probability models are used to impute the values
of missing items from the non-missing responses for participants with the
missing item and parameter estimates based on other observations with com-
plete data. These imputations are carried out multiple times, the analysis is
carried out in each of the resulting five or ten “completed” data sets, and
summary estimates are averaged over them. Furthermore, unlike single impu-
tation methods which treat the imputations as if they were known, multiple
imputation uses information from the variability of the estimates across the
different completed data sets to obtain standard errors, confidence intervals,
and P -values that accurately reflect the extra uncertainty introduced by im-
putation (as opposed to ascertainment) of the missing items. Schafer (1999)
provides an introduction to multiple imputation as well as an excellent book
on modern methods for missing data (Schafer, 1995).

Multipredictor Models Using Survey Data

In the current version of Stata, survey routines have been implemented for
linear, logistic, and several other generalized linear models, but not for the
Cox proportional hazards model. SAS is more restrictive in offering a survey
routine for linear regression only. To our knowledge, only SUDAAN currently
has a proportional hazards routine for complex survey data.

10.6 Problems

Problem 10.1. Taking HIV infection as an example, explain why it might
be more problematic to generalize estimates of prevalence from a convenience
sample than to generalize estimates of risk factor effects. For the latter, we
essentially have to assume that there is little or no interaction between the
risk factor and being represented in the sample. Does this make sense?
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Problem 10.2. Show that (10.1) reduces to the unweighted average
∑

yi/n
when wi ≡ w.

Problem 10.3. Judging from the logistic model shown in Table 10.1, which
was used to assess risk factors for diabetes, design effects greater than 1.0
appear to be more common than design effects less than 1.0. Describe what
would happen in these two cases to model standard errors, confidence inter-
vals, and P -values, if we were to analyze the survey data incorrectly, ignoring
the clustering. In which case would we be more likely to make a type-I error?
In which case would we be likely to dismiss an important risk factor? Can we
reliably predict whether the design effect will be greater or less than 1.0?

Problem 10.4. In contrast to the design effects in regression analyses, design
effects for means, proportions, and totals are almost always greater than 1.0.
Explain why this should be the case.

Problem 10.5. Suppose you attempt to analyze data from the NAMCS,
treating the physician practice as the PSU, ignoring correlation between dif-
ferent practices in the same actual survey PSU (which until recently were not
identified on the publicly available data set). Probably the correlation between
observations from the same practice is much stronger than the correlation be-
tween observations from different practices within the same PSU. In view of
the simplified treatment of correlation structures in Stata and SAS, how does
this affect your thinking about the analysis of NAMCS?

10.7 Learning Objectives

1. Describe the rationale for and special features of a complex survey.
2. Identify what can go wrong if the analysis of a complex survey ignores

probability weights, strata, and cluster sampling.
3. Know where to begin with data from NHANES III or a similar complex

survey to estimate the parameters of multipredictor linear and logistic
regression models validly, as well as standard errors, confidence intervals,
and P -values.
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Summary

11.1 Introduction

Our goal in writing this book was to provide investigators with a practical
guide to the analysis of data from research studies focusing on the relationship
between outcomes and multiple predictor variables. Through our experience
as co-investigators and instructors at the University of California, San Fran-
cisco, we have observed that researchers from many fields can benefit greatly
from being able to conduct their own data analyses. In addition to reduc-
ing dependence on professional statisticians, mastering these skills promotes
better study designs as well as clearer and more informative papers and pre-
sentations. Admittedly, encouraging investigators to analyze their own data is
also somewhat self-serving on our part, because collaborations with investiga-
tors who are experienced in analyzing their own data are often more focused
and productive.

Despite the mathematical underpinnings of the subject of statistics, the
prerequisites needed to acquire adequate data analysis skills are surprisingly
nontechnical. Perhaps the most important one is critical thinking. As is true
with many technical fields, the key ideas underlying the methods presented
here are surprisingly simple, and become much clearer when applied in actual
data analyses. All of them are characterized by a common structure that
mirrors the majority of research questions arising in clinical research: the
relationship between an outcome and measured explanatory variables.

In this chapter we provide a brief review of the general approach to data
analysis developed in this book, and provide guidance on how to use it as
a resource to address particular analytical issues. We also briefly discuss a
number of topics relevant to investigators undertaking their own data analy-
ses, including development of analysis plans and finding help with technical
questions.
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11.2 Selecting Appropriate Statistical Methods

Selection of the right statistical tool to apply in addressing a research question
is not always easy. Despite a number of unsuccessful attempts to use concepts
from artificial intelligence in the development of algorithms to automate this
process, common sense and experience remain most important for choosing an
appropriate analysis method. In this section we provide some general guide-
lines on selecting statistical methods, with references to appropriate chapters
and sections in the book. In keeping with our overall theme, we assume that
the research question and available data involve investigating the relationship
between a specified outcome and one or multiple measured predictor variables.

The first step in most data analyses is to define clearly the candidate out-
come and predictor variable(s) and choose an appropriate analytic approach.
As described in Sect. 1.1, outcomes can generally be classified as being ei-
ther numeric (e.g., measured characteristics such as cholesterol level or body
weight) or categorical (e.g., disease status indicators). Table 11.1 uses this
classification to distinguish the main types of outcomes considered in the
book (that subsume the majority considered in health research applications),
along with the standard regression approaches for each, and the chapters in
which they are discussed. Clearly many outcomes do not fit cleanly into the

Table 11.1. Outcome, Regression Model, and Chapter Reference

Outcome Outcome Regression Chapter
classification type model reference
Numerical Continuous Linear 4

Count Poisson model 9
Time-to-event Proportional hazards 7

Categorical Binary Logistic 6
Ordinal Proportional odds 6
Nominal Polytomous logistic 6

categories provided in the table. For example, the severity score in the back
pain example introduced in Chapter 1 could be considered as either continu-
ous or as a categorical variable with ordinal categories. In many such cases,
the decision of how to consider such variables for the purpose of analysis will
be driven by practicality (e.g., available software) and/or convention. In cases
where multiple approaches are available, it is often a good idea to try more
than one to insure that results are not sensitive to the choice.

Although the type of outcome usually dictates the choice of which re-
gression model to consider, further consideration of how the outcome is ob-
served and measured is necessary before settling on an analysis approach. A
fundamental consideration is whether individual outcomes can be viewed as
independent or not. Examples of studies with independent outcomes include
diagnosis of coronary heart disease in participants in the WCGS study (used
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for examples in Chaps. 2–4 and 6) and baseline glucose levels in women par-
ticipating in the HERS study (Sect. 4.2). Dependence between outcomes can
arise in a number of ways detailed in Chapter 8. These include repeated mea-
sures of outcomes measured in the same individuals, or outcomes on different
individuals that are associated via a shared environment or genetic relation-
ship (e.g., disease outcomes among members of the same family). Examples
include repeated measures of fat content of feces (8.1) and birthweights of
first- and last-born infants from the same mothers (Sect. 8.3). As described in
Chapter 8, most of the regression approaches for independent outcomes have
direct analogs applicable in the dependent outcome setting.

In addition to dependence between individual outcomes, it is also impor-
tant to consider how individuals were selected for inclusion in the study being
analyzed. Although for many studies it is reasonable to assume that study
participants had equal chances of being selected, in some cases these chances
are controlled by the investigator to obtain a sample with desired properties.
Examples include case-control studies for binary outcomes and complex sam-
ple surveys. As illustrated in Sect 6.3 and Chapter 10, regression methods for
such studies generally mirror those used for independent samples.

Finally, we want to stress that despite the large number of outcome types
and corresponding approaches to regression modeling covered here, the tools
used for model fitting and evaluation are quite similar in most cases. Key
concepts and techniques in model construction and interpretation such as
accounting for confounding, mediation, and interaction are shared across ap-
proaches as well. Experience with regression modeling for different types of
outcomes and study designs will surely reinforce these points.

11.3 Planning and Executing a Data Analysis

Data analyses are usually complex and benefit from careful planning in order
to proceed in a timely and organized fashion. In our experience, few analyses
are limited to straightforward application of textbook procedures. Invariably,
technical questions arise related to data structure and/or quality, applica-
tion of particular techniques, use of software programs, and interpretation of
results. In this section, we provide some advice on several topics related to
conducting an efficient analysis.

11.3.1 Analysis Plans

Before beginning a data analysis, it is useful to formulate a plan for how
the work will proceed. For randomized controlled trials, analysis plans are
generally specified in advance by the study protocol. For observational and
clinical studies, preliminary plans are often formulated at the proposal stage.
However, even when existing plans are not available to guide analyses, a clear
outline of the important issues and tasks can aid in organizing the process.
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A detailed plan should include a summary of the study design, statements
of the research hypotheses, descriptions of each stage of analysis, and clear
procedures for record-keeping, data distribution, and security.

11.3.2 Choice of Software

Fortunately, there are a number of excellent software packages available that
implement the majority of techniques discussed here. Although we have used
Stata in our examples, SAS, S-PLUS, and SPSS all provide commercial alter-
natives that offer many of the same facilities and run on a variety of computer
platforms and operating systems. Also, the R language for statistical comput-
ing and graphics (R Development Core Team, 2004) is freely available and
includes most of the procedures presented here. Finally, there are a number
of special-purpose programs providing methods not well-represented in the
major packages, including StatXact and LogXact (exact inference for contin-
gency tables and logistic regression), and SUDAAN (analysis of data from
complex surveys).

11.3.3 Record Keeping and Organization

An important part of a complete data analysis includes keeping files of relevant
commands and procedures used in each of the stages above. Because a typical
data analysis involves a large number of steps, having all files necessary to
recreate results can save work for revision of research publications. Adding
comments and explanatory text to programs and keeping text files outlining
the analysis procedures and cataloging the important files are very useful in
this regard. This information should be kept in an identifiable place in your
file system (preferably organized with other project-specific materials) and
backed up in a secure location for disaster recovery.

11.3.4 Data Security

Records from research studies often contain sensitive patient information and
must be protected from unauthorized access. Although studies generally have
data security measures in place to protect primary data sources, data anal-
yses often involve creation of multiple data sets that may be distributed be-
tween investigators. As a general rule, it is a good practice to keep analysis
data sets physically separate from source data, with any variables that can
be linked to participant identities removed. Make sure that all analysis and
data distribution procedures conform to current government, institutional,
and study-specific guidelines on data security.
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11.3.5 Consulting a Statistician

As we have noted frequently in the text, there are many instances where anal-
ysis issues arise that do not fall in the neat categories typical of many of the
examples. Complex sampling schemes, extensive missing data, unusual pat-
terns of censoring, misclassification in measured outcomes and predictors – all
are examples of situations where standard methods and attendant assump-
tions may not apply without modification. Being able to recognize these cir-
cumstances is an important step in addressing these issues. When faced with
an analysis problem that appears to fall outside of the range of techniques
covered here, access to a professional statistician is a valuable resource. For
investigators at research institutions, the best way to insure the availability
of sound statistical support is to include a statistician as a consultant or co-
investigator in proposals. Participating in courses or workshops on specialized
statistical methods is another way to gain access to expert advice on advanced
topics.

11.3.6 Use of Internet Resources

The Internet provides a vast and very valuable resource to assist in selec-
tion of statistical methods and planning data analyses. Frequently, answers to
questions about particular applications and methods can quickly be found via
a search using one of the available Web search engines. Unfortunately, even
judicious searches often yield too many results to review completely. Also, the
relevance of returned results is influenced by factors completely unrelated to
their scientific value. For these reasons, beginning with searches of established
research resources such as the PubMed interface to the MEDLINE index and
the Current Index to Statistics will often yield more focused searches. Many
educational institutions and private companies provide online access to elec-
tronic scientific journals and technical reports, including search capabilities.
Also, statistical software sites frequently have online documentation and mes-
sage lists that can provide useful information on the use of particular methods.
Finally, message boards related to particular software programs and academic
interests can frequently be a good way to get answers to analysis questions.
Of course, unless the qualifications of individuals posting are known, blindly
following advice can be dangerous.

11.4 Further Notes and References

Considering the broad and rapidly evolving nature of medical research and
the increasing power of modern computers and computational algorithms, the
coverage of statistical methods in this book is necessarily incomplete. A review
of topics represented in current statistical journals reveals that new methods
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and modifications of existing methods are constantly being developed. Al-
though many of the questions arising in clinical and epidemiological research
studies can be adequately addressed (at least in a preliminary fashion) with
careful application of the techniques covered here, studies often raise anal-
ysis issues novel and/or complex enough to require alternative approaches.
We conclude the book by providing some references to new developments in
the field that are likely to influence the practice of regression analysis in the
future.

Genomics is an example of a field of research that is influencing the de-
velopment of new biostatistical tools and forcing modifications of existing
approaches. Although many data analyses in this field can be viewed in the
general outcome-predictor framework developed here, frequently a very large
number of potential predictors may be involved. An example is provided by
study of the use of gene expression data in the classification of two types of
acute leukemia (myeloid and lymphoblastic) (Golub et al., 1999). RNA from
bone marrow samples from 38 patients (27 lymphoblastic and 11 myeloid) was
hybridized to oligonucleotide microarrays, each containing probes for 6,817
genes. The research questions centered on the use of genes as predictors for
leukemia type. Although some form of binary regression model relating the
disease outcome to predictors is clearly appropriate in this example, the fact
that the number of candidate predictors greatly outnumber the observations,
and that the correlation between predictors may be quite complex (reflecting
functional relationships between genes) raises a number of difficult compu-
tational and inferential issues. We refer readers to Hastie et al. (2001) for a
book-length overview of some modern statistical approaches being applied in
this area.

Another area of biostatistics that is experiencing rapid growth is in the
field of causal inference for observational studies. Much of this work has been
prompted by the observation that confounding in longitudinal studies may be
a time-dependent phenomenon, and classical methods that attempt to con-
trol this via simple inclusion of potential confounders in a given model may
may be ineffective. An example of this was raised in Sect. 7.3: assessment of
the effectiveness of HAART treatment to delay progression to AIDS, based
data from observational studies is complicated by the fact that the effect of
treatment may be confounded by disease stage (e.g., patients that have been
infected longer tend to be sicker and are therefore more likely to receive treat-
ment). Attempts to control for this by adjusting for time-varying measures of
immune status (e.g., CD4 count) may not be effective (i.e., may not yield a
valid measure of the causal effect of treatment on development of the outcome)
because these are also affected by prior treatment. Although there are a num-
ber of modified regression techniques available to apply in these situations,
most require specialized software or additional programming to implement.
See Robins et al. (2000) and Cole et al. (2003) for recent examples of work in
this area.
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additive model, 105, 179, 216
additive risk model, 159, 179
adjusted R2, 139
adjustment, 70–72, 74, 83–91, 95,

173–175, 226–227, 229–231,
234–238

AIC, see Akaike Information Criterion
Akaike Information Criterion, 139
Allen–Cady procedure, 147
alternative hypothesis, 30, 32, 47,

60–62, 79
analysis of covariance, 33, 262, 265
analysis of variance, 32–35, 254

multi-way, 33
one-way, 32, 78
two-way, 255

analytic weights, 309
ANCOVA, see analysis of covariance
ANOVA, see analysis of variance
area under the curve, 261
asymptotics, see large sample behavior
attenuation, 74, 92, 94–98, 143, 226–227,

233, 246
attributable risk, 45
AUC, see area under the curve

balanced repeated replication, 314
bandwidth, 20, 110, 190
baseline value as a covariate, 262
Bayesian Information Criterion, 139
best subsets, 139, 147, 150
bias–variance trade-off, 137
BIC, see Bayesian Information Criterion
Bonferroni procedure, 33, 81

bootstrap confidence intervals, 62–63,
98, 197, 245, 285

borrow strength, 236, 243, 259
boxplot, 11, 115, 123
BRR, see balanced repeated replication

CART, see classification and regression
trees

case-control studies, 47, 183–188
categorical variable, 8
causal diagram, 135, 139–140, 145, 154,

175
causal interpretation, 70–72, 83–91,

95–103, 105, 134–135, 145, 174,
184

ceiling effect, 109, 112
censoring

dependent, 247
independent, 57, 247
interval, 247
reasons for, 212
right, 54, 211

centering, 37, 108, 140, 170, 180, 191,
216, 230, 236

change score, 106, 262
χ̄2 test, 278
χ2 test, 48–50, 164, 172, 219–220,

222–225
classification and regression trees, 139,

183, 201
cluster

resampling, 285
sampling, 306–307

clustered data, 38, 249, 253
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coefficient of determination, 43, 75
collinearity, 108, 140, 144, 147–149, 191
complete null hypothesis, 81
complex surveys, 38, 305–315
component plus residual plot, 110–112,

114, 191
conditional logistic regression model,

187
conditional model, 143, 274

vs. marginal model, 281
confidence intervals

bootstrap, 62–63, 98, 197, 245, 285
complex surveys, 306, 315
complimentary log-log model, 197
Cox proportional hazards model, 220
linear regression model, 74–75
logistic regression model, 163, 168,

171, 177, 186
nonparametric binary models, 201
relationship to hypothesis tests, 42
repeated measures models, 271
simple linear model, 42

confounding, 54, 70–72, 74, 83–91, 95,
134–135, 140–142, 144–146, 148,
149, 173–175, 226–227, 229–231,
234–238, 246

by indication, 102, 234
negative, 90, 151
patterns, 90

constant variance, 33, 38, 70–73,
117–121

tests for, 119
contingency table methods, 44–54
continuation ratio model, 117, 202
continuous variable, 8
contrast, linear, 78, 82, 223
convenience sampling, 305
correlation, 257

coefficient, 19, 35–36, 43, 74–75
multiple, 75
relationship to regression coefficient,

43
Spearman, 35

intraclass, 258
matrix, 23
structure, 268–271, 310, 313

autoregressive, 269
exchangeable, 270, 313
nonstationary, 270

stationary, 270
unstructured, 270
working, 270, 310

within-cluster, 306, 310, 312
count data, 291
counterfactuals, 84–90, 154
covariance, 257
covariate, see predictor
Cox proportional hazards model, 61,

149, 215–249, 309
adjustment, 226–227, 229–231,

234–238
bootstrap confidence intervals, 245
confidence intervals, 220
confounding, 226–227, 229–231,

234–238
confounding by indication, 234
for complex surveys, 315
hypothesis tests, 219–220
interaction, 227–228
interactions with time, 243–244
log-linearity, 238
mediation, 227
model checking, 238–244
proportional hazards assumption,

215–218, 238–244
stratified, 234–238, 243
time-dependent covariates, 231–234,

243–244
CPR plot, see component plus residual

plot
cross-validation, 138–140, 155, 183

h-fold, 138
learning set/test set, 138

cumulative incidence function, 59, 212
cutpoints, 113, 128, 238

data
checking, 7
clustered, 253
count, 291
errors, 7
hierarchical, 253
repeated measures, 253

deciles, 23
degrees of freedom, 34, 42, 74, 108, 164,

172, 220, 222, 263, 310
dependent censoring, 247
derived variable, 260–261



Index 335

design effects, 312
DFBETAs, 122–125, 189, 241
difference score, 106, 262
discrete variable, 8
distribution

binomial, 161
exponential, 216
gamma, 297
heavy-tailed, 13
light-tailed, 13
non-normal, 294
normal, 13
Poisson, 294
Weibull, 216

dummy variable, see indicator variable
Duncan procedure, 81
Dunnett’s test, 81

EER, see experiment-wise error rate
effective sample size, 312
error, 38, 73

experiment-wise rate, 33, 81
in predictors, 39
prediction, 134, 137–140

excess risk, 44–47, 50, 158, 184
model, 179, 196, 198–200

experiment-wise error rate, 33, 81
exponential model, 216

F -test, 32–35, 79–80, 82–83, 114, 147
face validity, 134, 141, 146, 149
factor

fixed, 276
random, 276

false-negative rate, 182
false-positive rate, 182
Fisher’s exact test, 48
Fisher’s least significant difference

procedure, 81
fitted values, 40, 74, 75, 118, 181
fixed factor, 276
floor effect, 109, 112

gamma distribution, 297
GCV, see cross-validation
GEE, see generalized estimation

equations
generalized additive models, 128, 201

generalized estimating equations,
266–274, 302, 310

generalized linear models, 117, 120,
291–302

choice of distribution, 293, 297, 298,
300

for complex surveys, 315
interpretation of parameters, 294, 297
link function, 298
mean-to-variance relationship, 300
model for mean response, 292, 296,

298
GLM, see generalized linear models
goodness of fit test, 193

hazard, 212
baseline, 215–218, 221, 234
Breslow estimator, 216, 229
ratio, 213–214, 240

heavy-tailed distribution, 13
heteroscedasticity, 38, 70, 117
hierarchical data, 249, 253
high leverage points, 121–122
histogram, 10, 115
homoscedasticity, 33, 38, 70, 117
Hosmer–Lemeshow test, 193
hypothesis tests, relationship to

confidence intervals, 42

identity link, 298
imputation, 207

multiple, 315
incidence proportion, 47
inclusion criterion, 134, 141
independence, 31, 38, 73, 161, 203, 259
independent censoring, 57, 247
indicator variable, 76–77, 101, 217, 232
infectious disease transmission models,

196
inferential goals, 134

evaluating a predictor of primary
interest, 134, 140–144

identifying multiple important
predictors, 134, 144–147

prediction, 134, 137–140
influential points, 39, 121–125, 188–190,

241
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interaction, 25, 53, 94, 98–109, 134–135,
140, 141, 144–146, 175–180, 201,
227–228, 236, 243–244

qualitative, 108
interval censoring, 247
intraclass correlation, 258

jackknife, 138, 314

Kaplan–Meier estimator, 55–59, 229,
236, 239, 246

Kendall’s τ , 36
knots, 128
Kruskal–Wallis test, 34

large sample behavior, 33, 39, 43, 114,
115, 173, 219, 221

LASSO, see least absolute shrinkage
and selection operator

learning set/test set, 138, 183
least absolute shrinkage and selection

operator, 155
leave-one-out method, 138
left truncation, 248
left-skewed, 13
leverage, 121
light-tailed distribution, 13
likelihood, 163, 166, 203–206, 220
likelihood ratio test, 149, 163, 165,

170–173, 186, 191, 206, 219–220,
222, 225

line of means, 36, 110
linear

contrast, 78, 82, 223
predictor, 73, 215–216, 246, 301
spline, 128, 191
trend, 110

tests for, 82–83, 223–224
linear predictor, 160
linear regression model, 309

adjustment, 70–72, 74, 83–95
attenuation, 74, 94–98
bootstrap confidence intervals, 98
confidence intervals, 74–75
confounding, 70–72, 74, 83–95
for complex surveys, 315
hypothesis tests, 74–75
interaction, 94, 98–109

interpretation of regression coeffi-
cients, 73

mediation, 95–98
model checking, 109–125
single predictor, 36–43, 70

linearity, 109–114
log, 190–192, 238

linearization, Taylor series, 310
link

identity, 271, 298
log, 293, 294, 297
logit, 161, 298
specification test, 192

link function, 298
log-likelihood, see likelihood
log-linearity, 190–192, 238
logistic regression model, 45, 117, 120,

149, 309
adjustment, 173–175
bootstrap confidence intervals, 197
conditional, 187
confidence intervals, 177
confounding, 173–175
for complex surveys, 315
for matched case-control studies, 187
interaction, 175–180
mediation, 174
model checking, 188–195
repeated measures, 273

logit link, 161, 298
logrank test, 60–62, 222
long data set, 234
longitudinal, 262
LOWESS, 19, 110–112, 120, 190, 200,

212–214, 241
LR, see likelihood ratio
LS/TS, see learning set/test set
LSD, see Fisher’s least significant

difference procedure

Mallow’s Cp, 139
Mantel–Haenszel

combined odds ratio, 52
test of homogeneity, 53

marginal model, 143, 274
vs. conditional model, 281

masking, 90
matching in case-control studies, 187
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maximum likelihood estimation,
203–206

mediation, 95–98, 134–135, 140–146,
174, 227, 233

missing data, 168, 207, 286, 314–315
missingness

at random, 286, 309
completely at random, 309
informative, 286

model
nonlinear, 300
additive, 216
conditional, 143, 274
generalized additive, 128, 201
marginal, 143, 274
mixed, 276
multiplicative, 216–218, 292
nested, 114, 220
population-averaged, 143, 274
subject-specific, 143, 274

model checking, 109–125, 188–195,
238–244

model sum of squares, 40, 43, 75
MSS, see model sum of squares
multi-stage sampling, 306, 307, 313
multiple comparisons, 33, 61, 80–82,

146
multiple imputation, 315
multiplicative model, 105, 179, 216–218,

292
multiplicative risk model, 161, 179

negative binomial model, 120
negative confounding, 90, 151
negative findings, interpretation, 63–65
nested models, 114, 171, 173, 206, 220
nominal variable, 8
non-response, 309, 315

item, 315
unit, 315

nonlinear model, 300
nonparametric, 34, 61, 110, 115, 216,

240
normal distribution, 13, 33, 38, 42, 43,

73, 114–117, 159, 192
tests for, 116

null hypothesis, 30–33, 41–42, 47, 50,
53, 57, 60–62, 74, 76, 79, 116, 143,
219

complete, 81
multiple, 33
partial, 81

numeric variable, 8

odds ratio, 44–47, 50, 158, 162, 165,
168, 184, 195

combined, 52
offset, 197, 293
OLS, see ordinary least squares
one-sided tests, 30–31
ordinal variable, 8
ordinary least squares, 39, 114
outliers, 12, 15, 39, 121–122, 189
overdispersion, 295, 299
oversampling, 108, 306, 307

paired t-test, 31, 255, 261, 267
parallel lines assumption, 105, 202, 217
parsimonious models, 146, 149
partial null hypothesis, 81
PE, see prediction error
penalized estimation, 155
percent change, 106
plots

adjusted survival curves, 229–231
box, 11, 115, 123
component plus residual, 110–112,

114, 191
histogram, 115
Kaplan–Meier, 55–59, 229, 236, 239,

246
log minus log survival, 239–240
Q-Q, 13, 115
residual vs. predictor, 110, 118
ROC, 183
scatterplot matrix, 23, 268
smoothed hazard ratio, 240–241
stratified survival curves, 236–238

Poisson
distribution, 294
model, 120

population-averaged model, 143, 274
predicted residual sum of squares, 138
prediction, 134, 180–183, 246, 259, 278

error, 134, 137–140
predictor

assumptions about, 38
binary, 76–77, 221
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categorical, 49–54, 76–83, 108,
221–224, 238

continuous, 36, 38, 109, 118, 224–225
measurement error, 39
multiple important, 144–148
of primary interest, 140–144, 148,

149, 235, 243
selection, 133–155

Allen–Cady procedure, 147
backward, 134, 141, 147, 149, 151
best subsets, 139, 147, 150
forward, 141, 150
number of predictors, 149–150
stepwise, 141, 147, 150

time-dependent, 231–234, 243–244
PRESS, see predicted residual sum of

squares
prevalence, 47
primary sampling unit, 305–310
probability

of inclusion, 108, 305–308, 310
unequal, 306–308

sample, 307
weights, 307–310

product limit, see Kaplan–Meier
estimator

product term, 101, 108, 179, 227–228,
236, 243

proportional hazards, 215–218
checking, 238–244
parametric models, 216, 249
Schoenfeld test, 242

proportional odds model, 117, 202
pruning, 139
pseudo-R2, 164
PSU, see primary sampling unit

Q-Q plot, 13, 115
quadratic term, 110, 112, 191
quartiles, 23
quintiles, 23

R2, 43, 75, 112–114, 138, 164
adjusted, 139

random effects, 276
models, 274–281
predicted, 278

random factor, 276
randomization assumption, 88, 232

rank-based methods, 34–36, 61
receiver operator characteristic curve,

183
recursive partitioning, 139
reference group, 77–78, 221–222
regression coefficient

change in, 122
interpretation, 36–37, 73, 162, 168,

169, 175, 199, 294, 297
variance, 74, 149

regression dilution bias, 39
regression line, 36, 40, 72, 110
relative hazard, see hazard ratio
relative risk, 44–47, 50, 158, 184–186,

195
model, 196, 198–200

repeated measures models
analysis strategies, 259, 262
bootstrap confidence intervals, 285
cluster resampling, 285
computing, 287
confidence intervals, 271
correlation structures, 257, 270
derived variables, 261
effect estimation, 259
generalized estimating equations,

266–274
marginal vs. conditional models, 281
missing data, 286
model equations, 256, 264, 276, 279
prediction, 278
random effects, 274–281
robust standard errors, 270
subgroup analysis, 260

representative sampling, 305
resampling, 285
residual

sum of squares, 40
variance, 74, 149
vs predictor plot, 110
vs. predictor plot, 118

residuals, 40, 238
Schoenfeld, 241
standardized Pearson, 188

ridge regression, 155
right-skewed, 13, 115
risk difference, 44–47
risk ratio, 44–47
risk score, 246
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robust standard errors, 270, 310
robustness, 33, 59, 116, 216, 249, 271
ROC curve

see receiver operator characteristic
curve, 183

RSS, see residual sum of squares
RVP plot, see residual vs. predictor plot

sample size, 134, 145, 149
effective, 312

sampling
case-control, 184, 188
cluster, 305–307, 310
complex, 305, 310
convenience, 305
fraction, 308
multi-stage, 306, 307, 313
probability, 307
representative, 305

scale parameter, 295
scatterplot matrix plot, 23, 268
scatterplot smoother, see smoothing,

LOWESS
Scheffé procedure, 33, 81
Schoenfeld

residuals, 241
test for proportional hazards, 242

semi-parametric, 216
sensitivity, 182
shrinkage estimator, 155, 278
Sidak procedure, 33, 81
simple random sample, 305
Simpson’s paradox, 53
skewness, 13, 115, 291
smoothing, 19, 110, 112, 120, 128, 190,

200, 212–214, 241
Spearman correlation coefficient, 35
specificity, 182
splines

cubic, 128
linear, 128, 191
smooth, 128

SRS, see simple random sample
standard errors, 41, 74, 163

complex surveys, 306, 315
relative, 313
robust, 270, 310

standardized regression coefficients,
75–76

step function, 113, 159, 244
step-down procedure, 81
step-up procedure, 81
stratification in complex surveys,

306–310
stratified Cox model, 234–238, 243
Student-Newman-Keuls procedure, 81
subgroup analysis, 108, 260
subject-specific model, 143, 274
sums of squares, 40, 74

model, 40, 43, 75
residual, 40
total, 40, 43, 75

survival function, 55–59, 212
adjusted estimate, 229–231, 236–238
baseline, 229–231
Kaplan–Meier estimate, 55–59, 229,

236, 239, 246
parametric, 59
stratified estimate, 236–238

survival time
mean, 59, 231, 246
median, 58
predicted, 231, 246
quantiles, 59

survivor function, see survival function

t-distribution, 42
t-statistic, 30, 42
t-test, 29–35, 42, 74, 76, 78, 83, 114,

147, 310
paired, 31, 255, 261, 263, 267
unequal variance, 34

target population, 204, 305–307
Taylor series linearization, 310
TDC, see time-dependent covariates
tertiles, 23
test

χ̄2, 278
χ2, 48–50, 219–220, 222–224
F , 32–35, 79–80, 82–83, 114
Fisher’s exact, 48
for trend, 50, 82–83, 223–224
goodness of fit, 193
Hosmer–Lemeshow, 193
Kruskal–Wallis, 34
likelihood ratio, 163, 165, 170–173,

186, 191, 206, 219–220, 222
link specification, 192
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logrank, 60–62, 222
Mantel–Haenszel, 53
multiple stage, 81
of association, 47–49
of homogeneity, 50, 53
t, 29–35, 42, 74, 76, 78, 83, 114, 263,

310
Vuong’s, 114
Wald, 170, 173, 219–220, 222–224,

271
Wilcoxon, 34, 62
Z, 219–220, 228, 271, 310

time origin, 231, 248
time-dependent covariates, 231–234,

243–244
total sum of squares, 40, 43, 75
transformations, 15, 34, 112–114, 292

back, 125, 225, 296
outcome

log, 15, 116, 125
normalizing, 116–117, 192
power, 116
rank, 116
variance-stabilizing, 120–121

predictor
categorical, 113, 114
linear spline, 128
linearizing, 112–114, 193
log, 15, 112, 125
polynomial, 112
square root, 112

smooth, 112–113
tree-based methods, 139, 183, 201
trend, tests for, 50, 82–83, 223–224
TSS, see total sum of squares
two-sided tests, 30–31
type-I error, 33, 108, 134, 147, 152, 222

unbalanced data, 262

unbiased estimation, 39, 86, 90, 100,
102–104, 190, 191

unequal probability of inclusion, 306
unequal variance, 38

variable, 8
categorical, 8
continuous, 8
continuous versus discrete, 8
dependent, 18
derived, 260–261
discrete, 8
independent, 18
nominal, 8
numeric, 8
ordinal, 8
outcome, 18
predictor, 18
response, 18
transformations, 15

variance
estimation, 74, 310–314
inflation factor, 74, 143
predictor, 74
regression coefficient, 74, 149
residual, 41, 74, 149
weights, 309

Vuong’s test, 114

Wald test, 149, 170, 173, 219–220,
222–225, 271

Weibull model, 216
weights

analytic, 309
probability, 307–310
variance, 309

Wilcoxon test, 34, 62
Winsorization, 116

Z-test, 219–220, 228, 271, 310
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