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Chapter 1

Introduction

The economics of risk has been a fascinating area of inquiry for at least two

reasons. First, there is hardly any situation where economic decisions are

made with perfect certainty. The sources of uncertainty are multiple and

pervasive. They include price risk, income risk, weather risk, health risk, etc.

As a result, both private and public decisions under risk are of considerable

interest. This is true in positive analysis (where we want to understand

human behavior), as well as in normative analysis (where we want to make

recommendations about particular management or policy decisions).

Second, over the last few decades, significant progress has been made in

understanding human behavior under uncertainty. As a result, we have now

a somewhat refined framework to analyze decision-making under risk. The

objective of this book is to present this analytical framework and to illustrate

how it can be used in the investigation of economic behavior under uncer-

tainty. It is aimed at any audience interested in the economics of private and

public decision-making under risk.

In a sense, the economics of risk is a difficult subject; it involves under-

standing human decisions in the absence of perfect information. How do we

make decisions when we do not know some of the events affecting us? The

complexities of our uncertain world certainly make this difficult. In addition,

we do not understand how well the human brain processes information. As a

result, proposing an analytical framework to represent what we do not know

seems to be an impossible task. In spite of these difficulties, much progress

has been made. First, probability theory is the cornerstone of risk assess-

ment. This allows us to measure risk in a fashion that can be communicated

among decision makers or researchers. Second, risk preferences are now
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better understood. This provides useful insights into the economic rational-

ity of decision-making under uncertainty. Third, over the last decades, good

insights have been developed about the value of information. This helps us to

better understand the role of information and risk in private as well as public

decision-making.

This book provides a systematic treatment of these issues. It provides a

mix of conceptual analyses and applied problems. The discussion of concep-

tual issues is motivated by two factors. First, theoretical developments help

frame the structure supporting the empirical analysis of risk behavior. Given

the complexity of the factors affecting risk allocation, this structure is

extremely valuable. It helps organize information that allows us to gain

new and useful insights into the economics of risk. Indeed, without theory,

any empirical analysis of decision-making under risk would be severely

constrained and likely remain quite primitive. Second, establishing strong

linkages between theory and applied work helps assess the strengths and

limitations of the theory. This can help motivate the needs for refinements in

our theory, which can contribute to improvements in our understanding of

risk behavior.

The book also covers many applications to decision-making under risk.

Often, applications to risk analysis can appear challenging. Again, this

reflects in large part the complexity of the factors affecting economic behav-

ior under risk. A very important aspect of this book involves the examples

presented at the end of the chapters. To benefit significantly from the book,

each reader is strongly encouraged to go through these examples. They

illustrate how risk analysis is conducted empirically. And they provide a

great way to fully understand the motivation and interpretation of applied

risk analyses. As such, the examples are an integral part of the book. Many

examples involve numerical problems related to risk management. In simple

cases, these problems can be solved numerically by hand. But most often,

they are complex enough that they should be solved using a computer. For

that purpose, computer solutions to selected homework problems from

the book are available at the following Web site: http://www.aae.wisc.edu/

chavas/risk.htm

All computer applications on the Web site involve the use of Microsoft

Excel. Since Excel is available to anyone with a computer, the computer

applications presented are readily accessible. In general, the computer appli-

cations can be run with only minimal knowledge about computers or Excel.

For example, the data and Excel programming are already coded in all the

applications presented on the Web site. This means that the problems can be

solved with minimal effort. This makes the applications readily available to a

wide audience. However, this also means that each Excel file has been

customized for each problem. If the investigator wants to solve a different
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problem, he/she will need to modify the data and/or Excel code. While this

will typically require some knowledge of Excel programming, often the

templates provided can serve as a useful guide to make this task relatively

simple.

The book assumes that the reader is familiar with calculus and probabil-

ities. A quick review of probability and statistics is presented in Appendix A.

And an overview of some calculus and of optimization methods is presented

in Appendix B. The measurement of risk is presented in Chapter 2. It reviews

how probability theory provides a framework to assess how individuals

perceive uncertainty. Chapter 3 presents the expected utility model. It is the

most common model used in the analysis of decision-making under uncer-

tainty. The nature of individual risk preferences is discussed in Chapter 4,

where the concept of risk aversion is defined and evaluated. Chapters 5 and 6

review some basic tools used in applied risk analysis. Chapter 5 presents

stochastic dominance analysis, which involves the ranking of risky prospects

when individual risk preferences are not precisely known. Chapter 6 focuses

on the mean-variance analysis commonly used in applied work and evalu-

ates conditions for its validity. Chapter 7 reviews some of the difficulties

associated with modeling risk behavior. It evaluates the limitations of the

expected utility model and discusses how alternative models can help us

better understand decision-making under risk. Chapter 8 develops an analy-

sis of production decisions under risk. The effects of price and production

risk on supply decisions are evaluated. The role of diversification and of

hedging strategies is discussed. Chapter 9 presents portfolio selection and its

implications for asset pricing. The analysis of dynamic decisions under risk is

developed in Chapter 10. The role of learning and of the value of infor-

mation is evaluated in detail. Chapter 11 presents a general analysis of the

efficiency of resource allocation under uncertainty. It stresses the role

of transaction costs and of the value of information. It discusses and evalu-

ates how markets, contracts, and policy design can affect the efficiency of

risk allocation. Chapter 12 presents some applications focusing on risk

sharing, insurance, and contract design under asymmetric information.

Finally, Chapter 13 evaluates the economics of market stabilization, provid-

ing insights into the role of government policies in market economies under

uncertainty.

This book is the product of many years of inquiry into the economics of

risk. It has been stimulated by significant interactions I had with many

people who have contributed to its development, including Rulon

Pope, Richard Just, Matt Holt, and many others. The book has grown

out of a class I taught on the economics of risk at the University of

Wisconsin. My students have helped me in many ways with their

questions, inquiries, and suggestions. The book would not have been
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possible without this exceptional environment. In addition to my family,

I want to thank my colleagues at the University of Wisconsin and elsewhere

for the quality of the scientific atmosphere that I have enjoyed for the last

twenty years. Without their support, I would not have been able to complete

this book.

Jean-Paul Chavas
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Chapter 2

The Measurement of Risk

We define risk as representing any situation where some events are not

known with certainty. This means that the prospects for risk are prevalent.

In fact, it is hard to consider any situation where risk does not play a role.

Risk can relate to weather outcomes (e.g., whether it will rain tomorrow),

health outcomes (e.g., whether you will catch the flu tomorrow), time

allocation outcomes (e.g., whether you will get a new job next year), market

outcomes (e.g.,whether thepriceofwheatwill risenextweek),ormonetaryout-

comes (e.g., whether you will win the lottery tomorrow). It can also relate to

events that are relatively rare (e.g., whether an earthquake will occur next

month in a particular location, or whether a volcano will erupt next year).

The list of risky events is thus extremely long. First, this creates a significant

challenge to measure risky events. Indeed, how can we measure what we do

not know for sure? Second, given that the number of risky events is very

large, is it realistic to think that risk can be measured? In this chapter, we

address these questions. We review the progress that has been made evalu-

ating risk. In particular, we review how probability theory provides a formal

representation of risk, which greatly contributes to the measurement of risk

events. We also reflect on the challenges associated with risk assessment.

Before we proceed, it will be useful to clarify the meaning of two terms:

risk and uncertainty. Are these two terms equivalent? Or do they mean

something different? There is no clear consensus. There are at least two

schools of thought on this issue. One school of thought argues that risk

and uncertainty are not equivalent. One way to distinguish between the two

relies on the ability to make probability assessments. Then, risk corresponds

to events that can be associated with given probabilities; and uncertainty

5
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corresponds to events for which probability assessments are not possible.

This suggests that risky events are easier to evaluate, while uncertain events

are more difficult to assess. For example, getting ‘‘tails’’ as the outcome of

flipping a coin is a risky event (its probability is commonly assessed to be

0.5), but the occurrence of an earthquake in a particular location is an

uncertain event. This seems intuitive. However, is it always easy to separate

risky events from uncertain events? That depends in large part on the

meaning of a probability. The problem is that there is not a clear consensus

about the existence and interpretation of a probability. We will briefly

review this debate. While the debate has generated useful insights on the

complexity of risk assessment, it has not yet stimulated much empirical

analysis. As a result, we will not draw a sharp distinction between risk and

uncertainty. In other words, the reader should know that the terms risk

and uncertainty are used interchangeably throughout the book. It implicitly

assumes that individuals can always assess (either objectively or subjectively)

the relative likelihood of uncertain events, and that such assessment can be

represented in terms of probabilities.

DEFINITION

We define a risky event to be any event that is not known for sure ahead of

time. This gives some hints about the basic characteristics of risk. First, it

rules out sure events (e.g., events that already occurred and have been

observed). Second, it suggests that time is a fundamental characteristic of

risk. Indeed, allowing for learning, some events that are not known today

may become known tomorrow (e.g., rainfall in a particular location). This

stresses the temporal dimension of risk.

The prevalence of risky events means that there are lots of things that are

not known at the current time. On one hand, this stresses the importance of

assessing these risky outcomes in making decisions under uncertainty. On

the other hand, this raises a serious issue: How do individuals deal with the

extensive uncertainty found in their environment? Attempting to rationalize

risky events can come in conflict with the scientific belief, where any event

can be explained in a cause–effect framework. In this context, one could

argue that the scientific belief denies the existence of risk. If so, why are there

risky events?

Three main factors contribute to the existence and prevalence of risky

events. First, risk exists because of our inability to control and/or measure

precisely some causal factors of events. A good example (commonly used in

teaching probability) is the outcome of flipping a coin. Ask a physicist or an

engineer if there is anything that is not understood in the process of flipping
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a coin. The answer is no. The laws of physics that govern the path followed

by the coin are well understood. So, why is the outcome not known ahead of

time? The answer is that a coin is never flipped exactly the same way twice.

As a result, as long as the coin trajectory is long enough, it is hard to predict

how it will land. What creates the uncertainty here is the fact that the initial

conditions for the coin trajectory are not precisely controlled. It is this lack

of control that makes the coin-flipping outcome appear as a risky event. A

second example is the pseudo-random number generator commonly found

nowadays in calculators. It generates numbers that are difficult to predict.

But how can a calculator create uncertainty? It cannot. All it does is go

through a deterministic process. But this process has a special characteristic:

It is a chaotic process that is sensitive to initial conditions. It means that some

small change in initial conditions generates diverging paths and different

long-term trajectories. Here, the initial conditions are given by the fraction

of a second at which you push the random number generator button on the

calculator. Each time you push the button, you likely pick a different seed

and start the chaotic process at a different point, thus generating a different

outcome. In this case, it is our inability to control precisely our use of a

calculator that makes the outcome appear as a risky event. A final example is

the weather. Again, the weather is difficult to predict because it is the

outcome of a chaotic process. This holds even if the laws of thermodynamics

generating weather patterns are well understood. Indeed, in a chaotic pro-

cess, any imprecise assessment of the initial conditions is sufficient to imply

long-term unpredictability. It is our inability to measure all current weather

conditions everywhere that generates some uncertainty about tomorrow’s

weather.

Second, risk exists because of our limited ability to process information. A

good example is the outcome of playing a chess game. A chess game involves

well-defined rules and given initial conditions. As such, there is no uncer-

tainty about the game. And there are only three possible outcomes: A given

player can win, lose, or draw. So why is the outcome of a chess game

uncertain? Because there is no known playing strategy that can guarantee

a win. Even the largest computer cannot find such a strategy. Interestingly,

even large computers using sophisticated programs have a difficult time

winning against the best chess players in the world. This indicates that the

human brain has an amazing power at processing information compared to

computers. But it is the brain’s limited power that prevents anyone from

devising a strategy that would guarantee a win. It is precisely the reason why

playing chess is interesting: One cannot be sure which player is going to win

ahead of time. This is a good example to the extent that chess is a simple

game with restricted moves and few outcomes. In that sense, playing chess

is less complex than most human decision-making. This stresses the
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importance of information processing in the choice of decision rules. The

analysis of decision rules under some limited ability to process information

has been called bounded rationality. As just noted, the outcome of a chess

game is uncertain precisely because the players have a limited ability to

process information about the payoff of all available strategies (otherwise,

the outcome of the game would be known with the identification of the first

mover). Once we realize that no one is able to process all the information

available about our human environment, it becomes clear that risky events

are very common.

Third, even if the human brain can obtain and process a large amount of

information, this does not mean that such information will be used. Indeed,

obtaining and processing information is typically costly. The cost of infor-

mation can take many forms. It can involve a monetary cost (e.g., purchasing

a newspaper or paying for consulting services) as well as nonmonetary cost

(e.g., the opportunity cost of time spent learning). Given that human learn-

ing is time consuming and that time is a scarce resource, it becomes relevant

to decide what each individual should learn. Given bounded rationality, no

one can be expected to know a lot about everything. This suggests a strong

incentive for individuals to specialize in areas where they can develop special

expertise (e.g., plumber specializing in plumbing, medical doctors specializ-

ing in medical care, etc.). The social benefits of specialization can be quite

significant and generate large improvements in productivity (e.g., the case

of the industrial revolution). If information is costly, this suggests that

obtaining and processing information is not always worth it. Intuitively,

information should be obtained only if its benefits are greater than its

cost. Otherwise, it may make sense not to collect and/or process informa-

tion. These are the issues addressed in Chapter 10 on the economics of

information. But if some information is not being used because of its

cost, this also means that there is greater uncertainty about our environ-

ment. In other words, costly information contributes to the prevalence of

risky events.

So there are many reasons why there is imperfect information about many

events. Whatever the reasons, all risky events have a unique characteristic:

They are not known for sure ahead of time. This means that there is always

more than one possibility that can occur. This common feature has been

captured by a unified theory that has attempted to put some structure on

risky events. This is the theory of probability. The scientific community has

advanced probability theory as a formal structure that can describe and

represent risky events. A review of probability theory is presented in Appen-

dix A. Given the prevalence of risk, probability theory has been widely

adopted and used. We will make extensive use of it throughout this book.

We will also briefly reflect about some of its limitations.
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Note that it is possible that one person knows something that is unknown

to another person. This suggests that imperfect knowledge is typically indi-

vidual specific (as you might suspect, this has created a large debate about

the exact interpretation of probabilities). It is also possible for individuals

to learn over time. This means that imperfect knowledge is situation and

time specific. As a result, we define ‘‘imperfect knowledge’’ as any

situation where, at a given time, an individual does not have perfect infor-

mation about the occurrences in his/her physical and socioeconomic envir-

onment.

In the context of probabilities, any event A has a probability Pr(A), such

that 0�Pr(A)� 1. This includes as a special case sure events, where

Pr(A) ¼ 1. Since risky events and sure events are defined to be mutually

exclusive, it follows that risky events are characterized by Pr(A) < 1. A

common example is the outcome of flipping a coin. Even if this is the

outcome of a deterministic process (as discussed previously), it behaves as

if it were a risky event. All it takes for a risky event is that its outcome is

not known for sure ahead of time. As discussed above, a particular event

may or may not be risky depending on the ability to measure it, the ability to

control it, the ability to obtain and process information, and the cost of

information.

In general, in a particular situation, denote the set of all possible outcomes

byS. The setS is called the sample space. Particular elementsA1, A2, A3, . . . ,
of the set S represent particular events. The statement Ai � Aj reads ‘‘Ai is a

subset ofAj’’ andmeans that all elementary events that are inAi are also inAj.

The set (Ai [ Aj) represents the union ofAi andAj, that is the set of elementary

events in S that occur either in Ai or in Aj. The set (Ai \ Aj) represents the

intersection ofAi andAj , that is the set of elementary events in S that occur in

both Ai and Aj . Two events Ai and Aj are said to be disjoint if they have no

point in common, that is if (Ai \ Aj) ¼ 1, where 1 denotes the empty set).

Then, for a given sample space S, a probability distribution Pr is a function

satisfying the following properties:

1. Pr(Ai)� 0 for all events Ai in S.

2. Pr(S) ¼ 1:
3. If A1, A2, A3, . . ., are disjoint events, then

Pr(A1 [ A2 [ A3 . . . ) ¼
P

i Pr(Ai):

In the case where risky events are measured by real numbers, this gener-

ates random variables. A random variable X is a function that takes a specific

real value X(s) at each point s in the sample space S. Then, the distribution

function of the random variable X is the function F satisfying

F (t) ¼ Pr(X � t). Thus, the distribution function measures the probability

that X will be less than or equal to t. See Appendix A for more details.
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As you might suspect, the rather loose characterization of risky events has

generated some disagreement about the exact meaning of a probability. In

general, a probability can be interpreted to measure anything that we don’t

know for sure. But knowledge can be subjective and vary across individuals.

This has led to alternative interpretations of probabilities.

First, a probability can be interpreted as measuring the relative frequency

of an event. This is very intuitive. For example, if a coin is flipped many

times, the outcomes tend to be heads 50 percent of the time and tails the

other 50 percent of the time. As a result, we say that the probability of

obtaining heads at any particular toss is 0.5, and the probability of obtaining

tails is 0.5. This is the relative frequency interpretation of probabilities. It is

quite intuitive for events that are repeatable (e.g., coin flipping). In this case,

repeating the underlying experiment many times and observing the associ-

ated outcomes provide a basis for assessing the probabilities of particular

events. As long as the experimental conditions do not change, this generates

sample information that can be used to estimate the probability of each

event. This is the standard approach used in classical statistics.

But not all risky events are repeatable. Some events are observed very

rarely (e.g., the impact of a comet hitting earth) and others are observed

under changing conditions (e.g., a meltdown in a nuclear power plant). In

such cases, it is difficult to acquire sample information that would allow us

to assess the probability of the corresponding events. In addition, it is quite

possible to see different individuals disagree about the probability of some

event. This can happen for two reasons. First, individuals typically have

specialized knowledge. As a result, we expect risk assessment provided by

‘‘experts’’ to be more reliable than the one provided by ‘‘nonexperts.’’ For

example, information about a health status tends to be more reliable when

coming from a medical doctor than from your neighbor. In some cases, it

means that the opinion of experts is consulted before making an important

decision (e.g., court decisions). But in other cases, decisions are made with-

out such information. This may be because experts are not available or the

cost of consulting them is deemed too high. Then the information used in

human decision-making would be limited. This is a situation where the

assessment of the probability of risky events may vary greatly across indi-

viduals. Second, even if experts are consulted, they sometimes disagree. This

is the reason why some patients decide to obtain a second opinion before

proceeding with a possibly life-threatening treatment. Again, disagreements

among experts about risky events would generate situations where the

assessment of probabilities would vary across individuals.

These arguments indicate that the probability assessment of risky events

is often personal and subjective. They are subjective in the sense that they

may be based on limited sample information (e.g., the case on nonrepeatable
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events). And they are personal in the sense that they can vary across

individuals (e.g., the assessed probability that the home team will win a

game can depend on whether the individual is a sports fan or not). In this

context, the relative frequency interpretation of probability appears inad-

equate. As an alternative, this has stimulated the subjective interpretation of

probabilities. A probability is then seen as a subjective and personal evalu-

ation of the relative likelihood of an event reflecting the individual’s own

information and belief. This is the approach used in Bayesian statistics.

Here, the concept of relative likelihood seems broad enough to cover both

nonrepeatable events and individual variability in beliefs. But is it reasonable

to assume that subjective probabilities exist?

THE EXISTENCE OF PROBABILITY DISTRIBUTIONS

In this section, we present arguments supporting the existence of subject-

ive probabilities. They are based on the concept of (subjective) relative

likelihood. For a given sample space S, we will use the following notation:

A <L B : event B is more likely than event A.

A� L B : event B is at least as likely as event A.

A �L B : events A and B are equally likely.

We consider the following assumptions:

As1: For any two events A and B, exactly one of the following holds:

A <L B, A �L B, B <L A:

As2: If A1 \ A2 ¼ 1 ¼ B1 \ B2 and Ai �L Bi, i ¼ 1, 2, then

(A1 [ A2)�L(B1 [ B2):

If in addition, either A1 <L B1 or A2 <L B2, then

(A1 [ A2) <L (B1 [ B2):

As3: For any event A, 1�L A. In addition, 1<L S.

As4: If A1 � A2 � . . . is a decreasing sequence of events and if

B� L Ai, i ¼ 1, 2, . . . , then

B�L(A1 \ A2 \ A3 . . . ):

As5: There exists a random variable X uniformly distributed in the

interval [0, 1], i.e., where X satisfies
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[x 2 (a1, b1)]�L[x 2 (a2, b2)] if and only if (b1 � a1)(b2 � a2)

for any sub-interval {(ai, bi): 0� ai � bi � 1, i ¼ 1, 2}:

Proposition 1: Under assumptions As1–As5, for any event A, there exists a

unique probability function Pr(A) satisfying

A �L G[0, Pr(A)]

where G[a, b] is the event that a uniformly distributed random variable lies

in the interval (a, b). Also, Pr(A)�Pr(B) if A�LB for any two events A

and B.

For a proof, see Savage, or DeGroot (p. 77). Proposition 1 establishes

that, under some regularity conditions, the concept of relative likelihood is

sufficient to imply the existence of a subjective probability distribution for

any risky event. This suggests that probability theory can be applied broadly

in any analysis of risky situations. This is the type of argument that has

contributed to making probability theory the basic building block of statis-

tics and the analysis of decision-making under risk. For that reason, we will

rely extensively on probability theory throughout this book.

Proposition 1 is also useful in another way. It identifies five assumptions

that are needed to validate the existence of probabilities. It means that, if

probabilities failed to represent risky events, it must be because at least one

of these assumptions is not valid. Assumptions As3, As4, and As5 are

usually noncontroversial. For example, As3 simply eliminates some trivial

situations. But assumptions As1 and As2 can be challenged. They imply that

an individual can always rank the relative likelihood of risky events in a

consistent manner. For example, there may be situations of bounded ration-

ality where relative likelihood rankings by an individual are not consistent

with probability rankings. In this case, probability theory can fail to provide

an accurate representation of (subjective) risk exposure. There has been a

fair amount of empirical evidence (collected mainly by psychologists)

pointing out these inconsistencies. It has stimulated some research on alter-

native representations of risk. This includes the theory of ‘‘fuzzy sets’’ and

‘‘ambiguity theory.’’ Fuzzy sets theory is based on the premise that individ-

uals may not be able to distinguish precisely between alternative prospects

(see Zadeh 1987; Zimmermann 1985; Smithson 1987). Ambiguity theory

considers the case where individuals may not be able to assign unique

probabilities to some risky events (see Ellsberg 1961; Schmeidler 1989;

Mukerji 1998). However, while this stresses potential shortcomings of prob-

abilities, it is fair to say that, at this point, no single alternative theory has

been widely adopted in risk assessment. On that basis, we will rely exten-

sively on probability theory throughout the book.
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ELICITATIONS OF PROBABILITIES

Consider the case where Assumptions As1–As5 hold. From Proposition

1, this means that probabilities provide a comprehensive way of assessing the

relative likelihood of risky situations. This will prove useful in risk analysis,

but only if probabilities can be empirically estimated. This raises a number

of questions. Given some risky events represented by a probability distribu-

tion, how can we estimate this probability distribution? Or in the case where

the risky outcomes are measured with numbers, how can we estimate the

associated distribution function?

CASE OF REPEATABLE EVENTS

In the case of repeatable events, repeated experiments can generate sample

information. This sample information can be used to assess the probability

distribution (or the distribution function) of risky events. In general, there

are different ways of conducting these experiments, each experiment provid-

ing different information. Of course, no experiment can provide information

about everything that is unknown. For example, studying a math textbook

can help students learn about math and prepare for a math test, but it will

not help them learn about history (or prepare for a history test). Thus, once

we identify the uncertain events we want to know better, which experiment

should be performed? The theory of experimental design addresses the issue

of choosing an experiment so as to maximize the amount of desired infor-

mation. The sample information generated can then be used to learn about

specific risky events.

Assume that sample information has been collected from repeated appli-

cations of an experiment about some risky prospects. The classical approach

to statistics focuses on the analysis of this sample information. The sample

information can be used in at least three ways. First, it can be used to assess

directly the probability distribution (or distribution function) of the risky

events. An example is the plotting of the distribution function based on the

sample observations of a random variable (e.g., the outcome of rolling a die;

or price changes, assuming that their distribution is stable over time). This

simply involves plotting the proportion of sample observations that are less

than some given value t as a function of t. Then drawing a curve through the

points gives a sample estimate of the distribution function. Since this can be

done without making any a priori assumption about the shape of the

distribution function, this is called the nonparametric approach. The sample

distribution function being typically erratic, it is often smoothed to improve

its statistical properties. This is the basis of nonparametric statistics.
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Second, we may want to assume that the probability distribution belongs

to a class of parametric functions. An example is the class of normal

distribution in the case of continuous random variables (which involves

two sets of parameters: means and variances/covariances). Then, the sample

information can be used to estimate the parameters of the distribution

function. This is the basis of parametric statistics. A common approach is

to evaluate the likelihood function of the sample and to choose the param-

eters that maximize the sample likelihood function. This is the maximum

likelihood method. It generates parameter estimates that have desirable stat-

istical properties when the sample is relatively large. However, this method

requires a priori knowledge about the parametric class of the probability

distribution.

Third, when we are not sure of the exact properties of the distribution

function, it is still possible to obtain some summary statistics from the

sample information. In the context of random variables, this can be done by

estimating sample moments of the distribution: sample mean, sample vari-

ance, sample skewness, sample kurtosis, etc. The mean provides

a simple measure of central tendency for a random variable. The vari-

ance measures the dispersion around its mean. The only requirement

for this approach is that the sample moments remain finite. A common

example is the least squares method in regression analysis, which estimates

the regression line measuring the mean value of the dependent vari-

able for given values of the explanatory variables. Again, this does not

require a priori knowledge about the exact form of the distribution func-

tion.

CASE OF NONREPEATABLE EVENTS

However, there are a number of risky events that are not repeatable. This

applies to rare events as well as to events that occur under conditions that

are difficult to measure and control. In this case, it is problematical to

generate sample information that would shed light on such risky prospects.

In the absence of sample information, Proposition 1 indicates that subjective

probabilities can still provide a complete characterization of the risk. Then,

we need to rely on subjective probability judgments. Since such judgments

often vary across individuals (as discussed previously), it means a need

for individual assessments of probabilities. This can be done by conducting

individual interviews about risky prospects, relying on the concept of relative

likelihood (from Proposition 1). There are at least two approaches to the

interview: using reference lotteries and using the fractile method. They are

briefly discussed next.

Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:49am page 14Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:49am page 14Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:49am page 14Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:49am page 14

14 Risk Analysis in Theory and Practice



Using Reference Lotteries

Consider the case of an individual facing risky prospects represented by

mutually exclusive events A1, A2, . . . . Parts of the interview involve the

prospect of paying the individual a desirable prize $Y > 0 if particular

events occur. For each event Ai, i ¼ 1, 2, . . . , design the individual inter-

view along the following iterative scheme:

Step 1: Start with some initial guess pij as a rough estimate of

Pr(Ai), j ¼ 1.

Step 2: Consider the game Gi0: give the individual $Y > 0 if Ai occurs,

$0 otherwise.

Step 3: Consider the game Gij : give the individual $Y > 0 with prob-

ability pij.

Step 4: Ask the individual if he/she prefers game Gi0 over game Gij.

If he/she prefers game Gi0, choose pi, jþ1 smaller than pij . Then,

with j ¼ j þ 1, go to step 3.

If he/she prefers game Gij , choose pi, jþ1 larger than pij . Then,

with j ¼ j þ 1, go to step 3.

If he/she is indifferent between game Gi0 and game Gij , then

pij ¼ Pr(Ai).

Step 4 relies on the implicit (and intuitive) assumption that the individual

is better off when facing a higher probability of gaining $Y. The above

procedure is relatively simple to implement when the number of events is

small. It is general and can be used to obtain an estimate of the individual

subjective probability of any risky event. However, it can become tedious

when the number of risky prospects becomes large. As stated, it also assumes

that the individual is familiar with the concept of probabilities. If not, step 3

needs to be modified. For example, if (100pij) is an integer, then game Gij in

step 3 could be defined as follows: give $Y to the individual when a red

marble is drawn at random from a bag containing (100pij) red marbles and

[100(1� pij)] white marbles.

The Fractile Method

The fractile method can be applied to the assessment of probabilities for

randomvariables.More specifically, for an individual facingacontinuous ran-

dom variable X (e.g., price, income), it involves the estimation of the sub-

jective distribution function Pr(X � zi) for selected values of zi. Design the

individual interview along the following iterative scheme:

Step 1: Find the value z:5 such that the two events (x� z:5) and (x� z:5)

are evaluated by the individual to be equally likely:

(x� z:5) �L (x � z:5).
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Step 2: Find the value z:25 such that the two events (x� z:25) and

(z:25 � x� z:5) are evaluated by the individual to be equally

likely: (x� z:25) �L (z:25 � x� z:5).

Step 3: Find the value z:75 such that the two events (x� z:75) and

(z:5 � x� z:75) are evaluated by the individual to be equally

likely: (x� z:75) �L (z:5 � x� z:75).

Same for z:125, z:375, z:625, z:875, etc . . . .

Plot the points i ¼ Pr(x� zi) as a function of z, and draw a curve through

them. This gives an estimate of the distribution function for x.

This procedure is general and applicable to the estimation of the personal

subjective distribution function of any continuous random variable. At each

step, uncovering the value zi can be assessed through indirect questioning.

For example, in step 1, several values may be tried before uncovering the

value z:5 that satisfies (x� z:5) �L (x� z:5).

BAYESIAN ANALYSIS

Bayesian analysis relies on both sample information and prior information

about uncertain prospects. This is expressed in Bayes theorem, which com-

bines prior information and sample information to generate posterior prob-

abilities of risky events (see Appendix A). When the prior information is

sample-based, this gives a way to update probabilities in the light of new

sample information. More generally, it allows for the prior information to be

subjective. Then, Bayesian analysis provides a formal representation of

human learning, as an individual would update his/her subjective beliefs

after receiving new information.

There are two main ways of implementing Bayesian analysis. First, if the

posterior probabilities have a known parametric form, then parameter esti-

mates can be obtained by maximizing the posterior probability function. This

has the advantage of providing a complete characterization of the posterior

distribution. Second, we can rely on posterior moments: posterior mean,

variance, etc. This is the scheme implemented by the Kalman filter. It

generates estimates of posterior moments that incorporate the new sample

information. It has the advantage of not requiring precise knowledge of the

posterior probability function.

Note that a long-standing debate has raged between classical statisticians

and Bayesian statisticians. Classical statistics tends to rely exclusively on

sample information and to neglect prior information. This neglect is often

justified on the grounds that prior information is often difficult to evaluate

and communicate (especially if it varies significantly among individuals).

Bayesian statisticians have stressed that prior information is always present
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and that neglecting it involves a significant loss of information. In general,

the scientific community has leaned in favor of classical statistics, in large

part because the great variability of individual beliefs is difficult to assess

empirically.

While Bayesian analysis can provide a formal representation of human

learning, it is relevant to ask: How realistic is it? The general answer is that

Bayes’ rule appears to provide only a crude representation of how humans

process information. Psychologists have documented the process of human

learning. There are situations where people do not update their prior beliefs

quite as much as predicted by Bayes’ theorem (e.g., the case of conservative

beliefs that are not changed in the face of new information). Alternatively,

people sometimes neglect their prior beliefs in the face of new information.

In general, human learning is quite complex. While the ability of the brain

to process information is truly amazing, the functioning of the brain is still

poorly understood. The way the brain stores information is of special

interest. On one hand, the brain has a short-term memory that exhibits

limited capacity and quick decay. On the other hand, the brain has a long-

term memory that exhibits nearly limitless capacity and slow decay, but is

highly selective. If the information stored by the brain is decaying, then

memory loss suggests that new information (sample information) may tend

to carry more weight than the old information (prior information). But

actions can be taken to slow down the decay process of information stock

(e.g., reviewing). This indicates that trying to remember something can

be costly.

In addition, the learning process is costly. Obtaining and processing

information typically involves the use of money, time, resources, etc. In

general, education and experience can reduce learning cost. This stresses the

role of human capital in economic decisions and resource allocation under

uncertainty. Under costly information, some information may not be worth

obtaining, processing, or remembering. Under bounded rationality, people

may not be able to obtain or process some information. And if prior

probability judgments are revised in light of additional evidence, individuals

may not update them according to Bayes’ theorem.

Finally, new information is carried out by signals (e.g., written words,

language, etc.). These signals are not perfect (e.g., they may have different

meanings for different people). The nature of signals can influence the way

information is processed by individuals. This is called framing bias. In

general, this suggests that some framing bias is likely to be present in the

subjective elicitation of individual information.

All these arguments point out the complexities of the learning process. As

a result, we should keep in mind that any model of learning and behavior

under risk is likely to be a somewhat unsatisfactory representation of the real
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world. Does that invalidate Bayesian analysis? It depends on what we are

trying to accomplish. If we want to obtain an accurate representation of

human learning, then Bayesian analysis may be seen as unsatisfactory. On

the other hand, if we think that Proposition 1 applies, then Bayes’ theorem

provides a convenient rationalization of probability updating in the face of

new information.

PROBLEMS

Note: An asterisk (*) indicates that the problem has an accompanying Excel file

on the web page http://www.aae.wisc.edu/chavas/risk.htm.

*1. Think of a fixed site outside the building which you are in at this moment. Let

X be the temperature at that site at noon tomorrow. Choose a number x1 such that

Pr(X < x1) ¼ Pr(X > x1) ¼ 1=2:

Next, choose a number x2 such that

Pr(X < x2) ¼ Pr(x2 < X < x1) ¼ 1=4:

Finally, choose numbers x3 and x4 (x3 < x1 < x4) such that

Pr(X < x3)þ Pr(X > x4) ¼ Pr(x3 < X < x1) ¼ Pr(x1 < X < x4) ¼ 1=3:

a. Using the values of x1 and x2 that you have chosen and a table of the

standard normal distribution, find the unique normal distribution for X

that satisfies your answers (x1, x2).

b. Assuming thatX has the normal distribution established in a/, find from the

tables the values which x3 and x4 must have. Compare these values with the

values you have chosen. Decide whether or not your distribution for X can

be represented approximately by a normal distribution.

*2. The joint probability function of two random variables X and Y is given in the

following table:

Probability Y ¼ 5 Y ¼ 6 Y ¼ 7 Y ¼ 8

X ¼ 1 0.01 0.18 0.24 0.06

X ¼ 2 0.06 0.09 0.12 0.03

X ¼ 3 0.02 0.03 0.04 0.12

a. Determine the marginal probability functions of X and Y.

b. Are X and Y independent? Why or why not?

c. What is the conditional probability function of X, given Y ¼ 7?

d. What is the expected value of Y, given X ¼ 3?

e. What is the expected value of Y? of X?
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f. What is the variance of X? The variance of Y ? The covariance between X

and Y? The correlation between X and Y?
*3. You face a decision problem involving three states of nature with prior

probabilities

Pr(a1) ¼ :15, Pr(a2) ¼ :30, and Pr(a3) ¼ :55:

To gain further information, you consult an expert who gives you a forecast (z)

with conditional probabilities:

Pr(zja1) ¼ 0:30; Pr(zja2) ¼ 0:50; Pr(zja3) ¼ 0:10:

If you are a Bayesian learner, what probabilities do you want to use in your

decision?

Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:49am page 19Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:49am page 19Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:49am page 19Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:49am page 19

The Measurement of Risk 19



This page intentionally left blank 



Chapter 3

The Expected Utility Model

Given the existence of risky events, how do individuals make decisions under

risk? First, they must evaluate the risk itself. As seen in Chapter 2, probability

assessmentsprovideawayof characterizing thenature andextent of individual

risk exposure. In this chapter,wewill assume the riskhasbeenassessedand that

the correspondingprobabilities havebeen estimated.Thenext issue is, givenan

assessmentof risk exposure,whichdecision should the individualmake?This is

a nontrivial issue. Indeed, human decision-making under uncertainty can be

extremely complex for at least two reasons. First, the number of risky events

facing an individual is typically quite large. Second, the way information is

processed to make decisions under risk can be quite complicated.

Given these complexities, we will start with simple hypotheses about

decision-making under risk. As you might expect, while simple models have

the advantage of being empirically tractable, they may provide unrealistic

representations of human decision-making. This identifies some trade-off

between empirical tractability and realism. The analysis presented in this

chapter will be limited in scope. We consider only the case of uncertain

monetary rewards, and we focus our attention on the expected utility model

developed by vonNeumann andMorgenstern in themid 1940s. It has become

the dominant model used to represent decision-making under uncertainty.

Further extensions and generalizations will be explored in later chapters.

THE ST. PETERSBURG PARADOX

Before considering the expected utility model, we will consider a very

simple model of decision-making under risk. In a situation involving

21
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monetary rewards, a simple measure of individual payoff is the mean (also

called the average, or the expected value) of the reward. Treating the reward as

a randomvariablewith a given subjective probability distribution, its expected

valuemeasures the central tendency of its distribution. Consider the (intuitive)

assumption where individuals are made better off when receiving higher

monetary rewards. This suggests considering the following hypothesis:

decision-making maximizes expected reward. This provides a simple model

of decision-making under uncertainty. It has the advantage of being empiric-

ally tractable. For example, consider an individual facing uncertainty repre-

sented bymutually exclusive states, e1, e2, e3, . . ., and receiving themonetary

reward a(es, d ) under state es when making decision d. If the probability of

facing the s-th state under decision d is Pr(es, d ), then the expected reward

under decision d isE(a(d )) ¼
P

s Pr(es, d ) � a(es, d ).Note that this allows the

decision d to influence both the reward a(es, d ) and the probability that the

individual faces the s-th state. Then, the maximization of expected reward

means that the individual would choose d so as to maximize E(a(d )). This can

be implemented easily. First, evaluate E(a(d ) ) ¼
P

s Pr(es, d ) � a(es, d ) for

different choices d; and second, make the decision d that gives the highest

value forE(a(d)).However, this implicitly neglects the potential role played by

the variability of rewards (e.g., asmeasured by its variance). Is this realistic? In

other words, do people behave in the way consistent with the maximization of

expected rewards?

To address this question, consider the following game. Flip a coin repeat-

edly until a head is obtained for the first time and receive the reward $(2n) if

the first head is obtained on the nth toss. This is a simple game. What is the

maximum amount of money you would be willing to pay to play this game?

As you might suspect, no individual is willing to invest all his/her wealth just

to play this game. Yet, the probability of a head at any coin toss being 1⁄2,

the expected value of the reward is

E(reward) ¼
P

n�1

2n(1=2)n ¼ 1þ 1þ . . . ¼ 1:

Thus, if individuals behaved in a way consistent with the maximization of

expected rewards, their willingness to play the game would be infinite. The

fact that this is not the case indicates that people typically do not behave so as

to maximize the expected value of rewards. This has been called the

‘‘St. Petersburg paradox.’’ Although it is really not a paradox, it is of

historical significance. Bernoulli first mentioned it in the eighteenth century

in his discussion of decision-making under uncertainty. (St. Petersburg was a

center for gambling in Europe at that time.) It provides empirical evidence

that the maximization of expected rewards is really too simple and does not

provide a good representation of decision-making under risk.
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THE EXPECTED UTILITY HYPOTHESIS

If individuals do not maximize expected rewards, how do they behave

under risk? Intuitively, this suggests that they are concerned with more than

just the mean or expected value of the reward. This means that we need a

model that takes into consideration the dispersion of the rewards around the

mean. A convenient way to do this is to assume that individuals make

decisions on the basis of the expected utility of rewards.

Consider an individual making decisions facing risky monetary rewards

represented by the random variable a. Each decision affects the probability

distribution of the monetary payoff. Let a(di) be the random reward when

decision di is made, i ¼ 1, 2, 3, . . . . The individual has to decide among the

risky prospects a1 � a(d1), a2 � a(d2), a3 � a(d3), . . . . The first issue is to

record the individual preferences among those prospects. Concerning the

choice between a1 and a2, this is denoted as follows:

a1 �� a2 denotes indifference between a1 and a2,

a1 ��
a2 denotes that a2 is not preferred to a1,

a1 >
� a2 denotes that a1 is preferred to a2:

At this point, this involves only statements about preferences among risky

choices. This can be used to describe actual behavior. For example, one

would observe an individual choosing a1 over a2 when his/her preferences

satisfy a1 ��
a2. But if we also want to predict behavior or make recommen-

dations about particular decisions, we need some formal framework to

represent the decision-making process under risk.

expected utility hypothesis: A decision-maker has risk preferences rep-

resented by a utility function U(a), and he/she makes decisions so as to

maximize expected utility EU(a), where E is the expectation operator

based on the subjective probability distribution of a.

The expected utility hypothesis states that individual decision-making

under uncertainty is always consistent with the maximization of EU(a). In

the case where ‘‘a’’ is a discrete random variable taking values a(ei) under

state ei, where a(ei) occurs with probability Pr(a(ei) ), i ¼ 1, 2, . . . , the indi-
vidual’s expected utility is given by EU(a) ¼

P
i�1 U(a(ei) )Pr(a(ei) ). And in

the case where ‘‘a’’ is a continuous random variable with distribution func-

tion F(a), then EU(a) ¼
R
U(a)dF (a). This provides a convenient way of

assessing expected utility. As such, the expected utility model provides a

convenient basis for risk analysis. But is the expected utility hypothesis a

reasonable representation of individual behavior under risk? And how do we

know that the utility function U(a) exists?
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THE EXISTENCE OF THE UTILITY FUNCTION

Once the probabilities of the risky prospects have been assessed, the

expected utility model requires us to know the individual risk preferences,

as represented by the utility functionU(a). But how do we know that a utility

function U(a) will summarize all the risk information relevant to making

individual decisions under uncertainty? To address this issue, we want to

find conditions under which human behavior would always be consistent

with the expected utility hypothesis. These conditions involve the following

assumptions on individual preferences among risky prospects.

Assumption A1 (ordering and transitivity)

. For any random variables a1 and a2, exactly one of the following must

hold:

a1 >
� a2, a2 >

� a1, or a1 �� a2:

. If a1 ��
a2 and a2 ��

a3, then a1 ��
a3. (transitivity)

Assumption A2 (independence)

For any random variables a1, a2, a3, and any a (0 < a < 1), then a1 ��
a2

if and only if

[a a1 þ (1� a)a3]�� [a a2 þ (1� a)a3]:

(the preferences between a1 and a2 are independent of a3)

Assumption A3 (continuity)

For any random variables a1, a2, a3 where a1 <
� a3 <

� a2, there exist

numbers a and b, 0 < a < 1, 0 < b < 1, such that

a3 <
� [a a2 þ (1� a)a1] and a3 >

� [ba2 þ (1� b)a1]:

(asufficientlysmallchangeinprobabilitieswillnotreverseastrictpreference)

Assumption A4

For any risky prospects a1, a2 satisfying Pr[a1 � r: a1 ��
r] ¼ Pr[a2 � r:

a2 ��
r] ¼ 1 for some sure reward r, then a2 ��

a1.

Assumption A5

. For any number r, there exist two sequences of numbers s1 ��
s2 ��

. . .
and t1 ��

t2 ��
. . . satisfying sm ��

r and r��
tn for some m and n.

. For any risky prospects a1 and a2, if there exists an integer m0 such that

[a1 conditional on a1 � sm: a1 ��
sm]��

a2 for every m�m0, then

a1 ��
a2. And if there exists an integer n0 such that [a1 conditional

a1 � tn: a1 ��
tn] �� a2 for every n� n0, then a1 ��

a2.
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expected utility theorem: Under assumptions A1–A5, for any risky

prospects a1 and a2, there exists a utility function U(a) representing

individual risk preferences such that

a1 ��
a2 if and only if EU (a1)�EU(a2),

where U(a) is defined up to a positive linear transformation.

See von Neumann andMorgenstern, or De Groot (p. 113–114) for a proof.

This states that under Assumptions A1–A5, the expected utility hypothesis

provides an accurate characterization of behavior under risk. This gives

axiomatic support for the expected utility model. It means that under

AssumptionsA1–A5, observingwhich decision an individualmakes is equiva-

lent to solving the maximization problem: Max EU(a). As such, the expected

utility model can be used in positive economic analysis, trying to explain (and

predict) human behavior under risk. In addition, if both the probability

distribution of ‘‘a’’ and the individual risk preferences U( � ) are known, then
the expected utility model can be used in normative economic analysis,

making recommendations about which decision an individual should make.

Exploring these issues will be the subject of the following chapters.

It is important to note that the expected utility model is linear in the

probabilities. To illustrate, consider the case where ‘‘a’’ is a discrete random

variable. Then, the expected utility is given by EU (a) ¼
P

i Pr(ai) U(ai),

which is indeed linear in the probabilities Pr(ai). But where does this linearity

come from? From the expected utility theorem, it must be associated with the

assumptions made. A closer examination of these assumptions indicates that

the linearity in the probability follows from the independence assumption (A2).

The expected utility theorem provides some basis for evaluating the empir-

ical validity of the expected utility model. Indeed, it gives necessary and suffi-

cient conditions (Assumptions A1–A5) for Max EU(a) to be consistent with
human behavior. This means that, if the expected utility model is observed to
be inconsistent with observed behavior, it must be because some of the
Assumptions A1–A5 are not satisfied. This can provide useful insights
about the search for more refined models of decision-making under risk.
In this context, which of the five assumptions may be most questionable?
Assumptions A4–A5 are rather technical. They are made to guarantee that
EU( � ) is measurable. As such, they have not been the subject of much
debate. This leaves Assumptions A1, A2, and A3. Each of these three
assumptions has been investigated. The ordering Assumption A1 has been
questioned on the grounds that decision-makers may not always be able to
rank risky alternatives in a consistent manner. As noted above, the inde-
pendence Assumption A2 means that preferences are linear in the probabil-
ities. Thus, Assumption A2 may not hold if individual preferences exhibit
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significant interactions between probabilities. In other words, finding evi-
dence that preferences are nonlinear in the probabilities is equivalent to
questioning the validity of the independence Assumption A2. Finally, the
continuity Assumption A3 may not apply if decision rules involve threshold
levels (e.g., subsistence levels) that must be met under all circumstances.
These arguments provide some insights about potential weaknesses of the
expected utility model (Machina, 1984). They also point to possible direc-
tions for developing more complex models of decision-making under risk.
We will examine these issues in more detail in Chapter 7.

Finally, the expected utility theorem states that the utility function u(a) is

defined up to a positive linear transformation. This means that, if U(a) is a

utility function for a particular individual, then so is W (a) ¼ aþ bU(a) for

any scalar a and any scalar b > 0.

Proof:Start from the equivalencebetweena1 ��
a2 andEU(a1)�EU(a2)

stated in the expected utility theorem. But, given b > 0,EU(a1)
�EU(a2) is equivalent to aþ bEU(a1)�aþ bEU (a2), which is

equivalent to EW (a1)�EW (a2). Thus, a1 ��
a2 if and only if

EW (a1)�EW (a2), meaning that W ( � ) and U( � ) provide

equivalent representations of individual risk preferences.

This means that the utility function U(a) is not unique. Without affecting

the individual preference ranking, U(a) can be shifted by changing its inter-

cept and/or by multiplying its slope by a positive constant. This special

characteristic will be exploited below.

DIRECT ELICITATION OF PREFERENCES

While the expected utility theorem provides a basis for modeling

behavior under risk, how can it be used empirically? Its empirical tractability

would improve significantly if it were possible to measure the individual risk

preferences U( � ). Then, following a probability assessment of the random

variable ‘‘a,’’ the evaluation of EU(a) would be straightforward and provide

abasis for an analysis (either positive or normative) of behavior under risk.We

discussbelowmethods that canbeused to estimate theutility functionU(a) of a

decision-maker.

CASE OF MONETARY REWARDS

Focusing on the case of monetary rewards, we start with the situation

where ‘‘a’’ is a scalar random variable. It will be convenient to consider the

situation where the random variable ‘‘a’’ is bounded, with aL � a� aU , and

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:41am page 26Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:41am page 26Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:41am page 26Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:41am page 26

26 Risk Analysis in Theory and Practice



where U(a) is a strictly increasing function (meaning that a higher reward

makes the decision-maker better off). Then, under the expected utility

model, the utility function U(a) of an individual can be assessed from the

individual’s answers to a questionnaire.

Questionnaire Design

Ask the individual to answer the following questions:

1. Find the reward a1 obtained with certainty, which is regarded by the

person as equivalent to the lottery:

{aL with probability 1=2; aU with probability1=2}:

2. Find the reward a2 obtained with certainty, which is regarded as being

equivalent to the lottery:

{a1 with probability 1=2; aU with probability 1=2}:

3. Find the reward a3 obtained with certainty, which is regarded as being

equivalent to the lottery:

{a1 with probability 1=2; aL with probability 1=2}:

4. etc.

Finding U(a) from the Questionnaire Results

Since the utility function U(a) is defined up to a positive linear transform-

ation, without a loss of generality, we can always choose U(aL) ¼ 0 and

U(aU ) ¼ 1.

From question 1, we have a1 �� [aL with probability 1/2; aU with probabil-

ity 1/2]. Under the expected utility model, this implies that U(a1) ¼
½U(aL)þ½U(aU ) ¼ 0:5. From question 2, we have a2 �� [a1 with probabil-

ity ½ aU with probability ½]. Under the expected utility model, this means

that U(a2) ¼ ½U(a1)þ½U(aU ) ¼ 0:75. From question 3, we have a3 �� [a1
with probability ½; aL with probability ½]. Under the expected utility model,

this implies that U(a3) ¼ ½U(a1)þ ½U(aL) ¼ 0:25. And so on. Then, plot

U(a) as a function of ‘‘a,’’ and draw a line through the points. This gives an

estimate of the utility function of the individual U(a).

Note that additional questions can be asked to validate the approach. To

illustrate, add the following question to the above questionnaire: Find the

reward A obtained with certainty and regarded as being equivalent to the

lottery {a2 with probability ½; a3 with probability ½}. Under the expected

utility model, this implies that U(A) ¼ ½U(a2)þ½U(a3) ¼ 0:5. Thus,

U(A) ¼ U(a1) ¼ ½. Assuming that U(a) is strictly increasing in a, this

implies that A ¼ a1. If A indeed equals a1, this validates the preference
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elicitation procedure just described. However, what if A6¼a1? This can be

interpreted as evidence that the expected utility model is inconsistent with

the individual ranking of risky prospects. It shows how the expected utility

model can be subject to empirical testing.

MULTIDIMENSIONAL CASE

So far, we have focused our attention on monetary rewards, where ‘‘a’’ is a

scalar random variable. This is relevant in the evaluation of risky income.

However, there are situations where the uncertainty is not directly linked

with monetary returns (e.g., the case of health risk). Under such scenarios,

the decision-maker may worry about multiple sources of uncertainty. If each

source of uncertainty is represented by a random variable, then the risk

assessment involves a vector of random variables x ¼ (x1, x2, . . .). For

example, x1 can represent uncertain income, x2 uncertain health status,

etc. The expected utility model can be extended in this multivariate frame-

work. Then, U(x1, x2, . . . ) being the utility function of the decision-maker

representing his/her risk preferences, consider that individual decisions are

made in a way consistent with the maximization of expected utility, Max

EU(x1, x2, . . . ), where E is the expectation with respect to the subjective

probability distribution of the random vector (x1, x2, . . .).
In this multivariate case, the questionnaire procedure discussed above

(under a single random variable) can be used by changing one variable at

a time, the other variables being held constant. This can be easily imple-

mented to estimate the individual utility function U(x) as long as the number

of variables is small (e.g., 2 or 3). However, this gets complicated for

dimensions greater than two or three.

Yet, there is a simple way of assessing an individual multivariate utility

function U(x1, x2, . . . ) when the utility function is additive and takes the

particular form

U(x1, x2, . . . ) ¼
X

i

kiUi(xi), 0�Ui(xi)� 1, 0� ki � 1,
X

i

ki ¼ 1:

This can be done as follows. Let xþi ¼ most preferred level of xi with

Ui(x
þ
i ) ¼ 1, and x�i ¼ least preferred level of xi with Ui(x

�
i ) ¼ 0, for all

i ¼ 1, 2, . . . : First, under additivity, the questionnaire presented above can

be used to estimate each Ui(xi), i ¼ 1, 2, . . . .
Second, consider the following procedure to estimate ki, i ¼ 1, 2, . . . .

Using a questionnaire, find the probability p1 such that the person is indif-

ferent between {(xþ1 , x�2 , x�3 , . . . ) with certainty} and {(xþ1 , xþ2 , xþ3 , . . . )
with probability p1; (x

�
1 , x�2 , x�3 , . . . ) with probability (1� p1)}. Under

the expected utility hypothesis, this implies
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U(x1
þ,x2

�,x3
�, . . . ) ¼ p1U(x1

þ,x2
þ,x3

þ, . . . )þ(1� p1)U(x1
�,x2

�,x3
�, . . . )

or

k1 ¼ p1[k1 þ k2 þ . . . ]þ (1� p1)[0]

or

k1 ¼ p1:

Then, repeat this procedure with p2, p3, . . . to estimate k2, k3, . . . . This
provides a framework to estimate the individual utility function

U(x) ¼
P

i kiU(xi). This is particularly convenient to assess risk preferences

when individuals face multiple sources of uncertainty. However, it should be

kept in mind that it is rather restrictive in the sense that the additivity

assumption neglects possible preference interactions among the random

variables.

PROBLEMS

Note: An asterisk (*) indicates that the problem has an accompanying Excel file

on the Web page http://www.aae.wisc.edu/chavas/risk.htm.

*1. A farmer’s utility function for money gains and losses is approximately

represented by U(X ) ¼ 2X � 0:01X2, (X � 100), where X denotes farm profit (in

thousands of dollars). (The farmer is currently wondering hour much to spend on

fertilizer for his 1000 ha farm.) Pertinent information is shown in the following

payoff matrix of possible dollar profits per hectare.

*2. If you were offered a choice between bet A and bet B, which one would you

choose?

Bet A :You win $1,000,000 for sure.

Bet B :You win $5,000,000 with probability 0.10.

Type of Season Probability Spend $4/ha Spend $8/ha Spend $12/ha Spend $16/ha

Profit ($/ha)

poor 0.1 �8 �12 �16 �20

fair 0.2 �2 �8 �12 �16

good 0.5 2 4 6 8

excellent 0.2 12 20 24 26

a. How much should the farmer spend on fertilizer?

b. Given the optimal decision, what would the farmer be willing to pay to

eliminate all risk and just receive the expected profit?
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You win $1,000,000 with probability 0.89.

You win $0 with probability 0.01.

Now choose between bet C and bet D:

Bet C: You win $1,000,000 with probability 0.11.

You win $0 with probability 0.89.

Bet D: You win $5,000,000 with probability 0.10.

You win $0 with probability 0.90.

Assume that the expected utility hypothesis holds.

a. Prove that if you choose bet A, you should also choose C.

b. Prove that if you choose bet B, you should also choose bet D. (Note:

Empirical observations violating the results in a. or b. have been called

Allais paradox).

c. Comment on the role of expected utility as a means of analyzing consistent

choices under risk.
*3. A construction company does subcontracting on government contracts. The

construction company’s utility function is approximately represented by

U(X ) ¼ 2X � 0:01X2, (X � 100), X being income (in thousands of dollars).

a. Suppose the company is considering bidding on a contract. Preparation of

a bid would cost $8,000, and this would be lost if the bid failed. If the bid

succeeded, the company would make $40,000 gain. The company judges

the chance of a successful bid as 0.3. What should it do?

b. What chance of a successful bid would make the company indifferent

between bidding and not bidding for the contract?
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Chapter 4

The Nature of Risk Preferences

Chapter 2 developed the arguments that risk can be assessed using probabil-

ity measures, i.e., that the relevant probabilities can be estimated empirically

using sample information and/or subjective assessments. In this chapter, we

assume that the probabilities of risky events have been estimated. Chapter 3

developed a formal theory of decision-making under risk: the expected

utility model. In the expected utility model, each decision-maker has a utility

function representing his/her risk preferences. In this chapter, we examine

the nature of risk preferences. For simplicity, we focus our attention on the

case of risky monetary rewards. In this context, we establish formal relation-

ships between the properties of the utility function and risk preferences. This

will provide some useful insights in the empirical analysis of risk behavior.

MATHEMATICAL PRELIMINARIES

First, we present some mathematical results that will prove useful in our

analysis. A key concept is the concavity (or convexity) of a function. A

function U(a) is said to be a concave function, if for any a, 0 < a < 1, and

any two points a1 and a2,

U(aa1 þ (1� a)a2) � aU(a1)þ (1� a)U(a2):

And U(a) is a convex function, if for any a, 0 < a < 1, and any two

points a1 and a2,

U(aa1 þ (1� a)a2) � aU(a1)þ (1� a)U(a2):

31
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U(a)

a

linear
function

convex
function

concave
function

Figure 4.1 Convex, linear, and concave functions

These definitions apply to a general function U(a), whether it is differ-

entiable or not. However, if we also know that the function U(a) is twice

continuously differentiable, then

. U(a) is concave if and only if @2U=@a2 � 0 for all a.

. U(a) is convex if and only if @2U=@a2 � 0 for all a.

This is illustrated in Figure 4.1.

Next, we state an important property of concave (convex) functions.

Jensen’s Inequality:

If U(a) is a

concave

linear

convex

8
<

:

9
=

;
function of the random variable ‘‘a’’, then

U [E(a)]

�
¼
�

8
<

:

9
=

;
EU (a), where E is the expectation operator:

This is illustrated in Figure 4.2 for a concave function in the context of a

discrete random variable taking two possible values: a1 which occurs with

probability p1, and a2 which occurs with probability p2 ¼ (1� p1), where

E(a) ¼ p1a1 þ p2a2, and EU (a) ¼ p1U(a1)þ p2U(a2).

THE RISK PREMIUM

Consider the case of a decision-maker facing an uncertain monetary

reward, as represented by the random variable ‘‘a.’’ Let w denote the
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U(a)

= U(E(a))
U(p1 a1 + p2 a2)

p1 U(a1 ) + p2 U(a2)
= EU(a)

a1 p1 a1 + p2 a2 a2 a

Figure 4.2 Jensen’s inequality for a concave function

decision-maker’s initial wealth. Thus, his/her terminal wealth is (wþ a).

Throughout, we will assume that the initial wealth w is known with cer-

tainty. Under the expected utility model, let his/her risk preferences be

represented by the utility function U(wþ a). We will assume that U(wþ a)

is a strictly increasing function of (wþ a). This is intuitive. It simply states

that the decision-maker is made better off by an increase in his/her terminal

wealth (wþ a).

The first question we address is how to measure the monetary value

of risk? This can be done by using income compensation tests. They involve

finding the change in sure income that would make the decision-maker

indifferent to a change in risk exposure. There are many ways of

defining such compensation tests. Here, we discuss three monetary valu-

ations of risk.

THE SELLING PRICE OF RISK

The selling price of risk, Rs, is defined as the sure amount of money a

decision-maker would be willing to receive to eliminate (sell) the risk ‘‘a’’ if

he/she had it. More specifically, it is the sure amount of money Rs that

makes him/her indifferent between facing the risky prospect {wþ a} versus

facing the sure prospect {wþ Rs}. In other words, Rs is the monetary

amount satisfying the indifference relationship:

{wþ Rs} �� {wþ a}:

Under the expected utility model, this implies that Rs is the solution to the

implicit equation

U(wþ Rs) ¼ EU (wþ a):

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 33Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 33Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 33Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 33

The Nature of Risk Preferences 33



THE ASKING PRICE (BID PRICE) OF RISK

The bid price of risk, Rb, is defined as the sure amount of money a

decision-maker would be willing to pay to obtain (buy) the risk ‘‘a.’’ More

specifically, it is the sure amount of money Rd that makes him/her indifferent

between facing the sure prospect {w} versus facing the sure prospect

{wþ a� Rb}. In other words, Rb is the monetary amount satisfying the

indifference relationship:

{w} �� {wþ a� Rb}:

Under the expected utility model, this implies that Rb is the solution to the

implicit equation

U(w) ¼ EU(wþ a� Rb):

Note that Rb ¼ Rs in the ‘‘absence of income effects,’’ where preferences

satisfy U(wþ a) ¼ wþ V (a) for all w and a. However, if U(wþ a) 6¼
wþ V (a), then preferences exhibit ‘‘income effects.’’ In the presence of

income or wealth effects, then Rb 6¼ Rs and the bid price and the selling

price of risk differ from each other. The effects of wealth on the valuation of

risk will be further examined below.

THE RISK PREMIUM

The risk premium, R, is defined as the sure amount of money a decision-

maker would be willing to receive to become indifferent between receiving

the risky return ‘‘a’’ versus receiving the sure amount [E(a)�R], where E(a) is

the expected value of ‘‘a.’’ In other words, R is the monetary amount

satisfying the indifference relationship:

{wþ a} �� {wþ E(a)� R}:

Under the expected utility model, this implies that R is the solution to the

implicit equation

EU(wþ a) ¼ U(wþ E(a)� R):

Given that U(wþ a) is a strictly increasing function, its inverse function

always exists. Denote the inverse function by U�1, where U(w) ¼ u is

equivalent to w ¼ U�1(u). It follows that U�1(EU(wþa) ) ¼ wþ E(a)� R.

Thus, the risk premium R can always be written as

R ¼ wþ E(a)�U�1(EU (wþ a) ):
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In general, the risk premium R is a function of w and of the probability

distribution of ‘‘a.’’ The properties of the risk premium are further examined

in the following paragraphs.

From the definition of the risk premium and given that U( � ) is an

increasing function, note that maximizing EU(wþ a) is equivalent to maxi-

mizing the nonrandom expression [wþ E(a)� R]. As a result, [wþ E(a)� R]

has been called the certainty equivalent of EU( � ). It is a sure money metric

measure of utility. This provides a nice and intuitive interpretation of the

risk premium: R measures the shadow cost of private risk bearing. It is a cost

since it appears as a reduction in expected terminal wealth, wþ E(a). And it

is a shadow cost in the sense that it involves a hypothetical income compen-

sation test. An alternative interpretation is that the risk premium Rmeasures

the individual’s willingness to insure. Given these intuitive interpretations, we

will rely extensively on the risk premium in our analysis of decision-making

under uncertainty.

RISK AVERSION

Given the definition of the risk premium R, what can we say about its

sign? In general, it can be negative, zero, or positive, depending on the nature

of individual risk preferences. Interpreting the risk premium as the cost of

private risk bearing leads to the following definition of risk aversion:

A decision-maker is said to be

risk averse

risk neutral

risk lover

8
<

:

9
=

;
if the risk premium

R is

positive (R > 0)

zero (R ¼ 0)

negative (R < 0)

8
<

:

9
=

;
:

Intuitively, a decision-maker is risk averse if he/she is willing to pay a

positive amount of money (as measured by a positive risk premium: R > 0)

to eliminate risk (by replacing the random variable ‘‘a’’ by its mean). This

positive willingness-to-pay means that he/she is made worse off by risk

exposure, thus the term ‘‘risk averse.’’ Alternatively, a decision-maker is a

risk lover if he/she must be compensated (R < 0) when his/her risk exposure

is eliminated. This means that he/she likes risk (thus the term risk lover) and is

made worse off when risk is removed. Finally, a decision-maker is risk

neutral if he/she is made neither better off nor worse off when his/her risk

exposure is modified.
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Thus, the sign of the risk premium can be used to classify decision-makers

into three categories, according to their risk preferences. By definition of the

risk premium under the expected utility model, we have

EU(wþ a) ¼ U(wþ E(a)� R):

Assume that the utility function U(wþ a) is twice continuously differen-

tiable. To analyze the properties of the risk premium, consider taking a

second order Taylor series expansion of U(wþ a) in the neighborhood of

[wþ E(a)]. This gives

U(wþ a) � U(wþ E(a) )þU 0 � [a� E(a)]þ 0:5U 00 � [a� E(a)]2,

where U 0 ¼ @U=@w denotes the first derivative of the utility function, and

U 00 ¼ @2U=@w2 denotes the second derivative, each evaluated at (wþ E(a) ).

Taking expectation, it follows that

EU(wþ a) � EU(wþ E(a) )þU 0 �E[a� E(a)]þ 0:5U 00 �E[a� E(a)]2,

� EU(wþ E(a) )þ 0:5U 00 �Var(a),

since E[a� E(a)] ¼ 0 and Var(a) � E[a� E(a)]2 is the variance of ‘‘a.’’

Next, consider taking a first order Taylor series expansion of

EU(wþ a� R) with respect to R in the neighborhood of [wþ E(a)� R].

Note that, at [wþ E(a)� R], R ¼ 0 (by definition of the risk premium).

This gives

U(wþ E(a)� R) � U(wþ E(a) )�U 0 �R:

Substituting these two results in the definition of the risk premium yields

U(wþ E(a) )þ 0:5U 00 Var(a) � U(wþ E(a) )�U 0R:

Given U 0 > 0, this implies

R � �0:5(U 00=U 0)Var(a).

This is an important result. It shows that, in the neighborhood of the

riskless case, the risk premium R is proportional to the variance of risk,

Var(a). The coefficient of proportionality is the term [� 0:5(U 00=U 0)]. In
other words, [� 0:5(U 00=U 0) �Var(a)] is a local measure of the risk premium

R. It is ‘‘local’’ or ‘‘in the small’’ to the extent that the Taylor series

approximations used in the derivation are valid in general only in the

neighborhood of the point of approximation.

The above result suggests that the term (�U 00=U 0) will play an important

role in risk analysis. For this reason, define r � �U 00=U 0 as the Arrow–Pratt
coefficient of absolute risk aversion. Then, the risk premium R can be

approximated ‘‘in the small’’ as
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R � (r=2) �Var(a).

Note that Var(a) > 0 for all nondegenerate random variables. Thus, ‘‘in

the small,’’ the sign of the risk premium R is always the same as the sign of

r � �U 00=U 0. This local result provides the first important linkages between

the specification of the utility function and the nature of risk preferences.

Given U 0 > 0, they are:

. risk averse behavior (R > 0) corresponds to r > 0 and U 00 < 0, i.e., a

concave utility function.

. risk neutral behavior (R ¼ 0) corresponds to r ¼ 0 and U 00 ¼ 0, i.e., a

linear utility function.

. risk loving behavior (R > 0) corresponds to r < 0 and U 00 > 0, i.e., a

convex utility function.

This raises an important question. While these results were derived ‘‘lo-

cally,’’ can they provide useful insights into the global properties of risk

preferences? The answer is affirmative. To see it, note that the above state-

ments also hold globally. This follows from Jensen’s inequality, given U 0 > 0

and the definition of the risk premium R. In other words, risk neutrality is

globally equivalent to a linear utility function. And risk aversion (risk loving

behavior) is globally equivalent to a concave (convex) utility function. This is

illustrated in Figure 4.3 for a risk averse decision-maker (U 00 < 0) in the

context of a discrete random variable taking two possible values: a1 which

occurs with probability p1, and a2 which occurs with probability

p2 ¼ (1� p1), where E(a) ¼ p1a1 þ p2a2, and EU (a) ¼ p1U(a1)þ p2U(a2).

It is an empirical issue to determine whether individual risk preferences

exhibit risk aversion, risk neutrality, or risk loving behavior. In general, risk

preferences can vary greatly across individuals. For example, observing

gambling behavior can be interpreted as evidence of risk loving behavior.

U(a)

U(E(a))

EU(a)

R>0

E(a) a

E(a)-R

a1 a2

Figure 4.3 Utility for a risk-averse decision-maker

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 37Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 37Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 37Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 37

The Nature of Risk Preferences 37



However, there is empirical evidence that most decision-makers are often

risk averse. First, risk aversion is consistent with the fact that most individ-

uals try to limit their risk exposure (e.g., as illustrated in the St. Petersburg

paradox). Second, the presence of active insurance markets can be inter-

preted as indirect evidence that risk aversion is common. Finally, direct

elicitation of risk preferences has documented the prevalence of risk aversion

among most decision-makers. For this reason, our discussion will focus in

large part on the case of risk aversion. In this case, given U 0 > 0, risk

aversion imposes a restriction on the sign of the second derivative of the

utility function: U 00 < 0. This means that a risk-averse individual has risk

references represented by a utility function that exhibits decreasing marginal

utility with respect to wealth or income.

In addition, note that, by definition, r ¼ �U 00=U 0 ¼ �@ ln (U 0)=@w. Inte-
grating, this yields

Ð
r ¼ � ln (U 0)þ c, or U 0 ¼ ec e

�
Ð
r
, where c is a constant

of integration. But this implies that

U( � ) ¼ ec
ð

e
�
Ð
r þ k,

where k is another constant of integration. Since U( � ) is defined up to a

positive linear transformation, we can always choose k ¼ 0 (fixing the inter-

cept) and c ¼ 0 (fixing the slope). It follows that the utility functionU( � ) can
always be expressed exactly asU( � ) ¼

Ð
e�
Ð
r. In other words, the Arrow–Pratt

coefficient of absolute risk aversion r ¼ �U 00=U 0 (when evaluated at all

relevant points) provides all the information needed to recover the global

properties of the underlying preference functionU( � ). This gives us a hint that
the properties of the Arrow–Pratt coefficient of absolute risk aversion

r ¼ �U 00=U 0 will provide useful information on the nature of risk preferences.

CONSTANT ABSOLUTE RISK AVERSION (CARA)

A special class of risk preferences is associated with the case where the

absolute risk aversion r � �U 00=U 0 is constant.

Risk preferences exhibit constant absolute risk aversion (CARA) when

r � �U 00=U 0 is a constant for all w.

We have seen that the utility function can be always be written as

U( � ) ¼
Ð
e
�
Ð
r
. Under CARA and given U 0 > 0, this gives us the class

of CARA utility functions:

. r > 0 (risk aversion) corresponds to the utility function U ¼ �e�r � (wþa)

. r ¼ 0 (risk neutrality) corresponds to the utility function U ¼ wþ a

. r < 0 (risk loving) corresponds to the utility function U ¼ e�r � (wþa)

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 38Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 38Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 38Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 38

38 Risk Analysis in Theory and Practice



This shows that risk neutrality is a special case of CARA with r ¼ 0.

Again, this corresponds to a linear utility function. Perhaps more import-

antly, it identifies the special properties of the exponential utility function in

risk analysis and their close linkages with CARA preferences.

Note that e�r � (wþa) ¼ e�rwe�ra when r 6¼ 0. This means that, under

CARA, the expected utility EU is proportional to E(e�ra) for any w (with

a coefficient of proportionality that is negative (positive) when r > 0 (r < 0)).

It follows that changing initial wealth w does not affect economic decisions.

And a similar result applies when r ¼ 0. Thus, in general, CARA risk

preferences imply ‘‘zero wealth effects.’’ This result applies whether the

decision-maker is risk averse, risk neutral, or risk loving. It also shows

that, under the expected utility model, an exponential utility function implies

the absence of wealth effects. It means that, while specifying an exponential

utility function may be convenient in risk analysis, it does impose a priori

restrictions on economic behavior.

To illustrate, consider the case of a risk-averse decision-maker exhibiting

CARA, with utility function U(a) ¼ �e�r � (wþa), r > 0. By definition of the

risk premium R, E[� e�r � (wþa)] ¼ �e�r � (wþE(a)�R). But this equation can be

alternatively written as E[� e�ra] ¼ �e�r � (E(a)�R). This shows that risk pre-

mium R does not depend on w. Under CARA, a similar result would apply

under risk neutrality (r ¼ 0) or risk-loving behavior (r < 0). Thus, CARA

implies that the risk premiumR is independent of initial wealth w. If we interpret

the risk premiumasmeasuring thewillingness to insure, thismeans that, under

CARA, a change in initial wealth does not affect the individual’s willingness to

insure. This shows the behavioral restrictions implied by CARA risk prefer-

ences in general, and by the exponential utility function in particular.

Another notable property is the nature of the risk premium R under

CARA preferences when the random variable ‘‘a’’ is normally distributed.

To see that, consider a risk averse decision maker exhibiting CARA (with

U(a) ¼ �e�r � (wþa), r > 0, where ‘‘a’’ is normally distributed with mean A

and variance V. Under normality, the expected utility becomes

E[� e�r � (wþa)] ¼ (2pV )�1=2e�rw

ð

[�e�rae�(a�A)2=2V ] da,

¼ (2pV )�1=2e�rw

ð

[� e�[(a�AþrV )2�r2V 2þ2rAV ]=2V ] da,

¼ e�rw[� e(r
2V�2rA)=2]

ð

(2pV )�1=2[� e�[(a�AþrV )2]=2V ] da,

¼ e�rw[� e�r � [A�(r=2)V ]],

which is an increasing function of [A� (r=2) �V ]. It follows that maximizing

EU( � ) is equivalent to maximizing [A� (r=2)V ]. This means that
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[wþ A� (r=2)V ] is the certainty equivalent. Since the certainty equivalent

can be written in general as [wþ E(a)� R], this means that R ¼ (r=2)V ,

i.e. that [(r/2)V] is a global measure of the risk premium. This has

two implications. First, under CARA and normality, the local approxima-

tion to the risk premium we derived above (R � (r=2)V ) is exact and

globally valid. Second, an additive mean-variance analysis (with [wþ A

�(r=2)V ] as certainty equivalent) can be justified globally under CARA

and normality. This form is particularly convenient in empirical risk analy-

sis. However, we should keep in mind that it holds under rather restrictive

conditions.

DECREASING (OR INCREASING) ABSOLUTE RISK
AVERSION

While CARA preferences may be convenient, its implied ‘‘zero wealth

effects’’ appear restrictive. This suggests a need to investigate departures

from constant absolute risk aversion. Consider the general properties of the

risk premium R(w, � ) as initial wealth w changes.

Definition: Risk preferences exhibits decreasing (constant, increasing)

absolute risk aversion if the risk premium R(w, � ) is a decreasing (con-

stant, increasing) function of initial wealth w.

We have just seen that, under constant absolute risk aversion (CARA),

the risk premium is independent of initial wealth w. The definition considers

two departures from CARA: decreasing absolute risk aversion (DARA)

where the risk premium R decreases with initial wealth w; and increasing

absolute risk aversion (IARA) where the risk premium increases with w.

Under DARA, an increase in initial wealth tends to reduce the individual’s

willingness to insure (as measured by the risk premium R). This means that,

under DARA, private wealth accumulation and insurance motives are sub-

stitutes, as wealthy individuals have less incentive to insure. Alternatively,

under IARA, an increase in initial wealth would increase the individual’s

willingness to insure (as measured by the risk premium R). Thus, under

IARA, private wealth accumulation and insurance motives behave as com-

plements. In general, it is an empirical issue to determine whether individual

risk preferences exhibit CARA, DARA, or IARA. However, there are

intuitive arguments in favor of decreasing absolute risk aversion: individuals

may exhibit DARA (where private wealth accumulation and insurance

motives are substitutes) when their private wealth accumulation improves

their ability to manage private risk exposure. There is also empirical evi-

dence suggesting that (besides being risk averse) most individuals exhibit

DARA risk preferences.
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This suggests a need to develop linkages between the nature of risk

preferences and the specification of the utility function U(wþ a).

Proposition 1: Consider two decision makers facing the terminal wealth

(wþ a), each with utility function U1(wþ a) and U2(wþ a). Let

ri ¼ �Ui
00=Ui

0, and Ri ¼ the risk premium for individual i, i ¼ 1, 2. Then,

the following statements are equivalent:

	 R1(w)

<
¼
>

8
<

:

9
=

;
R2(w) for all w:

	 r1(w)

<
¼
>

8
<

:

9
=

;
r2(w) for all w:

Proof: By definition of the risk premium, Ui[wþ E(a)� R] ¼ EUi[wþ a]

implies that

Ri ¼ wþ E(a)�U�1
i EUi(wþ a)

or

R1 � R2 ¼ U�1
2 EU2(wþ a)�U�1

1 EU1(wþ a):

Let t ¼ U2(wþ a), or (wþ a) ¼ U�1
2 (t). It follows that

R1 � R2 ¼ U�1
2 E(t)�U�1

1 EU1(U
�1
2 (t) ): (1)

Note that

@ [U1(U
�1
2 (t) )]=@t ¼ U1

0(U�1
2 (t) )=[U2

0(U�1
2 (t) )]

¼ eln (U1
0=U2

0) ¼ an increasing function of [ ln (U1
0=U2

0)]:

Also, @ ln (U1
0=U2

0)=@w¼ [U1
00=U2

0�U2
00U1

0=(U2
0)2]=(U1

0=U2
0)¼r2�r1.

This implies that r2

�
¼
�

8
<

:

9
=

;
r1 when @ [U1[U

�1
2 (t)] ]=@t

decreases

does not change

increases

8
<

:

9
=

;

with t, i:e:, when U1(U
�1
2 (t) ) is

concave

linear

convex

8
<

:

9
=

;
in t. By Jensen’s inequality,

r2

�
¼
�

8
<

:

9
=

;
r1 when EU1(U

�1
2 (t) )

�
¼
�

8
<

:

9
=

;
U1(U

�1
2 (E(t) ) ):
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From (1), this implies that

R1 � R2

�
¼
�

8
<

:

9
=

;
U�1

2 E(t)�U�1
1 U1(U

�1
2 (E(t) ) ) ¼ 0 as r2

�
¼
�

8
<

:

9
=

;
r1:

After choosingUi(w) ¼ U(wi), Proposition 1 generates the following result:

Proposition 2: The following two statements are equivalent:

. R(w) is an increasing (constant, decreasing) function of w for all w.

. r(w) is an increasing (constant, decreasing) function of w for all w.

Proposition 2 links the properties of the risk premium R(w) to the prop-

erties of the Arrow–Pratt absolute risk aversion coefficient r(w) as initial

wealth w changes. It includes as a special case the CARA results obtained

above: When r is constant, the risk premium is independent of initial wealth

w. It also provides new results when the risk premium R(w) varies with

wealth. In particular, under decreasing absolute risk aversion (DARA,

where R(w) is a decreasing function of w), it shows that r(w) ¼ �U 00=U 0

is also a decreasing function of w. Let U 000 ¼ @3U=@w
3
denote the third

derivative of the utility function with respect to wealth. It follows that,

under DARA, @r=@w ¼ �U 000=U 0 þ (U 00=U 0)2�0. This implies that

U 000=U 0 � (U 00=U 0)2 � 0. Given U 0 > 0, it follows that U 000 � 0 under

DARA. In other words, DARA preferences impose restrictions on the sign

of the third derivative of the utility function: U 000 � 0. Given U 0 > 0, this

means that a risk averse individual exhibiting DARA would have a utility

function satisfying U 00 < 0 and U 000 � 0. This is illustrated in Figure 4.4. The

implications of the sign of U 000 will be further discussed below.

This has interesting implications for the specification of the utility func-

tion. In general, from the Taylor series, a polynomial function is expected to

provide a good approximation to any differentiable utility function in some

relevant neighborhood. A polynomial function of degree n can be linear

(when n ¼ 1), quadratic (when n ¼ 2), cubic (when n ¼ 3), etc. The question

is, what degree would make the polynomial of U(wþ a) a good approxima-

tion in risk analysis? We know that a linear utility function implies risk

neutrality. Thus, if we are interested in investigating risk aversion, a polyno-

mial of degree one is overly restrictive. Next, consider a quadratic utility

function (i.e., a polynomial of degree two):

U(wþ a) ¼ aþ b(wþ a)þ 0:5g(wþ a)2,

where (a, b, g) are parameters. Such a quadratic utility function provides a

second order approximation to any differentiable utility function. It satisfies

U 0 ¼bþ g(wþ a), and U 00 ¼ g. Thus, U 0 > 0 requires that bþ g(wþ a) > 0.
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U(a)

a

Figure 4.4 Utility for a risk-averse decision-maker (U’’ < 0) exhibiting DARA (im-
plying U’’’ > 0)

For given parameters (b, g), this imposes some restrictions on the range of

wealth (wþ a). Yet, the quadratic utility function can exhibit risk aversion

(when g < 0), risk neutrality (when g ¼ 0), or risk-loving behavior (when

g > 0). As such, it appears reasonably flexible for risk analysis. In addition,

under the expected utility model, note that EU (wþ a) ¼ aþ bE(wþ a)

þ0:5gE(wþ a)2 ¼ aþ bE(wþ a)þ 0:5g[(E(wþ a) )2 þ Var(a)]. This implies

that, under a quadratic utility function, expected utility can always be

written as EU (x) ¼ f [E(wþ a), Var(a)]. In other words, quadratic utility

functions can be used to justify a (nonlinear) mean-variance analysis. Thus,

quadratic utility functions have two attractive properties: (1) they allow for

risk averse, risk neutral, or risk loving behavior (depending on the sign of g);
and (2) they can justify mean-variance analysis, which may be particularly

convenient in applied work. However, quadratic utility functions remain

somewhat restrictive: they imply that U 000 ¼ 0. But we have just seen that

DARA preferences imply U 000 � 0. It follows that quadratic utility functions

cannot exhibit strictly decreasing absolute risk aversion. And in the case of

departure from risk neutrality, they necessarily imply increasing absolute

risk aversion (IARA, where the risk premium R(w) increases with initial

wealth w). This inability to exhibit DARA preferences under risk aversion

stresses that quadratic utility functions do impose a priori restrictions on

risk behavior. In other words, a polynomial utility of degree two cannot be

seen as fully flexible in risk analysis. This suggests that, if one wants to

investigate the effects of initial wealth on the individual willingness to insure,

a quadratic utility function would be inappropriate. Within the class of

polynomial functions, a cubic utility function would be needed for that

purpose.

To the extent that DARA preferences are common, it may be of

interest to identify utility functions that are consistent with DARA.
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Examples include:

	 U(wþ a) ¼ (aþ wþ a)b,

where (a, b) are parameters, (aþ wþ a) > 0, and 0 < b < 1.

	 U(w) ¼ ln (aþ wþ a),

where a is a parameter, and (aþ wþ a) > 0.

Finally, note that Kimball investigated further the implications of the

third derivatives of the utility function U000. He linked such properties to the

concept of ‘‘precaution.’’

RELATIVE RISK AVERSION

Under the expected utilitymodel, we have assumed that the decision-maker

makes decisions so as to maximize the expected utility of terminal wealth,

wþ a, wherew is known initial wealth and ‘‘a’’ is a randomvariable represent-

ing risky income. Here, it will be convenient to denote terminal wealth by

x � wþ a. Since ‘‘a’’ is a random variable, it follows that x is also a random

variable. Then, expected utility can be written as EU(wþ a) � EU (x).

In this context, the risk premium R can be defined as the decision-maker’s

willingness to pay to replace the random wealth x by its expected value E(x).

We have argued that it is a monetary measure of the cost of private risk

bearing. As such, it will depend on the units of measurements for wealth or

income (e.g., cents versus dollars, or Euros versus dollars). It would be useful

to consider measuring the cost of risk in a way that does not depend on the

units of measurements. One obvious way is to measure it as a proportion of

the individual’s wealth. This motivates the following definition.

The relative risk premium R is the proportion of terminal wealth x a

decision-maker is willing to pay to make him indifferent between

facing the risky terminal wealth x versus receiving [(1� R)E(x)].

This means that the relative risk premium R must satisfy the indifference

relationship

x �� [(1� R)E(x)]:

Under the expected utility model, this implies that R is the implicit

solution to the equation

EU(x) ¼ U [(1� R)E(x)]: (2)

How does the relative risk premium R relate to the absolute risk premium

R? Since R satisfies EU (x) ¼ U(E(x)� R), this implies the following rela-

tionship between R and R:

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 44Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 44Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 44Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:42am page 44

44 Risk Analysis in Theory and Practice



R ¼ R=E(x):

This is an intuitive result: the relative risk premium R equals the ratio of

the absolute risk premium to expected terminal wealth. Being a proportion,

R is independent of the units of monetary measurements.

What are the properties of the relative risk premium R? Since R is a

proportion, it would be useful to know how it varies with a proportional

change in terminal wealth x. Of course, this would depend on the nature of

the individual risk preferences. This suggests the following definition:

A decision-maker is said to exhibit increasing (constant, decreasing)

relative risk aversion if R is an increasing (constant, decreasing) func-

tion of a proportional increase in terminal wealth x.

This identifies three types of risk behavior: constant relative risk aversion

(CRRA) where the relative risk premium is independent of a proportional

change in wealth; increasing relative risk aversion (IRRA) where the relative

risk premium increases with a proportional rise in wealth; and decreasing

relative risk aversion (DRRA) where the relative risk premium declines with a

proportional increase in terminal wealth. Which type of risk behavior seems

more common among decision-makers? The empirical evidence on this issue is

mixed. As a result, it remains largely an empirical issue to determine whether a

particular individual exhibits CRRA, IRRA, or DRRA.

Define x ¼ x=E(x) as a measure of ‘‘relative risk,’’ with Var(x) ¼ [E(x)]2

Var(x). Also, given x ¼ wþ a, note that E(x) ¼ wþ E(a), and

Var(x) ¼ Var(a). In the neighborhood of (wþ E(a) ), we derived above the

local approximation for the absolute risk premium R: R � �0:5
(U 00=U 0) �Var(a), where U 0 and U 00 are evaluated at (wþ E(a) ). It follows

that the relative risk premiumR can also be approximated locally as follows:

R ¼ R=E(x) � �0:5U 00=U 0 Var(x)=E(x)

� �0:5(U 00=U 0) E(x) Var(x):

In the neighborhood of the point E(x) ¼ wþ E(a), this suggests that a

local measure of the relative risk premium is given by

R � 0:5 rVar(x)

where r � [� (U 00=U 0)x] is the Arrow–Pratt coefficient of relative risk aver-

sion. It shows that the relative risk premium can be approximated ‘‘in the

small’’ to be proportional to the variance of the relative risk Var(x), with

(0:5r) as coefficient of proportionality. Note that, given x > 0, the relative

risk aversion coefficient can also be written as r ¼ �(@U 0=@x) � (x=U 0)
¼ �@ ln (U 0)=@ ln (x). It is the negative of the elasticity of the marginal utility

of wealth U 0 with respect to wealth, measuring the proportional decrease in
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marginal utility due to one percent increase in x. Being an elasticity, the

relative risk aversion coefficient r is independent of the units of measure-

ment. (This contrasts with the absolute risk aversion coefficient r, which

always depends on the units of monetary measurements). This suggests

that the relative absolute risk aversion coefficient r can provide an attractive

way of comparing risk preferences across individuals when the units of

measurements change (e.g., international comparisons involving different

currencies).

As noted above, the approximation R � 0:5rVar(x) is in general valid

only in the neighborhood of the point E(x). However, as seen in propositions

1 and 2, we might suspect that such local results provide useful information

about the global characterization of risk preferences. Such linkages parallel

the results stated in propositions 1 and 2. They are presented in the following

proposition (see Pratt for a proof).

Proposition 3: The following two statements are equivalent:

. r(x) is an increasing (constant, decreasing) function of x for all x.

. R is an increasing (constant, decreasing) function of x for all x.

Proposition 3 establishes useful linkages between the properties of relative

risk aversion and the specification of the utility function U(x). To see that,

consider the case of constant relative risk aversion (CRRA), where the

relative risk premium R is independent of a proportional change in initial

wealth x. Proposition 3 states that this corresponds to the situation where

the relative risk aversion coefficient r(x) is also independent of x. Assuming

that x > 0 and treating r as a constant, this generates the following CRRA

utility functions

. U(x) ¼ x1�r for r < 1

. U(x) ¼ ln (x), corresponding to r ¼ 1

. U(x) ¼ �x1�r for r > 1.

It shows that a logarithmic utility function ln(x) implies CRRA, with a

relative risk aversion coefficient equal to 1. More generally, the class of

power utility functions [sign(1� r) � x1�r] exhibits CRRA.

In addition, since r ¼ rx, we have @r=x ¼ rþ x(@r=@x). From propos-

ition 3, CRRA is equivalent to @r=@x ¼ 0 for all x. Thus, CRRA implies

that [x(@r=@x)] ¼ �r. Under risk aversion (r > 0) and given x > 0, this

means that (@r=@x) < 0, which corresponds to decreasing absolute risk

aversion (DARA). This shows that, under risk aversion and positive wealth,

CRRA always implies DARA. More generally, it can be easily shown that,

under risk aversion and positive wealth, nonincreasing relative risk aversion

(i.e., CRRA or DRRA) implies DARA. However, a DARA utility function
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can exhibit constant relative risk aversion (CRRA), decreasing relative risk

aversion (DRRA) or increasing relative risk aversion (IRRA).

Finally, does there exist a utility function that can nest both CARA and

CRRA as special cases? The following hyperbolic utility function does that

U(x) ¼ [aþ bx=(1� g)]g,

where (a, b, g) are parameters, and [axþ b(1� g)] > 0. The associated

absolute risk aversion coefficient is r ¼ �U 00=U 0 ¼ b=[aþ bx=(1� g)], and
the relative risk aversion coefficient is r ¼ rx ¼ bx=[aþ bx=(1� g)]. Then,
choosing g ¼ �1 yields CARA preferences with r ¼ b=a. And choosing

a ¼ 0 yields CRRA preferences with r ¼ (1� g).

PARTIAL RELATIVE RISK AVERSION

We have just discussed risk aversion relative to terminal wealth

x ¼ wþ a. However, risk aversion can also be defined relative to other

monetary measures. For example, it can be expressed relative to monetary

income ‘‘a.’’ This generates a different measure of relative risk aversion.

Menezes and Hanson (1970) called it ‘‘partial relative risk aversion.’’

Define the partial relative risk premium R ¼ R=E(a), where R is the abso-

lute risk premium defined above. R is a measure of the willingness to pay for

insurance as a proportion of the expected payoff E(a). Define the relative risk

a ¼ a=E(a), with Var(a) ¼ Var(a)[E(a)]2. From the local measure of the risk

premium R, it follows that R ¼ R=E(a) � �0:5(U 00=U 0) Var(a)=E(a) ¼
�0:5(U 00=U 0)E(a)Var(a). Then, in the neighborhood of [wþE(a)], the

following local approximation to the partial relative risk premium holds:

R � 0:5rVar(a),

where r ¼ [� (U 00=U 0)a] is the partial relative risk aversion coefficient. In a

way parallel to Propositions 2 and 3, we obtain the following result (see

Menezes and Hanson for a proof, 1970).

Proposition 4: The following two statements are equivalent:

. R is an increasing (constant, decreasing) function of a proportional

increase in ‘‘a’’ for all w.

. r is an increasing (constant, decreasing) function of ‘‘a’’ for all w.

Proposition 4 identifies three types of risk behavior: constant partial

relative risk aversion (CPRRA) where the partial relative risk premium is

independent of a proportional change in ‘‘a’’; increasing partial relative risk

aversion (IPRRA) where the partial relative risk premium increases with a
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proportional rise in ‘‘a’’; and decreasing partial relative risk aversion

(DPRRA) where the partial relative risk premium declines with a propor-

tional increase in ‘‘a.’’ For example, under increasing partial relative risk

aversion (IPRRA), a proportional increase in ‘‘a’’ would generate an in-

crease in the partial relative risk premium R ¼ R/E(a), i.e., a more than

proportional increase in the risk premium R. Proposition 4 also provides

linkages between risk behavior and the properties of the utility function

U(wþa) (through the partial relative risk aversion coefficient r).

PREFERENCES WITH RESPECT TO MOMENTS

Our analysis was developed so far without making a priori assumptions

about the probability distribution of terminal wealth x. As such, it has been

very general, as it applies to any amount or type of monetary risk exposure,

and thus to any situation where a decision-maker faces an uncertain mone-

tary payoff. However, understanding risk behavior also requires under-

standing the extent of risk exposure. This means knowing the probability

distribution of the random variable x facing decision-makers. Often, it is

convenient to represent the probability distribution of x by some sufficient

statistics, i.e., statistics that summarize all the relevant information about the

risky prospects. Then, a change in risk exposure can be translated in changes

in these sufficient statistics (e.g., the mean and variance for normal distribu-

tions). However, the sufficient statistics are specific to each probability

distribution. Is it possible to summarize the relevant information about

risk in a generic fashion, i.e., in a way that would apply to all probability

distributions? One possible approach is to rely on the moments of the

distribution. As long as they exist (e.g., that they are finite), the moments

of the random variable x provide a generic way to assess individual risk

exposure. Note that we already discussed expressing risk aversion in terms of

its implications for the mean and variance of ‘‘a.’’ Here, we explore

extending this analysis to the first r central moments, where r can be greater

than 2. Recall that the mean is the first central moment, the variance the

second central moment, while the third central moment reflects skewness,

and the fourth central moment measures kurtosis (see the Appendix). Esti-

mating the first 2, 3, or 4 central moments (assuming that they exist) of a

random variable is a standard practice in applied statistics. This suggests a

need to refine the linkages between the first r moments of the random

variable x and the valuation of risk. While there is no guarantee that the

first r central moments are sufficient statistics for the underlying probability

distribution (since this depends on the distribution itself), this can provide a

convenient way to address the valuation of risk empirically (Antle 1983).
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With x ¼ wþ a, consider the utility function of a decision-maker U(x)

representing his/her risk preferences. Assume that the utility function U(x) is

continuously differentiable up to order r. A r-th order Taylor series expan-

sion of U(x) evaluated at E(x) gives

U(x) � U(E(x) )þ
Xr

i¼1

[1=(i!)] �Ui � [x� E(x)]i,

where Ui � @ iU=@xi is the i-th derivative of the utility function evaluated at

E(x), i ¼ 1, . . . , r. Taking the expectation and assuming that the first r

central moments exist, this gives

EU(x) � U(E(x) )þ
Xr

i¼1

[1=(i!)] �Ui �E[x� E(x)]i

�U(E(x) )þ
Xr

i¼1

[1=(i!)] �Ui �Mi

whereMi � E[x� E(x)]i is the i-th central moment of x, i ¼ 1, . . . , r. Recall

that, in the neighborhood of E(x), EU(x) ¼ U(E(x)� R) can also be ap-

proximated as EU(x) � U(E(x) )� (@U=@x) �R, where R is the risk pre-

mium. Noting that M1 ¼ 0, this yields the following local approximation

(in the neighborhood of E(x))

R �
Xr

i¼2

�[1=(i!)] � (Ui=U1) �Mi

�
Xr

i¼2

Ri �Mi (3)

where Ri ¼ �[1=(i!)](Ui=U1) is a measure of the marginal contribution of

the i-th moment of x to the risk premium R. When r ¼ 2, this gives

R � R2 �Var(x) ¼ �0:5 � (Ui=U1) �Var(x),
whereM2 ¼ Var(x) is the variance of x, and R2 ¼ �0:5U 00=U 0 ¼ r=2, r being
the Arrow–Pratt absolute risk aversion coefficient. This reduces to the

Arrow–Pratt analysis presented previously.

More generally, when r > 2, expression (3) gives a local approximation to

the risk premium R as a linear function of the first r moments of the dis-

tribution of terminal wealth x. For example, it shows the effect of the third

central moment M3 on the risk premium R. Here M3 measures the skewness

of distribution of x, and R3 ¼ �1=6(U 000=U 0). Note that skewness to the left

(M3 < 0) is associated with ‘‘downside risk’’ exposure, while skewness to the

right (M3 > 0) means ‘‘upside risk’’ exposure. In this context, a decrease in
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M3, implies an increase in downside risk. Define downside risk aversion as

corresponding to a positive willingness to pay to avoid downside risk

(Menezes et al., ‘‘Increasing Downside Risk,’’ 1980). The above result indi-

cates that downside risk aversion corresponds to R3 < 0 or U 000 > 0, imply-

ing that a rise in downside risk (a decrease in M3) would tend to increase the

willingness to pay for risk (as measured by the risk premium R). But we have

shown that U 000 � 0 under DARA. It follows that DARA preferences in

general imply ‘‘downside risk aversion.’’ Thus, if DARA characterizes the

risk preferences of many people, this implies that most people are also averse

to downside risk. This is consistent with the observation that insurance

markets are most active against downside risk exposure.

Finally, we have shown that maximizing EU(x) is equivalent to maximiz-

ing the certainty equivalent [E(x) - R], where R is the risk premium. Since

expression (3) provides a local approximation to the risk premium R, it

follows that, as long as the first r moments exist, the objective function of

a decision-maker can always be approximated by

[E(x)�
Xr

i¼2

Ri �Mi]:

This general formulation offers two attractive characteristics. First, it

does not require a full specification of the utility function U(x). As such, it

can be convenient to use in empirical analysis. Second, it allows going

beyond a simple mean-variance analysis (e.g., by including skewness, kur-

tosis, etc.) in the investigation of risk behavior. This may be particularly

useful in the analysis of ‘‘downside risk’’ exposure. However, it should be

kept in mind that expression (3) is in general valid only in the neighborhood

of the point E(x).

PROBLEMS

Note: An asterisk (*) indicates that the problem has an accompanying Excel file

on the Web page http://www.aae.wisc.edu/chavas/risk.htm.

*1. Consider a decision-maker facing an initial wealth w ¼ 20, and an uncertain

income that can take the following values: a1 ¼ �10 with Pr(a1) ¼ 0:2, a2 ¼ 0 with

Pr(a2) ¼ 0:3, a3 ¼ 10 with Pr(a3) ¼ 0:3, and a4 ¼ 20 with Pr(a4) ¼ 0:2. (All monetary

measures are expressed in $1,000.) The decision-maker has risk preferences repre-

sented by the utility function U(wþ a) ¼ �e�0:1 � (wþa).

a. Find the risk premium and the certainty equivalent.

b. How do the risk premium and the certainty equivalent change if initial

wealth increases from 20 to 30?
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c. How do the risk premium and the certainty equivalent change if the

probabilities become Pr(a1) ¼ 0:3, Pr(a2) ¼ 0:2, Pr(a3) ¼ 0:2, and

Pr(a4) ¼ 0:3?
d. How do the risk premium and the certainty equivalent change if the

probabilities become Pr(a1) ¼ 0:3, Pr(a2) ¼ 0:2, Pr(a3) ¼ 0:3, and

Pr(a4) ¼ 0:2?
*2. Same questions, but with the utility function U(wþ a) ¼ ln (wþ a). Interpret

your results.

*3. Same questions, but with the utility function U(wþ a) ¼ �1=(wþ a). Inter-

pret your results.
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Chapter 5

Stochastic Dominance

Chapter 4 presented an analysis of risk behavior under general risk preferences

under the expected utility model. This provides some guidance for empirical

risk analysis. However, applying this approach to decision-making under

uncertainty requires having good information about two items: (1) the extent

of riskexposure (asmeasuredbytheprobabilitydistributionof terminalwealth

x), and (2) the risk preferences of the decision-maker (as represented by his/her

utility functionU(x)).Often, it is easier toobtain sample informationabout the

probability distribution of x than about individual risk preferences. This raises

the question, is it possible to conduct risk analysis without precise information

about risk preferences? The answer is yes. This is the issue addressed in sto-

chastic dominance. Stochastic dominance provides a framework to rank

choices among alternative risky strategies when preferences are not precisely

known (Whitmore and Findlay 1978). It seeks the elimination of ‘‘inferior

choices’’ without strong a priori information about risk preferences.

To present the arguments, consider a decision-maker with a risk prefer-

ence function U(x), L� x�M, and facing a choice between two risky

prospects represented by the probability functions f(x) and g(x). The associ-

ated distribution functions are

F (x) ¼
ðx

L

f (y)dy,

and

53
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G(x) ¼
ðM

L

g(y)dy:

Under the expected utility model, f (x)�� g(x) if and only if

EfU(x)� EgU(x), where Ef and Eg are expectation operators based on the

probability function f(x) and g(x), respectively. Since EfU(x)�EgU(x)

¼
ÐM
L
U(x) [ f (x)� g(x)]dx, this can be written as

f (x)� �g(x) if and only if

ðM

L

U(x)[ f (x)� g(x)]dx� 0,

where f (x)� �g(x) means that the probability function f(x) is preferred

to g(x). Thus, knowing the sign of the term [
ÐM
L
U(x)[ f (x)� g(x)]dx] is a

necessary and sufficient condition to decide that the probability function f(x)

is preferred to g(x). The essence of stochastic dominance is to evaluate the

sign of this expression with a minimum amount of information about the

utility function U(x).

SOME MATHEMATICAL DERIVATIONS

Checkingthesignof the term[
ÐM
L

U(x)[ f (x)� g(x)]dx] is anexercise inusing

integrationbyparts.Thekeymathematical results arepresented in this section.

Define

D1(x) ¼ G(x)� F (x),

D2(x) ¼
ðx

L

D1(y)dy,

and

D3(x) ¼
ðx

L

D2(y)dy:

Using integration by parts, we have

Ef (x)�Eg(x) ¼
ðM

L

x[ f (x)� g(x)]dx,

¼ [x(F (x)� G(x)]jML �
ðM

L

[F (x)� G(x)]dx,

¼
ðM

L

[G(x)� F (x)]dx,¼
ðM

L

D1(x)dx ¼ D2(M): (1)
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Also, using integration by parts, we obtain

EfU(x)� EgU(x) �
ðM

L

U(x)[ f (x)� g(x)]dx

¼ [U(x)(F (x)� G(x) )]jML �
ðM

L

U 0(x)[F (x)� G(x)]dx,

¼
ðM

L

U 0(x)[G(x)� F (x)]dx,

¼
ðM

L

U 0(x)D1(x)dx, (2)

¼ [U 0(x)

ðx

L

D1(y)dy]jML �
ðM

L

U 00(x)

ðx

L

D1(y)dydx,

¼ [U 0(M)

ðM

L

D1(y)dy]�
ðM

L

U 00(x)

ðx

L

D1(y)dydx,

¼ U 0(M)D2(M)�
ðM

L

U 00(x)D2(x)dx, (3)

¼ U 0(M)[Ef (x)� Eg(x)]�
ðM

L

U 00(x)D2(x)dx, using (1),

¼ U 0(M)[Ef (x)� Eg(x)]� [U 00(x)

ðx

L

D2(y)dy]jML þ
ðM

L

U 000(x)

ðx

L

D2(y)dydx,

¼ U 0(M)[Ef (x)� Eg(x)]�U 00(M)D3(M)þ
ðM

L

U 000(x)D3(x)dx: (4)

Equations (2), (3), and (4) provide equivalent formulations for

[EfU(x)� EgU(x)]. But choosing between f(x) and g(x) is equivalent to

finding the sign of [EfU(x)� EgU(x)]. It follows that establishing the sign

of equation (2), (3), or (4) is sufficient information to decide between f(x) and

g(x). This provides the basis for stochastic dominance analysis, as discussed

next.
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DEFINITIONS

Choosing between the probability functions f(x) and g(x) typically depends

onriskpreferences.Thequestionis,howmuch(orhowlittle)doweneedtoknow

about riskpreferencesbeforewecandecidewhetherornot f(x) isabetter choice

(compared to g(x))? We will focus on three classes of preference functions:

. Let U1 denote the class of utility functions U(x) satisfying U 0(x) > 0 for

all x.

. Let U2 denote the class of utility functions U(x) 2 U1 satisfying

U 00(x) < 0 for all x.

. Let U3 denote the class of utility functions U(x) 2 U2 satisfying

U 00(x) > 0 for all x.

The class U1 is quite general; it simply assumes that the marginal utility of

income is positive. This is quite intuitive. It states that increasing income to

any particular individual makes him/her better off. This only requires that

preferences are nonsatiated with respect to income, so that an individual can

always find some way of spending his/her income so as to increase his/her

utility. Since this does not impose any restriction on the second derivative

U 00, this allows for risk loving (U 00 > 0), risk neutral behavior (U 00 ¼ 0), or

risk averse behavior (U 00 < 0).

The classU2 is a little more restrictive. It further restricts the classU1 (with

U 0 > 0) by considering only risk-averse decision-makers (withU 00 < 0). To the

extent that most decision-makers may be risk averse, this still appears rather

general. Clearly, if a utility function belongs to the classU2, it also belongs to

the class U1. However, all utility functions belonging to the class U1 do not

necessarily belong to the class U2 (e.g., the case of risk loving preferences).

The class U3 is the most restrictive of the three classes. It further restricts

the class U2 of risk averse decision-makers (with U 0 > 0 and U 00 < 0) by

focusing only on the utility functions exhibiting U 000 > 0. We have seen that

DARA (decreasing absolute risk aversion) preferences imply that U 000 > 0.

Thus, the class U3 includes all decision makers that are risk averse and

exhibit DARA. Clearly, if a utility function belongs to the class U3, it also

belongs to the class U2 and U1. However, there are utility functions

that belong to the class U2 but that do not belong to the class U3 (e.g., the

case of risk averse preferences exhibiting U 000 < 0).

IMPLICATIONS

Under the expected utility model, we know that f(x) is preferred to

g(x) (written as f (x)��
g(x)) if and only if EfU(x)� EgU(x) � [

ÐM
L

U(x)

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:43am page 56Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:43am page 56Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:43am page 56Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:43am page 56

56 Risk Analysis in Theory and Practice



[ f (x)� g(x)]dx]� 0. Using the above mathematical derivations, we obtain

the following stochastic dominance results. They provide relative ranking of

probability distributions without precise information about the risk prefer-

ences of the decision-maker.

FIRST-ORDER STOCHASTIC DOMINANCE

Equation (2) states that EfU(x)�EgU(x) if and only if [
ÐM
L

U 0(x)
D1(x)dx]� 0. Under the expected utility model, having U 0 > 0 gives:

Proposition 1: (first-order stochastic dominance)

f (x)��
g(x) for all U(x) 2 U1 if and only if

D1(x)� G(x)� F (x)� 0 for all x:

Proposition 1 states that D1(x) � G(x)� F (x)� 0 for all x is a sufficient

condition to conclude that f(x) is (at least weakly) preferred to g(x) for all

decision-makers that are nonsatiated in income (i.e., with U 0 > 0). This is

illustrated in Figure 5.1. It shows that, given U 0 > 0, if the distribution

function F(x) is to the right of the distribution function G(x) so that they

do not cross, then we know f(x) is a better choice than g(x).

Discrete Implementation: Consider the case of choosing between two

probability functions f(x) and g(x), where the random variable x can

take n possible values, x1, . . . , xn. To evaluate first-order stochastic

dominance, calculate D1(xr) ¼ G(xr)�F (xr)¼ Sx[g(xi)� f (xi) :
xi � xr], for all xr, r ¼ 1, 2, . . . , n. If D1(xr)� 0 for all r, then we

can conclude that choosing f(x) is at least as good as g(x) for all

U(x) 2 U1 (i.e., for all preferences exhibiting nonsatiation).

SECOND-ORDER STOCHASTIC DOMINANCE

Equation (3) states that EfU(x)�EgU(x) if and only if [U 0(M)D2(M)�ÐM
L

U 00(x)D2(x)dx]� 0. Under the expected utility model, having U 0 > 0 and

U 00 < 0 gives:

Proposition 2: (second-order stochastic dominance)

f (x)� �
g(x) for all U(x)2 U2 if and only if D2(x)

�
ðx

L

D1(y)dy� 0 for all x:

Proposition 2 states that D2(x) �
Ð x
L
D1(y)dy �

Ð x
L
[G(y)� F (y)]dy� 0

for all x is a sufficient condition to conclude that f(x) is (at least weakly)
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Distribution Functions
1

0
x

0
x

F(x)

G(x)

D1(x)

D1(x) ≡ G(x) − F(x)

Figure 5.1 f(x) exhibits first-order stochastic dominance over g(x)

preferred to g(x) for all risk averse decision makers (with U 00 < 0) that

are nonsatiated in income (with U 0 > 0). This is illustrated in Figure 5.2. It

shows that, given U 0 > 0 and U 00 < 0, if the area under G(x) and to the left of

x remains greater than the area under F(x) and to the left of x for all x, then

we know that f(x) is a better choice than g(x). Note that this allows the two

distribution functions F(x) and G(x) to cross each other (once or even several

times). However, it implies that the distribution function F(x) cannot start to

the left of G(x). And if the two distribution functions F(x) and G(x) cross

each other, the area between them where G(x) is to the right of F(x) must be

relatively small such that [
Ð x
L
[G(y)� F (y)]dy] remains nonnegative.

Discrete Implementation: Consider the case of choosing between two

probability functions f(x) and g(x), where the random variable x can

take n possible values, x1, . . . , xn. To evaluate second-order stochas-

tic dominance, calculate D2(xr) ¼ Sx[D1(xi�1)[xi � xi�1] : xi�xr],

which is a piece-wise linear continuous function of x. If D2(xr)� 0

for all r, then we can conclude that choosing f(x) is at least as good as

g(x) for all U(x)2 U2 (i.e., for all preferences exhibiting nonsatiation

and risk aversion).

As noted above, second-order stochastic dominance allows the two dis-

tribution functions F(x) and G(x) to cross each other. In the special case

when we know that they cross but only once, we can obtain some additional

results. Consider the situation where D1(x) > 0 for ‘‘small values’’ of x (so
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Distribution Functions
1

0

0
x

x

0
x

F(x)

G(x)

D1(x)

D2(x)

x

L
D2(x) ≡ ∫ D1(y) dy

D1(x) ≡ G(x) − F(x)

Figure 5.2 f(x) exhibits second-order stochastic dominance over g(x)

that F(x) starts to the right of G(x)), and where F(x) and G(x) cross only

once. Then, there exists a value x0 such that

D1(x) � G(x)� F (x) > 0 for any x, L� x� x0,

D1(x) � G(x)� F (x)� 0 for any x, x0 � x�M,

< 0 for at least some x:

It follows that D2(x)� 0 for all x� x0, and D2(x)�D2(M) � Ef (x)�
Eg(x) from (1). This implies that, in the case of single crossing, f (x) ��

g(x) for all U(x) 2 U2 if D2(x)� 0 for all x < x0 and Ef (x)�Eg(x). Thus,

under single crossing, if D2(x)� 0 for all x < x0 and Ef (x)�Eg(x), then

f(x) is (at least weakly) preferred to g(x) for all utility functions U(x) 2 U2

(i.e., where U 0 > 0 and U 00 < 0).

An interesting special case involves normal distributions. Under normal

distributions, single crossing and D2(x) > (�) 0 for x < x0 correspond to

Vf (x) < (�)Vg(x). Thus, under normal distributions, Varf (x) < Varg(x)
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and Ef (x)�Eg(x) imply that f(x) is preferred to g(x) for all utility functions

U(x) 2 U2 (i.e. all nonsatiated, risk-averse decision-makers). Similarly,

Varf (x)�Varg(x) and Ef (x) > Eg(x) imply that f(x) is preferred to g(x) for

all U(x) 2 U2. This identifies the (E, V ) efficiency set under risk aversion

(where E ¼ expected value, V ¼ Variance): a risk-averse decision-maker

prefers a higher expected return and a lower variance of returns.

THIRD-ORDER STOCHASTIC DOMINANCE

Equation (4) states that EfU(x)�EgU(x) if and only if [U 0(M)[Ef (x)

�Eg(x)]�U 00(M)D3(M)þ
ÐM
L

U 000(x)D3(x)dx]� 0. Under the expected util-

ity model, having U 0 > 0, U 00 < 0, and U 00 > 0 gives:

Proposition 3: (third-order stochastic dominance)

f (x)� �g(x) for all U(x) 2 U3 if and only if

. D3(x)� 0 for all x, and

. Ef (x)�Eg(x).

Proposition 3 states that Ef (x)�Eg(x) and D3(x) �
Ð x
L
D2(y)dy� 0 for all

x are sufficient conditions to conclude that f(x) is (at least weakly) preferred

to g(x) for all risk preferences satisfying U 0 > 0 (i.e., nonsatiated), U 00 < 0

(i.e., risk averse) and U 000 > 0 (e.g., exhibiting decreasing absolute risk aver-

sion, DARA). This is illustrated in Figure 5.3. Note that Ef (x)�Eg(x) is

equivalent to D2(M)� 0 from (1). Given U 0 > 0, U 00 < 0, and U 000 > 0,

Figure 5.3 shows that D2(M)� 0 and D3(x) �
Ð x
L
D2(y)dy� 0 for all x guar-

antee that f(x) is (at least weakly) preferred to g(x). Again, it allows crossing

of the distribution functions F(x) and G(x). And it can apply even if D2(x) is

not always positive (i.e., where second-degree stochastic dominance fails).

However, it still requires that the distribution function F(x) starts to the right

of G(x). And it requires that D2(M)� 0.

Discrete Implementation: Consider the case of choosing between two

probability functions f(x) and g(x), where the random variable x can

take n possible values, x1, . . . , xn. To evaluate third-order stochastic

dominance, calculateD3(xr)¼Sx{(1=2)[D2(xi)þD2(xi�1)] [xi�xi�1] :
xi � xr}, which is a piece-wise quadratic continuous function of x. If

. D3(xr)� 0 for all xr and all x where D2(x) ¼ 0, and

. Ef (x)�Eg(x), (or equivalently D2(M)� 0 from (1)),

then we can conclude that f(x) is (at least weakly) preferred to g(x) for all

U(x) 2 U3 (i.e., for all preferences whereU
0 > 0,U 00 < 0, and U 000 > 0).
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Distribution Functions
1

0 x

0
x

0
x

0
x

F(x)

G(x)

D3(x)

D2(x)

D1(x)

D1(x) ≡ G(x) - F(x)

x

L
D2(x) ≡ ∫ D1(y) dy

x

L
D3(x) ≡ ∫ D2(y) dy

Figure 5.3 f(x) exhibits third-order stochastic dominance over g(x)
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STOCHASTIC DOMINANCE WITH RESPECT
TO A FUNCTION

When two distribution functions can be ranked according to first-,

second-, or third-order stochastic dominance, then we have information on

which distribution would be chosen by decision-makers under weak assump-

tions about their risk preferences. This can be quite useful to eliminate

inferior choices without precise knowledge of risk preferences. However,

there are situations where distributions cannot be ranked easily. For

example, if a distribution exhibits high average return but a significant

exposure to downside risk, it will fail to satisfy the stochastic dominance

criteria discussed above. The reason is that all criteria require that the

distribution function of the preferred choice must start to the right of

other distribution functions, meaning that the preferred choice must involve

less downside risk exposure. This is intuitive; first-, second-, or third-order

stochastic dominance allows for extreme aversion to downside risk. It means

that a decision-maker could possibly decide to avoid risky prospects offering

greater downside risk exposure even if such prospects generate high average

returns. Note that this can apply to technological adoption under uncer-

tainty. While new technologies often generate higher expected return, their

adoption can be slow if they also increase downside risk exposure. In such

situations, first-, second-, or third-order stochastic dominance analysis

will not help. Of course, if we had perfect information about risk prefer-

ences, then comparing expected utilities across prospects would identify

the preferred choice. But, given the empirical difficulties assessing individual

risk preferences, it remains of interest to evaluate risky prospects

under refined but incomplete information about risk preferences. Meyer’s

stochastic dominance with respect to a function provides such an approach

(Meyer 1977).

DEFINITION

Let Uf � U [rL(x), rM(x)] denote a class of utility functions U(x)

satisfying

. rL(x)��U 00(x)=U 0(x)�rM(x) for all x, and

. U 0(x) > 0 for all x.

Here, rL(x) and rM(x) are respectively a lower bound and upper bound on

the Arrow–Pratt absolute risk aversion coefficient �U 00=U 0 representing

the individual risk preferences at point x. The bounds rL(x) and rM(x) are

to be interpreted as a priori information about individual risk preferences.
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This includes several interesting special cases. First, given U 0>0, if rL(x)

¼ �1 and rM(x) ¼ 1 for all x, then Uf ¼ U1, which reduces to the class of

risk preferences analyzed above in first-order stochastic dominance. Second,

given U 0 > 0, if rL(x) ¼ 0 and rM(x) ¼ 1 for all x, then Uf ¼ U2, which is

the class of risk averse preferences (with U 00 < 0) analyzed above in second-

order stochastic dominance. Third, if rL(x) ¼ rM(x) ¼ r(x) for all x, then we

obtain the case of precise knowledge about risk preferences (where

U(x) ¼
Ð
e�
Ð
r). The situation of interest here is when we have additional

information about risk preferences that go beyond the one used in first-,

second-, or third-order stochastic dominance and but falls short of perfect

knowledge.

SOME DERIVATIONS

Using equation (2), we have shown that EfU(x)� EgU(x) �
ÐM
L

U(x)

[ f (x)� g(x)]dx ¼
ÐM
L

U 0(x)[G(x)� F (x)]dx� 0 if and only if f (x)� �g(x).
Under the expected utility model, this generates the following result:

f (x)� �g(x) if [MinU2Uf

ðM

L

U 0(x)[G(x)� F (x)]dx]� 0:

This involves finding the minimum of an integral and checking that the

minimum is nonnegative. To find this minimum, note that U¼
Ð
e�
Ð
r,

where r(x) ¼ �U 00(x)=U 0(x) is the Arrow–Pratt absolute risk aversion co-

efficient. The minimization problem can then be written as

Minr

ðM

L

U 0(x)[G(x)� F (x)] dx:U 00(x) ¼ �r(x)U 0(x), rL(x)�r(x)�rM(x)

2

4

3

5:

The corresponding Lagrangean is

L ¼
ðM

L

(U 0(x)[G(x)� F (x)]þ l(x)[� r(x)U 0(x)�U 00(x)])dx,

where l(x) is the Lagrange multiplier (also called costate variable in optimal

control) under state x. Integrating by parts gives

L ¼
ðM

L

(U 0(x)[G(x)� F (x)� l(x)r(x)])dx� [l(x)U 0(x)]jML þ
ðM

L

l0(x)U 0(x)dx:
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The first-order conditions to the minimization problem are

@L=@U 0 ¼ G(x)� F (x)� l(x)r(x)þ l0(x) ¼ 0 for x < M (5a)

¼ �lM ¼ 0 for x ¼ M: (5b)

and since L is linear in r,

@L=@r ¼ �l(x)U 0(x)� 0 when r� ¼ rM(x) (6a)

� 0 when r� ¼ rL(x), (6b)

where r� denotes the optimal solution for r.

Note that

d(lU 0)=dx ¼ lU 00 þ l0U 0

¼ lU 00 þ [F � Gþ lr]U 0, from (5a),

¼ [F � G]U 0, since U 00 ¼ �rU 0:

(7)

It follows that
ÐM
x

[d(lU 0)=dx]dx ¼ [lU 0]jMx ,

¼ �lU 0, since lM ¼ 0 from (5b),

¼
ðM

x

[F (x)� G(x)]U 0(x)dx, from (7):

The first-order conditions (6a)–(6b) thus imply

r�¼ rM(x) if

ðM

x

[G(x)� F (x)]U 0(x)dx� 0,

¼ rL(x) if

ðM

x

[G(x)� F (x)]U 0(x)dx < 0,

where U 0 ¼ e
�
Ð
r�
is evaluated at the optimal r�.

IMPLICATIONS

Proposition 4: (stochastic dominance with respect to a function)

f (x)� � g(x) for all U(x) 2 Uf � U [rL(x), rM(x)] if and only if

ðM

L

U 0(x)[G(x)� F (x)]� 0
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whereU 0(x) ¼ e
�
Ð
r�
is evaluated at the optimal r� of the above minimization

problem.

Proposition 4 provides a framework to choose between f(x) and g(x)

when we know that U(x) 2 Uf , i.e. that risk preferences are nonsatiated

(U 0 > 0) and satisfy the following bounds for the Arrow–Pratt risk aversion

coefficient: rL(x)� �U 00(x)=U 0(x)� rM(x) for all x.

THE DISCRETE CASE

To implement Proposition 4, consider the case of two discrete random

variables involving n data points xi, i ¼ 1, 2, . . . , n, where xiþ1 > xi for all

i. Let Ui ¼ U(xi), i ¼ 1, 2, . . . , n. Note that

EfU(x)� EgU(x) ¼
Xn

i¼1

Ui[(Fi � Fi�1)� (Gi � Gi�1)],

¼
Xn

i¼1

Ui[(Fi � Gi)�
Xn

i¼1

Ui[(Fi�1 � Gi�1)],

¼
Xn�1

i¼1

(Ui �Uiþ1)(Fi � Gi):

Let Hi � Uiþ1�Ui > 0, Dxi ¼ xiþ1�xi > 0, and [Hi=Dxi�Hi�1=Dxi�1]=
Dxi�1 ¼ �riHi=Dxi (corresponding to the definition of the Arrow–Pratt

absolute risk aversion coefficient ri in the context of discrete changes).

Then, consider the minimization of the Lagrangean

MinH, r
Xn

i¼1

[�Hi(Fi�Gi)þ li(� riHiDxi�1=Dxi �Hi=Dxi þHi�1=Dxi�1)]

" #

,

where the l
0

is are Lagrange multipliers. Assuming Hi > 0, the first-order

conditions take the form

@L=@Hi ¼ �(Fi � Gi)� li(1=Dxi þ riDxi�1=Dxi)þ liþ1=Dxi

¼ 0, for i ¼ 1, . . . , n� 1, (8a)

¼ �ln(1=Dxn þ rnDxn�1=Dxn) ¼ 0, for i ¼ n, (8b)

@L=@ri ¼ �liHiDxi�1=Dxi, for i ¼ 1, . . . , n,

¼ sign(� li) � 0 when r�i ¼ rM(xi),
(9a)

> 0 when r�i ¼ rL(xi), (9b)

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:43am page 65Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:43am page 65Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:43am page 65Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 7:43am page 65

Stochastic Dominance 65



since the Lagrangean is linear in ri, and

@L=@li ¼ �riHiDxi�1=Dxi �Hi=Dxi þHi�1=Dxi�1 ¼ 0, i ¼ 1, . . . , n: (10)

For i ¼ 1, . . . , n� 1, note that substituting equation (10) into (8a) yields

Gi � Fi þ liþ1=Dxi � li(Hi�1=Hi)=Dxi�1 ¼ 0,

or

li ¼ [Gi � Fi þ liþ1=Dxi]=[(Hi�1=Hi)=Dxi�1] ¼ sign (Gi � Fi þ liþ1=Dxi):

It follows from (9) that sign (@L=@ri) ¼ sign (� li) ¼ sign[� (Gi � Fi

þliþ1=Dxi)]. This suggests the following algorithm:

1. Choose ln ¼ 0, r�n ¼ rM(xn), and H�
n ¼ K > 0. Let i ¼ n.

2. Solve equation (10) (@L=@li ¼ 0) for H�
i�1 > 0.

3. Let i ¼ i � 1. Evaluate [Gi � Fi þ liþ1=Dxi].
4. Choose r�i ¼ rM(xi) if [Gi � Fi þ liþ1=Dxi]� 0,

¼ rL(xi) if [Gi � Fi þ liþ1=Dxi] < 0.

5. Evaluate li ¼ [Gi � Fi þ liþ1=Dxi]=[(Hi�1=Hi)=Dxi�1]. Then, go to step

2/ until i ¼ 1.

6. Conclude that f (x)� �g(x) for all U(x) 2 Uf if {Si[�H�
i (Fi � Gi)]:

i ¼ 1, . . . , n]� 0.

This provides a practical way of assessing whether f(x) is preferred to g(x)

for a class of utility function Uf where we have a priori information about

the lower bound and upper bound of the Arrow–Pratt risk aversion coeffi-

cient at each data point.

PROBLEMS

Note: An asterisk (*) indicates that the problem has an accompanying Excel file

on the Web page http://www.aae.wisc.edu/chavas/risk.htm.

*1. Consider the following pair of prospects of receiving an uncertain income x:

Prospect A Prospect B

xi Pr(xi) xi Pr(xi)

2 0.2 3 0.6

3 0.3 6 0.4

5 0.5
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Analyze these two prospects in terms of:

. first-degree stochastic efficiency

. second-degree stochastic efficiency

. third-degree stochastic efficiency

Interpret your results.
*2. Three alternative rice production technologies have returns that are normally

distributed with parameters given in the table:

Technology Mean Standard Deviation

A 1200 400

B 1000 300

C 500 100

a. Plot the distribution functions of returns for each technology.

b. Which technologies are efficient according to second-degree stochastic dom-

inance? Interpret.

*3. Two possible technologies are available to maize growers in a region. The

distributions of yield (t/ha) are described by two sets of fractiles.

Fractile 0 0.25 0.50 0.75 1.0

Technology A 0.75 1.25 1.50 2.00 3.50

Technology B 1.00 2.00 3.10 4.50 6.00

Suppose the net value of grain is $100/t and the variable costs associated with

these technologies are $50/ha for technology A and $100/ha for technology B.

a. Plot the distribution functions of returns for each technology (assume that

the functions are piece-wise linear).

b. Analyze the efficiency of each technology using stochastic dominance.

Interpret your results.
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Chapter 6

Mean-Variance Analysis

Under the expected utility model, consider a utility function U(x) where

x � (wþ a) is terminal wealth. Analyzing behavior under risk in a mean-

variance context implies that expected utility can be expressed as

EU(x) ¼ W (M, V ), where M � E(x) is the mean of x and V � Var(x) is

the variance of x. This mean-variance approach is quite attractive in applied

risk analysis given that the estimation of the first two moments of the

distribution of x is often relatively easy to obtain empirically. But, besides

its convenience, can we justify this mean-variance approach under fairly

general conditions? This chapter evaluates the arguments underlying the

mean-variance approach.

THE CASE OF CARA PREFERENCES UNDER
NORMALITY

We showed in Chapter 4 that, under constant absolute risk aversion

(CARA) and the normality of the distribution of x, maximizing EU(x) is

equivalent to maximizing [M � r=2 V ], where r ¼ �U 00=U 0 is the constant

Arrow–Pratt absolute risk aversion coefficient. In this case, decision analysis

under risk can be conducted in the context of an additive mean-variance

objective function. While convenient, both the normality assumption and

CARA preferences appear rather restrictive. For example, this does not

allow risky prospects that have skewed probability distribution. Also,

CARA implies the absence of wealth effects.

69
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THE CASE OF A QUADRATIC UTILITY FUNCTION

Also, we have shown that, under a quadratic utility function, maximizing

expected utility is equivalent to maximizing a mean-variance reference func-

tion W(M, V). One advantage of this result is that it does not impose any

restriction on the probability distribution of x. However, we have also

shown that a quadratic utility function exhibits increasing absolute risk

aversion (IARA). This appears restrictive in the sense that it excludes the

more intuitive case of decreasing absolute risk aversion (DARA).

THE GENERAL CASE

So we know of two cases (CARA with normality and quadratic utility)

where mean-variance preferences apply. But these cases appear rather

restrictive. As a result, we are looking for more general results under

which the mean-variance approach can be justified. Below, we present the

arguments presented by Meyer (1987).

Consider the case where x ¼ M þ se, where M ¼ E(x) is the mean of x

(¼ a location parameter), e is a random variable with mean zero (E(e) ¼ 0)

and s > 0 is a mean preserving spread (or a scale parameter). In the

special case where Var(e) ¼ 1, the parameters M and s can be interpreted

as the mean and the standard deviation of x respectively. Note that, as

long as the mean E(x) exists, this representation does not impose

any restriction on the form of the probability function of x (or e).

Consider the case where a decision-maker chooses among random vari-

ables of the form x ¼ M þ se, where all random variables differ from each

other only by the location parameter M and/or the scale parameter s. Then,
under the expected utility model, the expected utility of the decision-maker

takes the form

EU (x) ¼ EU(M þ se) ¼ W (M, s):

Note that this does not impose any restriction on the form of the probability

function of e, nor on the shape of the utility function U(x). Thus, the objective

function W (M, s) provides a general way to motivate a mean standard

deviation analysis (or mean variance analysis with V ¼ s2). The properties

of the mean-standard deviation utility frontier W (M, s) and the linkages

with risk preferences are examined next.
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NOTATION

Let WM ¼ @W=@M ¼ EU 0

Ws ¼ @W=@s ¼ E(U 0e)

WMM ¼ @2W=@M2 ¼ EU 00

Wss ¼ @2W=@s2 ¼ E(U 00e2)

WsM ¼ @2W=@s@M ¼ E(U 00e):

Let W0 denote some constant level of expected utility. Differentiating

W0 ¼ W (M(s), s) with respect to s gives

WM@M=@sþWs ¼ 0,

or

@M=@s ¼ �Ws=WM ¼ S(M, s),

where S(M, s) ¼ @M=@s is the slope of the indifference curve between M and

s, holding expected utility at the constant level W0. It also measures the

marginal rate of substitution between M and s. This notation provides the

framework to analyze the risk preferences associated with the mean variance

function W (M, s) and to link them with the properties of the underlying

utility function U(x).

IMPLICATIONS

The implications of risk preferences for the properties of the properties of

the mean variance function W (M, s) are presented next.

Proposition 1: WM � 0 if and only if U 0 � 0 for all (M, s).
Proposition 1 simply means that, under nonsatiation (U 0 > 0), the func-

tion W is increasing in M. This is an intuitive result: higher expected return

M makes the decision-maker better off.

Proposition 2: Ws � 0 if and only if U 00 � 0 for all (M, s).

Proof:

Ws¼E(U 0e)¼COV(U 0, e)¼ sign(@U 0=@e)¼ sign(U 00s)¼ sign(U 00).

Proposition 2 implies that, under risk neutrality (U 00 ¼ 0), the functionW

is independent of s. Alternatively, under risk aversion (U 00 < 0), then the

function W is decreasing in s. This is intuitive: increasing risk (as measured

by s) makes any risk averse decision-maker worse off.
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Proposition 3: S(M, s)� 0 if U 00 > 0, U 00 < 0 for all (M, s).

Proof: S(M, s) ¼ �Ws=WM ¼ �E(U 0 e)=EU 0 ¼ sign(U 00=U 0).

Proposition 3 shows that, under risk neutrality (withU 0 > 0 andU 00 ¼ 0),

the marginal rate of substitution between M and s is zero: S(M, s) ¼ 0.

Alternatively, under risk aversion (with U 0 > 0 and U 00 < 0), the marginal

rate of substitution between M and s tends to be positive: S(M, s)� 0. This

means that, under risk aversion, any increase in risk (as measured by s) must

be compensated by an increase in expected return M to keep the decision on

the same welfare level.

Proposition 4: W (M, s) is a concave function of (M, s) if and only if

U 00 < 0 for all (M, s).

Proof: @2W=@(M, s)2 ¼ E U 00 1
e

� �
1 e½ �

� �
, which is a negative semi-

definite matrix if and only if U 00 < 0.

Proposition 4 establishes the concavity of the mean-variance function

W (M, s) under risk aversion (U 00 < 0). Note that this implies that set

{M, s: W (M, s)�W0} is a convex set. This is illustrated in Figure 6.1,

which shows the general shape of the indifference curve between M and s
under risk aversion, holding expected utility constant atW0. The slope of the

curve in Figure 6.1 is S(M, s), the marginal rate of substitution between M

and s (which is positive under risk aversion).

Note that, under risk aversion, W (M, s) is a concave function of s
(the standard deviation of e). However, it is not necessarily a concave func-

tion of s2 (the variance of e). This indicates that a ‘‘mean-standard deviation’’

analysis appears more convenient than a ‘‘mean-variance’’ analysis.

M

expected utility W(M,s) > W0
W0

expected utility W(M, s) < W0

s

Figure 6.1 Indifference curve between M and s under risk aversion, holding
expected utility at W0
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Proposition 5: @S(M, s)=@M{ < , ¼ , > } 0 if and only if U(x) exhibits

{DARA, CARA, IARA} for all (M, s), given U 0 > 0.

Proof: @S(M,s)=@M¼�WsM=WMþWMMWs=(WM)2

¼ [�WsMWMþWMMWs]=(WM)2

¼ sign[�E(U 00e)EU 0þEU 00E(U 0 e)]

¼sign{EU 0[�E(U 00 e)þEU 00z]}where z¼E(U 0 e)=EU 0,

¼sign{E[U 00(z�e)]}

¼sign{E[rU 0(e�z)]}where r¼�U 00=U 0,

Note that E[U 0(e� z)] ¼
R
U 0(e� z)f (e)de ¼ 0, where f(e) is the probabil-

ity function of e. Since f (e)�0 and U 0 > 0, it follows that [U 0(e� z)f (e)]

changes sign only once (from negative to positive) as e increases. Thus

. {r ¼ constant} implies that E[rU 0(e� z)] ¼ 0 and @S=@M ¼ 0,

. {r ¼ increasing} implies that E[rU 0(e� z)] > 0 and @S=@M > 0,

. {r ¼ decreasing} implies that E[rU 0(e� z)] < 0 and @S=@M < 0.

Proposition 5 shows the implications of the patterns of absolute risk

aversion for the marginal rate of substitution S(M, s). For example, it

implies that the marginal rate of substitution S(M, s) is independent of M
under constant absolute risk aversion (CARA). This means a parallel

upward shift in the indifference curve between M and s as M increases.

Proposition 5 also shows that, under decreasing absolute risk aversion

(DARA), the slope of the indifference curve, S(M, s), decreases with M.

This is illustrated in Figure 6.2. Intuitively, it shows that under DARA, the

decision-maker becomes less concerned with risk (as measured by s) as his/
her expected wealth rises.

M

s

Figure 6.2 Indifference curves between M and s under risk aversion and decreas-
ing absolute risk aversion
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Proposition 6: @S(tM, ts)=@t{ < , ¼ , > } 0 if and only if U(x) exhibits

{DRRA, CRRA, IRRA} for all (M, s), given U 0 > 0.

Proof: Evaluated at t ¼ 1, S(tM, ts) ¼ �Ws=WM ¼ �E(U 0 e)=EU 0. It
follows that

@S(tM, ts)=@t ¼ �E(U 00x e)=EU 0 þ E(U 00 x)E(U 0 e)=(EU 0)2

¼ sign{� E(U 0)E(U 00x e)þ E(U 00x)E(U 0e)}

¼ sign{E[rU 0(e� z)}

where r ¼ �xU 00=U 0 and z¼ E(U 0 e)=EU 0:

We have shown that E[U 0(e� z)] ¼
R
U 0(e� z) f (e) de ¼ 0, and that

[U 0(e� z) f (e)] changes sign only once (from negative to positive) as e

increases. Thus

. {r ¼ constant} implies that E[rU 0(e� z)] ¼ 0 and @S=@t ¼ 0,

. {r ¼ increasing} implies that E[rU 0(e� z)] > 0 and @S=@t > 0,

. {r ¼ decreasing} implies that E[rU 0(e� z)] < 0 and @S=@t < 0.

Proposition 6 shows the implications of the patterns of relative risk

aversion for the marginal rate of substitution S(M, s). It implies that,

under constant relative risk aversion (CRRA), the marginal rate of substitu-

tion S(M, s) remains unaffected by a proportional change in M and s. This
is illustrated in Figure 6.3. Figure 6.3 shows that, under CRRA, the slope of

indifference curves between M and s remain constant along a ray through

the origin.

M

s

Figure 6.3 Indifference curves between M and s under risk aversion and constant
relative risk aversion (CRRA)
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IMPLICATIONS

The previous analysis shows that a mean-variance specification (or mean-

standard deviation specification) can be reasonably flexible in risk analysis.

First, as long as one works with a flexible objective function W (M, s), this
does not impose a priori restriction on risk preferences. Second, the shape of

this function can provide insights on mean-variance trade-off, with useful

linkages to the nature of risk aversion. Third, the arguments were presented

for an arbitrary distribution function for the random variable representing

uncertainty. This suggests its broad applicability to a variety of risky situ-

ations. Finally, the empirical estimation of mean and variances from sample

information has a long tradition in statistics and econometrics. All these

arguments indicate that a mean-variance analysis provides a powerful

framework to conduct applied risk analysis. This gives strong support for

the extensive use of mean-variance models in the empirical investigation of

risk management issues. This will be further illustrated in the following

chapters.

Yet, there are situations where the mean-variance model may be inappro-

priate. The main issue relates to the specification of the random variable

x ¼ M þ se. It allows changes in the distribution of risk only through M

(the mean) and s (the standard deviation). This appears restrictive in at least

two situations: when there is a focus on the management of ‘‘downside risk’’;

and when the analysis considers the case of ‘‘rare events.’’

One of the main issues with the mean-variance approach is that it fails to

distinguish between ‘‘upside risk’’ (where the random variable is above its

mean) and ‘‘downside risk’’ (where the random variable is below its mean).

For example, the estimated variance from a random sample treats deviations

from the mean symmetrically; it does not distinguish between being X%

above the mean versus being X% below the mean. The problem is that most

decision-makers treat upside risk and downside risk differently. As seen is

Chapter 4, it is common for many individuals to exhibit decreasing absolute

risk aversion (DARA), where ‘‘local’’ risk aversion decreases with wealth. It

means that most decisions-makers are strongly averse to downside income

risk exposure, while being only mildly risk averse (or even becoming risk

lovers) with respect to upside income risk. As argued by Savage, this can

explain why some individuals insure against downside risk while at the same

time gambling to increase their exposure to upside risk. It suggests that the

analysis of insurance schemes should distinguish between upside risk and

downside risk. In general, under DARA, decision-makers are particularly

concerned about reducing their exposure to downside income risk. It means

that risk management and insurance contracts typically focus on reducing
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downside risk exposure. But this is not captured well by a mean-variance

approach. As shown in Chapter 4, DARA implies aversion to negative

skewness (representing downside risk exposure) and a relative preference

for positive skewness (representing upside risk exposure). In situations where

downside risk management is deemed important, this implies a need to go

beyond the first two moments of the distribution (mean and variance) and to

include the third moment (skewness) in risk analysis. This can be done by

using a general moment-based approach (as discussed in Chapter 4). Alter-

natively, this can be handled by studying how the whole probability function

representing uncertainty is shifted through risk management. Implications

for decision-making can then be based on the expected utility model if risk

preferences are known, or using stochastic dominance analysis if risk prefer-

ences are imprecisely known (see Chapter 5).

Another issue is related to the management of ‘‘rare’’ risky events. A rare

event is any event that occurs with very low probability. The fact that they

occurwith low probabilitymeans that there can be a very large number of rare

events that remain consistent with probability theory (where the sum of all

probabilities equals 1). Note that, in the case where the probability function is

unimodal (i.e., with a single peak), rare events are necessarily associated with

values of random variables that are far from their mean. This raises questions

about how information about rare events is used and processed by decision-

makers. If there are many rare events, it may prove difficult for any individual

to process the associated information. Bounded rationality arguments or the

cost of obtaining information can imply that it is optimal to ignore much of

this information in decision-making (this issue is addressed in Chapter 10).

However, this does not imply that all rare events are ignored. As just dis-

cussed, under DARA, decision-makers are particularly concerned about

reducing their exposure to rare events associated with ‘‘downside risk.’’ It

includes downside risk associated with rare catastrophic events such as risk of

death, natural disasters, and catastrophic accidents or illness. The manage-

ment of such risk is often seen as a significant concern formany individuals. In

general, such management involves changes in small probabilities. Mean-

variancemodels appear poorly equipped to handle the analysis of such effects.

Again, a refined analysis would require addressing how risk management

affects the lower tail of the distribution and assessing the perceived benefits

associated with a lower exposure to rare downside risk.

PROBLEMS

1. Consider the mean-standard deviation representation of individual risk prefer-

ences: W (M, s) ¼ a1M þ a1sþ a2s2.
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a. For what values of the a’s is the decision-maker risk neutral? Risk averse?

b. What is the marginal rate of substitution between M and s?
c. For what values of the a’s does the decision-maker exhibit constant abso-

lute risk aversion?

d. Can the decision-maker exhibit decreasing absolute risk aversion? Why or

why not?

2. You know that a decision-maker exhibits constant relative risk aversion

(CRRA).

a. Show that the marginal rate of substitution betweenM and s must take the

form S ¼ g(M=s).
b. Find a risk preference function W (M, s) that is consistent with CRRA.

3. Let W (M, s, s) represent individual risk preferences over terminal wealth x,

where M ¼ E(x) is the mean of x, s is the standard deviation of x, and s is the third

central moment: s ¼ E[(x�M)3]. You know that the individual is risk averse and

exhibit decreasing absolute risk aversion. Under the expected utility hypothesis,

discuss the properties of the risk preference function W (M, s, s).

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:32pm page 77Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:32pm page 77Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:32pm page 77Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:32pm page 77

Mean-Variance Analysis 77



This page intentionally left blank 



Chapter 7

Alternative Models of Risk
Behavior

THE EXPECTED UTILITY MODEL REVISITED

The expected utilitymodel provides the basis formost of the research on the

economics of risk. It was the topic presented in Chapter 3. Under the expected

utility model, individuals make decisions among alternative wealth levels x by

maximizing EU(x) where E is the expectation operator. The utility function

U(x) is defined up to a positive linear transformation. It is sometimes called a

von Neumann–Morgenstern utility function. We saw in Chapter 4 that risk

aversion, risk neutrality, or risk loving preferences correspond to the function

U(x) being respectively concave, linear, or convex.

One of the main advantages of the expected utility model is its empirical

tractability. This is the reason why it is commonly used in risk analysis. But

is the expected utility model a good predictor of human behavior? Some-

times, it is. And sometimes, it is not. This chapter evaluates some of the

evidence against the expected utility model. It also reviews alternative

models that have been proposed to explain behavior under risk.

The first challenge to the expected utility model is the following: Is it

consistent with the fact that some individuals both insure and gamble at the

same time? Friedman and Savage proposed to explain this by arguing that, for

most individuals, the utility functionU(x) is probably concave (corresponding

to risk aversion and a positive willingness to insure) for low or moderate

monetary rewards, but convex (corresponding to risk loving and a positive

willingness to gamble) for highmonetary rewards. In this context, a particular

individual can insure against ‘‘downside risk’’ while at the same time gambling

on ‘‘upside risk’’ and still be consistent with the expected utility model.

79
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In addition, the expected utility model hypothesis has been under attack

on the ground that it is not always consistent with actual behavior under

risk. We have shown that under some assumptions (Assumptions A1–A5),

behavior under risk is necessarily consistent with the expected utility model

(see Chapter 3). Thus, from a logical viewpoint, arguing that the expected

utility model is not consistent with risk behavior is equivalent to arguing that

some of these assumptions are not appropriate. Each of these assumptions

has been challenged in the literature. For example, the ordering assumption

(e.g., as in ‘‘fuzzy sets’’) and the transitivity assumption (e.g., as in ‘‘regret

theory’’) have been questioned. Also, as discussed below, the continuity

assumption (Assumption A3) and the independence assumption (Assump-

tion A2) have been the subject of much scrutiny.

RELAXING THE CONTINUITY ASSUMPTION:
SAFETY FIRST

In ‘‘safety first,’’ a safety level is assumed to exist with preferences being

quite different above the safety level compared to below this level. The safety

level is sometimes called a ‘‘subsistence level’’ or a ‘‘disaster level.’’ Intui-

tively, one expects decision-makers to behave in a way that would minimize

the odds of being below the subsistence level. This is the motivation for using

the term ‘‘safety first.’’ It suggests that risk behavior may differ significantly

for events located above versus below the subsistence level. There are some

situations where such differences may imply inconsistencies with the con-

tinuity of the utility function U(X) in the expected utility model.

To illustrate, consider the case where z is a subsistence level and x is

random wealth with a subjective probability function f(x). The formulation

of safety-first modeling has taken different forms in the literature.

MINIMIZING THE PROBABILITY OF DISASTER

Assume that concerns about safety can be represented by decisions that

minimize the probability of being below the subsistence level. This means

that decisions are made in a way consistent with the minimization problem:

Min Pr(x� z). Since Pr(x� z) ¼ 1� Pr(x > z), it follows that minimizing

the probability of disaster is equivalent to maximizing

MaxPr(x > z) ¼ Max

Z

U(x)f (x)dx

� �

¼ MaxEU(x)

where the utility function U(x) takes the form
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U(x)

1

0
z x

Figure 7.1 A step utility function

U(x) ¼ 1 if x > z

¼ 0 if x� z:

This is illustrated in Figure 7.1. It shows that there is a utility function

U(x) that is consistent with the minimization of the probability of disaster.

However, the utility function has a very peculiar shape: it is a step function,

which is discontinuous at the subsistence level z. This discontinuity means

that the decision-maker views events above the subsistence level very differ-

ently from events below the subsistence level. This is inconsistent with the

continuity assumption (assumption A3).

While concerns about meeting subsistence needs are quite intuitive, it

remains unclear whether this necessarily implies a discontinuity in individual

preferences.

MAXIMIZING EXPECTED RETURN SUBJECT TO A SMALL DISASTER

PROBABILITY

Just minimizing the probability of disaster may be seen as a rather

extreme objective for a decision-maker. A possible alternative to safety

concerns is to combine this assessment with the evaluation of expected

return. This suggests that the decision-maker may want to maximize

expected return subject to a small probability of disaster

Max{E(x):Pr(x� z)� a}:

This is a constrained maximization problem. It can be expressed in terms

of the Lagrangean L(x, l) ¼
R1
�1 xf (x)dxþ l[a�

R z
�1 f (x)dx], where l� 0

is the Lagrange multiplier associated with the constraint [Pr(x� z)� a].
Then, the constrained optimization problem implies the maximization of
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U(x)

z x

Figure 7.2 A discontinuous utility function

{
R1
�1 xf (x)dx� l[

R z
�1 f (x)dx]}. This suggests that the decision-maker

would behave as an expected utility maximizer with utility function

U(x) ¼ x if x > z

¼ x� l if x� z:

This utility function is piece-wise linear. When the constraint is not

binding, then l ¼ 0, the utility function is linear, corresponding to a risk

neutral decision-maker. However, when, the constraint is binding, then

l > 0 and the utility function is discontinuous at the subsistence point z.

This is illustrated in Figure 7.2.

MAXIMIZING A FRACTILE OF THE DISTRIBUTION

Alternatively, safety concerns may lead individuals to make decisions so

as to minimize their exposure to downside risk. This exposure can be

measured by the probability of being in the lower tail of the distribution of

income x, Pr(x� z). This suggests that individuals may want to make

choices under risk by maximizing

Max{z:Pr(x� z)� a},

where z is a critical income level defined such that there is given probability

a > 0 that income will be less than z. While perhaps less intuitive, this

formulation has an attractive approximation. Indeed, note that Chebychev

inequality gives

Pr(x� z)�Var(x)=[E(x)� z]2:

This suggests that the above maximization can be approximated by
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Max{z:Var(x)=[E(x)� z]2 � a},

¼ Max{z: s=[E(x)� z]� b�1}, assuming that [E(x)� z] > 0,

¼ Max{E(x)� bs},

where s2 ¼ Var(x), s is the standard deviation of x, and b ¼ a�1=2. This

approximation generates an additive mean-standard deviation model. In this

context, [bs] is an approximate measure of the risk premium where the

parameter b can be interpreted as a measure of ‘‘risk aversion.’’

RELAXING THE INDEPENDENCE ASSUMPTION

Much research has been done on the empirical validity of the independ-

ence assumption (Assumption A2). This is the assumption that underlies the

fact that the expected utility model is ‘‘linear in the probabilities.’’ In that

sense, questioning the independence assumption A2 is equivalent to looking

for evidence that risk preferences may be nonlinear in the probabilities. Is

there any a priori basis to think that individual risk preferences should be

linear in the probabilities? Not really. However, linearity is a property that is

convenient in analytical research as well as empirical work. But how realistic

is it? Below, we present an overview of the evidence presented both in favor

and against the independence axiom.

THE ALLAIS PARADOX

Let the random variable x take three possible values: x1 < x2 < x3, where

pi ¼ Pr(x ¼ xi), i ¼ 1, 2, 3,
P

i pi ¼ 1. Under the expected utility model, it

follows that

EU(x) ¼ p1U(x1)þ (1� p1 � p3)U(x2)þ p3U(x3):

Let U0 be some reference utility level such that EU(x) ¼ U0. Then

U0 ¼ p1U(x1)þ (1� p1 � p3)U(x2)þ p3U(x3),

or

p3 ¼ aþ bp1,

where the intercept is a ¼ (U0 �U(x2) )=(U(x3)�U(x2) ), and the slope is

b ¼ �(U(x1)�U(x2) )=(U(x3)�U(x2) ) > 0. The equation {p3 ¼ aþ bp1}
above represents the indifference curves between p1 and p3, holding expected

utility constant at U0. Note that a and b are parameters that do not depend

on p, and that b does not depend on U0. It follows that, under the expected
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indifference curve

p3

p1

higher utility U

Figure 7.3a Indifference curves under the expected utility model

utility model, the indifference curves between p1 and p3 are linear and parallel

to each other for different values of U0. This is an implication of the

independence assumption (which implies linearity in the probabilities). It is

illustrated in Figure 7.3a.

However, there is empirical evidence that the indifference curves are not

always parallel. This has been interpreted as evidence that the independence

assumption (or the linearity in the probabilities) is not consistent with risk

behavior. Allais proposed the following experiment to investigate this issue. It

is known as the Allais paradox (although it does not really involve any

paradox).

Choose between a1 ¼ receiving $1,000 with probability 1,

a2 ¼ receiving $5,000 with probability 0.10,

$1,000 with probability 0.89,

$0 with probability 0.01.

Then choose between a3 ¼ receiving $5,000 with probability 0.10,

$0 with probability 0.90,

a4 ¼ receiving $1,000 with probability 0.11,

$0 with probability 0.89.

Allais and others have found that, typically, a majority of individuals

prefer a1 over a2, and a3 over a4. However, this ranking is inconsistent with

the expected utility model. To see that, let U(0) ¼ 0, U(1000) ¼ u, and

U(5000) ¼ 1. Then, under the expected utility model, choosing a1 over a2
implies

u > :10þ (:89)u

or
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u > 10=11:

Alternatively, under the expected utility model, choosing a3 over a4
implies

:1 > (:11)u

or

u < 10=11:

Obviously, the two inequalities cannot hold simultaneously, indicating that

the expected utility model is not consistent with the choices of a majority of

individuals. This is interpreted as evidence that individual preferences are not

linear in the probabilities and thus violate the independence assumption in the

expected utility model. This is illustrated in Figure 7.3b, where p1 ¼ Pr(0)

and p3 ¼ Pr(5, 000). InFigure 7.3b, ifa1 is preferredovera2,anda3 is preferred

over a4, then the indifference curves cannot be parallel, implying that such

choices are necessarily inconsistent with the expected utility model. This can

be interpreted to imply that preferences are nonlinear in the probabilities, the

nonlinearity being such that the indifference curves ‘‘fan out’’ from the origin.

Note that, in the Allais experiment, the probabilities involved in a1 and a2 are

very different from the probabilities involved in a3 and a4.

PROSPECT THEORY

Psychologists have conducted much research on risk preferences.

The research has provided some nice empirical evidence on the nature of

individual risk preferences. In general, there is great complexity in human

1

0
1

indifference curve

p3

p1

a3

a4

a2

a1

higher utility U

Figure 7.3b Indifference curves in the Allais paradox
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decision-making under uncertainty, and the processing of information sup-

porting it can be quite complex. As a result, no simplemodel can be found that

wouldprovide ageneral representationof riskpreferences. To some extent, the

expected utility model is one such simple model. As suggested by the Allais’

paradox, there are situations where the expected utility model can fail to

provide a precise representation of risk preferences. Following, we review an

alternative model, termed ‘‘prospect theory,’’ developed by Kahneman and

Tversky. (See also Kahneman and Tversky 1979 for further refinements.)

Based on extensive experimental evidence, Kahneman and Tversky (KT)

proposed some modifications to the expected utility model:

KT reject asset integration where preferences are expressed in terms of

terminal wealth x ¼ wþ a, where w denotes initial wealth. Instead, they

propose that risk preferences depend only on the net gain ‘‘a.’’

KT propose a preference function W( � ) of the form

W ( � ) ¼ Siq(pi)U(ai)

where ai is the i-th realization of the random variable ‘‘a’’, i ¼ 1, . . . , n,U( � )
is the utility function of the decision-maker, pi ¼ Pr(a ¼ ai) is the probability

of facing outcome ai, and q( � ) is a weight function.
KT propose that the weight function q(p) is nonlinear: it tends to ‘‘under-

weight’’ high probabilities and ‘‘overweight’’ low probabilities. See Figure 7.4.

Note that this nonlinearity contradicts the independence assumption in the

expected utility model. Also, it suggests that rare events (i.e., events with low

probabilities) are given relatively more weights compared to the expected

utility model.

KT propose that the utility function U(a) is concave for gains, convex for

losses, and has a kink at ‘‘a’’¼ 0 such that $1 of gains is ‘‘worth less’’ than $1

q(p)

1

0
1 p

Figure 7.4 Probability weights

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 86Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 86Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 86Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 86

86 Risk Analysis in Theory and Practice



U(a)

0 a

Figure 7.5 Utility function under Prospect theory

of losses. See Figure 7.5. This suggests significant aversion to losses (as

opposed to gains).

SOME GENERALIZATIONS

The Allais paradox shows empirical evidence that the expected utility

model does not provide an accurate representation of individual risk prefer-

ences. Prospect theory has been proposed as a generalization to the expected

utility model. Other generalized expected utility models have also been put

forward (Quiggin 1982, 1992; Yaari 1987). They all involve some form of

nonlinearity in the probabilities. Such models are trying to improve the

predictive power of economic modeling. But they are also more complex

and more difficult to use empirically. This raises the question, how signifi-

cant are the inaccuracies associated with the expected utility model? These

issues have been discussed in the economic literature (e.g., see Harless and

Camere 1994; Hey and Orme 1994). Following, we present some of the

arguments presented by Machina (1982, 1987).

If the independence assumption does not hold, then preferences are not

linear in the probabilities. This suggests that general risk preferences could

be written in general as W(F), where F is the distribution function F(x) of a
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random variable x. The function W(F) is thus a preference functional over

the whole distribution of x. It allows for nonlinearity in the probabil-

ities. What are the implications of this general formulation for economic

analysis?

Let xi ¼ the i-th realization of the random variable x, i ¼ 1, . . . , n. Then,

under differentiability, the preference function W(F) can be approximated

locally by a first-order Taylor series expansion around some distribution

function G:

W (F )�W (G) �
X

i

[@W=@G(xi)] [F (xi)� G(xi)]:

Define a function U(x,G) such that U(xnþ1,G) ¼ some constant, and

U(xiþ1, G)�U(xi,G) ¼ �@W=@G(xi), i ¼ n, . . . , 1. Substituting this into

the above approximation yields

W (F )�W (G) � Si{U(xi,G)[F (xi)� G(xi)]�U(xiþ1,G)[F (xi)� G(xi)]}

� Si{U(xi,G)[F (xi)� G(xi)]�U(xi,G)[F (xi�1)� G(xi�1)]}

� Si{U(xi,G)[F (xi)� F (xi�1)]�U(xi,G)[G(xi)� G(xi�1)]}

� EFU(x,G)� EGU(x,G):

This result is important. It shows that, under a general nonlinear prefer-

ence function W(F), a small movement in the distribution function from

F ( � ) to G( � ) changes the value of the preference function W(F) by the

difference in the expected value of U(x, � ) with respect to the distributions

F( � ) and G( � ). In other words, the decision-maker would rank a small change

in the distribution F( � ) exactly as would an expected utility maximizer with a

‘‘local utility function’’ U(x, � ).
This has two important implications.

1. The independence assumption implies the restriction that the local

utility function U(x, � ) is the same for all distribution functions

G( � ). The Allais paradox suggests that U(x, � ) is not the same for all

probability distributions G( � ). On one hand, the inaccuracies in the

expected utility model would be easier to uncover when an individual

faces large changes in probability distributions (e.g., as done in the

Allais experiment). On the other hand, to the extent that the local

utility function U(x, � ) is approximately constant in the neighborhood

of G( � ), this means that the expected utility model would provide a

good approximation to risk preferences for small changes in the prob-

ability distribution.

2. The Arrow–Pratt local characterizations of risk behavior are appro-

priate in the general case (where the preference function is W(F )) since
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they are motivated ‘‘in the small,’’ i.e., whereU(x, G) gives a valid local

(not global) representation of risk preferences. In other words, the

Arrow–Pratt absolute risk aversion coefficient [� (@2U=@x2)=
(@U=@x)] provides a meaningful characterization of local risk behav-

ior even if the independence assumption is violated. On that basis,

Machina (1982) has suggested that most decisions-makers may exhibit

risk preferences satisfying the following hypotheses:

a. [� (@2U(x, G)=@x2)=(@U(x, G)=@x)] isanonincreasing functionofx.

This is a localversionof thedecreasingabsolute riskaversion (DARA)

hypothesis. However, this is not a global characterization of DARA

because the global effect of initial wealth on the willingness to insure

will in general involve changes in G as well. Note that this first hypo-

thesis implies @3U(x, G)=@x3 � 0, i.e. local downside risk aversion.

b. [� (@2U(x, G)=@x2)=(@U(x, G)=@x)] is a nondecreasing function

of G.

Machina (1982) argues that this second hypothesis can explain the Allais

paradox as well as the ‘‘greater sensitivity’’ to small probabilities (e.g., as

found in prospect theory).

THE CASE OF INDUCED PREFERENCES

So far, we have treated economic decisions generically. Yet, economic

analysis often focuses on a subset of decisions. This is typically done for two

reasons: (1) this simplifies the analysis, and (2) the investigator is interested

only in a particular decision (e.g., a production decision, a consumption

decision, or an investment decision). Does this affect our understanding of

risk preferences? Machina (1984) has argued that it does.

To see that, consider the case of a decision-maker with utility function

U(y, a), where y ¼ (y1, y2) is a vector of decision variables and ‘‘a’’ is a

random vector that can take n possible values ai, i ¼ 1, . . . , n, with pi ¼
Pr(a ¼ ai). Under the expected utility model, the decision-maker chooses y

by maximizing [PMaxy EU(y, a)]. Assume that the economist is interested

only in the decision variable y1. This suggests the two-stage decomposition

Maxy EU(y, a) ¼ Maxy1 [Maxy2 [EU(y1, y2, a)] ] ¼ Maxy1W (P, y1)

where

W (P, y1) ¼ Maxy2 [EU(y1, y2, a)]
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is an ‘‘induced preference function’’ where P ¼ (p1, p2, . . . , pn) is the vector
of probabilities. In general, W (P, y1) is a nonlinear convex function of the

probabilities P. Thus, focusing on the decisions y1, as represented by

[Maxy1W (P, y1)], corresponds to a problem where the objective function is

nonlinear in the probabilities. In other words, even under the expected utility

model, nonlinearity in the probabilities can be generated by the existence of

auxiliary decisions (y2) that are not modeled explicitly. It suggests that the

assessment of risk preferences can be influenced by the context in which

decisions are being made. Such complexities should be kept in mind in the

analysis of economic behavior under risk.

THE STATE PREFERENCE APPROACH

So far, we have relied on probabilities as a means of measuring the

riskiness of events. This requires that the decision-maker first assesses the

probability distribution of its risky environment, say F(x). Then, the indi-

vidual evaluates the risky prospects. In general, this evaluation is made in a

way consistent with the rankings provided by his/her preference function

general W(F). Consider the case where x has a discrete distribution,

i.e., where it can take any of n possible values: x1, x2, . . . , xn, each with

probability Pr(xi), i¼1, . . . , n. Then, the risk preference function is

W (Pr(x1), Pr(x2), . . . ,Pr(xn) ). This allows for nonlinearity in the probabil-

ities. It would include as a special case the expected utility model, where

W( � ) is linear in the probabilities and satisfies W ( � ) ¼
P

i Pr(xi)U(xi).

A further generalization is possible. Consider the preference function

W (x1, x2, . . . , xn). It depends directly on the states x1, x2, . . . , xn. As such,

while it still requires an assessment of ex-ante preferences over alternative

states, it does not require an explicit evaluation of probabilities. This is

the state-preference approach proposed by Debreu. It is very general in the

sense that it does not rely on probability measurements. This is good if

one analyzes situations where individual assessment of probabilities appears

difficult or unreliable, or if one is interested in a general theory of behavior

under risk.As such, the state-dependentapproachprovidesabroadconceptual

framework for theoretical analyses of economic behavior (Chambers and

Quiggin 2000).

Note that the analysis of risk aversion or of the risk premium applies in

this general context. To see that, consider the case where x is a random

variable distributed with mean m and variance s2. Let xi ¼ mþ ei, where ei is

random variable with mean 0 and variance s2. Then, the risk premium is

defined as the value R that satisfies W (m� R, . . . , m� R) ¼ W (x1, . . . , xn).
When x measures monetary returns, R is the largest amount of money the
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decision-maker is willing to pay ex ante to replace the risky prospect

(x1, . . . , xn) by the sure prospect (m, . . . , m). As discussed in the context of

the expected utility model, the risk premium R provides a measure of the

implicit cost of private risk bearing. By definition, risk aversion corresponds

to R > 0, while R ¼ 0 under risk neutrality, and R < 0 under risk-loving

behavior. And assuming thatW is strictly increasing in (m� R), then (m� R)

can be interpreted as the ‘‘certainty equivalent’’ in the sense that maximizing

W (x1, . . . , xn) is equivalent to maximizing (m� R).

While the state preference approach is very general, note that the number

of uncertain states facing any particular individual can be large. Working

with discrete random variables, each state would be characterized by a

distinct realization of each of the relevant random variables facing an

individual. For example, if each random variable can take 10 possible

values, then the number of states is 10 if there is one random variable, 100

if there are two random variables, and 10k is there are k random variables.

Thus, even with a moderate number of random variables, the number of

states can be quite large. Evaluating risk preferences over a large number

of states is empirically difficult. This is the main reason why the state-

preference approach has not been used much in empirical work. This identi-

fies a significant trade-off between conceptual generality and empirical

tractability. In this context, while empirical assessment of probabilities

does impose a priori structure on the characterization of uncertainty, such

structure has one significant advantage: It makes the empirical analysis of

risk behavior easier.

ADDITIONAL EVIDENCE ON RISK PREFERENCES

In addition to the experimental evidence previously discussed, there has

been empirical research evaluating the nature of individual risk preferences.

Although uncertainty exists in any decision-making process, there are two

situations where it appears particularly prevalent. The first one is uncer-

tainty facing agricultural households. Weather uncertainty exposes farm

households to significant production risks (as well as price risks) that are

often difficult to manage. This stresses the need to understand the role of risk

and risk preferences in farm household decisions around the world. The

second is uncertainty involved in gambling games. Knowledge of risk pref-

erences can provide useful insights into the behavior of bettors.

First, consider the risk behavior of agricultural households. Lin et al.

(1974) investigated the behavior of a sample of California farmers. Three

alternative models of behavior under risk were evaluated: (1) expected profit

maximization, (2) expected utility maximization given a direct elicitation of
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the utility function U( � ), and (3) a ‘‘safety first’’ model. Among the three

models, Lin et al. found that the expected profit maximization model gave

the worst predictions of farmers’ behavior. In particular, this model failed to

explain the observed diversification strategies implemented by California

farmers. Lin et al. also found that the safety-first model was a poor predictor

of farmers’ behavior. Their empirical results showed that the expected

utility model gave more accurate predictions of behavior. The elicited utility

functions were typically concave. This suggests that most farmers are risk

averse and that risk aversion can help explain observed diversification

strategies.

Moscardi and de Janvry (1977) investigated the risk behavior of a sample

of Mexican farmers. They used a mean-standard deviation model to study

the impact of risk aversion on fertilizer demand. Risk aversion was estimated

indirectly by comparing the model predictions with actual fertilizer demand.

Moscardi and de Janvry found that risk aversion tends to be high and to

discourage fertilizer use. They also found that risk aversion tends to decrease

with off-farm income, land holding, and the presence of solidarity groups.

Dillon and Scandizzo (1978) examined the risk preferences of a sample of

Brazilian farmers. They used the expected utility hypothesis along with a

direct elicitation of U( � ). They found that most farmers are risk averse,

although the degree of risk aversion varied greatly across farmers.

Binswanger (1981) studied the risk preferences of a sample of Indian

farmers. He conducted a direct elicitation of risk preferences (under the

expected utility model) using actual lotteries. He found empirical evidence

against safety-first models. In the context of the expected utility model,

Indian farmers were found to exhibit:

. risk aversion (where U 00 < 0),

. decreasing absolute risk aversion (DARA, where �U 00=U 0 decreases
with w),

. increasing partial relative risk aversion (IPRA, where �aU 00=U 0 in-
creases with a),

. decreasing relative risk aversion (DRRA, where �xU 00=U 0 decreases
with x), with x being terminal wealth, w being initial wealth, ‘‘a’’ being

income, and x ¼ wþ a.

Antle (1987) also analyzed the risk preferences of a sample of Indian

farmers. He used a moment-based approach to the expected utility model.

After estimating the production technology, he used observed behavior to

estimate (�U 00=U 0) and (U 000=U 0). He found empirical evidence in favor of

risk aversion (�U 00=U 0 > 0), and of downside risk aversion (U 000=U 0 > 0).

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 92Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 92Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 92Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 92

92 Risk Analysis in Theory and Practice



Chavas and Holt (1996) studied econometrically the risk preferences of

United States farmers. Under the expected utility model, they used observed

acreage decisions to estimate the underlying utility function. They found

evidence of both risk aversion and decreasing absolute risk aversion

(DARA).

Finally, Jullien and Salanie (2000) estimated the risk preferences of race-

track bettors in the United Kingdom. They found evidence of risk aversion

similar to that proposed by Friedman and Savage (1948). They also exam-

ined the explanatory power of alternative nonexpected utility models.
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Chapter 8

ProductionDecisionsUnderRisk

This chapter investigates the implications of risk for production decisions. It

is motivated by the fact that production decisions are often subject to

uncertainty. This includes price uncertainty as well as production uncer-

tainty. Typically, firms face many sources of risk for which risk markets

are absent. Under incomplete risk markets, risk-averse firms cannot

easily transfer risk to other agents. This means that, in large part, firms

must manage their risk exposure privately. This chapter focuses on

risk management of an owner-operated firm facing incomplete risk

markets. The analysis of risk markets and contracts will be discussed in

Chapter 11.

In an owner-operated firm, the manager/decision-maker is also the re-

sidual claimant. Then, in the absence of risk, the manager has an incentive to

maximize profit. Indeed, as long as the manager’s preferences are non-

satiated in income, increasing profit will necessarily make him/her better

off. Thus, one can expect the manager to make production decisions in a

way consistent with profit maximization. What happens when we introduce

risk in the analysis? This chapter examines how risk affects the production

decisions made in an owner-operated firm. We investigate the produc-

tion behavior of a risk-averse decision-maker. This provides useful insights

on the implicit cost of risk and its role in firm decisions. We start with the

simple case of a single-output firm facing output price uncertainty. Then, we

extend the analysis to include production uncertainty. We also examine the

implications of risk and risk aversion for diversification strategies for a

multi-output firm, as well as for hedging strategies for a firm participating

in futures markets.

95
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FIRM DECISIONS UNDER UNCERTAINTY

PRICE UNCERTAINTY

First, we consider the case of a competitive firm producing a single output

under price uncertainty. The firm is competitive if it is relatively small and

cannot affect prices on the markets where it trades. The price uncertainty is

often associated with production lags, corresponding to situations where the

production process is not instantaneous. Then, there is some delay between

the time a production decision is made and the time the corresponding

output reaches the market. During this delay, the market price can change

in some unforeseen way. As a result, the output price is not known at the

time the production decision is made. This creates price uncertainty for the

firm. What are the implications of this uncertainty for production decisions?

We start with the case where the firm only sells its output on a commodity

market. The situation where it also participates in a futures market

is discussed in the following paragraphs. The firm chooses n inputs

x ¼ (x1, . . . , xn)
0 in the production of firm output y. The firm production

technology is represented by the production function y ¼ f (x), where f(x)

measures the largest feasible output the firm can obtain when using inputs

x ¼ (x1, . . . , xn)
0. At this point, we assume that there is no uncertainty in the

production process (the situation of production risk will be discussed in the

following paragraphs). At the time production decisions are made, the firm

manager tries to anticipate the uncertain market price it will receive for its

output. As such it treats the output price p as a random variable, with a

given subjective probability distribution. Being a competitive firm, the firm

decisions do not affect this probability distribution.

Let v ¼ (v1, . . . , vn)
0 denote the prices paid for inputs x. Then, the firm’s

cost of production is v0x ¼
Pn

i¼1 vixi. And its (uncertain) revenue is: py.

It follows that the firm’s profit is: p ¼ py� v0x. In addition, let w denote

initial wealth. (Alternatively, w could also represent exogenous income, or, if

negative, fixed cost). Then, the firm terminal wealth is: wþ py� v0x. For
an owner-operated firm, this is the amount of money received by the owner/

manager. Under output price uncertainty, terminal wealth is also

uncertain. Assume that the manager behaves in a way consistent with

the expected utility model. Then, the objective function of a competitive

firm is

EU(wþ py–v0x) ¼ EU(wþ p),

where E is the expectation operator based on the subjective probability

distribution of the random variable p. We will assume that the entre-

preneur/decision-maker has risk-averse preferences represented by the utility
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function U( � ) which satisfies U 0 � @U=@w > 0 and U 00 � @2U=@w2 < 0.

Focusing on risk aversion is motivated by the fact that most decision makers

appear to be risk averse (see Chapters 3 and 7).

Let m ¼ E(p) be the expected output price, and p ¼ mþ se, where e is a

random variable with mean zero. The random variable e can exhibit any

distribution for which both the mean and variance exist. In this context, s
can be interpreted as the standard deviation of output price p.More generally,

scanbe interpretedasamean-preserving spreadparameter for thedistribution

of p. Following the analysis presented by Sandmo, we will characterize the

probability distribution of p by the mean � and the mean preserving spread

parameter s.
Under the expected utility model, the production decisions can be repre-

sented by

Maxx, y{EU(wþ py� v0x: y ¼ f (x)}:

This simply states that production decisions are made in way consistent

with expected utility maximization.

1. The Firm Minimizes Cost:

In the absence of production uncertainty, expected utility maximization

implies cost minimization. To see that, note that the above maximization

problem can be written as

Maxy{Maxx{EU(wþ py� v0x: y ¼ f (x)} }

¼ Maxy{EU (wþ pyþMaxx{� v0x: y ¼ f (x)} }

¼ Maxy{EU (wþ py�Minx{v
0x: y ¼ f (x)} }

¼ Maxy{EU (wþ py� C(v, y)},

where C(v, y) ¼ [Minx{v
0x: y ¼ f (x)}] is the cost function in a standard cost

minimization problem under certainty. For given input prices v, C(v, y)

measures the smallest possible cost of producing output y. This shows

that, in the absence of production risk, the risk-averse firm has incentives

to behave in a cost-minimizing fashion (just like in the case of perfect

certainty). However, as we will see, this should not be interpreted to mean

that risk and risk aversion have no effect on production decisions.

This last maximization problem will prove particularly convenient for

our analysis. It involves choosing only one variable: y, the firm output.

Assuming that the firm decides to produce positive output, y > 0, using

the chain rule, the first-order necessary condition associated with the

optimal choice of y is:

F (y, � ) � E[U 0 � (p� C0)] ¼ 0, (1)
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or, using E(U 0 � p) ¼ E(U 0) � mþ Cov(U 0, p) from Appendix A,

m� C0 þ Cov(U 0, p)=EU 0 ¼ 0,

where C0 � @C=@y denotes the marginal cost of production, and Cov(U 0, p)¼
E(U 0se). The associated second-order sufficient condition for a maximum is:

D � @F=@y � E[U 0 � (� C00)]þ E[U 00 � (p� C0)2] < 0:

We saw in Chapter 3 that maximizing expected utility is equivalent to

maximizing the ‘‘certainty equivalent.’’ Here, the certainty equivalent is:

my� C(r, y)� R(w, y, � ), where R(w, y, � ) is the Arrow–Pratt risk premium

measuring the implicit cost of private risk bearing, with R > 0 under risk

aversion. It follows that the output decision can be alternatively written as

Maxy{my� C(r, y)� R(w, y, � )},
The associated first-order condition is

m� C0 � R0 ¼ 0,

where R0 � @R=@y is the marginal risk premium. Comparing this result with

the first-order condition derived above, it follows that R0 ¼
�Cov(U 0, p)=EU 0. This gives an intuitive interpretation for the covariance

term: [� Cov(U 0, p)=EU 0] is the marginal risk premium measuring the mar-

ginal effect of output y on the implicit cost of private risk bearing.

2. The Supply Function

The supply function is the function y�(w, m, s) that satisfies the first-order
condition F (y, � ) ¼ 0 in (1), or

m ¼ C0 þ R0,

where R0 ¼ �Cov(U 0, p)=EU 0 is the marginal risk premium. This implies

that, at the optimum supply y�, expected price m is equal to the marginal

cost C 0, plus the marginal risk premium R 0. This means that expressing

(C0 þ R0) as a function of output y gives the supply function. It generates

the schedule of output produced by a risk-averse decision-maker for each

level of expected output m.
Note that the covariance termCov(U 0, p) is always of the sign of (@U 0=@p).

[This can be seen as follows. If @U 0=@p > 0 ( < 0), then,U 0 and p tend tomove

in the same direction (in opposite directions), implying a positive (negative)

covariance.] But sign(@U 0=@p) ¼ sign(U 00 � y). Thus, risk aversion (where

U 00 < 0) implies that Cov(U 0, p) < 0. It follows that the marginal risk pre-

mium is positive under risk aversion:R0 ¼ �Cov(U 0, p)=EU 0 > 0. This in turn

implies that m > C0 at the optimum.
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This is an important result. Under price uncertainty and risk aversion, the

firm produces at a point where expected output price exceeds marginal cost.

This is illustrated in Figure 8.1. It is the first hint that, under risk aversion, risk

can have significant effects on resource allocation. Indeed, finding that m > C0

is inconsistent with the standard ‘‘marginal cost pricing’’ rule (output price

equals marginal cost) obtained in a riskless world. Instead, our analysis shows

that, while risk does not involve any explicit cost, its implicit cost (asmeasured

by the marginal risk premium R0) needs to be added to the marginal cost of

production C0 in the evaluation of optimal production decisions.

expected price ($)

m

output

R' = marginal risk
premium

C' = marginal cost

supply function = C' + R'

y*

Figure 8.1 Supply function

3. Comparative Static Analysis

If risk affects production decisions under risk aversion, it will be useful to

investigate its effects in more detail. This can be done by conducting a

comparative static analysis of the output decision y in equation (1). Let

a ¼ (w, m, s) be a vector of parameters of the supply function y�(a). Differ-

entiating the first-order condition F (y, a) ¼ 0 at the optimum y ¼ y�(a)
yields

@F=@aþ (@F=@y)(@y�=@a ¼ 0,

or, with D ¼ @F=@y < 0,

@y�=@a ¼�D�1@F=@a

¼�D�1@{E[U 0 � (p� C0)]}=@a

¼ sign(@{E[U 0 � (p� C0)]}=@a:

This result will be used repeatedly in the analysis of the properties of the

supply decision y�(a) under risk and risk aversion.
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a. The effect of initial wealth w

The effect of changing initial wealth w is given by

@y�=@w ¼ �D�1{@{E[U 0 � (p� C0)]}=@w} ¼ �D�1{E[U 00 � (p� C0)]}:

ButE[U 00 � (p� C0)] > , ¼ , or < 0 under decreasing absolute risk aversion

(DARA), constant absolute risk aversion (CARA), or increasing absolute risk

aversion (IARA), respectively. To see that, consider theArrow–Pratt absolute

risk aversion coefficient r ¼ �U 00=U 0 (see Chapter 4). Let p0 denote the value
profit p when evaluated at p ¼ C0. Under DARA,

r(p) < ( > )r(p0) if p > ( < )C0:

It follows that

�U 00=U 0 < ( > ) r(p0) for p > ( < )C0,

or

U 00 > ( < )� r(p0) U 0 for ( p� C0) > 0 ( < 0),

or

U 00 � (p� C0) > �r(p0) �U 0 � ( p� C0),

or, taking expectation,

E[U 00 � (p� C0)] > �r(p0) �E[U 0 � (p� C0)] ¼ 0,

from the first-order condition (1). Following similar steps, it can be shown

that E[U 00 � (p� C0)] < 0 ( ¼ 0) under IARA (CARA). This implies that

@y�=@w > 0 under DARA

¼ 0 under CARA

< 0 under IARA:

Thus, under DARA, changing initial wealth, fixed cost or exogenous

income (w) influences supply. This differs from the standard result obtained

in the absence of risk. Without risk, a change in fixed cost or in initial wealth

has no effect on profit-maximizing decisions. Under risk, such a result is

obtained only under CARA preferences. Intuitively, this associates CARA

risk preferences to the absence of income or wealth effects. However, many

decision-makers appear to exhibit DARA preferences (see Chapters 4 and 7).

Under DARA, wealth effects are positive. This means that the absence of

income or wealth effects is not expected to apply to production decisions

under risk. Intuitively, under DARA, private wealth accumulation tends to

reduce the private cost of risk bearing (see Chapter 4). To the extent that the
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expected price ($)

m

outputy*(W0) y*(W1)

C' + R'(w0) = supply function under w0

C' + R'(w1) = supply function under w1

C' = marginal cost

R'(w1) = marginal risk premium under w1

R'(w0) = marginal risk premium under w0

Figure 8.2 The effect of changing initial wealth w under DARA, with w1> w0

implicit cost of risk provides a disincentive to produce (see following), this

means that increasing initial wealth (or reducing fixed cost) tends to stimu-

late firm supply.

This is illustrated in Figure 8.2. Figure 8.2 shows that, under DARA,

increasing initial wealth w from w0 to w1 tends to reduce the marginal risk

premium R0(w, � ). This is intuitive: under risk aversion and DARA, private

wealth accumulation reduces the risk premium (as it is a substitute for

insurance motives; see Chapter 4). This reduction in the risk premium R is

accompanied by a reduction in the marginal risk premium R0, which gener-

ates a rightward shift in the supply function (C0 þ R0). As a result, under

DARA, increasing initial wealth w reduces the implicit cost of private risk

bearing and stimulates supply.

To the extent that price risk exposure, risk aversion, and DARA prefer-

ences are rather common, we expect initial wealth to have a positive effect on

supply. It means that, contrary to the prediction obtained without risk, the

distribution of income or wealth within an industry can affect aggregate

supply. For example, under DARA, income transfers to firms affect produc-

tion decisions. Such transfers can be represented by a rise in w. This would

tend to reduce the risk premium R, thus increasing the certainty equivalent

and making the firm decision-maker better off. But it would also stimulate

production by shifting the supply schedule to the right (since @y�=@w > 0

under DARA). Given a downward sloping aggregate demand function, this

would put downward pressure on the output price p. The associated decline

in p would make consumers better off, but would also reduce the welfare of

the firm. These effects will be further evaluated in Chapters 11, 12, and 13.

At this point, it is sufficient to stress that such effects would not exist under

certainty.
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b. The effect of expected price m

The effect of changing expected output price m is given by

@y�=@m ¼ �D�1{@{E[U 0 � (p� C0)]=@m]}}¼�D�1{E[U 0þ yEU 00 � (p� C0)]}:

Define @yc=@m � �D�1[EU 0] as the compensated expected price effect.

Given D < 0 (from the second order condition for a maximization), it

follows that @yc=@m > 0. It follows that the ‘‘compensated’’ supply function

is always upward sloping with respect to expected price m.
We have just shown that @y�=@w ¼ �D�1E[U 00 � (p� C0)]. This generates

the following Slutsky equation:

@y�=@m ¼ @yc=@mþ (@y�=@w) � y�,

where the expected (uncompensated) price slope @y�=@m, is equal to the

compensated price slope, @yc=@m > 0, plus a wealth (or income) effect,

(@y�=@w) � y�. The wealth effect, (@y�=@w) � y�, can be positive or negative

(depending on risk preferences). Given @yc=@m > 0, the Slutsky equation

means that the uncompensated price slope @y�=@m can also be either positive

or negative. In particular, it shows that @y�=@m could be negative if

the wealth effect, (@y�=@w) � y�, is negative and sufficiently large. This

seems counterintuitive. Why would optimal production decline when

the expected output price increases? While theoretically possible, our

analysis suggests that such a scenario is unlikely to be observed. Indeed,

we have just shown that @y�=@w > , ¼ , < 0 under DARA, CARA

or IARA. Given @yc=@m > 0, it follows from the Slutsky equation that

CARA or DARA preferences are a sufficient condition for supply to exhibit

a positive uncompensated price slope: @y�=@m > 0. Under CARA preferences,

wealth effects are zero, meaning that compensated and uncompensated

price slopes are the same. This generates the classical result also obtained

in the absence of risk: profit incentives imply that supply functions are

upward sloping. More generally, DARA preferences generate positive

wealth effects and (from the Slutsky equation) a positive supply response

to an expected output price increase. In other words, under risk, if DARA

preferences characterize most decision-makers, one obtains the intuitive

result that an increase in expected output price would tend to stimulate supply.

This is illustrated in Figure 8.3, where an increase in expected price

from m0 to m1 increases supply y�(m1) > y�(m0), as the supply function

is upward sloping under DARA. Figure 8.3 also shows that both the mar-

ginal cost C0 and the marginal risk premium R0 are higher at m1 compared

to m0.
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expected price ($)

output

m1

m0

y*(m0) y*(m1)

C' + R' = supply function

C' = marginal cost

R'(m1) = marginal risk premium under m1

R'(m0) = marginal risk premium under m0

Figure 8.3 The effect of changing mean price m under DARA, with m1 > m0

c. The effect of price risk s

The effect of changing price risk s (evaluated at s ¼ 1) is given by

@y�=@s ¼ �D�1{@{E[U 0� (p�C0)]}=@s}¼�D�1{E(U 0 � e)þyE[U 00 � (p�m)(p�C0)]}

¼ �D�1{E(U 0 0 � e)þ yE[U 00 � (p� C0 þ C0 � m)(p� C0)]}

¼ �D�1{E(U 0 � e)þ yE[U 0 0 � (p� C0)2]þ y(C0 � m)E[U 00 � (p� C0)]}:

But E(U 0 � e) ¼ Cov(U 0, p) ¼ sign(U 00y) < 0 under risk aversion. Also,

E[U 00 � (p� C0)2] < 0 under risk aversion (where U 00 < 0). Finally, we have

shown that (C0 � m) < 0 under risk aversion, and that E[U 00 � (p� C0)] > 0

under DARA. It follows that

@y�=@s < 0 under DARA,

i.e., that an increase in risk (as measured by s) has a negative effect on supply

under DARA. This is an important result. If risk aversion and DARA

preferences characterize most decision-makers, it shows that exposure to

price risk provides a general disincentive to produce. This implies that, in

general, risk can be expected to have adverse effects on production.

This is illustrated in Figure 8.4, where an increase in price risk from s0 to
s1 reduces supply. This is intuitive. Increasing risk exposure tends to increase

the private cost of risk bearing (as measured by the risk premium R). Under

DARA, this is accompanied by a rise in the marginal risk premium R0, and a

leftward shift in the supply function (C0 þ R0).

d. The effect of a profit tax t

Consider the case of profit tax. For simplicity, we assume that w ¼ 0.

Then, the objective function of the firm is EU [(1� t) � p], where t is the
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expected price ($)

µ

output

R'(s1) = marginal risk premium under s1

R'(s0) = marginal risk premium under s0

C' = marginal cost

C' + R'(s0) = supply function under s0

C' + R'(s1) = supply function under s1

y*(s1) y*(s0)

Figure 8.4 The effect of changing price risk s under DARA, with s1 > s0

tax rate on profit p. Conducting comparative static analysis using (1)

yields

@y�=@t ¼ �D�1{@{E[U 0 � (p� C0)]}=@t} ¼ �D�1{E[�U 00 � (p� C0)p]}

But E[U 00 � (p� C0)p] > , ¼ , or < 0 under decreasing relative risk aver-

sion (DRRA), constant relative risk aversion (CRRA), or increasing relative

risk aversion (IRRA). To see that, consider the relative risk aversion co-

efficient �rr� pU 00=U 0 (see Chapter 4). Let p0 denote the value profit p when

evaluated at p ¼ C0. Under DRRA,

�rr(p) < ( > ) �rr(p0) if p > ( < )C0:

It follows that

�pU 00=U 0 < ( > ) �rr(p0) for p > ( < )C0,

or

U 00 � p > ( < )� �rr(p0)U 0 for (p� C0) > 0 ( < 0),

or, taking expectation,

U 00 � (p� C0)p >� �rr(p0)U 0 � (p� C0),

E[U 00 � (p� C0)p] > ��rr(p0) E[U 0 � (p� C0)] ¼ 0,

from the first-order condition (1). Following similar steps, it can be shown

that E[U 00 � (p� C0)p] < 0 ( ¼ 0) under IRRA (CRRA). This implies that
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@y�=@t < 0 under DRRA

¼ 0 under CRRA

> 0 under IRRA:

Thus, a change in the profit tax t has no effect on production decisions

under CRRA. This is the standard result also obtained in the absence of risk.

However, this result no longer applies under nonconstant relative risk aver-

sion. This shows how risk and risk preferences can affect the influence of

fiscal policy on production decisions.

4. Long Run Analysis

So far, we have focused our analysis on a single firm in an industry. At this

point, it will be useful to consider the implications of risk and risk aversion at

the industry level. For that purpose, consider the simple case of an industry

made of identical firms facing free entry and exit. We focus on a long-run

situation, where firms have enough time to act on their entry or exit decisions

in the industry. Then, we will argue that the industry equilibrium must satisfy

EU(wþ p y� C(v, y)] ¼ U(w): (2)

Indeed, if EU (wþ py� C(v, y)] > U(w), then there is an incentive for

potential entrants to enter the industry. Under free entry, they would do

so, implying a disequilibrium situation. And if EU(wþ py� C(v, y)]

< U(w), then there is an incentive for current firms to exit the industry.

Under free exit, they would do so, again implying a disequilibrium situation.

Thus, equation (2) must be satisfied in long-run equilibrium.

Using the certainty equivalent formulation where R(y, � ) is the Arrow–

Pratt risk premium (see Chapter 4), note that (2) can be written as

wþ my� C(v, y)� R(y, � ) ¼ w,

or

my ¼ C(v, y)þ R(y, � ),

or

m ¼ C(v, y)=yþ R(y, � )=y:

where R > 0 under risk aversion. It follows that, in long-run equilibrium, the

expected price m must be equal to the average cost, C/y, plus the average risk

premium, R/y. Under risk aversion, the risk premium is positive, R > 0,

implying that

m > C(v, y)=y,
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or

E(p) ¼ my� C(v, y) > 0:

Thus, in the long run, risk aversion implies that expected price must exceed

the average cost of production, and that expected profit must be positive.

Intuitively, the positive expected profit can be interpreted as a means of

compensating the risk-averse firm for its (implicit) cost of private risk

bearing.

How does this long-run equilibrium relate to ‘‘short run’’ expected utility

maximization discussed previously? To answer this question, consider

the minimization of [C(v, y)=yþ R(y, � )=y] with respect to output y. This

involves the minimization of ‘‘average cost of production,’’ C(v, y)/y, plus

‘‘average risk premium,’’ R(y, � )=y. Here, while the average cost per unit of

output C(v, y)/y is explicit, the average risk premium R(y, � )=y is an implicit

measure of the shadow cost of private risk bearing per unit of output. The

associated necessary first-order condition is

C0=y� C=y2 þ R0=y� R=y2 ¼ 0,

or

C0 þ R0 ¼ C=yþ R=y:

Recall the short-run equilibrium condition: m ¼ C0 þ R0; and the long-run

equilibrium condition: m ¼ C=yþ R=y. It follows that both short-run and

long-run equilibrium conditions are satisfied at the minimum of [C/y þ R/y].

If the [C/y þ R/y] function has a U-shape with respect to output y, it follows

that the short-run as well as long-run equilibrium conditions satisfy

m ¼ Miny[C(v, y)=y� R(y, � )=y]:

This shows that, under free entry and exit, the equilibrium expected

output price must equal the smallest possible ‘‘average cost plus average

risk premium.’’ And this is consistent with both short-run expected utility

maximization and long-run equilibrium. In addition, under risk aversion

(where R > 0), this implies that m > Miny[C(v, y)=y]. Thus, under free entry
and exit, the standard ‘‘average cost pricing’’ rule obtained under certainty

(where output price equals average cost of production) does not apply. It

means that, compared to the riskless case, equilibrium expected price is

higher under risk and risk aversion. This is illustrated in Figure 8.5. It

suggests that reducing price uncertainty would lower expected price m,
which would tend to benefit consumers. (See Chavas et al. (1988) for a

further analysis, and Chavas (1993) for an application to the Ricardian

land rent). This issue is further explored in Chapter 13.
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expected price ($)

m

output

C(v, y)/y + R(y,.)/y

C/y = average cost

y*

R/y = average risk
premium

C' = marginal cost

supply function = C' + R'

Figure 8.5 Long run equilibrium

PRODUCTION UNCERTAINTY

So far, we have focused our attention on a firm facing only price uncer-

tainty. However, often firms also face significant production uncertainty.

This can be due to many factors: technological change, equipment failure,

unanticipated labor strike, unexpected resignation of workers, weather or

disease effects influencing productivity, etc. This means that while managers

choose some inputs, the outcome of the production process is typically not

perfectly known and firm output is uncertain.

1. The General Case

Under general production uncertainty, firm output is a random variable

at the time when inputs are chosen. The production technology can be

represented by a stochastic production function denoted by y(x, e), where

y is output, x is a vector of inputs, and e is a random variable reflecting

production uncertainty (e.g., weather in agricultural production).Here, y(x, e)

gives the largest possible output that can be obtained when inputs x are

chosen and the random variable takes a particular value e. The manager has

information about the production uncertainty, information represented by a

subjective probability distribution of the random variable e. Building on the

price uncertainty case, let p denote output price, v denote input prices, and w

denote initial wealth. Then, p y(x, e) is firm revenue, v0x ¼
Pn

i¼1 vixi is

production cost, p ¼ py(x, e)� v0x is firm profit, and [wþ p] is terminal

wealth. If we also allow for price uncertainty (in the presence of production

lags), the decision-maker does not know both e and p at the time of the input

decisions. Then, the firm faces price and production uncertainty. In this

context, the decision-maker treats both e and p as random variables with a
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subjective joint distribution. Under the expected utility model, assume that

the objective function of the decision-maker is to choose inputs x so as to

maximize the expected utility of terminal wealth

Maxx{EU [wþ py(x, e)� v0x]},

where E is the expectation operator based on the subjective distribution of

the random variables ( p, e). Using the chain rule, the necessary first-order

conditions for the optimal choice of inputs x are:

E[U 0 � (p@y(x, e)=@x� v)] ¼ 0,

or

E[p@y(x, e)=@x] ¼ v� Cov[U 0, p@y(x, e)=@x]=EU 0,

or

E(p)E[@y(x, e)=@x]þ Cov[p, @y(x, e)=@x] ¼ v� Cov[U 0, p@y(x, e)=@x]=EU 0:

We saw in Chapter 4 that maximizing expected utility is equivalent to

maximizing the corresponding certainty equivalent. Here, the certainty

equivalent of terminal wealth is wþ E[ py(x, e)]� v0x� R(x, � ), where

R(x, � ) is the Arrow–Pratt risk premium. Thus the choice of input x can

be alternatively written as

Maxx{wþ E[ py(x, e)]� v0x� R(x, � )}

The associated necessary first-order conditions are

@E[ py(x, e)]=@x� v� @R(x, � )=@x ¼ 0,

or

@E[ py(x, e)]=@x ¼ vþ @R(x, � )=@x,

where @R(x, � )=@x is the marginal risk premium. Comparing this result with

the first-order condition derived above indicates that the marginal risk

premium takes the form: @R(x, � )=@x ¼ �Cov[U 0, p@y(x, e)=@x]=EU 0.
This result provides an intuitive interpretation of the covariance term:

�Cov [U 0, p@y(x, e)=@x]=EU 0 is the marginal risk premium measuring the

effect of inputs x on the implicit cost of private risk bearing. It also shows

that, at the optimal input use, the expected marginal value product,

@E[ py(x, e)]=@x, is equal to the input cost v, plus the marginal risk premium,

@R(x, � )=@x.
In general, the marginal risk premium can be either positive, zero, or

negative depending on the nature of the stochastic production function y(x, e).

For a risk-averse firm, when @R(x, � )=@xi > 0, the i-th input increases the
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implicit cost of risk, providing an incentive to reduce the use of this input.

Alternatively, when @R(x, � )=@xi < 0, the i-th input reduces the implicit cost

of risk, giving an incentive to increase the demand for this input. It is largely

an empirical matter to evaluate whether a particular input increases or

decreases the implicit cost of risk.

2. Some Special Cases

Alternative approaches have been used in the empirical assessment of the

stochastic technology.

a. Multiplicative Production Uncertainty

This is the case where the stochastic production function is specified as:

y(x, e) ¼ ef (x),

where E(e) ¼ 1. Let q ¼ pe denote the revenue per unit of expected output.

Then, the expected utility maximization problem becomes

Maxx{EU [wþ qf (x)� v0x]}:

After replacing p by q, this becomes equivalent to the price uncertainty case

discussed previously. Thus, all the results we obtained under price uncertainty

apply. However, note that this specification implies the following results

for the variance of output: Var(y) ¼ Var(e)f (x)2, and @Var(y)=@x ¼
2 Var(e)f (x)@f (x)=@x. Given f (x) > 0 and @f (x)=@x > 0, it follows that

@Var(y)=@x > 0. Thus, this stochastic production function specification re-

stricts inputs to be always variance increasing. This seems rather restrictive.

b. Additive Production Uncertainty

This is the case where the stochastic production function takes the form

y(x, e) ¼ f (x)þ e,

where E(e) ¼ 0. This simple specification implies that Var(y) ¼ Var(e), and

@Var(y)=@x ¼ 0. Thus, this stochastic production function specification

restricts input use to have no impact on the variance of output. Again, this

seems rather restrictive.

c. The Just–Pope Specification

In an attempt to develop more flexible specifications, Just and Pope (1978,

1979) proposed the following stochastic production function specification

y(x, e) ¼ f (x)þ e[h(x)]1=2,

where E(e) ¼ 0 and Var(e) > 0. It implies:
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: E(y) ¼ f (x) and @E(y)=@x ¼ @f (x)=@x,

:Var(y) ¼ Var(e)h(x) and @Var(y)=@x ¼ Var(e) � @h(x(=@x > ,

¼ , < 0 as @h(x)=@x > , ¼ , < 0

Note that this production function can be interpreted as a regression

model exhibiting heteroscedasticity (i.e., nonconstant variance). Of particu-

lar interest are the effects of inputs on the variance of output, Var(y). Inputs

can be classified as risk increasing, risk neutral, or risk decreasing depending

upon whether @Var(y)=@x is positive, zero, or negative, respectively. Thus,

in the Just–Pope specification, an input is risk increasing, risk neutral, or risk

decreasing when @h(x) )=@x is positive, zero, or negative, respectively. When

applied to agricultural production, Just and Pope (1979) found evidence that

fertilizer use tends to increase expected yield (@f (x)=@x > ) 0, as well as the

variance of yield (@h(x)=@x > 0). This indicates that fertilizer is a risk-

increasing input. However, other inputs can be risk reducing. Examples

include irrigation (reduces the effects of uncertain rainfall on production)

or pesticide use (reduces the effects of pest damage). In situations where

inputs affect production risk, firms can then manage their risk exposure

through input choice. Under risk aversion, managers have an extra incentive

to use risk-reducing inputs (which reduce risk exposure and its implicit cost).

And they have an extra disincentive to use risk-increasing inputs (which

increase risk exposure and its implicit cost). In such situations, risk has a

direct effect on input demand and production decisions.

d. The Moment-Based Approach

While mean-variance analysis is particularly convenient in applied analy-

sis, there are situations where it may not capture all the relevant information

about risk exposure. An example is related to downside risk exposure. If

decision-makers are averse to downside risk, then it is relevant to assess

their exposure to downside risk. Yet, as discussed in Chapter 6, the variance

does not distinguish between upside risk versus downside risk. In this context,

there is a need to go beyond amean-variance approach. One way to proceed is

to estimate the probability distribution of the relevant random variables. This

would provide all the relevant information for risk assessment (see Chapter 2).

An alternative approach is to rely on moments of the distribution (Antle

1983). Note that this includes mean-variance analysis as a special case (focus-

ing on the first two moments). More interestingly, this provides a framework

to explore empirically the role and properties of higher-order moments.

In the context of a general stochastic production function y(x, e), let

m(x) ¼ E[y(x, e)]
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denote mean production given inputs x, and

Mi(x) ¼ E{[y(x, e)� m(x)]i}

be the i-th central moment of the distribution of output y given x,

i ¼ 2, 3, . . . Then, M2(x) ¼ Var(x) is the variance of output, and M3(x) is

the skewness of output, conditional on inputs. Here, the sign of M3(x)

provides information on the asymmetry of the distribution, and thus on

downside risk exposure. For example, comparing two distributions with the

same mean and same variance, a higher (lower) skewness means a lower

(greater) exposure to downside risk. As discussed in Chapter 4, this is

particular relevant for decision-makers who are averse to downside risk.

To make the moment-based approach empirically tractable, consider the

following specifications:

(1) y ¼ m(x)þ u,

(2) [y� m(x)]i � ui ¼ Mi(x)þ vi, i ¼ 2, 3, . . .

where E(u) ¼ 0,E(vi) ¼ 0, Var(u) ¼ M2(x), and

Var(vi) � E[ui �Mi]
2 ¼ E(u2i)þM2

i � 2E(ui)Mi ¼ M2i �M2
i :

After choosing some parametric form for m(x) and Mi(x), specifications

(1) and (2) become standard regression models that can be estimated by

regression (using weighted least squares to correct for heteroscedasticity).

Antle and Goodger (1984) have used this approach to investigate the effects

of input choice on production risk. They found evidence that input use can

influence mean production m, the variance of production M2, as well as the

skewness of production, M3.

THE MULTIPRODUCT FIRM UNDER UNCERTAINTY

So far, we have focused our attention on a single product firm. Next, we

explore the implications of risk for a multiproduct firm.

PRICE UNCERTAINTY

Consider a firm producing m products where y ¼ (y1, . . . , ym)
0 is an

output vector with corresponding market prices p ¼ (p1, . . . , pm)
0. Under

price uncertainty, the output prices p are not known at the time production

decisions are made due to production lags. Let pi ¼ mi þ siei, where

E(ei) ¼ 0, i ¼ 1, . . . ,m. Under the expected utility model, the firm manager

has risk preferences represented by the utility function U(wþ p0y� C(v, y) ),
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where w is initial wealth, p0y ¼
Pm

i¼1 piyi denotes firm revenue, and C(v, y)

denotes the cost of production. Then, production decisions are made in a

way consistent with the maximization problem

Maxy[EU(wþ p0y� C(v, y) )],

where E is the expectation operator over the subjective probability distribu-

tion of the random variables p. Let y� be the optimal supply decisions

associated with the above maximization problem. Some properties of y�

generalize from the single product firm model:

. @y�=@w ¼ 0 under constant absolute risk aversion (CARA),

. @y�=@t ¼ 0 under constant relative risk aversion (CRRA), where t is

the tax rate,

. The Slutsky decomposition applies: @�y=@m ¼ @cy=@mþ (@�y=@w)y,
where @cy=@m is a symmetric, positive semi-definite matrix of compen-

sated price effects, and (@�y=@w)y� denotes the income effect.

However, other properties of the optimal supply function y� are difficult to
obtain in general. The reason is that they depend on both the joint probability

distribution of p ¼ (p1, . . . , pm)
0 and on the multiproduct firm technology. Of

special interest are the effects of the correlation among output prices and their

implications for production decisions under risk. Since such effects are diffi-

cult to predict in general, it will prove useful to focus our attention on a more

restrictive specification: the mean-variance model (as discussed in Chapter 6).

MEAN-VARIANCE ANALYSIS

Consider a firmmakingm decisions under risk. Let y ¼ (y1, . . . , ym)
0 be the

vector ofm decisions, and p ¼ (p1, . . . , pm)
0 be the vector of net return per unit

of products y. Then, firm profit is p ¼ p0y ¼
Pm

i¼1 piyi. The net returns

p ¼ (p1, . . . , pm) are uncertain and are treated as random variables. Denote

themeanofpbym ¼ (m1, . . . , mm)
0 ¼ E(p) and the varianceofpbyA ¼ Var(p)

¼

s11 s12 . . . s1m
s12 s22 . . . s2m
..
. ..

. . .
. ..

.

s1m s2m . . . smm

2

6
6
6
4

3

7
7
7
5
,

a (m�m) symmetric positive semi-definite matrix, where sii ¼ Var(pi) is the

variance of pi, and sij ¼ Cov(pi, pj) is the covariance between pi and

pj, i, j ¼ 1, . . . ,m. Inamean-varianceframework, theobjective functionof the

firm is represented by a utility function U [E(p), Var(p)]. The firm decisions

are then consistent with the maximization problem
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Maxy{U [E(p), Var(p)]: p ¼ p0y, y 2 Y}

whereY is the feasible set fory.Weassume that@U=@E > 0and@U=@ Var<0.

This implies risk aversion since increasing risk (as measured by Var(p)
makes the decision-maker worse off. Note that expected return is given

by E(p) ¼ m0y ¼
Pm

i¼1 miyi, while the variance of return is Var(p) ¼ y0Ay ¼Pm
i¼1

Pm
i¼1 (yiyjsij). Then, the above optimization problem can be written as

Maxy{U [m0y, y0Ay]: y 2 Y}
.

Denote by y� the solution of this maximization problem. We want to

investigate the properties of the optimal decisions y�.

1. The E-V frontier

The previous mean-variance problem can be decomposed into two stages:

Stage 1: First, consider choosing y holding expected return E(p) ¼ m0y to

be constant at some level M:

W (M) ¼ Miny[ y
0Ay: m0y ¼ M, y 2 Y ]:

whereW (M) ¼ yþ(M)0Ayþ(M) is the indirect objective function, and yþ(M)

is the solution to this optimization problem for a given M. The function

W(M) gives the smallest possible variance attainable for given levels of

expected return M. The function W(M) is called the ‘‘E-V frontier’’ (which

is short for ‘‘expected-value variance’’ frontier). The E-V frontier is the

boundary of the feasible region in the mean-variance space.

Note that a risk-averse decision-maker will always choose a point on the

E-V frontier. It means that, under risk aversion, utility maximization always

implies the stage-one optimization. Indeed, with @U=@ Var < 0, for any

given expected return M, he/she would always prefer a reduction in variance

up to a point on the E-V frontier. This is illustrated in Figure 8.6. Figure 8.6

shows that that point A is feasible but generates a high variance. From point

A, holding expected return constant, a feasible reduction in variance

is always possible and improves the welfare of a risk-averse decision-

maker. The largest feasible reduction in variance leads to a move from

point A to point B, which is located on the EV frontier. Another way to

obtain the same result is to consider the choice of expected return for a given

risk exposure. With @U=@E > 0, for a given variance, a risk-averse decision-

maker would always choose a higher mean return up to a point on the

E-V frontier. For example, in Figure 8.6, he/she would always choose

to move from point C (exhibiting low expected return) to point B on the

E-V frontier.
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M
B A

C
feasible region

W(M ) variance of return, W

E-V frontier, W(M )

expected return, M

Figure 8.6 The E-V frontier

When the feasible set Y can be expressed as a set of linear inequalities, the

above stage-one optimization is a standard quadratic programming problem.

It can be easily solved numerically on a computer. This makes this approach

simple and convenient for empirical analyses of economic behavior under

risk. As discussed in the following paragraphs, it is commonly used in the

investigation of risk management.

Stage 2: Next, consider choosing the optimal value for M (which was

treated as fixed in stage 1):

MaxMU(M,W (M) )

Denote the solution of this optimization problem by M�. Under differ-

entiability, this solution corresponds to the first-order necessary condition

@U=@M þ (@U=@W )(@W=@M) ¼ 0,

or

@W=@M ¼ �(@U=@M)=(@U=@W ):

This shows that, at the optimum, the slope of the E-V frontier, @W=@m, is
equal to the marginal rate of substitution between mean and variance,

�(@U=@M)=(@U=@W ). This marginal rate of substitution is also the slope

of the indifference curve between mean and variance. This is illustrated in

Figure 8.7.

Of course, putting the two stages together is always consistent with the

original utility maximization problem. Recall that yþ(M) corresponds to the

point on the E-V frontier where expected return is equal toM. This generates

the following important result: y� ¼ yþ(M�). It states that the optimal choice

y� is always the point on the E-V frontier corresponding to M�.
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expected return, M

M*

feasible region

W(M*) variance of return, W

E-V frontier, W(M)

Indifference curve, with
slope -(∂U/∂M)/(∂U/∂W).

Figure 8.7 The E-V frontier

Note that stage 1 does not depend on risk preferences. Since risk preferences

can be difficult to evaluate empirically (e.g., as they typically vary among

decision-makers), this suggests the following popular approach:

1. Given estimates of m and A, solve the stage 1 problem parametrically

for different values of M. This traces out numerically the E-V frontier

W(M). This also generates the conditional choices yþ(M).

2. Show the decision-maker the E-V frontier (and its associated choices

yþ(M) ), and let him/her choose his/her preferred point on the E-V

frontier. Choosing this point determines M�.
3. Obtain y� ¼ yþ(M�).

This provides a convenient framework to analyze risk behavior and/or to

make recommendations to decision-makers about their risk management

strategies.

2. Diversification

The above mean-variance model exhibits two attractive characteristics:

(1) it is easy to implement empirically, and (2) it provides useful insights into

diversification strategies. To illustrate the second point, consider the simple

case where m ¼ 2, y ¼ (y1, y2), and p ¼ p1y1 þ p2y2, pi being the net return

per unit of activity yi, i ¼ 1, 2. Let mi ¼ E(pi), s2i ¼ Var(pi), and r ¼ the

correlation coefficient between p1 and p2, � 1�r�1. Then,

E(p) ¼ m1y1 þ m2y2

and

Var(p) ¼ s21y
2
1 þ s22y

2
2 þ 2rs1s2y1y2:
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The stage-one optimization takes the form:

W (M) ¼ Miny[s21y
2
1 þ s22y

2
2 þ 2rs1s2y1y2: m1y1 þ m2y2 ¼ M, y 2 Y ]

or

W (M) ¼ Miny[s21y
2
1 þ s22(M�m1y1)

2=(m22)þ 2rs1s2y1(M�m1y1)=m2: y 2 Y ]:

First, consider the extreme situation where r ¼ �1. This is the case where

there is a perfect negative correlation in the unit returns to the two activities

y1 and y2. Then, the previous problem becomes

W (M) ¼ Miny[(s1y1 � s2(M � m1y1)=m2)
2: y 2 Y ]

Note that choosing y1 ¼ Ms2=(m2s1 þ m1s2) implies Var(p) ¼ 0. Thus,

there exists a strategy that can eliminate risk altogether. It shows that r ¼ �1

generates the greatest possibilities for diversification strategies to reduce risk

exposure.

Second, consider the other extreme situation where r ¼ þ1. This is the

case where there is a perfect positive correlation in the unit returns to the two

activities y1 and y2. Then, the above problem becomes

W (M) ¼ Miny[(s1y1 þ s2(M � m1y1)=m2)
2: y 2 Y ]

which implies that [Var(p)]1=2 ¼ s1y1 þ s2(M � m1y1)=m2, i.e. that the stand-
ard deviation of p is a linear function of y1. This generates no possibility for

diversification strategies to reduce the variance of return.

Third, consider the intermediate cases where �1 < r < þ1. This corres-

ponds to intermediate situations where the possibilities for diversification and

risk reduction decrease with the correlation coefficient r between p1 and p2.

This is illustrated in Figure 8.8, which shows the tradeoff between

expected return and the standard deviation of return under alternative

correlation coefficients r. Figure 8.8 shows that risk diversification strategies

cannot help reduce risk exposure when there is a strong positive correlation

in their unit return. Then, the least risky strategy is simply to specialize in the

least risky activity. Conversely, Figure 8.8 shows that risk exposure can be

greatly reduced through diversification when the decision-maker can choose

among activities with negative correlation in their unit returns. It indicates

that risk-averse decision-makers have an extra incentive to diversify among

these activities to reduce their risk exposure. In other words, risk and risk

aversion provide economic incentives to diversify into economic activities that

do not involve positively correlated returns. This is intuitive. It is just a formal

way of stating the well-known diversification rule: Do not put all your eggs

in the same basket (since doing so would expose all eggs to the same risk of

dropping the basket).
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expected return, E(π)

M/m1

M/m2

s2 M/m2 s1 M/m1  standard deviation,[Var(π)]1/2

 r = +1

r = −1

−1 < r < +1

Figure 8.8 Risk diversification

THE USE OF FUTURES MARKETS

We have examined the behavior of a firm facing both price and produc-

tion uncertainty. We have seen that risk-reducing inputs can help reduce

exposure toproduction risk.Also, diversification strategies canhelp reduce the

decision-maker risk exposure. But are there more direct ways of reducing

price uncertainty? In this section, we investigate how futures markets can

provide the firm a powerful way to reduce its exposure to price risk.

Over the last decades, futures markets have been one of the fastest

growing industries in the world business economy. Futures markets involve

the organized trading of futures contracts. A futures contract is a transfer-

able, legally binding agreement to make or take delivery of a standardized

amount of a given commodity at a specified future date. Futures markets

perform several functions: (1) they facilitate risk management; (2) they aid

firms in discovering forward prices; and (3) they provide a source of infor-

mation for decision-making (Hull 2002). Our focus here is on the use of

futures markets in managing price risk on the associated commodity market

(also called cash market). This involves ‘‘hedging.’’ A market participant is a

hedger if he/she takes a position in the futures market opposite to a position

held in the cash market. This contrasts with a speculator, defined as a market

participant who does not hedge.

Following Feder et al. (1980), consider the case of a firm producing a

commodity under price risk. Price uncertainty is associated with production

lags, where input decisions aremade before the output ismarketed, i.e., before

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 10:52am page 117Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 10:52am page 117Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 10:52am page 117Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 10:52am page 117

Production Decision under Risk 117



the cashmarket price for output is known. There are two relevant periods: the

beginning of the production period (when input decisions are made), and the

end of the production period (when output is marketed). If there is no futures

market for the commodity produced (or if the firm decides not to participate

in it), then the firm is a speculator in the cash market. This reduces to the

Sandmo model discussed previously (where price uncertainty has adverse

effects on production incentives under risk aversion). We now consider the

case where a futures market exists for the commodity produced. We want to

investigate the effects of hedging strategies for the firm. A hedger takes

opposite positions in the cash market and the futures market. Thus, at the

beginning of the production period, a hedging firm sells a futures contract at

the same time as it purchases its inputs. And at the end of the production

period (marketing time), a hedging firm buys a futures contract at the same

time as it sells its output on the cashmarket. For simplicity, we assume that the

firm faces no production uncertainty. Let

. y ¼ production output,

. p ¼ cash price of output at marketing time,

. H ¼ firm hedging on the futures market,

. F ¼ futures price at the beginning of the production period for delivery

at marketing time.

At the beginning of the production period, the firm chooses the inputs used

in the production of y units of output. At the same time, being a hedger, the

firm sells a futures contract forH units of output to be delivered at marketing

time. The unit price of this futures contract is F, generating a hedging revenue

of (F H). At the end of the production period (when output is marketed), the

firm sells y units of output on the commodity market at cash price p. At the

same time, to cancel its involvement in the futures market, the firm buys a

futures contract forH units of output for immediate delivery.

Cash price and futures price typically differ. At any point of time, the

basis is defined as the difference between a futures price (for a given futures

contract) and a cash price. The basis evolves over time. To the extent that its

evolution is not fully predictable, it exposes hedgers to a ‘‘basis risk.’’

However, there is one situation where the basis is predictable. When the

cash and futures markets are in the same location, one expects the basis to

converge to zero as the futures contract approaches maturity. The two

markets then become perfect substitutes at delivery time, meaning that a

nonzero basis would be arbitraged away by market participants. In other

words, a zero basis is an arbitrage condition at contract maturity. For

simplicity, we focus on the case where the hedger chooses a futures contract

maturity that matches its marketing time. Then, at the end of the production

period (when output is marketed), the futures price for immediate delivery
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and the cash price (p) are assumed to coincide (corresponding to a zero

basis). It follows that, for our hedging firm, the cost of buying back H units

of futures contract is (pH ).

The firm decisions involve choosing both production y and hedging

H. For simplicity, we ignore time discounting. The firm’s profit is

p ¼ py� pH þ FH � C(v, y), where (py) is the revenue from selling the

output on the commodity market, C(v, y) denotes the cost of production,

(F H) is the revenue from hedging on the futures market, and (pH ) is the cost

of hedging activities (assuming that the futures price and the cash price

coincide at marketing time). Under the expected utility model, this can be

represented by the maximization problem

MaxH, yEU [wþ py� pH þ FH � C(v, y)],

where p is a random variable representing price uncertainty in the cash

market. Again, we consider the case where the decision-maker is risk averse,

where U 0 > 0 and U 00 < 0. This provides a framework to investigate the

implications of hedging for risk management and for production decisions.

1. Hedging Reduces Revenue Uncertainty

Note that, under price uncertainty,

Var[py� pH þ FH � C(v, y)] ¼ (y�H)2 Var(p):

It follows that the variance of profit can be reduced to zero if y ¼ H.

It means that the firm has the possibility of eliminating revenue uncertainty

if it decides to ‘‘fully hedge’’ its production. This shows that, in the

absence of production uncertainty, hedging on the futures market is a very

powerful tool for a firm to manage price uncertainty. In addition, note

that Var(p) ¼ (y�H)2 Var(p) < y2 Var(p) whenever 0 < H < 2y. This

means that a ‘‘partial hedge’’ (where 0 < H < y) always contributes

to a reduction in the variance of profit. Thus, hedging can reduce the

variance of firm revenue and thus risk exposure under price uncertainty.

However, note that hedging cannot protect the firm against production

uncertainty.

2. Under Optimal Hedging, Production Decisions are Unaffected by
Price Risk or Risk Aversion:

While hedging helps manage price risk, does it also affect production

decisions? To answer this question, consider the first-order necessary condi-

tions associated with the expected utility maximization problem:

y:E[U 0 � (p� C0)] ¼ 0
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and

H:E[U 0 � (� pþ F )] ¼ 0:

The optimal production y� and optimal hedgingH� are the corresponding
decisions that satisfy these two equations. In general, the hedging decision

H� depends on price expectations, risk, and risk aversion. However, note

that substituting the second equation into the first gives

C0 ¼ F :

This shows that, at the optimum, production decisions are made such that

the marginal cost of production C 0 is equal to the futures price F. This restores
the ‘‘marginal cost pricing’’ rule for production decisions under price risk

and risk aversion, except that the relevant price is now the futures price F

(and not the expected cash price E( p)). Since this condition does not involve

any random variable or risk preferences, it follows that under optimal

hedging, neither price expectation, nor price uncertainty, nor risk aversion

are to influence production decisions. This is in sharp contrast with our

previous results obtained without hedging. It suggests that hedging strategies

on futures markets can have profound effects on both private risk exposure

and production decisions. More generally, it illustrates how the institutional

context within which economic decisions are made can have significant

effects on risk and resource allocation.

PROBLEMS

Note: An asterisk (*) indicates that the problem has an accompanying Excel file

on the Web page http://www.aae.wisc.edu/chavas/risk.htm.

*1. Mr. Jones grows 100 ha of corn. His utility function for profit (p) is

U(p) ¼ p� :00002 p2

Fixed costs are $100/ha. His subjective probability distribution for the price of corn

(per kilogram) has a mean of $.04 and a variance of .0003. The decision variable of

interest is nitrogen fertilizer priced at $.30 per kilogram. Mr. Jones judges that the

mean and variance of corn yield (y measured in kg/ha) is

E(y) ¼ 6000þ 30N � :1 N2

Var(y) ¼ 800000þ 30000N

where N ¼ kg of nitrogen fertilizer/ha.

a. Assuming that yield and price are independently distributed, find the

expected value and variance of profit for the farm.

b. If the farmer maximizes his expected utility of profit, find the first-order

conditions
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. without risk,

. with price risk only,

. with yield risk only,

. with both price and yield risk.

c. Find the optimal nitrogen fertilizer use for each case in b. (use numerical

methods). Interpret your results.

d. Under price and production uncertainty, how would an increase in fixed

cost affect your answer in c? Interpret.

e. Discuss the management and policy implications of your results.

2. A firm faces two sources of risk: output price uncertainty and uncertainty in

the value of its fixed cost.

a. Find the expected value of terminal wealth (allowing for possible correl-

ation between the two sources of risk).

b. The firm decision-maker is risk averse. Under the expected utility model,

obtain the first-order condition for optimal output. How does the presence

of uncertain fixed cost affect your results?

c. Assume that marginal cost is constant and that the decision-maker has a

quadratic utility function. Solve for the optimal output. Interpret your

result.

3. A firm produces output y under a cost function c( y) ¼ kþ yþ 0:1y2, where k
denotes fixed cost. The firm manager has risk preferences represented by the utility

function U(p) ¼ �e�p, where p ¼ py� c( y), and p is output price.

a. How much would the firm produce if the output price is p ¼ 11 for sure?

b. Now, the firm faces output price uncertainty where p has a normal distri-

bution with mean 11 and standard deviation 2. What is the optimal firm

supply? What is the marginal cost of risk?

c. How does your answer in b. change when fixed cost k increases? Interpret.

d. The standard deviation of output price p increases from 2 to 4. How does

this affect firm supply and the marginal cost of risk? Interpret.

*4. Consider a decision-maker with $100 to invest among three risky prospects A,

B, and C. The expected rate of return for each prospect is: E(A) ¼ :10,E(B) ¼ :07,
and E(C) ¼ :03. The standard deviation per unit return from each prospect is:

STD(A) ¼ .06, STD(B) ¼ .04, and STD(C) ¼ .01. The correlation among returns

are: R(A,B) ¼ þ0:4,R(B,C) ¼ �1:0, and R(A,C) ¼ �0:4.
a. Find the E-V frontier and the associated investment strategies. Graph the

E-V frontier. Interpret the results.

b. If the utility function of the decision-maker isU(x) ¼ x� :0045x2, find the

optimal investment strategy. Interpret the results.

c. Now assume that the correlation R(B,C) is equal to zero. How does that

affect your results in a. and b.? Interpret.
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Chapter 9

Portfolio Selection

This chapter focuses on optimal investment decision under uncertainty.

A central issue is the role of risk and risk aversion in investment behavior.

We start with the case of an investor choosing between two assets: a risky

asset and a riskless asset. In this simple case, we obtain useful analytical

insights on the effects of risk on portfolio selection. We then examine the

general case of multiple risky assets. In a mean-variance context, we inves-

tigate the optimal portfolio selection among risky assets and its implica-

tions for empirical analysis. When taken to the market level, the optimal

behavior of investors provides a framework to investigate the market price

determination in the stock market. This is the standard capital asset pricing

model (CAPM). Extensions to the capital asset pricing model are also

discussed.

THE CASE OF TWO ASSETS

Consider an agent (it could be a firm or a household) choosing an invest-

ment strategy. We start with the simple case where there are only two

investment options: a riskless asset and a risky asset. The investor has a

one-period planning horizon. His/her investment decisions are made at the

beginning of the period, yielding a monetary return at the end of the period.

For each dollar invested, the riskless asset yields a sure return at the end of

the period. The riskless asset can be taken to a government bond, which is

considered to exhibit no risk of default. In contrast, the risky asset yields an

uncertain return at the end of the period. The risky asset can be any activity

123
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yielding an uncertain delayed payoff (e.g., a stock investment). What should

the investor decide?

At the beginning of the period, let I denote initial wealth of the investor.

Let y denote the amount of money invested in the risky asset y, and let z

denote the amount of money invested in the riskless asset. The investor faces

the budget constraint:

I ¼ yþ z:

Denote by p the monetary return per unit of the risky asset y, and by r the

monetary return per unit of the riskless asset z. While r is known ahead of

time, p is uncertain at the time of the investment decision. Thus, the uncer-

tain rate of return on y is ( p� 1), while the sure rate of return on z is (r� 1).

The uncertain variable p is treated as a random variable. In his/her risk

assessment, the investor has a subjective probability distribution on p. At the

end of the period, let C denote consumption (for a household), or terminal

wealth (for a firm). It satisfies

C ¼ pyþ rz,

Let p ¼ mþ s e, where m ¼ E(p) and e is a random variable satisfying

E(e) ¼ 0. The parameters m and s can be interpreted respectively as the mean

and standard deviation (or mean-preserving spread) of p. Under the

expected utility model, let the preference function of the decision-maker be

U(C ). We assume that U 0 > and U 00 < 0, corresponding to a risk-averse

decision-maker. The investment decisions are then given by

Maxy, z{EU (C): I ¼ yþ z, C ¼ p yþ r z}

or

Maxy{EU [ p yþ r � (I � y)]},

or

Maxy{EU (r I þ p y� r y)}:

This is similar to Sandmo’s model of the firm under price uncertainty

discussed in Chapter 8. Indeed, the two models become equivalent if w ¼ r I ,

and C(v, y) ¼ r y. Let y�(I, m, s, r) denote the optimal choice of y in

the above maximization problem. It follows that the results obtained in

Chapter 8 in the context of output price uncertainty apply to

y�(I, m, s, r). They are:

1. @y�=@I > , ¼ , < 0 under decreasing absolute risk aversion (DARA),

constant absolute risk aversion (CARA), or increasing absolute risk

aversion (IARA), respectively.
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2. @y�=@m ¼ @yc=@mþ (@y�=@w)y� > 0 under DARA. This is the

‘Slutsky equation’ where @yc=@m is the compensated price effect and

[(@y�=@w)y�] is the income (or wealth) effect.

3. @y�=@s < 0 under DARA.

4. Denote by Y ¼ y=I the proportion of income invested in the risky

asset. It implies that the maximization problem can be alternatively

written as

MaxY{EU [I � (rþ pY � rY )]}:

This is similar to Sandmo’s model of the firm under price uncertainty

discussed in Chapter 8 when I ¼ 1� t, t being the tax rate. Thus, the

following result applies:

@Y �=@I ¼ @(y�=I)=@I > , ¼ , < 0 under decreasing relative risk aver-

sion (DRRA), constant relative risk aversion (CRRA), or increasing relative

risk aversion (IRRA), respectively.

Result 1 shows that, under DARA preferences, a higher income tends to

increase investment in the risky asset (and thus to reduce investment in the

riskless asset). Intuitively, under DARA, higher income reduces the implicit

cost of risk, thus stimulating the demand for the risky asset. Result 2 has the

intuitive implication that, under DARA, increasing the expected rate of

return on the risky asset tends to increase its demand. Result 3 shows that,

under DARA and risk aversion, increasing the riskiness of y (as measured by

the standard deviation parameter s) tends to reduce its demand. This is

intuitive, as the implicit cost of risk rises, the risk-averse investor has an

incentive to decrease his/her investment in the risky asset (thus stimulating his/

her investment in the riskless asset). Finally, Result 4 indicates how risk pre-

ferences affect the proportion of the investor’s wealth held in the risky asset,

y�=I . It implies that this proportiondoes not dependon income IunderCRRA

preferences. However, this proportion rises with income under DRRA, while

it declines with income under IRRA. These results provide useful linkages

between risk, risk aversion, and investment behavior.

MULTIPLE RISKY ASSETS

THE GENERAL CASE

We obtained a number of useful and intuitive results on investment

behavior in the presence of a single risky asset. However, investors typically

face many risky investment options. This implies a need to generalize our

analysis. Here, we consider the general case of investments in m risky assets.
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Let z be the risk free asset with rate of return (r� 1), and yi be the i-th

risky asset with rate of return ( pi � 1), where pi ¼ mi þ si ei, ei being a

random variable with mean zero, i ¼ 1, 2, . . . , m. This means that mi is
the mean of pi, and si is its standard deviation (or mean-preserving spread),

i ¼ 1, . . . , m.

Let y ¼ ( y1, y2, . . . , ym)
0 denote the vector of risky investments, with

corresponding returns p ¼ ( p1, p2, . . . , pm)
0. Extending the two-asset case

presented above, an expected utility maximizing investor would make invest-

ment decisions as follows

Maxy{EU [r I þ
Xm

i¼1

(pi � r)yi]},

where E is the expectation operator based on the joint subjective probability

distribution of p. Let y� denote the optimal portfolio choice of y in the above

problem. Then, y� satisfies the Slutsky equation:

@y�=@m ¼ @yc=@mþ (@y�=@w)y�0

where m ¼ (m1, m2, . . . , mm)
0 denotes the mean of p ¼ (p1, p2, . . . , pm)

0,
@yc=@m is a (m�m) symmetric positive semidefinite matrix of compensated

price effects, and [(@y�=@w)y�0] is the income (orwealth) effect.Unfortunately,

besides the Slutsky equation, other results do not generalize easily from the

two-asset case. The reason is that the investments in risky assets y� depend in a
complex way on the joint probability distribution of p.

THE MEAN-VARIANCE APPROACH

The complexity of portfolio selection in the presence of multiple risky

assets suggests the need to focus on a more restrictive model. Here we

explore the portfolio choice problem in the context of a mean-variance

model (as discussed in Chapter 6).

Let p ¼ r I þ
Xm

i¼1

(pi � r)yi, and A ¼ Var(p) ¼

s11 s12 � � � s1m
s12 s22 � � � s2m

..

. ..
. . .

. ..
.

s1m s2m � � � smm

2

6
6
6
6
4

3

7
7
7
7
5

¼ a (m�m) positive

definite matrix representing the variance of p ¼ ( p1, p2, . . . , pm)
0, where sii

is the variance of pi and sij is the covariance between pi and pj, i,

j ¼ 1, . . . , m. Assume that the investor has a mean-variance preference
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function U(E(p), Var(p) ), where @U=@E > 0, @U=@Var < 0 (implying risk

aversion). Note that

E(p) ¼ r I þ
Xm

i¼1

(mi � r) yi,

and

Var(p) ¼ y0Ay ¼
Xm

i¼1

Xm

j¼1

yiyjsij:

The decision problem thus becomes

Maxy {U(E, Var):E ¼ rI þ
Xm

i¼1

(mi � r)yi, Var ¼ y0Ay},

or

Maxy{U(r I þ
Xm

i¼1

(mi � r) yi, y0Ay}:

Let y� denote the optimal solution to the previous problem. Next, we

explore the implications of the model for optimal portfolio selection.

1. The Mutual Fund Theorem

The first-order necessary conditions to the above maximization problem

are

(@U=@E)[m� r]þ 2(@U=@Var) A y ¼ 0,

or

y� ¼ �(UE=2UV )A
�1[m� r],

where UE � @U=@E > 0, and UV � @U=@Var < 0. This gives a closed form

solution to the optimal investment decisions. It implies that y� ¼
(y�1, . . . , y�m) is proportional to vector (A�1[m� r] ), with � (UE=2UV ) > 0

as the coefficient of proportionality. Note that the vector (A�1[m� r] ) is

independent of risk preferences. This generates the following ‘‘mutual fund

theorem’’ (Markowitz 1952):

If all investors face the same risks, then the relative proportions of the risky

assets in any optimal portfolio are independent of risk preferences.

Indeed, if all investors face the same risks, then each investor (possibly with

different risk preferences) chooses amultiple [� (UE=2UV ) > 0] of a standard

vector of portfolio proportions (A�1[m� r] ). Note that the mutual fund
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principle does not say anything about the proportion of the riskless asset in an

optimal portfolio (this proportion will depend on individual risk preferences).

This is illustrated in Figures 9.1 and 9.2. These figures represent the

relationships between expected return and the standard deviation of return.

They are closely related to the evaluation of the E-V frontier discussed in

Chapter 8. Here the standard deviation is used (instead of the variance) for

reasons that will become clear shortly.

Figure 9.1 shows the feasible region under two scenarios. First, the area

below the curve ABC gives the feasible region in the absence of a riskless

asset (as discussed in Chapter 8). The curve ABC is thus the mean-standard

C'

C
B

rI A'
feasible  region

A

0
sm

expected return, M

Mm

standard deviation of return, s

efficient frontier without a riskless
asset

efficient frontier in the
presence of a riskless asset

Figure 9.1 The efficient frontier in the presence of a riskless asset

expected return, M

C'

        C

B

rI  A'
feasible  region

A

indifference curve

M* efficient frontier in the
presence of a riskless asset

efficient frontier without a riskless
asset

Mm

Figure 9.2 Portfolio choice in the presence of a riskless asset
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deviation frontier when z ¼ 0. Second, Figure 9.1 shows that the introduc-

tion of a riskless asset z expands the feasible region to the area below the line

A0BC 0. The line A0BC 0 happens to be a straight line in the mean-standard

deviation space (which is why the standard deviation is used in Figures 9.1

and 9.2). Points A0 and B are of particular interest. Point A0 corresponds to a

situation where the decision-maker invests all his/her initial wealth in the

riskless asset; it generates no risk (with zero variance) and an expected return

equal to (r I ). Point B corresponds to a situation where the decision-maker

invests all his/her initial wealth in the risky assets. It identifies a unique

market portfolio (Mm, sm) that is at the point of tangency between the

curve ABC and the line going through A0. Knowing points A0 and B is

sufficient to generate all points along the straight line A0BC 0. Note that

moving along this line can be done in a simple way. Simply take a linear

combination of the points A0 and B. Practically, this simply means investing

initial wealth I in different proportions between the riskless asset (point A0)
and the risky market portfolio given by point B. Thus, in the presence of a

riskless asset, the feasible region is bounded by the straight line A0BC 0 in
Figure 9.1. As discussed in Chapter 8, a risk-averse decision-maker would

always choose a point on the boundary of this region, i.e., on the line A0BC 0.
For that reason, the line A0BC 0 is termed the efficiency frontier. Indeed, any

point below this line would be seen as an inferior choice (which can always

be improved upon by an alternative portfolio choice that increases expected

return and/or reduces risk exposure). Note that the efficiency frontier A0BC 0

does not depend on risk preferences.

Figure 9.2 introduces the role of risk preferences. As seen in Chapter 8,

the optimal portfolio is obtained at a point where the indifference curve

between mean and standard deviation is tangent to the efficiency frontier. In

Figure 9.2, this identifies the point (M�, s�) as the optimal choice along the

efficiency frontier A0BC 0. Of course, this optimal point would vary with risk

preferences. Yet, as long as different decision-makers face the same risk, they

would all agree about the risky market portfolio (Mm, sm) given at at point

B. If this risky market portfolio represents a mutual fund, the only decision

left would be what proportion of each individual’s wealth to invest in the

mutual fund versus the riskless asset. This is the essence of the mutual fund

theorem: the mutual fund (corresponding to the risky market portfolio B) is

the same for all investors, irrespective of risk preferences.

The mutual fund theorem does generate a rather strong prediction. When

facing identical risks, all investors choose a portfolio with the same propor-

tion of risky assets. In reality, the relative composition of risky investments

in a portfolio is often observed to vary across investors. This means either

that investors face different risks, or that the mean-variance model does not

provide an accurate representation of their investment decisions. Before we
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explore some more general models of portfolio selection, we will investigate

in more details the implications of the simple mean-variance model.

2. Two-Stage Decomposition

As seen in Chapter 8, in a mean-variance model, it is useful to consider a

two-stage decomposition of the portfolio choice.

Stage 1: First, choose the risky investments y conditional on some given

level of expected returnM. Under risk aversion (whereUV ¼ @U=@Var < 0),

this implies:

W (M) ¼ Miny[y
0 Ay: rI þ

Xm

i¼1

(mi � r)yi ¼ M],

where W(M) is the mean-variance E-V frontier (as discussed in chapter 8).

Let yþ(M, � ) denote the solution to this stage-one problem.

Note that, in the presence of a riskless asset, it is always possible to drive

the variance of the portfolio to zero by investing only in the riskless asset.

This corresponds to choosing y ¼ 0, which generates a return m ¼ r I . This

means that the E-V frontier necessarily goes through the point of zero

variance when M ¼ r I (corresponding to yþ(r I , � ) ¼ 0). In general, the

E-V frontier W(M) expresses the variance W as a nonlinear function of the

mean return M. It is in fact a quadratic function as the frontier in the mean-

standard deviation space, W 1=2(M), is a linear function (as illustrated in

Figures 9.1 and 9.2).

Stage 2: In the second stage, choose the optimal expected return M:

MaxM [U(M, W (M)],

which has for first-order condition

UE þUV (@W=@M) ¼ 0,

or

@W=@M ¼ �UE=UV :

This states that, at the optimum, the slope of the E-V frontier @W=@M is

equal to the marginal rate of substitution between E and Var, �UE=UV

(which is the slope of the indifference curve between E and Var). (See

Chapter 8.)

Let M* denote the solution to the stage-two problem. Then the optimal

solution to the portfolio selection problem is y� ¼ yþ(M*).

As noted in Chapter 8, solving the stage-one problem is relatively easy

since it does not depend on risk preferences (which can vary greatly across
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investors). Thus, given estimates of m ¼ E(p) and A ¼ V (p), deriving the

efficiency frontier W(M) can be easily done by solving stage-one problem

parametrically for different values ofM. Then, choosing the pointM* on the

efficiency frontier generates the optimal portfolio choice y� ¼ yþ(M*). In a

mean-variance framework, this provides a practical way to assess optimal

investment choice and to make recommendations to investors about optimal

portfolio selection.

THE CAPITAL ASSET PRICING MODEL (CAPM)

The previous mean-variance model has one attractive characteristic: It

gives a closed form solution to the optimal investment decisions. Given the

simplicity of the investment decision rule, it will prove useful to explore its

implications for market equilibrium. All it requires is to aggregate the

decision rules among all market participants and to analyze the associated

market equilibrium. This provides useful insights on the functioning of the

stock market.

To see that, consider an economy composed of

. n firms

. h investors, each with an initial wealth wi and a mean-variance utility

functionUi(Ei, Vari), where @Ui=@Ei > 0 and @Ui=@Vari < 0 (implying risk

aversion), i ¼ 1, 2, . . . , h. We allow for different investors to have different

utility function, i.e., different risk preferences.

Each firm has a market value Pj determined on the stock market,

j ¼ 1, 2, . . . , n, and is owned by the h investors. We consider a one-period

model where investors make their investment decisions at the beginning of

the period and receive some uncertain returns at the end of the period. At the

beginning of the period, each investor i decides:

. the proportion Zij of the j-th firm he wants to own,

. the amount to invest in a riskless asset zi, with a rate of return of (r� 1).

The budget constraint for the i-th investor is

wi ¼ zi þ
Xn

j¼1

ZijPj,

or

wi ¼ zi þ Zi
0P,

where Zi ¼ (Zi1, . . . , Zin)
0 and P ¼ (P1, . . . , Pn)

0.
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The value of each firm, Pj, may change in unforeseen fashion by the end

of the period to Xj . Since Xj is not known ahead of time, it is treated as a

random variable. Let X ¼ (X1, . . . , Xn)
0 be a vector of random variables

with mean m ¼ E(X ) and variance A ¼ V (X ) ¼
s11 s12 � � � s1n
s12 s22 � � � s2n
..
. ..

. . .
. ..

.

s1n s2n � � � snn

2

6
6
6
4

3

7
7
7
5
:

The end-of-period wealth for the i-th investor is: r zi þ Zi
0X ¼ r zi

þ
Pn

j¼1 ZijXj. It follows that the mean end-of-period wealth is:

Ei ¼ r zi þ Zi
0m; and the variance of end-of-period wealth is: Vari ¼ Z

0
iAZi.

The maximization of utility U(Ei, Vari) for the i-th investor becomes

Maxm,Z{Ui(rzi þ Z
0

im, Z
0

iA Zi):wi ¼ zi þ Z
0

iP}

or

Maxz{Ui[r(wi � Z
0

iP)þ Z
0

im, Z
0

iAZi]}:

The optimal investment proportions for the i-th investor, Z�
i , satisfy the

first-order conditions

(@Ui@Ei) (m� rP)þ 2(@Ui=@Vi)AZi ¼ 0,

which gives

Z�
i ¼ �[@Ui=@Ei)=2@Ui=@Vi)]A

�1(m� rP), i ¼ 1, . . . , h: (1)

Note that we are assuming that all investors face the same risk. This

means that Z
�
i satisfies the mutual fund theorem: Z

�
i is proportional to

[A�1(m� rP)], which does not depend on individual risk preferences. It

follows that each investor holds the same relative proportion of the shares

of each firm in the stock market.

MARKET EQUILIBRIUM

Given the optimal decision rule of the i-th investor given in equation (1), we

now investigate its implications for market equilibrium. Assuming that each

firm is completely owned by the h investors, then the market prices of the n

firms,P ¼ (P1, . . . , Pn)
0, are determined on the stockmarket. The stockmar-

ket provides the institutional framework for investors to exchange their own-

ership rightsof then firms.Market equilibrium in the stockmarketmust satisfy

Xh

i¼1

Zij ¼ 1, j ¼ 1, . . . , n,
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or

Xh

i¼1

Zi ¼ 1,

where 1 ¼ (1, . . . , 1)0 is the (n� 1) unit vector. Substituting equation (1)

into the market equilibrium condition yields

Xh

i¼1

{� [(@Ui=@Ei)=(2@Ui=@Vi)]}A
�1(m� rP) ¼ 1:

Let l ¼ �{
Ph

i¼1 [(@Ui=@Ei)=(2@Ui=@Ui=@Vi)]}
�1 > 0. The parameter l

can be interpreted as the ‘‘market risk aversion parameter’’ (since it depends

on the risk preferences of the h investors). Substituting l into the above

expression gives

l�1A�1(m� rP) ¼ 1,

or

P ¼ (m� lA1)=r: (2a)

Expression (2a) gives the market equilibrium value of the n firms on the

stock market. It can be written alternatively as

Pj ¼ mj � l
Xn

k¼1

sjk

 !" #

=r, j ¼ 1, . . . , n, (2b)

where sjj is the variance of Xj, and sjk is the covariance between Xj and Xk.

Expression (2b) states that, in equilibrium, the price of the j-th asset, Pj,

equals the expected present value of future dividends mj=r, minus a risk

premium, l(
Pn

k¼1 sjk)]=r.

THE RATE OF RETURNS ON STOCKS

Given the determination of stock prices given in (2a) or (2b), we now

examine the implications for the rate of return on stocks. Again, we assume

that each firm is completely owned by the h investors who exchange their

ownership rights of the n firms on the stock market.

Let rj ¼ (1þ rate of return on stock j)

¼ Xj=Pj ¼ (end-of-period value )=(beginning-of-period value)

for the j-th firm, j ¼ 1, . . . , n:

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 133Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 133Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 133Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:33pm page 133

Portfolio Selection 133



Let Xm¼
Xn

j¼1

Xj ¼ end-of-period value of all n firms,

with mean mm ¼ E(Xm):

Let Pm ¼
Xn

j¼1

Pj ¼ beginning-of-period value of all n firms:

Let rm ¼ Xm=Pm ¼ 1þ ‘‘market average rate of return:’’

Using equation (2b), we obtain:

E(rj) ¼ mj=Pj ¼ rþ l
Xn

k¼1

sjk

 !

=Pj, j ¼ 1, . . . , n,

E(rm) ¼ mm=Pm,

Cov(Xj, Xm) � sjm ¼
Xn

k¼1

sjk,

and

Cov(rj, rm) ¼ Cov(Xj=Pj, Xm=Pm) ¼ sjm=(Pj Pm):

Combining these results gives

E(rj) ¼ rþ lsjm=Pj, j ¼ 1, . . . , n,

¼ rþ lPm Cov(rj, rm),

¼ rþ lPm Var(rm)bj,

where bj ¼ Cov(rj , rm)=V (rm) is the regression coefficient of rm on ri. This

states that, in equilibrium, the expected rate of return of a risky asset equals

the risk-free return plus a risk premium. Here the risk premium is:

lPmCov(rj, rm). It depends on the market risk-aversion parameter l and

on the covariance between the asset return rj and the market return rm. Note

that the above expression holds as well for rm, implying that:

E(rm) ¼ rþ lPmVar(rm), or [lPmVar(rm)] ¼ [E(rm)� r]. Substituting this

result in the above expression gives

E(rj) ¼ rþ [E(rm)� r] �bj, j ¼ 1, . . . , n:

This expression is the fundamental equation of the capital asset pricing

model (CAPM) (Sharpe 1963). It states that the equilibrium expected rate of

return on the j-th stock is linear in its beta (bj), where bj is the regression

coefficient of rj on rm. This relationship is empirically tractable and provides

a simple framework to investigate the functioning of capital markets. It

expresses the expected rate of return on the j-th risky asset as the sum of
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two terms: the intercept measured by the risk free rate of return, and the

term {[E(rm)� r] � bj} representing the market equilibrium risk premium,

expressed as the difference between the expected market rate of return and

the risk-free rate of return, multiplied by the corresponding beta. It means

that, in equilibrium, the price of each risky asset must adjust until its mean

rate of return, over and above the riskless rate of return, reflects its add-

itional riskiness compared to the market. For example, if the j-th asset return

is perfectly correlated with market risk, it would have a beta of one (bj ¼ 1),

implying that E(rj) ¼ E(rm). Alternatively, if the j-th asset exhibits zero

correlation with the market, then its beta is zero and E(rj) ¼ r. Intuitively,

if an asset is weakly (strongly) correlated with the market, then the asset risk

can (cannot) be easily diversified in the portfolio, implying a smaller (larger)

equilibrium risk premium. Since both r and [E(rm)� r] are the same for all

firms, it follows that differences in the rate of expected return across firms

depend only on their b0s: a higher (lower) bj is associated with a higher

(lower) rate of expected return E(rj).

THE CASE OF DEBT LEVERAGE

So far, we have assumed that the firms are entirely owned by investors-

stockholders. This means that the firms are entirely equity financed. We now

extend the analysis to allow for debt financing. Consider the case where

firms can be financed by debts (i.e., bonds) as well as equity (i.e., stocks).

The debt (bonds) is always paid first, and the equity holders (stockholders)

are the residual claimants.

Let the value of debt of firm j at the beginning of the period be Dj .

The debt is repaid with interest at the end of the period, the amount

repaid being: Rj ¼ Djr. Then the equity return from firm j is: Xj � Rj, with

mean E(Xj � Rj) ¼ mj � Rj, and variance V (Xj � Rj) ¼ V (Xj).

From equation (2b), we have

Pj ¼ mj � Rj � l
Xn

k¼1

sjk

 !" #

=r, j ¼ 1, . . . , n,

¼ mj � l
Xn

k¼1

sjk

 !" #

=r� Rj=r,

¼ mj � l(
Xn

k¼1

sjk

" !#

=r�Dj,

which implies
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Pj þDj ¼ mj � l
Xn

k¼1

sjk

 !" #

=r:

Define the value of the j-th firm to be: Pj þDj. Also, define the leverage

ratio for the j-th firm to be: Dj=(Pj þDj). For each firm, the leverage ratio is

the proportion of debt to the value of the firm. Then, the above result gives

the Miller–Modigliani theorem:

The value of the firm is independent of its leverage ratio.

This is a strong result. Under the CAPM, the relative amount of debt is not

expected to affect the value of firms. But is it realistic? Intuitively, we may

think that the extent of debt financing could possibly affect asset values. From

the above analysis, this can only be the case if some basic assumptionsmade in

the CAPM model are violated. This has stimulated the development of more

general models that may also be more realistic. They are discussed below.

Finally, while the Miller–Modigliani theorem states that leverage does

not affect the value of the firm, note that it does allow leverage to affect the

rate of return on equity (since bonds are paid first and stockholders are the

residual claimants).

SOME EXTENSIONS

The mutual fund theorem, the CAPM pricing formula, and the Miller–

Modigliani theorem were all obtained in the context of a mean-variance

model. They illustrate how deductive reasoning can be used to derive behav-

ioral relationships among economic variables under risk. This facilitates

the empirical analysis of investment behavior and stock prices. But does the

CAPM provide accurate representations of investment behavior, or of

asset price? There is a fair amount of empirical evidence suggesting that it

does not.

The evidence against the CAPM model takes several forms. An overview

of some of the ‘‘anomalies’’ generated by the CAPM is presented in Camp-

bell et al. (1997). One piece of evidence is the ‘‘equity premium’’ puzzle. The

puzzle is that the historical average return on the United States stock market

seems ‘‘too high’’ (compared to the riskless rate of return on government

bond) to be easily explained by risk and risk aversion alone under the

CAPM. Other anomalies involve the CAPM difficulties in explaining differ-

ences in mean return and risk across some firms (or some industries). Such

anomalies suggest the presence of ‘‘excess returns’’ in some capital markets.

Many factors may contribute to the existence of these ‘‘anomalies.’’ First,

data problems can affect the empirical testing of the CAPM model. Second,
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the standard CAPM model is developed under some rather restrictive con-

ditions. It is a static one-period model, with homogeneous expectations, no

taxes, unlimited liability, zero transaction costs, and well-functioning capital

markets. Relaxing these assumptions has been the subject of active research.

(See Campbell et al. for a survey of the empirical literature.) First, alterna-

tive models of asset pricing have been developed. For example, one ap-

proach that does not rely on the mutual fund theorem is the arbitrage

pricing model proposed by Ross. In contrast with the CAPM, it allows for

multiple risk factors. Second, in general, the presence of asymmetric infor-

mation invalidates all CAPM results. This includes heterogeneous expect-

ation among investors, which is sufficient to invalidate the mutual fund

theorem. And asymmetric information between firm managers and investors

can create adverse incentives for firm decisions. Over the last twenty years,

this has stimulated much research on the economics of corporate govern-

ance. The role of asymmetric information will be discussed in Chapters 11

and 12. Third, the presence of transaction cost in the capital markets

modifies the CAPM pricing rule. This can help explain discrepancies be-

tween expected returns and CAPM predictions (e.g., see Shiha and Chavas

for an application to the United States farm real estate market, 1995). By

reducing the possibilities of arbitrage, transaction costs create frictions that

reduce the mobility of capital, contribute to market segmentations, and

affect asset prices. This segmentation can be national within the inter-

national capital markets, or sectorial within a particular economy (e.g., the

case of farm real estate market within the broader equity markets). The role

of transaction costs will be evaluated in Chapter 11. Finally, introducing

dynamics has provided useful insights into the interactions between risk,

intertemporal allocation, and asset pricing (e.g., see Epstein and Zin 1991;

Chavas and Thomas 1999). The analysis of dynamic decisions under risk is

the topic of the next chapter.

PROBLEMS

Note: An asterisk (*) indicates that the problem has an accompanying Excel file

on the Web page http://www.aae.wisc.edu/chavas/risk.htm.

*1. Consider a decision-maker with $100 to invest among one riskless prospect

and three risky prospects A, B, and C. The expected rate of return for the riskless

prospect is .02, and for each risky prospect: E(A) ¼ :10, E(B) ¼ :07, and E(C) ¼ :03.
The standard deviation per unit return from each prospect is: STD(A) ¼ :06,
STD(B) ¼ :04, and STD(C) ¼ :01. The correlation of the returns are: R(A,B)¼0:4,
R(B,C) ¼ �0:5, and R(A,C) ¼ �0:4:
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a. Find the E-V frontier and the associated investment strategies. Graph the E-

V frontier. Interpret the results.

b. If the utility function of the decision-maker is U(x) ¼ x� :045 x2, find the

optimal investment strategy. Interpret the results.

c. Now assume that the correlation R(B, C ) is equal to þ0:5. How does that

affect your results in a. and b.? Interpret.

*2. Consider again Problem 1. Answer questions 1.b and 1.c knowing that the

risky returns are normally distributed and the decision-maker has a utility function

U(p) ¼ �e�4p.
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Chapter 10

Dynamic Decisions Under Risk

So far, we have focused our attention on static, one-period analyses of

economic behavior under risk. This has two important limitations. First, it

does not capture the dynamic aspects of most decision-making processes.

Second, it basically treats uncertainty as a given. In fact, uncertainty is only

what decision-makers have not had a chance to learn before they make a

decision. This suggests that an important aspect of risk management is

information acquisition: The more an agent can learn about his/her eco-

nomic environment, the less uncertainty he/she faces. We have delayed the

analysis of learning for a simple reason. It is a very complex process (e.g.,

different individuals often process and retain information differently). In this

chapter, we develop a multiperiod analysis to investigate the implications of

learning for risk management and dynamic decision-making. We focus on

individual decisions, leaving the analysis of risk transfers among individuals

for the following chapters.

THE GENERAL CASE

We start with a general model of dynamic decisions for an individual. The

individual could be a firm or a household. He/she has a T-period planning

horizon. At each period, he/she makes decisions based on the information

available at that time. However, under learning, the information can change

over time. This requires addressing explicitly the learning process. At the

beginning of the planning horizon, the decision-maker has initial wealth w.

At period t, he/she makes some decision denoted by xt, t ¼ 1, . . . , T . The

139
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individual also faces uncertainty due to unknown factors affecting his/her

welfare during the T-period planning horizon. Let this uncertainty be repre-

sented by the random variables e. The information available about the

random variables e is represented by a subjective probability distribution

(as discussed in Chapter 2). However, under learning this probability distri-

bution changes over time. Denote the subjective probability distribution of e

based on the information available at time t by ft(e), t ¼ 1, . . . , T .

For simplicity, we assume that the decision-maker is an expected utility

maximizer. Although this is not really required for the following analysis

(as most results would still apply under nonexpected utility models), it

will help simplify some of the arguments. The individual has prefer-

ences represented by the von Neumann–Morgenstern utility function

U(w, x1, x2, . . . , xT , e) satisfying @U=@w > 0. The decisions are made in

a way consistent with the expected utility maximization problem

Maxx1, ..., xn{EU(w, x1, x2, . . . , xT , e): x is feasible}

¼ Maxx1{E1{Maxx2E2{ . . . MaxxTET{U(w, x1, x2, . . . , xT , e):

x is feasible} . . . } } },

where Et is the expectation operator based on the subjective probability

distribution of e at time t, ft(e), and where x ¼ (x1, . . . , xn). This makes it

explicit that, at each time period t, the decision xt is made based on the

information available at that time (as represented by Et), t ¼ 1, . . . , T . This

is a T-period version of the expected utility hypothesis. This is also a

dynamic programming formulation, using backward induction (i.e. solving

for xT , then xT�1, . . . , x2, and finally x1). It includes as a special case the

standard case where the utility function is time additive: U(w, x1, x2,

. . . , xn, e) ¼
PT

t¼1 d
t�1Ut(w, xt, e), d being the discount factor represent-

ing time preferences, 0 < d < 1. This generates Maxx1{E1{U1(w, x1, e)þd
Maxx2E2{ . . .þ d MaxxTET{UT (w, xT , e): x is feasible} . . . } } }, which can

be solved using backward induction (see below).

LEARNING

The probability distribution of e, ft(e), changes from one time period

to the next. We have seen in Chapter 2 that probability theory shows

how probability assessments get updated under learning. This is formalized

by Bayes’ theorem, showing how new information transforms prior prob-

abilities into posterior probabilities. As a result, it will be convenient to

rely on the Bayesian approach as a representation of the learning process.

Under Bayesian learning, a ‘‘signal’’ or ‘‘message’’ ut is observed at time t,
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t ¼ 1, 2, . . . , T . Thus, ut is a random vector that is not known before time t

but becomes known at time t and beyond. If ut and e are independently

distributed, then observing ut provides no information about e. If ut and e

are perfectly correlated, then observing ut provides perfect information

about e. And if ut and e are (imperfectly) correlated, then observing ut
provides some information about e.

Let k(utje; x1, u1; . . . ; xt�1, ut�1; xt) denote the likelihood function of ut.

Then, Bayes’ theorem gives

ftþ1(e, � ) ¼ f (ejx1, u1; . . . ; xt, ut)

¼ k(utje, � )ft(e)=
ð

k(utje, � )ft(e) de
� �

, t ¼ 1, . . . , T :

where ftþ1(e, � ) is the posterior probability function at time t as well as the

prior probability function at time tþ 1.

1. The Case of Passive Learning: Passive learning corresponds to the

situation where k(utje, � ) ¼ k(utje; u1; . . . ; ut�1) is not a function of

the decision variables x for all t. This implies that ft(e, � ) is also not

a function of x. In this case, learning takes place because ut is observed

at each time period t ¼ 1, . . . , T , but the decisions x ¼ (x1, . . . , xT )

do not affect the probability ft(e, � ), t ¼ 1, . . . , T .

2. The Case of Active Learning: In contrast, active learning corresponds to

the situationwhere k(utje, � ) ¼ k(utje; u1; . . . ; ut�1) depends on the deci-

sion variables x. This implies that ft(e, � ) is a function of x. In this case,

the decisions x ¼ (x1, . . . , xT ) can influence the probability ft(e),

t ¼ 1, . . . , T . For example, xt can increase the correlation between ut
and e, and thusmake the observationsof ut ‘‘more informative.’’ Finally,

note that when choosing xt is called ‘‘an experiment,’’ this corresponds

to choosing an ‘‘optimal experimental design’’ that would provide

information generating the greatest benefit to the decision-maker.

DYNAMIC PROGRAMMING RECURSION

Let

Ft(w, x1, . . . , xt�1, e)¼ Maxxt{Et{ Maxxtþ1
Etþ1{ . . .MaxxTET

{U(w, x1, x2, . . . , xT , e):x is feasible} . . .}}},

where Ft(w, x1, . . . , xt�1, e) is an indirect utility function or ‘‘value func-

tion’’ at time t, t ¼ 1, . . . , T . Then, the general problem can be reformu-

lated as
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Ft(w, x1, . . . , xt�1, e) ¼ Maxxt{Et{Ftþ1(w, x1, . . . , xt, e)}:

x is feasible}, t ¼ T , T � 1, . . . , 2, 1:

where WTþ1(w, x1 , . . . , xn, e) ¼ U(w, x1, . . . , xn, e). This is the general

recursion formula of dynamic programming. It corresponds to a stage-wise

decomposition of the original problem where each stage is a time period.

Because it involves solving recursively for the function Ft(w, x1, . . . ,
xt�1, e), it is a functional equation. Its optimal solution is the decision rule

x�t (x1 , . . . , xn, � ) expressing the choice of xt as a function of past history

(x1 , . . . , xn) and of the information available at time t.

In the special case of a time additive utility function where

U(w, x1, . . . , xn, e) ¼
PT

t¼1 d
t�1Ut(w, xt, e), 0 < d < 1, this generates the

standard dynamic programming problem (Bertsekas)

Ft(w, x1,..., xt�1, e)¼Maxxt{E1{Ut(w, xt, e)þdFtþ1(w, x1, ..., xt, e)}

:x is feasible}, t¼T , T�1, ..., 1,

which can be solved using backward induction. The term d is the ‘‘discount

factor’’ measuring the rate of time preferences. With 0 < d < 1, it means that

the future always matters to the decision-maker (d > 0), but that it matters

less than the present (d < 1). In this additive model, the discount factor is

treated as given. It means that the rate of time preferences is treated as

constant in standard dynamic programming problems. This is a convenient

assumption that helps simplify the solutions to dynamic programming prob-

lems. This convenience is the main motivation for the common use of time

additive preferences in the analysis of economic dynamics. Yet, time addi-

tivity imposes restrictions on intertemporal preferences and thus on dynamic

behavior. For example, individuals facing poor prospects for survival (e.g.,

due to a terminal disease, or due to famine) may discount the future more

heavily (compared to healthy individuals). This suggests that discounting the

future may be endogenous. In other words, nonadditive preferences with

nonconstant discounting may be needed to gain a better understanding of

dynamic behavior. But nonadditive preferences are more difficult to specify

and evaluate (see Chapter 3). This identifies significant trade-off between the

convenience of simple models and their ability to represent dynamic behav-

ior. For the sake of generality, we present the arguments below using a

general (non time-additive) model. However, the reader should keep in

mind that the time-additive model remains a popular framework for the

analysis of dynamic behavior.

Note that, while U( � ) is the ‘‘basic’’ preference function, Ft( � ) is an

‘‘induced’’ preference function at time t, obtained from a stage-wise decom-

position of the original optimization problem. It indicates that any dynamic
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problem can be analyzed such that the decisions xt made at time t can be

treated as a ‘‘one stage’’ optimization problem provided that one works with

the ‘‘induced’’ preference function. However, this requires a good under-

standing of the properties of the induced preference function.

The above T-period model is very general. It can represent dynamic

investment behavior under uncertainty. And when applied to a risk-averse

household, it can provide insights into ‘‘consumption smoothing’’ behavior.

However, solving the value function Ft( � ) can be difficult when the decision-

maker faces a lot of uncertainty. Indeed, Ft( � ) depends on the information

available at time t. Evaluating Ft( � ) can be a difficult task when the infor-

mation involves many random variables (e.g., weather effects, health effects,

price and income uncertainty, etc.). In addition, Ft( � ) depends on past

history (x1, . . . , xt�1). This can also be complex to evaluate. A standard

simplification is to work with ‘‘Markovian structures.’’ Under Markovian

structures, at each time period, the influence of past history is summarized by

a relatively small number of state variables. The state variables measure the

position of the dynamic system at each time period. Solving the dynamic

programming problem becomes simpler when the number of state variables

is small (e.g., less than 3): the optimal decision rule for x then depends on

just a few state variables. A further simplification is to work with ‘‘station-

ary’’ Markovian models. A Markovian model is stationary if the value

function is stationary, i.e., if Ft( � ) is the same function for each time period.

Clearly, this requires that the decision-maker faces a situation where his/her

payoff function and the law of dynamics do not change over time. Note that

this does not imply that the same decision is made every period (e.g., each

decision can still react to the latest information). But, it generates a key

simplification: under stationarity, the decision rule expressing xt as a func-

tion of the state variables at time t is the same for all periods.

SOME APPLICATIONS

THE STOCHASTIC DISCOUNT FACTOR UNDER TIME ADDITIVE

PREFERENCES

Consider the case of a decision-maker with a time additive utility function

U(c1, . . . , cT ) ¼
PT

t¼1 d
t�1U(ct), where ct denotes consumption at time t, and

d is the discount factor, 0 < d < 1. We assume risk aversion, with

Ut
0 ¼ @U=@ct > 0 and Ut

00 ¼ @2U=@c2t < 0. The decision-maker holds m

assets at time t, yt ¼ (y1t, . . . , ymt)
0, t ¼ 1, . . . , T . From time (t� 1) to t,

themassets generate a returnp(yt�1, et) at time t,where et is a randomvariable

representing uncertainty. This return can be either consumed or invested. At
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time t, the investment made in the i-th asset is (yit � yi, t�1). Thus, the net

cost of investment at time t is: pt
0 � (yt � yt�1) ¼

Pm
i¼1 [pit � (yit � yi, t�1)],

where pt ¼ (p1t, . . . , pmt)
0, pit being the price of the i-th asset at time t.

Note that the net cost of investment is positive under investment, but

can become negative under disinvestment. Assuming that the price of the

consumption good ct is 1, it follows that the individual budget constraint at

time t is:

p(yt�1, et) ¼ ct þ pt
0 � (yt � yt�1):

This simply states that, at time t, the return p(yt�1, et) is allocated

between consumption ct and investment, [pt
0 � (yt � yt�1)]. Then, under the

expected utility model, the optimal decisions for [(ct, yt): t ¼ 1, . . . , T ] are

Maxc, y
XT

t¼1

dt�1E1U(ct): p(yt�1, et) ¼ ct þ pt
0 � (yt � yt�1), t ¼ 1, . . . , T

( )

¼ Maxy
XT

t¼1

dt�1E1U [p(yt�1, et)� pt
0 � (yt � yt�1)]

( )

,

or using the dynamic programming formulation,

Ft(yt�1) ¼ Maxyt{U [p(yt�1, et)� pt
0 � (yt � yt�1)]þ dEt[Ftþ1(yt)]},

t ¼ T , T � 1, . . . , 1:

The first-order condition (also called a Euler equation) with respect to yit is

Ut
0 � pit ¼ dEt[Utþ1

0 � (pi, tþ1 þ pi, tþ1)],

where Ut
0 ¼ @U(ct)=@ct is the marginal utility of consumption at time t, and

pi, tþ1 ¼ @p(yt, etþ1)=@yit is the marginal return from the i-th asset from time

t to time (tþ 1), i ¼ 1, . . . , m. This first-order condition can alternatively

be written as

1 ¼ Et[Mtþ1 � gi, tþ1],

where Mtþ1 � dUtþ1
0=Ut

0 > 0 is the discounted ratio of marginal utilities,

and gi, tþ1 � (pi, tþ1 þ pi, tþ1)=pit, (git � 1) being the marginal rate of return

on the i-th asset from time t to time (tþ 1), i ¼ 1, . . . , m. The term Mtþ1 is

the intertemporal marginal rate of substitution and represents time prefer-

ences. Because it is not known at time t, it is often called the stochastic

discount factor.

The previous expression shows that optimal investment in the i-th asset

takes place when the expected value of the stochastic discount factor Mtþ1

multiplied by gi, tþ1 equals 1, i ¼ 1, . . . , m. This formula is known as the
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consumption-based capital asset pricing model (CCAPM). Note that it can be

alternatively written as

Et(gi, tþ1) ¼ 1=E(Mtþ1)� Covt(Mtþ1, gi, tþ1)=E(Mtþ1),

i ¼ 1, . . . , m. This expression shows that the expected return Et(gi, tþ1) is the

sum of two terms. The first term, 1=E(Mtþ1), is the inverse of the expected

discount factor and represents time preferences. The second term is

[� Covt(Mtþ1, gi, tþ1)=E(Mtþ1)] and reflects risk aversion. Indeed, under

risk neutrality (with Ut
00 ¼ 0), Mtþ1 would be a constant and the covariance

term would vanish. This shows that, under risk aversion, the expected return

Et(gi, tþ1) is inversely related to Covt(Mtþ1, gi, tþ1), the covariance between

the stochastic discount factor Mtþ1 and gi, tþ1. Intuitively, as the covariance

declines, the i-th asset tends to generate returns that are small when the

marginal utility of consumption is high, i.e., when consumption is low.

Since such an asset fails to generate wealth when wealth is most valuable,

the investor demands a higher return to hold it.

As a special case, consider the utility function U(ct) ¼ [c
1�g
t � 1]=(1� g).

With U 0 ¼ c
�g
t , it corresponds to constant relative risk aversion, where

g ¼ �ctU
00=U 0 is the relative risk aversion coefficient (see Chapter 4).

Then, the stochastic discount factor is Mt ¼ d(ctþ1=ct)
�g, and the CCAPM

formula becomes

1 ¼ Et[d(ctþ1=ct)
�g, gi, tþ1],

i ¼ 1, . . . , m. Given empirical measurements on prices, consumption path,

and rates of return, this expression is empirically tractable. It provides a

basis for estimating the risk-aversion parameter g. It has been at the heart of

the ‘‘equity premium puzzle.’’ The empirical evidence indicates that returns

on equity seem to be too high to be consistent with observed consumption

behavior unless investors are extremely risk averse (see Deaton 1992 or

Campbell et al. 1997 for an overview). This has raised some doubts on the

empirical validity of the CCAPM model.

SEPARATING RISK AVERSION AND INTERTEMPORAL SUBSTITUTION

One attempt to solve the equity premium puzzle involves relaxing the

assumption of time additive preferences. Epstein and Zin proposed the

following nonadditive specification:

Ut ¼ U(c1, . . . , cT ) ¼ {(1� d)crt þ d(Et[U
a
tþ1])

r=a}1=r:

This recursive specification involves three parameters: d reflecting time

preferences (0 < d < 1); r� 1 capturing intertemporal substitution; and
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a� 1 reflecting risk aversion. Note that, when a ¼ r 6¼ 0, the Epstein–

Zin specification reduces to Ut ¼ {(1� d)cat þ dEt[U
a
tþ1]}

1=a ¼ (1� d)
Et[
P

j�0 d
j catþj]

1=a, which is time additive. Thus, the Epstein–Zin specifica-

tion nests the time-additive model as a special case (where a ¼ 1 corresponds

to risk neutrality). It shows that the time additive model arises when a ¼ r,
i.e. when the risk-aversion parameter and the intertemporal substitution

parameter coincide. This highlights how restrictive time additive preferences

can be; they cannot distinguish between risk aversion and intertemporal

substitution. Epstein and Zin argue that this is unduly restrictive.

Consider the consumption/investment problem just discussed under the

Epstein–Zin specification. The associated dynamic programming problem is

Ft(yt�1) ¼ Maxyt{[(1� d)crt þ d(Et[(Ftþ1(yt) )
a])r=a]1=r: p(yt�1, et)

¼ ct þ pt
0 � (yt � yt�1)},

or

Ft(yt�1) ¼ Maxyt{[(1� d)[p(yt�1, et)� pt
0 � (yt � yt�1)]

r

þd(Et[(Ftþ1(yt) )
a])r=a]1=r},

t ¼ T , T � 1, . . . , 1. The first-order conditions (or Euler equation) with

respect to yt are derived in Epstein and Zin. Using observable data on prices,

consumption flows and returns, Epstein and Zin estimate the parameters of

these first-order conditions. They provide empirical evidence suggesting that

the equity premium puzzle arises in part due to the failure of time-additive

models to distinguish between risk aversion and intertemporal substitution

(see Campbell et al. 1997 for an overview of the evidence). This suggests that

nonadditive preferences can help provide improved insights into the dynam-

ics of risk management.

DISCOUNTING IN THE PRESENCE OF A RISKLESS ASSET

We now investigate the role of a riskless asset in dynamic allocations. For

that purpose, we introduce a riskless asset (e.g., a government security)

in the above investment analysis. In addition to the m risky assets

yt ¼ (y1t, . . . , ymt)
0, we consider that the individual can hold a riskless

asset zt that generates a sure rate of return. Throughout, we assume that

the unit purchase price of zt is 1. We consider the case where the riskless asset

produces a constant rate of return r from one period to the next. It means

that buying one unit of zt at any time t generates a return of (1þ r) at time

(tþ 1). In this context, zt is a pure interest-bearing instrument, where r is the

interest rate on the riskless asset per unit of time. Also, we now allow the price
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of the consumer good ct to vary over time. Letting qt denote the unit price of

ct, the individual budget constraint at time t is

p(yt�1, et)þ r zt�1 ¼ qt ct þ pt
0 � (yt � yt�1)þ (zt � zt�1):

The left-hand side is the total return at time t. It includes the return from

the risky assets, p(yt�1, et), plus the return from the riskless asset, r zt�1. The

right-hand side includes consumption expenditure, qtct, plus the net cost of

investment in the risky assets, pt
0 � (yt � yt�1), plus the net cost of investment

in the riskless asset, (zt � zt�1). Note that, (zt � zt�1) can represent either

saving/lending or borrowing at the riskless rate r: saving/lending corres-

ponds to (zt � zt�1) > 0, while borrowing corresponds to (zt � zt�1) < 0.

The budget constraint simply states that, at time t, total return is allocated

between consumption and investment.

This budget constraint can be solved for zt�1, yielding

zt�1 ¼ b[qtct þ pt
0 � (yt � yt�1)� p(yt�1, et)þ zt],

where b ¼ 1=(1þ r) is a discount factor. Note that the discount factor

satisfies 0 < b < 1 when r > 0. By successive substitution, this gives

zt�1 ¼ b[qtct þ pt
0 � (yt � yt�1)� p(yt�1, et)]þ b2[qtþ1ctþ1 þ ptþ1

0

� (ytþ1 � yt)� p(yt, etþ1)þ ztþ1],

¼ . . .

¼
XT

t¼t

bt�tþ1[qtct þ pt
0 � (yt � yt�1)� p(yt�1, et)] (assuming zT ¼ 0),

or, after multiplying by (1þ r),

(1þ r)zt�1 ¼
XT

t¼t

bt�t[qtct þ pt
0 � (yt � yt�1)� p(yt�1, et)]:

This means that, at time t, the intertemporal budget constraint can be

written as

(1þ r)zt�1 þ
XT

t¼t

[bt�tp(yt�1, et)] ¼
XT

t¼t

[bt�tqtct]þ
XT

t¼t

[bt�tpt
0 � (yt � yt�1)]:

Given a monetary flow (xt, . . . , xT ) and a discount factor b, define the

present value of this flow at time t by

PVt(xt, . . . , xT ) ¼
XT

t¼t

[bt�txt],

¼ xt þ bxtþ1 þ b2xtþ2 þ . . .þ bTxT :
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(Note that, in the case where xt is constant over time, this reduces to

PVt(x, . . . , x) ¼
PT

t¼t [b
t�tx] ¼ x[1� bTþ1]=[1� b]). It follows that the

intertemporal budget constraint at time t becomes:

(1þ r)zt�1 þ PVt[p(yt�1, et), . . . , p(yT�1, eT )]� PVt[pt
0 � (yt � yt�1), . . . ,

pT
0 � (yT � yT�1)]¼ PVt(qtct, . . . , qTcT ):

This states that the present value of consumption expenditures,

PVt(qtct, . . . , qTcT ), must be equal to [(1þ r)zt�1], plus the present value

of risky returns PVt[p(yt�1, et), . . . , p(yT�1, eT )], minus the present value of

the net cost of investment, PVt[pt
0 � (yt � yt�1), . . . , pT

0 � (yT � yT�1)], with

b ¼ 1=(1þ r) as discount factor. This generates the following important

result:

In the presence of a riskless asset yielding a constant rate of return r, all

future costs and returns should be valued according to their present value,

with b ¼ 1=(1þ r) as discount factor.

Note the generality of this result. It applies irrespective of the uncertainty

facing the decision-maker. And it applies independently of individual pref-

erences with respect to risk or intertemporal substitution (e.g., it applies

under risk aversion, as well as under preferences that are not time-additive).

This makes sense when one realizes that the derivation relied solely on the

individual budget constraint. Intuitively, it means that, given a constant

riskless rate r, $1 today is potentially worth (1þ r) after one period. Alter-

natively, $1 next period is worth 1=(1þ r) today. This implies that any future

benefit or cost should be discounted using the discount factor b ¼ 1=(1þ r),

where the riskless interest rate r measures the temporal opportunity cost of

money.

It should be kept in mind that this result was obtained assuming a

constant interest rate. This is a restrictive assumption. Note that if the

riskless rate is not constant over time, then the analysis still applies but the

discount factor needs to be modified and becomes more complex (e.g., see

Luenberger 1998).

THE TWO-PERIOD CASE

Often, realistic models involve situations where the underlying dynamics

require many state variables (e.g., reflecting physical capital, human capital,

ecological capital, etc.). In this case, solving for the optimal decision rules

can become extremely complex. This is called the ‘‘curse of dimensionality’’ in

dynamic programming. It means that when dynamics involve many state
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variables, there is no practical way of finding a general solution to the

dynamic optimization problem (even using the latest and fastest computers).

Yet, individuals still make decisions. They develop decision rules that map

current information into current decisions. This involves two significant

difficulties: (1) assessing current information (which can be hard when it

involves many random variables and/or many states); and (2) deciding how

this information can be used in the design of individual decision rules. These

difficulties suggest that the cost of obtaining and processing information can

play a significant role in choosing decision rules. In some cases, this can lead

the decision-maker to choose simple ‘‘rules of thumb’’ as a means of simpli-

fying the decision-making process. The choice of simple decision rules can be

associated with ‘‘bounded rationality’’ when the complexity of a decision

means that the decision-maker is unable to process all the relevant infor-

mation. More generally, simple decision rules can arise when the cost of

obtaining and processing information is high. This can help justify why some

costly information is often disregarded in decision-making. Yet invariably,

at least some information is used and processed by the decision-maker (e.g.,

weather conditions, technology, market conditions). How much information

is obtained is often subject to management. For example, weather forecasts

can help anticipate future weather conditions. Experience can help generate

information about technological possibilities. And market conditions can be

anticipated through market and price analyses. In these cases, active learning

(i.e., acquiring and processing information) is likely to be an important part

of the decision-making process. Then, the choice of information must in-

volve weighing the benefit of additional information against its cost. These

issues are investigated below.

These arguments indicate how difficult it can be to conduct empirical

analyses of dynamic economic behavior. This suggests the need for some

simplifying assumptions. Below, we focus our attention on a two-period

model (T ¼ 2). A two-period model is the simplest possible dynamic model.

While such a model may appear too simple to be realistic, it will provide a

basis to generate insights on the role of risk in dynamic decisions. As a special

case of the general model previously discussed, we consider the decisions

x ¼ (x1, x2) made in a way consistent with the maximization problem

Maxx1 E1{Maxx2 E2{U(w, x1, x2, e)}},

where the choice of x is implicitly assumed subject to feasibility constraints.

Note that this captures the essence of general dynamic optimization prob-

lems. Indeed, in the spirit of a stage-wise decomposition of dynamic pro-

gramming, this can represent a general situation when the function

U(w, x1, x2, e) is interpreted as the ‘‘value function’’ at time t ¼ 2, reflect-

ing the effects of dynamic decisions made beyond the second period.
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Assume that information is obtained between time t ¼ 1 and t ¼ 2 by

observing random variables u1. This informs the decision-maker about the

uncertainty e, and helps him/her make the period-two decisions. Let

x�1 and x�2 denote the optimal decisions in the above problem. Then x�1 is

the ex-ante decision made before the message u1 is observed. In contrast

x�2(u1, � ) is a decision rule that provides ‘‘feedback,’’ reflecting how the

message u1 influences the x2 decisions.

THE VALUE OF INFORMATION

The first relevant question is, is new information valuable in individual

decision-making process? Answering this question requires defining the value

of information. First, note that the second-period decision involves the maxi-

mization problem Maxx2E2{U(w, x1, x2, e)}. It means that, conditional on

x1, the ex-ante evaluation (based on the information available at time t ¼ 1) of

choosing x2 at time t ¼ 2 is given by the expected utility E1{Maxx2
E2{U(w, x1, x2, e)}}. We would like to know how the decision-maker is

valuing the information that becomes available between the two periods.

1. The Selling Price of Information

Consider the case where the decision-maker is forced to make the second

period decision without learning, i.e., without observing u1. For a given x1,

this corresponds to the maximization problem Maxx2E1{U(w, x1, x2, e)}.

Define S as the value implicitly satisfying:

Maxx2 E1{U(wþ S, x1, x2, e)} ¼ E1Maxx2 E2{U(w, x1, x2, e)}:

S is the selling price of the information provided by u1. Indeed, S is the

smallest amount of money the decision-maker would be willing to accept to

choose x2 without knowing u1, using the informed situation as a reference.

2. The Bid Price of Information

Alternatively, define B as the value implicitly satisfying:

Maxx2 E1{U(w, x1, x2, e)} ¼ E1Maxx2 E2{U(w� B, x1, x2, e)}:

B is the bid price of the information associated with u1. Indeed, B is the

largest amount of money the decision-maker would be willing to pay for the

opportunity to choose x2 knowing u1, using the uninformed situation as a

reference.

In general, note that B and S can differ (see Lavalle 1978). However, the

bid price B and the selling price S of information can be shown to be

identical under risk neutrality or under CARA preferences. These are situ-

ations where wealth effects vanish (see Problem 1 on page 159). In other
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words, differences between the bid price B and the selling price of infor-

mation S can be attributed to income or wealth effects.

Both S and B can depend on initial wealth w (when risk preferences

depart from risk neutrality or CARA) and on the period one decisions x1.

Thus, they take the general form: S(w, x1) and B(w, x1). This shows that

both values of information are conditional on the x1 decisions. This means

that period-one decisions can have a direct effect on how valuable the

forthcoming information is. As we will see below, this effect is particularly

relevant in individual decision-making under situations of irreversibility.

3. Costless Information is Valuable

Both the selling price and the bid price of information have been evaluated

by comparing decision-making with and without information. However, the

change in information was implicitly assumed to be costless. This means that

S(w, x1) and B(w, x1) measure the value of costless information. If infor-

mation is actually costless, then they are the net value of information. Other-

wise, they should be interpreted as measuring the gross value of information,

i.e., the value of information before its cost is taken into consideration.

What can we say in general about the value of costless information (or

equivalently about the gross value of information) in individual decision-

making? The key result is the following:

The gross value of information is always nonnegative: S(w, x1) � 0

and B(w, x1) � 0 for any (w, x1).

To see that, note that, by definition of a maximum,

Maxx2 E2{U(w, x1, x2, e)} � E2{U(w, x1, x2, e)},

or

Maxx2

Z

f2(eju1, � )U(w, x1, x2, e)de

� �

�
Z

f2(eju1, � )U(w, x1, x2, e)de,

for any feasible (x1, x2). Let f1(e, u1, � ) denote the joint probability function
of (e, u1) based on the subjective information available at time t ¼ 1. Since

f1(e, u1, � ) � 0, it follows that
ZZ

f1(e, u1, � )Maxx2

Z

f2(eju1, � )U(w, x1, x2, e)de

� �

du1de

�
ZZ

f1(e, u1, � )
Z

f2(eju1, � )U(w, x1, x2, e)dedu1de,

which can be written equivalently as
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E1Maxx2E2{U(w, x1, x2, e)} � E1{U(w, x1, x2, e)},

for any (x1, x2). But this implies

E1Maxx2E2{U(w, x1, x2, e)} � Maxx2E1{U(w, x1, x2, e)}, (1)

for any x1. Given a positive marginal utility of wealth, U 0 � (@U=@w > 0,

this yields the key results: S(w, x1)� 0 and B(w, x1)� 0.

Thus, the value of costless information has zero as a lower bound. This

shows that costless information is in general valuable. The reason is that new

information helps refine the period-two decision rule x�2(u1, � ), thus improv-

ing the decisions made at time t ¼ 2. At worst, the new information may be

worthless (e.g., when the signals u1 are distributed independently of e), in

which case it would not be used (x�2(u1, � ) being the same for all u1), yielding

S(w, x1) ¼ 0 and B(w, x1) ¼ 0. But in all cases where the signals u1 provide

some information about e, then the period-two decisions x�2(u1, � ) will

typically depend on u1, yielding S(w, x1) > 0 and B(w, x1) > 0. In such

situations, the gross value of new information is positive.

While the value of costless information has a lower bound (zero), does it

also have an upper bound? Consider the case where u1 is perfectly correlated

with e. This is the situation where the message u1 provides perfect infor-

mation about e. In this case, S and Bmeasure the value of perfect information.

Denote them by Sþ and Bþ. They measure the gross benefit of making the

period-two decisions under perfect information, with x�2(u1, � ) being an ex

post decision rule. Since it is not possible to learn beyond perfect infor-

mation, it follows that Sþ and Bþ provide a general upper bound on the

value of information. Thus, in general, the gross value of information is

bounded as follows:

0�S(w, x1)�Sþ(w, x1),

and

0�B(w, x1)�Bþ(w, x1):

In any specific learning situation, the gross value of information (S or B)

will always be between these bounds. It will be close to 0 when the quality of

the information provided by u1 is poor. And it will get close to its upper

bound (Sþor Bþ) when the signals u1 are particularly informative about e.

These results show that, if information were costless, the decision-maker

would always choose to obtain perfect information. This means that imper-

fect information must be associated with costly information. Since imperfect

information is pervasive in economic decision-making, this implies that

costly information must also be pervasive. The issue of choosing information

when it is costly will be further examined.
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The Risk Neutral Case

Consider a risk neutral decision-maker facing an uncertain profit

p(x1, x2, e) where e is a random variable with a prior subjective probability

function f1(e). A signal u1 is observed after the first-period decision x1 but

before the second-period decision x2. Let k(u1je) denote the likelihood

function of u1 given e. (That this corresponds to passive learning if k( � )
does not depend on x1.) From Bayes’ theorem, the posterior probability

function of e given u1 is: f2(eju1) ¼ f1(e)k(u1je)=[
P

u {f1(e)k(u1je)}] (assuming

discrete random variables). And the marginal probability function of

u1 is [
P

e f1(e)k(u1je)]. Under risk neutrality, S ¼ B. The value of informa-

tion generated by the signal u1 is

S ¼ B ¼E1 max x2 E2p(x1, x2, e)�max x2 E1p(x1, x2, e)

¼
X

u

X

e

f1(e)k(u1je)
" #

max x2

X

e

f2(eju1)p(x1, x2, e)

( )

�max x2{
X

e

f1(e)p(x1, x2, e)}

:

And the value of perfect information is

Sþ ¼ Bþ ¼ E1 max x2p(x1, x2, e)�max x2 E1p(x1, x2, e)

¼
X

e

{f1(e)max x2p(x1, x2, e)}�max x2

X

e

f1(e)p(x1, x2, e)

( )

:

Under risk neutrality, these expressions provide the basis for the

empirical investigationof thevalueof information (seeProblem2onpage159).

4. Relationship Between the Value of Information and the Risk
Premium:

We have just shown that costless information is in general valuable in

individual decision-making. This result has one striking characteristic. It was

obtained under general risk preferences. In particular, such a result applies

whether the decision-maker is risk neutral, risk averse, or even risk lover.

This is in sharp contrast with the Arrow–Pratt risk premium, which was

presented in Chapter 4 as a measure of the implicit cost of risk. Indeed, the

risk premium does depend on risk preferences (e.g., the risk premium is

positive if and only if the decision-maker is risk averse). Thus, it appears that

both learning (the acquisition of information) and risk preferences (e.g., risk

aversion) can influence individual behavior toward risk. This raises the

question, is there any relationship between the risk premium (as discussed

in Chapter 4) and the gross value of information?
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To answer this question, consider the case discussed in Chapter 4 where

U( � ) ¼ U(wþ p(x1, x2, e) ) is the basic preference function, and p(x1x2, e)

denotes the profit function. From the definition of the selling price of infor-

mation S, we have

E1Maxx2E2U(wþ p(x1, x2, e) ) ¼ Maxx2E1U(w þ S(w, x1, � )
þ p(x1, x2, e) ),

(2)

Let x�2(w, x1, u1) be the optimal choice of x2 in the left-hand side optimiza-

tion problem above. Also, denote by F (w, x1, u1) ¼ E2U [wþ p(x1, x�2(w,
x1, u1), e)] the induced preference function. In general, the curvature of F ( � )
is different from the curvature of U( � ). Thus, F ( � ) and U( � ) have different
implications for economic behavior toward risk.

To identify the role of risk aversion in the presence of learning, consider

the Arrow–Pratt risk premium R based on the basic preference function

U( � ). Define it as the monetary value R(w, x1) that implicitly satisfies:

Maxx2E1U(wþ S(w, x1)þ p(x1, x2, e) )

¼ Maxx2E1U(wþ S(w, x1)þ E1p(x1, x2, e)� R(w, x1) ) � (3)

From equation (2), the left-hand side of (3) is the objective function for

the period-one decisions x1. It follows that the right-hand side in (3) is an

alternative formulation for this objective function. This indicates how both

the Arrow–Pratt risk premium R and the gross value of information S can

affect period-one decisions x1. In particular, it shows that the net welfare

effect of risk is measured by the monetary value [S(w, x1)� R(w, x1)],

where S is the implicit benefit of reducing risk through learning, and R is

the implicit cost of private risk bearing evaluated at time t ¼ 1. In this

context, dynamic risk management involves attempts to increase the net

benefit [S(w, x1)� R(w, x1)]. This points to two directions: (1) the individ-

ual can try to learn about his/her uncertain environment so as to increase

S(w, x1); and (2) the risk averse individual can try to reduce his/her exposure

to ex-ante risk, thus lowering R(w, x1). This shows that both the value of

information S and the risk premium R are relevant concepts in the evalu-

ation of the welfare effects of risk, although they each measure something

quite different. To the extent that decisions are typically made in a dynamic

context, this stresses the need to distinguish between them in empirical risk

evaluation.

THE VALUE OF ADAPTIVE STRATEGIES

In individual decision-making, the value of information has a useful

corollary: the value of adaptive strategies. In a multiperiod planning hori-

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:38am page 154Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:38am page 154Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:38am page 154Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:38am page 154

154 Risk Analysis in Theory and Practice



zon, a strategy is said to be adaptive if dynamic decisions are influenced by

new information as it becomes available. In the two-period model, an

adaptive strategy means that the decision rule for x2 is expressed in

‘‘feedback form’’ x�2(u1, � ), which depends on the observed signal u1.

The key result is stated next:

At the optimum, an adaptive strategy is always at least as good as a

nonadaptive strategy.

To see that, from equation (1) derived previously, we have:

E1 Maxx2 E2U(w, x1, x2, e)�Maxx2 E1U(w, x1, x2, e)�E1U(w, x1, x2, e),

for any feasible x ¼ (x1, x2). It follows that

Maxx1 E1 Maxx2 E2U(w, x1, x2, e)�E1U(w, x1, x2, e), (4)

for any feasible x ¼ (x1, x2). The left-hand side of the above equation

measures the ex-ante utility received by the decision-maker under an optimal

adaptive strategy (where information feedback is used in the x2 decisions).

The right-hand side measures the ex-ante utility obtained by the decision-

maker under arbitrary feasible strategies, including all possible nonadaptive

strategies. The inequality in equation (4) establishes the general superiority

of adaptive strategies. It simply means that individuals who acquire infor-

mation about their economic environment and use this information in their

decision-making tend to benefit from it. This is just a formal statement about

the characteristics and rewards of good management.

IMPLICATIONS FOR PERIOD ONE DECISIONS

It is now clear that information management is important. But what does

it imply for the period-one decisions? To investigate this issue, consider the

adaptive dynamic programming problem:

Maxx1 E1 Maxx2E2U(w, x1, x2, e)

By definition of the selling price of information S, we have

Maxx2 E2U(w, x1, x2, e) ¼ Maxx2 E1U(wþ S(w, x1), x1, x2, e):

It follows that

Maxx1 E1 Maxx2E2U(w, x1, x2, e) ¼ Maxx1,x2 E1U(wþ S(w, x1), x1, x2, e): (5)

Note that these two expressions give equivalent optimal solutions for the

period-one decision x1. While the left-hand side in (5) is the standard

dynamic programming solution, the right-hand side in (5) corresponds to
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an ex-ante decision where the decision-maker is compensated (through S) for

not being able to learn over time. Under differentiability and assuming an

interior solution, the first-order condition with respect to x1 for the right-

hand side problem is:

E1@U=@x1 þ E1(@U=@w)@S(w, x1)=@x1 ¼ 0

or

@S(w, x1)=@x1 þ (E1@U=@x1)=(E1@U=@w) ¼ 0:

This states that, at the optimum, the marginal net benefit of x1 must be

zero. Here, the marginal net benefit involves two additive parts: the marginal

value of information, @S(w, x1)=@x1; and the more standard marginal

benefit (E1@U=@x1)=(E1@U=@w). Note that this result is quite general

(e.g., it applies under risk neutrality, risk aversion, or even risk-loving

behavior). As such, it appears relevant in a wide variety of situations.

Note that there are scenarios under which the marginal value of infor-

mation vanishes, with @S(w, x1)=@x1 ¼ 0. This happens when the gross

value of information S(w, x1)� 0 is independent of x1. Then, the first-

period decision x1 is not affected by learning; it is the same as the one that

would be chosen without information acquisition. This happens to hold

when the ‘‘certainty equivalent principle’’ applies. The certainty equivalent

principle means that the optimal first-period decision can be obtained simply

by replacing the random variable e by its mean E(e). It is extremely conveni-

ent in empirical analyses; it basically separates the issues of uncertainty

estimation from optimal control of a dynamic system. This has proved

very useful in engineering applications. This is exemplified by the great

success of NASA’s space program. Under the certainty equivalent principle,

large computers can calculate ahead of time optimal decision rules, rules that

are then used to map quickly the latest information about the position of the

spacecraft into an optimal response of its rocket to maintain the intended

course. Under which conditions does the certainty equivalent principle

holds? It applies when the objective function can be written in quadratic

form (see Problems 3 and 4 on page 160). To the extent that quadratic func-

tions can provide good second-order local approximations to any differenti-

able function, this may be seen as being approximately valid under rather

general conditions. Unfortunately, quadratic approximations may not

always be realistic. When applied to dynamic behavior under the expected

utility hypothesis, the certainty equivalent principle would apply when the

utility function U(w, x1, x2, e) is quadratic. But we saw in Chapter 3 that

quadratic utility functions are indeed restrictive (e.g., they cannot exhibit

decreasing absolute risk aversion). In other words, quadratic approxima-

tions can be rather poor in the analysis of risk behavior.
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This suggests that the certainty equivalent principle does not apply to

many situations of human decision-making under uncertainty. Again, this

points to the existence of empirical tradeoffs between the convenience of

simple models and realism. If the certainty equivalent principle does not

hold, we need to evaluate how new information affects decisions. In the

context of our two-period model, this means understanding how the gross

value of information S(w, x1) varies with the first-period decision x1. It

appears that such effects are pervasive in the economics of risk. The value

of information S can vary with x1 in two ways. It can be increasing in x1,

corresponding to situations where learning tends to increase the use of x1. Or

it can be decreasing in x1, corresponding to scenarios where new information

tends to reduce the choice of x1. The exact nature of these effects depends on

the particular situation considered. This is illustrated in the following

example:

The Case of Irreversible Decisions

Following Arrow and Fisher, consider the following decision problem. At

time t, a manager must choose between implementing a given project (de-

noted by xt ¼ 1), or not (denoted by xt ¼ 0), t ¼ 1, 2. The project develop-

ment is irreversible. The irreversibility is represented by: x1 þ x2 � 1. This

implies that

: if x1 ¼ 0, then x2 ¼ either 0 or 1, yielding S(w, 0) � 0,

: if x1 ¼ 1, then x2 ¼ 0, yielding S(w, 1) ¼ 0 (since there is no flexibility

in making the x2 decision):

Using equation (5), the x1 decision can be represented by the maximiza-

tion problem

Maxx1, x2 EU(wþ S(w, x1), x1, x2, e)

This implies

choose x1 ¼ 1, if E1U(w, 1, 0, e) > Maxx2E1U(wþ S(w, 0), 0, x2, e)

¼ 0, otherwise:

The term S(w, 0) has been called the ‘‘quasi-option value’’ by Arrow and

Fisher. The above result shows that the value of information S(w, x1) (the

quasi-option value) reflects the valuation of keeping a flexible position in

future decisions. It provides an incentive to delay an irreversible decision. This

has two important implications. First, it means that neglecting the role of

information would generate recommendations that would be incorrectly

biased in favor of the irreversible development. Second, it illustrates that
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in the presence of irreversibility, information valuation provides incentives

to avoid the irreversible state. Note that this result is quite general and does

not depend on risk preferences. It gives important insights into management

decisions under risk and irreversibility (see Dixit and Pindyck 1994). Clas-

sical examples of irreversibility include soil erosion (at least when topsoil is

thin) or species extinction; if lost, neither soil nor endangered species can be

replaced within any human planning horizon. This shows that the valuation

of information provides extra economic incentives for conservation strat-

egies trying to prevent the irreversible state.

ACTIVE LEARNING UNDER COSTLY INFORMATION

We have argued that active learning is a pervasive characteristic of

individual decision-making. In general, acquiring information involves

search, experimentation, etc. To illustrate the optimality of active learning,

consider the simple case where x1 is a vector of information gathering

activities only, C(x1) denoting the cost of gathering and processing the

information produced by x1. This corresponds to the following problem:

Maxx1 E1 Maxx2 E2U(w� C(x1), x2, e):

Define the gross value of information to be the selling price S(w, x1)

satisfying:

Maxx2 E1U(w� C(x1)þ S(w, x1), x2, e) ¼ E1 Maxx2 E2U(w� C(x1), x2, e):

From equation (5), the x1 decision can be written as

Maxx1,x2E1U(w�C(x1)þS(w,x1),x2,e)¼Maxx1E1Maxx2E2U(w�C(x1),x2,e)

Using the left-hand side of the above expression, and assuming a positive

marginal utility of wealth (U 0 ¼ @U=@w > 0), it follows that optimal learn-

ing corresponds to

Maxx1{S(w, x1)� C(x1)}:

This defines the net value of information (S – C) as being equal to the gross

value of information S(w, x1) minus the cost of information C(x1). It indicates

that optimal learning takes place when the net value of information is

maximized with respect to x1. Note that this intuitive result is general in

the sense that it applies under risk aversion, risk neutrality, as well as under

risk-loving behavior. Under differentiability, the first-order condition for an

interior solution is

@S=@x1 ¼ @C=@x1:
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This gives the classical result that optimal learning takes place at the point

where the marginal value @S=@x1 equals marginal cost @C=@x1.
However, there may be situations where the solution for x1 is a corner

solution: x1 ¼ 0. This may occur when the cost of information C is high and

the value of information S is relatively low (e.g., because the information is

complex, difficult to process, and/or difficult to use). In such situations,

there would be little incentive to learn. This may be prevalent when individ-

uals face a complex economic environment involving many sources of un-

certainty. Then, individuals may obtain and use only a small fraction of the

available information. This would generate an incentive for individuals to

specialize to process only the subset of information that is closely associated

with some specific task. Having different individuals specializing in different

tasks and processing different information may then appear efficient. But

that requires exchanges among differentially informed individuals. Evaluat-

ing the decision rules supporting such exchanges is the topic of the following

chapters.

PROBLEMS

Note: An asterisk (*) indicates that the problem has an accompanying Excel file

on the web page http://www.aae.wisc.edu/chavas/risk.htm.

1. Consider a risk-averse decision-maker facing an uncertain profit p(x1, x2, e).

His/her risk preferences are represented by the utility function U(wþ p(x1, x2, e) ).

a. Assume that the decision-maker exhibits constant absolute risk aversion.

. How does the selling price of information S differ from its bid price B?

. How does the gross value of information vary with initial wealth w?

b. Assume that the decision-maker exhibits decreasing absolute risk aversion.

. How does the selling price of information S differ from its bid price B?

. How does the gross value of information vary with initial wealth w?

*2. Mr. Smith has to choose between contracts to purchase either 1,000, 1,200, or

1,600 cattle for fattening on summer pasture. His profit depends on whether the

pasture growing season is good, fair, or poor—for which events his subjective

likelihood is .3, .4, and .3 respectively. The budgeted consequences, in terms of dollar

profits per animal, are as follows:

Type of season Buy 1,000 Buy 1,200 Buy 1,600

good 18 20 25

fair 10 8 6

poor 8 2 �8
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If desired, Mr. Smith can purchase a forecast of the type of season for $300. His

subjective likelihoods for this forecast are as follows:

forecast (u)

likelihood of forecast, k(uje) good fair poor

good .6 .3 .1

Type of season (e) fair .2 .5 .3

poor .1 .3 .6

Mr. Smith is risk neutral.

a. What is the prior optimal act?

b. What is the value of a perfect weather predictor?

c. What is the maximum price that Mr. Smith would pay for the actual

weather prediction?

d. Should Mr. Smith purchase the weather forecast?

e. What is Mr. Smith’s optimal strategy?

Interpret your results.

3. Consider a risk-neutral decision-maker facing an uncertain profit p(x1, x2, e).

Assume that the profit function is quadratic: p(x1, x2, e)¼ a0þa1x1þ0:5a2 x
2
1 þ a3x2

þ0:5a4x
2
2 þ a5x1x2 þ b1eþ b2e

2 þ b3ex1 þ b4ex2, where a4 < 0 and e is a random

variable with mean E(e) ¼ 0 and variance V (e) ¼ s2.
a. Find the optimal ex post decision for x2.

b. What is the value of perfect information?

c. The decision-maker obtains information before choosing x2 by observing a

random variable u that is correlated with e. What is the value of infor-

mation associated with observing u?

d. Does the value of information varies with x1? Interpret.

4. Consider a risk-neutral decision-maker facing an uncertain profit p(x1, x2, e).

Assume that the profit function is: p(x1, x2, e) ¼ a0 þ a1x1 þ 0:5a2x
2
1 þ a3x2

þ0:5a4x
2
2 þ a5x1x2 þ b1eþ b2e

2 þb3ex1 þ b4ex2 þ b5ex1x2, where a4 < 0 and e is a

random variable with mean E(e) ¼ 0 and variance V (e) ¼ s2. (Note the presence of

the third-order term ‘‘b5 e x1 x2).’’

a. Find the optimal ex post decision for x2.

b. What is the value of perfect information?

c. The decision-maker obtains information before choosing x2 by observing a

random variable u that is correlated with e. What is the value of infor-

mation associated with observing u?

d. Does the value of information vary with x1? Interpret.
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Chapter 11

Contract and Policy Design
Under Risk

Previous chapters have analyzed the implications of risk for the welfare and

behavior of a decision-maker. We have investigated how an individual can

manage risk and information. However, individual decision-making must

always be situated within its broader economic context. The institutions and

economic environment surrounding an individual can themselves be sources

of uncertainty (e.g., the case of theft). Alternatively, the economic insti-

tutions affecting individual behavior are themselves subject to management.

This includes the establishment of property rights, the development and

enforcement of contracts among individuals, and the design and implemen-

tation of policy rules. Such schemes play an important role in risk manage-

ment for two reasons. First, they condition the type and magnitude of

risk exposure facing a particular individual. Second, they allow for risk

transfers among individuals. These risk transfers can take many forms:

risk sharing schemes as specified in contracts (e.g., the case of sharecropping

under uncertainty); insurance protection (e.g., fire or medical insurance);

limited liability rules (e.g., bankruptcy protection); or social safety nets (e.g.,

disaster relief managed by government or NGO). The design and implemen-

tation of risk transfer schemes among individuals are an important aspect of

risk management. This chapter focuses on the economics and efficiency of

such schemes.

We will first develop a general model of resource allocation among

individuals. This will include individual risk management as well as risk

transfers across individuals. This provides a basis for analyzing the efficiency

of resource allocation, as well as the efficiency of risk transfers. The general-

ity of the analysis means that it can be applied to a variety of empirical

161
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situations. It will provide the general guidelines for evaluating the efficiency

of risk allocation. The problem is that such evaluations can become quite

complex. This means that making the analysis empirically tractable is a

significant challenge. This chapter focuses on the general principles of effi-

cient risk allocation. Specific applications are discussed in Chapter 12.

A GENERAL MODEL

Consider n individuals making allocation decisions under risk. Each

individual is involved in the production, exchange, and/or consumption of

m private goods. The production activities of the i-th individual involve

choosing the m inputs-outputs xi ¼ (x1i, . . . , xmi), i ¼ 1, . . . , n. It will be

convenient to the use netput notation where outputs in xi are positive and

inputs are negative. Let yi ¼ (y1i, . . . , ymi) denote the quantities of the m

commodities consumed by the i-th individual. In addition to production and

consumption decisions, the n individuals can exchange the m commodities

with each other. Let tij ¼ (t1ij , . . . , tmij) denote the quantities of the m goods

traded from individual i to individual j (including exchange with oneself

when i ¼ j). Exchange may involve the use of resources (e.g., information,

transportation). Denote by hi ¼ (h1i, . . . , hmi) the amount of the m goods

used by the i-th individual in the exchange process. In general, the hi
0s reflect

the presence of transaction costs; it measures the amount of resources used

in exchange among the n individuals. Finally, the n individuals face a vector

of public goods q (e.g., infrastructure). We want to investigate the efficiency

of the allocation z ¼ (q, h, x, y, t), where h ¼ (h1, . . . , hn), x ¼ (x1, . . . ,xn),
y ¼ (y1, . . . , yn), and t ¼ (tij: i, j ¼ 1, . . . , n).

The n individuals make decisions under uncertainty. The uncertainty is

represented by discrete random variables. The realized values of these

random variables define mutually exclusive states. Assume there are S

mutually exclusive states, represented by e ¼ (e1, . . . , es). In principle, when

made by informed decision-makers, the decision z can depend on the states e.

Thus, we consider state-dependent decision rules ze¼z(e)¼ (z1(e), z2(e), . . . ),
where zk(e) ¼ (zk(e1), . . . , zk(es) ), and zk(es) is the k-th decision made under

the s-th state of nature, s ¼ 1, . . . , S. This includes t(e), the state-dependent
exchange of goods among the n individuals. When this exchange is state-

dependent, it allows the transfer of risk across individuals. Now we must

evaluate the efficiency of such risk transfers.

The i-th individual has preferences represented by an ex-ante utility

function ui(q
e, yei ), where qe ¼ q(e) ¼ (q(e1), . . . , q(es) ), and yei ¼yi(e)¼

(yi(e1), . . . , yi(es) ), q(es) denoting the public goods under state s, and yi(es)

denoting the i-th individual consumption of them private goods under state s,
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i ¼ 1, . . . , n. Following Debreu (1959), this is a state-dependent preference

function (see Chapter 4). It represents the i-th individual ex-ante subjective

evaluation of the allocation yei for all states. Note that this is quite general

since the subjective evaluation can be made without relying on a probability

distribution. However, it is often convenient to make explicit use of prob-

ability assessments. For example, if the i-th individual assigns a probability

Pr(es, i) to the s-th state, then the ex-ante utility function may take the form

ui(q
e, ye, Pr(e1, i), . . . , Pr(es, i) ), which can be nonlinear in the probabil-

ities. This includes as a special case the expected utility model: ui( � ) ¼Ps
s¼1 Pr(es, i)vi(q(es), y(es) ), where vi( � ) is the von Neumann–Morgenstern

utility function representing the risk preferences of the i-th individual,

i ¼ 1, . . . , n. This shows that while the following analysis applies under the

expected utility model, it actually holds under much more general conditions

(including situations where risk preferences are nonlinear in probabilities).

First, we need to characterize feasible allocations. One aspect of feasi-

bility relates to the information available to decision-makers. This infor-

mation can impose restrictions on the state-dependent decision rules

ze ¼ z(e) ¼ (z1(e), z2(e), . . . ). Assume that each decision is made based on

possibly different information. This allows for asymmetric information

across individuals as well as learning (if different decisions are made at

different times based on different information). Assume that the k-th deci-

sion is made based on information characterized by an information partition

Pk ¼ (Pk1, Pk2, . . . ) of the set of states {e1, e2, . . . , es}. For each k, the Pkj ’s

are mutually exclusive subsets of {e1, e2, . . . , es} and their union is the set

{e1, e2, . . . , es}. Intuitively, each Pkj contains the states that are not distin-

guishable for the purpose of making the k-th decision. It means that the k-th

decision must satisfy the information constraint

zk(es) ¼ zk(es0 ) for any two es and es0 both in Pkj for each j, k ¼ 1, 2, . . . (1)

Equation (1) reflects how information affects the decision rule zk(e). It

includes as a special case two extreme situations. At one extreme, perfect

information corresponds to Pks ¼ es, s ¼ 1, . . . , S. Then, zk(e) is chosen

ex-post and can vary across states as (1) imposes no restriction. At the

other extreme, no information corresponds to Pk1 ¼ {e1, e2, . . . , es}. Then,
(1) implies that the decision zk(e) is chosen ex-ante and is constrained to be

the same across all states. In intermediate situations, equation (1) restricts

the k-th decision to be the same across states that are not distinguishable, but

allows it to differ across states otherwise. Given that Pk ¼ (Pk1, Pk2, . . . )
is the information supporting the k-th decision, we denote by

P ¼ {P1, P2, . . . } the information structure supporting all decisions across

all individuals.
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In addition to the information constraint (1), an allocation must be feas-

ible. Besides satisfying budget constraints, consumption feasibility reduces

to nonnegativity restrictions on the consumption goods: yei ¼ yi(e)� 0,

i ¼ 1, . . . , n. Denote production feasibility by (qe, xe) ¼ (q(e), x(e) )

2 X (P), where the feasible set X(P) represents the production technology

under information structure P. This simply means that the goods (qe, xe) are

feasibly produced in the economy from the activities of the n individuals.

Finally, the quantities traded t can also involve both private goods h (e.g.,

transportation activities) and public goods q (e.g., infrastructure) used to

support exchange. Exchange feasibility is denoted by (qe, he, te) 2 T(P),

where the feasible set T(P) represents the exchange technology under infor-

mation structure P. When transactions are costly, this simply means that

feasible trade t requires the use of resources (as reflected by qe and he).

Note that, besides the public goods qe that are available to all individuals,

the model allows for external effects across individuals. External effects arise

when an individual makes a decision that also affects directly the feasible set

or the welfare of some other individual. In this model, the externalities can

take place in production as well as in trade. Indeed, the feasible set X allows

for external effects in production activities across individuals. These external

effects can be positive (e.g., the case of the fruit producer who benefits from

his/her beekeeper neighbor) or negative (e.g., the case of pollution). Simi-

larly, the feasible set T allows for externalities in trade activities. This will

provide useful insights on the effects of externalities on efficient resource

allocation.

Finally, the feasibility of exchanging the m private goods among the n

individuals must satisfy

Xn

j¼1

tij(es) � xi(es)� hi(es), (2a)

and

yi(es) �
Xn

j¼1

tji(es), (2b)

for i ¼ 1, . . . , n, s ¼ 1, . . . , S. Equation (2a) states that the i-th individual

cannot export more than his/her production, net of private resources used in

exchange. And equation (2b) states that the i-th individual cannot consume

more than he/she can produce (tii) or import from others (tji, j 6¼ i). These

two restrictions guarantee that aggregate consumption of the private goods

cannot exceed aggregate production, net of aggregate resource used in

exchange.
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Thus, in addition to ye � 0 and the technological constraints: (qe, xe) 2 X

and (qe, he, te) 2 T , a feasible allocation ze ¼ z(e) must satisfy the infor-

mation constraint (1) and the exchange constraints (2a)–(2b).

PARETO EFFICIENCY

The question of interest is, how do we choose an allocation among all the

feasible ones? The key concept to evaluate this choice is the concept of

efficiency.

A feasible allocation is Pareto efficient if there does not exist another

feasible allocation that could make one individual better off without

making anyone else worse off.

As a corollary, this identifies inefficiency as situations where there exist

other feasible allocations that can make some individual better off without

making anyone worse off. Intuitively, it means that inefficient allocations are

undesirable. This motivates the focus of economic analysis on efficient allo-

cations. But how do we know that a particular allocation is efficient (or

inefficient)? Making such an evaluation can be difficult empirically.

The Pareto efficiency criterion involves a welfare evaluation of the n

individuals affected by the decision-making process for ze. This requires

measuring the benefits received by the n individuals. Measuring indi-

vidual benefits can be using a reference bundle of private goods. It will

be convenient to choose ‘‘money’’ as the reference bundle. For our purpose,

we identify the m-th private commodity as ‘‘money’’. We denote one unit

of money by g ¼ (0, . . . 0, 1). And we denote one unit of sure money by

ge ¼ (g(e1), . . . g(es) ) ¼ (g, . . . , g). Although we allow for transaction costs

for the first (m�1) private goods, we assume throughout that money can be

exchanged costlessly among the n individuals.

Given the ex-ante utility function ui(q
e, yei ) of the i-th individual and using

sure money ge as the reference bundle, define the i-th individual benefit

function as

bi(q
e, yei , Ui) ¼ maxb {b: ui(q

e, yei � bge)�Ui;y
e
i � b ge � 0}, (3a)

i ¼ �1, . . . , n. Then, the aggregate benefit function is

B(qe, ye, U) ¼
Xn

i¼1

bi(q
e, yei , Ui), (3b)

where ye ¼ (ye1, . . . , y
e
n), and U ¼ (U1, . . . , Un). The benefit function

bi(q
e, yei , ui) measures the amount of sure money the i-th individual is willing
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to give up facing the allocation (qe, yei ) to reach the utility level Ui. As such,

it can be interpreted intuitively as an individual willingness-to-pay measure.

And the benefit function B(qe, ye, U) is the corresponding aggregate meas-

ure across all n individuals. They provide convenient welfare measurements.

Throughout, we assume that transferring a positive quantity of the bundle ge

to any individual will make him/her better off (i.e., we assume that ui( � ) is
increasing in income).

Intuitively, one would expect that more efficient allocations would gener-

ate greater welfare benefits to the n individuals. This suggests considering the

allocations ze that solve the following maximization problem (conditional on

the utility levels U ¼ (U1, . . . , Un) ):

V (U) ¼ Max{B(qe, ye, U): ze is feasible}: (4)

Let ze
�
(U) denote the optimal allocation in (4). Such allocation is said to

be maximal (Luenberger 1995). Equation (4) also identifies V(U) as the

largest feasible aggregate benefit that can be obtained when individuals

receive utility levels U ¼ (U1, . . . , Un). Allais (1953) interpreted V(U) as

measuring the aggregate distributable surplus; at the aggregate, it is the

largest amount of money that can be generated for given individual utilities

U. There are three possibilities: V (U) < 0, V (U) > 0, and V (U) ¼ 0. First,

the case where V (U) < 0 must be infeasible. Indeed, a negative aggregate

willingness-to-pay indicates that the utility levels U ¼ (U1, . . . , Un) are ‘‘too

high’’ to be attained feasibly in the economy. Since V (U) < 0 implies infeasi-

bility, it follows that V (U)� 0 characterizes feasible allocations. Second, the

case where V (U) > 0 must correspond to an inefficient allocation. Indeed, if

positive, the distributable surplus can always be redistributed to some indi-

vidual. This would make that individual better off without making anyone

else worse off. Third, consider the case where V (U) ¼ 0. Since V (U)� 0

under feasibility and V (U) > 0 implies inefficiency, this gives the following

key result:

If an allocation is Pareto efficient, then it is a maximal allocation

associated with zero distributable surplus, V(U) ¼ 0.

In combination with (4), this has the following intuitive interpretation:

efficient allocations can be obtained among feasible allocations by first

maximizing aggregate benefit (as given in (4) ), and then redistributing

entirely the resulting surplus V(U) among the n individuals, yielding

V (U) ¼ 0 (see Luenberger 1995; Chavas and Bouamra-Mechemache 2002).

The distributable surplus function V(U) is useful in another way. Solving

V (U) ¼ 0 for U ¼ (U1, . . . , Un) involves solving one equation for n un-

knowns. This typically has an infinite number of solutions. The solutions

trace out the Pareto utility frontier. This is illustrated in Figure 11.1 in the
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feasible region: V(U) > 0

U1

Pareto utility
frontier:
V(U1, U2) = 0

U2

Figure 11.1 The Pareto utility frontier

context of two individuals (n ¼ 2). The Pareto utility frontier gives the

distribution of welfare generated by Pareto efficient allocations. Thus, any

point on the Pareto utility frontier corresponds to a Pareto efficient alloca-

tion. And moves along the Pareto utility frontier (e.g., as generated by lump-

sum income transfers) involve different welfare distributions among individ-

uals. Finally, as illustrated in Figure 11.1, any point below the Pareto utility

frontier corresponds to feasible but inefficient allocations (where V (U) > 0).

This shows that the Pareto utility frontier gives the upper bound of utilities

that are feasibly reached under efficiency.

Finally, what happens as one moves along the Pareto utility frontier?

Clearly, the allocation ze
�
(U) must change to affect the distribution of

welfare among the n individuals. This can be broadly interpreted as changes

in income distribution (e.g., associated with lump-sum income transfers). As

the income distribution changes, all decisions ze
�
(U) can possibly change.

This would be the case in the presence of ‘‘income effects’’ where changes in

individual income (or wealth) affect production or consumption decisions.

We discussed such income effects in Chapter 4 and found them to be

prevalent. This suggests that, in the presence of income effects, the efficient

allocations ze
�
(U) depend on income distribution. This appears intuitive and

realistic. However, it makes economic analysis much more difficult. Indeed,

it implies that efficiency and income distribution issues are closely linked. It

means that it is not possible to make a specific recommendation about an

efficient allocation without knowing the associated income distribution. As

income distribution changes, so do the corresponding efficient allocations.

Such complexities significantly reduce the empirical tractability of efficiency

analysis. This has motivated the search for simplifying assumptions.

One such simplifying assumption involves ‘‘zero income effects.’’ A par-

ticular decision zk exhibits zero income effects if it is not affected by changes
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in individual income orwealth (e.g., the case of constant absolute risk aversion

(CARA) discussed in Chapter 4). In such cases, changes in income distribu-

tion as one moves along the Pareto utility frontier have no impact on the

efficient decision for zk. In other words, z
�
k(U) is independent ofU. Thismeans

that it becomes possible tomake a specific recommendation about an efficient

allocation z�k without knowing the associated income distribution. Although

probably less realistic, this greatly simplifies economic analysis and helps

improve empirical tractability. As a result, ‘‘zero income effects’’ are often

assumed in empirical investigation of economic efficiency. As long as income

effects remain ‘‘sufficiently small,’’ such simplifying assumptions may still

provide an ‘‘approximate’’ characterization of efficient allocations. This illus-

trates some important tradeoffs between realism and empirical tractability.

Note: The previous results become empirically more tractable when the

number of individuals is small. The simplest case is when there are only two

individuals, n ¼ 2. Then, the above characterization of the Pareto efficiency

reduces to the following optimization problem:

Max{u1(q
e, ye1): u2(q

e, ye2)�U2, z
e is feasible}:

In Figure 11.1, this amounts to choosing some reservation utility level U2 for

individual 2, and choosing an allocation that maximizes the utility of indi-

vidual 1 up to a point on the Pareto utility frontier. This is the basic structure

of the principal-agent model, a model that has been commonly used in the

analysis of contracts (see Chapter 12).

Note that, assuming that the Lagrangean approach applies (see Appendix

B), this can be alternatively written as:

Max{u1(q
e, ye1)þ gu2(qe, ye2): g� 0, ze is feasible},

where g is a Lagrange multiplier corresponding to the constraint

u2(q
e, ye2)�U2. Then, the set of Pareto efficient allocations can be conveni-

ently obtained by solving this optimization problem for different values of

g > 0 (where g plays the role of ‘‘relative welfare weight’’ for individual 2).

INTERPRETATION

The characterization of efficiency presented above is very general. It

applies in the presence of uncertainty, asymmetric information, transaction

costs, public goods, as well as externalities. At this point, it is silent about the

role of markets. This indicates that efficiency can be obtained without

markets. This is the domain of contracts and policy. Indeed, the state-

dependent decision rules ze ¼ (q(e), h(e), x(e), y(e), t(e) ) can be the ones

specified in a contract or in a policy rule. They can involve production
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decisions x(e), trade and transfers t(e) with associated transaction resources

h(e), as well as the provision of public goods q(e).

What are the distinguishing features of a contract compared to a policy

rule? A contract typically involves a relatively small number of individuals

who bargain with each other to set up decentralized decision rules. In

contrast, policy rules typically involve decisions made by centralized insti-

tutions (e.g., government) and affecting a large number of individuals. Thus,

both the identity of the decision-makers and the level of centralization differ.

Contracts can play an important role in establishing efficient resource

allocation. For example, Coase (1960) has shown that externality problems

can be managed through bargaining among the individuals affected. The

outcome of bargaining generates individual rights and obligations set out in

a contract. Coase argued that, in the presence of externalities, a contract can

be designed such that the outcome is Pareto efficient. However, Coase

focused on a simple situation with no uncertainty, no transaction cost, and

‘‘zero income effects.’’ As seen above, the latter means that the terms of the

contract can be designed independently of income distribution. This gener-

ated much discussion on whether Coase’s analysis applies under uncertainty,

transaction cost, and in the presence of income effects. Our analysis provides

the needed generalization. It shows that, if contracts can help implement

efficient decision rules for z(e), then they support a Pareto efficient alloca-

tion. This result applies in the presence of uncertainty, asymmetric infor-

mation and learning, under transaction costs, nonzero income effects, and

the presence of externalities and public goods.

Similar results apply to policy rules. If policy rules can help implement

efficient decision rules for z(e), then they support a Pareto efficient alloca-

tion. Again, this result applies in the presence of uncertainty, asymmetric

information and learning, under transaction costs, nonzero income effects,

and the presence of externalities and public goods.

Our analysis sheds some light on the design and evaluation of efficient

contracts and of efficient policy-making. However, such design and evalu-

ation can be quite complex. To see that, consider the maximal allocation

given in (4). Solving this optimization problem can be quite difficult. When

the number of individuals is large and/or the uncertainty complex, there may

be no practical way of solving for the maximal allocation ze
�
(U), even using

the fastest computers. It is not that such attempts have not been made. For

example, computable general equilibrium (CGE) models have been de-

veloped to evaluate the efficiency of general resource allocation. However,

to be empirically tractable, such models typically either focus on a subset of

commodities, or they model only broad aggregates. And they usually ignore

uncertainty and the efficiency of risk allocation. This has two important

implications. First, evaluating empirically the efficiency of risk allocation
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remains quite challenging. Given the difficulty of the task, the best work has

focused on specific applications. Reviewing this work is the topic of Chapter

12. Second, if the fastest computers cannot evaluate the efficiency of alloca-

tion in complex economies, then how do decision-makers deal with this

issue? They try to simplify the decision rules so that they can become

manageable. This will depend in part on the institutional environment. For

example, specialization as well as decentralization can contribute to reducing

the number of decisions made by any particular decision-maker. As such,

they can facilitate the processing of information relevant for each decision,

thus allowing reasonably refined decision rules. However, decentralization

may not be appropriate in the presence of economies of scale (e.g., national

defense). Decentralization also raises the issue of coordination across

decision-makers when the decisions of each agent have external effects on

other agents. Finally, simpler decision rules may still imply significant loss of

information, which can have adverse effects on efficiency (see following). This

suggests that, while both contracts and policy rules play an important role in

resource allocation, neither is likely to be sufficient to implement efficiency.

THE ROLE OF MARKETS

In this section, we examine the role of markets in supporting an efficient

allocation. Our starting point is the maximal allocation given in (4). We have

seen that it provides an intuitive and convenient framework to characterize

Pareto efficiency. Equation (4) maximizes aggregate benefit subject to feasi-

bility constraints. This constrained optimization problem can be alternatively

analyzed using a Lagrange approach (see Appendix B). Denote by peri¼pri(e)

¼ (pri(e1), . . . , pri(es) )
0, and by peci ¼ pci(e) ¼ (pci(e1), . . . , pci(es) )

0, the

Lagrange multipliers associated with the feasibility constraints (2a) and

(2b), respectively, i ¼ 1, . . . , n. Consider the Lagrangean

L(ze,pe,U)¼B(qe,ye,U)þ
Xn

i¼1

peri
0 � xei�hei �

Xn

j¼1

teij

" #

þ
Xn

i¼1

peci
0 �
Xn

j¼1

teji�yei

" #

,

(5)

where pe ¼ (per1, . . . , p
e
rn; p

e
cl , . . . , p

e
cn)

0. Under some regularity conditions,

the optimization problem (4) can be written as the saddle point problem

V (U) ¼ Minp Maxz{L(z
e, pe, U): pe � 0, ze is feasible}: (6)

where the Lagrangean L is maximized with respect to the allocation

ze ¼ (qe, he, xe, ye, te), while it is minimized with respect to prices pe � 0.

The Lagrange multipliers pe have the standard interpretation of measuring
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the shadow price of the corresponding constraints. Thus, per ¼ (per1 , . . . , p
e
rm)

0

measures the shadow prices of resource scarcity for producing private

goods, while pec ¼ (pec1 , . . . , p
e
cn)

0 measures the shadow price of resource

scarcity for consuming private goods. When normalized such that they

pepi
0ge ¼ peci

0ge ¼ 1 (where ge denotes one unit of sure money), they become

the state-dependent prices for the m private goods.

There is a close relationship between (4) and (6). The solution to

(6) always identifies a solution to the maximization problem in (4). But

some regularity conditions are needed in order for expression (4) to imply

(6). They include the convexity of the feasible set (see Appendix B, and

Takayama 1985, p. 75). These regularity conditions are satisfied in situations

exhibiting ‘‘diminishing marginal values’’ (which rules out the presence of

increasing returns to scale). For simplicity, we will assume below that these

conditions are satisfied and that (4) and (6) provide equivalent representa-

tions of the maximal allocation ze
�
(U). It means that, in situations where

U ¼ (U1, . . . , Un) is chosen such that the distributable surplus is zero,

V (U) ¼ 0, then the saddle-point problem (6) characterizes a Pareto efficient

allocation.

Note that the maximization in (6) implies

W (pec, q
e, U) ¼ Maxy{B(q

e, ye, U)�
Xn

i¼1

peci
0 yei : y

e � 0}, (7a)

pr(per , q
e) ¼ Maxx

Xn

i¼1

peri
0 xei : x

e is feasible

( )

, (7b)

pt(per , p
e
c, q

e)¼Maxh, t
Xn

i¼1

Xn

j¼1

(pecj � peri)
0teij�

Xn

i¼1

peri
0 hei : (h

e, te) are feasible

( )

,

(7c)

N(per , p
e
c, U)¼Maxq{W (pec, q

e,U)þpr(per , q
e)þpt(per , p

e
c, q

e): qe is feasible}:

(7d)

Equations (7a)–(7d) provide some nice intuition about the characterization

of efficiency. Equation (7a) states that efficient consumption decisions ye are

the ones that maximize aggregate net consumer benefit, defined as aggregate

benefit B(qe, ye, U) minus consumer expenditures,
Pn

i¼1 p
e
ci
0 yei . Then,

W (pec, q
e, U) in (7a) is a measure of aggregate net consumer benefit. Equa-

tion (7b) shows that efficient production decisions xe are the ones

that maximize aggregate production profit,
Pn

i¼1 p
e
ri
0xei , where peri

0 xei is the

production profit generated by the i-th individual (recall that outputs

Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 12:11pm page 171Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 12:11pm page 171Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 12:11pm page 171Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 12:11pm page 171

Contract and Policy Design Under Risk 171



are defined as positive while inputs are negative). Then, pr(per , q
e) in

(7b) measures aggregate production profit. Equation (7c) states that effi-

cient trade decisions (te, he) maximize aggregate trade profit, defined

as aggregate revenue from trade activities
Pn

i¼1

Pn
j¼1 (p

e
cj � peri)

0 teij minus

the cost of exchange
Pn

i¼1 p
e
ri
0 hei . Then, pt(p

e
r , p

e
c, q

e) in (7c) is a measure of

aggregate trade profit. Finally, equation (7d) shows that efficient

public goods qe are the ones that maximize aggregate net consumer benefit

W ( pec, q
e, U) plus aggregate profit from production activities pr( per , q

e),

as well as trade activities pt( per , p
e
c, q

e). Then, N(per , p
e
c, U) in (10) is a

measure of aggregate net benefit from consumption, production and trade

activities.

If we make the intuitive assumption that each individual trading with

himself/herself (as denoted by teii) is costless, then (6) implies that, at the

optimum, consumer prices pec and producer prices per are identical: pec ¼ per .

Indeed, as reflected in equation (7c), any differences between producer prices

and consumer prices would be arbitraged away. This implies that each

individual faces unique prices for the private goods.

Finally, given equations (7a)–(7d), the minimization in (6) implies

V (U) ¼ Minp{N(per , p
e
c, U): pe � 0}: (8)

The minimization problem in (8) guarantees that prices are consistent

with the feasibility constraints (2a) and (2b). This guarantees nonnegative

aggregate excess demand for the private goods. In the case where the

distributable surplus is zero, V (U) ¼ 0, it follows that the shadow prices pe

given by (8) would support an efficient allocation. To the extent that pe

represents market prices, this would imply that a market economy can

support a Pareto efficient allocation.

The issue of whether a market economy does support an efficient alloca-

tion centers on the economic incentives associated with (7a)–(7d). Equations

(7a)–(7d) imply that decisions are made so as to maximize aggregate net

benefit and aggregate profit. As previously discussed, in complex economies,

this maximization can be quite complex, and there is typically no practical

way of solving the associated maximization problems. This focuses the

attention on the following question: Is it possible for a decentralized market

exchange to be Pareto efficient?

With respect to private goods, the answer is yes, for competitive markets

in the absence of externalities. To see that, consider the case where there is

no externality for producers. This means that the production possibilities of

each individual are not directly affected by others’ production decisions. In

other words, the i-th individual production technology is independent of

other individuals. It follows that (7b) becomes
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pri(peri, q
e) ¼ Maxx{p

e
ri
0 xei : x

e
i is feasible}, (7b0)

where pr(per , q
e) ¼

Pn
i¼1 pri(p

e
ri, q

e). Equation (7b’) states individual rational-

ity for production decisions under competitive markets: the i-th individual

chooses the private production goods xei tomaximize individual profit, peri, x
e
i ,

taking market prices peri as given. This means that, in the absence of external-

ities, production decisions can efficiently be decentralized. Then, the aggre-

gate production profit pr(per , q
e) becomes simply the sum of the individual

profits pri(peri, q
e) across all individuals.

In addition, using (3b), note that (7a) can be alternatively written as

Wi(p
e
ci, q

e,Ui)¼Maxy{bi(q
e, yei , Ui)� peci

0 yei : yei � 0}, i ¼ 1, . . . , n, (7a0)

where W (pec, q
e, U) ¼

Pn
i¼1 Wi(p

e
ci, q

e, Ui). Equation (7a’) states the individ-

ual rationality of private consumption decisions: the i-th individual chooses

the private consumption goods y
e
i to maximize his/her benefit bi(q

e, yei , Ui)

net of consumer expenditures, peci
0 yei , taking prices peci as given. This means

that consumption decisions can be efficiently decentralized. And the aggre-

gate consumer net benefit W (pec, q
e, U) is simply the sum of the individual

benefits Wi(p
e
ci, q

e, Ui) across all individuals.

This gives the following key result:

In the absence of externalities, a competitive market economy where

production and consumption decisions of private goods are decentralized

can support a Pareto efficient allocation.

A similar result would apply to the efficiency of decentralized trade deci-

sions under competitive markets in the absence of externalities in trade (from

7c). This is a remarkable statement. It shows that, under some conditions,

decentralized private decision-making under competitive market prices gen-

erates an efficient allocation.Here, competitivemarketsmean that individuals

take the market prices pe as given. And decentralized private decision-making

means that the i-th individual chooses his/her consumption goods yei and

production decision xei based only on competitive prices pe, his/her own

preferences, and his/her own production technology. This greatly simplifies

the decision-making process. Indeed, for each individual, the competitive

market prices pe provide all the necessary information about resource scarcity

in the rest of the economy. This is Adam Smith’s ‘‘invisible hand,’’ where

market prices help guide individual decisions toward an efficient outcome.

The great virtue of competitive markets is their ability to support both decen-

tralized decision-making and a Pareto efficient allocation.

However, such a property applies only to the allocation of private goods

and in the absence of externalities. From (7d), it is clear that the allocation of

public goods cannot be easily decentralized. It means that public centralized
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institutions (e.g., government) are needed to choose the public goods qe in an

efficient way.

What about externalities? Note that (7b) differs from (7b') in the presence

of production externalities. The reason is profit maximizing input-output

choices in (7b') would fail to consider external production effects across

individuals. This suggests that decentralized decisions would fail to generate

an efficient allocation in the presence of externalities. And the associated

market equilibrium would generate inefficient prices that do not satisfy (8).

One possible solution would be to develop a fiscal policy imposing Pigouvian

taxes that would bridge the gap betweenmarket prices and efficient prices (the

latter ones given by equation (8)). An alternative solution would be govern-

ment regulations that would stipulate that individuals make efficient deci-

sions. But these centralized solutions can be difficult to implement; identifying

the efficient prices or efficient quantities requires finding a solution to the

saddle-point problem (6). As discussed above, in complex economies, this is

typically intractable. Alternative solutions would be to develop some more

decentralized schemes. For example, when the externality takes place between

two firms, the merging of the two firms would solve the problem. Another

possibility would be the Coasian solution: to develop a contract between the

two firms so as to specify that production decisions are consistent with (7b).

But these decentralized solutions are likely to be practical only if the external-

ity is ‘‘local’’ and involves few individuals. This suggests the presence of

significant complementarities between markets, contracts, and government

in generating efficient resource allocation.

Finally, equation (7c) establishes that, under prices (per , p
e
c, q

e), efficient

exchange exhausts all profit opportunities. It applies to commodity markets,

as well as risk markets under transaction cost. Note that it applies as well in

the absence of transaction costs. In this case, it is always efficient to choose

he ¼ 0, and equation (7c) implies that pt(per , p
e
c, q

e) ¼ 0. Indeed, with he ¼ 0, a

positive (negative) profit pt(per , p
e
c, q

e) would provide an incentive to exchange

more (less), implying that a nonzero profit cannot hold at equilibrium.

Thus, in the absence of transaction costs, the zero-profit condition,

pt(per , p
e
c, q

e) ¼ 0, necessarily applies. This has been called the no-arbitrage

condition. This condition has been found to be useful in the analysis of asset

pricing in finance.Under arbitrage pricing, given the price of a subset of assets,

the equilibrium price of all other assets whose payoffs can be duplicated by

this subset must be consistent with the no-arbitrage condition. This has been

used extensively in the pricing of options, warrants, and other derivative

securities—financial securities whose payoffs depend on the prices of other

securities (see Hull 2002). However, note that arbitrage pricing applies only in

the absence of transaction costs. Indeed, in the presence of transaction cost,

the maximized profit pt(per , p
e
c, q

e) in equation (7c) can be nonzero.
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THE ROLE OF TRANSACTION COST

Our analysis incorporates transaction costs in economic analysis. Indeed,

we consider the case where resources he are used in the exchange process. They

include transportation activities, information acquisition, etc. Transaction

costs are given by the term [
Pn

i¼1 p
e
ri
0 hei ] in equation (5) or (7c). Since transac-

tion costs are subtracted from aggregate net benefit in (5), they contribute to

reducing the aggregate distributable surplusV(U) and to an inward shift in the

Pareto utility frontier. Alternatively, reducing transaction costs (e.g., due to

improvements in infrastructure and information technology) would improve

efficiency, contributing to an increase in distributable surplus V(U) and an

outward shift in the Pareto utility frontier. In general, lower transaction costs

stimulate exchange, thus generating increased gains from trade. These gains

can be measured by the associated increase in aggregate distributable surplus.

This suggests that private management and/or public policy that reduce

transaction costs can contribute to significant efficiency gains.

To obtain additional insights in the role of transaction costs, define the

transaction cost function C(per , t
e)¼Minh{

Pn
i¼1 p

e
ri
0 hei : (h

e, te) are feasible}.

Assume that the function C(per , t
e) is differentiable in te. Then, consider the

optimization in (7c) with respect to tijk(es)� 0, the quantity of the k-th

commodity exchanged between individuals i and j under state s. It implies

the familiar Kuhn–Tucker conditions:

pjk(es)� pik(es)� @C=@tijk(es)� 0 for tijk(es)� 0, (9a)

and

[qjk(es)� qik(es)� @C=@tijk(es)] � tijk(es) ¼ 0: (9b)

In the context of a market equilibrium, equation (9a) implies that

[pjk(es)� pik(es) ]� @C=@tijk(es), i.e., that the price difference for commodity

k between individuals i and j [qjk(es)� qik(es)] cannot exceed the marginal

transaction cost @C=@tijk(es) under state s. And when trade takes place be-

tween individuals i and agent j for the k-th commodity (with tijk(es) > 0), then

(9a) and (9b) imply that [pjk(es)� qik(es)] ¼ @C=@tijk(es). In this case, the price
difference [qjk(es)� qik(es)] must equal the marginal transaction cost

@C=@tijk(es) under state s. This is the first-order condition for profit maximiz-

ing trade. It follows that, in the absence of transaction costs where

@C=@tijk(es) ¼ 0, the law of one price applies since pjk(es) ¼ pik(es). Alterna-

tively, when @C=@tijk > 0, transaction costs create a price wedge between

qjk(es) and qik(es). In such a situation, the law of one price clearly fails to

apply. This implies ‘‘local markets’’ where participants in each market are

endogenously determined (depending on transaction technology and
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price differences). This can also imply thin markets, when the number

of market participants is small. This is relevant in risk markets (e.g., the

case of insurance contracts). And when transaction costs are ‘‘high

enough’’ so that @C=@tijk(es) > [pjk(es)� pik(es)] for some i and j satisfying

[qjk(es)� qik(es)]� 0, then the incentive to trade disappears as (9b) implies

tijk(es) ¼ 0. Then, under state s, the k-th commodity becomes nontraded

between individuals i and j. If this happens for all states, this implies the

absence of state-dependent exchange for the k-th commodity. This illustrates

well the adverse effects of transaction costs onmarket activities. It means that

high transaction costs contribute to the incompleteness of markets in general.

Note that markets for many state-contingent goods are notoriously

absent. For example, there is no market for purchasing an umbrella only

when it rains, for purchasing a car only when it does not have a flat tire, or

for producing corn only when it rains. Thus, risk markets are typically

incomplete. This can be explained in part by their high transaction costs.

In the absence of many risk markets, the associated risks must be managed

in other ways (either privately, through contracts, or through government

policy). However, risk markets do exist for some important commodities.

An important example is insurance, which involves state-dependent pay-

ments contingent on the occurrence of a specific event (e.g., if a house is

destroyed by fire). Our analysis stresses that low transaction costs (including

low information cost) is critical in the proper functioning of risk markets.

And the lowering of transaction costs (e.g., due to improved information

technology) can contribute to the creation and development of risk markets.

This is well illustrated by the growth and development of financial markets

over the last decades. This means that, even if incomplete, risk markets do

play an important role in the efficiency of risk allocation.

THE ROLE OF UNCERTAINTY

As discussed in Chapters 4 and 10, risk can affect individual welfare

in two ways: (1) because of the implicit cost of risk under risk aversion,

and (2) because of information under learning. We show below that similar

arguments apply to the efficiency evaluation of risk.

RISK AVERSION

In Chapter 4, we defined the implicit cost of private risk bearing by the

Arrow–Pratt risk premium. Although the analysis was presented using the

expected utility model, we explore briefly how to extend it in the context of

state-dependent preferences. The uncertainty is represented by the states

e ¼ (e1, . . . , es). Let the i-th individual have preferences represented by the
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ex-ante utility function ui(z
e), where ze ¼ (z1(e1), . . . , z1(es); z2(e1), . . . ,

z2(es); . . . ), zk(es) being the k-th decision made under state es. Assume that

the i-th individual assesses the uncertainty through a subjective probability

distribution of the states: Pr(e1, i), . . . , Pr(es, i). Consider the state-

independent commodities Ei(z
e)¼ (Ei(z1(e) ), . . . ,Ei(z1(e) ); Ei(z2(e) ), . . . ,

Ei(z2(es)) . . . ), where Ei(zk(e) ) ¼
Ps

s¼1 Pr(es, i)zk(es) denotes the expected

value of zk(e). Using the individual benefit function bi(z
e, Ui) defined in equa-

tion (3a), define the risk premium R as

Ri ¼ bi(Ei(z
e), ui(z

e) ):

It means that R is the ex-ante amount of money the i-th individual is

willing to pay to eliminate risk exposure by replacing the state-dependent

commodities ze with its state-independent counterpart Ei(z
e). It measures the

implicit cost of private risk bearing for the i-th individual. This generalizes

the Arrow–Pratt risk premium discussed in Chapter 4 in two directions: (1) it

allows for multiple sources of uncertainty, and (2) it applies under general

state-dependent preferences.

As in Chapter 4, the nature of risk preferences can be evaluated

depending on the sign of the risk premium. The i-th individual is said to be

risk averse, risk neutral, or risk loving depending upon whether Ri > 0,

¼ 0 or < 0, respectively. From Jensen’s inequality in Chapter 4,

Ri � 0, ¼ 0 or � 0 when bi(z
e, � ) is concave, linear, or convex in ze. This

means that risk aversion is associated with the concavity of the benefit

function bi(z
e, � ), i.e., with the presence of ‘‘diminishing marginal benefits’’

(see Luenberger 1995; Chambers and Quiggin; Chavas and Bouamra-

Mechemache 2002). This establishes a useful linkage between the intuitive

concept of ‘‘diminishing marginal values’’ and the prevalence of risk aver-

sion. It also indicates that the aggregate benefit function B( � ) used to

evaluate efficiency (see equations (3b), (4), and (5)) has an implicit

risk component. Under risk aversion, the implicit cost of private risk bearing

Ri is positive and private risk exposure tends to reduce individual benefit.

Private risk exposure reduces aggregate benefit and aggregate distributable

surplus in (4) or (5), and contributes to an inward shift in the Pareto utility

frontier. This means that, under risk aversion, private risk exposure can

contribute to inefficiency. In general, the social cost of private risk bearing

can be measured by the aggregate risk premium
Pn

i¼1 Ri, which is positive

under risk aversion. This makes it clear that risk management is an integral

part of efficient resource allocation. Under risk aversion, reducing private

risk exposure can be done in a variety of ways: through private management

(e.g., diversification strategies), through markets (e.g., insurance markets),

through contracts (e.g., sharecropping contracts), as well as through policy

(e.g., government policy establishing a ‘‘social safety net’’). Either by redu-

cing private risk exposure or by transferring risk toward individuals who are
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less risk averse, such schemes can help reduce the aggregate risk premiumPn
i¼1 Ri, thus increase aggregate benefit and aggregate distributable surplus

in (4) or (5). As such, they contribute to an outward shift in the Pareto utility

frontier and an improvement in efficiency.

THE VALUE OF INFORMATION

We have represented the quality of information by the information struc-

ture P supporting all decisions made by all individuals. As reflected in

equation (1), this information structure imposes restrictions on the decisions

rules z(e). As previously discussed, better information implies fewer restric-

tions in (1), while poorer information implies additional restrictions. This is

intuitive; better information means more refined decision rules.

First, consider the simple case where information is costless. This means

that more refined information structures P can be obtained without the use

of resources. Under information structure P, denote the distributable sur-

plus in (4) by V(U, P). Since better information means fewer restrictions in

(1), improving information tends to expand the feasible set in (4), thus

increasing the distributable surplus V(U, P) and generating an outward

shift in the Pareto utility frontier. This generates the following key result:

Better costless information contributes to improved efficiency.

It means that, under costless information, more information is always

desirable in the sense that it contributes to more refined state-dependent

decision rules that contribute to improving the efficiency of resource alloca-

tion under risk. Alternatively, the inability to use information would neces-

sarily reduce efficiency.

Define two extreme information structures: P� corresponding to no infor-

mation (where all decisions are chosen ex-ante and are constrained to be the

same in all states), and Pþ corresponding to perfect information (where all

decisions are made ex-post as (1) imposes no restriction). Then, through

equation (1), P� would be the most restrictive in (4), while Pþ would be the

least restrictive. For any information structure P, this gives the general result:

V (U , P�)�V (U , P)�V (U , Pþ):

It states that the distributable surplus V(U, P) is bounded between the

distributable surplus under no information V (U , P�) and the distributable

surplus under perfect information V (U , Pþ). It suggests that V (U , P)�
V (U , P�)� 0 can provide a general measure of the value of (costless) infor-

mation under P. And with V (U , P þ) as an upper bound, it implies that, if

information were free to obtain, any information structure short of perfect
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information would typically be inefficient. While interesting, this intuitive

result does not appear particularly realistic. It suggests a need to explore in

more depth the role of information cost.

When information is costly, obtaining improved information makes use

of resources. In this case, the cost of information is the opportunity cost of

resources used in the learning process. One interesting possibility is the case

where perfect information Pþ may not be feasible. This would happen when

current resources available are not sufficient to obtain perfect information.

This is a scenario of bounded rationality, when there are severe limitations to

obtaining and processing information under a complex economic environ-

ment (e.g., due a very large number of states). Then, in the quest for perfect

information, information gathering activities could increase up to a point

where there is no resource left for other activities. In addition, even if enough

resources could be found to generate new information, the decision-makers’

ability to process this information may be constrained by the capacity of

their brain to retain it and use it in an effective manner. Under such

scenarios, bounded rationality implies that perfect information Pþ is not

feasible. In this context, economic institutions and decision-making pro-

cesses must function under imperfect information.

This raises the question, howmuch information shouldbeusedunder costly

information? Our analysis of Pareto efficiency provides the answer. The effi-

cient choice of information would the information structureP� that solves the
maximization problem in (4), subject to a zero aggregate distributable surplus,

V (U) ¼ 0. It corresponds to using an information structureP� thatmaximizes

aggregate benefits, and then redistributing the surplus entirely to the n agents.

This involves trading off the benefits of better information (generating more

refined state-dependent decision rules)with its cost (asmeasuredby theoppor-

tunity cost of the information gathering activities). In situations where the

benefits of new information are larger than their cost, then the information is

worth getting. Alternatively, if the cost of new information is larger than its

benefits, neglecting this information would be efficient. This means that effi-

cient decision rules would not depend on such information. It suggests that

information cost can help explain why both contracts and risk markets are

typically incomplete. Incomplete contractsmean that some ex-post contingen-

cies were not anticipated ex-ante, raising the potential for ex-post disputes

among the interested parties. Such disputes are often settled through ex-post

bargaining. Also, the courts provide a formal framework for settling disputes

when private bargaining fails.

This stresses the importance of information in risk management. In this

context, efficient risk management is closely associated with an efficient

management of information. In general, improved information management

tries to increase distributable surplus and generate an outward shift in the
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Pareto utility frontier. The efficiency gains can come from two sources: (1)

lower information cost by reducing resources used in information acquisi-

tion, (2) and better information which contributes to improved efficiency

through the use of more refined state-dependent decision rules. Note that

this latter effect would apply to production, consumption as well as ex-

change activities. Then, more refined information would contribute to

more refined contracts as well and stimulate the development of state-

contingent exchange. Alternatively, poorer information would generate less

refined state-dependent decision rules, i.e., less refined contracts and fewer

state-dependent exchanges. This can provide useful insights into organiza-

tional efficiency as alternative forms of organizations (e.g., firms) can process

information differently, thus influencing the efficiency of resource allocation

and risk distribution (e.g., the efficiency of contractual arrangements).

The linkages between information and exchange are worth stressing.

From equation (1), it is clear that refined state-dependent decisions are

possible only under refined information. Equation (1) implies that no

agent can implement a trade that depends on information not available to

him/her. There can be no markets for contracts that depend on information

that is not available to someone in the economy. More generally, net trade

between two groups of agents can at most depend on the information that is

common to both groups. Since risk markets/contracts require state-depend-

ent decisions, their development requires the interested parties to be well

informed. In addition, because common information is needed to trade

state-dependent contracts, heterogeneity of information across agents has

additional adverse effects on such markets/contracts. In extreme cases,

imperfect and asymmetric information can contribute to the disappearance

of all risk markets (with efficient exchange becoming state-independent; see

Radner 1968). This indicates the importance of both the amount and distri-

bution of information in the development of risk markets as well as con-

tracts. In general, poor and asymmetric information can contribute to

contract and market failure. If the relevant information is the individual’s

private situation and preferences, this is called a problem of adverse selection

(e.g., the case of eligibility criteria in an insurance contract). Alternatively, if

the relevant information is the individual’s actions, this is called a problem

of moral hazard (e.g., the case of monetary rewards that depend on the

individuals’ effort). These issues are discussed in more details in Chapter 12.

There are scenarios under which centralized management of information

can be efficient. They include situations where there are economies of scale

in obtaining information and where information is a public good or involves

significant externalities. In this context, a decentralized decision-making

process would typically fail to be efficient without appropriate policy inter-

vention. This suggests a role for government to generate the associated
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public goods, or to intervene in the management of the information external-

ities (whether they are positive or negative). It could involve public insti-

tutions, regulations, and/or Pigouvian taxes inducing each agent to choose

efficient bundles. Examples include national defense (where information

involves strong economies of scale), basic research (generating public

goods), and pollution (generating significant externalities).

But there are also many scenarios suggesting decentralized management

of information. They can be motivated in part by the bounded rationality of

centralized decision-makers. In situations where the number of agents is

large, the economic environment is complex (with a large number of states),

and there is significant heterogeneity across agents, one can expect that

centralized decision-makers face severe limitations in obtaining information.

This would provide an incentive to decentralize the decision-making process.

Again, the optimal form of economic organization would involve tradeoffs

between information costs and the benefits of using more refined decision

rules. When the benefits of information tend to be ‘‘local’’ and the costs of

information are relatively low, decentralized decision-making can be effi-

cient. This applies to production, consumption as well as exchange activities.

In the context of exchange, both transaction costs and information costs

need to be relatively low to motivate any transaction between agents. If such

costs are low enough to motivate a transaction, two possible mechanisms are

relevant: a market mechanism and contracts. Market mechanisms tend to

arise when the number of potential market participants interested in exchan-

ging standard commodities is relatively large. Alternatively, contracts de-

velop when the number of parties involved is small and/or the object of

exchange is nonstandard (as defined by quality, timing, etc.). In either case,

good ability to obtain and process information seems crucial to support

active risk markets and generate efficient risk allocation. Then, more refined

state-contingent decision rules as well as risk redistribution away from the

more risk averse individuals can generate significant efficiency gains.

PROBLEMS

Note: An asterisk (*) indicates that the problem has an accompanying Excel file on

the Web page http://www.aae.wisc.edu/chavas/risk.htm.

*1. Consider a public choice concerning the design and financing of a project

involving two individuals, i ¼ 1, 2. The project consists in a public good x that affects

the welfare of each individual and that generates uncertain returns that are redistrib-

uted to the two individuals. The investment cost is [2 x] while the investment gross

return is [(8x� :4x2)e=10] where e is a discrete random variable that can take any of

10 possible values, ej ¼ j, j ¼ 1, 2, . . . , 10.
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Each individual behaves in a way consistent with the expected utility hypothesis

with a utility function Ui(wi, x, e) ¼ � exp (� wi)� ai exp (� xej), i ¼ 1, 2. The ini-

tial wealth wi for the i
th individual is: w1 ¼ 1 and w2 ¼ 0. The preference parameter ai

is: a1 ¼ 2 and a2 ¼ 1. The ith individual’s subjective probability of state j is

pij ¼ :1; i ¼ 1, 2; j ¼ 1, 2, . . . , 10.
a. Characterize a Pareto optimal design of the project, assuming that both x

and the transfers t can be state-dependent.

b. Obtain numerical solutions to a Pareto optimal project.

1. Evaluate the utility frontier u1 ¼ f (u2).

2. What is the optimal investment x? Does it vary with e? Does it vary with

(u1, u2)?

3. What are the optimal transfers t for the two individuals? Evaluate the

transfers as a function of ‘‘net return.’’ How do your findings vary with

(u1, u2)?

Interpret your results.

c. Assume that x is chosen ex-ante. How does that affect your answers in

question b? Interpret.

d. Assume now that the quality of public information deteriorates. It is no

longer possible to distinguish between the four states {1, 2, 3, 4, 5} or

between the four states {6, 7, 8, 9, 10}. How does that affect your answers

in question b? Interpret.

e. Assume that the subjective riskiness facing individual 2 increases, the

probabilities p2j now being equal to {p2j} ¼ (:19, :19, :1, :01, :01, :01,
:01, :1, :19, :19). (Assume that p1j remains unchanged and that all states e

are observable for public decision-making.) How does the higher risk affect

your results in question b? Interpret your findings.

2. Show that, under constant absolute risk aversion for all agents, production and

investment decisions are independent of the distribution of wealth.

3. Show that, under an efficient allocation and competitive markets, there does

not exist a contract that can increase aggregate profit. Explore the implications for

insurance contracts.
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Chapter 12

Contract and Policy Design
Under Risk: Applications

InChapter11,wepresentedageneral analysisof the economic efficiencyof risk

allocation.We showed that efficient risk allocations have two objectives: (1) to

reduce private risk exposure and redistribute the risk away from risk-averse

individuals, and (2) to improve the quality of the information available in the

decision-makingprocess.However, the implementationof theseobjectives can

be complex. This chapter focuses on some applications. Specific applications

lead to more specific efficient decision rules. This provides additional insights

on the economics of contract and policy design under imperfect information.

RISK SHARING

A generic issue in risk allocation is how to redistribute risk within a group

of individuals. Here, we consider the case where the risk is associated with

the outcome of a public project. The public project involves an ex-ante

investment x that generates an uncertain net monetary return p(x, e),

where e is a random variable representing the uncertainty. The questions

are: (1) How much to invest? and (2) How to redistribute the benefits of the

public investment under uncertainty?

Assume that there are n individuals involved. Denote by tei ¼ ti(e) the

decision rule giving the net payment made to the i-th individual when the

random variable takes the value e. Feasibility implies that

Xn

i¼1

ti(e)� p(x, e):

183
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The ex-ante utility function of the i-th individual is ui(t
e
i ), i ¼ 1, . . . , n.

This means that the only benefit of the public investment x comes from the

redistribution of the net return p(x, e) among the n individuals. The i-th

individual benefit function is bi(t
e
i , Ui), which satisfies

ui(t
e
i � bi) ¼ Ui, i ¼ 1, . . . , n: (1)

From Chapter 11, an efficient allocation satisfies

0 ¼ V (U) ¼ Max
Xn

i¼1

bi(t
e
i , Ui):

Xn

i¼1

ti(e) � p(x, e)

( )

: (2)

where U ¼ (U1, . . . , Un). This identifies efficient allocations that maximize

aggregate benefit
Pn

i¼1 bi(t
e
i , Ui), and completely redistribute the resulting

surplus V(U) among the n individuals.

To obtain more specific results, consider the situation where the random

variable e has a probability distribution that is common knowledge. Let

m ¼ E(e) denote the mean of e, and s2 ¼ Var(e) denote the variance of e.

Assume that the net return from public investment takes the specific form:

p(x, e) ¼ x � e. Assume that the payment to the i-th individual uses a linear

decision rule: ti(e) ¼ ai þ bi p(x, e) ¼ ai þ bi � x � e, where ai and bi are par-

ameters to be chosen ex-ante, i ¼ 1, . . . , n. Here the ai’s can be interpreted

as lump sum transfers, while bi measures the proportion of net return p that

is redistributed to the i-th individual. Finally, assume that the i-th individual

has a mean variance preference function ui(t
e
i ) ¼ E(tei )�

1⁄2 ri �Var(tei ), where

ri > 0 is a risk-aversion parameter. This means that [E(tei )�
1⁄2 ri �Var(tei )] is

the certainty equivalent, and Ri ¼ [1⁄2 ri �Var(tei )] is the i-th individual risk

premium (see Chapter 3). As seen in Chapter 3, this is consistent with the

expected utility model under constant absolute risk aversion (CARA) where

ri is the absolute risk aversion coefficient. With ri > 0, each individual is risk

averse and exhibits a positive risk premium, Ri > 0.

From equation (1), the i-th individual benefit function bi satisfies

E(tei )�
1⁄2 ri �Var(tei ) � bi ¼ Ui, implying that

bi ¼ E(tei ) �½ ri �Var(tei ) �Ui, i ¼ 1, . . . , n: (3a)

This makes it clear that the risk premium Ri ¼ [ 1
2
ri �Var(tei )] is the implicit

cost of private risk bearing: it is measured in monetary units and contributes

to reducing the individual benefit function bi in (3a). Under a linear decision

rule, we have E(tei ) ¼ ai þ bi � x � m, and Var(tei ) ¼ b2
i � x2 � s2. Then, the i-th

individual benefit (3a) becomes

bi ¼ ai þ bi � x � m� 1

2
ri � b2

i � x2 �s2 �Ui, i ¼ 1, . . . , n: (3b)
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The efficient allocation given in (2) becomes

0 ¼ V (U) ¼ Max
Xn

i¼1

[ai þ bi � x � m� 1=2 ri � b2
i � x2 � s2 �Ui]:

(

Xn

i¼1

[ai þ bi � x � e] � x � e
)

: (4)

This is a constrained optimization problem. Note that, under efficiency,

the constraint is always binding (if not, the public project would generate a

monetary surplus that can be redistributed to some individual, making him/

her better off). Thus, the constraint becomes
Pn

i¼1 ai þ ( � 1 þ
Pn

i¼1 bi) �
(x � e) ¼ 0. This can hold for all e only if

Xn

i¼1

bi ¼ 1, (5a)

and

Xn

i¼1

ai ¼ 0: (5b)

Note from (3b) that the marginal benefit with respect to bi is:

@bi=@bi ¼ x � m� ri � bi �x2 � s2. Given ri > 0 and x > 0, the proportion bi
maximizing aggregate benefit satisfies the first-order condition:

m ¼ ri � bi � x � s2, yielding

bi ¼ m=[ri � x � s2]: (5c)

Substituting (5c) into (5a) implies
Pn

i¼1 (1=ri)] � m=[x � s2
� �

¼ 1, giving the

optimal investment

x� ¼
Xn

i¼1

(1=ri)

" #

� m=(s2): (6a)

Substituting (6a) into (5c) yields the optimal proportion

b�i ¼ (1=ri)=
Xn

i¼1

(1=ri)

" #

: (6b)

Finally, given ti(e) ¼ ai þ bi � x � e, the optimal payment to the i-th indi-

vidual is

ti(e)
� ¼ a�i þ bi � m=(ri � s2) � x � e, (6c)
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for any a�i satisfying
Pn

i¼1 a�i ¼ 0 in (5b). Equation (6) characterizes the

Pareto efficient allocation of resources under risk. It includes the optimal in-

vestment x� in (6a), the optimal proportions b�i ’s in (6b), and the optimal

individual payments ti(e)
� in (6c). And the surplus is entirely redistributed

(with V (U) ¼ 0) when U satisfies Ui ¼ a�i þ b�i � x � m�
1⁄2 ri � b�2i � x�2 � s2,

i ¼ 1, . . . , n. Note that changes in a’s satisfying (5b) amount to lump sum

transfers. Then, moving along the Pareto utility frontier simply involves

income transfers among the n individuals through the a’s. These transfers

have no effect on the optimal decision rules in (6a)–(6b). This corresponds to

a case of ‘‘zero income effects,’’ where efficient decision rules can be evalu-

ated independently on income distribution.

The Pareto efficient policies (6a)–(6c) provide useful and intuitive infor-

mation about efficient behavior under risk. First, consider the properties of

the optimal provision of the public good x� in (6a):

. @x�=@m > 0,

. @x�=@s2 < 0,

. @x�=@ri < 0, i ¼ 1, . . . , n.

This indicates that higher expected returns (m) have a positive effect on

public investment x. It also shows that both higher risk (s2) and higher

degree of risk aversion (ri) by any individual has a negative influence on

public investment x. These effects are due to risk aversion. Decreasing

public investment is an efficient way to reduce the aggregate cost of risk

(as measured by the aggregate risk premium (
Pn

i¼1 Ri ¼
Pn

i¼1 1=2 ri � b2
i �

x2 � s2) in response to an increase in risk s2 or in risk aversion ri.

Second, consider the properties of the optimal transfers ti(e)
� in (6c).

. @ti(e)
�=@m > 0,

. @ti(e)
�=@e > 0,

. @ti(e)
�=@s2 < 0,

. @ti(e)
�=@rj< 0, for j ¼ i,

¼ 0 for j 6¼ i, i ¼ 1, . . . , n:

This shows that a higher expected return (m) as well as a higher realized

value of the random variable e tend to increase the transfers toward any

member of the group. It also indicates that a higher risk (s2) decreases the

payments toward all individuals. Finally, it shows that a higher degree of

risk aversion by the i-th individual (ri) decreases the transfer payment to this

individual, but leaves the payments to other members of the group un-

affected. This decreased payment toward the i-th individual reduces his/her

private risk exposure, which is an efficient way of reducing the aggregate

cost of risk.
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INSURANCE

Consider a group of n agents, i ¼ 1, . . . , n, where i ¼ 1 represents an

insurance firm, and i ¼ 2, . . . , n, denotes a set of (n� 1) individuals inter-

ested in insurance coverage. Each agent is facing a stochastic return pi(e),
where e is a random variable, i ¼ 1, . . . , n. Under the expected utility model,

the objective function of the i-th agent is given by

Eiui[ti(e) þ pi(e)],

where Ei is the expectation operator based on the subjective probability

distribution of e by the i-th individual, and ti(e) is the payment received by

the i-th individual under state e. From Chapter 4, this objective function can

be equivalently written in terms of the certainty equivalent

Ei[ti(e)] þ Ei[pi(e)] � Ri, i ¼ 1, . . . , n,

where Ri is the Arrow–Pratt risk premium for the i-th individual: Ri ¼ 0

under risk neutrality, and Ri > 0 under risk aversion. The problem is to

design an efficient insurance contract between the insurance firm and the

(n� 1) individuals.

The associated benefit function bi for the i-th individual satisfies

Eiui[ti(e) þ pi(e) � bi] ¼ Ui, or Ei[ti(e)] þ Ei[pi(e)] � Ri � bi ¼ u�1
i (Ui). This

implies the following individual benefit

bi(ti(e)) ¼ Ei[ti(e)] þ Ei[pi(e)] � Ri � u�1
i (Ui), i ¼ 1, . . . , n:

Again, this shows that the risk premium Ri is the implicit cost of private

risk bearing: it is measured in monetary units and contributes to reducing the

individual benefit function bi( � ). Then, from Chapter 11, the efficient insur-

ance scheme is given by

0 ¼ V (U) ¼ Max
Xn

i¼1

Ei[ti(e)] þ Ei[pi(e)] � Ri � u�1
i (Ui)

� �
( )

: (7)

This means that efficient transfers t(e) maximize aggregate benefitPn
i¼1 bi, while the resulting surplus V(U) is completely redistributed

among the n individuals.

Consider the following situation:

. There is no asymmetric information within the group.

. The insurance firm is risk neutral (Ri ¼ 0).

. The insured individuals are risk averse (Ri � 0, with Ri ¼ 0 if and only

if the i-th individual faces no risk, i ¼ 2, . . . , n).
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Then, the efficient transfer (or the efficient insurance contract) is of the

form:

ti(e)
�¼ Ki � pi(e) for some (non-random) constant Ki, i ¼ 2, . . . , n,

t1(e)
�¼ �

Xn

i¼2

ti(e)
� ¼

Xn

i¼2

[pi(e) � Ki]:

To see that, note that the above decision rule implies that

[ti(e)
� þ pi(e)] ¼ Ki. Since Ki is nonrandom, this means that the i-th individ-

ual faces no risk and thus that his/her risk premium is zero: Ri ¼ 0 for

i ¼ 2, . . . , n. And R1 ¼ 0 because the insurance firm is risk neutral. Then

it is sufficient to note that any other transfer rule would imply Ri > 0 for

some i � 2, thus increasing the aggregate risk premium
Pn

i¼1 Ri and redu-

cing aggregate benefit in (7). Also, note that the surplus is entirely redistrib-

uted (with V (U) ¼ 0) when U satisfies u�1
i (Ui) ¼ Ei[ti(e)] þ Ei[pi(e)] � Ri,

i ¼ 1, . . . , n. And changes in the K’s are equivalent to lump sum transfers

between the n agents, generating moves along the Pareto utility frontier.

Thus, in the absence of asymmetric information, the optimal transfer is as

follows:

. The risk neutral insurance firm bears all the risks;

. The optimal insurance contract eliminates all private risk-bearing by the

risk-averse insured individuals.

This reflects the main benefit of insurance: redistributing the risk away

from the (more) risk-averse individuals. This lowers the social cost of risk

and improves the efficiency of risk allocation.

THE PRINCIPAL–AGENT MODEL

In general, risk transfers are decided jointly with other allocation decisions.

The jointness of these decisions under imperfect information has generated

much interest. The related economic issues have been presented in the simple

context of two individuals: n ¼ 2. When one individual is called ‘‘the

principal’’ and the other ‘‘the agent,’’ this generates the classical principal–

agent model (see Shavell 1979; Holmstrom 1979).

Let individual 1 be ‘‘the principal’’ and individual 2 be ‘‘the agent.’’ Let

e be a random variable representing uncertainty facing the two individuals.

Assume that the principal designs a contract for the agent to choose an ex-

ante ‘‘effort level’’ z generating a stochastic monetary return p(z, e) to be

shared between the two parties. The return is shared such that, under state e,

the agent receives t2(e) and the principal receives t1(e) ¼ [p(z, e) � t2(e)]. The
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issue is how to make efficient decisions for effort z and payment t2(e). Under

the expected utility model, assume that the objective function of the princi-

pal is E1u1[p(z, e) � t2(e)], while the objective function of the agent is

E2u2(t2(e)) � v(z), where Ei is the expectation operator based on the infor-

mation available to the i-th individual, i ¼ 1, 2. The term v(z) reflects the

utility cost of effort for the agent. Throughout, we assume nonsatiation

where the marginal utility of income is positive: @u1=@p > 0 and @u2=@t2 > 0.

As seen in Chapter 11, efficiency in the principal–agent model can be

represented as follows:

Max E1u1[p(z, e) � t2(e)]:E2u2(t2(e) ) � v(z) � U2, z is feasiblef g, (8)

where U2 is the reservation utility for the agent. The constraint

E2u2(t2(e) ) � v(z)�U2 is called the participation constraint or the individual

rationality constraint. It states that if U2 represents the utility received by the

agent in the absence of contract, then the agent would not agree with a

contract generating utility less than U2. From Chapter 3, note that expres-

sion (8) can be equivalently expressed in terms of the corresponding certainty

equivalents:

Max{E1[p(z, e)�t2(e)]�R1:E2[t2(e)]�R2 � u�1
2 [U2þv(z)], z is feasible}, (80)

where Ri is the risk premium measuring the implicit cost of private risk

bearing the i-th individual, i ¼ 1, 2.

THE OPTIMAL CONTRACT WHEN EFFORT IS OBSERVABLE

We first consider the case of symmetric information, where the principal

and the agent have access to the same information. This implies that the

effort level z chosen by the agent is observable by the principal. It means that

the principal can include the effort level in the terms of the contract. The

efficient contract then corresponds to the optimal solution (t2(e)
�, z�) of the

constrained optimization problem (8). The associated Lagrangean is L ¼
E1u1[p(z, e) � t2(e)] þ l[E2u2(t2(e) ) � v(z) �U2], where l � 0 is the Lagrange

multiplier associated with the participation constraint (see Appendix B).

Under efficiency, one expects the participation constraint to be binding.

To see that, simply note that a nonbinding constraint (where l ¼ 0) always

implies an inefficient contract since the principal could be made better off by

reducing the payment t2(e). As a result, the associated Lagrange multiplier l
is necessarily positive at the optimum: l� > 0. Under differentiability, the

first-order necessary conditions for an interior solution (t2(e)
�, z�) to (8) are:

@u1=@p ¼ l @u2=@t2(e), (9a)
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E1[(@u1=@p)(@p=@z)] ¼ l @v=@z, (9b)

E2u2(t2(e) ) � v(z) ¼ U2: (9c)

Equation (9a) can be alternatively written as

[@u1=@p]=[@u2=@t2(e)] ¼ l: (9a0)

The left-hand side in (9a') is the ratio of marginal utility of the principal to

the marginal utility of the agent. It measures the marginal rate of substitu-

tion from transferring $1 from the agent to the principal under state e. Then,

equation (9a0) states that at the optimal t2(e)
�, the ratio of the marginal

utilities of the principal and the agent are constant for all states e. This is

the condition characterizing efficient risk distribution between the two parties.

In addition, equation (9a0) identifies the Lagrange multiplier l� > 0 as

measuring the marginal rate of substitution from transferring $1 from the

agent to the principal under any state. Equation (9b) states that, at the

optimum effort z�, the marginal value of effort, E1[(@u1=@p)(@p=@z)], equals

its marginal cost, l@v=@z, all being expressed in terms of the utility of the

principal. Finally, equation (9c) simply reflects that the participation con-

straint is binding.

To better understand the implications of (9a0) for risk allocation, it will be

useful to consider alternative situations. First, if the principal is risk neutral,

u1(p� t2) is linear in p and @u1=@p is a constant for all e. Then at the

optimum, equation (9a0) implies that @u2=@t2(e) must also be a constant

for all states e. If the agent is risk averse (with @2u2=@t
2
2 < 0), equation (9a0)

can hold only if t2(e) is a constant. This means that, under an efficient

contract, the risk-averse agent must receive a payment t2(e) that is independent

of the state e: t2(e)
� ¼ K1, where K1 is a nonstochastic constant. This corres-

ponds to a standard wage contract where the agent receives a fixed amount

K1 from the principal who is the residual claimant (receiving p(z�, e) � K1

under state e). Thus, when effort is observable, efficiency in risk allocation

implies that a risk-neutral principal must bear all the risk, completely insuring

the risk-averse agent. This is an intuitive result. Indeed, from (80), the risk

premium for a risk-neutral principal is always zero (R1 ¼ 0), while the risk

premium for a risk-averse agent is nonnegative (R2 � 0) and equals zero if

and only if the agent faces no risk. Thus, the contract where t2(e)
� ¼ K1 is

the only situation where R1 ¼ R2 ¼ 0, i.e. where the total cost of risk bearing

is zero. This is the situation where all the observable risk is efficiently

transferred to the risk-neutral principal.

Second, consider the opposite situation where the agent is risk neutral.

Then, u2(t2) is linear in t2 and @u2=@t2(e) is a constant for all e. Then at the

optimum, equation (9a0) implies that @u1=@p must also be a constant for all

states e. If the principal is risk averse (with @2u1=@p2 < 0), equation (9a0) can
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hold only if p(z, e) � t2(e) is a constant. This means that, under an efficient

contract, the risk-averse principal must receive a payoff p(z, e) � t2(e) that is

independent of the state e: p(z�, e) � t2(e)
� ¼ K2, where K2 is a nonstochastic

constant. The agent would then receive t2(e)
� ¼ p(z�, e) � K2. This corres-

ponds to a franchise contract where the agent pays a fixed amount K2 to the

principal and keeps the rest: p(z�, e) � K2 under state e. Since the agent

becomes the residual claimant, this can also be interpreted as the agent buy-

ing the activity (the firm) from the principal. Thus, when effort is observable,

efficiency in risk allocation implies that a risk-neutral agent must bear all the

risk, completely insuring the risk-averse principal. Again, this is an intuitive

result. Indeed, from (8'), the risk premium for a risk-neutral agent is always

zero (R2 ¼ 0), while the risk premium for a risk-averse principal is non-

negative (R1 � 0) and equals zero if and only if the principal faces no risk.

Thus, the contract where t2(e)
� ¼ p(z�, e) � K2 is the only situation where

R1 ¼ R2 ¼ 0, i.e. where the total cost of risk bearing is zero. This is the

situation where all the observable risk is efficiently transferred to the risk-

neutral agent.

Third, consider the situation where both principal and agent are risk

averse. From equation (8'), the risk premium Ri is nonnegative in general

and strictly positive when the i-th individual faces some risk, i ¼ 1, 2. It

means that it is no longer possible to design a risk-sharing scheme that would

reduce both R1 and R2 down to zero. Then, efficient risk sharing will take

place when the aggregate cost of risk bearing (R1 þ R2) is minimized. This

typically means that both the principal and the agent accept part of the risk.

To illustrate, consider the simple case where z� is fixed, and the risk pre-

miums take the form R1 ¼ r1Var[p(z�, e) � t2(e) ] and R2 ¼ r2Var[t2(e)],

ri>0 being the coefficient of risk aversion of the i-th individual (see

Chapter 6). Assume that t2(e) ¼ aþ bp(z�, e) where b measures the propor-

tion of the risky payoff received by the agent. Then, R1 ¼ r1(1 � b)2Var(p),R2

¼ r2b
2Var(p), and (R1þR2) ¼ [r1(1�b)2þr2b

2]Var(p). Then, the value of b
that minimizes (R1 þ R2) is b� ¼ r1=(r1 þ r2). This implies @b�=@r1 > 0 and

@b�=@r2 < 0, with 0 < b� < 1. Thus, the proportion of risk shared with the

agent increases with the risk aversion of the principal (@b�=@r1 > 0), and

decreases with the risk aversion of the agent (@b�=@r2 < 0). Intuitively,

this illustrates that it is efficient to shift the risk toward the individual

who is less risk averse. Note that this includes the situations discussed

above as special cases: as r1 ! 0, b� ! 0 as the risk-neutral principal

absorbs all the risk; and as r2 ! 0, b� ! 1 as the risk-neutral agent absorbs

all the risk.
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THE OPTIMAL CONTRACT WHEN EFFORT IS NOT OBSERVABLE

We just analyzed efficient contract design under symmetric information,

where effort was observable by the principal. We now introduce asymmetric

information between the two parties. The main issue is, how does asymmetric

information affect the design of an efficient contract? In the case where the

principal has more information than the agent, then the analysis just pre-

sented applies—the principal can use his/her superior information to design

an efficient contract. But the situation becomes more complex when the

agent has more information than the principal. Indeed, the contract written

by the principal can only depend on the information available to the princi-

pal. This allows the agent to take advantage of his/her better information.

We want to investigate how this affects optimal contracts.

We start our analysis focusing on a particular type of asymmetric infor-

mation: when the principal cannot observe the agent’s behavior. In the context

of the principal–agent model, this means that the principal does not observe

the effort level z chosen by the agent. It implies that the effort level cannot be

specified in the terms of the contract. Intuitively, when effort is costly, this

gives an incentive for the agent to apply little effort, which may be detrimen-

tal to the efficiency of resource allocation. This type of asymmetric infor-

mation problem is known as moral hazard. Below, we study the optimal

contract under asymmetric information with respect to effort.

Without observing the agent’s effort, the principal cannot force the

agent to choose a particular effort level. Then, the only option is for the

principal to choose a payment scheme that induces the agent to choose

the efficient level of effort. When effort z is not specified in the contract, the

agent chooses z according to the optimization problem

z solves Maxz{E2u2(t2(e) ) � v(z): z is feasible}: (10)

This condition is called the incentive compatibility constraint. For a given

payment scheme t2(e), it states that, since effort is not verifiable, the agent

chooses the level of effort that maximizes his/her objective function. Without

observing z, the principal takes the incentive compatibility constraint as

given. After adding this constraint to the optimization problem (8), the

efficient contract under moral hazard can be represented as

Max{E1u1[p(z, e) � t2(e)]:E2u2(t2(e) ) � v(z)�U2;

z solves Maxz{E2u2(t2(e) ) � v(z): z is feasible}}:
(11)

This is the standard formulation of the principal–agent model under moral

hazard. It provides a formal framework to analyze efficient contract design

under asymmetric information about the agent’s behavior. Comparing (8) to
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(11), asymmetric information about effort has added the incentive compati-

bility constraint (10). Since adding a constraint cannot increase the value of

the objective function in a maximization problem, it follows that introducing

asymmetric information and moral hazard tends to make the principal worse

off. This is just another statement that the (gross) value of information is

nonnegative (see Chapter 11).

The Case of a Risk-Neutral Agent:

Note that when the incentive compatibility constraint is nonbinding in (11),

then moral hazard creates no welfare loss, and the optimal contract is the

one obtained under symmetric information (as previously discussed). This

happens if the agent is risk neutral, in which case the efficient contract

stipulates a payment scheme t2(e)
� ¼ p(z�, e) � K2, where K2 is a nonsto-

chastic constant. As seen above, this corresponds to a franchise contract

where the agent pays a fixed amount K2 to the principal and is the residual

claimant receiving p(z�, e) � K2. In this case, note that the optimal contract

obtained in (8) under symmetric information always satisfies the incentive

compatibility constraint (10). Thus, when the agent is risk neutral, it remains

efficient to shift all the risk to the agent, whether or not there is asymmetric

information about effort.

The Case of a Risk-Averse Agent:

In situations where the agent is risk averse, asymmetric information about

the agent’s effort tends to have adverse welfare effects. When the incentive

compatibility constraint (10) becomes binding, the optimal contract differs

from the symmetric information case. Unfortunately, when binding, the

incentive compatibility constraint can be difficult to evaluate in general.

For the purpose of illustration, it will be convenient to focus on the simple

case where the agent is risk averse (R2 � 0 with R2 ¼ 0 if and only if the

agent faces no risk), the principal is risk neutral(R1 ¼ 0), and the agent

chooses between two levels of effort, high effort zH and low effort zL. Assume

that the utility-cost of effort satisfies v(zH ) > v(zL). It means that any fixed

payment scheme would only get the agent to choose the low level of effort

zL. If the principal prefers low level of effort zL, the incentive compatibility

constraint is always satisfied, and the contract obtained under symmetric

information remains efficient. The problem becomes of interest when the

principal prefers high effort to low effort (e.g., when the risky propect

p(zH , e) exhibits first-order stochastic dominance over p(zL, e); see

Chapter 5). We focus on this situation below. Consider the case where

e is a discrete random variable satisfying PrHs
¼ Prob(p(zH , es) and

PrLs ¼ Prob(p(zL, es), s ¼ 1, . . . , S. In order to induce the agent to choose
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a high level of effort, the contact must involve a state-dependent transfer

t2(e), which induces the agent to choose zH . This is reflected by the incentive

compatibility constraint (10), which takes the form:

XS

s¼1

PrHsu2(t2(es) ) � v(zH )] �
XS

s¼1

PrLsu2(t2(es) ) � v(zL) ],

or

XS

s¼1

[PrHs � PrLs]u2(t2(es) ) � v(zH )] � v(zL): (12)

Equation (12) is intuitive: it states that the expected utility gain from

choosing high effort must be at least as large as the associated increase in

cost.

We have seen above that, under symmetric information and a risk-neutral

principal, it is optimal for the principal to bear all the risk, corresponding to

t2(es) ¼ K1, where K1 is a nonstochastic constant. Note that this implies that

the left-hand side in (12) is zero (since
PS

s¼1 PrHs ¼
Ps

s¼1 PrLs ¼ 1). But this

is inconsistent with (12) (since v(zH) > v(zL) means that the right-hand side

in (12) is positive). Thus, the optimal contract obtained under symmetric

information never satisfies the incentive compatibility constraint. This

means that, under this scenario, the incentive compatibility constraint (12)

is always binding, and the optimal contract under moral hazard necessarily

differs from the one obtained under symmetric information.

For a risk-neutral principal who prefers zH , the Lagrangean associated

with the optimization problem (11) is L¼
PS

s¼1 PrHs[p(zH , es)� t2(es)]þ
l [
PS

s¼1 PrHsu2(t2(es) )� v(z)�U2] þg [
PS

s¼1 [PrHs �PrLs]u2(t2(e) )� v(zH )]

þv(zL)], where l�0 and g�0 are Lagrange multipliers associated with the

participation constraint and the incentive compatibility constraint, respect-

ively. Under differentiability, the first-order necessary condition with respect

to t2(e) is

�PrHs þ lPrHs@u2=@t2(es) þ g [PrHs � PrLs]@u2=@t2(es) ¼ 0,

or

1=[@u2=@t2(es)] ¼ lþ g [1 � (PrLs=PrHs)], (13)

for s ¼ 1, . . . , S. Note that g > 0 since we have just seen that the incentive

compatibility constraint is necessarily binding. With g > 0, equation (13)

implies that @u2=@t2(es) increases with the likelihood ratio (PrLs=PrHs),

s ¼1, . . . ,S. Given a risk-averse agent, @2u2=@t2(es)
2 < 0 and @u2=@t2 is a

decreasing function of t2. It follows from (13) that the efficient payment

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:47am page 194Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:47am page 194Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:47am page 194Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:47am page 194

194 Risk Analysis in Theory and Practice



t2(es)
� must be a decreasing function of the likelihood ratio(PrLs=PrHs),

s ¼ 1, . . . , S. It means that, for a given state es, the smaller likelihood

ratio (PrLs=PrHs), the larger the probability that the effort was zH (as

opposed to zL), the larger the payment t2(es)
�, s ¼ 1, . . . , S. This is intuitive:

Under moral hazard, the optimal payment to the agent is larger (smaller) in

states that are more (less) likely to be associated with the desired high effort.

It provides an incentive for the agent to exert high effort. Interestingly, this

does not necessarily link the payment t2(es)
� to the payoff p(z, es). Rather, it

uses observations on p(z, es) as an information device on the agent’s behav-

ior. See Macho-Stadler and Pérez-Castrillo 1997, or Salanié 1999 for add-

itional discussion.

In summary, under moral hazard and a risk-averse agent, the efficient

contract has the following characteristics:

. at least some risk will be faced by the principal (otherwise, the benefits of

risk sharing with the risk-averse agent would not be obtained)

. if the incentive compatibility constraint is binding, then some risk will

be faced by the agent. To see that, assume the contrary where the agent

faces no risk and receives a nonstochastic payment K. Then, the agent

would receive utility u2(K) � v(z), and would choose z so as to minimize

the cost of effort v(z). When the incentive compatibility constraint is

binding, the principal would prefer a different choice for z, implying

that the effort provided by the agent is not optimal. This means that a

fixed payment K to the agent cannot be efficient. Under this scenario,

in contrast with the symmetric information case, it is efficient for the

risk-averse agent to face some risk. Obviously, this optimal risk expos-

ure cannot be motivated by concerns about the private cost of risk

bearing. Rather, it is motivated as an incentive for the agent to behave

more efficiently. For example, in the context of insurance, a complete

redistribution of risk away from the agent would mean that the agent

no longer has private incentives to reduce the risk being insured (e.g.,

by providing ‘‘appropriate effort’’ to prevent fire under fire insurance).

In this case, it is efficient to shift some of the risk to the agent. This

provides an incentive effect for effort z, attempting to correct for the

existence of moral hazard in contract under asymmetric information.

Some Examples:

The usefulness of the previous analysis is illustrated next in a few examples.

Example 1: Liability Rules between an individual or a firm (the agent) and

society, typically represented by a government agency (the principal). Deal-

ing with an accident that can happen with some positive probability, there

are two broad categories of liability rules:
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. strict liability, where the agent pays a fee but only if the accident occurs.

. negligence, where the agent pays a fee, depending on whether the firm

has been negligent or not.

The above results suggest that strict liability rules are appropriate if the

firm is risk neutral. Alternatively, negligence standards are appropriate if

the firm is risk averse.

Example 2:Moral hazard and insurance, where the agent is the insured individ-

ual and the principal is the insurance firm. In the context of asymmetric infor-

mation, our results suggest that, if the agent is risk averse, moral hazard can

imply that he/she must bear some of the risk. Then, in an efficient insurance

contract under asymmetric information, the insurance coverage should not

shift all the risk away from the agent and should include a deductible.

Example 3: Sharecropping, where the principal is the landlord, and the agent

is the tenant. Then, if the tenant is risk neutral, a cash rent contract would be

efficient. Alternatively, if the principal and the agent are both risk averse,

then some form of sharecropping would be efficient. In this case, both risk-

sharing and incentive issues would motivate the design of a sharecropping

contract (see Stiglitz 1974).

ADVERSE SELECTION

We have just analyzed the efficiency of contract design when there is

asymmetric information about individual behavior. Here, we investigate the

implicationsofanother formofasymmetric information,when ‘‘theprincipal’’

chooses a decision rule affecting thewelfare of other individualswithout being

able to observe some of the characteristics of these individuals. To illustrate,

consider a competitive insurance industry composed of risk-neutral insur-

ance firms. There are two types of potentially insurable individuals:

. type a: ‘‘low risk’’ individuals facing a prospect of loss pa(e) > 0,

. type b: ‘‘high risk’’ individuals facing a prospect of loss pb(e) > 0,

with E(pa) < E(pb).

Assume that all individuals behave in way consistent with the expected

utility model and have the same risk-averse preferences U( � p), implying

EU( � pa) ¼ U(E( � pa) � Ra), for individuals of ‘‘type a’’

and

EU( � pb) ¼ U(E( � pb) � Rb), for individuals of ‘‘type b’’
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where Ra > 0 and Rb > 0 are the risk premium.

The insurance firms know that there are percent individuals of type a, and

(1 � a) percent individuals of type b, but they do not know the type of each

individual. This is a situation of asymmetric information, not about the

actions of individuals but about their ‘‘type.’’

Under competition, the insurance firms may want to offer an insurance

contract for the loss p, with premium set equal to the expected value of the

loss among all individuals:

aE(pa) þ (1 � a)E(pb):

Type b individuals would always accept this contract since

U [ � E(pb) � Rb] ¼ EU( � pb) < U [ � aE(pa) � (1 � a)E(pb)]

or

0 > a[E(pa) � E(pb)] < Rb > 0:

However, type a individuals would not accept this contract if:

U [ � E(pa) � Ra] ¼ EU( � pa) > U [ ¼ aE(pa) � (1 � a)E(pb)]

or

(1 � a)[E(pb) � E(pa)] > Ra:

In this case, ‘‘low risk’’ individuals would self-select and would not

purchase a contract. The insurance firms would face higher losses than

anticipated (because only ‘‘high-risk’’ individuals would purchase the con-

tract). As a result, the proposed contract cannot be an equilibrium contract.

Thus, under asymmetric information, low-risk individuals may not be able

to obtain an equilibrium insurance contract, resulting in a market failure.

This has been called a problem of adverse selection.

Other examples of adverse selection can be found in product quality

(when the buyer has less information about product quality than the seller),

labor market (when the worker knows his/her innate abilities better than the

employer), credit market (when the creditor has better information than the

bank about ability to repay a loan), etc.

In general, asymmetric information about individual characteristics is a

concern when it restricts the terms of contracts. As discussed in Chapter 11,

designing contracts under poor information implies a reduction in the effi-

ciency of resource allocation. Thus, asymmetric information is in general a

source of inefficiency. And as just illustrated, it can contribute to market

failures. In extreme cases, it can lead to the disappearance of markets.

However, this is not always the case. Even though asymmetric information

reduces efficiency, sometimes it is possible to develop contracts that can

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:47am page 197Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:47am page 197Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:47am page 197Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 8:47am page 197

Contract and Policy Design Under Risk: Applications 197



discriminate among individual types. The idea is to try to develop a menu of

contracts such that each contract is designed for an individual type, and each

individual has an incentive to purchase only the contract designed for his/her

type. When this is possible, then a price discrimination scheme among the

different contracts may be an effective way of dealing with information

asymmetry (see Rothschild and Stiglitz 1970, Macho-Stadler and Pérez-

Castrillo 1997, or Salanié 1999 for additional discussion).

THE ROLE OF ASYMMETRIC INFORMATION

We saw in Chapter 11 that asymmetric information contributes to ineffi-

ciency in resource allocation in two ways: (1) it implies less refined decision

rules by the poorly informed individuals, and (2) it has adverse effects on

exchange, meaning that it contributes to both incomplete markets and

incomplete contracts and reduces the gains from trade. We have seen two

situations pointing out the adverse effects of asymmetric information: moral

hazard (associated with the decisions made by ‘‘more-informed’’ individuals)

and adverse selection (associated with self-selection of individuals with

‘‘hidden characteristics’’). Since there is typically much heterogeneity

among individuals and in their access to information, this suggests that

asymmetric information issues are generic in evaluating the efficiency of

resource allocation. This stresses that information generates external effects

that need to be addressed in contract and policy design.

How can asymmetric information be efficiently managed? Note that this

is an issue only in situations where information is costly (otherwise the less-

informed individuals could always obtain additional information). One

option is to invest in information-gathering activities to help better inform

the decision-making process. Under costly information, this would take

place up to the point where the marginal benefit equals the marginal cost

of the additional information.

An alternative involves contract or policy rules designed such that the

better-informed individuals are willing to reveal their information to the

principal. There is extensive literature on this topic, broadly calledmechanism

design. The scheme is to design a contract involving informational rents paid

to the well-informed agents, rents that provide them with an incentive to

reveal what they know. This is often seen as an effective decentralized way of

dealing with asymmetric information issues. It can lead to price discrimin-

ation schemes (or nonlinear pricing) where different bundles are priced in

such a way that the well-informed buyers reveal their information through

their purchase decision. Finally, in cases where the informational rent is large

(i.e., when the incentive effects dominate possible risk-sharing benefits),
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it would be efficient to make the better-informed individual face all risk and

be the ‘‘residual claimant’’.

Another way involves ‘‘signaling.’’ Consider a well-informed agent ad-

versely affected by an adverse selection problem. Then, this agent can send a

signal observed by the principal that may influence the principal’s beliefs

about the agent’s identity. To the extent that the signal is credible, it can help

deal with asymmetric information issues (see Macho-Stadler and Pérez-

Castrillo 1997, and Salanié 1999 for a discussion). An example is the case

of education used as a signal in the labor market for the underlying un-

known ability of individuals. Finally, another way to deal with asymmetric

information problems involves interlinkage of contracts and transactions

(e.g., credit contract and land contract); it may help reduce transaction costs

and decrease moral hazard problems.

This discussion stresses the importance of information and information

management. While good information is crucial in efficient resource alloca-

tion, its distribution across individuals often involves external effects that

can be difficult to manage. In complex economies, bounded rationality

means that centralized management of information can be difficult and

often inefficient. But decentralized management of information externalities

is also difficult. Given the discussion presented in Chapter 11, efficient

contracts, efficient policy, and efficient forms of economic organizations

typically depend on individual abilities to obtain and process information,

and on associated transaction costs.

PROBLEMS

1. A principal contracts an agent to carry out a specific task under uncertainty.

The agent chooses a level of effort z, generating the payoff p. The probability

function of the payoff (conditional on z) is f (p, z). Risk preferences are represented

by the utility function Up(p� t) for the principal, and Ua ¼ u(t, z) for the agent,

where t denotes the payment made by the principal to the agent.

a. Evaluate the efficient contract.

b. What is the optimal contract if the principal is risk neutral?

2. A worker can exert two levels of effort, high effort zH and low effort zL, which

induce a production error with probability 0.25 and 0.75, respectively. His utility

function is U(t, z) ¼ 100 � 10=t� v(z), where t denotes the payment received and

v(z) ¼ 2 when z ¼ zH , and 0 when z ¼ zL. The product obtained is worth 20 if there

are no errors and 0 otherwise. The principal is risk neutral, and the worker has

reservation utility equal to 0.

a. Find the optimal contract and the optimal effort under symmetric infor-

mation.
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b. Now assume that production errors are observable by the principal, but

effort is not. Then, under asymmetric information, find the optimal con-

tract and the effort that the principal desires.

3. Consider a contract between a risk-neutral principal and a risk-averse agent,

where the agent effort is not observable. The utility function of the agent is

u(t, z) ¼ t1=2 � z2, where t is the payment to agent and z is the effort level. The

agent can choose between low effort zL ¼ 0 and high effort zH ¼ 3. His reservation

utility is 21. The risky payoff p can vary from 0, to 1000 to 2500, with associated

probabilities:

probability p ¼ 0 p ¼ 1000 p ¼ 2500

zL 0.4 0.4 0.2

zH 0.2 0.4 0.4

a. What is the efficient contract under symmetric information?

b. Under moral hazard, what is the optimal contract?

c. What is the optimal contract if the agent is risk neutral?
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Chapter 13

Price Stabilization

Competitive market equilibrium plays a crucial role in economic analysis. It

focuses on the role of competitive markets and competitive prices in resource

allocation. One key result obtained in Chapter 11 is the following:

In the presence of complete competitive markets and in the absence of

externalities, a market economy can generate a Pareto efficient alloca-

tion of resources.

This result has sometimes been used to argue in favor of a market

economy and against the involvement of government in economic policy.

In this context, in order to justify government policy, it becomes necessary to

identify the presence of market failures. Market failures can take many

forms (e.g., noncompetitive markets, externalities, the presence of public

goods). This section focuses on a particular form of market failure: the

fact that risk markets are typically incomplete under uncertainty.

Indeed, under uncertainty and in the absence of externalities, we saw in

Chapter 11 that competitive market equilibrium is Pareto efficient if there

exists a competitive market for each possible state of nature. This is the

assumption of perfect contingent claim markets. The problem is that, al-

though many markets exist in the real world, they clearly do not cover all

possible states of nature. For example, there is no market that would trade on

whether the growing season will be good for farmers ten years from now.

Thus, we are in a typical situation of incomplete risk markets. This suggests

that incomplete contingent claim markets can generate inefficient resource

allocation. In this case, nonmarket institutions (including government) could

possibly help improve the efficiency of resource allocation. But are there

201
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scenarios under which a market economy may still be efficient in the pres-

ence of incomplete risk markets?

We consider a simple static competitive market under uncertainty. Com-

petitive prices are determined by the market equilibrium condition equating

supply and demand. Uncertainty can influence both the supply function and

the demand function.

REVIEW OF CONSUMER THEORY

Consumer theory consists in the following problem. Maximize consumer

preferences represented by the direct utility function U(y) subject to a budget

constraint:

V (p, I) ¼ Maxy{U(y): p0y ¼ I}

where y is a vector of consumer goods, p is the vector of market prices for

y, (p' y) denotes consumer expenditures, I > 0 denotes consumer income,

and V(p, I) is the indirect utility function. Denote the Marshallian demand

by y�(p, I), the optimal choice function for y in the above optimization.

Some key results of consumer theory are as follows:

@V=@I > 0 is the marginal utility of income (assumed to be positive),

@V=@p ¼ �y�(@V=@I), (Roy0s identity): (1)

CONSUMER BENEFITS FROM STABILIZATION

Assume that a consumer faces some uncertainty represented by the

random variable e (e.g., price uncertainty or preference uncertainty). Assume

that e is known at the time of the consumer decision y, but not known before it.

The indirect utility function then takes the form V(e, I). Let m ¼ E(e) denote

the mean of e and s2 ¼ Var(e) > 0 denote the variance of e. Under the

expected utility model, the consumer welfare is evaluated ex-ante as repre-

sented by the function EV(e, I), where E is the expectation operator.

The question is, what is the consumer’s willingness-to-pay to stabilize e to

its mean m? This willingness-to-pay is the sure amount of money B that

satisfies:

EV (e, I) ¼ V (m, I � B), (2)

where B is the maximum amount of money the consumer would be willing

to give up ex-ante to replace e by its mean m.

Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:37pm page 202Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:37pm page 202Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:37pm page 202Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:37pm page 202

202 Risk Analysis in Theory and Practice



A useful local approximation of B can be obtained as follows. Take a

second-order Taylor series approximation of EV(e, I) with respect to e in the

neighborhood of m:

EV (e, I) � E{V (m, I)þ (@V (m, I)=@m)[e� m]þ 1=2(@2V (m, I)=@m2)[e� m]2}

� V (m, I)þ 1=2(@2V (m, I)=@m2)s2:

Similarly, taking a first-order Taylor series expansion of V (m, I � B) with

respect to m in the neighborhood of B ¼ 0 gives

V (m, I � B) � V (m, I)� B � [@V (m, I)=@I ]:

Combining these two results and using the definition of B in (2) yields

�B(@V (m, I)=@I) ’ 1=2(@2V (m, I)=@m2)s2,

or

B � �1=2s2[@2V (m, I)=@m2]=[@V (m, I)=@I ]: (3)

Given s2 > 0 and [@V (m, I)=@I ] > 0 by assumption, it follows that

B > , ¼ , < 0 as [@2V (m, I)=@m2] < , ¼ , > 0:

Thus, the consumer benefits (loses) from stabilizing the risk e to its mean m
if the indirect utility function V is concave (convex) in e.

CONSUMER BENEFITS FROM PRICE STABILIZATION

Let e ¼ p, where e is the price of some commodity y. We have just shown

that the consumer benefits (loses) from price stabilization if the indirect

utility function V is concave (convex) in the price p. Thus, we need to

investigate the concavity/convexity property of the indirect utility function

V with respect to the price p.

Following Turnovsky et al., differentiating Roy’s identity (1) with respect

to I and p gives:

@2V=@I@p ¼ �(@2V=@I2)y� � (@V=@I)(@y�=@I)

and

@2V=@p2 ¼ �(@2V=@I@p)y� � (@V=@I)(@y�=@p)

¼ [(@2V=@I2)y� þ (@V=@I)(@y�=@I)]y� � (@V=@I)(@y�=@p):
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It follows that

(@2V=@p2)=(@V=@I)¼ [(@2V=@I2)=(@V=@I)]y�2þ(@y�=@I)y��(@y�=@p)

¼ (y=p)[(@2V=@I2)=(@V=@I)I ](py=I)þ(@y�=@I)(I=y)(py)=I

�(@y�=@p)(p=y)

¼ (y=p)[�r(py=I)þ(@lny�=@lnI)(py=I)�(@lny�=@lnp)]

where r ¼ �I [(@2V=@I2)=(@V=@I)] is the relative risk-aversion coefficient

(see Chapter 4). But we know from (3) that B � �s2(@2V=@p2)=(@V=@I)
¼ sign[� (@2V=@p2)=(@V=@I)]. This gives

B > ( < ) 0 as (@ ln y�=@ ln I) < ( > ) rþ (@ ln y�=@ ln p)=(py=I):

It shows that the consumer may either benefit or lose from price stabiliza-

tion depending on the relative risk-aversion coefficient , on the price elasti-

city of demand [@ lny�=@ ln p], and on the income elasticity of demand

[@ ln y�=@ ln I ]. It implies that the consumer benefits from price stabilization

increase with a higher degree of risk aversion, with a lower income elasticity

and a more inelastic demand.

Example: Consider the case of price stabilization policies commonly

found in agriculture. Some ‘‘typical’’ estimates for food demand are:

r ¼ 1; [@ ln y�=@ ln p] ¼ �0:2; [@ ln y�=@ ln I ] ¼ :6; and [py=I ] ¼ 0:3. In this

case, the above derivations yield B < 0, implying that consumers would

obtain no direct benefits from agricultural price stabilization policy. How-

ever, it should be kept in mind that the previous arguments are developed in

a partial equilibrium framework and that they do not consider the possible

benefits of risk sharing and risk redistribution between producers and con-

sumers. These issues are explored next.

THE EFFICIENCY OF MARKET EQUILIBRIUM
UNDER RISK

Following Newbery and Stiglitz (1981), consider a competitive commod-

ity market model with one representative producer and one representative

consumer. The producer faces uncertain output price p, and uncertain

production y ¼ f (x, e) where y denotes output, x is a vector of inputs, and

e represents production uncertainty (e.g., due to weather). We assume that

there exists no contingent claim market on the random variable e. In the

context of agriculture, this can reflect the widespread failure of insurance

markets against agricultural production risk. Under the expected utility
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model, the producer makes the supply decision ys ¼ f (xs, e), where xs is the

input choice that maximizes the expected utility EU( p f (x, e), x).

The consumer purchases the output y at price p, exhibits an indirect utility

function V(p, I), and generates the demand yd( p, I) for y.

In this context, market equilibrium corresponds to:

ys ¼ yd :

We want to focus on the efficiency of risk allocation. To simplify the

analysis, we want to eliminate the possibility of information externalities

(which could be another source of possible inefficiency). As a result, we

assume that expectations are rational. In other words, we assume that the

subjective probability function of p for both the producer and the consumer

is the same as the equilibrium probability function pe defined implicitly as

ys ¼ f (xs, e) ¼ yd( pe, I):

Under such conditions, is the market a locat on efficient? The key result is

the following (see Newbery and Stiglitz (1981), sections 15.3, 15.4):

Given risk and a risk-averse producer and the absence of risk markets, a

competitive commodity market allocation is Pareto efficient if and only if

V(p, I) ¼ �k ln ( p)þ b h(I):

To obtain this result, use Roy’s identity (1) for the previous utility

function to obtain the corresponding demand function

yd ¼ �(@V=@p)=(@V=@I) ¼ �k=( p b @h=@I):

This implies that

@ ln (yd)=@ ln ( p) ¼ �1,

i.e., a unitary price elasticity of demand. In this case, note that [pyd ] ¼
�k=(b@h=@I), which is nonrandom. Thus, given a unitary price elasticity

of demand, the uncertainty of production revenue is eliminated for the producer.

Also, note that the previous utility function implies that @V=@I ¼
b � @h=@I ¼ nonrandom. In this case, the consumer is risk neutral with respect

to income and thus has no incentive to share risk. Thus, if risk markets existed,

theywould generate no efficiency gains.Alternatively, the absence of riskmar-

kets has no adverse effects on efficiency. This shows that the previous utility

function corresponds to a situation where a competitive market generates a

Pareto efficient allocation of risk between the producer and the consumer.

To summarize, the previous result shows that, given a risk-averse producer,

a unitary elasticity of demand preserves the efficiency of market equilibrium
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under risk. Alternatively, whenever the price elasticity of demand is not

unitary, the allocation of resources generated by a competitive commodity

market equilibrium would in general be inefficient.

This raises the question, what happens if we consider many producers

where each faces a different production uncertainty? In this case, the previ-

ous result does not hold. The reason is that revenue uncertainty can never be

totally eliminated. If the producers are risk averse, there are some incentives

for redistributing risk toward the less risk-averse individuals. In the absence

of risk markets, competitive commodity market equilibrium would always

be inefficient. Alternatively stated, competitive market equilibrium would

then be efficient only if all producers are risk neutral (see Newbery and

Stiglitz 1981, section 15.8).

It is useful to apply these results to economic policies attempting to

stabilize prices in the agricultural sector. In general, the empirical evidence

is that:

1. farmers tend to be risk averse;

2. the demand for food is price inelastic.

This suggests that, in the absence of complete contingent claim markets,

market allocation in agriculture is likely inefficient. This raises the following

questions:

. How to improve the allocation of resources in agriculture under risk?

. What is the role of markets versus nonmarket institutions (e.g., con-

tracts or government policy) in the management of risk in agriculture?

The extensive involvement of government policy and the growing use of

contracts can possibly be interpreted as an institutional response to market

failures in agriculture. However, there are also significant opportunities for

government failures. Weighing one kind of failure against another has

generated much debate about the efficiency (or inefficiency) of agricultural

policies around the world. Unfortunately, the empirical evidence supporting

each argument is sometimes difficult to develop, due to the complexity of

conducting applied policy analysis under incomplete risk markets.

Finally, note that the previous analysis has implications for the economic

efficiency of free trade. In particular, under incomplete markets, it is not true

in general that free trade always generates a Pareto efficient resource alloca-

tion (see Newbery and Stiglitz 1981, Chapter 23). As an example, consider

two agricultural regions, each growing a risky agricultural crop and a safe

crop. The representative farmer in each region is assumed to be risk averse.

The output of the risky crop in the two regions is negatively correlated.

Assume that each region faces a unitary price elasticity of demand for the

risky crop. In the absence of trade, because of the unitary elasticity of
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demand, price variations provide perfect income insurance for the farmer in

each region. With the opening of trade, because of the negative correlation

between output in the two regions, price variations no longer offset output

variations in each country, implying an increased risk of growing the risky

crop. This makes the risk-averse farmers worse off and induces them to shift

away from the risky crop, raising its average price. If the farmers are

sufficiently risk averse and if the consumers are not very risk averse, then

both producers and consumers could be made worse off by opening trade. In

this case, free trade would be Pareto inferior under incomplete risk markets.

Of course, such a result is not general. For example, there are many

situations where opening trade under incomplete risk markets is efficiency

enhancing. The problem is one of second-best allocations. In the presence of

multiple sources of market failures, a partial move toward market liberaliza-

tion is not always improving efficiency. The previous example is an illustra-

tion of such a situation. This makes the analysis of contract and policy

design in a ‘‘second-best world’’ more difficult. Indeed, the many possible

sources of inefficiency can interact with each other in complex ways. As a

result, policy and efficiency analysis in a second-best world remain quite

challenging.
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Appendix A: Probability and
Statistics

INTRODUCTION

The concepts of chance and uncertainty are as old as civilization. People

have always had to cope with weather uncertainty, health hazards, food

insecurity, and other risky aspects of their environment. As a result, they

have devised risk-management schemes that reduce uncertainty and improve

the chances for their own survival. Interestingly, early risk-management

strategies were developed without formal logical structures. An example is

the decision rule: Do not all put your eggs in the same basket. This simple

decision rule does not require any specific assessment of risk. This indicates

that modern probability and statistics are not absolutely necessary for risk

management. Yet, in many situations, there is much to gain from imposing

some structure on what is not known. This includes gambling games.

Games of chance have a long history. Gambling with dice has been

popular for many centuries. The precursors of dice have been found in

Egypt and elsewhere by 3500 B.C. Interestingly, because they are relatively

simple, gambling games provided the impetus for the development of prob-

ability theory in the sixteenth and seventeenth century. Girolamo Cardano

(1501–1576) and Galileo Galilei (1564–1642) calculated numerical probabil-

ities for certain dice combinations. Blaise Pascal (1623–1662) and Pierre

Fermat (1601–1665) started the mathematical theory of probability by de-

riving the probabilities for certain gambling problems involving dice. Since

then the theory of probability has been developed and refined, with applica-

tions to engineering, science, and management.

209
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The main motivation for probability theory is to impose a structure on

what is not known. While this may appear to be an impossible task, it has

two significant payoffs. First, it provides a framework for an empirical

assessment of what we do not know. Second, it helps us represent learning

as we get more information about our physical, economic, and social envi-

ronments. Over the last two centuries, humans have accumulated a massive

amount of information, which contributed to rapid scientific progress in

science and engineering. It seems fair to say that probability theory stimu-

lated this considerable learning.

Following, we summarize the basic structure of probability theory. To be

useful, the theory has to be applicable to a wide variety of situations. This

means that it has to be general enough to cover any situation where some-

thing is not perfectly known. As a result, the language of probability theory

is somewhat abstract. It may be useful to keep specific examples in mind to

help motivate the theoretical arguments (e.g., the outcome of tossing a coin,

or your income next year). The first step is to identify the situation of

interest. It involves identifying a decision-maker facing an uncertain situ-

ation at a given time. The task at hand is to impose a mathematical structure

on this uncertain situation—structure that will eventually prove useful in the

analysis of this situation and/or the associated decisions made.

Define the sample space, denoted by S, as the set of all possible occur-

rences in the situation of interest. The elements of the sample space are called

events. Thus any event A is always a subset of the sample space S: A 2 S.

The union of two events A1 and A2 (denoted by A1 [ A2) consists of all

events that belong to either A1 or A2. The intersection of two events A1 and

A2 (denoted by A1 \ A2) consists of all events that belong to both A1 and A2.

Two events A1 and A2 are disjoint or mutually exclusive if they have no

outcome in common, i.e., if their intersection is empty and satisfies

A1 \ A2 ¼ 1 (where1 denotes the empty set). Finally, events in a collection

of events are said to be disjoint if no two events in the collection have any

outcome in common.

AXIOMS OF PROBABILITY

For any event A in a sample space S, the probability that event A will

occur is given by Pr(A) satisfying:

Axiom 1. Pr(A)� 0 for any A 2 S

Axiom 2. Pr(S) ¼ 1

Axiom 3. if A1, A2, A3, . . . , is a disjoint sequence of events in S, then

Pr(A1 [ A2 [ A3 [ . . . ) ¼ Pr(A1)þ Pr(A2)þ Pr(A3)þ . . .
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Axiom 1 states that probabilities are always nonnegative. Axiom 2

indicates that if an event is certain to occur, then its probability is 1 (which

can be interpreted to mean 100 percent chance of occurrence). Axiom 3

assumes that probabilities of disjoint events are additive (which may appear

less intuitive). This provides a formal mathematical definition of probabil-

ities: For a given sample space S, any function Pr(A) satisfying Axioms 1, 2,

and 3 is a probability function.

RANDOM VARIABLES

Often, it is convenient to represent our physical and socioeconomic envir-

onment using real measurements. Examples include rainfall, temperature,

prices, quantities, income, etc. Under situations of uncertainty (where an

individual does not have perfect information about the occurrences in his/

her environment), it means that the real value taken by our measurements are

not known ahead of time. Thismotivates the use of random variables. Given a

sample space S, a random variable is a functionX(s) that assigns a real number

X 2 R to each possible outcome s 2 S, where R denotes the real line.

Some random variables can take continuous values (e.g., the temperature

outside your home tomorrow at 7 a.m., as measured in degree Celsius or in

degree Fahrenheit). They are called continuous random variables. But some

can take only discrete values (e.g., the number of heads obtained after tossing

a coin ten times), in which case they are called discrete random variables.

DISTRIBUTION FUNCTION FOR A RANDOM
VARIABLE

When X is a random variable, let B be some subset of the real line. For a

given sample space S, denote by Pr(X 2 B) the probability that the value of

X will belong to the subset B. Then, this probability can be written as

Pr(X 2 B) ¼ Pr{s: X (s) 2 B}.

The distribution function for a random variable X is the function

F (t) ¼ Pr(X � t), where t is a real number. The distribution function has

the following properties:

. F(t) is nondecreasing and continuous from the right,

. F (�1) ¼ 0,

. F (þ1) ¼ 1.

It means that, in general, 0�F (t)� 1 for any t. In addition, for any

t1 < t2, Pr(t1 < X � t2) ¼ F (t2)� F (t1).
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PROBABILITY FUNCTION FOR A RANDOM VARIABLE

First consider the case where X is a discrete random variable, i.e., a

random variable that can take a countable number of discrete values:

x1, x2, x3, . . . Then the probability function for X is f(x) defined as

f (x) ¼ Pr(X ¼ x):

For any point x that is not one of the possible values of X, it means that

f (x) ¼ 0. Also,
P

i�1 f (xi) ¼ 1. Finally, with B being some subset of the real

line, the probability of B is given by

Pr(X 2 B) ¼ Si�1[f (xi): xi 2 B)]:

When X is a continuous random variable, the above characterization

changes. The probability of a continuous random variable X is defined by

the function f(x) that satisfies

Pr(X 2 B) ¼
ð

x2B

f (x)dx:

In the continuous case, the probability that X will belong to a subset B of

the real line is found by integrating (instead of summing) the probability

function f(x) over that subset. In general, f (x)� 0, and
Ð
x2R f (x)dx ¼ 1. And

at points where f(x) is continuous, then

f (x) ¼ @F (x)=@x,

showing that the probability function is equal to the derivative of the

corresponding distribution function.

Note that with continuous random variables, the probability of any point

on the real line is 0: Pr(X ¼ x) ¼ 0 (otherwise
Ð
x2R f (x)dx ¼ 1 would not

hold). This has two implications. First, the probability function of a continu-

ous random variable is not unique (since we can always change f(x) at a

number of points without affecting its properties). Second, for a continuous

random variable, f(x) cannot be interpreted to be the probability of being at

point x (even though Pr(x 2 B) ¼
Ð
x2B f (x)dx remains valid).

MULTIVARIATE JOINT DISTRIBUTION

Typically, our uncertain environment is complex and involves more than a

single random variable (e.g., weather, income, health, etc.). To represent such

situations, consider the case of n random variables, where X ¼ (X1, X2,

. . . , Xn)
0 taking real values x ¼ (x1, . . . , xn) in Rn, where Xi denotes the i-th

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:34pm page 212Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:34pm page 212Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:34pm page 212Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 12:34pm page 212

212 Risk Analysis in Theory and Practice



randomvariable, i ¼ 1, . . . , n. Then the probability concepts presented in the

univariate case can be readily extended to the multivariate case. The joint

distribution function for X evaluated at x ¼ (x1, . . . , xn) 2 Rn is defined as

Fn(x) ¼ Pr(X1 � x1, X2 � x2, . . . , Xn � xn):

This multivariate extension holds in the continuous as well as the discrete

case.

We need to distinguish between continuous and discrete random variables

to address multivariate probability function. For discrete random variables,

the joint probability function fn(x) is defined as fn(x1, . . . , xn) ¼ Pr(X1

¼ x1, . . . , Xn ¼ xn). If x ¼ (x1, . . . , xn) is not one of the possible values for

X, then fn(x1, . . . , xn) ¼ 0.Also, for any subsetBofRn, Pr(X 2 B) ¼
P

x2B fn
(x1, . . . , xn).Finally, fn(x1, . . . ,xn)�0,andFn(t1, . . . , tn)¼

P
x�t fn(x1, . . . ,xn).

For continuous random variables, the joint probability function of x is the

function fn(x1, . . . , xn) satisfying

Pr[(X1, . . . , Xn) 2 B] ¼
ð

B

. . .

ð

fn(x1, . . . , xn)dx1 . . . dxn,

where B 2 Rn. Again, fn(x1, . . . , xn)� 0, and Fn(t1, . . . , tn) ¼
Ð
x�t

. . .Ð
x�t

fn(x)dx1 . . . dxn. Finally, if fn(x) is continuous, then fn(x1, . . . , xn) ¼
@nF (x1, . . . , xn)=@x1 . . . @xn.

In the case of mixed variables where some are discrete while others are

continuous, things become more complex. In this situation, the joint prob-

ability function fn(x) still exists. And its basic property holds: The probabil-

ity that X belongs to a certain region B 2 Rn is obtained by summing the

values of fn(x) over the discrete random variables while integrating fn(x) over

the continuous random variables.

MARGINAL DISTRIBUTIONS

When facing n randomvariables, it is often of interest to focus our attention

on a subset of them. The probabilities facing this subset can be characterized

using marginal distribution functions. Let X ¼ (X1, X2, . . . , Xn). Given

1 � k < n, the marginal distribution function of the subset of random vari-

ables (X1, X2, . . . , Xk) evaluated at (x1, . . . , xk) 2 Rk is defined as

Fk(x1, . . . , xk) ¼ Fn(x1, . . . , xk, 1, . . . , 1):

Consider the case where fn(x1, . . . , xn) is the joint probability function

of x. In situations where x involves discrete random variables, the marginal

probability function of (X1, . . . , Xk) evaluated at (x1, . . . , xk) 2 Rk is
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fk(x1, . . . , xk) ¼
X

Xkþ1

. . .
X

xn

fn(x1, . . . , xn):

And in the case where the random variables x are continuous, the marginal

probability function of (X1, . . . , Xk) evaluated at (x1, . . . , xk) 2 Rk is de-

fined as

fk(x1, . . . , xk) ¼
ð

R

. . .

ð

R

fn(x1, . . . , xn)dxkþ1 . . . dxn:

Note that when k ¼ 1, the marginal distribution function F1(x1) behaves

just like a standard univariate distribution function. And the marginal

probability function f1(x1) behaves just like a standard univariate probabil-

ity function: it satisfies f1(x1)� 0 and F1(t1) ¼
Ð
X1�t1

f1(x1)dx1.

INDEPENDENCE

Let Fi(xi) and fi(xi) denote, respectively, the marginal distribution and

marginal probability function of the random variable Xi, i ¼ 1, . . . , n:
Then, the n random variables (X1, X2, . . . , Xn) are said to be mutually

independent if

Fn(x1, x2, . . . , xn) ¼ F1(x1)F2(x2) . . .Fn(xn),

or if

fn(x1, x2, . . . , xn) ¼ f1(x1)f2(x2) . . . fn(xn),

for all points (x1, . . . , xn) 2 Rn. These apply for discrete as well as continu-

ous random variables.

CONDITIONAL PROBABILITY

Let f (x, y) be the joint probability function for two sets of random

variables X ¼ (X1, . . . , Xn) taking real values x ¼ (x1, . . . , xn) in Rn, and

Y ¼ (Y1, . . . , Ym) taking real values y ¼ (y1, . . . , ym) in Rm. Then,

gx(x) ¼ [
R
R
. . .
R
R
f (x, y)dy1 . . . dym] is the marginal probability function

for X evaluated at x, and gy(y) ¼ [
R
R
. . .
R
R
f (x, y)dx1 . . . dxn] is the marginal

probability function for Y evaluated at y.

When gy(y) > 0, the conditional probability function of X givenY ¼ y is

defined as

hx(xjy) ¼ f (x, y)=gy(y):
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Similarly, when gx(x) > 0, the conditional probability function of Y given

X ¼ x is defined as

hy(yjx) ¼ f (x, y)=gx(x):

These definitions apply to continuous as well as discrete random vari-

ables. Note that conditional probabilities behave just like probability

functions. For example, they satisfy hx(xjy)� 0, and [
Ð
R
. . .
Ð
R
hx(xjy)

dx1 . . . dxn] ¼ 1:

BAYES’ THEOREM

Again consider the situation involving two sets of random variables

X ¼ (X1, . . . , Xn) and Y ¼ (Y1, . . . ,Ym). Assume that gx(x) > 0. Then, in

the continuous case,

hy(yjx) ¼
hx(xjy)gy(y)Ð

R

. . .
Ð

R

hx(xjy)gy(y)dy1 . . . dym 0

while in the discrete case,

hy(yjx) ¼
hx(xjy)gy(y)P

y

hx(xjy)gy(y)
:

These equalities constitute Bayes’ theorem. As a proof, consider the

discrete case. The definitions of marginal and conditional probabilities

imply that

hy(yjx) ¼ f (x, y)=gx(x) ¼
f (x, y)
P

y

f (x, y)
¼ hx(xjy)gy(y)P

y

hx(xjy)gy(y)
,

which gives the desired result.

Bayes’ theorem provides simple updating of probabilities about

the random variables Y given new information obtained by observing the

randomvariablesX. In the casewhere observingX ¼ x corresponds to sample

information, gy(y) is called the prior probability of the random variables

Y , hx(xjy) is called the likelihood function of the sample, and hy(yjx) is called
the posterior probability of Y given X ¼ x. This shows that the likelihood

function of the sample hx(xjy) provides all the information required to update

the prior probability function for Y , gy(y), into its posterior probability

hx(xjy) after the random variables X are observed to take the value x. Note

that Bayes’ theorem follows directly from the axioms of probability. As such,

it provides a powerful and convenient framework to represent learning.
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EXPECTATION

Consider a real function r(X ) of a random variable X. X being a random

variable, it follows that r(X ) is also a random variable. Let f(x) be the prob-

ability function ofX. The expected value of the function r(X) is defined as

E[r(X )] ¼
R

R

r(x)f (x)dx, in the continuous case,

or

E[r(x)] ¼
P

x r(x)f (x), in the discrete case,

where E denotes the ‘‘expectation operator.’’

First, consider the case where r(x) ¼ xk, k ¼ 1, 2, . . . . Then the k-th

moment of the random variable X is denoted by mk and defined as

mk ¼ E(xk), k ¼ 1, 2, . . . . When k ¼ 1, then m1 ¼ E(x) defines the mean

(or average) of X, a common measure of location for X. When k ¼ 2, then

m2 ¼ E(x2) is the second moment of X. When k ¼ 3, then m3 ¼ E(x3) is the

third moment of X. And so on . . . . Note that moments are meaningful only

if they are finite. A moment is said to exist if and only if it is finite. If the

random variable X is bounded, then all its moments always exist (i.e., they

are all finite). In the case where the random variable X is unbounded, then its

moments may or may not exist.

Second, consider the case where r(x) ¼ [x�m1]
k, k ¼ 2, 3, . . . . Then the

k-th central moment of the random variableX is denoted byMk and defined as

Mk ¼ E[(x�m1)
k], k ¼ 1, 2, . . . . When k ¼ 2, then M2 ¼ E[(x�m1)

2] � 0

defines the variance of X, a common measure of the spread or dispersion

of X. The standard deviation of X is defined as the positive square root

of the variance: (M2)
1=2. When m1 > 0, an alternative relative measure of

dispersion is the coefficient of variation: (M2)
1=2=m1. When k ¼ 3, then

M3 ¼ E[(x�m1)
3] is the third central moment of X. It is often used to charac-

terize possible asymmetries in the probability function f(x). For a probability

function that is symmetric with respect to its mean (e.g., the normal distribu-

tion), the odd central moments of the corresponding random variable are all

zero: M3 ¼ M5 ¼ . . . ¼ 0. Alternatively, M3 6¼ 0 identifies asymmetry in the

probability function f(x). More specifically, M3 > 0 ( < 0) corresponds to

positive (negative) skewness, the upper tail of f(x) being thicker (thinner)

than its lower tail. The extent of the asymmetry can be investigated using the

relative skewness:M3=(M2)
1:5.When k ¼ 4, thenM4 ¼ E[(x�m1)

4]� 0 is the

fourth central moment ofX. It is often used to evaluate the thickness in the tails

of the probability function f(x). For the normal distribution, M4 ¼ 3(M2)
2.

The extent of tail thickness is often investigated using the relative kurtosis:

M4=(M2)
2. Distributions with a relative kurtosis greater than 3 are said to be

leptokurtic: They have ‘‘fat tails’’ relative to the normal distribution.
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Given that X has mean m1 ¼ E(X ), its variance (or second central

moment) is often denoted by Var(X ) ¼ M2 ¼ E[(X �m1)
2]. For any

random variable X, a general relationship between the second moment,

m2 ¼ E(X 2), and its variance Var(X ) is

Var(X ) ¼ E[(X �m1)
2] ¼ E(X2 þm2

1 � 2Xm1)

¼ m2 �m2
1:

The covariance between two random variables X and Y is defined as

Cov(X , Y ) ¼ E[(X � E(X ))(Y � E(Y ))]. It can alternatively be expressed as

Cov(X , Y ) ¼ E[XY � XE(Y )� YE(X )þ E(X )E(Y )]

¼ E(XY )� E(X )E(Y ):

The correlation coefficient between two random variables X and Y is

defined as

r(X , Y ) ¼ Cov(X , Y )=[(Var(X )Var(Y )]1=2:

The correlation coefficient r is always bounded between �1 and þ1.

When r ¼ 0, the random variables X and Y are uncorrelated. The independ-

ence of the random variables X and Y is a sufficient (but not necessary)

condition for them to be uncorrelated.

Let X ¼ (X1, X2, . . . , Xn)
0 be a set of n random variables. Denote the

mean of X by the (n� 1) vector E(X ) ¼ m ¼ (m1, m2, . . . , mn)
0, where

mi ¼ E(Xi), i ¼ 1, . . . , n. Let sii ¼ Var(Xi) be the variance of Xi, and sij
¼ Cov(Xi, Xj) be the covariance between Xi and Xj . Denote the variance of

X by the (n� n) matrix Var(X ) ¼ S ¼

s11 s12 . . . s1n
s21 s22 . . . s2n
..
. ..

. . .
. ..

.

sn1 sn2 . . . snn

2

6
6
6
4

3

7
7
7
5
. The variance-

covariance matrix S is symmetric (meaning that sij ¼ sji for all i 6¼ j) and

positive semidefinite (meaning that u’ Su � 0 for all (n� 1) vectors u 2 Rn).

Consider two sets of random variables: X ¼ (X1, . . . , Xn), and

Y ¼ (Y1, . . . ,Ym). Assume that the following linear relationship exists be-

tween X and Y

Yi ¼ SjAijXj þ bi, i ¼ 1, . . . , n,

or

Y ¼ AX þ b,

where A ¼ {Aij} is a (m� n) matrix of constants, and b ¼ (b1, . . . , bm)’ is
a (m� 1) vector of constants. Then,
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E(Y ) ¼ AE(X )þ b ¼ Amþ b

Var(Y ) ¼ AVar(X )A0 ¼ ASA0:

When m ¼ n ¼ 1, it follows that Var(Y ) ¼ A2Var(X ). In the case

where Y ¼ A1X1 þ A2X2 þ b (i.e., with m ¼ 1, n ¼ 2, and A ¼ [A1,A2]), we

obtain

E(Y ) ¼ A1E(X1)þ A2E(X2)þ b ¼ A1m1 þ A2m2 þ b

Var(Y ) ¼ A2
1Var(X1)þ A2

2Var(X2)þ 2A1A2Cov(X1,X2)

¼ A2
1s11 þ A2

2s22 þ 2A1A2s12:

If the random variables X 1 and X2 are independently distributed with

finite variances, then Cov(X1,X2) ¼ 0, implying that Var(A1X1 þ A2X2)

¼ A2
1Var(X1)þ A2

2Var(X2).

CHEBYSCHEV INEQUALITY

For any random variable X with a finite variance Var(X)

Pr[jX � E(X )j � t]�Var(X )=t2:

Note that this Chebyschev inequality is quite general. It applies to any

probability distribution that has a finite variance.

MOMENT GENERATING FUNCTION

Define the function G(t) ¼ E(etx). The function G(t) is called the moment

generating function due the following property:

If mr is finite, then [@rG(t)=@tr]jt¼0 ¼ E(xr) ¼ mr, r ¼ 1, 2, 3, . . .
(To show this, consider a Taylor series expansion of etx evaluated

at tx ¼ 0:G(t) ¼ E[1þ txþ (tx)2=2!þ (tx)3=3!þ . . . ]. Evaluating the de-

rivatives of this expression with respect to t at t ¼ 0 gives the desired result.)

CONDITIONAL EXPECTATION

Let f(x, y) be a joint probability function for the random variables (X, Y ),

gy(y) be the marginal probability function of Y, and hx(xjy) ¼ f (x, y)=gy(y)
be the conditional probability of X given Y ¼ y. The conditional expectation

of a random variable X given Y ¼ y is the expectation based on the condi-

tional probability hx(xjy). The unconditional expectation Ex, y of some

function r(X, Y ) is given by applying iterative expectations
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Ex, yr(X ,Y ) ¼ Ey[Exjyr(X ,Y )]:

where Exjy is the conditional expectation operator and Ey is the expectation

based on the marginal probability of y. To see that, note the following

relationships applied to discrete random variables

Ex, yr(x, y) ¼ Sx, yr(x, y)f (x, y)

¼ Sx, yr(x, y)hx(xjy)gy(y)
¼ Sy[Sxr(x, y)hx(xjy)]gy(y)
¼ Ey[Exjyr(x, y)]:

CONJUGATE DISTRIBUTIONS

In a Bayesian framework, a distribution is conjugate if, for some likeli-

hood function, the prior and posterior distributions belong to the same

family. An example is given by the unknown mean of a random sample

from a normal distribution.

SOME SPECIAL DISCRETE DISTRIBUTIONS

Probability

function f(x)

Moment

generating

function G(t)

Mean E(X) Variance

Var(X)

Binomial n!

x!(n� x)!
px(1� p)n�x

for 0 <p<1, x¼0, 1, , . . . , n

[pet þ (1� p)]n n p np(1� p)

Bernoulli

( ¼ binomial

with n ¼ 1)

px(1� p)1�x

for 0 < p < 1,x ¼ 0, 1

p p(1� p)

Negative

binomial

(rþ x� 1)!

x!(r� 1)!
pr(1� p)x

for 0<p<1, x¼ 0, 1, , . . . , n

[p=(1� (1� p)et)]r

for [(1� p)et] < 1

r(1� p)=p r(1� p)=p2

Geometric

( ¼ negative

binomial

with r ¼ 1)

p(1� p)x

for 0<p< 1, x¼ 0, 1, , . . . , n

(1� p)=p (1� p)=p2

Poisson e�llx=x!

for l>0,x¼ 0, 1, 2, . . .

exp[l(et � 1)] l l

Uniform 1=n

for n ¼ integer, x ¼ 1, 2, . . . , n

(nþ 1)=2 (n2 � 1)=12
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SOME SPECIAL CONTINUOUS DISTRIBUTIONS

Probability function f (x) Moment generating function G(t) Mean E(X) Variance Var(X)

Beta G(aþ b)
G(a)G(b)

xa�1(1� x)b�1

for 0 < x < 1

a=(aþ b) ab=[(aþ b)2

(aþ bþ 1)]

Uniform 1=(b� a) for a < x < b (bþ a)=2 (b� a)2=12

Normal
1
ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp[� (x� m)2=(2s2)] for s > 0 exp [mtþ s2t2=2] m s2

Gamma ba

G(a)
xa�1e�bx for a > 0,b > 0,x > 0

[b=(b� t)]a for t < b a=b a=b2

Exponential

(¼ gamma with a ¼ 1)
be�bx for b > 0, x > 0

[b=(b� t)] for t < b 1=b 1=b2

Chi square

(¼ gamma with

a ¼ k=2, b ¼ 1=2)

1

2k=2G(k=2)
x(k=2)�1e�x=2

for k ¼ positive integer, x > 0

[1=(1� 2t)]k=2

for t < 1=2

k 2k

Pareto aka=xaþ1 ak=(a� 1)

for a > 1

ak2=[(a� 2)(a� 1)2]

for a > 2

Lognormal
1

x
ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp [� (ln(x)� m)2=(2s2)]

for s > 0,x > 0

exp (mþ s2=2) [exp (s2)� 1]

exp (2mþ s2)

Note: n! ¼ n(n� 1)(n� 2) . . . 1.

G(a) ¼
ð1

0

ya�1e�ydy ¼ 1 if a ¼ 1 ¼ (a� 1)! if a is an integer:
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Appendix B: Optimization

INTRODUCTION

The concept of optimization is central to economic analysis and effi-

ciency. Economic rationality means that economic agents do the best they

can to improve their welfare. This is represented by an optimization prob-

lem: Decisions are made so that each agent maximizes his/her objective

function subject to constraints imposed by the economic environment. The

objective function is a utility function representing the agent’s preferences.

The agent can be a household making consumption decisions or a firm

making production and investment decisions. Under uncertainty, the utility

function reflects risk preferences. In this context, the analysis of economic

decisions involves maximization problems subject to feasibility constraints.

Below, we review standard tools of analysis based on optimization methods.

These tools are used throughout this book to generate useful insights into

decision-making under uncertainty and the efficiency of risk allocation.

PRELIMINARIES

Consider a function f(x), where x ¼ (x1, . . . , xn) is an n-vector of real

numbers. This means that for each x, there exists a unique real number given

by f(x). The function f is said to be concave if, for any xa and xb and any

a, 0� a� 1,

f (axa þ (1� a)xb)� af (xa)þ (1� a)f (xb):

This is illustrated in Figure B.1.

221

Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 9:00am page 221Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 9:00am page 221Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 9:00am page 221Chavas / Risk Analysis in Theory and Practice Final 19.4.2004 9:00am page 221



f(x)

f(a xa + (1-a) xb)

af(xa)+(1-a) f(xb)

xa a xa + (1-a) xb xb

Figure B.1 A concave function

When the function f is differentiable, let f 0(x) � @f =@x denote the first

derivative of f, and let f 00(x) � @2f =@x2 denote the second derivative of f.

The first derivative f 0(x) measures the marginal value or local slope of the

function at point x. The second derivative f 00(x) reflects the marginal change

in the slope at point x. When f(x) is differentiable and n ¼ 1, the function

f(x) is concave if and only if f 00(x)� 0 for all x. Thus, concavity of f(x) is

equivalent to diminishing marginal values for the function f(x) at all points.

This is illustrated in Figure B.2.

Finally, consider a set of real numbers, denoted by X. The set X is said to

be convex if for every xa and xb in X and every number a, 0 < a < 1, the

point [axa þ (1� a)xb] is also in X. Geometrically, this means that a set is

convex if every point on the line segment joining any two points in the set

is also in the set. This is illustrated in Figure B.3.

UNCONSTRAINED OPTIMIZATION

Consider an economic agent facing the maximization problem:

V (a) ¼ Maxxf (x, a), (1)

where f (x, a) is the objective function, x ¼ (x1, . . . , xn) is a vector of n-real

numbers representing n decision variables, and a ¼ (a1, . . . , am) is a m-

vector of parameters. The parameters a are real numbers representing all

variables that are not decision variables. They include variables representing

the economic environment of the decision-maker. The solution of the
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f(x)

xx*

f’(x)

0
xx*

f’’(x)

0

Figure B.2 A concave and differentiable function
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Convex set Non convex set

Figure B.3 Convexity of sets

maximization problem (1) typically depends on the parameters a. This

solution is denoted by the decision rulex�(a), giving the optimal decision

for a given economic environment a. By definition, this decision rule satisfies

f (x�(a), a)� f (x, a) for all x: it generates the highest possible value of the

objective function for a given a. V (a) in (1) is called the indirect objective

function. For a given a, it is the value of the objective function evaluated at

the optimum x�(a), with V (a) � f (x�(a), a).
Much economic analysis focuses on the properties of the decision rule

x�(a). This decision rule summarizes how economic choices optimally adjust

to changes in the decision-maker’s economic environment. We need to gain

insights into the properties of x�(a). Analyzing such properties is particularly

convenient using calculus, i.e., assuming differentiability. Thus, below, we

assume that the objective function f (x, a) is differentiable in (x, a).
First, the optimal decision x�(a) associated with (1) must satisfy the

following condition

@f

@x
(x�(a), a) ¼ 0: (2)

Equation (2) is called the first-order necessary condition. It is first order

since it involves the first derivative of the objective function, @f =@x or f 00. And

it is necessary in the sense that it always characterizes the optimal solution of

an unconstrained optimization problem. This can be seen in Figure B.2, where

f 00(x) > 0 means that x is ‘‘too small,’’ f 00(x) < 0 means that x is ‘‘too large,’’

and indeed f 00(x) ¼ 0 holds at x ¼ x�. When n > 1, equation (2) constitutes a

system of n equations: @f =@x1 ¼ 0, . . . , @f =@xn ¼ 0. Under some regularity

conditions, this system of equation can be solved for the n optimal decisions:

x�(a) ¼ (x�1(a), . . . , x�n(a) ). Then, the first-order conditions (2) provide a

formal way of identifying the optimal decision rule x�(a). However, solving

a system of (possibly nonlinear) equations can be difficult. One way around

this difficulty is again to rely on calculus. Evaluated at x�(a), differentiating
equation (2) with respect to a and using the chain rule yields

@2f =@x@aþ (@2f =@x2)(@x�=@a) ¼ 0, (3a)
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where @2f =@x@a ¼
@2f =@x1@a1 . . . @2f =@x1@am

..

. . .
. ..

.

@2f =@xn@a1 . . . @2f =@xn@am

2

6
4

3

7
5is a n�m matrix,

@2f =@x2 ¼

@2f =@x21 . . . @2f =@x1@xn

..

. . .
. ..

.

@2f =@xn@x1 . . . @2f =@x2n

2

6
6
4

3

7
7
5is a n� n matrix; and

@x�=@a ¼

@x�1=@x1 . . . @x�1=@am

..

. . .
. ..

.

@x�n=@a1 . . . @x�n=@am

2

6
6
4

3

7
7
5 is a n�m matrix: In the case

where the matrix f 00 � @2f =@x2 is invertible; equation ð3aÞ implies

@x�=@a ¼ �[@2f =@x2]�1@2f =@x@a: (3b)

The term @x�=@a measures the optimal response of x�(a) to a small

change in a. Thus expression (3b) provides the basis for comparative statics

analysis, showing how small changes in the economic environment affect

optimal decisions. Under differentiability and the invertibility of @2f =@x2,
this provides a generic approach to analyzing the properties of the optimal

decision rules x�(a).
Finally, noting that V (a) � f (x�(a), a), differentiating the indirect

objective function with respect to a and using the chain rule gives

@V=@a ¼ @f =@aþ (@f =@x)(@x�=@a). Using the first-order condition (2),

this yields the envelope theorem:

@V=@a ¼ @f =@a,

where @f =@a is evaluated at x�(a). The envelope theorem states that the

derivative of the indirect objective function with respect to a is equal to the

derivative of the direct objective function with respect to a, evaluated at

x�(a). In other words, the two functions V (a) and f (a, x) are tangent to each

other with respect to a in the neighborhood of the optimal choice x�(a).

CONSTRAINED OPTIMIZATION

Often, decision-makers face constraints from their economic environment.

These constraints can be technological, legal, financial, or institutional. To
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the extent that these constraints affect decisions, they need to be incorpor-

ated in the optimization problem. On that basis, as a generalization of (1),

consider the constrained maximization problem

V (a) ¼ Maxx{f (x, a): h(x, a)� 0}, (4)

where h(x, a) ¼ (h1(x, a), . . . , hK (x, a) ) are K functions representing K

constraints facing the decision-maker: h1(x, a)� 0, . . . , hK (x, a)� 0. Equa-

tion (4) is a standard constrained optimization problem, where f (x, a) is the
objective function, h(x, a)� 0 is a set of K inequality constraints,

x ¼ (x1, . . . , xn) is an n-vector of decisions, and a ¼ (a1, . . . , am) is an

m-vector of parameters reflecting the economic environment of the decision

maker. Again, let x�(a) denote the optimal decision rule in (4), i.e., the

decision rule that satisfies f (x�(a), a)� f (x) for all feasible x where

h(x, a)� 0. And V (a) is the indirect objective function satisfying

V (a) ¼ f (x�(a), a).
The first question is, can we generalize the above results (2)–(3) to

accommodate the constraints in (4)? Under some regularity conditions, the

answer is yes. This is done using the Lagrangean approach. The Lagrangean

approach defines K Lagrange multipliers l1, . . . , lK .
Associating each Lagrange multiplier with one of the K constraints,

define the Lagrangean function as

L(x, l, a) ¼ f (x, a)þ
XK

k¼1

lk hk(x, a): (5)

The properties of the Lagrangean function L(x, l, a) in (5) are closely

linked with the constrained optimization problem (4). First, under differ-

entiability, consider the set of first-order conditions (also called the Kuhn–

Tucker conditions):

@L

@x
(x�(a), l�(a), a) ¼ 0, (6a)

@L

@l
(x�(a), l�(a), a)� 0, (6b)

l�(a)� 0, (6c)

l�k(a)
@L

@lk
(x�(a), l�(a), a)

� �

¼ 0, k ¼ 1, . . . , K : (6d)

For given parameters a, equations (6a)–(6d) involve x�(a) as well as the
Lagrange multipliers l�(a). When they exist, these Lagrange multipliers have
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an intuitive interpretation: l�k(a) measures the marginal effect on the object-

ive function of relaxing the k-th constraint, k ¼ 1, . . . , K . This provides

useful information on the effects of the constraints on the welfare of the

decision-maker. However, there are some (rather rare) situations where the

Lagrange multipliers do not exist, in which case the Lagrangean approach

fails. Yet, Lagrange multipliers have been shown to exist under fairly general

regularity conditions. These regularity conditions are called constraint quali-

fications related to the binding constraints (i.e., constraints satisfying

hk(x
�(a), a) ¼ 0). The constraint qualifications are satisfied either if there

exists a feasible point x where the constraints are nonbinding (Slater’s

condition), or if the binding constraints are linearly independent (the rank

condition) (see Takayama 1985). Under either condition, the Lagrangean

approach applies and equations (6a)–(6d) become necessary first-order con-

ditions (in a way similar to (2)). Then, equation (6a) states that, at the

optimum, x�(a) must correspond to a zero marginal value of the Lagrangean

function with respect to x. Noting that @L=@lk ¼ hk(x, a) from (5), equation

(6b) simply imposes the feasibility constraints: hk(x, a)� 0, k ¼ 1, . . . , K .

Equation (6c) shows that, under inequality constraints, the Lagrange multi-

pliers (measuring the marginal value of the constraints) are nonnegative.

Finally, equation (6d) is called the ‘‘complementary slackness condition.’’ It

means that l�k(a) > 0 implies that the corresponding constraint must be

binding (i.e., hk(x
�(a), a) ¼ 0). Alternatively, a nonbinding constraint

(with hk(x
�(a), a) > 0) must necessarily be associated with a zero Lagrange

multiplier (l�k(a) ¼ 0). Note that this implies that L(x�(a), l�(a), a) ¼ V (a).
It means that, at the optimum, the Lagrangean L(x�(a), l�(a), a) is equal to
the indirect objective function V (a).

In the special case where all constraints are binding, equations (6a)–(6d)

reduce to the following:

@L

@x
(x�(a), l�(a), a) ¼ 0, (7a)

@L

@l
(x�(a), l�(a), a) ¼ 0: (7b)

Then, under the constraint qualification, the first-order necessary condi-

tions (7a)–(7b) become a system of (nþ K) equations: @L=@xi ¼ 0, i ¼ 1,

. . . , n, and @L=@lk ¼ 0, k ¼ 1, . . . , K . This system of equations can be

solved for x�(a) and l�(a). This provides a formal way of identifying the

optimal decision rule x�(a) along with the marginal value of the constraints

l�(a). And as presented in (3a)–(3b) above, differentiating (7a)–(7b) with

respect to a can provide a basis for conducting comparative statics analysis

in constrained optimization.
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Under differentiability and when all constraints are binding, note that

differentiating V (a) ¼ L(x�(a), l�(a), a) with respect to a gives

@V=@a ¼ (@L=@x)(@x�=a)þ (@L=@l)(@l�=a)þ @L=@a:

Using (7a) and (7b), this gives the envelope theorem

@V=@a ¼ @L=@a,

where @L=@a is evaluated at (x�(a), l�(a). In the context of a constrained

optimization problem, the envelope theorem states that the derivative of the

indirect objective function with respect to a is equal to the derivative of the

Lagrangean with respect to a, evaluated at (x�(a), l�(a) ). In other words,

the two functions V (a) and L(x, l, a) are tangent to each other with respect

to a in the neighborhood of the optimal choice (x�(a), l�(a) ).
While the Kuhn–Tucker conditions (6a)–(6d) rely on differentiability,

note that the Lagrangean approach can still apply without differentiability.

To see that, rewrite the constrained optimization problem (4) as

V (a) ¼ Maxx{f (x, a): h(x, a)� 0, x is in X}, (40)

where we have added X as the feasible set for the choice of x (where X is a

subset of n real numbers). Starting from the Lagrangean function L(x, l, a)
in (5), consider the saddle-point problem

L(x, l�(a), a)�L(x�(a), l�(a), a)�L(x�(a), l, a),

for all x in X and l� 0:
(8)

The pair (x�(a), l�(a) ) constitutes a saddle-point of the Lagrangean

L(x, l, a) as x�(a) maximizes L with respect to x (the first inequality in

(8)) while l�(a) minimizes L with respect to l� 0 (the second inequality

in (8)). Two important results are associated with (8) (see Takayama 1981).

1. The saddle-point theorem: If a saddle-point exists in (8), then x�(a) is
necessarily the optimal decision rule in (40).

2. If Slater’s condition holds, the set X is convex, and the functions

f (x, a) and h(x, a) are concave in x, then (40) implies (8).

Since neither result requires differentiability, this indicates that the Lagran-

gean approach applies outside of the realm of calculus. The first result

establishes the power of the Lagrangean approach as a means of investi-

gating constrained optimization problems. However, the second result raises

a caution: The Lagrangean approach does not always work. Yet, it presents

sufficient conditions for its validity in constrained optimization problems.

They include Slater’s condition (a constraint qualification discussed above),
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the convexity of the set X, and the concavity of the functions f (x, a) and
h(x, a) in x. Under such circumstances, the Lagrange multipliers l�(a) exist
and the saddle-point problem (8) identifies the optimal decision rule x�(a).
And as a byproduct, l�(a) in (8) provides a measure of the marginal value of

the constraints.
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Salanié, Bernard. The Economics of Contracts: A Primer. MIT Press, Cambridge,

MA, 1999.

Sandmo, Agnar. ‘‘On the Theory of the Competitive Firm under Price Uncertainty’’

American Economic Review 61(1971): 65–73.

Shavell, Steven. ‘‘Risk Sharing and Incentives in the Principal and Agent Relation-

ship’’ Bell Journal of Economics 10(1979): 55–73.

Savage, Leonard J. The Foundations of Statistics. Wiley, New York, 1954.

Shiha, Amr N., and J.P. Chavas. ‘‘Capital Market Segmentation and US Farm Real

Estate Pricing’’ American Journal of Agricultural Economics 77(1995): 397–407.

Sharpe, W. ‘‘A Simplified Model for Portfolio Analysis’’ Management Science.

9(1963): 227–293.

Smithson, Michael. Fuzzy Set Analysis for Behavioral and Social Sciences. Springer-

Vrelag, New York, 1987.

Schmeidler, David. ‘‘Subjective Probability and Expected Utility without Additivity’’

Econometrica 57(1989): 571–587.

Stiglitz, Joseph E. ‘‘Incentives and Risk Sharing in Sharecropping’’ Review of Eco-

nomic Studies 41(1974): 219–255.

Takayama, Akira. Mathematical Economics. Cambridge University Press, Cam-

bridge, 1985.

Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:34pm page 234Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:34pm page 234Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:34pm page 234Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:34pm page 234

234 References



Turnovsky, Stephen J., H. Shalit, and A. Schmitz. ‘‘Consumer’s Surplus, Price

Instability and Consumer Welfare’’ Econometrica 48(1980): 135–152.

Tversky, Amos, and D. Kahneman. ‘‘Advances in Prospects Theory: Cumulative

Representation of Uncertainty’’ Journal of Risk and Uncertainty 5(1992):

297–323.

Von Neumann, J., and O. Morgenstern. Theory of Games and Economic Behavior.

Princeton University Press, Princeton, 1944.

Whitmore, G.A., andM.C. Findlay. Stochastic Dominance: An Approach to Decision-

Making under Risk. Lexington Books, D.C. Heath and Co., Lexington,

MA, 1978.

Yaari, M. ‘‘The Dual Theory of Choice under Risk’’ Econometrica. 55(1987): 95–116.

Zadeh, Lofti Asker. Fuzzy Sets and Applications: Selected Papers. Wiley, New York,

1987.

Zimmermann, H.J. Fuzzy Set Theory and its Applications. KluwerAcademic Pub.,

Boston, 1985.

Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:34pm page 235Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:34pm page 235Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:34pm page 235Chavas / Risk Analysis in Theory and Practice Final 16.4.2004 11:34pm page 235

References 235



This page intentionally left blank 



Index

A
Active learning, 141, 158–159

optimal, 158

specialization, 159

Adverse selection (contract design), 196–198

asymmetric information, 197

self-selection, 197

Agriculture (risks)

DARA, 93

expected profit maximization model,

91–92

expected utility maximization model,

91–92

free trade efficiency, 206

market allocation, 206

reference lottery usage, 92

risk behaviors, 91–93

‘‘safety first’’ model, 92–93

Allais paradox, 83–85

independence assumption, 83–85

indifference curves, 83–85, 85f

Ambiguity theory, 12

probability theory, 12

Arrow-Pratt coefficient, 36, 38, 65, 69, 88–89,

108, 154, 187

Independence assumption, 88–89

insurance, 187

mean-variance analysis, 69

risk aversion, 36

risk premiums, 108, 154

stochastic dominance, 65

Asymmetric information, 137, 180, 188, 192,

197–199

adverse selection (contract design), 197

external effects, 198

informational rents, 198

insurance, 188

mechanism design, 198

optimal contracts, 192

price discrimination schemes, 198

resource allocation inefficiencies, 198

‘‘signaling,’’ 199

B
Bayes theorem, 16–18, 140–141, 215

learning processes, 17–18, 140–141

posterior probabilities, 16

probability theorem, 215

Bayesian analysis (statistics), 11, 16–18

Bayes theorem, 16

information analysis, 16

Behaviors (risk), 3

Bid prices, 34, 150

information, 150

risk preferences, 34

237

Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 237Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 237Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 237Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 237



Bounded rationality, 8, 17, 76, 149, 179

information processing, 8, 17, 149, 179

rare events, 76

specialization, 8

Budgets

CAPM constraints, 131–132

intertemporal constraints, 147

stochastic discount factors, 144

C
CAPM (capital asset pricing model), 123,

131–137

anomalies, 136–137

asset pricing alternatives, 137

asymmetric information, 137

budget constraints, 131–132

end-of-period wealth, 132

‘‘equity premium’’ puzzle, 136

market equilibrium, 132–133

mean-variance model, 131, 136–137

mutual fund theorem, 132

portfolios, 123

transaction costs, 137

CARA (constant absolute risk aversion),

38–40, 69, 100, 102, 168, 184

behavioral restrictions, 39

certainty equivalent, 40

initial wealth effects, 100

mean-variance analysis, 69

Pareto efficiency, 168

public projects, 184

risk neutrality, 39

utility functions, 38–39

‘‘zero wealth effects,’’ 39, 102

Cardano, Girolamo, 209

probability theory, 209

CCAPM (consumption-based capital asset

pricing model), 145

stochastic discount factors, 145

Certainty equivalent, 35, 40, 50, 156

CARA, 40

‘‘downside’’ risk exposure, 50

period one decisions, 156

risk premiums, 35

CGE (computable general equilibrium), 169

Chaos (as process), 7

random number generators, 7

Chebyschev inequality, 218

probability theory, 218

Classical statistics, 10, 13, 16

information analysis, 16

repeatable events, 13

Commodity markets, 117

futures markets, 117

Comparative statics analysis, 99, 225

optimization, 225

price uncertainty, 99

Computable general equilibrium. See CGE

Concave functions, risk preferences, 31–32

Constant absolute risk aversion. See CARA

Constant partial relative risk aversion. See

CPRRA

Constant relative risk aversion. See CRRA

Consumer theory, 202–203

‘‘Consumption smoothing,’’ 143

dynamic programming recursion, 143

Consumption-based capital asset pricing

model. See CCAPM

Continuity assumption, 80–83

disaster probability minimization, 80–81

expected utility models, 80–83

‘‘safety first,’’ 80

Contracts. See also Risk transfer schemes

adverse selection, 196–198

design, 3

insurance, 161

limited liability, 161

optimal, 189–196

resource allocation, 169

social safety, 161

vs. market mechanisms, 181

vs. policy rules, 169

Convex functions, 31–32

risk preferences, 31–32

Correlations

diversification, 116

perfect negative, 116

perfect positive, 116

Cost minimization, 97–98

functions, 97

price uncertainty, 97–98

Cost of information, 8

monetary vs. nonmonetary, 8

Costate variable in optimal control, 63

stochastic dominance, 63

Costless information, 151–152

value, 152

Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 238Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 238Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 238Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 238

238 Index



CPRRA (constant partial relative risk

aversion), 47

CRRA (constant relative risk aversion),

45–47, 74, 104, 145

DARA, 46

indifference curve, 74f

mean-variance analysis, 74

profit tax, 104

stochastic discount factor, 145

‘‘Curse of dimensionality,’’ 148

two-period case, 148

D
DARA (decreasing absolute risk aversion)

agricultural risk behaviors, 93

changing mean price, 103f

common preferences, 43

CRRA implications, 46

decision-maker utility, 43f

‘‘downside’’ risk aversion, 50, 75

income transfers, 101

initial wealth increase, 40, 100–101, 101f

mean-variance analysis, 73, 75

portfolios investments, 125

price risk effects, 103, 104f

Debt leverage, 135–136

CAPM, 136

firm value, 135–136

Miller-Modigliani theorem, 136

portfolio selection, 135–136

Decreasing absolute risk aversion. SeeDARA

Decreasing partial relative risk aversion. See

DPRRA

Decreasing relative risk aversion. See DRRA

Disasters, 80–81

discontinuous utility function, 82f

expected return maximization, 81–82

probability minimization, 80–81

step utility function, 81f

‘‘Discount factors,’’ 142–145

dynamic programming recursion, 142

stochastic, 143–145

Diversification, 115–117

multiproduct firms, 115–117

perfect correlations, 116

risk, 117f

‘‘Downside’’ risk aversion, 49–50, 75, 79

certainty equivalent, 50

DARA preferences, 50, 75–76

expected utility models, 79

mean-variance analysis, 75

vs. ‘‘upside,’’ 79

DPRRA (decreasing partial relative risk

aversion), 48

DRRA (decreasing relative risk aversion), 45,

47, 104

profit tax, 104

Dynamic decisions model

adaptive strategies, 154–155

Arrow-Pratt risk premium, 154

induced preference functions, 154

information acquisition, 139–140

intertemporal substitution, 145–146

irreversible, 157–158

learning, 140–141

period one implications, 155–157

programming recursion, 141–143

risk neutral case, 153–154

riskless assets, 146–148

two-period case, 148–150

utility maximization, 140

Dynamic programming recursion, 141–143

‘‘consumption smoothing,’’ 143

decisions model, 141–143

‘‘discount factor,’’ 142

time preference rates, 142

value functions, 141

E
Elicitations (probabilities)

expected utility models, 26–29

nonrepeatable events, 14–15

probability theory, 13–14

repeatable events, 13–14

End-of-period wealth, 132

CAPM, 132

Envelope theorem, 225, 228

optimization, 225

Epstein-Zin specification, 146

intertemporal substitution, 146

Equilibrium situations, 105–106, 132–133,

204–207

long run, 107f

market, 132–133, 204–207

Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 239Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 239Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 239Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 239

Index 239



Equilibrium situations (continued )

price uncertainty, 105–106

‘‘Equity premium’’ puzzle, 136

CAPM, 136

E-V frontier, 113–115, 114–115f

marginal rate of substitution, 114

multiproduct firms, 113–115

Expected utility hypothesis, 23

decision-making, 23

individual risk, 23

Expected utility models

continuity assumption relaxation, 80–83

criticisms, 80

empirical tractability, 79

existence conditions, 24–26

fractile distribution maximization, 82–83

function existence, 24–26

hypotheses, 23

independence assumption, 83–89

indifference curve, 84f

induced preferences, 89–90

preference elicitations (direct), 26–29

St. Petersburg paradox, 21–23

State preference approach, 90–91

theorem, 25–26

‘‘upside’’ vs. ‘‘downside’’ risks, 79

von Neumann-Morgenstern functions, 79

Expected utility theorem, 25–26

independence assumption, 25

linear probabilities, 25

positive linear transformation, 26

Experimental design theory, 13

repeatable events, 13

F
Fermat, Pierre, 209

probability theory, 209

First-Order stochastic dominance, 57

discrete implementation, 57

distribution functions, 58f

propositions, 57

Fractile method

nonrepeatable events, 15–16

probability theory, 15–16

Framing bias, 17

information processing, 17

Franchise contracts, 191, 193

principal-agent model, 191

risk-neutral agents, 193

Free entry/exit, 106

price uncertainty, 106

Futures markets, 117–120

basis risk, 118

commodity markets, 117

contracts, 117

functions, 117

‘‘hedging,’’ 117–118

production decisions, 117–120

‘‘Fuzzy sets’’ theory, 12

probability theory, 12

G
Galilei, Galileo, 209

probability theory, 209

Games of chance, 209

history, 209

probability theory, 209

H
Health risks, 1

‘‘Hedging,’’ 117–120

futures markets, 117

production decisions, 119–120

revenue uncertainty, 119

strategies, 119–120

vs. speculator, 117

I
IARA (increasing absolute risk aversion),

40

complements, 40

initial wealth increase, 40, 100

private wealth, 40

Imperfect knowledge, 8–9

probability theory, 8–9

Incentive compatibility constra int,

192, 194

optimal contracts, 192

risk-averse agents, 194

Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 240Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 240Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 240Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 240

240 Index



Income

risks, 1

transfers, 101

Increasing absolute risk aversion. See IARA

Increasing partial relative risk aversion. See

IPRRA

Increasing relative risk aversion. See IRRA

Independence assumption, 83–89

Allais paradox, 83–85

expected utility model, 83–89

linear preferences, 87

Prospect theory, 85–87

Indifference curve, 72f, 83–85

Allias paradox, 83–85, 85f

Individual rationality constraint, 189

principal-agent model, 189

Information

adverse selection, 180

asymmetric, 137, 180

bid price, 150–151

bounded rationality, 8, 149, 179

costs, 8

decentralization, 180–181

efficiency results, 178

framing bias, 17

imperfect, 152

moral hazards, 180

organization, 180

perfect value, 152

period one decisions, 155–156

processing limitations, 7–8

repeatable events, 13

risk transfer schemes, 178–181

subjective probability distribution, 140

value, 2–3, 151

vs. risk premiums, 153–154

Informational rents, 198

asymmetric information, 198

Insurance, 3, 38, 161, 187–188, 196

Arrow-Pratt risk premium, 187

asymmetric information, 188

benefits, 188

contracts, 161

efficient transfer, 188

risk aversion, 38

Intertemporal substitution, 145–147

budget constraints, 147

dynamic decisions model, 145–146

Epstein-Zin specification, 146

‘‘Invisible hand,’’ 173

IPRRA (increasing partial relative risk

aversion), 47–48

IRRA (increasing relative risk aversion), 45,

47, 104

profit tax, 104

Irreversible decisions case, 157–158

dynamic decisions model, 157–158

incentives, 157

quasi-option value, 157

J
Jensen’s Inequality, 32–33, 37

concave function, 33f

risk aversion, 37

risk preferences, 32

Just-Pope Specification, 109–110

production uncertainty, 109–110

risk factors, 110

K
Kuhn-Tucker conditions, 175, 228

optimization, 228

transaction costs, 175

L
Lagrange approach, 168, 226–227

constrained optimization, 226–227

Pareto efficiency, 168

Learning processes (human), 17–18,

140–141

active case, 141, 158–159

Bayes theorem, 17–18, 140–141

bounded rationality, 17

dynamic decisions model, 140–141

long-term memory, 17

memory loss, 17

passive case, 141

short-term memory, 17

signals, 17

Limited liability contracts, 161

Linear decision rule, 184

risk redistribution, 184

Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 241Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 241Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 241Chavas / Risk Analysis in Theory and Practice Final 21.4.2004 10:52am page 241

Index 241



M
Management (risk), numerical problems, 2

Markets (risk), 170–174, 201, 204–207

aggregate trade profits, 172

decentralization, 173

equilibrium, 204–207

goods allocation, 173

incomplete, 201

individual profit maximization, 173

mechanisms vs. contracts, 181

no-arbitrage conditions, 174

Pareto efficient allocation, 172

perfect contingent, 201

policy development, 174

rational expectations, 205

stabilization, 3

‘‘unitary price elasticity of demand,’’ 205

Markovian structures, 143

dynamic programming recursion, 143

Maximum likelihood method, 14

repeatable events, 14

Mean-variance analysis, 3, 43, 69–76

CARA preferences (normality), 69, 73

CRRA, 74, 74f

DARA, 73, 75–76

‘‘downside’’ risk, 75

flexibility, 75

indifference curve, 72f, 73, 73f

marginal rates of substitution, 73

mean preserving spread, 70

notations, 71

quadratic utility functions, 43, 70

rare events, 76

risk preference implications, 71–76

‘‘upside’’ risk, 75

Mean-variance model, 110, 112–113, 126–127,

131

CAPM, 131

multiproduct firms, 112–113

portfolio selection, 126–127

production uncertainty, 110

Mechanism design, 198

asymmetric information, 198

Memory

long-term, 17

loss, 17

short-term, 17

Microsoft Excel, 2–3

Miller-Modigliani theorem, 136

debt leverage, 136

mean-variance model, 136

Monetary rewards case, 26–28

decision-making factors, 27

risk preferences, 26–27

Moral hazards, 180, 192, 194

information processing, 180

optimal contracts, 192

principal-agent model, 192

risk-averse agent, 194

Multidimensional case, 28–29

decision-making, 28

risk preferences, 28–29

Multiproduct firms, 111–117

diversification, 115–117

E-V frontier, 113–115, 114–115f

mean-variance analysis, 112–113

price uncertainty, 111–112

Multivariate joint distribution, 212–213

probability theory, 212–213

random variables, 212–213

Mutual fund theorem, 127–130, 132, 136

CAPM, 132, 136

E-V frontier (riskless asset), 128f, 129

portfolio selection, 127–130, 128f

predictions, 129

risky assets, 129

N
No-arbitrage conditions, 174

Nonparametric statistics, 13

repeatable events, 13

Nonrepeatable events, 14–18

fractile method, 15–16

probability theory, 14–18

reference lotteries, 15

Normative analysis, 1

O
Optimal contracts, 189–196

asymmetric information, 192

effort level specifications, 192

incentive compatibility constraint, 192

marginal utility ratio, 190
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Optimal contracts (continued )

moral hazards, 192

non-observable effort, 192–196

observable effort, 189–191

risk distribution, 190

risk neutral principal, 190

symmetric information, 189

Optimization, 221–229

comparative statics analysis, 225

concave function, 222–223f

constrained, 225–229

convexity of sets, 222f

decision rules, 222

envelope theorem, 225

first-order necessary condition, 224

indirect objective function, 224

Lagrange approach, 226–227

preliminaries, 221–222

unconstrained, 222–225

P
Parametric statistics, 14

repeatable events, 14

Pareto efficiency, 165–169, 172, 186, 201

benefit functions, 165–166

CARA, 168

Lagrange approach, 168

maximal allocations, 166

policy rules, 169

price stabilization, 201

public projects, 186

risk markets, 172

risk transfer schemes, 165–168

‘‘sure money,’’ 165

utility frontier, 166–167, 167f

‘‘zero wealth effects,’’ 167

Pareto utility frontier, 166–167, 167f

welfare distribution, 167

Partial relative risk aversion, 47–48

CPRRA, 47

DPRRA, 48

IPRRA, 47–48

Participation constraints, 189

principal-agent model, 189

Pascal, Blaise, 209

probability theory, 209

Perfect contingent claim markets, 201

price stabilization, 201

Period one decisions, 155–157

certainty equivalent principle, 156

information management, 155–156

marginal net benefits, 156

Policy rules, 169–170, 174

decentralization, 180

development, 174

efficient exchange, 174

Pareto efficient allocations, 169

vs. contracts, 169

Portfolios, 3, 123–137

CAPM, 123, 131–135

DARA preferences, 125

debt leverage, 135–136

mean-variance approach, 126–127

multiple assets case, 125–126

mutual fund theorem, 127–130

planning horizons, 123

selection risks, 3

stock return rate, 133–135

two assets case, 123–125

two-stage decomposition, 130–131

Positive analysis, 1

Posterior probabilities, 16

Bayes theorem, 16

Preferences (risk)

bid price, 34

concave functions, 31–32, 32f

convex functions, 31–32, 32f

direct elicitation, 26–28

income compensation tests, 33

individual, 3

Jensen’s Inequality, 32

linear functions, 32f

mean-variance analysis, 71–76

moments, 48–50

monetary rewards case, 26–27

multidimensional case, 28–29

nonsatiated, 56

premiums, 32–35

selling price, 33

State preference approach, 91

Premiums (risk)

Arrow-Pratt, 108

certainty equivalent, 35

local measures, 36

marginal, 98, 108

relative risk aversion, 44

risk preferences, 34–35
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Premiums (risk) (continued )

shadow costs, 35

vs. information value, 153–154

Price stabilization, 201–207

consumer benefits, 202–204

Pareto efficients, 201

perfect contingent claim markets, 201

Price uncertainty, 96–106

comparative static analysis, 99

compensated expected price effects, 102

compensated supply functions, 102

cost minimization, 97–98

equilibrium situations, 105–106

free entry/exit, 106

initial wealth effects, 100–101

marginal production costs, 98

marginal risk premiums, 98

mean price changes, 103f

multiproduct firms, 111–112

price risk effects, 103

production lags, 96

profit tax effects, 103–105

risk-averse preferences, 96–97

Slutsky equation, 102

supply functions, 98–99, 99f

terminal wealth, 96

Principal-agent model, 188–196

franchise contract, 191

individual rationality constraint, 189

liability rules, 195–196

moral hazard, 192, 196

negligence, 196

participation constraint, 189

risk transfer schemes, 188–196

risk-averse agents, 193

risk-neutral agents, 190, 193

sharecropping, 196

Probability theory

axioms, 210–211

Bayes theorem, 215

Chebyschev inequality, 218

conditional, 214–215

continuous distributions, 220t

discrete distributions, 219t

distributions, 11–12

elicitations, 13–14

expectations, 216–219

fractile method, 15–16

‘‘fuzzy sets,’’ 12

games of chance, 209

imperfect knowledge, 8–9

moment generating function, 218

nonrepeatable events, 14–18

propositions, 12

random variables, 211–214

reference lotteries, 15

relative frequency, 10

repeatable events, 13–14

risk assessment, 1

sample space, 9

subjective interpretations, 11

Production decisions

changing price risk effects, 103, 104f

compensated expected price effect, 102

compensated supply function, 102

compensation tests, 33

free entry/exit, 106

futures markets, 117–120

‘‘hedging,’’ 119–120

income transfers, 101

initial wealth changes, 101f

long run equilibrium, 107f

marginal costs, 98

marginal risk premiums, 98

mean price change effects, 103f

price uncertainty, 96–106

production uncertainty, 107–111

residual claimants, 95

risk aversion, 97

risk factors, 3

supply functions, 98, 99f

Production uncertainty, 107–111

additive, 109

Arrow-Pratt risk premium, 108

firm output, 107

Just-Pope specification, 109–110

marginal risk premium, 108

mean-variance analysis, 110

moment-based approach, 110–111

multiplicative, 109

subjective joint distribution, 107–108

Profit tax, 103–105

CRRA, 104

DRRA, 104

IRRA, 104

price uncertainty, 103–105

Prospect theory, 85–87

Independence assumption, 85–87

probability weights, 86f

reject asset integration, 86
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Prospect theory (continued )

utility function, 87f

Public projects, 183–186

CARA, 184

investment influences, 186

linear decision rules, 184

Pareto efficiency, 186

risk redistribution, 183–186

Q
Quadratic utility functions, 42–44, 70

mean-variance analysis, 43, 70

risk aversion, 42

Quasi-option value, 157

irreversible decisions case, 157

R
Random number generators, 7

chaos, 7

risk factors, 7

seeds, 7

Random variables (probability theory),

211–215

conditional probability, 214–215

distribution functions, 211–212

marginal distributions, 213

multivariate joint distribution, 212–213

mutual independence, 214

probability functions, 212

Rare events, 76

bounded rationality, 76

mean-variance analysis, 76

Reference lotteries, 15, 92

agricultural risk behaviors, 92

nonrepeatable events, 15

probability theory, 15

Regression lines, 14

repeatable events, 14

Reject asset integration, 86

Prospect theory, 86

Relative frequency (events), 10

Probability theory, 10

Relative risk aversion, 44–47

Arrow-Pratt coefficient, 45

CRRA, 45–47

DRRA, 45

IRRA, 45, 47

premiums, 44

Repeatable events, 13–14

classical statistics, 13

elicitations of probabilities, 13–14

experimental design theory, 13

maximum likelihood method, 14

nonparametric statistics, 13

parametric statistics, 14

regression lines, 14

sample information, 13

sample moments, 14

Residual claimants, 95

production decisions, 95

Resource allocation, 3

Rewards, 22

expected, 22

St. Petersburg paradox, 22

Risk aversion

active insurance markets, 38

Arrow-Pratt coefficient, 36

CARA, 38–40

DARA, 40

definition, 35–36

IARA, 40

Jensen’s Inequality, 37

production decisions, 96

quadratic utility functions, 42

relative, 44–47

risk lover vs., 35

risk neutral vs., 35

utility model, 37f

Risk lover (behaviors), 35, 37–38

gambling, 37–38

vs. risk aversion, 35

Risk transfer schemes, 161–181, 188–196

decentralization, 170

external effects, 164

feasibility functions, 164

information value, 178–181

market role, 170–174

Pareto efficiency, 165–168

preference functions, 163

principal-agent model, 188–196

specialization, 170

state-dependent decision rules, 162

uncertainty role, 176–178

von Neumann-Morgenstern functions,

163
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Risk-averse agent, 193–195

efficient payments, 194–195

effort levels, 193

incentive compatibility constraint, 194

likelihood ratio, 194

moral hazard, 195

principal-agent model, 193–196

Riskless assets, 146–148

constant return rate, 146

discount factors, 148

dynamic decisions model, 146–148

E-V frontier, 128f, 129

intertemporal budget constraints, 146

Risk-neutral agents, 190, 193

franchise contracts, 193

optimal contracts, 190

principal-agent model, 190

Risks

analysis applications, 2

causal factor control, 6–7

diversification, 117f

‘‘downside,’’ 49–50

event definition, 4, 6–7

health, 1

income, 1

information processing limitations, 7–8

Just-Pope Specification, 110

monetary outcomes, 4

portfolio selection, 3

preferences, 1–2

price, 1

probability theory, 1

production decisions, 3

shared, 3

sharing, 183–186

subjectivity, 10–11

time allocations, 4

‘‘upside,’’ 49

vs. uncertainty, 5–6

weather, 1, 4

S
‘‘Safety first’’ model, 80, 92–93

agricultural risk behaviors, 92–93

Continuity assumption, 80

Sample space, 9

probability theory, 9

Second-order stochastic dominance, 57–60

discrete implementation, 58–59

distribution function, 59f

normal distributions, 59

propositions, 57–58

Selling prices, 33, 150

information, 150

risk preferences, 33

Sharecropping, 196

principal-agent model, 196

Skewness, 76. See also ‘‘Downside risk

aversion’’

Slutsky equation, 102

price uncertainty, 102

Smith, Adam, 173

Specialization, 8, 159, 170

active learning, 159

bounded rationality, 8

risk transfer schemes, 170

social benefits, 8

Speculators, 117

vs. ‘‘hedging,’’ 117

St. Petersburg paradox

expected rewards, 22

expected utility models, 21–23

State preference approach, 90–91

expected utility models, 90–91

risk preference analysis, 91

Statistics

Bayesian, 11

classical, 10

Stochastic discount factors, 143–145

budget constraints, 144

CCAPM, 145

CRRA, 145

time additive functions, 143

Stochastic dominance

analysis, 3

Arrow-Pratt risk aversion coefficient, 65

costate variable in optimal control, 63

definitions, 56

derivations, 63

discrete case, 65–66

distribution functions, 62

first-order, 57

implications, 56–57

integration by parts, 54–55

nonsatiated preferences, 56

second-order, 57–60

third-order, 60–61
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Stochastic dominance (continued )

utility functions, 62–63

Stock return rate, 133–135

beta linearity, 134

portfolios, 133–135

Supply functions, 98–99, 99f, 102

compensated, 102

price uncertainty, 98–99

production decisions, 98

‘‘Sure money,’’ 165

Pareto efficiency, 165

T
Third-order stochastic dominance, 60–61

discrete implementation, 60–61

distribution function, 61f

proposition, 60–61

Time allocations, risk, 4, 6

Transaction costs, 137, 175–176

CAPM, 137

Kuhn-Tucker conditions, 175

market incompleteness, 176

one price law, 175

state-dependent exchanges, 176

Two-period case, 148–150

‘‘curse of dimensionality,’’ 148

dynamic decision model, 148–150

information assessment, 149

Two-stage decomposition, 130–131

portfolio selection, 130–131

U
Uncertainty, 5–6

vs. risk, 5–6

‘‘Unitary price elasticity of demand,’’

205–206

risk markets, 205

‘‘Upside’’ risk, 49, 75, 79

expected utility models, 79

mean-variance analysis, 75

vs. ‘‘downside,’’ 79

Utility functions, 24–26, 62–63

assumptions, 24–25

linear probabilities, 25

stochastic dominance, 62–63

V
von Neumann-Morgenstern functions, 79,

140, 163

expected utility models, 79

risk transfer schemes, 163

W
Wealth effects, 100–101

CARA, 100

DARA, 100–101, 101f

IARA, 100

price uncertainty, 100–101

‘‘zero,’’ 39

Weather risks, 1, 4

Z
‘‘Zero wealth effects,’’ 39, 102, 167

CARA, 39, 102

Pareto efficiency, 167
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