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1 Introduction 

The VLA (very late antigens) constitute the ~l subfamily of integrin adhesion 
receptors defined by at least nine ex-chains that share a noncovalently linked com­
mon ~-chain, termed ~l (CD29) (HYNES 1992; SCHWARTZ 1993). The VLA mainly 
function as cell surface receptors mediating cell-to-cell and cell-to-extracellular 
matrix (ECM) adhesive interactions. They constitute a major class of adhesive 
receptors expressed by T cells. On resting CD4 + T cells, the VLA/CD29 antigens 
are preferentially expressed on the CD45RO + CD45RA' helper/inducer (memory) 

iDivision of Tumor Immunology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachu­
setts 0211S, USA 
2Department of Clinical Immunology and AIDS Research Center, Institute of Medical Science, Uni­
versity of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108, Japan 



2 C. Morimoto et al. 

subset (MORIMOTO et al. 1985). VLA molecules are thought to playa major role in 
the interaction between these helper cells and the surrounding ECM or aid their 
migration into tissues (SHIMIZU and SHAW 1991). Apart from a role in cell adhesion, 
recent studies have clearly shown the VLA receptors to transduce signals in a wide 
variety of cells, including T lymphocytes (SCHWARTZ et al. 1991; SHATTIL and 
BRUGGE 1991; SULTAN et al. 1991). For example, several laboratories, including 
ours, have shown that the binding ofT cells with ECM through VLA-pl-integrins 
provides costimulatory signals for T cell proliferation (MATSUYAMA et al. 1989; 
NOHMA et al. 1990; YAMADA et al. 1991a, b; ENNIS et al. 1993). VLA-pl-integrins 
are also reported to be involved in T or B cell differentiation through interaction 
with fibronectin (FN), expressed on stromal cells in thymus or bone marrow, res­
pectively (SALOMON et al. 1994; WILLIAMS et al. 1991). 

One of the earliest events to occur upon T cell activation is an increase in 
protein tyrosine phosphorylation, and this was shown to be essential for subsequent 
T cell proliferation (GUPTA et al. 1994). Since ligation of VLA-pl-integrins provides 
a costimulatory signal to the T cell receptor (TCR)jCD3 complex, we analyzed the 
effect of engagement of VLA-pI on protein tyrosine phosphorylation. We showed 
that either adherence to the CS-I domain of FN (see below) or monoclonal anti­
body (mAb) cross-linking of VLA-Pl or VLA-4 rapidly stimulated tyrosine phos­
phorylation of cellular proteins, including a lOS kDa protein (ppIOS) in human H9 
T-Iymphoblastic cells or peripheral resting T cells. In B cells, ligation of VLA-4 
induces tyrosine phosphorylation of a IOS-12S kDa group of proteins (NOJIMA et 
al. 1992). Also, the interaction of VLA-4 with FN generates focal adhesions. 
Various cytoskeletal elements and a protein tyrosine kinase (PTK), ppl2SFAK 

(focal adhesion kinase), have been reported to sequester to the focal adhesive loci 
(SCHALLER et al. 1992). A recent study also identified highly tyrosine phosphory­
lated proteins of 120-130 kDa upon engagement of VLA-pl-integrins in different 
types of cells, including mouse fibroblasts (GUAN et al. 1991) and a human epi­
dermal cancer cell line (KORNBERG et al. 1991), subsequently identified as various 
tyrosine phosphorylated forms of ppl2SFAK (SCHALLER et al. 1992). Our previous 
study demonstrated that ppl0S was distinct from pp12S FAK and that both pplOS 
and ppI2S"AK were tyrosine phosphorylated by the ligation ofVLA in an H9 T cell 
(NOJIMA et al. 1995). Given the costimulation provided by VLA- P l-integrins and 
the putative role of pp 12SFAK in cell growth and differentiation, the above findings 
strongly suggest that pp1OSjppl2SFAK tyrosine phosphorylation may playa crucial 
role in VLA-pl-integrin-mediated signaling events in T cell activation. 

Although most members of the VLA family are involved in cell-ECM inter­
actions, only VLA-4 has been conclusively shown to participate in both cell-ECM 
and cell-cell adhesive interactions. In particular, VLA-4 has been demonstrated to 
serve as a receptor for an Arg-Gly-Asp-independent site of plasma FN, namely 
CS-I, as well as for the cell surface molecule VCAM-I, a member of the Ig su­
perfamily expressed on cytokine-activated endothelial cells. Moreover, VLA-4 
mediates intercellular adhesion of leukocytes based on the ability of specific anti­
VLA-4 mAbs to trigger homotypic cell aggregation through an LFA-ljICAM-l­
independent mechanism. Furthermore, accumulating evidence suggests that VLA-4 
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integrin-dependent adhesion pathways are critical intervention points in several 
inflammatory and autoimmune pathologies. In this chapter, we will focus on VLA-
4-mediated signal transduction, especially results based on our previous and recent 
studies. 

2 Tyrosine Phosphorylation in T Cells 
Through Ligation of VLA-4 

Recently, VLA-4 has been found to mediate intercellular adhesion of leukocytes on 
the basis of the ability of specific anti-VLA-4 mAbs to trigger homotypic cell 
aggregation through an LFA-l/ICAM-l-independent mechanism (SANCHEZ et al. 
1993). In this regard, several distinct VLA-4 adhesion functions have been reported. 
VLA-4-mediated homotypic cell aggregation, cell attachment to the CS-l domain 
of FN, and adhesion to VCAM-l can each be independently inhibited. This indi­
cated that there are three distinct functions mediated by VLA-4. In addition, since 
some VLA-4 mAbs are reported to block homotypic cell aggregation but do not 
trigger it, we can consider these two aspects of the cell as functionally distinct. We 
showed that VLA-4 mAb against epitope B2 induces the strongest co stimulation 
through theCD3 pathway. VLA-4 mAb against A and Bl epitopes can induce 
modest T cell co stimulation, whereas VLA-4 mAb against the C epitope induces 
only minimal T cell costimulation. Thus, taken all together, the VLA-4 molecule is 
involved in a total of five distinct functions. 

The fact that the anti-epitope B2 mAb was able to inhibit cell binding to both 
CS-l and VCAM-I indicated that VLA-4-mediated costimulation can be triggered 
through an epitope overlapping with the binding sites of CS-l and VCAM-1. This 
is in agreement with previous observations, since both CS-1 and VCAM-l can 
induce TCR/CD3-mediated costimulation. In our earlier study (NOJIMA et al. 
1992), we demonstrated that liquid cross-linking of VLA-4 by one of the anti­
VLA-4 mAbs, 8F2, and by an anti-CD29 mAb, 4B4, can induce tyrosine phos­
phorylation of a 105 kDa protein. Here, we analyzed the differences in the nature of 
protein tyrosine phosphorylation induced by antibody ligation of anti-VLA-4 
epitope C (8F2), which appears to have no role in either cell aggregation or cell 
proliferation. In agreement with our previous report (NOJIMA et al. 1992), tyrosine 
phosphorylation of a 105 kDa protein in peripheral T cells was induced by the 
liquid phase cross-linking of VLA-4 using 4B4 as well as 8F2 and 3G6 after 10 min 
of stimulation (peak phosphorylation at 10-15 min). By contrast, after 10 min the 
solid phase cross-linking of VLA-4 using 4B4 and 3G6 induced various tyrosine 
phosphorylated proteins migrating at 140, 120, 110--105, 80--70, 60--55, 50, and 
45 kDa on an SDS-PAGE (SATO et al. 1995). As was the case with liquid phase 
cross-linking of VLA-4, solid phase cross-linking using the high concentration of 
8F2 (20 /lg!ml) induced several weakly tyrosine phosphorylated proteins, such as 
140, 120, and 80--70 kDa, but the main band was at 105 kDa. It should be noted 
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that some tyrosine phosphorylated proteins (50 and 45 kDa proteins) were not so 
strong at 10 min. 

As the difference in the tyrosine phosphorylation level was observed in the 
solid phase cross-linking between 3G6 and 8F2 stimulation, it was important to 
define the different signaling events (tyrosine phosphorylation) associated with 
VLA-4-mediated T cell costimulation. Therefore, we proceeded to compare the 
tyrosine phosphorylation induced by solid phase cross-linking of VLA-4 using 3G6 
to that induced by its natural ligand, glutathione-S-transferase (GST)-CS-l. Solid 
phase cross-linking using and GST -CS-l induced the same tyrosine phosphorylated 
proteins. In addition, the tyrosine phosphorylation induced by GST-CS-l was al­
most completely inhibited by pretreating peripheral T cells with mAb 4B4 or 3G6. 

To further determine the relationship between the VLA-4 epitope and tyrosine 
phosphorylation, we compared the tyrosine phosphorylation induced by solid 
phase cross-linking using epitope-specific anti-VLA-4 mAb. Three immobilized 
mAbs against B2 induced the same protein tyrosine phosphorylation as well as 4B4 
(anti-~1 mAb), and immobilized mAb against A and Bl were able to induce the 
same protein tyrosine phosphorylation at 30 min of incubation. Three immobilized 
antibodies against epitope C could induce some tyrosine phosphorylation, but the 
intensity was weak compared with that of A or B epitope mAb. Since T cell 
co stimulation could not be induced by C epitope mAb, these findings strongly 
suggest that the above tyrosine phosphorylated proteins induced by ~2-epitope 
mAb may be closely involved in VLA-4-mediated T cell costimulatory events. 

3 Identification of the Candidate Proteins 

We next identified each protein candidate from the above bands by immunopre­
cipitation using antibody that recognizes the candidate protein. For this purpose, 
lysates from the cells that had been stimulated with solid phase cross-linked VLA-4 
using mAb (8F2 and 3G6) were immunoprecipitated with the candidate mAb. The 
known substrate proteins, ppI25FAK, paxillin, Fyn, and Lck were clearly tyrosine 
phosphorylated in cells stimulated by solid phase cross-linking using 3G6, but not 
8F2. This result indicated that the pp120 protein was ppI25FAK, pp70 and pp50 
proteins were paxillin (two bands at 70 and 50 kDa were detected by anti-paxillin 
mAb), and pp60-55 proteins were p59fyn and p561ck. Regarding the 140 kDa pro­
tein, similar immunoprecipitation studies demonstrated that antibody to IRS-I, 
JAKl, JAK2, Tyk2, Stat2, and ~1-integrins, which recognize 130-160 kDa proteins 
(SUN et al. 1991; HORAK et al. 1991; SILVENNOINEN et al. 1993; FIRMBACH et al. 
1990; JOHANSSON et al. 1994) were unable to reprecipitate phosphoprotein. In 
contrast, the antibody against phospholipase C (PLC)yl showed that p140 was 
actually PLCy. In the case of pp45, a tyrosine-phosphorylated mitogen-activated 
protein kinase (MAPK) (ERKlj2) was detected on a solid phase anti-CD3-stim­
ulated, or a solid phase 3G6-stimulated, sample but not on a BSA an 8F2 sample 
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Fig. I. Solid phase cross-linking of VLA-4 with 3G6 induces 
tyrosine phosphorylation of mitogen-activated protein kinase 
(MAPK). Resting T cells were incubated on plates coated with BSA 
(1% , W/V), anti-CD3, 8F2, or 3G6 (5 ~lg/ml of each) for 30 min 
and lysed. Lysates were immunoprecipitated with anti-phosphoty­
rosine beads. and immunoprecipitates were analyzed by anti­
MAPK antibody immunoblotting using Enhanced Chemilumine­
scense (ECL, distributed by Amersham Life Science Inc. UK). The 
position of MAPK is indicated by the arrowhead 

(Fig. I) (SATO et al. 1995). Regarding the 55 kDa protein, which was detected after 
anti-CD3 stimulation or anti-VLA-4 stimulation, we have not succeeded in its 
identification. Therefore, it is not clear whether the anti-MAPK antibody cross­
reacted with this protein, or if the 55 kDa protein also belongs to the MAPK 
family. In the cases of pp I 05 and pp80, the structure and nature of these proteins 
have not been clarified at the moment. Because solid phase cross-linking of VLA-4 
by B2 epitope-specific antibody induced T cell costimulation most strongly through 
the CD3 jTCR pathway, the above results strongly suggested that the above-men­
tioned tyrosine phosphorylated proteins may play an important role in VLA-4-
mediated T cell costimulatory signaling events . 

4 Identification of a Tyrosine Phosphorylated, 70 kDa, 
pp12SFAK-Associated Protein as Paxillin 

Focal adhesion kinase, pp125FA \ co localizes with VLA-~I-integrins at focal ad­
hesions, where cells attach to the ECM. The complex architecture of cellular focal 
adhesions depends on numerous protein-protein interactions between focal adhe-
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sion components. However, the mechanisms and cellular components regulating 
various aspects of signaling induced by VLA-~l-integrins are currently unclear. 
Because VLA-~l-integrins lack intrinsic PTK activity, the above protein tyrosine 
phosphorylations strongly suggest the presence of PTK(s), which is functionally 
linked to VLA-~ l-integrins. ppl25FAK is a prime candidate for such PTKs because 
it is colocalized with VLA-~l-integrins at focal adhesions. 

It is now established that one of the major substrates for integrin-mediated 
tyrosine phosphorylation is ppI25 FAK, a 125 kDa cytoplasmic PTK. To determine 
the relationship between pp125FAK and other tyrosine phosphorylated proteins, we 
attempted to define pp125 FAK-associated molecules. For this purpose, lysates of H9 
cells or T-47D cells were precipitated with the GST fusion protein containing 
pp125 FAK COOH-terminal domain and were analyzed by immunoblotting with 
anti-phospho tyrosine mAb. As shown in Fig. 2, tyrosine phosphorylated pp125FAK 

was well precipitated with GST-paxillin fusion protein in nonlymphoid adherent 
cells such as T -47D, a human breast cancer cell line (TACHIBANA et al. 1995). 
Furthermore, a tyrosine phosphorylated 70 kDa protein was shown to precipitate 
with GST-FAK fusion protein. In addition to adherent cells, the 70 kDa protein, 
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Fig. 2. Identification of a tyrosine phosphory­
lated 70 kDa ppl25FAK-associated protein 
(FAK. focal adhesion kinase). T-47D celllysates 
were precipitated with glutathione-S-transferase 
(GST)-paxillin fusion protein (lane 1) and GST­
ppl25 FAK fusion proteins (lanes 2. 3). The pre­
cipitates were subjected to SDS-PAGE and 
analyzed by immunoblotting with Il5I _labeled 
anti-phosphotyrosine monoclonal antibody 
(4GI0) 
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which was precipitated by the GST-FAK fusion protein from the lysate of FN­
stimulated H9 cells, was also detected by immunoblotting with antiphosphotyro­
sine mAb (Fig. 3B). This 70 kDa protein was not detected by antiphosphotyrosine 
mAb blotting in the absence of FN stimulation (Fig. 3A). These resul ts suggest the 
following: (a) the 70 kDa protein is tyrosine phosphorylated by FN stimulation in 
H9 cells; (b) this 70 kDa protein (pp70) binds to FAK protein, although it is not 
clear whether tyrosine phosphorylation of this protein is required for binding to 
ppI2SFAK. Tyrosine phosphorylation in the binding site of ppl2SFAK is not nec­
essary for pp70 binding because the GST-FAK fusion protein, which was not 
phosphorylated on tyrosine residues, bound to pp70. 

To identify the pp70 protein, pp70 was precipitated with the GST-FAK fusion 
protein, fractionated by SDS-PAGE, and analyzed by immunoblotting with specific 
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Fig. 3A, B. Binding of pplO5 to the CT domain of focal adhesion kinase (FAK). A H9 cells were 
incubated in poly-L-Iysine (PLL)- or fibronection (FN)-coated plates for 30 min (ianes / ,3,5, and 2, 4, 6, 
respectively). After lysis. cellular Iysates were precipitated by glutathione beads that were conjugated to 
glutathione-S- transferase (GST) or GST-FAK COOH-terminal domain (CT) fusion protein (containing 
FAK residues 706--1052, GST-CT beads). The whole lysate and the immunoprecipitates were analyzed by 
immunoblotting with anti-phosphotyrosine monoclonal antibody (ct-pTyr). B H9 cell Iysates were pre­
cipitated with GST-FAK fusion protein-conjugated beads. Precipitates were analyzed by immunoblott ing 
with ct-pTyr. For discussion, see text -
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antibodies against candidate proteins for pp70. We found that paxillin was precipi­
tated with GST-FAK fusion protein from HPB-ALL (a human T lymphoblastic cell 
line) Iysates with or without FN stimulation, as well as from T-47D cell lysate, and it 
migrated with a mobility similar to that ofpp70, suggesting that pp70 was identical to 
the tyrosine phosphorylated paxillin. To confirm that pp70 was paxillin, pp70 was 
precipitated by the GST-FAK fusion protein from T-47D cell lysate, solubilized by 
boiling in buffer containing 1% SDS, reprecipitated with anti-phospho tyrosine mAb 
or anti-paxillin mAb, and analyzed by immunoblotting with antipaxillin mAb and 
with antiphosphotyrosine mAb. Tyrosine phosphorylated pp70, which was precipi­
tated with the GST-FAK fusion protein, was detected by anti-paxillin mAb, and 
tyrosine phosphorylated paxillin migrated with exactly the same mobility as pp70. 
These results confirm that pp70 is paxillin. Further studies showed that non tyrosine 
phosphorylated paxillin was precipitated with the GST -F AK fusion protein as well as 
pp70, tyrosine phosphorylated paxillin. These results strongly suggest that tyrosine 
phosphorylation of paxillin is not required for binding to pp 125FAK . 

5 Direct Association of pp12SFAK with Paxillin 

Although the association of the GST-FAK fusion protein with paxillin was dem­
onstrated, the following points remained unclear: (a) Is endogenous ppl25 FAK 

116-

80-

50 -

p110Cas 

p105Cas 

Fig. 4. Identification of the focal adhesion kinase (FAK)-
p a xliii n binding proteins as paxillin and pp105j110 Cas-related pro­

teins. H9 cell Iysates were immunoprecipitated without first 
antibody (lane /), with anti-Cas (Crk-asociated substrate) 
monoclonal antibody (mAb) (lane 2), and with anti-paxillin 
mAb (lane 3). After fractionation by SDS-PAG E and 
electrotransfer, immunoprecipitates were denatured and re­
natured, followed by overlay with 32P-labeled glutathione-S­
transferase (GST)-FAK fusion protein containing FAK 
residues 706- 1052 
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associated with paxillin? (b) Is paxillin directly associated with pp12SFAK or as­
sociated indirectly via binding to other proteins? 

To determine whether the association between pp12S FAK and paxillin was 
direct or indirect, we performed an overlay assay using 1251_labe1ed GST-FAK 
fusion protein as a probe. Immunoprecipitated paxillin was analyzed by overlay 
assay with 125I_labeled GST-FAK fusion protein. As shown in Fig. 4, a protein of 
70 kDa was detected on the lanes of precipitates with anti-paxillin mAb, whereas 
no protein was detected using control precipitations (T ACHIBANA et al. 1995). This 
protein had the same mobility as paxillin as shown by reprobing of the membrane 
with anti-paxillin mAb. These results demonstrate a direct association between 
ppl2SFAK and paxillin. 

6 Identification of Paxillin-Binding Domain of pp12SFAK 

To determine the paxillin-binding domain of ppI2SFAK, we developed several de­
letion mutants derived from the GST-FAK fusion protein. HPB-ALL celllysates 
were incubated with these deletion mutant proteins, precipitated, and analyzed by 
immunoblotting with anti-paxillin mAb. Our results showed that ppl2SFAK resi­
dues 919-1042 are sufficient for the association with paxillin. Deletion mutants 
containing F AK residues 923-10S2 or 896-1039 did not precipitate paxillin, sug­
gesting that the amino acid residues of pp 12SFAK, which are critical for paxillin 
binding, are located close to both ends of the paxillin-binding domain, residues 
919-1042 (Table I) (TACHIBANA et al. 1995). This paxillin-binding domain of hu­
man ppl2S FAK overlaps with the FAT (focal adhesion targeting) domain of chick 
pp 12SFAK. HILDEBRAND et al. (1993) reported that chick pp 12SFAK mutants with a 
deletion that corresponds to human ppl2SFAK residues 861-967 or 969-1016 
resulted in the loss of FAT. Since these two mutants have deletions in the paxillin­
binding domain, these mutants are expected to lack paxillin-binding activity, sug­
gesting the relevance between paxillin-binding activity and FAT ofpp12SFAK. 

7 Identification of pp12SFAK Amino Acid Residues Essential 
for Paxjllin Binding 

Paxillin was first identified as a vinculin-binding protein. Vinculin, a 116 kDa 
cytoskeleton protein, is also localized at focal adhesions, and the paxillin-binding 
domain of vinculin was identified recently (WOOD et al. 1994). Chick vinculin 
residues 881-1000 are sufficient for paxillin binding, and vinculin residues 979-1000 
are critical for paxillin binding. Comparison of paxillin-binding.domains between 
pp 12SFAK and vinculin revealed several conserved amino acid residues. As shown 
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Table 1. Summary of the functions of GST-FAK fusion proteins 

Deletion IOG2" PBb FAT" Substitution IOG2 PB FAT 
mutants mutants 

706-1052 + + + 923 K --7 E + + + 
706-841 NDd 928 V --7 G ± 
706-904 929 T --7 A + + ND 
706-997 ND 929 T --7 S + + ND 
706-1038 + 931L--7R ± 
896-1005 ND 933 K --7 E + + ND 
896-1015 ND 935 V --7 A + ND 
896-1027 ND 1033 N --7 D + + ND 
896-1038 + 1034 L --7 S + 
896-1039 + 1035 L --7 A + ND 
896-1042 + + ND 1036 D --7 H + + + 
896-1047 + + ND 1037 V --7 D + ND 
896-1052 + + + 1039 D --7 A + ND 
904-1052 + + + 1040 Q --7 E + + ND 
904-997 ND 1040 Q --7 G + + ND 
919-1052 + + + 1040 Q --7 K + + ND 
923-1052 + ND 1042 R --7 G + ND 
928-1052 + 1043 L --7 R + + + 
939-1052 + 
967-1052 ± ND 

Paxillin-binding activity, focal adhesion-targeting activity (FAT), and IOG2 mAb-binding activity of each 
GST-FAK fusion proteins is summarized. Paxillin-binding activity represents the activity needed to 
precipitate paxillin from cellular lysates. Focal adhesion-targeting activity was determined by 
immunohistochemical analysis of the microinjected fusion protein. IOG2 mAb-binding activity was 
determined by immunoblotting with 12sI_labeled IOG2 mAb. 
alOG2 mAb binding activity. 
hpaxillin binding activity. 
'Focal adhesion targeting activity. 
dNot determined. 

in Fig. 5, two subdomains located on both ends of the paxillin-binding domain of 
pp125FAK have homology with the paxillin-binding domain of vinculin (TACHI­
BANA et al. 1995). pp 125FAK residues 919-935 and vinculin residues 952-968 share a 
sequence, R/K-X6-E/D-X-V-T-X-L-X3-V/L (paxillin-binding subdomain I/PBS1). 
pp125FAK residues 1034-1039 and vinculin residues 981-986 also share a sequence, 
L-L-X-V-D/E (paxillin-binding subdomain 2/PBS2). To determine the role of these 
homologous amino acid residues in the interaction with paxillin, we generated 
substitution mutants within pp l25 FAK residues 896-1052 and performed paxillin­
binding analysis with these mutant proteins. Substitutions of residues Val-928 to 
Gly, Lcu-931 to Arg, and Val-935 to Ala in PBSI resulted in a significant decrease 
in paxillin-binding activity, whereas substitutions of Lys-923 to Glu, Thr-929 to 
Ala or Scr, and Lys-933 to Glu had no effect on paxillin binding. In PBS2, sub­
stitutions of Leu-l034 to Ser, Leu-l035 to Ala, Val-I037 to Asp, Glu-I039 to Ala, 
and Arg-l042 to Gly significantly decreased paxillin-binding activity, whereas Asn-
1033 to Asp, Glu-l036 to His, Gln-1040 to Glu, Gly, or Lys, and Leu-1043 to Arg 
did not. These results clearly indicate that conserved or homologous amino acids 
between ppl25FAK and vinculin are essential for paxillin binding. 
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Sequence Homology between FAK and Vinculin 

Vinculin 
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chick 
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Fig. 5. Sequence homology between ppl25FAK (FAK, focal adhesion kinase) and vinculin. Amino acid 
sequences of the paxillin-binding domains of vinculin and ppI25FAK. Amino acid sequences of the 
paxillin-binding domains of human, mouse, and chick pp 125FAK are conserved. Conserved amino acids 
between pp125FAK and vinculin are boxed. Substituted FAK residues used in the following analysis and 
paxillin-binding activity of each mutant are shown below FAK sequence 

8 Biological Relevance Between Paxillin Binding 
and the FAT Domain of pp12SFAK 

Given that the paxillin-binding domain and the FAT domain ofpp12SFAK overlap 
each other, one of the putative biological functions ofpp12SFAK binding to paxillin 
would be the recruitment of pp12SFAK to focal adhesions. To elucidate this pos­
sibility, we performed immunohistochemical analysis combined with microinjection 
of GST-FAK fusion proteins. The results clearly depict the relevance between 
paxillin-binding activity and FAT activity ofpp12SFAK, indicating that pp12SFAK 

localizes to focal adhesions by its direct interaction with paxillin (T ACHIBANA et al. 
1995). Deletion and substitution mutants with paxillin-binding activity are localized 
to focal adhesions, whereas mutants without paxillin-binding activity are not lo­
calized to focal adhesions. These findings indicate that pp12SFAK is localized to 
focal adhesions by association with paxillin. Focal adhesions, where cells attach to 
substrata via integrin-ECM binding, are also composed of cytoskeletal proteins 
such as talin; vinculin, paxillin, FRNK (FAK-related nonkinase), and pp12SFAK 

(BURRIDGE et al. 1988, 1992). Among these proteins, vinculin, which has a con­
served paxillin-binding domain with pp12SFAK, appears to be localized to focal 
adhesions by association with paxillin (WOOD et al. 1994), and talin is associated 
with vinculin (BURRIDGE and MANGEAT 1984). Our findings strongly suggest that 
ppl2SFAK and other proteins are localized to focal adhesions and linked to 
~l-integrins via interaction with paxillin. ~l-integrin-ligand ligation induces FAT, 
and tyrosine phosphorylation of pp12SFAK then induces recruitment of various 



12 C. Morimoto et al. 

signaling molecules to tyrosine phosphorylated pp125FAK, which presumably re­
sults in ~l-integrin-mediated cell adhesion, cytoskeleton organization, and cell 
proliferation. 

9 Association of ppl05 with the COOH-Terminal Domain 
ofFAK 

Although we identified several tyrosine phosphorylated proteins stimulated by the 
ligation ofVLA-~l-integrins in T cells, a 105 kDa tyrosine phosphorylated protein 
(ppI05) had not yet been identified. pp105 is a protein which we first identified in T 
lymphoblastoid H9 cells as well as peripheral T cells and is tyrosine phosphory­
lated by the engagement of VLA-4. In our previous study (NOJIMA et al. 1995), we 
demonstrated that pp105 and ppl25FAK were tyrosine phosphorylated by VLA-~l­
integrin stimulation via similar kinetics in H9 cells, although pp105 is a distinct 
molecule from ppI25FAK. Because ppl25FAK is an essential tyrosine kinase for 
VLA-~l-integrin-mediated protein tyrosine phosphorylation, we attempted to de­
fine the relationship between ppl25FAK and ppl05. For this purpose, H9 cells were 
incubated with FN- or poly-L-lysine (PLL)-coated plates before cell lysis. H9 cell 
lysates were precipitated with a GST fusion protein of the ppl25FAK COOH­
terminal domain (residues 706-1052, designated GST-CT) and analyzed by im­
munoblotting with anti-phospho tyrosine mAb (anti-pTyr). As shown in Fig. 3A, a 
tyrosine phosphorylated 105 kDa protein precipitated on beads conjugated with 
GST-CT from FN-stimulated cell lysate, whereas this protein did not precipitate 
on GST-conjugated beads. This tyrosine phosphorylated protein migrated at the 
same position as pp105 in FN-incubated cell lysate and was detected only mini­
mally in PLL-incubated cell lysate (MINEGISHI et al. 1996). These results strongly 
suggest that ppl05 binds to the CT of ppI25FAK. Paxillin was also precipitated 
from H9 cell lysate and was detected by anti-pTyr as a 70 kDa band, as we 
reported in HPB-ALL and T-47D cells (TACHIBANA et al. 1995). To determine 
whether pp105 binds to FAK or paxillin, H9 cell lysates were precipitated with 
deletion mutants of GST-CT. As shown in Fig. 3B, ppl05 was precipitated with 
GST-FAK (residues 706-904), but not with GST-FAK (residues 896-1052). 
Conversely, paxillin was precipitated with GST-FAK (residues 896-1052), but not 
with GST-FAK (residues 706-904). These results demonstrate that pp105 binds to 
the FAK s'equence that contains amino acid residues 706-904. This pp105 binding 
domain of F AK is distinct from the paxillin-binding domain of F AK, indicating 
that pp105jFAK binding is not mediated via paxillin. To further characterize 
ppI05-FAK binding, pp105 was precipitated from H9 cell lysates with anti-Cas 
(Crk-associated substrate) mAb and analyzed by the overlay assay with 125I-la­
beled GST-FAK fusion protein (GST-CT). As shown in Fig. 4,105 and 110 kDa 
proteins were detected with labeled GST-CT, indicating that both proteins directly 
bind to FAK. 
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10 Identification of pp105 as a Cas-Related Protein 

ppl05 was precipitated with the GST-FAK fusion protein from FN-stimulated H9 
cell lysates and was detected by immunoblotting with anti-pTyr. By contrast, a 
130 kDa tyrosine phosphorylated protein was precipitated with the GST-FAK 
fusion protein from human breast cancer-derived T-47D celllysates. We identified 
this 130 kDa protein as pl30 Cas using anti-Cas mAb (Transduction Laboratories, 
Lexington, Ky, USA). Recently, POLTE and HANKS (1995) reported that pl30 Cas 
bound to FAK by its SH3 domain. FAK residues 706-904, which were sufficient 
for pp105 binding, contained the reported pl30 Cas-binding site. We attempted to 
determine if pp 105 was reactive with anti-Cas mAb. As shown in Fig. 6, a 105 kDa 
Cas protein was precipitated by the GST-FAK fusion protein and detected by 
immunoblotting with anti-Cas mAb. This 105 kDa protein showed the same mi­
gration in SDS-PAGE as ppl05, which was precipitated by the GST-FAK fusion 
protein and detected by immunoblotting with anti-pTyr. We further performed a 
second immunoprecipitation with anti-Cas mAb after precipitation with the GST­
FAK fusion protein. As shown in Fig. 6, a 105 kDa Cas protein was precipitated 
first by the GST-FAK fusion protein and reprecipitated by anti-Cas mAb (anti-Cas 
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Fig. 6. Identification of pp I 05 as a CJ'k-associated substrate (Cas)-related protein. H9 cell Iysates were 
prepared from cells that were incubated on poly-L-Iysinc (PLL)- or fibronectin (FN)-coated plates 
(lan~s I , 3, 5 and 2, 4, 6, respectively) for 30 min. Cellular Iysates were precipitated with glutathionc­
S-transl'erasc (GST) beads (lanes I, 2) or GST-COOH terminal domain (CT) beads (lanes 3--1j). After 
precipitation. associated molecules were solubilized and reprecipitated with anti-Cas (a-Cas) monoclonal 
antibody (mAb) (lanes 5, 6). Precipitates were analyzed by immunoblotting with anti-Cas mAb and 
rehybridized with anti-phosphotyrosine monoclona l antibody (a-pTyr). 
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blot). This lOS kDa protein showed increased tyrosine phosphorylation by FN 
stimulation (Fig. 6, anti-pTyr blot) (MINEGISHI et al. 1996). 

To determine if this lOS kDa protein recognized by anti-Cas mAb is the major 
tyrosine phosphorylated protein among 105-110 kDa proteins that are phos­
phorylated by the ligation of VLA-~I-integrins, we performed immunodepletion 
analysis using anti-Cas mAb. A clear difference in the amount of tyrosine phos­
phorylated 105 kDa protein was demonstrated with or without immunodepletion 
with anti-Cas mAb both in the whole Iysates and the anti-pTyr precipitates. These 
findings indicate that ppl05, a 105 kDa protein tyrosine phosphorylated by VLA­
~1-integrin stimulation, is a Cas-related protein. 

11 Differential Expression of 130 and 105 kDa Cas Proteins 

p 130 Cas has been reported to migrate as a discrete species of 115 and 125 kDa in 
SDS-PAGE (designated by SAKAI et al. 1994 as Cas-A and Cas-B, respectively) in 
rat fibroblast 3Yl cells. However, a decrease in the size of Cas A and the simul­
taneous appearance of a broad 130 kDa Cas band (designated Cas-C) were ob­
served in both v-Src- and v-CJ'k-transformed 3YI cells. Because phosphorylated 
tyrosine residues were found predominantly in Cas-C, the latter appeared to be a 
modified form of Cas-A or Cas-B as the result of tyrosine phosphorylation (SAKAI 
et al. 1994). 

We identified ppl05 in H9 cells as a putative Cas-related protein. ppl05 was 
originally identified as a 105 kDa protein that was tyrosine phosphorylated by the 
stimulation of VLA-~I-integrins. By immunoblotting with anti-pTyr, ppl05 was 
detected predominantly in H9 cells as well as in peripheral T cells (NOJIMA et al. 
1992), whereas ppl05 was not detected well in other T cell lines such as lurkat. To 
determine the distribution ofpp105 and pl30Cas, we examined the expression and 
the mobility in SDS-PAGE of Cas proteins in various cell lines. As shown in Fig. 7, 
using the same amount of whole extract from each cell line, Cas proteins with 
proteins similar to Cas-A and Cas-B from 3Yl cells were detected in human breast 
cancer T-47D cells, although Cas proteins in T-47D cells showed slightly faster mi­
gration (MINEGISHI et al. 1996). Cas proteins of similar mobility to Cas-A protein 
of T-47D were also detected in human myelogenous cell lines HL-60 and K562. 
However, pp 105 showed that a distinct mobility from Cas A and Cas-B was 
detected in' the human myelogenous cell line U937 and in the human T lympho­
blastic cell lines H9, HPB-ALL, lurkat, and in the human B lymphoid cell line Raji. 
ppl05 was also detected in human thymocytes and in human peripheral T and B 
cells. pp 105 was significantly overexpressed in H9 cells, followed by peripheral T 
and B cells, thymocytes, and Raji cells. A 110 kDa Cas protein that migrated more 
slowly than ppl05 but faster than Cas-A of T-47D cells was also detected in H9 
cells, thymocytes, and peripheral T cells. These findings indicate that pp 1 05 is a 
Cas-related protein that is preferentially expressed in lymphocytes. 
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Fig. 7. Differential expression of 130 and 105 kDa Crk-associated substrate (Cas) proteins. Expression of 
Cas protein in each cell line was analyzed by immunoblotting with anti-Cas mAb (50 Ilg lysate/lane) 

12 eDNA Cloning of pp105 

To further determine the structure of pp105, we screened the Agtll cDNA library 
derived from a human T Iymphoblastoid cell line (Hut78) with anti-Cas mAb. 
Nucleotide sequences of three independent clones had homology with p 130 Cas 
(MINEGISHI et al. 1996). These three clones were cDNAs of an identical transcript, 
and the nucleotide sequences contained an open reading frame of 834 amino acids. 
The deduced amino acid sequences of this transcript showed conserved motifs with 
p 130 Cas, one SH3 domain in the NH 2-terminal region, and multiple putative 
binding sites for the SH2 domains (Fig. 8). Most of the SH2 binding motifs in the 
substrate domain are YXXP (YDXP), which are putative binding sites for Crk, 
Nck, and Abl SH2 domains (SONGYANG et al. 1993). Despite the conserved motifs, 
homology between p 130 Cas and the deduced amino acid sequence of this cDNA is 
relatively low (78% in the SH3 domain, 32% in the substrate domain, 30% in the 
specific domain, and 32% in the CT). Homology with another Cas-related protein, 
Efs (ISHINO et al. 1995), is also relatively low. These results indicate that cDNA 
encodes a novel Cas-related protein. 

To determine whether this cDNA of a novel Cas-related protein encodes 
pp 105, the cDNA was inserted into an expression vector and transferred into Cos-I 
cells. Cellular lysates from transfectants were analyzed by immunoprecipitation and 
immunoblotting. Subsequently, anti-Cas mAb-reactive peptides that migrated at 
105 and 110 kDa in SDS-PAGE were detected with Cos-I transfectant. pp I 05 from 
H9 cells comigrated with a 105 kDa peptide detected in the lysate from the 
transfectant, and a slightly slower-migrating Cas protein of 110 kDa in H9 cells 
comigrated with a 110 kDa peptide. This result strongly suggests that: (a) the Cas­
related gene encodes pplO5 and (b) a 110 kDa Cas protein detected in H9 cells is 



16 C. Morimoto et a!. 

human CasL I~ 

78% • • 

(YXXP) 13 I 

32% .. .. 30% 57% •• • 

834 a.a. 

rat p130Cas 
(shorl form) 

I~ I (YXXP)15I II I 874 a.a. 
p* 

63% 32% 29% 39% .. ... . .. •• • 
mouse Efs I ~ I(YXXP)sl II I I 560 a.a. 

p p* 

Fig. 8. Structure of pp I05jCas-L. Comparison of amino acid sequences among Crk-associated substrate 
(Cas) proteins. Amino acid sequence homologies between Cas-L and the other Cas protein in the SH3 
domain. substrate domain (Cas-L residues 92-348), specific domain (Cas-L residues 349-628), and CT 
(Cas-L residues 629-834) are shown above each domain. YDYVHL motifs are shown by asterisks and 
rcrrica/lincs. Proline-rich sequences are shown by P and thick vcrtica//incs 

the protein product of the same transcript as pp 105, despite a different mobility in 
SDS-PAGE (similar to that observed with pl30 Cas-A and Cas-B). 

p130 Cas was highly phosphorylated on tyrosine residues in v-Src- or v-Crk­
expressing cells (SAKAI et al. 1994). Like p130 Cas, ppl05 was also highly phos­
phorylated on tyrosine residues by cotransfection of Src, Lck, CrkI, or CrkIl. 
Moreover, tyrosine phosphorylated pp 105 binds to Crk proteins in vivo. 

13 Identification of the ppl05-Binding Proteins 

We next attempted to define the proteins that were recruited to pplO5 in a phos­
phorylated tyrosine residue-dependent manner. For this purpose, Iysates from FN­
stimulated H9 cells were precipitated with GST fusion proteins that contained src 
homology (SH)2 domains from various proteins and analyzed by immunoblotting 
with anti-Cas mAb and anti-pTyr. As a result, 110-105 kDa tyrosine phosphory­
lated proteins were precipitated with GST-fusion proteins of c-Abl, Crk, Csk, 
Grb2, Lck, Nck, and SHPTP2 SH2 domains (anti-pTyr blot). ppl05 was precipi­
tated by GST-AbISH2, GST-CrkSH2, and GST-NckSH2, whereas pplO5 was 
weakly precipitated by GST-Lck SH2, GST-SHPTP2SH2, and GST-CskSH2 (anti­
Cas Blot) (MINEGISHI et al. 1996). To determine whether the binding of pp105 to 
these GST fusion proteins was induced by VLA-~I-integrin stimulation, a similar 
analysis was performed using lysates of H9 cells that were incubated in PLL- or 
FN-coated plates. Subsequently, enhancement ofppl05 precipitation was observed 
in the lanes of GST-SH2 domain fusion proteins of c-Abl, Crk, and Nck, whereas 
increased but slight amounts of pplO5 were detected in the lanes of the GST-SH2 
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Fig. 9. Identification of the pp l05-binding proteins. H9 cells were incubated in poly-L-lysine (PLL)- or 
fibronectin (FN)-coa ted plates (lanes 1.3. 5. 7,9, /I a nd lanes 2, 4, 6, 8, /0 , 12, respecti vely) for 30 min 
and lysed in I % digitonin lysis buffer. Cellular lysates were immunoprecipitated without first antibod y 
(lanes 3, 4) or with anti-Nck monoclonal antibod y (mAb) (lanes 5,6), anti-Crk mAb (lanes 7, 8 ), anti­
SHPTP2 mAb' (lanes 9, 10), or anti-Cas mAb (lanes II , 12). Whole lysates (lanes 1, 2) and immuno­
precipitates were analyzed by immunoblotting with anti-Cas mAb 

domain fusion proteins of Lck and SHPTP2. These results indicated that tyrosine 
phosphorylated pplOS binds to SH2 domains of c-Abl, Crk, Lck, Nck , and 
SHPTP2 in vitro. 

To further determine if these pp lOS-binding proteins bind to pp I OS in vivo, co­
immunoprecipitation analysis of pp I OS with these proteins was performed. As 
shown in Fig. 9, pplOS was coprecipitated with Crk and Nck, whereas pplOS was 
weakly coprecipitated with SHPTP2. Unlike ppI2S FAK _ppIOS binding, pplOS that 
was coprecipitated with Crk, Nck, or SHPTP2 was increased by VLA-~I-integrin 
stimulation with FN . These results indicate that VLA-~ I-integrin stimulation leads 
to the recruitment of various proteins, including Crk, Nck, and SHPTP2, to the 
tyrosine phosphorylated pp lOS, in addition to stimulation-independent association 
with pp 12SFAK. These protein-protein interactions further suggest the putative 
function of pp I OS in the VLA-~ I-integrin-mediated signaling pathways. 

14 Concluding Remarks 

Initially, our studies attempted to elucidate the mechanism of the costimulatory 
nature of integrin engagement to TCR-mediated cell signaling in T lymphocytes 
(MATSUYAMA et al. 1989; NOJIMA et al. 1990, 1992). Subsequently, we found that a 
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Fig. 10. Integrin-'mediated signal transduction pathways. Lines with arrowhead mean some interactions 
such as binding, activation, etc. The line without the arrowhead suggests inhibition or degradation of 
ppI25FAK. Each /lumber beside the line indicates the corresponding reference: (I) Polte et a!. 1994; 
(2) Zhang et a!. 1995; (3) Maguire et a!. 1995; (4) Xing et a!. 1994; (5) Hatai et a!. 1994; (6) Rozengurt 
1994a, b; (7) Nojima et a!. 1995; (8) Schaller et a!. 1994; (9) Lipfert et a!. 1992; (10) Zachary et a!. 1992; 
(II) Seufferlein and Rozengurt I 994a; (12) Bacon et a!. 1996; (13) Seufferlein and Rozengurt I 994b; 
(14) Zhang et a!. 1994; (15) Crouch et a!. 1996; (16) Bachelot et a!. 1996; (17) Schlaepfer et a!. 1994; 
(18) Minegishi et a!. 1996; (19) Polte and Hanks 1995; (20) Sakai et a!. 1994; (21) Schaller et a!. 1992; 
(22) Sabe et a!. 1994; (23) Ilic et a!. 1995; (24) Frisch et a!. 1996; (25) Furuta et a!. 1995 
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distinct set of proteins was phosphorylated on their tyrosine residues upon en­
gagement of VLA-~l-integrin (SATO et al. 1995). Among those proteins, PLCy, 
p59fyn, p561ck, and ERKlj2 are supposed to participate in TCR-mediated signaling 
pathways. Integrin-mediated tyrosine phosphorylation of those proteins may result 
in the augumentation or sustenance of TCR-mediated signal. As schematized in 
Fig. 10, a variety of stimuli beside the engagement of integrins are reported to 
induce tyrosine phosphorylation of pp125FAK. It was shown that ligation of TCR 
causes, in turn, tyrosine phosphorylation of pp125FAK (MAGUIRE et al. 1995), 
indicating that pp125FAK might be a key molecule involved in coordination of 
TCR- and integrin-mediated signals. These findings may provide an important clue 
regarding cross-talk between TCR- and integrin-mediated signaling pathways. 
Another major question concerns the missing link between binding of Crk to 
ppl05jCas-L and transcriptional regulation of various genes which occurs on T cell 
activation. Our results (T ACHIBANA et al. 1995) suggest that phosphorylation-de­
pendent binding of Crk, Nck, and SHPTP2 may be the downstream events of 
integrin-mediated tyrosine phosphorylation of pp105jCas-L. However, the bio­
logical outcome of those events still remains to be elucidated. The most immediate 
goals are to determine the biological relevance of tyrosine phosphorylation of 
ppl05jCas-L and pp125FAK. Since all the integrin molecules lack a putative en­
zymatic domain for signal transduction, PTKs that preferentially localize to focal 
adhesion sites, pp125FAK and Src are potential candiates for the molecules re­
sponsible for integrin-mediated signal transduction. Indeed, Src is reported to 
phosphorylate pl30Cas. Is pp105jCas-L the substrate of ppI25FAK? What is the 
subcellular localization of pp105jCas-L? Although it is possible that pp105jCas-L 
may be recruited to focal adhesion through the interaction with pp125FAK, the 
precise manner of pp105jCas-L distribution has yet to be determined. Further, our 
study revealed that pp125FAK is targeted to focal adhesion with paxillin in a 
phosphorylation-independent manner (T ACHIBANA et al. 1995). Then what is the 
mechanism of the induction of tyrosine phosphorylation on those proteins such as 
pp125FAK, pp105jCas-L, and paxillin? The activation mechanism of the kinase 
activity of pp125FAK needs to be investigated. In the light of recent data on the 
regulation of integrin avidity by various small G proteins such as R-ras and a 
constitutive active mutant of ras (ZHANG et al. 1996; HUGHES et al. 1997), efforts 
should be made to determine the effect of those proteins on phosphorylation andjor 
activation of pp125FAK and pp105jCas-L. Finally, these approaches will provide 
some insights into therapeutic intervention of integrin-mediated processes which 
are involved i,n a variety of diseases. 
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1 Introduction 

The family of integrins comprise more than 20 <x~ heterodimeric membrane bound 
glycoproteins that mediate cell-cell and cell-extracellular matrix contacts. To date, 
16 <x and eight ~ subunits assemble noncovalently in a variety of combinations. In 
most instances, <X chains associate with only one ~ chain while ~ chains are pro­
miscuous. However, the <x4 and <xv subunits both associate with more than one ~ 
chain. Subfamilies of integrins are named according to the ~ chain used. The largest 
subfamily comprises the ~1-integrins consisting of at least nine members. The 
integrins function as adhesion molecules as well as signal transducers by binding to 
a number of ligands (CLARK and BRUGGE 1995; ZIMMERMANN et al. 1996). Such 
ligands are either extracellular matrix proteins like fibronectin, laminin and vitro­
nectin or members of the Ig superfamily like the intercellular adhesion molecules 
(ICAMs), the vascular cell adhesion molecule (VCAM-l) and the mucosal addressin 
cell adhesion molecule (MAdCAM-I). 

The strength of integrin-mediated adhesive bonds is tightly regulated by al­
teration of the affinity for the respective ligands. Affinity changes are dependent 
upon cellular activation mechanisms that may result in conformational changes of 
integrins (HUGHES et al. 1996; ZHANG et al. 1996). A large set of functions during 
ontogeny and adult life has been assigned to integrins. Specifically targeted 
mutations of integrin genes in the mouse have been helpful in understanding the 
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physiological significance ofintegrins (HYNES 1996). So, integrins have crucial roles 
in angiogenesis and organogenesis, e.g. of placenta, skin, and kidney, hemato­
poiesis, and lymphocyte migration. 

For further information on characteristics of integrin structure, regu­
lation and function, a number of excellent reviews have recently been 
published (HYNES 1992; CARLOS and HARLAN 1994; DIAMOND and SPRINGER 
1994; KILGER and HOLZMANN 1995). Herein, we review what has been 
learned about the role of 1X4- and ~7-integrins in development based on the 
most recent published gene targeting experiments. Particularly, the function 
of these integrin molecules for the development of hematopoietic cells and 
for the compartmentalization of the immune system will be emphasized. 1X4-
and ~7-integrins may also be critical for the pathophysiology of a number 
of inflammatory diseases, a role that is addressed in chapters 4 and 5 of this 
volume of Current Topics in Microbiology and Immunology. 

2 Structure and Expression of cz4- and ~7-Integrins 

The 1X4 subunit either associates with the ~ I or the ~7 subunit and the ~7 subunit 
can be expressed with the IXE subunit in addition to the 1X4 subunit (HEMLER et al. 
1990; HOLZMANN and WEISSMAN 1989; SHAW et al. 1994). The mature 1X4 subunit 
comprises 999 amino acids and has a molecular mass of 150 kDa. It can be cleaved 
to fragments of 80 and 70 kDa without losing its adhesive function (TEIXIDO et al. 
1992). The ~I subunit and the ~7 subunit have molecular masses of 116 kDa and 
100 kDa, respectively. The IXE subunit, so far known to form a heterodimer only 
with ~7, has a molecular mass of J 50 kDa (CERF-BENSUSSAN et al. J 992). 

A number of studies have investigated the expression of the 1X4- and the 
~7-intcgrins in order to analyze the possible functions of these integrins. 1X4~1 and 
1X4~7 surface expression is detected on lymphocytes. Specifically, most of the naive 
CD4 + and CD8 + T cells express moderate levels of both integrins, 1X4~1 and 1X4~7 
(ERLE et al. 1994; PICKER et al. 1993). By contrast, following activation of lym­
phocytes the expression of 1X4-integrins increases and activated lymphocytes dif­
ferentially up-regulate either 1X4~1 or 1X4~7. The latter is mainly found on 
lymphocytes populating the gut associated lymphoid tissue (SCHWEIGHOFFER et al. 
1993; ANQREW et al. 1996). With respect to B cells the 1X4~1- and the 1X4~7-

integrins are also expressed constitutively on most B cells in peripheral blood 
(POSTIGO et al. 1993). In lymphoid organs like spleen, peripheral lymph nodes, 
mesenteric lymph nodes and Peyer's patches two populations of B cells are evident 
which are either ~7 or ~7+ (ERLE et al. 1994; ANDREW et al. 1996). The ~7+ B 
cells express even higher amounts of ~7 than the T cells within these lymphoid 
organs. 

Macrophages, mast cells, NK cells and eosinophils express 1X4~7 while 
monocytes, eosinophils, basophils, hematopoietic progenitor cells, and mast cells 
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express ot4~1 on their surfaces (KILGER and HOLZMANN 1995). Interestingly, neu­
trophils neither express ot4~1 nor ot4~7. otE~7 but little ot4~7 is almost exclusively 
found on a specific subset of mucosal T cells but not B cells, namely the intestinal 
intraepithelial lymphocytes (IELs) (KILSHAW and MURANT 1991; ANDREW et al. 
1996); they constitute the first cellular elements of the gastrointestinal immune 
system encountering antigens. In addition, interdigitating dendritic cells isolated 
from mesenteric lymph nodes express otE~7 (KILSHAW 1993). 

ot4~1 is not only found on hematopoietic cells but it is expressed on a variety of 
other cell lineages. So, ot4~1 is expressed during embryogenesis in the heart, in 
smooth and skeletal muscle as well as in the neural crest (SHEPPARD et al. 1994). 

3 (14- and ~l-Integrins are Crucial for Hematopoiesis 

The development of T and B cells takes place in the yolk sac, fetal liver, bone 
marrow and thymus. Within the ordered sequence of events during hematopoiesis 
adhesive interactions between hematopoietic progenitor cells and stromal cells take 
place. In addition, progenitor cells, immature lymphocytes as well as mature 
lymphocytes migrate between these organs to go through different developmental 
stages. ot4- and ot5-integrins are thought to mediate adhesion of hematopoietic 
precursor cells to stromal cells of the bone marrow based on in vitro (KERST et al. 
1993) and in vivo experiments (PAPAYANNOPOULOU and NAKAMATO 1993). Fur­
thermore, treatment of precursor cells with an anti-~1 monoclonal antibody (mAb) 
leads to a reduction of colony-forming units in the spleen (WILLIAMS et al. 1991). In 
addition, ot4-integrins are differentially expressed during thymocyte maturation 
(SAWADA et al. 1992). These data strongly suggested that ot4~ l-integrin is required 
for lymphocyte development. 

Indeed, recent gene targeting experiments in mice have provided significant 
insight in the in vivo role of integrins during hematopoiesis. The ot4 gene inacti­
vation in mice is lethal due to early embryonic defects in allantois-chorion fusion 
and cardiac defects, which will be presented more in detail below (Y ANG et al. 
1995). Therefore, it is impossible to directly assess hematopoiesis in these mice. To 
circumvent this obstacle a chimera approach was utilized by which embryonic stem 
(ES) cells homozygous for the mutation are injected into wild-type blastocysts or 
into blastocysts from RAG-lor RAG-2 deficient mice and transferred into foster 
mothers, thereby allowing the development of chimeric mice (CHEN et al. 1993). In 
chimeric mice using wild-type blastocysts the hematopoietic cells derived from the 
mutant ES cells compete with hematopoietic cells derived from wild-type blasto­
cysts. By contrast, in chimeric mice using RAG (-lor -2) deficient blastocysts the 
lymphocytes detected are solely derived from the mutant ES cells since the RAG 
mutation leads to an early developmental block ofT and B cells. By the help of this 
approach the effect of the ot4 mutation on hematopoiesis can be analysed (ARROYO 
et al. 1996). 
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ct4-integrins are necessary for fetal B cell development as the number of mature 
B cells is greatly diminished in ct4-deficientjRAG-deficient chimeric mice. In ad­
dition, B cell development seems to be compromised earlier than in the RAG 
mutants, namely before the pro-B cell stage. The B-1 cells in the peritoneal cavity, 
which comprise a distinct self renewing subset of B cells, is also compromised in ct4-
deficient chimeras. However, the defect in B cell development is leaky as a low 
number of mature B cells is found in these mice (ARROYO et a!. 1996). So far 
functional studies of the B cells still detectable in ct4-deficient chimeras are missing. 
The number of T cells in new-born ct4-deficientjwild-type chimeras is similar to the 
number in control mice emphasizing that T cell development in the fetus can occur 
in the absence of ct4-integrins. However, during the first weeks of postnatal life, the 
T cell numbers and particularly the number of double positive (CD4, CD8) thy­
mocytes decreases and the thymus becomes atrophic (ARROYO et a!. 1996). While 
prenatal T cell progenitors migrate from the yolk sac and fetal liver to the thymus, 
postnatally, the bone marrow replaces fetal liver with respect to lymphopoiesis. 
Accordingly, T cell progenitors have to migrate from the bone marrow to the 
thymus, which they fail to do in ct4 mutants. Therefore, ct4-integrins are necessary 
either for emigration of T cell progenitors from the bone marrow or for proper 
development of these cells within the bone marrow. Interestingly, intravenous in­
jection of ct4-bone marrow cells leads to reconstitution of the thymus, suggesting 
that in faCt emigration of T cell progenitors from the bone marrow is dependent on 
ct4-integrin function. 

What about the function of ct4~1- vs ct4~7-integrins in this context? The data 
gathered from the ~l and the ~7 knockouts should be informative. The ~l mutation 
is embryonically lethal early on due to a defect in placental implantation (FASSLER 
and MEYER 1995). Taking into account the large number of ct chains associating 
with ~l this effect is hard to ascribe to one particular integrin heterodimer. Again 
by generating chimeric mice it became obvious that (31-deficient hematopoietic 
progenitors fail to migrate from the yolk sac to fetal liver which prevents further 
hematopoiesis (HIRSCH et a!. 1996). Most interestingly, the progenitors derived 
from the yolk sac were capable of differentiating in vitro into B cells. The gene 
inactivation of the ~7 gene led to viable offspring. In these mice T cell as well as B 
cell development is unaltered suggesting that ~7 does not playa crucial role for 
lymphocyte development (WAGNER et a!. 1996). Finally, the ctE-deficient mice also 
bear normal numbers of peripheral Band T cells (PARKER et a!., unpublished 
personal communication). Based on these data a number of conclusions can be 
drawn for "the role of ct4- and (37-integrins in lymphocyte development: 

1. ~l-integrins but not ct4~ 1 are essential for migration of hematopoietic progen­
itors from the yolk sac to the fetal liver. ct4(31 is essential for B cell development 
while other ~l-integrins are not. 

2. ct4~1 and ct4~7 may complement each other in B cell development. This would 
explain the observed phenotypes of the gene targeted mice, namely, that B cell 
development is normal in ~l-deficient chimeric mice and in (37-deficient mice but 
it is severely impaired in ct4-deficient chimeric mice. 
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3. Prenatal T cell development is neither dependent on Q(4~1 nor on Q(4~7 while 
postnatal T cell development is Q(4~ I-dependent. In particular, the emigration of 
T cell progenitors from the bone marrow to the thymus may be Q(4~I-mediated. 

The ~7- and the Q(4-integrins are not critical for the development of hematopoietic 
cells other than lymphocytes like erythrocytes, myeloid cells and NK cells (HIRSCH 
et al. 1996; ARROYO et al. 1996; WAGNER et al. 1996). 

4 Compartmentalization of the Immune System 
in the Gut Is ~7-Integrin-Mediated 

Numerous nutritive antigens and pathogens pass through the gut allowing a vast 
number of antigens to come into contact with the mucosa (BRANDTZAEG 1989). The 
challenge for the immune system of the gut is to fight harmful pathogens while at 
the same time to be tolerant towards harmless nutritive antigens passing the mu­
cosa. If to every foreign antigen in the gut an immune response would be elicited 
nutrition of the organism would be impossible. Therefore, the immune system has 
evolved tolerance mechanisms which in the gut may depend on the specific mi­
croenvironment in the gut associated lymphoid tissue (GALT) (WEINER et al. 
1994). 

The GALT is one compartment of the immune system. It comprises specific 
lymphoid organs, i.e., the Peyer's patches (PP), the lamina propria lymphocytes 
(LPLs) and a distinct subset of T cells, the intestinal intraepithelial lymphocytes 
(IELs) which drastically differ from peripheral T cells with respect to their phe­
notype (BRANDTZAEG 1989; SIM 1995; KLEIN 1996). Lymphocytes that have been 
primed in the gastrointestinal tract tend to recirculate within this compartment to 
generate or to prevent an efficient immune response. Continuous trafficking of 
lymphocytes ensures that the highly diverse antigen receptors on the surface of 
lymphocytes come into physical contact with the antigens at any site of the body 
(BUTCHER and PICKER 1996). Recirculation of lymphocytes supports the region­
alization of the immune system which means that the immune response to an 
antigen may be dependent on the regional microenvironment where the contact 
between lymphocyte and antigen takes place. Adhesion molecules like integrins, 
selectins and members of the Ig superfamily mediate the trafficking of lymphocytes. 

In recent years a multistep model of leukocyte trafficking has been developed: 
Leukocytes first randomly come into contact with the vessel wall; they start rolling 
along the endothelium; in the next step leukocytes are activated by chemokines, 
they stop and firmly adhere and then they finally transmigrate through the endo­
thelial cells (BUTCHER 1991; SPRINGER 1994). Organ specific trafficking is regulated 
by cxpression levels of adhesion molecules participating at different stages of the 
adhesion cascade, by the activation state of adhesion molecules as well as by the 
interaction of a variety of chemokines with their receptors (CARLOS and HARLAN 
1994; BUTCHER and PICKER 1996). 



28 N. Wagner and W. Muller 

A lymphocyte adhesion molecule specific for PP which, as already mentioned, 
are part of the GALT has originally been identified by a mAb that inhibits binding 
of murine lymphocytes to high endothelial venules (HEVs) of PP (HOLZMANN and 
WEISSMAN 1989). The HEVs are vessels with unusual, high walled endothelial cells 
that are only detected in lymphoid organs and specifically function as the entry site 
for lymphocytes (GIRARD and SPRINGER 1995). Using the mAb binding to the 
leukocyte PP adhesion molecule (LPAM-I) thc nature of the glycoprotein as an 
integrin heterodimer of the 1Y4 and thc ~7 chain has been defined (HOLZMANN and 
WEISSMAN 1989). One year earlier the adhesion molecule on mucosal endothelial 
cells that is now known to be the ligand of 1Y4~7 and is termed MAdCAM-l was 
described (STREETER et al. 1988). However, other adhesion molecules like LFA-l, 
CD44 and L-selectin have also been ascribed a role in mediating lymphocyte mi­
gration to the gut (JALKANEN et al. 1987; HULEATT and LEFRANCOIS 1996; HAMANN 
et al. 1994; BARGATZE et al. 1995). 

The contribution of 1Y4- and ~7-integrins to lymphocyte migration can be as­
sessed by the results from gene targeting experiments of the respectivc integrin 
subunits as well as of the lYE subunit. The ~7-deficient mice are viable and do not 
exhibit any defect in lymphocyte development. However, the compartmentalization 
of the immune system in these mice is affected. The GALT is severely compromised 
as the PP are drastically reduced in size and cellularity and the numbers of LPLs 
and IELs are also diminished (WAGNER et al. 1996). The likely cause for this 
impaired seeding of the GALT with lymphocytes is that directed migration of ~7-
deficient lymphocytes to the GALT is almost abolished, as shown by short-term 
migration assays and the lymphocyte-endothelial cell adherence assay (Stamper 
Woodruff assay). In addition, transfer of ~7+ bone marrow into ~7-deficient mice 
rescucs the formation of the GALT. How do 1Y4~7 vs IYE~7 and 1Y4~1 function in 
mediating lymphocyte migration to the GALT? lYE deficient mice have a reduced 
number of IELs and of LPLs, however the PP are normal with respect to size and 
cellularity (PARKER et aI., unpublished personal communication). The 1Y4-deficient 
chimeric mice have normal numbcrs ofIEL but PP are drastically affected (ARROYO 
et al. 1996). These data lead to the following conclusions for the function of ~7-
integrins: 

I. 1Y4~7 is critical for lymphocyte migration to PP while IYE~7 is not involved in this 
process and 1Y4~ 1 contributes only to a minor extent if at all. 

2. 1Y4~7 and IYE~7 are important for lymphocyte migration to the lamina propria of 
the intestine; the significance of 1Y4~1 cannot be assessed since it was not ex­
amined in. the 1Y4-deficient mice. 

3. IYE~7 is critical for the localization of lymphocytes to the intracpithelial site of 
the intestinc while 1Y4~7 and 1Y4~1 will probably not contribute to this process. 
However, thc localization of only a subset of IELs is mediatcd by IYE~7. 

To define the step in the adhesion cascade that is affected by the ~7 deficiency, 
in vivo epifiuorescence video microscopy in PP HEVs was performed. Fluorescently 
labeled ~7-deficient lymphocytes were still capable of rolling along the endotheli­
um; however they no longer firmly adhered to the endothelial cells or transmigrated 
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through the endothelium (WAGNER et al. 1996). Therefore, the transition from 
rolling of lymphocytes in PP HEVs to firm adhesion of lymphocytes to endothelial 
cells is mediated by p7-integrins. A thorough analysis of the velocities with which 
p7-deficient lymphocytes roll along the endothelium of PP HEVs demonstrated a 
higher speed than wild-type controls (Ley and Wagner, unpublished observations). 
This suggests a contribution of p7-integrins to mediating lymphocyte rolling in 
PP HEVs, as proposed by Bargatze and co-workers (BARGATZE et al. 1995). 

Taken together cx4- and p7-integrins participate in a complex regulation of 
organ specific lymphocyte trafficking, emphasizing the significance of different 
compartments of the immune system. Future studies with the herein discussed gene 
targeted mice will address the pathophysiological consequences of disturbed lym­
phocyte migration with respect to immune responses to pathogens and to inflam­
matory bowel disease. Furthermore, signal transduction events mediated by 
integrins may be important for the observed phenotypes. 

5 Placental and Cardiac Development Is a4-Integrin-Dependent 

The early embryonic lethality of the cx4 mutation is not caused by the effects on 
hematopoiesis or lymphocyte trafficking but on placental and cardiac development 
(YANG et al. 1995). The phenotype detected in cx4-deficient embryos closely re­
sembles the phenotype observed in VCAM-I deficient embryos (KWEE et al. 1995; 
GURTNER et al. 1995). VCAM-l is the membrane bound ligand of cx4PI and their 
specific interaction is essential for distinct features of placental and cardiac devel­
opment. cx4-deficient embryos die at around embryonic day II due to the failure of 
the allantois to fuse with the chorion. The cx4-integrin is expressed in the chorion 
and VCAM-I is expressed in the allantois, both at the site of fusion. In some cx4-
deficient embryos the fusion of allantois and chorion is successful. However, those 
embryos die at embryonic day 11.5 due to severe hemorrhage in the heart region. 
Here, the cx4 mutation causes an impaired formation of the epicardium and a lack 
of coronary vessels (YANG et al. 1995). Again, this observation is very similar to the 
cardiac defects detected in VCAM-l deficient embryos (KWEE et al. 1995; GURTNER 
et al. 1995). Along with these findings goes the expression of cx4-integrin and 
VCAM-I in the heart. 

That expression data alone do not suffice to conclude towards the function of a 
particular gene becomes evident when considering muscle development and the role 
of cx4-integrins. cx4-integrins are expressed on primary myotubes during muscle 
development but in cx4-deficient chimeric mice no defect in skeletal muscle was 
observed thereby challenging the hypothesis of cx4-integrin involvement in muscle 
development (YANG et al. 1995). 



30 N. Wagner and W. Muller 

6 Conclusion 

cr4- and ~7-integrins (cr4~1, cr4~7 and crEP) are critically involved in hemato­
poiesis, and/or in compartmentalization of the immune system, and/or in placental 
and cardiac development. The gene targeting of single integrin subunits in mice 
contributed significantly to our understanding of the developmental significance of 
the different integrin heterodimers. Future studies will utilize these mice for in vivo 
studies of immune function. In case of early embryonic lethality tissue specific or 
conditional gene targeting will help to address this obstacle (RAJEWSKY et al. 1996). 
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Coordinated cell-cell and cell-substratum interactions are crucial for the differen­
tiation. organization and diverse somatic functions of multicellular organisms. 
Several families of molecules have evolved to serve such specialized purposes such 
as cell migration in development and in the immune response. One of these families, 
the integrins. plays a prominent role in the attachment and detachment of cells to 
their surrounding matrix, the adhesion of platelets to fibrinogen, the coupling of 
lymphocytes to antigen presenting cells and the phagocytosis of complement op­
sonized targets by myelomonocytic phagocytes in the immune system. At least 21 
different integrin receptors have been characterized to date, all of which are he­
terodimeric transmembrane proteins that comprise an (Y. subunit which is non­
covalently associated with a ~ subunit at the cell surface. The family was originally 
characterized by structurally related ~ subunits that formed a series of heterodimers 
with distinct (Y. subunits. However. recent findings indicate that there are several 
important exceptions and that more elaborate schemes are required to describe the 
systematic structural organization of these receptors. A number of comprehensive 
reviews on this issue have appeared recently (DIAMOND and SPRINGER 1994; 
HI MIIR 1990: HY'-'IS 1992: SI'RIN(;FR 1990). Tnlcgrins hind to a diverse array of 

Laboratorium fijr Molekulare Biologie, Genzentrum der Universitat MUnchen, Feodor-Lynen StraBe 
25,81377 Munich, Germany 



34 W. Kolanus and L. Zeitlmann 

ligands including extracellular matrix (ECM) proteins, plasma proteins which 
mediate hemostasis and complement activation (fibrinogen and ic3b), and integral 
membrane proteins. Many integrins bind to more than one ligand and vice versa, 
using either identical or distinct binding sites. 

The biological importance of integrins is underscored by the expression of 
multiple integrins on almost every cell type in the body, by the embryonic lethal 
phenotype of mice lacking expression of the integrin ~1 subunit and associated 
rx subunits (YANG et al. 1993, 1995), by the severe immunodeficiency observed in 
patients lacking the ~2 subunit (SPRINGER 1990), and by the defective immune 
functions of mice that lack ~I-integrin expression in hematopoietic cells (HIRSCH 
et al. 1996). 

It appears obvious that the interactions between integrins and their ligands 
have to be highly regulated. Spatially and temporally regulated expression of dis­
tinct receptor-ligand pairs (e.g., activated expression of integrin ligands on endo­
thelial cells in the course of inflammation) is one strategy to achieve such functional 
specificity. However, cell surface expression of an integrin alone usually is not 
sufficient for adhesion. It is now described for many cell types that integrin me­
diated cell binding to extracellular ligands can be enhanced dramatically by stimuli, 
such as PM A, which activate intracellular signal transduction cascades, although 
the density of cell surface expression appears unaltered or almost unaltered at the 
same time. Integrins must thus be "activated" from the cytoplasm in order to bind 
to their ligands, and this phenomenon has been termed "inside-out signaling." This 
regulation is not only important for cell adhesion, it is also actively involved in the 
assembly of the extracellular matrix (Wu et al. 1995). We have just begun to 
understand how signals that emanate in the course of cellular activation events 
regulate the functional properties of these important adhesion receptors. It is 
currently accepted that the adhesion of integrins to their ligands may be regulated 
by changing the affinity state of the integrin directly, most likely through induced 
conformational changes, or by alterations in avidity which may be mediated by, 
e.g., receptor aggregation. Throughout this review we will refer to these phenomena 
as integrin "activation," because the actual structural basis of these mechanisms is 
not precisely known. Several excellent reviews have appeared in the course of the 
last couple of years which cover this topic broadly (DEDHAR and HANNIGAN 1996; 
DIAMOND and SPRINGER 1994; GINSBERG et al. 1992; HYNES 1992; LUB et al. 1995). 
This overview attempts to highlight some of the recent exciting findings which may 
help to develop mechanistic concepts of these processes. 

2 Activation Dependence of Integrin Adhesiveness 

The affinity or avidity of integrins for their extracellular ligands can change in 
response to cytoplasmic signals initiated by the stimulation of a wide variety of 
cellular receptors. All integrin families have been shown to undergo activation (i.e., 
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become susceptible for ligand interactions). Here we will focus mainly on ~1, ~2 
and ~3-integrins. 

Activation of leukocytes with stimulating agents like phorbol esters (DUSTIN 
and SPRINGER 1989), isolated lipids from activated cells of hematopoietic origin 
(HERMANOWSKI et al. 1992; LEE et al. 1994), calcium ionophores (LUB et al. 1995; 
SHIMIZU and HUNT 1996), chemoattractants, or by the aggregation of functionally 
relevant surface receptors - such as the antigen receptor/CD3 complex (DUSTIN and 
SPRINGER 1989), or CD2 (VAN KOOYK et al. 1989) - causes IXL~2 (LFA-I, CDI la/ 
18) to bind to purified ICAM-I within minutes. Dependent on the cell type and 
stimulus the increase in adhesion may be transient or permanent. These regulatory 
pathways probably play important roles in the conjugation of Iymyphocytes with 
antigen presenting cells as well as in leukocyte-endothelial cell interactions. A 
similar activation requirement has been observed for the IXM~2 receptor that is 
found on the surface of myeloid cells. However, an auxiliary regulatory mechanism 
is present in these cells: an up-regulation of IXM~2 at the cell surface occurs after 
stimulation which stems from the translocation of secretory granules that contain 
intracellular pools of IXM~2-integrin (DIAMOND and SPRINGER 1994). 

On resting platelets IXIIb~3-integrin does not bind to fibrinogen. Activation 
occurs after vascular injury and the release of inflammatory mediators which result 
in platelet aggregation. Binding of IXIIb~3 to fibrinogen in vitro can be stimulated 
by agonists such as thrombin or platelet activating factor (PAF) (GINSBERG et al. 
1992). Ectopic expression of the platelet integrin in B cells resulted in fibrinogen 
binding which was up-regulated by phorbol ester, suggesting that proximal ele­
ments of integrin activation pathways may be shared between platelets and B cells 
(LOH et al. I995). 

The ~ l-integrins on hematopoietic cells bind to endothelial cells and to ECM 
proteins which makes them important regulators of diapedesis and cell migration. 
Phorbol esters, as well as the stimulation of the CD2, CD3, CD7, CD28 and CD31 
surface receptors on lymphocytes, chemotactic proteins which bind to seven trans­
membrane receptors, or the activation of the platelet derived growth factor (PDGF) 
receptor on nonhematopoietic cells induce ~1-integrin binding to fibronectin, la­
minin, or VCAM-I (DIAMOND and SPRINGER 1994; SHIMIZU and HUNT 1996). 

3 The Role of Integrin Cytoplasmic Domains 
in Inside-Out Signal Transduction 

The cytoplasmic domains of integrins became the focus of research efforts which 
aimed at understanding the mechanism of integrin activation from inside the cell. 
Compelling evidence suggested that the intracellular portions of both IX (CHAN et al. 
1992; FILARDO and CHERESH 1994; KASSNER and HEMLER 1993; KASSNER et al. 
1994; KAWAGUCHI and HEMLER 1993; O'TOOLE et al. 1991) and ~ chains (CHEN 
et al. 1992; HAYASHI et al. 1990; HIBBS et al. 1991 b; PASQUALINI and HEMLER 1994) 
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participate in this process. Phosphorylation of the cytoplasmic domains occurs and 
has been proposed to contribute to activation events (V ALMU and GAHMBERG 
1995). However, other studies argue against a direct role of receptor phosphory­
lation in the promotion of cell adhesion (HIBBS et al. 1991a; O'TOOLE et al. 1995). 

Mutational analysis of the ~2 cytoplasmic domain in cos cells revealed that a 
series ofthree consecutive threonines (TIT 758-760) was important for basal binding 
of aL~2 to ICAM-l. However, this mutant (TTT/AAA) still responded to activation 
mediated by phorbol esters (HIBBS et al. 1991a). Chimeric receptors which consisted 
of the aL~2 cytoplasmic domains fused to the transmembrane and extracellular do­
mains of the platelet integrin aIIb~3 were used to study the role of the TTT 758-760 
region in CHO cells. This study confirmed the importance of this element in cell 
adhesion and suggested that it links the ~2-integrins to the cytoskeleton. However, a 
high affinity state of the chimera was induced and locked by deletion of the highly 
conserved membrane proximal GFFKR region of the a chain cytoplasmic domain, 
even in the presence of the TIT/AAA mutation of the ~ chain. Thus, high affinity 
ligand binding and cell adhesion appeared to be dissociable (PETER and O'TOOLE 
1995). The GFFKR deletion mutant has been described to result in the activation of 
~3- or ~l-integrins as well, which underscores the general importance of this a chain 
element in the regulation of integrin-ligand interactions (O'TOOLE et al. 1994). 

A number of studies proved the importance of the ~l or ~3 cytoplasmic domains 
in the reg.ulation of inside-out signaling. These studies made use of a monoclonal 
antibody (PAC-I) which recognizes an inducible extracellular epitope of the aIIb~3-
integrin thought to be indicative of a high affinity binding potential of aIIb~3 for 
fibrinogen. Isolated ~l or ~3 cytoplasmic domains fused to heterologous trans­
membrane and extracellular elements were overexpressed in cos- and CHO cells and 
found to interfere with the activation of a co-overexpressed integrin chimera, sug­
gesting that the isolated cytoplasmic domains are sequestering intracellular elements 
which are necessary for activation (CHEN et al. 1994a). Two a subunit cytoplasmic 
domains (a5, all b) were inactive in this system and, furthermore, a point mutant of 
the ~3 cytoplasmic domain (S752P) which had previously been shown to block the 
expression of the high affinity epitope of alIb~3 consequently lacked this inhibitory 
potential (CHEN et al. 1994b). Chimeric integrin receptors were also used to inves­
tigate whether pairing the ~l cytoplasmic domain with different a chain intracellular 
elements would affect the activation potential. Interestingly, certain combinations 
(~l with a2, a6A or a6B) were permissive, while others (~l with aM, aL or eN) were 
inhibitory, again reinforcing the idea that both a and ~ chain cytoplasmic domains 
are involved in the control of integrin activation (O'TOOLE et al. 1994). 

The ~3 cytoplasmic domain was further mapped for regulatory elements. It 
was found that the deletion of a region comprising eight membrane proximal amino 
acids resulted in activation, an effect which was reminiscent of the GFFKR deletion 
of the a chain (HUGHES et al. 1995). With the help of an elegant mutational ap­
proach both a and ~ chain membrane proximal sequences were subsequently shown 
to be involved in integrin activation. These sequences were proposed to form a 
charge interaction dependent "hinge" which may define the default inactive state 
(HUGHES et al. 1996). 
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The P chain cytoplasmic domains of integrins contain a conserved NPXF/Y 
motif that has been known for some time to connect cell surface receptors to a 
classical internalization pathway. This motif has also been implicated to be in­
volved in the activation ofintegrin chimeras which contain wild-type or mutated PI 
or p3 cytoplasmic domains. Accordingly, differential expression of this motif on PI 
splice variants appeared to correlate with their intrinsic activation potential. 
Phosphorylation of the motif did not appear to account for the observed effects 
(O'TOOLE et al. 1995). 

The contribution of sequences within the p7 cytoplasmic domain to affinity 
modulation have been mapped. The data presented in this study resemble the 
findings for other integrins in that COOH-terminal sequences are required for 
inside-out regulation whereas interference with NHrterminal residues results in 
constitutive activation (CROWE et al. 1994). 

Cytoplasmic elements which have been shown to be important for the mod­
ulation of integrin function are summarized in Fig. 1. 

4 Involvement of Cytoskeletal Interactions 
in the Activation Pathway of Integrins 

The integrin cytoplasmic domains undergo numerous interactions with cytoske1etal 
proteins, some of which may contribute to activation of cell adhesion. 

2. 

~3 KLLItiHDRk EFAKFAeEra rakWdtarNP LYKeAt~Tft NitYrgt 

1. 3. 

~l KLLmiIHDRR EFAKFEkEkm nAkWdtgeNP iYKsAvtTvv NpkYegk 

4. 5. 

~2 KaLlhlsD1R EYrrFEkEkl ksqW=d.NP LFKsAttTvrn NpkFaes 

6. 
e.g. aL KVGFFKRNLKEKMEAGRGV PNGIPAEDSEQLASGQEAGD PGCLKPLHEKDSESGGGKD 

Fig. 1. Elements in the cytoplasmic domains which may be important for the regulation of integrin 
adhesion, modified from (HUGIIES et al. 1995). Conserved residues within the ~ chains are in uppercase 
letters. 1.6, Membrane proximal elements of CJ. and ~ chains the deletion of which leads to a constitutively 
active phenotype. The GFFKR region of some c< chains contains the binding site for calreticulin. 4, rJ.­

actinin binding sites of ~I and ~2 integrins. 3, The NPXY region, implicated in activation of ~I and ~3 
integrins, which is also important for internalization of surface receptors. The binding site for talin 
overlaps with this motif. 2, 5, Distal residues, necessary for the adhesion of ~3 and ~2 integrins. Refer­
ences are given in the text 
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Actin binding proteins like IJ(-actinin and talin bind directly to the ~IA cyto­
plasmic domain (HORWITZ et al. 1986; LEWIS and SCHWARTZ 1995; OTEY et al. 1990, 
1993). IJ(-Actinin also binds to the ~2 cytoplasmic tail in vitro and the proteins can be 
coprecipitated from detergent lysates of neutrophilic granulocytes. Notably, associ­
ation of IJ(-actinin with the ~2-integrins appeared to be enhanced in fMet-Leu-Pro 
(fMLP) activated neutrophils (PAVALKO and LAROCHE 1993). The interaction sites 
within the cytoplasmic domains have been mapped by in vitro and in vivo studies and 
show partial correlation with each other or with activation events (DEDHAR and 
HANNIGAN 1996). IJ(-Actinin and filamin bind overlapping but distinct motifs that 
comprise highly charged conserved elements present within all integrin cytoplasmic 
domains (SHARMA et al. 1995). Talin and also IJ(-actinin can apparently make contact 
with elements that contain conserved NPXY/F motifs which have been found to be 
involved in the activation of adhesion (OTEY et al. 1993) (also see previous paragraph). 

5 Signal Transduction Pathways Which Control 
Integrin Adhesiveness 

Many groups have tried to identify and characterize signaling pathways upstream 
of the cytoplasmic domains of integrins which may contribute to the regulation of 
cell adhesion. An outline of our current knowledge is shown in Fig. 2. Method­
ological approaches include the use of specific inhibitors of, e.g, protein kinases and 
phosphatases, as well as the overexpression of dominant negative or constitutively 
active versions of proteins capable of transducing signals. 

Cell surface receptors that couple to nonreceptor tyrosine kinases are known to 
activate integrin dependent adhesion pathways in leukocytes, whereas seven 
transmembrane proteins, like thrombin- or chemokine receptors, couple to 
downstream elements through the activation of heterotrimeric G proteins. The 
common denominator is that both types of receptors stimulate pathways involving 
activation of phospholipases of the Band C classes and subsequent phosphati­
dylinositol lipid breakdown, the results of which are a rise in intracellular Ca2 + 

concentration, a necessary requirement for induced changes of cell adhesion, and 
activation of protein kinase C (PKC) by diacylglycerol (HYNES 1992; LUB et al. 
1995). 

Isoforms of PKC were early targets of investigation because the observation 
that phorbol esters were such potent activators of cell adhesion prompted the 
hypothesis that PKC might be directly involved in these processes. PKC inhibitors 
such as staurosporine, calphostin C or GF109203X apparently had opposing effects 
on integrin mediated adhesion of different cell types, although they mostly ap­
peared to abrogate integrin activation (DIAMOND and SPRINGER 1994; HAUSS et al. 
1993; KLEMKE et al. 1994; PACIFICI et al. 1994; VAN LEEUWEN et al. 1994). This may 
partially be due to the fact that these cell types express alternative PKC isoforms 
which may play differential roles in integrin activation. It was proposed that PKC 
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isoforms are differentially translocated to the plasma membrane in HeLa cells 
adhering to collagen and in leukocytes (CHUN et al. 1996; KILEY and PARKER 1995). 
Furthermore, other serine/threonine kinases such as calmodulin kinase may be 
involved in the regulation of integrin adhesion (EGUCHI and HORIKOSHI 1996). 
PKCs may phosphorylate ~ chain cytoplasmic domains directly in vivo, but a 
correlation of this modification with integrin affinity modulation has also been 
discounted (HIBBS et al. 1991a; VALMU and GAHMBERG 1995; VAN WILLIGEN et al. 
1996). Nonetheless, a number of studies argue for a plausible involvement of PKC 
as upstream regulator of ~I, ~2 and ~3-integrin activation. The direct target(s) of 
PKC in these pathways remain mostly obscure. Recently, a genetic approach was 
reported which aimed at identifying factors for the regulation of leukocyte adhesion 
downstream of PKC. A mutant cell line was isolated which had defects in cell 
adhesion but an intact IL-2 promoter activation pathway (MOBLEY et al. 1996). 
Interestingly, the phosphorylation of pleckstrin, the major PKC substrate in 
platelets, is correlated with C(IIb~3 activation (GABBETA et al. 1996). When kinases 
are found to be involved in certain signaling pathways, it usually turns out that 
counteracting enzymes are regulating similar processes: it has several times been 
reported that okadaic acid, an inhibitor of serine/threonine phosphatase PP I, in­
terferes with integrin activation (DIAMOND and SPRINGER 1994; DUMONT et al. 
1995; EDWARDS et al. 1995; HEDMAN and LUNDGREN 1996; MERRILL et al. 1994). 

Recently, lipid kinases and particularly phosphoinositide 3-0H kinase (PI 3-
kinase) have been postulated to play significant roles in integrin activation of 
leukocytes and platelets. Lymphocyte cell surface receptors like CD2, CD28 and 
CD7 are capable of triggering C(4~1 adhesion to fibronectin. These receptors are 
known to associate with, and activate, PI 3-kinase upon stimulation. G-protein 
coupled receptors also activate PI 3-kinase. Stimulation of cells with fMLP, 
thrombin, RANTES or MCP-l, all of which have been demonstrated to induce 
increases of integrin adhesiveness in the respective cell types, will induce PI 3-kinase 
activity (SHIMIZU and HUNT 1996). 

Apart from these correlations, the major argument for the involvement of PI 3-
kinase in integrin activation stems from the application of the relatively specific 
pharmacological PI 3-kinase inhibitor wortmannin. Wortmannin blocks ~l-inte­
grin adhesiveness in T cells and HL60 cells as well as the thrombin mediated ()dIb~3 
activation of platelets (SHIMIZU et al. 1995; ZELL et al. 1996; J. ZHANG et al. 1996). 
Uncoupling the interactions of a chimeric CD28 version and PI 3-kinase in HL60 
by site directed mutagenesis prevents activation of ~ I-integrin adhesiveness (ZELL 
et al. 1996).-These findings make a compelling but incomplete case for a role of PI-3 
kinase as an important control element of integrin activation in various cell types. 
Future studies will have to employ activated and dominant negative mutants of PI 
3-kinase in order to address its role in the control of cell adhesion more directly. 

R-ras is a GTP binding protein which is highly homologous to H-ras, but it 
contains an additional 26 amino acids at the NHrterminal. Previous studies in­
dicated that R-ras does not seem to induce cell proliferation or differentiation. 
Recently it was shown that expression of a constitutively active R-ras induced 
suspension cells to become adherent to the ECM and that this increase in adhesion 
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results from enhanced integrin ligand binding affinity. This was demonstrated by 
high affinity binding of the activated integrin to monomeric fibronectin. H-ras as a 
control did not activate adhesion in an analogous manner while a dominant neg­
ative R-ras mutant blocked integrin activation. This suggests that R-ras plays a 
potent, previously unidentified, role in inside-out signaling (Z. ZHANG et al. \996). 
Recent findings also implicate the small GTPase rho in the regulation of integrin 
affinity states (LAUDANNA et al. \996). The mechanism is not known but may 
involve the actin cytoskeleton and phospholipids. 

6 Proximal Regulatory Molecules at the Interface of Integrin 
Cytoplasmic Domains and Upstream Signaling Pathways 

Although it becomes more and more evident that the activation of integrin adhe­
sion is controlled by several upstream signal transduction pathways in various cell 
types, the actual proximal regulatory elements that exert their function at the level 
of the integrin cytoplasmic domains remained obscure. However, candidate pro­
teins have recently been described. They were mostly identified with the help of the 
two-hybrid technique, i.e., by virtue of their ability to interact with the cytoplasmic 
portions of integrins, and for two of them there is now direct functional evidence 
for an involvement in the control of adhesion (Table 1). 

Cytohesin-l is a 47 kDa cytoplasmic protein which is predominantly expressed in 
lymphoid cells. It shares a homology region to the otherwise unrelated Sec7 gene 
product in yeast. Unlike Sec7, cytohesin-l contains a COOH-terminal pleckstrin 
homology (PH) domain which is present in many proteins with known or postulated 
roles in signal transduction and which apparently may be responsible for targeting 
signal transducers to the plasma membrane (LEMMON et al. 1996). Cytohesin-l was 
coprecipitated with O(L~2 but not with 0(4~1 from Jurkat cells, suggesting a direct 
interaction of cytohesin-l with ~2-integrins in T cells. Overexpressed and purified 

Table 1. Intracellular proteins shown to interact with integrin cytoplasmic domains directly and which 
have possible functions in inside-out signaling 

Interacting protein Integrin subunit Comments 

Regulatory proteins: 
cytohesin-I b2 overexpression induces adhesion; isolated PH domain dominant negative 
ILK hi, b2, b3 overexpression suppresses adhesion 
calreticulin a2, a3, a4, av, a6 binds to GFFKR motif in a2bl 
when receptor is activated 
b3-endonexin b3 binding overlaps with regulatory site in b3 cytoplasmic domain (S752) 
Cytoskeletal proteins: 
a-actinin b I, b2, b3 b2 binding enhanced in activated neutrophils 
filamin b2 binding motif overlaps with a-actinin binding site 
talin bl, b2, b3 binding sites contain NPXY motifs 
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cytohesin-l from E. coli interacted specifically with a peptide corresponding to the 
complete ~2 cytoplasmic domain in vitro. Functional analyses revealed that cytohesin­
I overexpression resulted in a constitutively active adhesion phenotype of IXL~2 in 
lurkat cells. The expression of the isolated Sec7 domain, which mediates the inter­
action with ~2 in yeast, had a similar although somewhat reduced effect. In marked 
contrast, overexpression of the PH domain resulted in a dominant negative block of 
~2-integrin adhesion to ICAM-I, suggesting that the PH domain, which supposedly 
interacts with an as yet unidentified functionally relevant ligand, plays a regulatory 
role in cytohesin-I function. It is likely that the PH domain mediates membrane 
recruitment which points to the possibility that cytohesin-I may indeed be directly 
regulated by ccllular activation pathways in order to perform its function. Recently it 
became apparent that PH domains may bind to specific membrane bound phospho­
inositol lipid ligands in vivo. The activation of lipid kinases, e.g., PI 3-kinase, may 
thcrefore result in the plasma membrane recruitment and subsequent activation of 
signaling proteins like cytohesin-I via their PH domains. Most interestingly, cytohe­
sin-lor subdomain overexpression did not affect the adhesiveness of 1X4~ I which was 
expressed on the same cell type. Although the potential interactions of cytohesin-l 
with other integrins have not been investigated yet, from these data it appears possible 
that cytohesin-l is a specific regulator for ~2-integrins. The mechanistic role of 
cytohesin-l in avidity or affinity regulation of IXL~2 is at present unclear, but since its 
overexpression causes changes in the adhesive phenotype oflymphocytes directly, it is 
likely to become an important tool in further elucidating the activation mechanism of 
leukocyte integrins. Very recently it was shown that a protein which bears strong 
similarity to cytohesin-l contains a GDP/GTP exchange factor domain which acts on 
the small G protein arf-l in vitro. The guanine nucleotide exchange function was found 
to be encoded by the Sec7 domain (CHARDIN et al. 1996). Although direct evidence is 
lacking, it is tempting to speculate that cytohesin-l may regulate cell adhesion through 
a specific and localized guanine nucleotide exchange function. In this context it is 
particularly intriguing that the isolated Sec7 domain was shown to be capable of up­
regulating lurkat cell binding to ICAM-l (KOLANUS et al. 1996). 

As in the case of cytohesin-l, the integrin linked kinase (ILK) has been dis­
covered with the help of the two-hybrid-technique. ILK is a serine/threonine spe­
cific kinase which is probably expressed ubiquitously. It was identified by its ability 
to bind to the ~l-integrin cytoplasmic domain but apparently it can interact with 
other integrin ~ chains, too, as was demostrated by co-immunoprccipitation ana­
lyses. In vitro, ILK phosphorylates itself and exogenous substrates strongly; from 
these data ·it appears plausible to assume that the in vivo function of ILK will be 
dependent on the kinase activity, although this has not been demonstrated directly 
yet. ILK interaction with intcgrins may regulate both inside-out and outside-in 
signaling since overexpression of ILK in rat epithelial cells results in decreased cell 
adhesion to ECM, whereas cell spreading on fibronectin affects ILK kinase activity. 
Overexpression of ILK in epithc1ilal cells induces anchorage independent growth, 
stimulation of the cell cycle, and malignant transformation (HANNIGAN et al. 1996). 

~3 endonexin interacts specifically with the cytoplasmic domain of IXIIb~3 in 
yeast and in vitro. This was demonstrated by binding of an endonexin fusion 
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protein to detergent solubilized p3-integrin. The physiological role of p3 endonexin 
is currently unclear, but the mutation of amino acid S752P in cdIbP3, which had 
previously been described to interfere with the activation of the platelet integrin, 
results in a marked reduction of endonexin/P3-integrin interaction in vitro (SHATTIL 
et al. 1995). 

The calcium binding protein calreticulin binds to the membrane proximal and 
highly conserved GFFKR motif present within the IX chain cytoplasmic domains. 
Deletion of this motif results in constitutive integrin adhesiveness, and an attractive 
hypothesis assumes the formation of a salt bridge between IX and neighboring p 
chain residues, the disruption of which may result in integrin activation (see above). 
Calreticulin apparently binds to the activated but not to the inactive form of the 
collagen receptor, 1X2pl-integrin. The introduction of anti-calreticulin antibodies 
into lurkat cells inhibited the ability of 1X2Pl to be activated by phorbol esters or by 
anti-integrin antibodies. Furthermore, treatment of the cells with ocadaic acid, 
which is known to interfere with cell adhesion, also inhibits the binding of ca­
lreticulin to the active form of 1X2P 1 (COPPOLINO et al. 1995). 

7 Modulation of Integrin Adhesiveness - Potential Mechanisms 

As can be seen from the above, a vast body of data has been gathered on this topic 
over the last 5 years or so, and plausible hypotheses which may help to explain the 
observed phenomena have begun to emerge. 

The controversy whether the affinity or the avidity of integrins for their ligands 
is actually regulated by intracellular pathways is as old as the discovery of regulated 
adhesiveness itself and has already been discussed in excellent reviews (see Sect. 1). 
Another way to put this is the following: Do inside-out signaling mechanisms result 
in conformational changes of individual integrin molecules or do intracellular 
signals rather provoke the oligomerization (clustering) of the adhesion receptors 
without causing any direct molecular alteration of the integrins? The discussion 
surrounding this question continues, the main reason being that it is quite difficult 
to discriminate between these possibilities with any certainty in the absence of direct 
structural information. 

"Reporter" monoclonal antibodies have been developed which recognize 
integrins at the cell surface only when these are in an activated state (BOUDIGNON 
et al. 1996; CHEN et al. 1994b; DIAMOND and SPRINGER 1994; ELEMER and EDG­
INGTON 1994; LUQUE et al. 1996; VAN KOOYK et al. 1991; YEDNOCK et al. 1995). The 
up-regulation of such activation epitopes on integrin molecules in response to cy­
toplasmic signals has often been interpreted as an indication that indeed confor­
mational changes may occur within the extracellular domains which would allow 
enhanced ligand binding. In addition, divalent or - in the case of IgMs - multi­
valent binding of antibodies to their cognate antigens may also be facilitated by 
multimerization of integrins at the cell surface. In fact, the NK-L16 antibody, 
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which recognizes activated Q(L132 on leukocytes, binds to the clustered 132-integrin 
only (LUB et a!. 1995). 

P AC-l is an antibody which recognizes the activated platelet integrin exclu­
sively. A short sequence of the CDR3loop of PAC-l which contains an RGD motif 
and which is responsible for binding of Q(IIb133 was engineered onto the antibody 
AP7. Binding of AP7 to Q(IIb133 is normally not much influenced by the activation 
state of the receptor although it recognizes the integrin with a similar but distinct 
element. A recombinant Fab fragment of the AP-7 derivative which bore the 
transplanted PAC-l sequences behaved very much like PAC-l (KUNICKI et a!. 1996). 
Furthermore, it was recently found that constitutively activated R-ras promotes 131-
integrin binding to a monomeric fibronectin subunit (Z. ZHANG et al. 1996). These 
data indicate that inside-out signaling events may truely aid in changing the con­
formations of integrin molecules. How does this occur? An attractive concept is that 
proximal cytoplasmic factors may bind to 13 or Q( chain cytoplasmic domains in a 
regulated fashion and may thereby interfere with a "salt bridge" formation between 
the subunits (HUGHES et a!. 1996). Alternatively, a currently unknown activation 
step may preceed binding of these factors which may then help to stabilize the 
unbridged state. Biochemical analyses should help to discern between these possi­
bilities. If breaking of an integrin hinge is mediated by cytoplasmic factors like 
cal reticulin or similar proteins just by virtue of competition for binding, then the 
affinities of these activation factor/cytoplasmic domain interactions should be 
substantially higher than the affinities between the hinge strands. 

It was postulated that high affinity interactions between integrins and their li­
gands do not suffice to result in strong cell adhesion but that they also may require 
postreceptor events, which means signal transduction initiated by activated integrins. 
These events appeared to involve rearrangements of the membrane proximal actin 
cytoskeleton and the clustering of integrins at the cell surface. The mutation of a 
cytoplasmic element (TTT758-60AAA) of the 132 chain which was shown to be im­
portant for cell adhesion interfered with the functional association of the integrin with 
the cytoskeleton and thereby prevented adhesion, although the receptor was shown to 
be locked in a high affini ty state by deletion of the G FFK R motif (PETER and O'TOOLE 
1995). Affinity regulation and integrin signal transduction may therefore cooperate in 
the promotion of cell adhesiveness. Cytoplasmic regulatory molecules may play dual 
roles in inside-out and outside-in signaling mechanisms and such a bifunctional role 
was already proposed for the ILK protein (HANNIGAN et al. 1996). 

132-integrins bind to the ICAM-I counter-receptor which was shown to be 
expressed as a noncovalently linked dimer on the cell surface (M ILLER et al. 1995; 
REILLY et a!. 1995). Interestingly, leukocyte activation by phorbol esters enhances 
the lateral mobility of 132-integrins. probably by detachment of the integrin from 
the membrane proximal actin cytoskeleton (KUCIK et a!. 1996). An alternative or 
supportive mechanism may act on the actin filaments directly and has been de­
scribed for platelets (HARTWIG 1992): In these cells, activation events result in 
reduction of the average length of submembrane actin filaments which make 
contact to the integrin cytoplasmic domains with the help of adaptors such as 
oQ(-actinin. Activation dependent severing of actin polymers appears to be mediated 
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by actin capping proteins, e.g., by gelsolin in platelets. It is possible that similar 
mechanisms hold up for leukocytes, too. Increased mobility may help the integrins 
to undergo low or intermediate affinity interactions with ICAM-I. The binding of 
ICAM-l to iXL~2 itself was proposed to induce a conformational change (high 
affinity binding) which may result in subsequent triggering of signal transduction, 
receptor clustering and tight adhesion (CABANAS and HOGG 1993). It is possible 
that cytoplasmic regulatory molecules playa role in all steps, disengagement from 
the cytoskeleton, affinity change, and postreceptor signal transduction. Since a 
cytoplasmic activation factor of iXL~2 adhesion, cytohesin-l, has recently been 
discovered, it may now become feasible to dissect this highly regulated process 
further (KOLANUS et al. 1996) (Fig. 3). 

Another aspect which requires clarification is the specificity of adhesion reg­
ulation. Often more than one type of integrin is expressed on a given cell. How does 
the cell ensure that only the relevant adhesion molecule becomes active in any 
particular physiological situation? It is much to early to answcr this with any 
conclusiveness but cytoplasmic proteins (cytohesin-l and ~3-endonexin) which 
couple to their target elements (~2- and ~3-integrins, respectively) with at least 
some specificity have now been described (KOLANUS et a!. 1996; SHA1TIL et al. 
1995). Furthermore, the dissection of apparently independent upstream signaling 
pathways which lead to either the activation of ~2- or of ~1-integrins on the same 
cell has recently been reported (CARR et al. 1996; WEBER et al. 1996; LAUDANNA 
et al. 1996). From these data it appears rather plausible that such specificities do 
indeed exist. 

Inside-out signal transduction of integrins has been demonstrated to be a 
significant pathway in the dynamic regulation of cell adhesion. Proximal and distal 
intracellular control elements which play important roles in these processes have 
begun to emerge. Future research efforts will broaden our understanding of the 
involved mechanisms and the resulting informations may also be used to target key 
regulatory molecules with pharmacological inhibitors. Such an interference with 
signaling processes that control cell adhesion may be useful as an effective and 
specific means of mediating immunosuppression in treatment of diseases, e.g., 
chronic inflammation and sepsis, or in the counteraction of graft rejection in organ 
transplantation. 
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The central nervous system (eNS) is considered to be an immunologically privi­
leged site. The eNS parenchyme is tightly sealed off from the periphery by the 
highly specialized vascular wall- the blood-brain barrier (BBB). The BBB has been 
assumed to provide a barrier that prevents circulating leukocytes from entering the 
eNS. However, in inflammatory reactions in response to virus infections, in mul­
tiple sclerosis and in experimental autoimmune encephalomyelitis (EAE), mono­
nuclear cells infiltrate the eNS. To date, there is no evidence that the functions of 
the BBB endothelium include BBB-specific leukocyte/endothelial interactions that 
regulate leukocyte recruitment across the BBB. Therefore it is thought that the 
interaction of circulating "eNS-seeking" mononuclear cells with the endothelial 
cells of the BBB is a multistep process (BUTCHER 1991; SPRINGER 1994; BARGATZE 
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et al. 1995). This review summarizes the current evidence, pointing to a unique role 
of ct4-integrin in the interaction of circulating mononuclear cells with the endo­
thelium of the BBB. 

2 The Blood-Brain Barrier 

The BBB separates the eNS tissue from the blood by preventing the free exchange 
of molecules between the blood and neuropil. Fully differentiated brain endothelial 
cells build a physical barrier for hydrophilic substances. The endothelial cells of the 
brain lack pinocytotic vesicles and thus do not carry out transcellular bulk flux. 
Additionally, there is a highly specialized and complex network of tight junctions 
between the endothelial cells which prevents paracellular diffusion (NAGY et al. 
1984; NICO et al. 1992; WOLBURG et al. 1994). Besides its physical barrier charac­
teristics, the BBB provides a metabolic barrier by the expression of specific cyto­
plasmic enzymes and by thc polar expression of specific transport systems at either 
the luminal or abluminal surfaces of the brain endothelium (for review see 
ENGELHARDT and RISAU 1995). Thus the BBB ensures the transport of sufficient 
metabolites from the blood into the brain and quick removal of toxic substances 
from the brain. While the endothelial cells form the barrier proper, the permanent 
complex interactions of endothelial cells with adjacent cells like pericytes, peri­
vascular microglial cells and astrocytes seem to be a prerequisite for the mainte­
nance of barricr function. 

3 Models of T Cell Immigration Into the CNS 

There is increasing evidence that immunological mechanisms are involved in a 
considerable number of disease processes of the eNS. Viruses from several 
families can infect the eNS causing distinct diseases depending in part on the 
type of eNS cell infected (reviewed by GRIFFIN et al. 1992). The most severe 
infections are caused by viruses such as herpes simplex type I, which replicates 
primarily in neurons. There are animal models for most of these diseases, al­
lowing the study of pathogenesis of the disease (reviewed by GRIFFIN et a1. 
1992). In these models, virus is usually injected intrathecally in susceptible an­
imal strains. Virus replication within the eNS then causes recruitment of 
mononuclear cells into the eNS. Perivascular cuffs of mononuclear cells around 
small arteries, arterioles and venules are the classic hallmark of viral infection of 
the eNS. There is also accumulating evidence for a pathogenic role for T cells 
immigrating into the eNS in some models of virus-induced encephalomyelitis 
(TSUNODA and FUJINAMI 1996; MUSETTE et al. 1995; LIEBERT and TER MEULEN 
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1993; RICHT et al. 1989). The molecular mechanisms mediating the recruitment 
of T lymphocytes across the BBB in virus-induced encephalomyelitis have not 
been investigated in detail to date (IRANI and GRIFFIN 1996). The same holds 
true for encephalomyelitis caused by neurotropic parasites, such as Toxoplasma 
gondii, which enter the CNS and cause a severe inflammatory reaction (DECK­
ERT-SCHLUTER et al. 1994). Injection of attenuated bacteria into the CNS of 
sensitized mice will elicit recruitment of mononuclear cells consisting mostly of T 
cells into the CNS; however, the number of recruited mononuclear cells is low 
(ENGELHARDT et al. 1995). There have also been efforts to induce the recruit­
ment of inflammatory cells into the CNS by intracerebral injection of cytokines 
such as lipopolysaccharide (LPS), tumor necrosis factor (TNF-Ct), or interleukin 
(IL)-I (ANDERSSON et al. 1992a, b). Injection of cytokines has been shown to 
induce marginal leukocyte extravasation across the BBB but not emigration of 
mononuclear cells into the CNS parenchyme. 

Investigations into the molecular mechanisms involved in T cell recruitment 
into the CNS in vivo are still few. Most studies focused on the expression of 
adhesion molecules but rarely on their functional importance for cell recruitment 
into the inflamed CNS (IRANI and GRIFFIN 1996). Our current knowledge regarding 
the molecular mechanisms involved in T cell immigration into the CNS is mainly 
limited to studies performed in the animal model experimental autoimmune en­
cephalomyelitis (EAE). EAE is a T cell-mediated autoimmune disease of the CNS, 
that has clinical and histopathological characteristics which make it the prototype 
animal model for human inflammatory demyelinating diseases of the CNS, e.g., 
multiple sclerosis (MS; MARTIN and McFARLAND 1995). EAE is mediated by au­
to antigen-specific CD4 + T helper-l cells. It can be induced in susceptible animal 
strains by immunization with spinal cord homogenate or purified myelin antigens. 
The two major proteins of the CNS myelin that induce EAE are myelin basic 
protein (MBP) and protein lipid protein (PLP) (CHOU et al. 1983; LEES et al. 1989). 
Also, EAE can be adoptively transferred by intravenous injection of autoantigen­
specific T cells into naive syngeneic recipients. 

3.1 Immigration of T Cells Into the Healthy CNS 

Under normal circumstances the brain does not seem to be surveyed by circulating 
lymphocytes to the same degree as extracerebral tissues (WEKERLE et al. 1986). The 
fact that intrayenously injected T cells, however, are able to induce EAE and an 
inflammatory response in the CNS provided evidence that the normal BBB is not 
an impermeable barrier for all immune cells. The first observations that activated, 
antigen-specific T line cells are capable of penetrating the healthy BBB were made 
by WEKERLE et al. (1986) and extended by HICKEY and coworkers (1991). Both 
groups traced the migration pattern of intravenously injected [I4C]thymidine CD4 + 

MBP-specific T line cells in Lewis rats and demonstrated labeled cells within the 
CNS 6 h after injection. It should be noted that both studies failed to show im­
migration of resting T line cells into the CNS. Failure of resting T cells to penetrate 
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the BBB might therefore offer an explanation for the observation that activated but 
not resting autoaggressive T cells can be used to transfer EAE to syngeneic re­
cipients. 

3.2 Immigration of T Lymphocytes Into the Inflamed eNS 

An initial insult - whether infection, autoimmune, or direct application of proin­
flammatory stimulants - leads to local tissue damage and production of cytokines. 
These in turn cause stimulation of the BBB endothelium and thus an altered 
phenotype of the BBB. During the acute phase of these inflammatory responses 
within the eNS there is evidence for BBB leakiness, as documented by the presence 
of serum albumin in the perivascular space. Nevertheless, there is no evidence for 
passive "leakage" of cellular elements across the inflamed BBB, as documented by 
the absence of erythrocytes in the inflammatory infiltrate. Immigration of mono­
nuclear cells across the stimulated BBB rather seems to be a selective process, as the 
inflammatory infiltrates in viral- or parasite-induced encephalitis, as well as during 
EAE, can be characterized by the presence of certain subsets of mononuclear cells 
and the absence of others (RENNO et al. 1994; STEFFEN et al. 1994; DECKERT­
SCHLUTER et al. 1994; ENGELHARDT et al. 1995; IRANI and GRIFFIN 1996). It should 
be noted that not even the induction of inflammatory reactions by direct intrace­
rebral injection of proinflammatory stimuli results in random immigration of leu­
kocytes into the eNS (ANDERSSON et al. 1992a, b; ENGELHARDT et al. 1995). Thus 
although there is evidence for BBB leakage during eNS inflammation, the mech­
anisms for immune cell entry across the stimulated BBB into the eNS do not seem 
to be random at any time. 

4 Molecular Mechanisms of T Cell Migration Across 
the Blood-Brain Barrier 

4.1 The Multistep Paradigm 

Leukocyte extravasation into peripheral tissues is exquisitely regulated in vivo by 
mechanis11).s of selective leukocyte-endothelial cell recognition, which can display 
extraordinary specificity depending on the tissue site or organ involved, the nature 
of an inflammatory stimulus and also the timepoint during the inflammatory re­
sponse. The observation that the specificity of leukocyte recruitment cannot be 
explained by simple lock-and-key models of leukocyte-endothelial interaction led 
BUTCHER (1991) to propose a model which views leukocyte-endothelial interaction 
as an active process requiring multiple steps. The multistep paradigm postulates 
that traffic signals for leukocytes function in a sequence of steps, allowing multiple 
molecular choices at each step, thus providing great combinatorial diversity in 
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signaling. The selectins have been shown to regulate the first step of this process, the 
tethering of leukocytes from the flowing blood to the vascular wall. The subsequent 
firm adhesion of leukocytes to the endothelial cell surface and migration across the 
vessel wall (diapedesis) are regulated independently of the initial binding. These 
latter stages are thought to be mediated by functional activation of integrins on the 
leukocyte by chemoattractants located in the vessel wall (BUTCHER 1991; SPRINGER 
1994). The activated integrins mediate firm adhesion of the leukocyte to the en­
dothelium by interaction with their endothelial ligands that are members of the 
immunoglobulin superfamily. The multistep paradigm has been shown to hold true 
for neutrophil recruitment across vascular walls. Also there is accumulating evi­
dence that recruitment of monocytes and lymphocytes follows the same paradigm 
(BARGATZE et al. 1995). 

4.2 Expression of Cell Adhesion Molecules at the Blood-Brain Barrier 

With respect to the structural uniqueness of the BBB endothelium, the major 
question regarding T cell migration into the CNS has been whcther the differen­
tiation of BBB endothelium extends to the presence of BBB-specific cell adhesion 
molecules (CAMs). To date, there is no evidence for the induction of BBB specific 
CAMs, although the expression of CAMs on the BBB during the progression of 
inflammatory conditions of the CNS has been the subject of extensive research 
(CANNELLA et al. 1990, 1991a, b; LASSMANN et al. 1991; SASSEVILLE et al. 1992; 
DECKERT-SCHLUTER et al. 1994; ENGELHARDT et al. 1994; STEFFEN et al. 1994; 
IRANI and GRIFFIN 1996). 

With regard to the expression of CAMs, cerebral endothelial cells in the 
healthy CNS do not differ from extracerebral endothelial cells, with the exception 
of lower expression of vascular endothelial (VE)-cadherin in cerebral endothelium 
than in extracerebral endothelial cells (BREIER et al. 1995). In the rat and in hu­
mans, expression of LFA-3 has been reported on the BBB endothelium (JUNG et al. 
1995; ROSSLER et al. 1992). There are low levels of constitutive expression of 
ICAM-I, and VCAM-l, on some larger venules within the healthy CNS (ENGEL­
HARDT et al. 1994; IRANI and GRIFFIN 1996; STEFFEN et al. 1994). Massive up­
regulation of ICAM-l and VCAM-I on CNS microvasculature has been reported 
in a wide array of inflammatory conditions including virus- and parasite-induced 
encephalitis (IRANI and GRIFFIN 1996; SASSEVILLE et al. 1992; DECKERT-SCHLUTER 
et al. 1994) in response to tissue injury and stimulation by attenuated bacteria 
(ENGELHARDT' et al. 1994) and in EAE. In EAE up-regulation of ICAM-I and 
VCAM -I precedes the perivascular inflammatory cell cuffing and the onset of 
clinical disease (CANNELLA et al. 1990; Schulz and Engelhardt, unpublished). Ex­
pression of ICAM-l and VCAM-I remains high throughout the first clinical epi­
sode (STEFFEN et al. 1994). Modulation of endothelial ICAM-l expression in the 
CNS correlates with the clinical time course of chronically relapsing remitting EAE; 
up-regulated levels oflCAM-l were shown to drop after the first clinical episode of 
EAE and be up-regulated again prior to the clinical relapse and development of 
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new inflammatory infiltrates (CANNELLA et al. 1990). The observation that up­
regulation of ICAM-I and VCAM-I on cerebral vessels is not restricted to vessels 
surrounded by an inflammatory infiltrate further suggests that expression of these 
molecules is necessary but not sufficient for inflammatory cell entry into the CNS. 

During chronic inflammation further changes of cerebral vessels have been 
noted leading to a morphology which resembles high endothelial venules (HEVs) in 
lymph nodes (RAINE et al. 1990). The induction of MAdCAM-I has been reported 
on such HEV-like cerebral vessels during chronic EAE in the Biozzi-mouse strain 
(O'NEILL et al. 1991). However, MAdCAM-I could not be seen in chronic in­
flammation during EAE in the SJL/J mouse strain (Schulz and Engelhardt, un­
published). Also, there has been one report describing reactivity of inflamed vessels 
with the monoclonal antibody HECA-452 in multiple sclerosis brains (RAINE et al. 
1990). HECA-452 recognizes the E-selectin ligand cutaneous lymphocyte antigen 
(CLA) on a subpopulation of T memory cells (PICKER et al. 1993), but also a 
carbohydrate moiety on HEVs in mice. Other selectin ligands have not been 
demonstrated on cerebral vessels during inflammation to date. Furthermore, it has 
been shown that brain endothelial cells lack storage of P-selectin in their Weibel­
Palade bodies (BARKALOW et al. 1996). In addition we have shown that E- and P­
selectin are not induced on cerebral vessels during EAE as their inducibility is 
suppressed by the CNS microenvironment in vivo (ENGELHARDT et aI., 1997). E­
selectin expression has, however, been demonstrated on some vessels from multiple 
sclerosis brains (WASHINGTON el al. 1994). Thus, E-selectin expression on cerebral 
vessels might occur in very late stages of ongoing CNS inflammation, after massive 
destruction of the surrounding tissue. 

4.3 Phenotype of CNS-Seeking T Cells 

Several studies characterized the phenotype of T lymphocytes infiltrating the CNS 
during different inflammatory conditions using immunohistochemistry or by per­
forming F ACS analysis on inflammatory cells isolated from the inflamed CNS 
tissue. It seems that independent of the inflammatory cause, CNS infiltrating T cells 
are recently activated/memory lymphocytes, as characterized by their high level 
expression of CD44, LFA-I and ICAM-I and low level expression of CD45RB in 
the mouse (BARTEN et al. 1995; ENGELHARDT et al. 1995; RENNO et al. 1994; 
HURWITZ et al. 1992; ZEINE and OWENS 1992). This by itself does not distinguish 
inflammatory T cells in the CNS from the inflammatory T cell infiltrating other 
nonlymphoid tissues (MACKAY 1991). However, inflammatory T cells in the CNS 
differ from T cells present in extracerebral inflammatory sites by their distinct 
expression of certain integrins (ENGELHARDT et al. 1995; ENGELHARDT et aI., sub­
mitted). Inflammatory T cells in the CNS lack expression of a6-integrin and the aE­
integrin chain (ENGELHARDT et al. 1995; ENGELHARDT et aI., submitted) and express 
low to undetectable levels of the a4~7-heterodimer (ENGELHARDT et al. 1995). 
However, they do express a4-integrin at the same level as circulating T cells im­
plying that inflammatory T cells present in the CNS only express the a4~I-he-
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terodimer. Recent studies in our laboratory indicate that T cells in the CNS during 
EAE in the SJL/J mouse in fact do express 1X4~1 in a highly activated state as 
demonstrated by positive staining with a monoclonal antibody specifically detecting 
activated ~l in context with 1X4-integrin (LENTER et al. 1993; ENGELHARDT et aI., 
submitted). A subpopulation of T cells present in the CNS during EAE expresses 
high affinity ligands for E- and P-selectin (ENGELHARDT et aI., 1997). However, 
expression of L-selectin by these cells is still controversial (Dopp et al. 1994; 
ENGELHARDT et al. 1995). Due to the fact that L-selectin can be down-regulated 
upon lymphocyte contact with endothelium its expression on CNS-seeking T cells 
ntmains speculative. 

4.4 Functional Role of CAMs in T Cell - Blood-Brain Barrier 
Interaction 

4.4.1 In Vitro 

The expression of CAMs, such as ICAM-l and VCAM-l, on the BBB does not 
allow any conclusions regarding their functional importance in T cell interaction, 
as their integrin ligands are activation dependent adhesion receptors. Therefore, 
evidence for the functional importance of cerebral endothelial ICAM-l and 
VCAM-l has been provided by several studies using a modified version of the 
Stamper-Woodruff frozen section adhesion assay (STAMPER and WOODRUFF 1976). 
In these assays, frozen sections derived from brain tissue of animals afflicted with 
EAE (STEFFEN et al. 1994; YEDNOCK et al. 1992) or virus-induced encephalitis 
(SASSEVILLE et al. 1994) were coincubated with immune cells. These studies clearly 
demonstrate that mononuclear cells can bind to inflamed cerebral vessels with 
increased levels of ICAM-l and VCAM-l via the interaction of their known li­
gands LFA-I/Mac-l and 1X4-integrins. With respect to the lack of 1X4~7-integrin 
expressing T lymphocytes within the inflamed CNS it should be noted that T cells, 
which have been shown to express highly activated 1X4~7-integrins, can bind to 
VCAM-l expressed on inflamed cerebral endothelium via 1X4~7. However, binding 
of lymphocytes derived from inflamed peripheral lymph nodes could clearly be 
shown to be mediated via LFA-l/ICAM-l and 1X4~I/VCAM-l (STEFFEN et al. 
1994). Binding of lymphocytes to vessels in healthy brains could not be demon­
strated in this assay. 

Investigatjon of the binding characteristics of inflammatory cells isolated from 
inflamed brains on purified ICAM-l, VCAM-l, and MAdCAM-l provided in­
formation about their possible usage of certain integrin receptors. Lymphocytes 
isolated from inflamed brains could be shown to bind to ICAM-l and VCAM-l, 
but rarely to MAdCAM-l indicating that they actively use LFA-l and 1X4~1 

integrins for binding to endothelium (ENGELHARDT et al. 1995). 
Taken together, the in vitro data provided evidence for an involvement of 

ICAM-l and .VCAM-l in lymphocyte interactions with cerebral endothelium 
during inflammation. 
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4.4.2 In Vivo 

The investigation of the molecular mechanisms mediating the interaction between 
inflammatory cells and the cells composing the BBB in vivo is hampered by the 
localization of the brain inside the skull. Most studies addressing the role of CAMs 
in the development of a CNS inflammatory cellular infiltrate have investigated the 
effects of monoclonal antibodies directed against CAMs on the evolution of CNS 
inflammation. Again, most of these studies have been performed in the EAE model. 
These studies fail to provide definitive evidence that the inhibitory effect of the 
applied antibody is truly mediated by inhibiting T cell traffic into the CNS, as the 
antibody might also interfere with the development of the immune response. In­
teraction of ICAM-I with LFA-l on T lymphocytes plays an important role in 
antigen presentation and recognition, and hence T cell activation and proliferation 
(reviewed in CARLOS and HARLAN 1994). Although there is no direct evidence for a 
role of <x4-integrin in antigen dependent T cell stimulation, it has been shown that 
<x4-mediated binding of T lymphocytes to VCAM-l leads to T cell stimulation 
(ROMANIC and MAORI 1994). 

Antibodies against LF A-I and Mac-l have been ineffective in inhibiting clin­
ical EAE and/or leukocyte infiltration of the CNS during EAE (CANNELLA et al. 
1993; WELSH et al. 1993). However, these monoclonal antibodies diminish mono­
nuclear cell recruitment into the CNS during Sindbis virus-induced encephalitis 
(IRANI aild GRIFFIN 1996). It has been shown that antibodies directed against 
ICAM-l inhibit the development of actively induced EAE (ARCHELOS et al. 1993) 
but not adoptively transferred EAE (ARCHELOS et al. 1993; WILLENBORG et al. 
1993; CANNELLA et al. 1993). These results suggests that the inhibitory effect on 
disease progression which is seen following the administration of anti-ICAM-l 
antibody in actively induced EAE is due to the interference with antigen recogni­
tion by T cells rather than with T cell trafficking into the CNS. This is further 
underlined by the findings that treatment ofEAE with anti-LFA-I can increase the 
severity of the disease (WELSH et al. 1993). 

Similarly, although in independent studies it has been observed that repeated 
injections of the antibody Mel-14, which is directed against L-selectin, have no 
influence on the development of passively-transferred (t)EAE (VEROMAA et al. 
1993), this antibody readily inhibits actively-induced (a)EAE (ENGELHARDT 1997). 

Treatment of both aEAE or tEAE with monoclonal antibodies directed against 
p- or E-selectin does not interfere with the development of the disease, which 
underlines the lack of expression of both selectins by BBB endothelium in vivo 
(ENGELHARDT et aI., 1997). 

5 The Key Role of IX4-Integrin 

A key role for <x4-integrin mediated T lymphocyte recruitment across the BBB 
during EAE is supported by the results from several experiments. Autoaggressive T 



The Role of (](4-lntegrin in T Lymphocyte 59 

cells have to be freshly activated in order to induce EAE. These freshly activated T 
line cells express a memory/activated phenotype with high levels of LFA-l and 
CD44, low levels of CD45RB and most of them express ICAM-l. There is some 
evidence that expression of cr4-integrin correlates with the disease inducing activity 
of PLP- and MBP-specific T cell clones (BARON et al. 1993; KUCHROO et al. 1993). 
KUCHROO and colleagues could demonstrate that most cr4-integrin-positive PLP­
specific T cell clones were able to induce EAE in SJL/J mice, while cr4-negative 
PLP-specific clones did not mediate EAE. Interestingly, cr4-integrin-negative PLP­
specific T cells were able to induce EAE in irradiated recipients. It should be noted 
that the authors also found some cr4-integrin-positive T cell clones which did not 
induce EAE, probably due to an altered cytokine profile. These authors concluded 
that cr4-integrin on the surface of PLP-specific T cells might be important for their 
migration across the BBB and that dependence of cr4-integrin for immigration of T 
cells into the CNS is abolished by irradiation of the recipients. In another study, 
BARON et al. (1993) showed that cr4-integrin expression on MBP-specific T cells 
directly correlated with their entry into the brain parenchyme and their ability to 
transfer EAE into irradiated PL/J mice. The cr4-integrin levels on these MBP­
specific T cells did not affect antigen responsiveness or production of the Thl 
cytokines IL-2, interferon (IFN)-y, and lymphotoxin, and antibodies directed 
against cr4-integrin did not block antigen recognition in vitro. Thus these authors 
concluded that cr4-integrin on activated effector T cells is crucial for leaving the 
bloodstream and entering the brain. It is noteworthy that, in contrast to the study 
by KUCHROO et £II., BARON and colleagues saw cr4-integrin dependence of T cell 
recruitment into the CNS in irradiated recipients. Further studies will be needed to 
define the apparent differences. 

Antibodies against cr4-integrin have been shown to have therapeutic effects in 
the adoptive transfer model of EAE in the rat (Y EDNOCK et al. 1992) and the mouse 
(BARON et al. 1993). YEDNOCK et £II. showed that intraperitoneal injection of anti­
cr4-integrin antibody on day 2 after passive transfer of EAE significantly delayed 
onset of clinical disease and prevented the accumulation of leukocytes in the CNS. 
As the antibody was given after initiation of disease it was proposed that mono­
clonal antibody treatment blocked entry of host mononuclear cells recruited to the 
site of inflammation. Further studies in the actively induced guinea pig EAE model 
confirmed and extended these results (KESZTHEL YI et al. 1996; KENT et al. 1995). 
Importantly, in these studies treatment with anti-cr4 antibody after the onset of 
disease reversed the clinical symptoms of EAE and resulted in the clearance of 
leukocytes frolll the CNS. Since further accumulation of leukocytes could be de­
creased by anti-cr4-integrin antibodies, it appears that individual leukocytes are 
present in the lesion area for only a limited period of time. The data from these 
studies are thus consistent with a central role for cr4-integrin on antigen-specific T 
cells and on nonspecific leukocytes for recruitment into neural tissue. This means 
that trafficking across a leaky BBB during later stages of the disease is still de­
pendent upon cr4-integrin interactions. 

Little is known about the resolution of lesions in EAE. Present data indicate 
that leukocytes must either traffic rapidly out of the CNS (reviewed by WELLER 
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et al. 1996) or undergo apoptosis (SCHMIED et al. 1993). Therefore, possible effects 
of 1X4-integrin antibodies on T cell clearance inside the CNS have to be considered, 
although there is no evidence to date indicating that 1X4-integrin might be involved 
in induction of T cell apoptosis. As all the antibody inhibition studies have been 
performed using whole immunoglobulin, the effector functions of the applied an­
tibodies have to be considered when interpreting their effects in vivo (HAMANN et al. 
1994). Additionally, anti-1X4-integrin antibodies could affect T cell activation 
(DAMLE and ARUFFO 1991) and enzyme secretion (ROMANIC and MADRI 1994). 
Similar efficacy of VCAM-I-directed treatment in EAE (BARON et al. 1993; Lobb, 
Burkly and Ruddle, unpublished), however, argues for a mechanism that involves 
blockade of adhesion dependent functions, but further examination of these issues 
will be of value. 

The striking ability of antibodies against 1X4-integrin to inhibit CNS inflam­
mation in EAE is in contrast to the more limited ability of these reagents to prevent 
mononuclear cell infiltration in other organs. In models of rheumatoid arthritis, 
cardiac allograft rejection, lung inflammation and skin inflammation antibodies to 
1X4-integrin either failed to inhibit or only partially inhibited mononuclear cell 
traffic (reviewed by LOBB and HEMLER 1994). This stresses the specificity for 1X4-
integrin-mediated cell recruitment into the CNS, which so far only seems to be 
similar in the gut, where mononuclear cell inflitration has been demonstrated to be 
dependent on 1X4-integrin (ISSEKUTZ 1991). The relevant integrin in the gut however 
is likely to be 1X4~7 (HAMANN et al. 1994) rather than 1X4~1. It should be stressed at 
this point that, besides demonstrating the lack of 1X4~7-integrin expression on in­
flammatory cells in the CNS (ENGELHARDT et al. 1995; ENGELHARDT et aI., sub­
mitted), the respective functions of 1X4~1 vs 1X4~7 in trafficking into the CNS have 
not been completely elucidated. This is especially important as 1X4~7 can also me­
diate binding to VCAM-l. 

The importance of 1X4-integrin in leukocyte recruitment across the BBB be­
comes even more compelling, as 1X4-integrins have been demonstrated to have a 
unique dual adhesive function. Besides their activation dependent binding to their 
respective ligands VCAM-I and MAdCAM-I, 1X4-integrins have been shown to 
interact with both of these ligands under flow in vitro (BERLIN et al. 1995; ALON 
et al. 1995). Both studies provide evidence that 1X4-mediated rolling on VCAM-1 or 
MAdCAM-I did not require integrin activation although activation of 1X4-integrin 
by Mn2+ increased the number of rolling cells but also favored firm adhesion. 
Whereas 1X4~7-mediated rolling on MAdCAM-l could be observed under flow 
rates comparable to those in which selectin-mediated interactions take place, 1X4~1-
mediated rolling on VCAM-1 was observed under conditions with lower shear 
forces (ALON et al. 1995). In vivo there is evidence that 1X4-integrin can mediate 
rolling and adhesion, but not tethering under physiological shear (4-16 dynes/cm2) 

in a model of chronic vasculitis of the mesenterium (JOHNSTON et al. 1996). The 
possibility that 1X4-integrin mediates multiple leukocyte interactions such as rolling 
and adhesion at the BBB remains to be investigated. 
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Key role of a,4-integrin in a postulated "shortcut" of the multi-step paradigm 
of lymphocyte recruitment across the BBB 

Tethering/Rolling Adhesion 

'TJ= tight junction 

Transmigration 

endothel ium 

basal 
membrane 

activated/memory T cell 

lymphocyte ~4 ? 
clearance 

Fig. 1. Key role of ct4-integrin in a postulated shortcut of the multi step paradigm of lymphocyte re­
cruitment across the blood-bra in ba rrier 

6 Conclusion 

Taken together: (I) only ICAM-I and VCAM-I but not E- and P-selectin are up­
regulated on BBB endothelium during inflammatory conditions of the CNS. (2) 
Anti-<Y4-integrin antibodies interfere with the development of inflammatory infi l­
trates in the CNS in vivo and inhibit the development of clinical EAE. (3) <Y4-
integrin has a unique dual function in binding to its ligands VCAM-I and MAd­
CAM-l under physiological flow as well as under static conditions. These data 
provoke the speculation that recruitment of mononuclear cells across the BBB 
could be controlled by a shortcut of the multistep paradigm (Fig. I), limiting access 
to the CNS to those cells that are capable of <Y4-integrin-mediated tethering and 
rolling followed by firm adhesion to VCAM-I on the luminal surface of the BBB 
endothelium. 

A cknoll'iedgclI1en/s . lowe tha nks to Sara Michie with Badger for discussion of this present review. 
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1 Introduction 

Most lymphocytes recirculate throughout the body, migrating from blood through 
organized lymphoid tissues such as lymph nodes (LN) and Peyer's patches (PP), 
then to lymph and back to blood (GOWANS and KNIGHT 1964). Smaller numbers of 
lymphocytes migrate from blood to extranodal tissues such as pancreas and then 
through lymphatic vessels to LN (MACKAY et al. 1990). An important feature of 
this migration is the ability of lymphocytes to recognize and adhere to the surface 
of blood vessel endothelial cells before migrating through the vessel wall into 
surrounding tissue (CARLOS and HARLAN 1994; IMHOF and DUNON 1995; BUTCHER 
and PICKER 1996). 

Adhesion interactions of vascular endothelium with lymphocytes under flow or 
shear consist of at least four steps: (I) an initial transient sticking or rolling; (2) if 
the lymphocytes encounter appropriate activating or chemotactic factors in the 
local environment, rolling may be followed by a lymphocyte activation step that 
then leads to; (3) strong adhesion or sticking that may be followed by; (4) lym­
phocyte diapedesis into tissue (BUTCHER 1991; SHIMUZU et al. 1992; SPRINGER 1994; 
BARGATZE et al. 1995). Specific lymphocyte and endothelial adhesion molecules 
(AM) are involved in each step of this "adhesion cascade" (reviewed in CARLOS and 
HARLAN 1994; IMHOF and DUNON 1995; BUTCHER and PICKER 1996). This allows 
lymphocyte migration to be controlled at several different steps, leading to a 
combinatorial increase in specificity and sensitivity. 

Some lymphocyte and endothelial AM, such as lymphocyte function associ­
ated antigen-I (LF A-I), appear to playa role in lymphocyte migration to a wide 
variety of normal and inflamed tissues (HAMANN et al. 1988; CARLOS and HARLAN 
1994; BARGATZE et al. 1995). Other AM are involved in migration in a more se­
lective fashion. For example, in the mouse, well-defined tissue-selective lymphocytel 
endothelial adhesion systems exist for peripheral LN (PLN) and mucosal lymphoid 
tissues such as PP. Lymphocyte L-selectin and its endothelial carbohydrate ligands, 
presented on different glycoprotein backbones collectively known as the peripheral 
node addressin (PNAd), playa key role in lymphocyte migration to PLN (GAL­
LATIN et al. 1983; STREETER et al. 1988a; BAUMHUETER et al. 1992; LASKY et al. 
1992). Although L-selectin and PNAd are also involved in lymphocyte migration to 
PP, specific homing to this site appears to be dominated by lymphocyte cx4~7 
binding to endothelial mucosal addressin cell adhesion molecule-I (MAdCAM-I) 
(STREETER et al. 1988b; HOLZMANN et al. 1989; Hu et al. 1992; BERLIN et al. 1993; 
BRISKIN et aL 1993; HAMANN et al. 1994; BARGATZE et al. 1995). Other AM, such as 
vascular cell adhesion molecule-l (VCAM-I), may mediate lymphocyte migration 
to a wide variety of inflammatory sites (reviewed in POSTIGO et al. 1993; LOBB and 
HEMLER 1994). 

Lymphocyte migration is important in immune surveillance in that it allows 
lymphocytes to encounter their specific antigen in almost any site of antigen entry 
or sequestration. Such encounters often lead to localized inflammation character­
ized by recruitment of effector leukocytes that mediate destruction of the antigen. 
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Ideally, this is accomplished with little damage to normal host tissues. However, 
lymphocyte migration can lead to persistent chronic inflammation that damages or 
destroys host tissues. This inflammation can be induced by exogenous antigens such 
as bacteria, or by an autoimmune response to self antigens. Inflammation in au­
toimmune diseases is often limited to one, or a small number, of tissues. Insulin­
dependent diabetes mellitus (IDDM) is one clinically important example of such a 
tissue-specific, autoimmune disease (CASTANO and EISENBARTH 1990; ROSSINI et al. 
1993; BACH 1994). In IDDM, there is an autoimmune response to antigens in the 
insulin-producing ~-cells of the pancreatic islets of Langerhans. This leads to 
lymphocytic infiltration of the islets (insulitis) and subsequent destruction of the 
~-cells. 

Investigation of the importance of lymphocyte migration in autoimmune dis­
eases such as IDDM has involved a series of experiments covering different time 
points during the disease process. These experiments have used animal models to 
delineate the lymphocyte/endothelial adhesion pathways involved in the diabeto­
genic process. The nonobese diabetic (NOD) mouse offers an ideal model for these 
studies because: (1) NOD mice spontaneously develop IDDM that closely resem­
bles human IDDM (CASTANO and EISENBARTH 1990); (2) NOD mice develop 
lymphocytic infiltrates in several organs including pancreas, lacrimal gland and 
salivary gland, allowing comparison of different adhesion pathways in the same 
animal (ASAMOTO et al. 1984); and (3) monoclonal antibodies (mAbs) are available 
against a wide variety of murine lymphocyte and endothelial AM. Understanding 
the mechanisms that regulate lymphocyte migration to the pancreatic islets has led 
to further understanding of the pathogenesis of IDDM and provides a rational 
basis for the development of AM-based therapies for IDDM. In this chapter, we 
summarize the recent advances regarding the functions of leukocyte 1X4-integrins, 
their endothelial ligands, and other AM in the development of IDDM in the NOD 
mouse. These results are compared to the functions of lymphocyte and endothelial 
AM in the development of experimental allergic encephalomyelitis (EAE), an 
autoimmune disease that results in inflammation of the brain and spinal cord. 

2 Leukocyte IX4-Integrins and Their Endothelial Ligands 

1X4-Integrins are expressed by most lymphocytes, NK cells, monocytes, eosinophils 
and basophils: The 1X4 chain can pair with either of two ~ chains to form 1X4~1 or 
1X4~7 integrin (reviewed in HYNES 1992). Both integrins can exhibit a variety of 
activation states, based in part upon external stimuli and the cell's differentiation 
(HYNES 1992). Lymphocyte 1X4~1 integrin (VLA-4, CD49d/CD29) has at least two 
major ligands: endothelial vascular cell AM-l (VCAM-l; CD106) and the extra­
cellular matrix protein fibronectin (W A YNER et al. 1989; EUCES et al. 1990; CHAN 
et al. 1992). VCAM-l, a member of the immunoglobulin (Ig) superfamily, is con­
stitutively expressed at low levels by some endothelial cells in a variety of tissues 
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including exocrine pancreas, brain, aorta, lung and kidney (RICE et al. 1991; FRIES 
et al. 1993; HANNINEN et al. 1993; F AVEEUW et al. 1994; STEFFEN et al. 1994). It is 
expressed at higher levels by endothelium lining the bone marrow sinusoids 
(JACOBSEN et aI. 1996). VCAM-I is also found on non endothelial celIs such as bone 
marrow stromal celIs, dendritic celIs in lymphoid tissues, and some macrophages 
(MIYAKE et aI. 1991; RICE et al. 1991). 

Like 1X4PI, 1X4P7 binds to VCAM-I and fibronectin (RUEGG et aI. 1992). 
However, in vitro studies suggest 1X4PI predominates over 1X4P7 in leukocyte ad­
hesion to VCAM-I or fibronectin (CHAN et al. 1992). In contrast, endothelial 
MAdCAM-I is a ligand for 1X4P7 but not <x4pl (BERLIN et aI. 1993). MAdCAM-I, a 
glycoprotein with several Ig-like domains and a single mucin domain, is constitu­
tively expressed by vessels in PP, mesenteric LN (MLN), intestinal lamina propria, 
lactating mammary gland, and exocrine pancreas (STREETER et aI. 1988b; BRISKIN 
et aI. 1993; BRISKIN et aI., submitted; HANNINEN et aI. 1993; FAVEEUW et al. 1994). 
1X4P7 and MAdCAM-I play key roles in lymphocyte migration to mucosal tissues 
such as PP and MLN but not to PLN (STREETER et aI. 1988b; HOLZMANN et al. 
1989; HAMANN et al. 1994; BARGATZE et al. 1995). Thus 1X4P7 and MAdCAM-I are 
key components of the mucosal lymphocyte/endothelial adhesion system. MAd­
CAM-I is also expressed on marginal zone sinus-lining celIs in spleen and follicular 
dendritic celIs in LN and PP (KRAAL et al. 1995; SZABO et aI., 1997). Thus MAd­
CAM-I may be involved in immune system interactions other than lymphocyte 
adherence to vascular endothelium. 

3 Leukocyte et4-Integrins in Inflammation 

A variety of in vitro data initialIy suggested that leukocyte 1X4-integrins and en­
dothelial VCAM-I and MAdCAM-I are involved in leukocyte migration to sites of 
inflammation. Several inflammatory mediators, including lipopolysaccharide 
(LPS), tumor necrosis factor-<x (TNF-IX), interleukin (lL)-I, and IL-4, up-regulate 
VCAM-I expression on cultured endothelial celIs (reviewed in CARLOS and HAR­
LAN 1994). This up-regulation results in increased binding of mononuclear celIs to 
the endothelium. Expression of endothelial MAdCAM-I can be induced by in­
flammatory mediators (SIKORSKI et al. 1993). In addition, activation of leukocytes 
by a varie!y of stimuli can enhance the affinity of 1X4-integrins for their ligands 
(HYNES 1992). 

Immunohistochemical staining of tissues from rodents and nonhuman and 
human primates shows VCAM-I up-regulation on vessels in many different in­
flamed tissues including skin, lung, synovium, brain, pancreas, gastrointestinal 
tract, salivary gland, lacrimal gland and kidney (KOCH et aI. 1991; RICE et aI. 1991; 
FRIES et al. 1993; BARON et aI. 1994; STEFFEN et aI. 1994; YANG et al. 1994a; 
TSUKAMOTO et al. 1995; HUNGER et al. 1996). In contrast, strong expression of 
endothelial MAdCAM-l in inflamed tissues from immunocompetent animals has 
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only been reported in the gastrointestinal tract, pancreas and thymus (HANNINEN 
et al. 1993; FAVEEUW et al. 1994; MICHIE et al. 1995; BRISKIN et aI., submitted). This 
suggests that MAdCAM-I could be a ligand for lymphocyte migration to a select 
group of inflamed tissues. 

Several rodent and a few nonhuman primate models have been used to ex­
amine the roles of 1X4-integrins and their ligands in leukocyte migration into ex­
tranodal inflammatory sites. These models include allograft rejection, graft vs host 
disease, contact hypersensitivity, pulmonary allergic reactions, arthritis, colitis and 
thymic hyperplasia. Most of these studies have used mAbs against the 1X4 chain or 
VCAM-I to demonstrate that these AM play important roles in lymphocyte mi­
gration in vivo. Several excellent reviews are available that give more detailed 
information about these studies (CARLOS and HARLAN 1994; POSTIGO et al. 1993; 
LOBB and HEMLER 1994). In addition, the few in vivo studies examining the 
functions of ~7 or MAdCAM-I in chronic inflammation support roles for these 
AM in lymphocyte migration to sites of inflammation (MICHIE et al. 1995; HES­
TERBERG et al. 1996; PICARELLA et al. 1997; YANG et aI., in press). 

4 cx4-Integrins in Insulin-Dependent Diabetes Mellitus: 
In Vitro Studies from the NOD Mouse 

Immunohistochemical studies have been used to define endothelial AM expression 
in NOD pancreas. MAdCAM-I is found on many vessels in exocrine pancreas of 
NOD mice from birth through old age (HANNINEN et al. 1993; FA VEEUW et al. 
1994). Mononuclear inflammatory cells are first detected next to islets at about 
3 weeks of age. Concurrently, vessels with the morphology of high endothelial 
venules (HEV), which are the vessels involved in most lymphocyte migration from 
blood into LN and PP, develop next to the islets (MICHIE, unpublished data). From 
3 weeks of age, increasing numbers of mononuclear cells including T and B lym­
phocytes accumulate around the islets (peri-insulitis) and gradually invade into the 
islets (insulitis). MAdCAM-I seems to be the predominant addressin expressed on 
endothelium next to the islets during the initial stages of insulitis (3-6 weeks) 
(Table I) (HANNINEN et al. 1993; FAVEEUW et al. 1994). In contrast, very little 
PNAd expression (see Sect. 6. I) is seen until there is significant insulitis (approxi­
mately 8 weeks of age). As insulitis progresses, there is an increase in the number of 
vessels expressing MAdCAM-I and PNAd (YANG et al. 1994a) (Table I). Both of 
these addressins are expressed mainly by peri-islet HEY. 

VCAM-I is expressed by vessels in exocrine and endocrine pancreas of NOD 
mice (HANNINEN et al. 1993; Lo et al. 1993; FAVEEUW et al. 1994; BARON et a!. 1994; 
YANG et al. 1994a; TSUKAMOTO et al. 1995). In very young mice without insulitis, a 
few VCAM-1 expressing vessels are found next to the islets whereas many are 
found in the exocrine pancreas (HANNINEN et al. 1993; FAVEEUW et al. 1994). In 
older mice with insulitis, VCAM-l expression is up-regulated on vessels in the areas 
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Table 1. AM expression on lymphocytes and vascular endothelium in islets of NOD mice" 

Age (weeks) Lymphocyte AMb Endothelial AM" 

a4~7 L-selectin MAdCAM-1 VCAM-l PNAd 

3 +++ + ± ± 0 
4 +++ + ± ± ± 
5 +++ + + ± ± 
6 +++ + + ± ± 
8 +++ ++ ++ ± + 

12 +++ ++ +++ + ++ 
14-17 +++ ++ +++ + ++ 
18-30 +++ ++ +++ ++ ++ 

"AM expression was evaluated on immunoperoxidase-stained sections of inflamed pancreata from female 
NOD mice (HANNINEN et al. 1993; YANG et al. 1994a; MICHIE, unpublished data). 
"Expression of a4~7 (mAb DATK-32, RI-2 and Fib504) and L-selectin (mAb MEL-14): +, ::;33%; + +, 
34%-66%, + + +, :;" 67% of infiltrating cells in areas of insulitis express the AM. 
cExpression of MAdCAM-1 (mAb MECA-367), VCAM-I (mAb MjK-2.7) and PNAd (mAb MECA-79): 
0,0%; ±, 1 %-5%; +,6%-15%; + +,16%-60%; + + +, :;,,61 % of islets show endothelial expression 
of the AM. 

of inflammation (Table 1) (YANG et al. 1994a; TSUKAMOTO et al. 1995). VCAM-I is 
also expressed on some dendritic cells in inflamed islets. 

The vessels in exocrine pancreas of nondiabetes prone mice such as BALB/c 
and SJL express MAdCAM-I and VCAM-l in a pattern similar to that seen in 
exocrine pancreas of NOD mice (HANNINEN et al. 1993; WOGENSEN et al. 1993; LEE 
and SARVETNICK 1994; FA VEEUW et al. 1994). Specifically, both AM are seen in 
exocrine pancreas on a small number of vessels with flat endothelium. The non­
diabetes prone mice do not develop pancreatic inflammation, peri-islet HEV, or 
peri-islet vascular addressin expression. 

Immunohistochemical stains of inflamed pancreata from our NOD colony 
show that most lymphocytes in islets express ex4 (mAb RI-2), p7 (mAb Fib504), and 
ex4P7 (mAb DATK-32, which reacts specifically with the ex4P7 heterodimer) 
(Table 1) (HANNINEN et al. 1993; YANG et al. 1994a). Thc expression of ex4P7 by 
lymphocytes in islets correlates with high expression of MAdCAM-I byendothe­
lium. Moreover, we have used in vitro assays of lymphocyte/endothelial binding to 
show that the MAdCAM-I expressing peri-islet HEV avidly bind lymphocytes by 
ex4P7- and MAdCAM-I-mediated mechanisms (STAMPER and WOODRUFF 1976; 
HANNINEN et al. 1993; YANG et al. 1993). These data suggest a prominent role for 
the mucosal lymphocyte/endothelial adhesion pathway in the development of 
insulitis. 

Two groups have used flow cytometry to examine ex4P7 expression on islet­
infiltrating lymphocytes (FAVEEUW et al. 1994; HANNINEN et al. 1996). Besides 
pairing with ex4, the P7 chain can pair with exE to form the exEP7 integrin. exEP7 is 
found on most gut intraepitheliallymphocytes but on fewer than 5% of NOD islet­
infiltrating lymphocytes (KILSHAW and M URANT 1991; HANNINEN et al. 1996; YANG 
et aI., in press). Thus, although neither group used a mAb that reacts specifically 
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with the a4~7 heterodimer, their anti-~7 staining should give an accurate picture of 
a4~7 expression in inflamed islets. HANNINEN and colleagues (1996) demonstrate 
that most islet infiltrating lymphocytes in 8-12 week old NOD mice are ~7hi while 
such cells from diabetic mice are ~7I1eg/lo (mAbs Fib504, Fib21 and Fib30). In 
contrast, FA VEEUW found that most inflammatory cells in NOD islets are ~7neg/lo 
(mAb M301) (FAVEEUW et al. 1994). This discordance in results may be due to 
differences in technical procedures such as isolation methods or staining techniques, 
differences in AM expression between colonies, or differences in ages of the mice 
examined. 

Most islet infiltrating T cells express low levels of L-selectin and high levels of 
LFA-I and CD44, a phenotype for activated/memory T cells (HANNINEN et al. 
1993, 1996; FAVEEUW et al. 1994; GOLDRATH et al. 1995). ~I expression by these 
cells has not been examined. 

5 et4-Integrins in Insulin-Dependent Diabetes Mellitus: 
In Vivo Studies from the NOD Mouse 

5.1 Direct Inhibition of Lymphocyte Migration Into Islets 

In vivo studies using mAbs that recognize lymphocyte a4 or its endothelial ligands 
have been used to determine which adhesion pathway(s) has a prominent role 
during the diabetogenic process (Table 2). Only one study has directly examined 
the ability of anti-AM mAbs to inhibit the migration of lymphocytes from blood 
into islets of unirradiated prediabetic NOD mice. FAVEEUW and colleagues (1995) 

Table 2. Anti-()(4 integrin, VCAM-I and MAdCAM-I based immunotherapy of diabetes in NOD mice 

Target Inhibition of diabetes Reference 

Spontaneous Adoptive transfer 

()(4-integrin (mAb R 1-2) +++ + + to + + + YANG ct a!. 1993; BARON et a!. 1994; 
BURKLY et a!. 1994; YANG et a!. 1994a; 
FABIEN et a!. 1996 

()(4-integrin (mAb P/S2) +++ + + to + + + BURKLY et al. 1994; TSUKAMOTO et al. 
1995; MICHIE, unpublished data 

()(4[17-integrin ++ ND MICHIE, unpublished data 
~7-integrin +++ ND YANG et a!., in press 
p I-integrin ND ND None 
MAdCAM-I +++ ND YANG et aI., in press 
VCAM-I +/- + /- to + + BARON et a!. 1994; TSUKAMOTO et al. 

1995; MICHIE, unpublished data 
Activated ()(4-integrin ND +/- JAKUBOWSKI et a!. 1995 

ND, not done; -, no effect; + /-, I %-50% inhibition; +,51 %-60% inhibition of diabetes incidence; 
+ +,61%-80% inhibition; + + +, 280% inhibition. 
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demonstrated that mAbs against 0:4 (PS/2) and, to a lesser extent against L-selectin 
(MEL-14), blocked the migration of adoptively transferred splenic lymphocytes 
from diabetic NOD donors into islets of unmanipulated 13 week old prediabetic 
NOD mice. In addition, PS/2 blocked migration of splenic T cells from diabetic 
donors into islets of irradiated NOD mice, while MEL-14 produced only early, 
transient blocking. 

5.2 Prevention of Insulitis and Diabetes 

When 0:4-integrin is blocked by RI-2 or PS/2 mAb, NOD mice are significantly 
protected from spontaneous diabetes and adoptive transfer disease (Table 2) 
(YANG et a!. 1993, 1994a; BARON et a!. 1994; BURKLY et a1. 1994; TSUKAMOTO et a1. 
1995; FABIEN et al. 1996). This treatment also markedly decreases the development 
of insulitis, suggesting that the protection from IDDM may result from direct 
inhibition of lymphocyte migration into the islets. Moreover, our group has shown 
that treatment of NOD mice with antibody against ~7 integrin (mAb Fib504), 0:4~7 
integrin (mAb DATK-32) or MAdCAM-l (mAb MECA-367) inhibits spontaneous 
development of diabetes and decreases the severity of insulitis (Table 2) (YANG 
et a!., in press; MICHIE, unpublished data). 

Blockade of 0:4, ~7 or MAdCAM-l appears to affect neither autoimmune 
responses to ~-cells nor immune responses to foreign antigens (YANG et a1. 1993, 
1994a; YANG et aI., in press; BARON et al. 1994). This suggests that the IDDM­
protective effect induced by blocking these AMs is not a result of immune sup­
pression. Interestingly, we have shown that the inhibition is tissue-selective in that 
these treatments did not prevent salivary gland inflammation (YANG et al. 1994a; 
YANG et aI., in press). 

Two groups have examined the ability of anti-VCAM-I antibody M/K-2.7 to 
inhibit the adoptive transfer of diabetes (Table 2). Baron and colleagues showed 
that a single dose of M/K-2.7 given at the time of cell transfer slightly decreased 
the degree of insulitis and marginally delayed but failed to prevent diabetes 
(BARON et al. 1994). In contrast, Tsukamoto et al. (1995) found that long-term 
treatment of host mice with M/K-2.7 reduced diabetes incidence by approximately 
80%. 

There are no published reports about the ability of anti-V CAM-l treatment to 
prevent spontaneous diabetes. Although Tsukamoto et al. (\ 995) demonstrated 
that treatment of NOD mice with a cocktail of M/K-2.7 and anti-0:4 mAb PS/2 
prevented spontaneous diabetes, they did not publish data showing the effect. of 
M/K-2.7 alone. In preliminary experiments, we have not been able to prevent the 
spontaneous development of diabetes by treating newborn or 8 week old NOD 
mice with mAbs against VCAM-l, despite achieving blocking concentrations of 
mAbs in the serum (Table 2) (MICHIE, unpublished data). 

Jakubowski and colleagues have developed a chimeric molecule consisting of 
the two NHrterminal domains of human VCAM-I fused to human IgGl 
constant region. This chimera binds to 0:4 on Mn2+ activated murine Iympho-
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cytes but fails to bind to resting lymphocytes. In contrast, mAbs R 1-2 and PS/2 
bind to 0:4 on both resting and activated lymphocytes. Treatment of NOD mice 
with the chimera delays but does not prevent the adoptive transfer of diabetes, 
supporting a role for activated 0:4 in this model (Table 2) (JAKUBOWSKI et al. 
1995). 

6 Other Lymphocyte/Endothelial Adhesion Systems 
in NOD Diabetes 

6.1 The Peripheral Node Adhesion System 

L-selectin (CD62L) plays a major role in lymphocyte migration to PLN, and a 
lesser role in lymphocyte migration to PP (GALLATIN et al. 1983; HAMANN et al. 
1994). It may also be involved in lymphocyte migration to some extranodal in­
flammatory sites including thymus and skin (MICHIE and ROUSE 1991; DAWSON 
et al. 1992; MICHIE et al. 1995). L-selcctin's lectin domain binds to carbohydrate 
determinants on several endothelial glycoproteins; many of these glycoproteins 
react with mAb MECA-79 and are collectively known as PNAd (STREETER et al. 
1988a; BAUMHUETER et al. 1992; LASKY et al. 1992). PNAd is highly expressed by 
endothelial cells in PLN but not PP. 

In vitro and in vivo studies indicate the peripheral node adhesion system may 
playa minor role in the pathogenesis of NOD diabetes. PNAd is expressed by some 
peri-islet HEV in NOD pancreas (HANNINEN et al. 1993; F AVEEUW et al. 1994; 
BAUMHUETER et al. 1994). In contrast to MAdCAM-I, which is expressed early in 
inflammation, very little PNAd is seen until there is significant insulitis (approxi­
mately 8 weeks of age) (Table I). L-selectin is expressed by some lymphocytes in 
inflamed islets of NOD mice (HANNINEN et al. 1993, 1996; FAVEEUW et al. 1994; 
GOLDRATH et al. 1995). The percentage of cells expressing L-selectin is low in the 
initial stages of insulitis but increases with age (Table 1). 

Treatment of NOD mice with mAb Mel-14 (anti-L-selectin) leads to efficient 
protection against the spontaneous occurrence of IDDM if the mAb is given early 
during the disease process (e.g., from birth to 4 weeks of age) (YANG et al. 1994a). 
However, Mel-14 is unable to inhibit an ongoing diabetogenic process if admin­
istered after the onset of insulitis (YANG et al. 1994a; LEPAULT et al. 1995). This 
may simply be because most T cells in young animals have a naive phenotype 
(L-selectin +) 'whereas more T cells with an activated/memory phenotype (L-selec­
tinnegilo) are found in older mice. Alternatively, the antigen-specific and effector 
lymphocytes that are critical to development of insulitis and diabetes in older NOD 
mice might be found in the L-selectinneg population. This alternative is supported 
by the finding that diabetic NOD mouse spleen cells that transfer diabetes are 
L-selectinneg (LEPAULT et al. 1995). 

There is conflicting data about the role of L-sclcctin in adoptive transfer of 
diabetes. LEPAULT and colleagues (1995) showed that pretreatment of diabetic 
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donors with MEL-14 significantly decreased the incidence of diabetes and insulitis 
in the recipients. However, treatment of their host mice with MEL-14 did not block 
the transfer of diabetes by untreated cells. In contrast, two other groups were able 
to delay or prevent adoptive transfer by treating host mice with MEL-14 (YANG 
et a1. 1993; FABIEN et a1. 1996). 

6.2 LFA-l and ICAM-l 

Several studies show that LFA-l (aLp2; CDlla/CDI8) is involved in lymphocyte 
migration to LN, PP and numerous sites of inflammation (HAMANN et al. 1988; 
BARGATZE et a1. 1995). Although it is unclear as to which ligands LFA-l uses for 
binding to endothelium in vivo, LF A-I ligands in vitro include Ig superfamily 
members TCAM-l (CD 54) and ICAM-2 (CDlO2) (reviewed in CARLOS and HAR­
LAN 1994). 

Several groups have shown that LFA-l and ICAM-l are expressed by almost 
all islet-infiltrating lymphocytes in NOD pancreas. ICAM-l is also expressed by the 
endothelium of most islet vessels in normal and inflamed islets (HANNINEN et a1. 
1993; FAVEEUW et a1. 1994; HASEGAWA et al. 1994; YAGI et al. 1995). In the NOO 
mouse, mAbs against LFA-l (COlla) and ICAM-l, given at a variety of ages, can 
prevent spontaneous diabetes. In addition, when treatment starts before 6 weeks of 
age, development of insulitis is also significantly inhibited (HASEGAWA et a1. 1994; 
Y AGI et al. 1995; MORIYAMA et al. 1996). 

Treatment with anti-CDlla mAb combined with anti-ICAM-I mAb is very 
efficient at decreasing the incidence of diabetes and insulitis in adoptive transfer 
models (HASEGAWA et al. 1994; Y AGI et al. 1995; MORIYAMA et al. 1996). Treatment 
with anti-COlla alone is less effective, while treatment with anti-ICAM-l provides 
little or no protection against adoptive transfer of diabetes (BARON et al. 1994; 
Y AGI et al. 1995; FABIEN et al. 1996). 

7 The Roles of Cytokines in Pancreatic Endothelial Adhesion 
Molecule Expression and Inflammation 

A detailed discussion of the multiple roles of cytokines in the pathogenesis of 
100M is beyond the scope of this review. However, several lines of evidence 
indicate cytokines may up-regulate or activate endothelial and lymphocyte AM 
in pancreas, facilitating the development of insulitis and subsequent destruction 
of beta cells. These data include: (1) inflammatory cytokines can up-regulate 
endothelial AM expression and lymphocyte binding in vitro; (2) cytokine acti­
vation of lymphocytes can increase the avidity of integrin AM; and (3) there are 
several transgenic mouse models in which expression of cytokines in islets leads 
to pancreatic inflammation. The inflammatory foci contain vessels that express 
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high levels of AM including VCAM-I (TNF-a and Iymphotoxin transgenics) 
and MAdCAM-I (IL-IO, interferon-y, and Iymphotoxin transgenics) (PICARELLA 
et al. 1993; WOGENSEN et al. 1993; LEE and SARVETNICK 1994; KRATZ et al. 
1996). These AM are also expressed in noninflamed pancreata of Iymphocyte­
deficient Iymphotoxin or interferon (IFN)-y transgenics, indicating that the 
transgene products are responsible - either directly or indirectly - for the AM 
expression. 

VCAM-I, MAdCAM-I and ICAM-I are constitutivcly expressed in normal 
pancreas and are up-regulated in NOD pancreas (Sect. 4). These molecules are 
known to be involved in normal migration of leukocytes from blood into tis­
sues. Together these data suggest the following scenario of insulitis development 
in NOD mice: Lymphocytes use VCAM-I, MAdCAM-I and/or ICAM-I to 
migrate through pancreas during normal immunosurveillance. Autoreactive 
lymphocytes encounter their specific antigen in the islets, become activated, and 
release a variety of inflammatory mediators including cytokines and chem­
okines. These inflammatory mediators stimulate up-regulation of VCAM-I, 
MAdCAM-I and other AM on peri-islet endothelia, thereby increasing lym­
phocyte recruitment. These mediators also activate leukocyte integrins, including 
a4~1 and a4~7, leading to strong adhesion to the endothelium and further 
increasing recruitment. These leukocytes, most of which have no specificity for 
islet antigens, enter pancreas where they amplify the inflammation and mediate 
~-cell destruction. Among these cytokines, TNF-a, IFN-y, IL-10 and Iympho­
toxin are known to be involved in stimulation of pancreatic AM expression and 
to be involved in the development of insulitis (HIGUCHI et al. 1992; PICARELLA 
et al. 1993; WOGENSEN et al. 1993; LEE and SARVETNICK 1994; YANG et al. 
1994b; KRATZ et al. 1996). Thus, cytokines appear to play major roles in 
regUlating the expression and function of AM that are involved in the de­
velopment of IDDM. 

8 <x4-Integrins and Their Ligands in Human Insulin-Dependent 
Diabetes Mellitus 

Leukocyte and endothelial AM expression has been studied in pancreata from 
humans with IDDM. However, such studies are hampered by the limited avail­
ability of human pancreatic tissues particularly from prediabetic or newly diag­
nosed diabetic individuals. In one girl with recent onset IDDM, VCAM-I 
expression was found on some dendritic cells scattered throughout the pancreas 
but not on vascular endothelium (HANNINEN et al. 1992). Another report de­
scribes VCAM-I expression in pancreata from two people with IDDM as being 
identical to that seen in histologically normal pancreata (SOMOZA et al. 1994). 
There are no reports detailing the expression of a4~1, a4~7 or MAdCAM-l in 
human pancreas. 
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9 1X4-Integrins in NOD Inflamed Salivary Gland 
and Lacrimal Gland: Comparison 
to NOD Inflamed Pancreas 

Besides inflammation of the pancreatic islets, NOD mice develop lymphocytic in­
filtration of other organs such as submandibular salivary gland and lacrimal gland 
(ASAMOTO et a!. 1984). This makes NOD mice a valuable model to study the 
mechanisms involved in tissue-selective lymphocyte migration to sites of chronic 
inflammation. Although insulitis develops in the first few weeks of life, lymphocytic 
infiltration of lacrimal gland and salivary gland (sialadenitis) is not seen in our 
female NOD mice before 12-14 weeks of age (Michie, unpublished data). Inflamed 
lacrimal and salivary glands show prominent vascular expression of PNAd and 
VCAM-l but no detectable expression of MAdCAM-I (Y;\NG et a1. 1994a; FA­
VEEUW et a1. 1994; HUNGER et a1. 1996; Michie, unpublished data). The lympho­
cytes infiltrating the lacrimal and salivary glands are a mixed population of Band T 
cells that show AM expression similar to that of LN lymphocytes: LFA-l +, 

CD44 +, most C(4 +, many ~7 + and many L-selectin + (F;\ VEEUW et a1. 1994; 
MICHIE, unpublished data). ~1 expression by these cells has not been examined. 

These findings suggest that C(4-integrin/VCAM-l and L-selectin/PNAd inter­
actions may primarily mediate lymphocyte migration into lacrimal and salivary 
glands. In contrast, interaction of lymphocyte C(4~7 with MAdCAM-l, and C(4-
integrins with VCAM-1, are major adhesion pathways responsible for lymphocyte 
migration to the islets. More importantly, tissue-selective homing to sites of chronic 
inflammation appears to be determined by the selective expression of vascular AM. 

to 1X4-Integrins in Experimental Allergic Encephalomyelitis: 
Comparison to NOD Diabetes 

Many investigators have studied the roles of lymphocyte and endothelial AM in the 
pathogenesis of NOD diabetes and rodent EAE. Thus these models can be used to 
compare the roles of C(4-integrins in two autoimmune diseases. EAE is a T cell­
mediated autoimmune disease that serves as a model for human multiple sclerosis. 
EAE can be induced in animals from susceptible strains by immunization with 
central nervous system (CNS) components, by transfer of lymphocytes from an 
immunized animal or by transfer of specific T cell lines or clones. 

ENGELHARDT provides an excellent review of C(4 and VCAM-l expression in 
the CNS of rodents with EAE (ENGELHARDT, this volume). Briefly, VCAM-l is 
seen on a few CNS vessels in normal animals and many vessels in inflamed CNS of 
EAE animals (Dopp et a1. 1994; STEFFEN et a1. 1994; BARTEN and RUDDLE 1994; 
WELLER et a1. 1996). One group has reported expression of MAdCAM-1 by a few 
vessels in spinal cords of mice with chronic relapsing EAE (O'NEILL et a1. 1991). 
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However, vascular MAdCAM-l expression has not been described in acute or 
transfer EAE (STEFFEN et aI. 1994). The cells infiltrating the CNS during acute EAE 
are mainly CD4 + T lymphocytes that are Cl4 +, ~I +, ~7neg/lo, and L-selectin­
(STEFFEN et aI. 1994; WELLER et aI. 1996; ENGELHARDT et aI., manuscript sub­
mitted). 

Functional studies in EAE indicate that Cl4~I/VCAM-I interactions playa 
major role in migration of lymphocytes into the inflamed brain. The results are 
discussed in detail by ENGELHARDT (this volume) and include: (I) In vitro assays 
demonstrate that binding of lymphocytes to vessels in inflamed brain can be 
Qlocked by mAb against Cl4 or VCAM-I but not significantly by mAb against Cl4~7 
or ~7 (Y EDNOCK et aI. 1992; STEFFEN et aI. 1994). (2) In vivo studies show that 
anti-Cl4 or anti-VCAM-I mAb can prevent or delay clinical disease and brain 
inflammation in transfer models of EAE (Y EDNOCK et aI. 1992; BARON et aI. 1993). 
(3) Two studies indicate that encephalitogenic T cell clones with low levels of Cl4 
are deficient in the ability to transfer EAE (BARON et aI. 1993; KUCHROO et aI. 
1993). 

Together, these studies indicate a major role for Cl4~1 and VCAM-I in CNS 
inflammation in EAE. Although additional in vivo studies are needed to fully 
evaluate the physiologic roles of Cl4~7 and MAdCAM-I in lymphocyte migration to 
the CNS, the current data suggest that these molecules play little role in the de­
velopment of acute EAE. In contrast, all four AM are involved in the pathogenesis 
of NOD diabetes. A key difference between the two models is the up-regulation of 
endothelial MAdCAM-I expression. MAdCAM-I is strongly expressed in inflamed 
islets during all stages ofinsulitis in the NOD mouse. In contrast, MAdCAM-I has 
only been detected in the CNS in EAE during late stages of the disease. The 
discordance in MAdCAM-l expression between pancreas and CNS may be tissue­
specific, with the CNS microenvironment lacking certain cells or inflammatory 
factors that are involved in MAdCAM-I induction (MEBIUS et aI. 1993). Alter­
natively, the differences in MAdCAM-I expression may be due to strain differences 
in the animals used in the studies, or to the nature of the antigen and the immune 
response and cytokine production profile it provokes. 

11 Caveats 

• Studies in the NOD mouse clearly indicate that Cl4-integrin is involved in the 
pathogenesis of diabetes. However, most of these studies have failed to delineate 
the relative roles of Cl4~1 and Cl4~7, and their ligands VCAM-l and MAdCAM­
I, in diabetogenesis. In part, this is due to lack of specific mAbs that react with 
~l or the Cl4~1 heterodimer. In addition, little is known about roles of different 
Cl4 activation states in the pathogenesis of IDDM. Development of mAbs, in­
hibitory small pep tides, or AM chimeric molecules that react specifically with 
Cl4~1 vs Cl4~7, or with activated vs resting Cl4-integrins, will provide useful re-
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agents for future studies. AM knockout mice on the NOD background might 
also yield useful information about the roles of 0!4-integrins in the development 
of diabetes. 

• In vivo studies using mAbs against lymphocyte or endothelial AM must be 
carefully controlled to yield meaningful results. Sera of experimental animals 
must be tested to assure that adequate blocking levels of the test mAb are 
achieved. MAbs can cause nonspecific effects, such as destruction of lympho­
cytes by Fc-mediated mechanisms or by host immune response to allogeneic Ig. 
Thus, isotype- and species-matched mAb that binds to the same cell population 
as the specific mAb but does not cause changes in cell function should be used 
for in vivo experiments. In addition, use of Fab or F(ab)'2 fragments for in vivo 
studies will avoid the potential problem of Fc-mediated lymphocyte depletion. 
Because of the pitfalls associated with using mAbs in vivo, cells depleted of a 
specific population (i.e., of L-selectin + cells) can be used to examine the role of 
that AM in cell migration in adoptive transfer experiments. 

• Although several studies have shown that mAb against 0!4 or its ligands can 
prevent insulitis and diabetes in NOD mice, the mechanisms of this inhibition 
are not clear. In vitro studies indicate that 0!4-integrins playa role in lymphocyte 
binding to pancreatic vessels, but only one study has directly shown that 0!4 is 
involved in lymphocyte migration from blood into islets (FAvEEuw et al. 1995). 
Although mAbs against 0!4-integrins and their ligands might inhibit diabetes by 
directly blocking lymphocyte migration to islets, other mechanisms may also be 
involved. These include interruption of priming or activation of auto reactive 
T cells, mAb-mediated deletion or activation of lymphocyte subsets, deviation 
of the predominant immune response to islet antigens from Th I to Th2, and 
alteration of cytolytic interactions between effector leukocytes and islet ~-cells. 
These possible mechanisms need to be investigated using in vitro and in vivo 
assays. 

• Migration of lymphocytes from blood to pancreatic islets is almost certainly a 
multistep process involving sequential adhesion and activation events. Thus, 
interruption of any single step in the cascade would be expected to inhibit the 
lymphocyte migration. This has positive implications for the development of 
anti-AM based therapies in humans. However, it makes it difficult to assess the 
roles of various AM in lymphocyte migration to NOD islets. In vivo micros­
copy, in which islet vessels are directly observed for ability of anti-AM mAbs to 
block various steps of the adhesion cascade, might be useful in determining the 
dominant adhesion mechanisms involved in lymphocyte migration to islets 
(BARGATzE et al. 1995). 

• There may be significant differences in immunologic mechanisms, including 
utilization of lymphocyte/endothelial adhesion pathways, in the pathogenesis of 
spontaneous and adoptive transfer diabetes in NOD mice (La et al. 1993). In 
addition, adoptive transfer models may vary significantly from one investigator 
to the next, especially in the age and strain (NOD vs NOD-SCIO) of the host. 

• Although the immunologic mechanisms that cause diabetes in NOD mice are 
thought to be similar to those of human 100M, no inbred animal is a perfect 
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model for human disease. Experimental results indicate et4-integrins are involved 
in diabetogenesis in NOD mice. However, these results must be followcd up by 
in vitro studies using human pancreas and lymphocytes before anti-AM based 
therapies can be tried in humans. 

12 Summary 

Lymphocyte/endothelial adhesion followcd by transendothelial migration is a key 
event in the development of organ-specific autoimmunity. Selective interactions of 
cell surface AM regulate lymphocyte migration under normal as well as pathologic 
inflammatory conditions. NOD mice are an ideal model for investigating the roles 
of AM in regulation of lymphocyte migration to target organs in autoimmune 
diseases such as IDDM. Both in vitro and in vivo studies in NOD mice strongly 
suggest that the mucosal (et4~7/MAdCAM-l) adhesion system and et4-integrin/ 
VCAM-l appear to be prominent pathways for insulitis development. In contrast, 
et4-mediated interactions in NOD inflamed salivary and lacrimal gland and in the 
inflamed CNS of rodents with EAE seem to be dominated by et4-integrins and 
VCAM-1. The fact that blocking et4-integrin pathways in NOD mice leads to 
successful interruption of the diabetogenic process suggests that AM provide a 
potential therapeutic target for human IDDM. Further studies on IDDM patients 
will prove helpful for understanding IDDM pathogenesis and in providing a basis 
for designing AM-based therapeutic approaches. 
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Allograft rejection is the expression of an immune reaction of the recipient against 
foreign antigens of the transplanted tissue and is mostly mediated by T lympho­
cytes. The initial step consists of T lymphocyte adhesion to graft endothelium, a 
process that is mediated by cell adhesion molecules. It has been shown that there 
are several pathways for recognition of alloantigens on the transplanted vascu­
larized organs, and cell adhesion molecules play important roles in these processes. 
Adhesion is necessary for tightening of contact between T cells and antigen-pre­
senting cclls. Two signals are required for optimal clonal expansion of T cells: one 
from the T cell receptor upon binding to the major histocompatibility complex 
(MHC) antigen and the other signal from receptors that are distinctive from T cell 
receptors (M UELLER et al. 1989; SCHWARTZ et al. 1989; SCHWARTZ 1990). SHAW et al. 
found that several adhesion molecules produce such costimulatory signals 
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(CLEVERS et al. 1988; SHIMIZU et al. 1990a; WEAVER and UNAUE 1990). SCHWARTZ 
et al. showed that, in the absence of the costimulatory signal, T cells become 
inactivated against the particular antigen, which leads to clonal anergy of the T 
cells (MUELLER et al. 1989). 

LF A-I, CD28 and VLA-4 are molecules which generate costimulatory signals 
(SPRINGER et al. 1987; FREEMAN et al. 1989; SIMMONS et al. 1989; OSBORN et al. 
1989; VAN SEVENTER et al. 1990, 1991; SHIMIZU et al. 1990b; SPRINGER 1990; DAMLE 
and ARUFFO 1991; JENKINS et al. 1991; KOULOVA et al. 1991; LINSLEY et al. 1991; 
MOiNGEON et al. 1991; KATO et al. 1992; DAMLE et al. 1992; HARDING et al. 1992; 
AZUMA et al. 1993). Numerous experimental and clinical studies have confirmed the 
induction of adhesion molecules on endothelial cells in rejecting organs (ALLEN 
et al. 1992; STEINHOFF et al. 1993) and have demonstrated reduced severity of 
allograft rejection when the expression of adhesion molecules is effectively blocked 
(COBBOLD et al. 1989; QIN et al. 1989; IsoBE et al. 1992b; LENSCHOW et al. 1992; 
CHAVIN et al. 1993; NAKAKURA et al. 1993; NICOLLS et al. 1993; WOOD et al. 1993; 
IsoBE et al. 1994; LARSEN et al. 1996), We reported that simultaneous adminis­
tration of monoclonal antibodies (mAbs) to ICAM-l and LFA-l results in an 
indefinite acceptance of cardiac (lSOBE and IHARA 1993; IsoBE et al. 1992b) and 
primary skin allografts (lSOBE et al. 1996). Cardiac allografts acceptance is always 
accompanied by specific acceptance of secondary skin allografts, indicating that 
tolerance is induced, 

The roles of VCAM-l/VLA-4 adhesion in the immune reaction have been 
well characterized. However, how adhesion between these molecules contributes 
to allograft rejection remains poorly understood. Therefore, we investigated the 
roles of these molecules in allograft rejection of heart (ISOBE et al. 1994), and 
cornea (HORI et al. 1996) and the immune response to soluble antigens (Iso BE et al. 
1994). 

2 Induction of VCAM-l on Rejecting Cardiac Myocytes 

Expression of VCAM-l and ICAM-l in normal cardiac tissue is very limited in 
vascular endothelium. However, immunohistochemical studies on transplanted 
allografts revealed that these molecules are greatly induced on the vascular endo­
thelium and on cardiac myocytes from the early stage of graft rejection in human 
transplants or animal models of transplantation (COSIMI et al. 1990; TAYLOR et al. 
1992; OROSZ et al. 1993; PELLETIER et al. 1993; TANIO et al. 1994). Therefore, it 
appears that VCAM-l/VLA-4 or ICAM-l/LFA-l interaction participates in the 
pathophysiology of allograft rejection. 

In our experiment we transplanted BALB/c mouse heart into C3H/He recip­
ients. As shown in Fig. 1, expression ofVCAM-l was greatly enhanced not only on 
the endothelial cells but also on the cardiac myocytes of untreated rejccting allo­
grafts. This enhancement is followed by development of myocyte necrosis. 
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Fig. IA-C. Immunohistopathology of cardiac allografts stained with anti-VCAM-l mAb. A Normal 
heart; vascular endothelial cells are faintly stained. B An allograft without treatment sacrificed at 5 days 
and C 8 days after transplantation. Marked induction of VCAM-l on cardiac myocytes as well as the 
vascular wall is noted. x 200 

VCAM-I expression on certain antigen-presenting cells (APCs) may play an 
important role in activation of CD4 + T cells by mediating the binding to, and 
costimulating proliferation of, antigen-specific VLA-4 + T cells (DAMLE and AR­
UFFO 1991; VAN SEVENTER et al. 1991). It is likely that the up-regulation ofVCAM-
1 is crucial in eliciting rejection by recruiting T cells and macrophages into the 
inflamed tissues. These observation regarding the role of VLA-4 and VCAM-l 
interaction prompted us to test whether blockade of VLA-4/VCAM-l adhesion 
may allow induction of specific immunosuppression similar to that observed with 
mAbs to ICAM-l/LFA-l. 

3 Effects of Antibodies to VLA-4 and VCAM-l 
to Cardiac Allografts 

An outline of the experiment is shown in Fig. 2. Donor hearts were heterotopically 
transplanted into recipients using a microsurgical technique (ONO and LINDSEY 
1969; ISOBE ef al. 1991, 1992a, b). C3H/He hearts were transplanted into same 
strain recipients as isograft controls. BALB/c hearts were transplanted into C3H/ 
He recipients as allografts. Recipients received 100 Jlg daily of anti-VCAM-I or 
anti-VLA-I mAbs, or both for 5 consecutive days starting immediately after 
transplantation. The graft beat was checked daily by palpation. The complete 
cessation of graft beat was interpreted as rejection. 

Approximately I cm2 of mouse back skin was transplanted onto the recipient's 
back as shown previously (lSOBE et al. 1994). Observation was made by two in-
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Fig. 2. Outline of the animal experiment 
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dependent examiners, one of them unaware of the treatment. Complete loss of graft 
tissue was interpreted as rejection. 

Hybridomas producing M/K-2 (rat IgGl) (MIYAKE et al. 1991a; HESSION et al. 
1992) and PS/2 (rat IgG2b) (MIYAKE et al. 1991b) mAbs that react with murine 
VCAM-I and VLA-4, respectively, were gift from Professor K. Okumura of Jun­
tendo University. M 18/2 (anti-CD 18, rat IgG2a), also obtained from Prof. Oku­
mura, was used as a control mAb because M 18/2 does not block cell-mediated 
target cell lysis in vitro (SANCHEZ et al. 1983). 

4 Cardiac Allograft Survival and Skin Grafts 

As shown in Fig. 3, graft survival in mice treated with M/K-2 (anti-VCAM-I) 
(median survival 20 days) and those treated with PS/2 (anti-VLA-4) (30 days) was 
greater than in control mice (8 days), in which cardiac allografts were rejected 
within 10 days. Cardiac allografts treated with 100 ~Lg each of anti-VCAM-l and 
anti-VLA-I mAbs kept beating longer than allografts in mice without treatment. 
Eight of f8 mice treated with both M/K-2 and PS/2 accepted the grafts over 
65 days and five of them accepted the grafts over 100 days. 

Mice with long-surviving cardiac grafts were challenged with skin grafts from 
donor (BALB/c) and third-party (C57BL/6) strains. Survival of the donor type skin 
was significantly greater than that of third-party skin (Fig. 4). One mouse accepted 
a skin allograft indefinitely (Fig. 5). These results indicate that in vivo adminis­
tration of anti-VCAM-I and anti-VLA-4 mAbs induces specific immunological 
unresponsiveness to cardiac allografts. 
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Fig. 4. Survival rate of second skin grafts. Survival of second skin grafts from the donor strain was 
significantly longer than that from the third-party strain 

5 Characterization of Immune Suppression 

Indirect immunofluorescent staining was performed using PS/2 as a primary anti­
body. Direct staining was also performed using FITC-conjugated PS/2 mAb. The 
cells were then examined by FACS analysis. Splenocytes from PS/2 treated mice 
showed almost complete blockade of VLA-4 molecules 7 days after mAb treat­
ment. Transplantation of cardiac allograft did not alter the expression of VLA-4 
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Fig. 5. A mouse with a cardiac allograft and 5 day course of monoclonal antibodies to VCAM-I and 
VLA-4, showing acceptance of the second skin graft from the donor strain 

molecule on the splenocytes. VLA-4 molecules on these splenocytes were saturated 
with PS/2 mAb administered in vivo. VLA-4 expression on splenocytes of allo­
grafted mice indicated that the mAb treatment led to significant reduction of VLA-
4-positive cells 7 days after transplantation. VLA-4 expression recovered to the 
normal level at 50 days after mAb treatment. 

It was of interest to know whether immunosuppression by mAbs to T cell 
surface antigen accompanied T cell depletion and changes in T cell subset. A 6 day 
course of anti-VCAM-I /anti-VLA-4 treatment of ungrafted C3H/He mice did not 
reduce the circulating leukocyte count or yield of leukocytes per spleen. The slight 
increase in white blood cell count after mAb treatment, probably due to major 
alterations in lymphocyte traffic and/or distribution, was observed (IssEKuTz 1991). 
At day 7, CD4 + and CDS + subpopulations of splenocytes were not reduced by the 
treatment (Fig. 6). 

6 Effects of Anti-VLA-4 Monoclonal Antibodies 
on Cor~ea and Skin Allograft . 

Effects of mAbs on VLA-4 and LF A-I were evaluated in our experimental model of 
corneal (HORI et al. 1996) and skin (unpublished data) transplantation. C3H/He 
donor corneas were transplanted into BALB/c corneal beds. Fourteen of 16 allo­
grafts in non treated mice and control mAb-treated mice became opaque by 2 weeks 
after transplantation. The allografts treated with anti-VLA-4 or anti-LFA-I mAb 
alone, or with both mAbs, remained transparent for more than 2 weeks. Although 
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Fig. 6. CD4 and CD8 expression on splenocytes from recipient mice treated with anti-VLA-4 and anti-
VCAM-l monoclonal antibodies 8 days after transplantation were analyzed by flow cytometry. No 
significant changes in CD4/CD8 subset were observed 
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Table l. Survival of corneal allograft after treatment with anti-VLA-4 and anti-LFA-I monoclonal 
antibodies 

Treatment 

None 
Control mAb 
Anti-VLA-4 mAb 
Anti-LFA-I mAb 
Anti-VLA-4 + anti-LFA-I mAbs 

Survival (weeks x n) 

2 x 9, 3 x 2 
2x5 
3 x 3, 4 x 4 
8,9, 10, 12,14, > 15 
9 x 2, II, > 15 x 9* 

Recipient mice were administered 0.5 mg of mAbs on days -2, 0, 1,3,5,7 after surgery; *p < 0.05 vs 
.other groups. 

Table 2. Survival of primary skin allograft after treatment with anti-VCAM-I and anti-VLA-4 

Treatment 

None 
Control mAb 
Anti-VLA-4 + anti-VCAM-I mAbs 

No significant prolongation of the primary skin graft was observed. 

Survival (days) 

14, 14, 14, 16, 17, 18 
13, 14, 14, 15, 15, 17 
13,13,15, IS, 16, 17 

all allografts treated with anti-VLA-4 alone were rejected within 4 weeks, the 
survival rate treated with the two mAbs at 14 weeks was 75% and was significantly 
greater than that without treatment (Table 1). Cytotoxic responses to donor allo­
antigens were suppressed in mice treated with these two mAbs. Challenge test with 
second skin graft showed specific prolongation of donor strain skin, as compared to 
third-party strain skin, suggesting the specificity of this immunosuppression. This 
experiment also demonstrated the synergism between blockade of VLA-4- and 
LF A-I-dependent adhesion. 

Effects ofmAbs on VLA-4 and VCAM-I were tested in primary skin allograft. 
However, we could not find any immunosuppressive effects, although various du­
rations and doses of mAb treatment were tried (Table 2). 

7 Unresponsiveness to Soluble Antigens 

The same regimen of treatment was capable of inducing hyporesponsiveness to 
soluble antigens (ISOBE et al. 1994). C3H/He mice were immunized with heat­
aggregated human y-globulin (HGG). Mice were injected with either saline, 100 Ilg 
of M18/2, PS/2, or M/K-2 or 50 Ilg each of both PS/2 and M/K-2 at the time of 
immunization. Booster immunization was performed 3 weeks after the initial im­
munization, and mice were bled at 24, 33, and 44 days after immunization. Mice 
injected with saline or control mAb produced antibodies to HGG, whereas anti­
body production was significantly suppressed in mice treated with PS/2 or a 
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combination of both PS/2 and M/K-2. Treatment with M/K-2 alone showed in­
termediate results. Thus, mAbs to VLA-4 and VCAM-1 are capable of inducing 
immunological hypo responsiveness not only to alloantigens but also to soluble 
antigens. The mechanism for this immunosuppression in B cell immunity remains 
to be investigated. 

8 Regulation of Immunosuppression by Cytokines 

The mechanism of the immunosuppression in cardiac allografts remains unclear. 
Since cytokines are a critical factor for immune regulation in transplantation, we 
analyzed cytokine profiles in mice that accepted cardiac allografts after treatment 
with anti-VCAM-1 and anti-VLA-4 mAbs. Expression of cytokine, which is pro­
duced by type 1 or 2 helper T (Th1, Th2) cells, was analyzed using in situ reverse 
transcriptase-polymerase chain reaction (RT-PCR) (Nuovo et al. 1994). Anti­
VCAM-1 and anti-VLA-4 mAbs were administered for the first 5 days. Another 
group was treated with a 3 day course of anti-ICAM-1 plus anti-LFA-1 mAbs. Six 
control mice were treated daily with FK506 (0.1 mg/kg per day) and other mice 
received no treatment. The mRNA levels of Th1 cytokines (IFN-y, IL-2) were 
enhanced in the cardiac allografts and spleens from non treated mice. In the anti­
ICAM-1/LFA-1 mAb treatment group, expression of Th2 (lL-4, IL-lO) cytokines 
was significantly enhanced, resulting in the complete suppression of Th1 cytokine 
expression. In contrast, anti-VCAM-1/VLA-4 mAb treatment did not strongly 
influence the expression of Th2 cytokines (unpublished data). Both Th1 and Th2 
expression were suppressed in grafts and spleens from the FK506-treated group. 

Differential development of immature helper cells (ThO) to mature Th1 or Th2 
cells is an important factor in determining the kinetics of cytokine production and 
immune responses to rejection (CHER and MOSSMAN 1987; FONG and MOSSMAN 
1990). It has been shown that stimulation of ThO cells in the absence of costimu­
lation could anergize Th1 clones, while IL-4 production by Th2 is spared 
(GAJEWSKI et al. 1994). It is possible to assume that through such mechanisms 
antigen-specific Th2 clones are expanded while Th1 clones become inactivated 
(Fig. 7). 

9 Effects on Chronic Rejection of Cardiac Allograft 

Graft arteriopathy limits the long-term survival of allograft recipients (BOTAS et al. 
1995; HOSENPUD et al. 1996). Murine cardiac allografts develop graft coronary 
arteriopathy similar to that observed in clinical chronic rejection. We have reported 
that treatment with short-term anti-ICAM-1 and anti-LFA-1 mAbs administration 
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Fig. 7. Hypothesis on the association between activa tion of Th2 cytokines and tolerance induction 

leads to specific tolerance of cardiac allografts as well as significant suppression of 
graft coronary arteriopathy in mice (SUZUKI et aI., in press). We have observed that, 
in the experimental models, both VCAM-I and ICAM-I expression are enhanced 
in the thickened intima of graft coronary arteries (Fig. 8). We thus investigated the 
effects ofYCAM-l/VLA-4 blockade on graft coronary arteriopathy. 

Cardiac allografts were harvested at day 60 after treatment with anti-VCAM­
I/VLA-4, anti-ICAM-I /LFA-l or FK506: Anti-VCAM-l plus anti-VLA-4 therapy 
resulted in a lower degree of intimal thickening than FK506 treatment with sup-

Fig. 8. Expression of VCAM-I on the thickened intima of the graft coronary artery. The mouse was 
treated with a daily dose of 0.1 mg/kg of tacrolimus (FK506) starting on the day of heart transplantation 
until 30 days after transplantation. Marked thickening of intima and overexpression of VCAM-I are 
noted in the coronary artery 
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pressed expression of ICAM-l, VCAM-l and platelet-derived growth factor 
(PDGF)-B. However, no intimal thickening was observed in the grafts with anti­
ICAM-l plus anti-LFA-l mAb treatment. These results indicate that blocking 
adhesion ofVCAM-l and VLA-4 prevents graft arteriopathy more effectively than 
FK506 treatment. However it does not induce the complete inhibition that anti­
ICAM-l and anti-LFA-l provide. The inability to prevent graft arteriopathy by 
blocking VCAM-I and VLA-4 adhesion may be due to incomplete suppression of 
growth factors and adhesion molecule expression. 

10 Conclusion 

Rejection is a complicated, poorly understood immunological process. The 
pathophysiological roles of VCAM-ljVLA-4 and ICAM-IjLFA-l adhesion in 
acute as well as chronic rejection are still obscure. Although we demonstrated 
immunosuppression by blocking VCAM-ljVLA-4 adhesion, the majority of sec­
ondary skin grafts were rejected. These results indicate that immunological toler­
ance cannot be induced by this regimen, unlike ICAM-ljLFA-l blockade. 
Knowledge of the preferential use of distinct costimulatory pathways in eliciting 
humoral and cellular immune responses to particular antigens may have important 
clinical implications. Our investigations, showing specific acceptance of allograft 
transplantation, have significant clinical implications for organ transplantation in 
the future. 
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Effector T cells constitute a critical component in the immune response to most 
viral infections (DOHERTY et al. 1992). Consequently, understanding the mecha­
nisms regulating the generation and function of effector T cells is central to the 
study of viral pathogenesis. It is characteristic that T cells - as opposed to B cells -
are only able to exert their effector function within a very limited distance. 
Therefore, once effector T cells are generated, they must be able to migrate to 
relevant sites of infection. This requires a set of surface receptors which direct the 
migration of effector cells to infected areas. However, not only must fully differ­
entiated effect~r T cells be able to reach any part of the organism, but, it is also 
nescessary for naive T cells to continually recirculate in order for the immune 
system to optimally utilize the limited number of cells with T cell receptors (TCRs) 
relevant to a given antigen. 
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Of course, the recirculation pattern of naive cells needs to be different from 
that of effector cells since the triggering of the naive T cell is a carefully controlled 
event confined to specialized tissues - the secondary lymphoid organs - containing 
high numbers of antigen-presenting cells (APCs). Indeed, the interaction of naive 
cells with foreign antigen outside of these organs might be dangerous since antigen­
recognition in the absence of a costimulatory signal will lead to anergy or deletion 
(MATZINGER 1994). Thus, the continual passage of naive cells through the lymph 
nodes and spleen serves to allow all relevant T cells to come into contact with a 
foreign antigen under conditions which are optimal for triggering of an effective 
immune response (KONDIG et al. 1995). 

This ongoing surveillance of the draining lymph nodes presupposes the ex­
pression of specialized surface receptors which are superfluous on fully diff­
erentiated effector T cells. Consequently, the phenotypic changes seen in 
association with T cell activation include fundamental changes in the expression of 
adhesion molecules involved in regulating lymphocyte circulation. Thus expression 
of L-selectin, known to be mandatory for homing to the lymph nodes through the 
high endothelial venules (BRADLEY et al. 1994; Xu et al. 1996; ARBONES et al. 1994), 
decreases as a result of T cell activation (1 UNG et al. 1988; MOBLEY and DAILEY 
1992; BRADLEY et al. 1991). At the same time expression of the integrins LFA-l and 
VLA-4 increases (MOBLEY and DAILEY 1992; ISSEKUTZ 1991), consistent with the 
dogma that these molecules are important for extravasation at sites of inflamma­
tion (lSSEKUTZ 1992). However, for specific targeting of effector cells to infected 
areas, local changes in and around the transversing vessels are also required 
(BUTCHER 1991; SPRINGER 1994), such as up-regulation of appropriate ligands on 
the endothelium as well as production of various cytokines (lSSEKUTZ 1990). 

In this review we describe the changes in expression of adhesion molecules that 
are induced in the context of an immune response to a systemic viral infection. 
Further, since a changed expression of adhesion molecules not only signals an 
altered migration pattern, but marks a more general change in the functional status 
of the lymphocyte (MACKAY 1991; BUTCHER and PICKER 1996), we will also take 
the opportunity to describe the profound perturbation of T cell function that is 
often associated with systemic viral infections, with emphasis on the consequences 
for the formation of the inflammatory exudate and T cell effector capacity. 

2 The Experimental Model 

Most of the data on which we base this review have been obtained in mice infected 
with the arenavirus lymphocytic choriomeningitis virus (LCMV) (PFAU and 
THOMSEN 1993). LCMV is a noncytolytic virus that induces little or no inflam­
mation in T cell deficient mice (DOHERTY and ZINKERNAGEL 1974; ALLAN et al. 
1987; MARKER et al. 1995; CAMPBELL et al. 1994). In immunocompetent mice, 
however, an inflammatory reaction is found in infected organs. This reaction is the 
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result of a potent T cell response dominated by the generation of CD8 + effector 
cells (DOHERTY et al. 1990; LEIST et al. 1987). In turn these cells initiate the for­
mation of an inflammatory exudate which in the acute phase consists of mostly 
CD8 + T cells and mononuclear phagocytes (CEREDIG et al. 1987). With time some 
CD4 + T cells and B cells may also be attracted to sites of LCMV infection 
(CHRISTENSEN et al. 1995; MOSKOPHIDIS et al. 1990). Because infection with this 
virus is associated with little nonspecific inflammation, this is an ideal model for 
studying the mechanisms underlying the formation of a virus-induced, T cell de­
pendent inflammatory exudate. Furthermore, since LCMV readily infects the me­
ninges, and in intracerebrally (i.c.) infected mice induces a severe inflammatory 
reaction in the cerebrospinal fluid (CSF) (ALLAN et al. 1987; ANDERSEN et al. 1990) 
that normally contains only very few leukocytes, we have here a perfect site for 
obtaining effector cells recruited to an infected area in the context of an antiviral T 
cell response (CARP et al. 1971; DOHERTY 1973; CEREDIG et al. 1987). Such cells may 
then be further analyzed without introducing artifacts resulting from, e.g., the 
enzymatic disruption of tissue that is necessary when using solid organs. 

3 The Virus-Specific T Cell Response 

When mice are infected systemically with LCMV, substantial clonal expansion of 
virus-specific cytotoxic T lymphocyte precursors (CTLps) takes place. The fre­
quency of these cells reaches a peak around day 8-10 postinfection, at which time 
about 1/30-1/100 spleen cells is an LCMV-specific CTLp (LAU et al. 1994). This 
expansion phase is followed by a decline in precursor frequency to about 1/1000 
spleen cells, and the frequency then remains relatively stable at this level for what is 
probably the rest of life (LAU et al. 1994). In the course of the infection, part of the 
precursor cells undergo differentiation to effector CTLs. This CTL response, which 
can be measured directly ex vivo, also peaks around day 8-10 postinfection 
(MARKER and VOLKERT 1973). Coinciding with the appearance of virus-specific 
CTLs in the lymphoid organs, organ virus titers start to decline and after about 
4 weeks little or no virus can be detected in the animals (MARKER and VOLKERT 
1973; THOMSEN and MARKER 1989). Virus clearance as well as the immunopa­
thology of this infection is temporally associated with the influx of CD8 + CTLs 
into infected organs (e.g., liver or meninges) (McINTYRE and WELSH 1986; AN­
DERSEN et al. 1990; ALLAN et al. 1987; LEIST et al. 1987; MOSKOPHIDIS et al. 1987; 
ZINKERNAGEL and DOHERTY 1973; ZINKERNAGEL et al. 1986; KAGI et al. 1994) and 
in CD8 + T cell deficient miCe neither virus control nor a substantial inflammatory 
response is observed (CHRISTENSEN et al. 1994; DOHERTY et al. 1993; LEHMANN­
GRUBE et al. 1993). Thus the migration of effector T cells from sites of production 
to infected organs is a central event whiCh determines the outcome of this infection. 
For example, it has been demonstrated that splenectomy will delay death in i.c. 
infected mice (DOHERTY and ZINKERNAGEL 1974), whiCh otherwise die as a result of 
the immune attack on infected structures in brain. 
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4 Bystander T Cell Activation 

In addition to the generation of virus-specific effector T cells, LCMV infection is 
associated with marked T cell proliferation leading to the enlargement of lymphoid 
organs and lymphocytosis (Fig. 1). Most of the proliferating cells are CD8 + T cells 
(KASAIAN and BIRON 1989; CHRISTENSEN et al. 1996b), many of which transiently 
express the high affinity form of the interleukin-2 receptor (IL-2R; CD25/CD122) 
and proliferate in response to low doses of IL-2 in vitro (ANDERSSON et al. 1995; 
LYNCH et al. 1989). Since at the peak of the response up to one third of splenic 
CD8 + cells may be found to have entered the S or G2 + M phase (Fig. 2), it is 
evident from comparison with the above CTLp frequencies that the majority of 
these cells are very unlikely to be LCMV -specific T cells, even if one allows a wide 
margin for in vitro seeding efficiency of precursor cells in the acute phase of the 
infection (at this stage many LCMV-specific T cells may be terminally differenti­
ated, and thus unable to undergo further clonal expansion; CEREDIG et al. 1987). As 
fundamentally similar results have been obtained in several mouse strains as well as 
in mice infected with other, very different viruses (Pichinde, vesicular stomatitis 
virus, influenza), indications are that nonspecific (bystander) activation of CD8 + T 
cells is a general phenomenon occurring in the context of most viral infections 
(DOHERTY et al. 1994). 
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Fig. 1. Numbers of splenic CD4 + and CDS + T cells as a function of time after infection with lymphocytic 
choriomeningitis virus (LCMV); for comparison, the time course of splenic virus titers are also presented. 
(From CHRISTENSEN et al. 1996b) 
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Fig. 2. CDS I C(4-intb; T cells contain all cycling T cells in mice acutely infected with lymphocytic chor­
iomeningitis virus- (LCMV). Virtually no increase in frequency of cycling CD4 + T cells are observed in 
(LCMV)-infected mice (modified from CHRISTENSEN et al. 1996b) 

The mechanism underlying this phenomenon of virus-induced bystander T cell 
activation is a much debated subject, pertinent as to how T cell memory is main­
tained (DOHERTY et al. 1994; BEVERLEY 1990; TOUGH et al. 1996; SELIN et al. 1994; 
AHMED and ORA Y 1996). Viral superantigens could be thought to be involved, but 
at least in LCMV-infected mice no Vp preference is observed (ANDERSSON et al. 
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1995; NAHILL and WELSH 1993), rendering this unlikely as a general explanation. 
Alternatively, polyc1onal T cell activation could be the result of cross-reactive, low 
affinity interactions involving the clonotypic TCRs (BEVERLEY 1990). If such low 
affinity interactions were important, one would expect to find that the expression of 
adhesion molecules involved in cell-cell interaction (e.g., LFA-I) was a limiting 
factor, thus favoring the activation of memory T cells which express these mole­
cules at a higher level than do naive cells (SPRINGER 1990). Consistent with this 
prediction, it has been found that memory cells to unrelated viruses may be acti­
vated during an antiviral immune response (YANG et al. 1989; NAHILL and WELSH 
1993; SELIN et al. 1994). However, in studies involving mutant mice with hypo­
morphic expression of CD18 (~2-integrin) as well as ICAM-I deficient mice, we did 
not observe a reduced polyclonal response (CHRISTENSEN et al. 1996a). This finding 
seems to argue against a predominant role of low affinity interactions as well as 
cognate cell-cell interactions mediated through these adhesion molecules (BROD 
et al. 1990; VYTH-DREESE et al. 1993). Nonspecific stimulation resulting from the 
cytokines released in the context of viral infections thus appears to be the preferred 
alternative when trying to explain most of the bystander activation. TOUGH et al. 
(1996) have suggested that virus-induced interferon (lFN)-cz/~ might be critical, 
based on the finding that memory CD8 + T cells start to proliferate in response to 
injection of poly I:C, an artificial homologue of viral RNA and a potent inducer of 
IFN-cz/~. However, in contrast to genuine virus-induced T cell activation, this 
regimen does not induce the expression of CD25 (IL-2R cz-chain) on activated T 
cells, suggesting that IFN-cz/~ constitutes at most one of the signals underlying 
virus-induced polyclonal T cell activation. In contrast, much reduced T cell pro­
liferation is observed in IL-2 deficient mice, indicating a critical role for this cy­
to kine (COUSENS et al. 1995). In this context it is notable that IL-2 in vitro has been 
found to induce T cells to undergo essentially similar phenotypic changes as ob­
served in vivo in virus-infected mice (ROTH 1994; ANDERSSON et al. 1994). The 
source of IL-2 remains obscure; at least CD4 + T cells are not pivotal because 
deficiency of CD4 + cells as seen in antibody-depleted or class II-deficient mice does 
not substantially reduce bystander activation (ANDERSSON et al. 1995; CHRISTENSEN 
et al. 1994; KASAIAN et al. 1991). In contrast to IL-2, IFN-y is not limiting, as IFN­
y deficient mice may respond at least as well as wild-type mice (unpublished data). 

5 Phenotypic Characterization of Virus-Activated T Cells 

The result of the pronounced virus-induced CD8 + T cell expansion is the gener­
ation of a distinct subset of T cells with a phenotypic profile characteristic of 
activated T cells (Fig. 2 and 3). Thus, whereas phenotypically naive (i.e., cz4-intlO 
LF A_l 10Pgp_llOL_selhi ) T cells dominate in young, uninfected mice, 65%-85% of 
the CDS + T cells present in the spleen and lymph nodes of mice infected i.v. with 
LCMV S-lO days earlier are cz4-inthiLFA-1 hiPgp_1 hiL_sello (ANDERSSON et al. 
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1994), and many of these cells transiently express other markers of activation 
besides high affinity IL-2R (CD25/CDI22), reduced levels of CD45RB and in­
creased expression of CD71 and Mac-I, the expression of which seems to be as­
sociated with recent activation (ANDERSSON et al. 1994, 1995; McFARLAND et al. 
1992). In addition, analysis of low-angle and side scatter patterns revealed an 
increase in average cell size and granularity of these cells. 

Following virus control, marked contraction of the CD8 + T cell pool takes 
place, and many of the primed cells undergo apoptosis probably as a result of 
activation-induced cell death (CHRISTENSEN et al. 1996b; RAZVI et al. 1995a). 
However, a significant number of virus-activated cells are found in the spleen and 
blood for several months. At this stage most of the cells have returned to the size of 
small lymphocytes, but are still characterized by a primed phenotype: ()(4-inthiLFA-
1 hiPgp_1 hi (()(4-integrin expression is three to four times lower than on recently 
activated cells, but clearly higher, i.e., three to five times, than on naive cells; 
ANDERSSON et al. 1995). 

The majority of these cells expresses low levels of L-selectin, but we also find a 
small subpopulation of T cells expressing high levels of ()(4-integrin and LFA-l 
together with moderate to high levels of L-selectin (Fig. 3). Based on the recent 
finding that primed T cells may regain L-selectin with time from antigenic stimu­
lation (TRIPP et al. 1995; MOBLEY et al. 1994; R,\ZVI et al. 1995b), we interpret this 
subset to represent cells in this phase. With time all phenotypic evidence of previous 
exposure to viral challenge tends to disappear. The precise kinetics of disappear­
ance depends on the virus infection analyzed. Thus, we have compared the pattern 
found in mice infected with two strains of LCMV, differing in their ability to persist 
at low levels in immunized mice, to mice infected with VSV, which causes an acute 
infection characterized by limited viral replication. This analysis showed that while 
()(4-inthiL-sello cells are induced in all cases, albeit to a lower degree in VSV -infected 
mice, hardly any cells maintained that phenotype for long in the latter mice. This is 
in striking contrast to LCMV-infected mice in which primed cells may be found for 
at least up to 3 months after infection, with a tendency for even more prolonged 
persistence in mice infected with the strain being most difficult to eliminate (un­
published data). Since the majority of the virus-induced cells cannot be virus­
specific (note that CD8 + ()(4-inthi cells constitute about 10%-15% of splenic cells at 
2 months postinfection whereas the frequency of LCMV -specific CTLps is about 
1/1000 at this time), these findings indicate that bystander activation induces a large 
number of T cells to follow the same pattern of phenotypic changes believed to 
occur for specifically primed cells. Indeed recent analysis of virus-specific TCR 
transgenic cells demonstrate that these cells undergo exactly the same pattern 
following stimulation with the specific antigen (ZIMMERMAN et al. 1996). Further­
more, the persistence of cells with a primed phenotype appear to correlate with the 
persistence of antigen, strongly suggesting that maintenance of this subset requires 
some kind of ongoing stimulation. Consistent with this, we have found that cells 
belonging to this subset are more susceptible to treatment with the cell-cycle specific 
drug hydroxyurea than are cells with a naive phenotype, indicating a higher level of 
cell cycling (CHRISTENSEN et al. 1996b). 
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6 Functional Characterization of Virus-Activated T Cells 

In order to clarify the functional status of the virus-induced T cell subset delineated 
above, spleen cells from LCMV -infected mice were sorted according to expression 
of relevant adhesion molecules and their ability to exert cell lysis and to produce 
IFN-y was evaluated (summarized in Fig. 4). As expected, all LCMV-speci{ic CTLs 
from acutely infected mice were found to be cr4-inthiLFA-1 hiL_sel1o (ANDERSSON 



V
ir

us
-s

pe
ci

fi
c 

cy
to

to
xi

ci
ty

 

10
0 
1 

10
0 

T
 

+
 

hi
 

90
 

• 
C

D
8

 
u 4

-i
nt

 
9

0
 

+
 

. 
10

 
80

 
o 

C
D

8 
u 4

-m
t 

SO
 

<l
) 

t:.
 

U
ns

or
te

d 
ce

ll
s 

'" 
70

 
• 

C
on

tr
ol

s 
ro 

70
 

<l
) 

1
) 

60
 

60
 

'"" !!. U
 

50
 

50
 

-<rl U
 

40
 

t;::
:: 

40
 

'13
 

30
 

<
l)

 

0.
. 

3
0

 

'" ~
 

2
0

 
2

0
 

10
 

~
.
-
-
-
-
=
a
 

10
 

0 
o 

l-
-
t
l 

0.
3 

0.
6 

1.
3 

2.
5 

5.
0 

0.
3 

E
/T

-r
at

io
 

R
ed

ir
ec

te
d 

ki
ll

in
g 

+
 

h
i 

• 
C

D
8 

u 4
-i

nt
 

c
o

t 
. 

10
 

o 
~
-
m
t
 

t:. 
U

ns
or

te
d 

ce
ll

s 

/ 
tl

 
r?

--
-o

-C
 

0.
6 

1.
3 

2.
5 

5.
0 

E
/T

-r
at

io
 

1.
2 

1.
0 

I'
 e gf

 
O

.S
 

'-
-
' 

U
 .. 0 

0.
6 

u <:- .. 0 '"" ~
 

0.
4 

'"" <
l)

 =
 

.....
 

0.
2 0 

IF
N

-y
 p

ro
du

ct
io

n 

+
 

. 
hi

 
• 

C
D

S
 
u 4

-m
t 

+
 

10
 

o 
C

D
S

 
u 4

-i
nt

 -

1.
25

 
2.

5 

• ~ 5.
0 

C
el

ls
lw

el
l 

[x
 1

04
] 

Fi
g.

 4
. 

F
un

ct
io

na
l 

ca
pa

ci
ty

 o
f 

C
D

S
 +

 (l
(4

-in
th

i 
T

 c
el

ls
 i

n 
m

ic
e 

ac
ut

el
y 

in
fe

ct
ed

 w
it

h 
ly

m
ph

oc
yt

ic
 c

ho
ri

om
en

in
gi

ti
s 

vi
ru

s 
(L

C
M

V
).

 C
D

S
 + 

T
 c

el
ls

 f
ro

m
 m

ic
e 

in
fe

ct
ed

 7
 d

ay
s 

ea
rl

ie
r 

w
er

e 
so

rt
ed

 i
nt

o 
:!4

_i
nt

hi
 a

n
d

 (
l(4

-in
tlo

 c
el

ls
 a

n
d

 t
es

te
d 

fo
r 

vi
ru

s-
sp

ec
if

ic
 c

yt
ot

ox
ic

it
y,

 r
ed

ir
ec

te
d 

ki
lli

ng
, 

an
d 

ca
pa

ci
ty

 t
o 

pr
od

uc
e 

in
te

rf
er

on
 (

IF
N

)-
y 

fo
ll

ow
in

g 
sh

or
t­

te
n

n
 s

ti
m

ul
at

io
n 

w
it

h 
an

ti
-C

D
3.

 (
M

od
if

ie
d 

fr
om

 A
N

D
ER

SS
O

N
 e

t 
al

. 
19

94
 C

op
yr

ig
ht

 1
99

4,
 t

he
 A

m
er

ic
an

 A
ss

oc
ia

ti
on

 o
f 

Im
m

un
ol

og
is

ts
; 

CH
RI

ST
EN

SE
N

 e
t 

al
. 

19
96

c)
 

~ ¥ 5"
 

0
- " (') " 0- -l
 

n ~ :>­ ~
 :e'
 

~
 o· " " " 0- ;::
­ " 5"
 

::
Il

 " :3 :3 " 0' ~ ~ '0
 

o ~ (1
) o -
.)

 



108 A.R. Thomsen et a1. 

et a1. 1994, 1995; RAZVI et a1. 1995b). Matching results were obtained in other 
systems involving viral as well as alloantigenic stimulation (Hou and DOHERTY 
1993; MOBLEY et al. 1994). Consistent with this, TCR transgenic cells have been 
found to acquire the above phenotype when stimulated in vivo with the relevant 
antigen (ZIMMERMAN et al. 1996). 

Taken together, these findings strengthen the assumption that this phenotype 
signifies activated/primed T cells. However, due to the fact that their numbers in 
virus-infected animals much exceed what can reasonably be virus-specific CTLs, 
further analysis was carried out. In previous studics it had been found that viral 
infections often induce a polyclonal CTL response involving alloreactive cells and 
memory cells with specificity for unrelated viruses (YANG et al. 1989). Moreover, 
> 50% of CD8 + T cells in the spleen of LCMV -infected mice contain granules that 
stain for esterase activity and perforin (KRAMER et a1. 1989). Given the scatter 
pattern of the activated T cell subset these are likely to represent overlapping or 
identical cell subsets. Therefore, sorted cells were also analyzed in a redirected 
killing assay that detects all activated T cells with cytotoxic capacity. Again it was 
found that these cells were C'i4-inthiLFA-lhi (expression of L-selectin was not eval­
uated) (CHRISTENSEN et a1. 1996c). In addition, a comparison of splenocytes from 
mice infected with LCMV or VSV revealed that the percentage of activated cells as 
revealed by fiowcytometry (LCMV > VSV) correlated with activity in the redirected 
killing assay (LCMV > VSV) (unpublished data), suggesting that many of the 
phenotypically activated cells also had aquired effector cell status. However, as a 
precise evaluation would require analysis of single cells, we exploited the fact that 
LCMV infection is associated with a highly polarized type I cytokine profile and 
that many T cells have been found at the mRNA level to be primed for production 
of IFN-y (COLLE et a1. 1993). Sorting analysis demonstrated that most cells pro­
ducing IFN-y in response to short-term stimulation with anti-CD3 in vitro were 
CD8 + C'i4-inthiL-sello cells (CHRISTENSEN et a1. 1996c). Staining of cells from parallel 
cultures for presence of intracellular cytokine revealcd that about half of splenic 
CD8 + C'i4-inthi cells from acutely infected mice were positive for IFN-y (Fig. 5), 
substantiating that many of these cells have indeed differentiated towards effector 
cell status. That many of the activated cells are terminally differentiated effectors is 
also suggested by the observation that anti-CD3 induced proliferation is inversely 
related to anti-CD3 stimulated IFN-y production (CHRISTENSEN et al. 1996c). Thus, 
it may be concluded that virus-induced bystander activation not only induces blast 
transformation and cycling of CD8 + T cells, but also drives many of the generated 
cells to differentiate into effector cells. This is of considerable interest since the 
signals inducing these different steps appear to be different, with effector cell dif­
ferentiation being most demanding (BACHMANN et a1. 1996; DOHERTY et a1. 1994). 

Based on the fact that T cells with the phenotype of primed cells persist for 
several months in LCMV-infected mice (Fig. 3), it was also of interest to establish 
the functional status of these cells late in the infection. An augmented capacity to 
excert cytolysis (albeit at a much lower level than during the acute phase of the 
infection) may be found for several months following LCMV challenge, and the 
same has recently been found to hold true for production of IFN-y (MARKER and 
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Fig. 5. Expression of interferon (IFN)-y in C08 + T cells in mice acutely infected with lymphocytic 
choriomeningitis virus (LCMV). Spleen cells were stimulated in vitro with anti-C03 for 6 h, stained for 
expression of C!4-integrin and COg, permeabilized and stained for IFN-y. Gates have been set for C08 + 

cells. (From CHRISTENSEN et al. 1996c) 

VOLKERT 1973; CHRISTENSEN et al. 1996c). This is consistent with earlier indications 
that ongoing immune surveillance is needed to permanently control this infection 
(VOLKERT and LUNDSTEDT 1965). Sorting of splenic T cells into CD4+ and CDS+ 
cells revealed that only CDS + cells from mice infected 2 months earlier had a 
substantially increased capacity to produce IFN-y compared to T cells from un­
infected controls. Separation of the CDS + subset into Pgp-l hi and Pgp_l 1o cells 
further revealed that the former subset was the only one to contain primed cells, as 
evaluated both for production of IFN-y and for killing activity in the redirected 
assay (CHRISTENSEN et al. 1996c). Since it was previously found that this subset 
contains all LCMV-specific memory CTLps (TABI et al. 19S7; LAU et al. 1994), 
these results indicate that the long-standing increase in cells with a primed phe­
notype represents the accumulation of previously activated cells, some of which still 
appear to be in a "poised" state. In this context it is of note that the frequency of 
activated/primed cells in virus-primed (LCMV and VSV) mice, as evaluated by flow 
cytometry, correlates with cytolytic activity measured by redirected killing as well 
as with the capacity to rapidly respond to antigenic challenge with T cell dependent 
inflammation (unpublished data; KONDIG et al. 1992). 

7 Consequences for T Cell Migration 
and the Inflammatory Response 

The extravasation of leukocytes at sites of inflammation is generally viewed as a 
stepwise process involving several receptor/ligand interactions (BUTCHER J 99 J; 
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SPRINGER 1994; BUTCHER and PICKER 1996). The first step appears to be a loose 
interaction with the endothelium resulting in the rolling of the leukocyte along the 
interior surface of the vessel. Molecules of the carbohydrate binding select in family 
are believed to playa major role at this stage. In the next step the leukocyte is 
thought to be triggered by engagement of appropriate receptors which leads the 
leukocyte to markedly change its adhesive properties. Integrins, particularly LFA-I 
and VLA-4, are important at this stage, mediating strong adhesion to the endo­
thelium. The signals regulating integrin binding affinity are not clearly established, 
but various chemokines and their receptors are considered to be important 
(MACKAY 1996). Finally, the leukocyte migrate through opposing endothelial cells 
into the surrounding tissue. 

Although there are still many uncertainties regarding details of lymphocyte 
extravasation (SHIMIZU et al. 1992; BUTCHER and PICKER 1996), this basic model 
provides us with sufficient insight to appreciate the potential significance of the 
changes in expression of adhesion molecules that is induced on T cells in the context 
of a viral infection. Thus, cells with high expression of VLA-4 and LFA-I would 
clearly be suited for homing to inflamed areas, and even phagocytic glycoprotein-I 
(Pgp-I) may be of relevance in this context (CAMP et al. 1993). Furthermore, the 
down-regulation of L-selectin will prevent the waste of important effector cells 
associated with their passage through uninvolved lymph nodes (lymph nodes 
draining infected areas would still be reached by effector cells via the afferent 
lymphatics and, in addition, would probably in themselves represent inflamed ar­
eas; MACKAY et al. 1992). A number of experimental observations obtained in the 
course of our studies on the murine LCMV infection fit this interpretation. 

First, T cells isolated from virus-infected, inflamed tissues, e.g., in casu CSF 
cells from i.c. infected mice (Fig. 6) or peritoneal exudate cells from i.p. infected 
animals, are exclusively C(4-inthiLFA-I hipgp_l hi (ANDERSSON et al. 1994, 1995; 
CEREDIG et al. 1987; CHRISTENSEN et al. 1996c). Second, the influx of T cells cor­
relate temporally with generation of (X4-inthiLFA-I hi cells in the spleen (ANDERSSON 
et al. 1994; CHRISTENSEN et al. 1995). Third, and perhaps most convincing, the 
marked bias for CD8 + T cells noted in virus-infected organs matches the striking 
difference in phenotypic pattern observed for CD4 + and CD8 + T cells in the 
lymphoid organs of virus-infected animals (ANDERSSON et al. 1994; CHRISTENSEN 
et al. 1995). Thus, while CD8 + T cell activation leads to generation of C(4-inthiLF A­
I hi effector cells, few CD4 + T with this phenotype are generated. Notably, the bias 
for CD8 + T cells does not merely reflect their numerical dominance, as this bias is 
observed in infected organs before it occurs in the spleen, but clearly correlates with 
the predominance of CD8 + cells amongst splenic C(4-inthi T cells (CHRISTENSEN et al. 
1995). In addition to these studies carried out in T cell high responder mice, we also 
analyzed the inflammatory exudate in low responder mice. which undergo a more 
chronic infection. In this case even CD4 + T cells and B cells are found in the 
inflammatory exudate, and again the inflammatory cells arc found to be recruited 
predominantly from the C(4-inthi subset (CHRISTENSEN et al. 1995). Thus, it is evident 
that virus-activated T cells are equipped with the capacity to migrate to areas of 
inflammation; a finding which confirms and extends the classical observation that 
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Fig. 6. Expression of tX4-integrin on CD8 + cells from spleen and CSF of mice infected i.c. 7 days earlier; 
at this time CDS + cells constitute about half of the infiltrating cells. Gates have been set for CDS + cells 
and results on splenic CD8 + cells from uninfected mice have been included for comparison. (Modified 
from ANDERSSON et al. 1994, Copyright 1994, the American Association of Immunologists) 

recently activated blast cells and memory cells show a preference for homing to 
inflammatory sites, and that the majority of cells recruited are not antigen-specific 
(MCCLUSKEY and WERDELIN 1971; ASHERSON and ALLWOOD 1972; NORTH and 
SPITALNY 1974; HURWITZ et al. 1983; ISSEKUTZ 1991). 

Histological analysis of venules from infected areas - following perfusion fix­
ation to eliminate freely circulating cells - disclosed that these contained many 
leukocytes sticking to the interior surfaces of the vessels. Using electron microscopy 
many of these leukocytes were found to closely interact with the endothelium 
(MARKER et al. 1984). Immunohistochemical staining for relevant ligands of the 
putatively involved lymphocyte receptors gave results that largely matched the 
expected pattern: endothelial expression of both ICAM-l (ligand for LFA-l) and 
VCAM-I (ligand for VLA-4) was found to be up-regulated as a result of the 
antiviral immune response (MARKER et al. 1995). However, although vessels sur­
rounded by cells phenotypically matching activated T cells were found to be pos­
itive, venules outside of infected areas were also positive. For example, although 
mice infected with LCMV only develop meningeal inflammation with little infil­
tration of gray matter, venules deep inside the brain were more positive in infected 
mice than in uninfected controls. This could be taken to underscore the fact that, 
although expression of endothelial ligands is mandatory for lymphocyte extrava­
sation, additional signals are needed to steer effector cell migration. Chemokines 
are interesting candidates in this respect (MACKAY 1996). Thus, chemokine recep­
tors are up-regulated on activated/memory T cells (LOETSCHER et al. 1996; OIN et al. 
1996), and a number of chemokines has been found in vitro to stimulate T cell 
migration (OIN et al. 1996; ROTH et al. 1995; CARR et al. 1994). In particular the 
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C-C chemokine monocyte chemoattractant protein-l (MCP-l) has been observed 
to be a major T cell chemoattractant (ROTH et al. 1995), and it is therefore of 
interest that analysis of CSF from mice infected i.c. with LCMV has recently 
revealed the presence ofMCP-l, the amount of which correlates with the severity of 
the inflamatory process (unpublished data). However, further studies are needed to 
clarify whether this correlation reflects that M CP-l is a mediator of the inflam­
matory process or is a result thereof. 

For a more detailed analysis of the role of adhesion molecules in directing T 
cells and other effector cells to sites of viral infection, virus-induced delayed-type 
hypersensitivity (DTH), elicited by local infection of the footpad with live virus, 

DTH 

• RatIgG 

Systemic cell transfer o Anti-a..-int 

24 48 72 
Hours after cell transfer 

Local cell transfer 

24 48 72 
Hours after cell transfer 

Fig. 7. Model system to evaluate the role of adhesion molecules in targeting virus·primed T cells to sites of 
viral replication: a typical result obtained using anti'()[4-integrin antibody. Virus-primed mitomycin C­
treated donor splenocytes were preincubated with the relevant antibody and injected either i.v. or directly 
into the foot-pad of recipients infected in the foot 4 h prior to cell transfer. (modified from CHRISTENSEN 
et al. 1995, Copyright 1995, the American Association of Immunologists) 
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was used as model system (Fig. 7). Like the inflammatory reaetion in infected 
organs this is a complex process involving several ccll types (ROSEN et al. 1989; 
VOLKMAN and COLLINS 1971; LUBAROFF and WAKSMAN 1968). However, by 
studying DTH elicted by adoptive transfer of adherent-cell depleted, virus-primed 
effector cells, the reaction could be broken down into two major components: virus­
primed, donor-derived CD8 + effector cells and radiosensitive nonspecific cells 
delivered by the recipient (NIELSEN et al. 1994). Both components were found to be 
required for a virus-specific DTH reaction to be elicited, since elimination of either 
subset reduced the reaction to background. Preincubation of the donor cells with 
antibodies directed against several relevant adhesion molecules revealed that anti­
LF A-I as well as anti-ot4-integrin markedly inhibited the inflammatory reaction 
(ANDERSSON et al. 1995; CHRISTENSEN et al. 1995). Also an antibody to CR3 sig­
nificantly delayed the reaction (NIELSEN et al. 1994) consistent with the finding that 
many of the inflammatory CD8 + T cells are Mac-I + (McFARLAND et al. 1992). 
Neither of these antibodies inhibited the inflammatory reaction in experiments in 
which the requirement for effector cell homing was bypassed by directly inoculating 
the primed cells into the test site. This strongly indicates that the major function of 
the studied molecules is to direct effector cell migration to sites of infection. It 
should be noted that not all antibodies directed to cell surface molecules were 
inhibitory; thus a monoclonal antibody to the common leukocyte antigen (CD45) 
had little or no effect, demonstrating that mere binding to the cell surface did not 
suffice for inhibition of effector cell homing (CHRISTENSEN et al. 1995). 

Local injection of virus-primed effector cells into the test site was also used to 
identify the accessory cell type required for elicitation of a virus-specific inflam­
matory reaction. Thus preirradiation or pretreatment of the recipient with anti­
CR3 completely inhibited or significantly delayed the reaction, respectively (NIEL. 
SEN et al. 1994). In either case responsiveness could be restored by coinjection into 
the test site of peritoneal cells from unprimed mice, and depletion of adherent cells 
prior to transfer eliminated that potential. Thus, all evidence pointed to cells of the 
monocyte/macrophages lineage using CR3 as one of the major receptors for ex­
travasation. 

Whereas the results obtained by antibody blocking supported the conclusion 
that all three integrins demonstrated on the surface of virus-activated T cells 
(LFA-I, ot4-integrin, Mac-I) played a role in homing to sites of viral infection, this 
approach is open to criticism. That is, it could be claimed that binding of antibodies 
may lead to altered cellular function -- especially as it is known that these molecules 
are capable of transducing out-to-in signals. Furthermore, these studies do not 
reveal the true'importance of each molecule for T cell-mediated inflammation in the 
intact infected animal, since they were carried out using limiting numbers of effector 
cells in mice subjected to infection immediately prior to cell transfer. Therefore, to 
avoid these objections we turned to mice with targeted gene defects of relevant 
adhesion molecules (SHARPE 1995; BULLARD et al. 1995). When these experiments 
were carried out, only mice deficient in expression of ICAM-I and mice with a 
hypomorphic expression of CDI8 (the common ~2 chain of LFA-I and Mac-I) 
were available (SLIGH et al. 1993; WILSON et al. 1993). Two manifestations ofT cell-
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mediated inflammation were studied: LCMV-induced T cell-mediated meningitis 
and footpad swelling induced by primary infection of the footpad (Fig. 8A). Vir­
tually no impairment of T cell-mediated inflammation was observed in ICAM-l 
deficient mice and about a one day delay was noted in C018 mutants (CHRIS­
TENSEN et al. 1996a). However, since a slight impairment of specific effector T cell 
generation was also found in the latter mice, it cannot be excluded that this is the 
main reason for the delayed inflammatory response observed. Therefore, the main 
conclusion of this analysis was that neither of these molecules were mandatory for 
the induction of T cell-mediated inflammation in virus-infected mice. In contrast, 
when the adoptive OTH model reaction was studied using these mutants as re­
cipients of primed wild-type cells (Fig. 8B), the importance ofICAM-I and C018 
in elicitation of virus-induced OTH was essentially confirmed (CHRISTENSEN et al. 
1996a). 

Although puzzling at first sight, there may be several reasons for this apparant 
discrepancy between results obtained in adoptively immunized mice and intact in­
fected animals. First, when effector cells are adoptively transferred, cells are injected 
as a bolus whereas in the intact mouse a continual supply of activated cells are 
available. Second, the state of endothelial activation may be different in mice in­
fected immediately prior to cell transfer compared to mice 4-6 days into the in­
fection (IRANI and GRIFFIN 1996). Therefore, functional redundancy is likely to be 
more pronounced in intact mice, whereas in the adoptive situation any lowering of 
the avidity of the T cell/endothelial cell interaction is important. Thus, all the 
molecules revealed to be of importance based on adoptive transfer probably are 
involved also in the intact animal, but redundancy in function of LFA-I/ICAM-I 
and VLA-4/VCAM-l precludes either set from being critical in the latter case. That 
these receptor/ligand pairs may exert overlapping functions in T cell homing is 
supported not only in the literature (ISSEKUTZ 1992), but also by our own studies. 
Thus, ICAM-I deficient mice given wild-type effector cells have a reduced OTH 
reaction which, however, can be completely abolished by preincubation of the do­
nor cells with a soluble VCAM-I construct; if similarly treated donor cells are given 
to wild-type recipients, only a partial inhibition is observed (unpublished data). 

8 Role of Cytokines 

A critical level of regulation of T cell extravasation, aside from expression of 
appropriate adhesion molecules on the surface of circulating T cells, is the ex­
pression of corresponding ligands on the endothelium. Local up-regulation of the 
expression of these molecules serves to mark areas of interest to the generated 
effector cells, and thus specifically targets effector cell homing to infectious foci. 
This may be particularly important early in the infection when numbers of effector 
cells are limited. Consistent with this, up-regulation of ICAM-I and VCAM-I 
expression is found at sites of virus-induced inflammation. The signals inducing the 



16
0 

A
 

~l 
B

 
---

J 3
5 

--
0

--
IC

A
M

-l 
de

fic
ie

nt
 

§ 
14

0 
A

 
-
0

-
!3

z-
in

t. 
de

fic
ie

nt
 

N
 

__
__

__
 W

ild
ty

pe
 

I 
~
 

I 

o 
12

0 
" 

0 
30

 
" 

~
 

" 
~
 

'-
' 

" 
'" 

, 
0

0
 

~ 
10

0 
" 

0
0

 
25

 
" 

I!.
l 

~ 
" 

.Q 
" "

 
u 

:.c:
 

0 
~
 

80
 

, 
20

 
-

, 
"0

 
, 

"0
 

if
 
~
 __

 -_
-o

.--
---

-_
__

 o 
o:s

 
, 

o:s
 

8-
, 

&
 

p
-
-
-

60
 

, 
0 

"1 
0 

, 
, 

c.8
 

c.8
 

, , 
.S

 
.8

 
, 

40
 

I!.
l 

10
 

, 
I!.

l 
d 

~ 
'" o:s 

I!.
l 

~ 
.... u 

20
 

5 
..s 

s:: -
0 

0 
6 

8 
10

 
12

 
14

 
16

 
18

 
16

 
24

 
32

 
40

 
48

 
56

 
64

 
72

 

D
ay

s 
po

st
 in

fe
ct

io
n 

H
ou

rs
 a

fte
r 

ce
ll 

tr
an

sf
er

 

F
ig

. 
SA

, 
B

. 
E

ff
ec

t 
o

f 
de

fi
ci

en
t 

IC
A

M
-l

 o
r 
~r

in
te

gr
in

 e
xp

re
ss

io
n 

on
 p

ri
m

ar
y 

fo
ot

pa
d 

sw
el

li
ng

 (
A

) 
an

d 
ca

pa
ci

ty
 t

o 
su

pp
or

t 
an

 a
do

pt
iv

e 
fo

ot
pa

d 
sw

el
li

ng
 r

ea
ct

io
n 

(8
);

 
do

no
r 

ce
lls

 f
or

 a
do

pt
iv

e 
tr

an
sf

er
 w

er
e 

ly
m

ph
oc

yt
ic

 c
ho

ri
om

en
in

gi
ti

s 
vi

ru
s 

(L
C

M
V

)-
pr

im
ed

, 
w

il
d-

ty
pe

 c
el

ls
. 

(F
ro

m
 C

H
R

lS
TE

N
SE

N
 e

t 
al

. 
19

96
a)

 

~ ¥ 5'
 

0
- <= ('

) 
(1

) 0
- -I
 

n g,
 

;J>
 

$?
, :;:.
 

;:; o· ::>
 '" ::>
 

0
- S- " ::>
 

::
Il

 

~ 3 '" o ,;;J
 

;>:
:l D! "C
l o ii: " 'J
>

 



116 A.R. Thomsen et al. 

expression of these molecules may often be cytokines induced by the virus infection 
per se (IRANI and GRIFFIN 1996). However, at least in the ease of i.e. infection with 
LCMV, the inflammatory signal generated by the virus itself is very modest 
(CAMPBELL et al. 1994), and in virus-infected T cell deficient mice we could not 
detect any up-regulation of either ICAM-l or VCAM-l (MARKER et al. 1995). 
Based on the fact that IFN-y is present in the CSF of virus-infected, immuno­
competent mice but not of infected, T cell deficient mice (FREI et al. 1988), and that 
IFN-y is known to up-regulate these molecules, we have proposed that T cells may 
regulate endothelial expression of these ligands through production of IFN-y 
(MARKER et al. 1995). A number of additional findings consistent with this model 
have recently been obtained. First, T cells found at the inflammatory site produce 
high amounts of IFN-y, reflecting the focussing of activated effector cells to the 
inflammatory site (CHRISTENSEN et al. 1996c). Second, CD8 + T cells are the major 
inducers of LCMV-specific DTH and suffices for up-regulation of ICAM-l and 
VCAM-l expression (NIELSEN et al. 1994; CHRISTENSEN et al. 1994; LEIST et al. 
1987; MARKER et al. 1995), and CD8 + T cells are also the major producers of 
IFN-y (CHRISTENSEN et al. 1996c). In contrast, another candidate pro inflammatory 
cytokine, TNF-Cl, is neither present in the CSF nor produced by LCMV-activated 
T cells (LEIST et al. 1988; CHRISTENSEN et al. 1996c). Therefore, to confirm a central 
role of IFN-y, IFN-y deficient mice were infected with LCMV and T cell-mediated 
meningitis was studied. The LCMV strain used was a neurotropic variant; this was 
chosen to minimize any effect of redistribution of virus replication on effector cell 
homing (LEIST et al. 1989). Much to our surprise little or no difference either in 
T cell-mediated inflammation or in the up-regulation of ICAM-I or VCAM-l on 
meningeal venules was observed between IFN-y deficient mice and matched in­
fected wild-type animals (manuscript in preparation). Thus, at present the simplest 
interpretation appears to be that even though IFN-y are likely to playa role under 
normal conditions (CAMPBELL et al. 1994), other T cell signals may suffice for 
significant up-regulation of these adhesion molecules. Such redundancy may be a 
parallel to the redundancy observed for adhesion molecules. 

9 An Integrated Model for Effector T Cell Homing to Sites 
of Viral Replication 

Extrapolating from the results that we have obtained primarily in LCMV-infected 
mice, we propose the following model for the events that occur when the host 
responds with a T cell dependent inflammatory reaction to a viral infection. In the 
uninfected host, an intact vascular barrier seem to preclude effector T cell access to 
many organs (ANDO et al. 1994a). Therefore marked changes in the interaction of 
activated T cell and endothelium localized in areas of infection is critical for the 
formation of the inflammatory exudate and thus the capacity of effector T cells to 
reach virus-infected cells outside of lymphoid organs. 
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As a result of the immune response, effector T cells are generated which are 
endowed with the adhesion molecules that target these cells to infected areas. It is of 
interest to note that a number of molecules with this potential are up-regulated on 
primed T cells, thus besides VLA-4 (Q(4-integrin) and LFA-l, also Pgp-l and, on 
many CD8 + T cells, Mac-I. All of these molecules seem to be of importance for 
lymphocyte extravasation, and this apparant redundancy suggests that the migra­
tion of effector cells to inflamed areas is of such vital importance that even if one 
receptor/ligand pair is blocked, the formation of the inflammatory exudate should 
not be impaired. From an evolutionary perspective the extensive redundancy thus 
s(:rves to reduce the risk that viruses or microorganisms acquire the capacity to 
substantially inhibit the inflammatory response. 

Locally, expression of the adhesion molecules ICAM-l and VCAM-l is up­
regulated, a process that is controlled by cytokines. If the virus itself causes suffi­
cient induction of pro inflammatory cytokines, this will directly allow the focussing 
of effector cells onto the area (IRANI and GRIFFIN 1996). In case no such signal is 
induced, the first effector T cells will leave the circulation at random, probably 
through interaction with constitutively expressed ligands, e.g., ICAM-2. Due to 
their higher expression of the corresponding receptors recently activated cells will 
dominate at this stage. Once a virus-specific T cell interacts with virus-infected cells 
in an infectious focus, the cytokine cascade will be triggered involving both T cell­
produced cytokines (e.g., IFN-y) and monokines released from activated mono­
cytes/macrophages (e.g., TNF-Q(, MCP-l) (NIELSEN et al. 1994). Together with 
chemokines these mediators will trigger invasion by the bulk of the effector cells, 
and at this stage perhaps even some nonactivated cells may be recruited through the 
highly activated endothelium (DOHERTY et al. 1988). Once the infection is con­
trolled, most of the recruited cells probably die in situ, and memory cells generated 
in the lymphoid organs accumulate predominantly in the spleen due to their low 
expression of L-selectin early after antigenic stimulation (the precise relationship 
between primary effector cells and memory cells is still a controversial subject for 
which the reader is referred to a recent review by AHMED and GRAY 1996). How­
ever, reintroduction of virus leads to rapid mobilization of these cells from the 
spleen and their migration to sites of infection as well as to the lymph nodes 
draining such areas (unpublished data). 

1 0 Implicat~ons 

The fact that viral infections induce a high number of CD8 + T cells to become 
activated, thus leading to changes in both effector capacity and migration pattern, 
clearly raises the issue of the functional consequences of this extensive T cell acti­
vation. First, is bystander activation simply an unavoidable byproduct of a trig­
gering cascade developed to secure rapid generation of virus-specific effector T cells 
or are the activated nonspecific T cells of direct importance in virus control? From 
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our results it is clear that the latter cells possess a surface phenotype that targets 
them to infectious foci. Furthermore, many possess qualities of relevance to com­
bating virally infected cells, i.e. , cytotoxicity and capacity to produce IFN-y. It is 
tempting to speculate, therefore, that these cells could somehow contribute to virus 
control orchestrated by those few effector T cells that are virus-specific. For ex­
ample, cognate interactions established through the adhesion molecules might lead 
to cell killing and/or release of IFN-y which would reduce viral spreading, activate 
macrophages and increase surface expression of relevant ligands (e.g. , ICAM-1 and 
MHC molecules). Evidently such potent T cell activation also poses a great risk to 
the host; nonspecific cell damage and tissue destruction being the most obvious 
(ANDO et ai. 1993, 1994b). However, the extensive generation of T cells with the 
above functional qualities might also initiate graft rejection (POUTEIL-NoBLE et ai. 
1993) and result in auto reactivity directed towards otherwise ignored antigens; in 
predisposed hosts overt autoimmune disease may be the final outcome (LEE et ai. 
1995; RABINOVITCH et ai. 1995; LIBLAU et ai. 1995; VON HERRATH and OLDSTONE 
1997). Thus, epidemiologic data indicate that clinical exacerbations of multiple 
sclerosis are often preceded by viral infections (SIBLEY et ai. 1985), and our findings 
may provide a mechanism to understand this correlation without necessarily in­
voking molecular mimicry between viral epitopes and the involved autoantigen(s) 
(illustrated in Fig. 9). Although LCMV infection has not been found to induce 
autoimmunity in normal mice, it has recently been observed that another viral 
infection (Semliki forest virus) may facilitate murine experimental aI1ergic en-

aive autoreactive T ce lls 

Low antigen expression 
No 20signal 

on-inflammatory environment 
e.g. IL-4, IL-IO, TGF-(3 

Bystander-activated autoreactive T cells 

High antigen expression 

Professional AP s 
lnOammalory environment 
e.g. TFN-y, TNF-a 

Fig. 9. A hypothetical scheme outlining the possible mechanisms whereby virus-induced bystander acti­
vation could playa role in elicitation of autoimmune reactions 
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cephalitis through what appears to be bystander activation and enhanced leukocyte 
entry into the eNS (SOILu-HANNINEN et al. 1996). Notably, this facilitation could 
be blocked by anti-(4-integrin monoclonal antibody therapy. Therefore, further 
studies are clearly needed to clarify the relevance of virus-induced bystander acti­
vation in the pathogenesis of autoimmune diseases. 
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Neoplastic cells selected to form metastatic tumors pass through a cascade of events 
that are initiated by detachment from the primary tumor mass and invasion of the 
adjacent tissue (LIOTIA et al. 1991; NICOLSON 1982; STETLER-STEVENSON et al. 
1993). The migration through the interstitial stroma, mainly comprised of extra­
cellular matrix proteins such as vitronectin, collagens or fibronectin, is followed by 
entry into the vasculature, either by transport through the lymphatic vessels and 
lymphaticovascular connections or by active movement across the endothelial 
barrier. After dissemination through the circulation, which is a crucial step for the 
survival of me~astatic cells, the tumor cells arrest in the microvasculature of distant 
organs as single cells, tumor cell emboli, or tumor cell-platelet emboli via inter­
action with vascular endothelium or subendothelial basement membrane. After 
extravasation and invasion of the target organ disseminated cells expand and 
generate secondary tumors. 

Institute of Medical Microbiology, Immunology, and Hygiene, Technical University, TrogerstraBe 9, 
81675 Munich, Germany 
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Cell surface receptors of the integrin family mediate adhesion of tumor cells to 
one another, to heterologous cells, or to matrix proteins. Integrins may therefore 
control the development of metastatic tumors by regulating the adhesive capacity 
of malignant cells. In addition, integrins may influence the development of tumor 
metastases by ligand induced signal transduction events resulting in alterations of 
growth, susceptibility to apoptosis, differentiation, or proteolytic activity of tumor 
cells. In the present review, the role of the 1'14 subfamily of integrins in metastasis 
formation by solid tumors and lymphoid malignancies is discussed. 

2 Distribution of cx4-Integrins 

2.1 Distribution on Normal Cells 

The integrin 1'14 subunit is noncovalently associated with either ~ I or ~7 chains. 
Both 1'14~1 and 1'14~7 integrins are expressed on the large majority of naive CD4 + 

and CDS + T cells (ERLE et al. 1994; SCHWEIGHOFER et al. 1993). Whereas the 
expression of 1'14 integrins is up-regulated on all CD45RA - memory T cells, 1'14~7 
expression is restricted to a subset of gut associated CD4 + memory T cells (KIL­
SHAW and M URANT 1990; SCHWEIGHOFER et al. 1993; SHIMIZU et al. 1990). Pe­
ripheral blood B cells, but not resident B cells from lymphoid organs, constitutively 
express both 1'14~1 and 1'14~7 integrins (POSTIGO et al. 1993). Stimulation of resident 
B cells with phorbol ester for several days, however, induces 1'14 integrin expression 
(POSTIGO et al. 1993). In addition, both 1'14~1 and 1'14~7 integrins are expressed by 
natural killer cells and eosinophils (ERLE et al. 1994). While 1'14 integrins were not 
detected on human neutrophils (ERLE et al. 1994; HEMLER et al. 1990), expression 
of functional levels of 1'14 integrins was recently described for rat neutrophils (Is­
SEKUTZ et al. 1996). Peripheral blood monocytes selectively express 1'14~ 1 integrin, 
but expression of 1'14~7 is up regulated upon induction of macrophage differentia­
tion with phorbol ester or interferon (lFN)-y (ERLE et al. 1994; TIISALA et al. 1995). 

2.2 Distribution on Human Tumor Cells 

Expression of 1'14 integrins was demonstrated on many different human tumors and 
tumor cell' lines. The results of these studies are summarized in Table 1. It was 
shown that 1'14 integrins are absent from cultured melanocytes but are detected on 
different cell lines derived from metastatic melanomas (ALBELDA et al. 1990). 
Consistent with these findings in situ analysis of human melanomas revealed that 
highly invasive primary (vertical growth phase) and metastatic melanomas ex­
pressed 1'14 integrins more frequently than radial growth phase primary melanomas 
that display a low metastatic capacity (ALBELDA et al. 1990). These data indicate 
that expression of 1'14 integrins on melanoma cells is up regulated during tumor 
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Table 1. Expression of ot4-integrins on human tumor cells 

Tumors ot4-lntegrin expression References 

Melanoma Primary melanoma, ot4/3llow ALBELDA et al. 1990 
radial growth phase 

Primary melanoma, ot4/31 moderate-high ALBELDA et al. 1990 
vertical growth phase 

Metastatic melanoma ot4/31 moderate-high ALBELDA et al. 1990 

Sarcoma Primary sarcomas ot4/31 moderate PAAVONEN et al. 1994 
ot4/37 absent 

Sarcoma metastases ot4/31 high PAAVONEN et al. 1994 
ot4/37 absent 

Carcinoma Adenocarcinomas ot4/31 and ot4/37 absent PAAVONEN et al. 1994 

Immortalized B-Iymphoblastoid cell ot4/31 high RINCON et al. 1992 
B Iymphoblasts lines (B-LCL)" 

B-Iineage Burkitt's lymphoma (BL)b ot4/3llow RINCON et al. 1992; 
non-Hodgkin's ot4/37 absent DRILLENBURG et al. 1997 
lymphomas 

Nodal mantle cell lymphoma ot4/31 moderate PALS et al. 1994; 
(MC) ot4/37 absent DRILLENBURG et al. 1997 

Malignant lymphomatous ot4/31 moderate PALS et al. 1994; 
polyposis (MLP) ot4/37 moderate-high DRILLENBURG et al. 1997 

T-Iineage Cutaneous T cell lymphoma ot4/37 absent DRILLENBURG et al. 1997 
non-Hodgkin's 
lymphomas 

Primary mucosal T cell ot4/37 high DRILLENBURG et al. 1997 
lymphoma 

Expression of ot4 integrins was determined by flow cytometry or immunohistochemistry. 
"B Iymphoblasts were immortalized in vitro by infection with Epstein-Barr virus. 
~ype I (biopsy like, BL) cell lines as well as tumor tissues were investigated. 

progression or that melanoma cells expressing elevated levels of a4 integrins are 
selectively expanded. Similarly, moderate levels of a4pI integrins were found on 
primary sarcomas, while a4 integrins were highly expressed by metastatic sarcoma 
cells (PAAVONEN et al. 1994). 

On lymphoid tumors, unique patterns of expression were documented for a4pl 
and a4p7 integrins. Whereas high levels of a4pl integrin expression were detected 
on B Iymphoblasts immortalized in vitro by infection with Epstein-Barr virus, B 
lymphoma cells derived from Burkitt's tumors exhibited low a4pl integrin ex­
pression (RINCON et al. I 992). Consistent with a function of a4p7 integrin as 
lymphocyte homing receptor for mucosal sites, various non-Hodgkin's lymphomas 
that preferentially localize to mucosa-associated lymphoid tissues show high levels 
of a4p7 expression (DRILLENBURG et al. 1997; PALS et al. 1994). By contrast, a4p7 
integrins are almost absent on non-Hodgkin's lymphomas that are localized in 
lymph nodes or cutaneous sites (DRILLENBURG et al. 1997; PALS et al. 1994). 
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3 Ligand Binding Functions of !X4-Integrins 

The ligand binding specificities of ()(4~1 and ()(4~7 integrins are partially overlap­
ping. The vascular cell adhesion molecule-l (VCAM-l) and fibronectin are rec­
ognized by both ()(4~1 and ()(4~7 integrins with similar efficiency, while the mucosal 
vascular addressin MAdCAM-l is a preferential ligand for integrin ()(4~7 (BERLIN 
et al. 1993). Binding of ()(4~1 to MAdCAM-l requires the high avidity state of ()(4~1 
and is less efficient than adhesion mediated by integrin ()(4~7 (STRAUCH et al. 1994). 
MAdCAM-l is a tissue-selective endothelial adhesion receptor for lymphocytes and 
is constitutively expressed at sites of lymphocyte extravasation into mucosal sites 
(BRISKIN et al. 1993; STREETER et al. 1988), whereas VCAM-l is induced on en­
dothelial cells after stimulation with various cytokines including interleukin (IL)-l, 
tumor necrosis factor (TNF)-()(, IL-4, or IL-13 (CARLOS and HARLAN 1994; MASI­
NOVSKY et al. 1990; THORNHILL and HASKARD 1990; WELLICOME et al. 1990). In 
addition, ()(4~1 integrin has been reported to bind to the outer membrane protein 
invasin of the intracellular pathogen Yersinia pseudotuberculosis (ENNIS et al. 1993) 
and to function as a receptor for thrombospondin, a matrix protein highly ex­
pressed in damaged and inflamed tissues (MOSHER 1990; Y ABKOWITZ et al. 1993). 
Recently, it was demonstrated that both ()(4~1 and ()(4~7 mediate interactions with 
isolated ()(4 integrin subunits in a homophilic manner (ALTEVOGT et al. 1995). 

Fibronectin contains mUltiple binding sites for ()(4~1 integrin including the CSI 
and CS5 sites within the alternatively spliced type III connecting segment (KOM­
ORIYA et al. 1991; MOULD et al. 1990, 1991; NOJIMA et al. 1990), the HI site within 
the Hep II domain (MOULD et al. 1991), and an RGDS adhesion site that is located 
in the central cell binding fragment (SANCHEZ-ApARICIO et al. 1994). Experiments 
using an anti-~1 monoclonal antibody that induces the activated conformation of 
()(4~1 integrin suggest that the CSI adhesion site is recognized by ()(4~1 integrin with 
higher affinity than the RGDS site (SANCHEZ-ApARICIO et al. 1994). Several recent 
reports have shown that integrin ()(4~7 also recognizes the CS 1 adhesion site and 
binds fibronectin as efficiently as ()(4~ 1 (POSTIGO et al. 1993; RUEGG et al. 1992; 
STRAUCH et al. 1994). In VCAM-l, binding sites for ()(4~1 and ()(4~7 have been 
mapped to the homologous first and fourth immunoglobulin-like domains of the 
seven domain form ofVCAM-l (KILGER and HOLZMAN 1995; KILGER et al. 1997; 
OSBORN et al. 1994; VONDERHEIDE and SPRINGER 1992). In MAdCAM-l, the main 
recognition site for integrin ()(4~7 is located in the first immunoglobulin-like domain 
(BRISKIN et al. 1996; VINEY et al. 1996). 

4 Regulation of Integrin Ligand Binding Activity 

Regulation of integrin receptor activity plays a crucial role in cell adhesion to other 
cells or to matrix proteins. For efficient ligand binding of integrins mere expression 
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on the cell surface is not sufficient. It is necessary that integrins are converted to an 
active state to bind their cognate ligands (HYNES 1992). For (X4 integrins several 
pathways of cellular activation have been identified that lead to a rapid and 
transient increase of integrin activity. Importantly, these mechanisms do not affect 
cell surface density of (X4 integrins, but appear to operate either by modulating 
conformation dependent integrin affinity for ligand or cytoskeleton dependent cell 
surface clustering of integrin receptors (HYNES 1992). It was demonstrated that 
cross-linking of the T cell receptor for antigen (TCR)/CD3 complex or CD2 on 
resting CD4 + T cells induced enhanced (X4~1 integrin binding to fibronectin 
(SHIMIZU et al. 1990). Furthermore, various chemokines including macrophage 
inflammatory protein (MIP)-l (x, MIP-l~, RANTES and interferon inducible pro­
tein 10 (IP-lO) were shown to induce binding of resting and activated T cells to 
recombinant VCAM-l (LLOYD et al. 1996). Adhesion of bone marrow CD34 + 

progenitor cells to fibronectin, present in the bone marrow stroma, depends on 
activation of (X4~ 1- and (X5~I-integrins in response to stimulation of stem cells with 
IL-3, granulocyte/macrophage colony-stimulating factor (GM-CSF) or stem cell 
factor (LEVESQUE et al. 1995). Interestingly, the cytokine dependent activation of 
hematopoietic progenitor cell adhesion was specific for (X4~1 and (X5~1 integrins, 
since other ~l integrins were not affected (LEVESQUE et al. 1995). Recently, it has 
been reported that expression of a constitutively active form of R-ras in a myeloid 
cell line enhanced binding activity to the ligand fibronectin. This effect was at least 
partially inhibited by peptides that specifically blocked (X4~1 integrin-mediated cell 
adhesion (ZHANG et al. 1996). 

Collectively, these results demonstrate rapid and transient regulation of 
(X4 integrin ligand binding activity by intracellular signals that are triggered by 
distinct classes of cell surface receptors. Therefore, mere analysis of integrin ex­
pression levels on normal or transformed cells does not provide important infor­
mation on the functional state of integrin receptors. For example, low levels of 
integrins locked in a high activity state could play an important role in regulating 
various cellular functions, while high levels of integrins that are frozen in an in­
active state may represent inert cell surface components. Thus, the unique mech­
anisms of regulating integrin ligand binding functions pose important limitations to 
the interpretation of tissue distribution data. 

5 Role of ~4-Integrins for Leukocyte Activation and Apoptosis 

T lymphocyte activation requires signals delivered by the TCR and accessory re­
ceptors. When exposed to immobilized VCAM-l in conjunction with anti-TCR/ 
CD3 monoclonal antibody, resting T cells can be induced to proliferate, to secrete 
IL-2, TNF-(X, IL-4, and GM-CSF, and to increase expression of CD28 and cyto­
toxic T lymphocyte antigen (CTLA)-4 (BURKLY et al. 1991; DAMLE and ARUFFO 
1991; DAMLE et al. 1994; UDAGAWA et al. 1996; VAN SEVENTER et al. 1991). 
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VCAM-l, when co-immobilized with CD3 monoclonal antibody, also induced the 
activation of transcription factors NF-AT, AP-I, and NF-KB (UDAGAWA et al. 
1996). The role of (X4 integrins in T cell costimulation have been confirmed in a rat 
model of immunity to the nematode Trichinella spiralis (BELL and ISSEKUTZ 1993). 
These experiments clearly demonstrate that antibodies to (X4 integrins may not only 
inhibit protective immunity to Trichinella spiralis infection by blocking lymphocyte 
migration to the gut but also by preventing initial activation of protective CD4 + T 
lymphocytes and by suppression of T cell effector functions after entry into the gut. 

In contrast to resting or short-term activated T cells, coligation of the TCR and 
(X4 integrins on chronically stimulated T cells results in activation-dependent death 
(DAMLE et al. 1993). Simultaneous stimulation of T cells with antibodies to CD2 
and CD28 or exogenous addition of IL-2 and IL-4 did not reverse the death­
promoting effects of (X4 integrin cosignals. It therefore appears that triggering of (X4 
integrins may either transmit stimulatory signals or induce cell death depending on 
the state of activation or differentiation of T lymphocytes. 

For B cell maturation and selection in germinal centers, interactions with 
follicular dendritic cells are of critical importance. Adhesion of B cells to follicular 
dendritic cells involves interactions of lymphocyte function-associated antigen 
(LFA)-1 with ICAM-I and of (X4 integrins with VCAM-l (FREEDMAN et al. 1990; 
KOOPMAN et al. 1991). Disruption of cell clusters formed by B lymphocytes and 
follicular dendritic cells by monoclonal antibodies against VCAM-l, ICAM-I, 
(X4 integrin, or LFA-I results in apoptosis of B cells (KOOPMAN et al. 1994). Con­
sistent with a role of (X4 integrins and LFA-l in positive selection of activated B 
cells in germinal centers, VCAM-l and ICAM-l act synergistically with anti-IgM 
to inhibit apoptosis of germinal center B cells (KOOPMAN et al. 1994). 

6 Diverse Functions of ct4-Integrins for Distinct Steps 
of Metastasis Formation 

Numerous animal models and analyses of human tumors have established a critical 
role of (X4 integrins for various steps during the development of metastatic tumors 
including detachment of cells from the primary tumor, invasion of secondary sites 
by circulating tumor cells and expansion or survival of tumor cells after infiltration 
of target organs. The results are discussed in the following chapters and are sum­
marized in'Table 2. 

6.1 Regulation of Tnmor Cell Adhesion to Endothelium by cx4-Integrins 

In animal models it was demonstrated that the metastatic capacity of melanoma 
cells was enhanced through (X4~I-VCAM-l interactions (GAJ,WFALO et al. 1995; 
OKAHARA et al. 1994). Inflammatory cytokines that induce the expression of 
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VCAM-l on endothelial cells were shown to enhance the metastatic capacity of 
0!4~1 positive melanoma cells (Table 2). Thus, i.v. injection of human melanoma 
cells into IL-l pretreated nude mice resulted in increased numbers of lung metas­
tases. Increased metastasis formation was inhibited by pretreatment of the tumor 
cells with an 0!4~1 integrin antibody indicating that the interaction of 0!4~1 integrins 
with VCAM-l or the alternatively spliced CS-l segment offibronectin exposed on 
the surface of stimulated endothelium facilitated the adhesion and transmigration 
of melanoma cells (GAROFALO et al. 1995; ELICES et al. 1994). Similarly, injection of 
murine Bl6 melanoma cells into TNF-O! pretreated mice resulted in a strong in­
crease of lung metastasis formation (Table 2). Pretreatment of the tumor cells with 
an 0!4~1 integrin antibody or i.v. injection of an VCAM-l antibody inhibited the 
increase in metastasis formation. These findings indicate that VCAM-l is the 
preferential ligand on activated endothelium for 0!4~1 integrin expressed by cir­
culating melanoma cells (OKAHARA et al. 1994). 

In vitro binding studies revealed that different human sarcoma cell lines 
preferentially adhere to stimulated endothelial cells via 0!4~I-VCAM-l interactions 
(MATIILA et al. 1992; TAICHMAN et al. 1991). The histocytochemical analysis of 
metastatic lesions demonstrated that VCAM-l positive endothelial cells colocalize 
with sarcoma cells expressing 0!4~1 integrins. In addition, the metastatic lesions 
were located in the close vicinity of major vessels expressing VCAM-l suggesting 
that sarcoma cells may have extravasated through VCAM-I expressing endothe­
lium (PAAVONEN et al. 1994). Together, these findings support the view that in­
teraction of 0!4~1 integrin with the inducible vascular ligand VCAM-l promotes 
sequestration of tumor cells in distant organs. In these tumor models enhanced 
accumulation of melanoma cells was associated with the development of an in­
creased number of metastatic tumors suggesting that 0!4 integrins did not inhibit 
expansion of disseminated tumor cells. 

In additional studies, de novo expression of 0!4~1 integrins was shown to 
enhance the metastatic capacity of Chinese hamster ovary (CHO) cells (MATSUURA 
et al. 1996). While i.v. injection of wild-type CHO cells resulted in the formation of 
lung metastases exclusively, 0!4~1 integrin-positive CHO cells invaded additional 
organs including adrenals, lymph nodes and bone marrow (Table 2). The altered 
dissemination of CHO cells expressing integrin 0!4~1 might be attributed to an 
enhanced adhesion ofCHO cells to the endothelium via 0!4~1 integrins. In addition, 
it seems possible that interactions of 0!4~1 integrin-positive CHO cells with fibro­
nectin or VCAM-l present in the stroma of target organs may retain the tumor cells 
that have l?assed the endothelial barrier. 

In addition to 0!4~1 integrin, the localization of lymphoid tumors may be 
regulated by the integrin 0!4~7, which functions as a mucosal homing receptor 
(BERLIN et al. 1993; HOLZMANN and WEISSMAN 1989; HOLZMANN et al. 1989; Hu 
et al. 1992). Analysis of tumors derived from patients with malignant lymphoma­
tous polyposis (MLP) indicated that the interaction of 0!4~7 integrins with the 
vascular counter receptor MAdCAM-l may determine the mucosal dissemination 
pattern of MLP (PALS et al. 1994). MLP is regarded as a gastrointestinal variant of 
the mantle cell (MC) lymphoma and a major feature of MLP is the formation of 
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multiple lymphomatous polyps along the gastrointestinal tract. Comparison 
of metastatic lymphoma cells derived from mucosal sites (MLP) and from lymph 
nodes (MC) revealed that a4~7 integrins are exclusively expressed on lymphoma 
cells from mucosal sites (Table 2). In contrast, expression of L-selectin, LFA-I, 
ICAM-I, or CD44 did not differ between MLP or MC lymphoma cells. These 
studies indicate that a tissue-specific homing mechanism mediated by a4~7 integrin 
and MAdCAM-I may control the dissemination of MLP lymphoma cells to the 
intestinal mucosa (PALS et ai. 1994). Analysis of a4~7 integrins on additional non­
Hodgkin's lymphomas confirmed the crucial role of a4~7 integrins for tumor cell 
dissemination (DRILLENBURG et ai. 1997). Thus, a4~7 integrins are expressed on T 
and B cell non-Hodgkin's lymphomas localized preferentially in mucosa-associated 
lymphoid tissues but are absent on non-Hodgkin's lymphomas derived from lymph 
nodes or cutaneous sites (DRILLENBURG et ai. 1997). 

6.2 Regulation of Tumor Cell Invasiveness by cx4-Integrins 

Homotypic cell adhesion of tumor cells is considered important for various steps of 
the metastatic cascade. Whereas the detachment of tumor cells from the primary 
tumor may be suppressed by homotypic adhesion, the aggregation of tumor cells 
and the formation of tumor cell emboli in circulation may facilitate the arrest of 
metastatic cells in the vasculature at distant sites (REEVES 1992; WEISS et ai. 1988). 
Accordingly, a recent study has implicated a4~1 integrins in enhanced homotypic 
interactions and reduced metastasis formation of murine melanoma cells (QIAN 
et ai. 1994). In these experiments, three sublines of the murine B 16 melanoma with 
different expression levels of a4~1 integrins were shown to markedly differ in their 
metastatic capacity after subcutaneous injection despite similar in vitro growth 
rates (Table 2). In contrast to intravenous injection of cancer cells, subcutaneous 
injection mimics the early steps of metastasis, beginning with cell growth at a 
primary tumor site. Under these conditions, BI6 melanoma sublines with high 
expression of a4~ I showed decreased ability to form tumor colonies in the lung. 
Moreover, transfection of highly metastatic B 16 melanoma cells with the a4 inte­
grin subunit cDNA induced the low metastatic phenotype. 

Immunohistochemical analysis of primary tumors derived from low metastatic 
BI6 sublines revealed that a4 was expressed at high level on the tumor cell margins, 
whereas on primary tumors of highly metastatic melanoma cells expression of 
C'l4 integrins was nearly absent (QIAN et ai. 1994). When melanoma cells were 
injected intravenously. however, metastasis formation in lung was independent on 
a4 integrin expression. These findings suggest that suppression of the metastatic 
capacity may result from increased, a4 integrin-mediated homotypic tumor ccll 
adhesion at the primary site. Consistent with this hypothesis, in vitro binding assays 
directly demonstrated homotypic adhesion of a4 integrin positive melanoma. 
Moreover, in vitro matrigel invasion of melanoma cells was reduced due to high 
level expression of a4 integrins. Treatment with an anti-a4 integrin antibody re­
stored the ability to invade the substrates (QIAN et ai. 1994). These observations led 
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to the conclusion that homophilic adhesion mediated by cx4 integrins prevents the 
detachment of melanoma cells from the primary tumor thereby inhibiting inva­
siveness and subsequent metastasis formation. 

In contrast to the site of primary tumor growth, homotypic adhesion of tumor 
cells in the circulation may facilitate the arrest of tumor cells in the microvascu­
lature and enhance their metastatic capacity (LOTAN and RAZ 1983; URUSHIHARA 
et al. 1984; WEISS et al. 1988). However, QIAN et al. (1994) reported that melanoma 
cells overexpressing cx4~1 integrins were found mostly as single cells in the lung 
vasculature indicating that homotypic adhesion of cx4~1 integrin positive melanoma 
cells did not occur in circulation. These findings may explain why the expression of 
cx4~1 integrins failed to enhance lung colonization after i.v. injection. However, it is 
conceivable that treatment of mice with cytokines that enhance the density of the 
cx4 integrin ligand VCAM-l at the endothelium may have increased lung metastasis 
formation similar to the results described above (GAROFALO et al. 1995; OKAHARA 
et al. 1994). 

Another important mechanism controlling the invasive capacity of tumor cells is 
their ability to secrete proteolytic enzymes. A recent report indicates that cx4~1 
integrins are involved in the regulation of matrix metalloproteinase expression. 
Synovial fibroblasts, which express integrins cx5~1 and cx4~1, showed enhanced ex­
pression levels of certain metalloproteinases when plated on RGD-containing fib­
ronectin fragments or anti-cx5~1 integrin antibodies indicating that cx5~1 integrin­
mediated signals lead to the induction of matrix metalloproteinases (HUHTALA et al. 
1995). Simultaneous addition of ligands that contain the fibronectinjCS-l binding 
motif for cx4~1 integrins or complete fibronectin that contains both the RGD site and 
the CS-l fragment, however, suppressed the induction of metalloproteinases 
(HUHTALA et al. 1995). It therefore appears that cx4~1 integrin mediated signals may 
inhibit the induction of metalloproteinases in a dominant manner. Thus, it is con­
ceivable that ligand binding to cx4~1 integrin also down-regulates matrix metallo­
protease secretion by melanoma cells leading to reduced tissue invasion and impaired 
metastasis formation. Regulation of matrix metalloproteinases could therefore 
provide an alternative explanation for the reduced metastasis formation of cx4~1-
integrin-positive B 16 melanoma cells after subcutaneous injection (QIAN et al. 1994). 

Together, the various results from experimental tumor models using melanoma 
or sarcoma cells suggest that the effects mediated by cx4 integrins differ dependent 
on the stage of tumor progression at which cx4 integrins are induced. While in­
duction of cx4 integrin expression on primary tumors may support homotypic tu­
mor cell interactions or inhibit metalloproteinase secretion resulting in reduced 
metastasis formation, increased expression of cx4 integrins on tumor cells that have 
entered blood circulation may promote interactions with VCAM-l positive endo­
thelium thereby enhancing the frequency of metastasis formation. 
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6.3 Expansion of Disseminated Lymphoid Tumor Cells 
is Inhibited by ct4-Integrins 

Using a murine lymphoma model, we have recently shown that 0(4 integrins may 
mediate tumor suppressive effects (GosSLAR et al. 1996). Cell lines from the murine 
T cell lymphoma LB were established that differ exclusively in the expression of 0(4 
integrins. Despite similar growth rates in vitro significantly different metastatic 
capacities were observed after i.v. injection into syngenic mice. It was demonstrated 
that metastasis formation of LB-0(4 cells in a large number of lymphoid or non­
lymphoid organs including spleen, lymph nodes, Peyer's patches, lung, liver, and 
kidney was greatly reduced when compared with LB-NTK control cells. In marked 
contrast, expansion of metastatic lymphoma cells in bone marrow was not affected 
by the expression of 0(4 integrins suggesting that bone marrow may represent a 
unique compartment for the regulation of metastasis formation by 0(4 integrins. 
Interestingly, in a recent report it was shown that de novo expression of 0(4 integrin 
in CHO cells promotes tumor formation in bone marrow of nude mice (MATSUURA 
et al. 1996). 

In vivo homing experiments with slCr-labeled lymphoma cells revealed that 
LB-0(4 and LB-NTK cells accumulated at least with same efficiency in lymphoid 
and nonlymphoid organs. In mucosal lymphoid organs such as Peyer's patches 
and mesenteric lymph nodes the accumulation of LB-0(4 cells was selectively 
enhanced compared to control LB-NTK cells. Histopathological analysis revealed 
that at early time points of metastatic growth both LB-0(4 and LB-NTK cells 
were predominantly localized to the T cell areas of lymphoid organs. These re­
sults therefore confirmed the intact migratory capacity of LB-0(4 cells. In addition, 
the SICr labeling experiments revealed that the number of circulating or extrav­
asated LB-0(4 and LB NTK cells were comparable for up to 48 h after i.v. in­
jection into mice. These observations argue against an enhanced susceptibility of 
LB-0(4 cells to NK (natural killer) cell lysis in vivo, because NK cell mediated 
tumor cell clearance was shown to be rapid and to occur within 24 h after i.v. 
injection of tumor cells (HANNA and FIDLER 1980, 1981). Collectively, these data 
strongly suggest that the inhibitory effect of 0(4 integrins on lymphoma metastasis 
formation occurs at a stage subsequent to the infiltration of target organs 
(GoSSLAR et al. 1996). 

The studies using the LB lymphoma model identify additional events of the 
metastatic cascade that may be regulated by 0(4 integrins. Consistent with previous 
findings (DRILLENBURG et al. 1997; GAROFALO et al. 1995; OKAHARA et al. 1994; 
PALS et al. 1994), the in vivo migration experiments using lymphoma cells support 
the concept that expression of 0(4 integrins promotes accumulation of tumor cells in 
selected organs (see above). For some tumors, e.g., melanoma cells (GAROFALO et al. 
1995; OKAHARA et al. 1994), this mechanism may result in enhanced metastasis 
formation. In contrast to these models, however, the formation of lymphoma cell 
metastases may be impaired by 0(4 integrin dependent events. These inhibitory 
mechanisms operate at a stage subsequent to the invasion of target organs and 
appear to dominate over positive effects on tumor cell accumulation. Therefore, in 
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some tumors proliferation or survival of metastatic cells may also depend on 
(14 integrins. 

A possible mechanism by which (14 integrins may influence the growth and 
expansion of lymphoma cells is via adhesion triggered signal transduction events. 
The differentiation and survival of T and B lymphocytes in lymphatic organs was 
shown to depend on (14 integrin mediated signals (BURKLY et al. 1991; DAMLE 
et al. 1993; KOOPMAN et al. 1994). In general, signals may be transmitted either by 
cytoplasmic proteins linked to (14 intcgrins or by associated transmembrane re­
ceptors thereby gcnerating unique cell surface-bound signaling complexes. Re­
cently it was reported that (14~1 and (14~7 intcgrins associatc with several 
members of the transmcmbrane-4 superfamily (TM4SF) including CD9, CD63, 
CDS 1 , and CDS2 (DONG et al. 1995; IKEYAMA et al. 1993; MANNION et al. 1996; 
RADFORD et al. 1995). Interestingly, CDS1 (T APA-l) has previously been de­
scribed as the "target of an anti proliferative antibody." It was shown that anti­
body cross-linking of CDS1 inhibits the proliferation of B lymphoma cells in vitro 
(OREN et al. 1990). 

Consistent with a role of TM4SF proteins in tumor progression, B16 mela­
noma cells transfected with cDNA cncoding CD9 were shown to form fewer pul­
monary metastases after i.v. injection than controls. Further in vitro studies 
suggested that the reduced metastatic capacity may rcsult from impaired cell mo­
tility (IKEY AMA et al. 1993). Prostate carcinoma cells transfected with CDS2, an­
other TM4SF member, showed reduced metastatic capacity after s.c. injection into 
nude mice, whereas the cell growth at the primary tumor site, i.e., the tumor­
igcnicity, was not altered (DONG et al. 1995). Unlike tumor cells transfected with 
CD9 or CDS2, expression of CD63 in human melanoma cells resulted in a reduced 
tumorigenicity after s.c. injection into nude mice suggesting a suppressive effect of 
CD63 on melanoma cell growth in vivo (RADFORD et al. 1995). Taken together, 
overexpression of TM4SF proteins appears to affect tumor formation by various 
mechanisms. So far it remains unclear, however, whether association with integrins 
is rcquired to induce TM4SF dependent anti-tumor effects including reduccd 
growth and motility. It is, however, tempting to speculate that ligation of TM4SF 
associated intcgrins may induce TM4SF dependent signaling resulting in tumor 
suppressive effects that are triggered by integrins, but mcdiated by TM4SF pro­
teins. 

Recently, we have demonstrated that the TM4SF protein CDS I (TAPA-I), but 
not CD9, is expressed on LB lymphoma cells (M. BllTNER and B.HOLZMANN, 
unpublished observations). It is therefore conceivable that ligand induced cross­
linking of (14 integrins may result in coclustering of CDS I on lymphoma cells. As a 
consequence, TM4SF dcpendent signaling pathways may be activated that mediatc 
impaired proliferation or survival of disseminated lymphoma cells. According to 
this hypothcsis, the biological response of tumor cclls to (14 integrin expression and 
ligand induced ligation may be critically controlled by the expression pattern and 
surface density of regulatory coreceptors. 
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7 Summary 

Taken together, ot4 integrins may influence metastatic process at various stages 
(Fig. I). The detachment of tumor cells from the primary tumor and the invasion of 
the surrounding tissue represent the onset of tumor metastasis. There is good ex­
perimental evidence that at the primary tumor site expression of ot4 integrins in­
hibits the ability of melanoma cells to break loose. This could be achieved either by 
strengthening of homotypic adhesion to adjacent tumor cells or by down regulation 
of matrix metalloproteases that are required for tumor cell migration through the 
extracellular matrix. After entering the blood circulation, ot4 integrins on tumor 
cells derived from melanomas, sarcomas or lymphomas rather promote than inhibit 
accumulation of disseminated cells in distant organs. The positive effects of 
ot4 integrins at this stage of metastasis formation appear to depend on ot4 integrin 
interactions with ligands expressed on the surface of endothelial cells. While 
VCAM-I is expressed on endothelial cells exposed to inflammatory cytokines, 
MAdCAM-I is constitutively expressed on mucosal endothelium. In addition, it is 
conceivable that tumor cell aggregates trapped in the microcirculation may trigger 
local inflammatory reactions that result in VCAM-I up-regulation. Tumor cell­
bound ot4 integrins may strengthen adhesion to endothelium and promote trans­
endothelial migration (HAUZENBERGER et aJ. 1997; MEERSCHAERT and FURIE 1994). 

e Expansion I Survival 
Lymphoma 

Fig. 1. Distinct effects of ()(4-integrins on various steps of the metastatic cascade. Engagement of ()(4 
integrins on cells of the primary tumor may inhibit detachment and invasion of malignant cells, whereas 
expression on circulation tumor cells may enhance dissemination. In some tumors, expansion or survival 
of tumor cells that have lodged to secondary sites is impaired by ()(4 integrins. Tumor models for which 
these various effects have been demonstrated are indicated 
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Successful formation of new tumor colonies in distant organs is the final step in the 
metastatic cascade. Interestingly, cx4 integrin dependent mechanisms may either 
promote or inhibit this process. Thus, it was observed that cx4 integrins may direct 
cancer cells like CHO and lymphoma cells to organ compartments, where ligands 
for cx4 integrins are expressed (e.g., bone marrow). Depending on the tumor type 
this event may result in enhanced metastasis formation. However, as was docu­
mented for murine lymphoma cells cx4 integrins may also inhibit tumor cell growth 
either by inducing apoptosis or by reducing the proliferation rate. 

Based on numerous studies on human cancers and experimental tumor models, 
cx4 integrins may represent attractive target molecules for therapeutic manipulation 
of tumor cell behavior. To this end, however, it will be of great importance to 
precisely define the molecular basis for the adverse effects of cx4 integrins on me­
tastasis formation. 
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1 Introduction 

The malignant process is, in many aspects, a distorted image of normal physiological 
activities. In this respect, the dissemination mechanism of malignant lymphomas may 
display a hazy reflection of normal cell migration, an essential function of the lym­
phoid system. The successful response of the individual's defense machinery against 
invading microorganisms is largely due to its ability to rapidly mobilize leukocytes to 
the site of infection. Cell motility in blood, lymph, lymphoid organs and tissues is 
highly dependent on the coordinated activity of different cell adhesion molecules. 
These are implicated in the transendothelial migration of intravasated and extrava­
sated cells, the capture of cells by the luminal surface of the endothelium, cell rolling 
and cell arrest in the vasculature, binding of lymphocytes to the high endothelial 
venule (HEV) of the lymph node, as well as subsequent cell lodgment in organ pa­
renchyma (a process known as cell homing), and cell migration on extracellular 
matrix (ECM) (PARKHURST and SALTZMAN 1992; PICKER and BUTCHER 1992; THO­
MAS et al. 1992; SPRINGER 1994; LEY and TEDDER 1995). Three pairs of adhesion 
receptor and counterreceptor families are implicated in the interaction between leu­
kocytes and their target cells in the endothelium and tissues: (1) integrins, which target 
molecules of the immunoglobulin superfamily (IgSF) or ECM components, (2) se-
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lectins, which interact with sialylated carbohydrate determinants O-linked to mucin­
like molecules (also known as addressins), and (3) CD44 receptors with binding 
affinity for matrix and cell surface constituents (RUOSLAHTI 1991 ; YAMADA 1991; 
PICKER and BUTCHER 1992; LESLEY et al. 1993; SPRINGER 1994; NAOR et al. 1997). It is 
generally agreed that the reciprocal interaction between endothelial cell P- and E­
selectins and leukocyte L-selectin with the corresponding leukocyte and endothelial 
cell addrcssins mediates the initial capture of leukocytes from the flowing blood and 
their roll along the blood vessels. Cell rolling is halted by a firm interaction between 
the leukocyte integrins (Mac-I, lymphocyte function-associated antigen [LFA-I], 
very late antigen-4 [VLA-4]) and endothelial-cell IgSF target molecules (intercellular 
adhesion molecule-I [ICAM-I], ICAM-2 and vascular cell adhesion molecule 
[VCAM-I]). The transition from the rolling phase to firm attachment is activated by 
cytokines or chemokines accumulating at the inflammation site. Following the arrest 
stage, the leukocytes initiate a process of transendothelial migration, which is ter­
minated by their localization in the inflamed tissue. This process is also mediated by 
leukocyte intcgrins and their endothelial cell IgSF counterparts. The selectin phase of 
leukocyte migration to the inflamed site overlaps, to a certain extent, with the integrin 
phase, as selectins participate in the leukocyte arrest and diapedesis, whereas integrins 
playa role in the cell rolling stage. Cross-talk between selectins, chemokine receptors 
and integrins orchestrates the entire leukocyte migration process, enabling a rapid 
and efficient response to infection by microorganisms (BUTCHER 1991; PICKER and 
BUTCHER 1992; SPRINGER 1994). 

CD44 is another cell surface molecule that influences cell migration and cell 
lodgment in lymphoid organs or inflamed tissues. The molecule is a single chain 
glycoprotein comprising a conserved NH2-terminal domain, a nonconserved 
membrane proximal region, a conserved transmembrane-spanning domain and a 
conserved cytoplasmic tail that can interact with the cytoskeleton. The genomic 
sequence of CD44 includes five constant exons at the 5' terminal, five constant 
exons at the 3' end, and ten variant cxons in the middle (designated VI, V2, 
V3 .... VIO). Differential alternative splicing generates a variable region in the CD44 
transcript (generally designated CD44v), which contains different combinations of 
variant exons. Insertion of exons V4, V5, V6 and V7 generates the pMeta-1 CD44 
which, upon transfection, confers metastatic potential on nonmetastatic rat pan­
creatic adenocarcinoma cells (GONTHERT et al. 1991). Insertion of variant exons V8, 
V9 and VIO gives rise to epithelial cell CD44. Insertion of variant exons V3-VlO in 
tandem produces keratinocyte CD44, one of the longest CD44 isoforms known. 
Standard GD44 (CD44s), which lacks the entire variable region and is expressed 
preferentially on hematopoietic cells, is also known as CD44H (Fig. I). The ligand 
binding site of CD44 is included in the NHrterminal extracellular domain. The 
principal ligand of CD44 is hyaluranie acid (HA; hyaluronate, hyaluronan), but 
other matrix components (collagen, fibronectin, laminin and chondroitin sulfate), 
as well as nonmatrix constituents (mucosal vascular addressin, serglycin, 
osteopontin and the class II invariant chain), can interact with this receptor. The 
structural polymorphism of the CD44 molecule may explain its multifunctional 
nature and its ability to interact with many ligands. The CD44 glycoprotein is 
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involved in cell-cell and cell-matrix interactions, as well as in cell traffic on endo­
thelium or ECM components. The molecule collaborates (in humans but not in 
mice) with selectins and integrins in the process of lymph node homing by binding 
the lymphocytes to HEV. In addition, CD44 is implicated in the presentation of 
cytokines, chemokines and growth factors to traveling cells. The molecule is also 
involved in the transmission of growth signals, as well as signals mediating he­
matopoiesis and prevention of apoptosis. Finally, uptake and intracellular degra­
dation of hyaluronic acid can be mediated by the CD44 receptor. Marked 
accumulation of CD44, and in some cases also of hyaluronan, is detected in areas 
of intensive cell migration and cell proliferation, as in wound healing, tissue re­
modeling, inflammation, morphogenesis and carcinogenesis (reviewed in LESLEY 
et al. 1993; NAOR et al. 1997). 

It has been demonstrated in certain experimental models that extravasation of 
lymphocytes and their subsequent localization in different organs is dependent on a 
specific interaction between the lymphocyte adhesion receptor and the target cell's 
counterreceptor. These cell surface molecules are used as "key and lock codes," enabling 
cells expressing different adhesion phenotypes to lodge in distinct lymphoid organs or 
inflamed sites. The following are a few examples: Homing to peripheral lymph nodes is 
targeted by lymphocyte L-selectin to peripheral lymph node vascular addressin (PNAd) 
of the organ HEV. This specific pairing is stabilized by the association between the 
activated integrin LFA-l (IXL~2) and molecules of the ICAM family (PICKER and 
BUTCHER 1992; SPRINGER 1994). The interaction between lymphocyte CD44 and an 
unknown ligand of human HEV may further enhance the peripheral lymph node homing 
process (JALKANEN et al. 1987; PALS et al. 1989; TOYAMA-SORIMACHI et al. 1993). 
Lymphocyte homing to Peyer's patch is mediated by a different set of adhesion molecules: 
Iy~phocyte integrin 1X4~7 and HEV mucosal vascular addressin (MAd). It has not been 
resolved whether these molecules are indeed directly paired, as suggested by HAMANN et 
al. (1994), or if each of them targets a different counterreceptor. Adhesion molecules 
LFA-l and CD44 may further increase binding of the lymphocytes to Peyer's patch HEV, 
facilitating their homing. Infiltration of memory T cells into the skin is mediated by a 
specific interaction between the addressin cutaneous lymphocyte-associated antigen 
(CLA) of the lymphocyte and the endothelial-leukocyte adhesion molecule-l (ELAM -1, 
E-selectin of skin vasculature). The specific pairing is presumably strengthened by the 
interaction between lymphocyte VLA-4 and cutaneous endothelium VCAM-l (PICKER 
and BUTCHER 1992; SPRINGER 1994). These interactions explain why lymphocytes re­
moved from one of the above mentioned sites preferentially recirculate, following their 
injection, to th.e organ from which they were collected (MACKAY 1992). It is not clear 
whether a sUbpopulation of cells a priori expresses organ- or site-specific adhesion 
molecules, or if local factors induce the cells to express the specific receptor after their 
random lodgement in the target tissue. Selective up-regulation of a particular set of 
surface molecules following their interaction with the tissue counterreceptor is another 
possible mechanism for generating the adhesive key and lock pairing. 

Disseminating neoplastic cells may exhibit the same or an altered version of the 
chemotactic activity and adhesion-dependent homing function displayed by normal 
cells for circulation and localization in target tissues. Organ-derived chemotactic fac-
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tors, present in soluble form or confined to the cell membrane or ECM, are involved in 
the selective navigation of metastatic cells and in the dissemination oflymphoma cells 
to specific sites (YEATMAN and NICOLSON 1993). In addition, adhesion molecules ex­
pressed on metastatic cells may be responsible for the selective lodgment ofthe invading 
cells in specific organs. Indeed, YEATMAN and NICOLSON (1993) demonstrated, using an 
in vitro assay, that mouse B16 melanoma cells, selected by serial in vivo passages for 
brain or lung colonization, adhere at greater rates to the endothelium of their own 
target microvessels than do the parental cell lines or lines selected for other organ 
specificities. Lymphoma cells expressing the (J(4~7-integrin exhibited MAd-dependent 
adhesion to mucosal HEV (STRAUCH et al. 1994) and preferential homing to Peyer's 
patches and mesenteric lymph nodes (GOSSLAR et al. 1996). 

A murine T cell lymphoma, designated LB, has been used in our laboratory as 
an experimental model for exploring the process of integrin- and CD44-dependent 
malignant dissemination in the context of the tumor's adhesiveness and homing 
properties. This article surveys our major in vivo and in vitro findings and attempts 
to evaluate them against corresponding observations related to normal physio­
logical activities. For a more general perspective, we refer the reader to a few 
comprehensive review articles (DUSTIN and SPRINGER 1991; PICKER and BUTCHER 
1992; LESLEY et al. 1993; SPRINGER 1994; NAOR et al. 1997) . 

.. 
Fig. lA-Co The C044 glycoprotein (A), its exon map (8) and examples of six alternatively spliced 
transcripts (C). A Protein structure. Using disulfide bonds, the NH2-terminal of the molecule forms a 
globular domain, or three globular subdomains. The circle and the "downstream" ellipse represent areas 
that influence hyaluronate binding (PEACH et al. 1993; ZHENG et al. 1995). The black track inside the circle 
refers to a region displaying 30% homology with cartilage link protein and proteoglycan core protein, 
both showing HA binding ability. The black track at the NHrterminal (inside and outside the circle), 
transmembrane-spanning domain (23 amino acids) and cytoplasmic tail (70 amino acids) represents 
regions with 80%-90% interspecies homology. The alternatively spliced short cytoplasmic domain (3 
amino acids) is nonproportionately represented by a small bar. The lightly shaded track in the center 
indicates the nonconserved membrane-proximal region, which display 35%-45% interspecies homology. 
The optional variable region, containing various combinations of variant ex on products (see C) is inserted 
between amino acids 201 and 202 (mature protein) and marked by a zig-zag track. The full amino acid 
sequence of human and mouse C044s is presented in ZHOU et al. 1989 and the nucleotide sequence 
(including the variable region) of human C044 in SCREATON et al. 1992. Filled circles, potential N-linked 
glycosylation. X, areas rich in serine/threonine, possible sites for O-linked glycosylation (those of the 
variable region are arbitrarily assigned). Filled diamonds, potential sites for glycosaminoglycans 
(chondroitin sulfate, heparan sulfate) incorporation. Open circles, potential sites for phosphorylation 
(only part of the sites are depicted). The symbols on the standard part of the molecule mostly refer to 
mouse C044 (ZHOU et al. 1989), whereas those of the variable region are based on information taken 
from both mouse and humans. 8 Exon map. The .filled circles represent exons of the constant regions. 
Open circles represent variant exons that can be inserted by alternative splicing in the variable region. 
Note: exon VI is 'not expressed in the human C044. LP, leader peptide-encoding exon; TM, trans­
membrane-encoding exon. CT, cytoplasmic tail - encoding exons. C Examples of alternatively spliced 
transcripts. I and 2, Standard C044 with short and long cytoplasmic tails, respectively, which lack the 
entire variable region. 3, pMeta-1 (C044v4-7). Exons v4, v5, v6 and v7 are inserted in tandem between 
exons 5 and 17.4, pMeta-2 (C044v6,7). Exons v6 and v7 are inserted between exons 5 and 17. pMeta-1 
and pMeta-2 are known as "metastatic" C044, because their cONA confers, upon transfection, meta­
static potential on nonmetastatic rat pancreatic adenocarcinoma cells (GONTliERT et al. 1991). Note that 
exon 16 is not expressed in pMeta-1 or pMeta-2. 5, Epithelial C044 (C044v8-1O), expressed predomi­
nantly on epithelial cells. Exons V8, V9 and VIO are inserted between exons 5 and 16. 6, Keratinocyte 
C044 (C044V3-1O), one of the largest C044 molecules known. Exons V3 through VIO are inserted 
between exons 5 and 16. (Reproduced from NAOR et al. 1997) 
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2 LB Cells Use Different Migration Routes for Spleen 
and Lymph Node Invasion 

LB is a T cell lymphoma (LUGASI et al. 1990) spontaneously originating in a BALBI 
c mouse (RUGGIERO ct al. 1985) that aggressively invadcs the spleen and lymph 
nodes following s.c. inoculation. The time required to kill 50% of the mice fol­
lowing i.p. injcction of 100 and 1000 LB cells is 21 and 16 days, respectively, and 
12 days or less for 104 and 105 cells (ZAHALKA et al. 1995). Flow cytometry reveals 
that LB cells express the following cell surface molecules: Thy-I, CD8, major 
histocompatibility complex (MHC) class I antigen (Kd and Dd), CD25 (interleukin-
2 receptor), Jlld, B2A2, CD44 and LFA-l (CDII a/CDI8; Cl.L~2). The lymphoma 
cells only slightly express CD4 and CD 11 b (Mac-I), but do not display CD3, CD5, 
class II antigens, gp70 retroviral protein, CDllc (pI50, 95) and MEL-14 (LUGASI 
et al. 1990; ZAHALKA et al. 1993, 1995, and unpublished observations). LB cells 
express the ~ 1- and ~7-chain integrins, but do not display the Cl.4- and Cl.5-chain of 
these molecules. Therefore. VLA-4 and VLA-5 cannot be detected on the cell 
surface (GosSLAR et al. 1996). Although CD3 is not expressed on the surface of LB 
cclls, immunoprecipitation assays revealed the presence of CD3 Y-, 8- and E-chains 
in the cell extract (Tzivion and Naor, unpublished observations), indicating the T 
cell origin of these cells. In addition, LB cells exhibit the insulin receptor, and their 
growth, both in vitro (PILLEMER et al. 1992) and in vivo (SHARON et al. 1993), is 
highly dependent on physiological concentrations of insulin. Yet, the in vitro 
proliferation of the lymphoma cells is also stimulated by interleukin (IL)-2 and IL-4 
as well as by growth hormone (unpublished observations). 

Cell suspensions of spleen or lymph nodes taken from BALB/c mice subcu­
taneously inoculated with LB cells one day earlier, did not kill, following their 
transfer, naive recipient mice. This indicates that at that time the number of in­
vading tumor cells in these organs was very small and, therefore, nonlethal. 
However, when spleen, but not lymph node, cells were transferred 4 days after 
lymphoma inoculation, they killed the recipient animals. In the lymph node, 7 days 
were required to generate a lethal dose of LB cells, yet the lethal effect of the spleen 
did not decline at that time, as demonstrated by the cell transfer experiment. This 
sensitive assay suggests that the lymphoma cells enter the spleen before they arrive 
the lymph nodes and that invasion of the spleen is not necessarily accomplished by 
tumor cells previously parked in the lymph node (ZAHALKA et al. 1993). 

It shollld be emphasized, however, that 3 days after s.c. inoculation of LB cells 
into the animal's left flank, near the hind limb, histological examination revealed the 
presence of a few tumor cells in the subcapsular sinus of the axillary and brachial 
lymph nodes (ZAHALKA et al. 1995). This low number of LB cells is presumably not 
lethal in the above described transfer experiment. A different tactic (Gosslar and 
Holzmann, Technical University, Munich) involved the tagging of LB cells with ~­
galactosidase (~-gal), using retrovirus-mediated gene transfer, and the s.c. injection 
of one of the isolated labeled clones (G 1) into the neck of syngenic BALB/c mice. 
Frozen, inguinal lymph node sections were prepared 10 days later and stained with 
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the ~-gal substrate 5-bromo-4-chloro-3-inodyl-~-D-galactopyranoside (x-gal) . The 
LBI3-gal cells stained blue. As seen in Fig. 2, the LBI3-ga l cells were concentrated 
mainly in the marginal zone of the lymph node, whereas only a few scattered cells 
were detected in the cortical or medullary areas. Similar results were obtained with 
other LBI3-gal clones. Both the histological and the histochemical analyses show that 
s.c . inoculated LB cells first accumulate in the subcapsular sinus and then penetrate 
the deep regions of the lymph node, indicating that they invade the lymph nodes via 
the afferent lymphatics. Subcutaneously inoculated LB cells enter the spleen via the 
blood circulation. At 12 days after i.v. (rather than s.c.) injection, LB cells were 
detected in the spleen, but not in the lymph nodes (ZAHALKA et al. 1995). This is 
hardly surprising, in view of the fact that the lymphoma cells do not express the 
MEL-14 homing molecule (ZAHALKA et al. 1993), and, therefore, cannot bind to the 
lymph node HEY as normally do naive blood-borne lymphocytes, which display this 
surface molecule (GALLATIN et al. 1983). Indeed, a binding assay of a frozen lymph 
node section (BUTCHER et al. 1979) revealed that LB cells do not adhere in vitro to 
the HEY (ZAHALKA et al. 1995), proving that they do not express other surface 
molecules implicated in HEY-associated entry into the lymph nodes. In this context, 
it should be recalled that mouse CD44 (expressed on LB cells), in contrast to human 
CD44, does not interact with HEY (CULTY et al. 1990). It should be stressed , 
however, that at a later time, or under different experimental conditions, i.v. injected 

Fig. 2. Penetration of LB cells into the lymph node via the afferent lympha tics. LB cells were tagged with 
~-galactos idase using retrovirus-mediated gene transfer, cloned and subcutaneously injected into the neck 
of syngeneic BALB/c mice. Frozen, inguinal lymph node sections were prepared 10 days la ter and stained 
with x-ga l. Histologica l a nalysis revealed that the tagged LB cells had accumulated ma inly in the ma rgina l 
zone of the lymph node, indica ting that they invade this organ via the a fferent lymphatics. x400 
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LB cells may enter the lymph nodes through the afferent route after having dis­
seminated in the lymphatics, or via the HEV due to up-regulation of cell surface 
HEV binding molecules. Sheep memory T lymphocytes, which, like LB cells, express 
high levels of CD44, but lack MEL-14, enter the lymph node through the afferent 
lymphatics (MACKAY et al. 1990), precisely like the lymphoma cells. It is tempting to 
speculate that in the mouse (and perhaps in sheep as well) CD44 is the key for entry 
into the lymph node via the afferent lymphatics, whereas CD18 is the key that opens 
the capillary gate of the spleen (see Sect. 3). In addition, the distinctive expression of 
MHC molecules on spleen - vs lymph node - infiltrating LB cells may also con­
tribute to their discrete pattern of homing. However, this notion does not reconcile 
with the flow cytometry analysis (Fig. 3) of cells isolated from spleen and lymph 
nodes, which revealed that both cell types express the Dd antigen, but not the Kd 
antigen, whereas the parent LB cells express both class I products. Indeed, it has 
been shown (EISENBACH and FELDMAN 1991; FELDMAN and EISENBACH 1991) that 
the emergence of a metastatic phenotype is sometimes associated with a change in 
MHC expression. 

Careful histological examination of blood sample smears did not reveal the 
presence of LB cells in the blood circulation (ZAHALKA et al. 1993), suggesting that 
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Fig. 3. Down-regulation of K d class I antigen hy spleen- and lymph node-infiltrating LB cells. Parental 
LB cells and LB cells isolated from spleen (LB spleen) and peripheral lymph node (LB lymph node) 
following their s.c. inoculation, were analyzed by flow cytometry. using anti-Kd and anti-Dd monoclonal 
antibodies (mAhs). Concanavalin A-induced hlast cells served as a positive control. Left histogram in 
each panel, nonspecific binding of the indicator fluorescein-labeled antibody to the various cell types. 
Right histogram in each panel. specific binding of the mAb to the same cells. When two histograms 
match. specilic binding is negligible or absent. Both Kd and Dd antigens were detected on parental LB 
cells. whereas only Dd antigen was present on LB cells isolated from the lymphoid organs 
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only a very small number of tumor cells leave the primary skin growth, later 
penetrating the lymphoid organs via the blood and afferent lymphatics and then 
massively proliferating there. 

As mentioned earlier, LB cells do not express the cr4-integrin chain (although 
they do express the ~l- and ~7-chains) and, consequently, do not display the intact 
a4~1- (VLA-4) and a4~7-integrins (GOSSLAR et al. 1996). As VLA-4 and cr4~7 are 
implicated in the cell interaction with endothelium and the subsequent homing to 
lymphoid organs or inflamed tissues (PICKER and BUTCHER 1992), GOSSLAR and 
colleagues (1996) investigated how cell surface expression of a4-integrin influences 
the establishment of the lymphoma cells in various organs. To this end, LB cells 
were infected with the NTK-a4 recombinant retrovirus or with virus carrying an 
empty pNTK vector. The retrovirus-mediated gene transfer conferred uniform a4 
expression on polyclonal or clonal a4 cell lines and, as a result, the cells displayed 
functional a4~1 (VLA-4) and cr4~7 molecules, as indicated by flow cytometry and 
adhesion assays. After i.v. injection, there was a similar accumulation of 51Cr_ 
labeled LB-a4 and control LB-NTK cells in blood, intestine, skin, spleen, lung, liver 
and peripheral lymph nodes. LB-cr4 cells, however, prcferentially migrated to 
mesenteric lymph nodes and Peyer's patches when compared with LB-NTK cells, a 
phenomenon consonant with the finding that cr4~7-integrin guides lymphoid cells 
to mucosal tissue (Hu et al. 1992; HAMANN et al. 1994). Although LB-cr4 cells 
migrate to lymphoid and nonlymphoid target organs at least as efficiently as their 
LB-NTK counterparts, establishment of the former in these organs (with the ex­
ception of bone marrow) is markedly reduced, as indicated by tumor cell prolif­
eration assays or histological analysis. Impairment of the metastatic capacity of 
LB-cr4 clones has also been observed (GOSSLAR et al. 1996). Notably, the ability of 
LB-a4 cells to form colonies in mesenteric lymph nodes and Peyer's patches was 
inhibited, despite the fact that these cells migrated more efficiently than did control 
LB-NTK cells to mucosal sites. This finding, together with the observation that 
both LB-cr4 and LB-NTK cells exhibit the same in vitro proliferation rate and 
expand with the same efficiency in bone marrow, implies that the expression of cr4 
does not induce a general nonspecific proliferative defect in the lymphoma cells. If 
so, what is the mechanism that restrains the growth of LB-a4 cells in various target 
organs? Perhaps, signals delivered through cr4-integrin molecules activate pro­
grammed cell death in LB cells, as demonstrated for chronically stimulated T cells 
coligated with anti-T cell receptor monoclonal antibody (mAb) and VCAM-I 
(DAMLE et al. 1993). Alternatively, the a4-mediated signals may reduce the in vivo 
proliferation rate of the tumor. Consistent with the inhibitory effect of a4-integrins 
on metastasis formation is the observation that the expression of a4~1 is consid­
erably lower in Burkitt lymphoma cells than in an Epstein-Barr virus-transformcd 
B Iymphoblastoid cell line (RINCON et al. 1992). An entirely different mechanism 
curbs the metastasis of murine B16 melanoma cclls transfected with a4 cDNA and 
s.c. injected into C57BL/6 micc. Cell surface expression of a4~1-integrin prevents 
detachment of the melanoma cells from the primary growth and subsequent pul­
monary metastasis, perhaps due to VLA-4-dependcnt homotypic adhesion (QIAN 
ct al. 1994). In contrast, the metastasis of i.v. injected LB-a4 lymphoma cells in 
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lymphoid and non lymphoid organs is inhibited at a later stage, subsequent to 
tumor cell migration. 

3 LB Cells Use Distinct Adhesion Molecules for Spleen 
and Lymph Node Invasion 

As LB cells coexpress the LF A-I integrin and the C044 adhesive receptor (ZA­

HALKA et al. 1995), both implicated in cell migration and homing of normal lym­
phocytes, we conceived that they might be involved in lymphoid organ invasion by 
the tumor. This prediction was experimentally challenged by injecting anti-COlS 
mAb, directed against the ~2-chain of LF A-lor anti-pan-C044 mAb directed 
against the constant epitope shared by all C044 isoforms into LB cell-inoculated 
mice (ZAHALKA et al. 1993, 1995). A quantity of 3 x 106 LB cells were s.c. inocu­
lated into the left flank (close to the hind limb) of female BALBjc mice. Two hours 
later, the mice were administered a 50% ammonium sulfate fraction (500 Ilg pro­
tein) of anti-COlS mAb or anti-C044 mAb and the injections were repeated on 
alternate days until termination of the experiment (day 12). The anti-COlS mAb 
was injected intravenously, whereas the anti-C044 mAb was injected subcutane­
ously, near the remote front left axillary and brachial lymph nodes, as this route 
was found to be more efficient than i.v. injection. Isotype-matched mAbs (e.g. anti­
C04 mAb) or mAbs directed against nonre1evant LB cell surface molecules served 
as control. We found that i.v. injection of anti-COlS mAb (MISj2) or equivalent 
amounts of its F(ab')z fragments reduced the number of lymphoma cells invading 
the spleen by at least two orders of magnitude: from hundreds of thousands to 
several hundreds. The anti-COlS mAb did not, however, prevent peripheral lymph 
node invasion (ZAHALKA et al. 1993). By contrast, anti-C044 mAb (IM7.8.1) or 
equivalent amounts of its F(ab'h or Fab' fragments reduced the number of lym­
phoma cells infiltrating the peripheral lymph nodes by two orders of magnitude 
after s.c. injection of these reagents, whereas there was no effect on spleen invasion 
(ZAHALKA et al. 1995). The fact that F(ab')z antibody fragments also inhibited 
lymphoid organ invasion by LB cells indicates that the antibody did not eliminate 
the lymphoma by complement-dependent lysis or by antibody-dependent cellular 
clearance. Furthermore, the finding that the Fab fragments inhibited invasion ex­
cludes the possibility that the effect is mediated by modulation of cross-linked cell 
surface molecules. It should be noted, however, that anti-COlS and anti-C044 
mAbs effectively blocked invasion of spleen and lymph node by LB cells only when 
injected I and 2 days, respectively, after tumor inoculation (Fig. 4). When both 
antibodies were simultaneously injected, lymph node invasion was inhibited, 
whereas spleen invasion was restored (ZAHALKA and NAOR 1994). A possible ex­
planation for this surprising phenomenon, will be presented in Sect. 4. The finding 
that cx4-integrin expression strongly reduced spleen and lymph node metastases by 
LB-cx4 cells (see previous section), may mean that the suppressive effect dominates 
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Fig. 4. Inhibition of LB cell infiltration into spleen and lymph nodes by anti-COl8 and anti-C044 
monoclonal antibodies (mAbs) injected at different intervals after LB cell inoculation. A quantity of 
3 x 106 LB cells were s.c. injected into BALB/c mice (3 per group). After 2 h (time 0 on the graph), anti­
COl8 mAb was injected i.v. or anti-C044 mAb was injected s.c. into different groups of mice. Both 
antibodies were precipitated with 50% ammonium sulfate and 0.5 mg protein was injected into each 
mouse. The same amount of protein was injected every other day until termination of the experiment 
(day 12). Other groups of mice were subjected to the same experimental protocol, but antibody injection 
was begun 1,2,3 or 4 days after tumor inoculation. Spleen invasion in anti-CO 18 mAb injected mice and 
lymph node invasion in anti-C044 mAb injected mice were determined by measuring LB cell prolifer­
ation (eHlthymidine uptake) in cell suspensions obtained from the spleen and lymph nodes of these 
animals. The results are expressed as percent proliferation of spleen (116000 cpm) and lymph node 
(68000 cpm) cells of mice inoculated s.c. with lymphoma cells alone. The anti-COl8 mAb (squares) and 
anti-C044 mAb (triangles) inhibited invasion of the spleen (squares) and peripheral lymph node (trian­
gles) by proliferating LB cells only when injected I and 2 days, respectively, after tumor inoculation 

the CDlS- and CD44-mediated adhesive activities promoting lymphoma invasion 
of these organs. The inhibitory effect of the antibodies was established according to: 
(I) histopathological findings in the lymphoid organs, (2) the reduced uptake of 
eH]thymidine by LB cells populating the lymph node and spleen cell suspensions 
obtained from the lymphoma-inoculated and antibody injected mice, indicating 
decreased proliferation of tumor cells in these suspensions (evidence that the pro­
liferating cells are LB cells and not local cells of the invaded organs is presented in 
ZAHALKA et al. 1993), and (3) the low number of tumor cells in suspensions of 
lymph node and spleen transferred from LB cell-inoculated and antibody-injected 
mice into naive recipients, based on recipient survival. In conclusion, our findings 
show that the CDlS and CD44 epitopes are used by LB cells as key codes for 
differential homing of the tumor to the spleen or lymph nodes. As LB cells isolated 
from both organs coexpress CDlS and CD44, as do the parental cells obtained 
from the local growth (VOGT SIONOV and NAOR 1997), it is conceivable that the 
predominant expression of the CD IS ligand in the spleen, and of the CD44 ligand 
in the lymph node, dictates the differential adhesion-dependency of lymphoid organ 
invasion by the tumor (analogous to a lock that dictates which key in a set of 
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available keys is used). We previously emphasized that normal leukocytes also use 
distinct adhesion molecules for lodgment in different lymphoid organs, thereby 
underlying the similarity between lymphoma dissemination and normal migration 
of hematogenous cells. 

The influence of integrins or CD44 on the neoplastic process has been dem­
onstrated in many experimental models by cDNA transfection experiments, eval­
uation of the ability of relevant mAbs or soluble proteins to affect tumor growth 
and, in clinical studies, by the correlation between adhesion molecule expression 
and the tumor progression. Transfection of human ct5- and ~l-integrin cDNAs 
suppressed the tumorigenicity of Chinese hamster ovary cells (GIANCOTII and 
RUOSLAHTI 1990), and expression of ct4~1-integrin in B16 melanoma reduced 
matrigel invasion in vitro and suppressed pulmonary metastasis in vivo (QIAN et al. 
1994). By contrast, expression of ct2~1-integrin in human rhabdomyosarcoma cells 
enhanced experimental and spontaneous metastases in nude mice (CHAN et al. 
1991). In concurrence with our observations, it has been reported that mAbs di­
rected against LFA-1 subunits (ct [COlla] or ~ [CD18] chains) or against its 
counterpart ICAM-1 (CD54) inhibit the dissemination of lymphoma or myeloma 
cells in animal models (HARNING et al. 1993; HUANG et al. 1995; ROCHA et al. 1996). 
Reduced expression of ct4~ I-integrin was found in Burkitt lymphoma (RINCON et al. 
1992), whereas up-regulation of ~3 integrins was detected in metastatic melanoma 
(ALBELDA et al. 1990). It has been shown, however, that many high grade human 
lymphomas do not express LFA-1 molecules (CLAYBERGER et al. 1987), suggesting 
that the selective pressure favoring LFA-1 expression as a tool for tumor expansion 
may be outweighed by the selective pressure against LFA-1 expression, preventing 
immunological destruction of the malignant cells. 

We have already mentioned' that transfection with the CD44-containing V6 
exon cDNAs (pMcta-1) conferred metastatic behavior on a nonmetastatic pan­
creatic adenocarcinoma cell line (GONTHERT et al. 1991; RUDY et al. 1993). Mel­
anoma (BARTOLAZZI et al. 1994) or Burkitt lymphoma (Sy et al. 1991; BARTOLAZZI 
et al. 1995; WALTER et al. 1995) human cell lines transfected with CD44s cDNA 
exhibited accelerated tumor growth in immunodeficient mice. Injection of anti­
CD44v mAb retarded the killing of rats by metastatic pancreatic carcinoma (SEITER 
et al. 1993). The local growth and metastatic spread (especially into the lung) of a 
human melanoma cell line s.c. inoculated into immunodeficient mice was inhibited 
by injections of mAb directed against the CD44 constant region (Guo et al. 1994). 
Continuous infusion of soluble CD44 (CD44-immunoglobulin [Ig] fusion protein) 
through an osmotic pump prevented tumor development following s.c. injection of 
B16 melanoma cells into mice (BARTOLAZZI et al. 1994). 

A correlation between CD44v expression and the stage of tumor progression 
has been described in some human malignant diseases (e.g., colorectal cancer; 
WIELENGA et al. 1993). An inverse correlation between CD44 expression and poor 
prognosis has also been reported (e.g., in neuroblastoma) as has the absence of 
either correlation (reviewed in NAoR et al. 1997). However, in many cases, con­
flicting observations make it impossible to draw any conclusions about CD44 as­
sociation with neoplastic diseases (reviewed in NAOR et al. 1997). In non-Hodgkin's 
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lymphomas (NHL), immunohistochemical studies showed that the majority, or at 
least a significant part, of tumor specimens from patients classified as intermediate/ 
high grade express CD44 variants, mostly those containing exons V3, V6 or V9 
(KOOPMAN et al. 1993; TERPE et al. 1994; STAUDER et al. 1995). Reverse trans­
criptase-polymerase chain reaction (RT-PCR) analysis revealed a more compli­
cated pattern (a greater number and larger size) of CD44 variant transcripts in 
tumor specimens of high grade NHL patients than in low grade ones (STAUDER 
et al. 1995). Irrespective of grade type, the survival of NHL patients with CD44V6-
positive tumors is shorter than that of those with CD44V6-negative tumors (Rl­
STAMAKI et al. 1995; STAUDER et al. 1995). 

4 Different Strategies Exercised by LB Cells 
for Their Establishment in Spleen and Lymph Nodes 

LB cells form heterotypic aggregates with splenocytes, but not with lymph node 
cells. Maximal in vitro aggregate formation was detected when spleen and lym­
phoma cells were coincubated at an 8:1 ratio (ZAHALKA et al. 1993; ZAHALKA and 
NAOR 1994). Spontaneous aggregate formation was observed when spleen (but not 
lymph node) cell suspensions of LB cell-inoculated mice were cultivated in vitro for 
16 h. The ex vivo cell aggregation was maximal 7-8 days after tumor inoculation. 
Using mAbs that preferentially bind to splenocytes or LB cells, we showed that 
both the in vitro and the ex vivo disrupted aggregates consisted of a mixture of 
splenic and tumor cells (ZAHALKA et al. 1993; ZAHALKA and NAOR 1994). The 
lymphoma cells tended to form aggregates with splenic T cells, rather than with B 
cells or other non-T cells, as demonstrated by incubation of LB cells with sub­
populations of spleen cells or by flow cytometric analysis of disrupted aggregates. 
The involvement of T cells in aggregate formation was also proved by the weak 
ability of splenocytes from thymusless nude BALB/c mice to form aggregates with 
LB cells. The assumption that the T cell-LB cell interaction is essential for tumor 
growth in the spleen is supported by the observation that proliferating lymphoma 
cells were hardly detected in the spleens of tumor-inoculated nude mice, whereas 
such cells were present in their lymph nodes (ZAHALKA and NAOR 1994). 

The formation of aggregates between splenocytes and LB cells was prevented 
when anti-CDl8 mAb, but not control mAb, was included in the cell mixture. 
Similarly, injection of anti-CD I 8 mAb (but not control mAb) into LB cell-inocu­
lated mice markedly reduced the formation of spontaneous ex vivo aggregates in 
cell suspension of their spleens. These findings show that aggregation between 
splenic T cells and LB cells is CDl8-dependent (ZAHALKA et al. 1993; ZAHALKA and 
NAOR 1994). 

As LB cells express the LFA-l integrin, comprising OtL-(CDlla) and P2-
(CDI8) chains, we also tested the ability of anti-CDlla mAb (M7/14) to prevent 
spleen invasion by LB cells (ZAHALKA et al. 1993), as well as in vitro (ZAHALKA et al. 
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1993) and ex vivo (ZAHALKA and NAOR 1994) formation of aggregates between 
splenocytes and LB cells. In contrast to anti-COl8 mAb, anti-COlla was ineffective 
in both aspects. Anti-ICAM-l (YNI/1.7) mAb also failed to inhibit spleen invasion 
by LB cells and aggregate formation between splenocytes and lymphoma cells 
(ZAHALKA et al. 1993). This is not surprising, as the LFA-l <x-subunit binds to 
ICAM-l (JOHNSTON et al. 1990). We assessed the bioactivity of anti-COlla mAb by 
testing its ability to block the function of cytotoxic T lymphocytes (CTLs), gener­
ated in mixed lymphocyte culture. We found that when anti-COila mAb was added 
to a mixture of cytotoxic cells and target cells it inhibited CTL activity, whereas 
anti-C~ 18 mAb was much less effective (ZAHALKA et al. 1993). This finding suggests 
that an epitope located on the ~-chain of LF A-I is involved in LB cell dissemina­
tion, whereas an epitope situated on the <x-chain is implicated in CTL recognition of 
the target cell, as reported earlier (SANCHEZ-MADRID et al. 1983). The COl8 ~-chain 
molecule, which affects tumor spread and aggregate formation, may associate with 
different <x-chains. As <xM (COllb) is marginally expressed and <xX (COlic) is not 
expressed on LB cells (ZAHALKA et al. 1993), they most likely are other members of 
this family or, less probably, unrelated molecules. Immunoprecipitation of LB cell 
extracts with anti-COl8 mAb and subsequent gel electrophoresis revealed, in ad­
dition to the <xL-(180 kOa) and ~2-(95 kOa) chains, extra bands at 150 kOa and at 
32-35 kOa. These disappeared after washing the immunoprecipitate with LiCI so­
lution, indicating that they were loosely bound to the complex and, therefore, did 
not represent classical <x-chains. Yet, these extra molecular species could be im­
portant for LB cell dissemination and/or heterotypic aggregation. The possibility 
that certain epitope(s) located on the <xL-chain of LB cell LFA-I are essential for 
tumor dissemination and/or aggregation, but that these epitopes are not recognized 
by M7/14 anti-COlla mAb, also must be taken into account. 

Coinjection of anti-COl8 (i.v.) and anti-C044 (s.c.) mAbs into BALB/c mice 
s.c. inoculated with LB cells antagonized the spleen invasion blocking effect of anti­
COl8 mAb and reduced its ability to inhibit splenic ex vivo aggregate formation. 
Whereas the injection of both antibodies partially restored spleen invasion by the 
lymphoma, the treatment did not influence the inhibition of lymph node infiltration 
by the anti-C044 mAb (ZAHALKA and NAOR 1994). These results are best inter­
preted by assuming that interaction of anti-C044 mAb with cell surface C044 
augments the expression of the COl8 molecules on the LB cells, or alters their 
configuration, rendering them less susceptible to the inhibitory effect of anti-COl 8 
mAb. According to flow cytometry analysis, however, expression of the lymphoma 
cell COl8 molecules was not enhanced after treatment with anti-C044 mAb. 
Therefore, it "is most likely that interaction of anti-C044 mAb with C044 changes 
the configuration of the COl8 molecules, thus reducing the ability of anti-COl8 
mAb to inhibit LB cells from binding to splenic T cells, an event probably man­
datory for lodgment and proliferation of the tumor in this organ. In agreement with 
our findings, it has been shown in other systems (KOOPMAN et al. 1990; RODRIGUES 
et al. 1992; FUNARO et al. 1994) that anti-C044 mAbs activate homotypic T cell 
aggregation, which is LFA-l/ICAM-dependent, deduced from the finding that 
antibodies against the integrin disturb aggregate formation. 
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Table L Differences and similarities between spleen- and lymph node-infiltrating LB cells 

Parameter Spleen-infiltrating Lymph node-infiltrating 
LB cells LB cells 

I. Time required to reach 4 days 7 days 
the lymphoid organ 

2. Route of entry into the Blood circulation Afferent lymphatics 
lymphoid organ 

3. Ability to form in vitro Yes No 
and ex vivo aggregates with 
lymphoid organ cells 

4. Predominant binding target T cells Extracellular matrix 
component? 

5. Adhesion molecules expressed CDI8, CD44 CDJ8, CD44 
6. Class I antigens expressed Dd Dd 
7. Predominant adhesion molecule CDI8 (132 chain integrin) CD44 

required for organ invasion 
8. Adhesion receptor ligand Unknown Unknown 

The preferential aggregation of LB cells with splenic T cells and the lack of 
such aggregate formation in the lymph nodes lead us to surmise that the mecha­
nisms responsible for LB cell lodgment in spleen and lymph node are distinct and 
obey different signals. We suggest that invasion of the spleen is associated with the 
CDl8-dependent interaction between the tumor cells and the splenic T cells. This 
may confer .some growth advantage on the former, as T cells supply the IL-2 and 
IL-4 necessary for the lymphoma's proliferation (LUGASI et al. 1990 and unpub­
lished data). Indeed, in nude mice, the T cell-deficient splenocytes showed a reduced 
capacity for forming aggregates with LB cells, and they barely supported prolif­
eration of the tumor (ZAHALKA and NAOR 1994). By contrast, the CD44-dependent 
lodgment of LB cells in the lymph node is presumably associated with binding of 
the tumor to ECM components, which may also deliver the mitogenic signal to the 
invading cells. Table I summarizes the differences and similarities between spleen­
and lymph node-infiltrating LB cells. 

5 The LB Cell CD44 Ligand 

The ability of CD44 to bind various ligands (e.g., hyaluronic acid, fibronectin, 
collagen and osteopontin) has been attributed to the multistructural nature of this 
molecule, as mentioned earlier in the Introduction. Identification of the CD44 
ligand is not only academically important, but also has practical implications, 
because interference with the receptor-ligand interaction may influence the recep­
tor's pathological and physiological activities. Determination of the LB cell CD44 
ligand and an understanding of its mode of interaction with the receptor have been 
the thrust of our subsequent research efforts. 

As hyaluronic acid (HA) is the principal ligand of CD44 (reviewed in LESLEY 
et al. 1993 and NAOR et al. 1997), the interaction of this molecule with LB cells has 
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been intensively investigated. HA is a ubiquitous polysaccharide (glycosamino­
glycan) consisting of a linear polymer of repeating disaccharide units with the 
structure (D-glucuronic acid [1-~-3] N-acetyl-D-glucosamine [1-~-4])n (LAURENT 
and FRASER 1992). This large molecule (molecular mass, 106_107 daltons) is an 
important component of the ECM, fills the intracellular spaces, provides cellular 
support and a water-filled compartment, and regulates cell-cell adhesion as well as 
the cell's spatial orientation and traffic (HARDING HAM and FOSANG 1992; LAURENT 
and FRASER 1992). Therefore, it is not surprising that HA enhances tumor inva­
siveness and metastasis (TOOLE et al. 1979; ZHANG et al. 1995). eH]thymidine­
labeled LB cells do not bind to HA immobilized to plastic, unless they are activated 
by phorbol 12-myristate 13-acetate (PMA). Other glycosaminoglycans (heparin, 
heparan sulfate and chondroitin sulfate) do not bind activated LB cells. Anti-CD44 
mAb and its F(ab'h or Fab fragments, but not the same amount of anti-CDl8 or 
isotype matched anti-CD4 mAb, prevent the binding of PM A-activated LB cells to 
immobilized HA, indicating that the binding of the lymphoma to this ligand is 
CD44-dependent. Immobilized HA pretreated with hyaluronidase, but not with 
heparinase or chondroitinase AC, failed to bind activated LB cells, again stressing 
the specificity of the adherence (ZAHALKA et al. 1995). 

LB cells do not bind soluble, fluorescein-labeled hyaluranic acid (FI-HA), even 
after stimulation with low concentrations of PM A (VOGT SIONOV and NAOR 1997). 
Negatively charged carbohydrate groups of the CD44 glycoprotein may interfere 
with the interaction between its positively charged amino acids (arginine and lysine) 
and the negatively charged groups of HA. Hence, removal of the negatively charged 
sialic acid from LB cell CD44 by neuraminidase, or treatment with tunicamycin, to 
prevent N-glycosylation of the cell receptor, may allow HA binding. Although such 
treatment enabled other cell lines, whose CD44 receptor was initially inactive, to 
bind soluble HA (KATOH et al. 1995; LESLEY et al. 1995), deglycosylated LB cells 
remained incapable of binding the ligand. However, we found that LB cells display 
FI-HA binding after stimulation with low concentrations of PMA and treatment 
with tunicamycin, whereas incubation with either one of these reagents was inef­
fective (deglycosylation was proven by gel electrophoresis of CD44 immunopre­
cipitated from LB cell extract). A similar finding ofHA binding was observed when 
LB cells were treated with neuraminidase following activation with the phorbol 
ester. Again, tumor cells treated with neuraminidase alone or PMA alone did not 
bind Fl-HA. Another set of experiments demonstrated that LB cells cultivated in 
glucose-deprived medium and stimulated with low concentrations of PMA bound 
soluble HA, whereas corresponding cells cultured in glucose-containing medium 
did not show this property (Rochman, Naor and Ish-Shalom, unpublished data). In 
conclusion, our results suggest that two events are required for HA binding by the 
lymphoma cells: an increase in the net positive charge of the cell CD44 receptor, 
achieved by deglycosylation, and protein kinase C (PKC) activation, induced by 
phorbol ester. Activation of PKC may influence the interaction between the CD44 
receptor and the cytoskeleton, which has been shown to be essential for HA binding 
to some (BOURGUIGNON et al. 1993; LIAO et al. 1993; LOKESHWAR et al. 1994; 
GALLUZZO et al. 1995), but not all (MURAKAMI et al. 1994; PERSCHL et al. 1995; UFF 
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et al. 1995) cell types. Since deglycosylation affects not only the CD44 of LB cells, 
but also other cell surface glycoproteins, including those that may cooperate with 
CD44 in HA binding, it is impossible, under such circumstances, to specify the 
target molecule(s) of the deglycosylation procedure. It has been shown, however, by 
other investigators (KATOH et al. 1995) that removal of sialic acid by neuraminidase 
from CD44-Ig fusion protein absorbed to protein A-conjugated Sepharose beads 
enhances HA binding to the coated beads, indicating the direct interference of the 
CD44 carbohydrate moiety with HA binding. 

If lymph node lodgment by LB cells is dependent on the interaction between 
LB cell CD44 and the hyaluronan of the organ ECM, we should expect LB cells 
isolated from the lymph nodes to have acquired the HA-binding capacity. The 
in vivo acquisition of this property by LB cell CD44 may be dependent on the 
replacement of factors detected in our in vitro studies (PMA and deglycosylation) 
by other factors (e.g., cytokines), as well as on phenotypical changes in cell surface 
CD44. To test this hypothesis, we compared the phenotype and the HA-binding 
capacity of LB cells isolated from culture or obtained directly from local growths, 
remote axillary lymph nodes and spleen 12 days after s.c. inoculation of the tumor 
into BALB/c mice. Flow cytometry analysis revealed that the LB cells derived from 
all these sites display the same intensity of pan-CD44 (detected by anti-CD44 mAb 
directed against the CD44 constant region shared by all CD44 isoforms). Using 
anti-V4 and V6-specific mAbs (kindly provided by Dr. 1. Moll, Karlsruhe Research 
Center) we found that the lymphoma cells from all four sites slightly, but clearly, 
express V6-containing CD44 variants and hardly express V4-containing isoforms. 
The expression of all three isoforms was enhanced after PMA activation. Similarly 
to LB cells isolated from culture, those obtained from a local tumor, a peripheral 
lymph node and spleen did not adhere to immobilized HA unless activated by 
PMA. Neither did the lymphoma cells isolated from all four sources bind soluble 
FI-HA, even after activation with the phorbol ester and/or treatment with hyal­
uronidase, as indicated by flow cytometry. The failure to interact with FI-HA after 
enzyme treatment proves that the inability to bind the ligand is not due to possible 
masking of the CD44 receptor by prebound, tissue-derived HA. We will see later 
that hyaluronidase treatment can remove excess of soluble HA prebound to cell 
surface CD44 without reducing the receptor capacity to subsequently bind FI-HA. 
In conclusion, the tested phenotype of the LB cells was not changed after their 
lodgment in the lymph node. Even more important, the tumor cells isolated from 
the lymph node remained incapable of binding hyaluronan, suggesting that inter­
action with a different ligand is required for docking in the organ parenchyma 
(VOGT SIONOV and NAoR 1997). 

To further substantiate our experimental approach, an HA-binder LB cell line 
(designated HA9) was generated from an HA-nonbinder LB cell clone (LB 2.3) by 
nine cycles of selection for cells adhering to immobilized HA. HA9 cells express 
pan-CD44 and CD44 isoforms containing V4 or V6 exon products more intensively 
than do the parental LB cells. The expression of all three isoforms was further 
enhanced by stimulation with PMA. HA9 cells adhered to immobilized HA (but 
not to chondroitin sulfate) and bound FI-HA from the solution even in the absence 
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of PMA activation. The binding of soluble Fl-HA to HA9 cells was partially 
blocked by anti-pan-CD44 mAb, but not by anti-V4 or anti-V6 mAbs. Excess 
soluble HA did not prevent pan-CD44 mAb from binding to the tumor cells, 
suggesting that the pan-CD44 epitope and the HA binding site are located at 
different positions on the HA9 cell CD44 receptor and that anti-CD44 mAb allo­
sterically inhibits HA from binding to the cell CD44. Adherence of HA9 cells to 
immobilized HA was inhibited by excess soluble HA or by anti-CD44 mAb, but not 
by anti-CD 18 mAb, indicating that binding of the ligand is CD44-dependent. HA9 
cells incubated with excess soluble HA to mask their CD44 receptor and then 
treated with hyaluronidase to remove the prebound ligand efficiently bound Fl-HA, 
as indicated by flow cytometry. HA9 cells that were first incubated with Fl-HA and 
then treated with hyaluronidase did not display the ligand binding, whereas cells 
that were first treated with the enzyme and then incubated with Fl-HA exhibited 
normal HA binding. These findings prove that hyaluronidase can remove prebound 
HA and directly bound Fl-HA from the CD44 receptor and that the digestion 
procedure does not hamper the receptor binding capacity. 

HA9 cells isolated from culture or obtained from local growths, remote axil­
lary lymph nodes and spleen displayed similar levels of pan-CD44 and of CD44 
variants containing V4 and V6 exon products. In contrast to the corresponding LB 
cells, HA9 cells isolated from all four sites similarly adhered to immobilized HA 
and bound soluble Fl-HA from the solution even in the absence of PM A activation 
(VOGT SIONOV and NAOR 1997). These findings demonstrate that, like theparental 
LB cells, HA9 cells change neither their testedCD44 profile nor their HA binding 
capacity during the metastatic cascade (VOGT SIONOV and NAOR 1997). The results 
suggest, but do not prove, that both cell types are already precommitted to lym­
phoid organ invasion at the initial malignant phase of local growth. The alternative 
possibility that both cell infiltrates acquire alterations in phenotype, nondetectable 
in our assay protocol, should also be taken into account. 

It should be further emphasized that the LB cells were analyzed after lodging in 
the lymph nodes, and not during their migration in the blood and lymph circula­
tion. Therefore, we cannot rule out the possibility that, upon migration, LB cells 
temporarily acquire the HA-binding capacity, which is lost after they infiltrate the 
lymph node, as previously suggested by our group (ZAHALKA et al. 1995). In the 
earlier experiments we demonstrated the partial retardation of LB cell infiltration 
into lymph nodes when 150 U hyaluronidase were injected adjacent to the lymph 
node, but not when lower (75 U) or higher (300 U) doses were administrated. The 
inconsisten~y of these findings (VOGT SIONOV and NAOR 1997) has led us to assume 
that the dose-dependent effect of hyaluronidase previously observed may be due to 
a delicate balance between the ability of hyaluronidase to enhance lymph node 
metastasis (by destroying matrix resistance) and the enzyme's ability to inhibit 
metastasis (possibly by targeting and tuning the enzymatic activity to the tumor 
migration phase). If the CD44-HA interaction is crucial for lymphoid organ in­
vasion, we should expect more rapid and efficient dissemination of HA9 cells able 
to bind HA than of the 'LB parental cells, which do not bind this ligand. However, 
the opposite results were obtained: 10-12 days were required for LB cells to 
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populate the spleen and lymph nodes of syngeneic BALBjc mice vs the IS-22 days 
necessary for HA9 cells, whose proliferation rate in the organ was also lower than 
that of the parental cells (VOGT SIONOV and NAOR 1997). Despite their markedly 
different in vivo growth rates, the two cell populations displayed almost identical 
division rates in vitro, proving that they do not differ in their intrinsic proliferating 
potential. Hence, the tight interaction between HA9 cells and hyaluronan may slow 
the release of cells from the primary growth or retard their migration in the blood and 
lymph circulation. In addition, or alternatively, the immunological resistance ofHA9 
cells might be stronger than that of parental LB cells, causing a delay in the homing of 
the former to the lymphoid organs. In either case, this finding underlines that the 
CD44-HA interaction is not essential for LB lodgment in the lymphoid organs. 

Other groups have also demonstrated that not all CD44-mediated cell activities 
are HA-dependent, including cell homing to lymph node (CULTY et al. 1990) and 
thymus (Wu et al. 1993; PATEL et al. 1995), as well as binding of erythroid leukemic 
cells to hematopoietic supportive cells (SUGIMOTO et al. 1994). In this context, 
SLEEMAN and his colleagues (1996) reported that a rat tumor cell line transfected 
with hyaluronidase cDNA, whose product prevented the cells from interacting with 
hyaluronan, was as invasive as the wild-type parental cells, indicating that CD44 
interaction with HA is not always essential for tumor metastasis. Furthermore, in 
some cases different adhesion molecules may exhibit redundant functions, so that 
the loss of one type of molecule can be functionally replaced by another. Indeed, 
DRIESSENS and colleagues (1995) showed that, although the HA-binding capacity of 
mouse lymphosarcoma cells is abolished by knocking out (by homologous re­
combination) the CD44 gene, this does not interfere with their local growth and 
metastatic spread, which are possibly mediated by integrins also expressed on the 
same tumor cells. 

6 Conclusions 

Malignant activity is a deflection of normal physiological functions, generated by 
genetic alterations and the consequent deterioration of check and balance mecha­
nisms. Despite this distortion, many elements of similarity between normal and 
tumor cells are preserved. One of these is the adhesion molecule-dependent process 
of cell homing to lymphoid organs, as demonstrated in our studies on LB T cell 
lymphoma. This similarity constitutes an obstacle to clinical strategies of therapy, 
which are highly dependent on the ability to discriminate between normal and 
malignant processes. In this respect, the applicability of our experimental approach 
to clinical settings is limited, because blocking of lymphoma dissemination with 
anti-CDIS and anti-CD44 mAbs may interfere with the CD1S- and CD44-depen­
dent defense mechanisms of normal leukocytes. However, if tumor cells express 
modified versions of the adhesion molecules displayed by normal cells, a window 
for therapeutic intervention may be available, as the modified molecules could be 
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used as specific targets for therapy. The possibility to detect distinct versions of 
integrins or CD44 is more promising in neoplastic cells than in their normal 
counterparts, since proliferating tumor cells are more susceptible to genetic alter­
ations. If any of these genetic changes afford the tumor a biological advantage, a 
process of natural selection and stabilization would be expected in those cells ex­
pressing the modified molecules. From the practical aspect, future research should, 
therefore, focus on the detection of tumor-specific integrins or tumor-specific 
CD44. In this context, the CD44 receptor provides more opportunities, as differ­
ential alternative splicing generates many versions of this molecule. To date, 20 
different CD44 isoforms are known but, theoretically, hundreds of isoforms can be 
formed by differential utilization of variant exons (VAN WEERING et al. 1993). Based 
on the arguments presented above, the alternative splicing machinery should gen­
erate not only a richer variant repertoire in proliferating tumor cells than in normal 
cells, but also tumor-specific genetic alterations in the variants themselves (e.g., 
"illegitimate" insertion of introns, MATSUMURA et al. 1995). If some of these CD44 
variants are exclusively expressed on tumor cells, they could be used as specific 
targets for therapy or diagnosis. Initially, CD44-containing V6 exon products were 
considered "metastatic" CD44 because some advanced human tumors (including 
lymphomas) preferentially express this entity (reviewed in NAOR et al. 1997). Even 
more striking, anti-V6 mAb retarded the progression of rat pancreatic adenocar­
cinoma (GuNTHERT et al. 1991). However, it was later found that immunologically 
activated lymphocytes express V6-encoded epitopes as well (ARCH et al. 1992), 
making the V6 exon product a less attractive target. This disappointing finding 
should not discourage, but rather stimulate, the search for tumor-specific CD44 
variants, as well as for other tumor-specific adhesion molecules (e.g., new ex-chains 
of ~2-integrin or new members of the ICAM family). Identification of novel ad­
hesion molecule ligands can offer another set of targets for therapy, provided that 
the cancer cells preferentially interact with them. The polymorphic structure of 
CD44 potentiates interactions with many ligands, some of them already known, 
others yet to be identified (e.g., the natural ligand of LB cell CD44). If some of these 
ligands interact with cancer cell CD44 isoforms, they could be targeted by antag­
onizing reagents, such as antibodies or competing analogues that may prevcnt the 
interaction. Paradoxically, the selection of CD44 variants that assure the tumor of 
survival advantage might also prove disadvantageous, since they could serve as 
specific targets for therapy. 
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1 The Integrin Family of Cell Adhesion Receptors 

182 

182 

The integrins are a family of cell surface adhesion receptors that mediate adhesion 
to either components of the extracellular matrix or to other cells. The integrins are 
noncovalently associated, heterodimeric glycoproteins composed of distinct IX and ~ 
subunits of which at least 14 IX and nine ~ subunits have been identified (RUOSLAHTI 
1991; HYNES 1992; ALBELDA 1993). The ~I family ofintegrins represent the major 
class of cell substrate receptors with specificities primarily for collagens, laminins, 
and fibronecti.ns. Ligand specificity is a function of the particular IX-~ combination 
with a great deal of apparent redundancy within the system. For example, many 
integrins may bind a given extracellular matrix molecule and a single integrin may 
bind more than one matrix molecule. Recent evidence from several laboratories 
suggests that some of the apparent redundancy observed at the level of adhesion is 
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not at all redundancy since each receptor may mediate distinct post-receptor 
occupancy events such as cell differentiation (DEDHAR et al. 1987; REICHARDT and 
TOMASELLI 1991), alteration in gene expression (WERB et al. 1989; DAMSKY and 
WERB 1992), ion fluxes through membrane channels (SCHWARTZ and DENNINGHOFF 
1994), and regulation of tumor progression, invasion and metastasis. 

One of the earliest suggestions that integrins playa role in differentiation and 
malignancy came from studies of the malignant transformation of cells in culture. 
PLANTEFABER and HYNES (1989) demonstrated that oncogenic transformation of 
rodent fibroblasts with Rous sarcoma virus encoding the src oncogene or murine 
sarcoma virus encoding the ras oncogene led to reduced expression of the a.5~1-
integrin and two other unidentified integrins. Expression of the a.3~I-integrin was 
retained. Later, DEDHAR and SAULNIER (1990) demonstrated that treatment of a 
human osteogenic sarcoma cell line (HaS) with N-methyl-N'-nitro-N-nitroso­
guanidine (MNNG), a potent carcinogen, altered integrin expression. Increased 
expression of the a.6~1-' a.2~1-' and a.l ~l-integrins contrasted with reduction in a.v~3 
expression and no change in a.5~1 or a.3~1 expression. The MNNG-treated cells 
exhibited greater invasiveness in an in vitro model that could be blocked by 
monoclonal antibodies directed against the ~l-integrin, suggesting that the ~l­

integrin family plays a major role in the invasive potential of sarcomatous cells. In 
both of these examples, transformation was associated with morphologic altera­
tions and increased invasiveness, suggesting that changes in integrin receptors 
might contribute to changes in cell phenotype associated with malignant trans­
formation. 

2 Expression of Cl2P.-Integrin Is Associated with Orderly, 
Regulated Epithelial Differentiation 

In recent years, our laboratory has focused on the mechanisms and functions of 
cellular adhesion to collagens. As a result of studies carried out in our laboratory, 
and in the laboratories of our colleagues, the role of the a.2~I-integrin as a collagen 
receptor, initially on platelets and subsequently on other cell types, has been clearly 
established (SANTORO and ZUTTER 1995). On some cell types, a more activated form 
of the receptor may serve as both a collagen and as a laminin receptor (ELICES and 
HEMLER 1989; LANGUINO et al. 1989; KIRCHOFER et al. 1990). As the function of the 
a.2~I-integrin was being elucidated, the identity of the integrin with the platelet 
membrane Ia-lla complex, very late activation antigen 2 (VLA-2) on activated T 
cells and the ECMR II (class 2 extracellular matrix receptor) on fibroblasts was also 
established. These observations suggested that the adhesive mechanism mediated 
by the a.2~I-integrin was employed by cells other than blood platelets. This rec­
ognition caused us to undertake an extensive study of the tissue distribution of the 
0!2~I-integrin (ZUTTER and SANTORO 1990). We observed that the receptor was 
widely distributed. In addition to its expression by fibroblasts and endothelial cells, 
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high level expression was observed on numerous epithelial cells including kera­
tinizing and non-keratinizing stratified squamous epithelium, ciliated columnar 
epithelium of the respiratory tract, the epithelial cells of the gastrointestinal and 
urinary tract, and the glandular epithelium of the breast. A recurrent finding in our 
study was the association of increased expression of the IX2~I-integrin with the 
orderly regulated proliferation of epithelial cells. 

3 Integrin Expression in Human Malignancy 

These observations prompted an investigation of IX2~I-integrin expression in ma­
lignancy using breast cancer as a model (ZUITER et al. 1990). This initial consid­
eration of integrin expression in human solid tumors revealed that the IX2~I-integrin 
was highly expressed in the epithelium of ducts and ductules of normal breast 
tissue. Normal or close to normal levels of expression were observed in benign 
lesions such as fibroadenomas or papillomas. In contrast, markedly reduced or 
undetectable IX2~1 expression was seen in poorly differentiated adenocarcinomas. 
Well differentiated adenocarcinomas exhibited intermediate levels of expression. 
Similar but less extensive changes were observed for the IX5~1 (fibronectin receptor) 
and the IXv~r (vitronectin receptor) integrins. Significant residual expression of the 
~l subunit on poorly differentiated tumors suggested that the expression of other 
members of the ~l family was not reduced to the same low levels as the IX2 subunit. 

To extend our immunohistochemical observations and explore the regulation 
of altered IXrintegrin expression in breast cancer, we employed in situ hybridization 
to assay the levels ofintegrin mRNA in the same panel of tumors we had previously 
studied by immunohistochemistry (ZUTTER et al. 1993). Normal breast ducts and 
ductules expressed high steady state levels of IX2 mRNA detected by an antisense IX2 
cDNA probe. The level of IX2 mRNA was slightly decreased in well differentiated 
lesions and was more significantly decreased in moderately differentiated lesions. In 
poorly differentiated tumors, steady state levels of IX2 mRNA were markedly de­
creased but still detectable. This study, which represented an initial analysis of 
integrin gene expression in cancer at the molecular level documented that decreased 
integrin protein expression is a consequence of altered IXrintegrin gene expression. 
These studies also established that expression of the IX2~I-integrin at both the 
protein and n~RNA levels is decreased in adenocarcinoma of the breast in a manner 
that correlates with the loss of tumor cell differentiation (ZUTTER et al. 1990, 1993). 
Subsequent studies have addressed the role of the IX2~I-integrin expression in epi­
thelial differentiation and the consequences of its altered expression in cancer 
progression, as well as the molecular mechanisms by which expression of the IXr 
integrin subunit is regulated (see below). 

Studies by other investigators (KOUKOULIS et al. 1991; PIGNATELLI et al. 1991a, 
1992) confirmed our key observation that IX2~I-integrin expression is decreased in 
adenocarcinoma of the breast in a manner that correlates with the degree of tumor 
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cell differentiation. Studies of other adenocarcinomas (i.e., colon, prostate, lung, 
pancreas, and skin) have yielded similar findings regarding 1J(2~1 expression (Ko­
RETZ et al. 1991; STALLMACH et al. 1992; HALL et al. 1991; BONKOFF et al. 1993; 
STAMP and PIGNATELLI 1991). Studies of colorectal cancer have shown that 1J(2~1 is 
consistently lost or diminished in moderately and poorly differentiated colorectal 
carcinoma in a manner similar to that described for breast cancer (PIGNATELLI 
1990; PIGNATELLI et al. 1991b; KORETZ et al. 1991; KOUKOULIS et al. 1993). In 
addition, diminution or loss of 1J(2~I-integrin by renal, pancreatic, and lung cancer 
was associated with poorly differentiated lesions (KORHONEN et al. 1992; WEINEL 
et al. 1992; DAMJANOVICH et al. 1992). Review of the existing literature reveals that 
decreased expression of 1J(2~1 is the most common change in integrin expression in 
epithelial malignancies (ALBELDA 1993; VARNER and CHERESH 1996). 

Alterations of expression or cellular localization of other integrins have been 
described in carcinoma of the breast and other epithelial malignancies. The 1J(3~1 
and the 1J(6~4-integrins are expressed at high levels in most normal epithelial cells 
and associated with the differentiated epithelial phenotype. Reports of reduced 1J(3-
integrin subunit expression in breast, colorectal, and pancreatic carcinomas have 
appeared (STALLMACH et al. 1992; WEINEL et al. 1992). Correlation of the IJ(T 
integrin expression with the state of differentiation has been less well substantiated. 
The literature regarding changes in the 1J(6-integrin subunit expression is inconsis­
tent. In contrast to the 1J(2 and 1J(3 subunits which associate with only the ~l subunit, 
the 1J(6 subunit can pair with either the ~l or ~4 subunits introducing an additional 
level of complexity (HEMLER et al. 1989; KAJIJI et al. 1989). Alteration of the 
pattern of heterodimerization might not be reflected in an overall change in the 1J(6 
subunit expression (SONNENBERG et al. 1990). Changes in 1J(6~4 expression appear 
more variable than the rather consistent diminution or loss of 1J(2~1 expression by 
most carcinomas (KENNEL et al. 1986; LIEBERT et al. 1993; KOUKOULIS et al. 1991, 
1993; PIGNATELLI et al. 1992). In contrast to integrins that have been primarily 
associated with the state of epithelial differentiation, expression of the 1J(5~1- and 
IJ(v~3-integrins have been reported to be increased, decreased, or unchanged in 
adenocarcinoma of the breast (VARNER and CHERESH 1996). 

4 Alterations in Integrin Expression May Correlate 
With Metastatic Potential 

As described above, the association of high level 1J(2~I-integrin expression with 
normal epithelial differentiation and the loss of 1J(2~1 expression with concomitant 
loss of glandular differentiation has now been well established in breast and other 
epithelial tumors. These findings suggested that poorly differentiated 1J(2~I-integrin 
negative tumors might be more invasive and metastatic in vivo. However, a direct 
correlation between integrin expression and the invasive and metastatic potential of 
epithelial malignancies has been difficult to establish. In one clinical study that 
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compared the expression ofintegrin subunits by 12 benign and 61 malignant breast 
samples, expression of the IXI Ph 1X2P" 1X3P" 1X6P" lXyP" and lXyPs integrins was 
significantly reduced in the malignant tissue (GUI et al. 1995a). The loss of integrin 
subunit expression correlated with the presence of axillary lymph node metastases. 
In fact, 70% of the patients who had positive lymph node metastases had no 
detectable expression of PI-integrins. In a multivariant analysis to determine 
whether integrin expression was independent of other predictors of axillary node 
metastases, loss of expression of either the lXI, lXy, or PI subunit was found to be an 
important independent predictor of axillary spread. In a related study by the same 
group, the adhesive properties of breast cancer cells from axillary node negative 
specimens and axillary node positive specimens were examined (GUI et al. 1995b). 
Primary breast tumor cells from women without axillary node metastases adhered 
significantly better to laminin than did primary tumor cells derived from women 
with axillary lymph node metastases. Adhesion to laminin was inhibited by the 
anti-IXI-integrin monoclonal antibody, PIE6, or by the inhibitory anti-PI-integrin 
subunit monoclonal antibody, mabl3. The ability of cells to adhere to laminin 
directly correlated with the expression of lXy and PI-integrin subunits by 
immunohistochemistry. Additional studies have correlated integrin expression with 
tumor progression in colorectal cancer. LINDMARK et al. (1993) demonstrated that 
the loss in basolateral expression of both the 1X2PI-and 1X3PI-integrins related di­
rectly to tumor cell differentiation, advanced Dukes stage and poor survival. These 
studies suggest that in both breast and colon cancer the extent of altered expression 
and function of the 1X2PI and 1X3PI integrins may correlate with prognosis. 

5 The Role of (X2Pr1ntegrin in Epithelial Cells: 
Experimental Approaches 

To date, few experimental studies had addressed the role of altered integrin ex­
pression in epithelial differentiation or the potential role of altered integrin ex­
pression in tumor cell invasion and metastasis. Pep tides containing the sequence 
RGD, a recognition sequence for some integrins, but not for the 1X2PI-integrin, have 
been shown to inhibit the pulmonary metastasis of BI6-FlO melanoma cells in­
jected into the tail veins of mice (HUMPHRIES et al. 1986). GIANCOTII and Ruo­
SLAHTI (1990), demonstrated that overexpression of the IXsPI-integrin, a fibronectin 
receptor, by Chinese hamster ovary cells resulted in a loss of tumorigenicity. 
Overexpression of IXSPI induced increased fibronectin matrix formation, decreased 
cell migration, decreased saturation density in culture and reduced tumor forma­
tion in nude mice. These findings suggest that IXSPI is involved in extracellular 
matrix deposition and that expression of the receptor serves to maintain a differ­
entiated phenotype, to prevent cell proliferation and tumor cell invasion in the 
Chinese hamster ovary cell model. A role for IXSPI in tumorigenesis was also 
demonstrated by SCHREINER et al. (1991) who isolated naturally occurring clonal 
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lines of Chinese hamster ovary cells expressing increased or decreased levels of the 
1X5~I-integrin. Clones expressing lower levels of 1X5~1 produced larger tumors fol­
lowing subcutaneous injection and grew more rapidly than did control cells. 

The dramatic and consistent alterations in expression of the 1X2~I-integrin in 
epithelial malignancy and the correlation between the loss of 1X2~I-integrin ex­
pression and the differentiated epithelial phenotype raised critical questions: What 
is the role of IXrintegrin expression in the maintenance of the differentiated epi­
thelial phenotype and what is the contribution of altered expression to the malig­
nant behavior of breast cancer cells? To begin to address these questions, we 
developed two complimentary approaches; a gain of function model and a loss of 
function model. We exploited both approaches to examine directly the effects of 
1X2~I-integrin expression by mammary epithelial cells. 

5.1 A Gain of Function Model 

For the gain of function model, we identified a breast cancer cell line, the Mm5MT 
cell line, a mouse mammary tumor virus (MMTV)-induced tumorigenic murine 
breast cancer cell line that expressed no detectable IXrintegrin protein or mRNA. A 
full-length IXrintegrin eDNA was introduced into the Mm5MT cell line and six 
clonal cell lines expressing similar levels of IXrintegrin protein and mRNA were 
identified (ZUTTER et al. 1995a). 

The most striking initial difference between the 1X2 transfectants and the pa­
rental or control transfeetants was their morphologic appearance in culture. The 
parental Mm5MT cell line grew as spindle-shaped clusters that rapidly formed 
large multilayered colonies with poorly defined margins. Growth was not contact 
inhibited. In contrast, the (X2 transfectants grew as a monolayer of polygonal cells 
with a cobblestone appearance and were contact inhibited. The restoration of 
contact inhibition suggested that expression of the 1X2~I-integrin by this poorly 
differentiated breast carcinoma altered the growth characteristics and the trans­
formed phenotype of the parental cell line. 

Interestingly, adhesion to collagen was comparable for controls and 1X2 
transfectants. The control Mm5MT cells and 1X2 transfectants expressed the IXI­
integrin subunit at high and equivalent levels. The adhesion to collagen by parental 
Mm5MT cell was likely mediated by the IXI~I-integrin, which also can serve as a 
collagen/laminin receptor, and which was expressed at a high level by parental and 
control cells (IGNATIUS and REICHARDT 1988; IGNATIUS et al. 1990; TAWIL et al. 
1990; KERN et al. 1993). Expression of the 1X2~I-integrin did not alter the level of 
(XI ~I-integrin expression and did not alter the adhesion of the cells to collagen. 

Although the ability of the IXrintegrin-expressing clones to adhere to collagen 
was similar to the Mm5MT parental cells, the ability of the clones to spread on type 
I collagen was markedly altered. The parental Mm5MT and the control Mm5MT­
nco cells spread and developed elongate processes on type I collagen substrates. In 
contrast, the IXrexpressing clones adhered but spread slowly and formed only short 
rudimentary processes. The difference in cell spreading following adhesion to 
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collagen suggests that events occurring after interaction of the <X2~1-integrin with 
the matrix can modify the signaling events mediated by other collagen receptors 
present on the Mm5MT cells. The <X2 transfectants migrated more slowly toward a 
gradient of type I collagen in a haptotaxis assay. Invasion of the <xz-transfected 
Mm5MT cells through a gel of reconstituted basement membrane (Matrigel) was 
also markedly reduced when compared to parental Mm5MT and controls. 

We compared the rate of cell proliferation and the saturation density of the <Xz­

expressing clones to that of parental Mm5MT or control transfectants. Expression 
of the <xz-integrin subunit did not affect the growth rate per se, but did profoundly 
alter the saturation density. The lack of effect of <xz-integrin expression on prolif­
eration stands in sharp contrast to the marked influence of <X5~1-integrin expression 
on the rate of cell proliferation (GIANCOTII and RUOSLAHTI 1990). Re-expression of 
the <X2~1-integrin did alter anchorage independent growth in soft agar. The 
Mm5MT and Mm5MT-neo controls formed abundant large colonies (greater than 
0.5 mm diameter) over an 18 day period; the <X2-transfected cell lines formed only 
few (3-4) colonies over the same time period. Thus, although the expression of the 
<xz-integrin subunit did not affect growth rate of cells attached to a substrate, <Xz­

integrin expression dramatically reduced the capacity for anchorage independent 
growth. 

The inability of the <xz-integrin-expressing clones to form colonies in soft agar 
suggested that the tumorigenic potential of the <X2-expressing clones might also be 
altered in vivo. Subcutaneous injection of2.5 x 106 Mm5MT or Mm5MT-neo cells 
into the flank of weanling severe combined immunodeficiency (SCID) mice resulted 
in large tumors (> 1.5 cm3 in volume) in all ten mice within a 3 week interval. In 
some animals, tumors grew as large as 3.5 cm in greatest diameter (Table I). In 
contrast, the <X2-expressing clones either completely failed to form identifiable tu­
mors or formed only small, elongated, single tumors « 0.07 cm3 in volume) along 
the needle track at the site of injection (Table 1). These findings suggest that re-

Table 1. In vivo tumorigenicity 

Cell line 

Mm5MT 

Mm5MT 

BI 

B2 

C3 

Mouse tumor group/total 

Large 
tumors" 

5/5 

5/5 

"Tumors > 1.5 cm3 in volume 
b Tumors < 0.07 cm3 in volume 
(From ZUTIER et al. 1995a, with permission) 

Small 
tumorsb 

5/5 

3/5 

Tumors (n) 

2/5 

5/5 
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expression of the exrintegrin by a poorly differentiated breast carcinoma cell pro­
foundly suppresses tumor development in vivo. 

Normal mammary gland morphogenesis requires a complex interplay between 
hormonal stimulants, growth factors, and the extracellular matrix (STRANGE et al. 
1991; REICHMANN et al. 1989; TAYLOR-PAPADIMITRIOU et al. 1993; OKA et al. 1991). 
Primary mammary epithelial cells and immortalized, but non tumorigenic, mam­
mary cell lines of both mouse and human origin form glandular structures in three­
dimensional collagen gels (EMERMAN and PITELKA 1977; LEE et al. 1985; BISSELL 
and HALL 1987). The formation of these structures mimics ductal morphogenesis. 
A role for the ex2~I-integrin in gland formation had been suggested (BERDICHEVSKY 
et al. 1991). We therefore analyzed the ability of the exrtransfected cells and con­
trols to undergo morphogenesis in either reconstituted basement membrane gels or 
floating collagen gels. When grown in gels composed of reconstituted basement 
membrane, the Mm5MT and Mm5MT-neo cells formed large, disorganized ag­
gregates of spindle-shaped cells (Fig. 1). In contrast, the exrsubunit expressing 
clones Bl, B2, and C3 formed three-dimensional organized structures including 
alveolar-like and elongated multilayered, duct-like structures (Fig. 1). Both alve­
olar structures and ducts branched extensively. Rudimentary duct-like structures 
also formed in collagen gels, but morphogenesis required 7-8 days instead of 
3-4 days. 

Based upon studies in the gain of function model, we have established that 
reexpression of the ex2~I-integrin by a poorly differentiated breast carcinoma cell 
line restores epithelial differentiation and glandular morphogenesis in vitro and 
alters the malignant potential in vivo. It should be emphasized that in this model, 
ex2~I-integrin expression is restored to a malignant cell, which our studies of human 
tumors revealed was lost in the malignant state. 

5.2 A Loss of Function Model 

We have also established a complementary loss of function model using the well­
differentiated, estrogen responsive breast cancer line T47-D. Flow cytometric 
analysis of the T47-D cells revealed that the cells express high levels of the exr, exr, 
and ~I-integrin subunits and absent or low levels of the exl and exs subunits. Pre­
liminary studies with inhibitory anti-integrin monoclonal antibodies revealed that 
the ex2~I-integrin is the primary mediator ofT47-D cell adhesion to collagen. T47-D 
cells cultur:ed in three-dimensional collagen I gels for 8-10 days organized into 
branching tubules with alveolar-like structures similar to the structures formed by 
normal mammary epithelial cells (KEELY et al. 1995). Inhibitory anti-ex2 antibody, 
which blocked adhesion to collagen, also inhibited glandular differentiation in 
three-dimensional collagen matrices. We exploited antisense mRNA technology to 
generate stable clonal lines of T47-D cells expressing antisense exrintegrin subunit 
mRNA and diminished ex2~I-integrin protein on the cell surface. Ten clonal cell 
lines were selected in hygromycin, either 125 mg/ml (400-series) or 250 mg/ml (700-
series). Cells of the 400-series expressed moderately decreased levels of ex2~1 protein 
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and cells of the 700 series expressed markedly decreased Cl2~1 protein. The changes 
in Clrintegrin expression were specific. Expression of the Cls- and Cl3-integrin sub­
units, for example, was unaltered. 

To determine the importance of altered Cl2~1 expression in the adhesive and 
motile properties of T47-0 cells, the ability of the antisense-Cl2 clones to adhere to 
types I and IV collagen was assayed. The Cl2 antisense transfectants adhered to a 
lesser extent to both type I and type IV collagen than the parental or control 
pREP4 cells. The extent to which adhesiveness decreased correlated with decrease 
in Cl2~1 protein expression. In contrast to the direct correlation observed between 
Cl2~I-integrin expression and adhesion to collagen, cell motility was a more complex 
function of integrin expression. Cells with either normal or very low levels of Cl2~1 
expression exhibited little or no motility on collagen substrates (Fig. 2). In contrast, 
cells expressing intermediate levels of the Cl2~I-integrin exhibited greater motility on 
collagen. Motility on fibronectin was not effected. These findings indicate that while 
the Cl2~I-integrin is clearly required for cell migration on collagen substrates, ele­
vated levels of Cl2~1 depress migration. Migration was best supported by interme­
diate levels of integrin expression, a finding in accord with theoretical 
considerations (LAUFFENBERG and HOROWITZ 1996). 

We assessed the role of Cl2~I-integrin expression in the formation of glandular 
structures when placed in three-dimensional collagen matrices. In contrast to the 
ability of T470 cells to form organized structures (Fig. 3A), antisense clones with 
reduced Cl2~I-integrin expression failed to form such structures, but grew as dis­
organized sheets and clumps of cells. The loss of morphologic organization was 
most pronounced in the 700-series (Fig. 3C), which expressed the lowest Cl2~1 levels 
and intermediate in the 400-series (Fig. 3B), which expressed moderate levels of 
Cl2~I-integrin. The results of these studies in the loss of function model were in 
accord with the results of studies employing the gain of function model. Similar 
studies employing antisense mRNA to inhibit Cl2~I-integrin expression in renal 
tubular MOCK cells have also implicated the Cl2~I-integrin in the branching 
tubulogenesis exhibited by MOCK cells in collagen gels (SAELMAN et al. 1995). 

In summary, we have characterized in detail the role of the Cl2~I-integrin in 
breast epithelial morphogenesis, as well as the contribution of diminished Cl2~1 

expression to the malignant and invasive phenotype of mammary carcinoma cells. 
To do so, we have developed and exploited both gain of function and loss of 
function models. Both approaches indicate that the Cl2~I-integrin is required for 
epithelial differentiation and morphogenesis of breast glands and tubules and that 
the diminis~ed Cl2~I-integrin expression contributes to motility and the invasive 
behavior of tumor cells in vitro. We have also shown that reexpression of the Cl2~1-
integrin in a poorly differentiated, invasive breast carcinoma cell line greatly di­
minishes, but does not completely abrogate, the malignant potential in vivo. 

Our critical observation that Cl2~I-integrin expression is required for mainte­
nance of the differentiated epithelial phenotype and glandular differentiation 
in vitro has been confirmed by studies from a number of our colleagues. Using a 
primary, human, nonmalignant, but immortalized mammary epithelial cell line, 
BERDICHEVSKY et al. (1991) demonstrated that branching morphogenesis can be 
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Fig. 2A-C. Cells expressing partially decreased levels of C(2PI-integrin are more motile on collagen in a 
haptotaxis assay. Cells were seeded into the top chamber ofa Transwell and allowed to migrate for 20 h 
across filters coated from the underside with 30 Ilg/ml collagen I (A, 8) or fibronectin (C). Two different 
experiments are shown for motility across collagen I. Clones are arranged from greatest adhesion to 
collagen (Iefi) to least adhesion to collagen (right) and are aligned vertically for direct comparison 
between experiments. Cells were quantitated by counting across two diameters each of duplicate filters, 
and are shown ±SD. (From KEELY et al. 1995) 
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Fig. 3A-C. Antisense-expressing cells with decreased 
iX2131-integrin levels exhibit disrupted morphology when 
cultured in three-dimensional collagen gels . Cells were 
cultured for 10 days in collagen gels and photographed 
using phase-contrast microscopy. A Control, T-REP4 
cells formed tubule structures and organized when cul­
tured in collagen gels. B Antisense-expressing clone 401 
and C an tisense-expressing clone 703 did not form 
tubule structures, but instead grew as disorganized 
sheets or clumps of cells when cultured in collagen gels. 
Cells were photographed using phase-contrast micros­
copy and are all shown at the same magnification. Bar in 
C, 100 mm. (From KEELY et a!. 1995) 

blocked with inhibitory monoclonal antibodies directed against the cxrintegrin 
subunit. Studies from a number of investigators suggest that the cx2~I-integrin also 
mediates the morphologic differentiation of colonic epithelial cells. Colorectal ep­
ithelial cells organize into glandular structures with well defined polarity in three­
dimensional collagen gels (PIGNATELLI and BODMER 1988) or gels composed of 
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basement membrane extracts (DEL BUONO et al. 1991). The ability to undergo 
glandular morphogenesis in three-dimensional collagen gels was inhibited by in­
hibitory anti-(l2 or anti-~l monoclonal antibodies and enhanced by TGF(l induced 
up-regulation of (l2~1 expression on the cell surface (LIU et al. 1994). These findings 
support a role for the (l2~1-integrin in glandular morphogenesis of colonic epithelial 
cells as well as breast epithelium. 

6 The Role of ct2PrIntegrin in Mesenchymal Cells 
Differs Dramatically From the Role in Epithelial Cells 

Our studies on the role of the (l2~1-integrin in cells of epithelial origin differ from 
earlier findings of (lrintegrin subunit expression by cells of mesenchymal origin. 
CHAN et al. (1991) overexpressed the (l2~1-integrin in a rhabdomyosarcoma (RD) 
cell line, a skeletal muscle tumor, which did not express the (l2~1-integrin. The 
resulting cells were no more tumorigenic than the parental cell line, but were more 
metastatic when injected intravenously into nude mice. Transfection of the (lr 
integrin conferred upon RD cells the ability to contract collagen matrices. SCHIRO 
et al. (1991) have reported that the (l2~I-integrin on fibroblasts is required for 
collagen gel contraction. KLEIN et al. (199Ia) confirmed these observations and 
showed that fibroblasts increased the synthesis and transcription of the (l2~1-

integrin when embedded in type I collagen gels. Gel contraction, an in vitro model 
for reorganization of connective tissue during wound healing, paralleled the in­
creased expression of (l2~1 protein. Gel contraction could be blocked by inhibitory 
monoclonal antibodies against either the (lror ~l-integrin subunits. Using the same 
model system, melanoma cell lines were tested for their ability to contract collagen 
gels (KLEIN et al. 1991b). These studies suggest that the function of the (l2~1-

integrin may be cell type-dependent. 
The apparent contradiction between the results of studies with epithelial and 

other cell types in vitro is also apparent in vivo. In contrast to the diminution or 
loss of (l2~1-integrin expression in epithelial malignancies, expression of the (l2~1-
integrin by malignant melanocytes in melanoma is markedly increased. Normal 
melanocytes express the (lz-integrin subunit only at very low levels. When mela­
nocytes proliferate abnormally or become malignant, expression of the (lrintegrin 
subunit is aberrantly up-regulated (KLEIN et al. 1991b; DANEN et al. 1993, 1994; 
VAN DUINEN et al. 1994). Both benign nevi as well as cells from malignant mela­
noma express the (l2~1-integrin. KRAMER and MARKS (1989) initially showed that a 
highly metastatic melanoma cell line, MeWo, adhered tightly to type I and type IV 
collagens via both the (ll~l- and (l2~1-integrin receptors. Melanoma cell lines that 
were highly metastatic in vivo expressed high levels of the (l2~1-' as well as the (ll~l­
and (l6~1-integrins. Primary nonmetastatic melanomas expressed the (l2~1-integrin 
at low levels (MORTARINI et al. 1991). These findings suggest that the expression 
and function of the (l2~1-integrin by melanocytes or mesenchymal cells is distinctly 
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different than by an epithelial cell. The function of any specific integrin appears to 
be critically dependent upon thc cellular environment in which it is expressed. 

7 The Molecular Mechanisms That Regulate 
ct2~1-Integrin Expression 

Recent studies have provided insight into the mechanism by which Clrintegrin 
subunit expression is diminished in breast cancer. Our own studies have revealed 
that the 5' regulatory region of the Clrintegrin gene may be divided into three 
regions; a core promoter located between bp -30 and -92, a silencer located be­
tween bp -92 and -351, and a larger tissue- and diffcrcntiation-specific enhancer 
region located in the more distal 5' flank (ZUTTER et al. 1994, 1995b). The core 
promoter is not cell type-specific and is functional in both epithelial cells and 
hematopoietic cells induced along the megakaryocytic pathway. The silencer 
strongly represses promoter activity in cells of hematopoietic lineage, but is either 
only weakly active or inactive as a silencer in nonhematopoietic cells, i.e., the 
nontumorigenic human mammary epithelial cell line MTSVI-7 and the well-dif­
ferentiated epithelial cell line T47D, respectively (ZUTTER et al. 1994; YE et al. 
1996). Additional enhancers in the distal 5' flank are required for high level 
megakaryocytic and epithelial expression of the Cl2-integrin gene. A diagram of the 
5' flank of the Clrintegrin gene from bp -3739 through exon I (ZUTTER et al. 1995b) 
demonstrates the three essential promoter/enhancer domains (Fig. 4). 

We recently determined by site-directed mutagenesis of the core promoter that 
the two tandem Sp I binding sites located between bp -30 and -92 are required for 
binding of the nuclear protein Sp I and for promoter activity of the Clrintegrin gene 
(ZUTTER et al. 1997). Spl protein required phosphorylation for DNA-protein 
complex formation with the Clrintegrin core promoter region. D'SOUZA et al. (1993) 
showed that expression of the Clrintegrin subunit in a primary mammary epithelial 
cell line was reduced when the cells were transfected with the erb-B2 protoonco­
gene. The loss of Cl2~I-integrin expression by erb-B2 transfection was found to be 
due to a decreased steady state level of Clrintegrin mRNA resulting from reduced 
transcription of the Clrintegrin gene. The level of Cl2 mRNA expression inversely 
correlated with the level of erb-B2 expression. YE et al. (1996) recently found that 
the reduced Clrintegrin gene expression in mammary epithelial cells transfected 
with erb-B2 was due, in part, to the inability of Spl to bind to the core promoter 
region, although the overall level of Spl protein was unchanged. These findings 
suggest that overexpression of erb-B2 in mammary carcinoma cells may lead to 
altered phosphorylation of Sp 1 protein which results in an inability of Sp 1 protein 
to bind to the core promoter of the Clrintegrin gene, thereby reducing Clrintegrin 
gene expressIOn. 
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8 The cx2P.-Integrin Is Required for Normal Glandular 
Differentiation and May Function 
as a Tumor Suppressor Gene 

In summary, the function of a specific integrin is critically dependent upon the 
cellular environment in which it is expressed. The studies summarized in this review 
provide compelling evidence of the critical role for the c:t2PI-integrin in normal 
mammary differentiation, as well as in the differentiation of other epithelial cells. It 
is likely that changes in c:t2PI-integrin expression in breast cancer and other epi­
thelial malignancies contribute to the altered adhesive and invasive characteristic of 
the tumor cells. The results of studies by our group, as well as by others, indicate 
that expression of the c:t2PI-integrin is required for normal mammary epithelial 
differentiation and glandular morphogenesis. Our findings suggest that c:t2PI­
integrin expression diminishes the invasive and malignant phenotype of breast 
cancer cells and may function as a tumor suppressor for breast and other epithelial 
malignancies. The loss of c:t2PI-integrin expression may represent one step in the 
progression of a normal, differentiated mammary gland epithelium to an invasive 
and tumorigenic breast cancer. 
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