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Preface 

 

The core of this book arose from a specialist meeting on remote sensing and urban 
analysis, which was held in the University of Strasbourg, France. The meeting was 
sponsored by the European Science Foundation’s (ESF) GISDATA Programme and 
considered four research themes in urban remote sensing, namely (i) cartographic feature 
extraction and map updating, (ii) delimiting urban agglomerations, (iii) characterizing 
urban structure, settlements and population distribution, and (iv) urban modelling. 

The application of remote sensing to the study of human settlements, perhaps more 
than any other use of this technology, relies on the availability of ancillary data and the 
advanced spatial analytical functions commonly associated with, but not always present 
in, Geographical Information Systems (GIS). Thus, while remote sensing can help to 
provide us with an accurate assessment of the physical characteristics of urban areas—
including their size, shape and rates of growth, as well as the principal cover types 
associated with their constituent land parcels—relatively little can be said about the 
economic activities and socio-economic conditions that prevail within them, without 
recourse to exogenous data sets. The demands that this places on remote sensing 
specialists and urban planners alike are four-fold: 

1. There is a continuing requirement to develop advanced image-processing techniques 
which can be used to derive accurate and consistent information on the physical 
structure and composition of urban areas from remotely-sensed images. Work in this 
area is being conducted against a background of continued development in remote 
sensing technology, most notably through the introduction of very high spatial 
resolution optical satellite sensors, but also via the increasing availability of alternative 
sources of image data, such as SAR (Synthetic Aperture Radar) and LiDAR (Light 
Detection And Ranging). While these offer new possibilities, each also presages new 
problems. There is a danger, therefore, that remote sensing specialists will expend 
most of their effort addressing the opportunities and problems posed by each new 
technological advance, rather than seeking operational solutions to the use of existing 
systems. 

2. There is a need to move beyond simply mapping the physical form of urban areas, to 
provide indicators of their social and economic functioning. This is far from 
straightforward, since many of the functional properties that are of interest to urban 
planners—such as land use and population density—cannot be observed directly by 
means of remote sensing. A more complex chain of inference is required: one that 



incorpo-rates ancillary spatial data and that examines the spatial and structural 
properties of urban areas represented in the digital image, not just their spectral 
characteristics. 

3. The previous point implies that new models and spatial analysis tools need to be 
developed to allow integrated analysis of remotely-sensed images and socio-economic 
data. One example of this is the need to transform socio-economic data—typically 
referenced by geographical units defined in terms of (vector) administrative 
boundaries—into raster format. Current GIS packages provide some of the necessary 
functionality, but not always to the level of sophistication required. 

4. Finally, the communication between urban planners and remote sensing specialist must 
be improved, so that the former understand the full potential and limitations of remote 
sensing, while the latter design sensor Systems and data-processing techniques that are 
relevant to the real, as opposed to the perceived, needs of urban planners. 

This book addresses various aspects of these four points, emphasizing the methodological 
issues involved in the analysis of remotely-sensed data of urban areas. In many cases we 
have asked individual contributors to the original meeting in Strasbourg to work together 
to develop the chapters presented in this book. This serves two purposes: first, it forces 
the authors to draw out the common themes and synergies between their individual 
research projects, rather than relying on the reader to infer them; second, it enables them 
to address many of the issues that arose in discussion both during and after the 
GISDATA meeting. We hope that this raises the vision of the book as a whole, beyond a 
loose collection of papers describing separate research projects, to a more rounded 
assessment of the potentials and limitations of remote sensing for urban analysis. 

Part I presents a set of chapters that deal with various aspects of deriving information 
on the physical structure and composition of urban areas from remotely-sensed data—
addressing the first of the major issues outlined above. 

In chapter 1 (Donnay et al., this volume), we review the ‘state-of-the-art’ in urban 
remote sensing to provide some context for the rest of the book. Ranchin et al. (Chapter 
2) then present a method for combining (‘fusing’) remotely-sensed images acquired at 
different spatial resolutions and by different satellite sensors to maximize the information 
available on urban areas. Their method, based on the wavelet transform, is used to merge 
the structural detail provided by very high spatial resolution panchromatic images with 
the spectral information inherent in lower resolution multispectral data sets. Since their 
method preserves the radiometric values of the original data, the output can be used not 
only for visual inspection purposes, but also for further quantitative analysis. The spatial 
information content of the ‘raw’ digital image data is also examined by Brivio and Zilioli 
(Chapter 3) using geostatistical techniques. More specifically, they demonstrate that the 
parameter values derived by fitting experimental semi-variograms to image data can be 
used to distinguish different types of urban environment. The final chapter in this part of 
the book presents the work of Pesaresi and Bianchin (Chapter 4) who explore the use of 
mathematical morphology operators as a means of distinguishing urban areas based on 
their grey-level ‘texture’ in high spatial resolution optical images. They demonstrate the 
application of this technique to satellite sensor images of a number of towns and cities in 
northern Italy.  



Part II moves beyond a consideration of the raw radiance values reported in the 
remotely-sensed data to produce information on urban land cover and land use via 
statistical classification and structural pattern recognition. 

The use of statistical classification algorithms in image processing has received 
extensive and detailed attention in the remote sensing literature over the last thirty years 
and, as a result, is now considered to be very much a ‘standard’ technique. Yet, despite 
this, the accuracy of classifications performed on images acquired over urban areas is 
often disappointingly low. Mesev et al. (Chapter 5) review the probable reasons for this 
and examine a number of practical techniques that can be used to improve the accuracy 
of per-pixel maximum-likelihood classifiers, including modifying the prior probabilities 
of the candidate classes on the basis of ancillary spatial information and iterative 
updating of the ‘priors’ using the posteriori probabilities. 

The chapters by Bähr (Chapter 6) and Barnsley et al. (Chapter 7) examine a number of 
alternative approaches to analyzing remotely-sensed images of urban areas. Bähr, for 
example, considers the use of image segmentation techniques to investigate land-cover 
change detection within and around urban areas. The methods are informed by ancillary 
spatial data from the national mapping base, but are also used to explore the potential for 
semi-automated updating of these data by means of remote sensing. This chapter also 
considers the derivation of information on the three-dimensional form of urban areas 
using digitized aerial photography and semantic networks. Barnsley et al. follow on from 
this with a more in-depth review of structural (or syntactic) pattern recognition 
techniques for analyzing remotely-sensed images. Their objective is to deduce the nature 
of urban land use from the morphological properties of, and structural relations between, 
discrete land cover parcels identified in the image. 

Part III examines various methods of delimit the overall extent of urban areas and of 
estimating their human population. 

Weber (Chapter 8), for instance, focuses on the problem of producing a simple, 
objective definition of urban areas and urban agglomerations. The problem is of great 
practical interest, and Weber suggests that remote sensing has a central role to play in 
defining and measuring what is urban and what is not—one that can be applied 
consistently across different nation states. Longley and Mesev (Chapter 9) continue the 
broad theme of the morphology of urban areas with a consideration of their fractal 
dimension. They use fractal measures derived from land cover classifications of 
remotely-sensed images as a means of comparing the morphology of different urban 
areas and of understanding the processes that have underpinned their development over 
time. The temporal development of urban areas, as revealed in remotely-sensed images, 
is also explored by Batty and Howes (Chapter 10), who show how a combination of 
remotely-sensed and ancillary spatial data (on the age, size and taxable value of 
individual building lots) can be used to reconstruct the past development of a city. 
Perhaps more importantly, they present a convincing analysis that relates the different 
stages of development evident in the remotely-sensed data to changes in the dominant 
mode of transport (e.g.rail, car) and economic activity of the city concerned (Buffalo, 
NY, USA). 

The final two chapters examine issues relating to the estimation of urban population 
density from remotely-sensed images. Donnay and Unwin (Chapter 11) are concerned 
with the creation of ‘surface models’ with which to analyze the spatial distribution of 



selected geo-graphical variables, of which population density is one example. In this 
context, the raster image data are used to generate a continuous model of population 
density from discrete point- or parcel-referenced census data. Baudot (Chapter 12) uses 
similar spatial disaggregation techniques to estimate population counts and densities in 
fast-growing cities of developing countries. This work is of particular significance, given 
the paucity of information available via traditional means (i.e. decennial census) and its 
importance for strategic national and international planning purposes. 

The book concludes with an analysis of the way forward in terms of the research 
agenda and the practical application of remote sensing for urban analysis. 

Finally, we would like to take this opportunity to thank all of the participants at the 
meeting, not merely the authors of the chapters in this book, for their valuable 
contributions to the general discussion. The updated outcome of this discussion—this 
book—is not a complete survey on the matter; the list of the topics included here is far 
from exhaustive, even in terms of those covered at the Strasbourg meeting. Nevertheless, 
at a time when interest in the use of remote sensing for urban analysis is growing rapidly, 
we hope that this book will act as a catalyst for further basic research and, perhaps more 
importantly, the development of operational applications. 

Jean-Paul Donnay, Mike Barnsley and Paul Longley, 6th October 2000 
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CHAPTER 1 
Remote Sensing and Urban Analysis 
Jean-Paul Donnay, Michael J.Barnsley and Paul A.Longley 

1.1 Introduction 

Aerial photography has long been employed as a tool in urban analysis (Jensen 1983, 
Garry 1992). Indeed, this form of remote sensing is still extensively used today and can 
now benefit from digital image-processing techniques, provided of course that the 
photographs are digitized first (Futz 1996). For reasons of their widespread availability, 
frequency of update and cost, however, the focus of urban remote sensing research has 
shifted more towards the use of digital, multispectral images, particularly those acquired 
by earth-orbiting satellite sensors. This trend was initiated with the advent of what might 
be described as ‘first generation’ satellite sensors, notably the Landsat MSS 
(Multispectral Scanning System), and was given further impetus by a number of second 
generation devices, such as Landsat TM (Thematic Mapper) and SPOT HRV (High 
Resolution Visible). Data from the former were initially used to analyze regional urban 
systems and for exploratory investigations of some of the larger cities in North America 
(Forster 1980, Jackson et al. 1980, Jensen 1981, Jensen 1983). The availability of still 
higher spatial resolution (20m/10m) images from the latter enabled more detailed studies 
of the older, more compact urban areas characteristic of Europe (Welch 1982, Forster 
1983, Baudot 1997). The advent, over the last few years, of a third generation of very 
high spatial resolution (<5m) satellite sensors is likely to stimulate the development of 
urban remote sensing still further (National Remote Sensing Centre 1996, Aplin et al. 
1997, Fritz 1999). The data they produce should facilitate improved discrimination of the 
dense and heterogeneous milieu of the old urban cores that are characteristic of European 
cities (Ridley et al. 1997), and will also help to disentangle the urban fabric in the rapidly 
expanding agglomerations and ‘edge cities’ of many developing countries.  

The large number of urban remote sensing investigations that has been undertaken 
since the launch of the first SPOT satellite in 1986 might be taken to imply that the tool is 
already operational and perhaps worthy of widespread development and application 
through national or international programmes (Dureau and Weber 1995, Weber 1995, 
Dubois et al. 1997). In that sense, the pan-European ‘Remote Sensing and Urban 
Statistics’ initiative organized by the European statistical agency, Eurostat, is a case in 
point (Eurostat 1995). The subsequent work of the Commission of the European 
Community’s Centre for Earth Observation (CEO) also deserves mention in this context 
(Churchill and Hubbard 1994, Galaup 1997). Despite these positive developments, 
however, doubts remain in some quarters about the potential for operational application 
of remote sensing to map and monitor urban areas (Ehlers 1995, Donnay 1999). There is, 



for example, a concern about their robustness and reliability. At the same time, many of 
the results reported in the scientific literature are of only marginal relevance to the day-
to-day practices of urban planners and statisticians, who by-and-large remain 
unconvinced. Moreover, the case for urban remote sensing has not been helped by a 
degree of ‘over-selling’ both by some vendors of satellite sensor images and in some 
academic quarters. 

An objective assessment of the current status and future potential of urban remote 
sensing is therefore required. This should include an evaluation of how the methods and 
results of scientific analyses—based essentially on inference and indirect identification of 
the form, structure and composition of urban areas—can be made more directly useful to 
practitioners. It should also highlight the elements of urban remote sensing that can 
justifiably be considered to be operational, as well as those which may become so in the 
near future. The need to address these issues formed the rationale for a European Science 
Foundation (ESF) meeting held in Strasbourg, France, and the chapters in this book have 
since developed as a consolidated response. Before turning to these, however, it is 
appropriate to appraise the ‘state-of-the-art’ in this field. Our review here is necessarily 
selective: for the most part the references are given for example only and the interested 
reader is invited to consult more widely the references at the end of each of the other 
chapters. 

1.2 State-of-the-Art in Urban Remote Sensing 

1.2.1 The Demand for Higher Spatial Resolution Data 

It has been suggested that the single most important technical issue in urban remote 
sensing is the spatial resolution of the image data (Welch 1982). We have already noted 
that the development of urban remote sensing was stimulated by the advent of so-called 
‘second generation’ satellite sensors with a spatial resolution of between 10m and 30m. 
The current sense of frustration with some of the methods of urban remote sensing can be 
traced to the relatively slow dissemination of data from the most recent generation of 
satellite sensors, which are expected to deliver image data at spatial resolutions as fine as 
1m. Pending widespread availability of such data, the principal remote sensing sources 
are the SPOT, IRS and Landsat series of satellites, as well as data from airborne 
multispectral scanners and digitized aerial photography (Corbley 1996, Ridley et al. 
1997). Thus, many analysts are already working with data of a spatial resolution finer 
than 5m, and are anticipating still greater discrimination of the urban fabric when the new 
data sources finally come on stream. To emphasize the significance of these new data 
sources, it is worth bearing in mind that this level of spatial resolution corresponds to 
scales of analysis of between 1:10,000 and 1:25,000 (ignoring the effects of relief 
distortion etc.)—that is to say, scales typical of projects dealing with urban planning, 
though not necessarily building and facility management. 

The use of high or very high spatial resolution images, however, brings with it some 
major problems. First, the majority of the highest resolution images are presently 
recorded in panchromatic mode only; and, second, the mass of corresponding information 
creates difficulties in terms of image storage, data exchange and processing time. The 
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solutions suggested for solving the first problem revolve around the use of various 
methods of data fusion; merging the higher resolution panchromatic data with lower 
resolution multispectral data (Jones et al. 1991, Ackerman 1995, Ranchin and Wald 
2000, Ranchin et al. this volume). Transforms in the colour space (RGB/HSI), principal 
components analysis, spatial filtering and wavelet methods are among the most common 
means of achieving such integration (Carper et al. 1990, Chavez et al. 1991, Wald et al. 
1997, Pohl and Van Genderen 1998). Additionally, one may observe that the fusion issue 
is, and will remain, of prime importance in diachronic analyses using images recorded by 
different generation sensors (i.e. with different spatial resolutions). The problems 
concerning the volume of data might appear to be of secondary importance given rapid 
and continuing improvements in computer technology. Nevertheless, they remain 
significant at the scale of the urban region (typically several tens of square kilometers) 
and they necessitate a consideration of data compression techniques. In this context, 
wavelet methods present one promising avenue of research and application. They not 
only allow efficient data compression while preserving the original spectral values, but 
can also be used to fuse images at different resolutions, thereby simultaneously dealing 
with the two main pitfalls outlined above. 

1.2.2 Attempts to Enhance the Classification Process 

Another methodological issue that must be taken into account is the land use 
classification process. A priori this problem is not restricted to urban analysis: remote 
sensing is fundamentally a science of inference and, even though a few Earth surface 
properties can be measured directly, remotely-sensed data are more generally surrogates 
for the actual variables of interest. In non-urban systems, it is generally possible to derive 
relatively straightforward, direct relationships between the spectral response of the two 
major components of terrestrial ecosystems (water and vegetation) and land use. By 
contrast, the urban milieu poses far greater problems, in that identical spectral reflectance 
values can correspond to very different land uses and diverse functions. The 
consequences for urban remote sensing investigations are two-fold: first, the quality of 
urban classifications is typically poorer than those obtainable for non-urban scenes (both 
in terms of the number of individual classes that can be recognized and the accuracy with 
which they can be identified); and, second, the land use typologies that can be retrieved 
by means of spectral ‘signatures’ may be different from the functional nomenclatures 
used in urban analysis. 

To improve the results of automatic and semi-automatic classification, and to 
restructure the typologies to meet the needs of urban practitioners, remote sensing 
investigations generally augment digital image-processing with computer-assisted visual 
interpretation (Lenco 1997, Collet 1999). Compared to the classical procedures of digital 
image interpretation, however, this process is both time-consuming and is particularly 
subjective. Nevertheless, any enhancement of classification results, even if only a few 
percentage points, is usually considered to be worthwhile—much more so than in other 
domains where remote sensing is employed. Perhaps this also explains why 
developments in automated image classification techniques often find early application in 
the urban realm (Wilkinson 1996). 
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Attempts have been made to improve the results achieved using traditional per-pixel 
classification algorithms by using a priori probabilities or a posteriori processing 
(Barnsley and Barr 1996, Mesev et al. this volume). New algorithms, such as the so-
called ‘soft’ classifiers (based on Bayesian probabilities, Dempster-Shafer and fuzzy set 
theories), have also been employed because they are able to cope more effectively with 
the complex spatial mixture of spectrally distinct surface materials characteristic of many 
urban pixels (Zang and Foody 1998). Other forms of image classification are also widely 
employed, including image segmentation routines (Conners et al. 1984, Terrettaz 1998). 
Ancillary (exogenous) spatial data sets, such as those pertaining to the boundaries of 
administrative units in towns and cities, are used to inform and constrain the 
classification process (Weber 1993). 

Methods of combining spectral data with measures of urban form and texture are 
particularly numerous. Some are based on information extracted from the satellite sensor 
images themselves (Baraldi and Parmiggiani 1990, Forster 1993, Dawson and Parsons 
1994, He et al. 1994, Pesaresi and Bianchin this volume), while others make use of 
ancillary data (Forster 1984, Sadler and Barnsley 1990, Weber 1993, Harris and Ventura 
1995). The measures employed vary from comparatively simple indices of image texture 
(Durand et al. 1994) to estimates of fractal dimension (De Cola 1993, Frankhauser 1993, 
Longley and Mesev this volume). 

Knowledge-based methods and artificial neural networks (ANNs) have been used to 
classify urban areas in satellite sensor images, exploiting the basic spectral data and 
information on the textural and contextual properties of the observed scene (Wharton 
1987, Moller-Jensen 1990, Wang 1992, Halounova 1995). Still other approaches exist, 
notably those making use of diachrony (Nicoloyanni 1990, Gomarasca et al. 1993). 

Generally speaking, however, these techniques are experimental and not yet included 
in standard image-processing software. In this respect it is worth noting that many of the 
functions required may be adapted from raster based GIS software. Faced with so many 
new and hybrid techniques, the end-users’ confusion is understandable. 

1.2.3 From Urban Morphology to the Human Dimension 

In urban planning, the land use map generated by thematic classification of a satellite 
sensor image can be viewed as an end-product per se, as it constitutes a document 
showing the prevailing situation before any planning action. However, it can also be 
considered to be a starting point for further analyses that, ipso facto, will propagate the 
qualities and the errors inherent in the classification. 

A common approach to post-classification image processing consists in the analysis of 
the spatial pattern of the various land use categories, especially the residential ones. This 
kind of morphological analysis can bring immediate practical results, such as the 
delineation of urban morphological agglomerations (Donnay 1994), but it also provides a 
means of modelling urban space filling and development. In this latter context, most of 
the well-known urban models have been tested, ranging from the ‘old’ Clark’s model to 
new models based on the fractal theory. In this way, urban structure and land use 
densities can be extracted from classified and/or segmented images (De Keersmaecker 
1989, Sadler et al. 1991, Bianchin and Pesaresi 1992, Batty and Longley 1994). 
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Frequently, the modelling approach makes use of a new inference process in which the 
land use categories are related to an urban variable, most often the human population: this 
approach has, of course, been widely used in the past in the analysis of aerial 
photography (Adeniyi 1983, Lo 1989). The simplest application involves reallocating the 
population figures, originally referenced by census unit, according to the spatial 
distribution of residential land (Langford et al. 1990). This can lead to an evaluation of 
net density figures (i.e. densities given by the ratio between the population and the area 
identified as being residential land) and then to a kind of visualization that is similar to 
dasymetric maps (Monmonier and Schnell 1984). If one further assumes that there is a 
close relation between different categories of residential land use on the one hand and 
different population densities on the other, the reallocation of the population figures may 
be refined still further. The same hypothesis may be used a contrario to estimate 
population figures in the absence of a formal census. This approach has been applied, via 
a stratified sampling procedure, to the suburbs of a number of metropolitan areas in the 
Third-World (Dureau 1990, Lo 1995). 

The modelling of land use and/or population densities can also make use of surface 
models. In this case, it is a question of transforming a spatially discrete distribution into a 
continuous one. This is often carried out by passing a convolution kernel over the whole 
image. The procedure, which is similar in many respects to the application of a low-pass 
filter, provides a surface model of population density when applied to an image of the 
population figures reallocated over various residential land use categories (Langford and 
Unwin 1994). By modifying this procedure slightly, it can also be used to generate a 
potential surface of the population (Nadasdi 1995). These surfaces can then be used for 
further, detailed socio-economic analyses (Bracken 1991, Martin 1991, Donnay 1992, 
Donnay and Thomsin 1994, Thurstain-Goodwin and Unwin 2000). 

1.2.4 Human Connotation of the Physical Dimension 

The extraction of planimetric and 2.5-D/3-D features from remotely sensed images, 
whether classified or not, constitutes a very dynamic research domain in urban remote 
sensing. Classical photogrammetric methods, originally developed in the context of 
analogue and digitized aerial photographs, are increasingly being applied mutatis 
mutandis to high spatial resolution digital satellite sensor images (Ebner et al. 1991). The 
data so derived are being used in various ways. For example, information on road 
networks can be used for urban transport planning (Wang 1992, He et al. 1996, Muller 
and Brackman 1997, Couloigner 1998) or, more generally, in the map-updating process 
(Muller et al. 1994). Likewise, estimates of building height can be used to complete 
urban cadastres (Schram 1995), to assist in siting telecommunication infrastructure and, 
more generally, for environmental impact assessment and urban landscape (‘townscape’) 
studies (Hartl and Cheng 1995, OEEPE 1996, Ridley et al. 1997).  

The spatial patterning of different land uses within the urban boundary, assessed and 
visualized by means of thematically classified satellite-sensor images, is a valuable 
source of information with which to analyze the urban environment. Such data can add 
social connotation to the mere physical infrastructure of roads and buildings, conveying 
information on the availability and distribution of urban ‘green space’ and, indirectly, on 
the overall quality of life (Donnay and Nadasdi 1992, Weber and Hirsch 1991, Baudot 
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and Wilmet 1993, Richman 1999). Moreover, images of urban land use help to support 
and inform numerical simulations of urban growth. In this context, land use images 
provide the initial conditions on which forecasts can be based, as well as estimates of the 
areas and types of land cover that will be affected (Méaille and Wald 1990, Pathan et al. 
1993). Finally, thermal infrared data acquired over urban areas during the day and at 
night can be used to monitor the so-called ‘heat island’ effect associated with urban areas, 
as well as atmospheric pollution (Nichol 1988, Eliasson 1992, Gallo et al. 1993, Kim 
1992, Poli et al. 1994, Lo et al. 1997,Cornélis et al. 1998). 

Clearly, the number and range of applications that can make use of information on the 
physical dimensions of urban areas derived from remotely-sensed images are much more 
extensive than the few examples discussed here. The aim has been to give a general 
overview and to show how the types of information that might be derived can be used to 
address various human and social issues pertaining to the urban environment. 

1.3 Urban Remote Sensing Issues 

Given the renewed interest currently being expressed by certain sections of the planning 
community, and in light of recent developments in sensor and computing technology, a 
re-evaluation of remote sensing as a tool for mapping and monitoring urban areas is now 
appropriate. From the viewpoint of techniques and methodologies, urban remote sensing 
shows an indisputable dynamism and seems to be willing and able to take advantage of 
each new technical and methodological innovation in the wider arena of satellite remote 
sensing. However, the operational potential of urban remote sensing will depend on its 
capacity to respond to the practical requirements of urban practitioners and on how 
rapidly the latter group can integrate remotely-sensed data into their everyday activities. 
In this context, urban remote sensing must be able to provide planners with certain, key 
data sets that are pertinent to urban areas, notably: 

1. the location and extent of urban areas; 
2. the nature and spatial distribution of different land use categories within urban areas; 
3. the primary transportation networks and related infrastructure; 
4. various census-related statistics and socio-economic indicators; 
5. the 3-D structure of urban areas for telecommunications (inter-visibility) and 

Environmental Impact Assessment (EIA) studies; and 
6. the ability to monitor changes in these features over time. 

To fulfill these requirements, one must first resolve some ambiguities surrounding the 
detection, identification and analysis of urban features by means of remote sensing. This, 
in turn, requires a close collaboration between urban planners and remote sensing 
specialists. 

1.3.1 Detection of Urban Features 

In assessing the utility of current and future remote sensing systems against the 
requirements outlined above, it is important to address the following questions: 
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• Are the features/entities of interest to urban planning agencies intrinsically 
discernible by means of remote sensing, in terms of differences in their spectral, spatial, 
temporal, angular or polarization properties? 

• What are the characteristic features of urban areas and their sub-elements that allow 
them to be distinguished/identified in remotely sensed data? 

• Are current data-processing techniques appropriate/optimal to extract information on 
these features from the resultant image data? 

• Can greater use be made of syntactic pattern recognition and artificial neural network 
techniques to derive information on urban entities, given continuing improvements in 
spatial resolution, particularly for new satellite sensors? 

• Should such techniques now replace traditional statistical pattern recognition 
procedures in the analysis of remote sensed images, given the spatial heterogeneity of 
urban scenes and recent advances in sensor technology? 

• What rôle should ancillary spatial data and Geographical Information Systems play 
in the image analysis/image understanding process? 

A number of these questions are addressed in greater detail in the following chapters, 
but we will first provide some general observations here. 

1.3.2 Identification of Urban Features 

Finding simple, objective and repeatable criteria with which to define and identify 
coherent, meaningful territorial entities constitutes one of the main obstacles to an 
understanding of urban areas today (Pumain et al. 1992). Satellite remote sensing can 
make a vital contribution in this context, since it provides regular, repetitive data from a 
single, consistent source. 

Identifying urban phenomena and delimiting them through space by means of remote 
sensing involves two key steps: first, detecting the morphological variability of 
settlements (e.g. city centres, suburbs, urban fringes, peripheral clusters, dilution areas or 
axes, conurbations); and, second, delimiting urbanized entities that are relevant to 
national and international statistical systems, so that they can be compared over space and 
time. It is important to note, however, that the delineation of urban areas cannot simply 
be reduced down to drawing a line around a concentrated city, itself organized in discrete, 
homogeneous blocks of land use. This is because urban areas frequently comprise a set of 
scattered settlements intertwined with other territorial elements, which only indirectly 
display a unified structure. The simple description of this kind of urbanization requires 
those elementary structures to be ‘named’ and ‘identified’, and implies that their own 
internal structure be studied at the higher level. Thus, structure is the key issue for 
analyzing and detecting this kind of urbanization. 
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1.3.3 Analysis of Urban Features 

We have repeatedly noted that satellite remote sensing is an important source of 
information for urban analysis at the territorial scale. In that sense, digital image data not 
only provide a means of exploring and exemplifying existing hypotheses and models, but 
also for constructing new theories of urban areas by defining and identifying relevant 
spatial entities and examining the relationships between them. Despite this, the 
qualitative (categorical/ordinal scale) nature of the land use categories identified through 
the image classification process, and the discrete spatial distribution of the regions that 
this defines, limit the value of such images in mathematical models of urban areas. The 
latter frequently presuppose the presence of one or more quantitative (interval/ratio 
scale), spatial continuous variables. Consequently, land use data sets derived from 
remotely-sensed images may need to be further transformed if they are to be readily 
integrated in many urban models. Where this is achieved, the transformed data may then 
be used in a much wider range of applications, including: 

• physical planning (e.g. viewshed analysis, impact assessment and other environmental 
issues); 

• economic planning (e.g. accessibility, location analysis, and transport studies); 
• social planning (e.g. population and other socio-demographic distributions, urban 

structures); and, 
• forecasting models (e.g. diffusion and urban growth). 

We note, in passing, that the accuracy and reliability of the results derived for any of the 
applications outlined above is dependent on the quality of the input data (e.g. the 
accuracy and reliability of the land use classification and the appropriateness of the 
nomenclature/classification scheme employed), and that the process of transforming the 
image data is not a neutral one (i.e. it may introduce error or bias that will vary, for 
example, with the scale of analysis). 

1.4 Urban Remote Sensing and GIS 

Although we have frequently referred to GIS in this review, it has tended to be in an 
indirect fashion. Nevertheless, the key rôle of GIS in providing a framework for spatial 
analysis of remotely-sensed data products and other sources of spatial data on urban areas 
is recognized. The integration of GIS and remote sensing has justifiably received 
widespread and extensive attention in the recent literature. Most of the scientific and 
commercial journals have devoted at least one special issue to this subject and this trend 
will likely increase over the next few years. According to Wilkinson (1996, p.85), the 
interface between GIS and remote sensing can be envisaged in one of three different 
ways: 

a) remote sensing can be used as a tool to gather data sets for use in GIS; 
b) GIS data sets can be used as ancillary information with which to improve the products 

derived from remote sensing and; 
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c) remote sensing data and GIS data can be used together for modelling and analysis. 

Each of these views is pertinent to urban remote sensing. Urban analysis needs to exploit 
the capabilities of remote sensing systems in terms of their spatial coverage and detail 
but, because of the limitations in terms of distinguishing all aspects of the urban milieu 
solely on the basis of their spectral reflectance properties, classifications, analyses and 
models of urban areas will always be dependent on ancillary spatial information and the 
analytical capabilities of GIS. Ultimately, urban remote sensing is not only a meeting 
point for the social and physical sciences, but it is also a field of research that forms a 
bridge between remote sensing and GIS. 
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CHAPTER 2 
Improving the Spatial Resolution of 

Remotely-Sensed Images by Means of 
Sensor Fusion: A General Solution Using 

the ARSIS Method 
Thierry Ranchin, Lucien Wald and Marc Mangolini 

2.1 Introduction 

A wide range of Earth observation satellites appropriate to monitoring urban areas now 
exists. Each produces data at a different spatial resolution and in different spectral 
wavebands (see Donnay et al., Chapter 1, this volume). For example, the familiar 
Thematic Mapper sensors on board the Landsat-series of satellites generate data at a 
spatial resolution of 30m in six spectral wavebands spanning visible blue to shortwave-
infrared wavelengths, and at 120m in a further spectral waveband located in the thermal 
infrared. The HRV (High Resolution Visible) sensors on board the SPOT-series of 
satellites, on the other hand, provide a single-channel panchromatic (P) image at 10m 
resolution and three multispectral images (XS1, XS2 and XS3) at 20m resolution. 
Likewise, the Indian Remote Sensing satellite, IRS-1C, generates a panchromatic image 
at 5.8m, three multispectral images at 23.5m, a short-wave infrared image at 70.5m 
(LISS-3 instrument), and two further images at 188m (WiFS instrument). 

This diversity of Earth observation sensors continues to increase. In recent years, for 
example, the SPOT-series of satellites has been extended, with the launch of SPOT-4. 
This satellite carries an enhanced version of the HRV sensor, known as HRVIR (High 
Resolution Visible Infra-Red), which provides data in a spectral bands equivalent to the 
XS of the HRV instruments, plus a new band located in the shortwave infra-red. A 
second sensor, known as VEGETATION, has been added to the same platform. This 
produces images in the same spectral bands as HRVIR, but at a spatial resolution of about 
1km. It is anticipated that the future HRVIR instruments, which will be mounted on the 
next satellite in this series (SPOT-5), will offer a 5m spatial resolution panchromatic band 
and 10m multispectral bands. By the same token, the Enhanced Thematic Mapper (ETM), 
which was launched aboard the Landsat 7 satellite in 1999, delivers a 15m panchromatic 
image in addition to the familiar set of 30m spatial resolution multispectral images. 
Several new civilian missions are scheduled for launch, each of which will carry a sensor 
capable of delivering images at a spatial resolution of up to 1m–2m in panchromatic 
mode and 4m–8m in multispectral mode (see also Donnay et al., Chapter 1, this volume). 



The technological developments described above have provided a fresh impetus for 
the application of satellite remote sensing to the study of urban areas. Previously, the 
relatively coarse spatial resolution of satellite sensors meant that remote sensing of urban 
areas was primarily realized through the use of airborne devices. Only very large cities 
with wide streets and comparatively simple geometrical structures could be studied 
effectively using satellite sensors. However, the continuing improvements in the spatial 
resolution of space-borne sensors, outlined above, mean that this situation is now 
changing. The challenge now is to find ways to derive the maximum value from the data 
that these new sensors provide. This requires the combined use of (i) the high spatial 
resolution panchromatic data to provide an accurate description of the size, shape and 
spatial structure of the principal objects/entities found in towns and cities and (ii) the 
slightly coarser spatial resolution multispectral data if different types of urban land 
cover/land use are to be classified. This operation is sometimes referred to as data fusion 
or sensor fusion. 

Numerous approaches to sensor fusion have been proposed in the literature, though 
few can be considered satisfactory in terms of preserving the (spectral) information 
content of original images (Mangolini et al. 1995). In view of this, we have developed a 
new method of sensor fusion which ‘improves’ the spatial resolution of the images up to 
the best available in the combined data set, while at the same time preserving the spectral 
content of original multispectral images. Our method, known as ARSIS (Amelioration de 
la Résolution Spatiale par Injection de Structures), is designed to be widely and generally 
applicable and makes use of the wavelet transform. This Chapter provides a brief 
presentation of the wavelet transform (Section 2.2) and multi-resolution data analysis 
(Section 2.3), before introducing the ARSIS method (Section 2.4) and two examples of 
its application (Section 2.5). The Chapter concludes with a discussion of the principal 
benefits of the ARSIS method. 

2.2 The Wavelet Transform 

Since its early days, the field of remote sensing has been concerned with the analysis, 
understanding and characterization of various phenomena on the Earth surface. 
Remotely-sensed images provide a physical representation of these phenomena which, in 
most instances are non-stationary, of finite energy, and have characteristic spatial and 
temporal scales. Numerous mathematical tools have been developed (or adapted) and 
applied to remotely-sensed images in order to represent these phenomena in an effective 
and comprehensive way. One of the most widely-used of these mathematical tools is the 
Fourier transform, which attempts a ‘decomposition’ of the image on the basis of a set of 
sine and cosine functions. This results in a new representation of the phenomena under 
investigation, expressed in terms of spatial frequencies. It is very effective in this context, 
due to the precise localization of the elementary functions in the frequency domain. 
Unfortunately, these functions are not localized in the spatial domain. To understand the 
implication of this observation, consider the following (musical) example. A musical 
signal analyzed by means of a Fourier transformation presents all of the tonal frequencies 
in the original signal. It is not at all easy, however, to find the relative position of each 
note in the musical score from this representation. In other words, the Fourier transform 
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gives a global representation of the signals or images analyzed from which it is difficult 
to draw conclusions or to make inferences about local effects. Another drawback of the 
Fourier transform is that it is designed to analyze periodic functions. Unfortunately, in the 
case of remotely sensed images, the phenomena rarely exhibit a simple periodic spatial 
structure. Hence, in such instances, the mathematical assumptions underpinning the 
Fourier transform are not met. 

In order to analyze non-periodic signals, notably in the context of time-series data, 
various other transformations have been proposed, including the window Fourier 
transform, the cosine transform, the Gaussian transform, the Wigner-Ville transform and 
the wavelet transform. One of these, the wavelet transform, received renewed attention in 
the early 1980s in the context of seismic geology (Grossmann and Morlet 1984). 
Originally developed in the fields of quantum physics, signal processing and 
mathematics, wavelet theory was unified from a mathematical point-of-view by Meyer 
(1990). Closely related to multi-resolution analysis (Mallat 1989), an important property 
of the wavelet transform is that the window of analysis is adapted locally to the 
phenomena under investigation, such that it is able to provide information on local 
signals. If one goes back to the music example, based on the wavelet transform of the 
original score it is possible to find the contribution of a single note to one frequency and, 
at the same time, to derive information about the position of the note in the musical score. 
The wavelet transform thus leads to a time-frequency representation of the data under 
investigation: in the case of images, the wavelet transform leads to a so-called scale-
space representation. 

Similar to the Fourier transform, the wavelet transform enables the input signal to be 
decomposed on the basis of a series of elementary functions—known as wavelets. These 
are generated by dilations and translations of a single function, known as the ‘mother’ 
wavelet (Equation 2.1). 

 (2.1) 

where 
a is the dilation step, 

b the translation step 

 and 

a≠0.   

Many such mother wavelets exist. They are all oscillating functions that are well 
localized in both time and frequency. All wavelets have common properties such as 
regularity, oscillation and localization, and satisfy an admissibility condition. For further 
details about the properties of the wavelets, the reader is referred to Meyer (1990) or 
Daubechies (1992). Despite sharing common properties, each wavelet transform leads to 
a unique decomposition of the signal depending on which mother wavelet is selected. In 
the one-dimensional case, the continuous wavelet transform of a function f(x) is given by 
Equation 2.2. 
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 (2.2) 

where 
Ψa,b is defined as in Equation 2.1 

 
is the complex conjugate of Ψ and 

WTf(a, 
b) 

represents the information content of f(x) at scale a and location b. For fixed a and b, 
WTf(a, b) is called the wavelet coefficient. 

The computation of the wavelet transform for each scale and each location of a signal 
provides a local representation of this signal. The process can be inverted so that the 
original signal can be reconstructed exactly (i.e. without loss) from the wavelet 
coefficients using Equation 2.3. 

 (2.3) 

where 
CΨ is the admissibility condition of the mother wavelet. 

Equation 2.3 can be interpreted in two ways: 

• f(x) can be reconstructed exactly if one knows its wavelet transform, 
• f(x) is a super-imposition of wavelets. 

Each leads to a different application of the wavelet transform: in the first instance, to the 
processing of the signals; in the second, to their analysis. Discrete versions of the wavelet 
transform exist and are applied to signals using filters.  

 

Figure 2.1: Pyramid representing the 
use of the wavelet transform for multi-
resolution image analysis. 
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2.3 Multi-Resolution Analysis 

The association between the wavelet transform and multi-resolution analysis provides a 
powerful and comprehensive means of processing and analyzing remotely-sensed images. 
The concept of multi-resolution analysis, introduced by Mallat (1989), derives from 
concept of Laplacian pyramids (Burt and Adelson 1983). In this approach, the size of a 
pixel is defined as a resolution of reference to allow a measure of local variation in the 
image. Note that resolution is inversely related to the scale used by cartographers. Hence, 
the larger the resolution of an image, the smaller the size (or the characteristic length or 
scale) of the smallest visible object. 

Figure 2.1 provides a convenient graphical representation of multi-resolution analysis 
and, more generally, of pyramidal algorithms. At the base of the pyramid is the original 
image. Each successive level up the pyramid is an approximation of the original image 
and is computed from it. On climbing the pyramid, successive approximations have an 
ever coarser spatial resolution. The theoretical limit of multi-resolution analysis is 
reached when one pixel is used to represent the arithmetic mean of all of the pixels in the 
original image; however, due to physical constraints this limit is never reached. The base 
of the pyramid can also be considered to be an approximation of the landscape, as 
measured by the sensor. 

In the context of multi-resolution analysis, the wavelet transform permits differences 
between two successive approximations of the same image (i.e. two successive levels of 
the pyramid) to be described by means of the wavelet coefficients. By inverting this 
process, it follows that the original image can be reconstructed without loss or error from 
one approximation (i.e. data at one level of the pyramid) using the wavelet coefficients. 
Thus, the wavelet transform and its coefficients enable us to construct a hierarchical 
description of the information contained in the image. Meyer (1993, p.45) uses an 
example drawn from the field of cartography to illustrate the use of pyramidal 
algorithms:  

Table 2.1: Decomposition of an image by means of 
wavelet transformation in multi-resolution analysis. 

Context image (Approximation of the original image) Horizontal wavelet coefficient image 

Vertical wavelet coefficient image Diagonal wavelet coefficient image 

‘We can see from this example the fundamental idea of representing the 
image by a tree. In the cartographic case, the trunk would be the map of 
the world. By travelling toward the branches, the twigs and the leaves, we 
reach successive maps that cover smaller regions and give more details, 
details that do not appear at lower levels. To interpret the cartographic 
representation using the pyramid algorithm, it will be necessary to reverse 
the roles of top and bottom, since the pyramid algorithm progresses from 
‘fine to coarse’.’ 

The mathematical foundations of multi-resolution analysis are described in Mallat 
(1989). From a practical point-of-view, the computation of the approximations is 
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performed by applying low-pass filters to the image data, while the difference of 
information between two successive approximations is computed using band-pass filters. 
Note that it is a directional algorithm and that it provides a decomposition of the original 
image using the scheme presented in Table 2.1. In this scheme, the context image 
represents the approximation to the original image. The wavelet coefficient images 
represent the difference of information between the original image and the context image 
in the diagonal, horizontal and vertical directions. The wavelet coefficient and context 
images are obtained by filtering and sub-sampling the original image. In the most 
commonly-used algorithm—the Mallat algorithm—sub-sampling is by a factor of 2. 
Hence, if the original image has a spatial resolution of 10m, the first context image will 
have a spatial resolution of 20m, while the wavelet coefficient images will represent the 
information existing between 10m and 20m. The process can be iterated. From the first 
context image, a new context image and new wavelet coefficient images can be 
computed. The second context image will have the spatial resolution of 40m, while the 
corresponding wavelet coefficients images will represent the information between 20m 
and 40m. Other algorithms exist with a ratio of scales equal to or . Further details 
on the mathematics of wavelets and multi-resolution analysis can be found in Meyer 
(1990), Chui (1992a), Chui (1992b), Daubechies (1992) and Meyer (1993). A good 
review of wavelets can also be found in Rioul and Vetterli (1991). 

In terms of the analysis and processing of remotely-sensed images, wavelets and 
multi-resolution analysis have been used to assess the characteristic scales of variation in 
geology (Besnus et al. 1993), in urban areas (Ranchin and Wald 1993b), and in 
oceanography (Ranchin and Wald 1993a). These tools have also been used to reduce the 
speckle in the Synthetic Aperture Radar (SAR) images (Cauneau and Ranchin 1992, 
Proenca et al. 1992, Ranchin and Cauneau 1994, Eldridge and Lasserre 1995). The 
wavelet transform has also been examined as a means of restoring blurred images 
acquired by airborne sensors (Bruneau et al. 1991), of image data compression (Antonini 
et al. 1992), and of automatic image registration (Djamdji et al. 1993). Further 
applications of the wavelet transform include the analysis of the spatial and temporal 
structures in satellite-derived irradiance fields (Beyer et al. 1995), characterization of the 
local roughness of Digital Elevation Models (Dactu et al. 1996) and the analysis of 
surface properties of sea ice (Lindsay et al. 1996). Of more direct relevance to the present 
study, wavelet transforms have also been applied to the fusion of images and raster-maps 
of different spatial resolutions (Wald and Ranchin 1995), to the merging of different 
remotely-sensed images for updating maps of urban areas (Ranchin and Wald 1996b), 
and to the merging of SPOT and SAR images (Mangolini et al. 1993). These latter 
studies make use of the ARSIS method (Mangolini et al. 1992), which is presented in 
detail in the following section. 

2.4 The ARSIS Method 

There are four prerequisites to the sensor fusion/data merging process: 

1. the images to be merged should have different spatial and spectral resolutions, 
2. the images to be merged should represent the same area, 
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3. images should be accurately registered, and 
4. no major changes should have occurred in the study area in the interval between 

acquisition of first and last source images. 

Strictly speaking, it is possible for the last requirement not to be satisfied, in which case 
the aim of the data fusion process might be to perform change detection on the observed 
area (Ranchin and Wald 1996b). It is also important to note that the four requirements 
outlined above do not limit the data fusion process to images acquired by different 
sensors mounted on the same platform. The process can be applied to images acquired 
by, for example, airborne and spaceborne sensors. 

Numerous methods have been developed to enhance the spatial resolution of remotely 
sensed images by taking advantage of the presence of one or more images of the same 
scene acquired by a finer spatial resolution sensor (Carper et al. 1990, Chavez et al. 
1991). However, if the objective is to transform each of the candidate images to the 
spatial resolution of the finest resolution image in the set while retaining their spectral 
information content, the list becomes much shorter. Mangolini et al. (1995) have 
performed a detailed comparison of the data fusion techniques that meet these criteria, 
including the ARSIS method, to which the interested reader is referred. For the purpose 
of this Chapter, however, we will focus exclusively on the ARSIS method. 

The ARSIS method was initially designed to handle images acquired in panchromatic 
and multispectral mode by the SPOT-HRV sensors, but has subsequently been 
generalized to allow the fusion of images from any two sensors having different spatial 
and spectral resolution. As has already been noted, the ARSIS method uses the wavelet 
transform and multi-resolution analysis to decompose the two images to be merged 
(Figure 2.2). The method, in outline, is as follows. Multi-resolution analysis using the 
wavelet transform is  

 

Figure 2.2: The use of the multi-
resolution analysis in the ARSIS 
method. 

applied to both image A (higher spatial resolution) and image B (lower spatial 
resolution), and is used to describe each image at different spatial resolutions, as well as 
the differences in their information content between successive approximations to the 
original images. The wavelet coefficients determined from multi-resolution analysis of 
image A—for the change of scale (or resolution) between that of image A and that of 
image B—are used to describe the spatial information absent from image B. This, in turn, 
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is used to synthesize image B at the spatial resolution of image A. This can be envisaged 
as the process of shifting the wavelet coefficients from pyramid A to pyramid B in Figure 
2.2. 

It should be evident from this discussion that, if the wavelet coefficients provided by 
image A are used without modification, the synthesized image B will not be exactly 
equivalent to what would have been seen by sensor B had it had the spatial resolution of 
sensor A, This is a result of differences in, among other things, the spectral resolution and 
wavebands of the two images. To improve the quality of the synthesized image B still 
further, a model would be required which takes into account the physics of the 
environment so that the wavelet coefficients derived from image A can be transformed 
into the equivalent values for image B. Whatever form this model takes, the ARSIS 
method preserves the spectral content of original multispectral image, while enhancing its 
apparent spatial resolution. Moreover, as a validation mechanism or ‘checksum’, multi-
resolution analysis applied to the synthesized image B can be used to generate an image 
similar to the original image B. 

Figure 2.3 presents an example application of the ARSIS method to images acquired 
by the SPOT-HRV sensors. The example data set comprises a 10m spatial resolution 
panchromatic image and three 20m multispectral images (XS1, XS2 and XS3). The 
objective is to use the ARSIS method to reproduce the three XS images at a spatial 
resolution of 10m while preserving their original spectral content. Two iterations of 
multi-resolution analysis using the wavelet transform are applied to the original 
panchromatic (P) image and one to each of the original XS images. The mother wavelet 
used in this instance is the one proposed by Daubechies (1988). It is an orthogonal 
wavelet which permits the de-correlation of the structures between the different 
approximations and is implemented through a four-coefficient filter.  

 

Figure 2.3: Application of the ARSIS 
method to SPOT-HRV P and XS 
images. 
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A model of the transformation from the P wavelet-coefficient images to the XS wavelet-
coefficient images is estimated for each direction at a spatial resolution of 40m. Various 
types of model can be used in this context. The simplest is the identity model; a more 
convenient model is one that adjusts the mean and the variance of the histogram of the 
wavelet-coefficient images. Whichever model is used, it should take into account the 
physics of both images and the correlation between them. Several such models have been 
tested by Mangolini et al. (1992). Optimum results were achieved using a model taking 
into account the local variation between the P and XS wavelet-coefficient images. The 
estimated model is then inferred at the spatial resolution of 20m. The model is 
subsequently used to transform the P wavelet-coefficient images representing the 
information lost between 10m and 20m into the corresponding XS wavelet-coefficient 
images. At this stage, the multi-resolution analysis is inverted, such that the XS images at 
10m spatial resolution (referred to as XSi-HR images) are synthesized from the original 
XS images and the wavelet-coefficient images computed from the model. 

The preceding discussion is summarized in Figure 2.4, which presents the general 
scheme of the ARSIS method. First, multi-resolution analysis based on the wavelet 
transform is used to compute the wavelet coefficients and the approximations of image A 
(Stage 1). The same operation is applied to the image B (Stage 2). The wavelet 
coefficients provided by each decomposition are used to compute a transformation model 
of the known wavelet-coefficients for image A to the known wavelet-coefficients for 
image B. This model takes into account  

 

Figure 2.4: General scheme of the 
ARSIS method. 

the physics of both images and the correlation existing between the two sets of wavelet-
coefficient images (Stage 3). The model can have various forms and take into account 
more than one scale. It is used to compute the missing wavelet coefficients (Stage 4). 
Finally, by inverting the multi-resolution analysis (WT−1), it is possible to synthesize 
image B at the spatial resolution of image A (Stage 5). 
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The ARSIS method has been successfully applied to merge SPOT-HRV XS and P 
images (Ranchin et al. 1994), to combine 120m spatial resolution data from Landsat 
Thematic Mapper band 6 with the 30m images from the other six spectral wavebands 
bands of this instrument (Ranchin 1993), to fuse the 30m Landsat Thematic Mapper 
bands with a 10m SPOT P image (Blanc et al. 1996), and to merge SPOT XS images 
with data from the 2m Russian panchromatic sensor KVR-1000 (Ranchin et al. 1996). 
Mangolini et al. (1995) proposed a method to evaluate quantitatively the different sensor 
fusion techniques. They show that the ARSIS method gives the best results in terms of 
preservation of the spectral quality. In the next section, a further two examples of the 
application of the ARSIS method are presented. 

2.5 Examples 

The first example concerns SPOT-HRV images. The images were acquired on September 
11, 1990 over Barcelona (Spain), a large city located by the Mediterranean in north-east 
Spain. The study area covers the harbour, airport, various urban areas with roads and 
motorways, rivers, agricultural lots, mountainous areas and semi-natural Mediterranean 
vegetation. The data comprise a panchromatic image (10m spatial resolution) and three 
multispectral images (XS1, XS2 and XS3 at 20m spatial resolution). These images were 
acquired simultaneously and have been spatially co-registered. 

 

Figure 2.5: Original XS1 image (20m) 
covering part of Barcelona, Spain. © 
CNES-SPOT Image, 1990. 
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Figure 2.6: Synthesized XS1-HR 
image (10m) of part of Barcelona, 
Spain. See Figure 2.5 for a comparison 
with the original multispectral data. 

 

Figure 2.7: Original SPOT-HRV XS 
images of part of Riyadh, Saudi 
Arabia. © CNES-SPOT Image, 1993. 

The ARSIS method has been used to synthesize the multispectral images at a spatial 
resolution of 10m. The resulting data sets are referred to as XSi-HR images. Figure 2.5 
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presents an extract of the XS1 image at the original spatial resolution of 20m. This extract 
contains agricultural lots mixed with urban areas. The roads and the motorways are 
clearly visible, although the interchanges on the motorways are difficult to distinguish. A 
comparison can be made between the XS1 image (Figures 2.5) and the XS1-HR image 
(Figure 2.6). The original XS1 image was interpolated using a nearest-neighbour 
algorithm. The enhanced visual quality of the XS1-HR image is due to the injection of 
information from the panchromatic image, modelled in such a way as to preserve its 
spectral properties. Thus, in the XS1-HR image, one can clearly distinguish the 
interchanges on the motorways, the road network in the upper left corner of the image 
and several large buildings. 

In the second example, the set of images comprises a SPOT-HRV XS scene of the 
town of Riyadh, Saudi Arabia acquired on May 16, 1993 and a Russian KVR-1000 image 
of the same area acquired on September 7, 1992. The three multispectral images have a 
spatial resolution of 20m, while the KVR-1000 image has a spatial resolution of 2m and a 
spectral range of 0.51µm–0.71µm. Figure 2.7 presents the original XS images, while 
Figure 2.8 shows the XSi-HR images at synthesized at a spatial resolution of 2m. In this 
case, the factor of 10 difference between the spatial resolution of the KVR-1000 and XS 
images is important. This area is made up of a large interchange between two urban 
motorways, numerous buildings, and some sandy areas. The large object on the right-
hand side of the motorway, in the lower part of Figure 2.8, is a shopping mall. Due to the 
fine detail which appears in the synthesized image, it is possible to distinguish the 
structure of this mall and of the other buildings in this area. By preserving the spectral 
content of original XS images, the ARSIS method allows the roads and the buildings to 
be extracted by means of a  

 

Figure 2.8: Synthesized XS-HR image 
(2m) covering part of the city of 
Riyadh, Saudi Arabia. See Figure 2.7 
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for a comparison with the original 
multispectral data. 

standard multispectral classification algorithm or, indeed, any other method that requires 
the multispectral content provided the original images. This approach has been 
demonstrated successfully by Ranchin and Wald (1997), who show the improvement in 
the accuracy with which roads in urban areas can be extracted from remotely-sensed 
images using the ARSIS method. 

2.6 Conclusions 

This chapter has reviewed the ARSIS method of sensor fusion, which is based on multi-
resolution analysis and the wavelet transform. By definition, ARSIS preserves the 
spectral content of original multispectral images while improving their apparent spatial 
resolution. The synthesized images can therefore be used for purposes other than simply 
visual interpretation. Several examples of the application of this method have been 
presented. Elsewhere, it has been demonstrated that the accuracy and the quality with 
which the road network can be extracted from SPOT-HRV multispectral images can be 
increased through the use of images synthesized by means of the ARSIS method 
(Ranchin and Wald 1997). The benefits of using these synthesized images for urban 
mapping are discussed by Ranchin and Wald (1996a). Here, the ARSIS method has been 
demonstrated for two sets of images covering different urban areas. In the first instance, 
the method was applied to SPOT-HRV images (P and XS) of Barcelona, Spain. In the 
second, to the merging of a SPOT-HRV XS image with 2m data from the KVR-1000 
sensor. In other studies, we have demonstrated the general applicability of this method 
through its application to the fusion of Landsat Thematic Mapper (TM) channel 6 (120m) 
with the other bands of the Landsat TM sensor, of Landsat TM and SPOT-HRV 
panchromatic images. Further studies have shown its value to data from sensors on board 
the SPOT 4 (Ranchin and Wald 1996c) and the SPOT 5 (Ranchin and Wald 1996a) 
missions. The next step in this work is to demonstrate the resultant improvements in the 
accuracy of various standard image-processing techniques applied to the synthesized 
multispectral data. 
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CHAPTER 3 
Urban Pattern Characterization through 
Geostatistical Analysis of Satellite Images 

Pietro Alessandro Brivio and Eugenio Zilioli 

3.1 Introduction 

Metropolitan agglomerations and urban settlements are the most intensive forms of land 
use yet devised. In recent years, some of the most drastic alterations to local climate 
(micro-climate) have been associated with them, with consequent impacts on the health 
and quality-of-life of their human inhabitants. At the beginning of this century urban 
areas represented only 20% of the total human population: in the hundred years since 
then this figure has increased to almost 50%. In fact, current estimates suggest that 42% 
of the world’s population are now urban dwellers, with local variations ranging from as 
much as 72% on average in more-developed countries, to 34% in some less-developed 
countries (World Population Reference 1993). 

In metropolitan and urban areas, the problems relating to the rapid transformations that 
are taking place in terms of land cover and land use are now very pronounced. As a 
result, the availability of detailed, timely information on urban areas is of considerable 
importance both to the management of current urban activities and to forward planning 
(Fabos and Petrasovits 1984). Satellite remote sensing has the potential to provide some 
of the necessary information and the body of literature concerned with urban applications 
of this technology continues to grow, with notable contributions on rural-to-urban land 
conversion (Jensen 1983, Forster 1985, Gomarasca et al. 1993), housing density and 
population estimation (Ilisaka and Hegedus 1982, Lo 1993), and urban climates (Henry et 
al. 1989, Kawashima 1994, Brivio et al. 1995). There is, however, a number of 
difficulties associated with the complexity of the urban landscape—due to the extreme 
heterogeneity of surface materials (land cover) at both the inter-pixel and intra-pixel 
scales—which demand the use of textu-ral information in addition to usual multispectral 
data (Webster and Bracken 1993, see also Pesaresi and Bianchin this volume). 

It is important at the outset to distinguish between texture and pattern. Here, we take 
image texture to refer to the frequency of tonal change, while pattern refers to the spatial 
arrangement of textural components. Although it is common to distinguish between them, 
texture and pattern share two important attributes, namely a spatial extension of some 
local ‘order’ and a repetition (which may be to a greater or lesser degree random) of 
elementary parts (Pratt 1978). Consequently, different aggregations of the same basic 
scene elements can combine to produce various different textures and patterns, each of 
which reflects the different underlying spatial organizations of the urban scene. 



Numerous quantitative measures of image texture have been developed, with the aim of 
capturing this underlying spatial organization. Many of these were originally developed 
and applied in the field of computer vision, but these have subsequently been augmented 
and extended for remote sensing applications. The most widely-used approaches to the 
extraction of textural and structural features from digital images include grey-level spatial 
dependency or ‘co-occurrence’ matrices (Haralick et al. 1973), grey-level difference 
vectors (Weszka et al. 1976), Fourier spectrum analysis (He et al. 1988), fractal geometry 
(Peleg et al. 1984) and geostatistical analysis (Woodcock et al. 1988a, Woodcock et al. 
1988b). It is the last of these which is considered in detail in this Chapter and, in 
particular, the semi-variogram. 

Initially developed as a tool for mining exploration (David 1977, Clark 1979), the 
semi-variogram has recently been adopted for use in the analysis of remotely-sensed 
images. Examples of its application include the analysis of data from ground-based 
radiometry (Curran 1988, Webster et al. 1989), the investigation of forest canopy 
structure (Cohen et al. 1990) and in scene modelling and digital image-processing 
(Ramstein and Raffy 1989, Brivio et al. 1993b). In this study, we apply the same 
geostatistical techniques (semi-variograms) to explore the spatial patterns expressed in 
Landsat Thematic Mapper (TM) images of urban areas. More specifically, we use 
examples from various parts of Italy which, visually at least, reflect the rather different 
spatial arrangement of urban settlements in the northern and southern parts of the 
country. Two approximations to the theoretical bi-dimensional semi-variogram are 
explored, namely the multi-directional and the matrix semi-variograms. The former 
provides a convenient way of describing the spatial structure of the image (and, hence, 
the corresponding scene) in terms of its prevailing directional patterns or anisotropy. The 
latter allows a simple parameterization of texture of different spatial samples drawn from 
one or more images (scenes). Finally, a comparative analysis is conducted to examine the 
influence of scale changes (i.e. sensor spatial resolution) on spatial pattern characterized 
by geostatistical techniques. 

3.2 The Structure Function γ(h) 

A digital image of the Earth surface derived by means of a remote-sensing device can be 
thought of as a set of radiometric measurements, each associated with a particular 
geographical location. In mathematical terms, image brightness B(x) is a function of the 
two-dimensional spatial location x of the measurement and can be considered to be the 
realization of a ‘regionalized variable’ (Matheron 1965). A key concept to take forward at 
this stage is the basic assumption of spatial dependence in the data; that is, observations 
located close together in terms of their geographical coordinates are expected to be more 
similar to each other than observations located further apart. This spatially dependent 
variation, inherent in all digital images, can be analyzed by using the properties of the 
semi-variogram, also called structure function γ(h). 

The semi-variogram γ(h), which is a function relating the semi-variance to the 
directional distance between two samples, can be expressed through the relationship: 

 (3.1) 
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where 
B(xi) is the radiance value measured at pixel (xi), 

h is the lag, or distance in the image, expressed as a number of pixels and defining the different 
locations (xi+h) at which the regionalized variable B is observed, and 

n is the number of observations used to estimate γ(h). 

For any given data set, the shape of the semi-variogram can be determined empirically 
using Equation 3.1. The form of such experimental semi-variograms can then be 
compared to a number of theoretical models. More precisely, experimental semi-
variograms are usually fitted to a set of bounded and unbounded models (Clark 1979, 
Webster 1985, Davis 1986), among which the ones that are generally of greatest interest 
are the exponential model (Equation 3.2), the spherical model (Equation 3.3), the power 
model (Equation 3.4) and de Wij’s model (Equation 3.5): 

 (3.2) 

 

(3.3) 

γ(h)=wha for 0<a<1 
(3.4) 

γ(h)=3alogh 
(3.5) 

A number of important parameters can be derived by fitting the experimental semi-
variogram to one of these theoretical semi-variograms, notably the nugget, sill, range, 
derivative at the origin, and degree of anisotropy (Curran 1988, Jupp et al. 1989). The 
sill, c, indicates the value of the semi-variogram at which the function stabilizes to form a 
plateau as separation (lag) distances increase; it is equal to the general data variance. The 
range, a, corresponds to the lag, h, at which the semi-variogram reaches the sill, c; this is 
the critical distance at which the correlation structure ceases to exist and beyond which 
the data vary randomly. As the lag, h, tends to zero, the semi-variogram function does not 
always intercept the origin. This indicates that there is a component of spatially-
independent variance in the data, perhaps due to the noise of the sensor system itself or to 
random surface variation. This is known as the nugget effect. 

3.3 Geostatistical Analysis of Satellite Sensor Images 

Satellite sensor images are two-dimensional representations of the observed spectral 
radiance emanating from the Earth surface. The correct formulation of the semi-
variogram is therefore a two-dimensional function γ(p, q), where p and q are the lags in 
each of the two dimensions, respectively. In other words, the semi-variogram function 
depends not only on the distance, but also the direction, θ, in which the semi-variance is 

Remote sensing and urban analysis     34



estimated. Two-dimensional (2D) semi-variograms are commonly used to reveal 
anisotropy in the observed surface which may, for example, be related to the orientation 
of objects in the scene or to the direction of the solar illumination. They are, however, 
more difficult to interpret in terms of their shape, range of influence and height relative to 
the estimate of the sill (Woodcock et al. 1988b). Nevertheless, the form of 2D semi-
variograms is usually a geometric extension of the corresponding 1D forms, such that a 
cylindrical projection of the sample values, resulting a sheaf of lines, will often serve 
quite well. The 2D function γ(p, q) can also be approximated reasonably well by the 
multi-directional semi-variogram (Webster 1985). 

When ground features do not show any evident directional organization, the structure 
of the scene can be said to be isotropic. In this case, the γ(h) function can be calculated by 
the matrix method. This method initially evaluates the semi-variogram separately in the 
row-direction and column-direction of the image and then takes the average of these two 
semi-variograms at each lag, h (Cohen et al. 1990). Although this technique does not 
account for anisotropic variation in the images, the shape of matrix semi-variogram—
derived by collapsing 2D information into a single semi-variogram—maintains the 
anisotropic behaviour of the full 2D semi-variogram (Woodcock et al. 1988b). Moreover, 
this technique is an effective tool for quantitative analysis and parameterization purposes; 
consequently, we have adopted this approach for the present study, which examines a 
number of Landsat-TM images, each having a ground resolution element (pixel size) of 
30m×30m in the six optical (visible to middle infrared) spectral wavebands. 

3.3.1 Examining the Spatial Pattern of Contrasting Terrestrial 
Landscapes 

We start by analyzing the spatial organization of different terrestrial landscapes using 
three large sample areas, each about 80km2 (or 300×300 pixels) in size. These areas were 
selected to represent different levels of human influence on the the spatial structure of the 
landscape (Table 3.1): 

Table 3.1: General description of the main features 
found in the three test areas used in this study. 

Scene Sample Site Feature Description Spectral Band 
Mountainous Alps Natural landscape TM 4 (0.76µm–0.9µm) 

Rural Palmanova Scattered settlements TM 4 (0.76µm–0.9µm) 

Urban Milan Urban environment TM 3 (0.63µm–0.69µm) 
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Figure 3.1: Experimental semi-
variograms at landscape level for three 
different sites in North Italy from 
Landsat-TM imagery. 

1. The metropolitan agglomeration of Milano. This area has one of the highest population 
densities in Italy, as well as a high concentration of industrial activities and a strongly 
developed communications infrastructure (i.e. railway, motorway and road network); 

2. The rural area surrounding Palmanova (Friuli) in north-east Italy. This area comprises 
numerous small settlements scattered throughout a traditionally agricultural region. 
Recently, the area has experienced a rapid and continuing process of urbanization; 

3. A natural/semi-natural mountainous environment in the Alps. In this area, the spatial 
structure reflects the terrain morphology, and is marked by several different drainage 
networks, ranging in form from dendritic, through sub-parallel, to irregular. 

Different spectral wavebands were selected for use with each of the three study areas, 
based on previous experience. The near-infrared channel (TM band 4) has been found to 
be the most effective when dealing with natural/semi-natural and agricultural landscapes, 
and as such was selected for use in the context of the mountain range and 
rural/agricultural sites. In our experience, the red waveband (TM band 3) is better 
adapted to distinguish different artificial features (Brivio et al. 1993a, Brivio et al. 1994), 
and consequently this channel has been used to define the urban agglomeration. 

The results of the geostatistical analysis of the three study areas are reported in Figure 
3.1. Visual inspection of the experimental semi-variograms shows two broad shapes: one 
for which the semi-variograms reach a clear sill (the rural and urban sites), the other 
where no sill is reached (the natural alpine site). In the former case, where the landscape 
is influenced by the presence and activities of human beings, the semi-variance reach the 
sill at a lag distance of 150–300m and 900m for the urban and rural sites, respectively. 
However, in the mountainous area which is largely unaffected by anthropogenic activity, 
the semi-variogram appears to be unbounded and the semi-variance continues to increase 
with ever larger lag distances. 
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Table 3.2: Summary description of the three 
sample areas, each about 7km2 or 90×90 pixels in 
size, selected from the Landsat TM image covering 
the Po Plain, northern Italy. Note that the last 
column describes the percentage of the population 
in the corresponding province living in urban areas. 

Town Spatial Structure Description Population % of Province 
Milano Radial and concentric patterns 1600000 39.5 

Torino Regular square pattern 1100000 47.6 

Novara Small city, no evident pattern 100000 20.1 

3.3.2 Models of Urban Structure 

Italy is sometimes called ‘the country of a thousand bell towers’. In fact, the Italian 
landscape—the product of many different cultures over the years—is strewn with 
numerous different types of urban areas, ranging from small villages and ancient towns to 
large metropolitan areas. The historical processes, notably those dating from the Romans 
and Middle Ages through to the Renaissance, have generated contrasting models of 
spatial organization and urban structure. Each town is therefore characterized by its own 
particular configuration, which is a summary of its history, as well as the influence of 
more recent developments and a range of environmental factors, such as the presence of 
water, its topographic relief, and so on. 

In order to define some models of urban structure, three further sample areas were 
selected from within the Po Plain, in northern Italy. These correspond to the urban 
agglomerations of Milano, Torino and Novara, which are taken to indicate, respectively, 
linear, rectangular and circular/radial patterns of urban spatial organization (Figure 3.2). 
A summary description of the three sub-scenes, each about 7km2 or 90×90 pixels in size, 
is given in Table 3.2, including the urban population and the percentage that this 
represents with respect to the total population in that province. All three sub-scenes were 
selected from the same Landsat TM image (scene number 193–28), which was acquired 
on June 18, 1991, such that the effects of differences in atmospheric conditions and other 
confounding factors between the sub-scenes is effectively minimized. 

As expected, the results of the geostatistical analysis of these three sub-scenes, shown 
in Figure 3.3, suggest that the height of the sill in the semi-variograms is related to the 
spatial organization of the corresponding urban scenes. Torino, for example, which has 
preserved the regular grid of streets typical of the Roman era, has the smallest maximum 
value of semi-variance due to its more organized spatial structure. Milano, on the other  
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Figure 3.2: Satellite images of three 
urban sample areas. 
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Figure 3.3: Experimental semi-
variograms for the three urban areas 
exhibiting different types of spatial 
organization. 

hand, which developed without any such morphological constraints, displays higher 
semi-variance values. The semi-variance values for Novara are the highest of all, 
reflecting the complex spatial structure of this urban area. 

Exploring Anisotropy in Urban Patterns 

It should be evident from the satellite sensor images in Figure 3.2 that most natural and 
anthropogenic environments exhibit spatial patterns that are far from isotropic. In such 
circumstances, the semi-variogram function depends not only on the distance, but also on 
the direction, θ, in which the semi-variance is estimated. In this study we have employed 
the multi-directional semi-variogram to explore the degree to which our three urban sub-
scenes display such anisotropy. The result of applying this technique to each of the 
corresponding images is a sheaf of experimental data whose envelopes may be grouped, 
to a greater or lesser degree, in relation to the anisotropic variation revealed along the 
directions explored. The following eight directions, θ, were used: 
W-E (0°) WNW-ESE (−26.56°) 

NW-SE (−45°) NNE-SSW (−116.56°) 

N-S (90°) NNW-SSE (−63.44°) 

NE-SW (−135°) ENE-WSW (−153.44°) 

Several parameters have been developed that can be used to analyze the degree of 
anisotropy in scene spatial structure. One is the so-called A/B anisotropy ratio; where A 
and B are the gradients of the semi-variograms in the direction of maximum and 
minimum variation, respectively (Webster and Oliver 1990). A second measure, 
suggested by Brivio et al. (1994), is the angle ∆ between the maximum (φ) and minimum 
(ψ) gradients of the experimental, multi-directional semi-variograms. A third is the 
coefficient Ω(θ), which is  
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Table 3.3: Anisotropy parameters for the three 
urban sub-scenes (image window=90×90 pixels). A 
=maximum gradient; B=minimum gradient; 
A/B=ratio of anisotropy; φ=maximum angle; ψ= 
minimum angle; ∆=φ−ψ; θ=angle of max gradient; 
χ=angle of minimum gradient; Ω(θ)= coefficient of 
anisotropy in direction θ. 

Site Milano Torino Novara 
A 1.2126 0.8852 2.3704 

φ 50.48 41.51 67.12 

θ N-S W-E W-E 

B 0.5959 0.3935 0.7240 

ψ 30.79 21.47 35.90 

χ NNE-SSW NNW-SSE ENE-WSW 

A/B 2.03 2.24 3.27 

∆ 19.69 20.03 31.22 

Ω(θ) 1.00 0.71 1.13 

derived using the following equation (David 1977): 

 
(3.6) 

This parameter indicates the degree of affine anisotropy in the image in a specific 
direction, θ. Values of these anisotropy parameters have been calculated for each of the 
three urban sub-scenes and the results are presented in Table 3.3. 

Scaling Effects 

The importance of the spatial scale of observation has been identified by Marceau et al. 
(1990), in a study which explored the discriminating power of various texture measures 
applied to images acquired at different levels of sensor spatial resolution. In the extreme 
case, one can imagine an urban area covered by a single pixel, such that we are unable to 
capture any information about the pattern of building lots, local road networks, and so on. 

To explore the effect of spatial scale on the geostatistical techniques that have been 
introduced thus far, we have performed a series of experiments on a sub-scene extracted 
from a Landsat TM image of Milano. The image was re-sampled in four successive steps, 
increasing the pixel size (i.e. reducing the effective sensor spatial resolution) at each step. 
Thus, the size of the image was reduced from the original 300×300 pixels at 30m 
resolution, to 150×150 pixels at 60m resolution, and so on, with the final image being 
18×18 pixels in size and having an effective spatial resolution of 480m. The resampling 
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scheme simply involved taking the mean value of the four pixels included in the 
resolution cell at the next (coarser) spatial scale. Experimental semi-variograms were 
then calculated for these data (Figure 3.4). The results suggest that the experimental 
semi-variograms maintain a similar shape (note, in particular, the local minimum value at 
large lag distances; h≈2200m) across the range of spatial scales considered here (30m–
500m), although there is a progressive reduction in the height of the sill, due to the 
smoothing effect of re-sampling procedure. 

 

Figure 3.4: Semi-variograms of the 
Milano urban area as a function of 
sensor spatial resolution (30m–500m). 

Table 3.4: General description of the five small 
small sub-scenes used to examine the local-scale 
image texture indicative of different types of urban 
area. The symbols refer to the codes used in Figure 
3.5. 

Site Sample Feature Description Symbol 
Siracusa Old town centre URB/Sir 

Siracusa Suburban area SUB/Sir 

Floridia Small town URB/Flo 

Priolo Large industrial district INL/lar 

Priolo Small industrial district INL/sma 

Urban Texture at Local Scale 

The geostatistical approach was also applied at the local scale to Landsat TM image sub-
scenes covering a range of industrial areas and urban centres (Table 3.4). Five windows 
of 24×24 pixels (i.e. 720m×720m) were extracted from an image covering Sicily, 
southern Italy, namely: two industrial districts close to Priolo, one with predominantly 
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large building units, the other with smaller building units, but each indicative of the 
recent and sometimes uncontrolled industrialization in this area; two residential areas, 
one at the fringe and one in the centre of the coastal town of Siracusa; and the small, 
compact town of Floridia, 15km away. 

Data from Landsat TM band 1 (0.45µm–0.52µm, blue-green) were selected for this 
exercise since they provide good spectral separation between the man-made features of 
interest. The experimental semi-variograms for each of the sample areas derived from 
these data are presented in Figure 3.5. It is evident from this figure that the urban centres 
show ‘flattened’ semi-variograms, with maximum variances typically much lower than, 
for exam- 

 

Figure 3.5: Plots of the sample semi-
variograms obtained for each of the 
five sub-scenes extracted from a 
Landsat TM image (Channel 1) centred 
on Siracusa, southern Italy. See Table 
3.4 for an explanation of the key. 

 

Figure 3.6: Plot of (w—a) parameter 
space for five urban sub-scenes. The 
values of w and a were obtained by 
fitting experimental semi-variograms 
derived from these sub-scenes to a 
power model. 
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ple, the two industrial sites. The residential area at the urban fringe of Siracusa (SUB/Sir) 
occupies an intermediate position between these two extremes, although it is closer in 
form and magnitude to the industrial site with smaller building sizes (IND/sma). This is 
due to the higher variances created by the presence of the spectrally-contrasting intra-
urban vegetation found at the urban fringe. Finally, the highest values of semi-variance 
occurs in the large-building industrial site (IND/lar), which appears to show a degree of 
periodicity beyond 60m–90m. This distance corresponds to the approximate size of the 
petroleum refinery plants found in this sub-scene. 

In order to standardize the results described above, and to permit a somewhat more 
quantitative analysis, the experimental semi-variograms were fitted to the theoretical 
models described in section 3.2. Based on previous experience (Brivio et al. 1993a), the 
power (or generalized linear) model was adopted in this study, because it offers a 
convenient compromise between simplicity and flexibility in terms of its ability to 
describe different semi-variogram shapes. Experimental semi-variograms were fitted to 
the power model using the least-squares method. This provided estimates of the two 
parameters, w and a. The goodness-of-fit between the experimental and theoretical semi-
variograms was evaluated using the correlation coefficient, r, which was found to exceed 
0.95 for all sites, with the exception of the large-building industrial district for which 
r=0.7. The parameter values were then plotted in (w—a) space (Figure 3.6). This suggests 
that (w—a) space can be used to distinguish different types of urban area. For example, 
the urban centres of Siracusa and Floridia are located close together in this plot and are 
largely separate from the other three sites examined. Likewise, the industrial district with 
large buildings occupies a distinct and separate position within (w—a) space in the 
bottom-right corner of the plot. The suburban area and the small-building industrial 
district also appear to occupy discrete regions of (w—a) space. 

3.4 Conclusions 

Considerable effort has been expended by digital photogrammetrists on the identification 
of individual buildings in images of urban areas, and by remote sensing specialists on 
mapping and monitoring urban land cover/land use from satellite sensor images (see 
Mesev et al., Chapter 5 and Barnsley et al., Chapter 7 this volume). Much less work has, 
however, been directed towards the description and quantification of the structure and 
texture of urban areas in digital remotely-sensed images. Due to space constraints, the 
methods and results presented in this Chapter can only give a general flavour of the 
possible contribution that an analysis of texture can bring to better understand urban form 
and, hence, the relationships between pattern and process. However, we have 
demonstrated the application of geostatistical analysis to various urban sub-scenes 
extracted from Landsat TM images. These were selected as examples of typical Italian 
urban areas, ranging from large metropolitan agglomerations to small towns. The results 
of this analysis provided an insight into how these techniques might be used to 
distinguish and interpret the spatial pattern of different types of urban structure. It was 
suggested that remotely-sensed images of urban areas often exhibit a degree of anisotropy 
in terms of their observed spatial variation, due to the presence of directional artefacts 
(e.g. transportation networks) in the corresponding urban scene. Multi-directional, 
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experimental semi-variograms were used to explore and quantify this anisotropy and, 
hence, to differentiate between urban areas exhibiting different spatial structures. The 
effects of the spatial scale of observation on the ability to detect characteristic urban 
patterns were also analyzed by simulating image acquisition at different sensor spatial 
resolutions. Finally, focusing in on the local scale, experimental semi-variograms were 
fitted to a power model in order to extract quantitative measurements of image texture 
over different types of urban area and, hence, to distinguish between them. 
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CHAPTER 4 
Recognizing Settlement Structure using 
Mathematical Morphology and Image 

Texture 
Martino Pesaresi and Alberta Bianchin 

4.1 Introduction 

Mathematical morphology provides an explanatory tool and a guide for recognizing the 
complex phenomena which generate observed spatial structures. In the first part of this 
Chapter the origins of the morphology concept are investigated in relation to evolutionary 
theory and the thoughts of the Italian Architectural School. Image processing techniques 
are also viewed as an aid to the construction of an analytical ‘urbanistic’ discipline. The 
morphological/textural approach to remotely-sensed image processing is then examined 
as potential means of extracting spectral and spatial descriptors of an image. Two 
concepts of urban space are introduced: (i) marked, or labyrinthine, space and (ii) 
homogeneous space. In the second part of the Chapter, the role of structural information 
derived from satellite-sensor images as a strategic resource in the analysis of human 
settlement is examined from two different perspectives: 

1. Operational: concerning the ways in which structural information can be used to 
improve the accuracy of measures of the shape and extent of built-up areas; and, 

2. Methodological: concerning the isomorphism between morphological/textural image 
processing techniques and the language of architectural design. 

4.2 Origins of the Morphology Concept 

The study of ‘urbanism’ is concerned with the relationships between human-kind (or 
society) and physical space. Today’s planning and urban theory has its origins in the 
social conflicts generated by the Industrial Revolution, and subsequent attempts by the 
state to resolve them. Study of the social patterning of urban areas developed in the 
Nineteenth Century around typologies of the structure and configuration of society. Early 
analysis of urban morphology developed around biological analogies, and the way in 
which different types of organisms are arranged into classes and sub-classes. As such, the 
study of urban morphology is rooted in Evolutionary Theory, and borrows from the 
zoological and biological sciences which sought to develop phylogenetic classifications 
to account for the interdependencies between different animal species. Morphological 



analysis was intended to be an explanatory tool, a means of relating spatial form to 
generating process (see also Longley and Mesev, Chapter 9 this volume). 

Morphological analysis involves the aggregation of elements, none of which may be 
important in isolation. In order to develop a classification, the significance of elements 
arises from their association with other elements, which may be more or less important in 
the scheme of things. Darwin underscored a number of points which should be borne in 
mind when we consider the morphological approach: 

• genealogy holds the key to identification and hence to an understanding of morphology; 
• analysis of morphology through analogy often provides weaker explanatory power than 

a study of genealogy; and 
• morphological analysis assumes equifinality of outcome—that is, similar shapes share 

common historical origins and processes. 

Taken together, these concepts provide the explanatory power of morphological analysis. 
Form and structure are elements of morphology, since both relate to the organization 

of parts within an overall scheme. The term ‘social morphology’ nevertheless has many 
possible meanings. For some, it pertains to the ‘physical appearance of social reality’—
something visible which pertains to invisible phenomena. From among these visible 
structures, urbanists are interested in spatial distributions and in the ways in which 
society takes shape across space. Such distributions, structures, shapes and schemes are 
taken by analytical planners to provide visual clues to the evolution of space. Architects 
of the School of Aymonino and Rossi, on the other hand, use these formal shapes to 
frame project activity. 

What is crucial is how we might identify the ‘real’ structures, those constant elements 
of organization that offer systematic explanatory power. Darwin suggested that genetics 
offered one of the more reliable means of ascertaining significant meanings, as has 
Conzen (Whitehand 1981) in the field of urban geography. Yet such an approach is 
inevitably restricted to retrospective analysis, and is useless for prospective planning 
purposes. Within the urban realm, the definition of structure is also somewhat subjective 
and, although guided by some general rules, is largely intuitive. We can only judge which 
definition is the most useful in terms of its explanatory power, or in terms of its internal 
consistency (Ginzburg 1981). Furthermore, such reliance upon essentially intuitive 
methodology, rather than clearly-defined technical tools, makes it impossible to compare 
objectively successive states of an urban system over time. 

4.2.1 From ‘Urban Form’ to Morphology 

In linking the static description of urban form to the systematic analysis of urban 
morphology, we will adopt the perspective of the urbanist-architects. That is to say, we 
will consider the city as the locus of urban phenomena, not only in order to understand it, 
but also to draw out ‘some theoretical clues which, once defined and verified, can be 
assumed as data useful to check the consistency of the urban project in the contemporary 
city’ (Aymonino 1977, p.53). 

This is the position expressed by a group of 1960s Italian architects, which 
acknowledged that the city no longer developed according to predefined city-wide rules 
(Aymonino 1977), and that the urban whole was more than the sum of its architectural 
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parts. While in the past the quality of a single monument might have been the fulcrum of 
the organization of an entire city (or of parts of it), in the contemporary city this notion of 
quality has been superseded. Today, quality is defined by the quantity of buildings, the 
character of which is manifest in the way they are structured according to a set of 
simplified, but not predefined, rules. Today’s city is not recognizable in its existence 
through meaningful architectural edifices. Private land ownership and speculative activity 
has led to the primacy of size over form. The city, no longer an urban form, has become a 
massive agglomeration (Aymonino 1977, p.51). Nevertheless, Aymonino (1977) 
develops three important points: 

1. the central object of theoretical thinking should be the physical and spatial form of the 
city; 

2. there should be an analytical, and if possible scientific, basis to the analysis of urban 
form; and, 

3. the goal of urban morphology research is to unify the study of architecture and 
urbanism in one discipline, where architecture can develop its analytical character and 
urbanism its interest in physical and spatial structure. 

4.2.2 The Contribution of Image Processing to the Development of an 
Analytical Discipline 

The three points developed by Aymonino, outlined above, suggest some possible rôles 
for remote sensing in the field of urban morphology analysis, as well as some scientific 
grounds on which to develop analytical tools and conceptual categories. 

In order to illustrate this, we might draw a comparison with the rôle of statistics in the 
development of the study of demography. Today it is not possible to imagine a study of 
demography without the support given to it by statistics. This support is through the 
methodology which allows the calculation of indicators, parameters and descriptive 
statistics which, in turn, shape conceptual categories. Concepts such as population 
structure are closely related to the methods used to derive them. 

Yet the concept of population structure is not unambiguous, since it implies a system 
of relationships which governs principles. It is, rather, a concept which varies in its 
totality, and the shape it takes depends on the way in which entities and relationships are 
defined. Demographic entities are not necessarily related to physical objects, but rather 
are abstractions arising in part out of the way in which they are investigated. Entities 
must, however, satisfy some general requirements: 

• they must be consistent with the phenomenon under investigation; 
• they must aid, not hinder, explanation of the phenomenon under investigation; and, 
• they must facilitate comparison between entities. 

The creation of structure always requires abstraction, and such abstraction should provide 
a set of guiding principles which select, organize and order relevant elements, 
independent of contingent factors. Yet this assertion risks tautology: it is always 
necessary to specify a method of (often discipline-specific) analysis at the same time as a 
means of defining the relevant variables. 

The lack of rigour in definition and analysis also arises in part because of the paucity 
of spatial analysis in providing measures of the distribution of physical and other spatial 
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structures on the ground. As we will see below, remote sensing provides a number of new 
measures of urban structure. 

4.2.3 Two Kinds of Spatial Information in the Mind of the Town 
Planner 

In 1964, the famous Italian architect-urbanist G.C.De Carlo, formerly the scientist 
responsible for PIM1, prepared the final report on the methodology to be used in the inter-
municipal plan (De Carlo 1966). This application is well known in Italy as an exemplar 
of the principles of Systems Theory applied to town and regional planning. It was 
characterized by prominent use of the latest methods and techniques—such as 
optimization and (punch card) computer-based analysis. There is some resonance 
between this study and today’s use of satellite data to study urban areas, not just in terms 
of problem formulation, but also the likely outcomes of analysis. More specifically, these 
concern the representation of space and the nature of spatial information processing. 

The PIM model was based upon a grid-based data structure2. The remit of the project 
went beyond mere representation, however. The PIM staff set out to use automated 
techniques to create spatial information, using rules of grid connectivity to measure the 
compactness, porosity and dispersion of built areas. Thus ‘compact’ areas were defined 
as groups of ten or more contiguous cells, more than half of which had adjoining cells on 
two or more sides (De Carlo 1966, p.83). 

This example illustrates that urbanists have long recognized the importance of size and 
topology Moreover, it is also interesting to observe that urbanists already had the 
conceptual tools to describe satellite data, almost ten years before the launch of Landsat-1 
(ERTS-1), even though they still do not use data from this source. It is not the intention 
here to elaborate on how this state-of-affairs has arisen—though it most probably reflects 
the differences in approach between architects and those working in economic and social 
disciplines. 

4.2.4 The Digital Image as a Formalized Reference System 

The digital image can be thought as a formalized system of reference, as a means of 
ascribing place and position. In order to establish a general system of reference, we may 
posit the existence of the space E (a sub-set of all possible positions), of an object O (to 
which position may be ascribed) and of a subject S (an agent). It is then possible to 
characterize three empirical situations that are each radically different: 

1. The case in which E is a marked space. This space is made heterogeneous by points 
and by zones that may be distinguished using a pre-defined classification. Place and 
position are identified by a search for reference points. It is necessary that the subject 
S has a relatively global vision of the space E. 

2. The case where the space E is labyrinthine and the subject S does not have global 
vision. The subject can navigate only locally, using immediate reference points. 

1 PIM is the Piano Intercomunale Milanese, the inter-municipal Plan of Milano, Italy. 
2 More than thirty eight thousand cards were punched, to represent a grid (the analogue of the 
present-day pixel) of resolution of 200m×200m. 
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3. The case where the subject S has a global vision of the space E, yet the space E is ‘not 
marked’, does not possess points of reference, and is homogeneous. 

In classical quantitative geography, ‘the most instructive approach to spatial languages is 
to regard them as providing sets of rules governing the use of co-ordinate systems’. 
Moreover, ‘the language of the spatial form’ is ‘a language of superposed coordinates to 
a homogeneous space’. This is the spatial-temporal language defined by Carnap at the 
end of the 1950s, in which objects are identified by the value of the measures of a list of 
associated properties. The hegemonic concept of space in the last thirty years in our 
discipline has been that of homogeneous space, as in the notion of distance and cost in 
the spatial economy. For some applications, however, homogeneous space is not the best 
choice: the recognition and description of urban areas using satellite data is perhaps one 
such example, as are the more general questions of spatial elaboration posed by the 
urbanist. A notion of labyrinthine space or of marked space is arguably more useful. 

4.3 The Detection of Urban Areas using Satellite Data 

As is well known, in terms of semantic structure, a digital image is much like an analogue 
photograph. The general problem is how to partition the digital image, and how to 
identify and segment its thematic categories. 

Each digital image can be considered to be structured according to two kinds of 
primary descriptors—spectral and spatial. Traditionally, the image classification 
procedures used in remote sensing commonly work in the spectral domain and therefore 
make use of multi-spectral data, while image segmentation procedures involve spatial 
descriptors and typically make use of monospectral data. 

4.3.1 Image Classification 

If our problem is the automatic recognition of the built areas in a satellite image, the 
standard procedure is still multispectral classification, even though it is widely criticized 
when it is applied to high spatial resolution sensor data and where there exists high level 
of spectral variability within the candidate classes. High within-class variability is 
characteristic of urban residential areas, particularly in urban-rural transition areas (see 
also Weber, Chapter 8 this volume). 

Image segmentation techniques have been used much less frequently to process 
satellite sensor data of urban areas. These techniques detect the boundaries (or contours) 
of objects through local transformations—such as gradient transformation—or through 
criteria based on measures of local homogeneity—as in the case of region growing 
(Zucker 1976) and split-and-merge algorithms (Haralick and Saphiro 1985). If the 
geometric resolution of the sensor approaches the size of the objects on the ground, then 
the objects constitute the (urban) thematic classes. This introduces texture effects into the 
image classification process, and may result in small, local discontinuities (around small 
isolated structures, or the thin structures alongside roads in semi-rural areas). Such effects 
cannot be considered as noise, yet they are handled only with difficulty by image 
segmentation methods. 
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Despite these issues, several authors have demonstrated that structural and radiometric 
information can lead to significant improvements in the classification accuracy of builtup 
areas. Various approaches have been tested, including texture indices (Flouzat et al. 
1984, Marceau et al. 1990), local convolution transformations (Gong and Howarth 1990), 
fast morphological transformations and multi-sensor merging. There are trade-offs to be 
made, inter alia between the method of structural information handling, the nature of the 
raw data, the characteristics of the landscape of the built structures, and the robustness 
and processing time of the method, but it is important to understand that structural 
information is fundamental to automatic recognition of built-up areas. 

Figure 4.1 shows the output of an automatic classification of Landsat TM and SPOT-
HRV Panchromatic image data for the ‘dispersive city’ of the Venice region. It is derived 
from the DAEST-MURST research project “La città diffusa”, developed during the 
1990s within the Remote Sensing Unit of IUAV CICaF. The project study area measures 
45km×45km, includes the towns of Treviso, Castelfranco, Padova and Mestre-Venezia, 
and had a total population of c.1.5 million inhabitants in 1991. This region has a 
polycentric and diffused settlement structure, and as such provides a very stringent test 
for traditional image classification methods. Small and large urban nuclei, small 
accumulations along roads, and isolated buildings must all be carefully mapped in order 
to retain the fundamental information on settlement structure. 

In this example, the estimated accuracy of classification built-up areas was more than 
the 90% at 30m spatial resolution. This result was obtained by using both spectral and 
structural information in a selective resampling procedure which merges the structural 
information of the SPOT-HRV Panchromatic data and with the spectral/radiometric 
classification of the Landsat TM data. The structural information is extracted using a 
transformation of the morphological gradient. This method is very fast and works well in 
identifying the urban texture of the Bassano and Cittadella towns (Italy) derived from 
SPOT-HRV Panchromatic image data (Figure 4.2). 

Based on a consideration of the importance of the structural information, some 
systematic assessments of automatic feature detection routines have been made. These 
assessments are based on the systematic application of texture indices and classical 
morphological transformations, with a wide range of parameters (direction, size, kind of 
transformation) and  
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Figure 4.1: The built-up area in the 
‘dispersive city’ of Venice-Padua-
Treviso in the Veneto Region derived 
from a mixture of SPOT-HRV 
Panchromatic and Landsat TM image 
data. 

Remote sensing and urban analysis     52



 

Figure 4.2: The urban texture of the 
Bassano and Cittadella towns (Italy) 
derived from SPOT-HRV 
Panchromatic image data. 
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Figure 4.3: Automatic recognition of 
“pseudo-buildings” in SPOT-HRV 
image data: an application of the r—h 
maximum morphological 
transformation. 

the use of statistical measures of discriminatory power at selected test sites. Initial results 
proved very promising. The method has since been further improved and has been 
applied to a still wider range of geographical contexts—specifically the Veneto (Italy) 
Region, the Master Plan of the metropolitan area of Pescara (Italy), Durazzo (Albania), 
and San Salvador (El Salvador). The final release of the method is based on a fuzzy 
classification of textural layers calculated on the SPOT Panchromatic data. The thematic 
(urban vs. non-urban) classification accuracy is believed to be greater than 98%. 

A more ambitious experiment of urban object recognition is provided by the SPOT-
HRV Panchromatic data shown in Figure 4.3: the automatic detection of ‘pseudo-
building’ and of other kinds of urban space (road and open spaces) is made through the 
application of a method known as r—h maximum. This is a well known method of 
morphological segmentation, which uses digital, geodesic morphological transformations. 
Figure 4.3a shows the SPOT-HRV Panchromatic data for a representative urban area. 
These data are geometrically stretched by a factor of two (bilinear resampled) in order to 
detect structures one-pixel wide associated with the pseudo-building. Figures 4.3b–4.3e 
are radiometric threshold and morphological transformations applied to the r—h 
transformed image. Figure 4.3f is the output of the segmentation process in which the 
black regions indicate candidate buildings, white areas represent the streets between 
them, and the grey tones indicate other urban open space. Clearly, the results are 
dependent on the spatial resolution of the sensor used and this technique can, in principle, 
be applied to the latest generation of very high resolution sensor instruments. 

4.3.2 Segmentation of the Built-Up Areas 

Another problem for urban remote sensing is how to segment urban areas which are 
homogeneous with respect to built form (e.g. type of housing) but which contain a range 
of site layouts. The spatial patterning of housing yields very important information for the 
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architect-urbanist, as it provides an indicator of other attributes such as population 
density  

Table 4.1: Morphological transition between 1970 
and 1990 in the dispersive city of Venice-Padua-
Treviso (Italy). Units: hectares. 

1990   

A B C D E 

Total 

A 107,521 1,760 4,092 5,655 3,539 122,567 

B – 3,090 867 409 110 4,475 

C – – 5,579 2,342 631 8,552 

D – – – 5,843 3,062 8,905 

1970 

E – – – – 6,457 6,457 

Total 107,521 4,849 10,537 14,249 13,798 150, 955 

Key: A=background (no buildings); B=small accumulation (L<90m); C=large accumulation 
(210m≤L≤510m); D=compact nucleus (L≥510m). 

and composition, environmental impact, historical development and a range of cultural 
and symbolic dimensions. Spatial pattern is a fundamental tool for the urban project, 
since it invites hypothesis formulation. All this is well know to the urbanist, but studies of 
spatial patterning using automatic processing of satellite data are not yet numerous and 
have always been experimental. The urbanist and the remote sensing specialist have 
much to gain through collaboration on spatial pattern analysis. Some interesting examples 
of the urban spatial pattern analysis have been made using texture indices and measures 
or local heterogeneity, as well as morphological transformations and fractal analysis 
(Batty and Longley 1986, Frankhauser 1992). More recently, Eurostat has shown an 
interest in developing related measures of the ‘urban morphological zone’ (Eurostat 1994, 
see also Weber, this volume). 

If we apply the same data processing techniques to images acquired on at least two 
different dates, it is possible to describe the dynamics of an urban area. This approach not 
only allows us to establish changes in number of urban pixels between the two images, 
but also to record the transitions between classes in a ‘morphological transition table’ 
such as Table 4.1. 

4.4 Beyond Classical Thematic Information 

In the preceding examples, structural information was used in the identification and 
description of urban areas. Questions like ‘where are the urban areas?’ and ‘which type of 
urban area is it?’ were answered through thematic classification. But not all pertinent 
questions may be reduced in this way: a set of ‘softer’ or ‘fuzzy’ questions also exists. 
They result in images that are not reducible to maps of discrete land cover and land use 
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parcels, but they are equally important to the urbanist. They include treatments that 
emphasize some aspects of the image, or some isolated structural characteristic that could 
be used as a basis for the interpretation of process. 

 

Figure 4.4: Study of the structural 
characteristics of the rural landscape 
through mathematical morphology 
analysis (‘top-hat’ transformation) of 
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Landsat TM data: a) and b)—different 
orientations of the ancient Roman 
Centuriazio; c) and d)—spatial 
organization around the high and low 
parts of the Brenta River; e) and f)—
spatial organization around the ancient 
Postumia road and the new lines of 
communication. 

 

Figure 4.5: The evolution of the 
‘urban wall’ in the dispersive city of 
Venice-Padua-Treviso in the Veneto 
Region, Italy between 1970 and 1990. 

The output of fuzzy processing is not a complete semantically discretized thematic 
image, but an emphasized one, through local and convolution transformations or mixing 
of spectral and structural information. Figure 4.4, for example, shows morphological 
transformations applied to a Landsat TM image, which results in a map of territorial 
‘lines’ or structural alignment. The result is a skeleton of an inverse ‘top-hat’ 
morphological transformation applied to the near infra-red channel of a Landsat TM 
image, resampled to 15m by means of bilinear convolution. The lines indicate features in 
the original image that exhibit a localized minimum in reflectance. This can be most 
readily visualized as a V-shape in the reflectance ‘surface’ expressed by the image. The 
features picked out in this way include drainage channels, canals and roads. 

Figure 4.5 takes this process one stage further by illustrating the detection of changes 
in the density of the dispersed city region of Venice-Padue-Treviso over a 20 year 
period3. This region can be perceived as a ‘diffusive town’ or as ‘urbanized country’: its 
evolution cannot be described simply by growth around a single nucleus, but as 
metamorphosis and morphogenesis of a field of structures. The notion of an urban limit 
therefore becomes intrinsically problematic, but could be constructed using a gradient 
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transformation applied to urban density to detect the ‘urban walls’. The urban texture in 
Figure 4.5 does not belong to a semantic thematic class, but is the outcome of a hybrid 
procedure. The outcome of this procedure is a product that presents fundamental 
information for urban analysis, and which is neither conventional continuous nor discrete 
classification. Is not possible to recover this kind of information using traditional 
classification systems, because of the difficulties in distinguishing object from the urban 
background at the available sensor resolution. 

3 DAEST-MURST research project “La città diffusa” (1992). 
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CHAPTER 5 
Modified Maximum-Likelihood 

Classification Algorithms and their 
Application to Urban Remote Sensing 

Victor Mesev, Ben Gorte and Paul A.Longley 

5.1 Introduction 

Urban areas present one of the more challenging problems in image classification. Their 
typically complex mixture and erratic spatial arrangement of artificial and natural land 
cover types ensure that the reflectance values associated with individual pixels are often 
the result of the interaction with more than one surface material (Forster 1985). 
Consequently, perpixel classifications of urban areas have been traditionally constrained 
to somewhat broad distinctions of urban/non-urban land cover, built/non-built and, at 
best, categorical building types. For practical urban monitoring, management and 
planning activities, however, much more detail is needed on the morphology and 
functional land use of settlements. To improve upon the detail and accuracy of per-pixel 
classification, research was at first targeted on how groups of neighbouring pixels can 
reveal the inherent textural (Webster et al. 1991), contextual (Harris 1985), and spatial 
(Barnsley et al. 1993) properties and patterns in urban images. Recent research has 
examined how neural networks can be trained to infer urban land cover; this includes an 
optimized neural-net technique which processes both spectral signatures and textural 
features based on grey-level histograms (Dreyer 1993). Notable contributions have even 
attempted to determine the composition of discrete pixels using, for instance, fuzzy sets 
(Fisher and Pathirana 1990) or assuming linear relationships between pixel values and 
land cover proportions (Forster 1985). Most of these and other techniques, however, have 
had somewhat variable degrees of success in producing classifications that are more 
accurate than simple per-pixel categorization. Indeed, bearing in mind the addi-tional 
calculations and information needed to perform neighbourhood or sub-pixel 
classifications, it is instructive to note that similar levels of accuracy have been produced 
from standard per-pixel methods, where these are adequately trained by reliable class 
signatures. Equally favourable classification results may also be achieved if the per-pixel 
algorithm is itself modified to take into account additional, non-spectral information on 
the structure and characteristics of urban areas. This chapter will outline ways in which 
such additional data, which are most conveniently handled within Geographical 
Information Systems (GIS), can be used to modify the standard maximum likelihood 
(ML) per-pixel classifier. In this way, improvements in detail and accuracy can then be 
routinely derived from ML classifications which have been supplemented by socio-



economic and cadastral data within an integrated remote sensing/GIS (RS/GIS) 
framework. Here we explore one such integration methodology, but more comprehensive 
discussions may be found in Star et al. (1991) and, more specifically pertaining to urban 
studies, in Langford et al. (1991) and Mesev et al. (1996). 

Our methodology hinges on the ability of ancillary spatial data to identify and update 
the a priori probabilities of the ML algorithm. This involves the use of these data first to 
stratify images of urban areas according to spatial and contextual rules, and then to 
estimate the area of the urban classes within each stratum. These area estimates are then 
either directly inserted into the ML classifier as prior probabilities, or are used as part of 
an iterative process for creating and updating ML a posteriori probabilities. The use of 
ancillary spatial data to stratify feature space is a progression of work pioneered by 
Strahler (1980), who demonstrated improvements in classification accuracy of natural 
vegetation in Doggett Creek, California. Since then, the technique has been further 
elaborated by Haralick and Fu (1983), and supported by other work on the physical 
landscape. The most notable contributions include Skidmore and Turner (1988), who 
extracted class probabilities from grey-level frequency histograms, and Maselli et al. 
(1992), who formalized a parametric/non-parametric link between the ML discriminant 
function and prior probabilities. Apart from research by Barnsley et al. (1989), Mesev et 
al. (1996) and Mesev (1998), work in the urban sphere seems to have been largely 
neglected, undoubtedly because of the spectral heterogeneity of urban land use 
categories. It is exactly when classes are closely related, however, that prior probability 
estimates have the greatest effect (Mather 1985, Mesev 1998). 

In this Chapter, we give a comprehensive account of how prior probabilities can be 
used to modify the ML classifier and lead to improved areal estimates of spectrally 
similar classes in the urban sphere. The Chapter also explores the role of ancillary spatial 
data both to constrain and to derive prior probabilities through stratification and re-
iterative areal estimation, respectively. We then demonstrate our techniques with 
empirical applications dealing with urban land cover and land use classifications of 
settlements in the United Kingdom and the Netherlands. The United Kingdom example 
uses population census data to modify the a priori probabilities of four dwelling-type 
categories—detached, semi-detached, terrace, and apartment blocks—while the 
Netherlands application accesses land-use planning information to aid in the prior-
posterior iterative improvement of residential and industrial categories. The Chapter 
concludes with a discussion of the operational efficiency and practical expediency of per-
pixel ML classifications based on externally modified prior probabilities. We also 
provide a note on how our work has contributed to a closer integration of remotely-
sensed and GIS data, and how spatial analysis and various applications of urban 
monitoring may benefit from these closer links. 

5.2 Modified Maximum-Likelihood Classification 

As a parametric classifier, the ML algorithm relies on each training sample being 
represented by a Gaussian probability density function, completely described by the mean 
vector and variance-covariance matrix, using all available spectral bands. Given these 
parameters, it is possible to compute the statistical probability of a pixel vector being a 
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member of each spectral class (Thomas et al. 1987). The goal is to assign the most likely 
class wj, from a set of N classes, w1,…, wN, to any feature vector x in the image. A feature 
vector x is the vector (x1, x2,…, xM), composed of pixel values in M features (in most 
cases, spectral bands). The most likely class wj for a given feature vector x is the one with 
the highest posterior probability Pr(wj|x). Therefore, all Pr(wj|x), are 
calculated, and the wj with the highest value is selected. The calculation of Pr(wj|x) is 
based on Bayes’ Theorem, 

 (5.1) 

On the left-hand side is the a posteriori probability that a pixel with feature vector x 
should be classified as belonging to class wj. The right-hand side is based on Bayes’ 
Theorem, where Pr(x|wj) is the conditional probability that some feature vector x occurs 
in a given class, in other words, the probability density of wj as a function of x. 
Supervised classification algorithms, such as ML, derive this information from training 
samples. Often, this is done parametrically by assuming normal class probability 
densities and estimating the mean vector and covariance matrix. Alternatively, it is 
possible to use non-parametric methods, such as k-Nearest Neighbour (k-NN). The 
‘standard’ k-NN methods directly implement a decision function based on the number of 
training pixels per class proportional to the prior probability (Fukunaga and Hummels 
1987, Therrien 1989). This is the a priori probability of the occurrence of wj irrespective 
of its feature vector, and as such is open to estimation by a priori knowledge external to 
the remotely-sensed image. External prior knowledge will typically include information 
on the spatial distribution and relative areas covered by each class in the study scene and 
is most readily generated from ancillary spatial data. It follows that the accuracy of class 
priors is, at best, equal to the quality of this a priori knowledge. In image classification 
terms, prior probabilities can be visualized as a means of shifting decision boundaries to 
produce larger volumes in M-dimensional feature space for classes that are expected to be 
large, and smaller volumes for classes that are expected to be small, in terms of numbers 
of pixels. The denominator in Equation (5.1), Pr(x), is the unconditional probability 
density which is used to normalize the numerator such that 

 
(5.2) 

Typically, ML classifiers assume prior probabilities to be equal and assign each Pr(wj) a 
value of 1.0. However, variations in prior probabilities can be an important remedy for 
the problem of spectrally overlapping classes. If a feature vector x has probability density 
values that are significantly different from zero for several classes, it is not inconceivable 
for that pixel to belong to any of these classes. When selecting a class solely on the basis 
of its spectral characteristics, a large probability of error inevitably results. The use of 
appropriate prior probabilities, based on reliable supplementary information, is one way 
to reduce this error in class assignments. Moreover, it would seem intuitively more 
sensible to suggest that some classes are more likely to occur than others. At this stage of 
the discussion, it is important to differentiate between ‘global’, ‘individual’, and ‘local’ 
priors. Many proprietary software packages allow the use of global prior probabilities, 
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where the user is expected to estimate them simply using information on the anticipated 
(relative) class areas. The improvement in classification is often limited. At the other 
extreme, each pixel can be influenced by a vector of prior probabilities that is valid only 
for that individual pixel. This is meaningless, however, because if the correct prior 
probabilities for each individual pixel were known beforehand, the classification would 
not be necessary! Given these problems, a compromise somewhere between global and 
individual priors can be derived, first by subdividing the image into strata (or segments) 
according to the ancillary spatial data, and then by finding the local prior probability 
vector for each stratum. In both of our examples, GIS data are used to stratify satellite 
images according to some contextual rules. In the first, spatially-distributed housing data 
from the 1991 UK Census of Population are used to assist in the selection of training 
samples for different dwelling types within, and the post-classification of, the residential 
stratum. From there, local prior probabilities are derived from the census data and applied 
to ML classification. The second example, taken from the Netherlands, uses planning 
data to aid training sample selection, once again. This time, however, the local prior 
probabilities are constantly updated by means of an iterative process using posterior 
probabilities. Instead of having to enter the priors at the beginning of the process, the user 
receives them at the end. In each case, we suggest that a systematic RS/GIS strategy 
should coordinate the flow and coupling of GIS data within image classification 
procedures. 

5.2.1 Modification of Prior Probabilities 

For our first example, prior probabilities will be modified using a hierarchical 
stratification scheme based on data from the United Kingdom Census of Population. The 
stratification allows the Census data to assist in the selection and hierarchical partitioning 
of spatial features from a satellite image. For prior probabilities to function most 
efficiently they need to operate within inclusive feature space and derive mutually-
exclusive classes. In other words, for the classification of mutually-exclusive residential 
dwelling classes, an image must only be composed of residential feature space. Census 
data have already been shown to be capable of generating pseudo-surfaces of urban 
representations, especially residential surfaces (Martin and Bracken 1991), from which 
such stratification is possible. These surfaces have been used by Mesev (1998) to enhance 
per-pixel classifications through training sample selection and post-classification sorting. 
The result is that satellite images have been routinely segmented into ‘urban’ and ‘non-
urban’, as well as ‘residential urban’ and ‘non-residential urban’ classes (Mesev et al. 
1995). Using the ‘residential urban’ category we show how prior probabilities of the 
surrogate residential density categories ‘detached’, ‘semi-detached’, ‘terrace’, and 
‘apartment’ blocks, may be generated by Census data and inserted into the ML classifier.  

Consider zk as the Census variable ‘residential building type’ (where k: 1=‘detached’, 
2=‘semi-detached’, 3=‘terrace’, and 4=‘apartments’). When stratified into exclusively 
residential feature space, the four classes will have A pixels with feature values xi, where 
x1, …, xA are not necessarily mutually-exclusive. The objective is to find the probability 
that a pixel, selected at random from the ‘residential’ stratum of the image, will be a 
member of a spectral class wj (where j: 1=‘detached’, 2=‘semi-detached’, 3=‘terrace’, 
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4=‘apartments’), given its density vector of observed measurements x, in m-dimensional 
feature space and that it belongs to ancillary class zk, described as: 

Pr(wj|x, zk) 
(5.3) 

It is also assumed that the effects of zk are external to the original generation of the mean 
vector and covariance matrix of wj. As a result, the likelihood function Pr(wj|x) is 
unaltered by the introduction of zk, but is simply modified by the conditional probability: 

Pr(wj|zk) 
(5.4) 

This is a process of identifying the association between spectral class wj with census 
variable zk. For example, the spectral class labelled as ‘low density residential’ would be 
directly associated with a conditional probability of the census variable, ‘detached 
dwellings’. In effect, w1 is weighted by the probability of z1, producing the prior 
probability of Pr(w1). In our example we assume that the prior probabilities of each of the 
four dwelling types exist in inclusive m-dimensional feature space, so that 
Pr(w1)+Pr(w2)+Pr(w3)+ Pr(w4)=1.0. The probability densities di1=Pr(xi|w1), 
di2=Pr(xi|w2), di3= Pr(xi|w3), di4=Pr(xi|w4), are known for each pixel. Let li1 be the 
shorthand for the posterior probability Pr(w1|xi, z1) that pixel i belongs to class w1, and let 
pj be the shorthand for the prior probabilities. The Bayesian modified ML is now 
represented as 

 (5.5) 

Likewise, li2=Pr(w2|xi, z2), li3=Pr(w3|xi, z3) and li4=Pr(w4|xi, z4) may also be found, and of 
course, the sum of the four posterior probabilities equals 1.0, 

 

(5.6) 

5.2.2 Empirical Example 1 

We will now examine an empirical application of the Bayesian-modified ML classifier to 
the settlement of Norwich in eastern England; others may be found in Longley and 
Mesev (1997) and Mesev (1998). The aim is to produce a modified ML classification into 
the four residential dwelling types outlined above, from a Landsat 5 TM image taken on 
the 15th July 1989, using primarily the Unix-based ERDAS (Imagine 8.2) image 
processing software (ERDAS 1995) as well as some purpose-written programs. Before 
the modified ML  
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Table 5.1: Classification results using equal and 
unequal prior probabilities. 

Census Equal Priors Unequal Priors Dwelling Type 

EDs %Area Pixels %Area Error Pixels %Area Error 

Detached 37364 42.40 12486 38.75 −3.65 13910 43.17 +0.77 

Semi-Detached 26675 30.27 10311 32.00 +1.73 9160 28.43 −1.84 

Terraced 21088 23.93 8030 24.92 +0.99 7440 23.09 −0.84 

Apartments 2987 3.39 1395 4.33 +0.94 1712 5.31 +1.92 

Totals 88 114 100.00 32 222 100.00 7.33† 32 222 100.00 5.37† 

† Total error for each dwelling type measured as the difference in area between the census and 
equal/unequal priors, expressed in absolute terms. ED=Enumeration District. 

classifier is implemented, a series of hierarchical segmentations is carried out to partition 
each image and generate the ‘residential’ stratum from which the four dwelling types are 
ultimately derived. The first segmentations are based on standard unsupervised 
classifications, using ERDAS, and produce generalized ‘urban’ and ‘non-urban’ strata, 
from which the ‘urban’ stratum is subdivided into ‘built-up’ urban and ‘non-built-up’ 
urban. Housing data from the 1991 UK Census of Population are then used to help further 
partition the ‘built-up’ stratum into ‘residential’ built-up and ‘non-residential’ built-up 
(the complete hierarchical structure can be seen in Longley and Mesev, Chapter 9, this 
volume). As already mentioned, housing information are used here as input data for a 
GIS surface model, derived from (Martin and Bracken 1991), and applied to the selection 
of class training samples and post-classification sorting. The discrepancy in the dates 
between when the satellite images were taken and the 1991 Census was unavoidable, 
although this was not a particularly rapid period of house building in England. 

The ‘residential’ stratum is eventually exposed to the modified ML classifier. The 
prior probabilities Pr(wj) for each dwelling type category are essentially their area 
estimates, and are calculated with reference to the proportion of households that fall 
within each dwelling type (Figure 5.1). These statistics are extracted directly from the 
Census, then normalized to create a probability distribution, and finally transformed into 
a usable form which takes into account the relative size ratios. This transformation helps 
to preserve the relative areal proportions of each dwelling type, where for instance 
‘detached’ dwellings occupy larger areas than ‘terrace’ dwellings. Using stereoscopic 
aerial photographs, 20 samples of dwelling type sizes are generated and average relative 
size ratios between dwelling types constructed. The ratios stabilized at 1 detached 
dwelling to 1.5 semi-detached, 1 detached to 2.25 terrace, and 1 detached to 10 
apartments. Although these are approximations, they are still more realistic than 
assuming absolute, 1:1 linear relationships. 

The results of the thematic classifications of the four dwelling density types based on 
maximum a posteriori probabilities are shown graphically in Figure 5.2, together with 
area estimates in Table 5.1. The differences between equal and unequal prior probability 
classification are visually apparent in Figure 5.2. Many parts of Norwich, especially the 
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north areas, have been classified with contrasting dwelling types. Table 5.1 further 
quantifies the  

 

Figure 5.1: Insertion of prior 
probabilities in the maximum 
likelihood classifier. 
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Figure 5.2: ML classifications of 
Norwich, U.K., using (i) equal a 
priori, and (ii) unequal a priori 
probabilities. 

success of ML classifications using adjusted, or unequal, prior probabilities over 
classifications employing equal prior probabilities. Over all classes, the area estimates 
produced from the Bayesian modified-ML classifier are closer to those derived from the 
size-ratio transformed Census figures. The best results are obtained from the detached 
category, perhaps because of its larger area on the ground and hence the lower degree of 
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spectral mixing. The worst is, understandably, apartments, where the size ratio may not 
have been truly representative. Further accuracy assessments for other settlements, 
including one with a detailed site-specific evaluation, can be found in Mesev (1995). All 
indicate slight to moderate improvements. 

So far, we have established how GIS-informed changes to a priori class membership 
probabilities may be used to alter the standard ML classifier and hence improve 
classifications. The next section further assesses the benefits of using GIS data for 
calculating a priori probabilities. It also demonstrates how an innovative, iterative 
process can take advantage of maximum a posteriori probabilities to modify further a 
priori probabilities. 

5.2.3 Iterative Calculation of Prior Probabilities 

Area estimates are routinely generated from standard ML classifications simply by 
referring to the class histogram and counting the number of pixels in each class. Because 
ML classifiers are commonly biased in favour of some classes, however, these estimates 
are unreliable indicators of class sizes (Conese and Maselli 1992). Nevertheless, class 
area estimates are still important indicators of classification accuracy and a process 
whereby these estimates contribute towards improved classification will now be outlined. 
This second modification of the standard ML classification procedure, therefore, relies 
not only on the use of maximum a posteriori probabilities to label spectral clusters but 
also to obtain class area estimates. Using these estimates, an updated set of prior 
probabilities is calculated and the classification repeated. Thus, the process becomes 
iterative and eventually converges to statistically correct area estimates. As in the 
previous modification, the process is most effective when applied to stratified images 
which have been produced in association with additional spatial data (Figure 5.3). The 
approach relies on maintaining the entire vector of posterior probabilities, as well as 
making a maximum a posteriori probability decision for each pixel (conventional ML 
classification). The sum of these vectors of posterior probabilities yields an estimate for 
the vector (A1,…, AN) of the area per class. The areas are measured in pixels, and by 
normalizing the areas we obtain the vector of prior probabilities. We will now detail the 
iterative prior probability methodology and provide a simple example. The full 
mathematical calculations appear in the Appendix to this Chapter. 

Suppose that 100 image pixels have the same feature vector x and that the posterior 
probability Pr(wj|x)=0.77. This should be interpreted as 77 out of those 100 pixels will be 
expected to belong to class wj; the other 23 will belong to other classes. Unfortunately, 
the ML classifier is unable to report which 23. We can state, however, that out of those 
100 pixels, 77 will contribute to the area of class wj. Moreover, by using the other 
components of the posterior probability vector, we can find out the contributions of the 
100 pixels to the areas of the other classes. The example can be made independent of the 
number 100 by saying that each pixel contributes 0.77 to class wj and a cumulative 0.23 
to other classes. In contrast to the first modification of the ML classifier, posterior 
probability vectors are now  

Remote sensing and urban analysis     70



 

Figure 5.3: Iterative calculation of 
prior probabilities. 

used to calculate the prior probabilities of the next classification. This is done by 
converting the posterior probability vectors into class areas and normalizing. If we guess 
the initial prior probability correctly, the ones we find at the end of this process should be 
the same. If, as is the more usual case, they are wrong, the final ones will be different but, 
importantly, they will have improved and the whole process can be repeated using 
successively ‘new’ priors (in the true sense of Bayes’ Theorem). The process becomes 
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iterative, as illustrated by Figure 5.3. The question of whether it converges to the true 
‘prior’ probabilities is addressed in the Appendix to this Chapter. 

To illustrate this iterative process, consider the simple situation in which there are only 
two classes (w1 and w2) and A pixels having feature vectors x1…xA with known 
probability densities di1 and di2 for each pixel. In effect, this is a collection D of A 
probability density vectors (noting that D is not a set, since duplicates may occur), 

 (5.7) 

After faithfully applying Bayes’ rule A (or 2×A) times, we can obtain a collection L with 
A posterior probability vectors, 

 (5.8) 

The main postulate of this iterative modification to the ML classifier is that the sum of 
the vectors in L should equal the vector [A1, A2] which is the total areas covered by w1 
and w2, respectively, 

 
(5.9) 

and 

 
(5.10) 

(Note that these equations are equivalent, since li1+li2 and p1+p2=1). Remember that the 
priors, p1 and p2, are presumed to be relative areas, such that and 
Furthermore, it is our contention that, if the prior probabilities p1 and p2 are unknown, 
they can be obtained by solving Equation 5.9. The solution depends on the matrix D only. 
A detailed analysis of the mathematical operations that surround the calculation of the D 
matrix is given in the Appendix to this Chapter. 

5.2.4 Empirical Example 2 

The ML modification using iterative priors has been tested in a number of cases using 
real image data as well as synthetic data, and so far has produced encouraging results. 
One of these empirical applications concerns Westland, in the province of Zuid Holland 
in the Netherlands, an area characterized by greenhouses which cover approximately 35% 
of the land. The objective is to assess the degree to which rapidly expanding residential 
and industrial land is impinging on agricultural fields and grasslands. Other land cover 
types discernible in the available Landsat TM image of this scene include a part of the 
Nieuwe Maas-Nieuwe Waterweg, connecting Rotterdam with the North Sea, as well as 
some forested areas. The initial, conventional ML classification produced eight classes, 
namely ‘green-houses’, ‘residential’, ‘industrial’, ‘agriculture’, ‘grass’, ‘bare soil’, 
‘forest’, and ‘water’. Of the first three ‘urban’ classes, ‘residential’ and ‘industrial’ were 
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not very homogeneous and largely overlapped each other in multispectral feature space. 
Not surprisingly, ‘green-houses’ were found throughout the feature space, simply because 
their detected reflectance was very much dependent on the orientation of the glass roofs 
with respect to the sun angle (azimuth and elevation). The ‘agricultural’ classes were also 
spectrally multi-modal, although ‘grass’, ‘forest’ and ‘water’ were all classified 
successfully using a non-parametric (k-NN) algorithm. Various instances of ‘bare soil’ 
were identified in unused (vacant) agricultural fields, building sites, as well as parts of the 
coastal dunes and beaches. More importantly, this class exhibited a similar spectral 
reflectance to sections of the ‘residential’ and ‘industrial’ categories. 

Table 5.2: Relative areas (%) per stratum. 

Stratum Area 
% 

Water Grass Agric. Forest Resident. Green Indust. Bare 

Residential 6.3 0.0 0.0 0.2 0.0 991 0.1 0.1 0.5 

Industrial 2.6 0.0 0.0 4.0 0.0 1.9 0.1 91.8 2.2 

Green 26.8 0.0 0.0 0.0 0.0 9.5 84.0 6.5 0.1 

Bare 0.5 0.0 0.0 1.4 0.0 0.0 0.0 0.2 98.3 

Other 33.1 24.4 41.4 12.6 1.6 0.4 0.1 0.8 18.7 

Residential/Industrial 1.1 0.0 0.0 0.1 0.5 94.7 0.3 4.3 0.1 

Residential/Green 3.0 0.0 0.0 0.2 0.0 72.6 18.5 8.6 0.1 

Residential/Bare 0.3 0.0 0.1 14.5 0.0 25.2 0.7 49.5 10.0 

Residential/Other 2.3 0.0 11.8 5.2 1.6 66.4 0.1 0.3 14.5 

Industrial/Green 1.5 0.0 0.0 0.1 0.0 55.4 19.1 25.4 0.1 

Industrial/Bare 0.5 0.0 0.0 11.1 0.0 5.4 0.2 33.4 50.0 

Industrial/Other 3.4 10.6 0.9 6.0 0.1 42.5 2.0 21.5 16.5 

Green/Bare 0.3 0.0 23.4 0.2 0.0 4.7 3.2 47.1 21.4 

Green/Other 15.4 0.0 11.2 9.9 0.1 7.5 43.3 6.9 21.2 

Bare/Other 0.7 16.0 2.5 7.5 0.0 6.7 0.1 50.1 17.2 

In the context of our drive towards the integration of GIS data into image 
classification, additional information was again used to perform a spatial stratification of 
the area. Over 50 functional land use categories were available from BARS (Basisbestand 
Ruimtelijke Structuren), a data set compiled by the Dutch planning agency, RPD (Rijks 
Planologische Dienst). Temporal inconsistencies of 2–4 years between the compilation of 
the BARS data set and the acquisition of the Landsat image were unavoidable. The high 
generalization of BARS allowed five classes to be constructed, these being ‘residential’, 
‘industrial’, ‘greenhouse’, ‘bare soil’ and ‘rest’ (other) (Figure 5.4), and constituted the 
first five strata. The other ten strata were derived from buffer zones generated around 
these land uses, taking into account the likelihood that new residential buildings will be 
constructed next to existing ones. Thus, buffer zones of a few hundred metres were 

Modified maximum-likelihood classification algorithms       73



created to represent ‘grass near to residential’ areas, and ‘industrial near to residential’ 
areas (Figure 5.4). 

While performing the iterative process, the relative areas of the eight image classes 
were calculated for each stratum. The result after ten iterations is shown in Table 5.3. 
Convergence was reached in the sense that during the tenth iteration none of the 
probabilities changed more than 0.05%. Using the values in Table 5.2 (shown in bold) as 
prior probabilities, spatially distributed according to the stratification, an ML 
classification was performed. 

The accuracy and reliability of the results generated from the modified ML 
classification were then evaluated using sets of 200 samples per class, which were taken 
from all over the image. From Table 5.3, both the residential category and the category 
representing the rest of the image increased in accuracy and reliability. An accuracy of 
97% for the residential class is very high and an important vindication of the 
classification methodology. Conversely, the industrial class at best maintained the same 
level of accuracy as the ‘standard’ k-NN  

 

Figure 5.4: Results of iterative ML 
classification scheme. Upper left: 
Landsat-TM image (band 4); upper 
right: definition of strata; lower left: 
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standard, non-parametric classification; 
lower right: final classification. In the 
classifications, three classes are 
identified: industrial (dark), residential 
(medium) and greenhouse (light); other 
classes are left blank. The vector 
coastline was added after 
classification. 

Table 5.3: Classification accuracies and 
reliabilities. 

Standard Final Class 

Accuracy Reliability Accuracy Reliability 

Residential 0.88 0.66 0.97 0.78 

Industrial 0.56 0.58 0.55 0.88 

Green 0.41 0.70 0.85 0.76 

classification. This was due in part to some systematic misclassification, for example, the 
entire beach was classified as industrial instead of bare soil. Nevertheless, the reliability 
of this class increased: 88% of the pixels classified as industrial belong to that class, 
while the other 12% can be accounted for by errors in the classification of land adjacent 
to the coast. 

5.3 Discussion and Conclusions 

Per-pixel image classification is an established part of remote sensing methodology. 
However, the inherent spatial heterogeneity of built surfaces has tended to restrict 
detailed image classifications of urban areas. In this Chapter, we have attempted to 
disentangle the complex spectral patterns associated with urban areas by contributing to 
the refinement of the ML per-pixel classifier, and through links with ancillary spatial 
(GIS) data. Indeed, it is precisely because we are dealing with spectrally overlapping 
classes that we have advocated two contributions to per-pixel classification, both based 
on and adhering to the probabilistic, and hence flexible, nature of the standard ML 
discriminant function. By careful modifications to prior probabilities, either directly using 
ancillary data or by an iterative process involving posterior probabilities, we can begin to 
pry open urban spectral classes. In each case, ancillary spatial data and GIS operations 
are seen as essential for the efficient implementation of these modifications, not only to 
assist in the calculation of prior probabilities, but also to support the stratification of the 
image without which prior probabilities could not function. 

Although the ultimate goal of our work is to produce more accurate classifications, the 
two methodologies we have outlined also contribute to the continued integration of data 
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and technology between remote sensing and GIS. The integration issues we have 
addressed are those relating to information exchange, positional integrity, and, most 
importantly, classification compatibility. Spatially-distributed data, in the form of a 
census surface and land use planning map, have been incorporated into the image 
classification process to select and label class training samples, as well as to calculate 
stratified prior probabilities. The final classified products have been further compared 
with and assessed against, the initial census surface and land use planning map. 
Integration may be extended still further if the information derived from our modified 
ML classifications were used directly in a GIS. For instance, the posterior probabilities of 
per-pixel class membership might be stored and updated in a GIS database to await 
interrogation. The database might be capable of resolving queries pertaining to land use 
change. For example, the user may wish to identify land use areas which may have 
changed from agriculture to industrial, over the past ten years, with prob-abilities of 
greater than 0.8. Another avenue of integration which might be pursued is that of linking 
classified data with spatial analysis. In Longley and Mesev (Chapter 9, this volume), two 
of the authors detail the application of spatial analysis techniques based on fractal 
geometry to understand further the structure and patterns of the Norwich study area using 
the classification developed in section 5.2.2. In particular, they examine how 
improvements in image classification of urban areas may be exploited by fractal models 
and enable GIS to monitor and analyze the size and form of urban morphologies, as well 
as the cumulative and density profiles generated between the city centre and the city 
periphery. 
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Appendix 

This Appendix expands upon the mathematical formulation of the iterative calculation of 
class areas. Assume three small examples of D, D1, D2 and D3, given as 

 

(5.11) 

(when dividing all of the numbers by 1000 it becomes easier to imagine them as 
probability densities, but it will have no effect on the results because of normalization in 
Equations 5.9 and 5.10). Since it may not be obvious to the reader why D1 gives a 
‘regular’ solution 0<p1<1, D2 does not give a regular solution, and D3 yields p1=1, we 
discuss a number of further considerations, namely: 

• What conditions D must satisfy to yield a unique solution? 
• How can we find this solution? 
• Does D meet the conditions if it consists of probability densities? 

Conditions to D 

If we concentrate on Equation 5.9 and try to solve for p1, we must first re-write Equation 
5.10 as 

 
(5.12) 

with 

 (5.13) 

Next, we observe that, because of the normalization in Equation 5.5, the posterior 
probabilities for each pixel depends solely on the ratio between the two densities, rather 
than on their absolute values. This implies that zeros and negative values are not 
permitted in D, which makes sense for class probability densities. Therefore, instead of D 
we can use a collection E  

 (5.14) 

This allows us to change Equation 5.5 into 
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 (5.15) 

and, since p2=1−p1, 

 (5.16) 

Since fi(0)=0 and fi(1)=0, it is clear that p1=0 and p1=1 are solutions of Equation 5.12. We 
will call these trivial solutions because they reduce the classification to a one-class 
‘problem’. Moreover, it is likely that there are solutions for which p1<0 or p1>1. We will 
not be concerned about them, since p1 is a probability. The question is whether there is a 
unique solution for 0<p1<1. Let us examine the fi type of functions. For convenience, we 
simplify the notation slightly and write Equation 5.16 as 

 (5.17) 

The first, second and third derivatives and with respect to p will be needed. For 
convenience, ge(p) is defined as the denominator of the first term of fe, i.e. ge(p)= 
(e−1)p+1, and In the interval of interest, 0≤p≤ 1, fe(p) is continuous and 
ge(p)>0. 

 (5.18) 

 

(5.19) 

 (5.20) 

 (5.21) 

We observe that in the range 0<p<1:  

• fe(0)=0 and fe(1)=0 
• if e>1, so fe is convex and  
• if e<1, so fe is concave and  
• if e=1, g1(p)≡1and f1(p)≡0 
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Returning to the problem of solving where is the sum of A functions fe(p), 
the question now is which combinations of fe’s give non-trivial solutions and which do 
not. The answer is given by the derivative of and If they have different signs, 
or if one equals zero, then the function is either entirely positive or entirely negative 
(within 0<p<1). Only if both derivative values are positive will the function resemble the 
‘sum’ and have a non-trivial solution. Another possibility for a non-trivial solution would 
be if both derivative values are negative. However, this will not happen because 

(i.e. as p increases, can change from convex to concave, but not 
the other way around). This also explains why there will never be more than one non-
trivial solution. Consequently, for a non-trivial solution we need and 
where 

 

(5.22) 

and 

 

(5.23) 

must both be greater than 0. This leads to a result which is remarkable enough to be 
called a Lemma. 

Lemma: Given a collection D of class probability densities dci, exactly one-trivial 
solution for the area estimates will be found if 
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 (5.24) 

and 

 
(5.25) 

Otherwise, the area estimates will be A for one class and 0 for the other. 
In addition, we state (without an extensive proof) that in the limiting case where 

approaches A, the solution tend towards zero, such that: 

 (5.26) 

and 

 (5.27) 

Remembering our three small examples, we see that all three satisfy the first condition of 
the Lemma. D1 also satisfies the second, D2 does not and D3 is an example of the limiting 
case:  Finally, a special case occurs when 

 (5.28) 

This implies that all are equal to 1, because with ei=1+δ, such that: 

 

(5.29) 

This means that the two probability densities are the same everywhere. The image 
contains no information upon which the two classes can be distinguished. for all 
p1. 
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Why Does the Matrix D Satisfy the Conditions for a Non-Trivial 
Solution? 

Suppose that the conditional probability density functions of our two classes are F(x) and 
G(x). Let Ak be the (unknown) number of pixels that actually belong to wk, so that we 
have A1+A2=A. We want to knows the sum Sk of some characteristic K(x) over the entire 
image, so that Sk=∑A K. If, for whatever reason, we prefer to work in the feature space, 
we must take the frequencies of occurrence nx of each x into account, so 

 (5.30) 

where X is the set of all possible feature vectors. Let n1x and n2x be the number of pixels 
with feature vector x in w1 and w2 respectively. They follow from the probability density 
functions 

nx=n1x+n2x=A1F(x)+A2G(x) 
(5.31) 

and therefore, 

 (5.32) 

Actually, we were looking for the sum of K(x)=F(x)/G(x) and this now becomes 

 

(5.33) 

Introducing D(x) as D=G−F and observing that ∑X D=∑X G−∑X F=0, we obtain 

 

(5.34) 

We can prove the same for and the two conditions in the Lemma in the previous 
section are satisfied. In the limiting case of, for example, A1=0, this reduces to 
Both sums are 0 in the special case of F=G. 
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From 2 to N Classes 

In dealing with N classes, instead of two, the same theory applies. To check the criteria 
for non-trivial solutions, according to our Lemma we take one class at a time, call it w1, 
and group the other N−1 classes into w2 by averaging their probability densities. 
Remember, no assumptions were made about the shape of the probability density 
functions. As a result, we will get a total of 2N conditions and, again using one class at a 
time, we can show them to be satisfied according to the second part our theory. Note that 
the ‘limiting case’ of priors being equal to zero will not just be theoretical anymore. In 
the case of stratification, it will be more likely that only a subset of classes will occur in 
individual strata. 
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CHAPTER 6 
Image Segmentation for Change Detection 

in Urban Environments 
Hans-Peter Bähr 

6.1 Introduction 

There is an increasing demand by society for information on the urban environment. One 
of the most important challenges in this respect is to move from a 2.5D representation of 
urban areas to 3D and 4D—that is, including time. This can only be achieved using 
remotely-sensed images as the primary data source, in conjunction with the analytical 
techniques offered by Geographical Information Systems (GIS) and knowledge-based 
approaches. This Chapter presents a snapshot of work under way in this general area, 
focusing on three separate research projects being carried out at the author’s institute, 
namely (i) change detection in the urban environment, (ii) map updating and (iii) multi-
temporal modelling. The studies range in spatial scale. At the small scale, image data 
from Landsat Thematic Mapper (TM) and the ERS-1 Synthetic aperture Radar (SAR) are 
merged to help identify urban areas and to distinguish different categories of land 
cover/land use within them. The second study, which also makes use of data from 
Landsat TM, employs Delaunay triangulation to delineate the urban-rural boundary. This 
work is based on an initial land cover/land use map generated using a conventional 
multispectral classification algorithm applied to the TM data. Finally, at the large scale, 
we report current research to derive vector maps from digitized aerial photography. This 
is achieved using a Blackboard System, together with an associative memory or a 
Semantic Network (ERNEST), to extract and interpret the necessary spatial features, and 
taking into consideration 3D and generalization effects. 

Broadly defined, remote sensing is not limited to digital, satellite-based sensor 
systems, but encompasses the realm of photogrammetry and hence conventional analogue 
sensors, including aerial photography. Viewed from this perspective, remote sensing has 
been used routinely to provide information on urban areas for analysis and planning 
purposes since the 1920s and 1930s. For instance, analogue ortho-photographs have long 
been used for urban planning. The question therefore arises: what can modern, digital 
remote sensing offer, over and above these traditional analogue techniques, to meet the 
requirements of present-day urban planners and of society in general. To answer this 
question, we must break it down into two parts, namely (i) the needs of planners and 



society, and (ii) the potential of technology in general, and remote sensing in particular, 
to meet these requirements. 

As far as the needs of planners and society are concerned, it is important to recognize 
that these differ between developing countries and industrialized nations. They will be 
conditioned by local pressures which may arise as a result of a diverse set of factors, such 
as population growth or the limited space available for urban expansion. The remote 
sensing technology—both hardware and software—that we have at our disposal to 
address these requirements is, of course, developing continuously. Unfortunately, these 
technological developments have not always been motivated by the need to meet the 
specific needs of urban planners. This has resulted in an applications gap between their 
requirements, on one the hand, and technical capabilities, on the other. The gap is, 
particularly evident for developing countries, where ‘high-tech’ fixes are not necessarily 
the most appropriate or, indeed, even a viable solution to the problems at hand. It is 
therefore an important challenge for science to provide the necessary tools, and the 
obligation for national governments is to arrange the necessary investment to facilitate 
their development. 

In reality, the solution to these broad problems is found in a number of smaller, 
individual advances. In this context, one of the most pressing tasks for remote sensing is 
to make the step from analogue to digital data-processing. More specifically, attention 
needs to be given to: 

a) the digitization of existing data sets pertaining to the urban environment, 
b) the extension of analytical techniques from a consideration of urban areas in 2D to 

their representation in 2.5D and 3D, 
c) the ability to monitor changes in the urban environment (i.e. a further step from 3D to 

4D), and 
d) the introduction of knowledge-based systems to assist in the decision-making process 

in relation to urban planning. 

Each of these tasks presents very considerable challenges whose solution requires novel 
approaches to data collection and processing based on timely, consistent and objective 
spatial data sets. In this sense, the images recorded by Earth-orbiting and airborne remote 
sensing systems, particularly where they have stereoscopic observing capabilities, 
represent a relatively cheap tool for providing a detailed representation of the form and, 
to a limited extent, the functioning, of urban areas. In view of the very large volumes of 
data that these systems collect, however, it is essential that appropriate automatic and 
semi-automatic procedures for image restitution and segmentation are developed in order 
that maximum value can be derived from the data that they produce. This Chapter 
presents an overview of several research projects under way at the author’s institution 
that seek to address this requirement. Each is concerned with automatic image 
segmentation to provide information on urban areas appropriate to the planning 
community. 
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6.2 Small-Scale Data Acquisition 

Although many of the important patterns and processes associated with urban areas 
operate at the large-scale1, there is still a requirement for small-scale data acquisition, 
where the primary objectives is to detect urban areas; that is, to distinguish towns and 
cities from other spatial entities in the observed scene. A secondary objective may be to 
identify different types of land use within the urban areas. The capability of existing 
satellite-sensor systems to distinguish more than a handful of such land-use categories is 
currently relatively limited (see Barnsley et al., this volume). Even so, given the cost and 
logistical problems associated with collecting such data by conventional means over large 
geographical regions, remote sensing remains a valuable tool. As such, it is important to 
develop techniques that can be used to extract the maximum information from the 
available data. In this context, we present two methods for image segmentation: the first 
of which takes a standard multispectral classification algorithm, but applies it to a 
combination of optical and microwave image data to improve the delineation of urban 
areas and their constituent land use categories; the second takes the output from this 
classification process and uses Delaunay triangulation networks to enhance the 
delineation of the urban-rural boundary. 

6.2.1 The Multi-Sensor Concept for Satellite Image Classification 

Description of the Test Area and Data Set 

The city of Karlsruhe (275,000 inhabitants) and its hinterland in the Upper Rhine Valley 
were selected for this particular study. This flat, heavily populated urban area and its 
suburbs are surrounded by a number of isolated towns and villages. The total area 
considered is approximately 33km by 37km in size, which corresponds to 1325 by 1590 
pixels in a 25m resolution raster data set. Table 6.1 shows the range of image data sets 
available to this study. These include five images recorded by the Landsat-TM sensor (in 
1991 and 1993) and data from the Synthetic Aperture Radar (SAR) instruments on board 
the Japanese JERS-1 and European ERS-1 satellites. Note that the JERS-1 SAR operates 
in the C-band, while the ERS-1 SAR operates in the L-band. The data from these two 
sensors also differ in terms of polarization mode (data from the JERS-1 SAR were 
recorded in VV mode, while those from the ERS-1 SAR were acquired in HH mode), 
incidence angle (23.0° versus 35.2°, respectively) and date of acquisition (April, May and 
August). Consequently, the three SAR scenes were used as different phenomenological 
channels in the subsequent image classification process. 

1 The term scale is often used in different, sometimes contradictory ways, in the literature. Here, we 
use the term in the strict mapping sense. Thus ‘large-scale’ refers to a detailed or fine spatial 
resolution representation of surface features, rather than a large spatial coverage (i.e. large area) 
which, in mapping terms, would normally imply a ‘small-scale’ (i.e. comparative coarse spatial 
resolution) study. 
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Table 6.1: Data available for the study area. 

Sensor ERS-1 JERS-1 TM 93 TM 91 
Dates 04.05.93 18.04.94 

01.08.93 
27.04.93 
30.06.93 
01.08.93 

11.07.91 
20.08.91 

Spatial Resolution 25m 25m 30m 30m 

Geocoded yes yes yes yes 

Reception Rate 44 35 16 16 

Channels L-Band C-Band 6 6 

Polarization HH VV – – 

Inclination Angle 97.7° 98.5° 98.2° 98.2° 

Incidence Angle 35.2° 23.0° – – 

Classification Stage 

Eighteen candidate classes were used in the multi-sensor image classification, including 
flowing and standing water bodies (two classes), densely-populated and sparsely-
populated residential areas (two classes), industrial districts, coniferous, deciduous and 
mixed forests (three classes), cereal crops (two classes), corn, sunflowers, root crops, soft 
fruit crops, grassland and unclassified. Initial experiments suggested that the radar 
imagery did not aid in the separation of the vegetation classes; consequently, a mask was 
applied to the data such that the vegetation classes were classified using the optical data 
only, while the remainder (including the urban categories) were classified using a 
combination of optical and microwave data. The results are presented in Figure 6.1. 

Visually at least, the result of the multi-sensor classification appears to be very good, 
certainly better in our experience than using either the optical data or the microwave data 
alone. The city of Karlsruhe can be clearly seen in the lower right-hand corner of Figure 
6.1. Moreover, the other towns and villages in this region are generally well represented, 
with far fewer errors of commission from the urban classes into the non-urban classes 
than is usually the case when the classification is based solely on optical data. The use of 
the microwave data also enables standing water (i.e. lakes, reservoirs and ponds) and 
flowing water (i.e. the Rhine) to be distinguished. 

A further qualitative indication of the impact of the microwave data on the image 
classification process is given in Figure 6.2. The three frames in this figure focus on a 
small sub-scene extracted from the upper right-hand corner of the image in Figure 6.1, 
centered on the village of Graben-Neudorf. The left-hand and central frames present the 
results of image classification based solely on optical data (TM 1991 and 1993, 
respectively). The results presented in these images overestimate the extent of the built-
up zone in this area. On the other hand, the results obtained using a combination of 
optical and microwave data (right-hand frame) provide a more accurate representation of 
the urban area. Finally, although they are not presented here, it is worth noting that land 
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cover/land use classifications based on the microwave data alone yield relatively poor 
results. 

 

Figure 6.1: Results of conventional 
image classification applied to a 
combination of Landsat-TM (30/06/93, 
6 channels), JERS-1 and ERS-1 SAR 
images. The data cover an area 
approximately 20km by 30km in size. 

Remote sensing and urban analysis     88



 

Figure 6.2: Land cover/land use 
classification of a small urban area and 
its non-urban periphery derived using 
optical image data alone (left and 
centre; based on 1991 and 1993 
Landsat TM images, respectively) and 
in combination with microwave image 
data (right; based on 1993 Landsat TM 
and three SAR images). 

 

Figure 6.3: Binary image showing 
pixels which differ in terms of their 
assigned class (urban categories only) 
between two classifications of the 
Karlsruhe area: one based on optical 
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data alone (TM 93), the other using 
optical and microwave data (TM 93, 
JERS-1 and ERS-1). 

Quality Check 

Rigorous evaluation of the output from image classification algorithms is vital. The 
optimum approach makes use of extensive field data for absolute verification. In many 
cases, however, this is not possible. In such circumstances, an alternative, but somewhat 
less powerful approach is to compare the results obtained from different classifications of 
the same scene. Figure 6.3 exemplifies this latter approach, through a comparison of the 
results obtained using optical image data (TM 1993) alone and a combination of optical 
and microwave data. It highlights the pixels which differ in terms of their assigned class 
(focusing on the urban classes only) between the two classifications. 

There are several notable features evident in Figure 6.3. First, many linear elements 
are visible. This is partly a result of the greater ability of the microwave (c.f. optical) 
image data to detect man-made surface, such as roads and buildings, but it may also be a 
consequence of residual mis-registration between the optical and microwave images. 
Second, detailed analysis of the differences shown in Figure 6.3 reveals that many of the 
more extensive areas of difference are due to errors in the classification based on the 
optical data alone, which tends to over-estimate the extent of the urban areas. A much 
small number of the difference pixels are due to error in the classification of the 
combined optical and microwave image  

 

Figure 6.4: Differences (shown in 
black) between the urban land 
cover/land use classes extracted from a 
classification of optical (TM 93) and 
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microwave image data, and the 
corresponding classes from the DSM. 

data. Finally, it is of course possible that some pixels have been incorrectly classified in 
both the optical and optical plus microwave data sets. This type of error will not be 
evident in Figure 6.3, although it is known to exist, most notably in an area to the south 
of Karlsruhe. 

A slightly more rigorous form of quality checking can be achieved by comparing the 
results of image classification with existing digital map data. In this study, we have used 
a ‘digital situation model’ (DSM) derived from 1:50,000 scale (TK 50) topographic 
maps, produced in 1985, for this purpose. The land cover/land use categories featured on 
this map include three urban classes, notably ‘industry’, ‘transport’ and ‘settlements’. 
Analysis of the differences between the map and image data is complicated by the 
difference between the dates on which they were surveyed and acquired, respectively. 
Since the digital image data were acquired between six and eight years after the map was 
produced, we can expect real changes in land cover/land use to be highlighted, as well as 
errors in the image classification (and, potentially, in the digital map data). Bearing this 
point in mind, Figure 6.4 presents the differences between the urban land cover/land use 
classification based on the combined optical and microwave image data and the urban 
features presented in the DSM. The most notable aspect of this image is that many of the 
areas of apparent change occur around the boundaries of the urban areas reported in the 
DSM. This may be an artefact of the mixed pixels that occur at the border between two 
land cover/land use classes in the image data. Of perhaps greater significance, however, 
the solid patches of change suggest that certain areas have undergone urban expansion. 
One example of this, which has been verified in the field, occurs around the village of 
Friedrichstal (close to the right-hand margin of Figure 6.4, about half-way down the 
image). The southern extension of this village is clearly evident in the satellite data. 

6.2.2 Delimitation of Urban Areas using Delaunay Triangulation to 
Update ATKIS 

It is evident from the preceding discussion that the process of image classification is a 
complex one. In general, the best results are obtained where different, but complementary 
data sets are combined. This, however, demands accurate geometric rectification of the 
constituent images. Moreover, few of the data processing stages involved in image 
classification are fully (or even semi-) automated. The selection of sample areas for the 
training set, in particular, is a time-consuming manual task. Taken together, these form 
bottle-necks in the data-processing chain which restrict the widespread, operational 
application of remote sensing as a tool for providing information on urban areas. Full or 
partial automation of these tasks is therefore required to remove the bottle-necks. In this 
section, we explore the automation of one such task: the identification of the urban-rural 
boundary and, hence, the delimitation of urban areas. The approach that we outline 
moves beyond the pixel-oriented methods described earlier in this chapter, to include a 
consideration of a priori knowledge and neighbourhood relations. The approach also 
makes use of data from the ATKIS digital map system (Harbeck 1994), which is the 
official topographic mapping system in Germany. 
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Concept of the Approach 

Urban areas typically exhibit different characteristics from all other classes in remotely-
sensed images. These differences are partly expressed in terms of their spectral signatures 
on a pixel-by-pixel basis, but more importantly in terms the spatial variation, or 
heterogeneity, of this signal (see also Barnsley et al., this volume). Conventional 
multispectral classification algorithms which assign each pixel to one of a set of 
candidate classes solely on the basis of its individual spectral response are unable to 
capture this heterogeneity. This has two implications: first, the per-pixel classification 
may contain errors as a result of the spatial variations in spectral response within urban 
areas (sometimes expressed as a ‘salt-and-pepper’ effect in the classified image); and 
second, these algorithms cannot exploit the information contained within the spatial 
heterogeneity to infer additional information about the urban environment, such as that 
pertaining to land use. To overcome this limitation, the method employed here combines 
a per-pixel examination of spectral response with semantic representations of the urban 
area based on neighbourhood relations/configurations. 

Method 

The spectral/semantic data-processing scheme used in this study is shown in Figure 6.5. 
The ATKIS digital map database is used to select training areas automatically for input to 
a conventional multispectral classification algorithm. To avoid the inclusion of pixels 
relating to vegetated areas (i.e. intra-urban open space) within the urban training sets, a 
simple vegetation index is computed for the image as a whole and used to remove pixels 
above a given threshold value. The resultant classification is used to identify all pixels  

 

Figure 6.5: Method used to derive 
information on the extent of urban 
areas based on analysis of satellite 
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sensor images, digital map data from 
the ATKIS database, and the use of 
Delaunay triangulation. 

assigned to one of the urban categories. In general, we anticipate that urban areas will be 
characterized by tight spatial clusters of relatively large numbers of these pixels. By the 
same token, isolated ‘urban’ pixels that lie some distance from these cluster are probably 
not real urban areas, but are the result of error in the classification process. Such pixels 
can therefore be excluded from the final urban class. Various methods could be used to 
implement this procedure, including simple distance-decay models. Here, we have 
chosen to employ a Delaunay triangulation network to define the limits of the urban areas 
(Weindorf 1994). Urban areas are thus treated as a set of triangular spatial primitives. 
These contain semantic and topological information about the urban areas. For example, 
they can be used to eliminate error or ‘noise’ from the initial classification by taking into 
account a priori knowledge about the expected size and shape of the urban areas. Finally, 
the urban-rural boundaries derived using this method can be returned to the original 
ATKIS database for map updating. 

Results 

Figure 6.6 shows the results obtained using the data-processing sequence outlined above. 
Figure 6.6 displays the typical output of a per-pixel, multispectral classification 
algorithm. The black pixels in this image are candidate members of the urban area (i.e. 
they have been assigned to one of the urban spectral classes). The complex spatial pattern 
of these pixels is evident, as is the lack of a clearly defined urban-rural boundary. 
Visually, we can identify the locations of possible towns and village in this image on the 
basis of the dense spatial clustering of the black pixels. The automated identification of 
such clusters is performed using Delaunay triangulation (Figure 6.6b). An urban-rural 
boundary can be formed from an analysis of the Delaunay triangulation (Figure 6.6c). 
This is quite noisy, however, with disjoint roads and small, spurious urban areas 
included. These ‘noise’ features can be removed through a further analysis of the size, 
shape and image texture of the candidate regions (Figure 6.6d). Finally, in Figure 6.7 the 
output of the whole data-processing chain (Figure 6.6d) is compared to the corresponding 
urban-rural boundary stored in the ATKIS digital map data base. It is important to 
understand that the whole process up to the transition from Figure 6.6c to Figure 6.6d is 
fully automatic. On the basis of this preliminary experiment, the method appears to be 
very robust (resistant to noise) and identifies accurately the size and shape of urban areas. 

The method described above has been applied to a more extensive study area (Figure 
6.8) covering the city of Karlsruhe and its environs. The results appear very promising 
and, on the strength of this, the basic method is now being adapted to delineate different 
types of urban land use, such as industrial areas and densely-populated residential 
districts. 
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6.3 Large-Scale Data Acquisition from Aerial Photography 

The distinction between ‘small scale’ and ‘large scale’ mapping employed in this Chapter 
is essentially one between satellite (small scale) and aerial (large scale) image data. 
Clearly, the higher spatial resolution generally associated with aerial imagery allows one 
to acquire more detailed information on urban areas pertaining, for example, to the size, 
shape and number of houses, roads, gardens etc.. However, the methods that must be 
used to derive this information are typically still more complicated than those used to 
analyze small-scale images. In this context, the use of digital map data to support and 
inform the analysis of aerial images is very common. 

There are, however, important differences between images and maps (Quint and Bähr 
1994). Figure 6.9 shows an example comparing map and image data covering a small 
section of Karlsruhe University campus. The white lines derived from the map data 
(original scale 1:5,000) do not match exactly with the boundaries of the corresponding 
objects in the image (original scale 1:6,000). The differences are due to the radial 
displacement of 3D objects away from the principal point, and the effects of residual 
error in the geometric registration of the map and image. Other reasons include gross 
errors in the map data and changes in the surface features since the map was compiled. 
Despite these differences, a trained human photo-interpreter can readily match both 
representations. Achieving the same thing using computer software is a more challenging 
task. In general, it requires us to transform both the map and the image data into a higher 
symbolic level. Two different approaches to this problem are described in the next two 
sections. 

6.3.1 Blackboard Approach 

The first approach is known as the ‘blackboard’ method and is based on an idea first 
presented by Newell (1962). Figure 6.10 shows the overall architecture employed in this 
ap- 
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Figure 6.6: Results of urban-rural 
boundary extraction using the 
Delaunay triangulation method. 

 

Figure 6.7: Comparison of the final 
results from the Delaunay triangulation 
method and the urban-rural boundary 
stored in the ATKIS database. Solid 
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line=ATKIS; dotted line=results of 
image analysis. 

 

Figure 6.8: Urban contour lines for the 
City of Karlsruhe and its environs. 

 

Figure 6.9: Differences between an 
aerial image and the representation of 
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the same spatial features in digital map 
data. 

 

Figure 6.10: Blackboard architecture. 

 

Figure 6.11: Associative memory 
structure. 

proach, including the associative memory or ‘blackboard’. A control unit puts data onto 
the blackboard from a set of ‘knowledge sources’, as well as reading information from 
the blackboard. Different objects in a map or image are put into the columns of the 
associative memory (Figure 6.11), which stores attributes of those objects such as their 
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edges, corners, arcs, links, orientation, quality etc.. This approach is very effective in 
terms of both read and write procedures. 

Two other, important aspects of the blackboard approach are the matching of scene 
primitives and the construction of more complex objects from simpler ones. Figure 6.12 
gives an example of the former. It relates to a search-procedure to identify the four 
corners of rectangular objects. The many potential corners detected in an image or a map 
are put into the blackboard together with their attributes (e.g. orientation). A systematic 
search of the set of corners which might form a rectangle yields nk test samples, where n 
is the number of elements in the scene and k the number of elements required to form the 
object (four in the case of corners of a rectangle). For the aerial photograph shown in 
Figure 6.9 this yields 79,727,040,000 samples! This number can be reduced considerably 
by eliminating subsets of corners which clearly cannot form a rectangle. 

In practice, the modelling of urban objects can also be done in much more 
sophisticated ways, including the extension to 3D. Figure 6.13, for example, shows how a 
building might be models out of rectangles in a 3D scene. The geometric conditions may 
be pre-determined on the base of mathematical conditions.  

 

Figure 6.12: Composition of 
rectangular objects (e.g. houses) from 
graphic primitives in 2D (after Stilla et 
al. 1995). 

6.3.2 Semantic Network Approach 

The second procedure used to segment maps and images at the author’s institute involves 
semantic networks. Here, the information content of the observed scene is represented in 
the form of a graph (see also Barnsley et al., this volume). Individual objects form nodes 
of the graph, sometimes referred to as ‘concepts’. The relations between the concepts 
represented by the edges of the graph. Figure 6.14 shows an example semantic network 
for part of an urban scene, produced using the ERNEST software developed at the 
author’s institute (Niemann et al. 1990). As with the blackboard approach, semantic 
networks can be used to model specific objects that form part of the urban area. Figure 
6.15, for example, shows the model—in the form of a graph—of the concept ‘garden’. 
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Both the blackboard system and semantic network yield a symbolic description of the 
scene. 

6.4 Conclusions 

Urban areas are by their very nature complex. Although a human operator can extract 
information from images of urban areas relatively easily, computer-based automated 
interpretation is a challenging task. Even apparently simple problems, such as 
determining the extent of the urban area as a whole, require data from multiple sources 
(including, but not restricted to, different types of satellite sensor). In general, we note 
that at larger mapping scales, more complex and sophisticated modelling tools are 
required to reconstruct the spatial location, 3D geometry and type of urban objects. 
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Figure 6.13: Extraction of building 
objects in 3D (after Stilla et al. 1995). 
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Figure 6.14: An example semantic 
network (after Quint and Bähr 1994). 

 

Figure 6.15: Description of a ‘garden’ 
object using the ERNEST semantic 
network software. 
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CHAPTER 7 
Inferring Urban Land Use by Spatial and 

Structural Pattern Recognition 
Michael J.Barnsley, Lasse Møller-Jensen and Stuart L.Barr 

7.1 Introduction 

Approximately 85% of the European Community’s population lives and works in urban 
areas (Eurostat 1993). This spatial concentration of human activity has very significant 
environmental and economic impacts, both within and beyond the immediate urban 
fabric, arising from the need to service it with appropriate physical resources (e.g. energy, 
food and water) and to dispose of the resultant waste products. Despite this, basic 
information on urban areas—such as their location, physical extent, human population 
and rate of growth—is often dated, inaccurate or simply non-existent. In this context, the 
potential for satellite remote sensing systems to deliver timely, consistent and spatially 
comprehensive data sets seems clear. In practice, however, there has been a marked 
disparity between the apparent promise and delivered performance (Barnsley et al. 1989, 
Kutsch-Lojenga and Meuldijk 1993, Orsi 1993). To ensure that greater value is derived 
from satellite remote sensing in the future, it is instructive to examine the causes of this 
disparity. 

Early satellite sensors, notably the Multispectral Scanning System (MSS) on board the 
Landsat series of satellites, were quite poorly adapted to provide anything other than the 
most general information about urban areas (Jackson et al. 1980, Forster 1980). In part, 
this was a function of the limited number of broad spectral wavebands in which Landsat 
MSS recorded data. More importantly, the relatively coarse spatial resolution (c.80m) of 
this sensor was generally inadequate to provide an accurate delineation of the urban-rural 
boundary or to identify and distinguish land cover/land use types in urban areas (Barnsley 
and Barr 1996). This led many observers at the time to highlight sensor spatial resolution 
as the principal limiting factor for urban studies (Forster 1985, Toll 1985). By 
implication, results would improve when finer spatial resolution data became available. 

With the launch of the Thematic Mapper (TM) sensor on board Landsat-4 in 1984 and 
the High Resolution Visible (HRV) instruments on board SPOT-1 in 1986, the civilian 
remote sensing sector was provided access to multispectral images with a spatial 
resolution of 30m and 20m1, respectively. Paradoxically though, many of the initial 
studies that made use of these data reported reduced levels of accuracy from conventional 
(i.e. per-pixel) multispectral classifications of urban areas (Forster 1985, Toll 1985, 
Haack et al. 1987, Martin et al. 1988). The explanations for this were typically expressed 
in terms of ‘scene noise’ (Gastellu-Etchegorry 1990)—that is, many areas which had 



appeared to be spectrally homogeneous in data recorded by earlier satellite sensors were 
now revealed as being spectrally heterogeneous in images from the new, finer spatial 
resolution devices—the implication being that the problem lay in the inherent spatial 
complexity of urban scenes and the improved ability of the new satellite sensors to 
resolve their component elements (e.g. buildings, roads and various types of open space). 
This explanation is, however, at best unhelpful, at worst misleading. The spatial variation 
in detected spectral response to which it refers is controlled, in part at least, by the size, 
shape and spatial arrangement of buildings, roads and different types of intra-urban open 
space. Far from being unwanted ‘noise’, the resultant pixel-to-pixel variability is in fact 
the signal—a potential source of information on these and other properties of the urban 
scene. The ‘problem’ of scene noise therefore derives more from the inability of standard 
image processing techniques (e.g. perpixel multispectral classification algorithms) to 
extract useful information from the data, than from the intrinsic limitations of the data 
themselves (Barnsley and Barr 1996). 

If existing data-processing strategies are deficient, alternatives must be sought. This 
problem has become even more pressing in recent years, with the launch of a new 
generation of optical satellite sensors capable of acquiring images at still higher spatial 
resolutions. Examples include the LISS-III sensor (~6m in panchromatic mode) on board 
the current IRS-1C satellite and the imaging instruments (1m–4m) on board the 
IKONOS-1 satellite (Aplin et al. 1997, Ridley et al. 1997). Data from these devices 
clearly offer exciting new opportunities for monitoring urban areas from space. At the 
same time, they create very considerable challenges in terms of developing data-
processing techniques to exploit the information that they contain. In this context, we 
note that the spatial variability inherent in urban scenes, typically expressed as texture in 
images acquired by Landsat-TM and SPOT-HRV, will be more clearly revealed as 
pattern in digital data from the new, very fine spatial resolution sensors. 

7.2 From Land Cover to Land Use 

Remote sensing specialists are frequently rather lax in their use of the terms ‘land cover’ 
and ‘land use’, often applying them interchangeably or mixing examples of each within a 
single classification scheme. Their meanings are, however, distinct. Broadly speaking, 
land cover refers to the physical materials on the surface of a given parcel of land (e.g.  

grass, concrete, tarmac, water), while land use refers to the human activity that takes 
place on, or makes use of, that land (e.g. residential, commercial, industrial). The 
fundamental problem for remote sensing is that while there is often a relatively simple, 
direct relationship between land cover type and detected spectral reflectance, the same is 
seldom true for land use: land use is an abstract concept, an amalgam of cultural and 
economic factors, most of which cannot be determined directly by means of remote 
sensing. This problem is central to studies of urban areas, since land use is normally the  

1 The SPOT-HRV sensors also provide data with a spatial resolution of 10m in their panchromatic 
mode. 
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property of greater interest. Having said that, many categories of urban land use have a 
characteristic spatial pattern of spectrally-distinct land cover types that enables their 
recognition in fine spatial resolution remotely-sensed images. For example, residential 
districts in many Western European towns and cities typically comprise a complex 
assemblage of buildings (houses), roads and open space (gardens and parks). Human 
photo-interpreters, of course, use information on the size, shape, relative proportions and 
spatial arrangement of these and other scene elements as ‘cues’ to identify different types 
of urban land use. What is required, then, is some means of formalizing this process and 
of embedding it within an automated or semi-automated, digital image-processing 
system. 

It has been suggested that one way in which this might be achieved is to divide the 
image analysis process into two distinct stages (Barnsley and Barr 1996): the first 
involving a low-level segmentation of the image into a set of discrete, labelled regions, 
each delineating an area of homogeneous land cover; the second encompassing some 
procedure to infer the principal land use associated with groups of one or more these 
regions on the basis of characteristic spatial textures, patterns or assemblages of land 
cover (Gurney and Townshend 1983, Møller-Jensen 1990, Gong and Howarth 1992a, 
Gong and Howarth 1992b, Eyton 1993, Barnsley and Barr 1996). Barr and Barnsley 
(1997) have expressed this more formally as the composition of two mappings, 
and  

 
(7.1) 

where 
I is the set of multispectral responses for each of the pixels in the image, 

F is the set of land cover classes (or other first-order themes), and 

S is the set of land use categories (or other second-order themes). 

In principle, any one of a large number of techniques can be used to perform the first of 
these two mappings, ranging from standard (i.e. per-pixel) multispectral classification 
algorithms (both supervised and unsupervised) to artificial neural networks. The relative 
merits of, and problems associated with, each these techniques is discussed extensively 
elsewhere (see, for example, Mesev et al., Chapter 5 this volume) and will not be 
rehearsed further here. Instead, it is important to note two general points: 

• The accuracy with which the multispectral responses are mapped onto the appropriate 
land-cover classes will affect the success with which land use information can be 
inferred from these data—in other words, error in the first mapping will be propagated 
through to the second.  

• Many of the techniques that are appropriate to the second mapping require that the 
regions are labelled in terms of meaningful land cover types—this generally militates 
against the use of unsupervised classification algorithms in the first stage. 
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Several different methods have been developed to infer land use from an analysis of the 
spatial, textural and contextual arrangement of land cover types present within an image, 
three of which are considered in detail in this Chapter, namely 

1. empirical/statistical kernel-based techniques, 
2. knowledge-based texture models, and 
3. region-based structural pattern recognition techniques. 

7.3 Case Study 1: Statistical, Kernel-Based Techniques 

One of the simplest ways to characterize the spatial patterns of land cover in a classified 
image, with the aim of relating these to different categories of urban land use, is to pass a 
convolution kernel (or moving-window filter) across the data. Several kernel-based 
techniques have been developed that are suitable candidates for this purpose. Wharton 
(1982), for example, used the frequency of class labels within an m×n pixel kernel to 
infer the dominant urban land use associated with the central pixel in the window. This 
approach approach has since been applied to fine spatial resolution images from Landsat-
TM and SPOT-HRV (Gong and Howarth 1992a, Gong and Howarth 1992b, Eyton 1993). 

In this section, we examine the results obtained from a modified version of Wharton’s 
basic method, developed by Barnsley and Barr (1996), in which the spatial arrangement 
of the land cover labels within the m×n pixel window is analyzed, in addition to their 
relative frequencies. Barnsley and Barr (1996) argue that this allows more subtle 
differences in urban land use to be distinguished; for example, between different densities 
of residential land. Their method, referred to as SPARK (SPAtial Re-classification 
Kernel), determines the matrix, Mij, of adjacency events for land cover classes i and j 
between every pair of adjacent pixels within the current window (Figure 7.1). The value 
of each element of this matrix denotes the frequency with which pixels belonging to class 
i are adjacent to those belonging to class j within the kernel. The matrix Mij is then 
compared to ‘template’ matrices, Tkij, determined from training areas of known land use 
categories, k, sampled within the image. Equation 7.2 gives the index used to assess the 
degree of similarity between the spatial pattern and frequency of land cover labels for the 
current position of the kernel and the candidate land-use categories: 

 
(7.2) 

where  
Mij is an element of the current adjacency-event matrix, 
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Figure 7.1: Diagrammatic 
representation of the set of adjacency 
events within a 3×3 pixel kernel (after 
Barnsley and Barr 1996). 

Tkij is the corresponding element of the template matrix for land use category k, 

N is the total number of adjacency events within the window (N=20 for a 3×3 kernel), and 

C is the number of land-cover classes in the image. 

Finally, the central pixel in the window is assigned the label of the land use category for 
which ∆k is maximized (Barnsley and Barr 1996). 

The SPARK algorithm has been applied to a SPOT-HRV multispectral image centred 
on the town of Swanley, Kent, UK (Barnsley et al. 1995). This work formed part of a 
larger project entitled “Remote Sensing and Urban Statistics”, organized by Eurostat (the 
Statistical Office of the European Communities), to examine the potential of satellite 
remote sensing to provide detailed statistical information on urban land use (Barnsley et 
al. 1995, Eurostat 1995, Eurostat 1998). An important aspect of this project was that the 
criteria used were established by Eurostat, in conjunction with the National Statistical 
Institutes (NSI) of the participating member states2, rather than by remote sensing 
specialists. This included the use of a specially developed land-use nomenclature, known 
as CLUSTERS (Classification for Land Use STatistics Eurostat’s Remote Sensing project; 
7.1). Although attention was given to the types of information that might be derived from 
satellite sensor images, the CLUSTERS scheme was primarily designed with the needs of 
European planners and statisticians in mind. It therefore provides a stringent test of the 
capabilities of both existing and newly-developed image processing techniques. 

2 The participating members states and NSIs in the first phase of the project were the U.K. 
(Department of the Environment, Transport and the Regions), France (INSEE), Germany 
(Statistisches Bundesamt) and the Netherlands (Central Bureau voor de Statistiek). 
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Table 7.1: Extract from the CLUSTERS land use 
nomenclature scheme. 

Level I Level II Level III Level IV 
A111 Continuous and dense 

residential areas 

A112 Continuous residential 
areas of moderate 
density 

A113 Discontinuous 
residential areas of 
moderate, density 

A114 Isolated residential 
areas 

A11 Residential areas  

A115 Collective residential 
areas 

A1 Residential areas and 
public services  

A12 Public services, 
local authorities 

A120 Public services, local 
authorities  

A201 Heavy industry 

A202 Manufacturing 
industrial activities 

A203 Commercial and 
financial activities and 
services 

A2 Industrial or 
commercial activities 

A20 Industrial or 
commercial 
activities  

A204 Agricultural holdings 

A311 Technical networks, 
protective structures 

A31 Technical 
infrastructures  

A312 Waste and water 
treatment 

A321 Road transport, rail 
networks 

A322 Airports and 
aerodromes 

A3 Technical and 
transport 
infrastructures 

A32 Transport  

A323 River and maritime 
transport 

A41 Extractive 
industry 

A410 Extractive industries 

A421 Building sites  

A422 Tips 

A Man-
made 
areas  

A4 Extractive industries, 
building sites, tips and 
wasteland  

A42 Building sites, tips 
and wasteland 

A423 Wasteland 
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Summary results from the application of the SPARK algorithm and their subsequent 
integration with other spatial data sets within a GIS are presented in Figure 7.2. This 
shows a comparison of the extent of the ‘built-up’ area determined from the remotely-
sensed images (shaded area) and from contemporaneous digital map data held by the UK 
Department of the Environment, Transport and the Regions (DETR)3. The methods used 
to process the satellite images are described in detail by Barnsley et al. (1995), but briefly 
they involve the application of the SPARK algorithm followed by a series of automated 
procedures to remove spurious outliers and transportation links (e.g. roads and railways) 
that are not included within the Eurostat definition of urban areas. The degree of 
correspondence between the satellite-derived ‘built-up’ areas and the conventionally 
surveyed, digital map data is generally quite good (91%; Barnsley et al. 1995), although 
there are clearly areas in which the satellite-derived product underestimates the true 
extent of the urban area (usually in places where the density of buildings is very low) and 
others where it overestimates it (generally due to mis-classification of fallow fields 
surrounding the urban area and the inclusion of various transportation network features 
that are not formally part of the ‘built up’ zone). 

The primary advantages of SPARK are its conceptual simplicity and ease of 
implementation. Unfortunately, it suffers from the deficiencies of all kernel-based 
techniques, namely (i) it tends to smooth the boundaries between discrete land cover/land 
use parcels, (ii) it is difficult to determine a priori the optimum size for the kernel, and 
(iii) a regular, rectangular window represents an artificial area within which to search for 
the spatial pattern of irregularly-shaped land cover/land use parcels (Dilworth et al. 1994, 
Fisher 1995, Barnsley and Barr 1996). Barnsley and Barr (1996) suggest a number of 
potential enhancements that might be made to the basic SPARK algorithm to overcome 
the first two problems identified above, including: 

• the use of an adaptive window-size for the kernel to take account of the different spatial 
scales of variation in land cover characteristic of different land use categories, and 

• the use of information on the probability/confidence of class-label assignment output on 
a pixel-by-pixel basis by maximum likelihood classification algorithms during the first 
mapping stage (see, for example, Mesev et al., Chapter 5 this volume). 

The third problem, however, remains. Moreover, the ‘model’ used to represent the spatial 
composition of land cover types within each land use category is determined empirically 
and must therefore be recomputed for different scenes and for images of the same scene 
acquired by satellite sensors with different spatial resolutions. Thus, we believe that the 
scope for further development of kernel-based techniques for urban land use mapping is 
limited. Their applicability to the new sources of very fine spatial resolution (<5m) image 
data is also questionable. For example, because of the very small area covered by each 
pixel in such images, a very large kernel would be required to capture the spatial pattern 
of land cover representative of any given land use. Unfortunately, the use of large kernel-
sizes inevitably results in blurring and smoothing of the boundaries between land 
cover/land use parcels, which is generally undesirable in most urban mapping and 
monitoring applications. 

3 Known at the time of the study at the Department of the Environment (DoE). 
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Figure 7.2: ‘Built-up’ areas (shaded) 
of Swanley and surrounding towns in 
Kent, UK derived from a 1992 SPOT-
HRV multispectral image using the 
SPARK algorithm. The figure also 
shows the corresponding, 
conventionally surveyed, digital map 
data of the urban-rural boundary. 
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7.4 Case Study 2: Knowledge-Based Texture Models 

The second case study that we examine here takes a rather different approach to inferring 
urban land use. It recognizes that, even with the latest generation of satellite sensors, it is 
not possible to resolve completely and unambiguously all of the land cover objects (e.g. 
buildings, roads and different types of open space) present in urban areas. Specifically, 
the precise extent and shape of these objects, and by implication the boundaries between 
them, will be uncertain owing to spectral mixing within the image pixels (i.e. ‘mixed 
pixels’). One possible solution to this problem would be to try to unmix the spectral 
signatures of the component scene elements and hence to reconstruct more precisely their 
relative areal coverages, if not their original shape and boundaries (Quarmby et al. 1992, 
Ichoku and Karnieli 1996, Foody et al. 1997). The alternative approach adopted in this 
study is to relate the resulting spatial variations in detected spectral response (i.e. image 
texture) to the dominant land use. The fundamental assumption underlying this approach 
is that different types of urban land use will be expressed as different textures in the 
corresponding satellite-sensor image depending on, for example, the size, shape and 
density of their constituent buildings, roads and areas of open space. Rather than simply 
attempting to correlate image texture and urban land use using a statistical model, 
however, the approach employed here is based on formal spatial models of urban 
structure and knowledge-based techniques. 

7.4.1 Spatial Object Models of Urban Scenes 

Interpretation of remotely-sensed images, whether by humans or computers, is arguably 
most effective when it is based on a sound knowledge of the object, and possibly the 
context, of analysis. In the domain of urban areas, this implies knowledge of the 
constituent elements of the urban scene (e.g. the size and shape of buildings, roads and 
open space) and an understanding of the ways in which their spatial composition differs 
between various categories of urban land use. This domain-specific knowledge can, in 
principle, be represented through simple spatial models of urban structure. Used in 
conjunction with databases on the spectral and spatial properties of the constituent scene 
elements, the purpose of such models is to help delineate areas of different urban land use 
by predicting their appearance in remotely-sensed images. 

The spatial object model referred to above may be either generic or specific in nature. 
A generic model attempts to capture the features common to an entire class of objects, 
usually at the expense of their individual details. Such a model reflects what might be 
described as the ‘class typical’ appearance of the object—a pure form which may not 
necessarily be found within a particular scene. A specific model, on the other hand, 
attempts to represent the detailed characteristics of one particular object. 

Based on a generic model, the algorithm used to classify the scene into discrete land 
use parcels must be able to measure the degree of similarity between the observed region 
and the spatial object model. There is, of course, a trade-off between generality and 
specificity. The advantages of a generic model are that (i) it may be possible to construct 
a relatively simple model to represent the properties of a large number of objects of 
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analysis, and (ii) the model may be portable from one location to another with only minor 
modifications. On the other hand, since the match between the object model and the 
patterns observed in the image  

Table 7.2: Attributes stored for each object class in 
the model. 

Object name 

Parent object name 

Object code (national coding system is used) 

Object size/certainty factor 

Object colour/certainty factor 

Object shape (length/width) 

will generally not be exact, there is typically greater uncertainty associated with the land 
use label assigned to each region than for a more specific model. 

7.4.2 Implementation of the Spatial Object Model 

In this case study we describe the use of a prototype spatial object modelling system 
implemented in the Prolog programming language. Prolog is particularly well suited to 
the kind of structured knowledge representation outlined above, notably through the use 
of ‘frames’ or semantic networks (Hendrix 1979, Ringland and Duce 1989). Thus, the 
spatial model may be implemented as a number of nodes and connecting links, in which 
each node represents an object class and the links represent the various relations held 
between the classes (Figure 7.3). 

The prototype system used in this study allows certain properties of a specific object 
of analysis to be described (Table 7.2). The most important of these are the estimated 
size, colour and shape of the object, and the estimated number of instances of each object 
class. These attributes have been selected to describe some of the basic physical 
properties that are relevant in the context of remote sensing. The spatial model contains 
several types of object class relation that convey information on spatial context, the most 
important being the APO relation (meaning ‘a part of’ or ‘spatially included in’). 
Knowing that one object class is a part of another is, however, insufficient to model 
satisfactorily the spatial properties of a real urban scene. This is because it provides no 
information about the number of subordinate objects (subparts) within the object class or 
their spatial distribution within the scene. To overcome this problem, and hence make the 
model more generic, an estimate—even a very approximate one—of the expected number 
of objects in a sub-class can be provided by the user and stored as an attribute of the sub-
class. The spatial model can be made more specific by providing heuristic knowledge 
about the spatial location of two object classes relative to one another. Thus, it is possible 
to specify adjacent to and apart from relations between two objects. The former can be 
extended to take into account the percentage of the total perimeter of the two classes 
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which is common to both of them. Inheritance of properties from objects at another level 
is also possible under certain conditions. 

To limit data redundancy and to facilitate updating, the system also allows other types 
of objects and relations to be defined. These can act as a form of common database. This 
is useful when a number of object classes share the same attributes (e.g. identical spectral 
properties), in which case it is inefficient to store the same information several times in 
the model. Thus, for example, the has surface (HS) relation links all urban object classes  

 

Figure 7.3: Representation of a 
residential urban area: object of 
analysis (top), corresponding spatial 
model visualized as a tree graph 
showing the available link types 
(middle), and its Prolog representation 
(bottom). 
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with similar surface types to a single database that contains information about the spectral 
properties of that surface4. A number of other databases can be added to the system. For 
example, the prototype system includes a sensor database which enables it to access, 
among other things, information about the spatial, spectral and temporal resolution of a 
potential image data source. 

Finally, the prototype system also stores certainty (uncertainty) information about the 
object attributes (Table 7.2). This has been introduced for two reasons. First, the attribute 
value may be an estimate (or guess) on behalf of the user: perhaps because the real value 
is not known or is too difficult to measure. Secondly, the attribute value may represent 
the average for a class of objects which has a large within-class variation. This may result 
in a substantial difference between the model value of the attribute and the actual value 
for the majority of objects in that class. The second type of uncertainty is part of the 
general problem of inferring from a generic spatial object model, outlined above. 

7.4.3 Modelling Image Texture 

Using the information contained within the spatial object model, it is possible to simulate 
the textural appearance of an urban land use class in a remotely-sensed image of a given 
spatial resolution and spectral waveband. In other words, the textural manifestation of a 
composite urban (land use) object can be predicted from knowledge of (i) its component 
sub-parts (i.e. land cover parcels), (ii) their spectral properties, and (iii) their size, shape 
and spatial arrangement within the scene. It is then possible to search for regions of 
similar textural appearance in the remotely-sensed image in an attempt to identify areas 
of the candidate land use category. 

To do this, the spatial object model must be mapped onto some measure (or measures) 
of image texture. Here, we use a variety of measures based on standard, grey-level co-
occurrence matrices (Haralick et al. 1973, Haralick 1979). These contain information 
about the frequency with which neighbouring pixels hold values A and B, respectively. 
This information is accumulated across all possible pixel-pairs within the region of 
interest. Neighbourhood relations are defined in all four directions relative to the target 
pixel (i.e. pixels touching along an edge, but not at a vertex). An A−B relation is 
considered identical to a B−A relation. The system allows each object class from the 
spatial object model to be entered into the co-occurrence matrix one at a time, starting at 
the most detailed level. Thus, the textural appearance of a complex, compound object 
class can be constructed within the co-occurrence matrix by accumulating the responses 
of its component sub-classes. This requires that the system makes use of model 
information concerning object hierarchy, the expected number of objects, the spatial 
distribution of objects, etc. Once the co-occurrence matrix is constructed for a given 
object class, a number of second-order texture measures (e.g. contrast, entropy and 
angular second moment) can be computed (Haralick et al. 1973, Haralick 1979). 

Although this describes the general way in which object classes are entered into the 
co-occurrence matrix, it is instructive to examine this process in somewhat more detail. 
For  

4 In the prototype system employed here, these relate to the mean and standard deviation of the 
pixel values for that surface type. 

Inferring urban land use by spatial and structural pattern recognition       113



 

Figure 7.4: Four types of border 
relations between objects. A:obj1–
obj1, B:obj1–obj2, C: obj1−univ and 
D:sub−univ. 

each object, the system computes the expected number of internal pixel-pairs (i.e. where 
the pixels represent the same object) and border pixel-pairs (i.e. where the pixels 
represent different objects). Currently, the system is only able to handle rectangular 
objects. The expected length and width of the object, expressed in pixels, are computed 
from the absolute object size and the shape index attribute, while the number of internal 
and border pixel-pairs are computed as follows: 

internal pixel pairs=W(L−1)+L(W−1) 
(7.3) 

border pixel pairs=2L+2W 
(7.4) 

where L is the expected length of the object, and W is its expected width5. Finally, it is 
assumed that the variation in textural properties that might be expected for different 
instances of objects in a generic class can be approximated by a bivariate Gaussian 
distribution of values within the corresponding co-occurrence matrix. 

The spatial autocorrelation of pixel values in the ‘internal’ areas of an object is 
normally very high, at least for the target objects examined in this study, and this should 
be reflected in the co-occurrence matrix. The number of internal pixel-pairs ‘occupied’ 
by each sub-class is therefore subtracted from the total number of internal pixel-pairs of a 
given object class. The result is entered directly into the matrix using an estimated mean, 
standard deviation and autocorrelation of the pixel values for that class. It should be 
noted that the prototype system does not handle the task of converting surface reflectance 
properties into estimated pixel values. Instead, the pixel values employed in the test runs 
described in the results section are extracted from the actual digital image and entered 
directly into the model using the HS relation. 

Four types of border relation may exist between objects (Figure 7.4). As the generic 
model does not contain precise information about the nature of these border relations, 
however, they have to be estimated by the system. The apart from and adjacent to 
relations supplied by the user are employed, if present; otherwise the default relation is 

5 The methods used to handle objects smaller than a single pixel will be described later in this 
section. 
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adjacent to, provided that the total size of all sub-classes is greater than 75% of the size of 
their super-class, and apart from, if not. Once all border relations of a sub-class are 
established the expected number of pixel-pairs covering two object classes is computed. 
To account for mixed pixels, it is estimated that 25% of each border pixel is influenced 
by the other pixel in the pair and the pixel values are adjusted accordingly. 

Handling Mixed Pixels 

Object classes that are sub-pixel in size clearly cannot be entered directly into the co-
occurrence matrix, since the matrix is generated from values associated with complete 
pixel-pairs. It is therefore necessary to distinguish between object classes depending on 
whether the sizes of the current class and its super-class (defined by the part of relation) 
fall above or below some critical threshold. The threshold value is set to one pixel for the 
current class and four pixels for its super-class. This implies that it is impossible to 
identify reliably and measure the texture of objects smaller than these thresholds. In these 
circumstances, the system behaviour is modified as follows: 

• if the super-class is smaller than four pixels in size, the model is altered so that the 
spectral value of the super-class includes the contribution from the current class, 
which is subsequently deleted from the model; 

• if the current class is smaller than one pixel, but its super-class is larger than four pixels, 
a new object class is generated by the system. Each object of the new class (NC) is 
given the size of one pixel. The spectral value of that pixel is determined by the 
influence of the current class on one pixel of the super-class. The current class is then 
deleted from the model and the NC is evaluated and entered into the co-occurrence 
matrix. 

7.4.4 Results and Discussion 

The prototype system described above has been used to test the extraction of spatial 
information on urban land use categories from remotely-sensed images acquired at 
different spatial resolutions. Two test areas located in Accra, Ghana, each dominated by a 
single land use, were selected for this purpose. Area 1, the Cantonments, is a low-density 
residential district dominated by large land-cover parcels, extensive vegetation, isolated 
building units and a clear road pattern. Area 2, the Nima-Mamobi region, is a very high-
density residential district with compound houses and a few trees. A black-and-white 
aerial photograph of each area was scanned at a pixel resolution of 0.7m×0.7m. These 
data were then resampled to 10m×10m and 30m×30m to simulate images acquired by the 
SPOT-HRV (in panchromatic mode) and Landsat-TM satellite sensors, respectively. This 
provides a good test of the ability of the prototype system to handle data acquired at three 
very different levels of spatial resolution, using essentially the same object model. It also 
encompasses the range of  
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Table 7.3: Second-order texture values generated 
from the raw image and from the model for 
0.7m×0.7m, 10m×10m and 30m×30m pixels. 

0.7m Resolution Area 1 Area 2 

Texture: Image Model Image Model 

Contrast 34.83 34.82 62.12 68.03 

Angular Second Moment 0.58 0.58 0.29 0.31 

Entropy 6.74 6.65 7.14 7.12 

10m Resolution Area 1 Area 2 

Texture: Image Model Image Model 

Contrast 375.30 307.45 181.07 183.15 

Angular Second Moment 0.19 0.15 0.35 0.24 

Entropy 7.64 7.97 6.95 7.31 

30m Resolution Area 1 Area 2 

Texture: Image Model Image Model 

Contrast 316.08 360.56 61.39 126.35 

Angular Second Moment 0.34 0.34 1.13 0.50 

Entropy 6.87 7.17 5.70 6.51 

resolutions typical of the older generation of satellite sensors, in which the basic urban 
objects are normally smaller than the size of the image pixels, and those of the new 
generation of satellite sensors, in which the urban objects are typically larger than the 
image pixels. 

The spatial model was established by estimating the object sizes and spectral features 
from the original aerial photograph. The choice of object class hierarchy is, of course, 
rather subjective and may be expressed in several different ways. The process of 
estimating spectral features directly from the data source is not entirely in agreement with 
the general objectives of the system, which calls for knowledge-based description of the 
object of analysis, but it serves the purpose of demonstrating the functionality of the 
system. The approach for testing the texture modelling is to compare co-occurrence 
matrices based on generic spatial object models with corresponding matrices computed 
from the image data. This is done for three standard, second-order texture features, 
namely contrast, entropy and angular second moment(Haralick 1979). The results are 
presented in Table 7.3. 

Before analyzing these results, it is important to consider a number of general points. 
First, to have confidence in the ideas underlying the general approach outlined above, it is 
important that the modelled and computed texture values pertaining to the same object 
(area) should be similar: this implies that the model provides a faithful representation of 
the actual scene structure. At the same time, model values should differ significantly for 
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objects (areas) with different spatial structures. Secondly, it is implicitly assumed that 
sufficient pixels exist in the image data for a meaningful textural pattern to emerge: this 
may not be the case in the lowest resolution data set, such that the derived texture values 
may be more erratic and less predictable. 

The results presented in Table 7.3 suggest that there is indeed a close correspondence 
between the modelled texture values and those derived from the image data of each test 
area, while the modelled values differ substantially between the two test areas. The 
exception to this general rule is for Area 2 (the Nima-Mamobi region) in the 30m spatial 
resolution data, where the measured and modelled texture values differ by 100%. This is 
probably a result of the limited number of pixels available at this spatial resolution, which 
prevents a reliable texture value from being calculated. For the same reason, the 
correspondence between the measured and modelled values becomes stronger as the 
spatial resolution of the data increases. 

The results obtained from the prototype system are therefore very positive and offer 
considerable encouragement for its further development and operational application. 
Clearly, the prototype system involves a number of compromises and restrictions—it is a 
far from complete solution. Nevertheless, it provides an important test-bed for further 
research and offers a clear pointer to what might be achieved in terms of urban land use 
mapping using very high spatial resolution satellite sensor images. 

7.5 Case Study 3: Structural Pattern-Recognition Techniques 

The final approach to inferring urban land use from remotely-sensed images that we 
examine here makes use of region-based, structural pattern-recognition techniques. As 
will be seen, there are strong parallels between this approach and the knowledge-based 
texture models described in the previous section. Both conceive of the urban scene as 
comprising a set of interrelated spatial objects, and both attempt to represent the 
properties of, and relations between, those objects. They differ, however, in the sense that 
the knowledge-based texture models take an essentially top-down approach to image 
analysis (modelling the expected appearance of the urban scene and then searching for 
regions of the image that match this model), whereas the region-based, structural pattern-
recognition techniques described in this section adopt a bottom-up approach (quantifying 
the structural composition of land cover parcels in the image and then comparing this to 
areas of known land use). Compared to per-pixel, statistical and neural pattern-
recognition methods, the uptake of structural (or syntactic) approaches by the remote 
sensing community has been quite limited. The potential benefits of this approach are 
considerable, however, especially in the context of data acquired by the latest generation 
of very fine (<5m) spatial resolution satellite sensors, and it seems likely that it will be a 
focus of greater research and development activity in the future. 

The example of the region-based, structural pattern-recognition approach that will be 
examined here is provided by Barr and Barnsley (1997), who have developed a system 
known as SAMS (Structural Analysis and Mapping System). SAMS operates on ordinal 
or categorical raster-format data—typically a land-cover classification generated from a 
remotely-sensed image. It can be used to derive structural information about 
thematically-labelled regions (e.g. land cover parcels) present in such data. The 
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boundaries of each region are identified using a simple contour-tracing algorithm 
(Gonzalez and Wintz 1987, Gonzalez and Woods 1993). These are represented using 
Freeman chain-codes (Freeman 1975) and are stored in a Region Search Map (RSM). 
The RSM can be processed to derive further information about the structural 
characteristics of the observed scene, including various morphological properties of the 
constituent regions (e.g. their area, perimeter and various measures of their shape), as 
well as the spatial and structural relations between them (e.g. adjacency, containment, 
distance and direction). This information is used to populate a graph-theoretic data 
model, known as XRAG (extended Relational Attribute Graph), which is defined by the 
heptuple: 

XRAG={N, E, EP, I, L, G, C} 
(7.5) 

where 
N is the set of nodes (i.e. regions), such that N≠Ø; 

E is the set of (extrinsic) spatial relations between (e.g. adjacency and containment); 

EP is the set of properties associated with the relations in E (e.g. distance and direction); 

I is the set of (intrinsic) properties relating to (e.g. area and perimeter); 

L is the set of labels (interpretations) assigned to (e.g. grass, tree, urban, non-urban, etc.); 

G is the set of groups binding to the context of a scene interpretation (e.g. the label 
tarmac is ‘bound’ to the group land cover, while the label residential is bound to the group 
land use); and, 

C is the set stating the confidence to which (e.g. “the probability that region n 
belongs to land cover class Y is 0.9”). 

Each region in the RSM file is represented by a node, in the XRAG data model. 
The existence of a relationship between a pair of regions nx and ny for a given relation, 

is represented by an edge (i.e. ). Thus, the node set N, in combination 
with the relation ri, is equivalent to a standard relational graph, {N, ri}≡G (Barr and 
Barnsley 1997). Non-relational properties of the regions (e.g. their area and perimeter) 
are represented as attributes of the nodes, while relational properties (e.g. the distance 
and cardinal direction (orientation) between any two regions) are represented as 
attributes of the edges. 

Since the preceding discussion is rather abstract, it may help to illustrate the basic 
functionality of SAMS/XRAG using a simple example. Suppose that we have produced a 
raster-format land-cover map of an imaginary urban area which, for the purpose of this 
Chapter, we shall call ‘Graphtown’ (Figure 7.5). Let us also assume that the land cover 
map for Graphtown has been produced from a fine spatial resolution remotely-sensed 
image and that the resultant classification is entirely free from thematic error. SAMS 
identifies the twelve discrete land-cover regions within the scene (Figure 7.6) and stores 
the spatial location and exterior boundaries of these regions within the Region Search 
Map (RSM). A number of morphological properties of these regions, as well as the 
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spatial and structural relations between them, can be determined from the RSM and used 
to populate the XRAG data model.  

 

Figure 7.5: Land cover map of 
Graphtown. 

 

Figure 7.6: ‘Exploded’ representation 
of Graphtown showing the twelve 
discrete land-cover regions identified 
within the scene. 
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Figure 7.7: Graph visualization of 
Graphtown for the spatial relation 
adjacency. 

Figure 7.7, for example, shows a graph visualization of Graphtown for the spatial relation 
adjacency. This shows, for example, that region 8 is adjacent to regions 4, 7, 9 and 10. 

Initial experiments with SAMS/XRAG concentrated on the identification of the urban-
rural boundary in SPOT-HRV multispectral images (Barr 1992, Barr and Barnsley 1995), 
but more recently the focus has been on the potential for information extraction from 
finer spatial resolution data sets (Barnsley and Barr 1997). To this end, a number of data-
processing algorithms has been developed which can be used to interrogate the XRAG 
data model, to process the information contained within it, and to update the contents of 
the data model accordingly. Preliminary tests have also been performed on SAMS/XRAG 
by Barnsley and Barr (1997) using land cover parcels generated from Ordnance Survey 
1:1,250-scale digital map data (Land-Line.93+). Selected features (i.e. roads, buildings, 
woodland, water bodies and open space) were extracted from these data and used to 
produce a simple thematic map. This vector coverage was then converted into raster 
format, generating a land cover ‘image’ with an effective spatial resolution of 1m (Figure 
7.8). Figure 7.9 shows the adjacency graph produced from these data. It should be evident 
from this diagram that, while the overall spatial structure for this scene is remarkably 
complex, there are distinct ‘clusters’ of nodes and edges, each of which exhibits a 
somewhat different structural pattern. In exploring this point further, Barnsley and Barr 
(1997) identified a number of test areas within the main scene, each representative of a 
particular category of urban land use (Figure 7.10). They showed that simple, quantitative 
measures could be derived from the information stored in the XRAG data model that 
would allow certain categories of urban land use to be distinguished on the basis of 
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differences in their structural composition (Figure 7.11) and the morphological properties 
of their component land-cover parcels (Barnsley and Barr 1997). 

 

Figure 7.8: Ordnance Survey 1:1,250-
scale Land-Line.93+ digital map data 
covering part of the town of Orpington 
in the Borough of Bromley, south-east 
London, U.K. The data have been 
topologically structured, labelled and 
converted to a 1m raster. 
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Figure 7.9: Graph visualization of 
Figure 7.8 for the spatial relation 
adjacency. 
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Figure 7.10: Sample areas of four 
different types or age of land use 
selected from the raster-format 
thematic map presented in Figure 7.8. 
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Figure 7.11: Graph visualization of 
the spatial relation adjacency for 
sample areas of four different types or 
age of land use presented in Figure 
7.10. 

Of course, tests performed on digital map data do not provide a particularly good 
indication of what might be achieved using fine spatial resolution remotely-sensed 
images, since the former are the product of various levels of feature selection and 
abstraction, as well as thematic and spatial generalization. In general, the spatial structure 
of remotely-sensed images will be much more complex because they are influenced by, 
among other things, differences in roofing and road-surface materials, as well as 
variations in vegetation type, cover and health. The resultant land cover data will also be 
subject to the effects of mixed pixels, shadowing, occlusion and misclassification (Barr 
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and Barnsley 1999). These factors will affect the morphological properties of, and the 
spatial relations between, the derived land cover parcels. This will, in turn, complicate 
attempts to infer land use from the spatial composition of land cover. 

To address this problem, we have begun to develop a number of reflexive-mapping 
techniques that can be used to remove—or, at least, to reduce—much of the structural 
‘clutter’ in the initial land-cover maps produced from fine spatial resolution remotely-
sensed images (Barr and Barnsley 1998). Figure 7.12 shows preliminary results obtained 
using these techniques, concentrating on the derived ‘built’ regions. A visual comparison 
of Figure 7.12a, which shows the ‘built’ objects extracted from the original Ordnance 
Survey digital map data, and Figure 7.12b, which shows the corresponding regions 
derived from a 2m spatial resolution remotely-sensed image of the same area, illustrates 
the extent of the structural clutter problem. Almost all of the ‘built’ regions present in the 
digital map data are evident in the remotely-sensed image, but there is also a very large 
number of typically small, spurious ‘built’ regions (i.e. ‘clutter’ regions). Figure 7.12c 
presents the results of the reflexive-mapping procedure, which suggest that it is capable 
of removing most of these clutter regions, while preserving the morphological properties 
and spatial pattern of the true ‘built’ regions. Finally, for the purpose of comparison, 
Figure 7.12d presents the results obtained by applying a conventional, post-classification 
majority filter to the original land cover classification. Although this has the effect of 
removing many of the ‘clutter’ regions, it fails to preserve the size and shape properties 
of the true ‘built’ regions and, hence, the spatial relations between them. A more 
rigorous, quantitative analysis of the relative performance of these techniques is currently 
underway. 

Ultimately, the purpose of deriving and representing structural data is to infer 
additional information about the corresponding scene—for example, that pertaining to 
land use (Barnsley and Barr 1997). Relatively little attention has, however, been given to 
the development of the data-processing techniques needed to perform this type of 
inference based on images obtained by Earth-orbiting satellite sensors. Indeed, there is a 
general paucity of formal models on the structural operators, their semantics and 
expected results, required to underpin the development of such techniques. While a full 
discussion of the necessary models and techniques is beyond the scope of this Chapter, a 
number of general approaches that might act as a starting point for the development of 
structural inference tools can be highlighted. 

Several techniques have been developed to assess the similarity between graph models 
and graphically-represented spatial data (Schalkoff 1992). In general, these examine 
whether the model and the data are isomorphic (i.e. have the same graph structure) or, if 
they are not, the extent to which they are non-isomorphic (e.g. by determining the 
number of structural differences that exist) (Ballard and Brown 1982, Schalkoff 1992, 
Sonka et al.  

Inferring urban land use by spatial and structural pattern recognition       125



 

Figure 7.12: Results of structural 
‘clutter’ reduction using a reflexive-
mapping technique within 
SAMS/XRAG and conventional post-
classification majority filtering. 
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Figure 7.13: Comparison of sub-
graphs. 

1993, van der Heijden 1994, Figure 7.13). Graph matching and graph similarity measures 
have been widely used in a number of computer vision/machine vision tasks, though 
these often involve a relatively small number of basic structural descriptions of the spatial 
entities in the observed scene (Ballard and Brown 1982, Sonka et al. 1993, van der 
Heijden 1994). Their applicability to the analysis and interpretation of images acquired 
by Earth observation sensors is likely to be more problematic, largely because of the 
greater structural complexity of the corresponding scenes. This results in much greater 
variability—and, hence, uncertainty—not only in terms of the geometric properties of 
scene primitives (regions), but also in their structural properties and relations. 

7.6 Conclusions 

This chapter has focused on the production of land use data for urban areas from satellite 
sensor images. In particular, it has highlighted the very considerable potential of the new 
generation of commercial satellites which will have on board very fine spatial resolution 
optical sensors. These will offer an unprecedented opportunity for mapping and 
monitoring urban areas from space. It was suggested that developments in sensor 
technology must, however, be matched by equivalent advances in the techniques 
available to process and interpret the data that the new sensors produce. Of course, 
simple, visual interpretation remains a possibility, but novel automated or semi-
automated techniques may be required if we are to derive the maximum potential benefit 
from the very large volumes of data that will soon be generated by these Earth-orbiting 
sensors. Three possible approaches to this problem have been explored in this chapter, 
the first makes use of kernel-based (i.e. ‘moving window’) techniques, the second 
employs knowledge-based approaches to examine image texture, while the third applies 
region-based, structural pattern-recognition methods to infer urban land use. Each has its 
advantages and disadvantages, and each is at a slightly different stage of development. It 
is our strong sense that the latter two approaches offer the greatest potential for the future, 
principally because they are founded on explicit models of the physical structure and 
composition of urban areas. Both draw heavily on techniques originally developed in the 
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field of computer vision/machine vision, although they have been adapted to address the 
specific demands and constraints of Earth Observation data and urban scenes. Clearly, 
much remains to be done before either approach can routinely provide maps of urban 
land use from satellite sensor images, but the process of achieving this goal has at least 
begun. 
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CHAPTER 8 
Urban Agglomeration Delimitation using 

Remote Sensing Data 
Christiane Weber 

“A city is a too complex thing to be defined without misunderstanding” 
(G.Perec) 

8.1 Introduction 

The third millennium will be urban. Today, almost 50% of the world’s population is 
urban. Forty years of exceptional demographic change have had impacts upon the 
features of cities all over the world. This phenomenon has specific manifestations over 
the five continents in terms of population concentration, the density of buildings, 
economic activities and services, transportation development and traffic flows, etc. But 
what are the similarities between Atlanta and Calcutta, Florence and Bamako? Do cities 
have the same cognitive representation, the same reality? Do cities share similar 
historical heritages or growth trends? 

In a few years, the locus of city development will shift from the industrial and other, 
old European countries to cities in Asia and the developing countries. Of course, the 
reasons for these developments are not uniform, yet this shift has profound implications 
for the international network of cities. Cities are no longer isolated in the middle of 
nowhere, but rather belong to one or more city networks, and are inextricably linked in 
evolutionary terms. To be a part of the network is crucial, in order to ensure social and 
economic development, and membership criteria are defined in terms of population size, 
economic activity rates, employment characteristics, attractiveness, etc. In order to assess 
any city’s prospects, it is important to be able to compare cities. This is quite difficult to 
do because definitions and realities differ. Regarding the specifics of today’s city 
networks, we might focus upon the following features: 

• the advent of conurbations which gather together millions of inhabitants of different, 
but joined cities—such as the north-eastern seaboard of the US or the Japanese coast;  

• the domination of regions by their major cities, which encourages commuting, 
concentrates all activities, and starves the surrounding areas of urban functions—as in 
the case of the Paris region; 

• the densification of the urban fringes of administrative urban units, to the detriment of 
agricultural hinterlands and natural landscapes; and 



• a rural-urban continuum of urban units or agglomerations, where differences are based 
more on the dominant type of living space (through the extensive or intensive use of 
space) than on city morphology, social composition or demographic dynamics. 

What kind of realities are hidden behind these words and concepts? What criteria should 
be developed to provide acceptable definitions of these concepts for the majority of 
people, knowing that ‘non rural’ is the only obvious blanket categorization? The 
definition of a ‘city’ or ‘agglomeration’1 invites two general considerations (and 
associated criteria): first, a specified population and delimited space and, secondly, 
economic and social relationships with contiguous surroundings. These considerations 
are difficult enough to classify when dealing with a national settlement system, but they 
become still more difficult when dealing with several countries. In fact, even national 
definitions fluctuate according to the stage of development, as exemplified by changes in 
the US Standard Metropolitan Area definition in the 1970s, ‘because society continues to 
change, criteria and areas (concerned) which at one period of time may have been valid 
representations of conditions and concepts cease to be so with the passage of time’ (Berry 
et al. 1968). Thus, the quest is to provide a general working definition of urban reality 
which is capable of transcending space and time. 

Bearing in mind the need to ascribe population to space, a range of administrative 
definitions and associated delimitation rules have been defined in various countries, to 
locate and count people and their activities. Nevertheless, several important problems 
have yet to be overcome. If an agglomeration of population is a specified contiguous 
space, how might it be recognized? In delineating the urban/non-urban dichotomy at the 
urban fringe, where should a boundary be drawn so as to represent realistically the 
functional relationships with other settlements in the immediate hinterland? Aerial 
photographs have been used in several countries in an attempt to answer the first 
question, and today other forms of remotely sensed data are also being used successfully. 
With regard to the second question, while interpreters of aerial photography have been 
used to delimit urban areas, digital remote sensing systems make it possible to assess 
contiguity automatically, in accordance with a range of criteria. 

8.2 Defining Urban Agglomerations 

As has been noted, definitions are not ends in themselves. In fact, two kinds of argument 
are usually put forward in this context: the rationality of economic reasons and the need 
to translate the agglomeration concept into statistical practice. 

There are implications of membership (or otherwise) of particular city networks, such as 
‘one of the top ten cities’ in the world or in a continent. These labels connote the ‘image’ 

1 The concept of the agglomeration will be analysed here, rather than that of city-centre, because it 
better corresponds to the reality of a continuum of populated nuclei comprising part of a single or 
multiple administrative authorities. Thus, it not only takes into account population size, but also the 
characteristics of the associated area. Such a focus implies a spatial hierarchy of urbanized areas. 
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of a given agglomeration and have associated economic and political spin-offs in terms 
of, for example, investment by international companies. Today, despite the resistance of 
national administrations and administrative obstacles, there is a world order of economic 
and political networks. Consequently, regions are developing outside the traditional 
conceptions of networks and hierarchies. For instance, being a part of the ‘European Blue 
Banana’ (a region which stretches from Milan to Barcelona through Brussels and the 
Rühr Area) is considered by some of the member cities to be a bonus in terms of the 
image they wish to project. In a similar vein, the Atlantic cities have the analogous club, 
known as the ‘Atlantic Arc’. So being ‘in’ connotes dynamism, while being ‘out’ may be 
risky and lead to being marginalized—excluded from the mainstream! 

But even within such regions the relations between the centre and the periphery 
differentiate between a dynamic ‘leader engine’ and others. Each agglomeration seeks to 
be considered the leader in order to attract maximum investment (economic, 
technological, social, research, etc.). Leadership has implications for the central 
agglomeration, but different (positive and negative) effects for the rest of the territorial 
entity. Whatever the specifics of particular situations, relations between cities become 
one of the major imperatives for integration and dynamism within urban regions: ‘In 
Europe, 120 agglomerations concentrate more than half the population, but more than just 
people, they concentrate innovative capacities; it is the diffusion of these innovations and 
development opportunities which affects their hinterlands and, consequently, the 
European Community as a whole’ (free translation from Maragall i Mira, 1992). 

8.2.1 Definition Criteria 

Thus, there is a need to develop criteria which foster comparison and allow group 
membership to be ascertained. Classifications are not innocent and results are often 
embedded in the specification of measurement criteria. The criteria used might change 
the details of the city rankings, while the thresholds used might be manipulated to the 
same end. To avoid any doubt or speculation, the concept of an agglomeration must be 
clearly defined using consistent, incontrovertible indicators pertaining to network 
relations and other statistical measures. Such a description has to be as complete a 
representation as possible of the urban reality. In order to handle complex concepts, 
elements that can be easily manipulated need to be identified. Moreover, it is important 
that the constituent indicators are semantically unambiguous, and can be collated with 
approximately the same level of confidence in different countries. Unfortunately, this is 
seldom achievable, as has been noted in several studies (OCDE 1988, ERIPLAN 1975, 
cited in Pumain et al. 1992). For instance, cities may be compared using a wide range of 
criteria, such as population, area, activities, economic trends or functions, or journey to 
work characteristics. But even these apparently straightforward criteria are not really 
precise: 

• the term agglomeration implies a population concentration which implies a minimum 
area and an associated density threshold;  

• the range of activities is linked to (un)employment rate, population, commuting, etc; 
and 

• the size of territory is associated with continuity between separate urbanized areas. 

Urban agglomeration delimitation using remote sensing data       133



Each of these criteria is invariably delicate to handle, reflecting different realities beneath 
near identical definitions, and despite numerous convergences (Pumain et al. 1992). 
Thus, it is necessary to devise the simplest possible definitions in the interests of 
semantic homogeneity, and the best possible understanding of the criteria employed. 
These issues are particularly important to promote common and widespread 
understanding of the underlying concepts, because behind struggles for primacy ‘the need 
for comparable statistics is sought by European entities looking for European 
equilibrium, by states charged with territorial planning, and most of all by administrative 
urban units that wish to order themselves among European partners’ (free translation 
from Pumain et al. 1992). This is now of major interest in a continent with open 
boundaries, where subsidiarity is of prime importance. 

In considering issues of homogeneity and transparency in the definition of 
agglomerations, two points are worthy of further treatment: 

• if the urban phenomenon is characterized by a rural-urban continuum, it is necessary to 
develop a precise and clear definition of land use and land cover categories so as to be 
able to define the limit of urban areas; 

• as urban agglomerations represent a common spatial form of urbanization in Europe, 
the morphology of urban areas might be considered to be the most objective and 
easily-obtained criterion for defining contiguous built up areas. 

Given recent technological advances in computer mapping, aerial photography and 
remote sensing, we might reasonably anticipate that analysis of digital remotely-sensed 
data holds the key to developing appropriate indicators of urban agglomeration. 
Specifically, remote sensing might be used to: 

• identify characteristic spatial features; and to 
• help test and assess the criteria and thresholds to be agreed upon for a common 

understanding of urban agglomerations. 

8.3 Spatial Forms—Urban Forms? 

Given that the form of the city is unlikely to represent its underlying structure, it is really 
rather limiting to look only at aspects of the surface expression of urban land cover and 
land use. Such analysis ignores the diversity of socio-economic, cultural and political 
interactions that take place within urban areas, the existence of technical and facilities 
networks, and the reality of more intangible links (e.g. decision networks and information 
networks). Nevertheless, today’s advanced technologies provide the opportunity to take 
into account, through emergent ‘spatial forms’2, some elements from natural landscapes 
and from human activities. Consequently, the spatial forms detected and identified might 
be considered not just as the outcome of human interactions in space, but rather as 
revealing socio-economic and political trends over time. 

2 The term ‘spatial forms’ refers an object or set of surface elements which is detected as 
a whole. 
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Remotely sensed data generate products which can help to meet the information needs 
of urban analysis. High spatial resolution, Earth-orbiting satellite sensors, in particular, 
are becoming an important source of spatial and temporal information on urban areas. 

8.3.1 The Relationships Between Urban Forms and Remote Sensing 
Data 

What concepts are associated with the word ‘form’? Referring only to the level of 
observation mentioned above—i.e. the spatially identifiable elements—it seems 
reasonable to observe that the discernibility of an object depends on the difference 
between it and its surroundings, on the contrast between the object and its background. In 
short, an object appears through apparent order amongst more general disorder. More 
generally, the notion of ‘form’ involves two distinct spatial reference systems: 

1. Cartesian space, with distances and quantitative results; 
2. Representative space, without mass, speed or size, discernible through signs and 

signals—an ordering of qualitative discontinuities on a spatial frame. 

These two reference systems are ‘both essential and contradictory; irreducible one to the 
other’ (Moles and Rohmer 1972). This notion is interesting in the context of remote 
sensing because both aspects are present within an image: the measurements and their 
representation create the qualitative information about land cover or land use. 

The examination of urban form is a way of contemplating the evolution of urban 
society, and the way in which changes in societal structure over time are manifest 
spatially. Remote sensing data provide a useful mechanism through which these forms 
can be appreciated, even if, as stated earlier, the signals received by the remote sensing 
device cannot be linked directly to all properties of interest pertaining to the object of 
study. The information produced by remote sensing is spatially referenced through an 
implicit geometric location of the pixels. Repeated observation of the same area on the 
Earth surface gives the opportunity to update this information over time. Various urban 
forms are potentially discernible using such devices, including linear objects (e.g. roads 
and rivers), although small features cannot always be accurately discerned (Dowman and 
Peacegood 1988). However, it should be noted that the relationships between urban 
surface elements and the radiance/reflectance values recorded for each pixel (picture 
element) in the image are not straightforward. Moreover, the ability to distinguish 
different surface features will vary according to the sensor spatial resolution, and is 
dependent on the spatial and spectral heterogeneity of the urban surface cover. Thus, the 
results obtained might differ between countries, depending on the characteristic urban 
structure in each: in simple terms, European, Asian and African cities will not be 
classified into the same categories. The cultural and historical bases (e.g. building habits 
and materials, and planning rules) and the environmental surroundings (e.g. climate and 
vegetation) will introduce variations into the results of such image processing. Finally, it 
is noted that the structures emerging through an analysis of urban morphology are 
associated with particular cultural artifacts, and will appear or vanish at different spatial 
scales. Multi-scale analyses can help to highlight these effects, elucidating the processes 
that led to their formation. 
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8.3.2 Statistical Information Needs and Remotely Sensed Data 

It has been stressed previously that the extent of built-up areas might be an appropriate 
indicator of urban population density and urban shape continuity, and that this might be 
central to creation of a benchmark definition of ‘urban agglomerations’. Clearly, any such 
definition must be both simple and objective. 

The general urban form, sometimes referred to as the Morphological Urban Area 
(MUA), could provide a measurement of the compactness of the urban space and the 
‘holes’ in the urban fabric, as well as a benchmark against which urban growth might be 
measured. The MUA concept (Eurostat 1994) has been used in several European 
countries (inter alia Belgium, Denmark, Spain, France and Greece) and the experience of 
its usage has underscored the need for benchmark standards. 

Because, in the context of this Chapter, the concept of agglomeration is primarily 
concerned with the contiguity of built-up areas, it is absolutely necessary to: 

1. clarify the definition used to differentiate urban and non-urban land; and 
2. determine the minimum population threshold above which a human settlement may be 

considered to be an urban area. 

The second part of the definition brings into play considerations of the minimum distance 
between settlement nuclei separated by rural land. In France, as in Denmark and Ireland, 
settlements separated by a distance of more than 200m are considered to be distinct 
spatial entities. Superimposed on this is a further criterion concerning the minimum size 
of population for a settlement to be considered, which varies from one country to another 
(50 in France, 200 in Belgium, 500 in Scotland). Remote sensing can provide quantitative 
and repeatable measurements of the first of these properties, and can be used to make 
estimates of the second. It can therefore make an important contribution to the definition 
and delineation of urban entities. It also makes it possible to define the scope and limits 
according to scenarios which use: 

• different urban indicators (e.g. with or without structuring networks, with or without 
industrial and commercial areas, and with or without scattered settlements); and 

• different spatial structures (e.g. the built versus non-built dichotomy, or other urban 
land use categories). 

A number of studies has been conducted, initially under the auspices of Eurostat (the 
Statistical Office of the European Communities), using remotely-sensed data to map and 
monitor urban areas (Eurostat 1994, Eurostat 1995, Eurostat 1998). Each used a slightly 
different approach (Eurostat 1993, Cauvin 1994, Donnay 1994, Eurostat 1994, Weber et 
al. 1995, Barnsley and Barr 1996, see also Barnsley et al., Chapter 7). In general, 
however, the common objectives have been to determine the limits of the MUA and to 
compare the results obtained from remote sensing methods with official statistical 
definitions. Most of the experiments have focussed on deriving information on urban land 
use (c.f. land cover). The land use categories were developed from the CORINE 
(COordination et Recherche d’INformations sur l’Environnement) Land Cover 
classification in a scheme that has become known as CLUSTERS (Classification for 
Land Use STatistics, Eurostat Remote Sensing project; Table 8.1). One of the main 
problems with nomenclature schemes such as these, is that concepts of land use and land 
cover are frequently mixed or, worse, used interchangeably. In reality, they have very 
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different connotations. The problem is compounded by the difficulty of determining 
either land cover or land use unambiguously using remotely-sensed images, which 
merely record the levels of radiation reflected, emitted or scattered from the Earth 
surface. One solution is to introduce ancillary spatial data by means of a Geographical 
Information Systems (GIS). Of course, even this does not remove all of the problems 
associated with delineating the zone of different urban land use or risk of different 
implementations by image interpreters/analysts from separate countries. 

8.4 Application and Discussion 

8.4.1 Application 

It is interesting to develop the conceptual approach outlined above in the context of an 
empirical study of the Strasbourg ‘agglomeration’. The nature of the data used conditions 
the delimitation of the urban morphological area. Thus, the first experiment was carried 
out using a SPOT-HRV multispectral image (acquisition date—28/06/1986; scene 
number—KJ 50–252; processing level—Level 2B), while the second was performed 
using a SPOT-HRV Panchromatic image (acquisition date—15/09/1986; scene number—
KJ 50–252; processing level—Level 2B). Different image processing routines were 
applied to each image: 

• the multispectral image was processed using classification/fusion techniques, in which 
the results of a conventional, per-pixel classification were combined with discrete 
zonation data in order to minimize classification errors. The urban area was delineated 
on the basis of land cover, splitting various built categories from vegetation and water; 

• the panchromatic image was processed using a texture filter (specifically, a 7×7 circular 
operator) with the aim of identifying the built-up zones. 

The total extent of the Strasbourg agglomeration was then identified by combining the 
data derived from each of these images and receding them into a binary ‘urban’ vs. ‘non-
urban’ image. Further manipulations were applied to each image based on the distance 
and population thresholds outlined in the previous section, namely: 

• a population criterion (a minimum population size of 2000), and 
• a distance criterion (a minimum distance of 200m between settlements to be grouped 

into a single agglomeration). 
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Table 8.1: CLUSTERS nomenclature (artificial 
surfaces). 

Level I Level II Level III Level IV 
A111 Continuous and dense 

residential areas 

A112 Continuous residential 
areas 

A113 Residential surface of 
suburban type 

A114 Discontinuous 
residential areas 

A11 Residential zones 

A115 Collective residential 

A1 Urban fabric 

A12 Public services and 
local government 

A12 Services 

A201 Activities of heavy 
industry 

A202 Other industrial 
activities 

A203 Commercial/financial 
services/activities 

A2 Industrial and 
commercial activities

A20 Industrial and 
commercial 
activities 

A204 Agricultural holdings 

A311 Technical networks & 
protective structures 

A312 Traitement des eaux 

A31 Technical 
infrastructure 

A321 Transport and 
communication road 

A322 Rail networks 

A3 Technical, transport 
and communication 
infrastructure 

A32 Transport and 
communication 

A323 Airports and aerodromes 

A41 Extractive 
industries 

    

A421 Building sites 

A422 Tips 

A4 Extractive industries, 
building sites, tips 
and waste land 

A42 Building sites, tips 
and waste land 

A423 Waste land 

A501 Historic sites 

A502 Sports facilities 

Artificial 
surfaces 

A5 Land developed for 
recreational purposes 

A50 Land developed for 
recreational 
purposes 

A503 Other developed areas 
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These were applied in several different ways to decide which of the surrounding 
settlements should be incorporated into the Strasbourg agglomeration (Figure 8.1). 

It is interesting to evaluate the differences between the results obtained using different 
combinations of the image data and criteria outlined above. Figures 8.2 and 8.3, in which 
urban land is shown in black, are derived from the classified multispectral image. In the 
first of these (Figure 8.2), all of the buildings are kept, while in the second (Figure 8.3) 
only the inhabited buildings are extracted. A buffer zone of 200m has been created 
around the derived urban areas to derive the MUA. It is worth noting that roads and 
railway infrastructure are included in the urban structure by the image classification 
process. The resultant urban agglomerations exhibit different degrees of compactness: the 
second image (Figure 8.3) displays a smoother boundary and implies a more distributed 
population. The third image (Figure 8.4) is derived from the panchromatic image alone. 
The resultant urban agglomeration is still more compact than either of the two previous 
examples. Moreover, some of the ‘holes’ apparent in the urban fabric of Figures 8.2 and 
8.3 are no longer present. 

8.4.2 Discussion 

Of course the results presented above are indicative rather than definitive, and the final 
delineation and definitions have in any case to be made by the national statistical offices. 
But the approach developed in this paper is instructive, in that it clearly demonstrates that 
there is no unique solution which yields an objective and unambiguous delineation of the 
morphological urban area. Even if remote sensing offers interesting solutions, the rules 
must be precisely defined: 

1. using the classification nomenclature, careful interpretation of urban limits has to be 
set up to avoid human errors, and if an automatic approach (as opposed to 
manual/visual interpretation) is used then the selected urban classes must be clearly 
specified; and 

2. mathematical morphological processing permits comparison between different 
geographical schemes. 

The aggregation criteria (e.g. the distance threshold, the importance assigned to transport 
infrastructure and the basic population settlement criterion) must be also tested in various 
locations in order to find the best fit to reality. 

8.5 Conclusion 

This Chapter has examined the potential use of satellite remote sensing for deriving 
information on a consistent measure of the extent of urban areas, namely the 
Morphological Urban Area (MUA). A wide range of digital image-processing techniques 
can be applied to remotely-sensed data to yield information on the MUA, of which this 
Chapter has considered but a few. Ultimately, we must test a number of other approaches, 
evaluating their accuracy and reliability. Whichever techniques prove most successful in 
the long run, the development of a consistent, objective and accurate approach to 
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determining urban agglomerations from satellite sensor data is an important aim, offering 
improved knowledge of the  

 

Figure 8.1: Multi-criteria approach to 
urban area delimitation: (a) 
Morphological urban area (MUA), (b) 
adding contiguous administrative 
areas, (c) built-up area as a percentage 
of total area, (d) MUA as a percentage 
of total area, and (e) application of 
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population thresholds of greater than 
and less than 2000 residents. 

 

Figure 8.2: Different definitions of the 
morphological urban area: Total built 
up area. The image covers the 
Communauté urbaine de Strasbourg 
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and is based on a SPOT-HRV 
multispectral image, © CNES/SPOT 
IMAGE. 

 

Figure 8.3: Different definitions of the 
morphological urban area: Inhabited 
built up area. The image covers the 
Communauté urbaine de Strasbourg is 
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based on a SPOT-HRV multispectral 
image, © CNES/SPOT IMAGE. 

 

Figure 8.4: Different definitions of the 
morphological urban area: Textural 
built up area. The image covers the 
Communauté urbaine de Strasbourg is 
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based on a SPOT-HRV multispectral 
image, © CNES/SPOT IMAGE. 

current state and rates of development of urban areas and providing comparable statistical 
information between countries and across different time periods. The approach has 
particular potential for the delineation of urban areas in developing countries, where the 
mapping base is frequently of lower quality and is often dated (see also Baudot, Chapter 
12 this volume). Nowhere is this more important than in the mapping and monitoring of 
informal settlements which are often overlooked in official documents. 

Remotely-sensed data also facilitate the determination of the spatial composition and 
orderings of urban areas and hence offer the possibility to focus on issues of urban 
management at a range of decision levels. Of course the stakes associated with the need 
for comparable urban information reach far beyond this and, even if sound criteria can be 
promoted through remotely sensed data, many questions remain: What is urban? Are 
urban limits sharp lines or fuzzy zones? What happens in the cases of conurbations or 
polynuclei settlements? Looking at the urban forms generated from satellite sensor 
images suggests a passage from continuity to discontinuity. Ultimately, image processing 
needs to be regarded as one possible approach to identifying urban form, although the 
validity of the different scenarios has to be tested in order to select the best possible 
approach for a range of possible applications. 
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CHAPTER 9 
Measuring Urban Morphology using 

Remotely-Sensed Imagery 
Paul A.Longley and Victor Mesev 

9.1 Introduction 

Previous chapters have considered how detailed urban morphologies might be revealed 
using satellite technology. The focus has been upon quite general-purpose technical 
solutions to technical problems, and has been couched largely within the physical domain 
of the built environment. This Chapter addresses the applicability of some of this 
technical work to the derivation of summary indicators of urban shape and form. In so 
doing, we are minded to begin by stating two important considerations. The first is that 
cities are socio-economic systems, and hence ‘urban analysis’ is at least as much about 
human activity patterns (journeys to work, recreation, shopping behaviour, residential 
differentiation, etc.) as it is about the built environment. The built environment is a frozen 
artefact of the concatenation of past and contemporary urban processes (see also Batty 
and Howes, Chapter 10 this volume), and reveals but one facet of the functioning of 
urban systems. The second derives directly from this, and is that the power of even the 
most sophisticated optical satellite sensors to discriminate detailed urban land-use 
categories is severely limited (see also Donnay et al., Chapter 1 this volume). The Orb 
View 3 (OrbImage), QuickBird 1 (Earth Watch) and IKONOS 1 (Space Imaging) 
satellite sensors will provide unprecedented spatial information about the Earth’s surface, 
at a level of detail (1m–5m) more closely associated with aerial photography. Even at 
these fine scales, however, it will not be possible unambiguously to identify, say, small 
workshops amidst residential areas from an analysis of their spatial form alone. In any 
case, a much more time- and cost-effective route is likely to involve interfacing of socio-
economic information with data pertaining to the socio-economic function of the built 
form. There is thus a clear substantive and methodological rationale for integrating socio-
economic information with satellite imagery. 

Yet integrated approaches, such as this, will never offer a universal panacea for urban 
analysis. Indeed, in adding a new ‘urban’ focus to remote sensing research, the objectives 
of measurement will undoubtedly change and diversify. The urban focus presents much 
more than technological challenges, and the remote sensing community must heed the 
tide of relativism that has run through the social sciences during the last 25 years. The 
traditional remit of remote sensing (e.g. land inventory analysis and natural resource 
assessment) is to resolve essentially single criterion problems with ‘objective’ solutions. 
By contrast, the domain of planning and urban analysis is characterized by multi-criteria 
decision-making, which is typically very sensitive to context. Nevertheless, the prospects 



for harnessing remote sensing technologies to such tasks are bright. There is a huge range 
of digital socio-economic data that is now available for use alongside satellite imagery 
(Mesev et al. 1996). Moreover, there are real prospects for creating far better data models 
of socio-economic environments, as improved remotely-sensed data products come on 
stream. The applicability, and ultimate application, of such models will, however, require 
the adoption of a ‘horses for courses’ approach to data modelling, for there is no 
objective, universally recognized social reality, and the depiction of social realities firmly 
defines the scope for their subsequent analysis. With these considerations in mind, this 
Chapter suggests various ways in which remotely-sensed data might inform urban theory 
and urban planning policy, and begins to assess the prospects for using socio-economic 
data to foster progress towards these goals. 

9.2 From Data-Led Theory to Theory-Led Data Analysis? 

In an excellent guide to the development of socio-economic Geographical Information 
Systems (GIS), Martin (1996) describes how the handling of socio-economic information 
within GIS has developed from its roots in remote sensing and computer-assisted 
cartography in an ad hoc and data-led manner.1 A particular focus has been upon the 
ways in which data transformations are invoked in the collection, input, storage, 
manipulation and analysis of spatial data. Remote sensing has never been beset with 
problems of the quantity of data, and the primary goal of most image classification 
exercises has been to structure and classify large volumes of potential information. As 
will been seen below, this state-of-affairs is a much more recent development in the 
analysis of socio-economic systems, and the effective management and analysis of 
geographical information is a recurrent challenge of the late 1990s. Considerable progress 
has been made with technical problems which have generic solutions, such as vector-to-
raster conversion, but other problems—notably the definition and analysis of socio-
economic entities—are likely to require much more context-sensitive and customized 
solutions. This is particularly likely in the context of development of pan-European 
analysis, given that the areal entities used to structure socio-economic data are cast within 
the different administrative geographies of individual nation states. 

Remote sensing has always been a data-rich subject, and yet irrespective of increases 
in satellite precision, improvements in the detection of built form will provide only a 
limited perspective upon the functioning of urban settlements. By contrast, socio-
economic information almost invariably provides an imprecise representation of form 
(e.g. because of confidentiality restrictions on the availability of census data), yet it tells 
us rather more about the activity patterns which characterize the functioning of 
settlements. If the push towards ever-improving satellite sensor resolutions is ultimately 
unlikely to reveal the form and function of individual elements of the urban mosaic, so 
different aggregation difficulties are likely to be removed from the analysis of socio-
economic distributions. 

1 For a more general statement of the relations between data models and data products, see Davis et 
al. (1991). 
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The end result is nevertheless the same—namely, a reliance upon modelling the spatial 
distributions of ‘geographical individuals’ within areal entities. GIS provides a suitable 
environment in which to assess the impact of different zonations (Openshaw 1996), 
different area-preserving and/or volume-preserving transformations (Martin 1996), error 
modelling (Goodchild et al. 1992) and the compounding of errors in overlay analyses. 
The sources and operation of errors in urban remote sensing are likely to be different 
from those arising in socio-economic GIS, and thus analysis of the two alongside one 
another is likely to lead to the development of less error-prone models of reality. 

This is part of a wider agenda for the integration of spatial analysis into GIS in both 
the academic (Fotheringham and Rogerson 1993) and applied (Clarke and Clarke 1995) 
realms, a phenomenon which is likely to transpire in any case as GIS becomes an all-
pervasive ‘background’ technology for geographical information handling (Longley and 
Batty 1996). An implication of this is that GIS-based urban analysis will develop upon 
the foundations of data models, and that the distinction between data and other analytical 
models is artificial, but blurred. Each develops through incremental procedures of 
inductive generalization and deductive spatial forecasting, using appropriate 
combinations of generic and context-sensitive techniques for information handling. 

A necessary precursor to the analysis of urban morphology will be a fuller and more 
holistic grasp of the aspects of urban morphology with which we wish to be concerned—
urban ‘morphology’ variously implies ‘form’, ‘land use’, and ‘density’, and each of these, 
in turn, has connotations with the shape, configuration, structure, pattern and organization 
of land use, and the system of relations between them (Whyte 1968, Batty and Longley 
1994, Barnsley et al. this volume). In the context of remote sensing of human settlements, 
concern with land use has focused upon the central ‘urban/non-urban’ dichotomy. This is 
most clearly manifest in physical form, although in practice finer disaggregations, as well 
as measures of the intensity of human activities, are also desirable. The density of a 
particular land use may be couched in terms of the physical presence or absence of a 
particular land use, while human activity-based conceptions of urban land use require 
closer attention to residential densities. 

If the conception of a phenomenon prescribes the way in which it is measured and 
this, in turn, prescribes the framework for analysis, then it is useful develop a framework 
which is consistent through all stages of this process. It is our contention that fractal 
geometry provides such a framework (Batty and Longley 1994). In essence, fractal 
geometry posits that the way in which space is filled may be conceptualized as a 
continuum of dimensions, with the Euclidean dimensions of 0 (a point), 1 (a line), 2 (a 
plane) and 3 (a solid) being only special cases. Fractal shapes also exhibit self-similarity 
(or self-affinity) across a range of scales, and this property has been detected using a 
variety of statistical methods (Goodchild and Mark 1987, Batty and Longley 1994). 
Human geographical phenomena have long been conceived as exhibiting properties of 
such recursive self-similarity, with central place theory perhaps providing the best known 
example. Within Geography, however, the relevance of central place theory is restricted 
to the domain of pedagogy, and there have been few systematic attempts to define the 
structured ordering of urban space since the 1960s—when data sources and measurement 
technologies were very much cruder. Much the same is true for other measures of size 
and shape (Haggett et al. 1977) and studies of the ‘allometric’ scaling between the 
population size and area of urban settlements (Longley et al. 1991). The last 30 years has 
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seen a gradual but cumulative loosening of the controls on European urban development, 
for example, and planning has responded to the changing political economy of spatial 
development by becoming much less deductive and less normative in approach (Batty 
1995). We have argued elsewhere (Mesev et al. 1995) that fractal geometry provides a 
flexible yet theoretically consistent means of characterizing the morphologies of different 
urban settlements across space and time. 

9.3 Morphological Analysis of the ‘Fractal City’ 

We have alluded to the need to devise application-sensitive digital data sets, and this 
becomes apparent if we consider the wide range of reasons why digital urban data sets 
are of central importance to urban analysis. Urban theory has variously considered 
densities of population and densities of economic activity across urban areas, to devise 
measures of the efficiency of urban form in terms such as transportation (Benguigui and 
Daoud 1991), energy efficiency (Rickaby 1987), residential development, retail and 
industrial planning, and access to public open space (Longley et al. 1992). Repeated 
measurements of urban morphology across different time periods can generate insights 
into the kaleidescope of change in land use patterns. Remote sensing can provide a 
convenient estimate of the distributions and densities of these activities, which are 
transferable across space and time. Study of the physical location and spatial patterning 
of built forms makes possible analysis of cities as networks and dynamic entities, thereby 
forging links between the spatial form of any settlement and its functioning (Batty and 
Longley 1994). 

Table 9.1 records some of the different urban objects that have been subjected to 
fractal analysis, together with their associated empirical measures (all results are reported 
to the number of decimal places published and, where there are several different 
estimates, in particular from Batty and Longley and from Frankhauser, the lower 
estimates of fractal dimension, D, are given). Fractal properties have been identified for 
quite diverse properties of urban areas. Although many of these applications predate the 
use of digital data for morphometric analysis, the range of quite diverse urban 
applications indicates that the corresponding digital databases may need to be 
application-specific. The second point to emerge from Table 9.1 is that the measures do 
not exhibit more than a broad consistency of numerical ordering. As in the earlier work 
on urban allometry, these divergent results must in part reflect the range of different data 
sources used, since comparable measurements are unlikely to arise when they are not 
based upon comparable datasets. This underscores the importance of ESF initiatives such 
as GISDATA in standardizing the collection and input of digital data into GIS: even if 
the history of GIS has been about data leading theory (Martin 1996), there are 
nevertheless many areas of urban analysis in which urban theory requires improved data 
for robust and defensible empirical application. Such consistency will enable comparative 
urban morphologies to be investigated across a range of scales: at the macroscale, 
entailing the comparison of the overall morphology of different settlements; at the meso-
scale, focusing upon the morphological make-up of different areas of single settle- 
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Table 9.1: The preliminary evidence for fractal 
cities; adapted from Batty and Longley (1994). 
Key: B&D—Benguigui and Daoud (1991); B&L—
Batty and Longley 1994; Dox—Doxiadis (1968); 
Fra—Frankhauser (1988, 1990, 1992, 1993); 
T&M—Thibault and Marchand (1987); Dox/Ab—
compilation of data from Doxiadis (1968) and 
Abercrombie (1945); Sm—Smith (1991). 

Settlement D Settlement D 

Urban Development Patterns Urban Growth Patterns 

Albany 1990 (B&L) 1.494 London 1820 (Dox/Ab) 1.322 

Beijing 1981 (Fra) 1.93 London 1840 (Dox/Ab) 1.585 

Berlin 1980 (Fra) 1.73 London 1860 (Dox/Ab) 1.415 

Boston 1981 (Fra) 1.69 London 1880 (Dox/Ab) 1.700 

Budapest 1981 (Fra) 1.72 London 1900 (Dox/Ab) 1.737 

Buffalo 1990 (B&L) 1.729 London 1914 (Dox/Ab) 1.765 

Cardiff 1981 (B&L) 1.586 London 1939 (Dox/Ab) 1.791 

Cleveland 1990 (B&L) 1.732 London 1962 (Dox/Ab) 1.774 

Columbus 1990 (B&L) 1.808     

Essen 1981 (Fra) 1.81 Berlin 1875 (Fra) 1.43 

Guatemala 1990 (Sm) 1.702 Berlin 1920 (Fra) 1.54 

London 1960 (Dox) 1.774 Berlin 1945 (Fra) 1.69 

London 1981 (Fra) 1.72     

Los Angeles 1981 (Fra) 1.93 Transport Networks 

Melbourne 1981 (Fra) 1.85     

Mexico City 1981 (Fra) 1.76 Suburban Rail 

Moscow 1981 (Fra) 1.60 Lyon I 1987 (T&M) 1.88 

New York 1960 (Dox) 1.710 Lyon II 1987 (T&M) 1.655 

Paris 1960 (Dox) 1.862 Lyon III 1987 (T&M) 1.64 

Paris 1981 (Fra) 1.66 Paris 1989 (B&D) 1.466 

Pittsburgh 1981 (Fra) 1.59 Stuttgart 1988 (Fra) 1.58 

Pittsburgh 1990 (B&L) 1.775     

Potsdam 1945 (Fra) 1.88 Public Bus 
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Rome 1981 (Fra) 1.69 Lyon I 1987 (T&M) 1.45 

Seoul 1981 (B&L) 1.682 Lyon II 1987 (T&M) 1.00 

Stuttgart 1981 (Fra) 1.41 Lyon III 1987 (T&M) 1.09 

Sydney 1981 (Fra) 1.82     

Syracuse 1990 (B&L) 1.438 Drainage Utilities 

Taipei 1981 (Fra) 1.39 Lyon I 1987 (T&M) 1.79 

Taunton 1981 (B&L) 1.636 Lyon II 1987 (T&M) 1.30 

Tokyo 1960 (Dox) 1.312 Lyon III 1987 (T&M) 1.21 

ments; and at the micro-scale, in which the effect of individual activity patterns upon the 
make-up of urban areas might be investigated (Orford 1999). Fractal geometry provides a 
potentially unifying framework for the analysis of urban phenomena across all of these 
scales. In our empirical case study, we develop applications at the macro- and meso-
scales to investigate the fractal morphology of urban land use as a blanket category, as 
well as the morphologies of constituent land-use types. 

One further important repercussion of the innovation of fractal geometry has been the 
derivation of space-filling ‘norms’ against which the density gradients of real-world cities 
can be compared. For example, Batty et al. (1989) describe how the accretive structures 
generated by diffusion-limited aggregation (DLA) provide a fractal ‘benchmark’ for the 
dimension of real-world structures. Fotheringham et al. (1989) use this benchmark to 
challenge the widely-held notion that urban density gradients characteristically decline 
over time, arguing that the imprecise measurements of previous research do not 
accurately portray the dynamics of growth along the outer edge, or ‘growth zone’ of 
urban settlements. This remains to be verified through detailed empirical analysis, and 
use of satellite imagery presents a useful way around the pervasive problems of under-
bounding and over-bounding in urban analysis. Appropriate measurement techniques, 
harnessed to ‘good’ and appropriate databases will provide a means of developing our 
measures of urban sustainability (Rickaby 1987) and the efficiency of urban forms, using 
a range of measures consistent with understanding built forms and socio-economic 
distributions. 

Measurements may often be only crude, but they are nevertheless required if we are to 
produce human activity-related measures of form which are relevant to urban policy. The 
spirit of the approach outlined in Mesev et al. (Chapter 5, this volume) is that the 
estimates of population and residential densities obtained from remote sensing sources 
are essentially ‘first estimates’, which may be further refined through the integration of 
socio-economic data sources into land-use classification algorithms (Mesev 1998, Baudot 
this volume). Indeed, a range of diverse urban data models may now be combined into 
integrated data sets which are usable in the measurement and classification of urban 
settlements, and the prospects are now bright for the development of spatially-extensive 
models of urban structure. 
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9.4 Some Measures of Relevance to Urban Morphology Research 

A recurrent theme in the study of the growth and evolution of human settlement systems 
has been the ways various attributes of such systems scale with increasing size: the study 
of relative sizes being allometry (Gould 1966). This research derives from the locational 
analysis tradition in human geography (Haggett et al. 1977) and, as such, predates the 
innovation of remote sensing technology to generate detailed measurements of urban land 
cover. It is only now, following the development of enhanced image analysis of urban 
areas (Barnsley et al. 1993, Mesev 1998, Mesev and Longley 1999), that the size and 
density characteristics of urban areas may be investigated in a more precise way. 

The two basic measures of size are population and area, both of which may be 
imputed using remotely-sensed data. Associated with the population, Nk, of any urban 
cluster, k, there is a number of ways in which area (and hence density) might be defined. 
Batty and  

 

Figure 9.1: Measures of urban 
morphology: a) urban area; b) urban 
field; c) urban envelope; d) radius. 

Longley (1994) develop two measures of area in their preliminary analysis of the size, 
shape, scale and fractal dimension of urban areas: first, there is the occupied area, Ak, 
which can be defined loosely as the built-up or developed area, and is likely to co-vary to 
an extent with population. Second, there is the urban field whose area, Uk, can be defined 
as the hinterland immediately associated with the greatest radial extent of the urban 
cluster (Hägerstrand 1952): this may be, for example, the immediate circle within which 
growth has already taken place. There is also a further variable of interest which relates 
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area, Ak, to field size, Uk; this is the urban envelope, Ek, defined as the length of the 
boundary or perimeter which marks the greatest extent of the built-up area. These 
measures are illustrated in Figure 9.1. 

Figure 9.1a shows the built-up urban area the extent of which, Ak, is indicated by the 
cross hatch. It is this area that contains the population, Nk. The urban field is shown in 
Figure 9.1b. This is the bounding circle, based on the centre of the cluster, which is 
marked by the maximum radius, Rk, which contains the whole cluster. The area of the 
cluster is given as where Uk>Ak. The urban envelope is shown in Figure 9.1c, 
its length, Ek, being a measure of both the size and the shape of the cluster. Figure 9.1d 
shows the maximum spanning distance across the cluster: the length of this span is 
defined as Fk. This measure has been used by Batty and Longley (1994) to approximate 
the radius of a settlement, Rk. Two types of relationship between these variables may be 
investigated: first, relating population, Nk, to area, Ak, and to field radius, Rk; second, 
relating the length of the envelope, Ek, to these same variables. These types of 
relationship are central to allometry or ‘relative size’ relationships (Gould 1966). By 
relating size and length to area, Batty and Longley (1994) were able to explore questions 
of density and to relate this work to the mainstream literature on urban allometry (Dutton 
1973). 

The classical allometric relation between population size, Nk, and occupied area, Ak, is: 

 (9.1) 

where 
γ is a constant of proportionality and 

β is a scaling constant. 

In this equation, β has also been written as where ∆ can be interpreted as a ‘dimension’ 

of the occupied area, scaling the radius, Rk, of such an area to its population. A 
priori, we would expect a strong relationship between population and area, although 
previous research in urban allometry has suggested that the precise form of the scaling is 
problematic. For example, Nordbeck (1971) suggests that the dimension, ∆, should be 3 
(while the scaling constant, β, should be ), since population growth takes place in three 
dimensions. Results from urban density theory also suggest that as cities get bigger their 
average density increases, but the empirical evidence on this is mixed and is complicated 
by the definitions of urban area used (Muth 1969). Woldenberg (1973), however, shows 
quite unequivocally that based on an analysis of two large population-area data 
sets for American cities. Batty and Longley (1994) suggest that the empirical relation 
between Nk and Ak is of the simplest kind—perfect scaling—with both the theoretical 
model and empirical evidence suggesting that ∆≈2 and β≈1. 

The scaling between the urban-field area, Uk, and population size, Nk, is more 
complicated. As cities grow, their fields become correspondingly larger, growing at a 
more than proportionate rate. This implies that as cities grow, their field density, 
always decreases. For measurement purposes, it is often more appropriate to represent the 
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field area, Uk, in terms of its radius, Batty and Longley (1994) state the field 
relationship as: 

 (9.2) 

where 
φ is a constant of proportionality, 

D is the scaling constant, and 

the fractal dimension lies between 1 and 2. 
Further relationships may be postulated between the length of the bounding envelope, 

Ek, and both the area, Ak, and the field radius, Rk. The envelope defines the outer edge of 
the cluster. As such, it is likely to be smoother and less circuitous than the perimeter. The 
bounding envelope is not the perimeter of a settlement cluster, in that any undeveloped 
interior of the cluster is not detected by the envelope (Figures 9.1a and 9.1b). This 
suggests that the fractal dimension of the envelope is likely to be smaller than the fractal 
dimension of a cluster of urban land uses which is juxtaposed with non-urban land uses, 
but within the enveloping boundary. In the case of the urban area, Ak, we can relate the 

envelope to the assumed radius, of the occupied area, giving 

 (9.3) 

while for the field radius, a similar relation is postulated 

 
(9.4) 

where ω, and hence δ in Equation 9.3 and Ď in Equation 9.4, can be regarded as 
‘dimensions’ with ζ and v as constants of proportionality. The log-linearized forms of 
Equations 9.1–9.4 are given as 

logNk=logγ+βlogAk, (∆=2β) 
(9.5) 

logNk=logφ+DlogR 
(9.6) 

logEk=logζ+ωlogAk, (δ=2ω), and 
(9.7) 

logEk=logv+ĎlogRk 
(9.8) 

Longley et al. (1991) and Batty and Longley (1994) describe how the parameters from 
Equations 9.5–9.8 may be used to measure the size and shape, scale and dimension of 
urban settlements using vectorized boundary data produced for the UK Department of the 
Environment (DoE), now the Department of Environment, Transport and the Regions 
(DETR) (OPCS 1984). A problem with vectorized outlines, such as those shown in 
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Figure 9.1, is that the classification of land use into the ‘urban/non-urban’ dichotomy is 
inherently subjective. For example, the UK Department of the Environment definition 
invokes a number of ‘rules of thumb’, both to define the extent of the urban areas and to 
ascribe population figures to the delineated areas. One of these assumptions is that all 
land which is for practical purposes ‘enclosed’ by urban land is itself deemed 
‘irreversibly urban’. This renders the derivation of even crude density measures a suspect 
exercise, since there are no ‘holes’ in the urban fabric, and sub-categories of urban land 
use are not differentiated. The differences between the vector boundary representation 
and a classified satellite image are illustrated in Figure 9.2. Batty and Kim (1992) and 
Mesev et al. (1995), however, describe two further scaling relations which are applicable 
to images from urban remote sensing and, through these, identify improved and 
disaggregated density-size relations. These are of particular use in measuring the 
densities of different land-use categories, such as those derived in Mesev et al. (Chapter 
5, this volume). 

The first of these measures derives from the urban modelling literature and from the 
suggestion by Batty and Kim (1992) that the inverse power function 

p(R)=KR−α 
(9.9) 

 

Figure 9.2: Comparison between 
urban boundary and classified satellite 
data. 

is consistent with fractal geometry conceptions of urban growth, where p(R) denotes the 
density of occupied space at radius, R. Batty and Kim (1992) show that, given limits on 
the range of Equation 9.9, the cumulative population N(R) associated with the density 
p(R) can be modelled as: 
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N(R)=GR2−α 
(9.10) 

from which the area, A(R), over which density is defined with respect to distance, R, from 
the centre is given as: 

A(R)=ZR2 
(9.11) 

where a perfect circle of area A would have Z=π. Further, it is possible to show that the 
density parameter, α, is related to the fractal dimension, D, such that D=(2−α). 
Substituting this into Equation 9.11 gives: 

N(R)=GRD 
(9.12) 

where 
D is the fractal dimension measuring both the extent and rate at which space is filled by population 

with increasing distance from the centre. 

 

Figure 9.3: Hierarchical segmentation 
of classified urban categories (bold 
text denotes the categories on which 
the analysis is carried out). 

The empirical dimensions from Equations 9.9 and 9.12 are obtained by regression 
analysis using the natural log transforms: 

pi=lnK−αlnRi 
(9.13) 

and 
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Ni=lnG−DlnRi 
(9.14) 

It is these quasi-continuous density measures that will be used in the following section. 

9.5 Empirical Case Study: Norwich Revisited 

To maintain a degree of comparability with one of the case studies developed in Mesev et 
al. (Chapter 5, this volume), as well as a substantive comparison with previous research 
(Longley et al. 1991), this section will briefly survey the application of the occupancy 
and density measures (Equations 9.11 and 9.12) to the settlement of Norwich, UK, using 
the modified maximum-likelihood classification of the 1991 Landsat TM image. In 
Mesev et al. (Chapter 5, this volume) we described how socio-economic information 
could be incorporated in the image classification process, while Figure 9.3 illustrates how 
the modified maximum-likelihood classifier can be used to subdivide a full scene into a 
succession of  

 

Figure 9.4: Methodology: the 
conversion of classified thematic 
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categories into fractal dimensions, 
cumulative counts and density profiles. 

urban land-use categories. For purposes of analysis, we have chosen to interpret the 
outputs of the classification in a deterministic manner; that is for each pixel, the land 
category for which the predicted probability of membership is highest is taken as the only 
economic land use in the entire pixel. In practice, of course, a pixel will usually contain 
more than one residential property, and possibly also a mix of residential and non-
residential land uses: however, previous research (Batty and Longley 1986) suggests that 
a deterministic interpretation of such probabilistic forecasts results in patterns of land use 
which bear closer correspondence with ‘real world’ configurations. Each land-use 
category is thus coded as a binary surface, and purpose-written programs are then used to 
calculate fractal dimensions and to create cumulative count and density profiles. The 
complete procedure is illustrated in Figure 9.4. 

Figure 9.5 shows the 1991 cumulative count profile for the urban and built-up 
categories. The built-up category may then be decomposed into residential versus non-
residential categories (Figure 9.6). Further breakdowns of the residential category (Figure 
9.7) identify a relative concentration of apartment properties in the inner areas at the 
expense of terraced property, otherwise there is a fairly even spatial distribution of all 
four built forms, as befits a large English market settlement. Corresponding density 
profiles for the same categories of land use are shown in Figures 9.8 (urban and built up), 
9.9 (residential and non-residential) and 9.10 (detached, semi-detached, terraced and 
apartments). The first of these suggests stability in the density of the ‘urban’ and ‘built-
up’ categories until ln R≈5.5, whereafter there is a quite dramatic tailing off of values. 
This is consistent with the analogue model results reported by Fotheringham et al. 
(1989)—namely, that urban density gradients within the ‘complete’ part of an urban 
settlement remain constant as a settlement grows, and depart significantly from these 
space-filling ‘norms’ only in the outer ‘growth zones’ of settlements in which growth is 
still occurring. Figure 9.9 suggests that it is the space-filling ‘norms’ of the residential 
category that appear to be the cause of such apparent stability. Consequently, there is a 
need for further research to establish whether space-filling ‘norms’ characterize any of 
the constituent non-residential urban land uses (public open space, industrial, transport, 
etc.). Figure 9.10 depicts considerable instability in the density profiles of the constituent 
sub-categories of detached, semi-detached, terraced and apartments. Note, however, that 
the count and density profiles relate to the numbers and densities, respectively, of pixels 
dominated by each residential category, and not by the imputed raw numbers of 
properties. 

Calculation of the fractal dimensions underlying these profiles can be confounded if 
observations are used which relate to: 

1. central areas where the small number of potential development points are (possibly 
unrepresentative) high leverage points; and 

2. peripheral areas where the growing city is still filling space and development is yet 
incomplete (see above). 

Thus, Equations 9.13 and 9.14 were used only for the scale ranges indicated in Table 9.2, 
and separate regressions were fitted for the scale ranges separated by ticks marked in 
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these figures. The fractal dimensions for the land uses are shown in Table 9.2. These 
exhibit a number of characteristics in common with other empirical research into the 
measurement of morphology, such as the lower fractal dimensions for peripheral zones 
which, as stated above, are the ‘growth zones’ of the developing city (Fotheringham et al. 
1989). Further research is required to ascertain the spatial and temporal transferability of 
these findings. Other methodological issues raised by this study include the comparability 
of vector boundary measures based upon Equations 9.5–9.8. Mesev (1995) has begun 
work in this vein: his results are not reproduced here for reasons of space and lack of 
direct comparability with the truncated regression results. There is also a need to appraise 
the process of statistical curve-fitting using regression analysis to profiles such as those 
shown in Figures 9.5–9.10, and to explore the notion that the fractal dimensions of urban 
land uses might themselves be a function of scale (Batty and Longley 1994). 

 

Figure 9.5: Cumulative count profiles 
of the ‘urban’ and ‘built-up’ 
categories. 
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Figure 9.6: Cumulative count profiles 
of the ‘residential’ and ‘non-
residential’ categories. 

 

Figure 9.7: Cumulative count profiles 
of the ‘detached’, ‘semi-detached’, 
‘terrace’ and ‘apartment’ categories. 
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Figure 9.8: Density profiles of the 
‘urban’ and ‘built-up’ categories. 

 

Figure 9.9: Density profiles of the 
‘residential’ and ‘non-residential’ 
categories. 
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Figure 9.10: Density profiles of the 
‘detached’, ‘semi-detached’, ‘terrace’ 
and ‘apartment’ categories. 

Table 9.2: Dimensions associated with partial 
population densities 

Count Density Land Use 
Category Zone 

range (R) 
ln R D r2 Zone 

range (R) 
ln R D r2 

2–178 0.693–
5.182 

1.933 0.977 3–145 1.099–
4.977 

1.942 0.945 Urban 

179–352 5.187–
5.864 

0.518 0.975 146–358 4.984–
5.880 

0.646 0.987 

2–170 0.693–
5.136 

1.814 0.996 3–108 1.099–
4.682 

1.867 0.670 Built-up 

171–319 5.142–
5.765 

0.262 0.966 146–358 4.984–
5.880 

0.522 0.984 

2–170 0.693–
5.136 

1.750 0.955 3–103 1.099–
4.635 

1.820 0.771 Residential 

171–319 5.142–
5.765 

0.266 0.957 109–319 4.691–
5.765 

0.542 0.982 

Non-Residential 2–55 0.693–
4.007 

1.936 0.975 2–8 0.693–
2.079 

1.442 0.955 
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56–247 4.025–
5.509 

0.558 0.911 9–21 2.197–
3.044 

2.672 0.908  

        22–247 3.091–
5.509 

0.750 0.977 

11–156 2.398–
5.050 

1.676 0.983 11–38 2.398–
3.638 

2.356 0.898 Detached 

157–316 5.056–
5.756 

0.335 0.915 39–316 2.664–
5.756 

1.043 0.929 

9–164 2.197–
5.100 

1.651 0.917 9–26 2.197–
3.258 

2.738 0.968 Semi-detached 

165–316 5.106–
5.756 

0.194 0.783 109–319 4.691–
5.765 

1.116 0.912 

6–59 1.792–
4.077 

2.535 0.994 6–63 1.792–
4.143 

2.535 0.896 

60–102 4.094–
4.625 

1.231 0.987 64–243 4.159–
5.493 

0.603 0.967 

Terraced 

103–243 4.635–
5.493 

0.279 0.834         

8–123 2.079–
4.812 

1.426 0.976 3–25 1.099–
3.212 

1.527 0.614 Apartments 

124–262 4.820–
5.568 

0.398 0.949 8–21 2.079–
3.044 

0.889 0.971 

9.6 Conclusions and Directions for Further Research 

The aim of this Chapter has been to demonstrate how, having heeded the tide of 
relativism, urban remote sensing can contribute towards scale-sensitive measures of 
urban morphology. Urban remote sensing has hitherto been preoccupied with spectral 
classifications as the end-product of data modelling, yet there is now a need to develop 
appropriate spatial analytical methodologies to measure the spatial morphology of 
classified urban land cover and land use. This is likely to develop alongside the data 
integration of socio-economic sources, as set out by Mesev et al. (Chapter 5, this 
volume). Fractal analysis is well-suited to the measurement and simulation of fractal 
forms, and there are enticing prospects for the integration of data-led urban morphology 
measures with ‘top down’ fractal simulations of urban structure (Batty and Longley 
1994). 

Research has yet to develop the important links between spatial analysis and remote 
sensing, especially in the urban sphere. These links offer the prospect of enhancing our 
understanding of how urban patterns produced from classified urban land-cover types can 
describe, and hence prescribe, changes in the morphological and functional 
characteristics of settlements. There is a need to explore more deeply the ways in which 
fractal geometry can be used in the spatial analysis of classified urban areas, and how 
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fractal measurement might be used to assess the ways in which patterns of urban land use 
vary across space and across time. 

Our final point is that urban morphology itself is changing, as the monocentric cities 
of classical urban economics are replaced by ‘edge cities’ in the US and decentralized, 
suburbanized morphologies in Europe. It has been argued elsewhere (Batty 1995) that 
large scale, deductive, system-wide urban planning is a phenomenon of the past, and that 
detailed, yet generalizable spatial analysis is necessary if planning is to remain a 
prescriptive force in the planning of ‘post-industrial’ towns and cities. This research is a 
timely application of new datasets and analysis methods to a tractable and relevant 
planning problem: there are also prospects for widening the scale range of analysis to the 
micro scale (Orford 1999). It is also timely and relevant in the context of the current 
range of ‘sustainable cities’ initiatives and, in the spirit of the ESF GISDATA initiative, 
to tackle the problems of data compatibility across space. Above all, we are beginning to 
understand that even in the datarich environment of the 1990s, there are no ‘objective’, 
purely technological solutions to the measurement and analysis of urban morphology. 
Data-led, theory-informed modelling strategies now offer the very real prospect of our 
developing a classification of urban morphologies based upon a deeper understanding of 
the ways in which urban processes lead to different size, shape and density relations in 
urban settlements. If we can understand how cities fill the space available to them, we 
can begin to reformulate ways in which planning policy interventions might affect issues 
of spatial efficiency and equity. 
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CHAPTER 10 
Predicting Temporal Patterns in Urban 

Development from Remote Imagery 
Michael Batty and David Howes 

10.1 Introduction 

In recent years a flood of digital data has become available, as various agencies begin to 
utilize the power of the Internet in data transfer and exchange, as new forms of data 
collection devices such as GPS (Global Positioning System) come into routine use, and as 
agencies and organizations such as tax authorities and realtors begin to develop 
comprehensive databases and listing services. Integration of diverse data sources at the 
urban level is opening up dramatic opportunities for urban researchers and planners to 
develop many new types of application. Combining data sets which have hitherto not 
been related enables new checks on accuracy and precision, methods for providing 
missing data in one source from another, and predictions of data outside the immediate 
domain of interest. At the other extreme, such integration enables new theories of urban 
form and functioning to be formulated and tested, such as those which have appeared 
recently in nonlinear dynamics (Dendrinos 1992, Lepetit and Pumain 1993) and urban 
morphology (Batty and Longley 1994, Frankhauser 1994). In a middle ground between 
such pragmatic and theoretical concerns, the emergence of new styles of analysis close to 
the data, which enable explorations of spatial pattern (Fotheringham and Rogerson 1994), 
seeks to use new methods of making comparisons and combinations of diverse digital 
data in informed visual ways. 

Yet much if not most of these data concern what we actually observe in terms of the 
physical city; rarely do we see much of its socio-economic functioning through these 
data, as this requires human survey for specific compilations. In short, digital data such as 
the UK Ordnance Survey’s ADDRESS-POINT™, remotely sensed imagery, and digital 
elevation models all concern the physical form and stock of the city, not the activities and 
functions which provide the dynamics within which cities work on a daily basis. These 
data must be collected in different ways by various forms of human transactions 
processing, by census. To provide better pictures of the city, these two generic sources of 
urban data must be put together and there has already been a little progress towards such 
integration in pragmatic ways (Bracken 1994). But these more ambitious integrations are 
only just beginning. In this chapter we will focus on integrating purely digital data, in this 
case data collected at the parcel level with data which are routinely sensed by satellite at a 
comparable scale. Ultimately, of course, the challenge of linking remotely sensed to data 
to mainstream urban analysis will be one of linking the physical to the socio-economic 



but, for the moment, there is the more obvious and pragmatic task of linking remote 
sensing (RS) data to other digital sources. 

There is a third consideration. The 1990s saw a proliferation of concern for treating 
the dynamics of cities through urban change. As the pace of change quickens everywhere 
and as communications become instant and global, our quest is to provide a much better 
handle on urban dynamics and the kinds of equilibrium or otherwise which characterize 
the city. The detection of urban change using RS data is an obvious strategy and this is a 
recurrent theme in the other chapters in this book; see also Lo (1995) and Mesev et al. 
(1995). However, in this context, we will seek to develop a somewhat different view of 
the temporal structure of urban form, exploring the dynamics of the city from a snapshot 
in time, from data which provide the temporal stratification of the city at a given instant. 
This is part of a wider project which seeks to use such data to infer the stability of the 
urban form of the city using recent ideas from weak chaos theory (Bak and Chen 1991, 
Batty and Howes 1995a). More simply, it is also part of a concerted attempt to enable 
new ways of visualizing urban dynamics from fixed points in time (Batty and Howes 
1995b). 

In fact, to anticipate our analysis here, we will show that we can generate excellent 
classifications of urban development by temporal period from RS data, in this case at 
least. If our results are generalizable, this might suggest that such classification be the 
norm for defining urban structure rather than attempting to define land use categories or 
other such characterizations. Our immediate goals are, however, quite pragmatic: to 
provide an initial evaluation of the use of RS data to classify development by age; to 
integrate parcel-based data in such classification; to provide a method for predicting 
missing temporal data within the data set and outside it; and to develop new ways of 
visualizing our existing digital data alongside RS data. 

We will begin by outlining some of the particular characteristics of the physical form 
of cities which might be picked up by RS imagery. Next we will note the type and quality 
of data which we have for Buffalo, emphasizing the way the growth of the city over the 
last 250 years suggests how we should organize our data into time periods. This provides 
the context for an initial supervised classification of a 1992 Landsat Multispectral 
Scanning System (MSS) scene using the maximum-likelihood classifier within ERDAS 
Imagine™on four temporal classes. The results imply that the first and last two classes 
should be combined and, for completeness, we then illustrate a further classification of 
these classes into one which distinguishes the entire urban area from water, cloud and 
rural areas which serve as our benchmark classes throughout. Finally we show how the 
predicted four classes can be used to fill in an area of missing data. Our conclusions 
simply chart the way forward in terms of this project from which this is our first output. 

10.2 Temporal Change in Urban Systems 

In this context, the way we define temporal change is largely through the physical 
characteristics of the city. Our immediate perceptions of the typical western city relate to 
architectural style, the density of building and traffic, perhaps differences in building 
materials. At the next level down, we might distinguish between different physical forms 
associated with different periods of building, the way the transport systems have 
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developed in terms of typical transit and other communications systems. What is 
immediately clear is the way in which the city is an assemblage of physical forms from 
the past. The traces of this old world lie everywhere, and many of them must clearly be 
detectable using RS imagery. In more sweeping terms, the aggregate form of western 
cities is clearly a product of individual and institutional wealth and mobility, overlaid of 
course on culture (see Weber, this volume). 

In terms of physical form—and this is very true for the North American city—the 
early industrial city was dominated by transit systems and a radial focus on the central 
business district (CBD). In contrast, the forms of the last fifty or more years are 
dominated by the diffusion of communications, by lower densities of development, by a 
massive splintering of the central core and the emergence of satellites of commercial 
development. This is clear in terms of our applications to Buffalo, which is one of the 
best examples of how an early industrial city has been transformed during the last 50 
years by sprawling low density suburbs. Yet the physical form of the early city prior to 
the 1920s and 1930s still exists with an increasingly sharp distinction between the old and 
the new. 

One very obvious temporal distinction which is reflected in differences in densities, 
building materials and in transport systems lies astride the period of the 1920s and the 
1930s. However further subdivision of this temporal divide is more problematic. There is 
some logic in dividing the earlier from the later automobile period—the 1960s and 
beyond from the earlier period of the 1930s. But this is not that clear for the emergence of 
the post-industrial city in the form of ‘edge’ (Garreau 1991) and ‘global’ cities (Sassen 
1991) which only began in earnest in the mid-1970s. The period prior to the automobile, 
too, is complicated in that transit improved dramatically from the 1860s. In the next 
section, we will make some decisions as to how fine our temporal grouping should be 
based on these concerns but also on the growth profile of the Buffalo region. There is 
also now a sense in which cities might very suddenly change their form as 
telecommunications begin to affect dramatically the way we work and trade with one 
another and this might suggest that a recent division from the 1980s onwards might be 
sensible (Graham and Marvin 1994). Physical form of residential construction has 
changed quite dramatically during the last decade in that the outer suburbs of the North 
American city have come to be characterized by very large low density parcels 
interspersed with pockets of cluster housing which reflect both an ageing and younger, 
more transient demography. It is possible that RS imagery might increasingly be able to 
detect such differences, especially if supported by other individual data sources at the 
parcel level.  

In detecting the temporal structure of development, there is a clear correlation with 
density, and this involves important questions of scale. As the scale at which 
development is detected and measured is aggregated, the definition of the objects being 
measured also changes. At the level where individual buildings can be seen, at levels of 
10m and below, density which reflects the existence of urban structures is quite different 
from the parcel level which is associated with a decade of magnitude difference in scale 
(100m and above). To an extent then, the most appropriate temporal grouping depends on 
the scale at which the analysis must take place, and arguably, coarser scales (of 100m or 
more) are better suited to this kind of analysis than the finer (at 10m or so). Moreover, it 
is across this coarser scale that the biggest differences in residential construction have 
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taken place during the last 100 years (Herman et al. 1988). What this discussion suggests 
is that we should undertake some very detailed analysis of how density and construction 
have changed through these scales during the last 250 years. This would enable us to 
determine the most appropriate scale for this analysis and the way in which plot size and 
the structures and vegetation contained therein are likely to be sensed by the radiance 
values associated with RS imagery. We have not been able to do this as yet but in more 
detailed work, using the new generation of very high resolution satellite sensors, this will 
be important. 

Our quest in this chapter is to provide some preliminary evidence that temporal 
structure is worth classifying. But we also hope that RS imagery might enable us to 
identify new trends in development which are easy enough to conceptualize, but difficult 
to determine in that our experience of the detailed physical evidence is limited. To 
proceed, we need to look at the data available from Buffalo, which combines two 
sources—parcel data digitized manually by tax assessors and RS imagery from routine 
Landsat coverages. 

10.3 The Buffalo Data 

The basic data set which we are using to explore the urban growth dynamics of the 
Buffalo metropolitan area (population circa 1.2 million in 1990) is based on all properties 
upon which tax was levied in 1989. These data identify parcels in terms of their centroids 
and their size (depth and width). They are also classified by various measures of tax 
payable and land value but for our purposes, the year of construction of the structures 
which comprise each property are of most use with division by type of land use also 
being relevant. The data set was purchased from the State Equalization and Assessment 
Board and comprises some 336,334 taxable properties assessed in 1989. The oldest 
structure within the database is estimated at 1750 with properties being recorded in every 
year since 1799. One feature of these data is that although the locations of all the parcels 
are known, some have not been classified with respect to age. A large block of parcels 
(some 85,879 properties or 25% of the data) which exist in the West Seneca-
Cheektowaga municipalities has not been coded and these are clearly visible in all the 
images of these data which follow. Part of our interest in comparing these data with that 
which is classified from RS images is in providing some means of estimating the age of 
these missing data, and we will indicate this as part of our conclusions. 

To divide the parcel data into a manageable number of temporal classes, we need to 
examine the growth regime of Buffalo which this data set implies. Of course, these data  
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Figure 10.1: Growth profiles of 
development in the Buffalo 
Metropolitan region. 

do not reveal the actual pattern of growth but simply that development which still 
remains from the evolution of the metropolitan area over the last 250 years. Much 
development has been destroyed, built on top of, abandoned or demolished. We argue 
elsewhere that the temporal structure of development now is likely to provide a good 
snapshot of how the city has evolved (Batty and Howes 1995a), but this is hardly actual 
growth. However it is all we have and in any case for these narrower purposes, we are not 
overly concerned with whether or not we can build good dynamic urban models from 
these data. In Figure 10.1, we show the growth profile or growth strata associated with 
these data from which it is clear that Buffalo grew dramatically from the 1880s onwards 
until the 1960s, whence the growth has been considerably less. Note that in the upper 
diagram in Figure 10.1, the incremental growth (dP) which is the addition of 
development in each year, is extremely noisy; the several spiked values indicate that there 
has been a tendency to overestimate the year of construction of properties at the 10 year 
period mark, although the trend does show increasing development until the 1950s and 
from then on a decrease in the rate of this increase. Note also that the data in Figure 10.1 
represent the population of properties or parcels, not people. 

From a general knowledge of the growth of the urban region, it is clear that the city 
did not really begin to grow dramatically until the 1860s with the heyday of this growth 
in the early years of the 20th century. Growth slowed in the 1920s but picked up again in 
the late 1930s and continued through the Second World War years until industrial decline 
of the manufacturing base of the city began in the 1960s. Since then the region has begun 
to lose population. We are also concerned here with aggregating enough development 
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into each temporal class to make the estimation meaningful and a compromise between 
the classes suggested by the growth profiles in Figure 10.1 and this equal allocation 
implies the following classes: 
Class I: all development until 1900—the early industrial city 

Class II: 1901 to 1930—the mature/established industrial city 

Class III: 1931 until 1960—the early automobile city 

Class IV: 1961 to 1989—the mature automobile city 

In the lower diagram in Figure 10.1, we show the growth profile (P) associated with these 
four classes as well as the annualized rate of change (  or, more properly, ) which 
confirms the interpretation of the growth regime just described. Note that the number of 
parcels in each of these four classes is respectively: 35374, 61099, 90936, and 62913 
which is sufficient for acceptable estimation. 

There is a major problem in visualizing such large data sets which is a familiar one in 
remote sensing. As the data are based on point locations, aggregation to some grid, which 
for visual purposes is at the same resolution as the viewing device, changes the meaning 
of what is being described. We explore this issue in more detail elsewhere (Batty and 
Howes 1995b) but, as we noted in the last section, there is, in this case, a happy 
coincidence of the meaning we are seeking in terms of our notion of density (at the parcel 
level which implies a magnitude of scale at around 100m, not 10, not 1000) and the scale 
of the RS image we will use (at around 82m resolution but re-sampled at 65m). In fact, in 
the subsequent discussion we adopt two scales: that of 65m, which is the effective 
resolution of the image, and that of 100m, which we consider a better representation for 
the parcel data. This enables some sensitivity analysis to be accomplished, and this is 
described below. We only show the parcel data at the 65m level in Figure 10.2 which, as 
in all subsequent screen dumps, is taken as the untransformed grey-scale equivalent of the 
colour image in which it was displayed. Note the missing data in the rectangular blocks in 
the central part of this image. 

These parcel data are used in our subsequent classification as independent data for the 
maximum likelihood estimation. This enables the four temporal classes to be extracted 
from the data in a Landsat MSS scene for the Buffalo region which was recorded on 18th 
June 1992. The best way to illustrate this image is through its final classification. We 
have taken the best of all the classifications we have attempted for the four class 
problem—this is based on using 3 distinct areas for each time period taken from the land 
parcel data (the so-called training classes) at the 65m level. We refer to this as the image 
I_65_6. We show this image in Figure 10.3 from which it is clear that besides the four 
temporal classes of development, we have also classified rural/agricultural use, water, 
and cloud (and shadow) separately. We use these latter categories as the benchmarks for 
our urban classes. Note the obscuring interference of cloud cover in the east and south 
east of the region and the relatively good classification of the water areas which define 
Lake Erie, the Niagara River, and Grand Island in the north west of the image. Note also 
the grid road system in the Buffalo Urban Area in the centre north of the image. 
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Figure 10.2: Temporal structure of the 
land parcel data in four age classes. 
Key: black=1750–1900; dark 
grey=1901–1930; mid-grey=1931–
1960; light grey=1961–1989. 
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Figure 10.3: Classification of the MSS 
image at 65m level into four age-
classes. Key: black=1750–1900; dark 
grey=1901–1930; mid-grey=1931–
1960; light grey=1961–1989. 

The Landsat MSS data consist of four bands covering wavelengths associated with the 
electromagnetic spectrum: bands 1 and 2 with wavelengths 0.5µm–0.6µm and 0.6µm– 
0.7µm respectively in the area of the visible spectrum, and bands 3 and 4 at 0.7µm–0.8µm 
and 0.8µm–1.1µm respectively which are in the near-infrared portion of the spectrum. In 
general, it appears that bands 1 and 2 are highly correlated, as are bands 3 and 4, but that 
1 and 2 are better for discriminating urban materials, whereas 3 and 4 are better for 
vegetation (Lo 1986). In effect, we have used all four bands in the following 
classifications. Finally, we should point to some other digital data which we have used 
variously in this project. We use the TIGER/DLG line files quite routinely as a detailed 
source of data to rectify images and to provide good visual checks on the geometry of 
urban form at the most detailed level. These data record features down to the block level 
(around 500m level) and, in fact, in an RS context where road lines and other transport 
routes are relevant to the sensing, these provide a useful visual check on relative 
accuracy. 
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10.4 The Initial Supervised Classification 

The process of classification which is used here is based on standard RS approaches 
which are embodied in most of the available proprietary software. In this context, we 
used ERDAS Imagine™ running on Sun Microsystems™workstations, and after some 
experimentation with the data, we decided to classify using all four bands in each image 
by the maximum-likelihood method. This is a method of supervised classification in 
which a fixed number of sample regions associated with each potential class of the image 
are used to train the classifier. These training samples are, in effect, the independent data 
used in the statistical estimation, and their effect on the quality of the estimation is 
crucial. The method used is a standard one and a brief overview is given in Lillesand and 
Kiefer (1994). 

In this context, we use the parcel data to identify the training samples for which we 
know the exact temporal class. Clearly we could use the entire parcel data set for training 
the classifier and this would give us a very comprehensive method for estimating data 
outside the parcel data set, but within the image itself. A comparison of Figures 10.2 and 
10.3 reveals that the image covers a wider area than the parcel data set except on the 
southern boundary where the parcel data sets extends beyond the image. However, there 
is no way within the software to do this routinely and thus, so far, we have simply used 
the software in the way it was originally intended where the number and size of training 
samples is much less in terms of extent than the image itself. In the four temporal class 
problem, we have fixed the number of samples as three for each class, and then six. 
Concatenating these various assumptions leads to four classification problems which we 
have coded as follows: 
I_65_3: 3 training samples at 65m level 

I_65_6: 6 training samples at 65m level 

I_100_3: 3 training samples at 100m level 

I_100_6: 6 training samples at 100m level 

There are many aspects of these classifications that we might examine which involve 
various statistics pertaining to the pattern evident in the RS data. Here we will show just 
one. 

It is possible to examine the correlation between any two of the four different bands 
which make up the image and to see how the classification which maximizes likelihood 
discriminates the various classes portrayed on the scatter plots of radiance values in the 
two spectral bands for each pixel. In fact, in our analysis, bands 1 and 2 are highly 
correlated and the four classes are not well discriminated in this space. The 
discrimination is higher between bands 3 and 4 which are also correlated, but between 1 
and 3, 1 and 4, 2 and 3, or 2 and 4, the discrimination is much clearer with cloud, cloud 
shadow and water occupying very distinct regions of the feature space, and rural to urban 
falling along a distinct continuum. Taking the probability contours at 3 standard 
deviations from the mean of each class, we are able to define the classic hyper-ellipse 
profiles for each class. In our analysis, water, cloud, and cloud shadow are very clearly 
separate, while rural is separate from the first three temporal urban classes but overlaps 
the fourth a little. Likewise, the first two and the last two temporal classes overlap but 
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there is little overlap between these two sets. This separability is borne out in all the four 
classifications as we shall see below. 

There are three simple comparisons we can make which show how good these 
classifications are. First, the number of pixels predicted for each class can be calculated: 
these are shown for each of the four classifications in the rose diagram which is presented 
in Figure 10.4a). In general, what this figure shows is that as the number of training 
samples increases and as the level of resolution of the training sample data is coarsened, 
the number of pixels predicted for the total of all four urban classes increases quite 
dramatically. Interestingly, the number of pixels is greater and increases more for the 
100m images in terms of Classes  

 

Figure 10.4: Total predicted pixels 
and percent predicted pixels in the 
four-class training sample. 

I and III, while the same is true for Classes II and IV in the 65m images. Such sensitivity 
is quite surprising for it suggests that the number and size of training classes is a very 
important determinant of both the total numbers of pixels predicted for any one class, as 
well as their relative distribution between classes. The number of pixels in the training 
classes which are predicted accurately can also be counted and a rose diagram of these 
percentages is shown in Figure 10.4b). The number predicted varies between about 60% 
and 80%, but there is a systematic loss of accuracy as the number of training samples is 
increased. This is certainly due to the greater heterogeneity of the pixel values within the 
training areas as the number of training areas is increased. However, this degree of 
variation is perhaps surprising in view of the fact that the training areas are exactly 
known, and are small in both number and extent. 

The last measure of performance involves a more detailed analysis of the extent to 
which the training samples are misclassified. In Table 10.1, we show matrices which 
cross-classify these errors in percentage terms. Note that the main diagonals of these 
matrices form the points on the rose diagram in Figure 10.4b). It is quite clear that the 
65m images provide better classifications of the training samples than the 100m, with 
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Class III performing best. For the 100m values, Class II is best. However, it is the clear 
nature of the misclassification which is most revealing. In all four cases, the 
misclassifications are virtually identical: Class I misclassifies into Class II and II into I 
while Class III misclassifies into Class IV and vice versa. In all cases, if these portions of 
these matrices are aggregated, over 85% of all pixels in the training samples are predicted 
correctly. This is an amazing result. 

It suggests that we should combine Classes I and II, and Classes III and IV into two 
new classes which means that all development to 1930 should be one class, from 1931 to 
the present the other class. This, of course, is the division between the city based on 
transit  

Table 10.1: Percent misclassification of the 
training samples for the four urban classes 
application. 

I_65_3 I_65_6 
Class 

I II III IV I II III IV 

I 70.54 15.38 0.00 0.00 73.63 16.46 0.25 1.00 

II 15.59 83.17 0.87 0.43 12.53 79.30 4.91 0.00 

III 2.88 1.44 93.51 5.43 1.65 2.01 80.63 14.56 

IV 0.89 0.00 5.63 89.13 2.20 2.20 14.21 73.18 

I_100_3 I_100_6 
Class 

I II III IV I II III IV 

I 61.81 17.97 2.19 1.65 64.13 19.01 1.67 3.27 

II 19.53 77.38 4.76 0.41 18.26 75.62 5.00 0.58 

III 3.54 2.54 72.59 22.50 1.90 2.62 73.09 23.04 

IV 5.12 2.11 20.33 71.88 5.71 2.75 19.86 69.59 

Key to classes: I=1750–1900; II=1901–1930; III=1931–1960; IV=1961–1989. 

and that based on the automobile, or more loosely between the industrial and emergent 
post-industrial city. It is remarkable that an RS image should be able to reveal this socio-
economic distinction. Our new quest then is to aggregate in the way the analysis suggests 
and to measure the improvement. Before we continue, however, there are two points to 
note. First, in all these classifications and those below, we also classify rural areas, water 
areas, cloud cover, and cloud shadow. In the case of water, clouds and shadow, the 
predicted performance in terms of the training samples is near perfect and it is well over 
90% for the rural areas. Henceforth, therefore, we will graph the predicted number of 
pixels using cloud and cloud shadow combined with water and rural areas as benchmarks, 
where appropriate. Finally, for completeness, we show the four classifications in Figure 
10.5 which really only gives an impression of density rather than distribution, due to the 
fact that the grey tones have too little contrast. 
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10.5 Recombinations and Reclassifications 

Classes I and II have been combined into a new Class I′, III and IV into a new Class II′, 
and the analysis simply reworked in the usual way. In Figure 10.6a), we show the total 
number of pixels predicted using water, and cloud with cloud shadow (which give near 
identical numbers between classes), as benchmarks in the rose diagram. The analysis 
bears out that of Figure 10.4 in that the 65m samples lead to fewer pixels being predicted 
overall for the more recent (1931–1989) temporal class with slightly more for the earlier 
class. Overall, the 65m image would appear to predict better the observed values of 
pixels. We do not, in fact, have the observed number of pixels for these images. All we 
have is some sense from the parcel data as to their density at this scale. It is from this that 
we think that in all cases reported here, the RS image classifies more pixels into any of 
the urban classes than we observe in reality, but the 65m, 3 training sample classification 
appears the closest. 

 

Figure 10.5: Classification into four 
temporal classes. Key: black=1961–
1989; dark grey= 1931–1960; mid-
grey=1901–1930; light grey=1750–
1900. 
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Figure 10.6: Total predicted pixels 
and percent predicted pixels in the 
two-class training samples. 

These results are further confirmed when the percent of pixels misclassified is examined, 
first in the rose diagram in Figure 10.6b) which is based on the main diagonals of the four 
misclassification matrices shown in Table 10.2. Table 10.2 shows the quite remarkable 
fact that hardly any pixels in the training samples for any of the four classifications are 
misclassified between the two temporal classes. In all cases, over 92% of the pixels in the 
training samples are correctly classified, with the 65m, 6 sample classification giving 
over 99% accuracy for each of the two urban classes. This drops to 96% for the 12 
samples, and falls further to 93% and 92% for the respective 100m classifications. Note 
that as classes have been combined, the training samples from the previous four-class 
problem have been combined, thus leading to 6 from the two classes of 3, and 12 from 
the two classes of 6. It would be hard to better this type of classification, although we 
have yet to develop a more rigorous test using the parcel-based data. The classifications 
are shown in Figure 10.7. 

For completeness, but also because considerable effort is put into classifying urban 
areas from RS imagery, we have combined the two Classes I′ and II′ into a new urban 
Class I″ which we now compare against the rural class which we call Class II″. The rose 
diagram giving the number of pixels predicted is shown in Figure 10.8a) where it is very 
clear how the increase in resolution (65m to 100m) and number (12 to 24) of training 
samples shifts the prediction from urban to rural. However, the rose diagram of percent 
misclassified in these training samples shown in Figure 10.8b) is near perfect; this is 
borne out in Table 10.3 where the 65m level classification are predicted with 100% and 
99% accuracy for the 12 and 24 samples, respectively. This falls to 98% for the 100m 
samples, but in all of these cases the accuracy is extremely good. The urban areas 
associated with these classifications are shown in Figure 10.9 where, again, it is clear that 
the smaller and more accurate the training samples, the more compact the urban area 
predicted and the closer it appears to reality. 
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Table 10.2: Percent misclassification of the 
training samples for the two urban classes 
application. 

I_ 65_ 6 I_65_12 
Class 

I′ II′ I′ II′ 

I′ 99.38 0.57 96.70 3.09 

II′ 0.62 99.13 3.30 95.82 

I_100_6 I_100_12 
Class 

I′ II′ I′ II′ 

I′ 94.36 4.78 94.24 5.73 

II′ 5.64 93.36 5.76 92.41 

Key to classes: I′=1750–1930; II′=1931–1989. 

Table 10.3: Percent misclassification of the 
training samples for the one urban class application. 

I_65_12 I_65_24 
Class 

I″ II″ I″ II″ 

I ″(Urban) 100.00 0.00 99.53 0.47 

II ″(Rural) 0.00 99.62 0.47 98.92 

I_100_12 I_100_24 
Class 

I″ II″ I″ II″ 

I ″(Urban) 98.75 1.23 98.90 1.11 

II ″(Rural) 1.25 98.44 1.10 98.47 

Key to classes: I″=Urban; II″=Rural. 
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Figure 10.7: Classification into two 
urban temporal classes. Key: dark 
grey=1931–1989; mid-grey =1750–
1930. 
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Figure 10.8: Total predicted pixels 
and percent predicted pixels in the 
urban-rural classes training samples. 

Finally, we must give an indication of how this type of model might be used in 
prediction. In our particular applications, there are some very specific problems that can 
be so addressed. There is the general problem of predicting the age and location of 
development immediately adjacent to our region of interest. In fact, the parcel data we 
have is simply for Erie County, which constitutes around 80% of the Buffalo urban 
region and thus our classifications can help inform the overall pattern of development at a 
fine scale. Second, Buffalo sits on the border with Canada and the kinds of parcel data we 
have here are not available there. The images we see, apart from the parcel image in 
Figure 10.2, all cover areas on the west bank of the Niagara River in the area of Fort Erie 
and this kind of prediction is perhaps the only way in which we might begin to extend 
such analysis of urban form across the border. At the same time, however, it can be 
argued that we require training samples for these areas; as the same independent data set 
does not exist cross-border, such training would have to be based on other considerations. 

Third, as previously noted, there are missing data concerning year of construction in 
our data set. In Figure 10.10, we have zoomed in on the area where these data are missing 
and have outlined it on the classified image in Figure 10.3, which is based on I_65_3. 
What is interesting about this is that the kinds of development which characterize 
Buffalo—older parcels along main streets, lower densities in more rural areas and so 
on—are clearly present in the area of missing data. We have also begun to calibrate 
regression models to estimate this missing data based on variables such as the proximity 
of residential to  
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Figure 10.9: Classification into one 
urban class. 
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Figure 10.10: Prediction of missing 
data. 

commercial development and distance from the CBD, but so far these are only giving us 
R2 values in the order of 30%. Of course, we do not know how good our image 
classifications are overall. We know that I_65_3 is about 80% accurate in terms of its 
training samples; thus it is now quite urgent to begin to match the outputs with as much 
of the parcel-based data so that we can get a much clearer idea as to how good these 
classifications are. 

10.6 Conclusions 

This is very much work in progress. We are pursuing this in the spirit that urban remote 
sensing will generate much better applications for urban analysis if what we know about 
cities from urban theory is brought to bear on the kinds of objects and areas that need to 
be detected and classified. One problem which lurks under all this kind of work is the 
question of scale. Indeed, the very ways in which we are able to display data collected at 
a much finer resolution than the devices on which we are able to map it poses severe 
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problems of interpretation and definition. There are some very confused notions, for 
example, concerning the definition of urban density which have been around for 50 years 
or more, but as soon as detailed data become available such as the RS and parcel-based 
data used here, these questions will come to the fore.  

We have argued the same from the vantage point of new urban theories which deal 
with urban form (Batty and Longley 1994) and, in an attempt to begin to test theories 
which are conceived at a much finer scale than those which characterize the mainstream, 
we have begun to develop morphological analysis of RS images as an alternative to 
manual digitized data (Mesev et al. 1995, Longley and Mesev, this volume). This work, 
however, has been concerned with how morphologies change over time and is part of the 
general body of work on urban change and the detection of changing urban boundaries. 
What we have illustrated here is that we might be able to make as much progress by 
examining the static properties of cities but from the point of view of their past dynamics. 
The results we have are encouraging and we will report more as we continue to refine the 
analysis. 
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CHAPTER 11 
Modelling Geographical Distributions in 

Urban Areas 
Jean-Paul Donnay and David Unwin 

11.1 Introduction 

Practitioners of urban geography are seldom remote sensing specialists. Urban modellers 
and planners, if they use remote sensing at all, employ its by-products rather than the raw 
radiometric data. These by-products typically fall into two groups: 

• those which rely on colour composite images analyzed by visual interpretation, and 
• those based on land use/land cover classifications, which are often further processed 

digitally. 

The former are mainly restricted to analogue processes and will not be discussed further. 
In this chapter we outline some of the ways in which the latter can be used to improve our 
ability to model geographical distributions in urban areas. Any such use of remotely-
sensed data in urban analysis must take into account the nature of these data. The limits 
to the integration of remotely-sensed data in spatial analysis within a Geographical 
Information System (GIS) have often been highlighted in the literature (Mace 1991, 
Ehlers 1995). These result from: 

• the geometric characteristics of the image, including the quality of its registration and 
the compatibility of its resolution with the scale of the phenomenon and the area under 
investigation; 

• the relevance of the attainable land cover/land use classification to the purposes of the 
study; 

• the format of the digital data, which may create difficulties relating to its amount (size) 
and to its grid (raster) discretization of space; and,  

• the measurement scale of the studied attribute. For example, land use/land cover is 
defined on a qualitative scale for which the number of possible mathematical and 
statistical operations is restricted. 

Problems relating to the geometric characteristics of the images have been addressed in 
previous chapters, as have various methods for classifying, or improving the 
classification of, remotely-sensed data of urban areas. What remain to be addressed are 



the relevance of the nomenclature used, the qualitative scale of the land use/land cover 
assignments, and their pixel-based discretization of space. Each has far-reaching 
implications for the subsequent processes of urban modelling and planning. 

The relevance of the nomenclature is of prime importance as it affects the legitimacy 
of any further work on the classified image. The richest urban analyses require a very 
high discriminatory power, embodying morphological, functional, even legal, criteria 
which can only be provided by other, exogenous data. Such data are nowadays frequently 
available in so-called integrated GIS, which combine remotely-sensed images with other 
spatial information. In an environment such as this, the quality of the classifications used 
must be assessed in order to prevent the propagation of errors into subsequent processing. 

Classified land cover/land use constitutes qualitative and spatially discrete 
geographical information. It is easily handled in a raster-based GIS, but such data are of 
limited direct use to urban planning and modelling. Urban modelling frequently 
presupposes the existence of quantitative variables that are spatially continuous, while 
planning makes use of a discretization of space into zones which are very different from 
those given by image pixels. 

In this chapter we demonstrate transformations that can be applied to nominal-scale 
remotely-sensed data to make them more accessible to urban modelling and planning. 
First, an attribute transformation from a qualitative land use code to quantitative data can 
be simply achieved by pixel re-classification using exogenous information. Second, the 
transformation from a spatially discrete to a spatially continuous distribution can be 
achieved by a variety of techniques which make use of the concepts of density and 
potential. After considering the reliability of classified images in the framework of urban 
planning and modelling, we examine and illustrate these transformations. 

11.2 Land Use 

In many developed countries, a land use survey constitutes a legal prerequisite to any 
urban planning process. This is often undertaken by a compilation of maps and aerial 
photographs complemented by some field survey, but increasingly such land use survey 
is becoming a typical application of satellite remote sensing. However, this 
straightforward, if not simple, application of remote sensing meets with two difficulties. 
The first relates to classification error about which there is a considerable literature in 
remote sensing (Rosenfeld and Fitzpatrick-Lins 1986, Stehman 1996), although the 
impact of error in the observations has not, in the past, been an issue addressed within 
urban planning and its introduction via remote sensing may be unwelcome to urban 
practitioners. The second difficulty relates to the land use nomenclature used. Instead of 
there being a single, agreed land use classification, there is a diversity of nomenclatures 
in urban planning that results from the existence of numerous planning agencies, different 
administrative purposes, and a variety of other historical and cultural factors. In 
particular, most of the land use classifications employed in urban planning resort to 
functional criteria to discriminate among land uses, relying frequently on the four key 
functions of urbanism, namely dwelling, working, entertaining and moving (Le Corbusier 
1957). This functional priority is at odds with remote sensing’s basic classifications 
which are based on the recorded radiometric values. Conversion between the two 
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involves resort to a considerable amount of ancillary data and may lead to higher error 
probabilities in the final product. Fortunately, urban planning also entails a physical 
dimension which is unrelated to function but is concerned with the arrangement of the 
land uses within the urban landscape and which can more easily be addressed using 
remote sensing. 

This distribution of urban land use was subjected to modelling in classical geography, 
both around (e.g. von Thünen’s model) and inside the city where urban structures were 
deduced from the land use arrangement (e.g. Burgess’s model and its successors). Urban 
models can deal explicitly with land use distribution (Laidlaw 1972), but only rarely do 
they deal with land use on its own. Generally, they resort to demographic or socio-
economic data to enrich the modelling process (Krueckeberg and Silvers 1974, Batty 
1976, Longley and Mesev this volume) and it is generally assumed that such 
complementary data are unproblematic. However, such data, obtained from periodic 
censuses in the developed world, have a number of disadvantages when used in an 
integrated GIS (Rhind 1991). 

Census data are usually published at a level of spatial aggregation which preserves the 
confidentiality of the original respondents, but which changes over time and which 
normally does not coincide with other, equally arbitrary, spatial sub-divisions that may be 
used for other purposes (Raper et al. 1992). The combination of statistical data with land 
use information derived from remotely-sensed data necessitates the use of a common 
geography, either by vectorizing groups of neighbouring pixels of the same land use or, 
more generally, by rasterizing the census enumeration districts. This format 
transformation not only allows multi-source analyses free from incompatible spatial sub-
divisions, but, as shown in the next section, it can also allow a finer distribution of the 
census derived statistical data across the intra-urban land uses. Finally, provided an 
appropriate transformation model is known, land use can be used as a surrogate for a 
great number of other human or physical variables for urban models. This kind of 
transformation is conditioned by substitution rules and requires appropriate calibration, 
but it may provide an easy way to change the measurement scale from a qualitative land 
use/land cover scheme to some quantitative scale on which the substituting variable is 
coded. Whether it is integrated as a meaningful variable, as a surrogate into the modelling 
process, or simply used to allow the re-allocation of the statistical values entering into 
models, it is clear that land use can play a major rôle in urban modelling. 

11.3 Densifying Observations using Remote Sensing 

A primary use of classifications of land use/land cover derived from satellite remote 
sensing is to provide data for a large range of urban models by a transformation which 
changes their measurement scale from nominal categories into attributes lying on binary, 
ordinal or ratio/interval scales. Such operations retain the basic geography of the 
distribution but have the capacity to allow urban modelling using much finer spatial 
resolutions than are commonly employed. To give an indication of the utility of remote 
sensing in this ‘densification’ of urban data, in the following sections we review a 
selection of these processes. 
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11.3.1 Self-Induced Quantification 

The only possible operation applied to qualitative data such as land cover categories is 
similarity-dissimilarity which, when generalized, can lead to the selection or rejection of 
a group of items. In turn, this may be translated into a binary scale (1=selected, 
0=rejected) and so generate a binary image mask. In the raster GIS environment, such 
masks are the cornerstone of the so-called map- or layer-algebra, allowing Boolean 
operations to be performed on a pixel-by-pixel basis between two or more maps or layers, 
and for which specification languages have been proposed (Tomlin 1990). This re-
classification process is often the first in a series of operations, but it is worth noting that, 
because of the constant pixel size, conversion to a binary scale amounts to a 
quantification of the selected pixels by their pixel area. All that is required to find the 
area is multiplication by a single constant and thus these binary masks can be used in the 
computation of scalar density values by use of a quantitative attribute, in a second layer, 
as numerator for the ratio. 

The constant pixel size may also be used to compute the area of the land use polygons 
made of clusters of neighbouring pixels with similar attributes. This is a two-step 
operation requiring like-pixels to be gathered into clusters, followed by a simple count of 
pixels in each group. The allocation of the polygon area to every pixel belonging to it 
corresponds to a quantification of the attribute which then may be exploited in 
investigations based on area thresholding or density assessment. 

These elementary operations are well known and are not restricted to land use data 
but, since very often they take place in the early stage of more complex transformations, 
it is worth reminding the reader of their utility. 

11.3.2 Quantification by Substitution 

Pixel attribute substitution involves the replacement of a land use/land cover item by a 
numerical value characteristic of that land use. The replacing variable can be binary, as 
above, ordinal, or ratio, but in a simple substitution every land use/land cover class is 
assigned a unique pixel value. This substitution operation is commonly used in 
accessibility studies, for example, where each land use category is characterized by a 
penetration or friction coefficient allowing the determination of a least-cost route across 
the image (Eastman 1989). Another example is given by inter-visibility problems in 
landscape analysis. A view-shed is delimited not only by the natural relief but also by the 
height of the land cover liable to obstruct the lines-of-sight. An estimated mean height is 
substituted for each land use class and added, pixel-by-pixel, to the digital elevation 
model in order to provide the required information (Dufourmont et al. 1991). 

A variation on this simple substitution process is where it is applied only to some of 
the pixels in the image, because the substituting variable is not significant for all land use 
categories. For example, it is clear that the three main components of any landscape—i.e. 
water, vegetation and built-up areas—give complementary, but separate possibilities for 
substitution. Substitution of the mean biomass for different vegetation items obviously 
has no meaning for the water or built-up covers. Consequently, substitution often 
presupposes the identification of alternative transformations which can be performed in 
different layers separated according to a masking operation of the type mentioned in 
section 11.3.1. 
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A second variation on substitution consists of using ancillary information to modify 
the geographical distribution during the transformation process. A typical example in the 
field of urban economics consists of the use of the mean land value to substitute for land 
use categories (see also Brivio et al., Chapter 3 this volume). It is obvious that land 
use/land cover classes, particularly ‘built-up area’ and ‘building land’, cannot be 
substituted by a single, constant land value over a complete urban agglomeration. A 
substitution model can be calibrated according to sampled land values from field survey 
or property files in order to introduce some spatial variation into the mean land values. In 
the absence of exogenous information, a function of distance from the centre of the city 
might be used to generate a plausible geographical distribution of the land values. 

Apart from a few well-calibrated examples, simple substitution may be seen to be very 
crude, and indeed it is. Often it is better considered as a transformation from a qualitative 
to an ordinal scale, rather than to a ratio one. 

11.3.3 Reallocation Process and Dasymetric Mapping 

The transformation of the measurement scale of pixel attributes in a land use/land cover 
image can also make use of exogenous census data. However, rather than attempting to 
alter the land use data into something more useful, the primary aim when combining land 
use with demographic or socio-economic data is to enable the modification of the 
geographical distribution of the statistical data. These statistics are available as 
aggregates over arbitrary census tracts which can raise difficulties in their analysis due to 
the assumption that the data are evenly distributed within the areal units. An unfortunate 
consequence of this is that any statistical results are conditional on the areal units 
employed and thus lack true generality. Space is seen as a discrete phenomenon with 
statistics tied to distinct areas that can be recorded and stored as polygonal objects in an 
object or spatial database whose interactions are modelled using discrete approaches. 
These approaches have the undoubted advantage of fidelity to the original census or 
survey data, in which all the counts are correct and usually refer to known and mappable 
areas, but the limitations of the often-used choropleth (area/value) maps are well known. 
In essence such maps, and any discrete model results which use the same arbitrary 
geography, may even be random variable-pass filters on the true underlying geography 
(Baxter 1976, Langford and Unwin 1994). 

Except for some applications in the environmental (Eurostat 1993) and agricultural 
(Tosselli and Meyer-Roux 1990) domains where remote sensing is used to produce or to 
check statistics, the first role of the land use/land cover map is to give the statistics a 
geographical base which is more realistic than the original census tracts. A single, 
striking, example is given by population data, or data for any other socio-demographic 
index, which logically must relate solely to areas easily discriminated as ‘residential’ by 
remote sensing. The number of residential pixels falling into every enumeration district is 
given by an overlay-like procedure between layers respectively containing the areal units 
and the remote sensing derived land use. The district population figures can then be 
reallocated to the residential pixels according to a simple model formalized as follows: 

 (11.1) 
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where P is the population in a given district, p is the population allocated to each 
residential pixel in a given district, n is the number of residential pixels in a given district, 
and i is the district index; with  

A constant apart, and assuming a constant pixel size, this is also an expression for the 
population density of each district: 

 (11.2) 

where d is the net population density in a given district, and a is the constant pixel area. 
Consequently, the masked image derived from the residential pixels holding the 

population attribute pi is nothing more than a dasymetric map of the population density. 
Such maps were originally produced using ancillary information in the form of maps of 
the residential areas by Wright in a classic paper of 1936 (Wright 1936, Monmonier and 
Schnell 1984). 

This simple reallocation process merely requires a land use/land cover classification of 
sufficient accuracy to identify residential land within the built-up area. As discussed in 
other parts of this book, the availability of very high spatial resolution images and the use 
of sophisticated classification algorithms, together with various types of ancillary data, 
makes it possible to distinguish between several residential categories (see Mesev et al., 
Chapter 5, and Barnsley et al., Chapter 7, this volume). In such a case, it may be argued 
that each residential class should be allocated its own population density value. This leads 
to a reformulation of the reallocation process, in which a residential class index, r, is 
introduced in Equation 11.1: 

 (11.3) 

where r is the residential class index, such that and where P, p, n, and i are as 
given in Equation 11.1. 

Pr can be computed given a fixed value of dr, the population density assigned to the 
residential class r, knowing the area of this class, Ar: 

Ar,i=nr,i·a 
Pr,i=dr,i·Ar,i (11.4) 

with a being the pixel area as above. Thus, the pixel attribute is finally given by: 
pr,i=dr,i·a 

(11.5) 

The choice of the dr values is another matter. The problem is constrained by:  

 (11.6) 

and generally the number of districts is at least equal to the number of residential classes 
(I≥R). The logical assumption, from an urban geographic viewpoint, of a common set of 
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dr values independent of the district subdivision could be met by the solution of the 
system of I equations with R unknowns: 

 (11.7) 

Equation 11.5 thus becomes: 
pr=dr·a 

(11.8) 

where the reallocation of the pixel attributes is independent of the districts. In practice, 
however, this approach can generate unrealistic negative density values and does always 
not perfectly fit the constraint given in Equation 11.6. This is because the strict 
assumption of common density values is unrealistic and due to errors introduced by an 
imperfect initial land use/land cover classification. More practically, a set of di values 
dependent on the district subdivision can be adjusted with the weaker assumption of 
constant ratios, cr, between the different residential categories. The di are then obtained 
by solving independent equations which respect the total population constraint (Equation 
11.6) as: 

 (11.9) 

and the pixel attribute is given by: 
pr,i=cr·di·a 

(11.10) 

The coefficient cr must be specified according to urban standards or density values 
sampled in the field. 

The sophistication introduced into the reallocation process by the discrimination 
between different residential areas requires optimal conditions in terms of image 
resolution, classification and ancillary data. In many cases, however, the analysis has to 
make use of mid- to low-resolution images, poor/inaccurate classifications, or a coarse 
census-tract sub-division, any or all of which can make the above approach problematic. 
An alternative is to hypothesize that a relationship exists between population and almost 
all of the recognized land use categories. For example, Langford et al. (1991) employed a 
simple regression model in which the census tract population was expressed as a function 
of five land cover categories: 

 (11.11) 

where α is the regression coefficient, j is the land use index and where P, n and i are as 
before.  

The model gave a good fit to the census-tract population values, with all the 
coefficients having an intuitively reasonable magnitude and sign. However, unless the 
ordinary least-squares solution is constrained, the approach can predict impossible 
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negative population densities and is very sensitive to classification error in the pixel 
counts. A simpler model, used for example in the CORINE Land Cover project (Cornaert 
1993), reallocates the district population figures to every land use category according to a 
plausible scheme of population ratios valid for all districts, such as for example: 
Built-up area (all sub-classes included) 80% 

Agricultural land covers 15% 

Other land covers (but excluding water bodies) 5% 

Since the new maps are based on the land use polygons, this method allows visualizations 
of the population densities which are more detailed than the standard choropleth map of 
population density per census tract. However, the approach only makes sense when used 
with large districts comprising all kinds of land cover and is more suitable for regional 
planning than for strictly urban applications. Finally, it is clear that the reallocation 
process previously presented (Equations 11.9 and 11.10) could be adapted to deal with all 
land cover categories instead of just the distinctively residential ones, and in this form 
would also provide an elegant solution for this scale of analysis. 

Whichever of the approaches presented here is adopted, the result is a quantification of 
the pixel attribute (e.g. a population per pixel) in any zone for which the selected land 
cover can be described by pixel counts. These numbers have considerable use as a layer 
in an integrated GIS, for example to make possible operations such as finding how many 
people live within some arbitrarily area or within a specified distance of some arbitrary 
point or line. Moreover, dasymetric-like mapping highlights urban morphological 
structure and is useful for planning, the collection of urban statistics, spatial analysis, 
simulating the growth of residential areas (Méaille and Wald 1990), the delineation of 
operational agglomerations (Donnay 1994), and for forcing residential contiguity into 
grouping and regionalizing methods (Johnston 1970, Weber this volume). 

11.4 Surface Transformations 

Although the ‘substituted’ or ‘reallocated’ pixel values described in Sections 11.3.2 and 
11.3.3 can be visualized over a raster, they do not constitute a true surface model in the 
sense in which that term is usually employed. To produce surface models from these 
population-per-pixel counts, a further technical step is necessary. In addition, it calls for a 
re-conceptualization from the discrete model given by the data for the original census 
tract objects into a continuous surface, or field, model of population density (Muehrcke 
1972, Peucker 1972, Rimbert 1990, Couclelis 1992). Surface models, particularly the 
digital elevation model, have been widely used in physical geography, but more recently 
they have also been employed as an operational tool in the social sciences (Bracken 
1991). As shown below, the availability of urban data in raster form derived from 
transformations of remotely-sensed images makes the generation of these surfaces both 
easier and more general. 
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11.4.1 Surface Modelling from Rasters 

Surface generation techniques employ a variety of estimation/interpolation methods 
which may be classified according to the type of data used, the form of the ‘interpolant’ 
or fitting function (Okade et al. 1992), and the form of the average weighting used. 
Moreover, the weighting may be distance- or area-based, while the size of the data subset 
is a basis for distinction among area-based methods (Watson 1992). Among the main 
factors which are relevant here, perhaps the most important is the difference between 
exact and approximate interpolants. Exact interpolants reproduce the original data values, 
while approximate interpolation may be considered to be a form of data smoothing. 
Another important distinction must be made between global and local interpolants. The 
former, classically illustrated by the polynomial trend surface, have their form 
determined by all of the data values while the latter use, in turn, only the values within a 
pre-defined neighbourhood of each point. 

Considerable use has been made of raster pixels or lattice-point data to represent 
surfaces. Whether these values are for pixel centroids or grid-line intersections, it is often 
assumed that they represent point-observations from a continuous spatial surface, and the 
interpolation involves finding a function which in some sense best represents that entire 
surface. Nevertheless, to liken a pixel to a point is a gross simplification which usually 
leads to a preference for an approximate surface-fitting function. Moreover, the objective 
in this type of work is not to extract a global trend for the surface, but to generate a 
surface model for whatsoever has been substituted for the pixel land uses. These 
conditions are best met by low-pass filtering in the image domain. 

Image smoothing can be presented as a template technique which, by analogy with 
time-domain convolution in linear system theory is often called convolution (Richards 
1986). Template or window entries, which collectively are referred to as the kernel, are 
defined and then moved over the image row-by-row and column-by-column. The 
products of the pixel values covered by the window at a particular position and the 
template entries are accumulated to produce a new value for the pixel currently at the 
centre of the template. Consequently, a modified image is produced that smoothes the 
values according to the size of the template and the specific values that it contains. For a 
template of dimension W×H pixels, the new value, s, for the central pixel is given by: 

 (11.12) 

where s is the new pixel value, p is the original pixel value, t is the template entry, r is the 
image row index, c is the image column index, h is the template height index; where 

and w is the template width index; where  
With quantitative pixel values, a mean value smoothing uses a uniform template with 

entries for all h, w: 

 (11.13) 

and Equation 11.12 becomes:  
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 (11.14) 

When the pixel attribute is measured on an ordinal or qualitative scale, an alternative 
template technique, which is not strictly a convolution operation, may be used in which 
the pixel at the centre of the template is given the modal class of the pixels covered by the 
template. 

11.4.2 Density Surfaces 

In surface models of population, the census data are regarded as an estimate of an 
underlying, assumed to be correct, distribution of population density. Indeed, if 
population distribution is seen as a continuous scalar field of population density, the 
conventional approach, using choroplethic representations and analyses based on the 
given census tracts, can be seen to be using a set of local integrals on this field in which 
the limits of the integration (i.e. the boundaries of the areal units used) vary arbitrarily 
and may even be unknown. To pose the problem in these terms is to illustrate how 
arbitrary the conventional approach really is and how misleading can be its results. In 
effect, like can almost never be compared with like. 

A partial solution involves the use of regular tessellations, such as grid squares, as the 
aggregation units. Effectively, this gives the same limits of integration for all of the units 
and it greatly simplifies the visualization process (Browne and Millington 1983). A grid-
cell approach implements what in statistics is referred to as the histogram estimator of the 
underlying density field (Silverman 1986, Gatrell 1994). This conceptualization of 
population density as a continuous scalar field in which the quantity mapped formally has 
the dimensions of an areal density (L−2) has a number of analytical and visual advantages 
(Martin 1991). Not least of these is the ability to obtain population estimates by 
integration over any chosen discretization of space, thus allowing population data to be 
combined easily with other data sets. 

The literature presents several attempts to estimate the underlying surface of 
population density focusing, in particular, on the best way to use the area-based aggregate 
data as a basic input into this procedure and without making use of any information of the 
type that might be obtained from remote sensing. An early method, due to Tobler (1979), 
uses a raster approximation as a step in an iterative procedure which creates a minimum 
curvature, volume-preserving surface and is called pycnophylactic interpolation. A 
second method is based on the use of the point centroids of each small census tract. All of 
the population in each of these is initially assumed to be at this point, but is then spread 
out from it according to an adaptive distance-decay function and a varying size window. 
Accumulating these values over a series of grid squares provides a histogram estimate of 
the underlying density surface (Bracken and Martin 1989, Martin 1989, Martin and 
Bracken 1991, Bracken 1994a, Bracken 1994b, Longley and Mesev this volume). These 
two methods are alike in that they attempt to estimate underlying population density 
surface using as evidence just the original census counts and its basic geography. As has 
been indicated, both have clear affinities with kernel density estimation in statistics 
(Silverman 1986). 
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In order to take advantage of the additional information in the land cover/land use 
distribution provided by a remotely-sensed image, and of the population reallocation as 
described in Section 11.3, a smoothing convolution technique can be employed to build 
the density surface. A kernel of fixed size is moved over the entire map, visiting each 
pixel in turn to aggregate the population within that kernel, and then estimating the 
population density for the centre of the pixel as this total divided by the kernel area. This 
is a direct application of equation 11.14, with the window size expressed in meters: 

 (11.15) 

where d is the population density, a is the pixel area, p is the population allocated to any 
given pixel, and where r, c, H, W, h and w are as before. 

This technique was suggested in the 1950’s when it was called the ‘floating grid’ 
technique (Schmid and MacCannell 1955, Porter 1957). The procedure could be 
improved by adopting one or other of the kernel estimators which ensure continuity in the 
resulting surface (Silverman 1986). Although technically a surface resulting from an 
application of this kind of estimator is not continuous, at the scale at which it is 
visualized this is almost an irrelevance: the critical control on the resulting density 
surface is not the form of the estimator used, but the width of the kernel over which it is 
applied, with large kernels giving a greater degree of surface smoothing. 

11.4.3 Potential Surfaces 

The physical concept of potential was originally introduced into the social sciences as the 
“population potential” by Stewart (1941). Many reviews focusing on the 
operationalization and interpretation of his index can be found in both the geographical 
and the economics literature (Rich 1980, Pooler 1987). The potential has been used for 
about 50 years as a measure of aggregate accessibility or as a general measure of relative 
position or location. A scalar field of potential may be further transformed into its 
equivalent vector field and the vectors interpreted in terms of gradients and flows. It can 
also be regarded as a distance-weighted smoothed or filtered version of the density 
surface of dimension L−1 or L−2 according to the distance power used. The general 
expression for the potential is given by Equation 11.16 where the first term, expressing 
the self-potential, has an indeterminacy that must be resolved: 

 

(11.16) 

where pot is the potential value, w is the empirical point value, d is the distance, and i, j is 
the point index in the data set, such that i and  

The generation of a population potential field based on a lattice of valued points was 
first applied at the country level (Nadasdi 1971) and then transposed in raster format to 
the regional and agglomeration levels (Nadasdi et al. 1991). The technique was also 
rediscovered as a ‘new’ cartographic method applied to coarse grid cells at the country 
level by the French statistical agency (Laurent and Tardif 1993). Surface continuity is 
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visually assured by the large distances involved in the computations, but the surface form 
shows peaks and steep slopes in the vicinity of population poles which, in turn, can be 
used to rank central places at regional or country scale (Donnay 1995). Although almost 
all work to date has examined the potential of population, the method allows for potential 
surface generation based on any quantitative pixel value, and this greatly increases the 
number of possible applications in urban planning and urban environmental studies 
(Nadasdi et al. 1991, Donnay 1992, Donnay and Nadasdi 1992, Donnay and Thomsin 
1994). 

The application of the potential to raster data requires a particular operationalization. It 
is virtually impossible to compute the contribution of all of the pixels in an image to the 
potential of every pixel. Because the potential can be considered as a smoothing filter, its 
operationalization in image processing can also be seen as a form of convolution. All that 
we need to do is to fix the parameters of the function, particularly the window size and 
the self-potential term. The contribution to the potential only comes down to zero beyond 
a distance which depends on the range of the variable submitted to the function. 
However, this distance is always very large, tens of times the pixel size. For the self-
potential term, an electrical analogy is often used to avoid a denominator equal to zero. 
This suggests introducing a distance equal to the half-ray of the circle of same area as the 
object on which the potential is computed. In this application, the object is a pixel of 
known and constant area, so the analogy is easily implemented. These considerations lead 
to a potential function for a raster as: 

 

(11.17) 

where pot is the potential value attributed to the pixel at the centre of the template, p is 
the population allocated to residential pixels, a is the pixel constant area, d is the distance 
between pixels, r, c are the indices of the central pixel in the template (refer to image row 
and column indices), w is the template width index; with and h is the 
template height index; with  

11.5 Example Applications 

11.5.1 Creating a Surface of Population Density 

Figure 11.1 shows some results from a dasymetric mapping and surface transformation of 
the 1991 population census of Northern Leicestershire, UK (Langford and Unwin 1994). 
The original census data used were at a very coarse level of aggregation (the ward), and 
these observations were first densified using the techniques outlined in this chapter. First, 
a Landsat Thematic Mapper image was registered onto the same geographical 
coordinates as the census data and then a standard principal components analysis (PCA) 
transformation of these data was used as input to a supervised maximum likelihood 
classifier to identify pixels that could be classed as residential. Second, using Equation 
11.1 the population figures were allocated to the residential pixels falling within each 
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ward to produce a crude dasymetric map of the population-per-pixel. It should be stressed 
that although it is not easy to visualize this population-per-pixel ‘map’ is useful in its own 
right as a layer in further GIS based operations and is a far better representation of the 
population over this area than is the standard choropleth. Finally, a surface transformation 
according to Equation 11.15 was applied using kernel areas of 0.25km2 and 1.0km2 and 
the results visualized in a variety of ways using the UNIRAS™ graphics package. The 
displays shown in Figure 11.1 uses a fish-net representation of the computed density 
surface onto which has been superimposed a shade sequence according to contours of the 
density. 

11.5.2 Combining Potential Surfaces 

Figure 11.2 shows potential surfaces of built-up intensity and ecological intensity, 
respectively (Donnay and Nadasdi 1992). They are processed from a classified high 
resolution SPOT-HRV multispectral plus panchromatic image (re-sampled to 10m 
resolution) covering the urban agglomeration of Maastricht, in the Netherlands. A grey-
scale slicing into five levels is provided for printing purposes only, but the original 
images were generated with continuous values. In order to compute the potential of built-
up intensity, built-up pixels are weighted by three values of the ‘floor-area index’. 
Similarly, pixels classified as vegetation and water bodies are weighted by several levels 
of ecological interest (ordinal scale) to generate the potential of ecological intensity. 

Broadly speaking, the built-up intensity can be seen to be the inverse image of the 
ecological intensity, so the combination of the two potential images shows limited 
discrimination in the centre of the town and in the countryside. In the suburbs, on the 
other hand, the environment is submitted to a strong pressure of the built-up area. This 
competition is illustrated by a cross-classification of the two potential surfaces (Figure 
11.3). Two classes of pressure (high and medium) have been highlighted, as the very high 
pressure in the city centre and the very low pressure in the countryside are meaningless in 
this context. 

Other combinations of potential surfaces have been performed in urban applications. 
Some merge land cover potentials to highlight urban structures, while others look for 
correlations between selected potential surfaces and further surface phenomena such as 
the urban heat island (Cornélis et al. 1998). At the regional scale too, the combination of 
potentials generated from low spatial resolution classified images has proved useful to 
cluster patterns of land cover and to identify landscape units and biophysical regions 
(Binard et al. 1997). 

11.6 Conclusions 

It can be seen that, although they apparently remove the uncertainties related to the 
modifiable areal unit problem (Openshaw 1984), and facilitate the integration of census 
data with other kinds of information, approaches which resort to satellite remote sensing 
substitute a whole set of other uncertainties related to the methods used. Clearly some of 
the methods we have introduced provide new and original ways to examine urban 
geographies, but as yet there is little accumulated experience in their use that might 
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enable a balanced assessment of their utility to be made. There have, however, been a few 
studies which have attempted to assess the relative efficiency of various methods used to 
estimate population from a classified image. Langford et al. (1993), for example, show 
that the dasymetric method of estimating population density using remote sensing data 
will almost always improve on the simple areal weighting approach used in most GIS. 
The impact of differing levels of classification error on the accuracy of the population 
estimates obtained has been also investigated  

 

Figure 11.1: Dasymetric mapping and 
surface transformation of the 1991 
population census of Northern 
Leicester (UK). Top: 1.0km2 window. 
Bottom: 0.25km2 window. 
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Figure 11.2: Potential surfaces 
generated from land use data derived 
from a remotely-sensed image 
(Maastricht, Netherlands). Left: built-
up intensity, Right: ecological 
intensity. 

 

Figure 11.3: Cross-tabulation of built-
up and ecological potentials showing 
competition between the land uses in 
the suburbs of the town. 
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by Fisher and Langford (1996), who demonstrate a surprising relative lack of sensitivity 
of the dasymetric method. Even though individual pixels may have a weak probability of 
being correctly assigned to a land use category, when aggregated into a target zone for 
density estimation, the relative frequencies within these target zones do not degrade 
substantially. 

Dasymetric population-per-pixel estimates have utility in many GIS operations, such 
as polygon overlay and distance buffering, which involve areal aggregations of these 
pixel values. Estimates of the underlying surfaces of population density or potential using 
the population-per-pixel values and an appropriate transformation function take 
advantage of the increased stability of such regional quantities. These can be used to 
produce intuitively reasonable values which can be displayed in a variety of ways and 
compared with other urban indicators, such as accessibility and land values. Finally, the 
additional adaptability of the potential surface model allows it to cope with ordinal as 
well as quantitative attributes, dasymetric population or other census data, urban indices, 
or even physical data. This provides a robust exploratory tool for planning and 
environmental analysis in the urban milieu. Together, the dasymetric method, spatial 
density estimation and potential field modelling have the added advantage that they 
require no special software—they can be implemented in almost any raster GIS using 
standard functions. 
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CHAPTER 12 
Geographical Analysis of the Population of 

Fast-Growing Cities in the Third World 
Yves Baudot 

12.1 Introduction 

The world’s human population is growing rapidly: currently estimated to be about 5.5 
billion, it is projected to reach 10 billion by the year 2050. Its geographical distribution is 
also changing, with the fastest rates of growth occurring in less-developed countries. In 
Africa, for example, the total population increased five-fold since 1800. This is expected 
to rise to thirty-fold during this century. By contrast, while developed countries presently 
account for 25% of world’s population, this is likely to decline to 15% by the early part 
of this century. Much of the projected growth in population will be centred on the world’s 
cities—especially large cities (i.e. those with a population of greater than one million 
inhabitants). In this respect, the urban population, currently estimated to be about 2.3 
billion people, is expected to double by 2020. Perhaps more significantly, it is predicted 
that 93% of this increase will be associated with Third World cities. If this is the case, 
approximately two billion people will be added to these already congested urban areas 
during the lifetime of just a single generation. Not surprisingly, therefore, a recent report 
by the World Bank concluded that urban growth in developing countries is one of the 
most explosive problems for the beginning of the next century. 

Effective management of the urban population problem demands good diagnostic 
tools. Accurate and reliable information is also required to quantify the current situation 
and to predict future trends: information on patterns of land use is one obvious example, 
while basic data on population (including its spatial distribution and rates of growth) is 
another. The two are, of course, interlinked since population growth creates pressure on 
the land in terms of increased demand for new settlements, supporting infrastructure (e.g. 
the supply of water, food and electricity, and the provision of transportation and waste 
disposal facilities) and employment. Unfortunately, conventional sources of information 
on both land use and population are frequently inadequate (Devas and Rakodi 1993). For 
Third World countries in particular, the necessary data are often outdated, unreliable or, 
in some cases, simply unavailable. Remote sensing techniques offer an important, 
alternative source of data in this context. Since several of the other contributions to this 
volume have focused on deriving information on urban land use from remotely-sensed 
data, this Chapter will consider the use of remote sensing to analyze the urban population. 



Before doing so, however, a number of considerations specific to an analysis of cities in 
less-developed countries will be examined. 

12.2 Information Related to Land Use 

12.2.1 The Concept of Land Use 

The term ‘land use’ is central to much of the discussion that follows, yet it has a 
somewhat different meaning for urban planners and for remote sensing specialists. To 
urban managers, for instance, the term ‘land use’ incorporates information on the 
function (economic, social, etc.), administrative status, and ownership of a land parcel. 
Remote sensing specialists, on the other hand, frequently employ the term quasi-
interchangeably with the somewhat narrower notion of ‘land cover’. Since the data 
gathered by remote sensing devices cannot provide all of the information used by urban 
planners to define and characterize land use, it follows that satellite remote sensing 
should not be used as the sole source of information in attempts to map land use. 

12.2.2 Spectral Information 

The sensors mounted on-board Earth-orbiting satellites record data about the spectral 
reflectance properties of the Earth surface; that is, they measure the amount of surface-
leaving radiation in different parts of the electromagnetic spectrum. In general, the 
information that can be derived from these data relates to the surface properties of the 
features being observed. For instance, if the object is a house, the detected spectral 
reflectance is primarily controlled by the nature of the materials used to construct the 
roof, as well as its physical condition and geometric structure (e.g. flat or pitched roof). 
Urban managers, on the other hand, may require information on type of the building, its 
date of construction, and number of storeys. Despite the inherent limitations of remotely-
sensed data in this respect, several broad categories of land use can be determined from 
measurements of spectral reflectance. In particular, green vegetation within the urban 
fabric (i.e. urban open space) is easily identified using data recorded at near infra-red 
wavelengths. The spectral contrast between vegetation and man-made structures, such as 
buildings and roads, in this part of the spectrum provides valuable information on the 
patterns of land cover that can, in turn, be used to distinguish between and to infer 
different categories of land use. 

12.2.3 Spatial Resolution 

The spatial resolution of current satellite sensors is perhaps the limiting factor for urban 
analysis. When this study was carried out, data from the new generation of very high 
spatial resolution satellite sensors were not widely available, so that SPOT-HRV 
Panchromatic (P) data (10m spatial resolution) were the finest data available. Since 
SPOT-HRV P data are, by definition monospectral, they were merged with the slightly 
coarser spatial resolution (20m) multispectral data (XS) to maximize the information 
content. 
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Spatial sampling, however, is not the only parameter influencing the effective spatial 
resolution of the sensor. Although SPOT-HRV P data are recorded at a nominal 10m 
sampling interval, the radiance incident on each detector in the CCD array originates 
from a somewhat larger area. In fact, this area is often two to three times greater than the 
nominal Instantaneous Field-of-View (IFOV) of the sensor, producing a perceptible 
‘blurring’ effect in the resultant images. The effect is due largely to perturbations induced 
by scattering of the incident and exitant radiation within the atmosphere. It is often 
especially pronounced over urban areas, due to the generally higher levels of atmospheric 
pollution (e.g. higher levels of particulate matter from urban emission sources) over these 
regions. The effect is not confined to data from the SPOT-HRV instruments, but affects 
all satellite sensors. For instance, the KVR devices on board the Russian KOSMOS series 
of satellites have a nominal spatial resolution of 2m–5m: comparisons made between 
KVR and SPOT-HRV Pan data, however, indicate that the improvement in the visual 
quality of the former over the latter is not a linear one (in crude terms, the images are not 
‘twice as good’). Even so, as KOSMOS images become more readily available, they will 
undoubtedly form an important data source for urban studies. 

There are two other aspects of sensor spatial resolution that require consideration, 
namely 

1. the impact of spectral mixing within a pixel, and 
2. the ability to derive quantitative information on the morphological properties (i.e. size 

and shape) of discrete land parcels. 

Many image-analysis techniques attempt to distinguish between and to identify discrete 
objects within the observed scene on the basis of their spectral reflectance properties. 
Where a single pixel covers two or more spectrally distinct land-cover types, however, a 
mixed spectral signature will result. This may or may not appear similar to the spectral 
response of the dominant land-cover type within that pixel, depending on the relative 
proportions of the different land-cover types present and their individual spectral 
reflectance properties. In general, a pixel will only have a ‘pure’ spectral signature (i.e. 
representative of a single land-cover type) where the land parcel centred on that pixel is 
at least twice the size of the sensor’s IFOV. This implies that, for merged SPOT-HRV 
P+XS data, objects smaller than ~30m×30m are unlikely to exhibit a pure spectral 
response. Consequently, special care is required when analyzing images acquired over 
urban areas, since these typically have a very complex spatial structure. It assumes even 
greater significance where the materials used in building construction are derived from 
local sources and are therefore likely to be spectrally similar to bare soil and rock 
outcrops in the surrounding area. 

The second issue outlined above concerns the analysis of the morphological properties 
of discrete land parcels within the scene, perhaps to assist in the identification of the 
dominant  
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Table 12.1: Example of a land-cover classification 
scheme (Marrakech). 

1. Water, shadow 9. Asphalt, ballast 

2. Vegetation 10. Trees 

3. Irrigated vegetation 11. Waste lands 

4. Crops (various types) 12. High-density housing 

5. Exposed soil (dark) 13. Medium-density housing 

6. Exposed soil (light) 14. Mixed housing and gardens 

7. Highly reflective soils & pebbles 15. Gardens 

8. Concrete 16. Undefined 

land use in that region or simply for mensuration purposes. In this context, it should be 
noted that severe problems can arise where the objects of interest are similar in size to the 
spatial resolution of the sensor, and that mensuration is hazardous unless the objects at 
least twice this size. Given this, individual buildings can usually not be consistently and 
accurately delineated in images acquired by the SPOT-HRV sensors in either XS or P 
modes. Depending on their size and spectral contrast with the surrounding area, some 
buildings may be identified, while others may not. On the other hand, while individual 
houses cannot be always be identified, groups of houses and city blocks can often be 
delineated and, in many instances, interpreted in satellite images. 

12.3 Land Use Analysis 

12.3.1 Spectral Classification 

Digital images acquired by satellite sensors are frequently processed using supervised, 
multispectral classification algorithms in order to derive thematic maps. In some cases 
these can be a reasonable substitute for conventional land use maps (i.e. ones based on 
detailed ground survey). Unfortunately, the relationship between many types of land use 
associated with urban areas and their spectral properties in satellite sensor images is, at 
best, complex and indirect (see also Barnsley et al., Chapter 7). In such circumstances, it 
may only be possible to generate a land-cover map using per-pixel, image classification 
techniques. To illustrate this point, consider the spectral confusion that can occur as a 
result of either the same physical material being used in the construction of two very 
different urban features, or two surface materials, with very different physical 
characteristics, having similar spectral properties (taking into account the spectral and 
radiometric characteristics of the satellite sensor). In the first instance, one might 
envisage considerable ambiguity between an asphalt-surfaced car park and a multi-storey 
building for which the roofing material is also asphalt. In the second instance, it is often 
very difficult to distinguish between concrete surfaces in shadow and water, or between 
bare soils and buildings constructed from compacted-earth. 
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We have tested several conventional methods of supervised image classification and 
have proposed a number of alternative approaches (Baudot 1990, Baudot 1995). While in 
one case—a study of the city of Marrakech in Morocco—it was possible to use 
supervised image classification to distinguish between as many as 15 different types of 
land cover (Table 12.1), none was completely successful in solving the intrinsic problem 
of spectral confusion between some of the fundamental land cover types found in urban 
areas. The resultant classes are therefore often poorly defined in terms of the real 
requirements of the end-user. This information may nevertheless be useful for further 
analysis, but it cannot be considered to be an truly adequate end-product. 

Further information on urban areas, for instance on land use, may be obtained through 
an analysis of the spatial arrangement of the principal objects/land parcels present within 
the observed scene. At present, however, automatic structural (or syntactic) pattern-
recognition techniques are at a comparatively early stage of development (see Barnsley et 
al., Chapter 7this volume). While they are often able to recognize elementary texture and 
patterns, they still fall short when dealing with the much more complex textures and 
structures that are characteristic of real urban areas. The level of research currently being 
devoted to this topic gives us considerable hope for the development of operational 
algorithms in the near future. For the present, though, visual interpretation is still perhaps 
the most efficient way to extract the necessary information, particularly as far as urban 
analysis is concerned. In this context, visual interpretation of digital, multispectral images 
is based on an evaluation of tone and colour, as might be expected, but special emphasis 
is placed on the use of textural and structural information. 

In a study of Marrakech (Baudot 1992), we focused visual interpretation on classes for 
which the spectral classification yielded relatively low accuracy values (Table 12.2). 
Thus, large institutional (service) buildings were identified directly from the image data, 
while their actual function was determined from external sources (e.g. city maps, 
telephone directories and field survey; Figure 12.1). Large ‘unbound’ areas with single, 
specific functions (e.g. cemeteries, military zones and golf courses) were also delineated 
in this way. Obviously, the cues employed have to be adapted to the specific land use 
categories found in the city being examined. The most important part of the interpretation 
process is segmentation of the observed scene into discrete, homogeneous spatial units. 
The delineation of the boundaries of these homogeneous areas, as well as a coarse 
determination of their dominant land use, was performed using a merged SPOT-HRV P 
and XS false-colour composite image, while information on their content was obtained 
from large-scale, oblique aerial photographs and field survey. Delimitation of the alluvial 
plains was added to remove any spectral ambiguity that might exist between open water 
bodies and shadows cast within the urban area. Each area was subsequently associated 
with a concise description of urban typology (e.g. building type and size, number of 
storeys, and estimated age) and with a population-density value estimated from aerial 
photographs and field survey. 

12.3.2 Combined Analysis 

It has been noted that many urban planners and managers found that the information 
provided by the land cover maps derived from remotely-sensed data was of relatively low 
significance to their day-to-day activities, although they appreciated the fine spatial detail 
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that it offered (Baudot 1990, Baudot 1995). On the other hand, visual segmentation of the 
image into homogeneous land-use parcels was felt to meet many of their information 
needs,  

Table 12.2: Urban categories observed by visual 
interpretation (Marrakech). 

1–3. Modern housing (3 different densities) 17. Schools 

4–7. Traditional housing (4 different densities) 18. Hospitals 

8–12. Unplanned settlements (4 different densities) 19. Other services 

13. Main road network 20. Hotel 

14. Main rail network 21. Gardens of hotel 

15. Alluvial plain 22. Cemetery 

16. Industry (and related out-buildings) 23. Military zone 

 

Figure 12.1: General flow chart of the 
data-processing chain. 

although the accuracy with which the parcels were delimited was insufficient. By 
merging both documents (i.e. the land-cover map and homogeneous housing areas), 
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however, it was possible to combine their respective strengths. The resulting classes were 
judged to be more compatible with the perceived user requirements than either data 
source alone. The task of combining the two data sets was achieved using a set of logical 
rules to recode the large number of potential combinations of land-cover classes and 
housing area units in a few meaningful ones. For example, a pixel of ‘woody vegetation’ 
(land cover classification) in a ‘residential’ area (photo-interpretation) was re-classified 
into the ‘tree-garden’ land-use class. Likewise, a pixel identified as a ‘highly reflective 
mineral’ in the land-cover classification was re-classified into the ‘urban building works’ 
land-use category if located was in a ‘residential’ area, or into the ‘saline soils and 
pebbles’ category if was located in an undeveloped area. 

12.4 Information about the Population 

12.4.1 Traditional Sources 

Cities are sometimes described as a concentrations of people. Indeed, most of the facts 
(and problems) about urban areas are related to their inhabitants. Precise knowledge of 
the population is, therefore, mandatory for almost any management or planning 
operation. This requires information on both basic (e.g. how many inhabitants are there 
and where do they live?) and more specific (e.g. water consumption, income, and 
education requirements) issues. Exhaustive, demographic censuses traditionally form the 
main source of this information. Unfortunately, the organization of a full national census 
is so complex and expensive that, in many countries, even the decennial survey 
recommended by United Nations is not always achieved (Brugioni 1983). In addition, the 
accuracy of official censuses is known to be highly questionable. Moreover, when the 
census results do become available (usually 2–3 years later), they may already be 
obsolete, especially in countries for which annual growth rates of 10% are not unusual. 
Consequently, there is a need for an alternative, fast, inexpensive and reliable source of 
demographic information. This is usually provided by sample inquiries. This approach, 
however, can only provide an estimate of a variable—for instance, the average number of 
children by household (Cochran 1977). To extrapolate these estimates to the whole 
population (i.e. how many children are there in the city or country as a whole?), 
information on the total number of households is also required. Unfortunately, this is 
often difficult to obtain, except perhaps by means of remote sensing. 

12.4.2 Using Remote Sensing for Population Estimation 

Conventional aerial photographs have been used for many years to provide valuable 
information in some countries about human settlements (Adeniyi 1983). They are 
commonly used to define the boundaries of census tracts, but they can also be employed 
to make direct estimates of population densities (by counting the number of dwelling 
units per unit area of land) and even to infer socio-economic information from an analysis 
of residential typologies. The latter approach is based on the hypothesis that the 
populations living in areas showing near similar housing conditions will have 
homogeneous social and demographic characteristics. Consequently, an estimate of the 
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total population within a homogeneous housing district can be obtained by estimating its 
average population density, and multiplying this by its areal coverage. Naturally, this 
approach requires recent aerial photographic coverage in fast-growing cities. 
Unfortunately, in most less-developed countries, where the rates of population growth are 
often greatest, recent coverage is more often the exception than the rule. Moreover, the 
organization of dedicated over-flights (where these are possible) will tend to inflate the 
budget of a method that is intended to be inexpensive. 

Satellite remote sensing presents obvious advantages: potentially, data are available 
for any city in the world, even for foreign analysts. Existing archives can be used to study 
change over time; their cost is reasonable, if not negligible. It should be evident, 
however, that given all of the limitations mentioned the preceding section (12.4.1), 
satellite sensor data cannot provide all of the information required about the 
characteristics of the urban population. An operational approach must, therefore, involve 
complementary information sources. In this context, we have developed and applied two 
approaches to our test sites. The first relies heavily on the satellite sensor data, with only 
a few field checks to provide a rough estimate of the number and spatial distribution of 
the inhabitants in a city, and a few indicators that are used to estimate a number of social 
parameters. This approach was applied to two Moroccan cities (Marrakech and 
Mohammdia; the latter in an operational situation). The choice of method was imposed 
by the difficulty of organizing demographic field surveys in Morocco. Nevertheless, 
comparisons with independent data sources suggest that the ‘uncontrolled’ estimates are 
highly credible. The main limitation of this method lies in its inability to provide 
information on the confidence interval of the derived estimates. 

The basic method outlined above was taken a stage further in a study of Ouagadougou 
(Burkina Faso; approximately one million inhabitants in 1993). In this instance, the 
satellite sensor data were used as the spatial base around which to organize the complete 
demographic survey. In this approach, the data processing tasks applied to the remotely 
sensed images represent only a small fraction of the full set of operations employed. This 
application was initially envisaged as a methodological pilot study, but its main findings 
were then employed in various operational applications that were defined by local users. 

12.4.3 Method of Sampling 

The survey is based on a two-stage stratified sampling scheme (Figure 12.2). The city is 
divided into discrete strata based on the urban typology defined using the merged SPOT-
HRV P and XS images. In each stratum, a sample of households to be interviewed is 
drawn. A two-stage sampling scheme is used in order to reduce travelling costs (Dureau 
et al. 1991). In it, we select a few sites (first stage) and, within each site, a selection of 
land parcels (second stage) to be examined. For each site, we take a vertical aerial 
photograph using a small-format camera mounted on a light aircraft. The location of the 
photograph is controlled and recorded using dedicated navigation software running on a 
laptop PC linked to a GPS receiver. These photographs serve as means of locational 
support during the more intensive field survey, but are also useful in determining the land 
parcel sizes used in the population density computations. 
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A questionnaire survey is then administered to selected households. This covers 
various topics including demography, equipment, revenues, consumption and mobility. 
Variances  

 

Figure 12.2: Overview of the 
population estimation method 

observed at both sampling levels allow confidence intervals around the estimated mean 
values to be computed. The level of accuracy obtained differs according to the variables 
that are studies, but was approximately 90% (at the 0.95 confidence level) in this pilot 
study. Simulations show that this sampling scheme, optimized according to the observed 
stratum’s variances, should reach an accuracy of 95% with a sample of about 800 
households grouped over 200 sites. It is possible (and efficient) to optimize the sampling 
scheme to achieve the highest possible accuracy, or the lowest possible cost, or any 
compromise desired between these two aims (Cochran 1977). The principle is to adjust 
the sampling rates at the first and second levels to equalize the expected accuracies: if a 
stratum is homogeneous, fewer samples are required. More sophisticated sampling 
schemes, based on cost-modelling, were tested to achieve the optimum cost-efficiency 
ratio. However, this approach complicates the practical organization of the survey, 
sometimes for only marginal improvements in overall accuracy. In practice, we suggest 
that one part of the available budget is used for a preliminary survey without optimization 
(proportional allocation). The sampling scheme employed in the second part of the 
survey can then be adapted to take into account the variances observed during the first 
stage (Neyman’s allocation). This approach does not necessarily lead to the best 
performance-cost ratio, but it avoids the possible errors obtained by a sampling scheme 
based on incorrect variance estimates. All variables are expressed as densities. 
Extrapolation to the whole stratum—and thence to the whole city—is straightforward. 
This is an important advantage of this approach compared with other sampling methods. 
Last, but not least, as the stratification criterion is spatially well-defined (the strata are 
well-defined areas), the results of the survey can also be readily mapped. For instance, 
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Figure 12.3 shows a map of the distribution of population in Ouagadougou, using 
hatching densities proportional to population densities. 

 

Figure 12.3: Map of population 
density in homogeneous housing areas 
for Ouagadougou, Burkina Faso, 1993. 

12.5 Using Demographic Information for Land-Use Management 

12.5.1 The Concept of Spatial Disaggregation 

The two methods described earlier (the rough estimate provided by calibration of 
homogeneous housing areas and the complete demographic survey based on a stratified 
satellite-sensor image) provide an estimate of the number of people living in 
homogeneous areas and, in the second case, a range of more complex socio-economic 
indicators (e.g. income, consumption, and age structure; Figure 12.3). These results 
pertain to discrete, homogeneous areas within the city under investigation. When 
displayed as maps, these results are not quite the same as conventional cartographic 
products based on census tracts, but they are usually closer to reality than those based on 
administrative segmentation which is often somewhat artificial. Per-area mapping is 
obviously one of the most widely-used forms of thematic cartography, but it isn’t always 
the most efficient. Comparisons with other maps based on different area segmentations 
enjoins the application of area weightings that are not always realistic (Openshaw and 
Flowerdew 1987). Population maps derived from remotely-sensed data permit a far more 
efficient method of analysis, namely using the map of homogeneous housing areas and 
the land-use map to determine the number of pixels allocated to housing land-use 
categories. In doing so, we implicitly accept the hypothesis that the population within a 
given homogeneous area is located in the built-up sections of that zone. Accordingly, the 
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total number of inhabitants in a given area, divided by the number of housing pixels in 
that area, is attributed to each of those housing pixels (where differentia- 

 

Figure 12.4: Spatial disaggregation of 
demographic data on housing pixels, 
followed by spatial aggregation by 
river basin. 

tion between housing types is possible on the classification, adaptive weighting schemes 
are possible). This process is applied to each housing area, providing a ‘population-per-
pixel map’. 

This kind of document, although not new (see Wright (1936), for example) and 
sometimes called ‘dasymetric map’, is not commonly used, but proves very useful indeed 
(see Donnay and Unwin, Chapter 11, this volume). It gives a precise representation of the 
actual distribution of the population, but above all, it gives the users the ability to analyze 
this information after re-aggregating it on the most appropriate spatial base. Figure 12.4 
illustrates the concept of disaggregation from the information provided on census tract 
basis to a per-pixel map, followed by a re-aggregation on an area defined by the limits of 
a hydrological basin. The ability to assess the number of inhabitants on any spatial base is 
especially important for location-allocation problems. On the test-site of Mohammdia 
(Morocco), we have computed the number of inhabitants affected by a given 
concentration of industrial air pollution. On the Ouagadougou test-site, we have 
demonstrated the potential to determine the amount of population (and related production 
of dirty water) influencing one hydrological basin, in order to calibrate the construction 
of a network of sewage and water-purification stations. 

12.5.2 Application to Modelling 

The potential of population-per-pixel maps was also illustrated for Ouagadougou in a 
simulation of the optimum location of 10 water-supply terminals for the peripheral 
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districts of the city. In the outskirts of Ouagadougou, fresh water is provided at free-
access water  

 

Figure 12.5: Model of decreasing 
availability used for the location of 
fresh water terminals in Ouagadougou. 

terminals. People living in the close neighbourhood of a terminal serve themselves, while 
water-carriers supply water to distant locations. The price of the water provided is not 
related to the distance. Thus, rather than a model of cost, we used a model of availability. 
People living near an existing water terminal are provided with water directly (maximum 
availability). As the water-carriers have to supply all possible locations around the 
terminal with a given amount of water in their tank, the potential availability decreases 
with the squared distance from the source. One considers that 1.5km is the maximum 
distance allowable for daily usage. The model of availability is thus summarized in 
Figure 12.5. 

The model for the location of water supply must take account of numerous properties. 
For instance, the model should not allocate multiple, closely-located water terminals in 
densely populated sites; rather it should indicate the requirement for greater output of 
water from a single sites in such circumstances. In other words, once a location is 
selected, the population of its hinterland should not be taken into account again during 
the selection of other possible water-terminal sites. Information on land use is also 
important, especially in urban areas, since some locations are simply not appropriate sites 
for water terminals. 

We use the map of population-per-pixel and the model of availability to compute a 
continuous surface of potential water supply. For each possible site (i.e. for each pixel of 
the land-use map), the total population within a radius of 1.5km is calculated, weighted 
by the distance/availability model. In this particular study of Ouagadougou, only the 
population located outside the peripheral road are considered. Ten sites of highest 
potential water supply are selected on the 10 highest local maxima of this surface. The 
final location of each water-terminal is then refined using the land use map and a digital 
terrain model, and the potential demand for this location is re-computed. For each site, 
the total number of inhabitants living within a given distance is determined in order to 
calibrate the output and infrastructure of each station (Table 12.3). Figure 12.6 shows the 
result of this allocation. 
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12.6 Accuracy of the Estimation 

12.6.1 Requirement for Quality Assessment 

In most instances where spatial data are used within a GIS, an assessment of the quality 
of these data should be performed. Data quality not only embraces the general accuracy 
of  

Table 12.3: Allocation of the population to the 
proposed water terminals around the periphery of 
Ouagadougou. 

Site # 0≤d≤0.5km 0.5≤d≤1km 1≤d≤2km 0≤d≤2km 

1 23399 13294 4223 40916 

2 24175 20183 10802 55160 

3 18947 11480 72 30499 

4 21206 18881 7237 47324 

5 17909 5873 186 23968 

6 19390 17724 3378 40492 

7 17613 22692 4610 44915 

8 17232 8226 9650 35108 

9 13317 12123 1034 26474 

10 9875 1207 3001 14083 

Total 183063 131683 44193 358939 

(%) 51.0 36.7 12.3 100.0 
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Figure 12.6: Location of 10 water 
terminals optimizing the supply of 
fresh water to the outskirts of 
Ouagadougou. 

the input data, but also complete documentation of the lineage of the results output from 
the analysis of those data. This is especially important when the output data are intended 
for use in subsequent processing stages. The propagation of errors in GIS models is not 
trivial or unimportant and should be taken seriously by all GIS analysts. Regrettably, 
quality assessment is not yet common practice among GIS practitioners—both suppliers 
and users. In the context of this study, we have attempted, as far as practically possible, to 
document the quality of our results. Unfortunately, this is not always an easy task. 

12.6.2 The Traditional Approach 

Classification Accuracy 

The population estimate, obtained via the methods described in the previous section, 
derives from a satellite-based land use classification/segmentation and from a stratified 
sampling survey. The accuracy of a land use classification is usually expressed in terms 
of a confusion matrix. This can be used to assess the general quality of the classification, 
which is sometimes summarized by an overall precision index (percentage of correctly-
classified pixels, Kappa coefficient, etc.). In terms of the typical classifications schemes 
employed with respect to images of urban areas, some classes may only represent a very 
small part of the total area but may nonetheless be very significant in the planning 
context. In such situations, the normal statistical requirements—i.e. a sufficiently large 
sample size and the same sampling rate for each class—can place unrealistic constraints 
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on the exercise. Moreover, intensive field survey can often be problematic in some urban 
areas, where accessibility is inhibited either for cultural reasons (e.g. in traditional 
housing of Muslim countries) or for security reasons (e.g. in the slum districts of certain 
cities). 

Sampling Accuracy 

The accuracy of a random sample is related to the variance of the population and to the 
sample size. It is usually expressed in terms of the variance of the estimate and is 
relatively straightforward to calculate even where a relatively complex model of 
stratification and/or multiple levels has been employed. A problem with this form of 
accuracy estimation is that it is based on the hypothesis of that the sampled variables are 
normally distributed. It is not always easy to verify such hypothesis. For our test sites, 
several of demographic variables do not conform well to the normal distribution model. 
The effects of such a bias on the resultant quality assessment are difficult to predict. 

Other Error Components 

In spatial data bases, the position component of the information is also important. If the 
satellite data are not perfectly geo-referenced, even a properly classified pixel may be 
incorrectly interpreted due to residual mis-registration. Again, it is not always simple to 
separate the effects of attribute errors from those related to positional accuracy, especially 
when very small parcels of land are concerned. 

One other spatial aspect relates to the spatial base used in the analysis. Some variables 
are easily defined in a geographical system. For example, crop types can be related to 
their associated agricultural land parcels, housing functions to the footprint of a the 
corresponding buildings, etc. However, it is generally much more difficult to assess the 
location of the human population: it is by nature mobile (the daytime and night-time 
distributions may be very different in some districts). Typically, demographic variables 
are gathered and referenced by household, and households are assigned to a precise 
dwelling. Unfortunately, these schemes are not always very representative in the context 
of Third World countries. In many cases, the notion of ‘household’ is fuzzy, while shared 
dwellings (multiple occupancy) is common. It is particularly difficult to cope with these 
kind of inaccuracies in deriving an estimate of global quality. 

12.6.3 A More Pragmatic Approach 

If the aim is to develop an operational system, the final products have to be conform to 
the user’s requirements. Usually, the user is not interested by the quality of intermediate 
results such as the land cover/land use classification and the sampling survey, but the 
possible usage of these data may be of value. Most often, the user will prefer a pragmatic 
expression of the expected accuracy rather than a complex value expressed in statistical 
terms, even if the latter is more complete. We therefore suggest that users should also be 
provided with an easy-to-understand assessment of overall quality. For instance, the 
general accuracy of the final estimated variable (e.g. the amount of fresh water required) 
might be expressed as the difference observed for selected sample areas (independent of 
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the sample used to derive the estimate) between the values announced by the proposed 
GIS model and a reference obtained by field inquiry. 

12.6.4 The Propagation of Errors 

Theoretical models of propagation are available, but their applicability is not 
straightforward or self-evident where complex GIS models are concerned. The main 
interest in these models is to highlight the principal sources of errors that contribute to the 
final results. On this basis, we estimated the relative importance of errors in the initial 
land use/land cover classification (generating locational errors) and those arising from the 
demographic sampling (treated as attribute errors), and tested their mutual interaction 
using Monte-Carlo simulation. The simulation shows that improvements in the accuracy 
of the demographic estimate (attribute) are more significant in terms of the accuracy of 
the final product than similar improvements to the land cover/land use classification. To 
place this evaluation in a strictly operational context, the analysis should also integrate 
the marginal cost of improvement for each type of error. In this case, the cost needed to 
improve the accuracy of the demographic field survey is generally much higher than that 
required to achieve a one percent gain in classification accuracy. 

12.7 Conclusions 

In developing countries, the growth of cities is startling and demands special attention. 
Whatever the form of the proposed solution, it will inevitably require efficient diagnostic 
and simulation tools. It is self-evident that many of the problems facing Third World 
cities (and hence their solutions) are related to economic, social and political factors, but 
land-use management cannot be neglected if sustainable development is to be achieved. 
A city is a concentration of human beings in which the population not only acts on the 
city, but is also influenced by it. An integrated approach to urban development cannot 
therefore ignore the human population component. 

Remote sensing has proved its ability in various application domains to provide 
valuable information about land use. Urban environments are often considered too 
complex to be analyzed by satellite remote sensing and, indeed, the spatial resolution of 
current satellite sensors means that they are not particularly well suited to the task. On the 
other hand, in many situations remote sensing is simply the only available source of data. 
In fast growing cities, if the information is not recent, it is useless. That said, the 
information provided by current satellite sensors is probably best adapted to the broad-
scale analysis of large cities, rather than to detailed investigation of a few city-blocks. 
Nevertheless, the rising demand for global structure plans for Third World cities augurs 
well for the application of remote sensing to urban areas in the coming years. 

As stated earlier, the human population in urban areas deserves special attention, but 
traditional information sources often fall short of the basic requirements. While satellite 
remote sensing cannot provide demographic information directly, when used in 
conjunction with other data and integrated methods of analysis it has considerable value. 
High resolution satellite images, in particular, can be used to set up sophisticated 
demographic sampling surveys. After that, the same data can be used to generate land use 

Geographical analysis of the population of fast-growing cities in the third world       223



information, in order to permit efficient spatial analysis. The potential of such 
information for urban management seems as wide as the potential of the GIS tools used 
to exploit it—only limited by the imagination of the users. 
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CHAPTER 13 
Remote Sensing and Urban Analysis: A 

Research Agenda 
Paul A.Longley, Michael J.Barnsley and Jean-Paul Donnay 

13.1 Challenge to Remote Sensing Analysis 

The European Science Foundation meeting on which the chapters of this book are based 
took place at an interesting and exciting period in the development of urban remote 
sensing. In some senses, the meeting came too early in that it predated both the launch of 
the ‘new generation’ of very high spatial resolution (optical) satellite sensors, and the 
wide dissemination of a variety of digital data sources that can now be used to augment 
detailed satellite data. Some of the techniques presented at the meeting were proprietary, 
and their natures were neither immediately transparent nor yet open to scrutiny through 
the peer-reviewed academic literature. Opaqueness of exposition survives in some of the 
contributions to this book, although we have tried to make the message, if not the detail, 
of the contributions as clear as possible. In these respects—paucity of ‘good’ data and a 
‘grey’ literature of developing technique—the formative days of urban remote sensing 
(RS) seem curiously akin to the early development of GIS. Today the field is developing 
rapidly (Donnay et al., Chapter 1 this volume) and is converging with mainstream GIS 
applications (Atkinson and Tate 1999). As such, there are now very real prospects that 
‘RS-GIS’ can provide a near seamless software environment for urban analysis. 

The uses of data and technique in some of the contributions to this book have a 
formative rather than a strictly contemporary feel, yet the collection provides a still 
prescient evocation of thinking about the measurement and analysis of urban systems. 
The contributions convey a sense of achievement that remote sensing is on the threshold 
of creating really useful urban inventories, tempered with some disquiet that increased 
technical precision in detecting the extent and morphology of urban ‘land cover’ begs at 
least as may questions as it resolves. Specifically, there is a realization that better spectral 
detection of land cover using improved optical instruments provides only the most 
indirect of indicators of urban ‘land use’. Whilst the promise that further improvements in 
the precision of satellite instrument measurements might yield ‘better’ data, there is a 
realization that there is no immutable chain linkage to ‘better’ urban analysis. Further 
progress requires reappraisal and rethinking of various aspects of urban theory, the shaky 
foundations to which are already now partially exposed. In particular, it is increasingly 
apparent that there has been little clear thinking about the size, shape, scale and 
dimension of elemental units that might be used to define the ‘density’ of urban land 
uses. Clear conception of phenomena logically precedes their measurement in science, 
yet the first forays into urban remote sensing have apparently been driven by the reverse 



logic. Measurement usually precedes theory in science too (Mandelbrot 1982), and thus 
remote sensing is pivotal in terms of both forward and backward linkage to our 
conception and understanding of urban systems. 

The nature and pace of technical developments in remote sensing was, and remains, 
very impressive (Donnay et al., Chapter 1 this volume), yet conceptual issues are of very 
much more than semantic importance if the science of remote sensing is to make 
significant contributions to the rational planning process. Remote sensing is a technology 
that has hitherto portrayed rather conventional and objective measures of spatial 
distributions, yet the detailed interpretation of urban form clearly needs to move beyond 
conventional, per-pixel classifications of detected spectral reflectance. Configuration, 
syntax, structure and function need to supplement conventional spectral, spatial, 
temporal, geometrical and polarization clues to land cover (Curran et al. 1998, Barnsley 
1999). Indeed, our understanding of morphology needs to go beyond the physical to the 
socio-economic, since similar built structures and site layouts can fulfill a range of 
diverse socio-economic functions. A geography of the inert carcass of the city, however 
intricate, is of only limited usefulness to planning for human activities. Remote sensing 
representations of urban systems are geographically comprehensive, frequently updated 
and increasingly detailed at large scales. Yet, at the end of the day, they provide only a 
physicalist conception of space, which needs to be augmented by other sources if they are 
to make significant contributions to our understanding of urban systems. If this can be 
accomplished, there is no reason why urban remote sensing should not make an important 
contribution, not just to understanding data, but to understanding urban systems, and not 
just in terms of their form, but also their functioning. 

The remote sensing tradition has focused very much on technical issues of data 
assembly and physical classification. Yet the range of contributions to this volume 
suggests an emergent inter-disciplinary focus, with interest from planners, architects and 
geographers concerned with specifying context in order to ascertain detail. In this 
concluding chapter we will try to develop this view of urban remote sensing as an inter-
disciplinary meeting place, where we can assess the way that data inform our 
understanding of the spatial distributions of urban phenomena, and how these, in turn, 
may inform practical planning issues. 

There is certainly a need for this, and the spatial and temporal properties of urban 
remote sensing data are pivotal to a systematic attack on a wide range of planning 
problems. The classifications of urban form that are created by urban remote sensing are 
spatially comprehensive, and this presents renewed opportunities for analysis of the ‘city 
as a system within a system of cities’ (Berry 1973). Within developed countries, the locus 
of planning debate in recent years has shifted towards encouragement of ‘sustainable’ 
cities, predicated upon the reuse of ‘brown’ land. The kinds of measures proposed by 
Mesev and Longley (Chapter 9 this volume), for example, provide a means of using 
satellite imagery to identify the way that urban development fills space, and by 
implication suggest ways in which urban morphology might be manipulated to further 
urban policy objectives. The spirit of this work is in the established locational analysis 
tradition of human geography (Haggett et al. 1977) which has already been developed, 
for example, to investigate whether development restrictions (such as UK ‘green belt’ 
policy) change the shape and scale of urban areas (Longley et al. 1992). Informed by 
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better data, the class of cellular automata models may be used to extend ‘what is’ models 
of detailed distributions to ‘what if scenarios of urban growth and change (Wu 2000). 

Within the temporal domain, many of the pressures upon urban planning are generated 
by the sheer scale and rapidity of economic and social restructuring of cities and their 
consequent effects upon spatial structure. The rates of growth in the cities of developing 
countries are unprecedented, and the urban data infrastructure for monitoring them is not 
nearly as well developed as that in the West. New technology is creating a sea change in 
the way we think about infrastructure, as in the use of digital mobile phones in terrain 
where no land lines exist, or the use of global positioning system (GPS) receivers to map 
large tracts of the developing world. It is in this spirit that Baudot (Chapter 12 this 
volume) describes how urban remote sensing provides a means of monitoring changes in 
the extent and form of urban settlements in the developing world. In parts of the world 
such as North and West Africa, conventional urban data sources at best provide a 
normative, official ‘what should be‘inventory of ownership interests rather than a ‘what 
is’ representation of formal and informal urban land use. 

The challenges in the developed world are rather different. Here, national populations 
are more or less constant in size, although their residential preferences and propensities to 
form and dissolve households are manifest in a range of different tensions in the urban 
fabric. The diverse lifestyles and living arrangements of urban populations are forcing 
restructuring of the built form of cities, such as the ‘densification’ of established 
residential areas, the decentralization of retailing, changes in industrial location patterns 
and so forth. Here, urban remote sensing complements what is available elsewhere, and 
presents a valuable, up-to-date and comprehensive picture of the changing extent and 
morphology of urban areas. 

Taken together, these contextual issues suggest a challenging role for the science of 
remote sensing in social science formulations of the form and functioning of urban 
systems. From a technical standpoint, it is clear that urban remote sensing is developing 
for two primary reasons: 

1. new sources of satellite data; and 
2. vastly increased computer power, new methods of geocomputation, and new thinking 

about science through induction. 

To these must be added two further sets of considerations, which are prerequisites to 
sustained development of the field:  

1. the development of new digital data infrastructure, and its use as ancillary sources for 
RS image classification; and 

2. reappraisal of the ways that an understanding of data fosters improved understanding 
of urban systems. 

13.2 Understanding Representations of Urban Areas 

The science of remote sensing is fundamentally concerned with obtaining information 
about the physical, chemical and biological properties of the Earth’s surface (Barnsley 
1999). While some of these properties can be estimated using statistical (empirical) or 
physically-based models, most are currently inferred by less direct means, often by 
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grouping image pixels into discrete categories using multispectral classification 
algorithms. Nowhere is this more apparent than in the study of urban areas, where the 
production of land use maps and the estimation of population counts is generally 
predicated—wholly or partially—on some form of image classification. Such 
categorization is suggestive of a much more ‘black-and-white’ view of the world than 
typically characterizes either natural or man-made systems. Fisher (1999), for example, 
describes the inherent vagueness and ambiguity associated with such apparently discrete 
characteristics as ‘oak woodland’, in which the frequency of occurrence of the defining 
characteristic or the degree of membership of a specific environmental category may vary 
across time and space. More generally, geographers have long reflected the paucity of 
‘natural’ units in the real-world (Openshaw 1984): in this context, it will surely be only 
coincidence if the most appropriate unit to measure land-surface properties in a particular 
remote sensing application happens to coincide with the dimensions of the image pixel. 
Taking this logic a stage further to consider appropriate size and scale thresholds for 
urban land use classification, we encounter additional problems of definition, since 
‘urban’ is very much a ‘catch all’ phrase, and urban forms conceal a multitude of 
functions. 

Elsewhere in urban analysis it has become common practice to adopt working 
definitions of ‘urban’ which are suited to particular purposes. In the early days of GIS, 
for example the (then) UK Office of Population Censuses and Surveys (OPCS 1984) 
created vector digitized boundaries of irreversibly ‘urban’ land in accordance with 
contiguity and population size criteria. The principal purpose of the national dataset was, 
quite simply, urban inventory analysis, although Longley et al. (1998) subsequently 
demonstrated that even measures such as these could be used to establish allometric 
relations between size and area across a regional settlement system. Such scale relations 
also enable anomalies to be highlighted, particularly in a scattered system of small 
settlements which is not greatly differentiated by function. Yet for a wider range of 
applications, the boundaries are crude, the definitions upon which they are based are 
inadequate or inappropriate, and they imply uniform population and land use densities 
within the urban boundary. Ten years later, the interdependence between measurement 
and outcome is resurfacing in urban remote sensing, as the contribution of Weber 
(Chapter 8 this volume) illustrates. 

These dilemmas extend well beyond the realm of urban inventory analysis. In the 
early days of quantitative geography, analogies in terms of shape and form were drawn 
between cities and biological organisms (Haggett et al. 1977, Batty and Longley 1994). 
Similar linkage between city genealogy and biological Darwinism is developed by 
Pesaresi and Bianchin (Chapter 4 this volume), with the additional connotation that the 
whole of a settlement is greater than the sum of its parts. Of course, this is but one 
framework for exploring the functioning of individual urban systems, yet it provides an 
illustration that understanding city morphology requires unambiguous and precise 
measurement of the functional elements of the system. It also implies a ‘horses for 
courses’ approach to data creation, which sets urban data modelling in stark contrast to 
the traditions of remote sensing. 

An agenda for urban remote sensing should therefore accommodate the need to make 
data classification sensitive to purpose. This is also the case in inter-urban analysis, 
where urban geographers have long been involved in the search for order in urban 
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systems, with Christaller’s Central Place Theory providing perhaps the best known 
example. Analysis of settlement hierarchies also implies an understanding of the 
functioning of regions, since the threshold for a particular urban function does not 
necessarily correspond to spatial extent of land coverage, as any visitor to Hong Kong or 
Singapore will testify. The spatial manifestations of urban function are partial and 
imperfect. It follows that we need ancillary sources to ascertain function, and that our 
choice will be related to the kinds of function that we are investigating. 

The responses to date within urban RS classification have been essentially pragmatic. 
They have imposed size, shape geometry and scale constraints upon classifications, all in 
an essentially ad hoc manner. Bähr (Chapter 6 this volume), for example, casts his 
classification of urban land cover into a Delaunay Triangulation to determine the extent 
of an urban area. Similarly, both Bähr (Chapter 6 this volume) and Weber (Chapter 8 this 
volume) adopt spread and containment functions to augment their urban land cover 
classifications of optical and microwave data, although their specific solutions differ in 
detail and purpose. Bähr, for instance, contends that multispectral images over-estimate 
urban areas, while Weber deems an additional 200m buffer zone necessary to delineate 
urban areas using classified SPOT data. The stark contrast between these different 
empirical, data-specific ‘fixes’ to the task of urban image classification highlights the 
subjectivity still embedded in this process. Bähr’s second case study also sets an arbitrary 
minimum size threshold for an ‘urban’ area, while both Pesaresi and Bähr take steps to 
classify isolated parcels of urban land use even though these are unlikely to fulfill any 
urban function beyond shelter. 

While it seems intuitively reasonable to expect urban land classifications to be ‘fuzzy’, 
there is clearly some need to investigate the plausibility of different spread or 
containment functions, and of any imposed land use geometry. This also raises a further 
important issue that has been known for some time in computer cartography: namely, 
how much operator intervention in the classification procedure is necessary and/or 
desirable? There is a point beyond which further operator intervention diminishes the 
generality of urban land use classifications. This discussion suggests a number of 
supplementary issues that must be addressed in the classification of urban land cover/use. 
First, the arbitrary spread and containment functions that have been used in classification 
work to date represent a first fumbling towards incorporating a syntax of space that is 
more sophisticated than elemental ‘geographical bits’ (e.g. pixels). Second, spectral data 
pertaining to land cover need to be supplemented with ancillary information (e.g. about 
population size) to yield plausible classifications of land use. These, in turn, raise broader 
issues about geocomputation, ancillary sources of data infrastructure and the scientific 
practice of image classification. 

13.3 Data Availability and Advances in Data Processing 

The development of remote sensing has very much been technology-led—notably 
through improvements in sensor design and advances in the supporting computational 
infrastructure. Issues relating to developments in sensor technology were addressed in the 
introduction to this volume (Donnay et al., Chapter 1 this volume). At the same time, 
precipitous falls in the real and absolute cost of computing have made it possible to store, 
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manipulate and analyze greater volumes of data, more rapidly and, arguably, with greater 
ease than ever before. This has been central to the continuing development of satellite 
remote sensing, including that pertaining to urban areas, which now generates some of 
the largest data sets in the environmental sciences and almost certainly dwarfs all social 
survey sources. 

In the context of urban analysis, however, the increasing availability of new sources of 
digital, socio-economic data sets may be considered equally, if not more, important. 
These derive from the everyday interactions of individuals with computers, not just 
through digital data capture of social surveys, but also from address registers and ‘traces 
of activity’ patterns, such as ATM (Automatic Teller Machine) and EPOS (Electronic 
Point Of Sale) transactions. Technology has played no small part in the fission of urban 
lifestyles in the post-modern city, but it also empowers us to track and monitor the scale 
and scope of these changes (Longley 1998). As a result, digital depictions of 
geographical reality are increasingly capable of capturing the physical and socio-
economic structure of cities, even though the best (computational and statistical) means 
of achieving this is still subject to debate. More broadly, the challenge to what has 
become known as ‘geocomputation’ (Longley et al. 1998) is to concatenate and conflate 
a wide range of diverse geographical data sources with different real-world structures. 

While advances in satellite sensor technology, particularly those relating to sensor 
spatial resolution, are helping to make remote sensing more appropriate to the study of 
urban areas, parallel developments in image classification techniques—notably, artificial 
neural networks (ANNs) and fuzzy set methods—may offer the prospect for improved 
representations of the urban fabric (Atkinson and Martin 2000). Clearly, these techniques 
have not been developed specifically with urban remote sensing in mind, but they are 
highly appropriate to the problems associated with images of such areas (i.e. uncertainty 
associated with object boundaries, fuzziness in terms of class definitions, and the 
potential for any given land parcel to be a member of more than one land cover/land use 
category). Neither of these techniques is represented in the chapters of this book, partly 
due to the timing of the ESF meeting, but they are becoming increasingly standard 
practice. Each offers benefits with respect to standard multispectral classifiers, such as 
the maximum likelihood algorithm, which has been used extensively throughout this 
volume. In the case of ANNs, these benefits include: 

1. the need to make fewer assumptions about the statistical distribution of the input data; 
2. the ability to generalize on the basis of the patterns presented to the network; and 
3. a degree of tolerance to noise in the training data (Foody and Arora 1997, Mather 

1999). 

On the other hand, deriving accurate classifications from ANNs is arguably still more of 
an art than a science, with critical decisions needing to be made with respect to the most 
appropriate network architecture and its configuration in terms of the number of nodes 
and hidden layers, as well as the optimum sample size and the number of iterations 
needed to train the network (Blamire 1996, Paola and Schowengerdt 1997). Fuzzy 
classifiers are, in some senses, even better adapted to the needs of urban remote sensing, 
since they deal explicitly with the problem of uncertainty in object (e.g. building) 
boundaries, as well as multiple and partial class membership (Fisher and Pathirana 1990, 
Binaghi et al. 1996, Foody 1996, Zang and Foody 1998, He et al. 1999). Not 
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surprisingly, there have also been various attempts to merge the two approaches in order 
to exploit their individual and combined strengths (Lee and Lee-Kwang 1994, Cho and 
Kim 1995, Foody 1997). 

Ultimately, however, while ANN and fuzzy classification techniques may provide 
more accurate representations of land cover within and around urban areas, they currently 
offer little more than standard multispectral classification algorithms in terms of solving 
the more taxing problem of determining urban land use from remotely-sensed images. 
Despite their actual or perceived computational advantages, the practical application of 
these new techniques remains stubbornly focused on per-pixel characterizations of land 
cover (although see Atkinson and Tate (1999) for some illustrations of polygon and 
object classifications). If we are to move beyond this, to representations of urban land 
use, new ways must be found to measure, model and eventually understand the syntax of 
urban space and the configuration of urban social areas. 

Two approaches to this broad problem have been posited in this volume: one 
empirical, based on statistical measures of image texture/structure; the other model-
based, employing techniques drawn from the field of syntactic (or structural) pattern 
recognition. The former is exemplified by the work of Brivio et al. (Chapter 3 this 
volume), who employ geostatistical techniques—specifically the semi-variogram—to 
characterize the spatial structure of urban areas. Their work confirms expectations that 
different types of urban land use exhibit measurably different spatial patterns in terms of 
their reflectance properties in high spatial resolution remotely-sensed images. They also 
demonstrate that the relationship extends to towns and cities built in different eras. 
Although Brivio et al. do not attempt to invert this relationship to derive maps of land use 
from statistical measures of the image structure, the potential application of what might 
be referred to as ‘geostatistical image classification’ is clearly raised. Pesaresi and 
Bianchin (Chapter 4 this volume) employ a related empirical approach, based on 
measures of image texture and mathematical morphology operators, to identify the extent 
of urban areas across a large section of northern Italy. 

An alternative, model-based approach is adopted by Barnsley et al. (Chapter 7 this 
volume), who adapt aspects of syntactic pattern recognition to meet the needs of urban 
remote sensing. Although structural pattern recognition has been used extensively in the 
field of machine vision—including automated analysis of aerial photography for military 
purposes—it has not yet been widely applied to the analysis of civilian satellite sensor 
images of urban areas (Barr and Barnsley 1999). This situation seems set to change with 
the advent of the new generation of very high spatial resolution (<5m) satellite sensors. 
These are better suited to the detection of individual objects (e.g. buildings, roads and 
various types of open space) within urban areas, and hence to explore the spatial and 
structural relationships between them. Like Brivio et al., Barnsley et al. demonstrate 
credible relationships between various categories of urban land use and the structural 
patterns evident in remotely-sensed images, but have yet to develop data-processing 
techniques that can be used to invert this relationship (i.e. to map urban land use as a 
function of the spatial patterns observed in the image data). They note that the problems 
involved in resolving this are non-trivial. 

Despite the technical advances embodied in the work reported by Brivio et al., 
Pesaresi and Bianchin, and Barnsley et al., a number of fundamental questions remain 
unanswered. Many of these arise because the research agenda has been predominantly 
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data-driven—answering pragmatic questions akin to “what can be obtained from existing 
image data sets”? There has, for example, been little or no theoretical consideration of the 
spatial resolution (scale) of image data most appropriate to statistical or structural pattern 
recognition. Similarly, there is as yet no formal theoretical basis to establish the principal 
classes of object (e.g. buildings, roads and various types of open space), and the structural 
relationship between them, that are needed to characterize different categories of urban 
land use. There are also questions about the consistency of these properties and relations 
within and between different urban areas. Undoubtedly, hypotheses will start to be 
formed from the types of empirical investigation reported in this volume, but inductivism 
may only take us so far. Moreover, there are limits to what can be achieved through an 
analysis of remotely-sensed data on its own. Consequently, in the next section, we will 
turn our attention to the broader digital infrastructure and the application of ancillary data 
sets. 

13.4 Digital Infrastructure and Ancillary Data 

One of the great strengths of urban remote sensing is that straightforward application of 
standard classifiers to optical imagery can yield seamless digital classifications of 
artificial built structures which are both geographically extensive and comprehensive. 
Such classifications may be enhanced with reference to data from other optical survey 
instruments (Ranchin et al., Chapter 2 this volume), from microwave sensors (Bähr, 
Chapter 6 this volume), or from repeated measurements through time (Bähr, Chapter 6 
this volume). Yet most of the legitimate questions (Donnay and Unwin, Chapter 11 this 
volume) which are asked in urban analysis require us to think of the city not just as a built 
structure, but also as the locus of human activity patterns. The challenge, therefore, is to 
use remote sensing classifications as one of several inputs to an analysis of the ways in 
which humans interact with the built environment. 

Within developed countries there are other sources of information which are 
conventionally used to answer this type of question, including (i) the Censuses of 
Population carried out, among other places, in the US and UK, (ii) address and property 
registers, and (iii) standardized NUTS (Nomenclature of Statistical Territorial Units) data 
across the European Union. Yet such data variously exhibit a number of shortcomings. 
These include: 

• outdatedness—the decennial snapshot interval of the US and UK Censuses, for 
example, is too infrequent to monitor fast-changing urban development trends, 

• coarse zonation—necessary to preserve confidentiality, yet effectively degrading the 
resolution of data to that of crude choropleth maps, and  

• incompleteness/irrelevance—information is only on available domicile, not workplace 
and leisure activities. 

In short, most conventional government data series bear little correspondence to the 
detailed morphological dynamics of urban growth and change. Some of these problems 
can be resolved through use of new sources of ‘framework’ data, created by national 
mapping agencies to provide precise coordinate references for built structures. These 
include ATKIS in Germany (Bähr, Chapter 6 this volume) and ADDRESS-POINT™ in 
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the UK (Longley and Mesev 1999). Some framework sources enable land use to be 
deduced from the address labels that are ascribed to coordinate pairs. For example, 
ADDRESS-POINT™ records the centroid of every individual building that is a mail 
delivery point to sub-metre precision. The properties of this type of framework data vary 
according to the institutional structures in different national settings (Rhind 1997, Guptill 
1999). Some commentators (Bähr, Chapter 6 this volume) see them as having a symbiotic 
relationship with remotely-sensed data of urban areas. In this view, the frequency with 
which remote sensing data are obtained makes them a potential source of updating 
information (although post office data can fulfill a similar function), while framework 
data present a means of ascribing micro-scale structure to the built forms detected by high 
resolution imagery. 

The range of socio-economic and framework sources that is now available provides a 
powerful means of enhancing urban remote sensing classifications (Mesev et al., Chapter 
5 this volume; Longley and Mesev, Chapter 9 this volume). The use of small area census 
data to augment standard image classification procedures is now a fairly standard 
procedure in urban remote sensing (Donnay and Unwin, Chapter 11 this volume; Mesev 
et al., Chapter 5 this volume), and can be used to devise improved measures of space-
filling (Longley and Mesev, Chapter 9 this volume). In one sense, the precision of some 
of these new framework sources (notably ADDRESS-POINT™) make them an effective 
substitute for remotely-sensed data of urban areas, particularly with respect to the 
densities of built structures in different land use classes. Yet, as Longley and Mesev 
(1999) have shown, the spatial object transformations inherent in reducing three-
dimensional built structures to point representations create a raft of new problems 
regarding the way that development appears to fill space. The most obvious solution to 
this is to ascribe arbitrary dimensions to each georeferenced point, although this obscures 
geographical variability in the nature of the built form. 

The kinds of abstractions provided in framework data force us to reconceptualize what 
we mean by terms such as ‘density’. In a partial sense, the new generation of digital 
framework data products also resolves ecological fallacy and modifiable areal unit 
problems in spatial analysis (Openshaw 1984). The most rapid progress in urban analysis 
will be made if the best models are based upon the best data, although many are marketed 
as commercial products and are no more in the public domain than some of the 
proprietary solutions described elsewhere in this book. 

13.5 Analysis 

In general terms, spatial analysis has been defined as ‘a whole cluster of techniques and 
models which apply formal, usually quantitative structures to systems in which the prime 
variables of interest vary significantly across space’ (Batty and Longley 1996). This view 
of space as littered with objects can be re-expressed to emphasize the importance of the 
container in which they are placed. Thus spatial analysis is also ‘that subset of analytic 
techniques whose results depend on the frame, or will change if the frame changes, or if 
objects are repositioned within it’ (Goodchild and Longley 1999). It is clear from the 
discussion of ancillary sources above (and also Mesev et al., Chapter 5 this volume; 
Longley and Mesev, Chapter 9 this volume) that definition of the ‘prime variables of 
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interest’ in urban analysis is fraught with ambiguity. It is also clear that spatial constructs 
such as ‘density’ are very frame-dependent. As elsewhere in spatial analysis, the 
conception and measurement of spatial phenomena very much conditions what spatial 
analysis can be expected to achieve. 

This kind of revelation is new to remote sensors who generally posit essentially 
objective definitions of spatial objects, yet it is not new to urban geographers and 
planners. During the ‘Quantitative Revolution’ in geography, analysis of social patterning 
became focused on a description of the patterning of a mosaic of urban areas, as defined 
by censuses or other large-scale public sector surveys (Timms 1971). Yet using the 
environment of GIS to handle the much richer and more disaggregate sources that are 
available today, Longley and Harris (1999) demonstrate that the high degree of socio-
economic heterogeneity within small areas very much compromises the validity of the 
‘mosaic metaphor’ (Johnston 1999) of conventional urban analysis. Thus, aggregation of 
elemental (human) units into artificial zones has been shown to obscure much of the 
diversity of socio-economic conditions at the small-area level. Applied to remotely-
sensed images of urban areas, large tracts of urban land with similar spectral signatures 
clearly fulfill diverse social and economic functions. Such building blocks are not likely 
to enhance the prospects for meaningful spatial analysis. 

Thus far we have set out the guiding role for urban remote sensing as allowing us to 
create detailed inventories of urban land uses—such as residential, commercial, public 
open space, industrial—by direct or indirect inference from satellite sensor images, either 
in isolation or in conjunction with various ancillary data sources. This is still very much 
the realm of inventory creation, although the use of ancillary sources potentially extends 
the scope to cataloging small-area activity patterns. Such operations represent only a 
starting point for rational planning analysis, and ‘what is’ inventory statements need to be 
developed into ‘what if’ scenario testing if the full power of data-rich urban 
representations is to be unleashed. 

Urban form has been related to function across a range of scales from the architectural 
to the intra-urban (Batty and Longley 1994). Yet the nature of the relationship is only 
direct in exceptional circumstances, where the will of the few imposes rigid geometrical 
constraints upon the built environment for the many, as in Renaissance fortified towns or 
the early plans of the Garden Cities movement (Batty and Longley 1994). The experience 
of history is that urban form is structured, yet irregular, and this is certainly borne out in 
the way that ‘cities of pure geometry’ such as Karlsruhe break up with distance from the 
planned central areas, as preordained street layouts become overwhelmed by the many 
and multifaceted forces operating in the urban land market. Urban theory is predicated on 
the notion that residential neighbourhoods, retail systems and commercial functions 
operate according to strict hierarchical principles. These are self-evidently not manifest in 
pure geometrical arrangements, and the kinds of idealized city structures that adorn high 
school textbooks are not apparent in the world around us. The kinds of thematic maps 
produced from classifications of remotely-sensed data are much more resonant of the 
messy empirical structures that adorn large-scale atlases and maps, yet this is not to say 
that they are devoid of structure. The type of analysis presented in this book by Longley 
and Mesev (Chapter 9) emphasizes the scaling relations that characterize the structure 
and form of settlements, and suggests how fractal geometry may be used to detect 
systematic structured irregularity. Having re-established a basis for linking form to 
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function, it should become possible to appraise the extent to which different urban forms 
are ‘sustainable’, according to a wide range of criteria. Urban remote sensing also offers 
the prospect of extending two-dimensional analysis of form into three dimensions, for 
example through the use of LiDAR and interferometric SAR (Synthetic Aperture Radar) 
(Grey and Luckman 1999). It also offers the prospect of developing much better models 
of the dynamics of urban growth and change, using approaches like those developed by 
Batty and Howes (Chapter 10, this volume). 

13.6 Conclusion 

Pesaresi and Bianchin (Chapter 4, this volume) make the point that the Italian ‘urbanist’ 
(planner-architect) tradition carries forward a rich understanding of urban structure and of 
the relations between form and function, but that this has yet to be related to the fast-
developing field of urban remote sensing. The latter already offers reasonably detailed 
urban classifications, yet is blind to pattern, doggedly reductionist in its operation and 
largely oblivious to urban function. It remains to be seen whether the metaphors that 
‘urbanists’, geographers and planners use to structure our understanding of urban form 
and function (Johnston 1999) can be used to inform new methods of incorporating spatial 
syntax and ancillary data sources. 

The outcome of research will determine whether urban remote sensing is to fulfill only 
a technical role in corroborating and updating other data sources, or whether it might 
fulfill a more central role in terms of quality of life studies, and data-rich modelling of 
form and function. Some of the ‘softer’ issues of urban classification discussed here also 
have hard-edged resource implications (Weber, Chapter 8 this volume). Urban remote 
sensing opens up enticing new prospects for comparing cities in terms of functional 
interrelationships and indicators of well-being, and the integration of the study of spatial 
forms with an understanding of the social, economic, cultural and political dimensions 
that led to their creation. Ironically, as the quantity and quality of remotely-sensed data 
improves, so our sense of certainty and confidence in our urban classifications appears to 
diminish. A healthy dose of scepticism may also make an important contribution as we 
move from trying to understand data to understanding the urban systems to which they 
pertain. 
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