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Preface

This book has emerged from the study of a new concept in material science
that has been realized about a decade ago. Before that, I had been working
for more than 20 years on conventional composites assembled in space and
therefore adjusted to optimal material design in statics. The reason for that
adjustment is that such composites appeared to become necessary participants
in almost any optimal material design related to a state of equilibrium.

A theoretical study of conventional composites has been very extensive
over a long period of time. It received stimulation through many engineering
applications, and some of the results have become a part of modern industrial
technology. But again, the ordinary composites are all about statics, or, at
the utmost, are related to control over the free vibration modes, a situation
conceptually close to a static equilibrium.

The world of dynamics appears to be quite different in this aspect. When
it comes to motion, the immovable material formations distributed in space
alone become insufficient as the elements of design because they are incapable
of getting fully adjusted to the temporal variation in the environment. To be
able to adequately handle dynamics, especially the wave motion, the material
medium must itself be time dependent, i.e. its material properties should vary
in space and time alike. Any substance demonstrating such variation has been
termed a dynamic material [1].

The wave propagation through dynamic materials may be accompanied by
a number of special effects that are unthinkable with regard to purely static
materials mentioned above. In general, dynamic materials may be thought
of as assemblages of conventional materials distributed in space and time;
particularly, they may be involved in their own material motion. When such
assemblage is furnished with a microstructure, we may call it a dynamic com-
posite, or a spatio-temporal composite, contrary to its conventional (i.e. static)
counterpart.

Unlike conventional composites, dynamic materials are rarely found in
mother nature: all of them known so far have come into the scene as the
products of modern technology. The only exception, though of extreme signif-
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icance, is a living tissue. There is one fundamental feature that brings the two
substances together: they both participate in a permanent exchange of energy
and momentum with the environment and therefore appear to be thermody-
namically open systems. Due to this exchange, the dynamic materials repre-
sent a suitable environment for dynamics, especially for the wave propagation.
This particular feature adds much to the resources available to a designer be-
cause it makes it possible to establish an effective control over both spatial
and temporal behavior of a dynamic system.

Regardless of a material implementation, it is now the time to investi-
gate some general features of dynamic materials mathematically. A general
scheme for such investigation may be similar to the one successfully tested
with regard to ordinary static composites. One of the most exciting problems
that received solution in this connection is the problem of material mixing in
space. A study of this problem has put forth a special concept of a G-closure
(GU) of the original set U of materials [2],[3],[4]. A G-closure is defined as
a set of the effective properties of all mixtures that are produced when the
original materials become intermingled on a microscale, regardless of a struc-
tural geometry. Clearly, U ∈ GU . The G-closures were found explicitly for a
number of sets U with regard to some important elliptic differential operators
arising in electrostatics and in the theory of elasticity. Analytically, all of the
G-closures known so far have been found with the aid of a special technique
named the translation method [3]; it has been worked out specifically for this
purpose. The knowledge of a G-closure is sufficient for a correct formulation
of many design problems that remain ill-posed without such knowledge.

The idea of a G-closure has emerged from the desire to make a set of
available materials complete, simply by adding all possible mixtures to it. This
idea surely persists in a hyperbolic context, too, and it has been an intriguing
task to investigate G-closures produced by some typical hyperbolic operators
governing the non-stationary phenomena developing in dynamic materials.
Some results of such studies are included into this book. The analysis is related
to a simple wave operator

(ρut)t − (kuz)z, (0.1)

with coefficients ρ, k being both t and z-dependent. The problem is therefore
two dimensional, with one spatial coordinate z and time t. The operator (1)
serves as a good model, similar to that given by the operator

divDgradu, D = D(x, y), (0.2)

in a relevant elliptic situation. Many features of hyperbolic G-closures revealed
through the study of (1) are quite special and substantially different from the
properties of the G-closures associated with (2). These differences are likely
to be even more pronounced in the case of higher spatial dimensions. The
latter has not been investigated in detail in this introductory text; however,
the very notion of a dynamic material, as well as the procedure of material
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mixing in space-time received a clear mathematical implementation in many
spatial dimensions as well. Remarkably there is a fundamental physical the-
ory, namely Maxwell’s theory for moving dielectrics, that perfectly embodies
dynamic materials as a natural dielectric medium capable of conducting elec-
tromagnetic waves. It was rewarding to find such a theory, so to speak, on the
surface, because it immediately offered a natural classification of dynamic ma-
terials produced by two conceptually different ways of mixing in space-time.
The reader will find a brief account of these ideas on the opening pages of the
main text.

I fully realize that the presentation below is a first step towards an ex-
tensive theory that should unveil in the future. My purpose was to try to
get a clear vision of the base ideas, and I believe that an interested reader
will be able to share the excitement that I experienced while working on this
beautiful subject.
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1

A General Concept of Dynamic Materials

1.1 The idea and definition of dynamic materials

The idea of composites is one of the key ideas in material science. When
different substances are used as primary elements through the constructing of
material assemblages, these new formations may demonstrate properties that
are alien to original constituents. Of such properties, the structural anisotropy
is probably the most critical. This property is created artificially, through
making composites, thanks to their special microgeometry; an anisotropic
composite may thus be built from isotropic original constituents. Anisotropy
is vitally important for optimal design: every such design is a custom-tailored
formation built purposefully to fit in the environment peculiar to a concrete
working situation. Examples illustrating this are numerous; they may be found
in many texts, (see, e.g., [1],[2],[3]).

Until recently, the concept of composites has been viewed as essentially
static: a composite that is ordinary in a conventional sense, is assembled once
and for all in space, and this assemblage remains invariable in time. This
concept fits well into the problems related to a static equilibrium; however, it
fails to be adequate with regard to a dynamic environment.

To work effectively in a dynamic world, a material medium should be
responsive to dynamic disturbances allowing for the energy and momentum
exchange take place between various parts of the system on a suitable spatio-
temporal scale. It should be able to maintain selective interaction between
the material property patterns and dynamic disturbances, i.e. such interaction
should occur wherever and whenever necessary. This fundamental requirement
could be met if we resort to a special material arrangement termed a dynamic
material.

Dynamic materials are defined as formations assembled from ordinary ma-
terials distributed in space and time. When such formation is allotted with
a microstructure, a dynamic material becomes a dynamic (spatio-temporal)
composite. The appearance of time is special: it serves as an additional fast
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variable. The presence of such a variable combined with the fast variable spa-
tial coordinate, transforms an ordinary composite assembled in space alone,
into a dynamic composite distributed in space and time.

The dynamic disturbances whose spatio-temporal scale is much greater
than the corresponding scale of the assemblage, may perceive this one as a
new material allotted its own effective properties. By changing the material
parameters of original substances, as well as the microgeometry, we shall be
able to selectively control the dynamic processes by creating effects that are
unattainable so far as we operate with ordinary materials or composites.

One may set a difference between various types of dynamic materials, and
we will introduce their formal classification in Chapter 3. At the same time,
such materials share one special feature that is common to all of them: they
universally appear to be substantially non-equilibrium formations. To create
a dynamic material, we have to maintain the energy exchange between it
and its surroundings. Energy should either be pumped into the medium, or
it should be extracted from it. The effective properties of dynamic materials
are therefore specifically affected by the relevant energy flows. For this reason,
dynamic materials themselves appear to be thermodynamically open systems;
only a combination of such material and the environment may be considered
as closed.

To some extent, dynamic materials fall outside a stock notion of a material
as of something that can be taken into your hands, stored, moved, manufac-
tured once for all, individualized by placing some “indelible” labels, etc. There
is no such thing as “a piece of dynamic material”. Instead, they would rather
be “brought into the scene” and exist with the environment. For example, a
TV screen on which a movie is demonstrated represents a dynamic mater-
ial: our eye perceives it, through a movie performance, as a plane with the
reflection properties variable in space and time. A human mechanism of vision
implements a spatio-temporal averaging of a pattern of rapidly alternating se-
quences and thereby detects a “slow motion” carrying information stored in
the movie.

The concept of dynamic materials appears to be a special realization of
the idea of smart materials, i.e. substances able to respond to environmental
variations by changing their properties, structure or composition, or their
function both in space and time.

1.2 Two types of dynamic materials

Dynamic materials have originally been introduced in [4], [5] in both mechan-
ical and electromagnetic contexts. They have been classified into two major
categories termed activated and kinetic materials. The difference between such
categories is fundamental, and it is best illuminated by examples.
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Fig. 1.1. A discrete version of a transmission line.
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Fig. 1.2. A moving (LC)-property pattern - an activated composite.
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Fig. 1.3. An immovable material pattern with moving original substances - a kinetic
composite.

Consider a transmission line. Its discrete version may be interpreted as an
array of LC-cells connected in series (Fig. 1.1). Assume that each cell offers
two possibilities: (L1, C1) and (L2, C2), turned on/off by a toggle switch S.
If the cells are densely distributed along the line, then, by due switching,
the linear inductance L and capacitance C of the line may become, with any
desired accuracy, almost arbitrary functions of a spatial coordinate z along
the line, and time t. In particular, we may produce in a (z, t)-plane a periodic
LC-laminate assembled from segments with properties (L1, C1) and (L2, C2),
respectively (Fig. 1.2). In this figure, a periodic pattern of such segments
is shown moving along the z-axis at velocity V , and this motion creates a
laminated structure in space-time. It is essential that this construction does
not include any motion of the material itself; what is allowed to move, is
the property pattern alone. This is a pure case of activation, and activated
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materials appear as a result of a standard homogenization procedure applied
to this type of construction.

As another example, consider a dielectric rod assembled from alternating
segments occupied by isotropic dielectrics with material constants (ǫ1, µ1) and
(ǫ2, µ2), respectively (Fig. 1.3); we term these dielectrics materials 1 and 2.
Within each segment, the material may be brought into its individual material
motion along the z-axis at velocities v1 (material 1) and v2 (material 2). A
discontinuous velocity pattern may be implemented either through the use of
a special “caterpillar construction” introduced in [6] and described in Chapter
3, or, approximately, by a fast periodic longitudinal vibration of a dielectric
continuum in the form of a standing wave. Contrary to the case of activation,
the property pattern, i.e. the set of segments, now remains immovable in a
laboratory frame; what is moving, is the dielectric material itself within the
segments. This is a pure case of kinetization; a kinetic material appears after
we apply homogenization to this type of construction.

In particular, when materials 1 and 2 are identical, the kinetic material
turns out to be a spatio-temporal assemblage of fragments of the same original
dielectric, with each fragment brought into its own individual motion. For
reasons explained in Chapter 3, this type of kinetic material will be termed a
spatio-temporal polycrystal.

In both activated and kinetic laminates, homogenization introduces an
averaged characterization of the composite material in terms of its effective
constants. This characterization is valid for disturbances whose wavelengths
are long compared to the period of the material pattern.

The following example gives an additional illustration of the contrast be-
tween activated and kinetic composites. Consider an activated laminate in one
spatial dimension, as shown in Fig. 1.4. For a laboratory observer, materials
1 and 2 are kept at rest within the layers, while the property pattern is trav-
elling at velocity V . As we know, that particular feature is characteristic of
activation.

A different situation arises if we assume that the same material assemblage
is brought as a whole into a material motion at the same velocity V along the
z-axis; the property pattern will then also travel at velocity V . Clearly, the
microstructure in the (z, t)-plane will be given by Fig. 1.4 also. The difference
is that, in the second case, a laboratory observer sees the layers occupied by
the moving materials though there is no motion of such materials relative
to one another. The second case therefore appears to be a combination of
activation produced by the pattern moving at velocity V , and of kinetization
produced by a material motion occuring at the same velocity V , identical for
both materials.

When we apply homogenization in either of these cases, the effective ma-
terial is viewed by a laboratory observer as a composite substance moving
at some velocity w, generally not the same as V . The effective parameters of
this substance will come into the scene if we manage, in a sense, to bring the
substance to rest.
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Fig. 1.4. Material laminate in space-time.

To this end, we introduce a proper frame travelling at velocity w rela-
tive to the laboratory frame. The velocity w is so chosen as to reduce the
homogenized equations to a canonical form, through diagonalization of the
corresponding matrix of the effective material coefficients. If such a frame
exists, i.e. if the required velocity w is real, then the composite will be charac-
terized in this frame by two parameters E , M - the effective permittivity and
permeability of a (homogenized) dynamic dielectric material. In the first case
(pure activation) listed above, w �= V , and the effective parameters depend
on V . In the second case (activation plus kinetization), an observer moving at
velocity w = V perceives the assembly as immovable, and for this reason, its
effective parameters prove to be the same as they are for a static composite
with V = 0, in other words, those parameters appear to be independent of V .
A proper frame moving at velocity w then becomes identical with a co-moving
frame travelling at velocity V . We conclude that, in the second case, the V -
dependency of the effective parameters is removed by the counter balancing
effect of the material motion that occurs within layers at the same velocity V
as the motion of the property pattern itself. These observations will receive a
formal implementation in the following chapters. However, it already becomes
clear that a material motion plays the same role in spatio-temporal compos-
ites as an ordinary rotation plays in conventional (purely spatial) assemblages.
Technically, both operations work towards bringing the relevant equations to
a canonical form, through diagonalizing the corresponding material tensors.
For a dynamic case, diagonalization occurs due to the transition to a proper
coordinate frame.

Conceptually, the treatment of a material motion as rotation obtains an
ultimate disclosure in electrodynamics. Such a treatment is intrinsic in a rel-
ativistic concept which forms a foundation of Maxwell’s theory. We shall see
in Chapter 3 that this concept provides a perfect framework for the idea of a
dynamic material as a spatio-temporal composite. From this standpoint, the
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dynamic materials unveil themselves, rigorously speaking, as conceptually rel-
ativistic formations, though it would certainly be erroneous to say that they
do not display their special features in non-relativistic material motion.

1.3 Implementation of dynamic materials in electronics

and optics

It will be important to demonstrate that the mathematical theory and analysis
of dynamic materials will correctly model the true natural phenomena. To
that end, we must physically assemble proof-of-concept metamaterials and
experimentally measure and compare the behavior to the predicted results.
In this section we discuss issues specific to implementation and construction
of devices that exhibit the desired spatio-temporal behavior.

Effective implementation of the desired temporal switching requires very
abrupt changes in the material’s permeability (through induced magnetic mo-
ments) and permittivity (through induced electric dipole moments). There are
numerous ways to temporally adjust both material parameters and we con-
sider the most applicable methods in the following subsections.

1.3.1 Ferroelectric and ferromagnetic materials

Ferroelectric materials respond to an external electric field by producing a
spontaneous electric polarization [15],[13],[8],[16]. The polarization results in
a modification of the permittivity constitutive relation between the electric
field (E(x, t)) and the displacement field (D(x, t)) throughout the material.
The effect is characterized by a change in the material’s permittivity tensor, ǫ:

D(x, t) = ǫE(x, t) + ǫP(x, t)

= ǫE(x, t) + ǫp(EA(x, t))E(x, t)

= ǫE(x, t),

where ǫ is the effective permittivity tensor due to an applied field EA(x, t).
In addition to the spontaneous polarization in ferroelectrics, the material

also demonstrates hysteresis as the induced polarization interacts with the
applied electric field. As the applied electric field is increased the polarization
achieves a saturation value. Fig. 1.5 shows some example hysteresis loops for
ferroelectric materials adapted from [11].

Ferromagnetic materials [7],[21] behave very similarly to ferroelectric ma-
terials, except that an applied magnetic field produces a magnetic polarization
that modifies the relation between the magnetic field (H(x, t)) and the mag-
netic induction field (B(x, t)) through the permeability tensor, µ:
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Fig. 1.5. E-P hysteresis curve for ferroelectric materials.

B(x, t) = µH(x, t) + µM(x, t)

= µH(x, t) + µm(HA(x, t))H(x, t)

= µH(x, t),

where µ is the effective permeability tensor due to an applied magnetic field
HA(x, t). Fig. 1.6 shows some example hysteresis loops for ferromagnetic ma-
terials adapted from [11] where Gaussian units are used.

Fig. 1.6. H-M hysteresis curve for ferromagnetic materials

For both ferromagnetic and ferroelectric materials the creation of elec-
tric/magnetic dipole moments occurs through distortion of the electron or-
bitals and through local distortions in atomic spacing. As a consequence, the
rate at which the permittivity and permeability are affected due to an applied
electric or magnetic field can be extremely fast [20], [14].
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It is also possible to produce composite materials that simultaneously have
both a ferromagnetic and ferroelectric response [11],[12],[17],[20]. The mater-
ial response time for an applied magnetic or electric field remains extraordi-
narily fast. One example of a candidate ferroelectric/ferromagnetic material
operating at high switching speeds has been demonstrated in [17]. For the
ferroelectric switching, speeds of up to 1 GHz were demonstrated. For the
ferromagnetic switching, speeds of up to 10 MHz were demonstrated.

We can harness this material for our spatio-temporal application. Fig. 1.7
shows a single tunable cell. Electrodes 1 and 2 on the sides of the ferroelec-
tric/ferromagnetic (FEFM) material produce an E field in the x-direction
and determine the applied E field across the material. The ferroelectric be-
havior of the material induces the corresponding change in the D field and
hence the material’s permittivity. The current loop on the top of the material
introduces a magnetic H field in the y-direction which couples through the
ferromagnetic effect to change the permeability of the sample. The two fields
can be independently controlled and switched on a scale necessary to maintain
the desired material constants for the propagating wave that is traveling in
the z-direction. Multiple cells are stacked together in the z-direction to imple-
ment the waveguide. Fig. 1.8 shows this configuration. The FEFM material
can be one continuous material with electrodes and current loops attached to
delineate the waveguide into discrete cells. Research and numerical simulation
of the electrodynamics will be necessary to improve the structures response
near the cell borders as a sharp transition from the material properties in one
cell to the next is desired.

For medium-scale-integration (MSI) the smallest dimensions of the device
are in millimeters. For this size scale the device could be constructed in a
properly equipped machine shop with simple placement of the necessary elec-
trical contacts. The FEFM material can be fabricated in a variety of ways. [17]
describes one feasible method requiring the use of a fully equipped chemistry
laboratory.

For very-large-scale-integration (VLSI) the critical dimensions are on the
order of micrometers. In this case conventional lithography techniques used to
manufacture semiconductor chips could be applied to create the waveguide.
Reactive ion etching can be used to pattern the FEFM material. Chemical
polishing will smooth the surfaces of the material to a sufficient degree (op-
tical flatness is not required). Next a thin layer of SiO2 could be sputtered
or deposited onto the material followed by deposition of the electrodes and
bonding pads.

Precise control of the etching process for the uncommon FEFM material
at the micron scale would be difficult and requires some clever work, but it
should prove feasible after a concerted effort.
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Fig. 1.7. Single cell of ferroelectric/ferromagnetic material.

Fig. 1.8. Multiple cells of ferroelectric/ferromagnetic material.

1.3.2 Nonlinear optics

One possible limitation of the ferroelectric/ferromagnetic approach is that it
will not be possible to achieve switching speeds on the order of the optical fre-
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quencies. Using electronics to create drive signals at rates approaching optical
frequencies is not feasible. For this range of optical frequencies (on order of
100 THz or above), it will be necessary to produce the permittivity and per-
meability switching through all-optical methods. Interference patterns from
a coherent laser source can be used to generate dynamic periodic intensity
patterns at the desired high frequencies. A single laser would generate a sta-
tionary intensity profile. If two lasers are used, then the intensity pattern will
move at a velocity determined by the difference of the two laser frequencies.

In order to convert the optical intensity into a perturbation of the permit-
tivity it is necessary for the material to have at least a second-order nonlinear
electro-optic response. For nonlinear optical materials, the polarization in-
duced by an applied electric field varies nonlinearly with the strength of the
applied electric field. For third order materials, the polarization can be ex-
pressed as

P = ǫ0χE + 2d | E |2 +4χ(3) | E |3,
where d and χ(3) are material-specific coefficients determining the magnitude
of the second and third order effects, respectively. For centrosymmetric mate-
rials, the inversion symmetry of the structure forces d = 0, producing a lowest
order nonlinearity of third order. These materials are referred to as Kerr mate-
rials. The second and third order coefficients are typically very small (d varies
on the order of 10−24 to 10−21A · s/V 2, and χ(3) varies on the order of 10−34

to 10−29) [18] and will require an intensive pump beam to provide the energy
necessary to modulate the material properties.

While the above method will allow for direct optical control of the ma-
terial permittivity, it will not allow tuning of the magnetic permeability. To
modulate the permeability, it will still be necessary to use drive electronics to
produce a current which will induce a magnetic field in the ferromagnetic ma-
terial. The magnetic field will adjust the permeability according to the B −H
curve of the ferromagnetic material. In this case, the permittivity (electri-
cal property) will be modulated at optical frequencies (100 THz) while the
permeability (magnetic property) will be controlled at a comparatively slow
frequency of around 10 GHz (radio frequency).

1.4 Some applications of dynamic materials

Left-handed metamaterials (materials with negative effective values of both
permittivity and permeability) are possible with the proposed structure. It has
been demonstrated that static structures such as photonic crystals (periodic
1D, 2D, or 3D metal or dielectric structures) can also produce left-handed
metamaterials [9]. With the proposed spatio-temporal materials a wider class
of left-handed or negative-index materials (NIMs) becomes accessible. We
briefly mention below some of the more promising applications to be investi-
gated.



12 1 A General Concept of Dynamic Materials

Property 1: Imaging resolution beyond diffraction-limited sizes. An imag-
ing system is limited in resolution due to the exponential decay of the higher-
order spatial frequency components as the distance from the source increases.
NIMs can couple the decaying evanescent waves through a set of plasmon res-
onances in the material. As a consequence it is possible to image the source at
a resolution not limited by propagation. Applications of this property include
semiconductor fabrication wherein significantly smaller feature sizes can be
imaged without requiring more exotic shorter wavelength laser sources and
focusing materials. This technique will demonstrate a more practical way to
dramatically improve transistor density through an improved optical pho-
tolithography method.

Property 2: Flat metamaterial surface could result in flat lens imaging
beyond diffraction limit. The small form factor and rectangular shape of
the imaging metamaterial allows for ultra-high density data storage (next-
generation optical data storage, next-generation hard drive data storage).

Property 3: Tunable left-handed metamaterials. Because the switching
rate and duty cycle are temporally controlled, the left-handed properties can
be tuned over some limited range. The tunability can be exploited to change
system properties such as focus for the imaging modality. Applications such
as medical imaging could be significantly enhanced by this feature. Tunable
focus allows for 2D and 3D non-destructive imaging via techniques such as
confocal microscopy and optical coherence tomography.

In addition to acting as a left-handed material, a number of other unique
properties exist.

Property 4: Optical pumping. Due to the energy exchange required for the
dynamic switching, an incident beam can be pumped to higher power levels
by propagation through the proposed metamaterial. This feature is useful in
applications such as long-distance communication networks (telcomm), and
nondestructive non-invasive medical imaging.

Property 5: High-energy pulse compression. Due to the properties of the
limit cycles arising in spatio-temporal checkerboard structures (see Chap-
ter 5), optical pulses can be compressed spatially, as well as being optically
pumped, to produce pulses with extraordinarily high power densities. Efficient
methods of creating high-energy pulses have numerous applications from ma-
terial processing to medical diagnostics and treatment.

1.5 Dynamic materials and vibrational mechanics

Dynamic materials, or more specifically, kinetic dynamic materials, may be
examined through the framework of a special branch of general mechanics -
i.e. vibrational mechanics. Introduced in the early and mid-fifties in the works
of I.I. Blekhman and many of his colleagues and followers, this theory emerged
from the study of nonlinear effects as well as from the analysis of parametric
excitation of vibration. It offers a solid conceptual background for numerous



1.5 Dynamic materials and vibrational mechanics 13

remarkable phenomena observed in daily life, such as stabilization of inverted
pendulum by a high frequency vertical vibration of its pivot, vibrational lifting
of a massive body along the inclined plane, vibrational dipping of piles into
a solid ground, etc. In all of those phenomena, a background fast variable
vibration affects a slow motion by changing both the environment and material
properties of a moving system. A background motion is often interpreted as a
factor hidden within a system; an observer watching an inverted pendulum or
a body moving upward along the inclined plane may not even notice a small
high frequency background vibration. He will ascribe his observations to the
presence of additional forces acting upon the system, as well as to accumulative
change in its material parameters, such as the inertial coefficients and the
stiffnesses.

These factors affect the slow motion of a system, occurring at frequencies
that are low compared to the frequency of a background fast vibration. We
shall see that dynamic materials basically implement the same idea: the dis-
turbances occurring on a spatio-temporal scale much greater than the scale
of a background property pattern may perceive the medium as having some
effective material parameters.

In the case of kinetization, this occurrence is due to a relative material
motion that may, in particular, be vibrational. An interested reader is referred
to many original contributions by I.I. Blekhman and other authors (see [22]
and additional references therein).





2

An Activated Elastic Bar: Effective Properties

2.1 Longitudinal vibrations of activated elastic bar

Consider an immovable elastic bar distributed along the z-axis; the longitudi-
nal wave propagation along the bar is governed by the second order hyperbolic
equation

(ρut)t − (kuz)z = 0. (2.1)

Here, u = u(z, t) denotes a small horizontal displacement depending on z
and t, and ρ = ρ(z, t), k = k(z, t) denote, respectively, the (positive) linear
density and stiffness (Young modulus) of the bar.

We shall examine the wave propagation along the bar with variable mate-
rial parameters ρ and k. More specifically, we assume that this dependency is
characterized by the following features:

(i) both ρ and k are space and time dependent;
(ii) at each point (z, t) the pair (ρ, k) may take either the values (ρ1, k1), or

the values (ρ2, k2);
(iii)these admissible values are taken within alternating layers in the (z, t)-

plane having the slope dz/dt = V so chosen as to ensure a regular tran-
sition of dynamic disturbances u(z, t) across the interface from one layer
to another. In other words, both kinematic and dynamic compatibility
conditions must be observed across the interface.

The spatio-temporal variability of both ρ and k may be achieved if we
attach (release) some portions of material to (from) the bar wherever and
whenever necessary. To illustrate this operation, consider the interface sep-
arating materials 1 and 2; this interface is moving from left to right with
velocity V . Let the point P in Fig. 2.1 indicate position of the interface at
time t. From the right of P there arrives, per unit time, the mass ρ2V with
velocity u2t and momentum ρ2V u2t. At the instant t − 0, an additional mass
ρ∗V , with absolute velocity V0 and momentum ρ∗V V0, is attached to ρ2V .
The combined momentum then becomes equal to ρ2V u2t + ρ∗V V0.
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Fig. 2.1. A moving interface.

At time t + 0, we have a joint mass (ρ2 + ρ∗)V = ρ1V moving with
velocity u1t and carrying momentum (ρ2 + ρ∗)V u1t = ρ1V u1t. The difference
of momenta

ρ1V u1t − ρ2V u2t − ρ∗V V0

is equal to the resultant force acting upon the mass, i.e.

k2u2z − k1u1z.

We shall assume that V0 = 0, i.e. let the additional mass be immovable in
a laboratory frame. Then the balance of momenta asserts that

ρ1V u1t + k1u1z = ρ2V u2t + k2u2z;

in other words, the resultant momentum of the restoring force and the force
of inertia (taken with minus sign) should be continuous across the interface.
If we replace the equation (2.1) by an equivalent system

vt = kuz, vz = ρut, (2.2)

1 2

z

VP
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then the balance of momenta will be expressed as the continuity of the deriv-
ative vt + V vz taken along the trajectory of the interface in the (z, t)-plane:

v1t + V v1z = v2t + V v2z; (2.3)

we may say that this condition is equivalent to the continuity of v. A similar
condition holds for the derivative ut + V uz:

u1t + V u1z = u2t + V u2z; (2.4)

this condition expresses the continuity of the displacement u across the inter-
face.

Equations (2.2) should now be complemented by compatibility conditions
(2.3), (2.4). The system (2.2) is hyperbolic, and caution should be taken to
guarantee existence of a desired continuous solution. The problem that arises
may be illustrated if we consider, as an example, the case of an immovable
interface: V = 0 (Fig. 2.2).

In order to observe both of the compatibility conditions, we have to make
sure that there are precisely two characteristics of the system (2.2) that depart
from the interface. On the interface V = 0, we have two characteristics, with
the slopes ±a1, at the side occupied by material 1, and two characteristics with
the slopes ±a2, at the opposite side occupied by material 2; here, ai, i =
1, 2, denotes the phase velocity

√
ki/ρi of waves in material i; we assume

below, without sacrificing generality, that a2 > a1. Clearly, two out of the
four characteristics, specifically, those with slopes a2 and −a1, depart from
the interface. We conclude that the interface with V = 0 is admissible, i.e. it
allows for a desired continuous solution.

Consider now a moving interface (V �= 0), with materials 1 and 2 on either
side of it preserved immovable. Instead of Fig. 2.2, we now refer to Fig. 2.3
as illustration; in this one, the interface is making the angle tan−1 V with

of the phase velocities: | V |< a1; if, however, | V | falls into the interval
(a1, a2), then the balance of characteristics becomes violated: we have either
three (Fig. 2.4) or one (Fig. 2.5) departing characteristic. In the first case,
we have non-uniqueness, in the second case - non-existence of a continuous
solution. The balance will, however, be restored as | V | becomes greater then
both of the phase velocities: | V |> a2; this case is illustrated by Fig. 2.6. We
conclude that the condition

(V 2 − a2
1)(V

2 − a2
2) > 0, (2.5)

is necessary for the existence of a required solution. This condition imposes
substantial restrictions on spatio-temporal material assemblages, in fact, it
becomes violated by microgeometries that are quite habitual in statics. An
example is given by a matrix structure in space-time illustrated in Fig. 2.7.
In this figure, the matrix and the oval-shaped (shaded) inclusions are occu-
pied by two different materials. Along the oval interfaces, there will always

the t-axis. Nothing dramatic happens while | V | remains less than the least
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be parts where ineqs. (2.5) are violated. On the other hand, a rectangular
microstructure shown in Fig. 5.1 is admissible because (2.5) is satisfied on
both horizontal and vertical interfaces.

For a laminate of the type shown in Fig. 1.4, ineqs. (2.5) become satisfied
by a due choice of V ; bearing this in mind, we shall now calculate the effective
parameters of an activated elastic bar.
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Fig. 2.2. An immovable interface: V = 0.

Fig. 2.3. A moving interface: | V |< a1.
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Fig. 2.4. A moving interface: a1 < V < a2.

Fig. 2.5. A moving interface: −a2 < V < −a1.
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Fig. 2.6. A moving interface: | V |> a2.

Fig. 2.7. A matrix microstructure in space-time violating ineqs. (2.5).
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2.2 The effective parameters of activated laminate

To determine them, we apply homogenization to the system (2.2) with the
observance of conditions (2.3)-(2.5). The analysis will be simplified if we in-
troduce, instead of (z, t), the Galilean coordinate frame (ζ, τ) specified by

ζ = z − V t, τ = t; (2.6)

this co-moving frame is travelling with velocity V in the positive z-direction.
By using obvious relations

∂/∂z = ∂/∂ζ, ∂/∂t = ∂/∂τ − V ∂/∂ζ, (2.7)

we reduce the system (2.2) to the form

ρuτ = ρV uζ + vζ , vτ = kuζ + V vζ ;

on denoting
∆ = V 2 − a2, a2 = k/ρ, (2.8)

we rewrite this as

uζ =
V

∆
uτ − 1

ρ∆
vτ , vζ = − k

∆
uτ +

V

∆
vτ . (2.9)

Conditions (ii), (iii), section 2.1, indicate that parameters ρ, k depend on
the argument z − V t = ζ; we shall assume that these parameters are periodic
functions, with a unit period, of the fast variable ξ = ζ/δ, δ → 0. Equations
(2.9) will now be averaged over the unit period in ξ. Introduce the symbol
〈·〉 = m1(·)1+m2(·)2 for the arithmetic mean of (·), with materials 1 and 2 rep-
resented in a unit period at the volume fractions m1, m2 ≥ 0 (m1 + m2 = 1).
We apply averaging to equations (2.9) bearing in mind that derivatives uτ , vτ

are continuous across the interfaces ζ=const immovable in a new frame; for
this reason, they remain unaffected by averaging: 〈uτ 〉 = uτ , 〈vτ 〉 = vτ . Pre-
serving symbols uζ , uτ , vζ , vτ for the averaged quantities 〈uζ〉, 〈uτ 〉, 〈vζ〉, 〈vτ 〉,
we arrive at the system

uζ = BV uτ − Cvτ , vζ = −Duτ + BV vτ ,

where we introduced notation

B =

〈
1

∆

〉
, C =

〈
1

ρ∆

〉
, D =

〈
k

∆

〉
. (2.10)

We now go back to z, t, with the reference to (2.6), (2.7); after some calcula-
tion, we arrive at the system

vt = puz − qut, vz = quz + rut. (2.11)
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The coefficients p, q, r are given by the formulae

p = V 2D − A2

C
, q = −V

(
D − AB

C

)
, r =

B2V 2

C
− D, (2.12)

with the symbol A defined as

A = BV 2 − 1 =

〈
a2

V 2 − a2

〉
. (2.13)

A direct calculation shows that

A =
a2
1a

2
2

∆1∆2

[
V 2

(
1̄

a2

)
− 1

]
,

B =
1

∆1∆2
(V 2 − a2),

C =
1

ρ1ρ2∆1∆2
(V 2ρ̄ − k̄),

D =
k1k2

∆1∆2

[
V 2

(
1̄

k

)
−
(

1̄

ρ

)]
.

Here, we applied notation

(̄·) = m1(·)2 + m2(·)1, (2.14)

and an obvious symbol (see (2.8)) ∆i = V 2 − a2
i , i = 1, 2.

We shall also use parameters α, β, θ defined by the formulae

α =
A

C
=

〈
a2

∆

〉

〈
1

ρ∆

〉 = k1k2

V 2
(

1̄
a2

)
− 1

V 2ρ̄ − k̄
,

β =
BV

C
= V

〈
1
∆

〉
〈

1
ρ∆

〉 = ρ1ρ2V
V 2 − a2

V 2ρ̄ − k̄
,

θ =
C

D
=

〈
1

ρ∆

〉

〈
k
∆

〉 =
1

k1k2ρ1ρ2

V 2ρ̄ − k̄

V 2
(

1̄
k

)
−
(

1̄
ρ

) . (2.15)

The symbols p, q, and r are linked with α, β, θ through the following relations
(c.f. (2.12))

p =
V 2 − θα2

θ(βV − α)
, q = − V − θαβ

θ(βV − α)
, r = − 1 − θβ2

θ(βV − α)
. (2.16)

We now get back to equations (2.11). This system appeared as a result of
homogenization applied to (2.2); the relevant composite is a spatio-temporal
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laminate in (z, t) of the type illustrated in Fig. 1.4. We wish to determine the
effective parameters of this laminate.

Consider first the case V = 0 when the laminate becomes static. Then
q = 0, and p, r become defined as

p = α =
1〈
1

ρa2

〉 =
1〈
1
k

〉 = 〈k−1〉−1, r =
1

θα
=

〈
k

a2

〉
= 〈ρ〉. (2.17)

Because q = 0, we conclude, by comparing (2.11) and (2.2), that parame-
ters p and r specified by (2.17), may be treated, respectively, as the effective
stiffness K and density P of a static laminate. When V = 0, the matrix

∣∣∣∣
p −q
q r

∣∣∣∣ (2.18)

of the coefficients in (2.11) becomes diagonal, and its elements are then quali-
fied as effective constants. Another extreme case V = ∞ corresponds to what
we term a temporal laminate. In this case, the terms with q in (2.11) drop out
compared with terms containing p, r; these parameters become specified as

p = 〈k〉, r =
1〈
1
ρ

〉 = 〈ρ−1〉−1, (2.19)

with a similar interpretation as the effective stiffness K and density P . The
matrix (2.18) may also be treated as diagonal in this case.

With V being neither zero nor infinity, we diagonalize the matrix (2.18)
by introducing a new Galilean frame η, τ through the formulae

η = z − wt, τ = t. (2.20)

The frame η, τ is moving along the z-axis with the velocity w specified below.
In a new frame, the system (2.11) takes on the form

vτ = (p + 2qw − rw2)uη − (q − wr)uτ ,

vη = (q − wr)uη + ruτ . (2.21)

If we now define w as
w = q/r, (2.22)

then equations (2.21) are reduced to

vτ = (1/θr)uη, vη = ruτ . (2.23)

Here, we used an easily checked relation (c.f. (2.16))

pr + q2 = 1/θ. (2.24)
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The frame (2.20) with w specified by (2.22) with be called a proper frame.
The matrix (2.18) takes in this frame the diagonal form

∣∣∣∣
θ−1r−1 0

0 r

∣∣∣∣ ,

with the effective stiffness K and density P specified as (c.f. (2.2))

K = θ−1r−1, P = r . (2.25)

Notice that the product of these parameters equals θ−1:

KP = θ−1. (2.26)

The symbols p, q, r may be expressed directly through the material para-
meters ρ1, k1, ρ2, k2, the velocity V , and the volume fraction m1. After some
calculation in which we use (2.15), we arrive at the formulae:

1

θ(βV − α)
=

k1k2

∆1∆2

[
V 2

(
1̄

k

)
−
(

1̄

ρ

)]
,

V 2 − θα2 =
∆1∆2

F
ρ̄

(
1̄

k

)
V 2 − 1

ρ̄
(

1̄
k

)


 ,

V − θαβ = V
∆1∆2

F

[
ρ̄

(
1̄

k

)
−
(

1̄

a2

)]
,

1 − θβ2 = − ∆1∆2

Fa2
1a

2
2

[
V 2 − k̄

(
1̄

ρ

)]
. (2.27)

Here, we used notation (c.f. (2.8))

∆i = V 2 − a2
i , i = 1, 2,

F = (V 2ρ̄ − k̄)

[
V 2

(
1̄

k

)
−
(

1̄

ρ

)]
. (2.28)

Referring to (2.16), we obtain the following expressions for p, q, r, and θ :

p = k1k2ρ̄

(
1̄

k

) V 2 − 1

ρ̄( 1̄
k )

V 2ρ̄ − k̄
= 〈k〉

V 2 − 1

ρ̄( 1̄
k )

V 2 − k̄
ρ̄

,

q = −V k1k2

ρ̄
(

1̄
k

)
−
(

1̄
a2

)

V 2ρ̄ − k̄
= −V

k1k2

ρ̄

ρ̄
(

1̄
k

)
−
(

1̄
a2

)

V 2 − k̄
ρ̄

,

r = ρ1ρ2

V 2 − k̄
(

1̄
ρ̄

)

V 2ρ̄ − k̄
=

ρ1ρ2

ρ̄

V 2 − k̄
(

1̄
ρ

)

V 2 − k̄
ρ̄

,

θ =
ρ̄

ρ1ρ2〈k〉
V 2 − k̄

ρ̄

V 2 − ( 1̄
ρ )

( 1̄
k )

. (2.29)
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These formulae show that the velocity w = q/r of a proper frame (2.20) is
not equal to V unless V = 0.

2.3 The effective parameters: homogenization

To confirm the results of the previous section, we apply a standard homoge-
nization procedure [1] to the system (2.9). It is more convenient, however, to
work with an equivalent equation (2.1) in which the coefficients ρ and k are
defined as fast periodic functions of the argument ξ = (z − V t)/δ, δ → 0.
The period in ξ is taken equal to 1.

We look for solution to (2.1) represented in the form of a power series over
δ:

u = u0(z, t, ξ) + δu1(z, t, ξ) + δ2u2(z, t, ξ) + . . . (2.30)

where ui, i = 0, 1, 2, . . . are assumed 1-periodic in ξ.
The derivatives that participate in (2.1) should be recalculated by the rule

of differentiating composite functions:

d

dz
F (z, t, ξ) = Fz + δ−1Fξ,

d

dt
F (z, t, ξ) = Ft − V δ−1Fξ. (2.31)

The subscripts in these formulae denote partial differentiation over the rele-
vant variables.

By virtue of (2.30), (2.31), we obtain the formulae

du

dz
= u0z + δu1z + δ2u2z + . . . + δ−1(u0ξ + δu1ξ + δ2u2ξ + . . .),

du

dt
= u0t + δu1t + δ2u2t + . . . − V δ−1(u0ξ + δu1ξ + δ2u2ξ + . . .),

d

dt

(
ρ(ξ)

du

dt

)
=

(
ρ(ξ)

du

dt

)

t

− V δ−1

(
ρ(ξ)

du

dt

)

ξ

= [ρ(ξ)(u0t + δu1t + δ2u2t + . . .)

− V δ−1ρ(ξ)(u0ξ + δu1ξ + δ2u2ξ + . . .)]t

− V δ−1[ρ(ξ)(u0t + δu1t + δ2u2t + . . .)

− V δ−1ρ(ξ)(u0ξ + δu1ξ + δ2u2ξ + . . .)]ξ. (2.32)

A similar expansion for
d

dz

(
k(ξ)

du

dz

)

appears as we formally apply k instead of ρ, and set V = −1 in (2.32).
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By using these expansions in the lhs of (2.1), we express this one as a
power series over δ; we require that the coefficients of powers of δ be set equal
to zero. This requirement, applied to the coefficient of the lowest power, δ−2,
means that

V 2(ρu0ξ)ξ − (ku0ξ)ξ = 0. (2.33)

The similar conditions related to the coefficients of δ−1 and δ0, produce
the following equations:

−V (ρu0ξ)t −V (ρu0t)ξ +V 2(ρu1ξ)ξ − (ku0ξ)z − (ku0z)ξ − (ku1ξ)ξ = 0, (2.34)

(ρu0t)t − V (ρu1ξ)t − V (ρu1t)ξ + V 2(ρu2ξ)ξ

− (ku0z)z − (ku1ξ)z − (ku1z)ξ − (ku2ξ)ξ = 0. (2.35)

We now consider the consequences of (2.33)-(2.35). Integration of (2.33)
reveals that

(V 2ρ − k)u0ξ = m(z, t).

Because u0 should be 1-periodic in ξ, we get

m(z, t)

∫ 1

0

dξ

V 2ρ − k
= 0,

i.e. m(z, t) = 0, since the integral equals a non-zero constant C given by
(2.10). We conclude that, unless V 2ρ − k = 0, u0 is independent of the fast
variable ξ: u0 = u0(z, t).

Bearing this in mind and integrating (2.34), we arrive at the relation

−V ρu0t − ku0z + (V 2ρ − k)u1ξ = n(z, t),

or, equivalently,

u1ξ =
n

V 2ρ − k
+

V ρ

V 2ρ − k
u0t +

k

V 2ρ − k
u0z.

We demand, as before, that u1 be 1-periodic in ξ; this requirement defines n
as

n = −V
B

C
u0t − A

C
u0z,

with A, B, C given by (2.13) and (2.10). The expression for u1ξ now takes the
form

u1ξ = Pu0t + Qu0z, (2.36)

with P, Q defined by

P =
V

V 2ρ − k

(
ρ − B

C

)
, Q =

1

V 2ρ − k

(
k − A

C

)
. (2.37)
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Note that ∫ 1

0

Pdξ =

∫ 1

0

Qdξ = 0.

We also mention the formulae

X = u1t − V u2ξ = − 1

V 2ρ − k
(kS + V T ),

Y = u1z + u2ξ =
1

V 2ρ − k
(ρV S + T ), (2.38)

where

S =

∫ ξ

0

(Nt − Mz)dξ, T =

∫ ξ

0

(−ρMt + kNz)dξ, (2.39)

with M, N defined as

M = u0t − V u1ξ = u0t(1 − V P ) − u0zV Q,

N = u0z + u1ξ = u0tP + u0z(1 + Q). (2.40)

Eqs. (2.38)-(2.40) are produced by the same technique as that applied toward
obtaining (2.36), (2.37).

By integrating (2.35) over the period 1 in ξ and by using the 1-periodicity
of u1 and u2, we arrive at the relation:

(〈ρ〉u0t)t − V

〈
V ρ

V 2ρ − k

(
ρ − B

C

)
u0t +

ρ

V 2ρ − k

(
k − A

C

)
u0z

〉

t

− (〈k〉u0z)z −
〈

V k

V 2ρ − k

(
ρ − B

C

)
u0t +

k

V 2ρ − k

(
k − A

C

)
u0z

〉

z

=0.

The symbol 〈·〉 has been defined in section 2.2 as m1(·)1 +m2(·)2. Bearing
in mind that u0 = u0(z, t) and that ρ, k depend on ξ alone, we rewrite the
last equation in the form:

(
B2V 2

C
− D

)
u0tt − 2V

(
D − AB

C

)
u0zt −

(
V 2D − A2

C

)
u0zz = 0

In view of (2.12), this is reduced to

ru0tt + 2qu0zt − pu0zz = 0, (2.41)

which is equivalent to the system (2.11). Now it is easy to see that S(0) =
T (0) = S(1) = T (1) = 0 and, as a consequence,

X(0) = X(1) = Y (0) = Y (1) = 0.
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2.4 The effective parameters: the Floquet theory

Because of a special assumption made about ρ, k as 1-periodic functions of a
single argument ξ = ζ/δ, the system (2.9) may be viewed as a linear system
with coefficients that are periodic in ζ with period δ. We shall apply the Flo-
quet theory to this system to obtain its exact solution; the results of sections
2.2, 2.3 will follow from this solution in a low frequency asymptotic limit.

We first eliminate the τ -variable by applying the Laplace transform:

ū(ζ, s) =

∫ ∞

0

e−sτu(ζ, τ)dτ.

Equations (2.9) then take on the form

ūζ − s

V 2 − a2

(
V ū − 1

ρ
v̄

)
= 0,

v̄ζ +
s

V 2 − a2
(kū − V v̄) = 0, (2.42)

where a2 is defined as k/ρ (see (2.8)).
Assume that ζ ≥ 0, and that material 1 occupies the intervals

(n − m1)δ ≤ ζ ≤ nδ, n = 0, 1, 2, . . . , (2.43)

while material 2 is concentrated within supplementary intervals

nδ ≤ ζ ≤ (n + m2)δ, n = 0, 1, . . . . (2.44)

Here m1 and m2 denote, as before, the volume fractions of materials 1 and 2
in the laminate; clearly, m1 + m2 = 1.

A general solution to the system (2.42) is given by

ū = A1e
µ1ζP (µ1, ζ) + A2e

µ2ζP (µ2, ζ),

v̄ = A1e
µ1ζQ(µ1, ζ) + A2e

µ2ζQ(µ2, ζ), (2.45)

with P (µ1, ζ), . . . , Q(µ2, ζ) being δ-periodic in ζ. In (2.45), A1 and A2 denote
the coefficients to be determined by the boundary conditions, and µ1, µ2 repre-
sent the Floquet characteristic exponents given by the formula (see Appendix
1)

µ1,2δ = V (θ1/a1 + θ2/a2) ± χ. (2.46)

Here, the upper (lower) sign is related to µ1(µ2), and parameters θ, χ are
defined as

θi = sδφi, φi = miai/(V 2 − a2
i ), i = 1, 2,

coshχ = coshθ1coshθ2 + σsinhθ1sinhθ2,

σ = (γ2
1 + γ2

2)/2γ1γ2,

γi = ki/ai = ρiai =
√

kiρi, i = 1, 2 . (2.47)
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Clearly, σ ≥ 1. Consider the low frequency case | sδ/ai |≪ 1; equation (2.47)
then specifies χ approximately as

χ = sδ
√

φ2
1 + φ2

2 + 2σφ1φ2. (2.48)

By (2.5), the quantities φ1, φ2 should be of the same sign; because σ > 0,
the square root in (2.48) is real.

If s = iω with ω real, then

coshχ = cos ωδφ1 cos ωδφ2 − σ sin ωδφ1 sin ωδφ2.

If the absolute value of the rhs of this equation exceeds 1, then the roots χ
have non-zero real parts, and solution (2.45) contains exponentially increasing
terms.

This cannot happen in the low frequency approximation ωδ/ai ≪ 1, and
the corresponding values of χ, as well as µ1, µ2, are in this case imaginary.

The functions P (µ, ζ) and Q(µ, ζ) in (2.45) are given by the formulae

P (µ, ζ) =





e
−

(

µ−
s

V − a1

)

(ζ−nδ)

+ Ee
−

(

µ−
s

V + a1

)

(ζ−nδ)

, ζ ∈ (2.43)

Ge
−

(

µ−
s

V − a2

)

(ζ−nδ)

+ He
−

(

µ−
s

V + a2

)

(ζ−nδ)

, ζ ∈ (2.44)

Q(µ, ζ) =





γ1


e

−

(

µ−
s

V − a1

)

(ζ−nδ)

+ Ee

(

µ−
s

(V + a1)

)

(ζ−nδ)


 , ζ ∈ (2.43)

γ2


−Ge

−

(

µ−
s

V − a2

)

(ζ−nδ)

+He
−

(

µ−
s

V + a2

)

(ζ−nδ)


, ζ ∈(2.44)

The constants E, G, and H in these formulae are defined as solutions to
the system

−E + G + H = 1,

E + (G − H)(γ2/γ1) = 1

−Eeθ1 + Geθ2∓χ + He−θ2∓χ = e−θ1 , (2.49)

with upper (lower) sign related to µ = µ1(µ2). For derivation of (2.49), see
Appendix 1.

Both P (µ, ζ) and Q(µ, ζ) are δ-periodic in ζ; these functions actually de-
pend on ζ − nδ, this argument falling into the range [−m1δ, 0] for (2.43), and
into [0, m2δ] for (2.44):
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−m1 ≤ ζ − nδ

δ
≤ 0 for (2.43); 0 ≤ ζ − nδ

δ
≤ m2 for (2.44).

In both cases, the difference ζ−nδ is of order δ. The functions ū, v̄ given by
(2.45) have the form of modulated waves; when s = iω and ωδ/ai ≪ 1, then
eµζ appears to be the long wave modulation factor, while P (µ, ζ), Q(µ, ζ)
represent the short wave carriers. By averaging ū and v̄ over the period δ,
we perform homogenization; this operation eliminates the short wave carriers
P, Q, and detects the long wave envelopes eµζ . These envelopes give birth to
the original u(ζ, τ) taking the form of the d’Alembert waves f(ζ + s

µ1,2
τ) in

the coordinate frame (ζ, τ) linked with the laboratory frame (z, t) through
(2.6). In this latter frame, the waves take on the form f(z − (V − s

µ1,2
)t), with

phase velocities V − s
µ1,2

.

In Appendix 1, these velocities are calculated for s = iω, ωδ/ai ≪ 1; they
are specified as

v1,2 = V − s

µ1,2
= −V a2

1a
2
2

ρ̄
(

1̄
k

)
−
(

1̄
a2

)

V 2 − k̄
(

1̄
ρ

) ±a1a2

√
(V 2ρ̄ − k̄)

(
V 2
(

1̄
k

)
−
(

1̄
ρ

))

V 2 − k̄
(

1̄
ρ

) ;

(2.50)
as before, the upper (lower) sign is related to µ1(µ2).

On the other hand, if we go back to equation (2.41) and look for its solution
f(z −vt), then the phase velocities v1,2 appear to be the roots of the equation

rv2 − 2qv − p = 0. (2.51)

Referring to (2.29), we conclude that v1,2 are identical with the expressions
given by (2.50).

2.5 The effective parameters: discussion

Equations (2.25) define the effective parameters K, P of an activated laminate
in (z, t). Material properties k, ρ are assumed positive for both of the original
substances; with no loss of generality, we set a2

2 > a2
1, i.e. k2/ρ2 > k1/ρ1. Then

it is easily checked that, apart from obvious inequalities

ρ̄

(
1̄

ρ

)
≥ 1,

k̄

(
1̄

k

)
≥ 1, (2.52)

we have
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a2
1 ≤ k̄

ρ̄
≤ a2

2,

a2
1 ≤

(
1̄
ρ

)

(
1̄
k

) ≤ a2
2. (2.53)

Also,

1

ρ̄
(

1̄
k

) ≤ a2
2,

a2
1 ≤ k̄

(
1̄

ρ

)
. (2.54)

From this point on, we shall distinguish between two possible situations:

(i) k2 > k1, ρ2 < ρ1; (2.55)

this possibility will be referred to as the regular case;

(ii) either k2 > k1, ρ2 > ρ1, or k2 < k1, ρ2 < ρ1; (2.56)

both of the latter possibilities will be termed irregular.
In a regular case, inequalities (2.54) will be complemented by the following:

a2
1 ≤ 1

ρ̄
(

1̄
k

) , k̄

(
1̄

ρ

)
≤ a2

2. (2.57)

In irregular case, however, there exists the range of parameters ρ, k, and
m1, such that

1

ρ̄
(

1̄
k

) ≤ a2
1, (2.58)

and the range for which

a2
2 ≤ k̄

(
1̄

ρ

)
. (2.59)

Indeed, we have

1

ρ̄
(

1̄
k

) − a2
1 =

k1k2

ρ̄〈k〉 − k1

ρ1
=

k1

ρ1ρ̄〈k〉 [k2ρ1 − (m1k1 + m2k2)(m1ρ2 + m2ρ1)]

=
m1k1

ρ1ρ̄〈k〉 [ρ1∆k − k1∆ρ − m2∆k∆ρ] ; (2.60)
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a2
2 − a2

1 =
k2

ρ2
− k1

ρ1
=

1

ρ1ρ2
(ρ1∆k − k1∆ρ) ≥ 0; (2.61)

here we applied notation ∆(·) = (·)2 − (·)1. It is clear that the difference

1/ρ̄
(

1̄
k

)
− a2

1 is positive in the regular case when ∆k > 0, ∆ρ < 0; however,

in irregular case, when the signs of ∆k and ∆ρ are the same, this difference
may become negative. For example, if k2 = 10, ρ2 = 9, k1 = ρ1 = 1, then
ρ1∆k−k1∆ρ−m2∆k∆ρ = 9−8−72m2, and this is ≤ 0 if m2 ≥ 1/72. At the
same time, the difference k2/ρ2 −k1/ρ1 is positive by (2.61), i.e. k/ρ increases
as we go from material 1 to material 2. Combined with ∆k∆ρ > 0 (irregular
case), this means that the increase may be due to that in k and to the less
intensive increase (not a decrease) in ρ, or due to the decrease in ρ and the
less intensive decrease (not an increase) in k. The possibility for inequality
(2.59) to hold is illustrated quite similarly. We calculate the difference

k̄

(
1̄

ρ

)
− a2

2 =
k̄〈ρ〉
ρ1ρ2

− k2

ρ2
= − 1

ρ1ρ2
[k2ρ1 − (m1k2 + m2k1)(m1ρ1 + m2ρ2)]

= − m2

ρ1ρ2
[ρ1∆k − k1∆ρ − m1∆k∆ρ] ; (2.62)

this difference is negative in a regular case, and may become positive in irregu-
lar case. Indeed, for an example cited above (k2 = 10, ρ2 = 9, k1 = ρ1 = 1),
the difference becomes positive if m1 ≥ 1/72, i.e. m2 ≤ 71/72. We conclude
that, for this example, both inequalities (2.58), (2.59) will hold once m2 falls
into the range (1/72, 71/72).

If, as assumed,
a2
2 > a2

1, (2.63)

then, for inequalities (2.58), (2.59) to hold, it is necessary that ∆k and ∆ρ
should both be non-zero. So the situation in which the original substances
differ in only one material constant, can never involve (2.58), (2.59).

On making these observations, we may discuss the formulae (2.25) for K
and P . Inequality (2.5) outlines two admissible ranges for V 2 : the slow range

V 2 < a2
1, (2.64)

and the fast range
V 2 > a2

2. (2.65)

The last formula (2.15) shows that θ ≥ 0 for both ranges once k, ρ are
of the same sign for all participating materials. As to the values of r (see
(2.29)), they are always positive for the slow range (2.64), but may become
negative in the irregular case for the fast range (2.65). Indeed, for this range
the denominator V 2ρ̄ − k̄ in (2.29) is positive by (2.53), while the numerator

V 2 − k̄
(

1̄
ρ

)
may become negative for the fast range: to this end, we should

choose V 2 within the interval
(
a2
2, k̄
(

1̄
ρ

))
; as stated above (see (2.59)), this

interval may come to existence in the irregular case.
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Fig. 2.8. Effective parameters K versus P with variable V (case ρ̄
(

1̄
ρ

)

−k̄
(

1̄
k

)

≥ 0).

The plots of K versus P with V variable along the curves are given,

respectively, by Fig. 2.8 (case ρ̄
(

1̄
ρ

)
− k̄

(
1̄
k

)
≥ 0), and Fig. 2.9 (case

ρ̄
(

1̄
ρ

)
− k̄
(

1̄
k

)
≤ 0). Both curves have parametric equations (with parameter

V ) following from (2.25) and (2.29):

K = 〈k〉
V 2 − ( l̄

ρ )
( 1̄

k )

V 2 − k̄
(

1̄
ρ

) , P =
ρ1ρ2

ρ̄

V 2 − k̄
(

1̄
ρ

)

V 2 − k̄
ρ̄

.

Only those parts of the curves are realizable that are consistent with the
admissible ranges V 2 ≤ a2

1, , V 2 ≥ a2 of V 2 (see (2.5)); the relevant segments
are marked boldface in the figures.

The “averaged” d’Alembert waves, i.e. the low frequency envelopes in-
troduced in section 2.4, propagate with the phase velocities v1,2 specified by
(2.50). By (2.51), the product of these velocities equals −p/r, or, with refer-
ence to (2.29),

v1v2 = −ρ̄

(
1̄

k

)
a2
1a

2
2

V 2 − 1

ρ̄( 1̄
k )

V 2 − k̄
(

1̄
ρ

) . (2.66)

Given the observations made earlier in this section, we conclude that v1

and v2 should have opposite signs in a regular case. As to an irregular case,

V2=฀k(ρ–1)

V2฀=฀k/ρ

V2=฀α2

V2฀=฀α1

V2฀=฀0

V2฀=฀∞

V2฀=฀1/ρ(k–1)

V2฀=฀k฀(ρ–1)

V2฀=฀k฀/฀ρ

V2=฀(ρ–1)/(k–1)

k–1–1

ρ–1–1

k–1–1

ρ฀(ρ–1)–1

ρ฀(ρ–1)–k(k–1)

0
P

ρ

k

K

2

2
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Fig. 2.9. Effective parameters K versus P with variable V (case ρ
(

1
ρ

)

−k
(

1
k

)

≤ 0).

the signs of v1 and v2 are the same if V 2 is taken within the interval

 1

ρ̄
(

1̄
k

) , a2
1


 for the slow range, (2.67)

and within the interval
(

a2
2, k̄

(
1̄

ρ

))
for the fast range. (2.68)

We have seen in (2.58) and (2.59) that such intervals may exist in the
irregular case. For each of them, the homogenized waves propagate in the
same direction relative to a laboratory frame; this direction may be switched
to opposite as we go from V to −V . We thus arrive at what will be termed
coordinated wave propagation. The possibility of coordinated wave motion is
peculiar to the dynamic materials; this option does not arise if we apply

V฀
2=฀k(ρ–1)

V฀

2=฀1/ρ(k–1)

k–1–1

ρ฀(ρ–1)฀–฀1

ρ฀(ρ–1)฀–฀k(k–1)

V฀2=฀(ρ–1)/(k–1)

V฀
2฀=฀k/ρ

k–1–1

k

ρ–1 –1 ρ

V฀

2=฀0

V฀

2=฀∞

V฀

2฀=฀k฀(ρ–1)

0

K

P

V฀

2=฀k฀/ρ

V฀
2=฀α2

2

V฀

2=฀α1
2
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conventional (static) composites. The effects achieved through the use of this
phenomenon may be quite unusual as seen from the following example.

Assume that we have a laminate in space-time offering a coordinated wave
propagation with both low frequency waves travelling from left to right; we
shall term such material a right laminate. By switching V to −V, the direction
of coordinated waves is also switched to opposite, so we obtain a left laminate.
Now consider the material arrangement produced by placing the left (right)
laminate to the left (right) of the point z = 0 (see Fig. 2.9 representing the
relevant families of characteristics).

Fig. 2.10. Screening effect produced by a shadow zone.

It is clear that an initial disturbance gives rise to two pairs of d’Alembert
waves propagating each in the relevant quadrant of the (z, t)-plane along the
characteristics. The interior of the angle AOB in a (z, t)-plane then appears to
be a “shadow zone” free from any initially applied disturbance since they will
be unable to enter this domain due to a special geometry of characteristics. By
controlling such geometry, we will selectively screen large domains in space-
time from the invasion of long wave dynamic disturbances. With ordinary
(static) composites, this screening effect is impossible.

Remark 2.1. The velocities v1,2 specified by (2.50) are the phase velocities of
the envelopes eµζ of the modulated waves that represent the Floquet solutions
to equations (2.9); these velocities are defined by (2.50) in a low frequency
limit ω → 0. In this capacity, they represent the group velocities of the low
frequency waves propagating through an activated dynamic lamination.

A

t

B

z
0
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When V = 0 (a static laminate), the velocities become ±vst, where, by
(2.17),

v2
st = 〈k−1〉−1/〈ρ〉 = a2

1a
2
2/k̄

(
1̄

ρ

)
. (2.69)

When V = ∞ (a temporal laminate), the velocities become ±vtemp, where,
by (2.19),

v2
temp = 〈k〉/〈ρ−1〉−1 = a2

1a
2
2ρ̄

(
1̄

k

)
. (2.70)

Inequalities (2.54) now show that always

v2
st ≤ a2

2, v2
temp ≥ a2

1.

For a regular case, as seen from (2.57),

v2
st ≥ a2

1, v2
temp ≤ a2

2,

whereas for an irregular case, (2.58) and (2.59) show that it is possible that

v2
st ≤ a2

1, v2
temp ≥ a2

2.

Combining these inequalities, we conclude that, in a regular case, both
vst and vtemp fall into the interval (a1, a2), whereas in an irregular case, they
may fall outside this interval: vst may become less than a1, and vtemp - greater
than a2.

Remark 2.2. Consider a special case when the acoustic impedance γ =
√

kρ
takes the same values for both materials; this case belongs with a regular range
(2.55). The formula (2.50) for the effective velocities may then be illustrated
by the following elementary argument.

When γ1 = γ2, then, at each encounter with the interface separating two
adjacent materials in a laminate, an incident wave propagating through mate-
rial 1 generates only one secondary wave, i.e. a transmitted wave travelling in
material 2. The waves propagate through th material (i = 1, 2) with velocity
±ai − V measured in the frame (2.6) where the interfaces stay immovable.
An elementary calculation now specifies the average velocity of waves passing
through a unit period in ξ in this frame:

1
m1

±a1−V + m2

±a2−V

=
(V ∓ a1)(V ∓ a2)

±ā − V
. (2.71)

On the other hand, when γ1 = γ2, then a direct inspection indicates that
equation (2.50) defines the difference v1,2 − V as

v1,2 − V =
1

(ā)2 − V 2
(V ± ā)(V ∓ a1)(V ∓ a2); (2.72)

i
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this difference characterizes the effective velocities of waves measured in the
frame (2.6). We see that the values given by (2.71) and (2.72) are identical.

In a laboratory frame (z, t), the effective velocities take the values

(V ∓ a1)(V ∓ a2)

±ā − V
+ V =

a1a2 ∓ V 〈a〉
±ā − V

.

Particularly, for V = 0 we obtain

vst = ±〈a−1〉−1,

whereas for V = ∞
vtemp = ±〈a〉 .

These expressions are identical with those following from the formulae
(2.69) and (2.70) for vst and vtemp when we apply them to the case γ1 = γ2.

2.6 Balance of energy in longitudinal wave

propagation through an activated elastic bar

The differential equation (2.1) governing the wave propagation through an
immovable elastic bar represents an Euler equation generated by the action
density

Λ =
1

2
ρ

(
∂u

∂t

)2

− 1

2
k

(
∂u

∂z

)2

. (2.73)

This density defines components of the energy-momentum tensor W according
to the formulae

Wtt =
∂u

∂t

∂Λ

∂
(

∂u
∂t

) − Λ =
1

2
ρ

(
∂u

∂t

)2

+
1

2
k

(
∂u

∂z

)2

− the energy density,

Wtz =
∂u

∂t

∂Λ

∂
(

∂u
∂z

) = −k
∂u

∂t

∂u

∂z
− the energy flux density,

Wzt =
∂u

∂z

∂Λ

∂
(

∂u
∂t

) = ρ
∂u

∂t

∂u

∂z
− the momentum density, (2.74)

Wzz =
∂u

∂z

∂Λ

∂
(

∂u
∂z

) − Λ = −1

2
ρ

(
∂u

∂t

)2

− 1

2
k

(
∂u

∂z

)2

− the momentum flux density.

These components satisfy the equations

∂

∂t
Wtt +

∂

∂z
Wtz = −1

2

[
∂ρ

∂t

(
∂u

∂t

)2

− ∂k

∂t

(
∂u

∂z

)2
]

, (2.75)

∂

∂t
Wzt +

∂

∂z
Wzz = −1

2

[
∂ρ

∂z

(
∂u

∂t

)2

− ∂k

∂z

(
∂u

∂z

)2
]

, (2.76)
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following directly from (2.1), (2.74).
At the lhs of equation (2.75) we have the rate of increase DWtt

Dt of the
energy of a unit segment of the bar; this rate is calculated as the sum of the
local change ∂Wtt

∂t and the energy ∂Wtz

∂z that is brought into a unit segment

through its endpoints per unit time. The net increase DWtt

Dt is equal to the
work

−1

2

[
∂ρ

∂t

(
∂u

∂t

)2

− ∂k

∂t

(
∂u

∂z

)2
]

, (2.77)

produced, per unit time, by an external agent against the variable property
pattern. Equation (2.75) thus expresses the energy balance in the system; the
balance of momentum is reflected in equation (2.76).

In this section, we shall see in detail how the energy-momentum balance
manifests itself through homogenization. To this end, we apply the analysis
of section 2.3 in order to find an asymptotic form of equations (2.75), (2.76).

For reasons explained in section 2.3, the derivatives ∂/∂t, ∂/∂z entering
these equations should be replaced, respectively, by d/dt, d/dz, and these lat-
ter derivatives calculated by (2.31). We thus reduce (2.75), (2.76) to the fol-
lowing form

(Wtt)t + (Wtz)z − V δ−1(Wtt)ξ + δ−1(Wtz)ξ

=
1

2
V δ−1

[
ρξ(ut − V δ−1uξ)

2 − kξ(uz + δ−1uξ)
2
]
, (2.78)

(Wzt)t + (Wzz)z − V δ−1(Wzt)ξ + δ−1(Wzz)ξ

= −1

2
δ−1[ρξ(ut − V δ−1uξ)

2 − kξ(uz + δ−1uξ)
2]. (2.79)

Here, as in section 2.3, we assume that u = u(z, t, ξ), ρ = ρ(ξ), k =
k(ξ), ξ = (z − V t)/δ, with δ being a small parameter; the symbols
(·)z, (·)t, (·)ξ stand for the relevant partial derivatives. We now intro-
duce an asymptotic expansion (2.30) for u(z, t, ξ); as shown in section 2.3,
the function u0(z, t, ξ) does not depend on ξ, and the derivatives u1ξ, u2ξ are
given, respectively, by (2.36) and (2.38).

Bearing this in mind along with (2.32), we reduce the densities Wtt and
Wtz to the form

Wtt =
1

2
ρ(u0t − V u1ξ)

2 +
1

2
k(u0z + u1ξ)

2

+ δ[ρ(u0t − V u1ξ)(u1t − V uzξ)

+ k(u0z + u1ξ)(u1z + u2ξ)] + . . . , (2.80)

Wtz = −k(u0t − V u1ξ)(u0z + u1ξ) − δk[(u0t − V u1ξ)(u1z + u2ξ)

+ (u0z + u1ξ)(u1t − V u2ξ)] + . . . . (2.81)
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The expression for Wzt is produced if we replace k by −ρ in (2.81); the ex-
pression for Wzz appears to be the negative of Wtt.

In (2.80) and (2.81), the dots stand for terms of order δ2 and higher. We
drop such terms because we want to calculate both sides of (2.78) up to terms
of order δ0. We also need the expansions

(ut − V δ−1uξ)
2 = [u0t + δu1t + . . . − V δ−1(δu1ξ + δ2u2ξ + . . .)]2

= (u0t − V u1ξ)
2

+ 2δ(u0t − V u1ξ)(u1t − V u2ξ) + . . . , (2.82)

(uz + δ−1uξ)
2 = (u0z + u1ξ)

2 + 2δ(u0z + u1ξ)(u1z + u2ξ) + . . . . (2.83)

Now as we apply (2.80)-(2.83) towards (2.78), the latter equation includes
terms of order δ−1, δ0, δ, etc. The coefficients of such terms taken on both sides
of (2.78), should be set equal to each other. We are particularly interested in
the coefficients of δ0 because they carry information about the energy flows
as we pass to the limit δ → 0. The balance of δ−1 terms yields the equation

− V
∂

∂ξ

[
1

2
ρ(u0t − V u1ξ)

2 +
1

2
k(u0z + u1ξ)

2

]
− ∂

∂ξ
k(u0t − V u1ξ)(u0z + u1ξ)

=
1

2
V ρξ(u0t − V u1ξ)

2 − 1

2
V kξ(u0z + u1ξ)

2, (2.84)

whereas the balance of δ0-terms is expressed by

1

2

∂

∂t

[
ρ(u0t − V u1ξ)

2 + k(u0z + u1ξ)
2
]
− ∂

∂z
[k(u0t − V u1ξ)(u0z + u1ξ)]

− V
∂

∂ξ
[ρ(u0t − V u1ξ)(u1t − V u2ξ) + k(u0z + u1ξ)(u1z + u2ξ)]

− ∂

∂ξ
[k(u0t − V u1ξ)(u1z + u2ξ) + k(u0z + u1ξ)(u1t − V u2ξ)]

= V [ρξ(u0t − V u1ξ)(u1t − V u2ξ) − kξ(u0z + u1ξ)(u1z + u2ξ)] . (2.85)

Referring to (2.36)-(2.39), we conclude, after some calculation, that both
(2.84) and (2.85) are identically satisfied.

Before we discuss the specifics of such cancellations, it will be appropriate
to clarify the physical meaning of various terms participating in (2.85). The
first term at the lhs side of (2.85) expresses the local increase of the energy
density of a slow motion; by (2.80) and (2.40), this density is calculated as

Ttt =
1

2

[
ρ(u0t − V u1ξ)

2 + k(u0z + u1ξ)
2
]

=
1

2

(
ρM2 + kN2

)
=

1

2

[
ρ(1 − V P )2 + kP 2

]
u2

0t

− [ρV Q(1 − V P ) − kP (1 + Q)]u0tu0z

+
1

2

[
ρV 2Q2 + k(1 + Q)2

]
u2

0z. (2.86)
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The second term reflects contribution due to the energy flux density of a slow
motion; by (2.81) and (2.40), this density is represented as

Ttz = −k(u0t − V u1ξ)(u0z + u1ξ) = −kMN = −k{P (1 − V P )u2
0t

+ [(1 − V P )(1 + Q) − V PQ]u0tu0z − V Q(1 + Q)u2
0z}. (2.87)

The term in the second line at the lhs of (2.85),

− V
∂

∂ξ
[ρ(u0t − V u1ξ)(u1t − V u2ξ) + k(u0z + u1ξ)(u1z + u2ξ)]

= −V
∂

∂ξ
[ρMX + kNY ] , (2.88)

represents the local increase of the energy density of a fast motion, and the
term in the third line

− ∂

∂ξ
[k(u0t − V u1ξ)(u1z + u2ξ) + k(u0z + u1ξ)(u1t − V u2ξ)]

= − ∂

∂ξ
[k(MY + NX)] (2.89)

reflects contribution due to the energy flux density of such a motion. By the
last equation of section 2.3 we conclude that the averaged values (over period
1) of the terms (2.88) and (2.89) responsible for a fast motion are both equal to
zero. As to the rhs of (2.85), it defines the work produced, per unit time, by an
external agent against the variable property pattern. This agent is responsible
for an external force working against elastic deformations.

When we implement differentiation ∂/∂ξ in (2.88) and (2.89) and refer to
(2.40) and (2.38), there emerge terms with factors ρξ, kξ, as well as the terms
without such factors. The factored terms are counter-balanced by the rhs of
(2.85). The remaining (nonfactored) terms precisely match the expressions in
(2.85) generated by (2.86) and (2.87) combined.

All of those reductions occur term-wise, with no averaging operation ap-
plied whatsoever. The relevant (somewhat cumbersome) calculation is left to
the reader.

These observations show that the work of an external force produced over
a period is equal to the net increase of the energy of a slow motion.

So far in this section we never referred to the homogenized equation (2.41).
This equation appears to be an Euler equation produced by an effective action
density

Λ̄ =
1

2
(ru2

0t + 2qu0tu0z − pu2
0z). (2.90)

As in the beginning of this section, this function generates components of
an effective energy-momentum tensor W̄ :
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W̄tt = u0t
∂Λ̄

∂u0t
− Λ̄ =

1

2
(ru2

0t + pu2
0z),

W̄tz = u0t
∂Λ̄

∂u0z
= qu2

0t − pu0tu0z,

W̄zt = u0z
∂Λ̄

∂u0t
= ru0tu0z + qu2

0z, (2.91)

W̄zz = u0z
∂Λ̄

∂u0z
− Λ̄ = −1

2
(ru2

0t + pu2
0z).

These components satisfy the system

∂

∂t
W̄tt +

∂

∂z
W̄tz = 0,

∂

∂t
W̄zt +

∂

∂z
W̄zz = 0, (2.92)

following from (2.41).
Contrary to (2.75), (2.76), the system (2.92) has zero rhs because the co-

efficients r, q, p in (2.41) are constant while the ρ, k in (2.1) are ξ-dependent.
Equations (2.92) therefore express conservation of both energy and momen-
tum for an effective motion governed by (2.41). We want to see how the system
(2.92) is linked with (2.75), (2.76). To this end, we first rewrite the expression
(2.90) for an effective action density in a more convenient form.

Consider the expression

1

2
[ρ(u0t − V u1ξ)

2 − k(u0z + u1ξ)
2] =

1

2
(ρM2 − kN2). (2.93)

Referring to (2.40), we transform it to

1

2

{
u2

0t[ρ(1 − V P )2 − kP 2] − 2u0tu0z[ρV Q(1 − V P ) + kP (1 + Q)]

− u2
0z[k(1 + Q)2 − ρV 2Q2]

}
. (2.94)

By direct inspection and with reference to (2.37), we get

ρ(1 − V P )2 − kP 2 =
1

V 2ρ − k

(
B2

C2
V 2 − kρ

)
,

−[ρV Q(1 − V P ) + kP (1 + Q)] =
V

V 2ρ − k

(
AB

C2
− kρ

)
,

k(1 + Q)2 − ρV 2Q2 =
1

V 2ρ − k

(
kρV 2 − A2

C2

)
. (2.95)

Now, by averaging both sides of every equation (2.95) over the period 1 in
ξ and by referring to (2.10), (2.12), and (2.13), we write
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〈ρ(1 − V P )2 − kP 2〉 =
B2V 2

C
− D = r,

−〈ρV Q(1 − V P ) + kP (1 + Q)〉 = V

(
AB

C
− D

)
= q,

〈k(1 + Q)2 − ρV 2Q2〉 = V 2D − A2

C
= p. (2.96)

Combining (2.93), (2.94) and (2.96), we finally obtain

1

2
〈ρM2 − kN2〉 =

1

2
(ru2

0t + 2qu0tu0z − pu2
0z),

i.e. the effective action density (2.90).
The quantity W̄tt defined by (2.91) may be interpreted as an effective

energy density measured in the laboratory frame. Given (2.96), this density
takes on the form

W̄tt =
1

2
〈ρ(1 − V P )2 − kP 2〉u2

0t +
1

2
〈k(1 + Q)2 − ρV 2Q2〉u2

0z. (2.97)

We now observe that an effective energy density W̄tt is generally not equal
to the averaged energy density 〈Ttt〉 of the slow motion calculated as (c.f.
(2.86))

〈Ttt〉 =
1

2
〈ρ(1 − V P )2 + kP 2〉u2

0t − 〈ρV Q(1 − V P ) − kP (1 + Q)〉u0tu0z

+
1

2
〈k(1 + Q)2 + ρV 2Q2〉u2

0z. (2.98)

The difference between the two densities

W̄tt − 〈Ttt〉 = −〈kP 2〉u2
0t + 〈ρV Q(1 − V P ) − kP (1 + Q)〉u0tu0z

− 〈ρV 2Q2〉u2
0z = 〈ρV QMu0z − kPNu0t〉

vanishes when V = 0, i.e. for a static laminate.
This difference is non-zero because of a temporal activation. We therefore

expect that if we go to a co-moving coordinate frame τ, η in which an inter-
face between layers in an activated composite remains immovable, then the
difference between W̄ττ and 〈Tττ 〉 evaluated for this system, may vanish.

The required frame is given by (2.20) with w = V ; in it, the components
of the energy-momentum tensor are expressed by the formulae:

Wττ = Wtt + V Wzt,

Wτη = Wtz + V Wzz − V (Wtt + V Wzt) ,

−Wητ = Wzt,

Wηη = Wzz − V Wzt. (2.99)
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An asymptotic expression for Wzt is produced, as mentioned above, if we
replace k by −ρ in (2.81). The term Tzt in this expression will be defined as
ρMN , similarly to the quantity Ttz introduced in (2.87). This term takes the
form (c.f. (2.87))

Tzt = ρMN = ρ{P (1 − V P )u2
0t + [(1 − V P )(1 + Q) − V PQ]

u0tu0z − V Q(1 + Q)u2
0z}; (2.100)

we may call it the momentum density of a slow motion.
Introduce the quantity similar to Wττ :

Tττ = Ttt + V Tzt;

by direct inspection, with reference to (2.10), (2.13). (2.37), (2.97) and (2.98),
we show that

〈Tττ 〉 = W̄ττ . (2.101)

By a similar argument, for the quantity

Tτη = Ttz + V Tzz − V (Ttt + V Tzt), (2.102)

we obtain
〈Tτη〉 = W̄τη. (2.103)

The effective energy density (flux)thus appears to be the same as the
averaged energy density (flux) of a slow motion in a co-moving coordinate
frame in which the interface remains immovable. We could expect that if we
noticed that

∂

∂t
(Wtt + V Wzt) +

∂

∂z
(Wtz + V Wzz) = 0, (2.104)

because of (2.75), (2.76) and due to a supposed dependency of ρ and k on the
argument z − V t.

As shown at the end of section 2.2, a co-moving frame never becomes
proper except in a trivial case V = 0. Eqn. (2.104) is now rewritten as

∂Wττ

∂τ
+

∂Wτη

∂η
= 0; (2.105)

it shows that the energy is preserved in a co-moving frame.1

We will now discuss the momentum equation taking the form (2.79) in a
laboratory frame. Following remarks made after eqn. (2.81), we reproduce an
asymptotic version of (2.79) expressing the balance of δ0-terms:

1 The conservation of energy in a co-moving frame (2.20) follows from the Noether
theorem applied to the variational principle of stationary action with the action
density (2.73). For a laminate, the material coefficients ρ and k depend on η
and do not depend on τ , which means the conservation of energy in a co-moving
frame.
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∂

∂t
ρMN − 1

2

∂

∂z
(ρM2 + kN2) − V

∂

∂ξ
[ρ(MY + NX)] − ∂

∂ξ
(ρMX + kNY )

= −(ρξMX − kξNY ). (2.106)

As for the energy equation, we use the momentum density Tzt of a slow motion
defined by (2.100), as well as the momentum flux density Tzz of the same
motion defined as (see (2.86))

Tzz = −Ttt = −1

2
(ρM2 + kN2).

The third term at the lhs of (2.106) represents contribution due to the mo-
mentum density of a fast motion whereas the fourth term reflects a similar
contribution produced by the momentum flux density. The averaged (over pe-
riod 1) values of both terms are equal to zero, just as the averaged values for
similar terms (2.88) and (2.89).

Desiring to arrive at the second formula (2.92), we rewrite (2.106) in the
following equivalent form:

(
∂

∂t
+ V

∂

∂z

)
(ρMN) − ∂

∂z

[
1

2
(ρM2 + kN2) + ρV MN

]

−V
∂

∂ξ
[ρ(MY + NX)] − ∂

∂ξ
(ρMX + kNY )

+ρξMX − kξNY = 0. (2.107)

Before applying averaging to (2.107), observe that, by (2.99)-(2.101), we
have

〈
1

2
ρ(M2 + kN2) + ρV MN

〉
= 〈−Tzz + V Tzt〉 = 〈−Tηη〉 = 〈Tττ 〉

= W̄ττ = −W̄ηη.

Eqn. (2.107) is now reduced to

(
∂

∂t
+ V

∂

∂z

)
〈ρMN〉 +

∂W̄ηη

∂z
+ 〈ρξMX − kξNY 〉 = 0 (2.108)

The sum of the first and the last terms in the lhs becomes, after some calcu-
lation, equal to

∂W̄ητ

∂t
+ V

∂W̄ητ

∂z
=

∂W̄ητ

∂τ
,

where W̄ητ �= 〈ρMN〉 = 〈Tητ 〉. For example, when V = 0, we have
W̄ητ = 〈ρ〉u0tu0z, whereas 〈ρMN〉 =

〈
ρ
k

〉
1

〈 1
k 〉u0tu0z. We conclude that the

last term in (2.108), i.e. the momentum applied by an external agent, sub-
stantially contributes to an effective momentum density making it not equal
to the averaged momentum density even in a co-moving coordinate frame.
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In this particular frame, only three components W̄ττ , W̄τη, W̄ηη of an effec-
tive energy-momentum tensor appear to be the same as the averaged values
〈Tττ 〉, 〈Tτη〉, 〈Tηη〉 of the relevant quantities related to a slow motion. The
component W̄ητ is not equal to 〈Tητ 〉, and it is directly influenced by an ex-
ternal agent. Of course, this contribution affects the entire energy-momentum
tensor.
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3

Dynamic Materials in Electrodynamics of

Moving Dielectrics

3.1 Preliminary remarks

The analysis given in Chapter 2 may be treated as introductory. We applied
the model of a thin elastic bar to illustrate the concept of activated dynamic
material. Within this concept, we defined the effective material parameters
of a spatio-temporal composite, specifically, a laminate in one spatial dimen-
sion and time. Such parameters emerge as we introduce a proper coordinate
frame in which the homogenized system is reduced to a canonical form, with
diagonal matrix of the effective material constants. This approach obtains a
rigorous and universal formulation as we resort to a tensor language to gener-
ate a covariant description of the relevant dynamic phenomena. An adequate
example illuminating the basic features of the unveiling theory is given by
electrodynamics of moving dielectrics. Created by Maxwell and Minkowski,
it naturally applies to activated and kinematic composites; particularly, it
reveals the conceptual difference between those types of dynamic materials
and elucidates the role they play in a general framework of spatio-temporal
material assemblages. We begin this chapter with a brief account of the funda-
mentals of Maxwell’s theory (see e.g. [7]); the presentation in sections 3.2-3.4
follows the paper [8].

3.2 The basics of electrodynamics of moving

dielectrics

The main object of Maxwell’s theory is the electromagnetic field. This one is
defined as a set of four vectors E,B,H,D, termed, respectively, the electric
field, the magnetic induction, the magnetic field, and the electric displacement.
These vectors satisfy the fundamental system of Maxwell’s equations, which,
in the absence of currents and charges, come up in two basic pairs:

curlE = −Bt, divB = 0, (3.1)
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curlH = Dt, divD = 0. (3.2)

The second equation in each pair represents an initial condition for B and
D, respectively, so we ultimately have six equations for four 3D-vectors. To
make the Maxwell’s system complete, we need six additional equations. They
appear as the material relations which, in a classical theory, take the form of
two linear equations incorporating the field vectors. For isotropic dielectrics
immovable in a laboratory frame x, y, z, t, the classical Maxwell’s relations are
represented by the formulae

D = ǫE, B = µH, (3.3)

with scalar coefficients ǫ, µ termed, respectively, the dielectric permittivity
and the magnetic permeability of a material. For ordinary dielectrics, these
coefficients are positive. We shall assume in what follows that they are also
frequency independent, i.e. the material has no dispersion.1

In special circumstances, the system (3.1)-(3.3) may be reduced to (2.2).
To illustrate this, consider a partial solution of (3.1)-(3.3) known as the plane
electromagnetic wave. This one appears as we specify the vectors E, . . . ,D as

E = Ej, B = Bi, H = Hi, D = Dj, (3.4)

with components E, . . . , D depending on a single spatial coordinate z and
time t. The Maxwell’s equations (3.1) and (3.2) then yield

Ez = Bt, Hz = Dt. (3.5)

This system will be satisfied if we introduce potential functions u, v by
setting

E = ut, B = uz, H = vt, D = vz. (3.6)

Material relations (3.3) are then reduced to

vt =
1

µ
uz, vz = ǫut; (3.7)

these equations become identical with (2.2) if we apply replacements

1

µ
→ k, ǫ → ρ. (3.8)

Equations (3.3) hold for a medium that is at rest in a laboratory frame
(x, y, z, t); they are not valid for a moving medium. Specifically, if the mater-
ial motion occurs with a uniform velocity V relative to the (x, y, z, t)-frame,
then, in this frame, the modified material relations take the form

1 For our purposes, it is sufficient to assume that ǫ and µ are frequency independent
for the frequencies below ω̄, the characteristic frequency of the microstructure.
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D +
1

c2
V × H = ǫ(E + V × B),

B − 1

c2
V × E = µ(H − V × D). (3.9)

Here, c means the velocity of light in a vacuum. The electromagnetic field in
a dielectric medium moving with velocity V relative to a laboratory frame is
governed by the system (3.1), (3.2), (3.9). The effects produced by a material
motion are then registered by a laboratory observer.

Equations (3.9) are due to Minkowski. Like (3.3), they are linear in the
field vectors, though more complicated algebraically.

The system (3.1), (3.2), (3.9) is nothing but the system (3.1)-(3.3) for-
mulated in a moving coordinate frame. This observation has been used by
Minkowski when he introduced equations (3.9) in his paper of 1908 [9].
Minkowski’s results follow directly from the special theory of relativity es-
tablished by Einstein in his seminal paper [10] of 1905, three years before
Minkowski published his work.

3.3 Relativistic form of Maxwell’s system

It will be convenient to introduce the Minkowskian coordinates x1 = x, x2 =
y, x3 = z, x4 = ict, and the orthonormal system e1, e2, e3, e4 (ei ·ek = δik)
of unit vectors of the relevant axes in 4-space. The x4-coordinate in this list
is special because it is imaginary while the other coordinates are real. The
group of rotations in this space is called the Lorentz group. It involves, as
elements, the purely spatial (Euclidean) rotations, with no participance of
the x4-coordinate, and the spatio-temporal rotations that incorporate x4. The
group of Euclidean rotations participates, as a subgroup, in a more general
Lorentz group of all rotations in 4-space.

Consider a spatial rotation affecting only x1, x2 (this rotation may be
thought of as occurring “about the (x3, x4)-plane”). The relevant coordinate
transformation is given by the formulae

x′
1 = x1 cos φ + x2 sin φ, x′

2 = −x1 sin φ + x2 cos φ, x′
3 = x3, x′

4 = x4,

where φ is the angle of rotation. Once φ is real, then x′
1 and x′

2 are real as
well.

A similar set of relations characterizes the spatio-temporal rotation that
involves the x4-coordinate. Assume that such rotation occurs “about the
(x1, x2)-plane”, and, consequently, affects x3, x4. We may write

x′
1 = x1, x′

2 = x2, x′
3 = x3 cos φ + x4 sin φ, x′

4 = −x3 sin φ + x4 cos φ. (3.10)

The “angle of rotation” φ introduced here obtains a clear interpretation
within a relativistic concept. We first observe that x′

3 and x3 should both be
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real while x′
4 and x4 should both be imaginary. This requirement means that

the angle φ should be imaginary, and we simply replace it by iφ. We obtain,
instead of (3.10),

x′
1 = x1, x′

2 = x2, x′
3 = x3 cosh φ+ ix4 sinh φ, x′

4 = −ix3 sinh φ+x4 cosh φ.
(3.11)

On the other hand, the special relativity introduces the Lorentz transform
that links coordinates x′

1, x
′
2, x

′
3, x

′
4, and x1, x2, x3, x4 of two frames of which

the first is moving with uniform velocity V relative to the second. In par-
ticular, if V = V k = V e3, then the Lorentz transform is expressed by the
formulae

x′
1 = x1, x′

2 = x2, x′
3 = Γ (x3 + i

V

c
x4), x′

4 = Γ

(
−i

V

c
x3 + x4

)
. (3.12)

Here, the symbol Γ is defined as

Γ =
1√

1 − V 2/c2
.

By comparing this with equations (3.11) we notice that the symbol φ in
the latter should be specified by

tanhφ =
V

c
. (3.13)

We conclude that the motion of a new (“primed”) frame (x′
1, x′

2, x′
3, x′

4)
relative to the laboratory (“non-primed”) frame (x1, x2, x3, x4) that occurs
with velocity V along the x3-axis is equivalent to rotation of the x3- and
x4-axes about the (x1, x2)-plane by the angle iφ, with φ defined by (3.13).
This interpretation of a motion as a spatio-temporal rotation in Minkowskian
4-space appears to be especially helpful towards an adequate interpretation of
the effective properties of spatio-temporal material composites.

The unit vectors e1, . . . , e4 are transformed by the same formulae as co-
ordinates x1, . . . , x4. Particularly, if V = V e3, then (c.f. (3.11))

e′
1 = e′

1, e′
2 = e2, e′

3 = e3 cosh φ + ie4 sinh φ, e′
4 = −ie3 sinh φ + e4 cosh φ,

(3.14)
etc. We observe that the vectors ei are generally complex. The inverse formulae
are produced if we replace φ by −φ.

The Maxwell’s theory establishes relations that express the electromag-
netic field vectors E′, . . . ,D′ measured by an observer moving with the
“primed” frame in terms of the vectors E, . . . ,D measured by a laboratory
observer. The relevant formulae may be obtained if we introduce matrices

F = (cB,−iE) =




0 cB3 −cB2 −iE1

−cB3 0 cB1 −iE2

cB2 −cB1 0 −iE3

iE1 iE2 iE3 0


 , (3.15)
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f = (H,−icD) =




0 H3 −H2 −icD1

−H3 0 H1 −icD2

H2 −H1 0 −icD3

icD1 icD2 icD3 0


 , (3.16)

and interpret their elements as components of two skew-symmetric tensors F
and f of the second rank in Minkowski’s 4-space. These tensors are known
as the electromagnetic tensors. Every such tensor may be expanded over six
linearly independent tensors aik (i, k = 1, 2, 3, 4) specified by the formulae

a12 = (1/
√

2)(e1e2 − e2e1), a13 = (1/
√

2)(e1e3 − e3e1),

a14 = (1/
√

2)(e1e4 − e4e1),

a23 = (1/
√

2)(e2e3 − e3e2), a24 = (1/
√

2)(e2e4 − e4e2),

a34 = (1/
√

2)(e3e4 − e4e3); (3.17)

these tensors constitute an orthonormal basis in the space of skew-symmetric
second rank tensors in 4-space:

aik : aT
ℓm =

{
1, i = ℓ, k = m,
0 otherwise.

(3.18)

For F and f we obtain, respectively,

F =
√

2(cB3a12 − cB2a13 − iE1a14 + cB1a23 − iE2a24 − iE3a34), (3.19)

f =
√

2(H3a12 − H2a13 − icD1a14 + H1a23 − icD2a24 − icD3a34). (3.20)

The basic tensors aik are transformed by the formulae that follow from
(3.17), (3.18), and from the relevant relations for ei. In particular, when V =
V e3, then we apply equations (3.14) and conclude that all tensors aik except
a12 and a34 become affected by the transform. These formulae also indicate
how the transform changes the field components. To illustrate this, consider
the plane electromagnetic wave (3.4); the relevant tensors F and f are given
by

F =
√

2(cBa23 − iEa24), f =
√

2(Ha23 − icDa24). (3.21)

Because, by (3.14) and (3.17),

a23 = a′
23 cosh φ − ia′

24 sinh φ, a24 = ia′
23 sinh φ + a′

24 cosh φ, (3.22)

we rewrite (3.19) and (3.20) as

F =
√

2[(cB cosh φ + E sinh φ)a′
23 − i(cB sinh φ + E cosh φ)a′

24],

f =
√

2[(H cosh φ + cD sinh φ)a′
23 − i(H sinh φ + cD cosh φ)a′

24].(3.23)

The coefficients of a′
23, a

′
24 in the square brackets are now interpreted as

cB′,−iE′, etc. (see (3.21)). We obtain
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B′ = B cosh φ +
1

c
E sinh φ, H ′ = H cosh φ + cD sinh φ, (3.24)

etc. These formulae represent the Lorentz transform applied to the field com-
ponents. Generally, for the field components parallel (E‖, . . .) and perpendic-
ular (E⊥, . . .) to V, we obtain the following transformation formulae:

E′
‖ = (E + V × B)‖, E′

⊥ = Γ (E + V × B)⊥, (3.25)

B′
‖ = (B − 1

c2
V × E)‖, B′

⊥ = Γ (B − 1

c2
V × E)⊥, (3.26)

H′
‖ = (H − V × D)‖, H′

⊥ = Γ (H − V × D)⊥, (3.27)

D′
‖ = (D +

1

c2
V × H)‖, D′

⊥ = Γ (D +
1

c2
V × H)⊥. (3.28)

Note that all expressions of the type (V × A)‖ are equal to zero.
These relations allow us to give a direct derivation of Minkowski’s material

equations (3.9) for a moving medium. To this end, consider an observer moving
with the “primed” frame that is “frozen” into a moving material. Because the
material is now immovable relative to the observer, he will apply, in a “primed”
frame, the formulae

D′ = ǫE′, B′ = µH′, (3.29)

identical with (3.3). By using equations (3.25)-(3.28) in (3.29), we arrive at
(3.9).

These equations may be incorporated into a single tensor relation. To this
end, let us consider tensors aik of the set (3.17) and introduce the elementary
symmetric functions of the second degree of those tensors. We obtain as many
as 21 such functions, given by the following table:

a12a12, a12a13+ a13a12,
a12a14+ a14a12, a12a23+ a23a12, a12a24+ a24a12, a12a34+ a34a12,

a13a13,
a13a14+ a14a13, a13a23+ a23a13, a13a24+ a24a13, a13a34+ a34a13,

a14a14, a14a23+ a23a14, a14a24+ a24a14, a14a34+ a34a14,
a23a23, a23a24+ a24a23, a23a34+ a34a23,

a24a24, a24a34+ a34a24,
a34a34.















































(3.30)

The most general linear form of these functions represents the second
rank symmetric tensor in the space of skew-symmetric tensors aik treated
as primary entities; with respect to the original vector space ei, this form
represents the 4th rank tensor with a special symmetry of indices.

A unit tensor e in the space of skew-symmetric second rank tensors aik is
given by

e = −a12a12 − a13a13 − a14a14 − a23a23 − a24a24 − a34a34. (3.31)
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Introduce the tensor

s = − 1

µc
(a12a12 + a13a13 + a23a23) − ǫc(a14a14 + a24a24 + a34a34); (3.32)

then the relation
f = s : F (3.33)

turns out to be equivalent to the system (3.3). We check this by a direct
inspection, with a reference to (3.18)-(3.20). The tensor s given by (3.32) is
therefore interpreted as a material tensor for an isotropic dielectric immovable
in the laboratory frame.

Equation (3.33) is a linear relation between the tensors F and f in a 4-
space. For this reason, it may be applied toward an isotropic medium moving
relative to a laboratory (“non-primed”) frame. Desiring to study the elec-
tromagnetic phenomena in such a medium from the standpoint of a labora-
tory observer, we still use equations (3.19) and (3.20) for F and f ; as to the
tensor s, we apply for it the equation (3.32), with tensors aik replaced by
a′

ik = (1/
√

2)(e′
ie

′
k − e′

ke
′
i):

s = − 1

µc
(a′

12a
′
12 + a′

13a
′
13 + a′

23a
′
23) − ǫc(a′

14a
′
14 + a′

24a
′
24 + a′

34a
′
34). (3.34)

The equation (3.33) then becomes equivalent to Minkowski’s relations (3.9).
To show this, it is enough to expand tensors F and f over the tensor basis a′

ik;
the relevant formulae will be the same as (3.19), (3.20), with aik replaced by
a′

ik, and coefficients B, E, H, D replaced by the primed symbols B′, E′, H ′, D′.
Equation (3.33) then reduces to (3.29) which confirms the desired result.

The Maxwell’s system (3.1), (3.2) allows for a very compact formulation
in terms of the electromagnetic tensors F and f . Apply double indexation for
components of F and f listed in their matrices (3.15), (3.16); then the first
pair (3.1) is replaced by a single tensor equation

∂F ∗
ik

∂xk
= 0, (3.35)

where F ∗
ik is a tensor dual to Fik, i.e.

F ∗
ik =

1

2
eiklnFln.

Here, eikln is a completely antisymmetric tensor of the fourth rank; we apply
a standard rule of summation over repeated indices.

The second pair (3.2) is incorporated in the equation

∂fik

∂xk
= 0. (3.36)

This equation says that the tensor f is divergence free, whereas (3.35) char-
acterizes the dual tensor F ∗ also as a divergence free tensor. Because of the
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tensor character of equations (3.35), (3.36), they preserve their form as we go
from a non-primed to a primed coordinate frame. To summarize the results
of this section, we outline three fundamental relations: eqn. (3.35) for tensor
F , eqn. (3.36) for tensor f , and the linear material relation (3.33) linking F
with f . These relations constitute a conceptual base for constructing material
composites in space-time. We see that this base is substantially relativistic.

3.4 Material tensor s: discussion. Two types of dynamic

materials

This tensor is characterized by equation (3.32) in the case of isotropic di-
electrics; this equation allows for a clear geometric interpretation. We ob-
serve that a purely spatial rotation does not affect either of the tensors
a12a12 + a13a13 + a23a23 or a14a14 + a24a24 + a34a34; consequently, such a
rotation does not affect s. This is understandable because the dielectric is
assumed isotropic in a conventional sense, i.e. with respect to ordinary rota-
tions in the 3D Euclidean space. However, if we apply spatio-temporal rotation
involving the x4-axis (i.e. introduce a material motion), then the situation be-
comes different. If the motion occurs with velocity V = V e3, then, as shown
in section 3.3, all tensors aik except a12 and a34 become affected, and the
same holds true for s. This tensor, specified by (3.32), is therefore isotropic
with respect to purely spatial rotations, and anisotropic with regard to spatio-
temporal rotations initiated by the material motion. It will become completely
isotropic, i.e. isotropic with respect to all rotations in 4-space, provided that
1/µc = ǫc, i.e. c2 = 1/(ǫµ). This case is exceptional: it holds for a vacuum
where ǫ = ǫ0, µ = µ0, c2 = 1/(ǫ0µ0), and the s-tensor becomes proportional
to a unit tensor (3.31):

s =
√

ǫ0/µ0e.

With this notable exception, all of the real materials are anisotropic in space-
time.

We may now single out two independent types of spatio-temporal com-
posites. We first consider spatio-temporal microstructures generated by two
different, conventionally isotropic dielectric constituents occupying periodic
cells in space-time but motionless in a laboratory frame. By the terminol-
ogy introduced in section 1.2, this is a pure activation case. In this case, the
material tensors s of original substances differ in their eigenvalues 1/µc, ǫc
alone, whereas their eigentensors aik remain identical. Another conceivable
formation will be a “spatio-temporal polycrystal”: this one appears when the
cells are occupied by fragments of one and the same conventionally isotropic
dielectric (recall that every such dielectric is anisotropic in space-time!), and
these fragments are brought to a relative material motion. By the terminol-
ogy of section 1.2, this is a pure case of kinetization. We call this formation a
spatio-temporal polycrystal because its property pattern represents a direct
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analog of a conventional polycrystal assembled in space from fragments of the
same anisotropic material, those fragments differing only in their orientation
relative to the laboratory frame in space. In a spatio-temporal case, we have
a similar situation, with the difference in orientation now occurring in space-
time due to a relative material motion. Such motion may be arranged by var-
ious means; e.g., through a high-frequency background mechanical vibration
in the form of the standing waves. Another special arrangement generating
a desired motion (s.c. “caterpillar construction”) will be described below in
section 3.6.

As indicated above the material tensors s of original substances differ only
in their eigenvalues in the case of activation, and only in their eigentensors
in the case of kinetization. This does not mean, of course, that the effective
material tensors of composites created by these procedures will preserve the
same eigentensors (eigenvalues) as the original materials. The reason for that
is, certainly, the microgeometry of an assemblage, i.e. the shape of spatio-
temporal domains occupied, on a microscale, by different original constituents.

3.5 An activated dielectric laminate:

one-dimensional wave propagation

In this and several subsequent sections, we shall examine propagation of a
plane electromagnetic wave characterized by equations (3.4)-(3.7) and (3.21),
through a heterogeneous medium distributed along the z-axis and representing
an activated periodic laminate in a (z, t)-plane illustrated in Fig. 1.4. Materials
1 and 2 occupying the layers are specified as uniform isotropic dielectrics
immovable in the (z, t)-frame and having properties

(ǫ, µ) =

{
(ǫ1, µ1)− material 1,
(ǫ2, µ2)− material 2.

(3.37)

We shall be looking for a smooth solution to this problem, i.e. for the functions
u, v satisfying equations (3.7) and continuous across the interfaces separating
materials 1 and 2 from each other. The continuity of u and v reflects the con-
tinuity of E′ and H ′ calculated in the frame moving along with the interface
(see (3.25), (3.4), and (3.6)):

E′ = Γ (E + V B) = Γ (ut + V uz),

H ′ = Γ (H + V D) = Γ (vt + V vz);

of course, we assume that V < c is chosen with observance of (2.5) where
ai = 1/

√
ǫiµi is the velocity of light in material i.2 This problem differs from

2 The velocity V of activation need not necessarily be subluminal because no signal
is moving at such velocity. The case V > c, when the interface becomes spacelike,
is discussed below in section 3.11.
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the one discussed in section 2.2 only by notation, the relevant correspondence
established by (3.8). However, in order to introduce the effective parameters
generated by equations (2.11), we, contrary to (2.20), apply the Lorentz trans-
form to define new coordinates z′ and t′

z′ = γ(z − wt), t′ = γ
(
t − w

c2
z
)

, γ =
1√

1 − w2

c2

. (3.38)

The velocity w will be specified below.
In a new frame (z′, t′), the system (2.11) takes on the form

(p + 2qw − rw2)uz′ −
[
q +
( p

c2
− r
)

w + q
w2

c2

]
ut′ =

1

γ2
vt′ ,

[
q +
( p

c2
− r
)

w + q
w2

c2

]
uz′ +

(
r − 2q

w

c2
− p

w2

c4

)
ut′ =

1

γ2
vz′ (3.39)

Define w by
q

c2
w2 +

( p

c2
− r
)

w + q = 0; (3.40)

the frame (3.38) then becomes proper (see section 2.2), and in this frame the
system (3.39) takes the form

vt′ = (p + qw)uz′ , vz′ =
( p

c2
+

q

w

)
ut′ , (3.41)

similar to (2.23).
Comparing (3.41) with (3.7), we treat the complex p + qw as an inverse

effective magnetic permeability 1/M , and the factor p/c2 +q/w as an effective
dielectric permittivity E :

E =
p

c2
+

q

w
,

1

M
= p + qw. (3.42)

For eigenvalues Ec, 1/Mc of the effective s-tensor we obtain the expressions

Ec =
p

c
+

qc

w
,

1

Mc
=

p

c
+

qw

c
. (3.43)

The first invariant Ec + 1
Mc of this tensor is given by

Ec +
1

Mc
=

2p

c
+

qc

w
+

qw

c
=

p

c
+ rc; (3.44)

here, we applied (3.40) to eliminate w.
By a direct inspection, and with reference to (3.40) and (2.24), we obtain

the formula for the second invariant (determinant) of the effective s-tensor:

E
M

=
( p

c2
+

q

w

)
(p + qw) = pr + q2 = 1/θ; (3.45)
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this relation is the same as (2.26). If we notice that, by (3.40),

p

c2
+

q

w
= r − qw

c2
,

and use (3.45), then equations (3.42) will be reduced to the form

E = r − qw

c2
,

1

M
= θ−1

(
r − qw

c2

)−1

, (3.46)

similar to (2.25). The difference is because the equations (2.25) resulted from
the Galilean transform (2.20), whereas (3.46) appear to be a consequence of
the Lorentz transform (3.38). When (V/c) ≪ 1, the same inequality holds for
q/c and w/c, and the term qw/c2 in (3.46) becomes negligible.

The quadratic equation (3.40) for w should have the real roots to ensure
that the effective parameters E , M are real. The product of the roots equals
c2, so one of the real roots is ≤ c; this particular root should be applied in
(3.38).

To make the roots real it is necessary that

( p

c2
− r
)2

− 4q2

c2
≥ 0.

Clearly, this inequality holds for V sufficiently small. The general case will be
discussed below, in section 3.8, where the analysis of an activated laminate
will be continued.

3.6 A spatio-temporal polycrystallic laminate:

one dimensional wave propagation

In this and the following sections, we consider the same periodic laminar mi-
crogeometry as in the previous section (see Fig. 1.4), but the filling of layers
will be assumed different. The content of this section reproduces results pub-
lished in the paper [11]. Specifically, we suppose that the layers are occupied
by the same material with properties (ǫ, µ), but this material is brought into
an individual motion along the z-axis within each layer. The period of lami-
nation is combined of two layers: in the first, occupying the m1th part of the
period, the motion occurs with velocity v1; in the second layer, the relevant
parameters are specified as m2 and v2. As before, we shall speak about “mate-
rial 1” and “material 2”; clearly, m1 + m2 = 1. We thus have a discontinuous
velocity pattern along the z-axis; this pattern can be implemented through
the use of the following feasible construction.

Assume that we have a linear arrangement of caterpillars placed one after
another along the z-axis (Fig. 3.1). The tracks that are moved by caterpil-
lars become electrically connected when they belong with the z-axis, and stay
disconnected otherwise. The z-axis will then become occupied by material
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z

Fig. 3.1. The “caterpillar” construction.

fragments moving each at its own horizontal velocity, and the electric current
will flow along the z-axis through the assemblage of electrically connected
tracks. With this construction, the performance of the electromagnetic field
in a transmission line combined of two such arrangements will be controlled
directly by the maintained velocity pattern. This construction resembles an
arrangement of belt transmissions distributed on a microscale along the same
direction. In Appendix 3, we describe a mechanical arrangement capable of
creating a discontinuous velocity pattern along an elastic bar, with uninter-
rupted transmission of energy and momentum from one section of the bar to
another.

Under these assumptions, equations (2.11) and (2.16), as well as (3.40)-
(3.46), continue to hold, with equations (2.15) replaced by the following rela-
tions:

α = c

〈
Q−Ttanhψ

W

〉

〈
1
W

〉 , β =

〈
T−Rtanhψ

W

〉

〈
1
W

〉 , θ =

〈
1
W

〉
〈

ǫ/µ
W

〉 . (3.47)

In these formulae, parameters ψ, Q, T, R, W, φ are defined as

tanhψ = V/c,

Q =
1

µc
cosh2φ − ǫcsinh2φ, T =

(
1

µc
− ǫc

)
sinhφcoshφ,

R =
1

µc
sinh2φ − ǫccosh2φ, W = −Q + 2T tanhψ − Rtanh2ψ,

tanhφ = v/c. (3.48)

We assume here and below in this chapter (except section 3.11) that V < c.
The reader will not be confused with the identity of the symbol v used for the
material velocity in (3.48) and for the function v first appeared in equations
(2.2). The meaning of this symbol will become clear from the context in each
individual case.

Note the identities

Q = ǫc + 1/µc + R, T 2 − QR = ǫ/µ . (3.49)

The formulae (3.47) are derived in Appendix 2; they are quite general in
a sense that they apply to the situation when material 1 and 2 differ in the
values of ǫ, µ, and φ. In, particular, if φ1 = φ2 = 0, then these formulae are
reduced to (2.15), with substitutions specified by (3.8). Also, if φ1 = φ2 = ψ,



3.7 A spatio-temporal polycrystallic laminate: the bounds 63

then equations (3.47), (2.16), (3.40) and (3.42) indicate that E = 〈ǫ〉, M = 〈µ〉,
as it should be because of (2.17) and (3.8). We shall, however, consider another
extreme, i.e. we assume, as mentioned above, that ǫ1 = ǫ2 = ǫ, µ1 = µ2 = µ,
and φ = φi for material i; this yields a polycrystallic laminate in space-
time. For this composite formation, we shall establish bounds for its effective
material parameters.

3.7 A spatio-temporal polycrystallic laminate:

the bounds

As seen from (3.45) and from the third formula (3.47), the second invariant
E/M of the effective material tensor for such a laminate preserves the value
ǫ/µ of the second invariant common to both materials:

E
M

=
ǫ

µ
=

1

θ
. (3.50)

Therefore, the problem of bounds for E and M is reduced to the same
problem for the first invariant Ec + 1/Mc of the effective s-tensor.

Referring to (3.44) and (2.16), we represent the expression for Ec + 1/Mc
in the form:

Ec +
1

Mc
=

c

βV − α

[(
V 2

c2
− 1

)
1

θ
−
(

α2

c2
− β2

)]
. (3.51)

By observing that (see (3.47), (3.48))

βV/c − α/c =
1

〈1/W 〉 〈(T tanhψ − Rtanh2ψ − Q + T tanhψ)/W 〉 =
1

〈1/W 〉 ,

we reduce (3.51) to

Ec +
1

Mc
= (tanh2ψ − 1)

ǫ

µ
〈 1

W
〉 −
〈

Q − T tanhψ

W

〉2/〈
1

W

〉

+

〈
T − Rtanhψ

W

〉2/〈
1

W

〉
. (3.52)

Because, by (3.49),
ǫ

µ

〈
1

W

〉
=

〈
T 2 − QR

W

〉
,

we rewrite the first term at the rhs of (3.52) as
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(tanh2ψ − 1)
ǫ

µ

〈
1

W

〉
= tanh2ψ

〈
T 2 − QR

W

〉
−
〈

T 2 + R2tanh2ψ − 2TRtanhψ

W

〉

+

〈
QR + R2tanh2ψ − 2TRtanhψ

W

〉
= tanh2ψ

〈
T 2 − QR

W

〉

−
〈

(T − Rtanhψ)2

W

〉
− 〈R〉 = tanh2ψ

〈
T 2 − QR

W

〉
− 〈Q〉

−
〈

(T − Rtanhψ)2

W

〉
+ ǫc +

1

µc
= ǫc +

1

µc
−
〈

(T − Rtanhψ)2

W

〉

+

〈
(Q − T tanhψ)2

W

〉
.

The expression (3.52) for Ec + 1/Mc now takes on the form

Ec + 1/Mc = ǫc +
1

µc
+

〈
(Q − T tanhψ)2

W

〉
−
〈

Q − T tanhψ

W

〉2/〈
1

W

〉

−
[〈

(T − Rtanhψ)2

W

〉
−
〈

T − Rtanhψ

W

〉2/〈
1

W

〉]
. (3.53)

Consider the quantity

F (x) = 〈x2/W 〉 − 〈x/W 〉2〈
1
W

〉 ,

with symbols x and W defined for each material. This quantity is equal to

F (x) =
m1m2

W̄
(∆x)2,

where W̄ = m1W2 + m2W1, ∆x = x2 − x1.
Equation (3.53) is now rewritten as

Ec+
1

Mc
= ǫc+

1

µc
+

m1m2

W̄
[(∆Q−∆T tanhψ)2 − (∆T −∆Rtanhψ)2] (3.54)

For the case of a polycrystal,

∆R = (1/µc)∆(cosh2φ) − ǫc∆(sinh2φ), etc.

Since ∆Q = ∆R by (3.49), we rewrite the third term in the rhs of (3.54)
as

m1m2

W̄
[(∆Q)2 − (∆T )2](1 − tanh2ψ). (3.55)

Introduce the angle χ by tanh2χ = 1/(ǫµc2) = a2/c2; then

W = −Q + 2T tanhψ − Rtanh2ψ = −ǫccosh2φ[tanh2χ − tanh2φ

+ 2(1 − tanh2χ)tanhφtanhψ + (tanh2χtanh2φ − 1)tanh2ψ]

= −ǫccosh2φ(1 − tanhφtanhψ)2[tanh2χ − tanh2(φ − ψ)],
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and the expression (3.55) becomes equal to

−m1m2

ǫcw̄
(1 − tanh2ψ)[(∆Q)2 − (∆T )2], (3.56)

with w̄ = m1w2 + m2w1,

wi = cosh2φi(1 − tanhφitanhψ)2[tanh2χ − tanh2(φi − ψ)], i = 1, 2.

With the reference to (3.48), we now calculate (∆Q)2 − (∆T )2 as (ǫc−1/µc)2

(−sinh2φ2cosh2φ2 + 2sinhφ2coshφ2sinhφ1coshφ1 − sinh2φ1cosh2φ1

+ cosh4φ2 − 2cosh2φ2cosh2φ1 + cosh4φ1) = −(ǫc − 1/µc)2sinh2(φ1 − φ2), and
(3.54) reduces to (see (3.55), (3.56))

Ec +
1

Mc
= ǫc +

1

µc
+ κ, (3.57)

κ =
ǫc

w̄
m1m2(1 − tanh2ψ)(1 − tanh2χ)2sinh2(φ1 − φ2). (3.58)

Equations (3.57), (3.58) will become a focus of our analysis; we first assume
that ǫ, µ are both positive; the results will later be reformulated to cover the
case when these parameters are both negative.

We now consider two admissible cases listed below.

i Subrelativistic case
This term applies when χ ≥ φi − ψ, and, consequently, wi ≥ 0 for both

i = 1 and i = 2. If the determinants wi are both non-negative, then, in a
co-moving coordinate frame in which the interface is at rest, the material
motion on both sides of it occurs at the speed less than the speed of light in
the relevant material. This situation matches the case V 2 < min

(
a2
1, a

2
2

)
in

inequality (2.5).
Because tanhψ = V/c ≤ 1, we see that κ ≥ 0, and the first invariant has

the lower bound

Ec +
1

Mc
≥ ǫc +

1

µc
. (3.59)

The upper bound appears as we find the maximum of κ as the function of
m1:

max
m1

κ =
ǫc

(√
w1 +

√
w2

)2 (1 − tanh2ψ)(1 − tanh2χ)2sinh2(φ1 − φ2); (3.60)

the maximizing value of m1 equals

m1 =

√
w1/w2

1 +
√

w1/w2

.

Consider the limit value of max
m1

κ attained as φ1 = ψ, φ2 = χ+ψ = χ+φ1;

then w2 → 0, and we get
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lim max
m1

κ = ǫc(1 − tanh2χ) = ǫc − 1

µc
, (3.61)

with the relevant value limm1 = 1; observe that the rhs of (3.61) is positive
because a = 1/

√
ǫµ < c. This result is not paradoxical since material 2 then

disappears more slowly than the value w2 tends to zero (observe that we are
considering the value of m1 maximizing k all the time!). If we first go to
m1 = 1, and then apply the limit w2 → 0, then the limit value of κ would
become zero indicating that we first withdraw material 2.

Bearing (3.61) in mind and referring to (3.57) and to the conservation law
(3.49), we conclude that the original point P (ǫc, 1/µc) on the hyperbola (Fig.
3.2) is now replaced by the point P1 with coordinates

Fig. 3.2. The hyperbola E/M = ǫ/µ.

E1c = ǫc

(
1 +

√
1 − tanh2χ

)
,

1

M1c
=

1

µc

1

1 +
√

1 − tanh2χ
;

with this point we associate a new angle χ1 defined by

Mc
1

ε/µ

ε/µ

(1/µc)

(1/µc)฀(1+ 1–tanh2χ)–1

(εc)฀(1+ 1–tanh2χ)εc
εc
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tanh2χ1 =
1

c2E1M1
=

1 −
√

1 − tanh2χ

1 +
√

1 − tanh2χ
;

we notice that

1 − tanh2χ1 =
2
√

1 − tanh2χ

1 +
√

1 − tanh2χ
≥
√

1 − tanh2χ.

Since the values of E1 and M1 are real, the velocity w is also real, as it is
seen from (3.43). This means that there exists a proper frame (3.38) with the
eigenvalues E1c and 1/M1c of a material tensor s.

Repeating this procedure with P1 as a starting point, we arrive at the next
step at a new point P2 with coordinates

E2c = E1c

(
1 +

√
1 − tanh2χ1

)
= ǫc

(
1 +

√
1 − tanh2χ

)(
1 +

√
1 − tanh2χ1

)

≥ ǫc[1 + (1 − tanh2χ)1/2][1 + (1 − tanh2χ)1/4],

1

M2c
≤ 1

µc
[1 + (1 − tanh2χ)1/2]−1[1 + (1 − tanh2χ)1/4]−1,

and so on. Because the infinite product

(1 + x)(1 + x1/2)(1 + x1/4) . . . , x ≤ 1,

is divergent, we manage to cover the whole branch Ec ≥ ǫc, 1/Mc ≤ 1/µc of
hyperbola E/M = ǫ/µ, E , M > 0, and the first invariant Ec + 1/Mc has no
finite upper bound in this case. Summarizing, we conclude that in case (i),

∞ ≥ Ec +
1

Mc
≥ ǫc +

1

µc
. (3.62)

Remark 3.1. The point P2 in the above construction corresponds to the rank
two polycrystallic laminate, etc.; we thus apply laminates of multiple rank to
attain the relevant part of hyperbola E/M = ǫ/µ.

Remark 3.2. The above procedure fails to work when χ = ∞, i.e. when the
original material represents the vacuum.

ii Relativistic (Cherenkov) case
For this case, χ ≤ φi − ψ, and all wi become ≤ 0. The material motion on

both sides of the interface then occurs at the speed exceeding the speed of light
in the relevant material, but, of course, remaining less than c. In this situation,
the Cherenkov radiation occurs; it matches the case V 2 > max

(
a2
1, a

2
2

)
in

(2.5). The function κ is then ≤ 0; its minimum with respect to m1 is given by
the formula

min
m1

κ = − ǫc
(√

| w1 | +
√

| w2 |
)2 (1 − tanh2ψ)(1 − tanh2χ)2sinh2(φ1 − φ2).
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This quantity attains its minimum in φ1 and φ2 when φ1 = ψ+χ, φ2 = ∞,
or when φ1 = ∞, φ2 = ψ + χ. Assume that φ2 → ∞ (i.e. material 2 moves
at speed approaching c); then

lim
φ2→∞

min
m1

κ = −ǫc
1 + tanhψ

1 − tanhψ
(1 − tanh2χ) lim

φ2→∞

sinh2(φ1 − φ2)

cosh2φ2

= −ǫce2(ψ−φ1)(1 − tanh2χ).

Because χ ≤ φ1−ψ, we obtain the lower bound for κ by taking φ1 = χ+ψ:

κ ≥ min
m1

κ ≥ −ǫce−2χ(1 − tanh2χ)

= −ǫc(1 − tanhχ)2 = −
(√

ǫc − 1√
µc

)2

.

Returning to (3.50), we conclude that in the relativistic case

ǫc +
1

µc
≥ Ec +

1

Mc
≥ ǫc +

1

µc
−
(√

ǫc − 1√
µc

)2

= 2

√
ǫ

µ
. (3.63)

Remark 3.3. The limit φ2 → ∞ cannot be attained for particles with non-zero
proper mass because it would require an infinite energy input. But the point
Ec = 1/Mc =

√
ǫ/µ corresponding to a completely isotropic dielectric can, in

principle, be approached as close as desired by making φ2 sufficiently large.

Corollary 3.4. Given two materials (3.37) with positive material parameters
ǫ1, . . . , µ2 > 0, we may assemble a static laminate by taking V = 0 in the con-
struction of section 3.5. By (3.45), (2.29), and (3.8), the effective properties
E and M of such laminate will be specified as

E = 〈ǫ〉, M = 〈µ〉. (3.64)

These formulae represent a hyperbolic segment in (Ec, 1/Mc)-plane, with end-
points (ǫ1c, 1/µ1c) and (ǫ2c, 1/µ2c). As shown in the present section, each
point (ǫc, 1/µc) of this segment generates a branch of hyperbola E/M = ǫ/µ
belonging to the first quadrant E , M ≥ 0. The hyperbolic strip

ǫ2/µ2 > E/M > ǫ1/µ1, E , M ≥ 0 (3.65)

is shown in Fig.3.3, it appears to be attainable by laminates assembled in
space-time from materials 1 and 2.

Remark 3.5. The analysis of this section remains valid, with obvious changes,
when the material constants of the original dielectric are both assumed neg-
ative. In this case we should, however, consider the branch of hyperbola
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Fig. 3.3. The hyperbolic strip ǫ2/µ2 > E/M > ǫ1/µ1, E , M ≥ 0.

E/M = ǫ/µ belonging with the third quadrant E , M ≤ 0 (Fig. 3.4). The
bounds (3.62) and (3.63) are now replaced by

−∞ ≤ Ec +
1

Mc
≤ ǫc +

1

µc
,

ǫc +
1

µc
≤ Ec +

1

Mc
≤ −2

√
ǫ

µ
,

and the hyperbolic strip (3.65) is transformed to

ǫ2/µ2 > E/M > ǫ1/µ1, E , M ≤ 0.

This strip is shown in Fig. 3.4.
In the following section, the possibility of effective material constants to

become negative will be confirmed for a particular spatio-temporal assem-
blage.

εcε2cε1c

Mc
1

1
µ1c

µ2c
1
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Fig. 3.4. The hyperbolic strip ǫ2/µ2 > E/M > ǫ1/µ1, E , M ≤ 0.

3.8 An activated dielectric laminate:

negative effective material properties

So far through our discussion of spatio-temporal composites, we have been as-
suming that the material constants of the primary constituents are positive.
As to the effective parameters, they not necessarily remained positive. As ob-
served in section 2.5, the characteristic parameter r of an activated laminate,
actually, its effective density (see (2.25)), may, under special circumstances,
become negative. We shall investigate this possibility in detail in this sec-
tion, this time in the context of an activated dielectric laminate considered in
section 3.5. Material of this and the next sections follows the paper [12].

Referring to (3.43), (2.26), (2.15), (2.29), and (3.8), we arrive, after some
calculation, to the following formulae for the invariants I1 = Ec + 1

Mc and
I2 = E/M of an effective s-tensor:

I1 = Ec +
1

Mc
=

ǭµ̄ + c2

a2
1a2

2

ǭµ1µ2c
[
V 2 − 1

ǭ

(
1̄
µ

)] (V 2 − h), (3.66)

h =
c2
(

1̄
ǫ

)(
1̄
µ

)
+ a2

1a
2
2

c2 + a2
1a

2
2ǭµ̄

, (3.67)

I2 =
E
M

=
〈 1

µ 〉
〈 1

ǫ 〉
V 2 − 1

µ̄

(
1̄
ǫ

)

V 2 − 1
ǭ

(
1̄
µ

) . (3.68)

ε2c ε1c

µ2c

µ1c

Mc

1

1

1 εc
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Desiring to investigate the sign of I1, we first notice that h < c2. Assuming
the contrary, we admit that f(c2) < 0 where

f(λ) ≡ λ2 + λ

[
a2
1a

2
2ǭµ̄ −

(
1̄

ǫ

)(
1̄

µ

)]
− a2

1a
2
2.

Clearly, the equation f(λ) = 0 has the real roots of opposite signs, with
the product −a2

1a
2
2. We check that f(a2

1) = 2m1a
2
1(a

2
1 − a2

2) < 0, and f(a2
2) =

2m2a
2
1(a

2
2−a2

1) > 0 since a2 > a1; this means that a2
2 exceeds the positive root

of f(λ) = 0. Because f(+∞) = +∞, and c2 > a2
2, we conclude that f(c2) > 0.

The velocity w of the proper frame (3.38) is real when (see (3.40), (3.44),
(3.45))

(Ec + 1/Mc)2 − 4
E
M

≥ 0.

In view of (3.66), (3.68), this inequality may be rewritten as

(
ǭµ̄ +

c2

a2
1a

2
2

)2

(V 2 − h)2 ≥ 4
c2

a2
1a

2
2

ǭµ̄

[
V 2 − 1

µ̄

(
1̄

ǫ

)][
V 2 − 1

ǭ

(
1̄

µ

)]
.

If we introduce parameter σ by the formula

σ =
c2

a2
1a

2
2ǭµ̄

,

and rewrite (3.67) as

h =
σǭµ̄

(
1̄
ǫ

)(
1̄
µ

)
+ 1

σ + 1

1

ǭµ̄
, (3.69)

then the said inequality takes on the form:

(1 + σ)2(V 2 − h)2 ≥ 4σ

[
V 2 − 1

µ̄

(
1̄

ǫ

)][
V 2 − 1

ǭ

(
1̄

µ

)]
. (3.70)

We now look for the possibility for parameters Ec, 1/Mc to become negative.
Equations (3.66)-(3.70) are valid for arbitrary ǫ, µ; however, we first assume
that these parameters are positive. The product (3.68) is non-negative due to
(2.5), (2.52), and (3.8). As to the sum (3.66), it may be negative if either (i)
V 2 < (1/ǭ)(1/µ) and V 2 > h, or (ii) V 2 > (1/ǭ)(1/µ) and V 2 < h. The second
possibility can be made consistent with (3.70), as shown by the following
argument. Referring to (2.5) and to the third inequality (2.52) together with
(3.8), we conclude that V 2 should be taken greater than a2

2. This may come to
agreement with V 2 < h since h may exceed a2

2 if the value of σ is sufficiently
large. In fact, if σ → ∞, then h monotonically increases, approaching the
value (1/ǫ)(1/µ) which may exceed a2

2 for the irregular case (see (2.59) and
(3.8)). Considering this case and choosing V 2 within the interval (a2

2, h), we
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observe that, for sufficiently large values of σ, the lhs of (3.70) prevails. Fig.
3.5 represents the plot of 1/M versus E , with V variable along the curve. A
model value for c is taken equal to 10a2. The interval (1.0541, 1.5851) of V
from (3.70) corresponds to negative values of both effective parameters, while
for V > 1.9755 those parameters become positive. A more detailed discussion
of numerical results follows below in section 3.10.

Fig. 3.5. Effective permittivities and permeabilities of dielectric laminate with
(ǫ1, µ1) = (1, 1), (ǫ2, µ2) = (9, 0.1), m1 = 0.5, for variable V .

The effective wave impedance E/M versus V is plotted in Fig. 3.6.
Inequality (3.70) is important because it guarantees real values of the

effective parameters E , M together with the velocity w of a proper coordinate
frame. At the same time, once w is real, then EMc2 > 1, i.e. the effective
parameters are consistent with a relativistic concept.

To prove this, observe that inequality EMc2 > 1 yields (see (3.43))

p
c + qc

w
p
c + qw

c

> 1. (3.71)

If the roots w1,2 of (3.40) are real, then they are of the same sign. This sign
may be taken positive with no lack of generality, by specifying the sign of q.
The roots w1,2 are positive if and only if

( p

c2
− r
) c2

q
< 0,
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Fig. 3.6. Effective wave impedance versus V .

i.e.
p

c2
− r ≷ 0 when q ≶ 0. (3.72)

Now, if E , M > 0, then, by (3.43) and (3.71) we conclude that

p

c
+

qc

w
>

p

c
+

qw

c
,

or
qc

w
>

qw

c
.

For the positive root w that is less than c, this inequality means q > 0;
inequality (3.72) then yields

p

c2
− r < 0. (3.73)

By a similar argument, we find that if E , M < 0, then q < 0, and

p

c2
− r > 0. (3.74)

Now it is easy to check the validity of (3.73) or (3.74) for activated laminate
in space-time. Particularly, referring to (2.29), (3.8), we find that

p

c2
− r =





〈
1
µ

〉

c2

(
V 2 − 1

ǭµ̄

)
− ǫ1ǫ2

ǭ

[
V 2 −

(
1̄

ǫ

)(
1̄

µ

)]


1

V 2 − 1
ǭ

(
1̄
µ

) .
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Considering the irregular case (2.56), (2.59), (3.8), and choosing V 2 within
the interval (a2

2, h), we observe, with reference to (2.53) and (2.54), that p
c2 −

r > 0, which yields q < 0 for w > 0. By (3.74), this means that E , M < 0, as
indicated above in this section.

If EMc2 > 1, then the effective phase velocity 1/
√

EM in a proper frame
does not exceed c. By a standard relativistic rule, this property holds in any
other frame moving with velocity below c relative to the proper frame; par-
ticularly, this property should hold in a laboratory frame where the phase
velocities are specified by (2.50). At the same time this formula together with

(3.8) shows that one of such velocities tends to infinity when V 2 →
(

1̄
ǫ

)(
1̄
µ

)
;

we conclude that if V 2 is too close to
(

1̄
ǫ

)(
1̄
µ

)
, then inequality (3.70) must

be violated. In other words, once V 2 is chosen in the interval
(
a2
2,
(

1̄
ǫ

)(
1̄
µ

))
,

it should not stay too close to its right end point.
To confirm this, we represent inequality (3.70) in the form

φ(V 2) ≥ 0, (3.75)

with

φ(y) = (1−σ)2y2−2Ky+L, K = h(1+σ)2−2σ

[(
1̄

ǫ

)
1

µ̄
+

1

ǭ

(
1̄

µ

)]
, (3.76)

L = (1 + σ)2h2 − 4σ
1

ǭµ̄

(
1̄

ǫ

)(
1̄

µ

)
. (3.77)

The function φ(y) attains its minimum at

y = y∗ =
K

(1 − σ)2
;

the minimum value equals

φ(y∗) = L − K2

(1 − σ)2
.

The value y∗ approaches
(

1̄
ǫ

)(
1̄
µ

)
as σ → ∞; at the same time, by (3.68),

(3.76), and (3.77), the asymptotic value of φ(y∗) becomes

φ(y∗) ∼ −4σ
1

ǭµ̄

(
1̄

ǫ

)(
1̄

µ

)[
ǭµ̄

(
1̄

ǫ

)(
1̄

µ

)
+ 1

]
, (3.78)

as σ → ∞. On the other hand, by (3.75) and (3.69),

φ(0) = L ∼ σ2 1

(ǭµ̄)2

[
ǭµ̄

(
1̄

ǫ

)(
1̄

µ

)
+ 1

]2
. (3.79)
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Because φ(±∞) = +∞, we conclude that the smallest positive root of
φ(y) belongs, for large values of σ, to the interval [0, y∗]; this root approaches

y∗ as σ → ∞, i.e. it approaches
(

1̄
ǫ )( 1̄

µ

)
. For the irregular case (2.56), (2.59),

(3.8), the said root may exceed a2
2, and the interval between a2

2 and the root
will meet our requirements: with V 2 in this interval, inequality (3.75) will be
satisfied.

We conclude that negative values of E , M may be created if parameter σ is
large enough, i.e. if the phase velocities a1 and a2 of light in original materials
are much smaller than c.

The difference V 2 −
(

1̄
ǫ

)(
1̄
µ

)
should not take zero value for another sub-

stantial reason: if it does, then the formula (2.50) itself becomes wrong be-
cause the asymptotic formulae for µ1,2 produced for ωδ/a ≪ 1 in Appendix
1 appear in this case to be inaccurate; correct calculation requires a better
approximation of µ1,2 given by higher powers of ωδ/a.

The above discussion is related to the case when material constants of
original constituents are all positive; it applies, word for word, to the case
when those constants are all negative. With such constituents, we may then
construct activated laminate with the effective constants E , M that are both
positive.

3.9 An activated dielectric laminate: the energy

considerations. Waves of negative energy

In this section, we revisit the formulae for the wave energy introduced in
section 2.6, to study transformation of energy in the case of negative effective
parameters. We will obtain alternative expressions for the average and effective
energy densities and show that these expressions may become negative along
with the effective material parameters. This observation demonstrates that
the low frequency waves may carry negative energy - the phenomenon peculiar
to wave propagation through material media that are not in thermodynamic
equilibrium.

We start with calculating the average electromagnetic energy density in a
laminate; this quantity is defined as 〈we + wm〉, where (see section 3.5) the
symbols

we =
1

2
ǫu2

t , wm =
1

2µ
u2

z

have, respectively, the sense of electric and magnetic energy densities.
Because of the continuity of u and v across the layers’ interface, the deriv-

atives (c.f. (2.3), (2.4))

uτ = ut + V uz,
vτ = vt + V vz = ǫV ut + 1

µuz
(3.80)
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are also continuous. We use this to express ut, uz as functions of ǫ, µ, V, and
the continuous derivatives, uτ , vτ :

ut = − a2

V 2−a2 uτ + V
ǫ(V 2−a2)vτ ,

uz = V
V 2−a2 uτ − 1

ǫ(V 2−a2)vτ .

The value of 〈we〉 is thus calculated as

〈we〉 = 1
2

〈
ǫ
(

a2

V 2−a2

)2
〉

u2
τ −
〈

a2

(V 2−a2)2

〉
V uτvτ

+ 1
2

〈
1

ǫ(V 2−a2)2

〉
V 2v2

τ ;
(3.81)

in this formula, the derivatives uτ , vτ remain unaffected by averaging and
stay identical with their average values. The latter are linked with the average
values 〈ut〉, 〈uz〉, 〈vt〉, 〈vz〉 through the formulae (see (2.11), (2.16), and (3.8)).

uτ = 〈ut〉 + V 〈uz〉,
vτ = 〈vt〉 + V 〈vz〉 = (p + qV )〈uz〉 − (q − rV )〈ut〉 = αc〈uz〉 + β〈ut〉.(3.82)

Note that these formulae relate the average values of ut, . . . , vz, and are there-
fore different from those in (3.80) which relate the pointwise values and hold
along the layers’ interfaces. As mentioned in section 2.2, we preserve below
the symbols ut, . . . , vz without corner brackets, introduced for the pointwise
values, also for the average values; the appropriate meaning will follow from
the context.

By eliminating uτ , vτ from (3.81) with the aid of (3.82), we arrive at the
following expression for 〈we〉:

〈we〉 =
1

2

〈
ǫ

(
V
ǫ β − a2

)2

(V 2 − a2)2

〉
u2

t +

〈
ǫ

(V 2 − a2)2

(
V

ǫ
β − a2

)(cα

ǫ
− a2

)〉
V utuz

+
1

2

〈
ǫ

(
cα
ǫ − a2

)2

(V 2 − a2)2

〉
V 2u2

z. (3.83)

By a similar argument, we calculate 〈wm〉 as

〈wm〉 =
1

2

〈
1

µ

(
V − β

ǫ

)2

(V 2 − a2)2

〉
u2

t +

〈
1

µ

(
V − β

ǫ

) (
V 2 − cα

ǫ

)

(V 2 − a2)2

〉
utuz

+
1

2

〈
1

µ

(
V 2 − cα

ǫ

)2

(V 2 − a2)2

〉
u2

z. (3.84)

The sum 〈we〉+〈wm〉 = 〈we+wm〉 - clearly positive - represents an average
value 〈Wtt〉 of the electromagnetic energy density Wtt = we + wm measured
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in a laboratory frame. An average value 〈Wzt〉 of the momentum density
Wzt = ǫutuz, originally dependent on pointwise values of ut, uz, is given by
the formula

〈Wzt〉 = 〈ǫutuz〉 =

〈
ǫ

(
V − β

ǫ

)(
V β

ǫ − a2
)

(V 2 − a2)2

〉
u2

t

+

〈
ǫ

(V 2 − a2)2

[(
V

β

ǫ
− a2

)(
V 2 − cα

ǫ

)
+ V

(
V − β

ǫ

)(cα

ǫ
− a2

)]〉
utuz

+

〈
ǫV

(
cα
ǫ − a2

) (
V 2 − cα

ǫ

)

(V 2 − a2)2

〉
u2

z. (3.85)

Like equations (3.83) and (3.84), this formula contains the average values
of ut, uz. The energy flux density Wtz = −(1/µ)utuz has an average value

〈Wtz〉 = −
〈

1

µ
utuz

〉
= −

〈
1

µ

(
V − β

ǫ

)(
V β

ǫ − a2
)

(V 2 − a2)2

〉
u2

t

−
〈

1

µ(V 2 − a2)2

[(
V

β

ǫ
− a2

)(
V 2 − cα

ǫ

)
+ V

(
V − β

ǫ

)(cα

ǫ
− a2

)]〉
utuz

−
〈

V

µ

(
cα
ǫ − a2

) (
V 2 − cα

ǫ

)

(V 2 − a2)2

〉
u2

z, (3.86)

and the momentum flux density 〈Wzz〉 equals -〈Wtt〉. It is easy to check that
〈Wtt〉 = 〈Ttt〉, 〈Wzt〉 = 〈Tzt〉, etc., where the rhs are given by equations (2.86),
etc., of section 2.6, with obvious substitutions (3.8). We again obtain interpre-
tation for the quantities 〈Tττ 〉, 〈Tτη〉 introduced in section 2.6: they appear to
be equal, respectively, to 〈Wττ 〉, 〈Wτη〉.

We consider the action density Λ specified in that section by (2.73); an
alternative expression is given by

Λ = we − wm =
1

2
(utvz − uzvt). (3.87)

Here, we used the pointwise values of ut, . . . , vz. For laminates, the action
density is quasi-affine, i.e. its averaged value 〈Λ〉 is equal to the action density
of the averaged field Λ̄ (the effective action density). This result follows from
the chain of equalities

〈Λ〉 =
1

2
〈utvz − uzvt〉 =

1

2
〈ut′vz′ − uz′vt′〉

=
1

2
[ut′〈vz′〉 − 〈uz′〉vt′ ] =

1

2
[〈ut′〉〈vz′〉 − 〈uz′〉〈vt′〉] = Λ̄. (3.88)
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We used here the Lorentz-invariance of action, with the primed frame z′, t′

moving along with the property interfaces and preserving continuity of tan-
gential fields E′ = E+(V×B) = (ut+V uz)j = ut′j, and H′ = H−(V×D) =
(vt + V vz)i = vt′ i. We confirm this result also by a direct inspection based on
(3.83) and (3.84), and, by using (2.16); the calculation shows that

〈we − wm〉 = 〈Λ〉 = Λ̄ =
1

2
ru2

t + qutuz − 1

2
pu2

z. (3.89)

This relation matches the formula (2.90) in section 2.6. The effective action
density serves as the integrand (Lagrangian) for the functional

∫ ∫
Λ̄dzdt

generating (2.11) as Euler equations and (2.91) as components of an effec-
tive energy-momentum tensor; these components satisfy the system (2.92). In
(2.90) and (2.91), we used the symbol u0 instead of u.

For V �= 0, the quasi-affinity property (3.88) does not extend in an anal-
ogous fashion to the components of the energy-momentum tensor, i.e. the
energy density, the energy density flux, etc. For example we have seen in sec-
tion 2.6 that an averaged energy density 〈Wtt〉 = 〈Ttt〉 in a laboratory frame
is not equal to W̄tt.

However, if we consider a co-moving Galilean frame (2.20) traveling at
velocity w = V relative to a laboratory, then, in such a frame,

〈Wττ 〉 = W̄ττ , 〈Wτη〉 = W̄τη. (3.90)

This follows from equations (2.102), (2.104) together with the remark after
eqn. (3.86).

As stated in section 2.6, equation (2.75) indicates that the net rate of
increase of the energy of the electromagnetic field in a unit segment is equal to
the work committed, per unit time, by an external agent against the variable
property pattern. This work is expressed by the right hand side of (2.75).
In the case of activated laminate, both ǫ and µ (or ρ and k−1) satisfy the
equation (·)t + V (·)z = 0; from (2.76) we conclude that the term

−1

2

[
ǫtu

2
t −
(

1

µ

)

t

u2
z

]
(3.91)

is equal to the expression

−V

(
∂

∂t
Wzt +

∂

∂z
Wzz

)
.

At the first glance, the presence of the work term (3.91) might be inter-
preted as equivalent to the change in the energy density Wtt of the field in
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the laboratory frame by the value V Wzt, and to a simultaneous change in the
energy flux Wtz by the value V Wzz (cf. (2.105)):

∂

∂t
(Wtt + V Wzt) +

∂

∂z
(Wtz + V Wzz) = 0.

By applying averaging to this equation and by referring to (2.99), we arrive
at the equation

∂

∂t
(W̄tt + V W̄zt) +

∂

∂z
(W̄tz + V W̄zz) = 0,

following from (2.92). The combination W̄tt + V W̄zt - the average energy
density 〈Wττ 〉 in a co-moving frame (2.20) - might then be interpreted, in
a laboratory frame, as the averaged net energy density composed of the en-
ergy 〈Wtt〉 of the electromagnetic wave minus the energy −V 〈Wzt〉 needed to
overcome the variable property pattern.

This interpretation is valid only in part, however. The effective energy
density W̄tt + V W̄zt in a co-moving frame (2.20) may be calculated by (2.91)
for the d’Alembert waves ui = u(z − vit), i = 1, 2, where vi are the roots of
the quadratic equation (2.51). We get

W̄tt + V W̄zt = u′2(rv − q)(v − V ), (3.92)

the prime here denotes differentiation with respect to the whole argument.
If the original materials are identical (ǫ1 = ǫ2 = ǫ, µ1 = µ2 = µ), then

p = 1
µ , q = 0, r = ǫ by (2.29) and (3.8), and v1,2 = ±a, a = 1/

√
ǫµ; the

energy W̄tt + V W̄zt then becomes equal to

W̄tt + V W̄zt = u′2ǫv(v − V ). (3.93)

This expression depends on V , a purely kinematic effect related exclusively
to the frame and not associated with the variability of the property pattern.
When v = a (a “slow” wave in the moving frame), then W̄tt + V W̄zt becomes
negative if V > a (Sturrock [13]); when v = −a (a “fast” wave in the moving
frame), then W̄tt+V W̄zt remains positive for V > 0. We see that, for a uniform
property pattern, when the work (3.91) is zero, the quantity W̄tt + V W̄zt is
not equal to W̄tt which is, in this case, the same as 〈Wtt〉.

If the original substances are different in their material parameters, then
the energy (3.92) should be calculated for v = v1,2 given by (2.50):

v1,2 = −
V
[
ǭµ̄ −

(
1̄
a2

)]
∓ 1

a1a2

√
ǭµ̄
[
V 2 − 1

ǭ

(
1̄
µ

)] [
V 2 − 1

µ̄

(
1̄
ǫ

)]

1
a2
1a2

2

[
V 2 −

(
1̄
ǫ

)(
1̄
µ

)] .

In particular, if we consider the irregular case ǫ2 > ǫ1, µ2 < µ1, a2 > a1,
then calculations show that W̄tt + V W̄zt may become negative for both waves
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v = v1 and v = v2 if a2
2 ≤ V 2 ≤ (1/ǫ)(1/µ). The velocity V then also falls

into the interval (v1, v2). This may occur when the d’Alembert waves become
coordinated with v1 and v2 being both positive.

To prove this, observe that

ǭµ̄ −
(

1̄

a2

)
= −m1m2∆ǫ∆µ;

this quantity is positive for the irregular case. If V > 0 and a2
2 < V 2 <(

1/ǫ
)(

1/µ
)
, then v2 > v1 > 0, and

V − v1,2 =
a2
1a

2
2

V 2 −
(

1̄
ǫ

)(
1̄
µ

)
{

1

a2
1a

2
2

V

[
V 2 −

(
1̄

ǫ

)(
1̄

µ

)]
+ V

[
ǭµ̄ −

(
1̄

a2

)]

∓ 1

a1a2

√

ǭµ̄

[
V 2 − 1

ǭ

(
1̄

µ

)][
V 2 − 1

µ̄

(
1̄

ǫ

)]}

=
1

V 2 −
(

1̄
ǫ

)(
1̄
µ

)
{

V (V 2 − a2) ∓ a1a2

√

ǭµ̄

[
V 2 − 1

ǭ

(
1̄

µ

)][
V 2 − 1

µ̄

(
1̄

ǫ

)]}
.

Direct calculation shows that

V 2(V 2 − a2)2 − a2
1a

2
2ǭµ̄

[
V 2 − 1

ǭ

(
1̄

µ

)][
V 2 − 1

µ̄

(
1̄

ǫ

)]

= (V 2 − a2
1)(V

2 − a2
2)

[
V 2 −

(
1̄

ǫ

)(
1̄

µ

)]
;

this quantity is negative if a2
1 < a2

2 < V 2 < (1/ǫ)(1/µ). Because V > 0, we
conclude that v1 − V < 0, and v2 − V > 0, as expected.

The energy density W̄ττ in a moving frame (2.20) is given by (3.92), and
the energy flux density W̄τη in the same frame calculated by (3.90) , (2.99),
and (2.91) as

W̄τη = u′2(rv − q)(v − V )2; (3.94)

as above, we consider here a solution u(z − vt) with v = v1,2 being the roots
of (2.51). We now find the group velocities of waves in a moving frame to be
equal to

W̄τη

W̄ττ
= v − V,

with v = v1(v2) for the first (second) wave. By (2.29), (2.50) and (3.8) we find

rv1,2 − q = ±ǫ1ǫ2
ǭ

a1a2

√
ǭµ̄
[
V 2 − 1

ǭ

(
1̄
µ

)] [
V 2 − 1

µ̄

(
1̄
ǫ

)]

V 2 − 1
ǭ

(
1̄
µ

) ,
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with upper (lower) sign related to the first (second) wave. If V 2 > a2
2, then

rv1 − q > 0, rv2 − q < 0.

We see that, for irregular case,

a) W̄ττ < 0, W̄τη > 0 for the first wave (v = v1),
b) W̄ττ < 0, W̄τη < 0 for the second wave (v = v2).

With respect to a moving frame, the first wave travels from right to left, at a
negative group velocity v1 −V ; the second wave travels from left to right, at a
positive group velocity v2−V . Both waves carry a negative energy. This comes
into contrast with the case of uniform material moving at superluminal speed
V > a: as mentioned above, the “slow” (“fast”) wave then has a negative
(positive) energy.

Physically speaking, the appearance of waves of negative energy is associ-
ated with the Cherenkov radiation [14]. Consider a “boost” co-moving frame
in which the material interfaces remain at rest. An incident wave propagating
through a moving heterogeneous medium, initiates dipoles concentrated on
material interfaces and vibrating at the wave frequency. This vibration ini-
tiates the Cherenkov radiation in a medium moving at superluminal speed
V > a1,2 at each part of it, including interfaces, and this radiation carries the
energy away from the wave. This loss of energy should be compensated by a
material motion if we want the velocity V to be maintained uniform. But we
do not explicitly account for this supplemental energy in our equations since
we do not consider the effect produced by electromagnetic forces on the mate-
rial motion. For this reason, the energy of radiation formally comes from the
wave energy in a boost frame; as a consequence, this energy becomes negative.

If we add the energy stored in the flow, the overall energy density in a
system “flow plus wave” will again become positive.

This argument applies to uniform material also, but in that case it affects
only one out of two travelling waves. In a material laminate, both waves carry
negative energy due to the presence of dipoles sitting on the interfaces and
adding up to the radiation produced by polarization currents that always
develop in every conventional dielectric.

3.10 Numerical examples and discussion

In this section, we focus on activated laminates made up of two materials,
(ǫ1, µ1) and (ǫ2, µ2), to illustrate theoretical results given in the previous sec-
tions. We use a numerical method to simulate the heterogeneous problem de-
scribed by equations (3.7). The effective behaviour of a disturbance through
such a laminate is shown in contour plots later in this section. Material of this
section reproduces, in most part, the results of S.L. Weekes published in [15].
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Directly computing the numerical solution to wave propagation through
fast range (V 2 > a2

2) dynamic laminates has proven to be a challenging prob-
lem. A more standard conservative finite difference approach analogous to the
one taken in [12] for the slow range (V 2 < a2

1) and for static laminates yields
an unstable scheme. Numerical results are degraded since accuracy is quickly
lost due to the growth of short waves which enter into the computation as
truncation and round-off error. In [12], an approach is taken that success-
fully circumvents the appearance of these instabilities in the case of temporal
laminates when V = ∞.

For the fast range laminates, we make the following change of coordi-
nates: τ = t − z

V , ζ = z yielding the PDE system (c.f. (3.7))

ǫuτ +
1

V
vτ = vζ ,

µvτ +
1

V
uτ = uζ .

In ζ, τ coordinates, the fast range dynamic material is as a temporal material
where the property pattern depends on τ alone and has period δ. When a wave
is incident on the pattern interfaces, τ = nδ or τ = (n+m1)δ for n an integer,
two new waves arise which both move into the new material. These waves are
of the same wave number as the incident wave when looked upon in the new
coordinate system. However, short wave modes unavoidably introduced into
the computation will grow and destroy the fidelity of the results. We perform
a spectral decomposition of the initial data, and at very regular intervals in
the course of the numerical computation, we filter out those wave modes that
lie without the rangle initially present. This spectral approach has proved
successful and we illustrate some of the results below.

We consider a rank one activated laminate made up of two isotropic di-
electrics. We take the material parameters to be

(ǫ1, µ1) = (1, 1) (ǫ2, µ2) = (9, 0.1); (3.95)

thus a1 = 1, a2 = 1.0541 on a scale with c = 10a2. Take the mixing factor to
be m1 = 0.5, so

(1/ǭ)(1/µ) = 1.1, (1/ǫ)(1/µ) = 3.0556,

h = 2.9757, σ = 36.3636,

from (3.67) and the formula for σ given in section 3.8. For the fast range
laminates, the effective permittivity and permeability, E and M , are real and
the effective material is isotropic when either

a2 = 1.0541 < V < 1.5853, or V > 1.9755,
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from (3.70). In the first range, the effective values are both negative as pre-
dicted, whereas the values are positive in the second range. Figure 3.5 rep-
resent the plots of 1/M versus E as V varies within the acceptable ranges.
Figure 3.7 plots the corresponding energy densities computed from (3.92) for
each of the d’Alembert waves (2.50) represented by solid and dashed curves.

Figs. 3.8 and 3.9 show contour plots of u when an initial Gaussian pulse,

u(z, 0) = e−z2

, v(z, 0) = 0,

propagates through a fast range laminate with material parameters given in
(3.95), and m1 = 0.5. We note that these are the results that come from
the direct, detailed computation of the unhomogenized equations, not from
computing solutions to the effective equations. The figures show the results
for u in z, t coordinates when V = 1.3 and V = 4. The horizontal axis gives
the z-values, while time is on the vertical axis.

Fig. 3.7. Effective energy densities of dielectric laminate with (ǫ1, µ1) =
(1, 1), (ǫ2, µ2) = (9, 0.1), m1 = 0.5, for variable V .

Calculations show that for V = 1.3, the theoretical values for v1, v2 are
1.09324 and 2.7147 - coordinated wave motion as seen clearly in Fig. 3.8.
Looking at the numerical results in the contour plot of Fig. 3.8, we estimate
that the slower moving disturbance travels at a velocity 1.0895, and the faster
wave has velocity 2.7133. From Figs. 3.3–3.7, we expect that the effective
material coefficients when V = 1.3 are negative as are the energy densities.
We find that E = −4.0293 and M = −0.3532. The energy densities W̄tt+V W̄zt
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given by (3.92) are −0.69835 and −4.77846 using the theoretical values for
the effective velocities; the energy densities are −0.71917,−4.77023 using the
numerical values of vi in (3.92).

Fig. 3.8. Wave propagation through a fast range laminate where V = 1.3 yields a
homogenized material with negative effective coefficients.

For V = 4, the theoretical values for v1, v2 are 1.4001 and −2.6362 - no
coordination. Looking at the numerical results in the contour plot of Fig.
3.9, we find that the disturbances travel with velocities 1.4 and -2.6296. The
effective material properties, E and M , are both positive as indicated in Fig.
3.5, and take the values 1.5582 and 0.1564 respectively. As given in Fig. 3.7,
the energy densities are of opposite signs when V = 4, and from (3.92) they
take the values -8.20495 and 20.94315 using the theoretical values of vi, and
-8.20633 and 20.9587, using the numerically computed values of the effective
velocities.

The values of the energy densities that have been calculated incorporate
contributions due both to the frame motion and to the variable property
pattern. To single out contribution caused specifically by the variable property
pattern, one has to subtract the value of the energy density calculated by the
formula (3.93) for a pure material from the corresponding value of W̄tt+V W̄zt

calculated by (3.92) for the variable material pattern. In Figs. 3.10 and 3.11,
we show how the energy densities of both waves that develop in an activated
laminate vary as the fraction of material 1 (i.e. m1) in the mixture increases
from 0 to 1.
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Fig. 3.9. Wave propagation through a fast range laminate where V = 4.0 yields a
homogenized material with positive effective coefficients.

Fig. 3.10. Energy densities of composites vs. m1, for V = 1.3. Solid line is energy
density of pure material 1, dashed line is energy density of pure material 2.
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Fig. 3.11. Energy densities of composites vs. m1, for V = 4.0. Solid line is energy
density of pure material 1; dashed line is energy density of pure material 2.

For pure materials, as discussed in section 3.9, one wave is “fast” and
the other “slow”. The upper/lower plot is associated with the wave that is
“slow”/“fast” for the pure materials of (3.95). For a “slow” wave, the en-
ergy density remains negative for all m1; a “fast” wave has energy density
negative in the presence of coordination in a laboratory frame, and positive
in the absence of it. The energy densities of pure materials are indicated on
these plots. It is clearly seen that the energy contribution due to the variable
property pattern goes to zero as the property pattern becomes uniform, i.e.
ǫ2 → ǫ1 and µ2 → µ1, or vice versa.

Dielectric substances with negative ǫ and µ represent the so-called “left-
handed materials”. This name has been introduced by Veselago in his paper
[1] that opened a new chapter in both theoretical and experimental study
of such substances. Historically, the idea of left-handed materials ascends to
Lamb who discussed in [2] the mechanical device conducting the waves with
phase moving in the direction opposite from that of the energy flow. This
feature is one of many special characteristics of left-handed materials. Later,
an interest to them was demonstrated by many authors, starting from Man-
delstam [[3],[4],[5]]. This interest has recently become much more pronounced
because a great many ways have been found to practically implement left-
handed materials within some selected frequency bands. In our example the
left-handed medium is a non-equilibrium, thermodynamically open system
possessing negative energy.

A vast bibiolography on left-handed media may be found in [6].
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3.11 Effective properties of activated laminates

calculated via Lorentz transform. Case of spacelike

interface

So far in this and the previous chapters the effective parameters of activated
laminates were calculated for a subluminal slope of the interface, i.e. V < c;
in other words, the interface was assumed to be timelike. We basically applied
the Galilean transform (2.6) toward such calculation and arrived at eqs. (2.10),
(2.13) for A, B, C, D, and, as a consequence, at eqs. (2.29) for p, q, r, θ.

These formulae remain the same if we apply the Lorentz transform (3.38)
toward their derivation instead of its simplified Galilean version (2.6). How-
ever, desiring to calculate the effective properties as the invariants with respect
to a Lorentz group, we applied in section 3.5 the full Lorentz transform. It
was still assumed that V < c, i.e. the laminates’ interfaces are timelike.

For all of these reasons, we use the present section to show firstly that eqs.
(2.10), (2.13) never become affected if we use, instead of (2.6), the full Lorentz
transform (3.38) in the procedure of section (2.2). Secondly, we consider the
case of superluminal (spacelike) interface in the laminates, and arrive, for this
case, at a system (2.11) with appropriately modified expressions for p, q, r.

The first of these problems is simple. By using (3.38), we introduce the
frame (z′, t′) and reduce the original system (2.2) to the form (we preserve
symbols ρ, k for material constants, and a =

√
k/ρ for the phase velocity):

uz′ =
V

c2

a2 − c2

a2 − V 2
ut′ +

1

c2

c2 − V 2

ρ(a2 − V 2)
vt′ ,

vz′ =
1

c2

k(c2 − V 2)

a2 − V 2
ut′ +

V

c2

a2 − c2

a2 − V 2
vt′ . (3.96)

By applying averaging to this system and by using the continuity of u, v across
the interfaces z′=const, we arrive at the system (see (2.10), (2.13))

uz′ = Mut′ −
(

1 − V 2

c2

)
Cvt′ ,

vz′ = −
(

1 − V 2

c2

)
Dut′ + Mvt′ , (3.97)

where

M = −AV

c2
+ BV. (3.98)

In (3.97) the field variables u, v are already assumed averaged over the period
x − V t = δ of laminate. We now again apply the Lorentz transform (3.38) to
return to the original frame (z, t):

uz′ = γ

(
uz +

V

c2
ut

)
, ut′ = γ(ut + V uz), γ =

(
1 − V 2

c2

)−1/2

, (3.99)
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etc. This yields, after some calculation and with the reference to (2.10), (2.13),

BV vt + Avz = D(ut + V uz),

C(vt + V vz) = BV ut + Auz; (3.100)

by (2.12), this system is easily reduced to (2.11).
We now consider the case of superluminal (spacelike interface); the cor-

responding velocity V is greater than c : V > c. Introduce the Lorentz
frame (z′, t′) moving at velocity V̄ = c2/V ; clearly V̄ < c. In a new frame,
the system (2.2) becomes

ut′ = V
a2 − c2

a2 − V 2
uz′ +

c2 − V 2

ρ(a2 − V 2)
vz′ ,

vt′ =
k(c2 − V 2)

a2 − V 2
uz′ + V

a2 − c2

a2 − V 2
vz′ .

This system appears if we exchange symbols z′ and t′ in (3.96) and drop
the factor 1

c2 at the rhs of each equation.
We now average this system over the period t − 1 x = δ; as a result, we

obtain

ut′ = c2Muz′ − c2

(
1 − V 2

c2

)
Cvz′ ,

vt′ = −c2

(
1 − V 2

c2

)
Duz′ + c2Mvz′ . (3.101)

If we now use (3.101) to return to the original (z, t)-frame, then, after
calculation, this system takes the form (3.100). We see that the averaged
system (2.11) preserves its shape for superluminal laminates, with symbols
p, q, r defined, as before, by eqs. (2.29).

V
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4

G-closures of a Set of Isotropic Dielectrics with

Respect to One-Dimensional Wave Propagation

4.1 Preliminary considerations. Terminology

In this book, we study the spatio-temporal composites, i.e. material formations
assembled from conventional constituents distributed on a periodic microscale
in space and time. We are particularly interested in the propagation of long
waves through such formations (the term “long” in this context means “long
compared with the period of a microstructure”). Depending on the microge-
ometry of a mixture and on the material parameters of its constituents, a
composite may or may not allow for the long waves travel through it with-
out damping or amplification. In the first case, we call a composite stable,
otherwise we term it unstable.

These terms require a more precise characterization which we will now give
for laminates of arbitrary rank. The waves through such media are known to
be modulated waves, i.e. the high frequency carriers having the period of a
material pattern, and the amplitude distribution taking the form of a low fre-
quency envelope. This is clearly revealed by the Floquet analysis carried out
in section 2.4 particularly for activated laminar assemblage. The “long waves”
mentioned above represent the amplitude waves incorporated in modulated
waves as their envelopes. Such waves are mathematically detected through
homogenization. They travel at velocities that are qualified as the group ve-
locities of modulated waves. The equations that govern their propagation
demonstrate no dispersion in our case, so the relevant group velocities co-
incide with the phase velocities. This performance is characteristic of stable
composites. In the absence of stability, there are no travelling waves whatso-
ever. The stable and unstable scenarios reveal themselves through the effective
properties of spatio-temporal composites.

Any laminate is a material assemblage endowed with a specific geometric
framework implemented on a microscale. This framework depends on para-
meters, such as the volume fractions and the slopes of interfaces separating,
within a microstructure, one material assemblage from another. Specifically,
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one may consider a laminate of higher rank depending on a number of latent
parameters.

Such parameters may only take values that belong with some specific
ranges (we call such values admissible). Inequalities mi ≥ 0, i = 1, 2, m1 +
m2 = 1, as well as inequality (2.5) represent examples of the admissible ranges.

The property of a composite to be stable or unstable depends on the values
taken by parameters of the microstructure.

If a composite is stable for all of the admissible values of its parameters,
then it will be termed uniformly stable.1 An example of an uniformly stable
composite is given by an activated rank one dielectric laminate assembled
from two immovable materials with material constants ǫi, µi, i = 1, 2, having
the same sign. The effective material tensor s0 of such a laminate has the
determinant (see (2.26), (2.15), and (3.8))

det s0 =

〈
y

〈y〉 det s

〉
, (4.1)

where 〈·〉 = m1〈·〉1 + m2(·)2, m1, m2 ≥ 0, m1 + m2 = 1, and

det s = ǫ/µ,

y = (∆)−1,

∆ = ǫ(V 2 − a2), a2 = (ǫµ)−1. (4.2)

Here, mi, i = 1, 2 denotes the volume fraction of the ith material in a
laminate, and the symbol ∆ in (4.2) and below in this chapter stands for ρ∆
in eqs. (2.15).

The expression ∆ = ǫV 2 − µ−1 differs by a positive factor from the action
density

Λ = ǫu2
t − µ−1u2

z,

evaluated for the “wave” u = u(z − V t) travelling at velocity V . The symbol
V in (4.2) denotes the speed of the interface separating materials 1 and 2 in
the laminate. The admissible values of this speed are assumed to lie outside
the banned interval (min | ai |, max | ai |) to ensure smoothness of the
solution u = u(z, t) of the Maxwell’s system (see (2.5)). When V 2 < mini a2

i

and ǫ > 0, the expression (4.2) for ∆ is negative; when V 2 > maxi a2
i and

ǫ > 0, this expression becomes positive.
The sign of ∆ is switched to opposite if ǫ < 0. We observe that if materials

1 and 2 in a composite have all of their material constants ǫi, µi of the same
sign, then yi/〈y〉 ≥ 0, i = 1, 2. By introducing symbols

κi = miyi/〈y〉, (4.3)

we conclude that the values κi ≥ 0, κ1 +κ2 = 1 are admissible, and equation
(4.1) then shows that det s0 is a convex combination of det si, i = 1, 2, i.e. it

1 In [1], the term “absolutely stable” was introduced instead of “uniformly stable”.
In this text we prefer the latter term as conceptually more appropriate.
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is positive when det si > 0. As a consequence, the phase velocities of waves
through a composite are real for all admissible mi and V , and a composite is
absolutely stable. If, however, material 1 has both material constants ǫ1, µ1

positive, and the material 2 has both of them negative (“materials of opposite
signs”), and if 〈∆−1〉−1 �= 0, then the admissible values κ1 and κ2 appear to
be of opposite signs (though, as before, κ1 + κ2 = 1). The determinant

det s0 = κ1 det s1 + κ2 det s2 (4.4)

in this case takes values that lie outside the interval (det s1, det s2); by a due
choice of κ1, this determinant may be made negative, and the phase velocity
made complex, so a composite may become unstable. We conclude that an
activated laminate assembled from immovable materials of opposite signs fails
to be uniformly stable.

Other examples of composites lacking the absolute stability may be given
by laminates of a higher rank.

In this chapter we are looking for a formal characterization of a set GU of
all uniformly stable composites assembled from an arbitrary set U of originally
given isotropic dielectrics. The analysis is carried out with regard to wave
propagation in one spatial dimension. The set GU so defined will be termed
a stable G-closure of the original set U .

As a starting point, we describe in section 4.2 the set GU of all admissible
composites produced in one spatial dimension and time by a single original
isotropic dielectric. Based on this description, we construct in the subsequent
sections the stable G-closures for some more complex original sets U . We
first build a G-closure for a binary set U : {(ǫ, µ) = (ǫi, µi), i = 1, 2}, and
later - for an arbitrary set U . We also give characterization for the sets GmU
- the stable G-closures with specified volume fractions mi of participating
constituents. Material of this chapter is based on papers [1],[2],[3],[4].

4.2 Conservation of the wave impedance through

one-dimensional wave propagation. A stable

G-closure of a single isotropic dielectric

In the preceding sections, we have been interested in the effective properties
of a special microstructure - a polycrystallic laminate in one spatial dimension
and time. Particularly, with regard to such laminates, we noticed that their
second invariant E/M preserves the value ǫ/µ related to the original (pater-
nal) substance (see (3.50)). Equations (2.26) and (3.45), that hold for gen-
eral laminates, also show, together with (2.15), that for original constituents
possessing the common value of ǫ/µ, the second invariant E/M of a general
laminate preserves the same value. Remarkably, it turns out that this result
remains in effect in a far more general context, specifically, it holds true for any
admissible microstructure in one spatial dimension and time. We here quote
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as “admissible” any microstructure that allows for solution to the relevant
hyperbolic problem (2.2) belonging to the Sobolev space W 1

2 .

s = − 1

µc
a23a23 − ǫca24a24. (4.5)

Consider the tensor
O = a23a24 − a24a23;

the expression

F (1) : O : F (2) = 2c2(ux3(1)ux4(2)−ux4(1)ux3(2)) = 2c2 det(∇u(1),∇u(2))

is quasiaffine in W 1
2 (D) ∪ C(0, T ). This means that the weak limit of the

sequence
2c2 det(∇u(r)(1), ∇u(r)(2))

generated by the partitioning (r) of D × (0, T ) into admissible subdomains
occupied by material 1 and 2, is equal to the same expression

2c2 det(∇u(0)(1),∇u(0)(2))

calculated for the weak limits u(0)(i) of solutions u(r)(i). We formally get

limwk2c2 det(∇u(r)(1),∇u(r)(2)) = 2c2 det(∇u(0)(1),∇u(0)(2)), (4.6)

limwku(r)(i) = u(0)(i), i = 1, 2 .

A similar behavior is demonstrated by the expression

f(2) : O : f(1) = 2c2(vx3(1)vx4(2) − vx4(1)vx3(2))

= 2c2 det(∇v(1),∇v(2)).

This is also quasiaffine, i.e.

limwk2c2 det(∇v(r)(1),∇v(r)(2)) = 2c2 det(∇v(0)(1),∇v(0)(2)), (4.7)

where
limwkv(r)(i) = v(0)(i), i = 1, 2 .

The reason for the quasiaffinity of said expressions is because they repre-
sent divergent combinations; for instance,

To prove this conjecture, consider two linearly independent solutions u(1),
v(1), and u(2), v(2) of the system (2.2), (3.8). These solutions are assumed
continuous in time over the domain (0, T ); they belong to the Sobolev space
W 1

2 (D) where D is the relevant domain in one spatial dimension. The func-
tions u(1), . . . , v(2) represent two independent test fields generated by two
linearly independent sources. The tensors F and f for one-dimensional waves
propagating along the z-axis belong with the subspace (a23, a24) of the space
aik; such tensors are given by (3.21), with a material tensor s specified by
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ux3(1)ux4(2) − ux4(1)ux3(2)

=
∂

∂x3
(u(1)ux4(2)) − ∂

∂x4
(u(1)ux3(2)),

and the vector
u(1)[ux4(2)e3 − ux3(2)e4]

has a continuous normal component across the interface separating two dif-
ferent materials.

Because f = s : F , we refer to (3.21), (4.5), and rewrite (4.7) as

limwk det s(r) det(∇u(r)(1),∇u(r)(2)) = det s0 det(∇u(0)(1),∇u(0)(2)),

where s0 is an effective material tensor of a composite. By (4.5), this relation
is the same as

det s0 =
limwk det s(r) det(∇u(r)(1),∇u(r)(2))

limwk det(∇u(r)(1),∇u(r)(2))
. (4.8)

Assume now that
det s(r) = ǫ/µ = const(r); (4.9)

equation (4.8) then shows that

det s0 = ǫ/µ.

The validity of this result is based on a single assumption (4.9); in all
other respects, the tensors s(r) may be different. In particular, they may have
different pairs of values ǫ and µ taken separately, as well as orientation of
their principal axes in space-time. If we consider continuous solutions and
if the original materials satisfy (4.9), then the second invariant ǫ/µ remains
preserved through the mixing in one spatial dimension and time, with any
admissible microgeometry, and with any type of composite involved.

Combining this with the bounds produced in section 3.7 for spatio-
temporal polycrystals in one spatial dimension, we may now specify the G-
closure of all possible composites generated in one spatial dimension and time
by an arbitrary set of isotropic dielectrics having positive values of ǫ and µ and
the same value of ǫ/µ. Such a set is characterized as an arc of the hyperbola

E/M = ǫ/µ, (4.10)

lying in the first quadrant Ec > 0, 1/Mc > 0 under the diagonal Ec = 1/Mc.
The point on the diagonal is exceptional; also, if all of the original constituents
have their parameters ǫ and µ negative, then the relevant G-closure is given
by (4.10), with Ec < 0, 1/Mc < 0; the hyperbolic arc then belongs to the
third quadrant and goes above the diagonal.
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4.3 A stable G-closure of a set U of two isotropic

dielectrics with respect to one-dimensional

wave propagation

The original set U will be first assumed consisting of two different materials
with positive material properties ǫi, µi, i = 1, 2. As shown in section 3.7, every
such material generates a set of spatio-temporal polycrystals; their effective
constants E , M fill the hyperbola E/M = ǫ1/µ1, E > 0, M > 0 for the
first material, and E/M = ǫ2/µ2, E > 0, M > 0 for the second. Fig. 4.1
reproduces these hyperbolas in the first quadrant of (Ec, 1/Mc)-plane, with
the assumption ǫ1/µ1 > ǫ2/µ2. All points on each hyperbola are attainable
except the point Ec = 1/Mc on the diagonal; the relevant polycrystals are
absolutely stable, and therefore, each hyperbola represents a stable G-closure
of a set of differently oriented fragments of the same original material.

We wish to characterize the set GU of all absolutely stable composites
made from two originally available materials possessing different values of
ǫ/µ. The materials on the hyperbolas mentioned above obviously belong with
the required set.

To characterize this set in full, suppose first that the properties ǫ1, . . . , µ2

satisfy inequalities ǫ1 > ǫ2 > 0, µ1 > µ2 > 0, ǫ1/µ1 > ǫ2/µ2 (a regular case,
by the terminology of section 2.5; see also (3.8)).

Materials 1 and 2 are marked as points P1 and P2 in Fig. 4.1. A static
laminate (V = 0) produced from them is absolutely stable; its effective pa-
rameters E = 〈ǫ〉, M = 〈µ〉 occupy the hyperbolic segment P1P2 not shown
in Fig. 4.1. Each point on this segment generates its own hyperbola E/M =
const, E , M ≥ 0; we thus create absolutely stable composites occupying the
portion of a hyperbolic strip

ǫ1/µ1 ≥ E/M ≥ ǫ2/µ2 (4.11)

below diagonal in the first quadrant of the (Ec, 1/Mc)-plane. The eigenvalues
Ec, 1/Mc of all such composites remain real and positive.

Assume now that parameters ǫ, µ of the original materials are so chosen
that ǫ1 > ǫ2 > 0, µ2 > µ1 > 0, but ǫ1µ1 ≥ ǫ2µ2 (an irregular case, see section
2.5); the new materials are marked as points Q1 and Q2 in Fig. 4.1. We may
treat them as spatio-temporal polycrystals generated by the same original
materials 1 and 2; these polycrystals will now be used as original substances
that participate in a spatio-temporal activated laminate. Then, as shown in
section 3.8, by a due choice of V and m1 in such a laminate, we shall obtain
the real negative values for both E and M , those values also belonging to the
strip (4.11) but this time to that part of it that lies above diagonal in the
third quadrant. By taking ǫ1µ1 = ǫ2µ2, we may completely cover this part of
the strip; the relevant composites again appear to be absolutely stable.

We claim that the entire strip (4.11), with both parts of it reproduced
in Fig. 4.1, actually represents a stable G-closure of a set of two isotropic
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Fig. 4.1. A stable G-closure of a set of two isotropic dielectrics of the same sign.

dielectrics of the same sign: (ǫ1, µ1) and (ǫ2, µ2), ǫ1/µ1 > ǫ2/µ2. In other
words, no point in the (Ec, 1/Mc)-plane that does not fall into (4.11) can
ever be attained by uniformly stable spatio-temporal composites generated
by those materials. The proof is based on a general formula (4.8) for E/M
discussed in the next section.

4.4 The second invariant E/M as an affine

function; a stable G-closure of an arbitrary set

U of isotropic dielectrics

Equation (4.8) defines E/M = det s0 as a linear combination of det s(r). If
det s(r) takes the same value ǫ/µ for all materials involved, then det s0 = ǫ/µ,
i.e. we obtain the conservation law mentioned in section 4.2. In a more general
context, equation (4.8) means that (c.f. (4.2))

det s0 =
〈y det s〉

〈y〉 =

〈
y

〈y〉 det s

〉
. (4.12)

Here we introduced the symbol y for det(∇u(a),∇u(b)); this symbol is the
same as the one introduced by (4.2); we shall see below that this new definition
of y reduces to that one in (4.2) for a laminate considered in section 4.1.
Because 〈y/〈y〉〉 = 1, we conclude that det s is an affine function with regard

1
Mc

P2

εc

P1Q2

Q1
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to the mixing procedure in space-time. If all of the factors y/〈y〉 are non-
negative, then the affinity becomes convexity, and we get

max
U

det s ≥ det s0 ≥ min
U

det s. (4.13)

The symbol y = det(∇u(a),∇u(b)) is invariant with respect to a Lorentz
transform. If this invariant has the same sign for all material constituents
participating in a composite, then this composite is uniformly stable. Con-
sider two original materials that both belong to a strip (4.11), possibly, to
its branches located in different quadrants of the (Ec, 1/Mc)-plane. Each of
those materials is uniformly stable; we ask if a rank one laminate assembled
from these materials preserves this property. As shown in section 4.1, this
question may receive either positive or negative answer, depending on the
circumstances. We now give an additional illustration of this alternative, this
time in a close connection with a general formula (4.8).

We assume that materials 1 and 2 are characterized each by its individual
pair ǫi, µi, i = 1, 2, of dielectric and magnetic constants, and that materials
are moving with individual velocities vi, i = 1, 2, relative to a laboratory
frame. The electromagnetic wave propagation through each material is gov-
erned by equations (2.11) where p, q, r are defined by the formulae

p = Qc, q = −T, r =
1 − µ

ǫ T 2

µ
ǫ Qc

, (4.14)

with Q, T given by (3.48). In Q, as well as in T , we have to set ǫ = ǫi, µ =
µi, v = vi(φ = φi), and, accordingly, p = pi, q = qi, r = ri for material i.

Equations (4.14) follow from (2.16), (3.47) if we set V = 0 and take mi = 1
for material i. Consider a rank one laminate assembled from materials 1 and
2, and let its interface move with velocity V relative to a laboratory frame.
Both solutions u(a) and u(b) are subjected to the compatibility conditions

[ut + V uz]
1
2 = 0, [puz − qut + V (quz + rut)]

1
2 = 0,

expressing the continuity of u and v across the interface. By using these con-
ditions, we obtain after a simple calculation that

L1[u1z(a)u1t(b) − u1t(a)u1z(b)] = L2[u2z(a)u2t(b) − u2t(a)u2z(b)],

or
L1y1 = L2y2. (4.15)

Here,
Li = riV

2 − 2qiV − pi, i = 1, 2,

differs by a positive factor from the action density Λi = (1/2)(riu
2
t +2qiutuz −

piu
2
z) in a material i evaluated for the “wave” u = u(z − V t).
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Remark 4.1. According to (4.12), only the ratio y/〈y〉 is significant; we there-
fore may define yi as L−1

i to satisfy (4.15); the symbol y then takes on the
form (4.2) for a laminate assembled of immovable materials.

Equation (4.15) shows that the symbol y preserves its sign across the
interface if the action density Λi does the same.

The phase velocities a
(1)
i , a

(2)
i of waves u = u(z − ait) propagating in

material i are found to be the roots of

a2
i − 2

qi

ri
ai − pi

ri
= 0,

and for Li we obtain

Li = ri(V − a
(1)
i )(V − a

(2)
i ), i = 1, 2.

We shall have precisely two characteristics departing from the interface in
any of the four modes presented in Figs. 4.2-4.5.

In all of those cases, the expression Li/ri = (V − a
(1)
i )(V − a

(2)
i ) has the

same signs for i = 1 and i = 2. We conclude that if the signs of r1 and r2 are
the same, then the signs of y1 and y2 are identical too, and the composite is
uniformly stable; otherwise there is no uniform stability.

Given (4.14) and the formulae (3.48) for Q, T , it is easy to show that the
sign of ri is identical with that of

ǫi(1 − tanh2φitanh2χi),

where tanhφi = vi/c ≤ 1, and tanhχi = 1/c
√

ǫiµi ≤ 1. We conclude that
sgnri = sgnǫi, and the laminate is uniformly stable only if it is assembled
from materials of the same sign. This conclusion does not differ from the one
obtained in section 4.1 for immovable original substances.

A uniformly stable composite made from materials 1 and 2 cannot be rep-
resented in a (Ec, 1/Mc)− plane by a point lying outside the strip (4.13). The
structure of equation (4.12) makes this point clear. Failure to fall within (4.13)
means that the symbols y do not preserve their sign within a microstructure,
and the affine function det s0 is therefore not convex. In the case of a binary
composite, equation (4.12) is equivalent to (4.3); as explained in section 4.1,
this means the absence of uniform stability because the symbols κi (see (4.3))
then appear to be of opposite signs. We conclude that all composites that are
uniformly stable should correspond to points within the strip (4.13); on the
other hand, this strip may be represented at each point by a uniformly stable
composite. This confirms the claim made at the end of section 4.3.

Corollary 4.2. It follows from the above argument that inequalities (4.13)
define a stable G-closure GU of an arbitrary set U of original materials: this
one is formed as a union of hyperbolic strips generated by the elements of U
with the extremal values of det s = ǫ/µ.
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Fig. 4.4. Case a
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Fig. 4.5. Case V < a
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4.5 A stable Gm-closure of a set U of two

isotropic dielectrics

As in section 4.1, assume that the set U includes only two admissible mate-
rials: s1, and s2, and suppose that these materials remain immovable in an
activated uniformly stable laminate. Equation (4.4) includes parameters κi

defined by (4.3). Because of a uniform stability, κi ≥ 0, κ1 + κ2 = 1, so these
parameters may be interpreted as “weighted volume fractions”. While the gen-
uine volume fractions, mi, remain fixed, the weighted fractions κi may still be
variable due to the dependency of y upon parameters of the microstructure.
By (4.2)),

yi =
1

ǫi(V 2 − a2
i )

.

Assume that a2
2 ≥ a2

1; then inequality (2.5) allows for two admissible ranges
for V 2: 0 ≤ V 2 < a2

1 (slow range), and a2
2 ≤ V 2 < c2 (fast range). For a slow

range, the fraction κ1(V
2) increases from κ1(0) = m1µ1

〈µ〉 to κ1(a
2
1 − 0) =

1, whereas for a fast range it increases from κ1(a
2
2 + 0) = 0 to κ1(c

2) =
m1ǫ2(c

2−a2
2)

ǭc2−( 1̄
µ )

; here we used a usual notation (̄·) = m1(·)2 + m2(·)1.
Because ǫiµic

2 ≥ 1, i = 1, 2, we have

κ1(c
2) − κ1(0) =

m1m2c
2

[
ǭc2 −

(
1̄
µ

)]
〈µ〉

(ǫ2µ2 − ǫ1µ1) ≤ 0,

and there is a gap in the values of κ1(V
2) generated by the values of V 2 ≤ c2

consistent with (2.5) (Fig. 4.6). This gap shrinks to zero when a1 = a2. The
latter can be achieved by manufacturing polycrystals produced by either one
of the original materials. We conclude that, for any fixed m1 ∈ (0, 1), the
values of κ1 may cover the entire interval (0, 1) due to a proper choice of
V , i.e. due to a proper motion of the material pattern. In other words, a
stable Gm-closure of a set of two isotropic dielectrics coincides with a stable
G-closure of the same set.

4.6 Comparison with an elliptic case

The results obtained in this chapter about the stable hyperbolic G (Gm)-
closures allow for an interesting comparison with analogous conclusions that
work in a similar elliptic situation [2],[3],[4],[5]. We begin this comparison
with polycrystals in 2D, with both dimensions being spatial in an elliptic
case, and one spatial, one temporal in a hyperbolic case.

Consider a stationary problem of temperature distribution in a planar
domain. The domain is occupied by an ordinary polycrystal assembled on a
fine scale by mixing differently oriented fragments of an anisotropic heat
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Fig. 4.6. A gap in the values κ1(c
2) and κ1(0).

conductor (paternal material), with principal heat conductances d1, d2. The
effective conductances λ1, λ2 of such a polycrystal are known to satisfy the
conservation relation λ1λ2 = d1d2.

This result, originally obtained in [2], demonstrates a remarkable formal
analogy with eq. (4.10) that holds for a spatio-temporal polycrystal in one
spatial dimension and time. There is, however, a fundamental difference be-
tween the two statements, this difference related to the attainability issue. In
the elliptic case, only that part of the hyperbola λ1λ2 = d1d2 is attainable that
spreads from (d1, d2) toward the diagonal [3]; the rest of the hyperbola cannot
be attained. This is understandable because a spatial mixture of differently
oriented fragments of a paternal material cannot become more anisotropic than
this material itself. Because of this irreversibility property, only the paternal
material may serve as initial substance capable of producing all mixtures that
occupy the attainable portion of the hyperbola. This property establishes an
hierarchy of materials on the attainable portion; only those substances that
are placed on the hyperbola further away from the diagonal, may generate
substances staying closer to it, not vice versa.

In a hyperbolic case, the situation is different. As explained in section
3.7, the spatio-temporal laminar polycrystal may correspond to points that
lay either closer to the diagonal, or further away from it, than the original
anisotropic (in space-time) substance. Unlike statics, the process of mixing
in space-time appears to be reversible; this process does not introduce any
hierarchy of materials. This contrast in the material performance of polycrys-
tals entails a sharp difference between the elliptic and the stable hyperbolic

κ1

m1µ1

m1ε2(c2฀–฀α2
2)

c2
V฀฀

2

<฀µ฀>

εc2 –฀(1/µ)

a1
2 a2

2
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G(Gm)-closures. In the elliptic case, the G-closure of a set U formed in 2D by

two anisotropic materials (d
(1)
1 , d

(1)
2 ) and (d

(2)
1 , d

(2)
2 ) is illustrated in Fig. 4.7.

It is described as a part of the strip d
(1)
1 d

(1)
2 ≤ λ1λ2 ≤ d

(2)
1 d

(2)
2 bounded in

the transverse direction by the segment Q1Q2 of the diagonal at one end and
by a special curve N1N2 at another end, this curve representing a rank one
laminate assembled from original materials [3]. As to an elliptic Gm-closure,
this one is also different from its hyperbolic counterpart. Such a closure was
explicitly found in [4] for the set U consisting of two isotropic dielectrics. It
represents only a portion of a G-closure, but, certainly GU = ∪GmU . In the
hyperbolic case, as shown above in this chapter, the G-closure and Gm-closure
are identical; both are described as a whole strip (4.11) in the first and the
third quadrants. The only transverse bound for the strip is now given by two
segments of the diagonal.

Fig. 4.7. G-closure of a binary set of two anisotropic heat conductors in a plane.

The mentioned difference in G-closures is fundamental; it is intrinsic in the
very nature of the elliptic and hyperbolic cases. The key reason is that the first
is governed by the variational principle of minimal stored energy, while the
second emerges from the principle of stationary action. In the latter principle,
the energy is not as fundamental as in the former one: in dynamics, energy
is not invariant with regard to the Galilean (Lorentz) group; it represents
just a component of the energy-momentum tensor. The energy is pumped

Q1

Q2

N2

N1

λ2

λ1

d2
(2)

d2
(1)

d1
(1)

d1
(2)
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into a dynamic material through its implementation, which is not the case for
the static (spatial) material assemblages. This feature makes the energy an
important characteristic of material formation in space-time.

In both elliptic and hyperbolic design, we work with material tensors.
These tensors are chacterized by their sets of eigenvalues and eigentensors.
Eigenvalues represent invariant material properties that are responsible for
the reaction of a substance to the external fields. In both statics and dynamics,
they directly affect the amount of energy stored in a system. Eigentensors are
a different story. They appear as we work in a proper frame of reference; tran-
sition to this frame is different in elliptic and hyperbolic situations as far as
the energy issue is concerned. In the elliptic context, this transition (Euclid-
ean rotation) is free. In the hyperbolic context, this transition (Minkowskian
rotation) means a material motion, and therefore costs energy. The hyperbolic
G(Gm)-closures introduced above in this chapter, include Minkowskian rota-
tions and, consequently, require the energy supply from the external sources.
This supply was never taken into account above as a restriction, i.e. the bounds
obtained in this chapter for G(Gm)-closures remain valid if the energy supply
is unlimited. This setting is, however, not very practical. Realistically, we have
to introduce restriction upon the energy measured in a laboratory frame and
needed to create and maintain dynamic materials with optimal performance in
a given environment. This restriction is essential because in its absence an op-
timization problem may easily allow for a trivial solution with infinite energy
expenditure. We may therefore put forward the problem of finding G-closures
of limited energy in a laboratory frame for the sets U of available materials
originally immovable in this frame. The restriction upon energy will create
additonal bounds for the effective properties of dynamic materials. Finding
such bounds still remains an open problem.
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5

Rectangular Microstructures in Space-Time

5.1 Introductory remarks

In the preceding chapters, the concept of spatio-temporal composites (dy-
namic materials) has been developed specifically for laminar microstructures.
For such formations, the existence of a low frequency limit was demonstrated
in Chapter 2 through the use of the Floquet theory. This attempt has proven
to be successful because laminates are substantially one-dimensional assem-
blages, and the effective parameters for them can therefore be specified rela-
tively easily through a direct calculation.

In the present chapter, we discuss more general rectangular microstruc-
tures in one spatial dimension and time. For such microstructures, the Floquet
theory is generally not applicable. We begin our analysis with the case of sep-
aration of variables, for which the Floquet procedure works, and then proceed
to a “checkerboard” assemblage, with the Floquet approach no longer possi-
ble. In this latter case, however, some important conclusions follow when the
wave impedances of all material constituents participating in the assemblage
are assumed to be the same. The kinematics of disturbances is especially sim-
ple in this case; it reveals the possibility to judge about the transformation of
energy and impulse at each encounter with the interfaces separating, in a mi-
crostructure, one material from another. Particularly, we see that, in certain
cases, energy is systematically added to the disturbance travelling through
such encounters; as a consequence, the energy demonstrates an exponential
growth. The relevant checkerboard assemblages therefore appear to be

to waste an infinite amount of energy. Material of this chapter reproduces the
content of the paper [1].

may
non-transparent because in order for disturbances to pass through them, one has
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5.2 Statement of a problem

Consider a doubly-periodic material distribution in the (z, t)-plane given by
the pattern in Fig. 5.1. The rectangle −ℓ1 < z < ℓ2,−t1 < t < t2 represents
the basic cell of periodicity with periods δ = ℓ1 + ℓ2 in z and τ = t1 + t2
in t. Rectangle i for i = 1, 2, 3, 4 is occupied by a uniform material i having
density ρ(i) and stiffness k(i). In an electromagnetic context, ρ(i) and k(i) would
represent dielectric permittivity and the reciprocal of magnetic permeability.
All materials are assumed immovable in a laboratory frame z, t.

Fig. 5.1. Rectangular microstructure in z-t.

In this assemblage, we consider wave motion governed in each material by
the linear second order equation (see (2.1))

(ρut)t − (kuz)z = 0, (5.1)

or, equivalently, by the system (see (2.2))

vt = kuz, vz = ρut, (5.2)

with ρ, k taking values ρ(i), k(i) within material i. The waves pass from one
material to another. maintaining the continuity of u and v across the interfaces
separating the rectangles. The purpose of this chapter is to study propagation
of dynamic disturbances through such an assemblage. Both spatial and tem-
poral periods, δ and τ , will be assumed of the same order of magnitude, i.e.
δ/τ = O(a), where a =

√
k/ρ denotes the phase speed within any material

constituent.
For each material, we have an elementary solution of (5.2),

3 4 3 4

11 2 11 2

3 34 4

11 2 11 2

t

t2

21

1t

z
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u =
(
Ae−λ z

a + Beλ z
a

) (
Ce−λt + Deλt

)
,

v = γ
(
Ae−λ z

a − Beλ z
a

) (
Ce−λt − Deλt

)
, (5.3)

where γ =
√

kρ denotes the wave impedance of the substance, and λ is a
separation parameter.

Consider a layer −t1 < t < 0 occupied by a δ-periodic sequence of materials
1, 2 in z separated by vertical interfaces z = −ℓ1, z = 0, z = ℓ2, etc. as seen
in Fig. 5.1. Assume that the values λ, C, and D are constant along the layer;
A and B satisfy the compatibility conditions

A(1) + B(1) = A(2) + B(2)

γ(1)(A(1) − B(1)) = γ(2)(A(2) − B(2)),

eµδ

(
A(1)e

λ
ℓ1

a(1) + B(1)e
−λ

ℓ1
a(1)

)
= A(2)e

−λ
ℓ2

a(2) + B(2)e
λ

ℓ2
a(2) ,

γ(1)e
µδ

(
A(1)e

λ
ℓ1

a(1) − B(1)e
−λ

ℓ1
a(1)

)
= γ(2)

(
A(2)e

−λ
ℓ2

a(2) − B(2)e
λ

ℓ2
a(2)

)
,(5.4)

where the subscripts “(1)” and “(2)” relate to the relevant materials. The first
pair of equations comes from the continuity conditions on z = 0. The second
pair comes from continuity on z = ℓ2 where the Floquet relations

u(z) = eµδu(z − δ), v(z) = eµδv(z − δ), (5.5)

are used to express solutions at z = ℓ2 in terms of solutions at z = −ℓ1.
As shown in Appendix 1, the system (5.4) is satisfied if the Floquet expo-

nent µ takes either one of two values µ1,2 such that

µ1,2 δ = ±χ(θ1, θ2), (5.6)

with χ, θ1, θ2 defined by

cosh χ = cosh θ1 cosh θ2 + σ sinh θ1 sinh θ2,

σ =
γ2
(1) + γ2

(2)

2γ(1)γ(2)
, θi = −λ δ mi/a(i),

and
m1 = ℓ1/δ, m2 = ℓ2/δ.

In the low frequency limit, | λδ/a(1) |≪ 1, we get (see (2.69))

µ1,2 = ±λ

√〈
1

k

〉

m

〈ρ〉m, (5.7)

where
〈ξ〉m = m1ξ(1) + m2ξ(2) (5.8)
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denotes the arithmetic mean of ξ.
The Floquet solution is given by the formulae (see section 2.4)

u = [M1e
µ1zP (µ1, z) + M2e

µ2zP (µ2, z)](Ce−λt + Deλt),

v = [M1e
µ1zQ(µ1, z) + M2e

µ2zQ(µ2, z)](Ce−λt − Deλt), (5.9)

with P (µ, z), Q(µ, z) specified as

P (µ, z) =





e
−

(

µ+ λ
a(1)

)

(z−jδ)
+ Ie

−

(

µ− λ
a(1)

)

(z−jδ)
, (j − m1)δ < z < jδ,

j = 1, 2, . . .

Ke
−

(

µ+ λ
a(2)

)

(z−jδ)
+ Le

−(µ− λ
a(2)

)(z−jδ)
, jδ < z < (j + m2)δ,

j = 0, 1, 2, . . . ,

(5.10)

Q(µ, z) =





γ(1)

[
−e

−(µ+ λ
a(1)

)(z−jδ)
+ Ie

−(µ− λ
a(1)

)(z−jδ)
]

, (j − m1)δ < z < jδ,

j = 1, 2, . . .

γ(2)

[
−Ke

−(µ+ λ
a(2)

)(z−jδ)
+ Le

−(µ− λ
a(2)

)(z−jδ)
]
, jδ < z < (j + m2)δ,

j = 0, 1, 2, . . . .

(5.11)
Here µ takes the values µ1, µ2, and I, K, L are solutions of the system

−I + K+L = 1,

I + (K − L)(γ(2)/γ(1)) = 1,

−Ieθ1 + Keθ2∓χ + Le−θ2∓χ = e−θ1 , (5.12)

with the upper (lower) sign of ∓ related to µ1(µ2). Both P (µ, z), Q(µ, z) are
δ-periodic in z. System (5.9) specifies the modulated waves with eµz being the
modulation factor and P (µ, z), Q(µ, z) representing the short wave carriers.
Eqs. (5.10)-(5.12) reproduce those of (2.43)-(2.49) in section 2.4.

Consider the layer 0 < t < t2. We observe that equations (5.3)–(5.12) re-
main valid for it as wellwith obvious modifications.The symbols A, . . . ,D, I, K,
L,P,Q, θ1, θ2, χ, µ1, µ2, λ should be replaced by the relevant symbols
K̄, L̄, P̄1, Q̄1, θ̄1, θ̄2, µ̄1, µ̄2, χ̄, λ̄, and material constants k, ρ, a, γ take values
k(3), . . . , γ(3) and k(4), . . . , γ(4), in materials 3 and 4.

For the layer t2 < t < t2+t1, we apply equations (5.3)–(5.12) with A, . . . , λ

replaced by ¯̄A, . . . , ¯̄λ, and k, . . . , γ taking values k(1), . . . , γ(1) and k(2), . . . , γ(2)

in materials 1 and 2.
On the interface t = 0, we have compatibility conditions expressing the

continuity of u and v:

Ā, . . . , D̄, Ī,



5.3 Case of separation of variables 113

[M1e
µ1zP (µ1, z) + M2e

µ2zP (µ2, z)](C + D)

= [M̄1e
µ̄1zP̄ (µ̄1, z) + M̄2e

µ̄2zP̄ (µ̄2, z)](C̄ + D̄)

[M1e
µ1zQ(µ1, z) + M2e

µ2zQ(µ2, z)](C − D)

= [M̄1e
µ̄1zQ̄(µ̄1, z) + M̄2e

µ̄2zQ̄(µ̄2, z)](C̄ − D̄). (5.13)

A similar system holds on the interface t = t2.
Clearly, equations (5.13) are satisfied only if the coefficients of C + D and

C̄ + D̄, as well as of C − D and C̄ − D̄, are constant multiples of each other.
It will be shown in the next section that this happens if the material layout
represented in Fig. 5.1 is such that the system (5.2) allows for separation of
variables.

5.3 Case of separation of variables

The variables z, t are separated in (5.2) if ρ(z, t) and k(z, t) appear to be
products of functions that depend on the single variable z and the single
variable t alone:

ρ = ρZ(z)ρT (t), k = kZ(z)kT (t). (5.14)

We look for u(z, t), the solution of (5.1), in the form of a product uZ(z)uT (t).
Then uZ and uT will be solutions of

(kZ uZ
z )z − λ2ρZ uZ = 0, (ρT uT

t )t − λ2 kT uT = 0, (5.15)

with a separation constant λ.
Assume now that each of the two pairs of functions ρZ , kZ and ρT , kT

takes different values in the relevant base intervals of periodicity −ℓ1 < z <
ℓ2, −t1 < t < t2:

ρZ , kZ =

{
ρZ
1 , kZ

1 , −ℓ1 < z < 0,

ρZ
2 , kZ

2 , 0 < z < ℓ2,
(5.16)

ρT , kT =

{
ρT
1 , kT

1 , −t1 < t < 0,

ρT
2 , kT

2 , 0 < t < t2.
(5.17)

In other words, we have the following characterization of materials 1, . . . , 4
(see Fig. 5.1).

Material 1: ρ(1) = ρZ
1 ρT

1 , k(1) = kZ
1 kT

1 ,

Material 2: ρ(2) = ρZ
2 ρT

1 , k(2) = kZ
2 kT

1 ,

Material 3: ρ(3) = ρZ
1 ρT

2 , k(3) = kZ
1 kT

2 ,

Material 4: ρ(4) = ρZ
2 ρT

2 , k(4) = kZ
2 kT

2 . (5.18)
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Note that ρZ
j , ρT

j and kZ
j , kT

j for j = 1, 2 have dimensions of the square roots
of ρ and k, respectively.

Equations (5.2) allow for the following elementary solutions:

u =
(
Ae−λ z

aZ + Beλ z

aZ

)(
Ce−λaT t + DeλaT t

)
,

v = γZ
(
Ae−λ z

aZ − Beλ z

aZ

)
γT
(
Ce−λaT t − DeλaT t

)
, (5.19)

with symbols

aZ =
√

kZ/ρZ , aT =
√

kT /ρT , γZ =
√

kZρZ , γT =
√

kT ρT ,

specified by (5.16) and (5.17). Note the relation between the symbols in this
section and the phase velocities and wave impedances in section 5.2:

a(i) = aZ
(i)a

T
(i), γ = γZ

(i)γ
T
(i).

The values of (aZ
(i))

2, (aT
(i))

2, (γZ
(i))

2 and (γT
(i))

2 related to various materials are
summarized in Table 5.1.

Material
(

aZ
)2 (

aT
)2 (

γZ
)2 (

γT
)2

1 kZ
1 /ρZ

1 kT
1 /ρT

1 kZ
1 ρZ

1 kT
1 ρT

1

2 kZ
2 /ρZ

2 kT
1 /ρT

1 kZ
2 ρZ

2 kT
1 ρT

1

3 kZ
1 /ρZ

1 kT
2 /ρT

2 kZ
1 ρZ

1 kT
2 ρT

2

4 kZ
2 /ρZ

2 kT
2 /ρT

2 kZ
2 /ρZ

2 kT
2 ρT

2

Table 5.1. Values of aZ , aT , γZ , and γT related to materials 1, 2, 3, 4 in a rectangular
microstructure.

Consider the layer −t1 < t < 0 occupied by a δ-periodic sequence of
materials 1 and 2. Referring to Table 5.1, we observe that aT and γT are the
same for both materials. The Floquet solutions for this layer are therefore
specified by equations (5.6)–(5.9), with obvious modifications generated by
equations (5.15). In particular, the long wave Floquet exponent µ in (5.7)
becomes

µ1,2 = ±µ = ±λ

√(
m1

kZ
1

+
m2

kZ
2

)(
m1ρZ

1 + m2ρZ
2

)
= ±λ

√〈
1

kZ

〉

m

〈ρZ〉m.

(5.20)
These values do not depend on kT

1 and ρT
1 . The functions P (µ, z), Q(µ, z) in

(5.9) have the structure given by equations (5.10), (5.11) with γ(1), · · · , a(2)

replaced by γZ
(1), · · · , aZ

(2), respectively. The solution (5.9) then becomes

u = [M1e
µ1zP (µ1, z) + M2e

µ2zP (µ2, z)]
(
Ce−λaT

(1)t + DeλaT
(1)t
)

,

v = [M1e
µ1zQ(µ1, z) + M2e

µ2zQ(µ2, z)]
(
Ce−λaT

(1)t − DeλaT
(1)t
)

. (5.21)
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The factors in the square brackets represent the Floquet solutions related to
the first equation (5.15) and generated by a δ-periodic sequence of materials
distributed along the z-axis and possessing properties (ρZ

1 , kZ
1 ) and (ρZ

2 , kZ
2 ).

Equations (5.21) are related to the layer −t1 < t < 0; their structure is similar
to that of (5.19). When we pass to the next layer 0 < t < t2, the solution
preserves this structure, the z-dependent factors in the square brackets remain
the same, as seen from Table 5.1, whereas aT

(1) gives way to aT
(2), and γT

(1) is

replaced by γT
(2). We now apply the Floquet procedure to a τ -periodic sequence

of layers perpendicular to the t-axis, and arrive at the final solution

u = [M1e
µ1zP (µ1, z) + M2e

µ2zP (µ2, z)]
[
N1e

ν1tR(ν1, t) + N2e
ν2tR(ν2, t)

]
, (5.22)

v = [M1e
µ1zQ(µ1, z) + M2e

µ2zQ(µ2, z)]
[
N1e

ν1tS(ν1, t) + N2e
ν2tS(ν2, t)

]
, (5.23)

with low frequency Floquet exponents

ν1,2 = ±ν = ±λ

√
(n1kT

1 + n2kT
2 )

(
n1

ρT
1

+
n2

ρT
2

)
= ±λ

√
〈kT 〉n

〈
1

ρT

〉

n

(5.24)

where
n1 = t1/τ, n2 = t2/τ.

The τ -periodic functions R(ν, t), S(ν, t) are specified by the expressions for
P and Q in (5.10) and (5.11) with t used instead of z, ν instead of µ, a(1)

replaced by (aZ
(1))

−1, a(2) by (aT
(2))

−1, γ(1) replaced by γT
(1) and γ(2) by γT

(2);
also, ni should replace mi, and τ replace δ.

By (5.20) and (5.24), we conclude that a general solution (5.22), (5.23) is
a combination of modulated waves with envelopes

eµz±νt

propagating, in the case of low frequency, with group velocities

±ν/µ = ±

√

〈kT 〉n

〈
1

kZ

〉−1

m

〈ρZ〉−1
m

〈
1

ρT

〉

n

(5.25)

The factors µ and ν represent the Floquet exponents generated by the
periodic dependency of the property pattern. The “double Floquet” behavior
is a consequence of the separation of variables in our problem.

In the next section, we examine another case of wave propagation through
a rectangular material structure in space-time. Specifically, we choose a
checkerboard assemblage made up of two materials having the same wave
impedance. For this particular class of structures, we will be able to make
some conclusions about the effective velocities of wave propagation.
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5.4 Checkerboard assemblage of materials

with equal wave impedance

We consider here a special case of the rectangular spatio-temporal material
structure as represented in Fig. 5.1. Suppose material 3 is the same as ma-
terial 2, and material 4 is the same as material 1; we call such a layout a
‘checkerboard’. In addition, we will later assume that the two materials 1 and
2 have the same value of the wave impedance γ. It is easy to see that the
variables in (5.2) cannot be separated in this case.

Within a pure material, the general solution of (5.2) can be easily con-
structed from the values of the two Riemann invariants R = u − v/γ and
L = u + v/γ which are respectively governed by the scalar advection equa-
tions

Rt + a Rz = 0, (5.26)

and
Lt − a Lz = 0, (5.27)

with a =
√

k/ρ being the phase speed of the material. We look at an elemen-
tary solution for which L = 0, and R = 2u; by (5.26), we get

u = Aeλ(t−z/a(1)), v = −γ(1)Aeλ(t−z/a(1)), (5.28)

u =
γ(1) − γ(2)

γ(1) + γ(2)
Aeλ(t+z/a(1)), v = γ(1)

γ(1) − γ(2)

γ(1) + γ(2)
Aeλ(t+z/a(1)), (5.29)

which heads to the left, back into material 1, and a transmitted wave

ū =
2γ(1)

γ(1) + γ(2)
Aeλ(t−z/a(2)), v̄ = − 2γ(1)γ(2)

γ(1) + γ(2)
Aeλ(t−z/a(2)), (5.30)

¯̄u =
A

2

[
γ(2) − γ(1)

γ(2)
e−λ̄(t+z/a(2)) +

γ(2) + γ(1)

γ(2)
eλ̄(t−z/a(2))

]
(5.31)

¯̄v =
A

2

[(
γ(2) − γ(1)

)
e−λ̄(t+z/a(2)) −

(
γ(2) + γ(1)

)
eλ̄(t−z/a(2))

]
, (5.32)

where λ̄ = λa(2)/a(1).
For our special checkerboard structure, we assume that materials 1 and

2 have the same wave impedance, γ(1) = γ(2) = γ. In this case, there is no

representing, for imaginary λ, a wave which travels through material 1 in a
positive z-direction. When such a wave reaches an interface z = 0 separating
material 1 from material 2, it splits into a reflected wave

which continues through the interface material 2. When a wave (5.28) reaches
a ’horizontal’ interface t = 0 separating material 1 from material 2, two waves
are generated which both move into material 2. The general solution is
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reflected wave (5.29), and there is only one transmitted wave in (5.31), (5.32).
The incident wave (5.28) passes through interfaces undiminished in amplitude
but with a change in frequency or wave number. In this and the next sections,
we shall only consider waves propagating in the positive z-direction. Waves
propagating in the negative z-direction are independent and follow a similar
analysis.

The goal is to study and understand how disturbances propagate through
this checkerboard microstructure. To do this, we simulate numerically wave
motion through several material arrangements, and then make some conjec-
tures based on our experimental observations. The units of space and time in
the examples below are chosen so that the periods of the assemblage along
the z and t axes are both unity, that is, δ = τ = 1. When m1 = 0 or m1 = 1,
we have a temporal laminate; if n1 = 0 or 1, then this is a static laminate.
Since wave impedance γ(i) =

√
k(i)ρ(i) is assumed to be the same through-

out the entire structure, we distinguish between the two constituent materials
via their phase speeds a(i) =

√
k(i)/ρ(i). Without loss of generality, we take

γ(1) = γ(2) = 1.

Fig. 5.2. Limit cycles in the checkerboard structure with a(1) = 0.6, a(2) = 1.1, m1 =
0.4, n1 = 0.5.

In the first experiment, we consider the structure with parameters m1 =
0.4, n1 = 0.5, a(1) = 0.6, and a(2) = 1.1. Fig. 5.2 represents the paths of
right-going disturbances which originate on the interval [0, 2] at time 0.
Time is measured along the vertical axis of this figure. The vertical and
horizontal lines define the checkerboard arrangement. It is clear to see that
within each period, the group of paths in Fig. 5.2 separates into two distinct
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Fig. 5.3. Evolution of a disturbance through a structure with m1 = 0.4, n1 =
0.5, a(1) = 0.6, and a(2) = 1.1.

Fig. 5.4. Solution at time 10 of a disturbance with wide support through a structure
with m1 = 0.4, n1 = 0.5, a(1) = 0.6, a(2) = 1.1, and initial data shifted right 10 units.
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arrays that each converges to its own limiting path (“limit cycle”) after a
few time periods. The limit paths are called cycles because the trajectory
pattern cycles or repeats. Such cycles are parallel to each other and have a
common average slope equal to 1. Each cycle is stable; it attracts trajectories
which originate on the initial manifold at the left and the right of the point
of origination of the cycle itself. In the example given, the cycles originate
around z = 0.5 and z = 1.5 at time 0, and are indicated by the paths in bold.
There is one limit cycle per spatial period. Successive stable limit cycles are
separated by an unstable limit cycle. After close numerical inspection, we find
that unstable cycles originate, at time 0, at points n + 0.375 for integers n,
and at n + 0.495 for stable limit cycles.

This convergence phenomenon manifests itself through concentration of
the initial disturbance, and is illustrated in the solution profile sequence of
Figure 5.3. The vertical axis is u, and z is on the horizontal axis. The profiles
are computed from system (5.2) via a finite volume scheme which is a blend
of the techniques used in [2] and [3]. The initial disturbance is a Gaussian;
we may regard it as having support on [0.5, 1.5]. We show evolution profiles
up to time 3; the speed of the disturbance is seen to be 1. As the distur-
bance travels through the checkerboard material, the information that was
initially spread over the region [0.5, 1.35] has, roughly speaking, by time 3,
concentrated within the narrower region [3.5, 3.65]. The data is compressed as
expected by the trajectory behaviour illustrated in Fig. 5.2. The information
that was initially associated with z values in [1.35, 1.37] has, by time 3, been
spread over the interval [3.65, 4.4] giving an almost constant state, while the
rest of the solution changes more rapidly over [4.4, 4.5].

In Fig. 5.4, we plot the solution at time 10 of a Gaussian disturbance with
support about 10 times wider than that in Fig. 5.3, which has gone through
the same checkerboard structure as above. The solution is piecewise constant
taking values of the initial data at z = n + 0.37 for n = −5, · · · , 5. To see
this, we also plot the initial data shifted to the right 10 units. The constant
states occupy a space interval of length δ = 1 since there is only one stable
limit cycle per period.

Next, we consider the structure with the same values of ai, mi as before
but with n1 = 0.8. Unlike the first structure, the paths in Figs. 5.5 and 5.6 do
not demonstrate stable convergence to isolated asymptotic routes. Instead, the
trajectories engage in a regular pattern of drift towards and then away from
would-be limit cycles. This trend is periodic and the wavelength of this pattern
is about 10 times the period of the structure itself. From the trajectories, we
compute that the average speed of the disturbances is roughly 0.9.

If we reduce n1 to 0.1, we see very little remnants of the existence of limit
cycles. The wave trajectories more or less occupy the entire strip. See Fig. 5.7.
The average asymptotic speed of these paths is roughly 0.77.

The four parameters a(1), a(2), m1, n1 determine the checkerboard mate-
rial, and hence determine the manner in which disturbances travel through
such structures. In the three examples presented above, a(1), a(2) and m1 were
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Fig. 5.5. Low frequency pattern in trajectories through structure with m1 =
0.4, n1 = 0.8, a(1) = 0.6, and a(2) = 1.1.

Fig. 5.6. Closer view of wave trajectories through structure with m1 = 0.4, n1 =
0.8, a(1) = 0.6, and a(2) = 1.1.

fixed, and by varying the value of n1 only, we are able to see different tra-
jectory behaviour and different average speeds. In Fig. 5.8, we plot graphs of
average speed versus n1 for a sequence of m1 values. Define the speed in the
structures as f(m1, n1). Notice that f(m, n) = f(1 − m, 1 − n). This is so be-
cause, in space-time, each period of the structure with volume fractions (m, n)
is made up of an m×n and an (1−m)×(1−n) rectangles of material 1, and the
rest is filled with material 2. Thus, the checkerboard structure with volume
fractions (m, n) is the same as that with volume fractions (1 − m, 1 − n).
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Fig. 5.7. Structure with m1 = 0.4, n1 = 0.1, a(1) = 0.6, and a(2) = 1.1.

Fig. 5.8. Wave speed as a function of m1 and n1 for a(1) = 0.6 and a(2) = 1.1.

In several of the plots, we see intervals of n1 for which f(m1, n1) is constant
for a given m1 value; we call these “plateaux” and refer to the associated
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Fig. 5.9. Trajectories in material with a(1) = 0.6, a(2) = 1.1, m1 = 0.4 and n1 as
indicated.

structures as “being on a plateau”. By inspecting the plots in Fig. 5.8, it is seen
that for a(1) = 0.6 and a(2) = 1.1, there are always plateaux corresponding to a
speed equal to unity. In the first example of this section where we observed the
existence of stable limit cycles, we had (m1, n1) = (0.4, 0.5). The propagation
speed in such a structure is 1=f(0.4, 0.5), and this material puts us on the
plateau of the fourth plot of the series shown in Fig. 5.8. The other structures
shown in Fig. 5.6 and 5.7 are not on a plateau and do not exhibit limit cycles.

Fig. 5.9 gives portions of trajectories which originate on [0, 1] at time 0 in
twelve checkerboard structures distinguished only by their values of n1. The
other parameter values are a(1) = 0.6, a(2) = 1.1, m1 = 0.4. By comparing
the values of n1 which yield limit cycles with the location of the plateau in
the velocity-n1 graph for m1 = 0.4 in Fig. 5.10, we propose the following
hypothesis:

A structure is on a plateau if and only if the structure yields stable limit
cycles.
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Fig. 5.10. Speed versus n1 in material with a(1) = 0.6, a(2) = 1.1, m1 = 0.4.

Fig. 5.11. Wave speed as a function of a(2) and n1, for a(1) between 0.6 and 1.4.

In Fig. 5.11 and 5.12, we see how speeds vary with n1 for distinct values of
a(2), with a(1) = 0.6, m1 = 0.4. Note that a(2) = 1 is a crucial case, since there
will always be a trajectory that moves with constant speed 1 = δ/τ because
it passes through the corners of the checkerboard so as to remain always in
material 2 and never be deflected by entering material 1. Furthermore, when
a(1), a(2) < 1, there are no limit cycles with speed 1.

The limit cycle to which an array of trajectories converges is such that if it
passes through the point (z, t) in the z-t plane, then it also passes through the
point (z + qδ, t + pτ) for some integers p, q. We take the speed of travel to be
q
p ( δ

τ ). So, in our computed examples, the speeds should be rational numbers
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Fig. 5.12. Wave speed as a function of a(2) and n1, for a(1) between 1.5 and 2.3.

since δ = τ = 1. Fig. 5.13 suggests that for a(1) = 0.6, a(2) = 0.9, m1 = 0.15
there are at least 2 clear plateaux (maybe 3) indicating values of n1 for which
limit cycles have rational speeds. Figs. 5.14 and 5.15 in which n1 takes the
values of 0.55 and 0.2, respectively, support the observation that there are
limit cycles for the structures on the plateaux and that the associated cycle
speeds are 3/4 and 2/3.

Fig. 5.16 shows the solution at time 30 of a disturbance through the
checkerboard structure with parameters a(1) = 0.6, a(2) = 0.9, m1 = 0.15, n1 =
0.2. The initial data shifted to the right 20 units is also shown. Compare this
figure to Fig. 5.4. The trajectory paths in Fig. 5.15 show that there are 3 stable
limit cycles per period and so we see that the piecewise constant solution con-
sists of 3 constant states per spatial period δ = 1. In general, for a structure
on a plateau, the asymptotic solutions in the limit t → ∞ for non-zero values
of the ratio of the period of the structure to the characteristic wavelength of
the disturbance are discontinuous. However, when this ratio approaches zero,
the solution generated by continuous initial data tends to become continuous
for finite t.

Figs. 5.17, 5.18 and 5.19 have randomly generated values for a(1), a(2), m1, n1

which give limit cycles. The limit cycles travel at rational speeds as expected
by our hypothesis.

These observations are in accordance with Poincaré’s theorem indicating
the existence of the average speed termed the rotation number in Poincaré’s
formulation. It is known that this speed is rational if and only if the phase
curve of the differential equation

dz

dt
= a
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Fig. 5.13. Limit cycles have speeds that are rational multiples of δ/τ = 1. Here,
a(1) = 0.6, a(2) = 0.9, m1 = 0.15.

Fig. 5.14. Wave speed = 3/4 when a(1) = 0.6, a(2) = 0.9, m1 = 0.15, and n1 = 0.55.

is closed on the torus. At the same time, this rational value of rotation number
persists over a range of structural parameters giving what we have called
plateaux. This range can be wide enough, thus securing stability of rational
rotation numbers.
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Fig. 5.15. Wave speed = 2/3 when a(1) = 0.6, a(2) = 0.9, m1 = 0.15, and n1 = 0.2.
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20 units.
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Fig. 5.17. Wave speed = 1/2. Use m1 = 0.0579, n1 = 0.3529, a(1) = 0.8132, a(2) =
0.0099 (randomly generated parameters).

Fig. 5.18. Wave speed = 2/7. Use m1 = 0.8757, n1 = 0.7373, a(1) = 0.4096, a(2) =
0.0353 (randomly generated parameters).

5.5 Energy transformation in the presence

of limit cycles

The formation of limit cycles illustrated in Fig. 5.2 is accompanied by a spe-
cial energy/momentum exchange between the dynamic material and the en-
vironment. An attentive look, as in Fig. 5.2, reveals interesting behavior of
characteristics that go close enough to the limit cycle: they enter material 1
(leave material 2) across a vertical interface, and leave material 1(enter ma-
terial 2) across a horizontal interface. Because of this special kinematics, a
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Fig. 5.19. Wave speed = 2/5. Use m1 = 0.5651, n1 = 0.9692, a(1) = 0.1187, a(2) =
4.3511 (randomly generated parameters).

bunch of parallel characteristics gains some finite portion of energy from the
outside agent each time it enters material 2; this happens because an external
agent performs at this moment a finite work against the inertial and elastic
forces. To show this, consider equation (2.75) and integrate it over a narrow
horizontal strip z0 < z < z1, t∗ − ǫ < t < t∗ + ǫ containing the interface t = t∗
that separates material 1 below it from material 2 above it. The rhs of (2.75)
becomes, after integration,

1

2

∫ z1

z0

dz

∫ t∗+ǫ

t∗−ǫ

[
∂

∂t

(
1

ρ

)(
ρ
∂u

∂t

)2

+
∂k

∂t

(
∂u

∂z

)2
]

dt (5.33)

=
1

2

∫ z1

z0

{[
1

ρ

](2)

(1)

(
ρ
∂u

∂t

)2

+ [k]
(2)
(1)

(
∂u

∂z

)2
]

dz,

this equation specifies the work mentioned above; the quantities ρ∂u
∂t and ∂u

∂z
in its rhs may be taken, due to their continuity, at either side of the interface.
Because materials 1 and 2 belong with the regular range (2.55), we conclude
that the expression (5.33) is positive. The integral of the lhs of (2.75) equals

∫ z1

z0

∫ t∗+ǫ

t∗−ǫ

(
∂

∂t
Wtt +

∂

∂z
Wtz

)
dtdz =

∫ z1

z0

[Wtt]
t∗+ǫ
t∗−ǫ dz +

∫ t∗+ǫ

t∗−ǫ

[Wtz]
z1

z0
dt

(5.34)
By assuming that [Wtz]

z1

z0
is bounded, we pass to the limit ǫ → 0; equation

(2.75) then shows that
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]

dz;
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in other words, the energy ∫ z1

z0

Wttdz

increases by the amount (5.33) when we move across the horizontal interface
from material 1 to material 2.

We now apply a similar procedure to a narrow vertical strip z∗ − ǫ < z <
z∗ − ǫ, t0 < t < t1, containing the interface z = z∗ that separates material 2
on its left from material 1 on its right. The integral of the rhs of (2.75)

−1

2

∫ t1

t0

dt

∫ z∗+ǫ

z∗−ǫ

[
∂ρ

∂t

(
∂u

∂t

)2

− ∂k

∂t

(
∂u

∂z

)2
]

dz

equals zero because ∂ρ
∂t = ∂k

∂t = 0 within the strip. The integral of lhs of (2.75)
equals

∫ t1

t0

∫ z∗+ǫ

z∗−ǫ

(
∂Wtt

∂t
+

∂Wtz

∂z

)
dzdt =

∫ z∗+ǫ

z∗−ǫ

[Wtt]
t1
t0

dz +

∫ t1

t0

[Wtz]
z∗+ǫ
z∗−ǫ dt.

Passing to the limit ǫ → 0 and bearing in mind the supposed boundedness
of Wtt within the strip [z∗ − ǫ, z∗ + ǫ], we conclude that

∫ t1

t0

[Wtz]
z∗+0
z∗−0 dz = 0.

In other words, the energy density flux Wtz remains continuous across the
vertical interface.

Through the rest of this section, we will assume that the spatial and tem-
poral periods τ and δ of the microstructure are both equal to ǫ.

Consider now the bunch of characteristics that pass in a close vicinity of
a limit cycle (Fig. 5.20). As they approach the cycle, the horizontal distance
between two neighboring characteristics decreases from h at moment t = 0 to
hα at moment t = n1ǫ and hα2 at moment t = ǫ, where α = tanφ1/ tanφ2 =
a(1)/a(2) = 0.545 (Fig. 5.2).

Integrate equation (2.75) over the domain ABCDEA (Fig. 5.20) bounded
by two horizontal segments AE and CD, and by three segments AB, BC,
and DE of characteristics. The horizontal segment AE is traversed along its
top side t = +0, whereas the segment CD is traversed along its bottom side
t = n1ǫ − 0. Because the energy density flux Wtz remains continuous across
the vertical segment EB and because the energy density flux is zero on the
segments AB, BC and DE, we conclude that the energy

w1 =

∫ E

A

Wtt

∣∣∣
t= 0

dz

is the same as the energy

+
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Fig. 5.20. The bunch of characteristics in the vicinity of a limit cycle. The spatial
and temporal periods of the microstructure are taken equal to ǫ, other parameters
specified as a(1) = 0.6, a(2) = 1.1, m1 = 0.4, n1 = 0.5.

∫ D

C

Wtt

∣∣∣
t=n1ǫ−0

dz.

On the other hand, when we go across the segment CD from its bottom side
t = n1ǫ − 0 occupied by material 1 to its top side t = n1ǫ + 0 occupied
by material 2, then the energy increases from the value w1 to the value (see
(5.33))

w2 = w1 +
1

2

∫ D

C

{[
1

ρ

]2

1

(
ρ

∂u

∂t

)2

+ [k]21

(
∂u

∂z

)2
}

dz

= w1 +
1

2
[k]21

∫ D

C

{
1

k(1)ρ(1)

(
ρ(1)

∂u

∂t

)2

t=n1ǫ−0

+

(
∂u

∂z

)2

t=n1ǫ−0

}
dz

=
a(2)

a(1)
w1 =

1

α
w1. (5.35)

In the latter calculation, we used the relation k(1)ρ(1) = k(2)ρ(2) following
from the identity of the wave impedances of materials 1 and 2.

By a similar argument applied to the domain bounded by the contour
CGHIJD in Fig. 5.20, we conclude that the energy w3 on the top side of the
segment HI is linked with the energy w1 on the top side of the segment AE
by the relation

w3 =
1

α2
w1;

that is, it increases by the factor 1
α2 through each temporal period. Because

α < 1, the energy grows exponentially as the bunch of disturbances approaches
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the limit cycle. The rectangular microstructure with materials possessing iden-
tical wave impedance may therefore accumulate energy when the character-
istic pattern contains the limit cycles. In other words, such a microstructure
may resemble a swing where the energy is pumped into the system at duly
chosen instants of time. The difference is that, in our case, the accumulation
occurs at all frequencies, whereas, in the case of a swing, it develops only
for those frequencies that exceed a certain threshold value.

Returning to the rectangular microstructure, it is interesting to note, as
mentioned at the end of the previous section, that the solution tends to become
continuous as δ, τ → 0, whereas the energy needed to maintain propagation
of waves through a microstructure that produces limit cycles may become
infinite. Of course, in such circumstances, there is no homogenization in its
standard version applicable to laminates.

5.6 Numerical analysis of energy accumulation

We now give a numerical illustration of the energy accumulation phenomenon
discussed above. We consider the structure defined by

a(1) = 0.55, a(2) = 2a(1), m1 = 0.5, n1 = 0.5, γ(1) = γ(2) = 1. (5.36)

Fig. 5.21 shows the paths of trajectories for (5.36); these paths are similar
to those shown in Fig. 5.2. The unstable limit cycles for right-going waves
originate at z = 0.45+n; the left-going ones begin at (m1−0.45)+n = 0.05+n
for any integer n. They are represented as heavy dashed lines in the figure.

We see that a energy accumulation in a checkerboard is maintained due to
a special geometry of the characteristic pattern that is properly adjusted to
a checkerboard material assemblage. Such accumulation persists unlimitedly
if the energy supply from outside is unbounded. We may say that the distur-
bance then demonstrates stability with regard to the phase (the convergence
of characteristics to limit cycles), but it appears to be unstable in the sense
of energy. However, this instability will disappear (there will be no energy ac-
cumulation), if the energy supply from outside has limits. The checkerboard
microstructure with originally fixed parameters will then no longer be main-
tained, and the disturbance will be stabilized following a concrete scenario
generated by the mechanism of termination of energy pumping. Particularly,
the microstructure may become laminar, in which case no accumulation of en-
ergy may occur. This is illustrated by temporal laminates where the energy of
low frequency wave pumped into the system as the disturbance goes across an
interface from material 1 to material 2, is balanced by the energy taken away
from the system at the subsequent interface where material 2 is followed by
material 1. In this respect, the system resembles a simple harmonic oscillator
in which the energy periodically takes the form of potential or kinetic, but
the total energy stored in the system is preserved.
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Fig. 5.21. Characteristic paths through checkerboard material (5.36).
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We consider the problem (5.26), (5.27) for the structure (5.36) with initial
data

R(z, 0) =

{
cos(πz/10) | z |≤ 5,
0 otherwise,
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L(z, 0) = 0.
The solution is thus made up only of right-going waves since the left char-

acteristic information L(z, t) is zero. The resulting profile at time 4 is shown in
Fig. 5.22. The initial data shifted right 4 units is also shown. These two curves
coincide most significantly at 0.45 + n for n = −1, 0, 1, . . . , 8. The constant
states in the evolved solution take on the values of the right going Riemann
invariant R(z, t) associated with the unstable limit cycles. The energy

E(t) =
1

2

∫ ∞

−∞

[
ρ

(
∂u

∂t

)2

+ k

(
∂u

∂z

)2
]

dz =
1

2

∫ ∞

−∞

[
ρ

(
∂u

∂t

)2

+
1

k

(
∂v

∂t

)2
]

dz

changes as shown in Fig. 5.23. According to (5.35) and (5.36), it should double
each time the checkerboard structure switches and ideally should grow as

E(t) = E(0)rt̄, t̄ =

{
t mod(t, τ) �= nτ
t + nτ otherwise.

The computed energy matches well with the curve. The limit cycles alone
do not guarantee the energy accumulation. The structure defined by

a(1) = 0.25, a(2) = 2a(1), m1 = 0.3, n1 = 0.2, γ(1) = γ(2) = 1 (5.37)

features the limit cycles (see Fig. 5.24). The right going characteristic paths
are reproduced (with some magnification) in Fig. 5.25 for time range (t =
21, t = 30). We see that the paths not necessarily enter (leave) material 2
across horizontal (vertical) interfaces; as a consequence, there appears to be no
energy accumulation: the energy changes as shown in Fig. 5.26. The solution
profile at time 10 is replicated in Fig. 5.27.

5.7 Some remarks about discontinuous solutions

for laminates

So far through this and preceding chapters we were discussing continuous
solutions to the wave system (2.2). Particularly for a laminate, such solutions
exist if a structure satisfies ineqs. (2.5). In this section we give a brief account
of some phenomena that arise in laminates once these inequalities are violated.

Assuming, as in section 2.1, that a2 > a1, consider an interface 12 (Fig.
5.28) moving at velocity V such that a1 < V < a2 (Fig. 2.4); these inequalities
violate (2.5). Immovable materials 1(2) are located, respectively, on the left
(right) side of the interface; we see that three characteristics depart away from
the interface, while only one arrives onto it.
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Fig. 5.24. Characteristic paths through checkerboard material (5.37).
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Fig. 5.25. Right going characteristic paths through material (5.37).
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Fig. 5.27. Solution at time 10 to material (5.37).

Fig. 5.28. The pattern of characteristics in a laminate violating ineqs. (2.5)
.
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One of the departing characteristics (with phase velocity −a1) carries
through material 1 the Riemann invariant wave L(z, t) (see (5.28)). The values
of L(z, t) arrive at 12 after travelling through material 2 at velocity −a2. We
may say that these two waves (characteristics) belong with the same L-family
because they both travel from right to left. Similarly, we define the R-family
of characteristics, a1 and a2, travelling from left to right; they both carry the
values of another Riemann invariant R(z, t) and depart from 12 into materials
1 and 2, respectively.

In a laminate, the interface 12 is followed by a parallel interface 21 (Fig.
5.28), with material 2(1) on its left (right) side. The characteristics −a1 and
−a2 of the L-family carry the values of L(z, t) through this interface, while
the characteristics a1 and a2 of the R-family both bring the values of R(z, t)
onto the interface and collide along it. This pattern of characteristics shows
that in order to formulate a transmission problem correctly, we have to set
three additional conditions along 12, and one condition along 21, in each case
the number of conditions matching the number of departing characteristics.
Such conditions should reflect the physics of the problem. Generally, we expect
the appearance of a strong discontinuity in the values of R(z, t) maintained
along the interface 21, because of a collision between characteristics a1 and
a2 belonging with the same R-family.

To get a clear idea of such additional conditions, one may consider the
case when materials 1 and 2 have the same values of the wave impedance:
γ1 = γ2. In this case (see section 5.4), the R- and L-waves are governed each
by their own equation (5.26) and (5.27), and additional conditions for them
may be formulated independently of each other. Let us assume, as in a familiar
case of ineqs. (2.5), that L(z, t) is continuous across any interface. Then, the
L-disturbance will travel through materials 1 and 2 along the characteristics
−a1 and −a2, respectively, i.e. along the L-family. We may say that the R-
family is not involved in this transport at all. Instead, this family may carry
the R-waves originating independently from each other on both sides of the
interface 12. The R-wave originating on side 1 of it propagates with velocity
a1 into material 1, and arrives at the neighboring interface 21 from its 1-side.
Another R-wave, originating on side 2 of 12, propagates with velocity a2 into
material 2, and arrives at another neighboring interface 21 from its 2-side.
Because of the periodicity of a laminate structure we see that on 21, there
is maintained a stationary shock caused by the difference in values of R(z, t)
brought onto this interface from the opposite sides of it.

The R-waves are thus generated by independent sources of disturbance on
both sides of 12. Once there is no such sources, there will be no R-waves, and
the disturbance will all be reduced to L(z, t). Eq. (5.27) governing it may be
averaged, with continuous solutions L(z, t), to the form

Lt +


V − 1〈

1
V +a

〉


Lz = 0.
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Here, the symbol L stands for the value of L averaged over the period δ of
laminate. One should mention that there may be shocks maintained along
the interfaces 21 over limited periods of time due to the influence of non-zero
initial R-disturbance R(z, 0). After such periods, in the absence of independent
sources along 12, the shock waves on 21 will disappear.
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6

Some Applications of Dynamic Materials in

Electrical Engineering and Optimal Design

6.1 A plane electromagnetic wave propagation through

an activated laminate in 3D

So far in this book we discussed the wave propagation in a single spatial di-
mension. In the first four sections of this chapter, we shall discuss a more
general case of electromagnetic waves travelling in 3D-space through an ac-
tivated laminate structure with laminates perpendicular to the z-axis and
moving along it.

The wave vector k of a plane electromagnetic wave will be assumed be-
longing with the (x, z)-plane, this plane being therefore the plane of incidence.
Two independent polarizations of the wave will be examined:

(i) an electric polarization, with the electric field vector E normal to the plane
(e1, e3) of incidence:

E = E2e2, B = B1e1 + B3e3; (6.1)

(ii) a magnetic polarization, with the magnetic inductance vector B normal
to the plane of incidence:

B = B2e2, E = E1e1 + E3e3. (6.2)

The material relations in materials 1 and 2 participating in laminate are
given by

D = ǫiE, H = (1/µi)B, i = 1, 2, (6.3)

with the index i related to the ith material.
An activated periodic laminate represents a material assemblage that de-

pends on the fast variable (z−V t)/δ where δ is a period. We shall assume that
the electromagnetic field is independent of y for both polarizations. With this
assumption, the Maxwell’s equations (3.1) and (3.2) combined with material
relations (6.3) are reduced to
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E2z = (µH1)t, E2x = −(µH3)t, H1z − H3x = (ǫE2)t, (6.4)

for an electric polarization, and to

H2x = (−ǫE1)t, H2x = (ǫE3)t, E1z − E3x = −(µH2)t, (6.5)

for a magnetic polarization.
Eqs. (6.5) appear if we replace E by H,H by −E, µ by ǫ, and ǫ by µ in

eqs. (6.4).
By introducing potential u through the formulae

E2 = ut, B1 = uz, B3 = −ux, (6.6)

we satisfy the first two of eqs. (6.4); the third one together with (6.3), (6.6)
yields (

1

µ
ux

)

x

+

(
1

µ
uz

)

z

= (ǫut)t; (6.7)

this equation will now be subjected to homogenization.

6.2 The homogenized equations. Elimination of the

cutoff frequency in a plane waveguide

The standard technique of homogenization (see Appendix 4) applied to eq.
(6.7) produces the following equation for the value of u averaged over the
period δ of the microstructure (the symbol u is preserved for this quantity)

puzz − 2quzt − rutt + ℓuxx = 0. (6.8)

The symbols p, q, r are defined by (2.16)(see also (2.29)); the symbol ℓ is
〈µ−1〉. The lhs of (6.8) differs by the term ℓuxx from the lhs of the equation
that appears as we apply homogenization to the equation

(
1

µ
uz

)
= (ǫut)t

related to plane waves with the wave vector directed perpendicularly to the
layers, i.e. along the z-axis. The plane wave solution exp[i(gx + hz + ωt)] to
(6.8) depends on parameters g, h, ω satisfying the dispersive relation

h2p − 2hωq − rω2 + ℓg2 = 0. (6.9)

The discriminant ∆ of this quadratic equation for h takes on the form

∆ = ω2(pr + q2) − g2pℓ = ω2θ−1 − g2pℓ. (6.10)

As shown in Appendix 4, ℓ is always positive, and θ is positive in observance of
(2.5). When V = 0, the product pℓ is positive, and ∆ becomes positive if ω2 >
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ω2
∗ = g2pℓθ (cutoff frequency). However, if V �= 0, then the discriminant ∆ can

be made positive, regardless of the frequency, by an appropriate adjustment
of parameters of a material filling.

To show this, consider the expression (2.29) (see also (3.8)) for p, and

assume that V 2 < a2
1 < a2

2. The denominator V 2 − 1
ǫ̃

(
1̃
µ

)
is then negative;

as to the numerator V 2 − 1
ǫ̃µ̃ , this one may become positive if the original

material parameters ǫ1, . . . , µ2 fall into the irregular range (2.56), e.g. if ǫ2 >
ǫ1, µ2 < µ1, but still ǫ2µ2 > ǫ1µ1. By a due choice of the volume fraction m1,
the value of 1/(ǫ̃µ̃) may then be made less than a2

1. If we now place V 2 within
the interval (1/(ǫ̃µ̃), a2

1), then p will become negative, making the discriminant
∆ positive. This means that the electromagnetic waves much longer than δ
progress without damping along a planar waveguide bounded by two parallel
conducting planes and filled by a duly activated laminate. In other words, in
such a waveguide there is no cutoff frequency, and the travelling waves along
it exist regardless of the transverse dimensions.

As to the roots h1, h2 of (6.9), they are real if ∆ > 0; the roots have
opposite signs if

p(ω2r − g2ℓ) > 0, (6.11)

and have the same sign otherwise. For the case mentioned above, 1/(ǫ̃µ̃) <
V 2 < a2

1 < a2
2, we have p < 0, r > 0, and the roots have opposite signs if

ω2 < ω2
∗∗ = ℓg2/r; if, on the contrary, ω2 > ω2

∗∗, then the roots have the
same sign, and coordinated wave propagation occurs. In the latter case, the
common direction of propagation may be switched to opposite as the velocity
V of the property pattern changes sign.

6.3 The effective material tensor and homogenized

electromagnetic field

The material relations (6.3) are incorporated in a tensor equation

f = s : F, (6.12)

linking the electromagnetic tensors F and f with the aid of a material tensor
s. For a plane electromagnetic wave, the electromagnetic tensors are defined
as (we omit

√
2 in (3.19) and (3.20))

F = cB3a12 + cB1a23 − iE2a24,

f = H3a12 + H1a23 − icD2a24, (6.13)

for an electric polarization, and

F = −cB2a13 − iE1a14 − iE3a34,

f = −H2a13 − icD1a14 − icD3a34, (6.14)
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for a magnetic polarization.
The material equations (6.3) are related to the immovable original mate-

rials characterized as isotropic dielectrics; they generate material tensors

s = − 1

µic
(a12a12 + a23a23) − ǫica24a24, i = 1, 2, (6.15)

s = − 1

µic
a13a13 − ǫic(a14a14 + a34a34), i = 1, 2, (6.16)

for the electric and magnetic polarizations, respectively.
A dielectric composite that appears after homogenization is no more

isotropic. For an electric (magnetic) polarization, such composite acquires
different magnetic permeabilities (dielectric permittivities) along the x- and
z-axes. For an electric polarization, the effective tensor will be represented as

s = − 1

M1c
a′
12a

′
12 − 1

Mc
a′
23a

′
23 − Eca′

24a
′
24, (6.17)

with M1, M, E being the effective material constants, and tensors a′
st defined

as a′
12 = a12, a′

23 = a23 cosh χ + ia24 sinhχ, a′
24 = −ia23 sinhχ + a24 cosh χ,

with χ being an appropriate rotation angle in 4-space. By substituting (6.17)
into (6.12) and by using (6.13), we arrive at the following material relations

H1 = [(1/Mc) cosh2 χ − Ec sinh2 χ]cB1 + [(1/Mc) − Ec]E2 sinhχ cosh χ,

H3 = B3/M1,

cD2 = −[(1/Mc) sinh2 χ − Ec cosh2 χ]E2 − [(1/Mc) − Ec]cB1 sinhχ cosh χ.

(6.18)

The Maxwell’s equation H1z − H3x = D2t together with eqs. (6.6) and (6.3)
now yield

1

M1
uxx + c

(
1

Mc
cosh2 χ − Ec sinh2 χ

)
uzz + 2

(
1

Mc
− Ec

)
sinhχ cosh χ uzt

+
1

c

(
1

Mc
sinh2 χ − Ec cosh2 χ

)
utt = 0.

By comparing this with (6.8), we obtain the formulae

1

M1
= ℓ,

c

(
1

Mc
cosh2 χ − E cosh2 χ

)
= p,

(
1

Mc
− Ec

)
sinhχ cosh χ = −q,

1

c

(
1

Mc
sinh2 χ − Ec cosh2 χ

)
= −r, (6.19)
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and eqs. (6.18) and (6.6) now show that

H1 = pux − qut,

H3 = −ℓux,

D2 = rut + quz. (6.20)

Eqs. (6.19) allow us to express E , M, χ in terms of p, q, and r.

6.4 The transport of effective energy

The mean (over the period) value of the complex Poynting vector is given by

S = E × H∗.

For an electric polarization, the e3-component of S equals (see (6.6),(6.20))

S · e3 = −E2H
∗
1 = −ut(pu∗

z − qu∗
t ) = −ω(ph − qω).

The mean value of the complex effective energy density

T̄44 =
1

2
B · H∗ +

1

2
D · E∗ =

1

2
uz(pu∗

z − qu∗
t )

+
1

2
uxℓu∗

x +
1

2
(zut + quz)u

∗
t =

1

2
h(ph − qω) +

1

2
ℓg2

+
1

2
ω(rω + gh) =

1

2
(ph2 + rω2 + ℓg2) = ω(rω + gh).

allows us to calculate the group velocity vgr = (S · e3)/T̄44

vgr = −ph − qω

rω + gh
. (6.21)

This formula also follows from (6.9) with vgr defined as −dω/dh.
We shall characterize the sign of vgr for the case when the cutoff frequency

is eliminated; as shown in section 6.2, in this case p < 0, r > 0, and the roots

h1,2 =
ωq ±

√
ω2θ−1 − g2pℓ

p

of (6.9) are both real because

ω2θ−1 − g2pℓ = ω2q2 + ω2pr − g2pℓ > 0.

In section 6.2 it was also shown that

(i) h1h2 < 0 if ω2pr − g2pℓ > 0,
(ii)h1h2 > 0 if ω2pr − g2pℓ < 0.



146 6 Some Applications of Dynamic Materials

Consider the case (i): h1h2 < 0. With no loss of generality, assume that
q > 0; then h1 < 0, h2 > 0. We have

rω + qh1 =
ωθ−1 + q

√
ω2θ−1 − g2pℓ

p
< 0,

ph1 − qω =
√

ω2θ−1 − g2pℓ > 0,

rω + qh2 =
ωθ−1 − q

√
ω2θ−1 − g2pℓ

p
> 0,

ph2 − qω = −
√

ω2θ−1 − g2pℓ < 0. (6.22)

The group velocity vgr(h) appears to be positive for both waves. We con-
clude that the energy propagates in the same direction as the phase for the
h1-wave, and in the opposite direction for the h2-wave.

Consider now the case (ii): h1h2 > 0. In this case, both waves travel in the
same direction; the roots h1,2 are both negative if q > 0. Inequalities (6.22)
remain valid also in this case; for the first two and the last of those inequalities
it is obvious; the third inequality requires some calculation:

ω2θ−2 − q2(ω2θ−1 − g2pℓ) = ω2(p2r2 + 2prq2 + q4)

− ω2q2(pr + q2) + g2q2pℓ = p(ω2pr2 + ω2rq2 + g2q2ℓ). (6.23)

The expression in parentheses at the rhs equals ω2rθ−1 + g2q2ℓ, which is
positive since ℓ > 0.

6.5 On the necessary conditions of optimality in a

typical hyperbolic control problem with controls in the

coefficients

6.5.1 Introduction

When the investigation of the coefficient control of linear elliptic equations
was initiated in the mid-sixties and early seventies [1],[2], it has been realized
that the analysis of the necessary conditions reveals the specific ill-posedness
of the original problem. Particularly in most of the practical situations, such
conditions were found to be contradictory and therefore incapable of being
satisfied unless the problem is given a revised formulation based on relaxation.
Later on, it has been demonstrated [3] that the composite structures actually
implement such relaxation since they precisely fill the gap peculiar to the
original version of the necessary conditions.

A similar goal is pursued in the following sections, this time for a typ-
ical hyperbolic optimization problem with controls in the coefficients. The
analysis of the necessary conditions shows that the ill-posedness of the above
type arises in hyperbolic problems as well, and relaxation is required to make
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the relevant necessary conditions non-contradictory. Particularly, the spatio-
temporal laminates introduced and examined in the previous chapters may
work towards this goal. As an example, we discuss below a design problem in
space-time for a kinetic dynamic material.

6.5.2 Statement of the problem

We consider a material control problem for a hyperbolic system that gov-
erns the one-dimensional electromagnetic wave propagation through a mov-
ing dielectric medium. The electromagnetic field of a plane electromagnetic
wave propagating along the z-axis is represented by the tetrade of vectors
E(z, t), B(z, t), H(z, t), D(z, t), each vector possessing one non-zero com-
ponent in the (x, y, z)-frame (cf. (3.4)):

E = Ej, B = Bi, H = Hi, D = Dj. (6.24)

As in section 3.1, we introduce the vector potentials

A = −u(z, t)j, A∗ = v(z, t)i; (6.25)

by taking
E = ut, B = uz, H = vt, D = vz, (6.26)

we satisfy the Maxwell’s equations (3.1), (3.2); the electromagnetic tensors F
and f will then be given, respectively, by the expressions (cf. (3.21))

F =
√

2c(ux3a23 + ux4a24), (6.27)

f =
√

2ic(vx4a23 − vx3a24).

As in Chapter 3, we use a standard notation x1 = x, x2 = y, x3 = z, x4 =
ict for Minkowskian coordinates, the symbol c being the velocity of light in
vacuum. Through a23, a24 we denote an orthonormal pair of skew-symmetric
2nd rank tensors in Minkowskian space introduced in section 3.3:

a23 = (1/
√

2)(e2e3 − e3e2), a24 = (1/
√

2)(e2e4 − e4e2), (6.28)

with e1 = i, e2 = j, e3 = k, e4 being the orthonormal system of unit vectors
along the axes x1, . . . , x4. The tensors a23, a24 satisfy the relationships

a23 : a23 = a24 : a24 = −1, a23 : a24 = 0;

these tensors define the subspace in the space of second rank skew-symmetric
tensors in Minkowskian space that is substantial for one-dimensional wave
propagation.

The material equation for a linear dielectric medium is given by eq. (3.33):

f = s : F ; (6.29)
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this equation includes the fourth rank material tensor s. For an isotropic
dielectric immovable with respect to a laboratory frame e1, . . . , e4, the part
of the s-tensor substantial for one-dimensional wave propagation is given by

s = −(1/µc)a23a23 − ǫca24a24;

here ǫ and µ denote, respectively, the dielectric permittivity and magnetic
permeability of the material. If the material is moving with velocity v relative
to the laboratory frame,1 then eq. (6.29) still holds, but with tensor s specified
by the expression

s = −(1/µc)a′
23a

′
23 − ǫc a′

24a
′
24, (6.30)

where tensors a′
23, a′

24 are defined by eqs. (6.28) with unit vectors e1, . . . , e4

replaced by the vectors e′
1, . . . , e

′
4 linked with e1, . . . , e4 through the Lorentz

transform. If the material motion occurs along the x3-axis (which is assumed
below), then the relevant transform is given by the formulae

e′
1 = e1, e′

2 = e2, e′
3 = e3coshφ + e4isinhφ, e′

4 = −e3isinhφ + e4coshφ,

with corresponding relations for a′
23, a

′
24 (cf. (3.22)):

a′
23 = a23coshφ + a24isinhφ, a′

24 = −a23isinhφ + a24coshφ. (6.31)

The angle φ is defined in these formulae by tanhφ = v/c ≤ 1. Eq. (6.30) spec-
ifies s in terms of the tensors a′

23, a
′
24 related to the “primed” frame e′

1, . . . , e
′
4

moving with velocity v relative to the frame e1, . . . , e4. In the primed frame,
the material stays at rest. The expression (6.30) may be rewritten in terms of
the laboratory tensors a23, a24 as

s = −Qa23a23 − iT (a23a24 + a24a23) + Ra24a24, (6.32)

with the coefficients Q, T, R defined by eqs. (3.48):

Q = (1/µc) cosh2φ − ǫc sinh2φ,

T = ((1/µc) − ǫc)sinhφcoshφ, (6.33)

R = (1/µc)sinh2φ − ǫc cosh2φ.

Note that always R < 0 because ǫc ≥ 1/µc. Given eqs. (6.27), we refer to eqs.
(6.32) and (6.33) and replace (6.29) by the following system:

ivx4 = Qux3 + iTux4 ,

−ivx3 = iTux3 − Rux4 . (6.34)

Getting back to variables z, t, we rewrite this system as

1 The reader will not be confused to find the symbol v denoting the material velocity
identical with the symbol v introduced in (6.25) to denote the magnetic potential.
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vt = Qcuz + Tut,

vz = −Tuz − (R/c)ut. (6.35)

When φ = 0 (immovable material), this system reduces to

vt = (1/µ)uz, vz = ǫut.

The system (6.35) may be rewritten in the following standard form [1],[2]:

uz = ζ1,

ut = ζ2,

vz = −Tζ1 − (R/c)ζ2, (6.36)

vt = Qcζ1 + Tζ2.

Here, we introduced the parametric variables ζ1, ζ2. The form (6.36) is con-
venient for the analysis of optimal control problems.

A typical boundary value problem for eqs. (6.36) arises if we consider the
domain Σ : a ≤ z ≤ b, 0 ≤ t ≤ t1, and introduce the initial and boundary
conditions:

u(z, 0) = u0(z), v(z, 0) = v0(z), a ≤ z ≤ b,

u(a, t) = ua(t), u(b, t) = ub(t), 0 ≤ t ≤ t1. (6.37)

We shall assume that u0(z), v0(z), ua(t), ub(t) are continuous and shall be
looking for a smooth solution to this problem, i.e. the solution belonging to
W 2

1 (Σ).
Introduce the cost functional

I =

∫ b

a

g(u(z, t1), v(z, t1))dz (6.38)

with g differentiable with respect to each argument. We shall consider I as a
functional of s with u, v calculated as solutions to the boundary value problem
(6.36), (6.37). Assume that we have an admissible set S of material tensors
s : s ⊂ S; among the elements of this set we wish to find the element(s) for
which the functional I takes its minimum value. The set S will be that of
tensors S specified by (6.32)) and (6.33), with φ taking values in (−∞,∞).

6.5.3 The necessary conditions of optimality

Following a standard scheme [1],[2] we introduce the Lagrange multipliers
ξ1, η1, ξ2, η2, and construct the expression for the increment ∆I subject to
constraints (6.36) and (6.37). We begin with the identity

∫ ∫

Σ

{ξ1(∆uz − ∆ζ1) + η1(∆ut − ∆ζ2)

+ ξ2[∆vz + ∆(Tζ1) + (1/c)∆(Rζ2)]

+ η2[∆vt − c∆(Qζ1) − ∆(Tζ2)]}dzdt = 0,
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that holds due to (6.36). Here, ∆(·) denotes the increment of (·), i.e. the
difference between the admissible and optimal values of the relevant quantity.
In view of a possible appearance of a line Γ of discontinuity of the material
tensor s, the double integral is represented as a sum of integrals over the
subdomains Σ1 and Σ2 separated by some unknown curve Γ with unit tangent
T (zs, ts) and unit normal N(ts,−zs).

By integrating by parts and by using the continuity of u, v across Γ , we
rewrite the previous identity in the following form
∮

γ

∆u(ξ1ts − η1zs)ds

+

∮

γ

∆v(ξ2ts − η2zs)ds +

∮

Γ

∆u[ξ1ts − η1zs]
2
1ds +

∮

Γ

∆v[ξ2ts − η2zs]
2
1ds

−
∮

Γ

[(∂u/∂N)(ξ1ts − η1zs) + (∂v/∂N)(ξ2ts − η2zs)]
2
1∆Nds

−
∫ ∫

Σ

{(ξ1z + η1t)∆u + (ξ2z + η2t)∆v + ξ1∆ζ1 + η1∆ζ2

− ξ2[∆(Tζ1) + (1/c)∆(Rζ2)] + η2[c∆(Qζ1) + ∆(Tζ2)]}dzdt = 0.
(6.39)

Here and below, γ denotes the contour of Σ, and [·]21 is the difference
between the limit values of the relevant quantity on both sides of Γ . The last
two members in the figure brackets in a double integral may be conveniently
rewritten as

− ξ2[T∆ζ1 + (R/c)∆ζ2] + η2[Qc∆ζ1 + T∆ζ2]

− ξ2[(∆T )Z1 + (1/c)(∆R)Z2] + η2[c(∆Q)Z1 + (∆T )Z2]. (6.40)

The symbols Z1 = Uz, Z2 = Ut are referred to the admissible values of
parametric variables ζ1 = uz and ζ2 = ut.

Referring to the stationarity conditions

ξ1z + η1t = 0, ξ2z + η2t = 0,

ξ1 − ξ2T + η2Qc = 0, η1 − ξ2(R/c) + η2T = 0,

we introduce potentials ω1, ω2 to satisfy their first pair:

ξi = −ωit, ηi = ωiz, i = 1, 2; (6.41)

the second pair now takes the form:

ω1t = Qcω2z + Tω2t,

ω1z = −Tω2z − (R/c)ω2t, (6.42)

similar to (6.35).
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We also apply conditions along Γ :

[ξ1ts − η1zs]
2
1 = [ξ2ts − η2zs]

2
1 = 0, (6.43)

or, equivalently,
[ω1s]

2
1 = [ω2s]

2
1 = 0, (6.44)

and
[(∂u/∂N)(ξ1ts − η1zs) + (∂v/∂N)(ξ2ts − η2zs)]

2
1 = 0. (6.45)

In view of (6.41) and (6.44), the latter condition may be rewritten as

ω1s[∂u/∂N ]21 + ω2s[∂u/∂N ]21 = 0,

or, given the continuity of ∂u/∂s, ∂v/∂s across Γ ,

ω1s[∂u/∂N ]21 + ω2s[∂v/∂N ]21 − ω1N [∂u/∂s]21 − ω2N [∂v/∂s]21 = 0.

Applying (6.41) and (6.36), we rewrite this condition as

ξ1[ζ
1]21 + η1[ζ

2]21 − ξ2[Tζ1 + (R/c)ζ2]21 + η2[Qcζ1 + Tζ2]21 = 0. (6.46)

In this formula, the Lagrange multipliers ξ1, . . . , η2 may be taken on either
side (1 or 2) of the curve Γ . Eq. (6.46) serves as an additional condition used
to specify the unknown interface Γ .

The multipliers ξ1, . . . , η2 also satisfy the natural boundary conditions

ξ2(a, t) = ξ2(b, t) = 0, ≤ t ≤ t1,

η1(z, t1) = −gu(u(z, t1), v(z, t1)),
η2(z, t1) = −gv(u(z, t1), v(z, t1)).

}
a ≤ z ≤ b. (6.47)

The increment ∆I of the cost functional (6.38) may be expressed as

∆I =

∫ b

a

[g(U(z, t1), V (z,t1)) − g(u(z, t1), v(z, t1))]dz

=

∫ b

a

[g(U(z, t1), V (z, t1)) − g(u(z, t1), v(z, t1))

− gu(u(z, t1), v(z, t1))∆u − gv(u(z, t1), v(z, t1))∆v]dz

+

∫ b

a

[gu(u(z, t1).v(z, t1))∆u + gv(u(z, t1), v(z, t1))∆v]dz. (6.48)

The first two integrals in (6.39)

∫

γ

[(ξ1ts − η1zs)∆u + (ξ2ts − η2zs)∆v]ds,

are reduced, by (6.37), to the form

0
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∫

γ1

[η1∆u + η2∆v]ds,

where γ1 denotes the top side t = t1, a ≤ z ≤ b, of the rectangle Σ; on this
side, zs = −1. The last expression equals

−
∫ b

a

[η1∆u + η2∆v]dz;

by (6.47), it is equivalent to
∫ b

a

[gu∆u + gv∆v]dz.

Referring to (6.47), we conclude that the expression (6.48) for ∆I reduces
to

∆I =

∫ b

a

[g(U(z, t1), V (z, t1)) − g(u(z, t1), v(z, t1))

− gu(u(z, t1), v(z, t1))∆u − gv(u(z, t1), v(z, t1))∆v]dz

−
∫

γ1

[(ξ1ts − η1zs)∆u + (ξ2ts − η2zs)∆v]ds. (6.49)

Due to the assumed continuity of u, v (as well as of U, V )), we observe that
if the control φ is exposed to a local change in a narrow strip Dδ of length
δ and width δ2, then the first integral in (6.49) becomes of order δ2 whereas
the last integral remains of order δ. By (6.39),(6.40), (6.44) and (6.45) we
conclude that, as δ → 0, the main part of ∆I is given by the formula

∆I =

∫ ∫

Dδ

Edzdt, (6.50)

with

E = ξ2[(∆T )Z1 + (1/c)(∆R)Z2] − η2[c(∆Q)Z1 + (∆T )Z2]

= −ω2t[(∆T )U2 + (1/c)(∆R)Ut] − ω2z[c(∆Q)Uz + (∆T )Ut] (6.51)

The integral in (6.50) appeared as a result of transformation of the last integral
in (6.49). The admissible values Z1 = Uz, Z

2 = Ut of the parametric variables
should be determined along with u, v once the increment ∆s of a material
tensor is specified. As indicated before, we assume that ∆s �= 0 within a
narrow strip Dδ of the length δ and width δ2 in a (z, t)-plane. The increment
∆I then differs from the integral

∫ ∫

Dδ

Edzdt

by terms of higher order of magnitude in δ, so the inequality

E ≥ 0 (6.52)

will be necessary for a strong relative minimum of I.
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6.6 Transformation of the expression for ∆I : the strip

test

To eliminate Z1, Z2 from (6.50), we apply a strong local variation ∆s = s̄ − s
of a material tensor s. Here and below, the bar over any symbol will relate
to an admissible value of the relevant quantity; the symbol with no bar will
relate to its optimal value. For the material tensor s defined by (6.32), an
admissible value s̄ is given by the expression

s̄ = −Q̄a23a23 − iT̄ (a23a24 + a24a23) + R̄a24a24, (6.53)

with coefficients Q̄, T̄ and R̄ defined by eqs. (6.33), with φ replaced by φ̄.
The strong variation will be assumed non-zero within a narrow strip Dδ of

width δ2 and length δ, where δ is a small parameter: δ → 0. In other words,
the strip is occupied by an admissible material moving with velocity v̄. The
direction cosines of the strip will be zτ , tτ , their ratio zτ/tτ denoted by V . As
in Chapter 3 (section 3.6 and below), we will assume that V < c.

The symbols Z1, Z2 may now be eliminated from (6.50) by virtue of the
compatibility conditions

Z1zτ + Z2tτ = ζ1zτ + ζ2tτ ,

− [T̄Z1 + (R̄/c)Z2]zτ + [Q̄cZ1 + T̄Z2]tτ

= −[Tζ1 + (R/c)ζ2]zτ + [Qcζ1 + Tζ2]tτ , (6.54)

expressing the continuity of u, v across the strip’s interface.
The determinant D̄ of this system

D̄ = −(R̄/c)z2
τ + 2T̄ zτ tτ − Q̄ct2τ (6.55)

may be rewritten as

D̄ = −R̄ct2τ [tanhψ − tanh(φ̄ + θ̄)][tanhψ − tanh(φ̄ − θ̄)], (6.56)

where
tanhψ = V/c, tanhφ̄ = v̄/c, tanhθ̄ = 1/c

√
ǭµ̄.

Here 1/
√

ǭµ̄ denotes the speed of light in an admissible material.
For Z1 and Z2, we obtain

Z1 = ζ1 (D/D̄) + (−∆(R/c)zτ + (∆T )tτ ) (ζ1zτ + ζ2tτ )(1/D̄),

Z2 = ζ2(D/D̄) + ((∆T )zτ − ∆(Qc)tτ )(ζ1zτ + ζ2tτ )(1/D̄),

where D is defined by the same expressions as (6.55), (6.56), with the bars
removed.

The integrand E in (6.50) now becomes equal to
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E = {[ξ2(∆T ) − η2∆(Qc)]ζ1 + [ξ2∆(R/c) − η2∆T ]ζ2}(D/D̄)

+ {[ξ2∆T − η2∆(Qc)][−∆(R/c)zτ + (∆T )tτ ]

+ [ξ2∆(R/c) − η2∆T ][(∆T )zτ − ∆(Qc)tτ ]}(ζ1zτ + ζ2tτ )(1/D̄).

Referring to (6.36) and (6.41), we reduce this expression after some calculation
to the form

E = [−∆(Qc)uzω2z − ∆(R/c)utω2t − ∆T (uzω2t + utω2z)](D/D̄)

+ [∆(Qc)∆(R/c) − (∆T )2](1/D̄)(uzzτ + uttτ )(ω2zzτ + ω2ttτ ), (6.57)

or, equivalently,

E = −∆(Qc)uzω2z − ∆(R/c)utω2t − ∆T (uzω2t + utω2z)

− (1/D̄)[∆(Qc)uztτ − ∆(R/c)utzτ − (∆T )(uzzτ − uttτ )][∆(Qc)ω2ztτ

− ∆(R/c)ω2tzτ − (∆T )(ω2zzτ − ω2ttτ )]. (6.58)

By a standard argument, we require that E ≥ 0 for a strong relative minimum.
This inequality should hold for all admissible slopes V = zτ/tτ of the strip of
variation.

The range of values of ψ (tanhψ = V/c) admissible for the strip test E ≥ 0,
is defined by

D/D̄ = R[tanhψ − tanh(φ + θ)][tanhψ − tanh(φ − θ)]/(R̄

[tanhψ − tanh(φ̄ + θ̄)][tanhψ − tanh(φ̄ − θ̄]) ≥ 0. (6.59)

Since both R, R̄ < 0, this inequality means that the velocity V of motion
of the interface separating optimal and admissible materials should, in both
materials, stay in the same relation to the phase velocities (v ± 1/

√
ǫµ)/(1 ±

v/c2√ǫµ) of light in the relevant moving medium. Particularly, if V exceeds
both of the phase velocities in an optimal material, it should also exceed them
in admissible material.

The range of the values for φ, φ̄ admissible for the strip test E ≥ 0 is given
by one of the following two pairs of inequalities:

ψ − θ < φ < ψ + θ, ψ − θ̄ < φ̄ < ψ + θ̄, (6.60)

or
φ < ψ − θ, φ̄ < ψ − θ̄. (6.61)

These ranges guarantee a regular transmission of dynamic disturbances across
a strip of variation; we stress that both inequalities in each pair (6.60) or (6.61)
should apply simultaneously. Because R, R̄ < 0, we see from (6.56) that D
and D̄ are both negative for case (6.60), and both positive for (6.61).

The angle ψ in both (6.60) and (6.61) may take arbitrary values on the
real axis (−∞, +∞).
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In what follows we shall consider various options offered by the require-
ment E ≥ 0 implemented with the observance of (6.60) or (6.61). No special
assumptions will be made about u and ω2 entering the expressions (6.57)
and (6.58) for E. These functions become more specific once a set of bound-
ary conditions for ω2 is generated by a selected cost functional, i.e., the one
introduced by (6.38).

6.7 A polycrystal in space-time

It will be assumed in this section that all of the tensors s (see (6.30)) that
constitute an admissible set S have the same pair of eigenvalues ǫc, 1/µc; as
to their eigentensors a′

23, a
′
24, they may be different for any two tensors in

S. This difference is due to the relative material motion of fragments of the
same isotropic dielectric moving at different velocities. An assemblage of such
fragments constitutes a spatio-temporal material polycrystal. The admissible
ranges for φ, φ̄ are specified by (6.60), (6.61); we want to find the angle φ that
gives the functional I the least possible value, which means the inequality
E ≥ 0 following from a strip test.

Define w and ∆w, respectively, as

w = −Qcuzω2z − (R/c)utω2t − T (uzω2t + utω2z), (6.62)

∆w = −(∆Q)cuzω2z − ∆(R/c)utω2t − ∆T (uzω2t + utω2z). (6.63)

This expression for ∆w includes first order terms in ∆φ = φ̄ − φ at the rhs
of (6.57). We find the stationary values φ as those making such terms van-
ish: ∂w/∂φ = 0. With the reference to (6.33) we obtain, after some calculation,

(uzω2t + utω2z)tanh2φ + 2(cuzω2z +
1

c
u ω2t)tanhφ + (uzω2t + utω2z) = 0.

(6.64)
To characterize the roots of this equation we have to consider three differ-

ent situations as suggested by the expression for the discriminant of (6.64)

Φ = c2

(
u2

z − 1

c2
u2

t

)(
ω2

2z − 1

c2
ω2

2t

)
. (6.65)

1. Case when Φ > 0, and both parentheses in (6.65) are positive. Then

tanhφ = −tanh
α + β

2
,

or

φ = −α + β

2
. (6.66)

Here, α and β are, respectively, the angles defined by

t
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uz√
u2

z − 1
c2 u2

t

= coshα,
1
cut√

u2
z − 1

c2 u2
t

= sinhα,

ω2z√
ω2

2z − 1
c2 ω2

2t

= coshβ,
1
cω2t√

ω2
2z − 1

c2 ω2
2t

= sinhβ. (6.67)

2. Case when Φ > 0, and both parentheses in (6.65) are negative. Then,
again, φ is given by eqn. (6.66), but with α, β defined by

1
cut√

1
c2 u2

t − u2
z

= coshα,
uz√

1
c2 u2

t − u2
z

= sinhα,

1
cω2t√

1
c2 ω2

2t − ω2
2z

= coshβ,
ω2z√

1
c2 ω2

2t − ω2
2z

= sinhβ. (6.68)

3. Case when Φ < 0. Then eqn. (6.64) has no real roots, and the function
w(φ) is monotonic on the real φ-axis.

Referring to (6.62) and (6.33), we conclude that, as φ → ±∞, the expression
w asymptotically becomes

w ∼ −ce±2φxσ±τ±, x =
1

µc
− ǫc, (6.69)

with

σ± = uz ± 1

c
ut, τ± = ω2z ± 1

c
ω2t. (6.70)

Because x < 0, the sign of w at φ → ±∞ is the same as that of the product
σ+τ+(σ−τ−). Particularly, for cases 1 and 2, when σ+τ−σ−τ− > 0, this means
that w(±∞) are of the same sign. More specifically, w |φ→∞= w |φ→−∞= ±∞
if σ+τ+, σ−τ− are both positive (negative).

For case 3, when σ+τ+σ−ǫ− < 0, the values w(+∞) and w(−∞) have
opposite signs. Specifically, we get

w
∣∣
φ→+∞

= +∞, w
∣∣
φ→−∞

= −∞ if σ+τ+ > 0, σ−τ− < 0.

w
∣∣
φ→+∞

= −∞, w
∣∣
φ→−∞

= +∞ if σ+τ+ < 0, σ−τ− > 0. (6.71)

Minimum of w(φ) in case 3 is therefore −∞, i.e. ineq. E ≥ 0 can take place
with φ = ±∞. We now have to consider the cases 1 and 2.

We calculate ∆w (see (6.63)) for these cases. For a polycrystal, we have
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∆Q = ∆R = x∆(cosh2φ) = x∆

(
1

1 − tanh2φ

)

= x
1

(1 − tanh2φ̄)(1 − tanh2φ)
(tanh2φ̄ − tanh2φ),

(6.72)

∆T = x∆(sinhφcoshφ) = x∆

(
tanhφ

1 − tanh2φ

)

= x
1

(1 − tanh2φ̄)(1 − tanh2φ)

(tanhφ̄ − tanhφ)(1 + tanhφtanhφ̄),

and the expression for ∆w takes the form (case 1)

∆w = −(∆Q)cuzω2z − 1

c
(∆R)utω2t − (∆T )(uzω2t + utω2z) = −√

σ+σ−τ+τ−

[(∆Q)ccoshα coshβ + (∆Q)csinhα sinhβ

− (∆T )c(coshα sinhβ + sinhα coshβ)]

= −c
√

σ+σ−τ+τ−[(∆Q)cosh(α + β) + ∆T sinh(α + β)]

= −cx

√
σ+σ−τ+τ−

(1 − tanh2φ̄)(1 − tanh2φ)
(tanhφ̄ − tanhφ)

[
(tanhφ̄ + tanhφ)cosh(α + β) + (1 + tanhφtanhφ̄)sinh(α + β)

]

= −cx

√
σ+σ−τ+τ−

(1 − tanh2φ̄)(1 − tanh2φ)
cosh2 α + β

2
(tanhφ̄ − tanhφ)

[
(tanhφ̄ + tanhφ)

(
1 + tanh2 α + β

2

)
+ (1 + tanhφtanhφ̄) · 2tanh

α + β

2

]
.

(6.73)

When φ = −α+β
2 , the expression in the square brackets reduces to

(
1 − tanh2 α + β

2

)(
tanhφ̄ + tanh

α + β

2

)
,

and ∆w becomes equal to

∆w = −cx

√
σ+σ−τ+τ−

(1 − tanh2φ̄)
(
1 − tanh2 α+β

2

)
(

tanhφ̄ + tanh
α + β

2

)2

(6.74)

Observe that this expression does not depend on ψ; also, since x < 0, we have
∆w > 0.

The terms in the second and third lines of (6.58) depend on ψ; we represent
them as
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W = − 1

D̄
ΘΩ, (6.75)

with

Θ = (∆Q)cuztτ − 1

c
(∆R)utzτ − ∆T (uzzτ − uttτ ),

Ω = (∆Q)cω2ztτ − 1

c
(∆R)ω2tzτ − ∆T (ω2zzτ − ω2ttτ ). (6.76)

Considering case 1, we refer to eqs. (6.67) and (6.70); a convenient expres-
sion for D̄ is given by (6.56). By (6.67), (6.70) and (6.72), (6.66), the formulae
(6.76) become

Θ = c
√

σ+σ−tτcoshα[∆Q(1 − tanhαtanhψ) − ∆T (tanhψ − tanhα)]

= cx

√
σ+σ−tτcoshα

(1 − tanh2φ̄)
(
1 − tanh2 α+β

2

)
(

tanhφ̄ + tanh
α + β

2

)

[(
tanhφ̄ − tanh

α + β

2

)
(1 − tanhαtanhψ)

−
(

1 − tanh
α + β

2
tanhφ̄

)
(tanhψ − tanhα)

]
;

Ω = cx

√
τ+τ−tτcoshβ

(1 − tanh2φ̄)
(
1 − tanh2 α+β

2

)
(

tanhφ̄ + tanh
α + β

2

)

[(
tanhφ̄ − tanh

α + β

2

)
(1 − tanhβtanhψ)

−
(

1 − tanh
α + β

2
tanhφ̄

)
(tanhψ − tanhβ)

]
.

In view of (6.56), the expression (6.75) takes on the form

W = − 1

D̄
ΘΩ =

cx2√σ+σ−τ+τ−coshαcoshβ
(
tanhφ̄ + tanhα+β

2

)2

R̄[tanhψ − tanh(φ̄ + θ)][tanhψ − tanh(φ̄ − θ)]

·

(
1 − tanhα+β

2 tanhφ̄
)2

(1 − tanh2φ̄)2
(
1 − tanh2 α+β

2

)2 KL, (6.77)

with
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K = tanh

(
φ̄ − α + β

2

)
(1 − tanhαtanhψ) − (tanhψ − tanhα)

= (1 − tanhαtanhψ)

[
tanh

(
φ̄ − α + β

2

)
− tanh(ψ − α)

]

= (1 − tanhαtanhψ)

[
1 − tanh

(
φ̄ − α + β

2

)
tanh(ψ − α)

]
tanh

(
φ̄ − ψ +

α β

2

)
,

(6.78)

L = tanh

(
φ̄ − α + β

2

)
(1 − tanhβtanhψ) − (tanhψ − tanhβ)

= (1 − tanhβtanhψ)

[
1 − tanh

(
φ̄ − α + β

2

)
tanh(ψ − β)

]
tanh

(
φ̄ − ψ − α − β

2

)
.

Because R̄ < 0, the expression (6.77) for W has the sign of

− KL

[tanhψ − tanh(φ̄ + θ)][tanhψ − tanh(φ̄ − θ)]
,

or, by (6.78), the sign of

−
tanh

(
φ̄ − ψ + α−β

2

)
tanh

(
φ̄ − ψ − α−β

2

)

tanh(φ̄ − ψ + θ)tanh(φ̄ − ψ − θ)
. (6.79)

By (6.60), we have
−θ ≤ φ̄ − ψ ≤ θ,

i.e.
| φ̄ − ψ |≤ θ; (6.80)

also, by (6.61), we have
| φ̄ − ψ |≥ θ. (6.81)

−

The ratio in (6.80) does not exist when
∣

∣φ̄ − ψ
∣

∣ = θ, unless θ =
∣

∣

∣

α−β

2

∣

∣

∣

; in

the latter case, the said ratio reduces to unity. The expression (6.78) for W

may then be calculated for every value of
∣

∣φ̄ − ψ
∣

∣ belonging to the reference
intervals (6.81) and (6.82), so the sum E = ∆w + W is well defined for all
admissible values of

∣

∣φ̄ − ψ
∣

∣. We conclude that the increment E of the func-
tional exists and may become non-negative if and only if the phase velocity θ

in a paternal material matches the half angle (α − β)/2 between the complex
vectors gradu and gradω2. This match may generally not occur, that is, our
original problem may appear to be ill-posed.
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We will find a way out of this contradiction if we assume that, along
with a paternal material with phase velocity θ, there are also available the
spatio-temporal polycrystals produced by mixing (on a microscale in space-
time) different fragments of it participating in a relative material motion along
the z-axis. As shown in Chapter 3, such polycrystals are characterized by
the effective properties E , M that occupy the hyperbola E/M = ǫ/µ in the
plane (Ec, 1/Mc). Moving along this hyperbola, we will find a point that
represents, in a proper frame, a material with a required value of the phase
velocity. An additional freedom offered by such extension of the original set
containing one paternal material, therefore works towards resolution of the
above contradiction.
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Appendix: 1

Comment on eqs. (2.46), (2.49), and (2.50)

Consider a periodic array (2.43), (2.44) of segments distributed along the
ζ-axis.

The segments have lengths ℓ1 = m1δ, ℓ2 = m2δ, and are occupied,
respectively, by materials 1 and 2 immovable in the laboratory frame (z, t).

A general solution to the system (2.42) is given by

ū = Aes ζ
V −a1 + Bes ζ

V +a1 ,

v̄ = −γ1

(
Aes ζ

V −a1 − Bes ζ
V +a1

)
,



− ℓ1 ≤ ζ ≤ 0, (A1.1)

ū = Ces ζ
V −a2 + Des ζ

V +a2 ,

v̄ = −γ2

(
Ces ζ

V a2 − Des ζ
V +a2

)
,



 0 ≤ ζ ≤ ℓ2. (A1.2)

Here γi = ρiai = ki/ai =
√

kiρi, i = 1, 2.
By Floquet theory,

ū(ζ) = eµδū(ζ − δ), v̄(ζ) = eµδ v̄(ζ − δ), (A1.3)

where µ is the characteristic exponent. Given (A1.1) and (A1.3), we represent
a solution in the interval ℓ2 ≤ ζ ≤ ℓ1 + ℓ2 as

ū = eµδ
(
Aes ζ−δ

V −a1 + Bes ζ−δ
V +a1

)
,

v̄ = −γ1e
µδ
(
Aes ζ−δ

V −a1 − Bes ζ−δ
V +a1

)
.

The compatibility conditions
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[u]ζ=0+

ζ=0−
= [v]ζ=0+

ζ=0−
= [u]ζ=ℓ2+0

ζ=ℓ2−0 = [v]ζ=ℓ2+0
ζ=ℓ2−0 = 0

produce a linear system

A + B = C + D,

−γ1(A − B) = −γ2(C − D), (A1.4)

eµδ
(
Ae−s

ℓ1
V −a1 + Be−s

ℓ1
V +a1

)
= Ces

ℓ2
V −a2 + Des

ℓ2
V +a2 ,

−γ1e
µδ
(
Ae−s

ℓ1
V −a1 − Be−s

ℓ1
V +a1

)
= −γ2

(
ces

ℓ2
V −a2 − Des

ℓ2
V +a2

)
,

with determinant

∣∣∣∣∣∣∣∣∣

1 1 1 1
−γ1 γ1 −γ2 γ2

Y e−s ℓ
V −a1 Y e−s

ℓ1
V +a1 es

ℓ2
V −a2 es

ℓ2
V +a2

−γ1Y e−s
ℓ1

V −a1 γ1Y e−s
ℓ1

V +a1 −γ2e
s

ℓ2
V −a2 γ2e

s
ℓ2

V +a2

∣∣∣∣∣∣∣∣∣

, (A1.5)

where
Y = eµδ. (A1.6)

By setting the determinant (A1.5) equal to zero, we obtain, after some calcu-
lation,

Y 2e
−2s

V ℓ1
V 2

−a2
1 − 2Y [c1c2 + σs1s2] + e

2s
V ℓ2

V 2
−a2

2 = 0 . (A1.7)

Here we introduced notation

c1 =
1

2

(
e−

sℓ1
V −a1 +

c2 =
1

2

(
e

sℓ1
V −a2 + ,

s1 =
1

2

(
e−s

ℓ1
V −a1 − e−s

ℓ1
V +a1

)
,

s2 =
1

2

(
es

ℓ2
V +a2 − es

ℓ2
V −a2

)
;

parameter δ is defined by (2.47).
We now check by direct inspection that

e
2s

V ℓ1
V 2

−a2
1 [c1c2 + σs1s2] = e

V
(

θ1
a1

+
θ2
a2

)

(coshθ1coshθ2 + σsinhθ1sinhθ2),

and

e
2sV

(

ℓ1
V 2

−a2
1
+

ℓ2
V 2

−a2
2

)

= e
2V

(

θ1
a1

+
θ2
a2

)

,

with symbols θ1, θ2 defined by (2.47). Equation (A1.7) now takes on the form

e−s
ℓ1

V +a1

)
,

es
ℓ2

V a2

)
+
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Y 2−2Y e
V

(

θ1
a1

+
θ1
a2

)

(coshθ1coshθ2+σsinhθ1sinhθ2)+e
2V

(

θ1
a1

+
θ2
a2

)

= 0. (A1.8)

We look for the roots of this equation presented as

Y1,2 = e
V

(

θ1
a1

+
θ2
a2

)

±χ
. (A1.9)

The sum of the roots equals

2e
V

(

θ1
a1

+
θ2
a2

)

coshχ;

this becomes consistent with (A1.8) if parameter χ is defined by the equation

coshχ = coshθ1coshθ2 + σsinhθ1sinhθ2,

introduced in (2.47). By (A1.6) and (A1.9) we conclude that the characteristic
exponents µ1,2 are specified as

µ1,2δ = V

(
θ1

a1
+

θ2

a2

)
± χ, (A1.10)

in full accordance with (2.46).
By using (2.47), we, after some calculation, rewrite eq. (2.48) as

χ = sδ
a1a2

∆1∆2

√

(V 2ρ̃ − k̃)

(
V 2

(
1̃

k

)
−
(

1̃

ρ

))
; (A1.11)

here ∆i is defined by (2.28).
With reference to (2.47) and (A1.11), we rewrite (A1.10) as

µ1,2δ =
sδ

∆1∆2


V (V 2 − ã2) ±

√

(V 2ρ̃ − k̃)

(
V 2

(
1̃

k

)
−
(

1̃

ρ

))
 . (A1.12)

The system (2.49) for E,G,H now follows from the formulae for P(µ, ζ),Q(µ, ζ)
on p. 28 along with eqs. (2.45) and (A1.4). As to eqn. (2.50) for v1,2 = V − s

µ1,2
,

it follows from (A1.12) after some algebraic work.
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Comment on eqs. (3.47)

If a plane electromagnetic wave travels along the z-axis, then its electromag-
netic field is characterized by the electromagnetic tensors F and f specified by
(3.21). The material tensor s participating in the constitutive relation (3.33)
is given for an immovable material by the formula

s = − 1

µc
a23a23 − ǫca24a24.

If the dielectric is brought into motion with a uniform speed v along the
x3-axis, then the relevant expression for s becomes

s = − 1

µc
a′
23a

′
23 − ǫca′

24a
′
24, (A2.1)

with the “primed” tensors a′
23, a

′
24 given by (c.f. (3.22))

a′
23 = a23coshφ + ia24sinhφ, a′

24 = −ia23sinhφ + a24coshφ,

and the angle φ defined by tanhφ = v/c. By referring to (3.21), (3.6) and
(A2.1), we reduce the material relation (3.33) to the system of two equations

Qux3 + iTux4 = ivx4
, −Tux3

− iRux4
= vx3

, (A2.2)

with parameters Q, T, R defined by (3.48). Consider now two dielectric media
moving with different speeds v1 and v2 along the x3-axis, and let these media
be separated by a point moving with velocity V < c along the same axis. This
point of separation will trace the line L with the slope ψ, tanhψ = V/c, in the
(z, t)-plane.

The derivative uτ of u along this line equals

uτ = iux3tanhψ − ux4 ; (A2.3)
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this derivative should be continuous across L along with a similar derivative
of v [1]. Bearing this in mind, we eliminate ux4 , vx4 from (A2.2), and arrive
at the system

ux3 = iuτ
Rtanhψ − T

W
+ ivτ

1

W
,

vx3 = iuτ
T 2 − QR

W
+ ivτ

Rtanhψ − T

W
,

with W defined by (3.48).
We now take average values of both sides of either equation bearing in

mind the continuity of uτ , vτ . Returning to notation (A2.3), we arrive, after
some calculation, at the system

αuz + βut = V vz + vt,

V uz + ut = θ(αvz + βvt), (A2.4)

with α, β, θ defined by (3.47). A simple algebra reduces (A2.4) to a standard
form (2.11).
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A mechanical implementation of a discontinuous velocity pattern
along an elastic bar

A discontinuous velocity distribution along the bar may be produced through
the following arrangements suggested by B. P. Lavrov (B.P. Lavrov, private
communication, 2003).
First Version

Consider a thin elastic band stretched by a tensile force. With respect to
longitudinal vibrations, the band performs as an elastic bar, with material
displacements occurring about the static equilibrium.

The band is split into many independent sections, each section fabricated
as a closed loop mounted on four supporting rolls (see Fig. A3.1). One of the
rolls serves as a carrier bringing the whole loop into motion, another bridle roll
maintains the tension of the band. The upper rolls are suspended to the ceiling
by the rods connected through hinges, so the entire section, being rectangular
in statics, preserves the freedom of horizontal motion. Through such a motion,
it becomes distorted and takes the shape of a parallelogram shown in Figure
A3.2.
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Fig. A3.1. A section of the elastic bar.

Fig. A3.2. A suspended section of the bar.

Two rolls out of four on each section have the axes common with rolls
belonging to the adjacent sections (such rolls occupy the upper row in Fig.
A3.3). All of the rolls rotate freely, without friction, about their axes. The

Bridle฀roll Carrier฀roll

Band
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neighboring sections occupy alternating positions along the common rotation
axes, so their respective bands come onto the rolls as shown in Fig. A3.3. The
lower rolls in the alternating sections are placed at different horizontal levels
to secure the access necessary for mounting the independent carrier and bridle
rolls in order to maintain the required velocity and tension of the band.

Fig. A3.3. An elastic bar as an assembly of sections.

An฀assembled฀elastic฀bar
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Fig. A3.4. Rolls from two adjacent sections mounted on the common axis.

The฀band฀of฀external฀section

External฀sectionInternal฀section

A

A

The฀band฀of฀internal฀section

Common฀axis
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The ultimate arrangement of an elastic bar is shown in Fig. A3.4. It is
combined of the top horizontal parts of each section. The extreme left and
right rolls of the arrangement are either attached to the walls, or connected
to the devices that generate longitudinal vibrations or pulses.

The velocity of the band in each section may be independently sustained,
both in magnitude and direction, by the use of the relevant single drive. The
tension is, however, common to all sections; it is maintained by a tensile force
generated by bridle rolls. To secure a reliable performance of a build up, the
stress in the band should not exceed the yield force of the material.
Second Version

A bar is imitated by a gas (air) column. A segment of a pipeline is as-
sembled of sections separated from each other by toroidal chambers (see Fig.
A3.5). By manipulating compressions and rarefactions in the chambers, it
is possible to produce, within each section, the velocity pattern variable in
magnitude and direction.

Fig. A3.5. A pipeline assembled of sections.

In particular, one may generate a standing wave and register variations of
its frequency caused by the variable velocity distribution. The pressure may

Generator฀of฀waves฀and฀impulses
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be adjusted individually for each chamber, by virtue of reducing valves. The
air should be able to leave some of the chambers, also through such valves.

A base pressure level in a system may be maintained by a common com-
pressor; control of the pressure in various chambers may be carried out through
individual reduction gears. The velocity of sound is affected by pressure, and
may be accordingly controlled by pressure variations. There must be a way
for the air to leave the system, also through the reduction gears.
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Comment on eqn. (6.8)

We reproduce below a standard homogenization procedure for the wave equa-
tion

div(µ−1gradu) − (ǫut)t = 0 (A4.1)

in two spatial variables x, z, with the pattern of (ǫ, µ) defined as an activated
laminate depending on the fast variable (ξx + ηz − V t)/δ, with period δ.

The asymptotics of solution of (A4.1) is sought for in the form

u(x, z, t) = u0

(
x, z, t,

ξx + ηz − V t

δ

)
+ δu1

(
x, z, t,

ξx + ηz − V t

δ

)

+ δ2u2

(
x, z, t,

ξx + ηz − V t

δ

)
. (A4.2)

where ui(x, z, t, ζ) is 1-periodic function of ζ, i.e. ui(x, z, t, ζ+1) = ui(x, z, t, ζ),
and ξ = cos ψ, η = sinψ. By substituting (A4.2) into (A1.1) we obtain

− δ−2(ξ2Lζζu0 + η2Lζζu0 − V 2Mζζu0)

− δ−1(ξLxζu0 + ηLzζu0 + ξLζxu0 + ηLζzu0 + ξ2Lζζu1η
2Lζζu1 + V Mζtu0 +

+ V Mtζu0 − V 2Mζζu1) − δ0(Lxxu0 + Lzzu0 + ξLxζu1 + ηLzζu1

+ ξLζxu1 + ηLζzu1 + ξ2Lζζu2 + η2Lζζu2 − Mttu0 + V Mtζu1 + V Mζtu1

+ V Mζtu1 − V 2Mζζu2) + δr(x, z, t, δ) = 0. (A4.3)

Here

Lαβui(x, z, t, ζ) =
∂

∂α

(
µ−1(ζ)

∂

∂β
ui(x, z, t, ζ)

)
,

Mαβui(x, z, t, ζ) =
∂

∂α

(
ǫ(ζ)

∂

∂β
ui(x, z, t, ζ)

)
,

r(x, z, t, δ) = r0(x, z, t, δ) + δr1(x, z, t, δ),
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r0(x, z, t, δ) = −Lxxu1 − Lzzu1 − ξLxζu2 − ηLzζu2 − ξLζxu2

− ηLζzu2 + Mttu2 − V Mζtu2,

r1(x, z, t, δ) = −Lxxu2 − Lzzu2 + Mttu0.

Let us require that the terms of orders δ−2, δ−1, δ0 vanish. Then

ξ2Lζζu0 + η2Lζζu0 − V 2Mζζu0 = 0, (A4.4)

ξLxζu0 + ηLzζu0 + ξLζxu0 + ηLζzu0 + ξ2Lζζu1 + η2Lζζu1

+ V Mζtu0 + V Mtζu0 − V 2Mζζu1 = 0, (A4.5)

Lxxu0 + Lzzu0 + ξLxζu1 + ηLzζu1 + ξLζxu1 + ηLζzu1 + ξ2Lζζu2

+ η2Lζζu2 − Mttu0 + V Mtζu1 + V Mζtu1 − V 2Mζζu2 = 0(A4.6)

It follows from (A4.4) that µ−1(ζ)∂u0(x, z, t, ζ)/∂ζ − V 2ǫ(ζ)∂u0(x, z, t, ζ)
/∂ζ is independent of ζ, i.e. µ−1(ζ)∂u0/∂ζ−V 2ǫ(ζ)∂u0/∂ζ = C(x, z, t), there-
fore,

∂u0(x, z, t, ζ)

∂ζ
=

C(x, z, t)

µ−1(ζ) − V 2ǫ(ζ)
. (A4.7)

We adopt the following notation for the mean over the period in both the
one-dimensional as well as many-dimensional case,

〈f(x1, . . . , xs, t, ζ1, . . . , ζs)〉 =

∫ 1

0

. . .

∫ 1

0

f(x1, . . . , xs, t, ζ1, . . . , ζs)dζ1 . . . dζs,

with the variables x and ζ considered independent in the last integral.
By applying the operator 〈·〉 to the equality (A4.7), we see from the peri-

odicity of u0(x, z, ζ) in ζ that

〈
∂u0(x, z, t, ζ)

∂ζ

〉
=

∫ 1

0

∂u0(x, z, t, ζ)

∂ζ
dζ = 0.

Thus 0 = C(x, z, t)〈(µ−1(ζ) − V 2ǫ(ζ))−1〉, and consequently, C(x, z, t) =
0, ∂u0/∂ζ = 0, and u0(x, z, t, ζ) is independent of ζ, i.e.

u0(x, z, t, ζ) = u0(x, z, t). (A4.8)

Referring to (A4.8), we rewrite (A4.5) as

∂

∂ζ

(
ξµ−1 ∂u0

∂x
+ ηµ−1 ∂u0

∂z
+ µ−1 ∂u1

∂ζ
+ V ǫ

∂u0

∂t
− V 2ǫ

∂u1

∂ζ

)
= 0.

This implies that
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ξµ−1 ∂u0

∂x
+ ηµ−1 ∂u0

∂z
+ µ−1 ∂u1

∂ζ
+ V ǫ

∂u0

∂t
− V 2ǫ

∂u1

∂ζ
= C1(x, z, t),

∂u1

∂ζ
= C1

1

µ−1(ζ) − V 2ǫ(ζ)
− ξ

µ−1(ζ)

µ−1(ζ) − V 2ǫ(ζ)

∂u0

∂x

− η
µ−1(ζ)

µ−1(ζ) − V 2ǫ(ζ)

∂u0

∂z
− V

ǫ(ζ)

µ−1(ζ) − V 2ǫ(ζ)

∂u0

∂t
. (A4.9)

By applying the operator 〈·〉, we get

〈
∂u1

∂ζ

〉
= −C1C + ξA

∂u0

∂x
+ ηA

∂u0

∂z
+ V B

∂u0

∂t
,

where A, B, C are given by (2.13) and (2.10), with a standard substitution
(3.8). Hence,

C1(x, z) = ξ
A

C
u0x

+ η
A

C
u0z

+ V
B

C
u0t

,

and

∂u1

∂ζ
= u0x

ξ

µ−1 − V 2ǫ

(
A

C
− µ−1

)
+ u0z

η

µ−1 − V 2ǫ

(
A

C
− µ−1

)

+ u0t

v

µ−1 − V 2ǫ

(
B

C
− ǫ

)
.

Taking into account this expression for ∂u1

∂ζ , we integrate (A4.6) with re-

spect to ζ over [0, 1], and use the periodicity of u1(ζ), µ−1(ζ) and ǫ(ζ). This
yields

− u0tt

(
D − V 2 B2

C

)
+ u0xx

(
η2E − V 2D + ξ2 A2

C

)

+ u0zz

(
ξ2E − V 2D + η2 A2

C

)

+ u0xz
2ξη

(
A2

C
− E

)
+ u0xt

2ξV

(
AB

C
− D

)

+ u0zt
2ηV

(
AB

C
− D

)
= 0, (A4.10)

where D is defined by (2.10) and (3.8), and E specified by

E =

〈
1

µ

a2

V 2 − a2

〉
.

Eq. (A4.10) represents the required averaged equation. When ξ = 0, η = 1,
it reduces to (6.8).



Index

action, 78
action density, 40,77,78
action density, effective, 43,77
activated bar, 17
activated bar, effective properties, 17

balance of energy, 40
activated dielectric laminate, wave

propagation, 59
negative effective parameters, 70
energy, 75

activated laminate, effective parameters,
24

effective parameters calculated via
Lorentz transform, 67

plane wave propagation in 3D, 141
activation, 4,5
activation, temporal, 45
averaged energy density (flux), 46
averaged momentum density, 47

caterpillar construction, 59,62
checkerboard assemblage in space-time,

12,109
energy accumulation, 131
limit cycles in it, 119
materials with equal wave impedance,

116
coordinate frame, co-moving,

24,45,78,79,81
Galilean, 24
laboratory, 7
Lorentz, 88
moving, 26,80
non-primed, 54

primed, 54
proper, 6

coordinated wave propagation, 37,38
composite, conventional (static), xiii

spatio-temporal (dynamic), xiii
stable, 91,92
uniformly stable, 92
unstable, 91,93

compression of pulses, spatial, 12
control in coefficients of hyperbolic

equations, 146
cutoff frequency in waveguides, 142

elimination of it, 143

density, 17
dielectric, anisotropic in space-time, 58
dielectric, isotropic in conventional

sense, 58
dielectric material, 5
dielectric, moving, xv,51
dielectric permittivity, 52
dielectric permittivity, effective, 60
dielectric permittivity tensor, 7
dipole moments, electric/magnetic, 8
dynamic composite, xiii
dynamic materials, xiii,xiv,xv,1
dynamic materials, activated, 2
dynamic materials, applications, 11
dynamic materials, electrodynamics of

moving dielectrics, 51
dynamic materials, idea and definition,

1
dynamic materials, implementation in

electrodynamics and optics, 7



180 Index

dynamic materials, kinetic, 2
dynamic materials, two types, 2
dynamic materials, vibrational

mechanics, 12

effective energy density (flux), 45,46
effective momentum density, 47
effective motion, 43
effective parameters, 60
elastic bar, activated, 17-20
elastic bar, activated, effective

parameters, 24-40
electrodynamics of moving dielectrics,

51
energy accumulation in checkerboard,

131
energy accumulation, numerical

analysis, 131,133
energy density, 40
energy density, averaged, 45,79
energy density, effective, 45
energy flux density, 40,46
energy flux density, averaged, 46
energy flux density, effective, 46
energy-momentum balance, 41
energy-momentum exchange, xiv,1,2
energy-momentum tensor, 40
energy-momentum tensor, effective,

43,47
energy of effective motion, 44
energy transformation in presence of

limit cycles, 127

fast motion, 43
Floquet theory, 31,114,115

G-closure, xii
G-closure, stable, 93
G-closure, single isotropic dielectric, 93
G-closure, two isotropic dielectrics, 96
G-closure, arbitrary set of isotropic

dielectrics, 97
Gm-closure, two isotropic dielectrics,

102

homogenization, 5
homogenization, effective parameters of

sctivated laminate, 24
homogenization, standard procedure for

laminates, 28,131

interface, immovable, 19,21,65
interface, moving, 19,21,22,23
interface, superluminal (spacelike),

87,88

kinetization, 5,13

laminate in space-time, 4,20
laminate, activated, 24, 70-81
laminate, dielectric, activated, 59,70-81
laminate, kinetic, 5
laminate, polycrystallic, 61,62
laminate, polycrystallic, bounds for

effective properties, 63-70
laminate, static, 26,68

magnetic permeability, 7
magnetic permeability, effective, 60
magnetic permeability tensor, 8
material, ferroelectric, 7,8,9,10
material, ferromagnetic, 7,8,9,10,11
material, non-linear, optical, 11
material tensor, 57
material tensor, isotropic in space, 58
material tensor, completely isotropic in

space-time, 58
material tensor, first invariant in

one-dimentional space and time,
63

material tensor, second invariant in
one-dimensional space and time,
63

matrix microstructure in space-time,
19,23

Maxwell’s equations, 52,57
Maxwell’s relations, 52
Maxwell’s system, relativistic form, 53
Maxwell’s theory for moving dielectrics,

xv
metamaterials, 7,11,12
metamaterials, left-handed, 11,12,86
Minkowskian coordinates, 53
Minkowskian 4-space, 54,55
Minkowski’s relations, 53,57
momentum, 18
momentum density, 40
momentum density, fast motion, 47
momentum density, slow motion, 46,47
momentum flux density, 40
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momentum flux density, slow motion,
47

momentum, effective motion, 44

necessary conditions of optimality in
a hyperbolic control problem,
146,149-152

necessary conditions of optimality,
contradiction in them, 160

pattern, moving, 5
pattern, property, 4
polycrystal in space-time, 155-160

rectangular microstructue in space-time,
20,109

screening effect, 38
shadow zone, 38
slow motion, 42
slow motion, energy, 43
slow motion, energy flux density, 43
slow motion, momentum density, 46-47

slow motion, momentum flux density,
47

stiffness, of a bar, 17
strip test, 153
switching, in transmission line, 4

transmission line, 4
transmission line, discrete version, 4

wave, d’Alembert, 33,36,80
wave, negative energy, 75-81
wave, fast, 79,81,86
wave propagation, along a bar, 17
wave propagation, through dynamic

materials, xiii
wave, slow, 79,81,86

wave impedance, the same value in
checkerboard, 116

wave impedance, conservation through
one-dimensional wave propaga-
tion, 93

wave impedance, effective, 72,93
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