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Preface

”...was it heavy? Did it achieve total heaviosity?”’
—Alvie (Woody Allen) to Annie (Diane Keaton) in Annie Hall, 1977.

Heavy-tail analysis is a branch of extreme-value theory devoted to studying phe-
nomena governed by large movements rather than gradual ones. It encompasses both
probability modeling as well as statistical inference. Its mathematical tools are based
on regular variation, weak convergence of probability measures and random measures
and point processes. Its applications are diverse, including the following:

» datanetworks, where the presence of heavy-tailed file sizes on network servers leads
to long range dependence in the traffic rates;

* finance, where financial returns are heavy tailed and thus risk management calcula-
tions of value-at-risk require heavy-tailed methods;

* insurance, where the field of reinsurance is, by its nature, obsessed with very large
values.

The structure of the book

There is an introductory chapter to describe the flavor and applicability of the subject.
Then there are two chapters termed crash courses: one on regular variation and the other
on weak convergence. These chapters contain essential material that could have been
relegated to appendices; however, you should go through them where they are placed
in the book. If you know the material, move quickly. Otherwise, pay some attention to
style and notation. In particular, note what goes on in Sections 3.4-3.6. Such chapters
are, inevitably, a compromise between wanting the book to be self-contained and not
wanting to duplicate at length what is standard in other excellent references.
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Chapter 4 gets you into the heart of inference issues fairly quickly. The approach to
inference is semiparametric and asymptotic in nature. This leads to a statistical theory
that is different from classical contexts. We assume there is some structure out there
at asymptopia and we are trying to infer what it is using a pitiful finite sample whose
true model has not yet converged to the asymptotic model. Thus, maximum likelihood
methods are not really available unless we simply assume from some threshold onwards
that the asymptotic model holds. We give some diagnostics that help decide on values
of parameters and when a heavy-tail model is appropriate.

Chapter 5 begins the probability treatment which is geared towards a dimensionless
theory. It focuses on the Poisson process and stochastic processes derived from the
Poisson process, including Lévy and extremal processes. We also give an introduction
to data network modeling. Chapter 6 gives the dimensionless treatment of regular
variation and its probabilistic equivalents. We survey weak convergence techniques
and discuss why it is difficult to bootstrap heavy-tail phenomena. Chapter 7 exploits
the weak convergence technology to discuss weak convergence of extremes to extremal
processes and weak convergence of summation processes to Lévy limits. Special cases
include sums of heavy-tailed iid random variables converging to «-stable Lévy motion.
We close the chapter with a unit on how weak convergence techniques can be used
to study various transformations of regularly varying random vectors. We include
Tauberian theory for Laplace transforms in this discussion.

Applied probability takes center stage in Chapter 8 which uses heavy-tail techniques
to learn about the properties of three models. Two of the models are for data networks
and the last one is a more traditional queueing model. We return to statistical issues in
Chapter 9, discussing asymptotic normality for estimators and then moving to inference
for multivariate heavy-tailed models. We include examples of analysis of exchange rate
data, Internet data, telephone network data and insurance data. Finally, we close the
chapter with a discussion of the much praised and vilified sample correlation function.
There are some appendices devoted to notational conventions and a list of symbols and
also a section which timidly discusses some useful software.

Each chapter contains exercises. Ignoring the exercises guarantees voyeur status.
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1

Introduction

1.1 Welcome

This is a survey of some of the mathematical, probabilistic and statistical tools used in
heavy-tail analysis as well as some examples of their use. Heavy tails are characteristic
of phenomena where the probability of a huge value is relatively big. Record-breaking
insurance losses, financial log-returns, file sizes stored on a server, transmission rates
of files are all examples of heavy-tailed phenomena. The modeling and statistics of
such phenomena are tail dependent and much different than classical modeling and
statistical analysis, which give primacy to central moments, averages, and the normal
density, which has a wimpy, light tail.
An oversimplified view of heavy-tail analysis is that it rests on three subjects:

*  Mathematics: The theory of regularly varying functions [26, 90, 102, 135, 144, 220,
260, 275] provides the right mathematical framework for heavy-tail analysis.

* Probability theory and stochastic processes: Heavy-tail analysis is aheavy consumer
of weak convergence techniques [22, 23, 25, 301] since an organizing theme is that
many limit relations giving approximations can be viewed as applications of almost
surely continuous maps. It also requires knowledge of stochastic processes, such as
point processes and random measures [65, 180, 230, 260], Brownian motion, Lévy
processes, and stable processes [4, 19, 273, 274].

* Statistics: Are the data heavy tailed? Is a heavy-tailed model appropriate? How do
you fit such a model to the data? Specialized techniques overlapping extreme-value
theory [16, 90, 129, 260] are needed.

1.2 Survey

Heavy-tail analysis is an interesting and useful blend of mathematical analysis, proba-
bility, and stochastic processes and statistics. Heavy-tail analysis is the study of systems
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whose behavior is governed by large values which shock the system periodically. This
is in contrast to many systems exhibiting stability whose behavior is determined largely
by an averaging effect. In heavy-tailed analysis, typically the asymptotic behavior of
descriptor variables is determined by the large values or merely a single large value.

Roughly speaking, a random variable X has a heavy (right) tail if there exists a
positive parameter o > 0 such that

PX >x]~x"% x— oo (1.1)
(Note that here and elsewhere that we use the notation
fx)~gx), x— o0,
as shorthand for

N
1im =

xX—>00 g(x)

L,

for two real functions f, g. Similarly, f(x) ~ g(x),x — 0, means the ratio approaches
1 as x — 0.) Examples of such random variables are those with Cauchy, Pareto, #, F,
or stable distributions. Stationary stochastic processes, such as the ARCH, GARCH,
EGARCH, etc., which have been proposed as models for financial returns, typically
have marginal distributions satisfying (1.1). It turns out that (1.1) is not quite the right
mathematical setting for discussing heavy tails (that pride of place belongs to regular
variation of real functions) but we will get to that in due course.

An elementary observation is that a heavy-tailed random variable has a relatively
large probability of exhibiting a really large value, compared to random variables,
which have exponentially bounded tails such as normal, Weibull, exponential, or gamma
random variables. For a N (0, 1) normal random variable N, with density n(x), we have
by Mill’s ratio that

1
P[N > x] ~ n) 2 xS oo,

X XA/ 21

which has much weaker tail weight than suggested by (1.1).

There is a tendency to sometimes confuse the concept of a heavy-tail distribution with
the concept of a distribution with infinite right support. (For a probability distribution
F, the support is the smallest closed set C such that F(C) = 1. For the exponential
distribution with no translation, the support is [0, co) and for the normal distribution,
the support is R.) The distinction is simple and exemplified by comparing a normally
distributed random variable with one whose distribution is Pareto. Both have positive
probability of achieving a value bigger than any preassigned threshold. However, the
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Pareto random variable has, for large thresholds, a much bigger probability of exceeding
the threshold. One cannot rule out heavy-tailed distributions by using the argument that
everything in the world is bounded unless one agrees to rule out all distributions with
unbounded support.

Much of classical statistics is often based on averages and moments. Try to imagine
a statistical world in which you do not rely on moments since if (1.1) holds, moments
above the ath do not exist! This follows since

0 00 oo if ’
/ 7IPIX > x)dx %/ P %dx = 1 p<a
0 1 =00 iff>a,

[~/

means both integrals either converge or diverge together. Much stability theory in
stochastic modeling is expressed in terms of mean drifts, but what if the means do not
exist. Descriptor variables in queueing theory are often in terms of means, such as mean
waiting time, mean queue lengths, and so on. What if such expectations are infinite?

where (in this case)

1.3 Context and examples

In this section, we outline scenarios where heavy-tailed analysis is used. The books [1,
16, 50, 90, 129, 209, 218, 238] contain other examples and application areas.

1.3.1 Data networks

Measurements on data networks often show empirical features that are surprising by the
standards of classical queueing and telephone network models. Measurements often
consist of data giving bitrate or packet rates. This means that a window resolution is
selected (for example, 10 seconds, 1 second, 10 milliseconds, 1 millisecond, . ..) and
the number of bits or packets in adjacent time windows or slots is recorded. Significant
examples include [118, 203, 305, 306].

Certain distinctive properties are common to many different data studies and such
properties are termed invariants by network engineers. (In finance, the phrase stylized
fact seems to be a synonym for invariant.) Here are some examples of invariants for
network data:

* Heavy tails abound [204, 303, 304, 307] for such things as file sizes [6, 242], trans-
mission rates, transmission durations [215, 267].
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* The number of bits or packets per slot exhibits long-range dependence across time
slots (e.g., [203, 305]). There is also a perception of self-similarity as the width of
the time slot varies across a range of time scales exceeding a typical roundtrip time.
See Section 5.2.3 (p. 126).

* Network traffic is bursty with rare but influential periods of very high transmission
rates punctuating typical periods of modest activity.

Having observed empirical phenomena, there is an obligation to uncover relation-
ships that explain the phenomena. An accepted network paradigm is that long-range
dependence in traffic per time slot is caused by heavy tails of the file sizes of files stored
on servers. This is discussed in Section 5.2 (p. 123), where a modeling explanation is
provided for the relationship between long-range dependence and heavy tails.

An idealized data transmission model of a source destination pair is an alternating
renewal on/off model, where constant-rate transmissions alternate with off periods. The
on periods are random in length with a heavy-tailed distribution, and this leads to occa-
sional large transmission lengths. Note that the constant transmission rate assumption
means the transmission length is proportional to the size of the file being transmitted.
This model provides one explanation of perceived long-range dependence in measured
traffic rates. A competing model, which to some tastes is marginally more elegant, is
the infinite-source Poisson model, to be discussed in Section 5.2.4 (p. 127).

Example 1.1. The Boston University study [52, 53, 63], now considered a classic, sug-
gests self-similarity of web traffic stems from heavy-tailed file sizes. This means that we
treat files as being randomly selected from a population and if X represents a randomly
selected file size, then the hypothesis of a heavy tail is

P X>x]~x"% x—o00, a>0, (1.2)

where « is a shape parameter that must be statistically estimated. The BU study re-
ports an overall estimate for a five-month measurement period (see [63]) of o = 1.05.
However, there is considerable month-to-month variation in these estimates and, for
instance, the estimate for November 1994 in room 272 places « in the neighborhood
of 0.66. Figure 1.1 gives the QQ and Hill plots [17, 165, 191, 252] of the file-size data
for the month of November in the Boston University study. These are two graphical
methods for estimating « and will be discussed in more detail in Section 4.6.1 (p. 97)
and Section 4.4.2 (p. 85).

Extensive traffic measurements of on periods are reported in [305], where measured
values of ¢ were usually in the interval (1, 2). Studies of sizes of files accessed on various
servers by the Calgary study [6] report estimates of « from 0.4 to 0.6. So evidence exists
which suggests values of o outside the range (1, 2) should be considered. Also, as user
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Fig. 1.1. QQ and Hill plots of November 1994 file lengths.

demands on the web grow and access speeds increase, there may be a drift toward heavier
file-size distribution tails. However, this is a hypothesis that is currently untested.

1.3.2 Finance

In the study of financial returns of risky assets, it is empirically observed that “returns’
possess notable features, which in the finance culture are termed stylized facts. This is
similar to what we observed about network data sets, and stylized facts are to finance
what invariants are to data networks.

What is a “return”? Suppose {S;} is the stochastic process representing the price of
a speculative asset (stock, currency, derivative, commodity (corn, coffee, etc.)) at the
ith measurement time. The return process is

Ri == (S; — Si—1)/Si—1;

that is, the process giving the relative difference of prices. If the returns are small, then
the differenced log-price process approximates the return process

Si Si
R; :=logS;, —logS;_1 =log— =log |1+ -1
Si—1 Si—1

since for |x| small,
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log(14+x) ~x, x—0,

by I’Hopital’s rule. So instead of studying the returns process {R;}, the differenced
log-price process {R;} is studied, and henceforth we refer to { R;} as the returns process.
Recall that transforming a data set of positive observations by taking logarithms and then
differencing is a common and comfortable procedure from time-series analysis [31],
one which is often used to transform a nonstationary sequence to one that is plausibly
modeled as stationary.

Empirically, the returns process often exhibits notable properties:

1. Heavy-tailed marginal distributions (but usually & > 2, so the mean and variance
exist).

2. Little or no correlation. However, by squaring or taking absolute values of the
returns, one gets a highly correlated, even long-range-dependent process.

3. Dependence. (If the random variables were independent, so would the squares be
independent, but squares are typically correlated.)

Hence one needs to model the data with a process that is stationary and has heavy-tailed
marginal distributions and a dependence structure. This leads to the study of specialized
models in economics with lots of acronyms like ARCH and GARCH. Estimation of the
marginal distribution’s shape parameter « is made more complex due to the fact that
the observations are dependent.

Given Sy, there is a one-to-one correspondence between

{S07 Sl?"'9ST} and {507 Rl?"'9RT}

since
T
Z R; = (log S| — log So) + (log S» — log S)
=1
+ -+ + (log St —log S7—1)
S
= log ST — log Sp = log —T,
So
so that

Sp = Spexi= Ri. (1.3)

So why deal with returns rather than with the price process? Here are some reasons:

1. The returns are scale free and thus independent of the units as well as the size of
the initial investment.
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2. Returns have more attractive statistical properties than prices such as stationarity.
Econometric models sometimes yield nonstationary price models but stationary
returns.

Why deal with {R;} rather than {Iét}?

1. The process {R;} is nicely additive over time. It is easier to construct models for
additive phenomena than for multiplicative ones (such as 1 + R =S /St—1). One
can recover St from the returns by what is essentially an additive formula (1.3).
(Additive is good!) Also, the T-day return process

R7 — Ry =log St — log Sp
is additive. (Additive is good!)
2. The daily values of R, = S,/S,_1 — 1 satisfy

S
—1>-1,
Si—1

and for statistical modeling, it is a bit unnatural to have the variable bounded below
by —1. Forinstance, one could not model such a process using a normal or two-sided
stable density.

3. Certain economic facts are easily expressed by means of {R;}. For example, if S; is
the exchange rate of the US dollar against the British pound and R; = log(S;/S;—1),
then 1/S; is the exchange rate of pounds to dollars, and the return from the point of
view of the British investor is

l/Sl _ S[—] SI

=1lo =-1lo ,
1/8-1 =75, 85

log

which is minus the return for the American investor.

4. As mentioned, the operations of taking logarithms and differencing are standard
time-series tools for coercing a data set into looking stationary. Both operations,
as indicated, are easily undone. So there is a high degree of comfort with these
operations.

Classical extreme-value theory, which subsumes heavy-tail analysis, uses tech-
niques to estimate value-at-risk (or VaR), which is an extreme quantile of the profit-
and-loss density, once the density is estimated. This is discussed further in Section 1.3.2
(p. 9) after Example 1.2 and also in Section 4.7 (p. 111).

Example 1.2 (Standard & Poors 500). We consider the data set fin-poors.dat in the
package Xtremes [238], which gives the Standard & Poors 500 stock market index.
The data, although somewhat old, are absolutely typical of many finance data sets; it
is daily data from July 1962 to December 1987 but, of course, does not include days
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Fig. 1.3. Time-series plot of S&P 500 return data (left) and the sample autocorrelation function
(right).

when the market is closed. In Figure 1.2, we display the time-series plots of the actual
data for the index and the log of the data. Only someone delusional would conclude
that these two series were stationary. On the left side of Figure 1.3, we exhibit the 6410
returns {R;} of the data by differencing at lag 1 the log(S&P) data. On the right side
is the sample autocorrelation function. There is a large lag 1 correlation but otherwise
few spikes are outside the 95% confidence window.

For a view of the stylized facts about these data, and to indicate the complexities of
the dependence structure, we exhibit the autocorrelation function of the squared returns
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Fig. 1.4. (i) The sample autocorrelation function of the squared returns (left). (ii) The sample
autocorrelation function of the absolute values of the returns (right).

in Figure 1.4 (left), and on the right, the autocorrelation function for the absolute value
of the returns. Although there is little correlation in the original series, the iid hypothesis
is obviously false.

One can compare the heaviness of the right and left tail of the marginal distribution
of the process {R;} even if we do not believe that the process is iid. A reasonable
assumption seems to be that the data can be modeled by a stationary, uncorrelated
process, and we hope the standard exploratory extreme-value and heavy-tailed methods
developed for iid processes still apply. We apply the QQ plotting technique to the data.
(See Sections 4.6 (p. 97) and 11.1.2 (p. 366).) After playing a bit with the number of
upper-order statistics used, we settled on k = 200 order statistics for the positive values
(upper tail) which gives the slope estimate of @ = 3.61. This is shown in the left side
of Figure 1.5. On the right side of Figure 1.5 is the comparable plot for the left tail;
here we applied the routine to abs(returns[returns < 0]), that is, to the absolute value
of the negative data points in the log-return sample. After some experimentation, we
obtained an estimate & = 3.138 using k = 150. Are the two tails symmetric, which is
a common theoretical assumption? Unlikely!

Value-at-risk

Extreme-value theory and heavy-tail analysis use techniques to estimate value-at-risk
(VaR), which is an extreme quantile of the profit-and-loss density, once the density is
estimated. Here is a rapid overview.
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Fig. 1.5. Left: QQ plot and parfit estimate of « for the right tail using k = 200 upper-order
statistics. Right: QQ plot and parfit estimate of « for the left tail using the absolute value of the
negative values in the log-returns.

Financial institutions have to meet standards set by regulatory bodies designed
to prevent overexposure to risks. Sufficient capital is required to withstand sudden
dramatic unfavorable shifts in the market. A commonly used risk metric is value-at-
risk (VaR), which is the point that is exceeded by a loss for the portfolio only with a
specified low probability. This will just be a quantile of the loss distribution, which can
be estimated from observable data.

The risk analysis is done in two stages:

* Express profit-and-loss in terms of returns.
» Statistically model the returns and compute the appropriate quantile.

Representing market value in terms of returns. Let {S;} be the price process of an asset
such as a stock. Suppose at time O a decision is made to hold % shares for the time
horizont = 0, ..., T. Then the market value of the asset at time ¢ is

VchS[, l'=0,...,T.

So Vj is the initial value and V7 is the final value at the end of the time horizon. The
loss variable is the “loss’ expressed in positive units:
Vi — Vi if V, — Vy <0,
L= —(V,— Vo) = Vi = Vol Ve = Vo
—|\Vi =Vl £V, —Vy>0.

So if L; is negative, there is a profit.
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We express this in terms of the return process {R;} defined in (1.3). Multiplying
(1.3) by h, we have the T -period loss is

Ly = —h(Sp — So) = —h (SOeZiT=1 Ri _ So)
= —hSo (ezz:l Ri _ 1)
=V <1 _ eXini Ri) (1.4)

T
~ Vo (—ZR,-), (1.5)
i=1

where the last approximation is tolerable provided | ZiT:I R;| is small.

Multivariate version. Portfolios rarely contain a single asset, and typically diversifica-
tion leads to portfolios being dependent on a large-dimensional vector of diverse asset
returns. This is one reason for the increasing interest in multivariate heavy tails, which
is the focus of this book.

Suppose a portfolio consists of d assets with prices at time ¢ equal to S; 1, ..., S 4,
t =1,...,T. Let h; be the number of shares owned in asset j during the period of
observation so that the value of the jth asset at time ¢ is

Vij=hjSj, j=1,....d; t=0,...,T.

The value of the total portfolio at 7 is
d
Vi=> Vij. t=0,....T
j=1

Let {R; j, t > 0} be the return process for the jth asset. Also, we write

W= Yo _ S0
TV Y oy

to indicate how the portfolio is balanced at time 0. Define

d
Lt =—-(Vr—Vp) =— Z(VT,j - Vo,5)
j=1

d
I R . V()’j T R .
= - Z (V(),jEZ’*l L — VO,j) =-V Z _VO <e2171 1j — 1)

j=1 j=1
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d
-V Z W, (1 X Rt,j) (1.6)
j=1

d T
~ Vo) Wi (—Rej)
j=1 t=1

Z,Tzl(—RTJ)
= Vo(Wy, ..., Wy) : . (1.7)

ST (—Rr.a)

Definition and computation of VaR. The value-at-risk, VaR (T, g), for the period T is
the gth quantile of the loss distribution defined by

P[Ly < VaR(T, q)] =gq. (1.8)
For a single asset this is computed as follows. Define
T
Fr(x)=P [—ZR,- < x} ,
=1
which is basically the left tail of the T-period return variable. We claim
VaR(T, q) = Vo(1 — e 1 @), (1.9)
which assumes Vj) is nonrandom and known. The reason for (1.9) is that

PILr < Vo(1 — e~ FF @y = p[v, (1 — X Rt) < Vo(l — e—FTW))}

) T
—pleXimi R > e*Fr“(q)] =P [Z R, > —Ff(q)}
t=1

T
=P|-> R gF;(q)} =gq.

L =1

Note that if we use the approximation 1 — ¢~ F7 @ F;(q), then
VaR(T, ¢) ~ VoF7 (q).

However, this overestimates VaR since forx > 0,1 —e™ < x.
The statistical problem is to estimate VaR (T, ¢) based on a sample of T-period
returns. The empirical distribution function of the sample of T-period returns is an
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Fig. 1.6. Danish data (left) and QQ plot.

approximation of the true distribution of returns which is reasonably accurate in the
center of the distribution. However, to estimate an extreme quantile such as VaR, we
need a reasonable estimate not just in the center of the distribution but in the extreme
tail. Thus extrapolation methods using peaks-over-threshold methods and asymptotic
theory based on extreme-value and heavy-tail analysis must be used. See [50, 90, 129,
209, 218, 238]. We return to this point in Section 4.7 (p. 111).

1.3.3 Insurance and reinsurance

The general theme here is to model insurance claim sizes and frequencies so that pre-
mium rates may be set intelligently and risk to the insurance company quantified.

Smaller insurance companies sometimes pay for reinsurance or, more particularly,
excess-of-loss (XL) insurance to a bigger company like Munich Re, Swiss Re, or Lloyd’s
of London. The excess claims over a certain contractually agreed threshhold are covered
by the big insurance company. Such excess claims are by definition very large, so heavy-
tail analysis is a natural tool to apply. What premium should the big insurance company
charge to cover potential losses?

To convince you this might make a difference to somebody, note [129] that from
1970-1995, the two worst cumulative losses world wide were Hurrricane Andrew (my
wife’s cousin’s yacht in Miami wound up on somebody’s roof 30 miles to the north)
and the Northridge earthquake in California. Losses in 1992 dollars were $16,000 and
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$11,838 million dollars, respectively. (Note the unit is “millions of dollars.”) The tally
from Hurricane Katrina will undoubtedly exceed both these prior disasters.

As an example of data you might encounter, consider the Danish data on large fire
insurance losses [219, 263]. Figure 1.6 gives a time-series plot of the 2156 Danish
data consisting of losses of over one million Danish krone (DKK) and the right-hand
plot is the QQ plot of these data, yielding a remarkably straight plot. The straight-line
plot indicates the appropriateness of heavy-tail analysis. The data were collected from
1980-1990 inclusive and values adjusted for inflation to 1985 values.
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Crash Course I: Regular Variation

The next two chapters are rapid overviews of two essential subjects: regular variation
and weak convergence. This kind of material is sometimes relegated to appendices,
which is an unloved practice requiring much paging forward and back. Readers who
are familiar with these subjects will find these chapters reassuring collections of notation
and basic results. Those readers with less familiarity should read through the chapters
to gain some functionality with the topics without worrying about all details; they can
return later to ponder details, get further references, and improve mastery as time and
circumstances allow. Other treatments and more detail can be found in [26, 90, 102,
144, 260, 275].

The theory of regularly varying functions is the appropriate mathematical analysis
tool for proper discussion of heavy-tail phenomena. We begin by reviewing some results
from analysis starting with uniform convergence.

2.1 Preliminaries from analysis

2.1.1 Uniform convergence

If {f,, n = 0} are real-valued functions on R (or, in fact, any metric space), then f;,
converges uniformly on A C R to fy if

sup | fo(x) = fu(x)] = 0 (2.1)

X€EA

as n — oo. The definition would still make sense if the range of f,,, n > 0, were a
metric space, but then | fo(x) — f,;(x)| would have to be replaced by d( fo(x), f(x)),
where d(-, -) is the metric. For functions on R, the phrase local uniform convergence
means that (2.1) holds for any compact interval A.

A very useful fact is that monotone functions converging pointwise to a continuous
limit converge locally uniformly. (See [260, p. 1] for additional material.)
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Proposition 2.1. Suppose U,, n > 0, are nondecreasing, real-valued functions on R
and that Uy is continuous. If for all x,

Un(x) = Up(x) (n — 00),
then U,, — Uy locally uniformly; i.e., for any a < b,

sup |U,(x) — Up(x)| — 0.
x€la,b]

Proof. One proof of this fact is outlined as follows: If Uy is continuous on [a, b],
then it is uniformly continuous. From the uniform continuity, for any x, there is an
interval-neighborhood O, on which Uy(-) oscillates by less than a given €. This gives
an open cover of [a, b]. Compactness of [a, b] allows us to prune {O,, x € [a, b]} to
obtain a finite subcover {(a;, b;),i = 1, ..., K}. Using this finite collection and the
monotonicity of the functions leads to the result: Given € > 0, there exists some large
N such that if n > N, then

max_(1Un(@) = Uo(a] \/ 1Ua (i) = Uo(b)) < € 22)

1<i<K
(by pointwise convergence). Observe that

sup [Up(x) = Up(x)| = max sup |Un(x) — Uo(x)]. (2.3)

x€la,b] =i=K xela;,b;)

For any x € [a;, b;], we have by monotonicity

Un(x) — Uo(x) < Un(bi) — Uo(ai)
= Uo(bi) + € — Up(a;) (by (2.2))

< 2,

with a similar lower bound. This is true for all 7, and hence we get uniform convergence
on [a, b]. O

2.1.2 Inverses of monotone functions

Suppose H : R > (a, b) is a nondecreasing function on R with range (a, b), where
—00 < a < b < oo. With the convention that the infimum of an empty set is +o00, we
define the (left-continuous) inverse H* : (a, b) — R of H as

H* (y) =inf{s : H(s) > y}.

See Figure 2.1.
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H(s)

-7

N

Fig. 2.1. The inverse at y is the foot of the left dotted perpendicular.

In case the function H is right continuous, we have the following desirable proper-
ties:

A(y) ;== {s : H(s) > y} is closed, 2.4)
HH(y) >y, (2.5)
H (y) <t iffy < H(t). (2.6)

For (2.4), observe that if s, € A(y) and s, | s,theny < H(s,) | H(s), so
H(s) > yands € A(y). If s, ¥ sand s, € A(y),theny < H(s,) + H(s—) < H(s)
and H(s) > y,sos € A(y) again and A(y) is closed. Since A(y) is closed, inf A(y) €
A(y); thatis, H (y) € A(y) which means H (H ~(y)) > y. This gives (2.5). Lastly,
(2.6) follows from the definition of H <.

2.1.3 Convergence of monotone functions
For any function H denote
C(H) = {x € R : H is finite and continuous at x}.

A sequence {H,,, n > 0} of nondecreasing functions on R converges weakly to Hy if as
n — 0o, we have
Hy(x) — Ho(x)

for all x € C(Hp). We will denote this by H,, — Hy. No other form of convergence
for monotone functions will be relevant. If F,, n > 0, are probability distributions
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on R, then a myriad of names give equivalent concepts: complete convergence, vague
convergence, weak™ convergence, narrow convergence. If X,, n > 0, are random
variables and X, has distribution function F,, n > 0, then X,, = X means F,, — Fj.
For the proof of the following, see [24], [260, p. 5], [264, p. 259].

Proposition 2.2. If H,, n > 0, are nondecreasing functions on R with range (a, b) and
H, — Hy, then H;~ — H;~ in the sense that fort € (a,b) N C(H;"),

H, (1) > Hy (7).

2.1.4 Cauchy’s functional equation
Let k(x), x € R, be a function that satisfies
k(x+y)=k(x)+k(y), x,y€eR.

If k is measurable and bounded on a set of positive measure, then k(x) = cx for some
c € R. (See [275], [26, p. 4].)

2.2 Regular variation: Definition and first properties

The theory of regularly varying functions is an essential analytical tool for dealing with
heavy tails, long-range dependence and domains of attraction. Roughly speaking, reg-
ularly varying functions are those functions which behave asymptotically like power
functions. We will deal currently only with real functions of a real variable. Consid-
eration of multivariate cases and probability concepts suggests recasting definitions in
terms of vague convergence of measures, but we will consider this reformulation in
Chapter 3.6 (p. 61) and Section 6.1.4 (p. 172).

Definition 2.1. A measurable function U : R4 — R is regularly varying at oo with
index p € R (written U € RV ) if for x > 0,

Ul(tx)
1m =X
t—oo U(t)

p-

We call p the exponent of variation.

If p = 0, we call U slowly varying. Slowly varying functions are generically
denoted by L(x). If U € RV, then U(x)/x” € RVy, and setting L(x) = U(x)/x”,
we see it is always possible to represent a p-varying function as x” L(x).
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Example 2.1. The canonical p-varying function is x”. The functions log(l + x),
loglog(e 4+ x) are slowly varying, as is exp{(logx)“}, 0 < o < 1. Any function
U such that lim,_, o, U (x) =: U (00) exists positive and finite is slowly varying. The
following functions are not regularly varying: ¢*, sin(x 4+2). Note that [log x] is slowly
varying, but exp{[log x]} is not regularly varying.

In probability applications, we are concerned with distributions whose tails are
regularly varying. Examples are

1-F&x)=x"% x>1, a>0,
and the extreme-value distribution
Dy (x) = exp{—x"%}, x=>0.
®,, (x) has the property
1 —®u(x) ~x"% asx — oo.

A stable law (to be discussed later in Section 5.5.2 (p. 154)) with index ¢, 0 < o < 2
has the property
1-Gx)~cx™®, x—>o00, c¢>0.

The Cauchy density f(x) = (w(1 + x2))~1 has a distribution function F with the

property
1 — F(x) ~ (rx)"\.

If N(x) is the standard normal distribution function, then 1 — N (x) is not regularly
varying nor is the tail of the Gumbel extreme-value distribution 1 — exp{—e™*}.

The definition of regular variation can be weakened slightly (cf. [102, 135, 260]).
Proposition 2.3.

(1) A measurable function U : Ry — Ry varies regularly if there exists a function h
such that for all x > 0,
lim U(tx)/U(t) = h(x).
[—>00

In this case h(x) = x” for some p € Rand U € RV,
(i) A monotone function U : Ry +— Ry varies regularly provided there are two
sequences {L,}, {b,} of positive numbers satisfying

b, — o0, An ™~ Apt1, B — OO, 2.7
and for all x > 0,
lim A,U (byx) =: x(x) exists positive and finite. (2.8)
n—o0

In this case x(x)/x (1) = x” and U € RV, for some p € R.
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We frequently refer to (2.8) as the sequential form of regular variation. For proba-
bility purposes, it is most useful. Typically, U is a distribution tail, 1, = n, and b, is a
distribution quantile.

Proof.

(i) The function /4 is measurable since it is a limit of a family of measurable functions.
Thenforx > 0,y > 0,

Ul(txy) . Ul(txy) . Ul(tx)
Uiy  U@x) U@’

and letting + — oo gives
h(xy) = h(y)h(x).

So h satisfies the Hamel equation, which by change of variable can be converted to
the Cauchy equation. Therefore, the form of 4 is h(x) = x” for some p € R.

(i1) For concreteness assume U is nondecreasing. Assume (2.7) and (2.8), and we show
regular variation. Since b, — oo, for each ¢ there is a finite n(¢) defined by

n(t) =inf{m : b4 > t}
so that
buiry <t < buiy+1-
Therefore, by monotonicity for x > 0,
<ln(r)+1) < AntyU (bu(i)X) )
An(e) An@)+1U (bn(n)+1)

Uy ( An(r) )()»n(z)+1U(bn(t)+1x)>
T U® T \ o+t AU (bu(r)) '

Now let + — oo and use (2.7) and (2.8) to get lim,_, oo l{](ftx)) = 1;5’8

variation follows from part (i). O

. Regular

Remark 2.1. Proposition 2.3(ii) remains true if we only assume (2.8) holds on a dense
set. This is relevant to the case where U is nondecreasing and A, U (b, x) converges
weakly.
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2.2.1 A maximal domain of attraction

Suppose {X,,, n > 1} are iid with common distribution function F(x). The extreme is

n
My =\/ X; = max{Xy, ..., X,}.
i=1

One of the extreme-value distributions is
Dy(x) :=exp{—x"%}, x>0, a>0.

What are conditions on F, called domain of attraction conditions, so that there exists
b, > 0 such that
Plb; M, < x] = F"(byx) — Oy (x) (2.9)

weakly? How do you characterize the normalization sequence {b,}?

Set xo = sup{x : F(x) < 1} which is called the right endpoint of F. We first check
that (2.9) implies xo = oo. Otherwise, if xo < oo, we get from (2.9) that for x > 0,
byx — xg;i.e., b, — xox~!. Since x > 0is arbitrary, we get b,, — 0, whence xo = 0.
But then for x > 0, F"(b,x) = 1, which violates (2.9). Hence xo = co.

Furthermore, b, — oo since otherwise on a subsequence n’, b,y < K for some
K < oo. Then, since F(K) < 1,

0 < ®y(l) = lim F"(by) < lim F"(K) =0,

n'—00 n’—o00

which is a contradiction.
In (2.9), take logarithms to get for x > 0, lim,,_, o n(—log F(b,x)) = x~*. Now
use the relation —log(1 — z) ~ z as z — 0 and (2.9) is equivalent to

lim n(1 — F(byx)) =x"%, x>0. (2.10)
n—o0
From (2.10) and Proposition 2.3, we get
1—Fx)~x“L(x), x— o0 (2.11)

for some o > 0. To characterize {b,}, set U(x) = 1/(1 — F(x)), and (2.10) is the
same as
Ubyx)/n — x%, x> 0;

inverting, we find via Proposition 2.2 that

U(_(n)’) y]/a

— , y>0. (2.12)
by
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SoU(n) = (1/(1 — F))(n) ~ by, and this determines b,, by the convergence-to-
types theorem. See [135, 260, 264].
Conversely, if (2.11) holds, define b, = U < (n) as previously. Then

. 1 — F(byx) —
lim ——— =x ¢,
n—oo 1 — F(by)
and we recover (2.10) provided 1 — F'(b,) ~ n~! or what is the same provided U (b,) ~
n,ie., U(U(n)) ~ n. Recall from (2.6) that z < U (n) iff U(z) < n, and setting
z=U"(m)(1 —¢)and then z = U (n)(1 + &), we get
UUm)  _UWm) _ UWUm)
UUm)(1+e) — n TUUm)(1—¢)

Letn — oo, remembering U = 1/(1 — F) € RV,,. Then

(I+e) %< limioréf n U n)) < lim supUWU ™ (n)) < (1 —¢)77,
n—

n—oo

and since ¢ > 0 is arbitrary, the desired result follows.

2.3 Regular variation: deeper results; Karamata’s theorem

There are several deeper results that give the theory power and utility: uniform conver-
gence; Karamata’s theorem, which says that a regularly varying function integrates the
way you expect a power function to integrate; and finally the Karamata representation
theorem.

2.3.1 Uniform convergence
The first useful result is the uniform convergence theorem.
Proposition 2.4. If U € RV, for p € R, then

lim U(x)/U (1) = x°

locally uniformly in x on (0, 00). If p < 0, then uniform convergence holds on intervals
of the form (b, c0), b > 0. If p > 0, uniform convergence holds on intervals (0, b]
provided U is bounded on (0, b] for all b > 0.

If U is monotone the result already follows from the discussion in Section 2.1.1,
since we have a family of monotone functions converging to a continuous limit. For
detailed discussion, see [26, 102, 144, 275].
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2.3.2 Integration and Karamata’s theorem

The next set of results examines the integral properties of regularly varying functions
[26, 102, 181, 183, 275]. For purposes of integration, a p-varying function behaves
roughly like x”. We assume all functions are locally integrable, and since we are
interested in behavior at co, we assume integrability on intervals including 0 as well.

Theorem 2.1 (Karamata’s theorem).

(a) Suppose p > —1 and U € RV,. Then f(f U(t)dt e RV,11 and

) xU(x)
1 —— =p+1. 2.13
00 Jo Udt P @13
If p < =1 (orifp =—1and fxooU(s)ds < 00), then U € RV, implies that
[ U@dt is finite, [ U(t)dt € RV 541, and
U
im U (2.14)
x—oo [ U(t)dt
(b) If U satisfies
. xU(x)
lim ——— =X € (0, 00), (2.15)
x—oo [FU(t)dt
then U € RV,_1. If [7°U(t)dt < oo and
U
VO 5 e (0, 00), (2.16)

im ——
x=o0 [ U (1)dt
thenU e RV_,_1.

What Theorem 2.1 emphasizes is that for the purposes of integration, the slowly
varying function can be passed from inside to outside the integral. For example, the
way to remember and interpret (2.13) is to write U (x) = x” L(x) and then observe that

/x U@)dt = /x tP L(t)dt;
0 0

now pass the L(¢) in the integrand outside as a factor L(x) to get

~ L(x) /X tPdt = L(x)x" /(o + 1)
0
=xx’L(x)/(p+1) =xUx)/(p + 1),

which is equivalent to the assertion (2.13).
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Proof.
(a) For certain values of p, uniform convergence suffices after writing, for instance,

Jo Uts)ds /1 U(sx)d
U S v

If we wish to proceed using elementary concepts, consider the following approach,
which follows [102].
If p > —1, we show that fooo U(t)dt = oo. From U € RV, we have

lim UQ2s)/U(s) =2° > 27!
§—>00

since p > —1. Therefore, there exists sg such that s > 5o necessitates U (2s) >
2=1U(s). For n with 2" > 59, we have

2n+2 2n+1

/ U(s)ds = 2]
on+l on

and so setting ng = inf{n : 2" > sp} gives

2n+l

UQR2s)ds > / U(s)ds,

n

on+2

/ U(s)ds > Z / U(s)ds > Z/ | Uls)ds = oo,
50 on+l no+

n:2">sq

Thus for p > —1, x > 0, and any N < oo, we have

t t
/ U(sx)ds ~ / U(sx)ds, t— oo,
0 N

since U (sx) is a p-varying function of s. For fixed x and given ¢, there exists N such
that fors > N,
(1 —=e)x"U(s) = U(sx) = (1 +e)x"U(s),

and thus

tx t
U(s)d U d
—00 fO U(s)ds t—00 fO U(s)ds

t
U d
= lim sup x—f]tv (sx)ds
t—00 fN U(s)ds

t
U(s)d
< limsupx”*1(1 + )fN (5)ds
1—00 fN (s)ds
= (14 &)x"*!
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An analogous argument applies for lim inf, and thus we have proved

X
/ U(s)ds € RV
0

when p > —1.

In case p = —I, then either [;° U(s)ds < oo, in which case [; U(s)ds €
RV_14+1 = RV, or fooo U(s)ds = oo and the previous argument is applicable. So
we have checked that for p > —1, [ U(s)ds € RV 1.

We now focus on proving (2.13) when U € RV, p > —1. Define the function

b(x) :=xU(x)/ /‘x Ut)dt, (2.17)
0

so that integrating b(x)/x leads to the representations

/x U(s)ds = cexp {/x z—lb(z)dz} ,
0 1

X
Ux) = cxlb(x)exp{/ tlb(t)dt}. (2.18)
1
We must show b(x) — p + 1. Observe first that
YU (t)dt
liminf 1/b(x) = lim inf Jo Ut
X— 00 X— 00 xU(x)
1
— 1im inf/ vex) o
x=o0 Jo U(x)

Now make a change of variable s = x~'¢, and by Fatou’s lemma this is
1
> / lim inf (U (sx)/U (x))ds
0 X—>00

1 1
:/s'ods:—,
0 p+1

limsupb(x) < p + 1. (2.19)

X—>00

and we conclude that

If p = —1, then b(x) — 0 as desired, so now suppose p > —1.
We observe the following properties of b(x):

(i) b(x) is bounded on a semi-infinite neighborhood of co (by (2.19)).



28 2 Crash Course I: Regular Variation

(ii) b is slowly varying since xU (x) € RV 11 and fox U(s)ds € RV 1.
(iii)) We have
b(xt) —b(x) —> 0

as x — 0o, and the convergence is uniformly bounded for ¢ in finite intervals.
The last statement follows since by slow variation,

Aim (b(xt) = b(x))/b(x) =0

and the denominator is ultimately bounded.
From (iii) and dominated convergence

N

lim [ ' (b(xt) — b(x))dt =0,
1

X—>00

and the left side may be rewritten to obtain

lim { / ' 1~ b(xt)dr — b(x) logs} = 0. (2.20)
X—>00 1

From (2.18)
X X
cexp{/ t—lb(t)dt} :/ U(s)ds € RV 11,
1 0

and from the regular variation property

o+ Dl o 1 o Undt
ogs = l1m 10 —
P 837 1508 Jo Undt
XS S
= lim t~'b(1)dt = lim / t~'b(xt)dt;
X—> 00 X X—>00 1

combining this with (2.20) leads to the desired conclusion that b(x) — p + 1.
(b) We suppose (2.15) holds and check U € RV, _1. Set

b(x) =xU(x)/ /x U(t)dt,
0
so that b(x) — A. From (2.18)
U(x) = cx 'b(x) exp {/x z—‘b(t)dz}
1

= cb(x) exp {fx b)) — l)dt} ,
1

and since b(t) — 1 — A — 1, U satisfies the definition of being (A — 1)-varying as can
be checked from the definition. (See Corollary 2.1.) m|
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2.3.3 Karamata’s representation

Theorem 2.1 leads in a straightforward way to what has been called the Karamata
representation of a regularly varying function.

Corollary 2.1 (the Karamata representation).

(1) The function L is slowly varying iff L can be represented as

X
L(x) =c(x)exp {/ t_le(t)dt}, x >0, (2.21)
1
wherec: Ry — Ry, e : Ry — Ry, and
lim c(x) =c € (0, 00), (2.22)
X—> 00
lim e(r) = 0. (2.23)
—00

(1) A function U : R4 +— Ry is regularly varying with index p iff U has the represen-
tation

U (x) = c(x) exp {/x tl,o(t)dt} , (2.24)
1

where c(-) satisfies (2.22) and lim;—,, p(t) = p. (This is obtained from (i) by
writing U (x) = x” L(x) and using the representation for L.)

Proof. If L has a representation (2.21), then it must be slowly varying since for x > 1,
tx
lim L(rx)/L(r) = lim (c¢(tx)/c(t)) exp { / s_le(s)ds} .
I—00 t—00 ¢

Given ¢, there exists fp by (2.23) such that
—e<e)<e, t=>1t,

so that
tx tx tx
—elogx = —sf s lds < / s~ le(s)ds < s/ s”lds = elogx.
t t t

Therefore, lim;—oo [ s~ 'e(s)ds = 0 and lim,_, o L(tx)/L(t) = 1.
Conversely, suppose L € RVj. In a matter similar to (2.17), define

b(x) = xL(x)//x L(s)ds,
0
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and by Karamata’s theorem, b(x) — 1 as x — oo. Note that

L(x) =x"'b(x) /x L(s)ds.
0

Sete(x) = b(x) — 1,s0¢e(x) — 0and

X X t
/ t_ls(t)dt=f (L(t)// L(s)ds)dt—logx
1 1 0
X t
=f d(log/ L(s)ds) —log x
1 0
X 1
= log (x_lf L(s)ds// L(s)ds),
0 0

X X 1
exp{/ z—‘e(z)dz}:x—‘/ L(s)ds// L(s)ds
1 0 0

1
=L(x)/ (b(x)/ L(s)ds) , (2.25)
0

whence

and the representation follows with

1
c(x) = b(x)/ L(s)ds. O
0

Example 2.2. The Cauchy density

F/()c)—1 ! xeR
2 \14+x2)° ’

satisfies

/ 1 -2
F(x)~—x"", x—o00,
2
and hence |
1—F(x)~ —x_l, X — 00.
2
2.3.4 Differentiation

The previous results describe the asymptotic properties of the indefinite integral of a
regularly varying function. We now describe what happens when a p-varying function
is differentiated.
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Proposition 2.5. Suppose U : Ry +— R is absolutely continuous with density u so that

U(x) = /x u(t)dt.
0

(a) (von Mises [293]) If
xli)rroloxu(x)/U(x) =p, (2.26)

then U € RV, .
(b) (Landau [196]) If U € RV, p € R, and u is monotone, then (2.26) holds, and if
p # 0, then |u|(x) € RV ,_1. (See [260, 275] and [102, pp. 23 and 109].)

Proof.

(a) Set
b(x) = xu(x)/U(x)

and as before we find that
Ux) = U(l)exp{/ t‘lb(t)dt}
1

so that U satisfies the representation theorem for a p-varying function.
(b) Suppose u is nondecreasing. An analogous proof works in the case u is nonincreas-
ing. Let 0 < a < b and observe that

xb

(U (xb) — U (xa))/ U (x) = f u(y)dy /U ).

xXa

By monotonicity we get
u(xb)x(b—a)/Ux) = (Uxb)—U(xa))/U(x) = uxa)x(b—a)/U(x). (2.27)
From (2.27) and the fact that U € RV ,, we conclude that

lim sup xu(xa)/U(x) < (b” —a”)/(b — a) (2.28)
X—> 00
forany b > a > 0. Solet b | a, which is tantamount to taking a derivative. Then
(2.28) becomes
lim sup xu(xa)/U(x) < pa”~! (2.29)

X—>00
for any a > 0. Similarly, from the left-hand equality in (2.27) after letting a 1 b,
we get
lim inf xu(xb)/ U (x) > pb?~! (2.30)
X—>00

for any b > 0. Then (2.26) results by setting a = 1 in (2.29) and b = 1 in
(2.30). O
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2.4 Regular variation: Further properties

For the following list of properties, it is convenient to define rapid variation or regular
variation with index co. We say U : Ry +— R is regularly varying with index oo
(U € RV ) if for every x > 0,

0 ifx<l1,
x> =11 ifx=1,

oo ifx > 1.

Ul(tx)
1m =
t—oo U(t)

Similarly, U € RV_ if

oo ifx <1,
x =11 ifx=1,

0 ifx>1.

Ul(tx)
1m =
t—oo U(t)

The following proposition, modeled after [102] (see also [90]), collects useful prop-
erties of regularly varying functions.

Proposition 2.6.

() IfU € RV, —00 < p < o0, then
lim logU(x)/logx = p
X—>00

so that
0 i 0,
lim U(x) = o<
xX—00 oo ifp > 0.
(i1) (Potter bounds) Suppose U € RV, p € R. Take ¢ > 0. Then there exists ty such
that for x > 1 and t > 1y,

U(tx)

— o) P
(1 —¢e)x < 0

< (1 4&)xPte, (2.31)

(i) If U € RV, p € R, and {a,}, {b,} satisfy 0 < b, — o0, 0 < a, — 00, and
b, ~ ca, asn — oo for0 < ¢ < 0o, then U(b,) ~ c”U (ay,). If p # 0, the result
also holds for ¢ = 0 or co. Analogous results hold with sequences replaced by
functions.

(iv) IfUy e RV, and Uy € RV,,, p» < 00, and limy_, o U>(x) = 00, then

UioU; € RV, p, .
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(v) Suppose U is nondecreasing, U(c0) = 00, and U € RV, 0 < p < 0co. Then

U< e Rfol .
(vi) Suppose Uy, Us are nondecreasing and p-varying, 0 < p < oo. Then for 0 <
c <00,
Ui(x) ~cUz(x), x — o0,
iff

U (x) ~c ™ Us(x), x— oo
(vii) If U € RV, p # 0, then there exists a function U* that is absolutely continuous,
strictly monotone, and
Ux)~Ux)*, x— oo.
Proof.

(i) We give the proof for the case 0 < p < 0o. Suppose U has Karamata represen-
tation

U(x) = c(x) exp {/x t_l,o(t)dt} ,
1

where c(x) — ¢ > 0 and p(¢) — p. Then

X

log U(x)/ log x :0(1)+/ t l,o(t)dt//xt_ldt — p.
1 1

(i) Using the Karamata representation,

Utx)/U (1) = (c(tx)/c(t)) exp {/X sl,o(ts)ds} ,
1

and the result is apparent since we may pick 7y so that # > fg implies that p — & <
p(ts) <p—+efors > 1.
(iii) If ¢ > 0, then from the uniform convergence property in Proposition 2.4,

.U . Ulan(bn/an)) . Ulto)
lim = lim ——— = lim ——~ = Cp.
n—oo U (ay) n— 00 Ulay) t—oo U(t)

(iv) Again by uniform convergence, for x > 0,

im U1 (Ux(tx)) — lim Ui (U (1) (Ua(tx)/ Ua(2)))
t—oo Uyp(Us(t)) 1= Ui (Ux (1))
. Ui(yxr?)
= lim ———% = xP1,

y=oo  Ui(y)
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(v)

(vi)
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Let U;(x) = U(tx)/U(t), so that if U € RV, and U is nondecreasing, then
0 <p<o0)
U/(x) = x?, t— oo,

which implies by Proposition 2.2 that

U= (x) - xp_l, t — 00;
that is,
lim USxU @)/t =x" .
1—00
Therefore,

lim USGUWU=O)/U (1) =x"",

This limit holds locally uniformly since monotone functions are converging to
a continuous limit. Now U o U (¢t) ~ t ast — oo, and if we replace x by
xt/U o U< (t) and use uniform convergence, we get

U< (tx) U ((xt/UoU@)Uo U ())
im = lim
t—oo U< (1) t— 00 U<()
U(xUoU (1)) o
im =x"
t— 00 U<—([)

which makes U< € RV 1.
Ifc>0,0 < p < oo, we have for x > 0,

Uitx) _ . Ui@n)Uax)

im = lim ———F——~ =¢x*
t—oo Up(t)  t—=o0 Up(tx)Ux(1)

Inverting, we find for y > 0,
. _ —1
lim U~ (yUa(1)/t = (c™'y)"

t—00

and so
: <« <~ <~ - -1
Jim U™ (yUz 0 Uy~ (0)/U;~ (1) = (7' y)”

and since U o Uy~ (t) ~ t,
lim U (y0)/Us () = (' y)? .
—00

Set y = 1 to obtain the result.
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(vii) For instance, if U € RV, p > 0, define

t
U*(1) :/ s~ U (s)ds.
1

Then s~ 'U(s) € RV o—1, and by Karamata’s theorem,
Ux)/U*(x) — p.

U* is absolutely continuous, and since U(x) — oo when p > 0, then U* is
ultimately strictly increasing. O

2.5 Problems

2.1. Suppose
U(x) =2logx +sin(logx), x >e.

Is U () regularly varying? If so, whatis the index? Whatis the Karamata representation?

2.2. Give an example of a slowly varying function L (x) such that lim,_, s, L(x) does
not exist. (Would the Karamata representation be helpful?)

2.3. Verify that the following functions are slowly varying and give the Karamata rep-
resentation:

I.(1+x"YHlogx;x >e.
2. exp{(logx)*},x >e,0 < < 1.
3.2 4+ sin(loglog x); x > €°.
4.5 1k x> 1.
2.4. Check that the following functions are not regularly varying:
1.2 4 sin(logx); x > e.
2. exp{[log x]}; x > e.
3.2 +sinx, x > 0.
Regarding item 2, is

/ exp{[logu]}du

regularly varying?
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2.5 (Variant of Karamata’s theorem). Suppose F is a distribution on R} and
1—F(x)~x"%L(x), x— oo.
1. For n > «, show by integrating by parts or using Fubini’s theorem that

- fo u F (du) __« '
x=oox(1 - F(x)) n—a

2. For n > 0, show that
[2°u="F (du) o

X

im = .
x—oo x M1 —F(x) o-+n

2.6 (Variant of Potter’s inequality [255]). Let Z be a nonnegative random variable
with distribution F such that 1 — F is regularly varying with index —«, @ > 0. If e > 0
is given, there exist constants xo = xg(€), K = K (¢) > 0 such that for any ¢ > 0, we
have the following:

(1) Tail ratio result:

l—F(x/c)< (I4+e)c* ifc>1,x/c > xo,
1 — F(x) (1+¢e)c* € ifc<1,x > xo.

(ii) Expectation result:

Kc*Tex%t€(1 — F(x)) ifc>1,x/c > xo,
K €xT€(1 — F(x)) ifc <1,x > xo.

E@ZA@“*<{

2.7. Suppose {N,, n > 1} is a sequence of nonnegative random variables such that

N2y,
n
Assume a(-) € RV, and P[N > 0] = 1. Prove that
a(Ny)
a(n)
2.8. Prove that L is slowly varying iff for all x > 1,
L(tx)
im =1
t—00 L(t)

P
— N”.

If L is monotone, it is enough to check the limit for one positive x # 1.
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2.9 (Relative stability of sums). Prove the following are equivalent for iid nonnegative
random variables {X,,n > 1}.

1. There exist constants b,, — oo such that as n — o0,
- P
b' Y Xi > L
i=1

2. The Laplace transform
$() :=E( ), >0,

satisfies

1 — —1
T
-

that is,
-9 _

0
/ e P[X| > x]dx
T 0

is slowly varying at 0.

3. The function
X
U(x) :/ P[X| > s]ds
0

is slowly varying at co. (This requires the use of a Tauberian theorem. See Sec-
tion 7.3.3.)

Characterize the constant b, in terms of ¢. Verify that b, can also be characterized
as follows: Set H(x) = x/ U (x) and then set

b, = H" (n),
where H <~ is the inverse function of H satisfying H(H < (x)) ~ x.

2.10 (IT-variation). A measurable function U : (0, oo) +— (0, o) is called I1-varying
(written U € IT) [26, 102] if there exists g € RV such that for all x > 0,

Utx) —U(t)

l_1)rgo s log x. (2.32)

Call g the auxiliary function. Sometimes we then write U € I1(g).



38 2 Crash Course I: Regular Variation

(a) Suppose
U(x) =/ u(s)ds, x>0, wu()eRV_;.
0

Show that U € IT [104].
(b) Suppose U is nondecreasing. Show that U € I iff there exists a(n) — oo and

2 _Ulan)) > L,
a(n)

where L is the measure satisfying L(a, b] =logb/a,0 < a < b < oo [259].

2.11 (More on II-variation [96]).

(a) Show that U € I1(g) iff U o r € II for every r € RV. The auxiliary function of
Uorisgor.

(b) If (2.32) holds except that the limit is — log x, say, U € I1_, and if (2.32) holds,
say, U € I14, show that U € I14(g) iff 1/U e I1_. The auxiliary function of 1/U
is g/U>.

(c)If U € Il(g) and Ly € RVy, then the product U - Lg € IT iff

<L0(tx) — 1) M -0 (— o)
Lo(1) g(1)

forall x > O.
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Crash Course II: Weak Convergence; Implications for
Heavy-Tail Analysis

Asymptotic properties of statistics in heavy-tailed analysis are clearly understood with
an interpretation which comes from the modern theory of weak convergence of prob-
ability measures on metric spaces, as originally promoted in [22] and updated in [25].
Additionally, utilizing the power of weak convergence allows for a rather unified treat-
ment of the one-dimensional and higher-dimensional cases of heavy-tailed phenomena.

3.1 Definitions

Let S be a complete, separable metric space with metric d and let S be the Borel o-
algebra of subsets of S generated by open sets. Suppose (€2, A, P) is a probability space.
A random element X in S is a measurable map from such a space (€2, A) into (S, S).

With a random variable, a point w € €2 is mapped into a real-valued member of R.
With a random element, a point @ € 2 is mapped into an element of the metric space
S. Some common examples of this paradigm are given in Table 3.1.

Given a sequence {X,,n > 0} of random elements of S, there is a corresponding
sequence of distributions on S,

P,=PoX,'=P[X, €], n>0.

P, is called the distribution of X;,. Then X,, converges weakly to X (written X;,, = Xg
or P, = Py) if whenever f € C(S), the class of bounded, continuous, real-valued
functions on S, we have

Ef(X,) = /S () Paldx) — Ef (Xo) = /g () Podo).

Recall that the definition of weak convergence of random variables in R is given
in terms of one-dimensional distribution functions, which does not generalize nicely to
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] Metric space S \ Random element X is a...
R random variable

RY random vector

R random sequence

C10, 00), the space of real-valued continu- |[random process with continuous paths
ous functions on [0, 00)
DJ0, 00), the space of real-valued, right- |right-continuous random process with jump
continuous functions on [0, co) with finite |discontinuities

left limits existing on (0, c0)
M ,(EE), the space of point measures on a |stochastic point process on [E
nice space E
M, (E), the space of Radon measures on a [random measure on E
nice space E

Table 3.1. Various metric spaces and random elements.

higher dimensions. The definition in terms of integrals of test functions f € C(S) is
very flexible and well defined for any metric space S.
3.2 Basic properties of weak convergence

3.2.1 Portmanteau theorem

The basic Portmanteau theorem [22, p. 11], [25] says the following are equivalent:

X, = Xo. (3.1
lim P[X, € A]=P[Xo € A] VA € Ssuchthat P[Xy € dA] = 0. (3.2)
n—oo

Here 0 A denotes the boundary of the set A.

limsupP[X,, € F] <P[Xoe€ F] Vclosed F € S. 3.3)
n— oo

liminf P[X, € G] > P[Xo € G] VopenG € S. (3.4)
n—oo

Ef(X,) = Ef(Xo) V f that are bounded and

uniformly continuous. 3.5)

Although it may seem comfortable to express weak convergence of probability
measures in terms of sets, it is mathematically simplest to rely on integrals with respect
to test functions as given, for instance, in (3.5).
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3.2.2 Skorohod’s theorem

Skorohod’s theorem [23, Proposition 0.2] is a nice way to think about weak convergence
since, for certain purposes, it allows one to replace convergence in distribution with
almost sure convergence. In a theory which relies heavily on continuity, this is a big
advantage. Almost sure convergence, being pointwise, is very well suited to continuity
arguments.

Let {X,, n > 0} be random elements of the metric space (S, S), and suppose the
domain of each X, is (22, A, P). Let

(10, 11, B[O, 1], LEB(-))

be the usual probability space on [0, 1], where LEB(-) is Lebesgue measure or length
and BJO0, 1] is the Borel subsets of [0, 1]. We call this space the uniform probability
space. Skorohod’s theorem expresses that X,, = X iff there exist random elements
{X,n > 0} in S defined on the uniform probability space, such that

X, X, foreachn >0
and
X, — X; as.
The second statement means
LEE {1 € [0, 1]: lim d(X;(0), X5(0) =0} =1.

Almost sure convergence always implies convergence in distribution, so Skorohod’s
theorem provides a partial converse. To see why almost sure convergence implies weak
convergence is easy. With d(-, -) as the metric on S, we have d(X,, X¢) — 0 almost
surely, and for any f € C(S), we get by continuity that f(X,) — f(Xo) almost surely.
Since f is bounded, by dominated convergence we get E f (X,) — E f(Xo).

Recall that in one dimension, Skorohod’s theorem has an easy proof. If X,, = X
and X, has distribution function F;,, then

F, - Fy, n— oo.

Thus, by Proposition 2.2, F,” — FO‘_. Then with U, the identity function on [0, 1] (so
that U is uniformly distributed),

X, LF(U) = X:, n>0,
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and

LEB[X} — X{] = LEB{ € [0, 1] : F,~ (1) > Fy (1)]
> LEB(C(F; ) = 1,

since the set of discontinuities of the monotone function FO‘_(-) is countable and hence
has Lebesgue measure 0.

The power of weak convergence theory comes from the fact that once a basic
convergence result has been proved, many corollaries emerge with little effort, often
using only continuity. Suppose (S;, d;),i = 1, 2, are twometric spacesand i : S; — Sy
is continuous. If {X,,n > 0} are random elements in (S, S;) and X,, = Xy, then
h(X,) = h(Xo) as random elements in (S;, S»). Justification is straightforward: Let
f2» € C(Sy), and we must show that E f>(h(X,,)) — Efa(h(Xp)). But fo(h(X,)) =
froh(X,),and since foh € C(Sy), the result follows from the definition of X,, = X
inS;.

If {X,,} are random variables that converge, then letting £ (x) = x
... yields additional convergences for free.

2 or arctan x or

3.2.3 Continuous mapping theorem

The function £ used in the previous paragraphs need not be continuous everywhere,
and, in fact, many of the maps /4 that we will wish to use are definitely not continuous
everywhere. For a function & : S| — S», define the discontinuity set of 4 as

D(h) := {s1 € Sy : h is discontinuous at sy }.

Similarly, define
C(h) =: {s1 € S : h is continuous at s1}.

Theorem 3.1 (continuous mapping theorem). Let (S;, d;), i = 1,2, be two metric
spaces, and suppose {X,,n > 0} are random elements of (S, S1) and X, = Xo. If
h :S; — S, satisfies

P[Xo € D(h)] =P[Xo € {s1 € S| : h is discontinuous at s1}] = 0,

then
h(Xn) = h(Xo)

inSo.
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Proof. For a traditional proof, see [22, p. 30]. This result is an immediate consequence
of Skorohod’s theorem. If X,, = Xy, then there exist almost surely convergent random
elements of S; defined on the unit interval, denoted X, such that

x*<Xx, nx>o.
Then it follows that

LEB[A(X¥) — h(X$)] > LEB[X ¢ D(h)].

Since Xy 4 X5, we get
LEB[Xy ¢ D(h)] =P[Xo ¢ D(W)] =1,

and therefore 7 (X}) — h(X{) almost surely. Since almost sure convergence implies

convergence in distribution, £ (X ;) = h(X). Since forevery n > 0, we have h(X,,) 4
h(X}), the result follows. m]

3.2.4 Subsequences and Prohorov’s theorem

Often to prove weak convergence, subsequence arguments are used and the follow-
ing is necessary. A family IT of probability measures on a complete, separable metric
space is relatively compact or sequentially compact if every sequence {P,} C I con-
tains a weakly convergent subsequence. Note that the family of all measures can be
metrized so that this notion of relative compactness coincides with the metric defini-
tion and expresses the Bolzano—Weierstrass equivalence of compactness and sequential
compactness. See [25].

Relative compactness is theoretically useful but hard to check in practice, so we
need a workable criterion. Call the family IT tight (and by abuse of language we will
refer to the corresponding random elements also as a tight family) if for any ¢, there
exists a compact K, € S such that

P(K;)>1—¢ forall P eIl

This is the kind of condition that precludes probability mass from escaping from the
state space. Prohorov’s theorem [25] guarantees that when S is separable and complete,
tightness of IT is the same as relative compactness. Tightness can be checked, although
it is seldom easy.
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3.3 Some useful metric spaces

It pays to spend a bit of time remembering details of examples of metric spaces that
will be useful. To standardize notation, we set

F(S) = closed subsets of S,
G(S) = open subsets of S,
K(S) = compact subsets of S.

3.3.1 R, finite-dimensional Euclidean space
We set
R = {(x1,....,x):xi€Ri=1,....,d)=RxRx---xR.

The metric is defined by

d
dx,y)= | (xi— )
i=1
forx, y € R?. Convergence of a sequence in this space is equivalent to componentwise
convergence.
Define an interval

(@, bl={x R :aq; <x; <bj,i=1,...,d}.
A probability measure P on R? is determined by its distribution function
F(x):= P(—o0, x],
and a sequence of probability measures {P,, n > 0} on RY converges to Py iff
F,(x) — Fy(x) Vx € C(Fp).

Note that this statement equates convergence in distribution of a sequence of random
vectors with weak convergence of their distribution functions. While this is concrete, it
is seldom useful since multivariate distribution functions are usually awkward to deal
with in practice.

Also, recall K € K(RY) iff K is closed and bounded.
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3.3.2 R*, sequence space

Define
R® :={(x;,x2,...):x; €Ri>1}=RxRx---.

The metric can be defined by

d(x,y) =Y _(Ixi —yil AD27,

i=1
for x, y € R*. This gives a complete, separable metric space where convergence of a
family of sequences means coordinatewise convergence; that is,

x(n) — x(0) iff x;(n) — x; (O)Vi > 1.

The topology G(R™) can be generated by basic neighborhoods of the form

d
Ng(x) = {yi\/lxi—yil <€}

i=1

as we vary d, the center x, and €.
Aset A C R is relatively compact iff every one-dimensional section is bounded,
that is, iff for any i > 1,
{x; : x € A} is bounded.

For more details, see [25, 106, 116].

3.3.3 C[0, 1] and C[0, c0), continuous functions

The metric on C[0, M], the space of real-valued continuous functions with domain
[0, M] is the uniform metric

du(x(), y()) = sup [x(@) —y@®|=:[x() —y(C)lm,
0<t<M

and the metric on C[0, c0) is

o0

d(x(),y() =)

n=1

dn(x,y) A1
" ’
where we interpret d, (x, y) as the C[0, n] distance of x and y restricted to [0, n]. The
metric on C[0, co) induces the topology of local uniform convergence.
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For C[0, 1] (or C[0, M]), we have that every function is uniformly continuous
since a continuous function on a compact set is always uniformly continuous. Uniform
continuity can be expressed by the modulus of continuity, which for x € C[O0, 1] is
defined by

wy(6) = sup |x(@) —x(s)], O0<d<l.

|t—s|<b

Then uniform continuity means
lim w,(§) = 0.
5—0

The Arzela—Ascoli theorem [106, 280] expresses the fact that a uniformly bounded
equicontinuous family of functions in C[0, 1] has a uniformly convergent subsequence;
that is, this family is relatively compact or has compact closure. Thusaset A C C[O0, 1]
is relatively compact iff

(i) A is uniformly bounded; that is,

sup sup |x(#)| < oo, (3.6)
0<r<lxeA
and
(i1) A is equicontinuous; that is,

lim sup w, (8) = 0.
810 xeA
Since the functions in a compact family vary in a controlled way, (3.6) can be
replaced by
sup |x(0)| < oo. (3.7
x€A
Compare this result with the compactness characterization in R, where relative
compactness meant that each one-dimensional section was bounded. Here, a family A of
continuous functions is relatively compact if each one-dimensional section is bounded
in a uniform way and equicontinuity is present.

3.3.4 DJ[0, 1] and DJ[0, c0)

Start by considering D|O0, 1], the space of right-continuous functions on [0, 1) that have
finite left limits on (0, 1]. Minor changes allow us to consider D[0, M] for any M > 0.

In the uniform topology, two functions x(-) and y(-) are close if their graphs are
uniformly close. In the Skorohod topology on D[0, 1], we consider x and y close if
after deforming the time scale of one of them, for example, y, the resulting graphs are
close. Consider the following simple example:
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xn() =1 1 1) (@O, X0 =1 1. (3.8)

The uniform distance is always 1, but a time deformation allows us to consider the
functions to be close. (Various metrics and their applications to functions with jumps
are considered in detail in [301].)

Define time deformations

A={1:[0,1]1—[0,1]: 2(0) =0, A(1) =1,
A(-) is continuous, strictly increasing}. 3.9

Let e(t) € A be the identity transformation and denote the uniform distance between x
and y as

lx =yl := sup |x(®) = y(1)].

0<t<l1

The Skorohod metric d(x, y) between two functions x, y € D[O0, 1] is
d(x,y) =inf{e > 0:3%1 € A suchthat |A —e| V|x —yoi| <€},
= Alrelf\ A —ell Vix—yoall.
Simple consequences of the definitions:

1. Given a sequence {x,} of functions in DI[0, 1], we have d(x,, xg) — 0 iff there
exist A, € A and

Ay —ell = 0, |lx;0A, —xgl — O. (3.10)

2. From the definition, we always have
d(X,J’)§||x_Y||7 X,YED[O»I]

since one choice of A is the identity, but this may not give the infimum. Therefore,
uniform convergence always implies Skorohod convergence. The converse is false;
see (3.8).

3. Ifd(xy, x0) = Oforx, € D[O, 1],n > 0, then for all # € C(x(), we have pointwise
convergence,

Xp (1) = x0(2).

To see this, suppose (3.10) holds. Then

A, —ell = A, —ell — 0.
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Thus

X (1) — x0(D)] < [xn(t) — x0 0 Ay (D] + |x0 0 A7 () — x0(2)]
< llxn 0 An — xoll + o(1)

since x is continuous at # and A, — e.

4. If d(x,, x9) — 0 and xg € C[0, 1], then uniform convergence holds.
If (3.10) holds, then as in item 3 we have for each ¢ € [0, 1],

1Xn (1) = x0()] < l1Xn © An — x0ll + [lx0 — X0 0 X || = O,

and hence
I, (t) — xo(t)|| — O.

The space D[0, co). Denote the restriction of x € DI[0, co) to the interval [0, s] by
rsx(-), where
rex(t) =x(), 0<t<s.

Let d; be the Skorohod metric on D[O, s] and define d~, the Skorohod metric on
DI0, c0), by

o0
doo(x,y) = / e *(ds(rgx, ryy) A 1)ds.
0

The impact of this is that Skorohod convergence on D[0, co) reduces to convergence on
finite intervals since doo (x;,, x9) — Oiff forany s € C(xp), we have ds (rsx,, rsxo) — O.
For more detail, see [25, 208, 260, 300, 301].

3.3.5 Radon measures and point measures; vague convergence
Spaces of measures

Suppose E is a nice space. The technical meaning of nice is that E should be a locally
compact topological space with countable base; often it is safe to think of E as a finite-
dimensional Euclidean space or R¢. The case d = 1 is important but d > 1 is also
very useful. When it comes time to construct point processes, [E will be the space in
which our points live. We assume [E comes with a o-field £, which can be the o -field
generated by the open sets or, equivalently, the rectangles of E.

How can we model a random distribution of points in E? One way is to specify
random elements { X, } in [E and then to define the corresponding stochastic point process
to be the counting function whose value at the region A € £ is the number of random
elements {X,} that fall in A. This is intuitively appealing but has some technical
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drawbacks, and it is mathematically preferable to focus on counting functions rather
than on points.

A measure u : £ — [0, 00] is an assignment of positive numbers to sets in £
such that

1. u(@) =0and u(A) > 0forall A € &;
2. if {A,, n > 1} are mutually disjoint sets in £, then the o -additivity property holds:
o o0
Jz (U Ai) = ZM(Ai)-
i=1 i=1
The measure p is called Radon if
wW(K) <oo VK e K(E).

Thus compact sets are known to have finite ©-mass. Knowing where the measure is
required to be finite helps us to keep track of infinities in a useful way and prevents
illegal operations like co — co.

Define

M, (E) = {u : n is a nonnegative measure on £ and u is Radon}. (3.11)

The space M4 (E) can be made into a complete separable metric space under what
is called the vague metric. For now, instead of describing the metric, we will describe
the notion of convergence consistent with the metric.

Convergence concept

The way we defined convergence of probability measures was by means of test functions.
We integrate a test function that is bounded and continuous on the metric space, and if the
resulting sequence of numbers converges, then we have weak convergence. However,
with infinite measures in M4 (E), we cannot just integrate a bounded function to get
something finite. However, we know our measures are also Radon, and this suggests
using functions that vanish on complements of compact sets. So define

C;g (E) ={f : E—~ R, : f is continuous with compact support}.

For a function to have compact support means that it vanishes off a compact set.
The notion of convergence in M (E): If u, € M4 (E) forn > 0, then u,, converges
vaguely to wg, written p, = o, if forall f € C ;g (E), we have

mn(f) = fEf(X)Mn(dX) — no(f) = /]Ef(X)Mo(dX)

asn — OoQ.
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Example 3.1 (trivial but mildly illuminating example). Suppose E is some finite-
dimensional Euclidean space with metric d(-, -), and define for x € E and A € &,

1 ifxeA,

“W=10 ix e ac,

Then
v
Mn = €x, = U0 ‘= €y
in M, (E) iff

Xn — X0

in the metric on E.
To see this, suppose that x, — xg and f € C;(' (E). Then

wn(f) = f(xn) = f(x0) = po(f),

since f is continuous and the points are converging. Conversely, suppose thatx,, /4 xg.
Define ¢ : R — [0, 1] by

— 1
1 ift <0,
p)={1-¢ if0<t<1,
0 iftr>1. i

There exists a subsequence {n'} such that d(x,/, xo) > €. Define
F(y) =¢Wd(xo0, y)/€),
so that f € C%(E). Then
|f ) — fxo)| =10—1] /A0,
and then we have w, (f) A wno(f).

Point measures. A point measure m is an element of M (E) of the form
m=>Y_ e (3.12)
i

Built into this definition is the understanding that m(-) is Radon: m(K) < oo for
K € K(E). Think of {x;} as the atoms and m as the function that counts how many
atoms fall in a set. The set M, (IE) is the set of all Radon point measures of the form
(3.12). This turns out to be a closed subset of M (E).
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The vague topology; more on M (E) (and hence, more on M,(E))

We can specify open sets, a topology (a system of open sets satisfying closure properties),
and then a notion of “distance” in M, (). Define a basis set to be a subset of M, (E)
of the form

{nweMi(E): n(fi) €(ai,b),i=1,....d}, (3.13)
where f; € C ;(“ (E) and 0 < a; < b;. Now imagine varying the choices of the integer d,
functions fi, ..., fg4, and endpoints ay, ..., aq; by, ..., bg. Unions of basis sets form

the class of open sets constituting the vague topology.

The topology is metrizable as a complete, separable metric space, and we can put
a metric d(-, -) on the space, which yields the same open sets. The metric d(:, -) can
be specified as follows: There exists some sequence of functions f; € C z (E) and for

w1, p2 € M (IE),

o

(1, p2) =y

i=1

i (fi) = m2(f)I Al
21 '

(3.14)

An interpretation: If u € M4 (E), then p is determined by our knowledge of
{u(f), f e C;{' (E)}. This may seem reasonable, and we will see why this is true shortly
in Lemma 3.1 (p. 52). Think of px as an object with components {i(f), f € C;; (E)},
where we imagine @ ( f) as the fth component of . Then (3.14) indicates, in fact, that
it is enough to have a countable set of components to determine &, and we can think
about p being represented as

m={n(f),i = 1}. (3.15)

So we measure distance in M (E) as if the objects were in R*.
This analogy makes plausible the following characterization of compactness: A
subset M C M, () is vaguely relatively compact iff

sup u(f) <oo VYf e CLHE). (3.16)
neM

To show compactness implies that (3.16) is easy and helps us digest the concepts.
Suppose M is relatively compact. For f € C z (E), define the projection onto the fth
component T¢ : M (E) — [0, 00) by

Tr(u) = p(f).
Then T’y is continuous since iy, 5 @ implies that

Tr(pn) = pn(f) = w(f) =Tr().
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For fixed f € C; (IE), we note that

sup u(f) = sup Tr(n) = sup Tr(w)
neM HEM neMm—

since the supremum of a continuous function on M must be the same as the supremum
on the closure M.

If M is relatively compact, then the closure M~ is compact. Since T’y is continuous
on M (), Ty(M™) is a compact subset of [0, c0). (Continuous images of compact
sets are compact.) Compact sets in [0, co) are bounded, so

00 > sup Tr(M™) = sup{Tr(u), p € M~} = sup {u(f)}.
HEM—

Why emphasize integrals of test functions rather than measures of sets? Proofs are
a bit simpler with this formulation and it is easier to capitalize on continuity arguments.
One can always formulate parallel definitions and concepts with sets using a variant of
Urysohn’s lemma. See [116, p. 47], [280, p. 135], [180], [260, p. 141].

Lemma 3.1.

(a) Suppose K € IC(E). There exists K, € K(E), K,, | K, and there exist f,, € C;(' (E)
with { f,,} nonincreasing such that

Ik < fu <1k, | 1k. (3.17)

(b) Suppose G € G(E), and G is relatively compact. There exist open, relatively
compact G, 1+ G and f,, € C ;g (E) with { f,,} nondecreasing such that

lg = fu =16, 1 1. (3.18)
From Lemma 3.1, comes a Portmanteau theorem.
Theorem 3.2. Let pu, u, € M4 (E). The following are equivalent:
(@) fn — L.
(b) u,(B) — w(B) for all relatively compact B satisfying n(0B) = 0.
(c) Forall K € K(E), we have

lim sup u, (K) < u(K),

n—0o0o

and for all G € G(E) that are relatively compact, we have

liminf u,(G) > u(G).
n—oo
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3.4 How to prove weak convergence

We outline some tools useful for proving weak convergence.

3.4.1 Methods in spaces useful for heavy-tail analysis

Here is an outline of what it takes to prove weak convergence in some spaces of imme-
diate interest:

1. In R4, we can show that random vectors {X,,n > 0} converge weakly,
Xn = Xo,
by any of the following methods:
(a) Show convergence of the finite-dimensional distributions
P[X, < x] - P[Xo < x]

at continuity points of the limit. Sometimes this can even be done by showing
convergence of the joint densities when they exist.

(b) Show convergence of the characteristic functions
Eeit'Xn N Eeit~X0

fort € R,

(c) Reduce the problem to one dimension and prove that
t-X,=t-Xo,

which works because of item 1(b). This is called the Cramér—Wold device
[24, 25].

(d) If X,, > 0, show that Laplace transforms converge,
Ee 2 Xn 5 Ee2Xo
for A > 0. See [135, 302].
2. In R®, random sequences {X,, n > 0} of the form
X, =&V, xP )

satisfy
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X, = Xo
if we show for any d > 0 that
XD, xP, L x0) = x§V x P x D)
in RY.
3. In M (E), random measures {£,(-), n > 0} converge weakly,
&n = &o,

iff for any family {4} withh; € C ;; (E), we have

Gn(hj), j =1 = (Golh;), j=1)

in R°°. Tt would suffice to prove this for the family of functions alluded to in (3.14)
(p. 51). In practice, one assumes a sequence {h;} and proves R convergence;
this reduces to proving R?-convergence by item 2, and often this can be reduced to
one-dimensional convergence.

3.4.2 Donsker’s theorem

The most famous result in the basic theory of weak convergence is Donsker’s theorem,
which informs us that a random walk with suitable time and space scaling looks roughly
like a Brownian motion. There are many results that can be based on Donsker’s theorem
using methods outlined in the next section. For a classical proof of Donsker’s theorem
using convergence of the finite-dimensional distributions plus tightness, see [23, 25].

Theorem 3.3. Suppose {§;, j > 1} are iid random variables satisfying
E¢j) =0 and Var(§;) =1.
Define

n
So=0, Sp=) & n=x=l
i=1

Then in D[0, 00),

Sin]

— = W ,
where W(-) is a standard Brownian motion, that is, a continuous path process with
stationary independent increments, W(0) = 0, and W (1) has a standard normal dis-

tribution.
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3.5 New convergences from old

Since proving tightness is no picnic, when one has a basic weak convergence result, it
is desirable to milk it for all its worth. The continuous mapping theorem is one way to
accomplish this, but there are other ways to do this as well. The Slutsky or converging
together lemmas are a simple approximation method. The idea is that we want to prove
that {Y},,} converges. If we already know that some approximation {X,} converges and
{Y,} is close to {X,}, then it should be the case that {Y,} also converges. A second
theme is to build convergence in a product space from convergences in factor spaces.

3.5.1 Slutsky approximations
There are two approximation results.

Theorem 3.4 (Slutsky’s theorem). Suppose {X, X,,, Y,,, n > 1} are random elements

of a metric space (S, S) with metric d(-,-). If X, = X and d(X,, Yy) £ 0, then
Y, = X.

Proof. Let f : S — R be real-valued, bounded, and uniformly continuous; this will be
sufficient by (3.5) (p. 40). Define the modulus of continuity

ws(f) = sup |f(x) = fI.

d(x,y)<8
Because f is uniformly continuous,
ws(f) > 0, §—0. (3.19)

From the Portmanteau theorem (Section 3.2 (p. 40)), it suffices to show that E f (Y;,) —
E £ (X). To do this, observe that

[Ef(Yn) —Ef(X)]
< |Ef(Yn) —Ef(Xp)| + [Ef(Xn) —Ef(X)]
=E|[f(Yn) — f(Xn) [Ny, x,)<8]
+2sup | f () |P[d(Y,, Xn) > 8] + o(1),

where the o(1) term results from X, = X. The above is bounded by

< o(l) + ws(f) + (const) P[d (Y, X») > 8].

The last probability goes to 0 by assumption. Let 6 — 0 and use (3.19). O



56 3 Crash Course II: Weak Convergence; Implications for Heavy-Tail Analysis

Slutsky’s theorem is sometimes called the first converging together result. Here is
the generalization that is especially useful for truncation arguments.

Theorem 3.5 (second converging together theorem). Suppose that { X y1n, Xp1, Yn, X;
n > 1, M > 1} are random elements of the metric space (S, S) and are defined on a
common domain. Assume for each M, as n — 00,

Xmn = XM,
and as M — o0,
Xy = X.
Suppose further that for all ¢ > 0,
hm lim sup Pld (X prn, Yn) > €] = 0. (3.20)

M—00 pn—sco
Then as n — oo, we have
Y, = X.
Proof. Forany bounded, uniformly continuous function f : S — R, we must show that
lim Ef(Y,) =Ef(X).
n—oo
Without loss of generality, we may, for the sake of neatness, suppose that

sup | f(x)| < L.

xeS

Now write

Ef(Yn) —Ef(X)| = Elf(Yn) — f(Xpn)| + [Ef (Xmn) — f(Xn)l
+IEf(Xm) — f(X),
so that
limsup|Ef(Y,) — Ef(X)]

n—oo

< hm limsupE[f(Y,) — f(Xpmn)| +0+0

M— o0 n—oo

< lim limsupE|f(Y,) — f(Xm) | [d¥,, Xpn)<el

M—o00 p—soo

+ 11m limsup E| £ (Y,) — f(Xma) L {a(v,, X ) >el

n—oo

<sup{|f(x) = f(Y)]:d(x,y) <€}
+ llm lim sup 2P[d (Y, X p1n) > €]

M—00 p—soo

Sw(f)+0—0

ase — 0. O
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3.5.2 Combining convergences

For scaling arguments involving random change of time, we need the following simple
result. It is indicative of a body of results that allow conclusion of joint convergence
from existence of marginal convergences.

Proposition 3.1. Let E and E' be two complete separable metric spaces, and suppose
{0, n > 0} and {n,, n > 0} are random elements of E and ', respectively, defined on
the same probability space. Suppose

gn:>§0

in E and
P,
NMn — €p,

where e, is a fixed point of &'; that is, e, is nonrandom. Then we have jointly in E x I/,
(gn’ n}’l) :> (g07 e/O)

asn — Q.

Remark 3.1. Weak convergence on product spaces E x E’ deserves some comments.
(Full treatment is found, for example, in [25, 301].) If E and [E are complete, separable
metric spaces with metrics d and d’, then E x ' is a complete, separable metric space
with metric (for example)

dprod((el» 6/1), (825 6/2)) = d(€1, 62) + d/(e/17 6/2)
Proof. Referring to Slutsky’s theorem, Theorem 3.4 (p. 55), set
Xy = (&n, e(/)) eExE,
and

Y, = (&, 1) € Ex E.

Then »
dprod(Xn, Yy) =dn, &) + d/(nn’ 96) — 0.

Furthermore, suppose f € C(E x E’) is bounded and continuous on E x E’. We have
asn — 0o,

[E(f (Xn)) — E(f (€0, ep))| = [E(f (&n. €p)) — E(f (6o, €p))| — 0

since f (-, ey) € C(E). Thus X, = (£, ¢;) and the desired conclusion follows from
Slutsky’s theorem, Theorem 3.4. O
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3.5.3 Inversion techniques

There are two convenient results for getting new convergences from old when the
converging processes are nondecreasing. We outline these in a form that will be needed.
More detailed results are contained in, for example, [300, 301].

Remark 3.2. A small technical point that we intend to overlook: In the next two sections,
we will consider the map

x> x<,

where x (-) is a nondecreasing function in D[0, co). Since inverses were defined to be
left-continuous in Section 2.1.2 (p. 18), we have x < € D5[0, 00), the space of left-
continuous functions on [0, co) with finite right limits on (0, c0). The space Dief[0, 00)
can be metrized by the Skorohod metric, just as we did with D[0, co). We will allow
ourselves the luxury of ignoring the difference between D[0, co) and Die[0, 00).

Inverses

Proposition 3.2.

(a) If x, € DI[0, 00) is nondecreasing, x,(0) = 0 and x, — xg in D[0, 00), where xg
is continuous, strictly increasing, then

X, —> Xy
locally uniformly and in D[0, 00).

(b) Suppose &, is a stochastic process with nondecreasing paths in D[0, 0co) such that
£,(0) =0, and

&n £ &o, (3.21)

in D[0, 00). If almost all paths of &y are continuous and strictly increasing, then
£ —> & . (3.22)

The result holds true if K is replaced by =, and then, in fact, we have

&n. &) = (60,85 ) (3.23)

in D[0, o0) x D[0, 00).
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Proof.

(a)

(b)

We have
<« <«
x, () = x5 ()
pointwise by inversion. This gives monotone functions converging to a continuous

limit and hence convergence is locally uniform. Local uniform convergence implies
convergence in the Skorohod metric.

Let d (-, -) be the Skorohod metric on D[0, co) and (3.21) expresses the fact that
P
d(én, &) — 0; (3.24)
we need to show that »
dE; . & ) — 0. (3.25)

We use the subsequence characterization of convergence in probability (see [264,
Section 6.3] or [24]). Given a subsequence {n"}, it suffices to find a further subse-
quence {n'} C {n”} such that

dEsT, 67 2.

From (3.24), pick {n} such that
R HE
Then for almost all w,
Ew(t,w) = §o(r, w) V1 =0,
and so by inverting the monotone functions
£ (t,w) > & (1,w) Vi =>0.

Since énﬂ_ (t, ) is monotone in ¢ and &;™ (¢, w) is continuous in ¢, the convergence
is locally uniform in ¢, as required. m|

Vervaat’s lemma

The next little gem is useful when considering asymptotic normality of estimators.
See [289, 290].

Proposition 3.3.

(a)

Suppose for eachn that x,, € D[0, 00) is a nondecreasing function and, furthermore,
that xo € C[0, 00). If ¢;, — o0 and
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Ch(x,(t) —t) = x0(t) (n — 00) (3.26)
locally uniformly, then also
cn(x, (1) —t) > —xp(t) (n — 00) (3.27)

locally uniformly.

(b) Suppose X,, is a sequence of D[0, 0o) valued random elements and Xo has contin-
uous paths. Denote the identity by e(t) = t. If X, has nondecreasing paths and if
cp —> 00, then

(X, —e)= Xg (n— 00)
in D[0, oo) implies that
(X, —e)= —Xo (n—> 00)
in D[0, 00). In fact, we also have
cn(Xn—e, X, —e) = (Xo, —Xo) (3.28)
in D[0, oo) x DJ0, 00).

Proof.

(a) Suppose (3.26) holds. Since ¢, — oo, we have pointwise convergence x,(f) — ¢.
Due to Proposition 2.2 (p. 20), x, (t) — t, and applying Proposition 2.1 (p. 18),
we conclude that convergence is locally uniform.

For the purpose of getting a contradiction, suppose (3.27) fails. Then there exist
T > 0,¢ >0, and n’ — oo such that

sup e (X, (1) — 1) + x0(1)| > 2e,
0<t<T

so that there exist {t,/} C [0, T'] satisfying
|Cn’(x,;f_(tn’) —ty) + xo(ty)| > €.

Either

(a) cn’(x,:/_(tn’) - tn’) + XO(ln’) > €

or

() e (x, () — tw) + x0(tw) < —€, thatis, ¢y (ty — x5 (ty)) — xo(ty) > €.
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If (b) is true (otherwise, a similar argument applies), examine (3.26) on a subse-
quence {x;,_ (t,/)} and write the inequality using (2.5) (p. 19) as

Cn/(xn/(x,;/_(tn/)) - x,;/_(tn/)) - xO(x,if_(tn/))
> cp(ty — x,:/_(tn/)) — x0(ty) + x0(tp) — XO(x,:/_(tn/))
> ¢+ o(1).

This is a contradiction to the local uniform convergence in (3.26).
(b) Since
&n = (X, —e) = Xo

in D[0, 0o), we have from Skorohod’s theorem (see Section 3.2.2 (p. 41)) that there
exist &, X¢ defined on [0, 1] and

in D[0, 00). Define

f(n = S—n +e.
Cn

Then )~(n is almost surely nondecreasing since X, 4 f(n. Since
cn(Xn — €) =5 Xo,
we get from part (a) that
cn(f(;l_ —e) 2 —Xo,
and, in fact, in D[0, oo) x DJ[0, c0)
cn(Xn — e, 5(,;_ —e) % (Xo, —X0).

The rest follows since for each n

Xy —e, X, —e) 4 cn(Xn — e, )?,;_ —e)
and

d ~ ~
(X0, —X0) = (Xo, —Xo). o

3.6 Vague convergence and regular variation

Regular variation of distribution tails can be reformulated in terms of vague conver-
gence and with this reformulation, the generalization to higher dimensions is effortless.
Here we discuss the reformulation in one dimension. We will see implications of the
reformulation in Chapter 4.
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Vague convergence on (0, oo]

Theorem 3.6. Suppose X is a nonnegative random variable with distribution function
F(x). Set F =1 — F. The following are equivalent:

(i) F e RV_y, o > 0.
(i1) There exists a sequence {b,} with b,, — oo such that

lim nF(by,x) =x% x>0.
n— oo

(iii) There exists a sequence {b,} with b, — 00 such that

X] v
Un(:) :=nP |:b_ € ] — ve(+) (3.29)

n

in M4(0, oo], where vy (x, 00] = x~¢.

Remark 3.3. Here are three remarks on Theorem 3.6.

(a) If any of (i), (ii), or (iii) is true, we may always define

1 \*© 1
b(t) = (ﬁ> (t)=F< <1 - ;> (3.30)

and set b, = b(n). The quantity b(¢) is just a large quantile; it is the high level
such that there is only probability 1/¢ that X exceeds the level. Observe that if (i)
holds, then

1 1 -
7 € RV, implies b(-) = (—) () €eRVysq.

F € RV_, impli
€ almplesl —F

(b) Note in (iii) that the space E = (0, oo] has 0 excluded and oo included. This is

required since we need neighborhoods of oo to be relatively compact. Vague conver-
gence only controls setwise convergence on relatively compact sets (with no mass
on the boundary). With the usual topology on [0, 00), sets of the form (x, co) are
not bounded; yet consideration of nF(b,x) = nP[X, /b, > x] requires consider-
ing exactly such sets. We need some topology which makes semi-infinite intervals
compact. More on this later when we discuss the one-point uncompactification in
Section 6.1.3 (p. 170). If it helps, think of (0, oo] as the homeomorphic stretching
of (0, 1] or as the homeomorphic image of [0, o) under the map x — 1/x, which
takes [0, c0) — (0, o0].



3.6 Vague convergence and regular variation 63

(c) Preview of things to come: Note thatif {X;, j > 1}isaniid sequence of nonnegative
random variables with common distribution F', then the measure w,, defined in (3.29)
is also the mean measure of the empirical measure

pn(-) =E (Z €x, /b<n>(->> :
i=1

of the scaled sample. The convergence of u, is equivalent to convergence of the
sequence of empirical measures to a limiting Poisson process.

Proof. The equivalence of (i) and (ii) is part (ii) of Proposition 2.3 (p. 21).
(i) — (ii). Let f € C IJg((O, 00]) and we must show that

X X
pn(f) :=nEf (b—‘) = f fonP [b—l e dx} — v (f).

Since f has compact support, the support of f is contained in (8, co] for some § > 0.
We know that

Un(x,00] = x % =vu(x,00] Vx >0. (3.31)
On (8, oo], define
MUn
P()=—— (3.32)
T a8, 00]

so that P, is a probability measure on (8, oo]. Then for y € (4, o],

—

M
s’

Py (y,00] = P(y,o0] =

In R, convergence of distribution functions (or tails) is equivalent to weak convergence,
so { P,} converges weakly to P. Since f is bounded and continuous on (§, 0o], we get
from weak convergence that

Py(f) = P(f);
that is,

mn(f) Ve (f)
— .
Mn(8, 00] 5~

In light of (3.31), this implies

un(f) = va(f),
as required.
(iii) — (ii). Since
Mn _U> Vo,
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we have
Un(x, 0] = vy(x,00] Vx>0

since (x, oo] is relatively compact and

Ve (8(x, 00]) = ve({x}) = 0. m

3.7 Problems

3.1. Suppose for n > 0 that u, € M, (E). Show that 1, — o in M4 (E) iff for all
feCE®),
(1= e 1) = o1 —e™7).

3.2. Suppose {&,, n > 0} are random elements of M ([0, c0)) and that
%—n = %—O-

If ¢ satisfies
P& ({t}) =0] =1,

does

in [0, 00)?
Hint: Is the map T; : M [0, oo0) — R defined by

T; (n) = pl0, 1]
continuous? Almost surely continuous?

3.3. Show that the transformations in (a) and (b) are vaguely continuous:

(@) Ty : Mp(E) x M,(E) — M, (E) defined by
Ti(my,my) = mq + my.
(b) Tr : M4 (E) x (0, 00) — M, (E) defined by
Ty, &) = A
Define the scaling function 73 : M4 ((0, oo]) x (0, 00) — M (0, oo] by
T3(p, 2) = ().

Is T3 continuous?
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3.4. Suppose x,,, n > 0, are points of [E and ¢, n > 0, are positive constants. Then
v
Cn€x, = CO€x,

asn — oo iff
cp —> co and x,; — xp.

3.5. In M[0, c0), prove that
s v
" > €ijm = LEB().
i=1

3.6. If K € K(E) is compact, prove that
{we M (E): w(K) <t}
is open in M (E).

3.7. Assume that E;, i = 1, 2, are two nice spaces and that [E, is compact. Suppose for
n > 0thatm, € M,(E; x E;) and m,, = mo in M, (E; x Ez). Conclude that

Ma (- x E2) = mo(- x Ey)
in Mp,(Ey).

3.8. Suppose E and E’ are two nice spaces with [E compact and suppose T : E +— E’
is continuous on an open subset G of E. Then if m € M, (EE) is a point measure with
support contained in G, the mapping T:M »(E) — M,(E) defined by

i i
is continuous at m [76].

3.9. Suppose E, E,, E) are nice spaces with Eo compact. Assume that T : Ep — E}
is continuous on an open subset G, of K. If m € M,(E; x E;) has the property
m(E; x G5) =0, then

T : My(Eq x Ey) > M,(E; x E),
defined by

j (z) Y et
i i

is continuous at m [76].
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3.10. (a) Suppose the random vectors X, and Y, in R4 are independent for each n and
that X,, = X and Y,, = Y. Show that in R??, we have

(Xl’l’ Yl’l) :> (Xv Y)?

where X, Y are independent.
(b) Show also that
Xpn+Y, = X+Y

in RY,

3.11. Let {X,,} be a sequence of random variables such that EX,, = m and Var(X,) =
o? > 0 for all n, where 6> — 0 asn — oo. Define

-1
Z, = o, (Xn —m),
and let f be a function with nonzero derivative f/(m) at m.

1. Show that X,, — m = 0.

2.If

y S = fm)

on f'(m)
show that ¥, — Z,, = 0.
3. Show that if Z,, converges in probability or in distribution, then so does Y.

4.1f S, is binomially distributed with parameters n and p and f'(p) # 0, use the
preceding results to determine the asymptotic distribution of £ (S, /n).

3.12. If f is bounded and upper semicontinuous, show that P, = P implies that

limsup P, (f) < P(f).

n—oo

3.13. Suppose the family of measures I1 is defined by
IT={ex("), x € A},

where A C S and
1 ifx e B,

“B) =10 ifx e Be.

Show I1 is relatively compact iff A~ is compact in S.
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3.14. If the sequence of random variables {1X,1°} is uniformly integrable for some
8 > 0, then {| X, |} is tight. In particular, the condition

sup E(1X,[*T") < oo
n

for some n > 0 is sufficient for tightness.

3.15 (Second-order regular variation [90, 101, 235]). A function U : (0, 00) +—
(0, co) is second-order regularly varying with first-order parameter y > 0 and second-
order parameter p < O (written U € 2RV (y, p)) if there exists a function A(¢) — 0
which is ultimately of constant sign, and such that

= xY P _
T N, (x1
t1—1>nolo —A(t) =cx ( . > , x>0,p<0,c#0. (3.33)

Now suppose F is a distribution on [0, 00), and define

oo (i) (1)

Show using Vervaat’s lemma (Proposition 3.3 (p. 59)) that U € 2RV (y, p) is equiva-
lent to

Fx) _ 1)y

ply — 1
lim L9y (x—> . #£0, x>0. (3.34)
=00 4 <_1 ) Py

1-F(t)

3.16 (More on second-order regular variation). Verify the second-order regular vari-
ation for the following examples:

1. Suppose
1— F(x)=x"Y7 4 cx™1/8,
where ¢ > 0, 1/§ > 1/y; thatis, y > § [155, 297].

2. Cauchy:
1
F'(x) = ———-
= i+

or

1 1

F(x)=—-+ —arctanx, x eR.
2 7

(Consider working with U = (1/(1 — F))* rather than 1 — F, but feel free to
experiment.)
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3. Stable, for which you will need a series expansion. (See [135], for example.)

4. Log-gamma: An example of a log-gamma distribution is constructed by taking
X1, X, iid with standard exponential density and computing the distribution of
exp{X1 + X3}. Forx > 1,

Plexp{X| + X2} > x] = P[X| + X2 > log x]
= exp{—log x} 4+ exp{—log x}log x
=x"'1+1ogx) :=1— F(x).

For this example, we have o = 1, p = 0.

Finally, verify (quickly) that the Pareto is not second-order regularly varying. (This is
more of an observation than anything else.)

3.17 (Even more 2 RV). Let Z1, Z;, be nonnegative iid random variables with common
distribution F satisfying 1 — F € 2RV (—«, p). Then for x > 0,
PIZ\VZy>1x] _ 5
1 1—-F()
t—00 A(t)

x—ot

=2H(x) — Ix~%,

where H(x) = cx™¢ flx wPdu,x > 0,¢ > 0,if

. 1=F(@)
lim ——— =1, |l| < o0,
t—00 A(Z)
and if |/| = oo,

P[Z\VZy>tx] _ 2x—o{
lim 1=F@) = —x"2
=00 1—F(@)

(See [146] for this and harder results.)

3.18. Suppose {Xg, k > 0} is a Markov chain with state space {0, 1, 2, ...} and transi-
tion matix P = (p;;). Assume that

7'P=nx" and pl.(;l) — ;.
Show in R° that as n — oo,
(Xt k > n} = (X}, k >0},

where {X# k > 0} is a stationary Markov chain with transition matrix P and initial
distribution .
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3.19 (Second continuous mapping theorem). Suppose S and S’ are two complete,
separable metric spaces and that we are given measurable maps 4, : S — S'. Let D be
the set of x € S such that 4, (x,) / h(x) for some sequence {x,} converging to x. If
P,, n > 0, are probability measures on (S, S), and P, = Py, then

Pnoh;1 = P()ohal,
provided Po(D) = 0 [25, p. 79]. (Hint: Modify the proof of Theorem 3.1 (p. 42).)

3.20 (Combining independent convergences). Let E and E/, be two complete separa-
ble metric spaces and suppose {£,, n > 0} and {n,, n > 0} are random elements of E
and |, respectively, defined on the same probability space. Suppose further, for each
n > 1, that &, and 5, are independent. Assume

Sn = 50
in E and
NMn = 10

in E/. Then jointly in E x E’ we have as n — oo that the distribution of (&,, n,)
converges to a product measure whose factor distributions are the distributions of &
and ny.

3.21 (The supremum map). Prove that the map

X = sup x(s)
0<s<l

is continuous from D[0, 1] — R.

3.22 (Impossibility of Skorohod convergence). Suppose that X,, € C[0, 1] and that
X~ € DI[0, 1]\ C]O0, 1] and that the finite-dimensional distributions of X, converge to
those of X .. Argue that it is impossible for X,, = X, in the Skorohod topology.
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Dipping a Toe in the Statistical Water

This material is designed to give immediate payoff for the previous two chapters. We
give some estimators of the tail index, prove consistency, and evaluate the effectiveness
of the estimation. We will return to statistical inference problems on several occasions,
and the present chapter is a first experience with the statistical side of the subject.
In particular, we will return to issues of asymptotic normality of the estimators in
Chapter 9.1.

4.1 Statistical inference for heavy tails: This is a song about «

How does one go about devising and using statistical methods for heavy tails? For
the simplest formulation, suppose that one-dimensional data have been collected, and
that fortune has smiled on us in that the data look stationary and even independent and
identically distributed (iid).

The following are the initial steps in any heavy-tailed statistical analysis of one-
dimensional data that are at least stationary:

* decide that a heavy-tailed model is appropriate, and then
* estimate the tail index « of the marginal distribution.

Various graphical and estimation techniques exist to help accomplish these steps:
QQ estimation and plotting, Hill estimation and plotting, and Pickands estimation,
to name just a few. There are also many techniques applicable from extreme-value
methods [16, 50, 90, 129, 197, 238].

Suppose X, X1, ..., X, have the same distribution F(x) and that inference is to
be based on X, ..., X,. There are at least two competing heavy-tailed models and
philosophies—although similar, they differ in important ways:
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* Assume that F has a Pareto right tail from some point on. This means that there
there exist some x; > 0, ¢ > 0, and @ > 0 such that

PIX >x]=cx %, x> x. 4.1

So we assume an exact Pareto tail from x; onwards. The form of the tail for x < x;
may or may not be specified in this approach, depending on the purpose of the
analysis.

* Assume that F has a regularly varying right tail with index —«,
PIX >x]=1—Fx)=Fx)=x"%L(x), x>0. 4.2)
For the most part, we will assume the semiparametric assumption (4.2) of regular
variation and focus on the problem of estimating the index of regular variation «. The

Hill estimator is a popular, though troubled, estimator of 1/« and has a voluminous
literature. A partial list of references is [57, 72, 100, 112, 155, 165, 212, 236, 252]. The

Hill estimator is defined as follows: Assume for simplicity that observations X1, ..., X,
are nonnegative. For 1 <i < n, write X(;) for the ith largest value of X1, X5, ..., X,
so that

XyzXe =z Xaw.

Then Hill’s estimator of 1/« based on k upper-order statistics is defined as

k
1 Z X
Hk,n = - (l) (43)

The theory is most easily developed for the case in which {X;, j > 1} is iid,
although applications often do not provide us with independent observations but rather
with dependent, stationary data. So attention needs to be paid to applying the Hill
estimator in non-iid cases.

4.2 Exceedances, thresholds, and the POT method

Why does the Hill estimator make intuitive sense? Suppose, temporarily, that instead
of the semiparametric assumption (4.2), we assume that we have data from the more
precisely specified iid Pareto parametric family

F(x):=P[X; >x]=x"% x>1,a>0. (4.4)

Thus F is a Pareto distribution with support [1, co0). Then the maximum-likelihood
estimator of 1/« is
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— 1

n
al = - ;logXi.
i=

This follows readily since {log X;, 1 <i < n}is arandom sample from the distribution
with tail

Pllog X| > x] =P[X| > '] =%, x>0,

which is the exponential distribution tail. The mean of this exponential distribution is
o~ ! and the MLE is X, which in this case is the given estimator.

But what if (4.4), a rather strong assumption, is implausible? A somewhat weaker
assumption is to assume a Pareto tail from some point onwards, as in (4.1), rather than
the exact model. This leads to the peaks-over-threshold (POT) method discussed in
Section 4.2.3 (p. 77). First, some background.

4.2.1 Exceedances

Consider a precise definition of an exceedance. Given observations xi, ..., x, and a
threshold u, we call an observation x; an exceedance over u if x; > u. In this case,
xj — u is the excess.

Let X1, ..., X, be iid random variables and set

n
K, = Z Lu,00)(Xj) = # of exceedances of u in the first n variables.
j=1

This is a binomial random variable with success probability p = P[X| > u].

4.2.2 Exceedance times

Suppose {X,,n > 1} are iid and u is a threshold. Define the exceedance times
{zj,j = 1} by

Ty =inf{j > 1:X; > u},
T =inf{j > 71 : X; > u},
T, =inf{j > 51 : X; > u}.

The sequence {X., , r > 1} are the exceedances.
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Subsequence principle

If {X,,, n > 1} is iid with common distribution F, then {ij, j > 1} is alsoiid, and

P[X; > x] = Fl(x) :=P[X > x|X > u]

F(x)
_ 17w forx > u,
1 forx <u.

4.5)

Note that FI*l(.) is the conditional distribution of X given that X > u. We sometimes

write informally
Xe; £ X11X1 > u

to mean just this. Furthermore,
T, — T, 13— 1,...

are iid with
Plr; > k1 =P[X, <u,..., Xs <u] = (Fu)*

and

Plry =kl =P[X) <u,...,Xs—1 <u,Xp >ul=F- Y w)Fu).

So 71 has a geometric distribution with
Pl =kl=¢""p, k=12,...,

where
p=Fu), g=1—p=F®u).

(4.6)

Where does the distribution of {X; ] = 1} come from? This is a special case of an
old result dating to P. Lévy and is sometimes called the Découpage de Lévy (see [260]
and Problem 4.4). To quickly obtain the flavor of a partial proof, consider X,. For

X > u,

o0
Plr; =k, X¢, > x]1= ) Plry =k, X > x]
k=1

M2

P[X: > x] =

x~
I
—_

o

PIXy <u,...,Xp—1 < u, Xp > u, Xp > x],

>~
Il
—

and for x > u thisis (with g = F(u))
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N = F(x) F(x)
== F == == - .
];q =1 = Fay

The moments of 7 are easy to compute since 7] is a geometrically distributed random
variable. For threshold u,

1 1
E(t) = ; = 1——F(u) 4.7
and likewise,
q F(u)
V = —F = ————.
W) == Fay

4.2.3 Peaks over threshold

Suppose the model (4.1) is assumed in which the distribution tail is Pareto beyond x;.
Consider exceedances over level x; or the peaks over the threshold x;. Then from (4.1)
and (4.5), we have for x > x;,

PLX,, > x] = F(x) cx™ _ (£> ,

F(x)) cx; * X

so that for y > 1

X
P[J > y] =y % y>1 (4.8)
Xl

Conclusion: Assuming that the distribution of the iid sample satisfies (4.1), that is,
the distribution has a Pareto tail from x; onwards, means that the relative exceedances

X,
{ Tj’jZI}
X1

are an iid sample from a Pareto distribution with parameter @ and support [1, c0).
Assuming the {X,} are iid, applying the argument of Section 4.2 (p. 74) makes the Hill
estimator the MLE estimator applied to the relative exceedances of level x; = X 1),
where we assume k-exceedances of level x; = X(x41). Relying on exceedances is the
peaks-over-threshold (POT) method.

What is possible if we assume only the regular variation assumption (4.2)? Relative
exceedances of x; now have the distribution tail (cf. (4.8))

P[X'[l -~ y} — F_(xly) ~ y—a
Xy F(xp)

, y>0, xlarge, 4.9)
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which is only approximately a Pareto tail. One way to proceed is to pretend the ap-
proximate equality given by (4.9) is an actual equality. This has the advantage that the
method of maximum-likelihood estimation is available, and this method is a powerful,
off-the-shelf technology. However, there is no obvious way to quantify the errors in-
troduced by a misspecified model if one assumes (4.1) when it is false. The other way
to proceed is to prove asymptotic properties of estimators based on regular variation
assumptions and refinements.

Exceedances and the POT method will be revisited again from the point of view of
point processes.

4.3 The tail empirical measure

The following describes a one-dimensional result, but after converting regular variation
to vague convergence as in Section 3.6, the result is really dimensionless. Considering
the possibility of doing inference with multidimensional data suggests a broader point
of view that is fruitful even in one dimension.

Reviewing the equivalences in Theorem 3.6 (p. 62) suggests that instead of estimat-
ing the parameter «, we could estimate the measure v, on (0, co], which would yield
the required information.

Suppose {X;, j > 1} is a sequence of random variables with common one-
dimensional marginal distribution F, which has regularly varying tail probabilities

F(x):=1—F(x)=P[X| >x]=x"%L(x), a>0. (4.10)

For convenience, assume that the variables are nonnegative. A useful scaling quantity
is the quantile function b(t) defined by

1 \*< _ 1
b(t):(m> (t)=F (1—;>. (4.11)

The tail empirical measure is defined as a random element of M (0, oo], the space of
nonnegative Radon measures on (0, co], by

1 n
Vy = §Zexi/b(%). 4.12)

i=I

The new feature here is the presence of k, which represents the number of upper-
order statistics that we think or guess are relevant for estimating tail probabilities. We
emphasize that the notation v,, suppresses the dependence on k but that the k is critical.
The tail empirical measure is used in a variety of inference contexts, but note that, as
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defined, its statistical use needs to overcome the fact that in a data-driven context, where
F is unknown, b(-) is also unknown.
When {X,} are iid, v, approximates vy.

Theorem 4.1. Suppose that {X ;, j > 1} are iid, nonnegative random variables whose
common distribution has a regularly varying tail (4.10), which implies (see Theo-
rem 3.6) that

iy DS T BN (4.13)
— | = ve .
k™ [ b(n/k) *
in My (0,00] asn — ocoand k = k(n) — cowithn/k — oo. Then in M (0, co],
Uy = Vg, 4.14)
where
ve(x, 00l =x7% x>0, o>0.

Remark 4.1. More general versions of this result are possible but await further proba-
bility developments in the next chapter. The reason for the odd form of the asymptotics
(n - 00,k — oo,n/k — o00) is that we will estimate b(n/k) by X, and the

condition on k = k(n) forces X ) —P> 00. (See Problem 4.3 (p. 115).)

Proof. We use some of the methods outlined in Section 3.4.1 (p. 53). It suffices to show
for a sequence h; € C;: (0, oo] that in R,

Wahj), j=1) = alhj),j=1) (n— 00).
Convergence in R reduces to convergence in R? for any d, so it suffices to show that
Wn(hj), 1 =j<d)= ((hj),1 =j=<d) (n—o0).

To show this, we can show the joint Laplace transforms converge so we assume A; > 0,
j=1,...,d, and show that

d
Ee~ 2i=1 i) _ Fo P xjvahj)
However,

d d
ijvn(hj)zvn Z)»jhj N
j=1 j=1

similarly for v, substituted for v,. Since Z?:l Ajhj € C;{r (0, oo, it suffices to show
for any h € C;(O, oo] that
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Ee """ 5 Eem®) (4.15)

which is a reduction of the original task to a one-dimensional chore. The left side of
(4.15) is

Fet 2=t h(X;/b@/k) _ (Ee—%mxl/b(n/k)))”

1 X n
_ _ _ ,—1hX) 1
_(1 /«),oo] (1= >P[b<n/k>edx])

_1p X n
_(, f(o,oo] <1 — ek (x)) nIF’[b(n/lk) € dx]
n b

and this converges to e"*" since

_ @ X1 %/ no[ X ]
/m,oo](l o >”P[b<n/k>€dx] (o,oo]h(x)kp[b(n/k)edx = va(h),

where the approximate equivalence in the previous line can be justified by writing upper

and lower bounds resulting from expanding the term (1 — e~ th ) to get upper and
lower bounds. Gory details are provided later in Theorem 5.3 (p. 138). See especially
the material following (5.18) (p. 140). O

4.4 The Hill estimator

Recall the definition of the Hill estimator Hy , given in (4.3) (p. 74) for estimating 1 /c.
Suppose at a minimum that {X,} is a sequence of random variables having the same
marginal distribution function F and where F := 1 — F is regularly varying at oo and
satisfies (4.10). The quantile function (4.11) is b(¢). The random measure v, given
in (4.12) is a random element of M (0, oo] and is assumed to be a vaguely consistent
estimator of the measure v, € M, (0, oo], provided n — oo and k/n — 0. However,
because b(-) is unknown, b(n/k) will be estimated by a consistent estimator, l;(n /k),
to be specified. We set

. _ 1y
b =t ¢ > €x. b (4.16)
i=1

We know from Theorem 4.1 that (4.14) is satisfied if {X;} is iid with common
distribution F, where 1 — F € RV_,, satisfying (4.10). We emphasize in this section
that the standing assumption is consistency of the tail empirical measure, a point of
view promoted in [252].
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4.4.1 Random measures and the consistency of the Hill estimator

Consistency of the tail empirical measure given in (4.14) implies consistency of the Hill
estimator for 1/c.

Theorem 4.2. If (4.14) holds, then as n — 00, k — 00, and k/n — 0,

p 1
Hk,n — —.
o

Proof. The proof proceeds by a series of steps.

SteP 1. Consistency of the empirical measure given in (4.14) implies
(4.17)

asn — 00, k — oo and k/n — 0. This allows us to consider X ) as a consistent
estimator of b(n/ k).
To see this, write

|

X (k)

b (%)

-1

> 8j| =P [X(k) > (14 ¢e)b (%)] +P [X(k) <(1—¢)b (%)]
P |:% Xn:exi/b(z)(l +¢&,00] > 1)
i=1

1 n
1=

IA

But (4.14) implies that
1< »
F D enm el B o <
i=1
and

P _
eXi/b(%)[l —g,0]l—> 1—-8)"%>1,

M~

1
k i

I
—_

and therefore (4.17) follows. O

Bonus. In fact, more is true. We have that (4.14) implies
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X (1ke1) r

1o
bn/k) t in D(0, oo], (4.18)

where [kt] is the smallest integer greater than or equal to kf. We prove this more
muscular version (4.18) as follows: The map from M (0, co] — DI[0, co) defined by

1

wi— pu o0l t=>0,

is continuous at measures p such that p (¢, oo] is continuous, strictly decreasing in z.
So we have from (4.14) and the continuous mapping theorem, Theorem 3.1 (p. 42), that

N T LA} (4.19)

in D[0, co). From inversion and Proposition 3.2 (p. 58), we get that inverses also
converge in probability

n(()™ oo () B Ve 1 >0, (4.20)

as functions in D;[0, co), where D;[0, o0) are the real, left-continuous functions on
[0, o) with finite right limits on (0, c0). We now unpack the inverse and see what
we get:

(e ()7, 00]) (1) = inf{s : v, (s ™", 00] > 1}

n
= inf {S : ZEX,-/b(n/k)(S_l, oo] > kt}
i=1

n
=inf {y‘l : Zéxi/b(n/k)(y’ o0] = kt}

i=1

—1
n
= (SUP {y : ZGX,-/b(n/k)(y» oo] > kt})

i=1

_ <X<rkt1)>l
b(n/k))

-1
X Tk _ e
b(n/k)

in D[0, 00), and therefore we conclude that

So

Xkt P—ija
b(n/k)
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in D;(0, oo]. O
Henceforth, set
b(n/k) = Xq.
StEP 2. The following results from (4.14): In M (0, o],

50 5 g, (4.21)

asn — 00, k — 0o, and k/n — 0. This is proved by a scaling argument. Define the
operator
T : M (0, o0]) x (0, 00) — M4 ((0, co])

by
T(u, x)(A) = pn(xA).

From (4.14) and Proposition 3.1 (p. 57), we get joint weak convergence

(vn, L?) = (v, 1) 4.22)

. Xk ) ( X(k))
Vi) =75 =T\ vee 5 |
(b(z) b (%)

the conclusion will follow by the continuous mapping theorem, provided we prove the
continuity of the operator T at (vy, 1). If you are anxious to get on with the story, skip
to Step 3.

In fact, we prove the continuity of the operator at (vy, x), where x > 0. Towards
this goal, let u, Y vy and x, — x, where u, € M (0, o], and x,, x € (0, 00). It
suffices to show for any f € C ;g (0, oo] that

f F () Cendlt) = f FO S (dy) — / FO/0va(dy).  (4.23)
(0,00] (0,00] (0,00]
Write

‘ / F O/ (dy) — / f(y/X)va(dy)'

(0,00] (0,00]

=

f FO S (dy) — / f(y/xmn(dy)'
(0,00] (0,00]

+

/ FO /) (dy) f f(y/X)va(dy)‘
(0,00] (0,00]
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< /«) 1O = S/l + o),

where the second difference goes to 0 because f(;) € C ,Jg(O, oo]. To see that the
first difference can be made small, note the supports of f(-) and f (Z) for large n are
contained in [, oo] for some §y. Since f is continuous with compact support, f is
uniformly continuous on (0, oo]. To get an idea what this means, metrize (0, co] by the
metric (s, t € (0, o0])

d(s,r) = |s""—¢71;

then uniform continuity means
840
sup [ f(u) — f(v)| = 0.
d(u,v)<$

Then

d(y/xp, y/x) =y |xp —x| <9

if y > 8o and n is large, and therefore for any € > 0, we can make

sup | f(y/xn) = f(y/X)] < €.

y=do

Since w, (80, 0o] is bounded, this completes the proof of continuity of the scaling map.
O

STEP 3. Integrate the tails of the measures against x~'dx. The integral functional is
continuous on [1, M] forany M, and so itis only on [M, oo] that care must be exercised.
By the second converging together theorem, Theorem 3.5 (p. 56), we must show that

o0
lim limsup P [/ D, (x, oo]x_ldx > 6i| =0. (4.24)

— 0 n—00 M

Recall b(n /k) = X (). Decompose the probability as

o0
P [/ Dy (x, 0olx ldx > 5}
M

A L ]

+P |:/Oo Dy (x, oolx " ldx > 8 b(n/k) ¢(1—n, 1+ n)j|

M " b(n/k)
=1+1L
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Note that

II§IP’|:

by (4.17). We have that I is bounded above by

P U v (1 — p)x, colx 'dx > 5} =P [/ v (x, oolx " dx > 3} ,

M M(1—n)

b(n/k)
b(n/k) 1' = "} =0

and the above probability has a bound from Markov’s inequality

o
S_IE(/ vn(x,oo]x_ldx)
M(1—-n)

-1 o n -1
=34 —P[X| > b(n/k)x]x™ "dx
Ma-n k

o.¢]
e / x "% ldx = (const)M ™,
M(1—n)

where we applied Karamata’s theorem, Theorem 2.1 (p. 25). This bound goes to 0 as
M — o0, as required. O

STEP 4. We have proved that
o P o0
/ Dp(x, colx ldx > / Ve (x, colx “ldx = 1/a.
1 1

So f loo D (x, oolx~dx is a consistent estimator of 1 /o, and we just need to see that
this is indeed the Hill estimator, as defined in (4.3). This is done as follows:

> 1 *1 . 1
f Un(X, OO]x_ dx = / % Zexi/l;(n/k)(X, OO]X_ dx
! b %is

1 X;/b(n/k)v1
= - Z/ x_ldx,
1

k i=1

which is equivalent to H , defined in (4.3). |
4.4.2 The Hill estimator in practice
In practice, the Hill estimator is used as follows: We make the Hill plot of «,

{(k, H_ ), 1 < k <n},
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Pareto call holding

10

0 2 4 6 8
02000 6000 10000

" l Aad l Ll |.1._.|._I

0 1000 2000 3000 4000 0 1000 2000 3000 4000

Hill estimate of alpha
1 23456 7

N

0 1000 2000 3000 4000 0 1000 2000 3000 4000
number of order statistics number of order statistics

Hill estimate of alpha
0.60.70.8091.01.11.2

Fig. 4.1. Time-series and Hill plots for Pareto (left) and call-holding (right) data.

and hope the graph looks stable so you can pick out a value of «.

Sometimes this works beautifully and sometimes the plots are not very revealing.
Consider Figure 4.1, which shows two cases where the procedure works gratifyingly
well. The top row are time-series plots. The top left plot is 4045 simulated observa-
tions from a Pareto distribution with @« = 1, and the top right plot is 4045 telephone
call-holding times indexed according to the time of initiation of the call. The range
of the Pareto data is (1.0001, 10206.477), and the range of the call-holding data is
(2288, 11714735). The bottom two plots are Hill plots {(k, Hk_,:), 1 < k < 4045},
the bottom left plot being for the Pareto sample and the bottom fight plot for the call-
holding times. After settling down, both Hill plots are gratifyingly stable and are in
a tight neighborhood. The Hill plot for the Pareto seems to estimate @ = 1 correctly,
and the estimate in the call-holding example seems to be between .9 and 1. (So in
this case, not only does the variance not exist but the mean appears to be infinite as
well.) The Hill plots could be modified to include a confidence interval based on the
asymptotic normality of the Hill estimator. McNeil’s Hillplot function does just this.
See the comments on p. 363.

The Hill plot is not always so revealing. Consider Figure 4.2, one of many Hill
Horror Plots. The left plot is for a simulation of size 10,000 from a symmetric «-stable
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Fig. 4.2. A Hill Horror Plot.

distribution with « = 1.7. One would have to be paranormal to discern the correct
answer of 1.7 from the plot. The middle plot is for a simulated iid sample of size
10,000, called perturb, from the distribution tail

1—F(x)~ x_l(logx)lo, X — 00,

so that « = 1. The plot exhibits extreme bias and comes nowhere close to indicating
the correct answer of 1. The problem, of course, is that the Hill estimator is designed for
the Pareto distribution and thus does not know how to interpret information correctly
from the slowly varying factor (log x)!°. It merely readjusts its estimate of  based
on this factor rather than identifying the logarithmic perturbation. The third plot is
783 real data called packet, representing interarrival times of packets to a server in a
network. The problem here is that the graph is volatile and it is not easy to decide what
the estimate should be. The sample size may just be too small.
A summary of difficulties when using the Hill estimator include the following:

1. One must get a point estimate from a graph. What value of k should one use?

2. The graph may exhibit considerable volatility and/or the true answer may be hidden
in the graph.
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Fig. 4.3. Lack of location invariance.

3. The Hill estimator has optimality properties only when the underlying distribution
is close to Pareto. If the distribution is far from Pareto, there may be outrageous
errTor.

4. The Hill estimator is not location invariant. A shift in location does not theoretically
affect the tail index but may throw the Hill estimate way off.

The lack of location invariance means the Hill estimator can be surprisingly sensitive
to changes in location. Figure 4.3 illustrates this. The top plots are time-series plots of
5000 iid Pareto observations where the true « = 1. The two right plots on top have the
Pareto observations shifted by 1 and then 2. The bottom two plots are the corresponding
Hill plots. Shifting by larger and larger amounts soon produces a completely useless plot.

For point 1, several previous studies advocate choosing k to minimize the asymptotic
mean squared error of Hill’s estimator [155, 235]. In certain cases, the asymptotic
form of this optimal &k can be expressed, but such a form requires one to know the
distribution rather explicitly, and it is not always clear how to obtain finite sample
information from an asymptotic formula. There are adaptive methods and bootstrap
techniques [66, 108, 145] that try to overcome these problems; it remains to be seen if
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they will enter the applied research community’s toolbox. Bootstrapping heavy-tailed
systems presents special problems [9, 10, 79, 88, 133, 189, 313]. See also Section 6.4.

For point 2, there are simple smoothing techniques that can help to overcome the
volatility of the plot; plotting on a different scale can sometimes overcome the difficulty
associated with the stable example. These techniques are outlined next in Section 4.4.3.

4.4.3 Variants of the Hill plot

Some simple techniques of smoothing and rescaling of the Hill plot sometimes are
revealing.

The smooHill plot

The Hill plot often exhibits extreme volatility, which makes finding a stable regime in
the plot more guesswork than science. To counteract this, Resnick and Stérica [252]
developed a smoothing technique yielding the smooHill plot: Pick an integer r (usually

2 or 3) and define
rk

1
smooHy , = > Hjn (4.25)
( — Dk j=k+1

This is also a consistent estimate of 1/«; see [252]. To see this is relatively straight-
forward (modulo some details). We modify the proof of the consistency of the Hill
estimator given in Theorem 4.2 (p. 81). In place of (4.22), we use (4.18) coupled with
Theorem 4.1 (p. 79) via Proposition 3.1 (p. 57) to get

I X (1) |
—1/a
— bl ) , 1 4.26
(k ;:1 €X;/b(n/k) bn/k) = (Vo ) (4.26)

in M (0, co] x D(0, oo]. Follow the pattern of Theorem 4.2: Compose the two com-
ponents in (4.26), evaluate the resulting measures on (x, oo], integrate this function
against de (that this is continuous in the right topology needs a verification), and we get

‘Zl (

in D[0, co). Dividing both sides by ¢ leads to

[kt] t
A1) = —Hn = 5

X (tkr) k

1
Hpn = —
fkil.n = —

in D(0, co). Therefore, for any integer r,
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kr
dl ( ) H[s'l,nds
1 kr
H;
T k(r—1) 2 Hin
j=k+1
1
= —.
o

The stochastic process (Hfks1,n,t > 0) was named the Hill process, studied first
in [211] and used in [252].

Changing the scale, Alt plotting

As an alternative to the Hill plot, it is sometimes useful to display the information
provided by the Hill or smooHill estimation as

{0, H) H),0<0 <1y,

[mf1.n
where we write [y for the smallest integer greater than or equal to y > 0. We call this
plot the alternative Hill plot, abbreviated altHill. The alternative display is sometimes
revealing since the initial order statistics are shown more clearly and cover a bigger
portion of the displayed space. Unless the distribution is Pareto, the altHill plot spends
more of the display space in a small neighborhood of « than in the conventional Hill
plot [110].

Figure 4.4 compares several Hill plots for 5000 observations from a stable distribu-
tion with « = 1.7. Plotting on the usual scale is not revealing and the alt plot is more
informative.

A Hill plot was given (p. 5) for file lengths downloaded in BU web sessions in
November 1994 in a particular lab under study. The Danish fire insurance data were
introduced on p. 13. In Figure 4.5, we have a Hill, an altHill, and a smooHill plot of the
Danish data. The altHill plot is not advantageous, probably because the data are well
modeled by Pareto.

4.5 Alternative estimators I: The Pickands estimator

There are a myriad of other estimators for «. We particularly mention the moment
estimator of [85-87, 90, 251], the Pickands estimator [85, 112, 235, 236], and the QQ
estimator [17, 191]. Here we focus on the Pickands and QQ estimators. Interestingly,
a study by de Haan and Peng [93, 235] shows that from the point of view of asymptotic
variance, no one estimator dominates the others in the group studied. So it is difficult to
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Fig. 4.4. Hill and altHill plot for Stable, « = 1.7.

imagine one estimator being preferred in all contexts; a sensible practice is not to restrict
analysis to one procedure but rather to check that several procedures point toward the
same conclusion.

4.5.1 Extreme-value theory

The extreme-value distributions can be defined as a one-parameter family of types
Gy(x) =exp{—(1+yx)"""}), yeR, 1+yx>0. (4.27)

Define
Eg:{x:1+yx>0}
and observe that
(—%, oo) ify > 0,
E) =1{(~00,00) ify =0,
(—oo, \}]/_|> if y <0.
The heavy-tailed case correspondstoy > 0, andtheny = 1/«. For y = 0, we interpret
—log G, (x) =e™*. See [16, 50, 102, 129, 238, 260].
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Fig. 4.5. Hill, altHill, and smooHill plots for Danish data.

Suppose {Z,,n > 1} is iid with common distribution F. The distribution F is in
the domain of attraction of the extreme-value distribution G, written F' € D(G,), if
there exist a(n) > 0, b(n) € R such that

P [M < x] — G, (x) (4.28)
a(n)

for x € E, as n — oo. Equivalently, we have as n — oo that
nP[Zy > a(n)x +b(n)] — —log G, (x) 4.29)

forx € E,.
Note that (4.29) is a vague convergence statement about mean measures converging
and mimicking the proof of Theorem 4.1 (p. 79) yields

= ez—bup = v (4.30)




4.5 Alternative estimators I: The Pickands estimator 93

on M (E,), where £, is Eg plus the right endpoint of the interval and v (x, co] =
—log G, (x). Repeating the procedure that yielded (4.18) gives the equivalent statement

Z(ik/y1) — b(n/k) N y =1
a(n/k)

, 0<y<o0o, 4.31)

in D[0, 00).

Another interpretation of (4.29) is that it gives the limit distribution of excesses,
where an excess is the exceedance minus the threshold. We may always take the
sequence b, as the quantile function of F, the common distribution of {Z,}, so that
P[Z| > b,] ~ 1/n. Then we have for x > 0,

P[Z| — b, > a,x]
P[Zy > by]
=P[Z| — b, > ayx|Z1 > by].

nP[Zy > ayx + by] ~

Referring to (4.5) (p. 76), this is

=P[Z; — by > apx] — —log Gy, (x).

For a large threshold, the excess (the exceedance minus the threshold) has a limit
distribution whose tail is —log G, (x) for values of x such that 0 < —log G, (x) < I.
The class of limit distributions is called generalized Pareto. The interpretation is that
for a large threshold u,

P[Z;, —u > x] ~ —log G, (Bx) (4.32)

for a scale parameter §. The POT method assumes the distribution of the excess is
exactly the limit distribution and then performs maximum-likelihood estimation on the
two parameters (y, B) to fit the distribution.

4.5.2 The Pickands estimator

The Pickands estimator [85, 112, 235, 236], like the moment estimator [85-87, 90, 251]
discussed briefly in Appendix 11.1.3 (p. 369), is a semiparametric estimator of y derived
under the sole condition that F € D(G,, ). The Pickands estimator of y uses differences
of quantiles and is based on using three upper-order statistics, Z«), Z k), Z4k), from
a sample of size n. The estimator is

[ Pickands) _ ( ! )log (M) , (433)
k.n log2 Zoky — Z k)

Properties of the Pickands estimator include the following:
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. The Pickands estimator is a consistent estimator for y € R and does not require the

assumption y > 0, as does the Hill estimator. The consistency holds as n — o0,
k — oo,and n/k — oo.

We can check consistency easily using (4.31). We have

(Zgy—bn/k))  (Zok—bn/k))

Zoy — 2oy T aw/h a(n/k)
7 4 T (Zow—bn/k) (Zaky—b(n/k))
@0 T 2En @B aG/R)

NSRS
@) {7

=27,

Taking logarithms and dividing by log2 gives convergence in probability of the
estimator to y.

. Usually (under second-order regular variation conditions, which are difficult to

check in practice), if k — oo and k/n — 0, we have asymptotic normality,
VE@EEE ) = N ©, v()),

where
B y2(22y+1 + 1)
(227 —1)1og2)?’

More on asymptotic normality later in Chapter 9.1.

v(y) (4.34)

. Unlike the Hill estimator, the Pickands estimator is location invariant. It is also

scale invariant.

Good plots may require a large sample of the order of several thousand.

. In terms of asymptotic mean squared error, the Pickands estimator sometimes is

preferred over the moment estimator and Hill estimator (where comparable because
you know y > 0) and sometimes not. See [93, 235].

~ (Pickands

. One can make a Pickands plot consisting of the points {(k, y; , )), 1 <k <

n/4}. Choice of k and volatility of the plots are issues as they were with the Hill
and moments estimators.

. The Pickands plot often does a good job of warning that a heavy-tail model is

inappropriate by indicating y < 0. In circumstances where this is the case, the Hill
plot is frequently uninformative.
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Fig. 4.6. Pickands plots of 10,000 simulated Pareto random variables with & = 1 (left) and with
the same data but multiplied by 50 and shifted by 50.
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Fig. 4.7. Pickands plots of the Danish data (left), where the estimate of y ~ (.71 was obtained
from other methods.

Consider Figure 4.6, which is the Pickands estimator applied to 10,000 simulated
Pareto random variables with « = 1. The Pickands plot on the left picks up the correct
value of @ = 1 quite well. In contrast to the degradation in the Hill plots when the data
were shifted (recall Figure 4.3 (p. 88)), the Pickands plot is unaffected.

Earlier (see Figure 4.5 (p. 92)), we found o & 1.4 for the Danish data. The Pickands
plot in Figure 4.7 is not very informative even after accounting for the relation between
a and y and taking reciprocals 1/1.4 = 0.71.
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Fig. 4.8. Pickands plot (left) for 1000 iid unit exponential variables vs. the Hill plot (right).
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Fig. 4.9. Pickands plot (left) for 5000 iid variables from a 7-density with 4 degrees of freedom
vs. the Hill plot (right).

To illustrate why the Pickands plot is useful in deciding on the appropriateness of
a heavy-tail model, consider Figure 4.8. On the left is the Pickands plot for 1000 unit
exponential variates, which does a reasonable job of identifying a value of y near 0.
The Hill plot on the right is not informative.

The last set of plots in Figure 4.9 compares the Pickands plot and the Hill plot for
5000 realizations of the t-density with 4 degrees of freedom. Here « = 4, so y = 0.25.
The Pickands plot seems reasonable, but the Hill plot is uninformative.
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Fig. 4.10. altHill plot of 5000 ¢4 variates.

However, the altHill plot is more stable but not particularly close to the true value.

4.6 Alternative estimators II: QQ plotting and the QQ estimator

QQ plotting and similar techniques are diagnostic and exploratory methods to graphi-
cally assess the goodness-of-fit of a model for data. Suppose we have data xq, ..., x,
that could plausibly be a random sample from some distribution F'(x); that is, we be-
lieve there are iid random variables X1, ..., X,, with common distribution F(x) and
X1, ..., X, is arealization of X1, ..., X,. If we are interested in obtaining such things
as high quantile estimates, as is done, for example, in value-at-risk estimates, we must
find F(x) which provides a good fit in the tail.

4.6.1 Quantile-quantile or QQ plots: Preliminaries

Suppose that we have a provisional or null hypothesis that the true distribution function
producing the data is F (x). The QQ plot provides a somewhat informal but convenient
way to test this hypothesis. The method is empirical process based, and frequently it is
convenient to have notation for order statistics indexed from smallest to largest as well
as the reverse already introduced. Recall that for a sample X1, ..., X,, we set

X=Xz =Xw

for the order statistics indexed largest to smallest. For the indexing from smallest to
largest, we write
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Xl:n =< X2:n <---=< Xn:n»

so that Xy = X,_iy1.,. For the empirical distribution of the sample X1, ..., X,,
we write

. 1 o 1l «
Fa) = =3 lixg=a = = ) ex, (=00, x)).
i=1 i=1

4.6.2 QQ plots: The method

Plot the theoretical quantiles of F' vs. the sample quantiles. If the null hypothesis is true,
then the result should fall roughly on the straight line {(x, x) : x > 0}. More precisely,

we plot
i . i
W () B () =]
n—+1 n—+1
={<F‘_< : >,Xi;n>,1§i§n}. (4.35)
n+1

If the plot looks roughly linear, there is no evidence against the null hypothesis.

The rationale: We know the empirical distribution F;(x) =~ F(x) and hope that
F (@) = F~(q).

Some potential problems with this procedure:

1. For certain common distributions, for example, the normal or gamma, the distribu-
tion is not in a closed, convenient form, and hence the inverse or quantile function
F < (q) is not in closed form either. Statistics packages typically provide routines
to do QQ plots for common densities such as the normal.

2. When does the phrase “roughly linear’” become obvious and clear? When in doubt, a
common technique for trying to assess variability is as follows: Make your QQ plot.
Then simulate 100 data sets from the null distribution F'. Make each simulation run
the size of the original sample. Then superimpose (in a different color) on your QQ
plot the 100 QQ plots corresponding to the 100 simulated data sets. The 100 QQ
plots of the simulated data sets will form a band around the QQ plot of the real data,
and if the real QQ plot does not stick out of the band, you are within acceptable
variability.

Remark 4.2. Note that
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The reason for this is that ﬁ’n‘_ (g) is left-continuous and we know that

. i—1 i
F,(q) = Xi:n  for <gqg=-
n
Since ﬁn‘_(%) = X;.», we need only check that
. . 1
Lot o2 (4.36)
n n+1 n
since ﬁn‘_(-) 1s constant on (%, ’ﬁ .

A modest point: Why are we plotting the points in (4.35) and not the points

(2 () =0=of

The reason is partly historical, stemming from the following argument: Suppose
Ui, ..., U, are iid with common U (0, 1) distribution. Sort the random variables to
get the order statistics

Uin Uy <+ < U

Set Up., = 0 and U 41,, = 1. Call the differences
Uisin —Uin, i=0,1,...,n,

the spacings; by symmetry the spacings should be identically distributed and hence
have the same mean. Since

n
Z(UH-l:n - Ui:n) = 1»
i =0

we have
n
1=E (Z(Um;n - Ul-:n>> = (n+ DEUis1: — Ui),
i=0
and hence the expected spacing is
1
E(Ui+1:n —Uin) = m

Therefore,
i
n—+1
since it is a sum of i consecutive spacings. We hope that

E(Ui:n) =
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i .
{<n+1an:n)a1§l§n}

will be roughly linear and fall on the line {(x, x), 0 < x < 1}. (This hope is dependent
oni/(n+1) = EU;:p) = Ui.)
Recall that if X, ..., X, are iid with distribution F'(x), then X; 4 F~(U;), which

means that .
F ! I (Un) 1<i<n
n + I ’ l. ’

should be roughly linear and so should

(- (e)se)r=r]

4.6.3 QQ plots and location-scale families

Suppose we (null) hypothesize that X1, ..., X, are iid from the location-scale family

Fuo() = Foi (’j—“) , 4.37)

where Fp 1 is specified. An example is that Fp ; is the standard normal. Invert (4.37)
to get

Fi (@) =un+oFs(q).
The analysis using QQ plots can be adapted to provide estimates of © and . Here is
how this is done: Since we assume that Fp 1 (x) is known, we can plot

{(Fd_l <n;+1> ; Xi:n) J1<i< n} ) (4.38)

If the null hypothesis is true,

<« i .
/L+0'F0’1 m y Xim ), 1 <i<n

should be on the line with angle 45 degrees {(x, x), x > 0}. Thus

i
n+oFgy (m) ~ Xin,

<« i Xi:n_,u
F A .
O’1<n+l> o

So the points plotted in (4.38) should be on the line {(%, 7), z > 0} or, equivalently,
the line {(x, ox + w), x > 0}, and the slope of the fitted (by, for instance, least squares)
line is an estimator of o and the intercept is an estimate of u.

and therefore
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4.6.4 Adaptation to the heavy-tailed case: Are the data heavy tailed?

Suppose that the null hypothesis is that for some x; > 0 and random variable X, the
distribution of X satisfies for some x; > 0 and « > 0,

—o
PIX > x] = (xi) R (4.39)
I
Comparing this with (4.1) (p. 74) and referring to (4.5) (p. 76), we see that (4.1) implies
that exceedances above threshold x; have Pareto distribution (4.39) with left endpoint x;.
Thus this assumption (4.39) is consistent with the POT method, where the approximate
distribution of the large values relative to a threshold is replaced by the limiting Pareto

distribution.
Assumption (4.39) means that X /x; is Pareto with left endpoint 1 and shape param-
eter «, and for y > 0,

X X
IP’|:oclog— >yi| :IP’|:— >eY/“] =e .

Xl Xl

So a log x% is exponential with parameter 1. Therefore,

log X —1 —1
P[logX>y]:P[Og _en L2 ng’]

o o
X —1

:P[alog—>y olgxl]
X -

— o~ O—logxp/a™h)

Wi (x)=1—-e"*,x >0, then

- —1
PllogX > y] =W, (y—ogxl) ,

ol

which is a location-scale family with location parameter u = log x; and scale parameter

o =oz_1.

What are the quantiles of W;? Solve
Wix)=1—-e¢"=gq,

to get
W™ () = —log(l — ).
We conclude that we should plot
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{(—log (1 - ;) ,logX,-;n> A<i< n} (4.40)
n—+1

and if the null hypothesis (4.39) is correct, or at least approximately correct, the plot
should be roughly linear with slope @~ ! and intercept log x;.

Example 4.1 (Internet response data). This is an Internet measurement study that mea-
sured the number of bytes per request transferred from a web server to a browser in
response to a request from the browser. The study was conducted around 1997 at
the University of North Carolina Computer Science Department under the guidance of
Donald Smith. The data were presented with the question, Are the data heavy tailed?
Some typical diagnostics like the Hill estimator fail miserably for these data but the QQ
method works pretty well. In Figure 4.11, we give the time-series plot of the data on the
left and the QQ plot of the log transformed data matched against exponential quantiles
on the right. Clearly, we should be looking at exceedances, as not all the data fall on
the line.

The slope of the fitted line to the QQ plot of the exceedances gives an estimate of
o~ ! (see the discussion in Sections 11.1.2 (p- 366) and 4.6.6 (p. 106)); the estimate
is sensitive to the choice of exceedance threshold. Instead of looking at exceedance
thresholds, we can choose a number of upper-order statistics and only use those to
fit the line. This is demonstrated in the three plots in Figure 4.12. The data set has
131,943 data points. We show the plots obtained by choosing 10,000, 20,000, and
50,000 upper-order statistics.

Just for comparison, Figure 4.13 presents the Hill and the altHill plots for these
data. The plots are not stunningly easy to interpret, although after comparison with the
QQ plots, one is increasingly confident of an estimate of o € (1, 2). Interestingly, the
Pickands plot Figure 4.14 for these data looks decent.

4.6.5 Additional remarks and related plots

Here are some additional remarks and notes.

Diagnosing deviations from the line in the QQ plot

If the hypothesized distribution Fpy,(x) is far from the true underlying distribution
Firue(x), then the QQ plot will simply look awful. If the QQ plot is not very linear, the
deviations from linearity can sometimes indicate what the problem might be.

What if points of the QQ plot are below the line y = x, for example, at the right
end. Then for g near 1, the points (Fh;) @), I:”n‘_ (q)) are below the diagonal line. This
means that
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Fig. 4.11. Time-series plot of the Internet response data (left); the vertical axis units are millions
and the horizontal axis units are 10,000s. QQ plot for all Internet response data (right).
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Fig. 4.14. Pickands plot for Internet response data.
Fh‘y_p(q) > I:ﬂ,f_(q) for ¢ near 1,
or
Fhyp(x) < ﬁn (x) for large x,
or
I = Fhyp(x) > 1 — ﬁn(x) for large x.

Since, presumably, 1 — 1:",1 (x) = 1 — Fye(x), this means that the hypothesized tail is
heavier than the true tail.

A related plot: The PP plot

This is a plot of the points

_i .
{(n+1’thp(Xi:n)>,l = 1,...,}1}‘

This is obviously a variant of the QQ plot.

Another variant: The tail plot for heavy tails

Essentially this is a plot of the tail empirical distribution function in log—log scale.
Suppose that
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Fig. 4.15. Danish data: Tail empirical plot (left) and QQ plot (right).
PIX>x]~x% x>0, a>0.
Then

—log P[X > x] ~ alogx,

so plotting
{(logx, —log P[X > x]),x > 0}

should, at least for large x, give a line of slope «. Since we are not sure about the form
of the distribution of X, plot instead

{dogx, —log(l — F,(x)), x > 0}

or
{(10g Xjp, —log(l — Fpy(Xi)), i =1,...,n}

{(logXi:n,—log (1 — l—)),i = 1,...,n}.
n

We see this is not much different from the QQ plot. It is customary to plot without the
minus sign in the second component and talk piously about plotting in log—log scale.

The McNeil function emplot in the Splus add-on WINEVIS or the R package EVIR
performs this neatly.

Example 4.2 (Danish data). As in Section 1.3.3 (p. 13), we consider the 2167 Danish fire
claim exceedances. The plot of {x, 1 — I:”n (x), x > 0} looks terrific. For comparison,
the QQ plot with the least-squares line is also given in Figure 4.15. The estimate of « is
1.39, so the mean of the fitted distribution will be finite but the second moment infinite.
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Fig. 4.16. Danish data: Hill and altHill plots.

For comparison, Figure 4.16 gives the Hill and altHill plot of the Danish data. Note
that the alt plot is not particularly useful here, probably because the data are actually
from a distribution that is either Pareto or close to Pareto.

Recall for comparison that the Pickands plot looked poor for the Danish data. See
Figure 4.7 (p. 95).

4.6.6 The QQ estimator

In this section, we formalize the idea that the slope of the least-squares line fitted to
the QQ plot is an estimate of 1/«. We proceed under the regular variation assumption
(4.2), rather than (4.39) or (4.1). This means that we will not put the least-squares line
through all the pairs in (4.40), but only through pairs corresponding to k upper-order
statistics.

If {(x;, yi),1 < i < n} are n points in the plane, a standard textbook calculation
yields that the slope of the least-squares line through these points is

xy_xy

SL X, i,lfifl’z = =,
({Cxi, 1) h=3""3

(4.41)

where we use standard notation:
n n
2
Sxyzzxi)’i, Sxxzzxi,
i=1 i=1

and “bar’’ indicates mean.
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If Xy, ..., X, is arandom sample from the Pareto distribution
1—F,(x)=x"% a>0 x>1,

then the slope of the least-squares line through the points of (4.40) (p. 102) gives, with

i
x; = —log (1 — n—+1> . yi =log Xip,

an estimator of o ~!
— Z?:] - log <F> {n IOg Xn i+lin — erzl log Xn—j+1:n}

w0 (~1og (55)) - <z g (5£1))

2 i1 —log <n+1> {nlog Xy = L= log X(j)}

Ty 1< g (1)) —<z_ m(ﬁ))z'

We call this estimator the QQ estimator.

With only the regular variation assumption (4.2), we modify (4.42) using the POT
philosophy, and it is reasonable to define the QQ estimator based on the k upper-order
statistics to be

— — j X —k+i:n .
_1: _ln:SL —1 1_ : ,1 - ’1< <k
* ook <{( Og< k+1> Og< Xn—kn >) == })
i X .
= SL —log Jog| —— ) ), 1 <i<kp]). (443)
k—l—l X (k+1)

Some modest simplification of (4.43) is possible if we note the following readily
checked properties of the SL function: For any real numbers a, b, we have

(4.42)

SL({(xi, yi), 1 =i =n}) =SL({(xi +a,yi +b),1 =i <n}). (4.44)

Thus (4.43) simplifies to

— I
a~ ! =SL ({(— log <1 — m) , log Xn_k+,-’n> 1 <i< k})
i
=SL({(=10g(——).log x4 ). 1<i<k}). 4.4
st ({(-roe(p) oexa) 1 <i<hf). ey

We could also drop division by k + 1 in the first component for the same reason.
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In practice, we would make a QQ plot of all the data and choose k based on visual
observation of the portion of the graph that looked linear. Then we would compute
the slope of the line through the chosen upper k-order statistics and the corresponding
exponential quantiles. Choosing k is an art as well as a science, and the estimate of « is
usually rather sensitive to the choice of k. Alternatively, plot {(k, a*lk,n), 1<k<n}
and look for a stable region of the graph as representing the true value of «~!. This is
analogous to what is done with the Hill estimator of o !,

1 & X
Hin =+ 21:105; ( © ) . (4.46)
=

X(k+1)

The QQ plot will typically look smoother than the Hill plot.
Choosing k is still the Achilles heel of many of these procedures.

Consistency of the QQ estimator

Now we prove the weak consistency of the QQ estimator. In view of (4.43), (4.44),
and (4.46), we may write the estimator a—! as

Z%Zle(—log( rr) ) log (%) — L 2k (<tog (1= 1) ) Heon
byb (<roe (1= 1)) = (4 Z (~toe (1= 7))

EE (—loe (ghr)) e () — # T (—loe (W)) L @47)
[ (o)) (1 ()

Theorem 4.3. Suppose X1, ..., X, are a random sample from F, a distribution with
regularly varying tail satisfying (4.2). Then the QQ estimator a~! given in (4.47) is
weakly consistent for 1/a:

— P
a1 5ot
asn — oo, k = k(n) — oo in such a way that k/n — 0.

Proof. Write the denominator in (4.47) as

where as n — 00,
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1 1 i \\* [ 5
%Sxx = %;<—10g (m)) ’\’/0 (—IOgX) dx
o
_ / Ve Vdy =2 (4.48)
0

and

1 1 i !
“Se=-Y(=1og(——) )~ | (~logx)d
P k§< Og(k+1)) /0( ogx)dx
o
_ / yedy = 1. (4.49)
0

Furthermore, as n — 0o, k — oo, n/k — oo,

1 ! P
%Z( 1g<k+1)) Hk,n’\’/(; (—logx)dxHypn — o 1

by the weak consistency of the Hill estimator. So for consistency of the QQ estimator,
it suffices to show that

k
1 X p 2
== —1lo —_— —. 4.50
k;( g<k+1)) g(X(kJrl))_)Ol 50
Recall from (4.18) (p. 82) that

X (ki) NV

in D(0, co]. Now write

k+1 ! k+ Dt X
= [ g (D) (Xt
k- Jo k+1 X k+1)

We claim this converges in probability to
P
= / —logt - (logt~*)dr
0

1! ) 2
= —f (—logt)*dt = =. (4.51)
o Jo o
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The convergence near zero in (4.51) is a problem since (4.18) holds in D (0, oco] and
hence does not cover neighborhoods of zero. So we have to use a converging together
argument based on Theorem 3.5 (p. 56). Convergence of the integral in (4.51) over
the region (8, 1) is guaranteed by the fact that (4.18) is tantamount to local uniform
convergence away from zero, and hence on (8, 1) there is uniform convergence. So it
suffices to show that

)
X
lim lim sup P [ / —log? - log <M) dt > n] =0. 4.52)
30 koo 0 X(k+1)

We do this by using Potter’s inequalities and Rényi’s representation of order statistics
(see Problem 4.1 (p. 114)). Recall that Potter’s inequalities (2.31) take the following
form: Since 1/(1 — F) is regularly varying with index «, the inverse b = (1/(1 — F)) <
is regularly varying with index 1/, and for € > 0, there exists fy = fo(€) such that if
y>landt > 1y,

_ b _
(1— o)y~ < % < (14 ey e, 4.53)

We now rephrase this in terms of the function
R = —log(l — F) =logh*.

Then b = R* olog; taking logarithms in (4.53) and then converting from a multiplica-
tive to an additive form yields that

log(l—e)—l-(a*l—e)y <logR" (s+y)—log R (s) < log(l—i—e)—l—(a*l—i-e)y (4.54)
for s > logfgand y > 0.

The reason for introducing the R function is that if Eq, E», ..., E, are iid unit
exponentially distributed random variables, then

d .
X1, Xo,.... Xn) = (RT(Ej); j=1,...,n).

The Rényi representation gives for the spacings of exponential order statistics,

d (En En_i E
(El,l’l’ E2,n_El,n’---aEn,n_En—l,n)= _na ‘ 7"-’_n
n n-—1 1

d (E1 E» E,
(Eqy—E@), EQ) —E@),.... En—1)y — Ew), Ep) = T 2 ) (4.55)

Now we have
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)
X
p[/ g1 - log (M)m . ,,}
0 X (k+1)

1) <«
R (Eqa+n) — Ed+1) + Egt1)
:IP[/ —logt.log< [ R]—(E ) dt > n
0 (k+1)

) <«
RT(Eq®x+1)) — Ex+1) + Ek+1))
§]P’|:f —logt-log( (¢ I)Qj_)(E ( )) Lad) dt > n,
0 (k+1)

efrn > ro} + or(1)

since E ) —P> oo by Problem 4.3 (p. 115). Ignore the term o (1) since it goes to zero
with k. Apply (4.54) and we get the upper bound

)
<P |:/0 —logt [ +e)+ (Ol_l + e)(E(I'(k—H)ﬂ) — E(k+1))]dt - ni|

and for some small " > 0 this is bounded by

5
<P [/ —logz - (Eq+1)) — Eq+1))ldt > '7/} :
0

Apply Markov’s inequality to get the upper bound

1 S
< ;/ —logt - E(E(k+1)e1) — Egr1))dt
0

k+1

[ e Y L
= — — 10 . —dat,
n" Jo s [

I=[(k+1)t]

as k — 00, this is asymptotic to # f(;s —logt(—logt)dt,and as§ | 0O, thisis asymptotic
to %3(1og 8% = 0. O

4.7 How to compute value-at-risk

Review the definitions and discussion in Section 1.3.2 (p. 9), the material on peaks over
threshold and exceedances in Section 4.2 (p. 74), and the discussion of the generalized
Pareto class in Section 4.5.1 (p. 91).

Computing VaR, requires a good estimate of the tail of the loss distribution. The
POT method suggests a solution. Suppose X is a random variable with distribution
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F € D(Gy). Interest in the heavy-tailed case suggests restricting interest to y > 0.
For a threshold u and x > u, write

F(x) =P[X > x]=P[X > x|X > u]P[X > u]
= F(u)F"(x)

(where Fl“l(x) is the notation in (4.5) (p. 76) for the exceedance distribution)

_ % =1y
~ F(u) (1 + E(x — u)) . (4.56)

Here we replaced F!*!(x) by its two-parameter generalized Pareto approximation dis-
cussed in (4.32) (p. 93).

In practice, our estimate of the tail probabilities will require F(u) to be replaced
by the empirical tail probability F (u), the fraction of the observed sample exceeding u
and the parameters (y, B) will be replaced by maximum-likelihood estimators (y, B)
based on the subsample of excesses relative to u.

From (4.56), we get an estimate of the gth-order quantile by setting the expression
in (4.56) equal to 1 — g yielding

R —p
U+ é L__ 1 _q]. (4.57)
14 F(u)

How do we apply this to VaR? Refer to (1.4) (p. 11) to get with T = 1,

Ll ek, (4.58)
Vo

expressing the one period loss L in terms of Vj, the initial asset value, and the one
period return. The quantity L1/ Vj is the relative loss after one period assuming Vj is
known. Observing a sequence of one period returns from a stationary process amounts
to observing observations of relative losses. The tail of the relative loss distribution
can be estimated along with its quantiles; this coupled with observed asset values in the
prior time period allow for computation of VaR.

Example 4.3 (MSFT). We consider 2363 daily closing values of Microsoft’s stock from
January 11, 1993 to March 4, 2003. The time-series plots of the closing values and the
returns are given in Figure 4.17. Corresponding to (4.58), we compute relative losses
by the transformation x +— 1 — e*. Summary statistics for the nonnegative values are
given in Table 4.1.
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MSFT MSFT returns
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Fig. 4.17. Time-series plots of daily closing values of MSFT from January 11, 1993 to March 4,
2003 (left) and the corresponding return series (right).

Minimum|First quarter| Median | Mean |Third quarter|Maximum
0.000379| 0.006536 |0.014000{0.017670| 0.024350 |0.156100

Table 4.1. Summary statistics for the nonnegative values of relative loss.

MSEFT losses Series lossMSFT
- S ]
9 —
S ] g _
o ©
E g | LLL) =N
2 < 2~
LT S
=)
— | (q\]
7 =
o_ S 1913 i .
(\]_ O 7777‘17'777777') 7777777 T 77<|7|77I7I7777|7777L
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Time Lag

Fig. 4.18. Time-series plots of daily relative losses of MSFT (left) and the sample autocorrelation
plot of the relative losses (right).

We also check for dependence of the relative losses by computing the sample auto-
correlation plot, and this shows surprisingly little correlation. See Figure 4.18.
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Fitted excess distribution vs. empirical QQ plot of fitted model
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Fig. 4.19. Fitted excess distribution and the empirical distribution (left) and QQ plot for fitted
model against exponential quantiles.

p |Quantile
0.900| 0.0355
0.990| 0.0743
0.999| 0.1411

Table 4.2. Quantiles of the relative loss distribution.

Now we take one of the extreme value software packages out for a test ride. We
use EVIR (see the discussion in the appendix in Chapter 11 (p. 363)). We fit a general-
ized Pareto distribution (see (4.32) (p. 93)) by maximum likelihood to the nonnegative
excesses of relative losses based on the threshold 0.0289 using the 200 largest-order
statistics, yielding & = 1/p = 4.242. The fitted distribution function for relative losses
corresponding to (4.56) is shown on the left side in Figure 4.19, and the QQ plot of the
fitted model is shown on the right. Neither diagnostic reveals a problem with the fit.
Table 4.2 exhibits extreme quantiles of the relative loss distribution. If Vy = 1 and the
number of shares stays constant, these quantiles would represent the VaR values.

4.8 Problems

4.1 (Rényi representation). Suppose E, ..., E, are iid exponentially distributed ran-
dom variables with parameter A > 0, so that

P[Ey<x]=1—¢e, x>0.
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Let
El,n =< E2,n <---= En,n

be the order statistics. Prove that the n spacings
El,nv E2,n - El,nv cee En,n - En—l,n

are independent exponentially distributed random variables, where Ey1 , — Ef , has
parameter (n — k).

Intuitively, this results from the forgetfulness property of the exponential distribu-
tion. See [90, 135, 239, 240, 262].

4.2. Suppose that X1, ..., X, are iid from a common continuous distribution F(x)
and that
XpzXyz-zXw

are the order statistics. Prove that conditionally on X (x1), the family X (1), X2, ..., X (1)
are distributed as the order statistics from a sample of size k from the conditional dis-
tribution of

XX > Xt1),

where X 1) is treated as a constant in the conditioning. (You might want to use
Problem 4.1.) Furthermore, show that (X ), X(.—1), ..., X(1)) 1s a continuous state-
space Markov chain.

4.3. For the order statistics E(y), ..., E(;) of an iid sample of size n from the unit
exponential distribution, show that

E(k)—P>OO
iff k > oo, n — oo, n/k — 0.

4.4 (Découpage de Lévy). Suppose {X,,, n > 1} are iid random elements of the metric
space S with Borel o-field S. Fixaset B € SsuchthatP[X; € B] > 0. Let Tg: =0, and
‘cl.+ =inf{j > Titl : Xj € B} fori > 1. The family {‘L'J-_,j > 0} is defined similarly,
with B¢ playing the role of B. Define the counting function K, = sup{i : rl.+ < n}.

Show that {X_+}, {X -}, {K,} are independent with
J J

IP’[XT1+ € A]=P[X; € A|X1 € B], ACB,
P[er € A]=P[X, € A|X, € B°] A C B“.

Furthermore, {K},} is a renewal counting function, E(K,) = nP[X € B], and {X_ =}
J

is iid.
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4.5 (For the probabilistically adventurous). For QQ estimation in the heavy-tailed
case, consider the n bivariate pairs consisting of theoretical quantiles paired with sample
quantiles for the log-transformed data. Does this set (or a subset of this set corresponding
to the k upper quantiles), considered as a random closed subset of the first quadrant,
converge in any sense to a limit random set? This limit set is presumably a line and
so is not random. Convergence could be in the space of random closed subsets of ]R%L
metrized by, say, the Hausdorff metric.
Is the functional
LS : {closed sets} — R

defined by
LS(F) = slope of the LS line through the closed set F’

continuous in the space of closed subsets of R2 | or continuous, at least, at any useful
elements of the domain?
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The Poisson Process

There are many fascinating and useful connections between heavy tails and the Pois-
son process, some of which we begin to describe here. Many heavy-tailed models are
constructed from Poisson processes, which are the most tractable models of point sys-
tems. Some of these contructions give paradigms in the theory and some are elegant
abstractions of applied systems.

I learned much about this subject from [33-37, 43, 180, 230].

5.1 The Poisson process as a random measure

Throughout this discussion, it is enough to assume the state spaces of our random
measures and point processes are nice; see Section 10.2 (p. 360) if you need a more
precise definition.

5.1.1 Definition and first properties

Let N : (2, A) — (M,(E), M,(E)) be a point process with state space E, where
M, (E) is the Borel o -algebra of subsets of M, (E) generated by open sets. The Borel
subsets of [E are denoted by £. (If necessary, review Section 3.3.5 (p. 51).)

Definition 5.1. N is a Poisson process with mean measure | or, synonomously, a Pois-
son random measure (PRM(u)), if we have the following:

1.For A € &,

e M (u(A)*
P[N(A) = k] = k!
0 if L(A) = oo.

if £(A) < oo,
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2.IfAq, ..., Agaredisjointsubsetsof Ein £, then N (A1), ..., N(Ag) are independent
random variables.

So N is Poisson if the random number of points in a set A is Poisson distributed with
parameter ((A) and the number of points in disjoint regions are independent random
variables.

Property 2 is called complete randomness. When[E = R, itis called the independent
increments property since forany t; <t < --- <y, (N((t;, ti+1]), 1 =1,....k—1)
are independent random variables. When the mean measure is a multiple of Lebesgue
measure (that is, length when E = [0, oo) or R, area when E = R2, volume when
E = R3, etc.), we call the process homogeneous. Thus in the homogeneous case, there
is a parameter A > 0 such that for any A, we have N(A) Poisson distributed with
mean EN(A) = LLEB(A), where LEB(A) is the Lebesgue measure of A. When
E = [0, 00), the parameter A is called the rate of the (homogeneous) Poisson process.
When E = [0, o0), epochs of a pure renewal process in (0, co) whose interarrival
density is exponential is a homogeneous Poisson process. It can be surprisingly tricky
to prove this. We just state the result. See [107, 260, 262].

Proposition 5.1. Let {E, j > 1} be iid random variables with a standard exponential
distribution. Define ')y = Y _, E; to be the renewal epochs of the renewal process,
and set N = Y > er,. Then N is a homogeneous Poisson process on [0, o) with
unit rate A = 1; that is, N satisfies Definition 5.1, and the mean measure is LEB(-).

5.1.2 Point transformations

Useful results are connected with a circle of ideas about what happens to a Poisson
process under various types of transformations. The first result, although very elemen-
tary, is enormously useful in understanding inhomogeneity. To prepare for this result,
suppose ), €x, is a Poisson process with state space E and mean measure . Suppose
T is some transformation with domain [E and range E/, where E’ is another nice space;
that is,

T:Ew— E.

The function 7 defines a set mapping of subsets of E’ to subsets of E, defined for
A" C E' by
T Y A)={ec E:T(e) e A}
Thus 7! (A’) is the preimage of A’ under T'; that is, it is the set of points of & that T
maps into A’.
As an example, suppose E = (0, 00), E' = (—00, 00), T'(x) = logx. If a < b and
A’ = (a, b), then we have
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T~ '((a,b)) ={x > 0: T(x) € (a, b)}
={x>0:logx € (a,b)}
={x>0:x¢€ ().

Given the measures N, u defined on subsets of E, we may use T to define induced
measures N', i/ on subsets of E'. For A’ C E’, define

N'(A)=NT'(AY), W) =wT(A)).

So to get the measure of A’, we map A’ back into [E and take the measure of the preimage
under 7. Also, if N has points {X,}, then N has points {X,} = {T (X,)}.

The next result asserts that if N is a Poisson process with mean measure p and with
points {X,} living in the state space [, then N' = N (T~1(-)) is a Poisson process with
mean measure " and with points {7'(X,,)} living in the state space .

Proposition 5.2. Suppose
T:E—FE

is a measurable mapping of one nice space & into another &' such that if K' € K(E')
is compact in ', thensois T 'K’ :={e € E: Te € K'} € K(E). If N is PRM() on
E, then N' := N o T~ is PRM(i)) on E', where i/ := o T~!.

Remember that if N has the representation

V= Yex,
n

then

N = ZET(Xn),
n

and the result says that if you transform the points of a Poisson process, you still have
a Poisson process.

Proof. We have
PIN'(B') = k] = PIN(T™(B") = k] = e *T "B (,, (7= (B)))* /&,

so N’ has Poisson distributions. It is easy to check the independence property since if
Bj, ..., By, are disjoint, then so are T_I(B{), ..., T7Y(B,), whence

(N'(B}),...,N'(B))) = (N(T_](B{), cee N(T_I(B,/n))

are independent. Thus requirements 1 and 2 in the definition of a Poisson process
(Definition 5.1) are satisfied. O
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Example 5.1. Consider three easy examples. For each, let N = Y > er, be a ho-
mogeneous Poisson process with rate A = 1 on the state space E = [0, co). The
mean measure u is Lebesgue measure so that u(A) = LEB(A) and, in particular,

p([0, 1) = 1.

1.LIf T(x) = x>, then Y, €r2 is PRM and the mean measure ' is given by

W10, 1) =l s T(x) < 1) = e [0, | = 1.

Note that p’ has a density

d 1 1)
1= —~t ==t
g() dt\/_ 5

2T :E> ExEviaT(x) = (x,x%), then _, érr,) = Y, €r, r2) is Poisson
on E x E. The mean measure concentrates on the graph {(x, x2) 1 x > 0}.

3. Given a homogeneous Poisson process Zn er, on [0, 00), Zn €p-1 is Poisson on
(0, oo] with mean measure ' given by (x > 0)

1

wx,o0l=p{t>0:1"" >x} = ,u,[O,x_l) =x"l

The topology on [’ induced by the map x — x~! makes the bounded sets of E’ the
sets bounded away from 0; that is, the bounded sets are neighborhoods of co. '
has a density

1 -2

d _
gty=——1t"" =t

dt
As we will see in Sections 5.5.2 (p. 154) and 5.6 (p. 160), Poisson processes with
this mean measure ' are particularly important in the theory of stable processes and in
extreme-value theory.

5.1.3 Augmentation or marking

Given a Poisson process, under certain circumstances it is possible to enlarge the di-
mension of the points and retain the Poisson structure. One way to do this was given in
item 2 of Example 5.1 of the previous section, but the enlargement of dimension was
illusory since the points concentrated on a graph {(x, x?) : x > 0}. The result presented
here allows independent components to be added to the points of the Poisson process.
This proves very useful in a variety of applications. We present here the simplest state-
ment of this result. A more sophisticated version will be presented after a discussion of
the Laplace functional.
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Proposition 5.3. Suppose {X,,} are random elements of a nice space | such that
D_ex,
n

is PRM(u). Suppose {J,} are iid random elements of a second nice space Ey with
common probability distribution F, and suppose the Poisson process and the sequence
{Jn} are defined on the same probability space and are independent. Then the point

process on E1 x [Ej,
Z G(Xnnln)’
n

is PRM with mean measure i X F.
Soif A; C E;,i =1, 2, are Borel sets, then
ux F(Ap x Ay) = u x F({(e1,e2) : e1 € Ay, e2 € A2}) = n(A1)F(Az).

Often this procedure is described by saying we give to point X,, the mark J,,. Think
about a picture where the points of the original Poisson process {X,} appear on the
horizontal axis and the marked points appear in the E; x E; plane.

The proof'is deferred. For now, note the mean measure is correct since for arectangle
set of the form A; x Ay ={(e1,e2) :e1 € A1 C Eq,er € Ay C Ep}, we have

EY €, (A1 x Ay) =Y P[(Xy, Ju) € Ay x Ay]
n

— ZP[Xn € A11P[J, € A3]

since {J,} is independent of the Poisson process. Since {J,} are iid random variables
this is the same as

= Z P[X, € A{]P[J; € As]

=E (Zexnml)) P[Jy € A7)

n

= u(AP[J; € Az].

5.2 Models for data transmission

The infinite-node Poisson model is a simple (probably too simple) model that explains
long-range dependence in measured Internet traffic. The simple explanation is based
on properties of a Poisson process.
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5.2.1 Background

The story begins around 1993 with the publication of what is now known as the Bell-
core study [118, 203, 305]. Traditional queueing models had thrived on assumptions
of exponentially bounded tails, Poisson inputs, and lots of independence. Collected
network data studied at what was then Bellcore (now Telcordia) exhibited properties
that were inconsistent with traditional queueing models. These anomalies were also
found in World Wide Web downloads in the Boston University study [51-56, 63]. The
unusual properties found in the data traces included:

» self-similarity and long-range dependence (LRD) of various transmission rates:

— packet counts per unit time,

— www bits/time.
* heavy tails of quantities such as

— file sizes,

— transmission rates,

— transmission durations,

— CPU job completion times,

— call lengths.

The Bellcore study in the early 1990s resulted in a paradigm shift worthy of a
sociological study to understand the frenzy to jump on and off various bandwagons, but
after some resistance to the presence of long-range dependence, there was widespread
acceptance of the statement that packet counts per unit time exhibit self similarity and
long-range dependence. Research goals then shifted from detection of the phenomena
to greater understanding of the causes. The challenges were the following:

» Explain the origins and effects of long-range dependence and self-similarity.

* Understand some connections between self-similarity, long-range dependence, and
heavy tails. Use these connections to find an explanation for the perceived long-
range dependence in traffic measurements.

* Begin to understand the effect of network protocols and architecture on traffic. This
is an ambitious goal, since the simplest models, such as the featured infinite-source
Poisson model, pretend protocols, and controls are absent.
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5.2.2 Probability models

Attempts to explain long-range dependence and self-similarity in traffic rates centered
around the paradigm heavy-tailed file sizes cause long-range dependence in network
traffic. Specific models must be used to explain this and the two most effective and
simple models were the following:

Superposition of on/off processes [158, 159, 176, 222, 225, 233, 285, 288, 305]:
This is described as follows: Imagine a source/destination pair. The source sends at
unit rate for a random length of time to the destination and then is silent or inactive
for a random period. Then the source sends again and when finished is silent. And
so on. So the transmission schedule of the source follows an alternating renewal
or on/off structure. Now imagine the traffic generated by many source/destination
pairs being superimposed, which yields the overall traffic.

The infinite-node Poisson model [153, 160, 175, 177, 222, 234, 242, 254]: This is
sometimes referred to as the M/G/oo input model. Imagine infinitely many potential
users connected to a single server that processes work at constant rate r. Ata Poisson
time point, some user begins transmitting work to the server at constant rate which,
for specificity, we take to be rate 1. The length of the transmission is random with
heavy-tailed distribution. The length of the transmission may be considered to be
the size of the file needing transmission.

Both models have their adherents and the two models are asymptotically equivalent

in a manner nobody (to date) has made fully transparent. We will focus on the infinite-
source Poisson model.

Some good news about the model:
It is somewhat flexible and certainly simple.

Since each node transmits at unit rate, the overall transmission rate at time ¢ is simply
the number of active users M (¢) at . From classical M/G/oo queueing theory, we
know that M (¢) is a Poisson random variable with mean Ao, Where A is the rate
parameter of the Poisson process and iy, is the mean file size or mean transmission
length. This is reviewed in Section 5.2.5 (p. 130).

The length of each transmission is random and heavy tailed.

The model offers a very simple explanation of long-range dependence being caused
by heavy-tailed file sizes.

The model predicts traffic aggregated over users and accumulated over time [0, T']
is approximated by either a Gaussian process (fractional Brownian motion, or FBM)
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or a heavy-tailed stable Lévy motion [222]. Thus the two approximations are very
different in character, but at least both are self-similar.

Some less good news about the model:
¢ The model does not fit collected data traces all that well.

— The constant transmission rate assumption is clearly wrong. Each of us knows
from personal experience that downloads and uploads do not proceed at con-
stant rate.

— Notall times of transmissions are Poisson. Identifying Poisson time points in the
data can be problematic. Some are machine triggered and these will certainly
not be Poisson. While network engineers rightly believe in the invariant that
behavior associated with humans acting independently can be modeled as a
Poisson process, it is highly unlikely that, for example, subsidiary downloads
triggered by going to the CNN website (imagine the calls to DoubleClick’s ads)
would follow a Poisson pattern.

* There is no hope that this simple model can successfully match fine time scale
behavior observed below, say, 100 milliseconds.

* The model does not take into account admission and congestion controls such as
TCP (transmission control protocol). How can one incorporate a complex object
like a control mechanism into an informative probability model?

5.2.3 Long-range dependence

There is no universal agreement about how to define long-range dependence, but prob-
ably most people associate the term with slow decay of the correlation function as a
function of the lag between time points. For us, the most functional definition is this:
A stationary Lj sequence {&,, n > 1} possesses long-range dependence (LRD) if

Cov(&n, Enyn) ~hPL(h), h — oo, (5.1

for 0 < B < 1 and L(-) slowly varying [18]. Set y(h) = Cov(&,, &,4+r) and
p(h) = y(h)/y(0) for the covariance and correlation functions of the stationary process
{&,}. For other authors, long-range dependence is sometimes taken to mean that co-
variances are not summable: ), |y (h)| = oo, whereas short-range dependence means
that ), |y (h)| < oo. Traditional time-series models, such as ARMA models [31],
have covariances that go to zero geometrically fast as a function of the lag #. Long-
range dependence, like the property of heavy tails, has acquired a mystical, almost



5.2 Models for data transmission 127

religious, significance and generated controversy. Researchers argue over whether it
exists, whether it matters if it exists or not, or whether analysts have been fooled into
mistaking some other phenomena like shifting levels, undetected trend [ 193], or nonsta-
tionarity for long-range dependence. Discussions about this have been going on since
(at least) the mid-1970s in hydrology [20, 27, 28, 32, 270-272], finance [224, 226],
and data network modeling [39, 40, 117, 141, 164, 202, 232]. Think of it as one more
modeling decision that needs to be made. Since long-range dependence is an asymp-
totic property, models that possess long-range dependence presumably have different
asymptotic properties than those models in which long-range dependence is absent,
although even this is sometimes disputed.

Simple minded detection of long-range dependence using the sample acf plot

Sophisticated methods for detecting long-range dependence exist. However, the most
common, ubiquitous, quick, and dirty method to detect long-range dependence (as-
suming that you are convinced the data comes from a stationary process) is to graph

the sample autocorrelation function (acf) {p(h), h = 1,2, ..., N}, where N is a large
number but not a significant proportion of the whole sample size. The sample acf at lag
h corresponding to observations xi, .. ., X, is defined as
) — Yl — B) (i — %)
S — %)2

The plot should not decline rapidly. Classical time-series data that one encounters
in ARMA (Box—Jenkins) modeling exercises has a sample acf that is essentially zero
after a few lags, and acf plots of financial or teletraffic data are often in stark contrast.

Example 5.2 (Company X). This trace is packet counts per 100 milliseconds = 1/10
second for Financial Company X’s wide-area network link, including USA-UK traffic.
It consists of 288,009 observations corresponding to 8 hours of collection from 9am-—
Spm. Figure 5.1 shows the time-series plot of a segment.

Figure 5.2 shows the acf plot for 2000 lags. There is little hurry for the plot to
approach zero. (Don’t try to model this with ARMA.)

5.2.4 The infinite-node Poisson model

Understanding the connection between heavy tails and long-range dependence requires
a context. For the simplest explanations, one can choose either the superposition of
on/off processes or the infinite-node Poisson model, and our preference is for the latter.

In this model, there are potentially an infinite number of sources capable of sending
work to the server. Imagine that transmission sources turn on and initiate sessions
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Fig. 5.1. Time-series plot for Company X data giving first 50,000 observations.
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Fig. 5.2. Sample autocorrelation plot for Company X data for 2000 lags.

or connections at homogeneous Poisson time points {I'y} with rate A. The lengths of
sessions {L,} are iid nonnegative random variables with common distribution Fy;,, and
during a session, work is transmitted to the server at constant rate. As a normalization,
we suppose the transmission rate is 1. Assume that

1 — Fon(t) := Fop(t) =t %L(t), t— o0. (5.2)

In practice, empirical estimates of o usually range between 1 and 2 [204, 305]. (How-
ever, there are studies of file sizes [7, 242] that report measurements of « < 1.) The
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assumption of a fixed unit transmission rate is obviously an idealization. The model
can be modified for greater realism by assuming that either

(i) transmission rates are random and possibly dependent on the size of the file to be
transmitted or on the transmission duration [38, 68, 215]

or

(i) it is assumed that cumulative input from a source follows a random process [194,
216].

For the sake of simplicity and tractability, the fixed unit transmission rate will be as-

sumed.

Note that in the case 1 < o < 2, the second moment of Fy, is infinite, but

o0

ton = E(Ly) =f Fon(t)dt < o0.
0

The processes of primary interest for describing this system are the following:

M (¢) = number of sessions in progress at ¢ (5.3)

= number of busy servers in the M/G/oo model

o
=Y lre<r<ritial

k=1
and
t
At) = / M (s)ds = cumulative input in [0, #], 5.4)
0
r = release rate or the rate at which the server (5.5

works off the offered load.

Note that expressing A(¢) as an integral gives M (¢) the interpretation of “instantaneous
input rate at time ¢.”” So realizations of M (¢) correspond to data traces of “packet counts
per unit time.” So we seek within the model an explanation of why {M (¢)} possesses
long-range dependence.
Stability requires us to assume that the long-term input rate should be less than the
output rate, so we require that
Adon < T.

This means the content or buffer level process {X (¢), t > 0} satisfies
dX(t) = M(t)dt — rl[x(1)>0]dl‘,

is regenerative with finite mean regeneration times, and achieves a stationary distribu-
tion.
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5.2.5 Connection between heavy tails and long-range dependence

The common explanation for long-range dependence in the total transmission rate by
the system is that high variability causes long-range dependence, where we understand
high variability means heavy tails. The long-range dependence resulting from the
heavy-tailed distribution Fy, can be easily seen for the infinite-node Poisson model.

Assume that 1 < o < 2. To make our argument transparent, we consider the
following background. For each ¢, M(¢) is a Poisson random variable. Why? When
1 < o < 2, M(-) has a stationary version on R, the whole real line. Assume that

Y er, = PRM(.LEB)
k

is ahomogeneous Poisson random measure on R with rate A. Then using augmentation,

%‘ = Zé(rk’l‘k) = PRM()x LEB XFOH) (56)
k

is a two-dimensional Poisson random measure on R x [0, o) with mean measure
Adt x Fon(dx), and

M@) =) liresi<riti)
k

=&({(s, D s =t <s+1}=§(B)

is Poisson because it is the two-dimensional Poisson process & evaluated on the region
B. See the gorgeous Figure 5.3. Note that B is the region in the (s, [)-plane to the left
of the vertical line through ¢ and above the —45 degree line through (¢, 0). The mean
of £(B) is

ECE{G,D:s<t<s+l}) = / Ads Fon(dl)
{(s,0):s<t<s+l}
t

= / Fon(t — $)Ads = Apton. (5.7)
§=—00

Understanding the relation between {M (¢)} and the random measure £ allows us to
easily compute the covariance function. Refer to Figure 5.4. Recall that M (¢) corre-
sponds to points to the left of the vertical through (¢, 0) and above the —45-degree line
through (¢, 0) with a similar interpretation for M (¢ 4+ 7). The process {M(t), t € R} is
stationary with covariance function

Cov(M(t), M(r + 7)) = Cov(§(A1) + £(A2), §(A2) +§(A3)),
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Fig. 5.3. The region B.

Aj

t t+7 s

Fig. 5.4. The regions A1, Az, A3.

and because £(A1) and £(A3) are independent, the previous expression reduces to

= Cov(§(A2), §(A2)) = Var(§(A2)).

For a Poisson random variable, the mean and the variance are equal, and therefore the
above is

t

— E(E(Ay) = / AduFon(t + 7 — 1)

u=—00
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o0
= A/ Fon()dv ~ ct =@ D L(7).
T

Note that we used Karamata’s theorem to evaluate the integral of the regularly vary-
ing tail.
To summarize, we find that

Cov(M(t), M(t + 1)) = A /OO Fon(v)dv
= (const)T @ V(1)
= (const)T Fon (), T — 00. (5.8)

The slow decay of the covariance as a function of the lag T characterizes long-range
dependence.

5.3 The Laplace functional

The Laplace functional is a convenient transform technique that is helpful for manipu-
lating distributions of point processes and random measures. When applied to Poisson
processes and empirical measures, algebraic manipulations become familiar to ones
used with either characteristic functions or Laplace transforms applied to sums of iid
random variables.

5.3.1 Definition and first properties

For a nonnegative, bounded measurable function f : E + R, and for u € M4 (E),
we use the notation

u(f) = / _Tu).
Form =), e, € M,(E),
m(f) =Y fx).

A guiding principle is that integrals of measures with respect to arbitrary test functions
contain as much information as evaluating the measures on arbitrary sets.

Definition 5.2 (Laplace functional). Suppose B are the nonnegative, bounded, mea-
surable functions from E — R and let

M : (2, A P) > (My(E), M (E))
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be a random measure (that is, a random element of M (E)). The Laplace functional of
the random measure M is the nonnegative function on B4 given by

Wy (f) = Eexp(—M(f)) = /Q expl—M (@, f)}dP(w)

= [ eslonrnpe M,
M (E)
Note that if P is a probability measure on M (E), its Laplace functional is
[ ewtoumpaw. 1B 59)
M (E)
Proposition 5.4. If M is a random measure on E, the Laplace functional Wy (f),

fecC ;(' (E), of M uniquely determines the distribution of M.

Proof. The distribution of M is the measure P o M~! on M_(E), the Borel o-algebra
generated by the open subsets of M (IE). Recall (p. 51) that G(M,.(IE)), the class of
open subsets of M (E), is generated by the class C of basis sets, given in (3.13), which
has a typical member,

e MiEB): u(f) e (a,b)i=1,....d) (5.10)

for f e C ,Jg(IE), i =1,...,d. The class C has the property that it is closed under finite
intersections and hence is a [1-system generating the Borel o -algebra; so it suffices
(see, for example, [24, 264]) by Dynkin’s - theorem to show the Laplace functional
uniquely determines probabilities on C. Since

IP’oM_l{M e ML (E) : u(fi) € (ai, b)), i =1,...,d}
:]P’[M(fl) (S (ai,b,-),i = 1,...,d],

it suffices to show Wy, (-) determines the joint distribution of

M(f1), ... M(fa)).

This joint distribution is determined by its Laplace transform

d
EeXp{—ZMM(ﬁ)}, A0, i=1,....d.
i=1

However, this is equal to

d d
E exp [—M(Z,\,-f,-)} = Wy (Zm&) :
i=1 i=1

Since Z?:l Aifi € C;g (E), knowledge of {Wx/(f); f € Cz (E)} is determining. O
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Example 5.3. Consider the following easy examples, which will have subsequent im-
portance:

1. For g € M4 (E), define the probability measure P on M (E) by
P =e¢y.

This probability measure concentrates all mass at one point and corresponds to the
random measure which is identically pg. According to (5.9), the Laplace functional
at f S B+ is

f expl—pt(f)} Pdp) = e 00,
M4 (E)

2. Empirical measure: Suppose X1, ..., X, are iid random elements in £ and define
the random point measure
n
M = Z €X;-
i=1

Its Laplace functional is

Eexp{—M(f)} = Ee~ Zim /(X0 — <Ee—f(X1))"

— (1 — f(l — e TOP[X, € de]) .
E

3. Poissonized empirical measure: Suppose {X;,i > 1} are iid random elements of [
and t is a Poisson random variable with parameter X that is independent of {X;}.

Define .
M = Z €X;
i=1
and on [t = 0] we understand M = 0. The Laplace functional is obtained by

conditioning on t:

Eexp{—M(f)} = Ee™ 21 /00 = E((Be™/V)7)

= exp {—/(1 — e TOP[X, € a’e]} . (5.11)
E

5.3.2 The Laplace functional of the Poisson process

Recall the definition of the Poisson process given in Definition 5.1 and parts 1 and 2 of
the definition given on p. 120.

The next result shows that the Poisson process can be identified by the characteristic
form of its Laplace functional.
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Theorem 5.1 (Laplace functional of PRM). The distribution of PRM(w) is uniquely
determined by 1 and 2 in Definition 5.1. Furthermore, the point process N is PRM (1)
iff its Laplace functional is of the form

Wy (f) =exp {— /E (1—e/ (x))u(dX)} , feBy. (5.12)

Proof. We first show 1 and 2 imply (5.12).

SteP 1. If f = Al 4, where A > 0, then because N(f) = AN(A) and N(A) is Poisson
with parameter ©(A), we get

Wy (f) = Ee N = exp{(e™ — DHu(A))
= exp {— / (1—e/ (X))M(dx)} :
E

which is the correct form given in (5.12).

StEP 2. Next, suppose f has a somewhat more complex form
k
f= Z)\ilA,w
i=1
where A; > 0, A; € £,1 <i <k,and Ay, ..., A are disjoint. Then

k
Wy (f) =Eexp {—Zwm»}
i=1

Eexp{—LiN(A;)} from independence
e

k
i=1
k
l_[ Xp {_ / (1— e rila; (x)),u(dx)} from the previous Step 1

i=1 E

k
- {/ Y=l (x))u(dx)}
Eizi
— | — o= T mila @Y g }
exp{ /IE (1-e ) u(dx)

= exp { f (1—e/ (X))M(dX)} ,
E

which again verifies (5.12).
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StEP 3. Now the last step is to take general f € B, and verify (5.12) for such f. We
may approximate f from below by simple f, of the form just considered in Step 2. We
may take, for instance,

n 2)‘[

—1
Fo) = 3 S Lt ) () + 10 (£ ()

i=1
so that
0= fulx) 1 f(x).

By monotone convergence N(f,) 1+ N(f), and since e~/ < 1, we get by dominated
convergence that

Un(f) = nlglgo Wy (fn).

We have from the previous step that

Wy (fn) = exp {— / (1— e_f"(x))u(dX)} :
E

Since
l—efnp1—e/,

we conclude by monotone convergence that

[a=e a1 [a-e .
E E

and thus we conclude that (5.12) holds for any f € B. Since the distribution of N is
uniquely determined by Wy, we have shown that 1 and 2 in Definition 5.1 determine
the distribution of N.

Conversely, if the Laplace functional of N is given by (5.12), then N(A) must be
Poisson distributed with parameter «(A) for any A € £, which is readily checked by
substituting f = Al4 in (5.12) to get a Laplace transform of a Poisson distribution.
Furthermore, if Ay, ..., Ay are disjoint sets in £ and A1, ..., Ag are positive and f =
Zle Aily,, then substituting in (5.12) gives

Ee_2f=1 AiN(A;) = exp {_/ (1 _ e*Zé{:I)LilAi) d,bb}
E
k
= exp {_f Y (L—e Mlandy
Eiz

k
[ Jexpt—(1 = e™*)u(An)
i=1
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k
— HEe_)‘iN(Ai),
i=1

and so the joint Laplace transform of (N(A;),1 < i < k) factors into a product of
Laplace transforms, which shows independence. O

5.4 See the Laplace functional flex its muscles!

This section discusses why the Laplace functional is such a useful theoretical tool.

5.4.1 The Laplace functional and weak convergence

We can test for weak convergence of a sequence of random measures in M (E) by
showing for f € C z (E) that the Laplace functionals of the random measures converge.
To do this, we will rely on the criterion 3 of Section 3.4.1 (p. 54). For more detail,
see [260, Section 3.5] or [180, 230].

Theorem 5.2 (convergence criterion). Let {n,, n > 0} be random elements of M 1 (E).
Then

iff
W, (f) =Be ") — Ee™) =W, (f) VfeCLE. (5.13)

So weak convergence is characterized by convergence of Laplace functionals
on C; (E).

Proof. Suppose n, = noin M4 (E). Themap M (E) — [0, co) definedby u — w(f)
is continuous, so the continuous mapping theorem gives n,(f) = no(f) in R. Thus

e () = g=m0(f)
and by Lebesgue’s dominated convergence theorem,
Ee () 5 Fe=M0)

as required. This was straightforward.
Conversely, suppose (5.13) holds. According to criterion 3 of Section 3.4.1 (p. 54),
we have to prove for any family {h;} C C ;g (E) that

(Mn(hj), j = 1) = (o(hj), j = 1)
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in R, and for this it suffices to prove for any integer d that
(n(hj), 1 < j <d)= (o(h;),1 <j<d),

in R¢. So it suffices to show multivariate Laplace transforms converge. Set A; > 0 for
i=1,...,d,and we have

d d
Eexp {— Z)»iﬂn(hi)} = Eexp {—Un (Z )»ihi) }
i=I i=I

and because Z;jzl Aihj € C;g (E) and (5.13) holds, we get

d
— Eexp {—770 (Z Aihi)}
i=1
d
=Eexp {—meomi)} :
i=1

as required. m|

Convergence of empirical measures

We will give extensive applications of Theorem 5.2 in the next chapter. For now, we
indicate why the criterion provides a natural way to consider weak convergence of
empirical measures.

We now give two convergence results. One gives necessary and sufficient conditions
for empirical measures to converge to a Poisson random measure limit, and the other
discusses convergence to a constant limit measure. The firstis the basis for manipulating
iid random elements with regularly varying tails by means of the Poisson transform, and
the second is the basis for consistency of estimates of heavy-tailed parameters, which
has already been considered in Theorem 4.1 (p. 79).

Theorem 5.3 (basic convergence). Suppose that for each n > 1, we have that
{Xn,j, ] = 1} is a sequence of iid random elements of (E,E). Let & be PRM(u)
on M (), that is, the Poisson random measure with mean measure .

(1) We have
Y ex,; = & =PRM(w) (5.14)
j=1
on M,(E) iff



5.4 See the Laplace functional flex its muscles! 139

nP[X,1€-1=E Zex,,,() > (5.15)
in My(E).
(1) Suppose additionally that 0 < a,, 1 co. Then for a measure u € M (E), we have
1 n
— > ex,,; = u (5.16)
an < '
on M (E) iff
—P[an € Zéxn,() - U (5.17)
in M+(E)

Remark 5.1. Note that the mean measure of Z’}-zl €X, is nP[X,,1 € -], and likewise,
is =P[X,1 €]

the mean measure of = Z io1€x,; 18 5
n

Proof.
(i) We compute Laplace functionals of the empirical measures and decide when they
converge. As in part 2 of Example 5.3 (p. 134), for f € C ;g (E),

Ee~ dmrex, () _ — Fe— =1 S Xnj) — (Ee_f(X" Dyn

_ (1 _E((1 - ef<Xw>)))

n

_ (1 Jg = e TnPIX, € dx])”

n

exp { / (1—e/ (x))u(dX)} :
E

the Laplace functional of PRM(u), iff

and this converges to

/(1 — e NnP[X, | €dx] — /(1 — e u(dx).
E E

This last statement is equivalent to vague convergence in (5.15). (See Problem 3.1 (p. 64.))
(ii) Here again we prove the result by showing that Laplace functionals converge.
We compute the Laplace functional for the quantity on the left side of (5.16):
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Eean Xizt X, () _ (Ee—ﬁﬂxn,]))”

n

Ji (1= e @) nPIX, 1 € d]

=11 )
n

and we claim that this converges to e (/)| the Laplace functional of s, iff

f (1 - e—ﬁf@‘)) nP[Xp1 € dx] — n(f). (5.18)
E

We show that (5.18) is equivalent to (5.17) as follows: Suppose (5.17) holds. On
one hand,

/Yl—éfmmnmwxmedu:;/f@yiPmaledﬂ—»uwx
E E ap

SO
lim sup/(l — e /WAy pX, | € dx] < pn(f).
E

n—oo

On the other hand,

f(l — e_f(x)/“")nP[Xn,l € dx]
E

2
SO M pix, e dxl

E 2a, ay

z/ﬂmlanam—
E dap

=I141L
Now I — wu(f) from (5.17), and since f2 € C;(F(E), we have

n(f?

dp

IT ~ — 0

since a, 1 00. So

liminff(l — e /WAy pIX, 1 € dx] > u(f),
n—o0 E
providing the other half of the sandwich.
Conversely, let f € C;;(E), and suppose that f < 1. Assuming that (5.18) is true,
we get
f/an >1- eff/an’
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leading to
fimint [ ()2 PLX € dx] 2 ()
n—oo Jp ay
and )
S g,
a, 2a;
o) )
mnmg/<f@)—f(?>nmxmlemqguuy
n—00 E an 2an
As before, we may show that
2
f—(;c)nP[Xn,l edx] — 0. O
E 261n

Preservation of weak convergence under mappings of the state space

Consider two nice state spaces E; and E, with a mapping 7' : E; +— E; from one into
the other. A measure © on (E1, £1) has an image T (i) on (Ep, &) given by the map

f(/_,L) = Mo T_l.

If T is a continuous point transformation, is T : M, (E;) — My (E,) continuous?
Note that if m € M, (E) is a point measure of the form > i €x;, then

f"(m) =moT ! = ZET(Xi)'
i
Continuity of 7' does not guarantee continuity of T without a condition. We call con-
dition (5.19) the compactness condition.
Proposition 5.5. Suppose T : Ey — E; is a continuous function such that
T7'(K2) e K[E1) VK2 € K(Ey). (5.19)

@) If wn = o in My (1), then

T(n) = pn o T~ = pn o T" =T (n0) (5.20)

in M+ (Ez)
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(b) Furthermore, if T is continuous and (5.19) holds, if {n,(-),n > 0} is a family of
random measures in M4 (I£1) such that

nn = 7707

then A A
T () = T (no) (5.21)

in M+ (Ez)

Remark 5.2. If T is continuous and [E{ is compact, then (5.19) is automatically satisfied.
In cases where [E| is not compact, acommonly employed strategy for constructing proofs
is to truncate [E; to a compact set, apply Proposition 5.5 to the convergence restricted
to the compact set, and then use a Slutsky argument to remove the truncation level.

Proof.
(a) Suppose up = Ho- Let fr € C;{r (E,). We must show that
pn o T7H(f2) = oo T (f2). (5.22)

Unpack the notation:
o T = [ fotedan o T dea)
Eo

and using the change of variable formula or transformation theorem for integrals
[264, p. 135], this is

_ / Fo(T (1) in(der).
Ey

What remains is to show that f,oT € C;g (E1). Now f> and T are both continuous,
so f> o T is continuous. Since f> € C;g (Ep), there exists K> € IC(IE,) such that
fz(ez) =0if () ¢ KQ. So

f(T(e) =0 ifT(er) ¢ K,

that is,
f(T(e)) =0 ife; ¢ T7'(K2).

From the hypothesis (5.19), T~ (K,) € K(Ey). So this says that f> o T is null off
a compact set. Thus b o T € C;g (E1), and since u, 5 wno in M4 (Eq), we have

/Efz(T(61))Mn(d61)—>/]E f2(T (e1))o(der),
1 1

which gives (5.22).
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(b) For f> € C; (E,), it is enough to show that Laplace functionals converge:
E(e T~ () 5 gm0l (), (5.23)
Again, we unpack the notation
E(emT " (7)) = (e~ (20T,

and as in (a), the fact that f, o T € C; (E1) and n, = no imply convergence on
C; (E1) of the Laplace functionals. Thus

E(e (22D _y g No(2oT)) — ge=NooT ™ (f2))

which is (5.23). O

5.4.2 A general construction of the Poisson process

Here is a general scheme for constructing a Poisson process with given mean measure (4.
Start by supposing that ;1 (IE) < oco. Define the probability measure F,

F(dx) = u(dx)/n(E),

on &£. Let {X,,,n > 1} be iid random elements of [E with common distribution F', and
let T be independent of {X,,} with a Poisson distribution with parameter u(E). Define

Yoi_iex, ift>1,
0 ift =0.

N =

Then N is PRM(u) since its Laplace functional is given in (5.11) with A = @ (IE), which
is of the correct form (5.12).

When the condition (E) < oo fails, we make a minor modification in the foregoing
construction: Decompose E into disjoint sets £, [E», ... so that E = U;E;, where each
E; satisfies u(IE;) < oo for each i. Let u;(dx) = u(dx)l1g,; (x), let N; be PRM(u;)
on [E (do the construction just outlined), and arrange things so the collection {N;} is
independent. Define N := ) ; N;. N is PRM(u) since

Un(f) =[]em

=]]exp {— (1—e/ “))m(dx)}
i E;
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= exp {—Z/U —e_f(x))m(dX)]
. E
— _ 1—e /O (d
exp{ /E< e )lZm»c)}

exp {— /E (—e @”m(dx)}

since ) ; ;i = p. This completes the construction.

5.4.3 Augmentation, location-dependent marking

Given a Poisson process, recall that one can enlarge the dimension of the points by
appending independent marks and that this retains the Poisson structure in a product
space. In fact, the marks need not be independent of the Poisson points.

Proposition 5.6. Suppose ), €x, is PRM(n) on M,(E1). Suppose we have a second
nice space (Ep, &) and K : E; x & > [0, 1] is a transition function. This means
that K (-, A») is a measurable function of the first variable for every fixed A, € &, and
for every x € E|, we have K (x, -) is a probability measure on &. Let {J;} be random
elements of [, that are conditionally independent given {X,}; that is,

Pl € A2 X (X, j #i}, U, J #i}] = K(Xi, Aa), (5.24)

so that only X; is relevant in the conditioning. Then the point process on E1 x Ej,
Z G(Xn ’ Jn) ’
n

is PRM with mean measure

pni(dx,dy) = u(dx)K(x,dy).

Soitis not necessary for {J,,} to be independent of {X,,}. Conditional independence
will do. If the distribution of J, depends on the {X;}, it must do so only through X,
and not the other Xs.

Proof. We begin by first proving Proposition 5.3, which is the case in which the marks
{J,} are independent of the points so that K(x,-) = F(-), F being the distribution
of the Js. Assume initially that u is finite. From the construction in Section 5.4.2,
we may, without loss of generality, assume that the PRM(y) is of the form ) [_, ey,,
where 7, {Y,}, and {J, } are independent, 7 is a Poisson random variable with parameter
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w(E1), and {Y,} are iid with common distribution u(dx)/u(E1). Then it follows that
{(Yy, Jn)}isiid in E; x [Ey with common distribution

()
X
w(Er)

So from the construction of Section 5.4.2,

T
d
Y €Xudn =Y €
n i=1

is PRM with mean measure w(E1)u(-)/w(E1) x F = u x F(-), as required.

If 1« is not finite, then as in the construction of Section 5.4.2, we patch things together
by repeating the argument of the previous paragraph on partition sets of E; where w is
finite. We need an at most countable number of such partition sets that are disjoint and
exhaust E;.

Now for the proof of general case stated in Proposition 5.6. Write

K(x,A2) =P[J1 € A2| X1 = x]

for the conditional distribution of Jj. It is always possible to realize a distribution as a
function of a uniform random variable (see, for example, [23]). That is, there exists a
function, say, g(x, u), such that

K(x, A2) =Plg(x, U1) € Az],

where we suppose that {U,,} are iid U (0, 1) random variables, independent of {X,,}.
The impact of this transformation is that

(X )} 2 (X, g(Xo, Un)).

We know from the proof of Proposition 5.3 that
Z €(Xn,Un)
n

is PRM with mean measure pu(dx) x LEB(dy)lj0,1)(y). Therefore, from Proposi-

tion 5.2, we get that
d
Z €Xp,Jn) = Z G(ang(anUn))
n n

is PRM(u1). To compute wug, define 7 : E; x [0,1] — E; x Ey via T(x,u) =
(x, g(x, u)). Then the mean measure w1 is (A] € &1, Ar € &)
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(1(A] x Az) = (u x LEB) o T7' (A x A7)

= / w(dx) LEB{u € [0, 1] : g(x,u) € Ay}
[xeAq]

=/ u(dx)Plg(x,Ur) € As]
[xeAq]

:f K(x, Ay))u(dx). o
Al

There are alternative proofs using Laplace functionals and induction. See [260,
p. 135].

5.5 Lévy processes

Poisson processes serve as the building blocks for many heavy-tailed models, and pride
of place goes to the Itd construction of Lévy processes discussed in this section. The
next section will discuss extremal processes. Crudely speaking, Lévy processes can be
considered as summation functionals applied to PRMs, while extremal processes can
be considered as maximal functionals applied to PRMs.

I learned much about the It6 construction from [172-174]. Other fine references
include [4, 19, 273, 274].

5.5.1 Itd’s construction of Lévy processes

We work in the space E = R4 \ {0} with generic element u = W, ..., u(d)) and use
the Euclidean metric

[l =

d
D> w®?, uekE.
i=1

Lévy measure

We begin by assuming that v is a measure on [ satisfying the following:

(1) Forevery x > 0,
viu e E: |u|| > x} < o0. (5.25)

(i) oo ezt 1X17v(dx) < o0.

In fact, combining the two properties allows recasting of (ii) as

/ Ix]?v(dx) < oo Ve € (0, 00). (5.26)
0<lxll<c
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Measures on E satisfying (i) and (ii) are called Lévy measures. When d = 1, if
v(—o0, 0) = 0, the resulting process that we will construct will be called totally skewed
to the right, while if v(0, o0) = 0, the resulting process is called totally skewed to
the left.

Let N be PRM(ILEB xv) on [0, 00) x E. Represent N as

N = Zé(rk,jk)-
k

In the simplest cases, we can define a Lévy process
X)) =xPw,.... X))

by
X(@):=)Y ji =0,

<t

but in general, we have to be careful to first center the summands to zero expectation
in order for the infinite sum to converge.

Compound Poisson representations

Fix ¢ and let I C E be a set bounded away from (. Define

S1() = ij_f/ uN(ds. du).

= [0.1x1
ke]

From the construction of a PRM with finite mean measure as a sprinkling of a Poisson
number of iid random elements into the space [E, we have the restrictionof N to [0, ] x I,
representable as

[0 11x1I ZG(Tk Ji> (5.27)

where

(1) {(Tx, Jx), k = 1} are iid pairs,

(ii) Ty and Jj are independent of each other,
(i) T is uniformly distributed on (0, ¢), and Jj has distribution ﬁ restricted to /.
(iv) t is independent of {(7%, J 1)}, and t is a Poisson random variable with parameter

tv(l)).
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It follows from representation (5.27) that

OEDIN/ (5.28)
1
is a compound Poisson random vector and
v(dx)
E(S;(®) =E@EW1) = tv(l)/x ,
v
that is,
E(S;(®)) = t/xv(dx), (5.29)
I

which is finite. Furthermore, the characteristic function can be computed: For ¢ € R?
and x € RY, write { - x = Zle ¢Dx@_ Then we have from (5.28),

[e.e]
B0 = B/ M 80k = 5 (RS  P(r = )
j=0
= exp{rv(])(Ee'* 71 — 1)}

= exp{tv(/) /(eic'x — Dv(dx)/v(D)},
1

and so we get

Ee's 510 = exp {z/(eff'x - 1)v(dx)} . (5.30)
1

Variance calculations
Suppose, in addition to being bounded away from 0, I also satisfies
I Cix:llxll <c}
for some ¢ > 0. Recalling (5.26) and again using (5.28), we have, for/ =1,2,...,d,
T
Var($\" (1)) = Var (Z J}”) = E(mEU")? (5.31)
i=1

= tv(l) f (x2v(dx) /v(I)
1

=1 /(x(l))zv(dx), (5.32)
1
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which results from a standard fact about compound Poisson random variables. The
calculation used to verify (5.31) is reviewed in the next lemma, which can be skipped
by the impatient or the knowledgeable. Note that

f (D) u(dx) < f I 2y (dx) < f I¥I2v@dx) <c0  (533)
I I {x:llxll<c}

from assumption (5.26).

Lemma 5.1. Suppose t is a Poisson distributed random variable with parameter ) that
is independent of the iid random variables {Ji, k > 1}. Then

Var (Z Jk> = AE(J?).
k=1

Proof. This is a standard calculation using the formula

Var (Z Jk) —va <E (Z Jk|r>) +n (Var (z Jm))

and the fact that for a Poisson distributed 7, the mean and variance are the same.
Alternatively, one can compute E(>_;_, Ji)? by opening the square into a double sum
overi, j, separating the double sum into terms wherei = j andi # j and then condition
on . O

Process definition

Suppose we have a sequence ¢;, | O suchthat 1 =gy > €1 > ¢ > .... Define
Iy ={xek: ¢ <lxl<¢g;}, j=0,12,...,

and the stochastic process

Xja1(6) == S, (1) —E(Sy,, (1)

= /ﬁk , uN(ds, du) —t/ uv(du). (5.34)
S u€1j+1

uelj_H

Note from (5.32) thatfor/ =1,2,...,d,

Var(X') (1) = z/ @)v(du).

Ijtq
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Also, forl =1, ...,d,

ZVar(X(l) () < z/ lu)?v(du) < oo

{w:|lul<1}

from (5.33). Recall the Kolmogorov convergence criterion [24], [264, Section 7.3] for
sums of independent random variables: If {5} are independent random variables such
that ), Var(nx) < oo, then ), (nx — E(nx)) converges almost surely.

Finally, set

Xo) = jelljl = 1 // uN(ds. du).
0,t]x{x:||x|>1}

<t
Note this is a finite sum since
EN(0, 7] x {x : [x]| > 1})) = tv{x : [x] > 1} < oo,

and hence N ([0, t] x {x : ||x]| > 1}) < oo almost surely.

We define
X(1) = Xo(t) + Z Xj(0) (5.35)
// uN(ds, du) + Z U/ ., uN(ds, du) - // udsv(du):|
Hu\|>1 ueljy ue] +1

and call (X (¢),t > 0) a Lévy process with Lévy measure v. Note the series converges
because of the Kolmogorov convergence criterion.
The equivalent representation,

X)) = // uN (ds, du)

||u||>1

+lim|:// uN(ds, du) — /f
€l0

udsv(a’u)i| , (5.36)
||u||€(€ 1] IIuIIG(E 1]

is sometimes called the 16 representation of the Lévy process.

5.5.2 Basic properties of Lévy processes

In this section, we survey some basic properties of Lévy processes that come from the
construction in a fairly straightforward manner.
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The characteristic function of X (¢)

To compute the characteristic function of X (¢), note that all the summands in (5.35) are
independent, and therefore for { € R4,

o0
Eeié X(0) = Eef¢-Xo) [ Beit Xm0,
Jj=0

using (5.30), we get

- exp{t/ (€'t — 1)v(dx)}
llxll>1

X Hexp{t/ (€'t — 1)v(dx)—i/ xv(dx)}
j=0

Ijt1 i+

= exp z/ (ei‘;'x—l)v(dx)+t2/ (5% —1—it - x)v(dx)
x> 1 o1

= @),

where

(&) =Ee't XD

= exp {/ (€' — Dv(dx) +f (et —1—it -x)v(dx)}. (5.37)
lxl>1 lxl1€(0.1]

Independent increment property of X (¢)

The process {X(¢), t > 0} has independent increments that means that for 0 < s < ¢,
X (t) — X (s) is independent of the o-algebra generated by {X (v), v < s}.

The reason for the independent increment property is that the Poisson random mea-
sure on which X (-) is built has the independence property of complete randomness
given in item 2 on p. 120. Denote the o-algebra generated by a collection of random
elements {&,1 € T} by o(&,t € T), and let £ be the o-algebra of Borel subsets of E.
The independence property of PRM N means that

o{N((s1,52] x A),0<s1 <52 <5,A €&}

and
of{N([t1,] x B),s <t] <th <t,B e}

are independent. The variable X (r) — X (s) is measurable with respect to the second
o-algebra, and o (X (v), v < s) is a sub-o-algebra of the first.
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Stationary increment property

The process {X (¢), t > 0} has stationary increments; that is, for s > 0,
(X +9) = X(9),1 20} £ (X(1),1 = 0},

where £ means equality of the finite-dimensional distributions. Recall that the distri-
bution of a PRM is only dependent on the mean measure. Define 7; : [0, 00) x E —
[t, 00) x E by

Ti(s,x) = (s +1,x),

and define
Ny =NoT .

If N =), €q.jo is PRM(LEB xv) in M,([0, 00) x E), then Ny = D €41,
is PRM(ILEB xv) in M,([t, 00) x E). This follows from Lebesgue measure being
translation invariant. Now

X(t—i—s)—X(s):// uN(dz,du)

flull>1
Te(s,s+1]

+ 181&‘)1 /Aulle(s,l] uN(dt,du) —t /€<”u”§1 uv(du)

Te(s,s+1]

= /fllull>1 uN(dt +s,du)

7€(0,1]

li N(d ,du) —t d
+ 81&)1 /ﬁu”e(&l] uN(dt +s,du) /8<||u||<1 uv(du)
7€(0,t =

]
4 // uN(drt,du)
= lul>1 ’

7€[0,7]

+ lim /f uN(drt,du) — t/ uv(du)
el0 | J Jlfese e<lull<1

- X(1).

Stochastic continuity of X (-)

. .. . P ..
Stochastic continuity means that if s, — ¢, then X(s,) — X(¢#). To show this, it

suffices to show that X () — X (s;,) RN 0. Suppose for simplicity that # > s,. Then
because of stationary increments,
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Eeig'(x(f)*x(sn)) — EeiC'X(t*Sn) — (d)(;))t*-fn
= @)’ =1 (1~ o0),

and hence by the continuity theorem for characteristic functions, X (¢) — X (s,) i 0
[24, 264].

Subordinators

If v satisfies the stronger condition
/ [ x[lv(dx) < o0 (5.38)
lxl=<t

rather than just f” xl<1 lx||*v(dx) < oo, as required by the definition of a Lévy mea-
sure, then -

Xo(t) + ) S1,,,(0)

Jj=0
converges absolutely almost surely without centering, since by the triangle inequality

o

EY 1illtllel € Zjz1]
0

<t

[e.e]
= Zt/ lx|lv(dx) = t/ lx|lv(dx) < o0.
=0 Iin 0,1]

o0
> E|S,, 0l <
Jj=0 J

In this case,
EeiE X000 8110 0) _ o {t / (4% — l)v(a’x)} .
%[>0

If the dimension d = 1 and v(—o0, 0) = 0, so that all jis are positive, then

D S, () + Xo(0)

j=0

is nondecreasing and is called a subordinator or an increasing Lévy process.
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Stable Lévy motion
Supposed = 1,0 <o <2,0< p <1,and g = 1 — p, and define the Lévy measure

o

Ve (dx) = pax "1 dx1(0.00)(x) + galx| ™ Ldx1(_s0.0). (5.39)

The Lévy process with this Lévy measure is called stable Lévy motion and is denoted
by X ().
Stable Lévy motion has the self-similarity property that for any ¢ > 0,

X(c) L eVex o, (5.40)

where equality in distribution means equality of finite-dimensional distributions.
To verify the self-similarity, we suppose that

> €. = PRM(LEB xv,).

Forc > 0,
D e iy = PRM(CLEB xq),

but so is
Z €1y cV/e jy = PRM(c LEB xvy),

d
ZE(%JD = 2 et
k k

X (c-) is built on the first Poisson process and c/¢X () on the second, so that (5.40)
follows.

and therefore

Symmetric o-stable Lévy motion

A special case of Section 5.5.2 is called symmetric «-stable motion: If p = ¢ = 1/2,
then v, given in (5.39) is symmetric, which means that

ve(a, b] = ve([—b, —a)), 0<a <b.
The characteristic function is real, and therefore X (¢) 4 —X(¢) and
$o(§) =Be/SXeW) = eI ¢ e R, (5.41)

for some ¢ > 0.
We verify (5.41). For ¢ > 0, we get from (5.37) that twice the log characteristic
function of X (¢) is (remember that p = g = %)
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2 [/ (€% — 1)y (dx) +/ (€% —1— ig‘x)va(dx)i|
[x]|>1 O<|x|<1

0o -1 )
= / @ — Dax"*ldx +/ (@ — Dalx| ™ dx
X

=1 X=—00

+/ (@ —1—icx)ax % dx
O<x<l1
+/ (@ — 1 —izx)alx|“ ldx
—1<x<0
0o ) r )
= / (€F 4+ 71 — Dax"ldx +/ (@ + e — Dax"* dx.
1 0
Making the change of variable y = ¢x, we get
CXD . .
= ;“/ (€ + e —ay " ldy
0
o
= {“/ 2(cosy — Day “ldy = —cz*.
0

5.5.3 Basic path properties of Lévy processes

Let D([0, c0), RY) be the space of R?-valued functions on [0, 0o) that are right contin-
uous and have finite left-hand limits on (0, 00). Also, recall that two R?-valued random
processes X () and Y (-) are versions if

PIX(#t)=Y(@#)]=1 forallt.
This, of course, assumes that X (-) and Y () are defined on the same probability space.

Theorem 5.4. If X (-) is a Lévy process in R? with Lévy measure v, there is a version
Y () with almost all paths in D([0, 00), R%).

To prove this, it suffices to suppose thatd = 1, work in D[0, 00), and prove that the
infinite series used in the definition of the Lévy process converges almost surely in a
stronger sense than previously considered in (5.35) (p. 150), which was only for a fixed
time point ¢. The stronger sense is uniform convergence on compact ¢-sets. To review:
For functions f;, : [0, co) — R, we say that f,, converges uniformly on compact sets,

denoted by fnii fo, if for any £,
sup [ fu(x) = fo(x)| — 0.

0<x<k

This is also called local uniform convergence.
The next result shows D[0, oo) is closed under local uniform convergence.
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Lemma 5.2. Suppose for each n > 1 that x,(-) € D[0, c0) and that xnigxo. Then it
follows that xo € D[0, c0).

Proof. Start by assuming ¢; |, ¢. Then for any m,
Ix0(7j) — x0(O)] =< |x0(7;) — Xm (tj)| + |Xm (1j) — X ()] + X (1) — x0()],
and for k > t, this is eventually bounded above by

<2 sup [xo(s) = xm ()] + [xm (1)) — xm (D)].

0<s<k

Given ¢ > 0, choose mg so large that

2 sup |xo(s) — xm ()| < €/36.

0<s<k

This is possible by local uniform convergence. Then having chosen mq, and using the
fact that x,,, € D[0, 00), we may pick jo such that for j > jo,

|xm0(tj) - xmo(t)l = 8/367
which means that for j > jo,
|xo(j) — x0(r)| < /18.

Thus xo(-) is right continuous.
If z; 1 ¢, a similar argument shows that {x(¢;)} is Cauchy and hence convergent.
The limit is x (¢ —) by definition. |

To prove Theorem 5.4, define fork = 2,3, ...,

T (1) = /ﬁubl uN(ds, du) — tﬁ uv(du). (5.42)

0<s<t g=lul=l

The construction of the Lévy process proved that for each ¢, as k — oo,
lim Ti(¢) = X(¢)
k— 00
almost surely in R. The following result proves Theorem 5.4.

Proposition 5.7. For a Lévy process X (+) in R built from the PRM(LEB xv),
N = ZG(fksjk);
k

the approximation (5.42) has the following properties:
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Property 1. Tx(-) has almost all paths in D|[0, 00).
Property 2. There exists Too(-) with almost all paths in D[0, 0o) such that for any
positive K,
lim sup [Ti(s) — Too(s)| =0,

k— 00 0<s<K
almost surely.

This Tso(-) is the desired version of X () in D[0, 00).

Proof of Property 1. Obviously, ¢ f 1 <1 uv(du) is continuous in ¢ and hence in
DI0, o0), so we only have to show for k fixed that

/[ubl/kuN(ds’ du) = ijl[ljkbkfl] =: V(1)

0<s<K 1=t

is a nice function of ¢. For any n > 1,
PIN[O,n] x {y : |y| > k™'} < o0] =1,
and therefore
A, = {w : the set {(tx (), jr(®)) : k(@) < n, | jr(w)| > k_l} is finite}
has probability 1. For w € A,,
Vi(t, w) € DIO, n],
and P(A,) = 1. SoP(N,A,;) =1, and for w € N, A,
Vi (t, w) € DIO, 00). O

Proof of Property 2. Recall Kolmogorov’s inequality [24]. If {§;} are independent ran-
dom variables, with Var(§;) < oo, then for any & > 0 we have

j j Vv YE
Plsup|d &-E|) &||>e 5@. (5.43)
i=1

J=N i=1
We need the following simple variant.

Lemma 5.3 (continuous version of Kolmogorov’s inequality). Let {Z(t),t > 0} be
a Lévy process with almost all paths in D[0, co) and satisfying Var(Z(1)) < oo. Then
for any N and any € > 0, we have

IP’|: sup |Z(t) — E(Z(1)| > s} < %ﬂ”
0<t<N €
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Proof. Think of Z (é—I,Y), j =1,...,2", as successive sums of independent random

variables. Then we have
iN i N Var(Z(N
P| sup |z <]—> ~EZ (]—)‘ L e | < YAZO) (5.44)
05]52" 2” 2" &

Let n — oo. The left side of (5.44) converges upward to

IP’|: sup |Z(s) — E(Z(s))| > ei|.

0<s<N
Note we used that E(Z(s)) is continuous in s, which follows from the fact that
E(Z(s)) = sE(Z(1)),
which is a consequence of the stationary, independent increments. We also have
Var(Z(N)) = N Var(Z(1))
for the same reason. m|

We continue with the proof of Property 2 of Proposition 5.7. We seek a set A
with P(A) = 1 such that if w € A, then for any K, the sequence {7} (-, w), k > 1} is
Cauchy with respect to uniform convergence on [0, K]. If we find such a A, we have
limg_s 5o Tk (-, @) exists uniformly on compacta for w € A, which is the desired result.

For x € DI[0, 00), write || x || x= supp,<g |x(s)].

Pick and fix K. To show the Cauchy pfoﬁerty, we prove that

Yy =sup || Ty — Ty 550, (5.45)
m>N
n>N

as N — oo. Since {Yy} is nonincreasing, it suffices to show that Yy —P> 0 [24, 264],
so we aim to show that

lim P|sup | T, — Ty llk>€ | =0. (5.46)
N—o0 m>N
n>N

This is the same as showing that

Iim Ilim P sup || T — Ty llxk>¢| =0, (5.47)
N—00 M—0o0 M>m>N
M>n>N
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and since
| T =T lk <N Tn — Tn llx + | Tn — T |k,

it suffices to show that

lim lim P |: sup || T —Tn k> 2£i| =0. (5.48)

The triangle inequality implies that

| Ty — TN k=T —Tn llk — | Tm — T; ks
and hence
M i—1
U | V IT) = Tyl <26 1T = Tnllk > 26, 1T — Tillx < ¢
i=N+1 | j=N

CllITy — Tnllk > €l

Note that the union is a disjoint union since we decompose according to the first index

where a difference exceeds 2¢. Therefore,

Pl Tm — Tn Ik > €] (5.49)
M i1
> Y P\ ITj—Tnlk <26 1T — Twllx > 26, 1Tu — Tillk < e
i=N+1 | j=N
M i1
= > P| \/ITj—Tvlx <2& T, — Tylx > 2¢ | PlITy — Tillx < el
i=N+1 | j=N
Note that we have used the fact that form > N,
T,(t) —Tn() = /1 L uN(ds,du) — t/ uv(du),
m<lul=y L y< L
0<s<t m -N
o Ty+1 — Ty, ..., Ti—1 — Ty, T; — Ty involve points in the horizontal strip with

boundaries at (ll., %], while T); — T; uses points in the disjoint strip (ﬁ, ll.]; therefore
Ty — T; is independent of Ty 41 — T, ..., T; — Tn.

Finally, we have

Pll Ty —Ti lxk<el=1=Pll Ty —T; x> €]
Var(Ty (K) — T; (K))
1— 2
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(by Kolmogorov’s inequality as given in Lemma 5.3 (p. 157))
=1- K82/ u*v(du)
ﬁ<WK%
> 1 - Ks_Z/ u?v(du)
ar<lul<

1
N

>1-— Ke_zf uzv(du) -1 (N — o0)
O<lul<+

since ] €(0.1] u?v(du) < oo. Pick Ny so large that for N > Ny, we have that for
N<i<M
1
Pl Tv = T; k<€l > 5
From (5.49)

2P[| Tm — Tn |k > €]
M i—1
> Y P \/ITj—Tnlk <26 T — Twlix > 2¢

i=N+1 j=N
M
=P| \/ ITu—Tylg >2e|.
n=N+1

and again applying Kolmogorov’s inequality, we get

M
Pl \/ ITn—Tnlg > 26 | <2P[ITy — Tnlk > ]
n=N+1
2 2K 5
< = Var(Ty(K) — Ty(K)) = — u?v(du).
ﬁ 82 L<M<L
M —N

This gives (5.48) and (5.45) follows. Let A g be the set of probability 1 on which (5.45)
holds. Then A = ) kez, Ak is a set of probability 1 on which || T,, — T, [k— 0
as m,n — oo for any K and therefore on which uniform convergence takes place for
any K. O

5.6 Extremal processes

Extremal processes are another simple class of processes derived from Poisson random
measures.

References for this section include [11, 82—84, 119-122, 244-247, 257-260, 276~
278, 291, 294-296].
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5.6.1 Construction

In what follows, vector notation relies on the convention that operations on vectors are
performed componentwise. Usage should be self-explanatory; Appendix 10 (p. 359)
collates conventions and notations.

For simplicity, take E = [0, 00)?. Let v be a measure on E satisfying

vixeE:|x|| > 8} <00 (5.50)

for any 6 > 0. Suppose that

N = Z €t dx)
k

is PRM(LEB xv) on [0, 0o) x E, and define the extremal process generated by N as

Yt)=\/Jji. t>0. (5.51)

<t
Then for x > 0, x # 0, and any ¢ > 0,

P[Y (t) < x] = P[N((0, ] x [0, x]°) = 0] = ¢~ ""(0*1)
=: F'(x). (5.52)

Notice that for || x| > 0, v([0, x]°) < oo from (5.50), and so F is not identically 0 and
converges to 1 as /\?le(i) — 00.

The distribution F (x) constructed this way is max-infinitely divisible, which means
that for any 7z, F’ is a multivariate distribution function [11, 260]. The measure v is
called the exponent measure. (Conversely, any max-infinitely divisible distribution has
an exponent measure.)

5.6.2 Discussion

The extremal process Y (-) given by (5.51) is a stochastically continuous Markov jump
process that is constant between jump times. It is nondecreasing in each component,
and as constructed in (5.51), the paths are almost surely in D([0, co), RY).

When d = 1 and F(x) given in (5.52) is continuous, much is known about the
structure of the process. For instance, we have the following:

1. Jump times of the process form a Poisson process with mean measure having density
-1
x 'dx,x > 0.

2. The range of the process is also a Poisson process with mean measure having
distribution function V (x) := —log(—log F (x)), so that the mean measure of the
interval (a, b]is V(b) — V (a).
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3. Y (x), x > 0is a process with independent increments.

For details, see, for example, [260, Chapter 4.3].
One final comment: When d = 1 and the exponent measure is v, for some « > 0
given by

Ve(x, 00l =x7% x>0,

we have
F(x) =exp{—x"%} = ®y(x), x>0.

This is the Fréchet distribution, one of the classical extreme-value distributions given
in Section 2.2.1 (p. 23).

5.7 Problems

5.1 (Thinning). Suppose ) _, €y, is a Poisson process on the state space E with mean
measure (. Suppose we inspect each point independently of others and decide with
probability p to retain the point and with probability 1 — p = ¢ to delete the point.
Let N, be the point process of retained points and N, be the point process of deleted
points. Then N,, N, are independent Poisson processes with mean measures pu and
q 1, respectively. Analyze this using augmentation by iid Bernoulli random variables
having values {31} with probabilities p, g.

Generalize: Previously, we categorized or marked the points in two ways: retained
or deleted. However, we could just as well randomly assign the points to any of
d > 1 categories, thereby splitting a Poisson input stream into d independent Poisson
substreams. The Bernoulli random variables need to be replaced by multinomial random
variables with d cells.

5.2 (The order statistics property). The construction in Section 5.4.2 proves that
PRM () exists and also gives information about the distribution of the points: Condi-
tional on there being n points in aregion A with (A) < oo, these points are distributed
as n iid random elements of A with common distribution F'(dx) = u(dx)/u(A). Show
that when [E = [0, 00), this yields the order statistics property for a homogeneous Pois-
son process: If N = Y °7 | er, is a homogeneous Poisson process on [0, c0) with rate
A, then conditional on
[N((O,t]) = nl,

the points of N in [0, ¢] in increasing order are distributed as the order statistics from a
sample of size n from the uniform distribution U (0, ¢) on [0, ¢]; that is,

d
Tty .., TaIN[O, 1] = n) = (Urn, - - - Upn)-
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5.3 (Weak convergence of Poisson random measures). Suppose for each n > 0 that
N, is PRM(u,,) on [E, where i, is a Radon measure on [E. Then as n — o0,

N, = Ny

if and only if
“n = 120]

in M4 (E). (Laplace functionals make short work of this.)
5.4. Suppose v is a measure on R with
O(x) =v(x,00) <0 VxeR.

Define for y > 0,
0 () =1/0)"G.

Suppose {I';;, n >} are successive sums of iid unit exponential random variables.

1. Show that

Y o=
n

is PRM(v) on R. What is the distribution of the largest point of the point process?

2. Suppose {U,,n > 1} are iid U (0, 1) random variables that are independent of
{T",,, n >}. Show that

Y €wn0-m,)
n

is PRM(LEB xv) on [0, 1] x R. Give a representation of the extremal process
generated by this Poisson process.

5.5.

(a) Suppose Z;’il €y, € M,(E). Let {§;,i > 1} be iid Poisson random variables, each
with mean 1. Compute the Laplace functional of

Z Ei€y;-

This is the point process in which, for each i, a Poisson number of points is assigned
to location y;
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(b) Now suppose ) ; €y, is PRM(v) on E, and let {§,i > 1} be iid Poisson random
variables, each with mean 1, and independent of {Y¥;}. Compute the Laplace func-

tional of
> e
i

5.6 (Variant). As a variant of Problem 5.5, suppose that
m = Zeyl. € M,((E)
i

and that {£,} are iid nonnegative integer-valued random variables with Laplace trans-
form
(L) =Ee 1, A >0.

Compute the Laplace functional at f for
Z Si ey,‘ ’
i

and express the answer in terms of ¢, f, and m.

5.7 (Largest-jump functional [247]). Suppose {X (¢),t > 0} is a one-dimensional
Lévy process with Lévy measure v and paths in D[0, co). Define

Y(@) =sup{X(s) — X(s—):s <t; X(s) — X(s—) > 0}

to be the largest positive jump of X (-) in [0, ¢]. Show that Y (-) is an extremal process,
and compute P[Y (¢) < x] for x > 0.

5.8 (Cluster processes). Let {I';, j > 1} be the points of a homogeneous Poisson
process on R, and suppose {Yl.(k), i > 1,k > 1} are iid, nonnegative random variables
independent of {T";, j > 1}. Set S(()k) = 0and

n
SO=3¥® ax1.
i=l1

Finally, let {®, k > 1} be iid nonnegative integer-valued random variables indepen-
dent of {T';} and {¥,*}.

A Poisson cluster process consists of points determined by Poisson “centers’ and
points sprinkled around a Poisson center according to some rule.
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1. Define

o t®

Ni=D) € s

k=1n=0
consisting of Poisson points trailed by a renewal process terminated at a random
index. Compute the Laplace functional. (Here we count the Poisson points.)

2. Define the Neyman—Scott model (see [231] for background) by

oo t®

DB DL

k=1 n=1

consisting of Poisson points trailed by order statistics. (Here we do not count the
Poisson points.) Compute the Laplace functional; presumably the answer comes
out in terms of the generating function of the ts.
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Multivariate Regular Variation and the Poisson Transform

This chapter discusses the relationship between (multivariate) regular variation and the
Poisson process. We begin with a survey of multivariate regular variation as it applies
to distributions. The goal is to make the results of Theorem 3.6 applicable to higher
dimensions.

For other treatments and additional material, see [13, 90, 220, 308-312].

6.1 Multivariate regular variation: Basics

We begin by discussing regular variation of functions and then move to measures.

6.1.1 Multivariate regularly varying functions

Asubset C C R? is called a cone if whenever x € C, thenalso tx € C foranyt > 0. A
function & : C — (0, co) is monotone if it is either nondecreasing in each component
or nonincreasing in each component. For 4 nondecreasing, this is equivalent to saying
that whenever x, y € C and x < y, we have h(x) < h(y).

Suppose 2 > (0 is ameasurable function definedon C. Supposel = (1,...,1) € C.
Call h multivariate regularly varying with limit function A, provided A (x) > Oforx € C,
and for all x € C, we have

h(tx)
m =
t—o0 h(t1)

More properly, this should be called regular variation at co. Note that A(1) = 1. Fix
x € C and define U : (0, c0) — [0, 00) by U (t) = h(tx). For any s > 0,

A(x). (6.1)

U(ts) o h(tsx) . h(tsx) h(tx)  A(sx)
im = lim = lim = .
t—oo U(t) t—oo h(tx) t—oo h(tl) ' h(tl) A(x)
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From Proposition 2.3, we have for some p(x) € R that U € RV (x) and

A(sx)
A(x)

= P

In the next paragraph, we verify that p does not depend on x, and thus we conclude
from this simple scaling argument that A(-) is homogeneous:

Alsx) =s’A(x), s>0, xeC. (6.2)

Why is p(x) constant in x? For x, y € C, we have for any s > 0,

h(tsy)
o0(») . h(tsy) . h(tsx) h(tsx)
s = lim, hiy) et B0 hix)
Y h(tx)
%Y)
_ Ax) px) _ px)
T YT
*(x)

This is true for any s > 0, and hence

px) = p(y).

Thus reassured, we note that (6.1) could be rephrased as & is multivariate regularly
varying with limit function A if there exists V : (0, 00) + (0, oo) with V' € RV, for
some p € R such that

h(tx)
im
—00 V([)

=Ax) VxeC. (6.3)

6.1.2 The polar coordinate transformation

It is frequently convenient when considering multivariate regular variation to transform

the state space using a generalized polar coordinate transformation. After the trans-

formation, the homogeneity property (6.2) in Cartesian coordinates becomes a product

property in polar coordinates. We soon state equivalences for multivariate regular vari-

ation for the distribution of a random vector, where this will be particularly convenient.
AnormonR% is a mapping || - || : R? > [0, 00) such that

1. ||x|| > 0forallx € R? and ||x|| = 0iffx = 0.
2. |lex|| = lc|||x]|| for all x € R¢ and ¢ € R.

3. The triangle inequality holds: For x, y € RY, we have

llx +yll < llxll + iyl
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Examples of norms are the following:

¢ The usual Euclidean norm:

* The L,-norm:
d 1/p
x|l = (Z |x<”|l’> , p=0.
i=1
e The Ls-norm:
n
el =\/1x®1.
i=1
Given a chosen norm || - ||, the unit sphere is

R:={x:|x]| =1}.

Note that for the Euclidean norm, the unit sphere is really a sphere in the conventional
sense. If d = 2, the “unit sphere” in the Li-norm is a diamond, and the “unit sphere”
in the L-norm is a square.

A norm always defines a distance on R? by

d(x,y) = lx—yl.

Norms on R? are all topologically equivalent in that convergence in one norm implies
convergence in another. This follows from the fact that for any two norms ||-||;,i = 1, 2,
some constants ¢ > 0 and C > 0 exist such that

clxl < llxll2 = Cllx]ls.

Fix a norm. (Theoretically, it does not matter which norm is chosen, but for con-
sidering particular examples, some norms are more appropriate and convenient.) We
want to define the polar coordinate transform of a vector x € R? as

X
X = (”x”s _) = (r7 a)'
x|

This obviously creates difficulties if || x| = 0, so due to property 1 in the property
list for norms, we exclude 0 € R?, and we define the polar coordinate transformation
T : R\ {0} — (0, 00) x X by
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X
T(x)= (IIxII, —) =: (r, a).

This has inverse transformation 7 : (0, 00) x 8 — R? \ {0} given by
T (r,a) =ra.

Think of @ € R as defining a direction and r as telling how far in direction a to proceed.
Both T and T < are continuous bijections when we exclude 0.
When d = 2, it is customary, but not obligatory, to write

T(x) = (rcosf,rsinf),

where 0 < 6 < 27, rather than the more consistent notation 7 (x) = (r, (cos 8, sin6)).
For a random vector X in RY , We sometimes write

T(X) = (R, ©).

The problem with all this is that for multivariate regular variation of tail probabilities,
we have to deal with a punctured space such as [0, oo] \ {0}. (See Section 6.1.3.)
The polar coordinate transformation is not defined on the lines through oo, so when
discussing multivariate regular variation, some sort of restriction argument is necessary
to get around this.

6.1.3 The one-point uncompactification

In reformulating the function-theory concept of regularly varying functions into a
measure-theory concept, there is continual need to deal with sets that are bounded
away from the origin. Such sets need to be regarded as “bounded” in an appropriate
topology so sequences of measures of such sets can converge nontrivially. This is ne-
cessitated by focusing on tail probabilities or exceedance probabilities, which naturally
consider probabilities of sets in a neighborhood of infinity. A convenient way to think
about this is by means of the one-point uncompactification. We have already seen an
example of this in Section 3.6 (p. 62).

Let (X, 7') be a nice topological space; X is the set and 7 is the topology, that is, a
collection of subsets of X designated as open, satisfying the following:

(i) Both#e 7T and X e 7.

(i1) The collection 7 is closed under finite intersections and arbitrary unions.
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X X\ {x} Uses
compact set punctured version
[0, 0] [0, oo] \ {0} = (0, oo] extremes

positive jump Lévy processes

[—o0, 00] [—o0, oo \ {0} Lévy processes

stable processes

[0, oo]d = [0, o0] [0, oo] \ {0} multivariate exceedances
R?-valued positive jump processes

[—00, 00]¢ = [—00, 00] [—o0, oo] \ {0} multivariate Lévy processes
multivariate stable processes

Table 6.1. Compact spaces, their punctured modifications and their uses.

(For example, X could be a subset of Euclidean space.) Consider a subset D C X,
define
X* =X\ D =XnD",

and give X* the relative topology
T"=TnD =T nx".

So a set is open in X* if it is an open subset of X intersected with X*.
We need to identify the compact sets of X*. This is done next.

Proposition 6.1. Suppose, as usual, the compact subsets of X are denoted by K(X).
Then
KXH={KeKX): KND=¢)

are the compact subsets of X*.

The compact sets of X* are the original compact sets of X, provided they do not
intersect the piece D chopped away from X to form X*.

Specialize this to the one-point uncompactification: Suppose X is a compact set and
x € X. Give X\{x} the relative topology consisting of sets in X\{x} of the form G\{x},
where G € G(X), the open subsets of X. The compact sets of X\ {x} are those compact
subsets K C X such that x ¢ K. Thus the one-point uncompactification describes the
compact sets of a compact space punctured by the removal of a point.

Special cases, each of which will be of use, are summarized in Table 6.1, which
lists compact spaces, the one-point uncompactified versions, and intended uses.

Proof of Proposition 6.1. Begin by assuming that

K e KX), KNnD=¢;
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we show that K € IC(X*). Let
(G =G, nx* yen)

be some arbitrary cover of K by open subsets of X*, where G, € G(X) and A is some
index set. So
Kcl|JG6,nx*c|aG,.
yeA yeA
Since K € K(X), there is a finite subcollection indexed by A" C A such that K C
U, ear Gy Since K ND = 9,

kK c | J G, nx*.
yeN

Therefore, any cover of K by open subsets of X* has a finite subcover, and thus K is
compact in X*. Thus

(K e KX): KND =0} c KXH.

The converse is quite similar. m|

6.1.4 Multivariate regular variation of measures

The equivalences in Theorem 3.6 (p. 62) suggest a way to proceed with a definition of
multivariate regular variation that is useful for probability and statistics. We assume
that Z > 0 is a d-dimensional random vector that takes values in the nonnegative
quadrant [0, 0o). (Extensions to positive and negative components are straightforward
and discussed later in Section 6.5.5 (p. 201).) Suppose the distribution of Z is F. We
could say that F has a regularly varying tail if there exist b, — oo and a limit measure
v(-) on the Borel subsets of the quadrant such that

nF(b,-) = nP [bi € ] S () (6.4)
n

in M4 ([0, oo] \ {0}). This is the correct analogue of (3.29); it is more fully developed

in the next theorem.

To deal with multivariate regular variation of tail probabilities, we work in the
punctured space with a one-point uncompactification E = [0, oc] \ {0}. Equivalent
formulations in terms of polar coordinates then have to deal with the fact that the
polar coordinate transformation is not defined on the lines through oo, so some kind of
restriction argument is necessary. For a somewhat different treatment, see [13, 15, 227].
Set 8, = RN E. Continue to denote vague convergence of measures by 5.
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Theorem 6.1 (multivariate regularly varying tail probabilities). The following state-
ments are equivalent. (In each, we understand the phrase Radon measure fo mean a
Radon measure that is not identically zero and that is not degenerate at a point. Also,
repeated use of the symbols v, b(-), {b,} from statement to statement does not require
these objects to be exactly the same in different statements. See Remark 6.1 after
Theorem 6.1.)

1. There exists a Radon measure v on E such that

1-F@ax) . P[£e[0,x]]

t

S0 T— F(l) 1500 m

T

= v([0, x]°) (6.5)

for all points x € [0, 00) \ {0} which are continuity points of the function v([0, -]1°).

2. There exists a function b(t) — 00 and a Radon measure v on E, called the limit
measure, such that in M (E),

Z
tP [— € ] L, t— . (6.6)

Z v
nlP [— € ] — vV, n— o0. (6.7)

4. There exists a probability measure S(-) on Xy, called the angular measure, and a

function b(t) — oo such that for (R, ®) = (||Z], ﬁ), we have

P [(%, @) € ] 5 ocvg X S (6.8)

in M4+ ((0, oo] x Ry) for some ¢ > 0.

5. There exists a probability measure S(-) on ¥ and a sequence b,, — oo such that
for (R, ©) = (| Z|l, y77), we have

nlP [(bﬁ, @)) € } 5 ocvg X S (6.9)

in M1 ((0, oo] x R}) for some ¢ > 0.
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Remark 6.1. Normalization of all components by the same function means that marginal
distributions are tail equivalent; that is [256, 260],

. P[ZW > x]
lim ———— =:r;; € [0, 00],
X—00 P[Z(J) > x|
for 1 < i, j < d. For theoretical considerations, it is best to avoid cases where some
marginal tails are heavier than others, corresponding to r;; = 0 or co for some (7, j), and
therefore it is frequently assumed that all components {Z(), 1 < i < d} are identically
distributed. In practice, of course, the tails rarely look the same. More on this later in
Section 6.5.6 (p. 203).
When b(t) = t or b, = n, we are in the standard case [95, 260] and all marginal
distributions are tail equivalent to a standard Pareto distribution with « = 1. In general,
the possible choices of b(¢) include the following:

() b@) = (1_}%)“(:), where Fy(x) = P[Z!) < x] is the one-dimensional
marginal distribution. This choice is sensible if the components of the vector are
identically distributed.

(1) b(r) = (ﬁ)“(r), where Fgr(x) = P[R < x] is the distribution of ||Z||. Note

that this choice of b(-) depends on the choice of norm || - ||.

Different choices of b(-) may introduce different constants ¢ in the limit statements.

The following lemma facilitates the proof of Theorem 6.1. Continue to assume that
E = [0, oo] \ {0}.

Lemma 6.1. Suppose for n > 0 that u, € M (E). Then
fn = po  in M4(E) (6.10)

iff

wn ([0, x19) — 1o([0, x]°) (6.11)
for x € [0, 00) \ {0}, which are continuity points of the limit 11o([0, -1°).
Proof. Theorem 3.2 (p. 52) shows that (6.10) implies (6.11), so assume (6.11) and we

must prove (6.10). Let f € C;g (E). Then the support of f is contained in [0, x]¢ for
some continuity set [0, x]¢, and since we have convergence on this, set

sup fn (f) < sup f(x) - sup ([0, x]°) < oo.

xek

This is true for any f € C; (E), so {u,} is relatively compact from (3.16) (p. 51). If
w and p are two subsequential limits, then by (6.11) i and u’ agree on the continuity
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sets [0, x]¢. Now argue that u and ;’ must agree on the 7 -system of rectangles whose
vertices are continuity points of wg and which are bounded away from 0, and hence
uw=pu onkE. O

Proof of Theorem 6.1.

1 — 2: Condition 1 says that F := 1 — F is a multivariate regularly varying
function on the cone [0, o) \ {0}, and therefore F(r1) is a regularly varying function
of t:

F(t1) e RV_, forsome o > 0.

Define b(¢) to satisfy )
Fb) ~t7 !, > oo.
Then replacing ¢ by b(t) in 1 yields

Z (& C
tP [% € [0, x] ] — v([0, x]°).

Lemma 6.1 gives (6.6).

2 — 3: Obvious. Replace ¢ by n.

3 — 1: There exists a function b(t) € RVy/, such that b(n) = b,. To see this,
use marginal convergence: The assumed vague convergence in (6.7) allows us to insert
into (6.7) relatively compact sets (the sets are bounded away from 0) of the form

[0,00] X+ x (x,00] x [0, 00] X --- x [0, o0].

When we do this, we get marginal convergence:

(@)
nP|:Zb >xi| — ([0, 00] X -+ x (x,00] x [0, 00] X --- x [0, 00]).

n

Provided the limit is nonzero, which it must be for some i, we get that the marginal tail
satisfies the sequential form of regular variation (see Proposition 2.3 (p. 21)). Hence
the marginal tail is regularly varying and the quantile function b(f), by inversion, is
regularly varying. (See Proposition 2.6(v) (p. 32).) We can set b(n) = b,,.
Now for x a continuity point of v([0, -]°), we have by Theorem 3.2 (p. 52) or
Lemma 6.1 that
nlP [bg € [0, x]‘} — v([0, x]°.

n

For any ¢, there exists an integer n(¢) such that

bty <t < buiy+1,
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and so

b= (0P [% e [0, x]c} <b“ obn(t)+ )P [ € [0, x]c]

b(n(t))
e [0, x]c]

(r)P[ z
~n

b(n(t))
— v([0, x]9.

A similar argument gives a lower bound, which gives 1 since 5 (-) is regularly varying.
Recall that the rephrasing of the definition of regular variation given in (6.3) allows
normalization by any regularly varying function.

We summarize what we have proved so far: 1 <> 2 < 3. Assuming any one of
these, the measure v places no mass on the lines through oo,

v(EN ([0, 00) \ {0})) = 0.

Reason: If there were mass on a line through oo, one of the one-dimensional marginals
would have mass at co. This, however, is impossible since

v(EN\ ([0, 00) \ {0}))

d
SXILIIQOZv([O,oo]x--‘x(x,oo]x[O,oo]x-‘-x[O,oo])
i=1

d
= lim cix ¢ =0.
in ¥
i=

The equivalence of 4 and 5 is similar to the equivalence of 2 and 3 and is omitted.
It remains to show 3 <> 5 and we content ourselves with showing 3 — 5 since the
converse is very similar. We proceed in a series of steps.

STEP 1: Restrict the space to the natural domain of the polar coordinate transformation.
We claim that (6.7) implies convergence on a smaller domain:

Z

nlP [b_ € ] S in ML ([0, 00) \ {0}). (6.12)
n

To verify the claim (6.12), let f € C;g([(), o0) \ {0}) and suppose K € K([0, c0) \ {0})

is the compact support. Then K is also compact in E by Proposition 6.1. Extend f to

a function f on E by

fx) ifx e K,

f(x)z{o ifx cE\ K.
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Then f € C; (E). Now 3 implies that

nEf (;) ),

n

which is the same as

nEf (;) S,

n
which implies (6.12).
See also Problem 6.3 (p. 206) for alternatives using the restriction functional.

STEP 2: Apply the polar coordinate transform T ; check the compactness criterion. In
the restricted space [0, c0) \ {0}, we may now apply the polar coordinate transformation

T(x) = (r.a) = (uxn, i).

llx]]

Note that
T :10,00)\ {0} — (0,00) x N 4.

Let K € K((0, 00) x ®4). Then K is closed and contained in a set of the form
{(rpa):6 <r <M,a e Ry}
for small § > 0 and large M. Since T is continuous, T~1(K») is closed and contained in
T_l{(r,a) d<r<M,aef;}={xecE:§<|x| <M},

which is compact in [0, 00) \ {0}. So T~!(K>), being a closed subset of a compact
set, is compact. Thus the compactness criterion of Proposition 5.5 (p. 141), is satisfied.
Apply Proposition 5.5 to the convergence in (6.12), and we get

nlP [(bﬁ, @) € } S voT () in ML((0, 00) x Ry). (6.13)

n

What is the form of v o T-1(:)? From (6.5) we have that v([0, x]¢) is the limit
function in the definition of multivariate regular variation, and hence v ([0, x]°) has a
scaling property

v([0, sx]) = s % ([0, x]°).

So for any rectangle / bounded away from 0, we have

v(sl) = s %v().
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The class of rectangles is closed under finite intersections and generates the Borel o -
algebra &, so by Dynkin’s 7 — X theorem [264], for any A € £, we have

V(sA) = s %v(A).

This means that for any # > 0 and measurable set A C R, we have

x 4 t~x
vix €[0,00)\{0}: ||x]| >t,— e A} =vix:|t x[>1, ——€A
[l |l 2= x|l

v{ty: Iyl > LieA}
Iyl

=r‘°‘v{y iyl > 1, eA}
Iyl

=11 %S(A).

So homogenity implies the product form when the measure is applied to a pizza slice
shaped polar set. Thus on (0, 00) x N,

voT 1 =cyy xS. (6.14)

StEP 3: Extend to bigger space, where boundaries at infinity are included. We now
extend the convergence in (6.13) to M ((0, oo] x R, ). To economize on notation for
the proof, suppose the constant ¢ in (6.14) is 1. Let f € C,Jg((O, oo] x R;) and set
I/ = supg.gye(0,001xx, S (- 8) < oo. To relate this function f to one defined on

C IJg((O, 00) x 84 ), we perform a smooth truncation using the function

1 fO0<t <M,
drs.m(@) =10 ift =M+,
linear interpolation if M <t < M + 6,

and we define
ns(r,0) = f(r,0) s m(r) € CE((0, 00) x Ry).

We have

nEf (;,@) — Vg X S(f)‘

nEf (bﬁ’ G)) —nEfys (bﬁ’ @)’
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+

R
nEfu.s (—, 9) — Vo X S(fm,s)

b + Ve X S(fum,8) = va x S(f)

=A+B+C.
Since fyr,s € C3((0, 00) x R4), we have lim, oo B = 0 from (6.13). The term C is

bounded by

/If(r, N1 — pr m(r)|ve(dr)S@o) < || fllva(M, o0l = || fIM™7,

which can be made arbitrarily small by a suitable choice of M. The term A is handled
similarly after taking lim sup on n. This gives (6.9). O

Remark 6.2. We call the measure v in, say, (6.6) the limit measure. The probability
measure S on R is called the angular measure. Theorem 6.1 shows that for a given «,
the class of limit measures is large since the class is in 1-1 correspondence with the set of
probability measures on R ;.. If we take an independent pair (R, ®) on (0, co] x R with

PIR>r]l=r"% r>1, PO € -]1=S(),
then

R
tP [m >r,0O¢c A:| = t([l/otr)—O!S(A) = vy X S((r, 00] X A).

So any probability measure S on R is a possible angular measure.

6.2 The Poisson transform

Multivariate regular variation of the probability distributions as given in the equiva-
lences of Theorem 6.1 in either Cartesian or polar coordinates is equivalent to induced
empirical measures weakly converging to Poisson random measure limits. We state the
result next.

Theorem 6.2. Suppose {Z, Z1, Z,, . ..} are iid; after transformation to polar coordi-
nates, the sequence is {(R, ©), (R1, O1), (R2, ©3), ...}. Any of the equivalences in
Theorem 6.1 (p. 173) is also equivalent to the following:

6. There exists b,, — oo such that

> " €z.5, = PRM(v) (6.15)

i=1

in M,(E).
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7. There exists a sequence b,, — 00 such that
n
> € b.0,) = PRM(cvg x S) (6.16)
i=1
in Mp((0, 00] x Ry).

These conditions imply that for any sequence k = k(n) — oo such thatn/k — oo,
we have the following:

8. In M., (E),
1
% Zézi/b(%) =V (6.17)
i=1
and
9.In M, ((0, 00] x R),
1
% Zé(Ri/b(%),G)f) = CcVy X S, (6.18)

i=1
and 8 or 9 is equivalent to any of 1-7, provided k(-) satisfies k(n) ~ k(n + 1).

Proof. The bridge between the lists of equivalences in Theorems 6.2 and 6.1 is Theo-
rem 5.3 (p. 138). O

Thus multivariate regular variation has an exact probabilistic equivalence in terms
of convergence of empirical measures to a limiting Poisson random measure.

The following variant is needed for proving weak convergence of partial sum pro-
cesses or maximal processes in the space D[0, c0).

Theorem 6.3. Suppose {Z, Z, Z,, . ..} are iid random elements of [0, 00). Then mul-
tivariate regular variation of the distribution of Z in E = [0, oo] \ {0},

P z e |5
nP|—e-. v,
by,

Z €(i 2, /by = PRM(LEB xv) (6.19)
J

is also equivalent to

in M ([0, 00) x E).
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Proof. We proceed in a series of steps to prove that regular variation implies (6.19).
The converse is clear, for example, from Problem 3.7 (p. 65).

Step 1. It suffices to prove (6.19) in M, ([0, T] x E) for any T > 0. To see this,
observe that for f € C,Jg([O, o0) x [E), with compact support in [0, T'] x E, the Laplace
functional of a random measure M at f is the same as the restriction of the random
measure to [0, T] x E evaluated on the restriction of f to [0, T'] x E.

For convenience, we restrict our attention to proving convergence in M ([0, 1] X E).

StEP 2. Suppose Uy, ..., U, are iid U (0, 1) random variables with order statistics
Ul:n =< U2:n == Un:n’

which are independent of {Z ;}. We claim that

> €W;z;/b0) = PRM(LEB xv) (6.20)
j=1

in M ([0, 1] x E). A more general result is explored in Problem 6.7, but we can prove
the simple result (6.20) as follows. First, we have, from the independence of {U;} and

{Z,), that
n d n
Z E(Uj:naZj/bn) = Z E(Ujszj/bn)
j=1 j=1

as random elements of M, ([0, 1] x E). Thus we need to prove

n
> €w, .z, = PRM(LEB xv) (n — 00),
j=1

in M4 ([0, 1] x E). However, because of independence,
Z Z
nP|{U;,— ) e -|=LEBxnP|— € -| = LEB xv,
bn by
and therefore, from Theorem 5.3 (p. 138), the result follows.

StEP 3. Let d(-, -) be the vague metric (cf. (3.14) (p. 51)) on M ([0, 1] x E). From
Slutsky’s Theorem, Theorem 3.4 (p. 55), Step 2 implies the desired result if we prove that

n n
P
d Zé(l,zj/b,,)’ZE(U./‘:ij/bn) -0 (6.21)
j=1 j=1
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as n — 00. From the definition of the vague metric in (3.14) (p. 51), it is enough to
prove for h € C;;([O, 1] x E) that

S (% z, /bn) =S WU, 2150 S 0 (6.22)
Jj=1

Jj=l1

in R. Suppose the compact support of # is contained in [0, 1] X {x : ||x|| > &} for some
8 > 0. Then the difference in (6.22) is bounded by

n

2

j=1

h (% Zj/bn> —hUjin, Zj/bn) | 11)Z;11/by>01

. n
J
< wp (SUP lﬁ - j:n|> Z L1z 1/b,>615

j=<n j=1

where, as usual, wy (1) is the modulus of continuity of the uniformly continuous func-
tion h:

wp(n) == sup  |h(x) —h(y)l.
le—yli<n

Now we know from Theorem 6.2 (p. 179) that

n n
Z Lz, i/b,>81 = Zez,-/bn({x eE: x| > 8}

j=1 j=1

converges and hence is stochastically bounded. So it is enough to prove that

sup L0 (> o). (6.23)

j=n

J
- - Uj:n

However, from the Glivenko—Cantelli theorem [264, Section 7.5], [24],

1 n
2 lwy=a = x
i=1

and hence, by inversion (see Proposition 3.2), inverses converge uniformly almost surely
as well, which gives (6.23). O

a.s.
sup =0,

0<x<l1

A slightly more general formulation of Theorem 6.3 using the language of Theo-
rem 5.3 is possible. The proof is the same.
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Corollary 6.1. Suppose for each n = 1,2, ... that {X, ;, j > 1} are iid random
elements of a nice space (E, £) such that

nP[X, €] .

Then in M ([0, 00) x ), we have

> €i/nxnn = Y €aji = PRM(LEB xv)
i i

asn — OQ.

6.3 Multivariate peaks over threshhold

The previous two sections described the connection between multivariate regular varia-
tion and Poisson processes and random measures. This connection leads to a dimension-
less view of the peaks-over-threshold (POT) method in statistics. Assuming multivariate
regular variation, the POT method assumes that the actual distribution of observations
larger than a fixed threshold is the limit distribution if we send the threshold to infinity.
Here are more details.

Suppose the multivariate regular variation condition of Theorem 6.1 holds. Set

E-={xeE: x| <1})={xekE:|x|| > 1}.

Apply the restriction functional (see Problem 6.3 (p. 206)) to (6.15) in Theorem 6.2
(p- 179). So we restrict points to E~, which yields

n n
Zézi/bn E" N = Z L1z /ba>11€2; /b,
i=1 i=1

= Noo(E™ N-) = PRM((E™ N 1)), (6.24)

where Noo(-) is the limiting PRM in (6.15). The limiting point process in (6.24) is a
Poisson random measure on [E~ that has a finite total mean measure v(I£~). Hence by
the construction in Section 5.4.2 (p. 143), this limit can be constructed as follows. Let
& be a Poisson random variable with parameter v(IE”) independent of the iid random
vectors {X;, i > 1}, which have common distribution v(E~ N -)/v(E~). Then

3
- d
NooBE™ N) £ ) ex,.

i=1
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Peaks over threshold. Consider the observations falling in E~ as the thresholded sam-
ple. The number of thresholded observations is approximately Poisson distributed with
parameter v(IE”). These big observations relative to the threshold are approximately
iid with distribution v(E~ N -)/v(IE~). The POT philosophy treats this approximate
limit distribution as the actual distribution. In one dimension, this allows the use of the
likelihood method.

Recall the procedure from Section 4.2 when d = 1: Assuming b, is the quantile
function (which needs to be replaced by an order statistics estimator), the limit measure
1S Vg, SO Vg (1, 00] = 1, and the exceedances {X;, i > 1} are iid Pareto random variables
on [1, co) independent of the Poisson random variable & with parameter vy (1, co] = 1.
Thus, in one dimension, the POT method for estimating & would be as follows: Pick
a threshold 7' (which plays the role of b,), look at the observations larger than T,
and regard these observations normalized by T as a random sample from the Pareto
distribution with parameter «. Use maximum likelihood to estimate «.

For higher dimensions, this methodology can be mimicked if one assumes the limit
measure v is a member of a parametric family.

6.4 Why bootstrapping heavy-tailed phenomena is difficult

Sometimes, when estimating parameters in a complex model, one is confronted by the
difficulty that the limit distribution of the centered estimator vector either is unknown,
is too complicated to calculate explicitly, or, if known, still depends on the unknown
parameters of the model. This prevents easy construction of confidence regions for
the parameters. In classical contexts, the bootstrap [123—-125, 166] was designed to
overcome these difficulties. For heavy-tailed phenomena, the bootstrap has complexi-
ties preventing easy application. The root of the complexity is the distinction between
(6.15) and (6.17) (p. 179). In (6.15), the limit is random, and in (6.17), the limit is
deterministic. This subtlety distinguishes the bootstrap for heavy-tailed phenomena
from classical problems.

6.4.1 An example to fix ideas

As an example which will fix ideas, suppose we have the stationary autoregressive
process of order p, denoted by AR(p), with nonnegative innovations {Z;} and with
autoregressive coefficients @1, ..., ¢p,, ¢, # 0. These processes are defined by the
following relation:

p
Xo=Y Xkt Zin t=0£142,.., (6.25)
k=1
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where we assume that {Z;} is an independent and identically distributed (iid) sequence
of nonnegative random variables with P[Z; > x] € RV_,, @ > 0. Assume that the

order p is known. Based on observation of {X1, ..., X}, the task is to estimate the
parameters.
The usual, classical method of estimating ¢ = (@1, ..., ¢p), is the Yule-Walker

method (see, for example, [31] for an excellent discussion of required background and
[134] for the heavy-tailed case). However, one can sometimes do better by exploiting
the special nature of the innovations. This was the motivation behind other methods
discussed, for instance, in [2, 3, 67, 69, 131-133, 188, 221]. See also [129, Chapter 7],
[192, 237].

Assuming the model is correct (a big assumption), the new estimators have excellent
properties. Let &(n) be an estimator of the vector of autoregressive coefficients; it is
typical that r(n)($ (n) — ¢) has a limit distribution for an appropriate choice of {r(n)}.
However, this limit distribution may have the unfortunate characteristic that it depends
on the unknown parameters ¢ and «, especially when o < 2. For inference purposes,
this is a serious difficulty, which we can try to overcome by using the bootstrap.

For the autoregressive model, a bootstrap procedure can be constructed as follows:

1. Assume we observe X1, ..., X, from the autoregressive model (6.25).

2. Use your favorite method (Yule—Walker, linear programming, periodogram) to es-
timate the autoregressive coefficients and obtain a vector of estimates ¢ (n).

3. Use these estimates (b(n) to estimate the residuals
A p ~
Zim =X =) dimXiin 1=1....n
i=1

4. Form the empirical measure generated by the estimated residuals
1 n
presid _ R
E == ey
i=1

5. Resample: Draw an iid (bootstrap) sample {Z}(n);t =1, ..., m} from the distri-
bution Fesid,

6. Construct a bootstrap time series {X;(n); t = 1, ..., m} by setting Xj(n) =--- =
X* ot (n) = 0 and then using the recursion

p
XFm) = im)X;_ () + Z} (n).
i=1
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7. Based on the bootstrapped time-series sample {X;(n);t = 1,...,m}, estimate
. . . . -
autoregressive coefficients again; call these estimators ¢ (n).

8. The ideal bootstrap distribution is the sampling distribution (known in principle),
conditional on FI*5i4, of

rm)@ (n) — $(n)).

It is difficult to compute the ideal bootstrap distribution, so, in practice, Monte Carlo is
necessary. Also, a modification of this method is necessary to account for the fact that
r(m) is unknown. Assuming these hurdles are overcome, a confidence region for the
parameters can be constructed.

However, the important issue is that in step 5, heavy-tail asymptotics require the
bootstrap sample size to satistfy m = m(n) — oo, butm/n — 0asn — oo. Why? In
connection with bootstrapping extremes and heavy-tailed phenomena, several authors
have noticed that if the original sample is of size n, in order for the bootstrap asymptotics
to work as desired, the bootstrap sample size should be of smaller order. See, for
example, [9, 10, 79, 133, 147, 156, 185, 189, 205] and [21, Section 6].

6.4.2 Why the bootstrap sample size must be carefully chosen

We now now discuss understanding bootstrapping of heavy-tailed phenomena in the
context of Theorems 6.1 and 6.2. We assume that {Z, Z, Z,, ...} are iid random
elements of [0, 0o) satisfying the regular variation condition (6.4) or one of its equiva-
lent forms.

The bootstrap procedure

Assume we observe Z1, ..., Z,. The empirical distribution of the observed sample is

PO
Fn:;ZEZi.

i=1

Sample m times to get a bootstrap sample Z7, ..., Z} . For bootstrap asymptotics
to work, we want the statistical characteristics of Z7, ..., Z to mimic those of the

original sample. We take this to mean that the distribution of

m
Z €Z;/q(m)

i=1
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for some scaling function g(m) > 0 should be close to the distribution of PRM(v),
according to (6.15) and Theorem 6.2. This will be the case only when m = m(n) — oo
andm/n — 0.

So what makes the bootstrap procedure problematic in the heavy-tail case is the
need to choose m. This can be as tricky as choosing a threshold or choosing k, the
number of upper-order statistics used in, say, Hill estimation.

What exactly is the bootstrap procedure?

Suppose we have the iid sequence {Z,,n > 1} defined on some probability space
(2, A, P). Assume that the probability space is rich enough to support an array
{(Il("), .., 1Y), n > 1) that is independent of {Z,, n > 1} and has the property that
foreachn = 1,2, ..., 11("), ..., I™ are iid and uniformly distributed on {1, . .., n}.
We imagine repeated multinomial trials, and

m
Pj(n) :=Zl[li<n>:j], ji=1,...,n,
i=1

is a multinomial random vector corresponding to m trials and possible outcomes
1,...,n.

Abootstrap sample Z7, ..., Z of size m is obtained by sampling with replacement
m times from the population 1, .. ., n. If the ith sample yields j, then Z7 = Z ;. Another
way to think about this is

ZT:ZI.(n), i:1,...,m,
i

and then for a scaling function g (m),

m n m n
2_<ziiam = 2 ( 1[15"’=n> €z;fam = D Piwez qm- (626)
i=1 1

j=1 \i= j=1
Let PR(S) be the set of all probability measures on the Borel o -algebra S of subsets
of the complete, separable metric space S. There is a notion of convergence, namely
weak convergence, in PR(S), and this convergence concept is compatible with a metric
that turns PR(S) into a complete, separable metric space [25, p. 72]. In particular, we
need PR(M (E)) and PR(M,(E)) because bootstrap asymptotics are usually consid-
ered conditional on the sample. So we will consider

m
P[Zéz;‘/bm €| Zl»---7Zn:| ,
i=1

which is a random element of PR (M, (E)).
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When bootstrap asymptotics work

If m =m(n) - ooand m/n — 0, then bootstrap asymptotics work in the sense given
in the next propositon.

Proposition 6.2. Suppose m(n) — oo, m/n — 0 asn — oo. Then as n — o0,
“ P
P [Zezf/,,m €| Z, zn} = P[PRM(v) € -]
i=1
in PR(M4.(E)). Hence, taking expectations,
m
P {Z €2* /by € } = P[PRM(v) € -]
i=1

in PR(M,.(E)), that is, the distribution of Zf":l €7* /b, converges weakly to PRM(v).

Proposition 6.2 provides us with the motivation to subsample—only then will the
bootstrap distribution of the point process approximate the true asymptotic distribution
of the original point process.

Proof. First, observe using (6.26) that

m n m
i=1 j=1  \i=1

m - P
= " sz;éZj/b(m) — V
from (5.16) of Theorem 5.3 (p. 139) or (6.17) of Theorem 6.2 (p. 179), with k playing
the role of n/m.
For any subsequence {n”’} of {n}, choose a further subsequence {n’} along which

m(n")
a.s.

E ZEZ?(/bm(n/) |Z],...,Zn/ — V.
i=1

Therefore, for almost all w, mean measures converge to v in My (E) and by Theo-
rem 5.3(1) (p. 138), we conclude that for such w,

m(n’)

P Z €2 by €| Z1s -, Zy | = PIPRM(v) € -]
i=1
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weakly. By the usual subsequence argument for convergence in probability, we con-
clude that

P [Zelf/bm € Zy,..., Zni| AN P[PRM(v) € -] in PR(M,(E)),
i=1
as required. O

When bootstrap asymptotics do not work

What happens in the limit to the full-sample bootstrap random point process
Y €z /b, ] We give the answer in the next result, which shows that the empirical
measure of the scaled bootstrap sample is not approximated by the limiting PRM(v);
the limit is a random measure.

Proposition 6.3. Assume the regular variation condition, say, (6.4), holds with limit
measure v. Suppose we represent PRM(v) as No := ) _; €,. (For instance, when d =
landv = vy, we could represent PRM(vy) as ) €p—1/as where {I';} are homogeneous,

unit rate, Poisson points.) Let {&;,1 > 1} be iid, unilt mean, Poisson random variables
that are independent of {J ;}. Then in PR(M,(EE)),

P[ZEZ;‘/IJ,, €| Zl,--.,Zn:| :>P|:Zfifji e | Ji,i> 1:|,
i=1 i

and taking expectations,

P[Zézlf/bn € :| :>P|:Z€i6_]i € :| .
i=1 i

Remark 6.3. We emphasize that the conditional probability is a random element of
PR(M,(E)). Also, the limit is not PRM(v), even unconditionally, since it represents a
cluster process. We confirm this by computing the Laplace functional of the limit. For
f € Cx(B),

E (exp {—Xijgifui)]) =E (E (exp {—Xijs,-fui)] | Jivi > 1))

=E[[E@xp(~f(JnE) [ Jivi = D)

=E[ [exple /U — 1

1
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= Eexp {—/(1 — e_f(x))Noo(dx)} (6.27)
E

= Eexp{—Noo(l — ¢~ /)}

= exp {—/(1 — e_(l_em)))v(dx)} ,
E

where in the last step, we used the fact that the Laplace functional of N, at the function
1 — ¢~/ has a known form given by (5.12) (p. 135).

Proof. Forl <n <oo,let M ,(,n) (E) C M, (E) be point measures on [£ having n points:
M (E) = {m € My(E) : m(E) = n}.

With m = n in (6.26), recall that P;(n) := Z?:l 1[ 1= is the multinomial number

of js sampled in 7 trials. Define &, : M,(,")(IE) — PR(M,(IE)) by

hy, (Z eyi(n)) =P |:Z P; (n)eyi(n) € i| .
i=1 i=1

The map h,, is well defined. Similarly, define  : M (E) > PR(M,(E)) by

h (Z Gyi(oo)> =P |:Z éiéyi(oo) S j| ,

where {&;,i > 1} are iid Poisson random variables with parameter 1.
Form, =37, €,m € M,(,")(IE), 1 < n < oo, we claim that if m, — meo, then

hp(my) = h(meo) (6.28)

in PR(M,(I£)); that is, weak convergence of the probability measures takes place. To
prove this, we may show that the Laplace functional of the probability measure on the
left in (6.28) converges to the Laplace functional of the probability measure on the right.
Thus we write (f € C ;g (E))

n
e P Pi(n)e_w € dm
/M,,(E) |:Z l Yi

i=1

=Eexp [— P (n)f(y}”)}

i=I
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n n
=Eexp{— Z ( I[I;zz):i]f(yi(n)))
1

j=1 \i=

= (E exp {— (Z l[lf”)zi]f(yi(n)> }) - <Eexp {—f(yy(% }) ,
i=1 !

(n)
I

and remembering that isuniformon 1, ..., n, this is

n n

— exp {—/[1 — e_f]dmoo}
E

= e P i€ o0 €dm |,
[

which s the Laplace functional of /1 (m ). (See the calculation leading to (6.27) (p. 190).)
Now we know from (6.15) (p. 179) that

n
M, ::Zezi/bn:}M ::Zéji
i=1 i

in M, (). Therefore, by the second continuous mapping theorem (see Problem 3.19
(p- 69)), replacing m, by M,, in (6.28) yields

ha(My) =P[Zezmn €| zl,...,zn}
i=l
= h(Ms) =]P>|:Z'§i6h €| Jiiz 1}

in PR(M,(|E)), as asserted. O

6.5 Multivariate regular variation: Examples, comments, amplification

Here we give some examples and further information about the concept of multivariate
regular variation of distribution tails.
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6.5.1 Two examples

Consider the following two cases, which represent opposite ends of the dependence
spectrum.

Independence and asymptotic independence

Suppose {Z,,n > 1} are iid random vectors in Ri such that for each n, the vector

Z, = (Z,(,l) e Z,(fl)) consists of iid nonnegative components with
F(l)(x) = P[Zfl) >x]~x"“L(x), x—>o00, a>0.

Then the vector Z| has multivariate regularly varying tail probabilities. Define

Then we have
Zl v
nP|—e.| -, (6.29)
and v(-) is given by

v(dxM, ... dx@)

d
= eodxM) x -+ x e(dx¥ V) x vy (dxV) x -+ x €o(dx ). (6.30)
j=1
That is, for any § > 0,

v JxeE:xDAxD > 6} | =0
i#]
The measure v spreads mass onto each axis according to the one-dimensional measure
vy but assigns no mass off the axes.

To see this, it suffices by Lemma 6.1 to show that for x > 0 (if one or more
components of x are 0, a slightly different argument is needed),

d
nP [% e [0, x]c:| — ([0, x]°) = Z(x“))*“ (6.31)

n i=1

for x € [0, 00) \ {0}. We do this readily using inclusion/exclusion. Write
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d ()
VA Z .
n]P’|:b—n1 e [0, x]c:| =nP U|: bln > x(f):|

j=1
d () (@) )
= ZnIF’ Zi > x| = Z nP Zi > x(i), i > x)
, by, — by, b,
j=1 I<i<j=<d
(@) () (k)

+ Z nIP’|:Z1 > x@, Zi > x) Zi > x(k):|

1<i<j<k<d n bn n

d [0
— (—1)d+1n]11>{ﬂ {b—l > x(l):”.
=1L

All terms but the first go to zero. For the first,

Z0)
nP b] > x| = U)o,

n

and other terms are bounded by an expression of the form (i # j)

(@) () Q) @)
nlP Zi > x@, —Zl >xW [ =nP Z—l >xO|P —Zl > x)
bn bn bl’l b”l

)
~ (x)yp |:b; > xmj| — 0.

n
What is the form of the angular measure S? Let
e, =(,...,1,...,0), i=1,...,d,
be the basis vectors and suppose the norm is defined so that
leil =1, i=1,...,d.

This amounts to a normalization. Then v concentrates on the lines
d
Jtrei. e > 0)
i=1

and

d
v (E\ et > 0}) =0.

i=l
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We know that vo T~! = cv, x S, where T is the polar coordinate transformation, and

~ voT7!((1,00] x )
T voTI((1, 00] x Ry)

Call the denominator 1/c. For a measurable set A C R, we have

S(A) = cv {x el > 1, —— e A}
(B1l

d
=ch({x:||x|| >1,”ch—”eA}ﬂ{tei:t>O}>

i=1

=c Y v(ire; 11> 1)).

ice;€N
So S concentrates on {e;,i = 1, ...,d}, and S is of the form
d
S = Z Pi€e;s
i=1
where (p1, ..., pq) is a probability vector whose components sum to 1.

The equivalence for (6.29) in terms of convergence to a Poisson process is as follows:
We have

n
> ezn, = N =PRM().

i=1

The limiting PRM has all its points on the axes and can be represented as a superposition.
Let

Ni:Zij(i)’ i=1,...,d,
k

be d iid PRM(vy). Then we have

d
NEY Xk:ejk(i)ei'

i=1

All the points of N lie on the axes, and the way we construct N is to go to the first
axis and drop down Poisson points, then go to the second axis and drop an independent
collection of Poisson points, and so on.
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Asymptotic independence. Suppose Z is a random vector in RfjF with distribution tail
that is regularly varying and that (6.29) and (6.30) (p. 192) hold even though we do
not assume that Z has independent components. Then we say Z possesses asymptotic
independence.

One reason for the name is that for d = 2, observe that

. @) ) N VA A AC S
lim P[Z > t|Z" > (] = lim
t—>00 t—>00 [P’[Z(]) > ]

o Pz® > p,, Zz@ > b,
= lim
n—00 P[ZD > b,]
= lim cnP[ZV > b,, ZP > b,]

n—oo

=cv(1,00] =0

for some positive constant c. This follows because the v in (6.30) puts zero mass in the
interior of the positive quadrant. Asymptotic independence means that if one component
is large, there is negligible probability of the other component also being large.

Another motivation for the definition comes from classical extreme-value theory.
See [260, p. 296] and [90].

Repeated components and asymptotic full dependence

Now suppose that {Z,, n > 1} are iid random vectors in Ri such that for each n, we

have that Z,, = (Z, (l) . Zy(,l)) is a vector with each component the same random
variable. Assume

F(l)(x) = P[Z%l) >x]~x"%L(x), x—>o00, a>0.

Then Z{ has multivariate regularly varying tail probabilities. Define

1 <
bn = (1 - F(1>) .

Then with f € C ;{r (E) and the support of f in [0, §1]¢, for some § > 0, we have

z® z®
( ) f flx,...,x)P |: :| / f(xDnP |: € dx:| ,

and since f(x1) € C; (0, oo], this converges to

> / FaD(x) = /E F@V(d2),
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where v concentrates on {r1, r > 0}. This means that

d
=v (U{y : y(i) > x(i)} N{tl:t > 0})

d d o
— v, (/\x@, ooi| = (/\M) . (6.32)
= i=1

What will be the angular measure S in this case? It is the measure concentrating all
mass on 1/||1].

The limiting Poisson process for the empirical measure has all its points on the
diagonal and has the following structure. Let

D €
k

be PRM(vy) on (0, oo]. Then

n
Zézi/bn = Z €jil-
i=1 k

Asymptotic full dependence. Suppose Z is a random vector whose distribution con-
centrates on the positive quadrant, and suppose Z does not consist of only repeated
components. If the distribution tail is regularly varying with limit measure v of the
form (6.32) then the distribution possesses asymptotic full dependence. This concept
is appropriate, for instance, for modeling insurance claims for house structural damage
and personal property damage per fire incident. One expects the components to be
highly dependent.

6.5.2 A general representation for the limiting measure v

The limit measure v in the definition of regular variation has the following representation
in terms of the angular measure S [95].
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Proposition 6.4. Suppose that E = [0, oo] \ {0}. As before, suppose that T is the polar
coordinate transformation and

uoT’lzcvaxS,

where vy (x,00] = x™¢

x € [0, 00) \ {0},

, x > 0, and S is a probability measure on X,. Then for

MOM.
Oﬂ)—c/\V<UJ S(da). (6.33)
Ry

Proof. We have
([0, x]°) = v o T~ (T ([0, xI°)).

Now
T([0,x1°) = T{y € [0, 00) \ {0} : y© > x for some i}
= {(r,a) € (0,00) x Xy : (ra)" > x© for some i}
Mo
=1 (r,a) :r > — for some i
a(l)
d ()
=4i(ra):r> )
i=1
Thus

A RO
B /aex+ l/:\ a® $(da) = /;GM \/ 6] S(da). O

6.5.3 A general construction of a multivariate regularly varying distribution

Suppose R > 0 is a nonnegative random variable with a regularly varying tail
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nP[R > b,x] = x7 % x>0,aa >0.

Suppose further that © is a random element of 8 with distribution S and independent
of R. Then X = RO is multivariate regularly varying with limit measure v given by

(6.33) since
R R v
HP[(—,Q) € :| :nIP[— € -]P[@e ] = v x S.
by b,

This follows from the equivalence of (6.7) and (6.9) in Theorem 6.1 (p. 173).

Example 6.1 (bivariate Cauchy density). Consider the bivariate Cauchy density

1 _
F'(x,y) = o~ +x2 499732 (x,y) e R?,

of a random vector X. Transforming to the usual polar coordinates,

}’2 — )Cz + yz, 0 = arctan(y/x),

we get

1
PlIX|| € dr, ®(X) € d0] = F'(rcosf, rsin6) = r(1 + r2)_3/2dr2—d9.
JT

Therefore, ®(X) is uniform on [0, 277), and
PIIX| > rl=1+r)""2~r71 r— oo,

so P[X| > r] is regularly varying with index —1. Furthermore, R = || X || and ®(X)
are independent.
Note this gives multivariate regular variation on the cone R?, and

[(IIXII ) :|v
nP T,@(X) €| —> v xU,

where U is uniform on [0, 277) and v; (x, 0o] = x~!

, X > 0. This limit has a density
r2dr— =r rdrz—, r>0, 6¢€l0,2r),

and so the limit measure v has density

(2 4+ yH 7 dxdy, (x,y) e R
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6.5.4 Regularly varying densities

As suggested by Example 6.1, most multivariate distributions are specified by densities,
notdistribution functions. It would be convenient to have workable criteria guaranteeing
that regular variation of a multivariate density implies regular variation of the probability
distribution tail.

When d = 1, regular variation of the density implies the distribution tail is a
regularly varying function because of Karamata’s theorem. This is not always true in
higher dimensions and some regularity is needed. Intricacies are discussedin[91,92,97,
98]. Roughly speaking, multivariate regular variation knits together one-dimensional
regular variation along rays but does not control what happens as we hop from ray to
ray. Imposing a uniformity condition as we move across rays overcomes this difficulty.

It is convenient to return to the assumption that E = [0, oo] \ {0}.

Theorem 6.4 ([98]). Suppose F is a probability distribution on E with density F' that
is regularly varying with the limit function A(-) on [0, 00) \ {0}. That is, we suppose for
some regularly varying function V(t) € RV, p < 0, we have for x € [0, 00) \ {0},

F'(tx)
m
t—00 t_dV(t)

=Ai(x)>0. (6.34)

Necessarily A satisfies A(tx) = P~ (x) forx € [0, 00) \ {0}. Further, suppose that
A is bounded on R and that the following uniformity condition holds:

F'(t
lim sup # — k(x)‘ =0. (6.35)
1500 yen, [174V(D)
It then follows that for any § > 0,
F'(t
lim sup # - k(x)‘ —0. (6.36)
t—00 lx]>8 — V(t)

Furthermore, L(-) is integrable on [0, x1° for x > 0 and 1 — F is a regularly varying
function on (0, 00), which takes the form

. 1—F(x)

Example 6.2. Consider the following examples:

1. Two-dimensional Cauchy density: Return to Example 6.1,

1 _
F/<x,y)=§<1+x2+y2> 32 (x,y) e R%
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Let the norm be the usual Euclidean norm

1Ge, I = /x4 y2.

Then the density is, for x € E,
1
F'(x) = —+x|»)732, xeR.
2

Therefore, as t — o0,

F'(tx)  (1+12|x||H) /2
Fl(el) (1 +212)732
A
7-3/24=3
— 22x|73 = Ax).

The uniformity condition (6.35) is easy to check since

F'(tx) —A(x)‘ _ ‘( 1+12 )_3/2 3

—- 0

F'(t1) 1+ 22

x:fxl=1

ast — oo.
2. The bivariate ¢-density: On E define
F'(x,y) =c(l + x? +2pxy +y2)_2, x,yek —-1<p<l.

Define the norm (cleverly)

IGe DIP = 6?4+ 2pxy + 3% = (x + p3)* + (1= p?)y™.
Then the density is of the form

F(x)=c+|x|»)% xeE,

and we may proceed to check the conditions of Theorem 6.4 as in the bivariate
Cauchy case.

Note this method works whenever the density is of the form

F'(x)=c(l+|x|")?, «xeE.
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What suggested the form of the norm for the bivariate ¢-density? If F’ is regularly
varying with limit function A, then

Ax) =t7%(x), x>0,

so that
AV (x) = eV (x),

which is the scaling a norm should have. So we could try and set
el = 2714 (x)
and hope this defines a norm.

For the proof of Theorem 6.4, see [98] or [260, p. 284].

6.5.5 Beyond the nonnegative orthant

Up to now, we have typically assumed the state space was the nonnegative orthant.
However, for certain problems, the natural state space is not the nonnegative orthant.
This is true for weak convergence problems for partial sums and applications in finance,
where negative values of returns are important since they indicate losses. In extreme-
value theory, the natural state space is typically a rectangle of the form [x;, x,] \ {x;},
where —00 < x; < x, < 00.

IfEisaclosed conein [—o00, co]\{0}, the most useful examples are E = [0, co]\ {0},
as we have already considered, and E = [—o0, oo] \ {0}. Item 1 of Theorem 6.1
(p. 173), in terms of multivariate regular variation of functions, no longer has an easy
analogue, except in d = 1. One could express the correct analogue of item 1 in terms
of the multivariate distribution function tail of the positive and negative parts of the
components of Z by considering the regular variation of the 2d-dimensional vector

(Zz*, @)=, @, @), @t D)),

but this would be awkward and not very elegant.

There is no trouble extending items 2—7 of Theorem 6.1 to the more general
cone, provided one works with measures and 8 is replaced by R NE. If E =
[—o0, oo] \ {0}, then

RNE={x eR?: x| =1}.

If d = 1, then

nlP [é € ] 5 in M ([—o0, o] \ {0}) (6.38)

n
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is the basic condition. This means that for x > 0,

nlP [? > x} — v(x,00] (n— 00), (6.39)

which is sequential regular variation, so

v(x,o0] =cix % g >0.

Also, for x > 0,

n n

z —Z
nlP [b_l < —xi| = n]P’[ b L xi| — v[—00, —x) (n — ), (6.40)
and again by sequential regular variation of functions, we get
v[—o00, —x) =c_x" % c¢_>0.

The « for the right tail must be the same as for the left tail since the same b, successfully
scales both tails and b, relates to « through the fact that b,, = b(n), where the function
b(-) € RVyq. (See, for example, Proposition 2.6 (p. 32) or (2.12) (p. 23).) We therefore
conclude that

v(dx) = crax™®

dx 10,001 (x) + c—alx| T T dx 10,0y (x).
Sometimes (6.39) and (6.40) are written together as
P[|Z1| > x] € RV_,

along with the tail-balancing condition (0 < p < 1)

P[Z; > x] P[Z; < —x]
— > p, _ 1—p=:gq
P[|Z1] > ] P[[Z1] > x]
as x — OQ.
For this d = 1 case,
N={—1,1)
and
S} = —+ S{—1}) = ——
eyt eyt
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6.5.6 Standard vs. nonstandard regular variation

The phrasing of the regular variation condition in Theorem 6.1 assumes tail equivalence
for the distribution tails of the components. The requirement that

Zl v .
nP b—e- — v in M4 (E)

implies that

(@)
n}P’|: bl € } S civg  in M4((0, 00])

n

forc; > 0andi = 1,...,d. We have not ruled out the possibility that for some (but
not all) i, ¢; could be zero. For those components with ¢; > 0, the as are the same
because b, = b(n) and b(-) € RV /,. The marginal convergences with the same scaling
function by, in turn, imply that for 1 <i < j <d,
}P’[ZY) > x] Ci
R R

r—00 P[le >x] €

However, in practice, one rarely observes components having the same tail indices

and one needs a broader understanding of multivariate heavy tails.

Example 6.3. Let P be a nonnegative random variable with unit Pareto distribution and
consider Z = (P, P?). If in the definition of regular variation we insist on normalizing
both components with the same scaling, then

A more subtle normalization would reveal more structure; in particular,

P P? v i
npP —. )€ —>1)O,0T112,
n n 4

where T} 12 : (0, oo] — (0, 0] x (0, oo] and is defined by T; j2(x) = (x, x2).

In heavy-tail analysis, one wishes to rule out degeneracies coming from a one-
dimensional marginal distribution that is not heavy tailed. However, the degeneracy of
Example 6.3 is fairly natural. When estimating the s of heavy-tailed multivariate data,
one never gets equal «s for all the components. Examples include the following:

* exchange rate returns of Germany, France, and Japan against the US dollar;
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* heavy-tailed Internet data of the form {(L;, F;, R;), 1 < j < n}, where
L j = download time of jth file,

F; = size of jth file,
R; = transferred rate of jth file.

(See p. 238.) So, while the theory is most elegantly developed using the single nor-
malization of Theorem 6.1, in practice this is not adequate and sensitivity to tails with
different weights is needed. The next result shows that a broader definition is possible
but that a monotone transformation brings the broader definition back to what we call
the standard case [95, 260], which is the case of Theorem 6.1 with b, = n. Eventually,
we will address how to deal with this in a statistical context.

Theorem 6.5. As usual, assume Z = (ZV, ..., ZDY is a vector with nonnegative
components and E = [0, 00] \ {0}. Suppose for 1 < i < d that there exist sequences
{b,(f), n > 1}, with lim,_, o b,(f) =o00,i=1,...,d, such that we have the following:

(i) Marginal regular variation: Foreachi =1,...,d,
70 ,
nP|—e- | > vy, o >0, (6.41)
by ’

in M (0, oo]
and

(i1) Nonstandard global regular variation: There exists a measure v on Borel subsets of

E such that
7 .
nP|{|—,i=1,....,d)e-|—>v (6.42)
b(l)
n
in M (E).

Let F(l-)(x) = P[ZY) > x] be the ith marginal distribution tail, and from (6.41),
we can define
b (x) = (é)& (x), x>1
1 — Fiy () ’ ’
and set b,(,i) = b (n). Then we have the following:

(1) Standard global regular variation:

(O FAO)
nF,(n-) :=nP {(%,i = 1,...,n> € :|
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5 0.() in My(E), (6.43)
where
V() =ty () (6.44)
on Borel subsets of E,
and
(i1) Standard marginal convergence: Fori =1, ...,d,
ONSA0
nlP [w >x | — x_l, x > 0. (6.45)
n

The marginal condition (6.41) rules out tails that are not heavy. The global condition
(6.42) describes dependence among the components. The standard case is where we
have tail-equivalent marginal tails, each of which is regularly varying with index —1
and normalization by the same constant b(n) = n is adequate.

Proof. Observe that

i)y« (70 ¢ . . ¢
P{[M fx:| } =nP{[Z <D (nx D), i =1, ...,d)] }
n
ZO  pO(x®) ¢
= nP _ <2 i=1,....d|}.
b0 = b0

b® (nx®)
b (n)

Since

s (x(i))l/ozi’

we get, as n — 00,

i)y« (7() ¢ (@) (7 () ¢
plED7E0 U o im 2290 iy g
n n— 00 b(l)(n)

= ([0, x'/*1%) =: v.([0, x1°). (6.46)
This completes the proof and defines v, appearing in (6.43). O

Note the relation between v and the standardized v, given in (6.46). How to trans-
form to the standard case in a statistical context is a significant problem that we will
discuss in Chapter 9.
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6.6 Problems

6.1 (Deleting axes). As another use of Proposition 6.1, suppose X = [0, oo] \ {0}, and
define the cone X° by

X0 :={s € X : for some 1 < i <j§d,s(i)As(j) > 0},

where we write the vector s = (s(l), R s(d)). An alternative description: Fori =
1,...,d, define the basis vectors

e, =(,...,0,1,0,...,0),

so that the axes originating at 0 are ; := {te;, t > 0},i = 1, ..., d. Then we also have
d
X0 =x\ L.
i=1

Ifd = 2, we have X? = (0, 0o]?>. What are the relatively compact subsets of X°? (Such
a space is useful in consideration of asymptotic independence. See [217].)

6.2 ([77]). Suppose Y1, ..., Y; are nonnegative random variables (but not necessarily
independent or identically distributed). If Y has distribution F satisfying F € RV_,
and if as x — o0,

PlY; > x] .
— >, I=1,...,k,
1 —F(x)
and
PlY; > x,Y; > x] ) )
— 0, i#],
1 —F(x)
then
P[Zle Y; >x]
= Flo) —c1+ -+ ck.

6.3 (The restriction functional [130]). Suppose E’ is a measurable subset of E, and
give ' the relative topology inherited from E. For a set B C ', denote by dg' B the
boundary of B in [E’, and denote by dg B the boundary of B in E.

(a) Define
T : M. (E)— M, (E)
by
Tp=pu-NE).
If w € M, (E) and u(dgE’) = 0, then T is continuous at I, so that if u, = M in
M, (E), then Ty, — T in M (E).
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(b) The same conclusion holds if we define 7 the same way but consider it as a mapping
T: My (E) — M, (E).

(c) Conversely, suppose that u,, € M4 (E) for n > 0 and that p,, = wo in M (E). If
1 (EN) =0, n=>0,
and 110(0gE’) = 0, then w, — o in M, (E) as well.

6.4 (Stochastic analogue of Karamata’s theorem [133]). Suppose {Z,, n = 1} are
iid nonnegative random variables with common distribution F satisfying F € RV_,.
Then in C[0, co) we have forany 8 > «,asm = m(n) - oo,m/n — 0,

xh-e

B—a

X m n P X
/_Zfzt/b(m)(u,w]uﬁ_lduﬁf v (u, 00JuP "' du =
0o n 0
t=1

6.5 (Regular variation at 0 [133]). Suppose {Z,,n > 1} are iid random vectors in
[0, 00)¢ and the distribution function of Z; is regularly varying at 0. Formulate this as
vague convergence of measures and verify the analogue of Theorem 6.2.

Suppose d = 1 and P[Z; < x] € RVq4 at 0. Then in C[0, co), we have for
appropriately chosen scaling constants a(m) and 8 > «,

B—a

X n x
/ =3 a0, u™ P du / [0, u™ P = S
0o 0 p—a

6.6 (IT-variation [104, 259]). A measurable function U : (0, co) — (0, 00) is called
[T-varying (written U € IT) [26, 90, 102, 144, 260] if there exists g € RV such that

for all x > 0,
o Uax)—=U@®)
lim ———~> =

Jim. 20 log x. (6.47)

1. Suppose
X
Ukx) = / u(s)ds, x>0, wu()eRV_;.
0
Show that U € II.

2. Suppose U is nondecreasing. Show U e IT iff there exists a(n) — oo and

_Ulam)) > L),
a(n)

where L is the measure satisfying L(a, b] =logb/a,0 <a < b < oo.
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3. Suppose U is nondecreasing and

Z €t u)
k

is PRM(LEB x U). U e II iff there exists a(-) € RV such that

1

a(n) ;E(mk,uk/a(n)) = LEB x L.

4. Suppose U is nondecreasing and

Z €t u)
k

is PRM(LEB xU). U e II iff there exists a(-) € RV such that

D €tatmnan fat) = PRMILEE xL).
k

6.7 ([259]). Suppose {Y, x} are random elements of a nice space E and

n
Zéynqk = PRM(p)
k=1

in M, (E), where u € M (E). If { Xy} is an iid sequence of random elements of a nice
space E/, and for each n the families { Xy} and {Y,, ¢, k > 1} are independent, then

n
ZE(Yn,kan) = PRM(u x P[X; € -])
k=1

in M,(E x E.

6.8 ([13]). Suppose Z Ri is a random vector. Show that it has a distribution with a
regularly varying tail iff for some o« > 0 and some random vector @ € X, we have
for all x > 0,

IP’[||Z|| > tx, 4y € ]
Pl Z]| > ¢]

v

— x “P[O € -]

as t — oo, where vague convergence is in M (R).
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6.9. Suppose {Z,,, n > 1}areiid random vectors in [0, oo)d with a distribution satisfying
the standard form of regular variation (see (6.43) (p. 205)). Then

lim ]P’|:\/—l §xi| =G(x), x>0,
n— o0 e n

weakly, where G is a product probability distribution iff the distribution of Z; exhibits
asymptotic independence. (See, for example, [260, p. 296] and [90].)

6.10 ([89]). Let U be uniform on (0, 1). Prove that

11
Z=(—, ——
(U 1—U)

possesses asymptotic independence.

6.11 (Normal dependence model [260, p. 297], [90, 279]). Suppose (N1, N3) is a
normal random vector with zero means, unit variances and correlation p < 1. Define

1 1
Z - AT N o o aT N ’
(CD(Nl) <I>(N2))
and show that Z possesses asymptotic independence.

6.12 (Pairwise asymptotic independence [260, p. 296], [95, 140, 142, 143, 210]).
Suppose Z is a Ri—valued vector with a regularly varying distribution tail. Prove that
Z possesses asymptotic independence iff for any i # j, the pair (Z, Z()) possesses
asymptotic independence.

6.13 (Sample range [103]). Suppose {Z;,i > 1} are iid with common distribution F'
satisfying regular variation on [—00, co] \ {0}; that is,

p|Z 4
n [b—e}—ﬂ)(-)

n

in My ([—o0, oo] \ {0}) as in (6.38), (6.39), (6.40). Prove that

(b;l \/ Zi, by /\ z,-)
i=l i=1

has a limit distribution, and hence so does the sample range

Rn I:b;1 (\H/Z,' —/n\Z,') .
i=1 i=1

Are Z1 and —Z asymptotically independent using some sensible definition?
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6.14 (Binding vectors). Suppose X and Y are independent random vectors with non-
negative components defined on the same probability space. If X is regularly varying
in 4, with limit measure vy, and Y is regularly varying in E;, with limit measure vy,
show that (X, Y) is regularly varying in Ey, +4,. What is the limit measure? (If you
need help, peek ahead to Lemma 7.2.)

6.15 (Continuity of the limit function [97, 284]). Suppose f : [0, c0) — (0, c0) is
nondecreasing and regularly varying on the cone (0, oo) with limit function A. Show
that A(+) is continuous on (0, 00).

6.16 (m-dependence and the Poisson transform). The Poisson transform given
in (6.15) also applies to m-dependent stationary sequences whose one-dimensional
marginal distributions are regularly varying. Suppose that {X,,} are m-dependent ran-
dom elements of a nice space [, in the sense that random variables more than m apart
in the sequence are independent. More precisely, let

By =o(X),....,Xp)

be the o-algebra generated by X, ..., X; for k < j. Assume Bl;ll, e, BI;II are in-
dependent if k;_y +m < j; fori = 2,...,l. (Independent random variables are
0-dependent.)

Now assume that foreachn = 1,2, ..., the array {X,, ;, i > 1} are stationary and

m-dependent and that

nP[X, €] > v (6.48)
for a Radon limit measure v and
[n/k]
lim lim supn Z E(g(Xn.1)g(Xni)) =0 (6.49)
k—>00 p—o0 i—

for any g € C;;(E), g =<1
Prove that [76]

n
> ex,, = PRM(v).
i=1
Hint: Use the big block-little block method and Laplace functionals. Examples of
the big block-little block method are in [197, 264].

6.17 (Basic convergence with a time coordinate). Theorem 6.3 (p. 180) extends (6.15)
(p- 179) of Theorem 6.2. Provide a similar extension of (6.17) (p. 180).
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Weak Convergence and the Poisson Process

This chapter exploits connections between regular variation and the Poisson process
given in Theorems 6.2 (p. 179) and 6.3 (p. 180) to understand several limit theorems
and also to understand how regular variation of distributions of random vectors is
transmitted by various transformations on the vectors. The fundamental philosophy is
that we should capitalize on the equivalence between the analytical concept of regular
variation and the probabilistic notion of convergence of empirical measures to limiting
Poisson random measures.

7.1 Extremes

Regular variation is equivalent to scaled extremes converging weakly. If necessary,
vector notation may be reviewed in Appendix 10 (p. 359). Remember that maxima of
collections of vectors are taken componentwise. Suppose {Z,,n > 1} are iid random
vectors in [0, 00)? with common distribution F. We take E = [0, 0o] \ {0}. Theo-
rems 6.1 (p. 173) and 6.2 (p. 179) state the regular variation condition in its equivalent
forms. The representation of the limit measure in the definition of regular variation in
terms of the angular measure is given in Proposition 6.4 (p. 197).

7.1.1 Weak convergence of multivariate extremes: The timeless result
Here is the equivalence between regular variation and convergence of extremes.

Proposition 7.1. Suppose {Z,,n > 1} are iid random vectors in E. Then regular
variation of the distribution of Z with limit measure v,

Z] v
Pl — .
n |:bn (S i|—>l)
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in M (E), is equivalent to

| N

=Yy, (7.1)

i
n

S

n
i=1
where Y is a random vector with distribution Fy given by

Fo(x) := e V00X x>0,

Proof. Given the multivariate regular variation condition, write (6.15) as

n
Ny= €z.p, = No= ) €j, =PRM(v) (7.2)
k

i=l

in M, (E). Write

P |:\/ % =< x:| = P[Nn([(), x]C) — ()] — IP)[N()([O, x]C) — 0] _ e_,,(mx]c)7

i=1 "
since No([0, x]¢) is a Poisson random variable.
Conversely, if (7.1) holds, we have
F"(bpx) — e "10.X19

and using the same argument that led to (2.10) (p. 23), we get

nF(byx) = nP [? € [0, x]ci| — v([0, xI°).

n

Finish using Lemma 6.1 (p. 174). m|

Variants of this result can be constructed for weak convergence of the (largest,
second largest, . .., kth largest) of the sample.

7.1.2 Weak convergence of multivariate extremes: Functional convergence to
extremal processes

Suppose that
N§ = €w.jo = PRM(LEB xv)
k
is a Poisson random measure on [0, o0) x E with mean measure LEB xv. As in
Section 5.6.1 (p. 161), we define the extremal process
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Yo(t) = \/ jr. t>0.

1<t

So Y(¢) looks at points whose time coordinate is prior to ¢ and then takes the biggest
J satisfying the time constraint. Its marginal distribution is given by (5.52) (p. 161).

Recall that Theorem 6.3 (p. 180) gave a point process equivalence to regular varia-
tion that added a time coordinate: As n — 00, the regular variation condition

Z
nP[—le-i|—v>v
by

is equivalent to

oo
# . # .
Ny =D € g = No = ) €.jp = PRMLEB xv), (7.3)

i=1 i
in M, ([0, o0) x [E).

Proposition 7.2 (weak convergence to extremal processes). Suppose {Z,,n > 1}
are iid nonnegative random vectors. The multivariate regular variation condition is

equivalent to
[n-]

() i=\/ f— = Yo() = \/ Ji (7.4)
i=1"

l=

in D([0, 00), [0, 00)), the space of functions whose domain is [0, 00) and range is
[0, 00), that are right continuous, and that possess finite left limits on (0, 00).

Proof. Define the almost surely continuous functional

x*: M,([0, 00) x E) > D([0, 00), [0, 00))

by
X (Z é(zk,xk)> (1 = \/ X
k =t
Apply this and the continuous mapping theorem to (7.3). m|

The unchecked claim is the statement that x* is almost surely continuous. We
will prove something similar in connection with weak convergence of partial sums to
Lévy processes, so we defer to that section. The impatient may wish to consult [260,
p. 214]. Proposition 7.2 was originally proved for d = 1 by Lamperti [195] with
a traditional finite-dimensional convergence plus tightness proof. The connection to
weak convergence of point processes is in [258, 296]. Applications of the result in one
dimension using the structure of extremal processes and records are in [258, 260].
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7.2 Partial sums

We now explore ideas which lead to weak convergence of partial sum processes to the
limiting jump Lévy processes constructed in Section 5.5 (p. 146). This will also allow
approximation of partial sums of heavy-tailed iid random variables by the stable Lévy
motions discussed in Section 5.5.2 (p. 154).

For this section, we need the definitions of D ([0, 00), R¥), the space of functions
on [0, oo) with range RY that are right continuous and with finite left limits. Review the
Skorohod metric from Section 3.3.4 (p. 46). In particular, we need that if x,,, n > 0 are
functions in D([0, 00), R?), then x, — xo in the Skorohod metric on D([0, c0), R?),
if x, = x¢ in the Skorohod metric on D([0, T], R?) for any T which is a continuity
point of the limit. Recall the Skorohod metric on [0, 7] is a uniform metric after small
deformations of the time scale and that local uniform convergence implies Skorohod
convergence (see p. 47).

7.2.1 Weak onvergence of partial sum processes to Lévy processes

Theorem 7.1 is flexible enough for many purposes. For this d-dimensional result, set
E = [—o00, oo]\ {0}. The argument is adapted from [241]. As usual, we denote random
vectors by X = (XM, .. x@y,

Theorem 7.1. Suppose for each n > 1 that {X, ;, j > 1} are iid random vectors
such that
nP[X,1 € 1> v(-) (7.5)

in My (E), where v is a Lévy measure (see Section 5.5.1 (p. 146)), and suppose further
that foreach j =1, ...,d,

lin lim sup nE((XY)?21 ) =0. (7.6)
! ,

e (X <e]

Define the partial sum stochastic process based on the nth row of the array by

[nt]

Xp(t) =Y (Xpk — EXpilpx, <)), ¢ =0.
k=1

Then (7.5) and (7.6) imply that
Xﬂ : XO’

in D([0, 00), RY), where X(-) is a Lévy jump process with Lévy measure v, as con-
structed in Section 5.5 (p. 146).
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Proof. We break the proof into several steps. The idea of each step is simple. Several
of the steps involve assertions that certain functionals are continuous, and to promote
flow, we delay proofs of continuity.

Step 1. From the variant of the basic convergence, Corollary 6.1 (p. 183), we know
that (7.5) implies that

0
> €t x> > " €w.j,) = PRM(LEB xv) (7.7)
k=1 k

in M,([0, 00) x ). Here and in the rest of the discussion, we always assume ¢ is
chosen so that ¢ is not a jump of the function

(t) = vix :||x]| > t}.

Later, when ¢ | 0, we assume convergence to 0 is through a sequence of values {g,} that
are also not jumps of this function. Since t(-) has only a countable number of jumps,
this can be arranged. For convenience, we assume 1 is not a jump of 7(-).

STEP 2. Two continuity assertions:

(i) The restriction map defined by

m = ml[0,00)x {x:|x||>¢)

is almost surely continuous from M, ([0, 00) X E) = M, ([0, 00) x {x : [|x|| > &})
with respect to the distribution of PRM(LEB x v). (See Problem 6.3 (p. 206).)

(i1)) The summation functional defined by
ZG(tk,Jk) - Z Jk
k w=()
is almost surely continuous from M, ([0, o) x {x : [[x|| > &}) = D([0, T], R%)

(see Section 7.2.3 (p. 221)) with respect to the distribution of PRM(LEB xv).

Step 3. From the first continuity assertion in Step 2, the convergence statement in
Step 1, and the continuous mapping theorem, Theorem 3.1 (p. 42), we get the restricted
convergence

> Lix, ci=e1€k x, 1 = D el o (7.8)
k k

in M, ([0, 00) x {x : [lx|| > ¢€}). From the second continuity assertion in Step 2, we
get from (7.8) that
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[n-]

D X lx, e = > Jxlijsel (7.9)
k=1 1%=()

in D([0, T], RY). Similarly, we get

[n-]

D Xnalfeay X< = Y Jille<ljgi<n- (7.10)
k=1 =(-)

StEP 4. In (7.10), take expectations and apply (7.5) to get

[n-JE(X 1 1e<)x, 1<11) = () xv(dx) (7.11)

{xee<|xl<1}
in D([0, T1, RY). To justify this, observe first for any r > 0 that

[nt]
(Mt TE(X 01 Le<x,, <1 = xnP[X,,1 € dx]
- Jix:xlec 1)

— t/ xv(dx)
{x:]lxlle(e,11}

since nP[X,, 1 € -] 5 v(-) and € and 1 are not jumps of 7(-). Convergence is locally
uniform in ¢ and hence convergence takes place in D([0, T], R%).

STEP 5. Difference (7.9)—(7.11). The result is

[n-]
XPO) =) Xnadyx, e — 0 IEX 1 e<yx,, <17)
k=1

= X0 =) Jilijl=el —()/ xv(dx). (7.12)

w<- {x:llxlle(e, 11}

(One must check thatin D ([0, 00), R?), differencing is almost surely continuous.) From
the It6 representation of a Lévy process (see Section 5.5.3 (p. 155)), for almost all w,
ase | 0,

X§ () = Xo()

locally uniformly in ¢. Let d(-, -) be the Skorohod metric on D[0, o). Since local
uniform convergence implies Skorohod convergence, we get

d(XP (), Xo()) = 0
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almost surely as ¢ | 0, and hence, since almost sure convergence implies weak conver-
gence,

X§ () = Xo().
in D([0, 00), RY).

STEP 6. By the second converging together theorem, Theorem 3.5 (p. 56), it suffices to
show that

lim lim sup P[d(X©, X,,) > 8] = 0.

el0 n—co
To prove convergence in D([0, co), R?), it is sufficient to prove Skorohod convergence
in D([0, T1, R?) for any 7', and since the Skorohod metric on D([0, T'], R?) is bounded
above by the uniform metric on D([0, T], R%), it suffices to show that

lim lim supp[ sup | X)) - X, ()| > 3} =0

el0 n—o0 0<t<T

for any 6 > 0. Recalling the definitions, we have

[nt]

D Xuklx, gi<e) — IEX 1 1x, g j<61)
k=1

X (1) — X, (0)]

[nt]

= > (Xnalyx, ci<el — EXnilpx, <))
k=1

SO

P[ sup [ XE(1) — X, (0)]| > 8}
0<t<T

[nt]

D (Xuklyx, gi<el — EXn i lpx, =)
k=1

<P| sup

0<t<T

]

j
=P| sup | Y (Xpalyx, ci<el — EXuilpx, si=e)) | > 8
O0<j=nT |, 21

Now using the fact that |x]|| < d vid:1 |x@], we get the bound

d J
_ . 8
<) P| sup |3 (Xff,)kl[||xn,kuse] - E(Xr(ll,)kl[”Xn,kHSE])) “a|
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and by Kolmogorov’s inequality (see (5.43) (p. 157), Lemma 5.3 (p. 157), or [24]), this
has upper bound

d [nT]
< (8/d)"> ) Var (Z Xr(zl,)l<1[||Xn,k||§8]>

i=l k=1

=(§/d)” 22 nT]Var(X Lyix, 1 l<eD)
i=1

d
< @/d)> Y InTIE((X,) T g0 -
i=1 T

Taking limg o lim sup,,_, ., we easily get 0 by (7.6). O

7.2.2 Weak convergence to stable Lévy motion

Although we focus on d = 1 for the following functional limit theorem, versions of this
result in D ([0, 00), R?) are easy based on the work of the previous section. Conditions
for convergence of sums of iid heavy-tailed random vectors were first formulated in
[269]. See also [241] and Problem 7.6 (p. 248).
For this result
E =[—o00, 00]\ {0}.

Recall from Section 6.5.5 (p. 201) that (7.15), regular variation of the tail probabilities
on the cone R \ {0}, is equivalent to

P[Z; > x] . P[Zy < —x]
m ———— = p, lim ————— =
x—o00 P[|Z)] > x] x—o0 P[|Z1] > x]

k)

and

P[|Z] > x] € RV_,.

Corollary 7.1. Consider the special case where {Z,,,n > 1} are iid random variables
on R, and set X, j = Z; /by for some b, — 00. Define v for x > 0and0 < a < 2 by

o

v((x,00]) = px~ %, v((—o0, —x]) = gx~ %, (7.13)

where 0 < p <landq =1— p. Then

2 Zi X 7.14
gb_ 1 (b(n) b(ﬂ)<])=> L0, (7.14)
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in D[0, 00), where the limit is «-stable Lévy motion with Lévy measure v, iff
Zl v
nP|—e-|—>v (7.15)
by,
in M (E).
Proof.

SUFFICIENCY. Given the regular variation of the Zs, it is clear that (7.5) is satisfied with
the limit measure given in (7.13). For the truncated second moment condition (7.6),

we have
E((ZL 21 7 —>/ x2v(dx) (n — 00)
b(n)) Usyl=l [Ix|<e]

2—a 2—a
e oe
Iy + a = (const)e
2—«a 2—«a

2—a

by Karamata’s theorem, and as ¢ — 0, we have g

sum process to converge to the Lévy process.

— 0, as required for the partial

NECEssITY. Conversely, suppose (7.14) holds.
We begin by observing that if (7.14) holds, then it is also true that

[n.]i—( JE (il > = Xo() (7.16)
Sy~ by tghi=n) TR |
where the centering is now a continuous function. To verify this, we take the difference
between the centering in (7.16) and the one in (7.14) and show that this goes to zero
in D[0, oo). It suffices to show that the difference converges to zero locally uniformly.
For any T > 0, we observe that

sup |[[ns] —ns| <1,
0<s<T

and hence it suffices to show that

We have

g (% _ [ o,
b izil<b | = P
n x=0 y=0
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1

:/ylz()(/;yp[j—n ededy
L CTE -2 Do

by by
The last integrand is bounded by 2 and goes to zero as n — oo since b, — oo. Hence
by dominated convergence, the integral converges to 0.
Define the functionals 7%, 72 from D[0, 00) — R by

TH(x) = sup {(x(1) = x(1=) 10,00 (x (1) — x(t=))},

0<t<l1

T~ (x) = sup {|x(#) — x(1=)[1(—00,0)(x (1) — x (=)},

0<t<1

T%(x) = sup {|x(t) — x(—)]}.
0<r<l1

So T (x) is the maximal positive jump of the function x in [0, 1] and 72" is the maximal
absolute value of the jumps in [0, 1]. These are almost surely continuous functionals
with respect to the distribution of the stable Lévy motion. Applying these functionals
to the convergence in (7.16) yields

[

[n-

Z;
+
T Zm \/Zl(OOO)(Z)=>T (Xq),
j=1 j 1
vl 7z, 1y
T Y =V IZillcwn(Z) = T (Xa),
b(n) by
j=1 j=1
wl oz 1y
Tabs J _ Z = Tabs X .
o | =5 \ 1Z)] (Xa)

—

~
Il
—

~.

Now
T+ (Xe) = \/ i,

<1

and hence for x > 0,
P[TT(Xq) < x]1=P[N(0, 1] x (x,00]) = 0] = e P* *;

similarly for the other two functionals. If 0 < p < 1, use the equivalence of regular
variation and weak convergence of normalized maxima of iid random variables (see
Proposition 7.1 (p. 211)) to get that
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P[|Z1] > x], P[Z; >x], and P[Z; < —x]

are all regularly varying with equivalent tails. If p = 1, apply this argument using
T+ and T%S. If p = 0, apply the argument using 7~ and 7. This proves the con-
verse. O

7.2.3 Continuity of the summation functional

The proof of Theorem 7.1 (p. 214) about weak convergence of partial sums to Lévy
processes was dependent on the continuity of the summation functional (see p. 215),
and we discuss this point in more detail here. We restrict attention to the case d = 1
and so assume E = [—o0, oo] \ {0}.

Let N be PRM(LEB xv) and assume v € M4 (E) and v{£oo} = v{£e} = 0. Set

E** ={x e E: |x| > ¢},

and define the map
x : Mpy([0, 00) x E) = D[0, c0)

by

x<2kmm)m=x(X}WW«Ma»xEﬂmo)m

l

= viljysel (7.17)

T <t

Note this is a finite sum since [0, #] x [E=¢ is a relatively compact subset of [0, c0) x [E.
Equivalently, one can regard x as a mapping with domain M, ([0, co) x E~¢).

Fix some T > 0. We will show that if m, my € M, ([0, o0) x [E) are close, then
x (m1) and x (m>) are close as functions in D[0, T']. Define the subset of M, ([0, 00) xIE)
by (refer to Figure 7.1)

A = {m € M,([0, 00) x E) : m([0, 00) x {xe}) =0,
m([0, 0o0) x {£o0}) =0,
m({0} x E=*) = m({T} x E7%) =0,
m{[0, T] x E”®} < oo, and

no vertical line contains two points of m(([0, T] x E™%) N -)}.

‘We make two claims.

Cramm (1). P[N € Al = 1.
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(—00,-00)

Fig. 7.1. The region [0, T] x {x : |x| > €}. Dotted lines indicate an open boundary.

CLam (2). If m € A, then x is continuous at m as a function into D[0, T'], and therefore
X is almost surely continuous with respect to P o N~!, the distribution of N.

Why is Claim (1) true? We analyze A as an intersection of several sets and show
that each of the intersecting sets has probability 1.

(a) First, we have that
E(N[0,T] x E=%) = Tv(E™?) < oo,

)
PIN([0, T] x E7%) < o0] = 1.

(b) Second, we have that
LEB xv({0} x E~¢) = LEB{0} - v(E~%) = 0,

SO
E(N({0} x E7)) =0,

and therefore
PIN({0} x E=%) =0] = 1.

Similarly, we have
PIN{T} x E™%) =0] = 1.
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(c) Next, we show that
P{no vertical line contains two points of N(([0, T] x EZ*) N )} =1. (7.18)

Pick any M > 0. We can represent

§
N[0, TIx E* )N = > e, v (),
1

where & is a Poisson random variable with parameter Tv(E~%), {U;,i > 1}
are iid uniformly distributed on (0, T'), and {V;,i > 1} are iid with distribution
v(EZ¢ N ) /v(E>?). Then

P{some vertical line contains two points of N ([0, M] x E~¢ N -)}

=P (J Wi=0j

I<i<j<§

tqu

PI U wi=u1}Pis =nl
I<i<j<n

(”) = UaJPIE = n]
()

n=0

IA
11
[\)

S

tqu

,) 0 PlE=n]=0.

3
Il
o

This gives (7.18).

Why is Claim (2) true on p. 2227 Suppose m € A and m,, > m. We show, for
any I > O, that x,,, — xm in D[O, T]. This argument is based on the following
lemma [230], which describes what it means for two point measures m and m; to be
close: In any compact region of the state space, the finite number of points of m| are
close in location to the finite number of points of m;. In Lemma 7.1, X is any nice
state space.

Lemma 7.1. Suppose m,, n > 0, are point measures in M,(X) and m, = mo. For
K € K(X), such that mg(dK) = 0, we have for n > n(K) a labeling of the points of
my and mq in K such that

P P
ma(-NK)Y=Y €w@. m-NK)=Y €0l),
i—1 i—1



224 7 Weak Convergence and the Poisson Process
and in E?,

@ 1<i<P)» P 1<i<P)
asn — oQ.

Proof. Write

mo(- N K) = Zcreyr(-),
r=1

where yi, ..., ys are the atoms of m in K Oandcy, ..., c, are integers giving multiplic-
ities.

For each y,, choose a neighborhood G, C K 0 and with Gy, ..., G, disjoint and
satisfying mo(0G,) = 0, so that the neighborhoods do not intersect and do not go
outside K, and so boundaries of the neighborhoods contain no points of mg. Then
mu(G;) — mo(G,) (see Theorem 3.2 (p. 52)). Because the counting measures are
integer valued, a converging sequence actually equals its limit from some point on. So
for n sufficiently large, say, n > n(K),

mp(Gr) =mo(Gr), 1=r=<s,
and also m,(K) = mo(K). Labeling points properly now gives the result. |

Back to the discussion of Claim (2): There exist nonnegative integers ko and ng
such that for n > ny,

myu ([0, T]1 x E=%) = mo([0, T] x E7%) = k.

For n > ng, write

ko

mu ([0, T x E7*)N+) = Zé(rf”>,y.<”))(')’
i:1 1 1

where, since mgy € A,
O=1t<11 < <Tpy < T < Tyt1.
Pick § so small that
71 — 6 > 6, Ti+8<tiy1—6, i=1,...,k0—1, Ty +8 < T — 6.
There exists n; > ng such that forn > ny,

",y e @ =570+ x 0V =5,yP+8), 1<i<k.
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Define homeomorphisms A, : [0, T] — A,[0, T'] by

A (0) =0, (T)=T
An(ri(")) = tl.(o), i=1,..., ko

between these points, A, (-) is defined by linear interpolation. Then writing [|x(-)|[[0,7]
for the sup-norm of the function x(-) on [0, 7], we have

- 0
lxOma) o 2y' = x(mollo.ry = sup | Dy - Z Y
0=I=T' -1 L0
k =*n k =
0
A DIEED 3
0=t=T ) o)
hn(r) <t o0 <t
0
S ADOR (R '
<<
<t< (0)<t Tk(o)fl
0
< Z |y(n) ()
< ko$. (7.19)
Also, we claim (recall that e(t) = 1)
[An — ellfo,r] < 38. (7.20)

To see this, write

ko
1 — elljo.r) = \/ \V o a(s) = sl

SE[T(”) l(_’i)l]
For the first interval,
TI(O) (0)
sup |An(s) —s| = sup S TS| = sup ( y— 1S
Ogsfrl(") Ofsftl(n) ) s<r(") T
O 0
< 1 -1 T](n) |.L.() (”)| <8
Q)
1
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On [r("), l(f_)l] i =1,...,ky we have (with obvious abbreviations)
.L,(O)l _ T(O) o (0)1 0) o
N & 0 S S Y It ) S S R
An(s) = NONENORR (rm) —r(")> T
i i i+l T
0 0
_ A o AT e
AT® l A
and
AT ) (0) AT () (n)
sup Ar(") s+t ENGR T —s
Ii(n) <s ST,-(::)
Setting y = 5 — rl.("), we have
Ar® wy o At (n)
T e R e R
y=Az\"
AT©
= sup —1)y+ (tl-(o) — ri("))
0<y<arm |\ AT
Ar©®
< sup — - 1| At™ 4+ |Ti(0) _ Ti(n)|
0<y<At® At

< |AT(O) _ A-L—(”)| + § = |T(0) .['(0 (.L.l(”) (”))| + S

1

<5+ |rfﬂ)1 ffﬂ 0@ — ™) < 35,
If d|o, 77 is the Skorohod metric on D[0, T'], we get from (7.19) and (7.20) that
d0,71(Xmy, » Xmo) =< kod v 38 = (ko V 3)é
if n > ny. Since § is arbitrarily chosen we get
d10,71(Xmy» Xmo) —> 0,

SO x is continuous at . |

7.3 Transformations

There are several useful results describing how regular variation of a distribution of
a random vector is affected by various transformations of that random vector. This
section presents a sample of results with the goal of illustrating a variety of techniques.
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7.3.1 Addition

Here are some results about how regular variation of the distribution tail of a vector is
affected by addition of components.

Linear combinations of components of a random vector

Given a random vector Z with a regularly vary tail, what happens if we sum the com-
ponents of Z or, more generally, take linear combinations? For ¢ € R4, define

d
t-2=Y 19z0.
i=1

Proposition 7.3. Suppose, as usual, that E = [0, co] \ {0} and that Z satisfies the

regular variation condition
Z v
nPl|—e-|—>v
by

in M (E). Then for any t > 0, we have
nPlt-Z > byx] = cx™ ¢ (n — 00),

wherec=v{yeE:t-y>1}.
In particular, suppose the components of Z are iid, and by, is chosen so that for each
i ef{l,...,d}, we have

nP[Z® > byx] = x 7% = vy (x, 00] (1 — 00).
Then fort > 0, as x — 00,

d
Plt-Z > x] ~ Z(#”)“P[z“) > x].

i=l

Proof. This is the polar coordinate transformation (Section 6.1.2 (p. 168)) in disguise.
Fix ¢t > 0, and define the norm on R¢ by

d
el =)D @)
i=1

From the polar coordinate transformation (see (6.15) (p. 179)), we know that

nP[t-Z > b,x] =nP[||Z|| > byx] — cx™¢
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as n — oo, where
c=vy:llyll> 1l =viy:z-y>1}.
For the iid case, v concentrates mass on each axis according to the measure v,, and
we get

d
v{y:t-y>1}=Zva{w:t(i)w>l}

i=l

(tDye, O

I
‘M*‘“

1

The converse to this problem is still not completely settled, although important
progress has been achieved: If ¢ - Z is regularly varying for every ¢, does this imply
regular variation of the distribution tail of Z? In general, the answer is negative for a's
that are integers. See [13, 170, 184, 220].

Adding independent vectors

If X and Y are independent random vectors each of whose distributions have regularly
varying tails, does the sum X + Y preserve the regular variation? A qualified yes can
be given to this question. See [168, 171, 207, 259, 260].

For this investigation, it is convenient to have the notation

Eq = [0, 00] \ {0}

for the d-dimensional compactified nonnegative orthant punctured by removal of the
origin.

Lemma 7.2 (binding). Suppose X € R[_f_l andY € Riz are defined on the same proba-
bility space, independent, and satisfy the regular variation conditions (n — 00)

nlP [bi € ] S ux() in My (Eq,), (7.21)

n

nP [bz € ] S vy () in My (Egy), (7.22)

n
with the same sequence b,, — oo. Then the distribution tail of (X, Y) is also regularly
varying:

XY v .

where
v(dx,dy) = vx(dx)eo(dy) + eo(dx)vy(dy). (7.24)
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Proof. Suppose f € C; (Ed,+4,). We first prove that

nEf (Zf Z)—nEf (;,0)—nEf (0, bz)—>0 (7.25)

Since (7.21) implies that

nEf (;,0) — f(x,0)vx(dx)
n Edl

with a similar statement for Y, (7.25) implies (7.23).
It is convenient to use the L-norm. For fixed d, set

d
Ixlloo = \/ Ix?I.  x e R%.

(Note that this notation will be used even when the dimension of the vector changes.

This abuse of notation should not cause confusion.) There exists a fixed § > 0 such

that the support of f is contained in {x € Eg, 44, : [[X|lcc > 8}. So

Ef X Y Ef X Y |
n =n —, —
b b b, by X Nloo VY lloo>by ]

_aer (X D)
=n
b b (1 X lloo>bn8, 1Y | oo <by 8]

T 11X 1o <bud. 1Y lloo>bn8] 1[||X||oo>bn8,HYIIoo>bn5])
=A+B+C.

Now

IC| = (const)nP[[[ X [loo > bnd, ¥ lloo > bud]
= (const) (nP[l| X llooc > buSDPY [loo > bpd]

— (const)’'§7-.0=0

since b, — 0.
Pick any n < §. The same argument used for C gives for A,

Ef XYy,
A=n
b B ) Xl =bub. ¥ loosbus)

X v
=nEf L1 X oo >Bn8, ¥ [lao<bun] T 0(1).
b, by
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Inspecting the right side, apart from o(1), gives Y close to 0, so it makes sense to
compare this with nE f (b, X, 0). We have

g (XY g (X0
n —, —n >
bn bn [ X loo>bn8, 1Y loo<bnn] bn

X v X
nEf\ —. — ) HiXleo>bu8, 1Y loo<bunl — NES | =20 ) 11X 00> b,8]
b, by by,

er(X 1),
n _’ —
bn bn (1 X lloo>bn8, 1Y lloo <bun]

+o(l)

X

—nEf (b—»O) L0 X [l >5u8, 1Y oo <bun]
n

Y

X |
00 b

n

< wf(n)nIP’[ < n} +o(1)

n

— wy ()8 “(const),

where recall that @ ¢ (1) is the modulus of continuity of f. We can manipulate the free
parameter n. If n — 0, then w¢(n) — 0, which finishes showing that the difference
converges to 0. The term B is handled similarly. m|

We now consider addition of independent random vectors, and for this the only
reasonable assumption is d; = d = d.

Proposition 7.4. Suppose X and Y satisfy the assumptions of Lemma 7.2 with the re-
striction that dy = d» = d. Then

X+Y
nP[ + G-:|—v>vx+vy (7.26)

n

in My (Ey).

Proof. Define the map SUM : E; x E; — E; by
SUM(x,y) =x +y.

Provided the compactness condition (5.19) (p. 141) is satisfied, the result follows from
Proposition 5.5 (p. 141) since applying SUM to (7.23) gives

/X Y X+Y v _
nlP o SUM €| =nP 5 €| >voSUM™ " = vy + vy.

by by n

Thus it remains to show (5.19) in the form
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SUM™H(K(Ey)) C K(Eaq).

Suppose K; € K(Ey). Since SUM is continuous, SUM_I(Kd) is closed in Ey,;. Also,
there exists 6 > 0 such that

KqsC{x €Ey: |lxllo = 6}.
Now

SUM~'({z € By : lIzlloo = 8)) = {(x, y) € Eag : X + ylloo = )
C{(x,y) €Eag: IXlloo V [¥lloo = 8/2).

The last set is closed and, being bounded away from the origin, is also compact in E,,.
So {(x,y) € Ezg : lx + ylloo = 8} is compact, and so is SUM~ 1K), being a closed
subset of a compact set. |

7.3.2 Products

Here we take a random vector Z with a regularly varying tail, multiply by a scalar
random variable, and examine the tail of the product. We consider two cases, (i) where
the multiplier has a relatively thin tail and (ii) where the multiplier is jointly regularly
varying with Z but not asymptotically independent of Z. The second result receives a
direct analytic treatment, and to illustrate alternative probabilistic methods, we prove
the first result, Breiman’s theorem, by the point process method, which parallels the
analytic proof given in [30].
We revert to our notation E = [0, oo] \ {0}.

Breiman’s theorem: A factor has a relatively thin tail

Proposition 7.5 (Breiman’s theorem). Suppose Z is a nonnegative random vector
satisfying the usual multivariate regular variation condition with exponent —o.:

Z
nP[Ee}—'@v.

Suppose further that Y > 0 is a random variable with a moment greater than a. This
is equivalent to the existence of € > 0, such that

E(y*1+29) < 0. (7.27)

Then
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YZ
nP [ € } = EQY%)v.

In particular, if d = 1, we have that

im Z>x_poyay
x—oo P[Z > x]

Remark 7.1. The result for d = 1 was first proved by Breiman [30]. A result requiring
asymptotic independence of Y and Z instead of independence isin [215]. The case where
Z is a d-dimensional vector is from [259]. A result where Y is a matrix independent of
Z is considered in [14, see Proposition A.1 (p. 113) and Corollary A.2 (p. 114)]. For a
nice application of the multivariate Breiman result to solutions of stochastic differential
equations, see [169]; see also [5]. For d = 1, a refinement which drops (7.27) in favor
of a condition that P[Y > x] = o(P[Z > x]) is givenin [128]. A product resultin [44],
quoted in [75, p. 542], of a slightly different character describes the case ind = 1 of
y £ Z,Y,Z independent, P[Z > x] € RV_g, @ > 0, and EZ% = oo.

Breiman’s theorem has a straightforward analytic proof using dominated conver-
gence outlined in Problem 7.10 (p. 251); see [30]. The Breiman proof requires judicious
carving up of the region of integration arising from the distribution of the product of
Y and Z. Our proof, based on the Poisson transform, offers an indication of how to
decompose the region of integration as the decomposition is guided by the necessity to
truncate the state space to get a compact set.

Proof. Suppose {Z,,n > 1} are iid copies of Z. The regular variation condition is
equivalent to (Theorem 6.2 (p. 179))

n
Zezi/bn = Zejk = PRM(v)
i=1 k
in M,(E). Now let {Y;} be iid copies of Y that are independent of {Z,} as well as
independent of {j}. It follows that in M, (E x (0, 00)),

n
D €y = ) €y =PRM@ x P[Y € ). (7.28)
i=1 k

See Problem 6.7 (p. 208) or the argument leading to (6.20) (p. 181). Note infinities are
included in E and so 0 is excluded from (0, co) to avoid the potential problem of O - co
when we take products.

Define the product map PROD : E x (0, co) — E by PROD(z, y) = yz. The
compactness condition (5.19) (p. 141) fails (see Figure 7.2), so truncation of the state
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xy>1

Fig. 7.2. The region {(x, y) : xy > 1} is not compact in E x (0, co), pictured for the case d = 1.
Dotted lines indicate an open boundary.

space is necessary, followed by an application of the second converging together method
of Theorem 3.5 (p. 56). We proceed in steps.

STEP 1: Restrict the state space to a compact set. Consider the compact subset of
E x (0, 00)
Asi={(z,y) € Ex (0,00) : |1z = 8%, y € [5,87 "1}

Applying the restriction functional (Problem 6.3 (p. 206)) to (7.28) yields

n
> €zibnrn (AN =D € rp(As N ) (7.29)
i=1 k

in Mp,(As).
STEP 2: Apply the functional PROD. From (7.29) we get by applying PROD that

. Zi .
ZlAa b—»Yi €Y Zi /bn :>ZIA5(J1<, Yi)€y j, (7.30)
i=1 " k

in M, (E).

STEP 3: The limit in the restricted convergence converges to the desired limit when
the restriction evaporates. Take the limit point process in (7.30) and let § | O to get
pointwise
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. 6—0
le\a(.lkv Yoevj, — ZEijk’
k k

vaguely M, (E).

StTEP 4: Show what you want to converge is close to what you know converges. With
p (-, -) the vague metric on M, (), we need to show that for any n > 0,

%iiglimsupp [0 (Z Las <—n )EY,Z b ZGY,Z /by ) > n} =0. (731

n—00
i=1

The expression (7.31) is true, provided that for any f € C;; (E), we have

g

Z;
= limlimsup P |:Z lAr (b—, Yi) fWYiZ;/b,) > 17:| =0. (7.32)

840 n—o0

n
lim lim sup P |:

840 n—oo

Z; .
(E’ Y,-> fGZifby) =) f(YiZi/by)

i=1

Unpacking the definition of A§, it is enough to verify the following:

hmhmsupIP)|:Z FOGZi /b))y 5515z, <51 = M | =0, (7.33)

30 n—soo
i=1 _

hir(}hm sup P |:Z fYiZ;/b, )l[Y 16,516y Z; =81+ > M2 | = 0, (7.34)

n—00
i=1 .

hir(}hmsupIP) |:Z fYiZ;/b, )I[Y 16.5- N1k Zif<s+e] = T3 | = 0 (7.35)

n—00
i=1 m

forn; >0,i =1,2,3.
Suppose the support of f isin {x € E : ||x|| > &} for some & > 0. The conditions
in the indicator in (7.33) imply that

1Y Zi /byl < 87'81T€ =5 < &,

if § is sufficiently small. Thus, for small §, we have the probability in (7.33) equal to 0.
For (7.34), it is enough to show that

lim lim sup P [Z FOZi/b) y 11512, 2s1+] > nm} =0,  (7.36)

n— oo
i=1
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n
lim lim sup P {Z FOZi/b)y stz (=514) = ;m} =0 (7.37)

50 oo |

for n1 > 0, n22 > 0. The probability in (7.36) is bounded by

n
yA
P {U [llYiZi/an > §, % > 8!ty < 5”

i=1 n

I1Z1]]

n

< nP[1Z1/ball = £57"\/ 6]

S GEAVAR (n — 00),
— £ 5 (0 31 0).

SHP[IIYlll/anI > &, >ty <5]

The probability in (7.37) is bounded by

n
P [U[HY,-z,-/bnn > €Y >8Ik, Zi) = a”é]}
i=1
<nP[|Y1Z;/by|l = &, Y1 > 871, 16,1 Z1 | = 8'F€)
<nP(|b;'Zy| = 8, v > 571

= nP[||b, ' Z,| = 8"T€IP[Y; > 671

~ §~U+Oapry; > 571 (n — 00),

and applying the Chebychev inequality to the tail probability for Y; gives the bound
< 3—(1+€)01EY1(1+2€)“8(1+26)a
-0 (8 — 0).
Finally, we show (7.35). First, for small § > 0,
nPIY1[1Z1 /bl > & Y1 <8, |16, ' Z1]| < 8] =0,

as for (7.33). For the other case, we have, using Karamata’s theorem (p. 25),

nPY1 | Zy /byl > &, Y1 > 871 | Z1 /b, < 817€]
= nPYiljy,o5-1) - 1Zn/bnlllz, /b, | <s1+<) > &]

n
< Gare BT ORAZ1/bal Uy, <o)
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51+6
— (const)/ 2 Haz7 "y (n — 00)
0

§l+e

= (const) / 27 ldz = (const) (81T > 0 (5 — 0).
0

StEP 5: Wrap-up. We conclude that

n
Z €Y, Zi /by = Z Yejk
i=1 k
in M, (IE). The result follows by another application of Theorem 6.2 (p. 179). O

Products of heavy-tailed random variables which are jointly regularly varying

The product of two random variables that are not asymptotically independent, but whose
tails satisfy multivariate regular variation, offers contrasting behavior to the case just
considered. We consider (Y, Z), which satisfy the nonstandard form of regular varia-
tion (p. 204).

Proposition 7.6. Suppose Y is a nonnegative random variable satisfying, for some
ay > 0,
P[Y > -] e RV_,, (7.38)

with quantile function by (-) € RV ,q,. Let Z be a Ri-valued random vector, defined
on the same probability space as Y, whose distribution tail is regularly varying with
indexaz > 0,

P [bzz(t) € } Svz() (> 00) (7.39)

in My (Eg), where E; = [0, oo]? \ {0}. This means that bz(t) is regularly varying
with index 1/az. Suppose further that (Y, Z) is multivariate regularly varying in the
sense that

Y Y/ v
Pl|l—,——)e-|=>v()Z0 (t —> o0) (7.40)
[(bY(f) bz(l)) } :
onEg41, v concentrates on [0, oo)"'+1 \ {0}, and there exists § > O such that
v{(y,2) Iyl A llzll > 8} > 0. (7.41)
Then Y Z has a regularly varying distribution tail with index — aO;Yf o%z’ a scaling function

by (\)bz(-), and limit measure

v{(y,2) :yz € -}. (7.42)
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Remark 7.2. The condition (7.41) prevents the limit measure in (7.42) from being trivial.

Proof. We first give the proof assuming d = 1. Fix x > 0, and define for any positive
number K,
Ak x={(y,2):yz>x,y <K,z <K}.

g )= (o) < 4o
tPl—————>x|>tP||——,—— ) € Ag«|.
by (t)bz(t) by(t) bz(1) ’

Next, let ¢ converge to oo first, and then let K go to oo through a sequence so that Ag
is a v-continuity set. This results in

Then

. YZ )
htn_l)g;f tP [W > x] >v({(y,2) : yz > x}).

On the other hand, we have

pl— Y2 < Cl_ Z ) A
[muwﬂn>x}\ [ by(t) by()) © KJ

P Y K tP z K
+t[mw>> ]+ [mv>> ]

Now, from the regular variation of the tails of Y and Z, the last two terms converge to
K™% and K %%, respectively, as t — oo. Then letting K go to co through a sequence
so that Ak . is a v-continuity set, both terms go to zero. Hence

. YZ :
htriiliptl? [m > xi| <v({(y,2) : yz > x}).

Thus

(P YZ ‘
[Eﬁﬁﬁﬁ>z]*”““4%xy>ny

Then since bybz is a regularly varying function of index
v({(y,2) : yz > x}) > 0 for some x > 0, we have

W+9Z  and since

P[YZ > -] € RV_ ayez .

ay+toy

For d > 1, define the map

z
IDPOLAR : (y, z) = (y, 1zl m) .

Using the method that showed the equivalences in Theorem 6.1 (p. 173), we get from
(7.40) that
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P[( y 1zl z ) } v .
, , €-| > voIDPOLAR™'("). (7.43)
by (@) bz () |IZ]

Define
PRODID(y, r, a) = (yr, a);

applying this to (7.43) yields

P[( Y| Z] Z ) ]_ [( Y|Z| YZ ) ]
, € | =1tP , € -
by(D)bz(t) | Z]] by (®)bz(t) |YZ]

= v o IDPOLAR ™! o PRODID ! ().

This gives regular variation of Y Z in polar coordinate form. m|

In Proposition 7.6, if ¢y and oz are between 1 and 2, i.e., Y and || Z|| have finite
mean but infinite variance, then the product Y Z has a regularly varying tail of index
— % € (%, 1); i.e., the product has a much heavier tail with infinite mean. This result
contrasts with Breiman’s theorem (Proposition 7.5), where the product of asymptotically

independent random variables has tail behavior similar to the factor with the heavier tail.

Internet data

Recall the Boston University study, mentioned in Example 1.1 (p. 4) and Section 5.2.2
(p. 125). This was a study of World Wide Web downloads in sessions initiated by logins
at a Boston University computer laboratory. The study kept track of

F = the file size of the requested document,
L = the duration of the download,

R = throughput of the request = F/L.

Empirical evidence indicates all three quantities have heavy tails. Table 7.1 gives
empirical estimates for the tail parameters for F, R, and L for the BU measurements
arrived at by a combination of QQ plotting and Hill plotting.

o oF | ag |ar
estimated value|1.15(1.13|1.4

Table 7.1. Tail parameter estimates.

What conclusions can we make about the dependence structure of (F, R, L)? Since
F = LR, the tail parameters («f, ag, or) cannot be arbitrary. Consider the following
two possibilities:
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* Proposition 7.6 (p. 236) is applicable for L, R. This means that (L, R) possess a
jointly regularly varying tail but are not asymptotically independent. The conclusion
from Proposition 7.6 is that

ap = LR _ 625 £1.15.
ar + R
Unfortinately, the empirical estimates do not match the theoretical predictions, in-
dicating that the model posed by Proposition 7.6 is unlikely to be correct.

* Proposition 7.5 (p. 231) applies. This would be the case if (L, R) were indepen-
dent or if [215] (L, R) obey some form of asymptotic independence. In this case,
Proposition 7.5 predicts that

OF = O0R NOL,

assuming that «g # «r. In our example,

1.15~ 1.13 A 1.4.

So for the BU data, evidence seems to support some form of independence for
(R, L). Interestingly, for other data sets (see [38]), large values of R and F are in-
dependent. Input models taking account of F, R, L will differ in their predictions
depending on what is assumed about the dependence of these three quantities. See [68].

7.3.3 Laplace transforms

Suppose U is a Radon measure on [0, co) = [0, 00)4, written U € M, 10, co), whose
Laplace transform U exists:

On) =000, ... A Dy = /
[0,00)

d
exp {— Zx(")x“)] U(dx) (7.44)
i=1
=/ e M*UWdx) <oo (A >0). (7.45)
[0.00)

Let U(x) = U]J0, x] be the distribution function of the measure U, and assume
that U (x) satisfies the regular variation condition (6.1) (p. 167). We assume that U (x)
is regularly varying on the cone (0, oo) and that there exists a function g(t) € RV,
p > 0, and a limit measure V € M [0, co) with distribution function V (x) = V[0, x],

=V(x), xe(0,00), (7.46)

Ut
lim U;(x) := lim (tx)
t—>00 r—

oo g(t)
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at points of continuity of the limit. This means that

U >V (t— 00) (7.47)
in M+[0, OO)

Assume that V # 0, and as a normalization, suppose V(1) = 1. The argument
given on p. 167 shows that

Vicx) =c’V(x), ¢>0,

x > 0,
and the argument following (6.13) (p. 177) gives
% {x €10, 00) : [lx|| <r ”x—” c A} —rPS(A), r>0, ACRN,
x

where A is a Borel set.

The Laplace transform of V exists since, if A > 0 is fixed, we may define the norm

d
el => 2@ P), x eRY,
i=1

so thatif x > 0, then ||x|| = A - x. Write

V(k):/ e_)"”V(du):/ e 1y (du)
[0.00)

[0,00)

= f/ e psP~ldsS(da)
aeR;,s>0

o
= S(N+)/ e SpsPlds < o0
0
for p > 0.

Recall our convention from Appendix 10 (p. 359) that operations should be inter-
preted componentwise, so that, for instance,

1 /1 1
r \yorro i@ )
but keep in mind that A - x = 2?21 2O x®  Similarly, we recall that

xfy=@D/y® XDy @),

Now suppose that



7.3 Transformations 241
Xk: €0 = PRM(U)). Xk: €y, = PRM(V)

with state space [0, 0o0). Then from Problem 5.3 (p. 163), (7.47) is equivalent to
Z Eul((t) = Z €y,
k k
in M [0, 00). Define

(E, =((EWV, ..., ED):n>1)

to be iid d-dimensional random vectors each of whose components are iid unit expo-
nential random variables. Set

EXP(-) = P[E; € -]

for the joint distribution of a d-dimensional vector of iid unit exponential random vari-
ables. Assuming {E;} independent of both {u,(f)} and {v¢}, we get from augmentation
(Proposition 5.3 (p. 123)) that

N; = Ze(u,@,m = PRM(U; x EXP)
k

and

Neo := ) €. E) = PRM(V x EXP),
k

each with state space [0, 0o) x (0, oo] and
N; = Ny (7.48)
in M, ([0, o0) x (0, oc]). Apply the map
RATIO : [0, 00) x (0, o0] — [0, 00)

defined by
RATIO(u, e) = (u/e).

We hope Proposition 5.2 (p. 121) is applicable (almost—we have not checked the
compactness condition in Proposition 5.2) so that N; o RATIO™! is a Poisson process.
The mean measure (z € (0, 00)) is
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E(N, o RATIO™ ([0, z])

= // U;(dx) EXP(dy) = f l_[ —x(’)/z(l) U, (dx)
{(x y):x/y<z} 0 oo)

f l—[ex —x9] 1 Uttdx) = —— 0 <1> (7.49)
[0.00) ;_ PO PT0) 0 tz )’ ’

Condition (7.45) forces a finite expectation, and (7.49) shows that U (%), z € (0, 00) is
the distribution function of a measure in M, [0, 00).

We now state the multidimensional Tauberian theorem. The result is from an unpub-
lished technical report by Stam [284]; the approach is from [261]. See also [281-283].

Proposition 7.7. If U € M_[0, 00) has a finite Laplace transform given in (7.45) and
its distribution function U (x) satisfies (7.46), then the distribution function U (1/x) is
also regularly varying on the cone (0, 00),

For discussion of the case in which d = 1, see, for instance, [26, 135]. The converse
is also true, but it would take us a bit further afield. See [261, 284].

Proof. Given (7.46), if we did not have to worry about whether the map RATIO satisfies
the compactness condition (5.19) (p. 141), then (7.48) would imply convergence of
Poisson processes

N; o RATIO™' = Ny o RATIO™!

in M [0, o0), which would imply the mean measures converge. Hence, from Prob-
lem 5.3 (p. 163), we could conclude that for z > 0,

E(N, o RATIO™([0, z]) = : (1>
‘e Y0 iz

1z
~ (1
— E(Noo o RATIO™!([0,2]) = V (—) , (7.51)
4
which gives the result. How do we fill the gap in this outline?

Reviewing Remark 5.2 (p. 142) suggests truncating the state space [0, co) x (0, 00)
to the compact set

Ky = {(u,y) €[0,00) x (0,00) : lu]| <M, M '1<y< M1}
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Applying the restriction functional (Problem 6.3 (p. 206)) to (7.48), we get
NM = N,(-NKy) = Noo(- N Ky) =: N2

in M, ([0, 00) x (0, 00)); then, using the fact that RATIO is continuous, we get from
Remark 5.2 (p. 142) that

NMR .= N,(- N Kpr) o RATIO™! = Noo(- N Kpr) o RATIO™! =: NM-R

o0

Unpacking this result gives, as t — oo,
zk: 1[("1(:)*Ek)EKM]E"/(:)/Ek = zk: Ve B eKu €/ B
As M — oo, we have vague convergence in M (0, 00),

M, R
Noo § (o Exek 1€/ Ex — N& E €u /By
k

We are now prepared for an application of the second converging together theorem,
Theorem 3.5 (p. 56). With
R _
N = ;E";(([)/Ek’

it suffices to show that for any n > 0 and d(-, -) the vague metric,

hm lim sup]P[d(N , NIR) >n] =0, (7.52)

M—0o0 (o0

since then the second converging together theorem plus the fact that PRMs converge iff
their mean measures converge (Problem 5.3 (p. 163)) justifies the desired result (7.51).

The proof of (7.52) follows the usual pattern. Suppose h € C ,Jg[O, 00); it then
suffices to show for any such # that for § > 0,

Jim _lim sup P[|NM R (h) — NR(h)| > 81 = 0. (7.53)

M—o00 t—o0

Now & has compact support, so suppose for convenience that the support of 4 is con-
tained in [0, c1] for some ¢ > 0; for typographical ease, just set c = 1. Observe

) ()
M,R R U Uy
N () = N ()] = 'Z N Bek” (Ek> - Xk:h (Ek)
o
Z 1[(u,(:) Ek)erw]h E;
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and therefore, by Chebychev’s inequality,
PIN R () — N ()] > 6]

)
-1 iy

s f / h(u/y)Us (du) EXP(dy)
{(u,y):(u,y)eK

)

<8 'suph(x) // U, (du) EXP(dy),
x {(w.y):(u,y)eKy,u/y<1}

where the last inequality takes into account the compact support of /.
Now we deal with the double integral. Note first that

K$ ={(u, y): llull > MYU{(u,y): llull <M,y > M1}
Uf(u,y): lull <M,y <M '1). (7.54)

Because the region of integration is compact,

/ f U, (du) EXP(dy)
(u/y<1.lull>M)

— / / V(du)EXPdy) (1 — 00)
{u<y.|lul>M}

d (i)
— / ]‘[e—“ "V(du)
{lla|l>M}

i=1

= / e 1"V (du)
{llu]>M}

-0 (M — 0),

since the Laplace function V(X) exists.
Now consider the last set in the decomposition of K, given in (7.54). We have

/ f U, (du) EXP(dy)
{lull<M.y<M—11)

< (=™ U, : Jul < MY)
> (=™ NV ul M) (1> o0

=MP(L—e ™ Y V({u: Jul < 1))
-0 (M — o0).

The rest is very similar. ad



7.3 Transformations 245

Special case for d = 1: Karamata’s Tauberian theorem
Suppose d = 1 in Proposition 7.7. Then if U € RV, p > 0, we have

Ul(tx)

- xP=Vx), x>0 t— o0,
Ut)

and g(¢) = U(t). It follows that, as t — 00, (7.50) becomes

le

~ (1
%ﬂ) — ./0 e_x_ls,os'o_lds =T(p+ x". (7.55)

When we set x = 1, we get
A (1
U <;) ~UMNT(p+1) & — 00). (7.56)

We have not proved converses here, but they hold as well. See [26, 135, 182].

Renewal theory

Consider an ordinary renewal process {S,, n > 0} such that
n
So=0,  Sp=» Xi, nxl,
i=1

and {X,,n > 1} is a sequence of iid nonnegative random variables with common
distribution F'. The function that counts renewals is

(0,0
N = Zesn, (7.57)
n=0
so that -
N(@) :=N(0,1]) = Z Its,<ip, t>0. (7.58)
n=0

The renewal function [135, 262] is

U@t) = EN@t) = ZP[S,, <t]= Z F™ (1), (7.59)

n=0 n=0

where F™* is the nth convolution power of F.
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Suppose
1—-F()=t"L@)€eRV_,, t—> 00, O0<a<l.

What is the asymptotic form of U?
Set

X
He = [ (1= Fonas,
0
and by Karamata’s theorem (Theorem 2.1 (p. 25)),

H(x) ~ xlF(x)

€RVi_y (x — 00).

From (7.56), we conclude that
A~ (1
H (;) ~HHOT Q2 —a).

However, by integrating by parts, one quickly sees that

1—FQ)

H(}) = —,

A > 0.

Put (7.61)—(7.63) into the blender, and out comes

1—ﬁ(;>~ﬁmra—ay

From the definition of U (¢), the transform satisfies

. 1
O00)= ———, A>0.
1— FQ)

Again from (7.56),

. (1 1
U (—) =—F<~U0Ird+a);
1 —-F‘(%)

(7.64) gives the final alchemy:

1 el
1—FOT(-—a)(1+a) 1—F@)

U ~

(7.60)

(7.61)

(7.62)

(7.63)

(7.64)

(7.65)
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7.4 Problems

7.1 ([42, 259]). In the context of Corollary 7.1 (p. 218), prove that

[\n'/]é Sl e (2L = (Ya(). Xa()
bn, bn b [|Zl/bn|§1] o s Ao

i=1 n

in D([0, 00), R?), where {Yy(2),t > 0} is an extremal process and {X,(¢), > 0O} isa
stable Lévy motion.

7.2. In Theorem 7.1 (p. 214) and Corollary 7.1 (p. 218), the partial sums are centered by
truncated first moments since no assumption is made about existence of first moments.
What if you knew the first moments were finite. Could these be used for centering?

7.3 (Convergence to stable subordinators). Suppose {X;, i > 1} are iid, nonnegative
random variables and
F(x) =P[X; > x] € RV_,

for 0 < o < 1. As usual, let b(¢) be the quantile function

1

b(t)zl—F

().

Show that
[nt]
—_ X = X, (t
b(n); i = Xa(t)

in D[0, c0), where X, (-) is a stable subordinator.

7.4 (Bootstrap the sample mean [10]). Review Corollary 7.1 (p. 218) and Proposi-
tions 6.2 (p. 188) and 6.3 (p. 189). For 1 < o < 2, assume that {Z;, i > 1} are iid with
a common distribution in the domain of attraction of a stable law of index «; that is, the
global regular variation of Corollary 7.1 holds.

Suppose Z1, .. ., Z, are observed with sample mean Z,,, and then a bootstrap sample
Z%, ..., Zy is drawn, which has sample mean Z;‘;. Prove that for x1, ..., x; fixed, that
asn — oo,

(P[bl(zz_zn)ixi|Zl,---,Zni|,l'=1,---»l>

converges to a random distribution limit evaluated at xy,...,x;. To eliminate the
unknown b,,, prove that the same conclusion holds for
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(P[ﬁ(i;j—znmxi|zl,...,zn]i=1,...,l>.
j=1%4]

What if the bootstrap sample size is reduced to m, where m = m(n) = o(n)?

7.5 (Karamata’s theorem). Suppose U : [0, o0) — [0, co) is nondecreasing. Suppose

> €ty = PRM(LEB xU)
k

is Poisson on M, ([0, o0) x [0, 00)).

1. U € RVq, a > 0, iff there exists a sequence of constants b, — 00 such that

Ny =) €utpus o) = PRM(LEB x 1),
k

where 1y[0, x] = x*.
2. Consider the map T : (0, oo) x [0, 00) — (0, 00) x [0, 00) defined by
T, x)=(t,x/t).

Check that T~ ([a, b] x [0, y]) is compact for 0 < a < b < oo and y > 0. From
this, conclude that 7~ (K) is compact whenever K C (0, 0o) x [0, 00) is compact.

3. From these facts, prove Karamata’s theorem, that

i fo U(s)ds: 1 .
x—o0o  xU(x) a+1

7.6 (Convergence of sums in the nonstandard case [241]). Suppose we have iid
vectors {Z, = (Z', Z), n > 1} in R? such that fori = 1,2,

@)
Z
Pl e | Sy
b(l)
n

in My ([—o0, 0o] \ {0}); that is, marginally we have regular variation. Suppose that b,(,i)
is the restriction to the integers of a regularly varying function with index 1/«;, where

O<o; <2, i=1,2,

but that it is not necessarily the case that «; = a». Assume the two-dimensional global
condition
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Z51) Z%Z) ;
Sl A oRey R e
b}’l bl’l

in My ([—oc, 00] \ {0}), where v is a Lévy measure, that is, a Radon measure on
[—o0, oo] \ {0} satisfying

/ lx[?v(dx) < oo.
feellxl<1)

Show that the sequence of processes
[nt] (1) [nt] (2)
Z. Z.
_r _t tr>0
Z (1)’2 (2))’ = }
{<i:1 bn” 27 bn

converges weakly as n — 00, after suitable centering, in D([0, 00), Rz), the space
of right-continuous functions with domain [0, co) and range R?. Describe the limit
process.

7.7 (Sample variance [259]). Suppose {Z,,, n > 1} are iid with a distribution F. Sup-
pose for simplicity that Z; > O and 1 — F € RV_, and suppose 0 < o < 1.

1. Show that the sequence of processes

[nt] [nt]
H(Zzi,ZZf),tzO},nz 1}
o1 il

converges weakly in D([0, c0), R?) after centering and scaling. Describe the limit
process.
2. Set
Zo= 137 S =1 ; Zi — Zn)*
n-—nZz, n_VL;(l_ n)-
1=

Show that the sequence of processes
{(Zpun). S 1 2 0} n = 1)

converges weakly in D ([0, o), R?) after suitable centering and scaling of the com-
ponents. Describe the limit process. (The normalization by % is traditional but
inappropriate in the heavy-tailed case.)
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7.8 (More products [44, 75]). Suppose Z;, Z; are iid, nonnegative random variables
with P[Z; > x] € RV_4, @ > 0, and EZY = oco. Show that P[Z1Z; > x] €
RV _, and

Pl[Z1Z; > x] _

x00 P[Z; > x]

7.9 (Partial converse of Breiman’s theorem [217]). Suppose £ and n are two indepen-
dent, nonnegative random variables, and & has a Pareto distribution with parameter 1:

P& > x] =x_1, x> 1.

(a) We have
Plén > x] €RV_,, a<l,
iff
Pln > x] € RV_g,
and then

Plén > x] 1
— .
Pln > x] l—«o
(b) If P[{n > x] € RV_j and &7 has a heavier tail than &, meaning that

PEn>x] (7
M_/O Pln > yldy — oo,

i.e., E[n] = oo, then
/ Pln > s]lds =: L(x) 1 o0
0

is slowly varying. If, in addition, L(x) € II, the de Haan function class IT (see
Problems 2.10 (p. 37) and 2.11 and [26, 90, 102, 144, 260]), then

Pln > x] €e RV_4

and

Lw) _ Pln>x]
xP[n > x] Pln > x]
As an example, consider
elogx

Pln > x] = P X >e

and show that 1
Plén > x] ~ Eex_l(logx)z, X — 00.
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7.10 (Analytic proof of Breiman’s theorem). Review the statement of Breiman’s the-
orem in Proposition 7.5. Proceed as follows to construct an analytic proof:

1. Assume that d = 1. Write P[Y Z > u] as an integral on [0, co) with respect to the
distribution of Y. Divide through by P[Z > u].

2. Split the region of integration [0, o) = [0, u/M]U[u/M, oo]. On [0, u/M], bound
the ratio integrand with a uniform bound using Potter’s bounds.

3.0n [u/M, oo), bound the ratio integrand by P[Y > u/M]/P[Z > u]. The asymp-
totic behavior of this ratio is controlled by (7.27).

4. Apply dominated convergence to get P[YZ > u]/P[Z > u] to converge to the
desired limit.

5.Ford > 1,let K € K(E)becompactinE. Thenforsomed > 0, K C {z: ||z]| > §}.
Bound nP[YZ/b, € K] < [nP[y|Z||/b, > §]P[Y € dy], and apply Fatou to get
a E(Y%)v(K) is an upper bound to the lim sup of nlP[YZ/b,, € K]. Construct a
lower bound to the lim inf similarly after changing K to a relatively compact open
set. Apply Theorem 3.2 (p. 52).

7.11 (Choice theory [243, 244]). Suppose Y  is the limit random vector given in (7.1)
(p- 212). The limit measure is v and the angular probability measure is S. Define

d
E!> = {x ek x> \/x(i)}
i=2

and
Nl> — RN El>
Prove that

d
P |:Y(1> > \/ Yﬂ = S(R'™).

i=2
Furthermore, for y > 0,

d d
P [Y“) >\/r® \/r? < y] — S(R1>)e™ .
i=2 i=1

7.12 (Convex hulls [78, 228]). Let K[0, oo) be the compact sets of [0, oo) metrized
by the Hausdorff metric [214, 228]. Suppose {Zy, ..., Z,} are iid random vectors
in [0, oo) with common distribution F satisfying the regular variation condition with
scaling function b, = b(n). Prove the convex hull of {Z,/b,,, ..., Z,/b,} converges
weakly in K[0, co) to a limit which is the convex hull of the points of the limiting
Poisson point process associated with (7.2) (p. 212).
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Applied Probability Models and Heavy Tails

This chapter uses the heavy-tail machinery in service of various applied probability
models of networks and queuing systems.

8.1 A network model for cumulative traffic on large time scales

The simple infinite-node Poisson based model discussed in Section 5.2.2 (p. 125) and
formalized in Section 5.2.4 (p. 127) offers a compelling explanation of how heavy-
tailed file sizes induce long-range dependence in the traffic rates. To decide if our
model is an accurate enough reflection of reality, however, we need to see how well
data measurements fit the model. So we require a partial catalogue of features of the
model to see if such features are found in data measurements. In this section, based
on [222, 267], we analyze what the model predicts about the cumulative traffic process
over large time scales. An alternate approach [68, pp. 373—404], based on small time
scales more consistent with empirical observations of burstiness, examines cumulative
traffic in small time slots as slot length goes to zero.

8.1.1 Model review

The infinite-node Poisson model with heavy-tailed file sizes allows cumulative traffic
at large time scales to look either heavy tailed or Gaussian, depending on whether the
rate at which transmissions are initiated (crudely referred to as the connection rate)
is moderate or quite large. Here we discuss why stable Lévy motion is a possible
approximation.

The process describing offered traffic is A(¢), the cumulative input in [0, 7] by
all sources. Recall from (5.3) and (5.4) (p. 129) that the model assumes unit rate
transmissions, and A(r) is the integral of M(s) over [0, ¢]. For large T, we think
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of (A(Tt),t > 0) as the process on large time scales. The results show that if the
connection rate A(-) is allowed to depend on 7 in such a way that it has a growth rate in
T that is moderate (in a manner to be made precise), then A(7T -) looks like an «-stable
Lévy motion, while if the connection rate grows faster than a critical value, A(T-)
looks like a fractional Brownian motion. These statements can be made precise by
adopting a heavy-traffic outlook. We imagine a family of models indexed by T', where
the 7'th model has connection rate A(7") and file size distribution F,,. Depending on
growth rates, the 7'th model is approximated by either Lévy stable motion or fractional
Brownian motion [178, 222].

As in Section 5.2.5 (p. 130), let (I'y, —oo < k < o0) be the points of the rate A
homogeneous Poisson process on R, and now label the points so that ' < 0 < I,
and hence {—TI'g, I'1, Tk+1 — 'x, k& # 0)} are iid exponentially distributed random
variables with parameter A. The random measure that counts the points is denoted by
Z,fi_oo er, and is a Poisson random measure with mean measure A LEB, where LEB
is Lebesgue measure. The network has an infinite number of nodes or sources, and
at time I'y a connection is made and some node begins a transmission at constant rate
to the server. As a normalization, this constant rate is taken to be unity. The lengths
of transmissions are random variables L. Assume that Ly,, L, Ly, ... are iid and
independent of {I'x}, and

P(Loy > x) = Fop(x) =x“L(x), x>0, l<a<?2, (8.1)

where L is a slowly varying function. Since o € (1, 2), the variance of Ly is infinite
and its mean Loy is finite. We will need the quantile function

b(t) = (1/Fon) < (t) =: inf {x : t>0, (8.2)

I z} ,
I — Fon(x) —
which is regularly varying with index 1/«. Recall the two-dimensional Poisson random
measure & defined by (5.6), which is a counting function on R x [0, oo] corresponding
to the points {(I'x, L)} and has mean measure A LEB x Fyy,; cf. [260].

To remind us we consider the 7th model, we sometimes subscript quantities by
T. For example, the number of active sources at ¢ or the overall transmission rate at ¢
is denoted by either M (¢) or M7 (¢t). We will consider a family of Poisson processes
indexed by the scaling parameter 7 > 0 such that the intensity A = A(7") goes to infinity
as T — oo. The intensity A = A(T) will be referred to as the connection rate for the
T'th model.

Recall that heavy-tailed transmission times Ly induce long-range dependence in M;
the precise expression of this is (5.8) (p. 132). High variability in transmission times
causes long-range dependence in the rate at which work is offered to the system.



8.1 A network model for cumulative traffic on large time scales 255

8.1.2 The critical input rate

Recall that A = A(T') is the parameter governing the connection rate in the 7th model,
and suppose A = A(T) is a nondecreasing function of 7. We phrase our condition first
in terms of the quantile function b defined in (8.2). The asymptotic behavior of A7 (-)
depends on whether

.. .. . b(AT)
Condition 1 (slow-growth condition): Iim —— =0
T—o00 T
or
.. .. . b(AT)
Condition 2 (fast-growth condition): Iim —— =
T—o00 T

holds. Notice that b(-) is regularly varying with index 1/c.
There is an alternative, more intuitive, way to express the conditions.

Lemma 8.1. Assume that Foy, satisfies (8.1). In the Tth model, assume that the Poisson
process of session initiations is constructed on R and M (-) is a stationary process on
R. Note that M1 (t) represents the number of active sources at time t in the T th model.

1. The slow-growth condition (Condition 1) is equivalent to either of the following two
conditions:

lim ATFOH(T) =0 or lim Cov(M7(0), My(T)) =0. (8.3)
T—o00 T—00

2. The fast-growth condition (Condition 2) is equivalent to either of the following two

conditions:
lim ATFOH(T) =00 or lim Cov(M7(0), My(T)) = oo. (8.4)
T—00 T—o0

If we think of the model with time scaled by 7', the covariance appearing in (8.3)
and (8.4) is the lag 1 covariance. As we proceed through our family of models indexed
by T, under slow growth, the lag 1 covariance is diminishing at large scales, and under
fast growth, the lag 1 covariance is getting very strong.

Proof. In the case of Condition 1, there exists a function 0 < €(7T) — 0 such that
Te(T) — ooand b(AT) = Te(T). Thus, by inversion,

AT ~ 1/Fon(Te(T)). (8.5)

Therefore, Condition 1 implies that
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AT Fon(T) ~ Fon(T)/Fon(T€(T)) — 0. (8.6)
Conversely, if 8(T) := AT Fon(T) — 0, then using b (T) ~ I/FOH(T), we get

bAT) _ b@ML(T))
T b(b<(T)) ’

and so Condition 1 and (8.6) are equivalent. Similarly, Condition 2 is the same as
AT Fon(T) — 0. (8.7)
To get the equivalence in terms of the covariances, use (5.8) (p. 132). |
The following fact expedites proofs in subsequent sections.
Lemma 8.2. [f Condition 1 holds, then

AT2Fon (T
lim M Fon(T) _ 0, (8.8)
T—oo b(AT)

and if Condition 2 holds, this limit is infinite.

Proof. Assume that Condition 1 holds. As with (8.5), set e(T) = b(AT)/T — 0, so
that e (T)T — oo. Denoting the ratio in (8.8) by r(7T'), we see that

Fon(T)

r(T) ~ = .
€(T) Fon(Te(T))

and using the Karamata representation of a regularly varying function (see Section 2.3.3
(p- 29) and (2.24) (p. 29)), we obtain

T

r(T) ~ [e(T)] ' exp {—/ u—la(u)du} (8.9)
T

e(T)

for some function o () — o asu — oo. Since 1 < o < 2, we may pick é so small that
o —§8 > 1. Since Te(T) — oo, we have, for T sufficiently large, that the right-hand
side in (8.9) is bounded from above by

[e(T)]" exp{—(a — 8) log(1/€(T))} = [e(T)1* 1,

and the right-hand side converges to zero as T — oo. The proof of an infinite limit
under Condition 2 is similar. m|
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8.1.3 Why stable Lévy motion can approximate cumulative input under slow
growth

We now assume that Condition 1 holds and show why at large time scales, the process A
is approximately an «-stable Lévy motion. The following is the result under the slow-
growth condition. We will not discuss the fractional Brownian motion limit obtained
under fast growth or the intermediate cases. A skillful overview is given in [178]. See
also [139, 179].

Theorem 8.1. If Condition 1 holds, then the process (A(T't), t > 0) describing the total
cumulative input in [0, Tt], t > 0, satisfies the limit relation

XDy = A(T')b_(XTT’;“O“(') 5 Xy (), (8.10)

. . . fidi .
where Xy (-) is an a-stable Lévy motion. Here — denotes convergence of the finite-
dimensional distributions.

Remark 8.1. The mode of convergence cannot be extended to J; convergence in the
Skorohod space DI[0, co). This follows, for example, from Konstantopoulos and
Lin [190], who show that a sequence of processes with a.s. continuous sample paths
cannot converge in distribution in (D[0, c0), J1) to a process with a.s. discontinuous
sample paths. A thorough discussion of this phenomena is in [301]; see also [254] and
Problem 3.22 (p. 69).

Here is a discussion of the proof.

The basic decomposition

We start by giving a useful decomposition of the random variable A(7") corresponding
to a decomposition of (—oo, T'] x [0, c0):

R :={(5,9):0<s<T,0<y,s+y<T}
Ry:={(s,y):0<s <T, T <s+y},

Ry :={(s,y):5s<0,0<s+y<T}, (8.11)
Ry:={(s5,9):5<0,T <s+y}

(see Figure 8.1). Compare this decomposition to the one used in Figure 5.3 (p. 131).
Rewrite A(T) using (5.4) as
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", R

R; e

#
#

*
#
e S

Fig. 8.1. The regions Ry, R2, R3, R4.

A(T) = Z Lilyry. Loer,) + Z(T = Ty, LpeRrs]
k k

+ ) Lk + TN Loer + ) Tl Loers (8.12)
k k
=: A1 + Ay + A3 + Ay,

Recall the definition of the PRM & from (5.6) (p. 130) with mean measure A LEB x Fq,.
Note that A; is a function of the points of £ in region R;, and since the R;s are disjoint,
Aj, i =1,...,4, are mutually independent. Calculating as in (5.7) (p. 130) and using
Karamata’s theorem, we get that as T — oo,

T
amy = EE(R)) = xf Fon(T — s)ds ~ AT,
0

T
amy = EE(Ry) = A/ Fon(T — s)ds ~ Afon, (8.13)
0
0
Am3 = E&(R3) = A /_ (Fon(T + |s]) — Fon(Is]))ds ~ Afton,

o0

0 00
hma = EE(Ry) = / / Fon(dy)ds = 1 f Fon(u)du,
s=—00 Jy=—s+T T
~ AT Fon(T) /(e — 1) — 0.

So the mean measure E&(-) restricted to R; is finite for i = 1, ..., 4, which implies
that the points of & ‘ ., can be represented as a Poisson number of iid random vectors
(see Section 5.4.2 (p. 143)):
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§

P;
d .
Ri: Ze(tk,ivjk,i)’ 1 = 1,...,4, (814)
k=1

where P; is a Poisson random variable with mean Am;, which is independent of the iid
pairs (f.i, jk.i), k > 1, with common distribution

ALEB(ds) Fon(dy) _ LEB(ds) Fon(dy) (8.15)

)\.ml Ri m, Ri ’ '
fori = 1,...,4. Notice that the distributions of ((#;, jk.;)) are independent of A,
which only enters into the specification of the mean of P;,i = 1, ..., 4. This means

that for fixed T, we can represent the A;s as sums of a Poisson number of iid random
variables,

Py P
d . d
Al =ij,1, A2=Z(T—tk,2),
k=1 k=1
L n n (8.16)
A3 = Z(jm +n3), As= Z T =TPy.
k=1 k=1

One-dimensional convergence
We show under Condition 1 or (8.3) that A(T') is asymptotically an a-stable random
variable by showing that A{(T) = A; is asymptotically stable and A;(T) = A;,

i = 2,3, 4, are asymptotically negligible.
It is relatively easy to see that

AbTY B0, =234 (8.17)

Here is a sample calculation for the case i = 2; a similar argument works for i = 3, 4.
We write

E(A2) = E(P)E(T —t;.2) = [Mma]E(T — 11 2),

and from (8.15), this is

Fou(d
= Amy /f (T — s)ds LontdY)
0<x<T mo

T
= / Fon(T — $)(T — 5)ds
0
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T
= A/ s Fon(s)ds.
0
Therefore, from Karamata’s theorem (p. 25),

AmaE(T — 1 2) _ fOT s Fon(s)ds
AT2Fon(T) T2 Fon(t)

1 1
—>/s-s_°‘ds= .
0 2 -«

Then Lemma 8.2 (p. 256) and, in particular, (8.8) give

E(A2) = o(b(AT)),

as desired.
Thus it remains to consider A;. The representation of A| given in (8.16) yields the
decomposition

Py

A1 = tptonT =Y Gkt — EGk 1)) + EGk,DIPL — E(PD] + [E(A1) — AptonT ]
k=1

= A+ A+ A

It is readily checked that Ejx 1 ~ pon since

Fon(dy)
hm E(jk.1) hm //0<S<T ds T

0<s+y<T

T—s
= lim — F
T1—>moo T K:O (/y:O y on(dy)> ds
1 T s
= lim — Fon(d d
T1—>mooT/;:0 (/y:Oy on y)) s

T
= lim yFon(dy) = tton.

T—o0 Jo

Furthermore, P; is Poisson with mean Am; — 00, so it satisfies the central limit
theorem, i.e.,
[ami]7V2[P) — ami] = N(O, 1). (8.18)

Since Am| ~ AT, we conclude that

A1p = 0p(IAT1Y?) = 0p (b(AT)), (8.19)
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since

1/2
im ﬂ = lim s = lim s'27Ve/L(s),
T—oo b(AT) s—oob(s) s—>o0
and 1 < o < 2 implies that% < é < 1.
By (8.16) and (8.18), A1 is a sum of approximately Am ~ AT iid summands.
Under Condition 1 or (8.3), b(AT)/ T — 0, so that for any x > 0 fixed, we eventually
have T — b(AT)x > 0. Therefore, from (8.15), as x — o0,

ATP(jg1 > b(AT)x)
ds Fon(d
— )‘T/:/OSSST M
0

<s+y<T mi

y>b(AT)x
T—b(AT)x T—s F(d
:AT/ (f on )’))ds
s=0 y=b(\T)x M1
1 - T—b(T)x
=27 | - Fon(bGTIX)(T —bOTI) m_1/ i Fon(T — s)ds
b(.T _ b(T) [T/PCD)
~ (1 _ B . ”‘) AT Fop (LT )x) — %/ AT Fon (b(WT)s)d's
X

— (8.20)

From this, we would like to conclude by Theorem 7.1 (p. 214) that

[AT]

YD) = marN™ D Gkt —EGe) = Xo() (8.21)
k=1

in D[0, co), where the limit is a totally skewed «-stable Lévy random motion (p = 1,
g = 0). However, Theorem 7.1 requires us to check (7.6) (p. 214), which controls the
truncated second moment. The condition (7.6) becomes, for our case,

. 2
S Jk,1
lim lim sup ATE ((m) 1[Uk,l |§b()»T)5]) =0. (822)

=0 7500

Verifying this is an easy application of Karamata’s theorem, as given in Problem 2.5
(p. 36). The left side of (8.22) is asymptotic to

2
_Y Fon(dy)
M /fOExET (b(”)) liysbansds —
O0<y<T—s
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T T—s 2
Fon(d
:)\.T/ / <L> Liy<b(.1)8) on(d) ds
s=0 y=0 b(AT) T
1 Ts y 2
= AT —— ) 1< Fon(d d
K:O /yzo <b(kT)) ly<b(.T)s1 Fon(dy) | ds

1 Ts/b(.T)
= )‘Tf / yzl[yié]Fon(b()hT)dy) ds
s y

=0 =0

1 T/bG.TIAS
< / f VAT Fon(b(.T)dy) | dis,
s=0 y=0

and because of the slow-growth condition, this is ultimately

)
< f Y2AT Fon(b(AT)dy)
0

8
a
—>/O yzay_“_ldy=r62_“ (Karamata’s theorem)

-0 (§—0).

This establishes (8.21) in D[0, oo). By independence, we may couple (8.18) and
(8.21) to get joint convergence:

(Y(“(-), f—}) = (Xo(), 1)

in D[0, co) x R. Using composition and the continuous mapping theorem, one obtains

Py
Au_ o (P _ 1N (i —E(
s =1 () = ey I

Finally, we need to consider A13. Write
A1z = E(A1D) — AuonT = E(k,)DE(P1) — AT pon
T s T o]
:)‘/ [/ yFon(d)’)_Mon] ds = _)\/ / yFon(dy)ds
0 0 0 K
~ —(const)ATzﬁon(T) = o(b(AT)), (8.24)

where we applied Karamata’s theorem and (8.8). Combining the limit relations (8.17),
(8.19), (8.23), and (8.24) gives the desired a-stable limit for A(T).
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Finite-dimensional convergence

We restrict ourselves to showing convergence of the two-dimensional distributions. The
general case is analogous but notationally more cumbersome. First, observe that for
t >0,

A(Tt) — AuonTt _ A(Tt) — AuonTt b(ATE)

. e d
bOAT) b TT) por)  XeD -7 =Xa(@).

Next, suppose t; < . The same arguments as for the one-dimensional convergence
show that it suffices to consider the joint convergence of

[bOAT)] Y (AL(Tt) — ATtijwon), i=1,2,

since the rest will be 0,,(1). We can write

AlT) = ATn) + Y Lilign<rol+ Y Lidirg <rix<ro)

Tt <y <Tt 0<I<Tt

=: A1(T11) + A1 + An.
The terms A1(T't1) and A;; are independent. Also, we have
d
Azl = A(T (2 — 11)).

To see this, set fk = I'y — T't; and note that ), €, is PRM (X LEB), so

d
Y. Lidimean=ror = ). Ll ooy = Ao
Tti<Tk<Ttp 0<[<Tn—Th

Hence the proof of the convergence of bivariate distributions follows from the one-
dimensional convergence if one can show that

[bAT)] ' Asr 5 0.

However,

E(Ay) =E ( / / uE ds, du))
0<s<Tt;,TH<s+u<Ttp

0<s<Tt;,Tti<s4+u<Tt,

Tt Tty—s
= A/ (/ uFon(du)> ds
s=0 u=Tt;—s
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_ 1 —s F. Td
:AJQ&JT{/ (/ uJEL—@>ds
0 u=t;—s Fon(T)

~ )\’TZFOI](T) |:/0’1 o_[ 1((2‘1 _ S)—(ot—l) —(tr — s)—(a—l))ds]

o

— o(b(AT))

by Lemma 8.2. This concludes the proof of Theorem 8.1. m|

8.2 A model for network activity rates

This section is based on [223]. Consider an ordinary renewal process {S,,n > 0}
such that

n
So=0.  Sp=) Xi, nzl,
i=l1

and {X,,n > 1} is a sequence of iid nonnegative random variables with common
distribution F. At time point S,, an event begins of duration L,, where we assume
{L,,n > 0}isasequence of iid nonnegative random variables with common distribution
Fon and {L,} is independent of {X,}. The event that was initiated at S, terminates at
S, + L,. In a data network context, S,, would be the time a user initiates a file download
and L, is the download time. In an insurance context, S, is the time of a disaster
or accident and L, is the length of time during which all insurance claims from this
incident are received, so that S,, + L, is the latest time a claim from the nth accident is
received. Note that in contrast with the infinite-source Poisson model of Sections 5.2.4
(p- 127) and 8.1 (p. 253), we do not assume that event initiation times are Poisson but
only form a renewal sequence.
We focus our attention on

o0
M) =) lis,<i<s,4L,1. >0, (8.25)

n=1

the number of active downloads at time t or the number of active claims at time t. In

Section 5.2.4 (p. 127), the variable M (¢) was Poisson distributed for each ¢, but that is

not the case here, and the asymptotic behavior of M (¢) will vary depending on different

heavy-tail assumptions on F and F,,. A fairly complete analysis is in [223]; we give a

sample here to illustrate some heavy-tail methodology for applied probability modeling.
Consider the very heavy-tailed cases when for 0 < «, g < 1,

F(x) =1—F(x) ~x “Lp(x), Fon(x) = 1= Fon(x) ~ x PLon(x), x — o0,

for some slowly varying functions L, Loy.
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8.2.1 Mean value analysis when o, § < 1

Karamata’s Tauberian theorem applied to the renewal function was discussed in Sec-
tion 7.3.3 (p. 245) and yields the mean-value asymptotic behavior of M (¢). The renewal
function is given by (7.59), and its asymptotic behavior described by (7.65) (p. 246).
Therefore, as t — o0,

[ _ [ Fnt(1 =) UGuds)
E(M(t))—/ Fon(l—X)U(dX)—/O 0 0 (Fon(1)U (1))
Fon(1) Fon(1)
~ 1— B a—1 — 0 . 2
c(a)/ ( $) Pas* ds—— 70 = (a) 70) (8.26)

Thus if

F(t)/Fon(t) > ¢ >0, then E(M()) — ¢’ (a)c™';
F(t)/Fon(t) = 0 then E(M(t)) — oo;
F(t)/Fon(t) = 00 then E(M(t)) — 0.

L .. .
In the last case, E(M(t)) — 0 and hence M/(t) = 0, and so it is of lesser interest,
corresponding to the case in which renewals are so sparse relative to event durations
that at any time there is not likely to be an event in progress.

8.2.2 Behavior of N (¢), the renewal counting function when 0 < ¢ < 1

The counting function N(¢) = Z;O:o €s,10, t] was defined in Section 7.3.3 (p. 245).
Note that N(x) = S<(x), where S(t) = Sy fort > 0. Let >, €1 jr) be
PRM(LEB xv,) on

E = [0, c0) x (0, o0].

The process X, (t) = szgt Ji, t > 0, is a-stable Lévy motion with Lévy measure
Vy; see Section 5.5.2 (p. 153) and Problem 7.3 (p. 247). Define, as usual, the quantile

function of F': . -
bt) = —— 7).
) (I—F) (1)

When « > 0, we can always choose b as a continuous and strictly increasing function;
see Proposition 2.6(vii) (p. 32).
Renewal epochs are asymptotically stable (Section 7.2.2 (p. 218)). If

S
X9 () = b[(l’;, t >0,
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then in D[0, c0), we have as s — 00,
X9 = X,. (8.27)
Furthermore, the inverse processes also converge in D[0, 00):
(X< = x5
Unpacking this last result, we get

N(bS(S)‘) N X;_(-) (8.28)

in D[0, oo) or, equivalently, F(s)N(s)) = X o () or, equivalently,

1 &
- Zésfn = X,
N b(s)

n=0

in M [0, oo), where we have used X~ to indicate both the monotone function and the
measure. Note that the simple reasoning that gave us Proposition 3.2 (p. 58) does not
suffice for justifying the inversion since the limit is not a continuous process. The more
sophisticated arguments used in [300] must be employed.

8.2.3 Activity rates when «, § < 1 and tails are comparable

Consider the case F(r) ~ Fyn(t), where the tails of F and F,, are asymptotically
equivalent.

Counting function of {(Sx, T}), k > 0}

Suppose D1[0, 0o) are the nondecreasing functions in D[0, co). Define the mapping
T : D0, 00) x M (E) — M, (E) by

T(x,m) =m, (8.29)
where m is defined by
m(f) =/ fx@), vym(du,dv), f € C;;(E).

This means that T replaces the usual time scale of m by one determined by the function
x. If m is a point measure with representation m = ) ; €(, ), then

T(x,m)= Z € (), )+
k
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Proposition 8.1. Suppose that as t — oo,
F(t) ~ Fon(t) eRV_,, O <o <.

Assume that Noo = ) 1 €. jr) is PRM(LEB xvg). Set E = [0, 00) x (0, 0o]. Then in
My(E), as s — oo,

o0
=T n
k=0

Proof. Begin with the statement (Theorem 6.3 (p. 180))

&‘h
>~

= N3 =T (Xo, Noo) = Ze(Xa(tk),jk)' (8.30)
k

o0

€r L, = Noo (5 —> 00)

— (E’W)

in M, (EE). Since {Sy} isindependent of { L}, we use Problem 3.20 (p. 69) (or [24, p. 23])
to get joint convergence in D[0, o0) x M, (IE), using (8.27),

Sis] ad
(b(s)’ 2 €y | = Ko Noo)

The function T is a.s. continuous at (X, No). Hence

(b(s) Ze(k Ly ) ZE S[sk/s] Lk)) ZG

s b(s) b(s) *b(s

:T(XO(’ NOO) o

(b(s) b(s)

Number of active sources when tails are comparable
Proposition 8.1 leads to the result about M, the number of active sources or events.

Corollary 8.1. The finite-dimensional distributions of the counting function M (t) de-
fined in (8.25) satisfy, as s — o0,

M(st) = Zl Sk <i< Sk+Lk = Moo (1) = Z L1, () <t <X 00+ i1
k=0

Conditionally on X, the limit M (t) is Poisson with mean

t
A0 = [0 - ax; w.
0

and hence the generating function of Mso(t) is

E(tM>®) = Eexp{(r — DA()}, 1€ (0,1).
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Proof. Fix t > 0. An important observation is that A(#) < oo almost surely. To see
this, note that

EX, (u) = u”E(X,%(1)) = dyu”.
This results from the self-similar scaling of the Lévy process X,:

o0

EX, (v) =/ P[X; (u) > x]dx =/ Plu > Xq(x)]dx
0 0

= fOOIP[u > xV9X,(D]dx = u®E(X,%(1)) = dgu®.
0

The quantity d,, is finite; see [314].

We prove that A(f) < oo a.s. for t = 1 as an example of the method. Writing
fw)=0—u)"% 0 <u < 1, and observing that f(0) = 1, we have

1 1
/0 faydXg () = X5 (1) =/0 (f ) — f(0)dXg ()

1 u
= / / fl(s)dsd Xy (u)
0 JO

1 1
:f (/ a’XO‘l_(u))a(l—s)_“_lds
0 s

1
= a/ (XS () =X ()N —s5)" % ds.
0

Taking expectations, we have
! 1
b / faydXg () | = da +0‘da/ (1 =591 —s5)"* lds.
0 0

Now, apart from constants, the second term is fol (1=(1=5)%)s > !ds. The problem
for integrability is near 0. However, as s | 0, the integrand is asymptotic ~ as™ %,

which for 0 < o < 1 is integrable. This verifies that A(1) < oo with probability 1.

Next, we prove that M (b(s)t) = Mo (¢t) for fixed t > 0. As before, we choose
t = 1 in order to demonstrate the method. For positive €, let
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Be ={(u,v):u<1l<u+v,v>e}

which is relatively compact in E. By virtue of Proposition 8.1, NJ(B¢) = NZ (Be).
Also, by monotone convergence and using A(1) < oo, with probability 1,

N (Be) 1 N (Bo) = Moo(1) < c0.

From the second converging together theorem, Theorem 3.5 (p. 56), it suffices to show
that for any § > 0,

lim lim sup P[|N(Bc) — N} (Bo)| > 8] = 0. (8.31)

e=>0 s—>0o0
Observe that
N (Bo) = N (Be) = ) [sy<bis)<Si+ Li. Li<ebis)]-
k
By Chebyshev’s inequality, it suffices to show that the expectation of this last quantity

has a double limit that is zero. We have

D PISk < b(s) < Sk + Lk, Li < €b(s)]

k
1
= / Z FM(b(s)dx)P[1 — x < Li/b(s) < €]
1

— %

1
= /1 U (b($)dx)[Fon(b(s)(1 — x)) — Fon(b(s)€)]

—€

L Fon(b(s)(1 = x)) — Fon(b(s)€) U (b(s)dx) -
= = Fon
/1 B T e U () Fon(b(5)
1
— c(a) [(1—x)"% —e “ldx* ass — o0
1—e
— 0 ase | 0.

Thus we proved that M (b(s)t) = Myo(t) for fixed ¢+ > 0. The convergence of the
finite-dimensional distributions follows analogously by an application of Theorem 8.1.
Since b can be chosen continuous and strictly increasing, we may rephrase the latter
limit relation as M (st) = My (1). O

8.2.4 Activity rates when 0 < o, 8 < 1, and F,, has a heavier tail

Now we assume 0 < f <o < 1,and if 0 < @ = B, then F(t)/Fon(t) — Oast — oo.
Recall the definition of the measure v, given by vy (x, 00] = x7¢ for x > 0, some
o > 0.
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As with Proposition 8.1 (p. 267), we first prove a limit result for the point process
generated by the scaled points (b(s)) "1 (Sk, Lr). Then we use this result to derive a
distributional limit for M (s) as s — o0.

Proposition 8.2. Assume that 0 < «, 8 < 1, and F(t)/Fon(t) — Qast — oo. Then
in My (E), we have

F(b(s)) «— ..
k Lg

= = T (Xq, LEB xvg), (8.32)
Fon(b(s)) {5 (500 “ g

where T was defined in (8.29).

Note that the normalization in (8.32) for both S; and Ly is by the quantile function
b(s) =1/ F)< (s) forthe lighter-tailed distribution function. Since this is inappropriate
for Ly, premultification by the ratio of the tails (which goes to 0) is necessary for
convergence.

Proof. Begin by observing that

sF(b(s)) - v
mFon(b(S)') — Vg

in M4 (0, oo]. Hence, from Theorem 5.3 and especially (5.16) (p. 139), we get

This may be extended as we did in Theorem 6.3 (p. 180) (see also Problem 6.17 (p. 210))
to show that in M (E),

o0

F(b
_(—(s))zg ¢ 1. = LEB xvg.
on(b(s) k=0 (525

From independence we get the joint convergence in D[0, co) x M4 (E),

Sis1 F(b(s)
— L Xa, ]IJE]B .
(b(s)’ Fon(b(s)) k:()g(?vb&)) = ( xvp)

Now apply the a.s. continuous map 7T (see (8.29)) to get (8.32). ]
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Number of active sources when F,, is heavier

From this result, we get the desired result about M, the number of active sources or
events.

Corollary 8.2. The finite-dimensional distributions of the counting function M defined
in (8.25) satisfy, as s — o0,

L t
f?(s))M(st):/ (t — ) PdXS (). (8.33)
0

onls$

For any fixed t,

t 1
/(;—u)—ﬁdxy(u)ifﬂ“/ (1 — ) PdX ().
0 0

Proof. We again consider the case of a fixed + > 0; the convergence of the finite-
dimensional distributions is analogous. We evaluate the convergence in (8.32) on the
set {(u,v) : 0 <u <t < u+ v}. After a truncation and the Slutsky argument outlined
in the proof of Corollary 8.1 (p. 267), we get

F(b(s))

2 Mk T(X,, LEB : 8.34
o b(s) (b(s)t) = T( xvg)(f) (8.34)

where T is the mapping defined in (8.29) and f(u, v) = l{y</<uy+v). Evaluating the
right side, we find

X5 (o)

T LEBxup) () = [ [ FOta@.0dudvpto = [ - Xt
0
t
= / (t —v)PdXg (v),
0

which is the convolution of the measure vg and the nondecreasing function X ;. The
integral also equals

1 1
tﬂ/ (1 —v)Pdx;(tv) itﬂ“/ (1 —v)Paxg ().
0 0

Since b can be chosen continuous and strictly increasing, the M (b(s)t) in (8.34) may
be replaced by M (st). This concludes the proof. O
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8.3 Heavy traffic and heavy tails

Heavy-traffic limit theorems were devised to study the behavior of complex networks
that for economic reasons are heavily loaded, so that system parameters are near the
boundary of the set of parameters that make the system stable. By studying a sequence of
normalized systems when system parameters approach the stability boundary, a heavy-
traffic approximation provides various approximations for performance measures.

Original work assumed the component random variables of the model all had finite
variance. This research originated with [186, 187] and was nicely surveyed and updated
in [298, 299]. See also the summaries in [8] and [262]. This early work served as a
foundation for J. M. Harrison, who with coworkers started the subject of diffusion
process approximations [157], which is still a subject of active research.

The classical work on heavy-traffic approximations has little methodological rele-
vance to models depending critically on heavy-tailed distributions. The present section,
based on [250], was stimulated by investigations by Boxma and Cohen [29, 45-47],
who based their attack on Laplace transforms.

Assume we have a sequence of GI/G/1 queuing models, which are sometimes called
Lindley queues. The sequence of models is indexed by k. For each model, interarrival
times of customers form an iid sequence with common distribution, and the service
lengths of each customer are iid with a service length distribution. Each model is
stable, but as k — o0, the models become unstable in the sense that the net drift
(expected service time minus expected interarrival time) tends to zero. The service
length distribution for the kth model, as a first approximation, can be thought to be
independent of k and heavy tailed. The interarrival time distribution in the kth model is
lighter than the service time distribution. Since the kth model is assumed to be stable,
there is a stationary waiting-time distribution. Let W®) be a random variable with the
stationary waiting-time distribution in the kth model. For large k, W ® properly scaled
has an approximate Mittag—Leffler distribution. This is a distribution with an explicit
series representation and a simple Laplace transform. See (8.50), (8.51), and [137, 138].

An instructive way to understand this result is as follows. For the kth model, W®)
has a standard interpretation [8, 262] as the maximum of a negative-drift random walk,
which has a natural association to the kth model. Under the assumptions that make
our Mittag—Leffler distribution approximation valid, scaled and time-dilated versions
of this sequence of random walks converge weakly in the sense of stochastic processes
to a limiting stable Lévy motion with negative drift. This means that a scaled version of
W® _interpreted as the all time maximum of the kth random walk, has approximately
the same distribution as the all time maximum of the negative-drift stable Lévy motion.
The distribution of this maximum is known from the work of [137, 138] and [315].

Roughly stated, the conclusion is that the Mittag—Leffler distribution is an approx-
imation to the equilibrium waiting-time distribution of a heavily loaded GI/G/1 system
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whose service time distribution has finite mean, infinite second moment and heavy tail.
More details follow.

8.3.1 Crash course on waiting-time processes

We now give some standard background, abstracted from [262], for the waiting-time
process of the G/G/1 queue. The symbols G/G/1 stand for general input (arrivals occur
according to a renewal process), general service times (service times of successive
customers are iid), and 1 (one) server.

As a convention suppose customer number O arrives at time 0. Let oy,41 be the
interarrival time between the nth and the (n + 1)st arriving customer. Assume o,
n > 1, are iid with finite mean. Let #; be the time of arrival of customer &k, k > 0, so
thatto =0,y =01+ - -+ o, k > 1.

Let 7,, be the service time of the nth arriving customer and suppose {7, n > 0} is
iid with a finite mean. Define the traffic intensity p by

p = Ety/Eo) = (Eoy) ™' /(Eto) ™!, (8.35)

so that p is the ratio of the arrival rate to the service rate. If p < 1, then on the
average, the server is able to cope with his load. Assume {t,} and {0, } are independent.
(Sometimes it suffices that {(t,, 0,+1), n > 0} be iid.)

We assume there is one server and that he serves customers on a first-come—first-
served basis. A basic process is W, the waiting time of the nth customer until his
service commences. This is the elapsed time between the arrival of the nth customer
and the beginning of his service period. A basic recursion for W, is

Wo =0, Wit1 = Wy + 1, — Un+1)+y n >0, (8.36)

where xT = xifx > 0and = Oifx < 0. Aprocess satisfying (8.36) is sometimes called
a Lindley process [206]. Why is the recursion true? There are two possible scenarios.
For the first, W, 4+ t, > 0,41, and then the waiting time of the (n + 1)st customer is
positive and equal to W, + 1,, — 0;,4-1. The second scenario is when W, + 1, < 0;,41.
In this case, the (n 4+ 1)st customer enters service immediately upon arrival and has
no wait.
For n > 0, define
Xn+1 = Tn — On+1 (837)

so that {X,,, n > 1} is iid. With this notation,

Wn-H = (Wn + Xn+l)+,
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and {W, } is arandom walk with a boundary at 0, that is, a partial sum process prevented
from going negative.

Denote the random walk by {S,, n > 0}, where S, = X; + - -- + X,,. Note that if
u = EXq, then

uw <0 ifandonlyif p < 1,
pw=0 ifandonlyif p =1,
w >0 ifandonlyifp > 1.

Proposition 8.3. For the waiting time W,, of the G/G/1 queuing model, we have

n
Wy =max {0, X, Xo + Xn-1,.... > Xi, S (8.38)
=2
n
4 \VA TS (8.39)
j=0

Proof. Proceed by induction: The equality (8.38) is trivially true forn = 0 and n = 1.
Assume that it holds for n. Then by the induction hypothesis,

Wn+1 = (Wn + Xn+1)+

n +
= (max {o, Xoo Xo+ Xno1, . ZX,-} + Xn+1>
i=1
n+1 +
— (max {X,,+1, Xpi1 + Xur oo ZX,-})
i=1

n+1
— max {0, Xty Xpg1 + X - . ., in} .
i=1

So if (8.38) holds for n, then it holds for n + 1.
To prove the equality in distribution W, 4 \/;?:0 S, we observe that

d
(X17'~~=Xﬂ):(Xn7"'9X1)

since both vectors consist of iid random variables. Therefore,

n
W, = max {0, X,,, X,, +X,,_1,...,Z, S,
i=2
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n—1 n
L max 10, X1, X1+ Xa.. Y X Sut = \/ S O
i=1 j=0
This simple result allows us to calculate the asymptotic distribution of {W,}. We
are interested in the stable case when p < 1.

Proposition 8.4. For the waiting time W, of a G/G/1 queuing model, the following is
true: If p < 1, then Woo 1= v?ozlSj < o0 and

PIW, <x] — P[Wy < x].

Proof. We use the critical fact that W, 4 V?:oS j. Since p < 1,wehave u = E(X)) <
0, so by the strong law of large numbers, S,, — —oo almost surely. Thus W, < oo and

n 00
j=0 j=0

8.3.2 Heavy-traffic approximation for queues with heavy-tailed services

To state the approximation result precisely, we construct a sequence of Lindley queu-
. k) . . .. .

ing models. Suppose {r;"’,i > 1} is a nonnegative iid sequence (of service lengths)
with common distribution B® (x) and {ori(k), i > 1} is an independent sequence of non-
negative iid interarrival times with common distribution A® (x). We assume the means
of A® (x) and B® (x) are finite, and that for each k, {r,gk), n > 0} and {a,ik), n > 1} are
independent. The delay or waiting-time process of the kth Lindley queue is given by

*) ) K o _ )\
Wy =0, W, —(Wn()—kt,g)—anﬂ) , n>=0.
The traffic intensity for the kth model is
p© = E () /E (oP).

For the heavy-traffic approximation to hold, we need the following conditions.

CONDITION (A). Suppose there exists a distribution function F concentrating on [0, 00)
suchthat F :=1— F € RV_g, 1 < o < 2. The quantile function

1 <
b(t) = (ﬁ) ®) (8.40)

is regularly varying with index 1/a. Suppose further that B®) (x) satisfies
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B
lim — =1 (8.41)
X—>00 F(x)
uniformly in k¥ = 1,2,.... This means that given § > 0, there exists xo = x¢(5)

independent of k such that for x > xo and all k, we have

(k)
1—s<B2W s (8.42)
F(x)

ConDITION (B). The tails of the distribution of al(k) are always lighter than the tail of
F. A convenient way we ensure this is by assuming that there exists n > « such that

¢/ :==supE <01(k))77 < 00. (8.43)
k>1
ConpitioN (C). Assume
0>mk) =E (V) - £ (o) > 0 (8.44)
as k — oo. Set
L0 ®
x® = L (8.45)
b(d(k))

where the specification of d(k) is given below. We think of {X l.(k), i > 1} as steps of
the kth random walk. The step mean is

W = E (T‘(k)> -k (Gl(k)> _ m(k)

b(d(k)) © b(d (k)

We interpret (8.44) as meaning that the kth random walk has negative drift so that the
kth Lindley queue is stable but that as k increases, the random walk drift becomes more
and more negligible so that the associated Lindley models become less and less stable.
Hence the need for scaling by b(d (k)).

Definition of d (k). In order for the random walks with negative drift to be approxi-
mated by stable Lévy motion with drift —1, the function d (k) must satisfy

d(k)m (k)
dyu® = "2 5
o b(d (k)
as k — oo. The function ;
H(t):= — eRV,_i (8.46)

o

b(t)
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grows like a power function with exponent 1 —a~! > 0 and has an asymptotic inverse
S RVO,/(a_l) .

The sequence d (k) must satisfy

(())N;
Im (k)]

Therefore, we choose the sequence {d(k)} to be any sequence satisfying

1

dk)y ~ H— (—) , (8.47)
lm (k)|

where H is specified in (8.46).

We now state the approximation theorem.

Theorem 8.2. Assume Conditions (A)~(C) hold. Then with {X",i > 1} defined by
(8.45) and {d(k)} satisfying (8.47), we have in D[0, c0),

[d (k)] [d(k)t]

1
YO0 =3 xP = s Z (2 =o®) =¥ ®m, s
i=1

where the limit Y ) (1) = £ (¢) — t and £°° (¢) is a totally skewed to the right, zero
mean, a-stable Lévy motion.

Furthermore, the sequence of stationary waiting times indexed by k converges in
distribution in R:

IR SR O R (00) _ o)
b(d(k))W \/ , b)) - Z (T z+1> =W \/ Y™ @),  (8.49)

=0

Remark 8.2. The distribution of the maximum W of a negative-drift «-stable Lévy

motion has been computed in [137, 138] using work of [315]. The limit distribution
is a Mittag—Leffler distribution. Thus a queuing system with heavy-tailed service re-
quirements under heavy load has an equilibrium waiting-time distribution which is
approximated by the Mittag—Leffler distribution. See, e.g., [137, (3.20)].

We have the following corollary.

Corollary 8.3. Suppose the assumptions of Theorem 8.2 hold. Then for everyt > 0,

PW®/bdk) <1) — P(W(°°>§z)=1—zrl (Ca)” . @D
—~ T(1+n(—1)

, (8.50)
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wherea = (¢ — 1)/ I'(2 — ), and for every ). > 0,

Ee_)”W(k) — Ee_)‘W(OO) = a

—_ m. (8.51)

Example 8.1. Consider a GI/G/1 queue with service times {t;, i > 1} having the Pareto
distribution
F(x)=1-—x73?, x>1,

and interarrival times {07, i > 1} having the Gamma(g, A) distribution. Assume that
p=E@)/E(o1) <1,

but not by much. One can get approximate values of the probabilities that the stationary
waiting time in the system exceeds a given level by thinking, for example, about the
scaling setup of Problem 8.3 (or any other setup, e.g., shift setup) as follows. We have

b(t) =13 fort>1

by (8.40) and
m(k) = —(1 = p)E(t1) = =2(1 — p)

by (8.44). The argument k does not make sense here, but we are sticking with the
terminology of this section.
The function H in (8.46) is, in this case, given by

H@t)=1t" fort>1,

and its inverse is
H () =u’ foru>1.

Suppose that relation (8.47) is an equality; we then have
1 -3
dk) =-(1—=p) .
8
With W () having the Mittag—Leffler distribution (8.50), our approximation is then
P(W > 1)~ P(W > t/bd(k))) = P(W™ > 4(1 — p)*1).
For example, the approximate values for P(W > t) for + = 250, 1000, and 4000

are, correspondingly, .459, .281, and .153 for p = .9, are .644, .459, and .281 for
p = .95, and are .907, .827, and .697 for p = .99. O



8.3 Heavy traffic and heavy tails 279

8.3.3 Approximation to a negative-drift random walk

We now proceed to an understanding of the heavy-traffic approximation. Since the
stationary waiting-time distribution in a stable Lindley queue can be expressed as the
distribution of the supremum of a negative-drift random walk, we begin by studying
weak convergence of a sequence of negative-drift random walks. In this section, we
assume that foreach k = 1,2,..., {X l.(k), i > 1} are iid random variables. The kth
random walk is

s =0, 50 = Zx(") n>1,

so that the kth random walk has steps X l.(k), i=1,2,....
We need to make the following assumptions.

AssUMPTION 1. There exists a nonnegative sequence of integers d(k) — oo such that
. (k) Y
w() = dmP [ X e ] S v, (8.52)

vaguely in [—oo, oo] \ {0}, where v is a measure on [—o0, 0o] \ {0} satisfying
(a) v is a Lévy measure (cf. Section 5.5.1 (p. 146)),

(b) v(—00,0) =0,

(© ;7 xv(dx) < oo.

ASSUMPTION 2. How much mass is allowed near O is controlled by the condition that
forany M > 0,

lim sup d (k)E ((X<">)21 @ ) < 00 (8.53)
P L) oxPi=an
and
(k) _
111‘13 h]fll)s;p d(k)E (( ) 1[|Xik)|§€]> =0. (8.54)

ASSUMPTION 3. We assume each X i(k) has a finite negative mean u® satisfying
lim d(k)u® = —1,
k—00

which implies 0 > u® — 0as k — oco.

ASSUMPTION 4. Just assuming v is a Lévy measure does not provide sufficient control
near infinity, so we assume further that
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hm limsupd(k)E ()X.(k)’ 1 ) =0. 8.55
p L, 1im sup (k) i | x®) (8.55)

With these assumptions in place, we state and prove the first result about how a
sequence of negative-drift random walks can be approximated by a negative-drift Lévy
process.

Proposition 8.5. Assume that Assumptions 1-4 hold. Define the random element of
DI[0, o0) as
k
YO @) = sty 120,
fork=1,2,.... Let {E)(t), 1t > 0} be a totally skewed to the right zero mean Lévy
process with Lévy measure v and set Y (t) = £ (t) —t, t > 0. Then in D[0, 00),
YO = v®().
Proof. Use Theorem 7.1 (p. 214) to conclude that

[d(k)-]
(k) . (k) (k) (00)
x®) =Y (xl. _E (X,. 1[‘X£k>|§1])) — X)) (8.56)
i=1

in D[0, c0), where

X090 i=tim | 3 ety =) [ wwian)

%=(") f<x=l

Z Jelpjeen — € )/ xv(dx)

% =(")

3 dlgen - ()/ @0+ 0 [ v

% =(")

=) + (-)f 1xv(cm,

and £(®)(t) is totally skewed to the right and has Lévy measure v and zero mean.
Now center (8.56) to zero expectations. We have

4@ <”(k) —F (ng)luxikﬂsn)) =d0E (Xik)1[|X§"’|>11)

and
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d(k)E (Xi")l[‘xgknﬂ]) —>/ xv(dx),

x>1

since the absolute value of the difference can be bounded by

*) M ) °°
‘d(k}E(Xl 1[1<|Xik)|§M]> —/1 xv(dx) +d(k)E<X1 1[|Xik)|>M])+/M xv(dx)

=I141I41II

for an arbitrary M chosen to avoid the atoms of v. As k — oo, I — 0 by vague
convergence (8.52). We can make II as small as desired by (8.55) of Assumption 4, and
III is made small by Assumption 1(c). We therefore conclude that

[d(k)1] 00
> XP —[dtnu® = x @) —t/ xv(dx)
1

i=1

in D[0, oo) and, furthermore, that
k (k) >
y® ) = Stan = X)) - t/} xv(dx) —t =Y @)
in D0, 0o), where we have used Assumption 3. This completes the proof. |

8.3.4 Approximation to the supremum of a negative-drift random walk

The supremum of a negative-drift random walk is of interest because of its relation to
the equilibrium waiting time of GI/G/1 queuing models. In this section we discuss how
the approximation of Section 8.3.3 to the negative-drift random walk implies an ap-
proximation to the supremum. We continue using the notation defined in Section 8.3.3.

Proposition 8.6. Assume Assumptions 1-4 of Section 8.3.3 (p. 279) hold. Define
[e.e] o0
w® .— \/ Y(k)(t) — \/ NG
: e
t=0 n=0

Then in R, we have the convergence in distribution, as k — 00,

WO = we = \/v® ) =\/ 0 -0,
t=0 t=0

where we recall that £°° () is the zero mean Lévy process of Theorem 8.5.
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Proof. We use a method learned from [8] for the finite variance case. For any 7' > 0,
the map x — \/sT:o x(s) from D[0, co) +— R is continuous (cf. Problem 3.21 (p. 69)).
So from Theorem 8.5, we have

T

T
\/ Y®@s) = \/ Y () (s)

s:() SZO

in R. The desired result will be proven using the second converging together theorem,
Theorem 3.5 (p. 56), provided we can show for any n > 0 that

lim LimsupP| \/ s¥>py|=0. (8.57)
T—>© koseo . J
j=doT

To prove (8.57), we observe that for any suitably chosen M > 0,

P \/ S](-k) >

j=dk)T
(k)
S
| jzawr 7/
| d (k) ! (k)
.—1 .—1
<P \/ J ZXi 1[|Xl.(k)\§M] +J in 1[|x§")|>M] >0
| j=d()T i=1 i1
| d (k) (k)
_ —1 .
=P VT (1 — B (X 0 20n))
| j=d()T i=1
d (k) (k)
i1 - (k)
+J 21:<X l[lXi(k)\>M] E(X1 I[IXEk)|>M])) > |u|
=
y x® (k)
.1 (k
=P J Z ( i 1[|x§">|5M] —E (Xi 1[|X}")|§M]>) > |u®1/2
iz (k)T i=1
d k) (k
\/ it Z <Xz( lx® sy —E (Xi )1[|X.(k)|>M])) > /2
j=d()T i=1 ! !

=I+1L
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The centered sample averages are reversed martingales, so we may apply Kolmogorov’s
inequality [24, 264]. We will use the fact that from Assumption 3, d(k) ~ 1/|u®| as
k — oo. ForI, we have

[d()T]

(k) -2 (k)
I<w®/2)72Vvar BT 21: X x <

[d(K)T] 1
T [d®T (b)?

(k)
Var (Xl 1[|X§k)|§M]>.

Using (d(k)u®)? — 1, as k — oo, this is

Nld(k)Var x®q
T 1 xPi<an ) -

This converges to 0 as T — oo due to (8.53). To kill II, we write, using the martingale
maximal inequality [24, 229, 264],

2 LR e *)
= |M(k>|E [d(k)T] 21: (Xi 1[|X,-(k’|>M]_I*:<Xi 1[|X§">|>M])>
1=

2
e E(x{1
n

- ®) R
2d(k)E‘X1 Ly® o E(x1 1[‘X§k>|>M]>|

< 4d(k)E (‘X}"" 1

= B X

01X\ >~ [|X§k>|>M])‘

[\X‘l")|>M]> :

From (8.55) of Assumption 4, if we choose M sufficiently large, we can guarantee that
lim sup,,_, o, I can be made as small as desired. This completes the proof. m]

8.3.5 Proof of the heavy-traffic approximation
This section gives the proof of Theorem 8.2 and Corollary 8.3.

Proof. Both assertions in the statement of the theorem will be proven if we verify that
Conditions (A)—(C) and the definition of d (k) given in (8.47) imply Assumptions 1-4.
We begin by showing that Assumption 1 is valid with

v(dx) = ve(dx) = ax_“_ldxl(oyoo)(x).

On one hand, we have for x > 0,
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) (k) —a
d(k)P [Xl > x] < d()P [rl > b(d(k))x] Sox
and on the other, for any § > 0,

P [ X > x] z dwP [ = ol > b0, o < 8b(@k))]
> d(k)P [Tf’“) > b(d(k))(x + 8), 0¥ < 5b(d(k))]
=d®P[ 7" > bk (x +9)]

—d0P |1 > bAE)x +8), 0 > sb(@K))]
> @+ =0 (k- o0),

where the last O results from

. (k) d(k)
kllg)lod(k)]? |:02 > Sb(d(k))] oo b(d(k))n(w ( )

< lim ¢V
t—00 b(t)ﬂé'l

=0 (8.58)

since n/a > 1. Thus, since § > 0 is arbitrary, we conclude that for x > 0,
d(R)PLXP > x] — vy (x, 00l.
For x < 0, note that

P [ X < x| =dwP|of - o > baw)ixl]
< d(P |0 > bdk)x]| >

due to (8.58). This verifies that Assumption 1 holds.
To check that Assumption 2 is valid, observe that we have, after integration by parts,

d(k)E <( <k>) 1 |x§">seJ> < 2d(k)/O€xP[|X§k)‘ > x] dx

< 2d(k) /6 xP [-El(k) > b(d(k))x] dx + 2d (k) /6 xP [gl(k) > b(d(k))x] dx
0 0
=:1+1L

For I, we have with xg and § as in Condition (A) (see (8.42)),

sofp) o
= 2d(k)/ xP [rl > b(d(k))x]dx
0
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Y : |9 > b))« ] dx
xo/b(d(k))
X0
b(d(k))

2 €
) +2(1 + 8)d(k) xF(b(d(k))x)dx
x0/b(d(k))

< d(k)<

- dk)
= b(d(k))?
=la+1Ib.

(const) + 2(1 + §) /0 1= xo /b k)1 Xd (k) F (b(d (k))x)d x

Since 1/b*(t) — 0, we have Ia — 0 with k — oo. By Karamata’s theorem, Theo-
rem 2.1 (p. 25), we have Ib — 2(1 + 8)(2 — o) " 'e2~% as k — oo, which goes to 0 as
€ — 0. To verify the limit for Ib, note that for every fixed x > 0,

F(b(d(k))x) -

d(k)F (b(d(k))x) = d(k)F (b(d(k)))—
W Fbd®)x) = dUFGUE®RN F 570

as k — oo by regular variation, and note that there isare « < 8 < 2 and C > 0
such that _

F_(b(d(k))X) P

F(bd(k))
for all € > x > xo/b(d(k)) and k large enough. (This is a modification of the Potter
bounds (2.31) (p. 32); see Problem 2.6 (p. 36).) Hence Ib — 2(1 4+ 6)(2 — o) le?
as k — oo by the dominated convergence theorem. We therefore conclude that

lim limsupI = 0.
=0 ko0

For II, note that

11 < 2d (k) /E xE (02<k>)”x—ndx/b(d(k))n
0

_d® e,

< (const) b))

This goes to 0 as k — oo since n/a > 1. This completes the verification that Assump-
tion 2 holds.

The reason that Assumption 3 holds is clear, so we turn to verifying why Assump-
tion 4 holds. Referring to the form of Assumption 4 in (8.55), we see that

d(OE (‘Xi(k)’ 1[|X§k)|>M]>
W

1
<d®E (||
(b(d(k)) :

rf">>b(d(k))M]>
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+d(k)E (

(k) ‘E(k)
=d(k d d(k)yMP M
wf, [b(d(k)) } rdl [b(d(k)) }

® o b
d d d(kyMP > M |;
" ()/ [b(d(k)) } ¥ [b(d(k)) }

again using the definition of x¢ and é from (8.42) of Condition (A), we have the bound,
for large M,

oo
%
b(d(k))

l[az(k)>b(d(k))M])

<@ +3)/ d(k)F(b(d(k)x)dx + (1 + 8)d (k)M F (b(d (k))M)
M

+cvﬂ/mx_’7dx +o(1)
bd k)" Jm

using (8.58). As k — o0, this is asymptotic to

o0
~( +5)/ x%x 4+ (1+ MM ™ = oM+,
M

which converges to 0 as M — oo. This verifies that Assumption 4 holds and completes
the proof of Theorem 8.2. O

8.4 Problems
8.1. A propos of Corollary 8.2 (p. 271), verify thatif 0 = 8 < o < 1, we get

F(s)

M(st) = X (t
(o) (st) ().

Therefore, taking into account (8.28) (p. 266), conclude that as s — 00,

M (s)
N(s)

~ Fon(s) = 0.

8.2. Evaluate the function d (k) given in (8.47) (p. 277) for the case in which F is a pure
Pareto, so that
Fx)=x"% x> 1.

Verify that
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b(r) = 1'/?, r>1,
H(@t) =171,
H(_(l) — ta/(oc—l)

1 a/(a—=1)

8.3. Suppose {1;, i > 1}areiid nonnegative random variables with common distribution
F, where F satisfies the regular variation assumptions of Condition (A). Similarly,
suppose {oj, i > 1} are iid nonnegative random variables with common distribution
A(x). Both 71 and oy are assumed to have finite means with E(t;) < E(02), and
E(02)" < oo for some n > «. Define

® _ T —6koit1
T b))

and assume that

where €, > 0 and ¢, — 0 as k — o0. Verify that Conditions (A)—(C) (p. 275) hold for
this setup.

8.4. Show that the distribution of NZ in (8.30) (p. 267) can be specified by its Laplace
functional

E(e V() = E (exp {— // 1 - ef(X“(“)’y))dsvo,(dy)}) , feCLE).
E






9

Additional Statistics Topics

This chapter surveys some additional statistical topics and presents analysis of several
data sets to illustrate the techniques. One focus is multivariate inference: We consider
methods for estimating the limit measure v and the angular measure S. These meth-
ods require statistical techniques for transforming the multivariate data to the standard
case. We also consider the coefficient of tail dependence and an elaborating concept
called hidden regular variation, which aid in considering models possessing asymp-
totic independence. Finally, we consider a standard time-series tool called the sample
correlation function and discuss its properties in the case of a stationary time series with
heavy-tailed marginal distribtions.

First, we consider in one dimension the asymptotic normality of estimators of the
tail index of regular variation.

9.1 Asymptotic normality

A key inference issue is to estimate the index of a distribution F satisfying F € RV_,
based on a random sample from the distribution. To prove asymptotic normality of
estimators, we follow the approach of Section 4.3 (p. 78) and first prove asymptotic
normality of the tail empirical measure; then from this we extract asymptotic normality
for estimators.

9.1.1 Asymptotic normality of the tail empirical measure

As in Section 4.3, suppose {X;, j > 1} are iid, nonnegative random variables with
common distribution F(x), where F € RV_, for « > 0. Continue with the notation in
(4.10)—(4.12) (p. 78). Define the tail empirical process,



292 9 Additional Statistics Topics

1 & _
Wa(y) = vk (% ;exi/bwk) (1, 00] — %F(b(n/k)y‘”“)) 9.1)

= Vk,(y"%, 00] = E(u,(y "%, 00])), y=0.

Theorem 9.1. Suppose (4.10)—(4.12) (p. 78) hold. Then as n — 00, k = k(n) — oo,
n/k — oo,
W, =W

in D[0, o), where W is Brownian motion on [0, 00).

Remark 9.1. Note that, because of regular variation, as n — oo, k/n — 0,
Ev, (y7"/% 0] = ZF(b(n/ by ™) — (v~ = . 9.2)

For applications to such things as the asymptotic normality of the Hill estimator and other
estimators derived from the tail empirical measure, we would prefer the centering in
(9.1) be y. However, to make this substitution in (9.1) requires knowing or assuming that

Tim (gm(n/kw/“) =) 9.3)

exists and is finite. This is one of the origins of the need for second-order regular
variation. See Problems 3.15-3.17 (p. 67ff) as well as [90, 101, 109, 111-115, 136,
149-152, 235].

Remark 9.2. The proof to follow is based on Donsker’s theorem, Theorem 3.3 (p. 54),
given in Section 3.4.2. Other proofs have been given in [252] and related material and
proofs considered earlier in [58-61, 80, 81, 126, 211, 213].

Proof. The proof uses Donsker’s theorem and then Vervaat’s lemma (p. 59), especially
(3.28). We proceed in a series of steps.

StEP 1: Renewal theory. Suppose {Y,,n > 1} are iid, nonnegative random variables
withE(Y;) = u,and Var(Y;) = o2. SetS, = Zl'.’zl Y;. Then from Donsker’s theorem,
Stnr] — [ntlp

o/n

in D[0, 0o), where W (-) is a standard Brownian motion. Since for any M > 0,

= W)

[ntp — [nt]ul
sup ——— — 0,

o<t<M «/’_l

it is also true that in D[0, c0)
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Sine] — ntp
— = W(Q).
In preparation for applying Vervaat’s lemma, divide the numerator and denominator by
nu to get
()
Xu(1) —1) 1=~ 2 = W()
cn(Xy = 2 .

This implies the result for X, (-) and we need to evaluate this process:

X, (1) =inf{s : X,,(s) > 1}
=inf{s : Spus)/np > t} =1inf{s : Spus) > tnp}

j 1
= inf {i 085 > tnu} = —-N(np),
n n

some version of the renewal counting function. (Truth in labeling: This N (t) could
differ by 1 from the N (¢) defined in (7.57) and (7.58) (p. 245), but we ignore this.) The
conclusion from Vervaat’s lemma is

ﬁg (%N(nut) _ z) — W() (in D[0, 00))

or, changing variables s = uft,
w1 s s\ a 1
Jn=|=N@ms)— =)= W(=)=—=W().
o \n 2 2 I

Cleaning this up just a bit gives
M3/2 1 S
n— (—N(ns) — —> = W(s) in D[0, c0). 9.4)
o \n |
As a special case, consider the homogeneous Poisson process on [0, 00). Let
Ch=E1+-+E,

be a sum of # iid standard exponential random variables. In this case, u = o = 1 and
1
NG <EN(ks) — s) = W(s) (k— o0) 9.5)

in D[0, 0c0).

STEP 2: Approximation. The definition of N(¢) in (7.58) (p. 245) is in terms of an
infinite series. For the Poisson process special case, we want to truncate the infinite
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series to a finite sum. Toward this end, we prove that for any 7 > 0, as n — oo,
k — oo,and k/n — 0,

1 & 1 & P
k|- lir <ks] — — 1. < 0. 9.6
sup vk k; [T; <ks] k; [T;<ks]| = 9.6)

0<s<T

The idea is that I'; is localized about its mean, and any term with i too far from £ is

unlikely; also, i > n gives a term that is negligible. More formally, the difference in
(9.6) is

lir; <kt

o
Z Ur, 41y =k715

sup Z I <ks) = 7

O<s<T i=n+1

+M8

SI

where I'] = Zle Ejy,. Now for any § > 0,

1 & r, k
Pl—>)'1 ; s|<pPr, <kTl=P|-L<-=T
|:ﬁi§:l [+ <kT] > :|_ [Tn < kT] [n _n]

and since k/n — 0, for any n > 0, we ultimately have this last term bounded by
Iy
<P|—=<1l—-n|—-0
n

by the weak law of large numbers.
Conclusion: Combining (9.6), the definition of N, and (9.5), we get

1 n
vk <% > ks — s) = W(s) (k— o0) (k/n— 0) 9.7)
i=1
in D0, 00).
StEP 3: Time change. Define
_ r,
9u(s) = TFbn/k)s™ )= s > 0,
n

so that from regular variation and the weak law of large numbers,

P
sup |pn(s) —s| — 0 (9.8)
0<s<T
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for any T > 0. Therefore, using Proposition 3.1 (p. 57), joint convergence holds in
D[0, o0) x D[0, 00):

1
(\/Z (% lgl: L <kq — ()) ad)n()) = (W,e) (e(t) =1).

Applying composition, we arrive at

1 n
Vi (§ > ir <k — ¢n(s>) = W(s) 9.9)

i=1
in D[0, 00).

STEP 4: Probability integral transform. The I's have the property that

r r r r
( ! PIICIRNE) n)i(l_ z "~~71_ ! )i(Ulna»Unn),
1—‘n—i-l Fn—H l_‘n—f—l 1—‘n—i-l

Ul:n S"'SUn:n

where

are the order statistics in increasing order of n iid U (0, 1) random variables U1, ..., U,,.
(A proof is in [135, 262].)
Consider the normalized sum from (9.9):

1 & 1 &
k 21: Hriskonon = ¢ 21: U <1 F /05—,
1= 1=

1 ¢ 1
Tk Z 1[%5F(b(n/k)s—l/a>1 Tk ; [F (b(n/k)s~

=

d
A Z l[b(n/k)sfl/agF“(l—rril)] = Z Lpn/kys=1/a <F= (U
i=1 n i=1

al
Z Lbw/ws=ve<r=wm = % Z Lbm/iys—1/e<x;)
i=l1 i=1

1 n
_;gl

where the equality in distribution is in D[0, c0).
Also,

—1/a
= v,[s~ %, 00],
Ut =s ™1~ | :
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n+l

vk sup

0<s<T

ZE(b(n/b)s —1/“>

— %F(b(n/k)s_l/“

_ r
= sup EF(b(n/k)s—l/"‘)\/%‘”—“—1‘
0<s<T k n

_ E Lypy1—n
ooz

from the central limit theorem, and this £> 0.
This proves the desired result by appeal to (9.9) since the last statement removes
the difference between ¢, (s) and E(v,[s /%, c0)). O

= 0(D)o(1)0,(1),

From this result we can recover Theorem 4.1 (p. 79) and its consequences.

9.1.2 Asymptotic normality of the Hill estimator

Recall that the Hill estimator Hy , was given in (4.3) (p. 74), and its relation to the
tail empirical measure as an integral of the measure in (4.16) (p. 80) was discussed in
Theorem 4.2 (p. 81).

What implications can be drawn for the Hill estimator from the asymptotic normality
of the tail empirical measure given in Theorem 9.1?7 We continue to suppose only that
F € RV_,. Centering the tail empirical measure to zero expectation results in a
centering for the Hill estimator which is not the desired centering 1/«. The following
is adapted from [100]. Another formulation with a random center is in [58].

Proposition 9.1. Suppose, as in Theorem 9.1, that F € RV_,. Then in R,

( o0 ) _ 1 ! ds
Vi Hk,n—/ —F(s)— [ W (x “)— :—/ W(s)—.  (9.10)

Proof. For typing ease, set y = 1/«. Write (9.1) as
Vi (v (77, 00D - %F (v (%) x7))) = W) .11)

in D[0, o0) and set
i = 27 o) 7).

so that V,, is nondecreasing and V,,(x) — x and V," (x) — x locally uniformly as
n — oo. We have
Vi (V")) 77, 001 = y) = W(y) 0.12)



9.1 Asymptotic normality 297

in D[0, 0o0). Applying Vervaat’s lemma (p. 59), we get by inversion that
Vi (V=) 00D T =) = =W(Q) (9.13)
in D[0, 0o). Evaluating the left side of (9.13) yields
VE(ZF X ra) = x) = =W () 9.14)

in D[0, co) and, in fact (see (3.28) (p. 60)), the convergence in (9.1) and (9.14) are joint
in D(0, oco] x D[0, 0co). Observe that (9.14) implies that

n -
;F(X([kx])) = x

in D[0, oo) and from this or (4.18), we get

X ([kx])

bn/k) (9.15)

Note that (9.1), written with a change of variable, and (9.15) with x = 1 hold jointly:

1 o 2 X
(\/z (E ZGX,-/b(Vl/k)(x’ oo] — %F(b(n/k)x)) ) b(n(;;C))

i=1
= (W9, 1).

Apply the composition map (x(¢), p) — x(tp) to get

1 ¢ =
vk (z ZEXi/X(k) (x, 00] — %F(X(k)x)) = WG™). ©.16)

i=1

The final step is to justify application of the map

o0 ds
X = / x(s)—. 9.17)
1 N

If this application can be justified, we get

«/%(Hk,n—f —F( )-) / W (x —“)d—x, 9.18)
X K X

as desired. O
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Blood and guts

We now justify use of the map (9.17) to get the conclusion (9.18). The argument is
based on the second converging together theorem, Theorem 3.5 (p. 56) and is adapted

from [252].
Pick M large. In (9.16), apply the map

XH/ x(s)— 9.19)

Since the integration is over a finite region, this is a continuous map, and applying it to
(9.16) gives

Ml n ds M
\/% </1 % ZEXi/X(k)(S’ OO]? - /1 _F(X(k)s)_> f W(S_a)_
i=1

Now, as M — oo,
M 0
d d
/ wiHZ o / A
1 N 1 K

It remains to verify (3.20) (p. 56). This translates to showing, for any § > 0, that
Rl ds ®n - ds
J%/— . ,——/—FX —|>8|=0.
X Eéx,/x(k)(s 00] S % (X x)s) e
Rewrite the probability as
P [\/% > 3}
<P [f / — > 5}

Make the change of variable u = s X)/b(n/k) and we get

lim limsup P |:

M—00 p—oo

© 1 _ ds
o Z(GX,- /X (8, 001 = F(X9) =~

Z €X;/ Xy (8, 00] — —F(X(k)S)

B P[‘/— fo /b(n/ k) (U, 0] — —F(b(n/k)u)

— > c{| (9.20)

MX(k)/b(l’L/k)

Pick some small » > O and decompose the probability according to whether
|X %) /b(n/k) — 1| > n occurs or not. The former has probability going to zero as
n — oo from (4.53). So an upper bound for the probability in (9.20) is
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Zéx Jb(n/ k) (U, 00] — —F(b(n/k)u)
M(1-n)

SIP’[f

— > 6i| + o(1).

Neglect the o(1) term. Setting M’ = M (1 — n), we get from Chebychev’s inequality
the upper bound

- *E f
_82 W

Moving the square inside the integral, we get the further bound

n 2
1 - d
. ; €X, /b(n/ k) (, 00] — F(b(n/k)u)]‘ 7”) :

’

2
k o0 1 n _ du
< 62E/ (E ;[EX,-/b(n/k)(Mvoo] - F(b(n/k)u)]> o

and moving the expectation inside the integral yields

k o0
< 52/ kznVar(EX Jb(n/k) (U, OO])—
M/
o0

58—2 " zF(b(”l/k)u)7

1 oo —a—1 —o
- — u du = (const)(M") (n — 00),
82 [y

where we used Karamata’s theorem, and as M — o0, this converges to 0. O

Removing the random centering

The convergence in (9.10) is a consequence of Theorem 9.1 and requires only that F
is regularly varying. How do we replace this random centering | ;? o F (s)ds—s with a
deterministic centering? Since

X(k)/b(l’l/k) —P> 1,

we hope we can replace the random centering with f ;& k) %F (s)% in (9.10). In order
to replace the random centering by this deterministic one, we thus need

NG /00 EF(s)d—s—foo "in®) = v 9.21)
X@ K s Jow/i K s
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for some limit V. We can achieve (9.21) in a variety of ways [100], and we only cite
the simplest method [72, 100, 213], which assumes a smoother and slightly stronger
form of regular variation, namely the von Mises condition. See (2.26) (p. 31), as well
as [90, 105, 260, 292, 293].

Proposition 9.2. Suppose F € RV_,, o > 0, and, additionally, the von Mises condi-

tion
. . tF'(@)
lim ¢(t) ;== lim ——— =« 9.22)
t—00 t—oo | — F(t)

holds, where F' is the density of F. Then we have
X n_- ds X n_- ds 1
vk / —F(s)— —f SFs)— ) = ——w(), (9.23)
X(k) k S b(n/k) k S 07

and thus

o0 _ d
Vk (Hk,n - / EF(s)—s>
b(n/k) k s
d 1

0 ds 1
= / W™ ) — — —W(1) = -W(Q), (9.24)
1 s« o

so that Hy , is asymptotically normal with asymptotic mean |, bo& /K %F (s)s~'ds and

variance y* = 1/a?.

Proof. 1f we show that the difference in (9.21) converges to —W (1) /¢, then the fact
that (9.14) is jointly convergent with (9.18) will yield the conclusion expressed in terms
of the Brownian motion. So we concentrate on showing that (9.22) implies that the
difference in (9.21) converges to —W (1) /«.

The ideais this: If the von Mises condition (9.22) holds, then we get for the difference

bn/k) , _ b(n/k)
J%/ " Fs) ™ ~ L = F'(s)ds
Xe K § @ Jxp K
Vk /n - n -
= 2 (BF X - ZF G0 0)
% /n -
= £ (%F(X(k)) - 1)
- —Llwa
o

from (9.14).
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More precisely, proceed as follows: First, observe that
n -
(X > bn/B] = |7 F(Xa) = 10]

and recall that F/ > 0. Then we write
bn/k) 5, _ bk ds
\/Z/ —F(S)— = k/ —F(S) Lix g <b(n/io)]
X k) X (k)
bO/K) y _ ds
+ k/ —F(s)— l[X(k)>b(n/k)]
X
1

< «/_< F(X@) — 1) \/ ml[xa()sb(n/k)]
SE[X),b(n/k)]
1

+Vk ( F(X(k)—1> A\ (o) Ka>b/o)
selb(n/k), X ]

—W()
L—wmy<o

-W()
l—wm=o01 +

W)

o

O

A lower bound can be constructed in the same way.
The equality in distribution assertion in (9.24) is covered by the next lemma

Lemma 9.1. The random variable

1
/ W(s)d—s - W@
0 S

is N(O, 1).
Proof. The integral is a Gaussian random variable (it is a limit of linear combinations

of Gaussian random variables), so we just calculate the variance: We use

EW(S)W@) =s At.

Then

2
1
E (/ W(s)d—s — W(l))
0 N

( 1 ds (! du 1
=K / W(s)—/ Wu)— — 2/ WEs)Wa)— + w()
0 s Jo u 0 s
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ds du L ds
=2 SsAu)———2 s— +1
O<s<u<l s u 0 N
1

“ds\ d
:2/ (/ s—s)—”—2+1=1. 0
u=0 s=0 S u

Centering by 1/«

Equation (9.24), giving asymptotic normality for the Hill estimator is difficult to apply.
For one thing, the limit depends on the unknown parameter ¢, but even more seriously,
the centering depends on n and does not suggest any sort of confidence interval for «.
To remedy this, the concept of second-order regular variation is typically used. See
Problems 3.15-3.17 (p. 67) and [90, 101, 136, 150, 151, 235]. We only present a result
that is readily proven.

Proposition 9.3. Suppose that F € RV _y and, additionally, assume that
lim vk (zﬁ(b(n/k)y) — y“") =0 (9.25)
n—00 k

locally uniformly in (0, oo] and

lim ﬁ/oo (zﬁ(b(n/k)s) — s—“) s _ (9.26)
1 k N

Then 1
Vk (Hk,n - l) -1 [/ win® — W(l)} <y, (9.27)
o a | Jo s o

Remark 9.3. Conditions (9.25) and (9.26) can be more elegantly subsumed under a
single second-order regular variation condition. However, no matter how phrased, the
conditions involve assumptions about detailed tail information in excess of what is
likely to be known in practice.

Proof. First, condition (9.25) allows one to rephrase the result of Theorem 9.1 as
Vi (y™7, 00l = y) = W(y™7)

in D[0, oo). Follow the steps using Vervaat’s lemma, which led to (4.53), but this time,
due to the different centering, we obtain

Xw \°
VR ((—b(n/k)) _ 1) ~ W), 9.28)
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and after an application of the delta method, this becomes

X _ 1
ﬁ(b(n/k) 1) = W) (9.29)

Now (9.26) implies that

o - d 1
«/%(/ EF(s)—s——)—>0,
b(n/k) k N o

so if we can prove (9.21) with the right limit, then we will be done since we can then
replace the centering in (9.23) with 1/«, as desired.
The difference in (9.21) is

b(n/k) 1
\/E/ "ie® = vk " F b/ k)s) ™S
X (k) s X /b(n/k) s
_ gz _ X w0
= \/Ek F(b(n/k)s(n)) ( log b(n/k)) ,

where s(n) is between X)/b(n/k) and 1, so that s(n) —P> 1. This implies that
% F(b(n/k)s(n) - 1. Furthermore,

ﬁ(_ o8 béﬁ)) - ﬁ(_k’g (1 B (1 B bfiﬁ))))

_ _ Xw
_ﬁ(l b(n/k>>+0”(1)'

Applying (9.29) gives convergence in distribution to —é w(). m|

Conclusions
Here is a brief summary:

*  With just the assumption of regular variation, the Hill estimator requires a random
centering to become asymptotically normal.

* With just a bit more than the assumption of regular variation, such as the von Mises
condition, the Hill estimator centered by a deterministic function of the sample size
becomes asymptotically normal.
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*  With regular variation and conditions akin to second-order regular variation (here
expressed via (9.25) and (9.26)) to control departure of the tail empirical mean
measure from a Pareto function,

J%(Hk,n - é) = N(O, %)

Using the delta method, this last result implies that

VE(HL ) —a) = N0, a?).

* Addendum: When phrased correctly, consistency of the Hill estimator is equivalent
to regular variation of the distribution tail, as astutely noted by Mason [212]. Prop-
erly phrased, asymptotic normality of Hill’s estimator is equivalent to second-order
regular variation [146].

9.2 Estimation for multivariate heavy-tailed variables

We now consider some aspects of inference in the multivariate heavy-tailed case. Typ-
ically, one-dimensional marginal distributions will not be tail equivalent. One can
estimate tail indices of the one-dimensional marginal distributions relatively easily, but
it is much more difficult to obtain information about the dependence structure.

9.2.1 Dependence among extreme events

Given multivariate heavy-tailed data, how do we assess independence? How do we
decide if the data come from a model with asymptotic independence or asymptotic
dependence? If neither extreme case holds, can we estimate the angular measure and
generate useful estimates of probabilities of extreme events or remote failure regions?
One of the ways to assess dependence is with sample (cross-)correlations. In heavy-
tailed modeling, there is no guarantee that theoretical moments such as correlations
exist, but sample versions will always exist. However, correlation is a somewhat crude
summary of dependence that is most informative only between jointly normal variables.
It is simple but not subtle. It is a meat cleaver that does not distinguish between the
dependence between large values and the dependence between small values. We will
seek alternative methods while later inquiring in Section 9.5 (p. 340) if the sample
correlation function has useful time-series implications for heavy-tailed time series.
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Fig. 9.1. Scatter plot of daily absolute log-returns of the French franc against the German
deutschmark.

Example: Modeling of exchange rates

The file fm-exchl.dat included with the program Xtremes [238], gives daily spot ex-
change rates of the currencies of France, Germany, Japan, Switzerland, and the UK
against the US dollar over a period of 6041 days from January 1971 to February 1994.
For what follows, we emphasize that the reference currency is the US dollar.

Figure 9.1 gives a scatter plot of the daily absolute log-returns for the French franc
against the daily absolute log-returns for the German mark. Observe that small absolute
log-returns for one currency are matched by a wide range of values for the other currency.
However, visually, dependence increases as the size of the absolute log-returns for the
pair increases. Even more pronounced effects of this sort are visible for three-hour
returns.

The pattern varies, however, between different exchange rate processes. For exam-
ple, the dependence among large daily absolute log-returns between Japan and Germany
is much less pronounced than between France and Germany. Similar patterns hold if
daily absolute log-returns are replaced by squared log-returns.
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AbsRet(Japan) vs. AbsRet(Ger)
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Fig. 9.2. Scatter plot of daily absolute log-returns of the Japanese yen against the German mark.

These plots offer more information than the crude numerical summaries, such as
correlations. The cross-correlations are summarized in Table 9.1.

absresidFr|absresidGer|absresidJap

absresidFr |1.0000000| 0.8323291 | 0.4411682
absresidGer|0.8323291| 1.0000000 | 0.4553256
absresidJap |0.4411682| 0.4553256 | 1.0000000

Table 9.1. Cross-correlations between the daily absolute log-returns of the French franc, German
mark, and Japanese yen.

The crude nature of the correlation summaries is emphasized by the fact that if
we compute correlation of only those (franc, mark) return pairs corresponding to an
absolute log franc return < .005, we get a value of 0.480, as opposed to the correlation
of all the pairs of 0.832.

We look at the tails of the squared log-returns for France and Germany individually.
The reason for looking at squared log-returns is that log-returns are frequently modeled
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Fig. 9.3. QQ plot fitting of « to squared log-returns for French exchange rates (left) and German
exchange rates.

as ARCH or GARCH processes of the vector form

Rf:VVleta tzlv

where in the d-dimensional case, R; = (R;1,..., Ryg) are the returns and €; =
(€1, ..., €q) are 1id vectors of iid N (0, 1) random variables. Also, V, is a conditional
covariance matrix that is modeled in various ways. Assuming that ARCH or GARCH
modeling is justified leads to the theoretical conclusion that tails are asymptotically pure
Pareto. See [14, 70, 94, 148, 184].

Based on a combination of QQ plots and Hill plots, we conclude that squared log-
returns of France and Germany are each heavy tailed with

2 = 1.98, » = 1.75.

o[Germany YFrance

The QQ plots are given in Figure 9.3. These values are consistent with usual finance
estimates of o, which range in the parameter region (2, 4) since if (aGermanyz, Oprance?) =
(1.98, 1.75), then (aGermany> @France) = 2(1.98, 1.75) = (3.96, 3.50).

9.2.2 Estimation in the standard case

Let{Z;, 1 < j < n}bearandom sample of nonnegative random vectors whose common
distribution F is multivariate regularly varying. We assume that each component can be
scaled with the same function. From Theorem 6.1 (p. 173), multivariate regular variation
is equivalent to the existence of b(t) — oo and a Radon measure v on E = [0, oo] \ {0}



308 9 Additional Statistics Topics

such that tIP[% € -] = v. From (6.17) of Theorem 6.2 (p. 179), this implies that as
n— 00,k — 0o, k/n— 0,

1 n
DICANESD (9.30)

i=I

In polar coordinate form, this is (see (6.18) (p. 180))

1
% ZG(R[./[,(%)’Q[) = CVy X S. (9.31)
i=1

If we ignore the fact that b(