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Series Introduction

The primary objectives of the Biostatistics Book Series are to provide use-
ful reference books for researchers and scientists in academia, industry, and
government, and also to offer textbooks for undergraduate and/or gradu-
ate courses in the area of biostatistics. This book series will provide com-
prehensive and unified presentations of statistical designs and analyses of
important applications in biostatistics, such as those in biopharmaceuti-
cals. A well-balanced summary will be given of current and recently de-
veloped statistical methods and interpretations for both statisticians and
researchers/scientists with minimal statistical knowledge who are engaged
in the field of applied biostatistics. The series is committed to providing
easy-to-understand, state-of-the-art references and textbooks. In each vol-
ume, statistical concepts and methodologies will be illustrated through real
world examples.

Clinical development is an integral part of pharmaceutical development.
Sample size calculation plays an important role for providing accurate and
reliable assessment of the efficacy and safety of the pharmaceutical entities
under investigation. Sample size calculation is usually conducted based on
a pre-study power analysis for achieving a desired power for detection of a
clinically meaningful difference at a given level of significance. In practice,
however, sample size required for an intended clinical trial is often obtained
using inappropriate test statistic for correct hypotheses, appropriate test
statistic for wrong hypotheses, or inappropriate test statistic for wrong
hypotheses. Consequently, the validity and integrity of the clinical study
is questionable. For good clinical practice (GCP), it is then required that
sample size calculation be performed using appropriate statistics for correct
hypotheses that will address the scientific/clinical questions regarding the
pharmaceutical entities under investigation. Sample size calculation is one
of the keys to the success of studies conducted at various phases of clinical
development. It not only ensures the validity of the clinical trials, but
also assures that the intended trials will have a desired power for correctly
detecting a clinically meaningful difference of the pharmaceutical entity
under study if such a difference truly exists.

vii
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viii Series Introduction

This book provides a comprehensive and unified presentation of various
test statistics and formulas/procedures for sample size calculation that are
commonly employed at various phses of clinical development. It also pro-
vides a challenge to clinical scientists especially biostatisticians regarding
current regulatory requirements, methodologies and recent developments
for those issues that remain unsolved such as testing equivalence/non-
inferiority in active control trials and comparing variabilities (or repro-
ducibilities) in clinical development.

This second edition would be beneficial to biostatisticians, medical re-
searchers, and pharmaceutical scientists who are engaged in the areas of
medical and pharmaceutical research.

Shein-Chung Chow
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Preface

Clinical development is an integral part of pharmaceutical development,
which is a lengthy and costly process for providing accurate and reliable
assessment of the efficacy and safety of pharmaceutical entities under inves-
tigation. Sample size calculation plays an important role, which ensures the
success of studies conducted at various phases of clinical development. It
not only ensures the validity of the clinical trials, but also assures that the
intended trials will have a desired power for correctly detecting a clinically
meaningful difference of the pharmaceutical entity under study if such a
difference truly exists.

Sample size calculation is usually conducted through a pre-study power
analysis. The purpose is to select a sample size such that the selected sam-
ple size will achieve a desired power for correctly detecting a pre-specified
clinically meaningful difference at a given level of significance. In clinical
research, however, it is not uncommon to perform sample size calculation
with inappropriate test statistics for wrong hypotheses regardless of the
study design employed. This book provides formulas and/or procedures for
determination of sample size required not only for testing equality, but also
for testing non-inferiority/superiority, and equivalence (similarity) based on
both untransformed (raw) data and log-transformed data under a parallel-
group design or a crossover design with equal or unequal ratio of treatment
allocations. It provides not only a comprehensive and unified presenta-
tion of various statistical procedures for sample size calculation that are
commonly employed at various phases of clinical development, but also a
well-balanced summary of current regulatory requirements, methodology
for design and analysis in clinical research and recent developments in the
area of clinical development.

This book is a useful reference for clinical scientists and biostatisticians
in the pharmaceutical industry, regulatory agencies, and academia, and
other scientists who are in the related fields of clinical development. The
primary focus of this book is on statistical procedures for sample size calcu-
lation and/or justification that are commonly employed at various phases
of clinical research and development. This book provides clear, illustrated

ix
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x Preface

explanations of how the derived formulas and/or statistical procedures for
sample size calculation and/or justification can be used at various phases
of clinical research and development.

The book contains 15 chapters, which cover various important topics
in clinical research and development, such as comparing means, compar-
ing proportions, comparing time-to-event data, tests for independence and
goodness-of-fit in contingency tables, comparing variabilities in clinical re-
search, sample size adjustment and/or re-estimation in interim analysis,
procedures for sample size calculation for optimal or flexible multiple-stage
designs for phase II cancer trials, sample size calculation based on rank
statistics, sample size calculation for standard, higher-order, and replicated
crossover designs, sample size calculation for dose response studies and mi-
croarray studies, Bayesian sample size calculation, and sample size calcula-
tion in other areas such as QT/QTc studies with time-dependent replicates,
propensity score analysis in non-randomized studies, analysis of variance
with repeated measures, quality of life studies, bridging studies, and vac-
cine clinical trials. Each chapter provides a brief history or background,
regulatory requirements (if any), statistical design and methods for data
analysis, recent development, and related references.

From Taylor & Francis, we thank Acquisitions Editor David Crubbs
for providing us with the opportunity to work on this project, and the
Production Editor for his/her outstanding efforts in preparing this book for
publication. We are deeply indebted to Duke University and the University
of Wisconsin for their support. We would like to express our gratitude to
many friends from the academia, industry and government for their input,
support and encouragement during the preparation of this edition.

Finally, we are fully responsible for any errors remaining in this book.
The views expressed are those of the authors and are not necessarily those
of their respective company and university. Any comments and suggestions
that you may have are very much appreciated for the preparation of future
editions of this book.

Shein-Chung Chow
Jun Shao

Hansheng Wang
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Chapter 1

Introduction

In clinical research, during the planning stage of a clinical study, the follow-
ing questions are of particular interest to the investigators: (i) how many
subjects are needed in order to have a desired power for detecting a clin-
ically meaningful difference (e.g., an 80% chance of correctly detecting a
clinically meaningful difference), and (ii) what’s the trade-off between cost-
effectiveness and power if only a small number of subjects are available for
the study due to limited budget and/or some medical considerations. To
address these questions, a statistical evaluation for sample size calculation
is often performed based on some statistical inference of the primary study
endpoint with certain assurance. In clinical research, sample size calcula-
tion plays an important role for assuring validity, accuracy, reliability, and
integrity of the intended clinical study.

For a given study, sample size calculation is usually performed based
on some statistical criteria controlling type I and/or type II errors. For
example, we may choose sample size in such a way that there is a desired
precision at a fixed confidence level (i.e., fixed type I error). This approach
is referred to as precision analysis for sample size calculation. The method
of precision analysis is simple and easy to perform and yet it may have a
small chance of correctly detecting a true difference. As an alternative, the
method of pre-study power analysis is usually conducted to estimate sample
size. The concept of the pre-study power analysis is to select required sam-
ple size for achieving a desired power for detecting a clinically/scientifically
meaningful difference at a fixed type I error rate. In clinical research, the
pre-study power analysis is probably the most commonly used method for
sample size calculation. In this book, we will focus on sample size calcula-
tion based on power analysis for various situations in clinical research.

In clinical research, to provide an accurate and reliable sample size cal-
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2 Chapter 1. Introduction

culation, an appropriate statistical test for the hypotheses of interest is
necessarily derived under the study design. The hypotheses should be es-
tablished to reflect the study objectives under the study design. In prac-
tice, it is not uncommon to observe discrepancies among study objective
(hypotheses), study design, statistical analysis (test statistic), and sample
size calculation. These discrepancies can certainly distort the validity and
integrity of the intended clinical trial.

In the next section, regulatory requirement regarding the role of sample
size calculation in clinical research is discussed. In Section 1.2, we pro-
vide some basic considerations for sample size calculation. These basic
considerations include study objectives, design, hypotheses, primary study
endpoint, and clinically meaningful difference. The concepts of type I and
type II errors and procedures for sample size calculation based on precision
analysis, power analysis, probability assessment, and reproducibility prob-
ability are given in Section 1.3. Aim and structure of the book is given in
the last section.

1.1 Regulatory Requirement

As indicated in Chow and Liu (1998), the process of drug research and
development is a lengthy and costly process. This lengthy and costly pro-
cess is necessary not only to demonstrate the efficacy and safety of the
drug product under investigation, but also to ensure the study drug prod-
uct possesses good drug characteristics such as identity, strength, quality,
purity, and stability after it is approved by the regulatory authority. This
lengthy process includes drug discovery, formulation, animal study, labora-
tory development, clinical development, and regulatory submission. As a
result, clinical development plays an important role in the process of drug
research and development because all of the tests are conducted on humans.
For approval of a drug product under investigation, the United States Food
and Drug Administration (FDA) requires that at least two adequate and
well-controlled clinical studies be conducted for providing substantial evi-
dence regarding the efficacy and safety of the drug product (FDA, 1988).
However, the following scientific/statistical questions are raised: (i) what is
the definition of an adequate and well-controlled clinical study? (ii) what
evidence is considered substantial? (iii) why do we need at least two stud-
ies? (iv) will a single large trial be sufficient to provide substantial evidence
for approval? and (v) if a single large trial can provide substantial evidence
for approval, how large is considered large? In what follows, we will address
these questions.

© 2008 by Taylor & Francis Group, LLC



1.1. Regulatory Requirement 3

Table 1.1.1: Characteristics of an Adequate and Well-Controlled Study

Criteria Characteristics
Objectives Clear statement of investigation’s purpose
Methods of analysis Summary of proposed or actual methods of

analysis
Design Valid comparison with a control to provide a

quantitative assessment of drug effect
Selection of subjects Adequate assurance of the disease or

conditions under study
Assignment of subjects Minimization of bias and assurance of

comparability of groups
Participants of studies Minimization of bias on the part of subjects,

observers, and analysis
Assessment of responses Well-defined and reliable
Assessment of the effect Requirement of appropriate statistical

methods

1.1.1 Adequate and Well-Controlled Clinical Trials

Section 314.126 of 21 CFR (Code of Federal Regulation) provides the def-
inition of an adequate and well-controlled study, which is summarized in
Table 1.1.1.

As can be seen from Table 1.1.1, an adequate and well-controlled study
is judged by eight characteristics specified in the CFR. These characteristics
include study objectives, methods of analysis, design, selection of subjects,
assignment of subjects, participants of studies, assessment of responses, and
assessment of the effect. For study objectives, it is required that the study
objectives be clearly stated in the study protocol such that they can be
formulated into statistical hypotheses. Under the hypotheses, appropriate
statistical methods should be described in the study protocol. A clinical
study is not considered adequate and well-controlled if the employed study
design is not valid. A valid study design allows a quantitative assessment
of drug effect with a valid comparison with a control. The selection of a
sufficient number of subjects with the disease or conditions under study is
one of the keys to the integrity of an adequate and well-controlled study. In
an adequate and well-controlled clinical study, subjects should be randomly
assigned to treatment groups to minimize potential bias by ensuring com-
parability between treatment groups with respect to demographic variables
such as age, gender, race, height and weight, and other patient charac-
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4 Chapter 1. Introduction

teristics or prognostic factors such as medical history and disease severity.
An adequate and well-controlled study requires that the primary study
endpoint or response variable should be well-defined and assessed with a
certain degree of accuracy and reliability. To achieve this goal, statistical
inferences on the drug effect should be obtained based on the responses of
the primary study endpoint observed from the sufficient number of subjects
using appropriate statistical methods derived under the study design and
objectives.

1.1.2 Substantial Evidence

The substantial evidence as required in the Kefauver-Harris amendments
to the Food and Drug and Cosmetics Act in 1962 is defined as the evi-
dence consisting of adequate and well-controlled investigations, including
clinical investigations, by experts qualified by scientific training and expe-
rience to evaluate the effectiveness of the drug involved, on the basis of
which it could fairly and responsibly be concluded by such experts that the
drug will have the effect it purports to have under the conditions of use
prescribed, recommended, or suggested in the labeling or proposed label-
ing thereof. Based on this amendment, the FDA requests that reports of
adequate and well-controlled investigations provide the primary basis for
determining whether there is substantial evidence to support the claims of
new drugs and antibiotics.

1.1.3 Why at Least Two Studies?

As indicated earlier, the FDA requires at least two adequate and well-
controlled clinical trials be conducted for providing substantial evidence
regarding the effectiveness and safety of the test drug under investigation
for regulatory review and approval. In practice, it is prudent to plan for
more than one trial in the phase III study because of any or combination
of the following reasons: (i) lack of pharmacological rationale, (ii) a new
pharmacological principle, (iii) phase I and phase II data are limited or
unconvincing, (iv) a therapeutic area with a history of failed studies or
failures to confirm seemingly convincing results, (v) a need to demonstrate
efficacy and/or tolerability in different sub-populations, with different co-
medication or other interventions, relative to different competitors, and (vi)
any other needs to address additional questions in the phase III program.

Shao and Chow (2002) and Chow, Shao and Hu (2002) pointed out
that the purpose of requiring at least two clinical studies is not only to
assure the reproducibility but also to provide valuable information regard-
ing generalizability. Reproducibility is referred to as whether the clinical
results are reproducible from location (e.g., study site) to location within
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1.1. Regulatory Requirement 5

the same region or from region to region, while generalizability is referred
to as whether the clinical results can be generalized to other similar pa-
tient populations within the same region or from region to region. When
the sponsor of a newly developed or approved drug product is interested in
getting the drug product into the marketplace from one region (e.g., where
the drug product is developed and approved) to another region, it is a con-
cern that differences in ethnic factors could alter the efficacy and safety of
the drug product in the new region. As a result, it is recommended that a
bridging study be conducted to generate a limited amount of clinical data
in the new region in order to extrapolate the clinical data between the two
regions (ICH, 1998a).

In practice, it is often of interest to determine whether a clinical trial
that produced positive clinical results provides substantial evidence to as-
sure reproducibility and generalizability of the clinical results. In this chap-
ter, the reproducibility of a positive clinical result is studied by evaluating
the probability of observing a positive result in a future clinical study with
the same study protocol, given that a positive clinical result has been ob-
served. The generalizability of clinical results observed from a clinical trial
will be evaluated by means of a sensitivity analysis with respect to changes
in mean and standard deviation of the primary clinical endpoints of the
study.

1.1.4 Substantial Evidence with a Single Trial

Although the FDA requires that at least two adequate and well-controlled
clinical trials be conducted for providing substantial evidence regarding
the effectiveness of the drug product under investigation, a single trial may
be accepted for regulatory approval under certain circumstances. In 1997,
FDA published the Modernization Act (FDAMA), which includes a provi-
sion (Section 115 of FDAMA) to allow data from one adequate and well-
controlled clinical trial investigation and confirmatory evidence to establish
effectiveness for risk/benefit assessment of drug and biological candidates
for approval under certain circumstances. This provision essentially codi-
fied an FDA policy that had existed for several years but whose application
had been limited to some biological products approved by the Center for
Biologic Evaluation and Research (CBER) of the FDA and a few pharma-
ceuticals, especially orphan drugs such as zidovudine and lamotrigine. As it
can be seen from Table 1.1.2, a relatively strong significant result observed
from a single clinical trial (say, p-value is less than 0.001) would have about
90% chance of reproducing the result in future clinical trials.

Consequently, a single clinical trial is sufficient to provide substantial
evidence for demonstration of efficacy and safety of the medication under
study. However, in 1998, FDA published a guidance which shed light on this
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Table 1.1.2: Estimated Reproducibility Probability Based on
Results from a Single Trial

t-statistic p-value Reproducibility
1.96 0.050 0.500
2.05 0.040 0.536
2.17 0.030 0.583
2.33 0.020 0.644
2.58 0.010 0.732
2.81 0.005 0.802
3.30 0.001 0.901

approach despite that the FDA has recognized that advances in sciences and
practice of drug development may permit an expanded role for the single
controlled trial in contemporary clinical development (FDA, 1998).

1.1.5 Sample Size

As the primary objective of most clinical trials is to demonstrate the ef-
fectiveness and safety of drug products under investigation, sample size
calculation plays an important role at the planning stage to ensure that
there are sufficient subjects for providing accurate and reliable assessment
of the drug products with certain statistical assurance. In practice, hy-
potheses regarding medical or scientific questions of the study drug are
usually formulated based on the primary study objectives. The hypotheses
are then evaluated using appropriate statistical tests under a valid study
design to ensure that the test results are accurate and reliable with certain
statistical assurance. It should be noted that a valid sample size calculation
can only be done based on appropriate statistical tests for the hypotheses
that can reflect the study objectives under a valid study design. It is then
suggested that the hypotheses be clearly stated when performing a sample
size calculation. Each of the above hypotheses has different requirement
for sample size in order to achieve a desired statistical assurance (e.g., 80%
power or 95% assurance in precision).

Basically, sample size calculation can be classified into sample size es-
timation/determination, sample size justification, sample size adjustment,
and sample size re-estimation. Sample size estimation/determination is re-
ferred to the calculation of required sample size for achieving some desired
statistical assurance of accuracy and reliability such as an 80% power, while
sample size justification is to provide statistical justification for a selected
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sample size, which is often a small number due to budget constraints and/or
some medical considerations. In most clinical trials, sample size is neces-
sarily adjusted for some factors such as dropouts or covariates in order to
yield sufficient number of evaluable subjects for a valid statistical assess-
ment of the study medicine. This type of sample size calculation is known
as sample size adjustment. In many clinical trials, it may be desirable to
conduct interim analyses (planned or unplanned) during the conduct of
the trial. For clinical trials with planned or unplanned interim analyses, it
is suggested that sample size be adjusted for controlling an overall type I
error rate at the nominal significance level (e.g., 5%). In addition, when
performing interim analyses, it is also desirable to perform sample size re-
estimation based on cumulative information observed up to a specific time
point to determine whether the selected sample size is sufficient to achieve
a desired power at the end of the study. Sample size re-estimation may be
performed in a blinded or unblinded fashion depending upon whether the
process of sample size re-estimation will introduce bias to clinical evaluation
of subjects beyond the time point at which the interim analysis or sample
size re-estimation is performed. In this book, however, our emphasis will
be placed on sample size estimation/determination. The concept can be
easily applied to (i) sample size justification for a selected sample size, (ii)
sample size adjustment with respect to some factors such as dropouts or
covariates, and (iii) sample size re-estimation in clinical trials with planned
or unplanned interim analyses.

1.2 Basic Considerations

In clinical research, sample size calculation may be performed based on
precision analysis, power analysis, probability assessment, or other statis-
tical inferences. To provide an accurate and reliable sample size calcula-
tion, it is suggested that an appropriate statistical test for the hypotheses
of interest be derived under the study design. The hypotheses should be
established to reflect the study objectives and should be able to address sta-
tistical/medical questions of interest under the study design. As a result,
a typical procedure for sample size calculation is to determine or estimate
sample size based on an appropriate statistical method or test, which is de-
rived under the hypotheses and the study design, for testing the hypotheses
in order to achieve a certain degree of statistical inference (e.g., 95% assur-
ance or 80% power) on the effect of the test drug under investigation. As
indicated earlier, in practice it is not uncommon to observe discrepancies
among study objective (hypotheses), study design, statistical analysis (test
statistic), and sample size calculation. These discrepancies certainly have
an impact on sample size calculation in clinical research. Therefore, it is
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8 Chapter 1. Introduction

suggested that the following be carefully considered when performing sam-
ple size calculation: (i) the study objectives or the hypotheses of interest
be clearly stated, (ii) a valid design with appropriate statistical tests be
used, (iii) sample size be determined based on the test for the hypotheses
of interest, and (iv) sample size be determined based on the primary study
endpoint and (v) the clinically meaningful difference of the primary study
endpoint that the clinical study is intended to detect.

1.2.1 Study Objectives

In clinical research, it is important to clearly state the study objectives of
intended clinical trials. The objectives of clinical studies may include one
or more of the following four objectives: (i) demonstrate/confirm efficacy,
(ii) establish a safety profile, (iii) provide an adequate basis for assess-
ing the benefit/risk relationship to support labeling, and (iv) establish the
dose-response relationship (ICH, 1998b). Since most clinical studies are
conducted for clinical evaluation of efficacy and safety of drug products un-
der investigation, it is suggested that the following study objectives related
to efficacy and safety be clarified before choosing an appropriate design
strategy for the intended trial.

Safety
Equivalence Non-inferiority Superiority

Equivalence E/E E/N E/S
Efficacy Non-inferiority N/E N/N N/S

Superiority S/E S/N S/S

For example, if the intent of the planned clinical study is to develop
an alternative therapy to the standard therapy that is quite toxic, then
we may consider the strategy of E/S, which is to show that the test drug
has equal efficacy but less toxicity (superior safety). The study objectives
will certainly have an impact on the sample size calculation. Sample size
calculation provides required sample size for achieving the study objectives.

1.2.2 Study Design

In clinical trials, different designs may be employed to achieve the study
objectives. A valid study design is necessarily chosen to collect relevant
clinical information for achieving the study objectives by addressing some
statistical/medical hypotheses of interest, which are formulated to reflect
the study objectives.

In clinical research, commonly employed study designs include parallel-
group design, crossover design, enrichment design, and titration design (see,
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e.g., Chow and Liu, 1998). The design strategy can certainly affect sample
size calculation because statistical methods or tests are usually derived
under the hypotheses and study design. As an example, Fleming (1990)
discussed the following design strategies that are commonly used in clinical
therapeutic equivalence/non-inferiority and superiority trials.

Design Description
Classical STD + TEST versus STD

Active Control TEST versus STD
Dual Purpose TEST versus STD versus STD + TEST

The classical design is to compare the combination of a test drug (TEST)
and a standard therapy (STD) (i.e., STD + TEST) against STD to deter-
mine whether STD+TEST yields superior efficacy. When the intent is to
determine whether a test drug could be used as an alternative to a stan-
dard therapy, one may consider an active control design involving direct
randomization to either TEST or STD. This occurs frequently when STD
is quite toxic and the intent is to develop an alternative therapy that is less
toxic, yet equally efficacious. To achieve both objectives, a dual purpose
design strategy is useful.

Note that in practice, a more complicated study design, which may
consist of a combination of the above designs, may be chosen to address
more complicated statistical/medical questions regarding the study drug.
In this case, standard procedure for sample size calculation may not be
directly applicable and a modification will be necessary.

1.2.3 Hypotheses

In most clinical trials, the primary study objective is usually related to the
evaluation of the effectiveness and safety of a drug product. For example,
it may be of interest to show that the study drug is effective and safe as
compared to a placebo for some intended indications. In some cases, it may
be of interest to show that the study drug is as effective as, superior to,
or equivalent to an active control agent or a standard therapy. In practice,
hypotheses regarding medical or scientific questions of the study drug are
usually formulated based on the primary study objectives. The hypotheses
are then evaluated using appropriate statistical tests under a valid study
design.

In clinical trials, a hypothesis is usually referred to as a postulation,
assumption, or statement that is made about the population regarding the
effectiveness and safety of a drug under investigation. For example, the
statement that there is a direct drug effect is a hypothesis regarding the
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treatment effect. For testing the hypotheses of interest, a random sample is
usually drawn from the targeted population to evaluate hypotheses about
the drug product. A statistical test is then performed to determine whether
the null hypothesis would be rejected at a pre-specified significance level.
Based on the test result, conclusion(s) regarding the hypotheses can be
drawn. The selection of hypothesis depends upon the study objectives. In
clinical research, commonly considered hypotheses include point hypothe-
ses for testing equality and interval hypothesis for testing equivalence/non-
inferiority and superiority, which are described below. A typical approach
for demonstration of the efficacy and safety of a test drug under investiga-
tion is to test the following hypotheses

Test for Equality

H0 : µT = µP versus Ha : µT �= µP , (1.2.1)

where µT and µP are the mean response of the outcome variable for the test
drug and the placebo, respectively. We first show that there is a statistically
significant difference between the test drug and the placebo by rejecting
the null hypothesis, and then demonstrate that there is a high chance of
correctly detecting a clinically meaningful difference if such difference truly
exists.

Test for Non-Inferiority

In clinical trials, one may wish to show that the test drug is as effective
as an active agent or a standard therapy. In this case, Blackwelder (1982)
suggested testing the following hypotheses:

H0 : µS − µT ≥ δ versus Ha : µS − µT < δ, (1.2.2)

where µS is the mean for a standard therapy and δ is a difference of clinical
importance. The concept is to reject the null hypothesis and conclude that
the difference between the test drug and the standard therapy is less than
a clinically meaningful difference δ and hence the test drug is as effective
as the standard therapy. This study objective is not uncommon in clinical
trials especially when the test drug is considered to be less toxic, easier to
administer, or less expensive than the established standard therapy.

Test for Superiority

To show superiority of a test drug over an active control agent or a standard
therapy, we may consider the following hypotheses:

H0 : µT − µS ≤ δ versus Ha : µT − µS > δ. (1.2.3)
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The rejection of the above null hypothesis suggests that the difference be-
tween the test drug and the standard therapy is greater than a clinically
meaningful difference. Therefore, we may conclude that the test drug is
superior to the standard therapy by rejecting the null hypothesis of (1.2.3).
Note that the above hypotheses are also known as hypotheses for testing
clinical superiority. When δ = 0, the above hypotheses are usually referred
to as hypotheses for testing statistical superiority.

Test for Equivalence

In practice, unless there is some prior knowledge regarding the test drug,
usually we do not know the performance of the test drug as compared to
the standard therapy. Therefore, hypotheses (1.2.2) and (1.2.3) are not
preferred because they have pre-determined the performance of the test
drug as compared the standard therapy. As an alternative, the following
hypotheses for therapeutic equivalence are usually considered:

H0 : |µT − µS | ≥ δ versus Ha : |µT − µS | < δ. (1.2.4)

We then conclude that the difference between the test drug and the stan-
dard therapy is of no clinical importance if the null hypothesis of (1.2.4) is
rejected.

It should be noted that a valid sample size calculation can only be done
based on appropriate statistical tests for the hypotheses that can reflect
the study objectives under a valid study design. It is then suggested that
the hypotheses be clearly stated when performing a sample size calculation.
Each of the above hypotheses has different requirement for sample size in
order to achieve a desired power or precision of the corresponding tests.

1.2.4 Primary Study Endpoint

A study objective (hypotheses) will define what study variable is to be
considered as the primary clinical endpoint and what comparisons or in-
vestigations are deemed most clinically relevant. The primary clinical end-
points depend upon therapeutic areas and the indications that the test
drugs sought for. For example, for coronary artery disease/angina in cardio-
vascular system, patient mortality is the most important clinical endpoint
in clinical trials assessing the beneficial effects of drugs on coronary artery
disease. For congestive heart failure, patient mortality, exercise tolerance,
the number of hospitalizations, and cardiovascular morbidity are common
endpoints in trials assessing the effects of drugs in congestive heart failure,
while mean change from baseline in systolic and diastolic blood pressure and
cardiovascular mortality and morbidity are commonly used in hypertension
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12 Chapter 1. Introduction

trials. Other examples include change in forced expiratory volume in 1
second (FEV1) for asthma in respiratory system, cognitive and functional
scales specially designed to assess Alzheimer’s disease and Parkinson’s dis-
ease in central nervous system, tender joints and pain-function endpoints
(e.g., Western Ontario and McMaster University Osteoarithritis Index) for
osteoarthritis in musculoskeletal system, and the incidence of bone fracture
for osteoporosis in the endocrine system.

It can be seen from the above that the efficacy of a test drug in treat-
ment of a certain disease may be characterized through multiple clinical
endpoints. Capizzi and Zhang (1996) classify the clinical endpoints into
primary, secondary, and tertiary endpoints. Endpoints that satisfy the fol-
lowing criteria are considered primary endpoints: (i) should be of biological
and/or clinical importance, (ii) should form the basis of the objectives of the
trial, (iii) should not be highly correlated, (iv) should have sufficient power
for the statistical hypotheses formulated from the objectives of the trial,
and (v) should be relatively few (e.g., at most 4). Sample size calculation
based on detecting a difference in some or all primary clinical endpoints
may result in a high chance of false positive and false negative results for
evaluation of the test drug. Thus, it is suggested that sample size calcula-
tion should be performed based on a single primary study endpoint under
certain assumption of the single primary endpoint. More discussion regard-
ing the issue of false positive and false negative rates caused by multiple
primary endpoints can be found in Chow and Liu (1998).

1.2.5 Clinically Meaningful Difference

In clinical research, the determination of a clinically meaningful difference,
denoted by δ, is critical in clinical trials such as equivalence/non-inferiority
trials. In therapeutic equivalence trials, δ is known as the equivalence limit,
while δ is referred to as the non-inferiority margin in non-inferiority trials.
The non-inferiority margin reflects the degree of inferiority of the test drug
under investigation as compared to the standard therapy that the trials
attempts to exclude.

A different choice of δ may affect the sample size calculation and may
alter the conclusion of clinical results. Thus, the choice of δ is critical at
the planning stage of a clinical study. In practice, there is no gold rule for
determination of δ in clinical trials. As indicated in the ICH E10 Draft
Guideline, the non-inferiority margin cannot be chosen to be greater than
the smallest effect size that the active drug would be reliably expected to
have compared with placebo in the setting of the planned trial, but may be
smaller based on clinical judgment (ICH, 1999). The ICH E10 Guideline
suggests that the non-inferiority margin be identified based on past expe-
rience in placebo control trials of adequate design under conditions similar
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to those planned for the new trial. In addition, the ICH E10 Guideline
emphasizes that the determination of δ should be based on both statistical
reasoning and clinical judgment, which should not only reflect uncertainties
in the evidence on which the choice is based, but also be suitably conser-
vative.

In some cases, regulatory agencies do provide clear guidelines for selec-
tion of an appropriate δ for clinical trials. For example, as indicated by
Huque and Dubey (1990), the FDA proposed some non-inferiority margins
for some clinical endpoints (binary responses) such as cure rate for anti-
infective drug products (e.g., topical antifungals or vaginal antifungals).
These limits are given in Table 1.2.1. For example, if the cure rate is be-
tween 80% and 90%, it is suggested that the non-inferiority margin or a
clinically meaningful difference be chosen as δ = 15%.

On the other hand, for bioequivalence trials with healthy volunteers,
the margin of δ = log(1.25) for mean difference on log-transformed data
such as area under the blood or plasma concentration-time curve (AUC) or
maximum concentration Cmax is considered (FDA, 2001).

In clinical trials, the choice of δ may depend upon absolute change,
percent change, or effect size of the primary study endpoint. In practice,
a standard effect size (i.e., effect size adjusted for standard deviation) be-
tween 0.25 and 0.5 is usually chosen as δ if no prior knowledge regarding
clinical performance of the test drug is available. This recommendation is
made based on the fact that the standard effect size of clinical importance
observed from most clinical trials is within the range of 0.25 and 0.5.

1.3 Procedures for Sample Size Calculation

In practice, sample size may be determined based on either precision analy-
sis or power analysis. Precision analysis and power analysis for sample size
determination are usually performed by controlling type I error (or confi-

Table 1.2.1: Non-Inferiority Margins for Binary Responses

δ (%) Response Rate for the Active Control (%)
20 50-80
15 80-90
10 90-95
5 > 95

Source: FDA Anti-Infectives Drug Guideline
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dence level) and type II error (or power), respectively. In what follows, we
will first introduce the concepts of type I and type II errors.

1.3.1 Type I and Type II Errors

In practice, two kinds of errors occur when testing hypotheses. If the null
hypothesis is rejected when it is true, then a type I error has occurred. If
the null hypothesis is not rejected when it is false, then a type II error has
been made. The probabilities of making type I and type II errors, denoted
by α and β, respectively, are given below:

α = P{type I error}
= P{reject H0 when H0 is true},

β = P{type II error}
= P{fail to reject H0 when H0 is false}.

An upper bound for α is a significance level of the test procedure. Power of
the test is defined as the probability of correctly rejecting the null hypothesis
when the null hypothesis is false, i.e.,

Power = 1− β

= P{reject H0 when H0 is false}.

As an example, suppose one wishes to test the following hypotheses:

H0 : The drug is ineffective versus Ha : The drug is effective.

Then, a type I error occurs if we conclude that the drug is effective when
in fact it is not. On the other hand, a type II error occurs if we claim that
the drug is ineffective when in fact it is effective. In clinical trials, none
of these errors is desirable. With a fixed sample size a typical approach is
to avoid a type I error but at the same time to decrease a type II error
so that there is a high chance of correctly detecting a drug effect when
the drug is indeed effective. Typically, when the sample size is fixed, α
decreases as β increases and α increases as β decreases. The only approach
to decrease both α and β is to increase the sample size. Sample size is
usually determined by controlling both type I error (or confidence level)
and type II error (or power).

In what follows, we will introduce the concepts of precision analysis and
power analysis for sample size determination based on type I error and type
II error, respectively.
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1.3.2 Precision Analysis

In practice, the maximum probability of committing a type I error that one
can tolerate is usually considered as the level of significance. The confidence
level, 1− α, then reflects the probability or confidence of not rejecting the
true null hypothesis. Since the confidence interval approach is equivalent to
the method of hypotheses testing, we may determine sample size required
based on type I error rate using the confidence interval approach. For a
(1 − α)100% confidence interval, the precision of the interval depends on
its width. The narrower the interval is, the more precise the inference
is. Therefore, the precision analysis for sample size determination is to
consider the maximum half width of the (1 − α)100% confidence interval
of the unknown parameter that one is willing to accept. Note that the
maximum half width of the confidence interval is usually referred to as the
maximum error of an estimate of the unknown parameter. For example,
let y1, y2, ..., yn be independent and identically distributed normal random
variables with mean µ and variance σ2. When σ2 is known, a (1−α)100%
confidence interval for µ can be obtained as

ȳ ± zα/2
σ√
n
,

where zα/2 is the upper (α/2)th quantile of the standard normal distribu-
tion. The maximum error, denoted by E, in estimating the value of µ that
one is willing to accept is then defined as

E = |ȳ − µ| = zα/2
σ√
n
.

Thus, the sample size required can be chosen as

n =
z2α/2σ

2

E2
. (1.3.1)

Note that the maximum error approach for choosing n is to attain a specified
precision while estimating µ which is derived based only on the interest of
type I error. A nonparametric approach can be obtained by using the
following Chebyshev’s inequality

P {|ȳ − µ| ≤ E} ≥ 1− σ2

nE2
,

and hence

n =
σ2

αE2
. (1.3.2)

Note that the precision analysis for sample size determination is very easy
to apply either based on (1.3.1) or (1.3.2). For example, suppose we wish
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to have a 95% assurance that the error in the estimated mean is less than
10% of the standard deviation (i.e., 0.1σ). Thus

zα/2
σ√
n
= 0.1σ.

Hence

n =
z2α/2σ

2

E2
=

(1.96)2σ2

(0.1σ)2
= 384.2 ≈ 385.

The above concept can be applied to binary data (or proportions). In
addition, it can be easily implemented for sample size determination when
comparing two treatments.

1.3.3 Power Analysis

Since a type I error is usually considered to be a more important and/or
serious error which one would like to avoid, a typical approach in hypothesis
testing is to control α at an acceptable level and try to minimize β by
choosing an appropriate sample size. In other words, the null hypothesis
can be tested at pre-determined level (or nominal level) of significance with
a desired power. This concept for determination of sample size is usually
referred to as power analysis for sample size determination.

For determination of sample size based on power analysis, the investi-
gator is required to specify the following information. First of all, select
a significance level at which the chance of wrongly concluding that a dif-
ference exists when in fact there is no real difference (type I error) one is
willing to tolerate. Typically, a 5% level of significance is chosen to reflect
a 95% confidence regarding the unknown parameter. Secondly, select a de-
sired power at which the chance of correctly detecting a difference when
the difference truly exists one wishes to achieve. A conventional choice of
power is either 90% or 80%. Thirdly, specify a clinically meaningful differ-
ence. In most clinical trials, the objective is to demonstrate effectiveness
and safety of a drug under study as compared to a placebo. Therefore, it
is important to specify what difference in terms of the primary endpoint is
considered of clinical or scientifical importance. Denote such a difference by
�. If the investigator will settle for detecting only a large difference, then
fewer subjects will be needed. If the difference is relatively small, a larger
study group (i.e., a larger number of subjects) will be needed. Finally, the
knowledge regarding the standard deviation (i.e., σ) of the primary end-
point considered in the study is also required for sample size determination.
A very precise method of measurement (i.e., a small σ) will permit detec-
tion of any given difference with a much smaller sample size than would be
required with a less precise measurement.
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Suppose there are two group of observations, namely xi, i = 1, ..., n1
(treatment) and yi, i = 1, ..., n2 (control). Assume that xi and yi are inde-
pendent and normally distributed with means µ1 and µ2 and variances σ21
and σ22 , respectively. Suppose the hypotheses of interest are

H0 : µ1 = µ2 versus H1 : µ1 �= µ2.

For simplicity and illustration purpose, we assume (i) σ21 and σ22 are known,
which may be estimated from pilot studies or historical data, and (ii) n1 =
n2 = n. Under these assumptions, a Z-statistic can be used to test the
mean difference. The Z-test is given by

Z =
x̄− ȳ√
σ2
1
n + σ2

2
n

.

Under the null hypothesis of no treatment difference, Z is distributed as
N(0, 1). Hence, we reject the null hypothesis when

|Z| > zα/2.

Under the alternative hypothesis that µ1 = µ2+δ (without loss of generality
we assume δ > 0), a clinically meaningful difference, Z is distributed as
N(µ∗, 1), where

µ∗ =
δ√

σ2
1
n + σ2

2
n

> 0.

The corresponding power is then given by

P
{
|N(µ∗, 1)| > zα/2

}
≈ P

{
N(µ∗, 1) > zα/2

}
= P

{
N(0, 1) > zα/2 − µ∗} .

To achieve the desired power of (1− β)100%, we set

zα/2 − µ∗ = −zβ .
This leads to

n =
(σ21 + σ22)(zα/2 + zβ)2

δ2
. (1.3.3)

To apply the above formula for sample size calculation, consider a double-
blind, placebo-controlled clinical trial. Suppose the objective of the study
is to compare a test drug with a control and the standard deviation for the
treatment group is 1 (i.e., σ1 = 1) and the standard deviation of the control
group is 2 (i.e., σ2 = 2). Then, by choosing α = 5%, and β = 10%, we have

n =
(σ21 + σ22)(zα/2 + zβ)2

δ2
=

(12 + 22)(1.96 + 1.28)2

12
≈ 53.

Thus, a total of 106 subjects is required for achieving a 90% power for
detection of a clinically meaningful difference of δ = 1 at the 5% level of
significance.
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1.3.4 Probability Assessment

In practice, sample size calculation based on power analysis for detecting
a small difference in the incidence rate of rare events (e.g., 3 per 10,000)
may not be appropriate. In this case, a very large sample size is required to
observe a single event, which is not practical. In addition, small difference
in the incidence rate (e.g., 2 per 10,000 versus 3 per 10,000) may not be
of practical/clinical interest. Alternatively, it may be of interest to justify
the sample size based on a probability statement, e.g., there is a certain
assurance (say (1− ε)100%) that the mean incidence rate of the treatment
group is less than that of the control group with probability (1− α)100%.

Suppose there are two groups of observations, namely xi, i = 1, · · · , n
(treatment) and yi, i = 1, · · · , n (control). Assume that xi and yi are
independent and identically distributed as Bernoulli random variables with
mean p1 and p2, i.e., B(1, p1) and B(1, p2), respectively, and that

P (x̄ ≤ ȳ|n) + P (x̄ > ȳ|n) = 1

for large n. Then
P (x̄ < ȳ|n) = p.

The hypotheses of interest are

H0 : p �∈ (ε, 1) versus H1 : p ∈ (ε, 1),

for some ε > 0, where p = P (x̄ = ȳ|n) for some n. A test for the hypothesis
that p ∈ (ε, 1) is

φ(x, y) = I(x̄ < ȳ).

We then reject the null hypothesis if φ(x, y) = 1. Then, given p1 < p2, the
power is given by

Power = P (x̄ < ȳ)

= P

 x̄− ȳ − (p1 − p2)√
p1(1−p1)+p2(1−p2)

n

<
p2 − p1√

p1(1−p1)+p2(1−p2)
n


≈ Φ

 p2 − p1√
p1(1−p1)+p2(1−p2)

n

 .

Therefore, for a given power 1− β, the sample size, n, can be estimated by
letting

(p2 − p1)√
p1(1−p1)+p2(1−p2)

n

= zβ ,
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which gives

n =
z2β [p1(1− p1) + p2(1− p2)]

(p2 − p1)2
.

To illustrate the above procedure, consider a double-blind, active-control
trial. The objective of this trial is to compare a test drug with a reference
drug (active control). Suppose the event rate of the reference drug is 0.075
and the event rate of the test drug is 0.030. Then, with β = 10%, we have

n =
1.282(0.075× (1− 0.075) + 0.030× (1− 0.030))

(0.075− 0.030)2
≈ 80.

Thus, a total of 160 subjects is needed in order to achieve a 90% power for
observing less accident rate in test drug group.

1.3.5 Reproducibility Probability

As indicated, current regulation for approval of a test drug under investi-
gation requires at least two adequate and well-controlled clinical trials be
conducted for proving substantial evidence regarding the effectiveness and
safety of the drug product. Shao and Chow (2002) investigated the prob-
ability of reproducibility of the second trial and developed an estimated
power approach. As a result, sample size calculation of the second clinical
trial can be performed based on the concept of reproducibility probabil-
ity. Suppose these are two group of observations obtained in the first trial,
namely, x1i, i = 1, ..., n1 (treatment) and x2i, i = 1, ..., n2 (control). Assume
that x1i and x2i are independent and normally distributed with means µ1
and µ2 and common variances σ2, respectively. The hypotheses of interest
are

H0 : µ1 = µ2 versus H1 : µ1 �= µ2.

When σ2 is known, we reject H0 at the 5% level of significance if and only
if |T | > tn−2, where tn−2 is the (1− α/2)th percentile of the t-distribution
with n− 2 degrees of freedom, n = n1 + n2,

T =
x̄1 − x̄2√

(n1−1)s21+(n2−1)s22
n−2

√
1
n1

+ 1
n2

,

and x̄i and s22 are the sample means and variances calculated based on data
from the ith group, respectively. Thus, the power of T is given by

p(θ) = P (|T (y)| > tn−2)
= 1− Tn−2(tn−2|θ) + Tn−2(−tn−2|θ), (1.3.4)
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where
θ =

µ1 − µ2

σ
√

1
n1

+ 1
n2

and Tn−2(·|θ) denotes the distribution function of the t-distribution with
n − 2 degrees of freedom and the non-centrality parameter θ. Let x be
the observed data from the first trial and T (x) be the value of T based on
x. Replacing θ in the power in (1.3.4) by its estimate T (x), the estimated
power

P̂ = p(T (x)) = 1− Tn−2(tn−2|T (x)) + Tn−2(−tn−2|T (x)),

is defined by Shao and Chow (2002) as a reproducibility probability for the
second trial. Based on this concept, sample size calculation for the second
trial can be obtained as

n∗ =
(T ∗/∆T )2
1

4n1
+ 1

4n2

,

where T ∗ is the value obtained such that a desired reproducibility proba-
bility is attained and ∆ is given by

∆ =
1 + ε/(µ1 − µ2)

C
,

where ε and C reflect the population mean and variance changes in the
second trial. In other words, in the second trial it is assumed that the
population mean difference is changed from µ1 − µ2 to µ1 − µ2 + ε and the
population variance is changed from σ2 to C2σ2, where C > 0.

1.3.6 Sample Size Re-Estimation Without Unblinding

In clinical trials, it is desirable to perform a sample size re-estimation based
on clinical data accumulated up to the time point. If the re-estimated
sample size is bigger than the originally planned sample size, then it is
necessary to increase the sample size in order to achieve the desired power
at the end of the trial. On the other hand, if the re-estimated sample size is
smaller than the originally planned sample size, a sample size reduction is
justifiable. Basically, sample size re-estimation involves either unblinding or
without unblinding of the treatment codes. In practice, it is undesirable to
perform a sample size re-estimation with unblinding of the treatment codes
as even the significance level will be adjusted for potential statistical penalty
for the unblinding. Thus, sample size re-estimation without unblinding
the treatment codes has become very attractive. Shih (1993) and Shih
and Zhao (1997) proposed some procedures without unblinding for sample
size re-estimation within interim data for double-blinded clinical trials with
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binary outcomes. Detailed procedure for sample size re-estimation with
unblinding will be given in Chapter 8.

In practice, it is suggested that a procedure for sample size re-estimation
be specified in the study protocol and should be performed by an external
statistician who is independent of the project team. It is also recommended
that a data monitoring committee (DMC) be considered to maintain the
scientific validity and integrity of the clinical trial when performing sample
size re-estimation at the interim stage of the trial. More details regarding
sample size re-estimation are provided in Chapter 8.

1.4 Aims and Structure of the Book

1.4.1 Aim of the Book

As indicated earlier, sample size calculation plays an important role in
clinical research. Sample size calculation is usually performed using an ap-
propriate statistical test for the hypotheses of interest to achieve a desired
power for detection of a clinically meaningful difference. The hypotheses
should be established to reflect the study objectives for clinical investigation
under the study design. In practice, however, it is not uncommon to ob-
serve discrepancies among study objectives (or hypotheses), study design,
statistical analysis (or test statistic), and sample size calculation. These
inconsistencies often result in (i) wrong test for right hypotheses, (ii) right
test for wrong hypotheses, (iii) wrong test for wrong hypotheses, or (iv)
right test for right hypotheses with insufficient power. Therefore, the aim
of this book is to provide a comprehensive and unified presentation of statis-
tical concepts and methods for sample size calculation in various situations
in clinical research. Moreover, the book will focus on the interactions be-
tween clinicians and biostatisticians that often occur during various phases
of clinical research and development. This book is also intended to give
a well-balanced summarization of current and emerging clinical issues and
recently developed statistical methodologies in the area of sample size cal-
culation in clinical research. Although this book is written from a viewpoint
of clinical research and development, the principles and concepts presented
in this book can also be applied to a non-clinical setting.

1.4.2 Structure of the Book

It is our goal to provide a comprehensive reference book for clinical re-
searchers, pharmaceutical scientists, clinical or medical research associates,
clinical programmers or data coordinators, and biostatisticians in the areas
of clinical research and development, regulatory agencies, and academia.
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The scope of this book covers sample size calculation for studies that may
be conducted during various phases of clinical research and development.
Basically, this book consists of eighteen chapters which are outlined below.

Chapter 1 provides a brief introduction and a review of regulatory re-
quirement regarding sample size calculation in clinical research for drug
development. Also included in this chapter are statistical procedures for
sample size calculation based on precision analysis, power analysis, proba-
bility assessment, and reproducibility probability. Chapter 2 covers some
statistical considerations such as the concept of confounding and inter-
action, a one-sided test versus or a two-sided test in clinical research, a
crossover design versus a parallel design, subgroup/interim analysis, and
data transformation. Also included in this chapter are unequal treatment
allocation, adjustment for dropouts or covariates, the effect of mixed-up
treatment codes, treatment or center imbalance, multiplicity, multiple-stage
design for early stopping, and sample size calculation based on rare inci-
dence rate.

Chapter 3 focuses on sample size calculation for comparing means with
one sample, two samples, and multiple samples. Formulas are derived un-
der different hypotheses testing for equality, superiority, non-inferiority, and
equivalence with equal or unequal treatment allocation. In addition, sam-
ple size calculation based on Bayesian approach is also considered in this
chapter. Chapter 4 deals with sample size calculation for comparing pro-
portions based on large sample tests. Formulas for sample size calculation
are derived under different hypotheses testing for equality, superiority, non-
inferiority, and equivalence with equal or unequal treatment allocation. In
addition, issues in sample size calculation based on the confidence interval
of the relative risk and/or odds ratio between treatments are also examined.

Chapter 5 considers sample size calculation for binary responses based
on exact tests such as the binomial test and Fisher’s exact test. Also
included in this chapter are optimal and flexible multiple-stage designs that
are commonly employed in phase II cancer trials. The emphasis of Chapter
6 is placed on tests for contingency tables such as the goodness of fit test and
test for independence. Procedures for sample size calculation are derived
under different hypotheses for testing equality, superiority, non-inferiority,
and equivalence with equal or unequal treatment allocation.

Chapter 7 provides sample size calculation for comparing time-to-event
data using Cox’s proportional hazards model and weighted log-rank test.
Formulas are derived under different hypotheses testing for equality, superi-
ority, non-inferiority, and equivalence with equal or unequal treatment allo-
cation. Chapter 8 considers the problems of sample size estimation and re-
estimation in group sequential trials with various alpha spending functions.
Also included in this chapter are the study of conditional power for as-
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sessment of futility and a proposed procedure for sample size re-estimation
without unblinding.

Chapter 9 discusses statistical methods and the corresponding sample
size calculation for comparing intra-subject variabilities, intra-subject coef-
ficient of variations (CV), inter-subject variabilities, and total variabilities
under replicated crossover designs and parallel-group designs with repli-
cates. Chapter 10 summarizes sample size calculation for assessment of
population bioequivalence, individual bioequivalence, and in vitro bioe-
quivalence under replicated crossover designs as suggested in the FDA 2001
guidance (FDA, 2001).

Chapter 11 summarizes sample size calculation for dose ranging studies
including the determination of minimum effective dose (MED) and maxi-
mum tolerable dose (MTD). Chapter 12 considers sample size calculation
for microarray studies controlling false discovery rate (FDR) and family-
wise error rate (FWER). Bayesian sample size calculation is discussed in
Chapter 13. Sample size calculation based on nonparametrics for compar-
ing means with one or two samples is discussed in Chapter 14. Chapter 15
includes sample size calculations in other areas of clinical research such as
QT/QTc studies, the use of propensity score analysis in non-randomized
or observational studies, analysis of variance with repeated measurements,
quality of life assessment, bridging studies, and vaccine clinical trials.

For each chapter, whenever possible, real examples concerning clinical
studies of various therapeutic areas are included to demonstrate the clinical
and statistical concepts, interpretations, and their relationships and inter-
actions. Comparisons regarding the relative merits and disadvantages of
statistical methods for sample size calculation in various therapeutic areas
are discussed whenever deem appropriate. In addition, if applicable, topics
for future research development are provided.
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Chapter 2

Considerations Prior to
Sample Size Calculation

As indicated in the previous chapter, sample size calculation should be per-
formed using appropriate statistical methods or tests for hypotheses which
can reflect the study objectives under the study design based on the pri-
mary study endpoint of the intended trial. As a result, some information
including study design, hypotheses, mean response and the associated vari-
ability of the primary study endpoint, and the desired power at a specified
α level of significance are required when performing sample size calcula-
tion. For good statistics practice, some statistical considerations such as
stratification with respect to possible confounding/interaction factors, the
use of a one-sided test or a two-sided test, the choice of a parallel design
or a crossover design, subgroup/interim analyses and data transformation
are important for performing an accurate and reliable sample size calcula-
tion. In addition, some practical issues that are commonly encountered in
clinical trials, which may have an impact on sample size calculation, should
also be taken into consideration when performing sample size calculation.
These practical issues include unequal treatment allocation, adjustment for
dropouts or covariates, mixed-up treatment codes, treatment study center
imbalance, multiplicity, multiple-stage for early stopping, and sample size
calculation based on rare incidence rate.

In the next section, we introduce the concepts of confounding and in-
teraction effects in clinical trials. Section 2.2 discusses the controversial
issues between the use of a one-sided test and a two-sided test in clini-
cal research. In Section 2.3, we summarize the difference in sample size
calculation between a crossover design and a parallel design. The con-
cepts of group sequential boundaries and alpha spending function in sub-
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group/interim analysis in clinical trials are discussed in Section 2.4. Section
2.5 clarifies some issues that are commonly seen in sample size calculation
based on transformed data such as log-transformed data under a parallel
design or a crossover design. Section 2.6 provides a discussion regarding
some practical issues that have impact on sample size calculation in clinical
trials. These issues include unequal treatment allocation in randomization,
sample size adjustment for dropouts or covariates, the effect of mixed-up
treatment codes during the conduct of clinical trials, the loss in power for
treatment and/or center imbalance, the issue of multiplicity in multiple
primary endpoints and/or multiple comparisons, multiple-stage design for
early stopping, and sample size calculation based on rare incidence rate in
safety assessment.

2.1 Confounding and Interaction

2.1.1 Confounding

Confounding effects are defined as effects contributed by various factors
that cannot be separated by the design under study (Chow and Liu, 1998).
Confounding is an important concept in clinical research. When confound-
ing effects are observed in a clinical trial, the treatment effect cannot be
assessed because it is contaminated by other effects contributed by various
factors.

In clinical trials, there are many sources of variation that have an impact
on the primary clinical endpoints for clinical evaluation of a test drug under
investigation. If some of these variations are not identified and not properly
controlled, they can become mixed in with the treatment effect that the trial
is designed to demonstrate, in which case the treatment effect is said to be
confounded by effects due to these variations. In clinical trials, there are
many subtle, unrecognizable, and seemingly innocent confounding factors
that can cause ruinous results of clinical trials. Moses (1992) gives the
example of the devastating result in the confounder being the personal
choice of a patient. The example concerns a polio-vaccine trial that was
conducted on two million children worldwide to investigate the effect of Salk
poliomyelitis vaccine. This trial reported that the incidence rate of polio
was lower in the children whose parents refused injection than in those who
received placebo after their parent gave permission (Meier, 1989). After
an exhaustive examination of the data, it was found that susceptibility to
poliomyelitis was related to the differences between families who gave the
permission and those who did not. Therefore, it is not clear whether the
effect of the incidence rate is due to the effect of Salk poliomyelitis vaccine
or due to the difference between families giving permission.
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2.1.2 Interaction

An interaction effect between factors is defined as a joint effect with one
or more contributing factors (Chow and Liu, 1998). Interaction is also
an important concept in clinical research. The objective of a statistical
interaction investigation is to conclude whether the joint contribution of two
or more factors is the same as the sum of the contributions from each factor
when considered alone. When interactions among factors are observed, an
overall assessment on the treatment effect is not appropriate. In this case,
it is suggested that the treatment must be carefully evaluated for those
effects contributed by the factors.

In clinical research, almost all adequate and well-controlled clinical tri-
als are multicenter trials. For multicenter trials, the FDA requires that the
treatment-by-center interaction be examined to evaluate whether the treat-
ment effect is consistent across all centers. As a result, it is suggested that
statistical tests for homogeneity across centers (i.e., for detecting treatment-
by-center interaction) be provided. The significant level used to declare the
significance of a given test for a treatment-by-center interaction should be
considered in light of the sample size involved. Gail and Simon (1985)
classify the nature of interaction as either quantitative or qualitative. A
quantitative interaction between treatment and center indicates that the
treatment differences are in the same direction across centers but the mag-
nitude differs from center to center, while a qualitative interaction reveals
that substantial treatment differences occur in different directions in differ-
ent centers. More discussion regarding treatment-by-center interaction can
be found in Chow and Shao (2002).

2.1.3 Remark

In clinical trials, a stratified randomization is usually employed with respect
to some prognostic factors or covariates, which may have confounding and
interaction effects on the evaluation of the test drug under investigation.
Confounding or interaction effects may alter the conclusion of the evalua-
tion of the test drug under investigation. Thus, a stratified randomization
is desirable if the presence of the confounding and/or interaction effects
of some factors is doubtful. In practice, although sample size calculation
according to some stratification factors can be similarly performed within
each combination of the stratification factors, it is not desirable to have
too many stratification factors. Therefore, it is suggested that the possible
confounding and/or interaction effects of the stratification factors should
be carefully evaluated before a sample size calculation is performed and a
stratified randomization is carried out.
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2.2 One-Sided Test Versus Two-Sided Test

In clinical research, it has been a long discussion regarding whether a one-
sided test or a two-sided test should be used for clinical evaluation of a test
drug under investigation. Sample size calculations based on a one-sided
test and a two-sided test are different at a fixed α level of significance. As
it can be seen from (1.3.3), sample size for comparing the two means can
be obtained as

n =
(σ21 + σ22)(zα/2 + zβ)2

δ2
.

When σ21 = σ22 = σ2, the above formula reduces to

n =
2σ2(zα/2 + zβ)2

δ2
.

If δ = cσ, then the sample size formula can be rewritten as

n =
2(zα/2 + zβ)2

c2
.

Table 2.2.1 provides a comparison for sample sizes obtained based on a
one-sided test or a two-sided test at the α level of significance. The results
indicate that sample size may be reduced by about 21% when switching
from a two-sided test to a one-sided test for testing at the 5% level of
significance with an 80% power for detection of a difference of 0.5 standard
deviation.

The pharmaceutical industry prefers a one-sided test for demonstration
of clinical superiority based on the argument that they will not run a study
if the test drug would be worse. In practice, however, many drug prod-
ucts such as drug products in central nervous system may show a superior
placebo effect as compared to the drug effect. This certainly argues against
the use of a one-sided test. Besides, a one sided test allows more bad drug
products to be approved because of chances as compared to a two-sided
test.

As indicated earlier, the FDA requires that at least two adequate and
well-controlled clinical studies be conducted to provide substantial evidence
regarding the effectiveness and safety of a test drug under investigation.
For each of the two adequate and well-controlled clinical trials, suppose the
test drug is evaluated at the 5% level of significance. Table 2.2.2 provides
a summary of comparison between one-sided test and two-sided test in
clinical research. For the one-sided test procedure, the false positive rate is
one out of 400 trials (i.e., 0.25%) for the two trials, while the false positive
rate is one out of 1,600 trials (i.e., 0.0625%) for two trials when applying a
two-sided test.
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Table 2.2.1: Sample Sizes Based on One-Sided Test and
Two-Sided Test At α-level of Significance

One-sided Test Two-sided Test
α δ∗ 80% 90% 80% 90%

0.05 0.25σ 198 275 252 337
0.50σ 50 69 63 85
1.00σ 13 18 16 22

0.01 0.25σ 322 417 374 477
0.50σ 81 105 94 120
1.00σ 21 27 24 30

Some researchers from the academia and the pharmaceutical industry
consider this false positive rate as acceptable and the evidence provided by
the two clinical trials using the one-sided test procedure as rather substan-
tial. Hence, the one-sided test procedure should be recommended. How-
ever, in practice a two-sided test may be preferred because placebo effect
may be substantial in many drug products such as drug products regarding
diseases in the central nervous system.

2.2.1 Remark

Dubey (1991) indicated that the FDA prefers a two-sided test over a one-
sided test procedure in clinical research and development of drug products.
In situations where (i) there is truly concern with outcomes in only one
tail, and (ii) it is completely inconceivable that results could go in the
opposite direction, one-sided test procedure may be appropriate (Dubey,
1991). Dubey (1991) provided situations where one-sided test procedure

Table 2.2.2: Comparison Between One-Sided Test and
Two-Sided Test At α-level of Significance

Characteristic One-sided Test Two-sided Test
Hypotheses Non-inferiority Equality

Superiority Equivalence
One Trial 1/20 1/40
Two Trials 1/400 1/1600
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may be justified. These situations include (i) toxicity studies, (ii) safety
evaluation, (iii) the analysis of occurrences of adverse drug reaction data,
(iv) risk evaluation, and (v) laboratory data.

2.3 Crossover Design Versus Parallel Design

As indicated earlier, an adequate and well-controlled clinical trial requires
that a valid study design be employed for a valid assessment of the effect
of the test drug under investigation. As indicated in Chow and Liu (1998),
commonly used study designs in clinical research include parallel design,
crossover design, enrichment design, titration design, or a combination of
these designs. Among these designs, crossover and parallel designs are
probably the two most commonly employed study designs.

2.3.1 Inter-Subject and Intra-Subject Variabilities

Chow and Liu (1998) suggested that relative merits and disadvantages of
candidate designs should be carefully evaluated before an appropriate de-
sign is chosen for the intended trial. The clarification of the intra-subject
and inter-subject variabilities is essential for sample size calculation in clin-
ical research when a crossover design or a parallel design is employed.

Intra-subject variability is the variability that could be observed by re-
peating experiments on the same subject under the same experiment con-
dition. The source of intra-subject variability could be multifold. One
important source is biological variability. Exactly the same results may not
be obtained even if they are from the same subject under the same exper-
iment condition. Another important source is measurement or calculation
error. For example, in a bioequivalence study with healthy subjects, it
could be (i) the error when measuring the blood or plasma concentration-
time curve, (ii) the error when calculating AUC (area under the curve),
and/or (iii) the error of rounding after log-transformation. Intra-subject
variability could be eliminated if we could repeat the experiment infinitely
many times (in practice, this just means a large number of times) on the
same subject under the same experiment condition and then take the aver-
age. The reason is that intra-subject variability tends to cancel each other
on average in a large scale. If we repeat the experiment on different subjects
infinitely many times, it is possible that we may still see that the averages
of the responses from different subjects are different from each other even
if the experiments are carried out under the exactly the same conditions.
Then, what causes this difference or variation? It is not due to intra-subject
variability, which has been eliminated by averaging infinitely repeated ex-
periments; it is not due to experiment conditions, which are exactly the
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same for different subjects. Therefore, this difference or variation can only
be due to the unexplained difference between the two subjects.

It should be pointed out that sometimes people may call the varia-
tion observed from different subjects under the same experiment condition
inter-subject variability, which is different from the inter-subject variability
defined here. The reason is that the variability observed from different sub-
jects under the same experiment condition could be due to unexplained dif-
ference among subjects (pure inter-subject variability); it also could be due
to the biological variability, or measurement error associated with different
experiments on different subjects (intra-subject variability). Therefore, it is
clear that the observed variability from different subjects incorporates two
components. They are, namely, pure inter-subject variability and intra-
subject variability. We refer to it as the total inter-subject variability. For
simplicity, it is also called total variability, which is the variability one would
observe from a parallel design.

In practice, no experiment can be carried out infinitely many times. It
is also not always true the experiment can be repeatedly carried out on
the same subject under the same experiment condition. But, we can still
assess these two variability components (intra- and inter-) under certain
statistical models, e.g., a mixed effects model.

2.3.2 Crossover Design

A crossover design is a modified randomized block design in which each
block receives more than one treatment at different dosing periods. In a
crossover design, subjects are randomly assigned to receive a sequence of
treatments, which contains all the treatments in the study. For example,
for a standard two-sequence, two-period 2 × 2 crossover design, subjects
are randomly assigned to receive one of the two sequences of treatments
(say, RT and TR), where T and R represent the test drug and the reference
drug, respectively. For subjects who are randomly assigned to the sequence
of RT, they receive the reference drug first and then crossover to receive
the test drug after a sufficient length of washout. The major advantage
of a crossover design is that it allows a within subject (or intra-subject)
comparison between treatments (each subject serves as its own control)
by removing the between subject (or inter-subject) variability from the
comparison. Let µT and µR be the mean of the responses of the study
endpoint of interest. Also, let σ2S and σ2e be the inter-subject variance and
intra-subject variance, respectively. Define θ = (µT − µR)/µR and assume
that the equivalence limit is δ = 0.2µR. Then, under a two-sequence, two-
period crossover design, the formula for sample size calculation is given by
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(see, also Chow and Wang, 2001)

n ≥
CV 2(tα,2n−2 + tβ/2,2n−2)2

(0.2− |θ|)2 ,

where CV = σe/µR.

2.3.3 Parallel Design

A parallel design is a complete randomized design in which each subject re-
ceives one and only one treatment in a random fashion. The parallel design
does not provide independent estimates for the intra-subject variability for
each treatment. As a result, the assessment of treatment effect is made
based on the total variability, which includes the inter-subject variability
and the intra-subject variability.

Under a parallel design, assuming that the equivalence limit δ = 0.2µR,
the following formula is useful for sample size calculation (Chow and Wang,
2001):

n ≥
2CV 2(tα,2n−2 + tβ/2,2n−2)2

(0.2− |θ|)2 ,

where CV = σ/µR and σ2 = σ2S + σ2e .

2.3.4 Remark

In summary, in a parallel design, the comparison is made based on the inter-
subject variation, while the comparison is made based on the intra-subject
variation in a crossover design. As a result, sample size calculation under
a parallel design or a crossover design is similar and yet different. Note
that the above formulas for sample size calculation are obtained based on
raw data. Sample size formulas based on log-transformation data under a
parallel design or a crossover design can be similarly obtained (Chow and
Wang, 2001). More discussion regarding data transformation such as a
log-transformation is given in Section 2.5.

2.4 Subgroup/Interim Analyses

In clinical research, subgroup analyses are commonly performed in clini-
cal trials. Subgroup analyses may be performed with respect to subject
prognostic or confounding factors such as demographics or subject charac-
teristics at baseline. The purpose of this type of subgroup analysis is to
isolate the variability due to the prognostic or confounding factors for an
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unbiased and reliable assessment of the efficacy and safety of the test drug
under investigation. In addition, many clinical trial protocols may call for
an interim analysis or a number of interim analyses during the conduct of
the trials for the purpose of establishing early efficacy and/or safety moni-
toring. The rationale for interim analyses of accumulating data in clinical
trials have been well established in the literature. See, for example, Ar-
mitage, et al. (1969), Haybittle (1971), Peto et al. (1976), Pocock (1977),
O’Brien and Fleming (1979), Lan and DeMets (1983), PMA (1993), and
DeMets and Lan (1994).

2.4.1 Group Sequential Boundaries

For interim analyses in clinical trials, it is suggested that the number of
planned interim analyses should be specified in the study protocol. Let N
be the total planned sample size with equal allocation to the two treat-
ments. Suppose that K interim analyses is planned with equal increment
of accumulating data. Then we can divide the duration of the clinical trial
into K intervals. Within each stage, the data of n = N/K patients are
accumulated. At the end of each interval, an interim analysis can be per-
formed using the Z-statistic, denoted by Zi, with the data accumulated
up to that point. Two decisions will be made based on the result of each
interim analysis. First, the trial will continue if

| Zi |≤ zi, i = 1, ...,K − 1, (2.4.1)

where the zi are some critical values that are known as the group sequential
boundaries. We fail to reject the null hypothesis if

| Zi |≤ zi, for all i = 1, ...,K. (2.4.2)

Note that we may terminate the trial if the null hypothesis is rejected at
any of the K interim analyses (| Zi |> zi, i = 1, ...,K). For example, at
the end of the first interval, an interim analysis is carried out with data
from n subjects. If we fail to reject the null hypothesis, we continue the
trial to the second planned interim analysis. Otherwise, we reject the null
hypothesis and we may stop the trial. The trial may be terminated at the
final analysis if we fail to reject the null hypothesis at the final analysis.
Then we declare that the data from the trial provide sufficient evidence to
doubt the validity of the null hypothesis. Otherwise, the null hypothesis is
rejected and we conclude that there is statistically significant difference in
change from baseline between the test drug and the control.

In contrast to the fixed sample where only one final analysis is per-
formed, K analyses are carried out for the K-stage group sequential proce-
dure. Suppose that the nominal significance level for each of the K interim
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analyses is still 5%. Then, because of repeated testing based on the ac-
cumulated data, the overall significance level is inflated. In other words,
the probability of declaring at least one significance result increases due to
K interim analyses. Various methods have been proposed to maintain the
overall significance level at the pre-specified nominal level. One of the early
methods was proposed by Haybittle (1971) and Peto et al. (1976). They
proposed to use 3.0 as group sequential boundaries for all interim analyses
except for the final analysis for which they suggested 1.96. In other words,

zi =
{

3.0, if i = 1, ...,K − 1,
1.96, if i = K.

Therefore, their method can be summarized as follows:

Step 1: At each of the K interim analyses, compute Zi, i = 1, ...,K − 1.
Step 2: If the absolute value of Zi crosses 3.0, then reject the

null hypothesis and recommend a possible early
termination of the trial; otherwise continue the trial to
the next planned interim analysis and repeat steps 1
and 2.

Step 3: For the final analysis, use 1.96 for the boundary. Trial
stops here regardless if the null hypothesis is rejected.

Haybittle and Peto’s method is very simple. However, it is a procedure
with ad hoc boundaries that are independent of the number of planned
interim analyses and stage of interim analyses. Pocock (1977) proposed
different group sequential boundaries which depend upon the number of
planned interim analyses. However, his boundaries are constant at each
stage of interim analyses. Since limited information is included in the early
stages of interim analyses, O’Brien and Fleming (1979) suggested posing
conservative boundaries for interim analyses scheduled to be carried out
during an early phase of the trial. Their boundaries not only depend upon
the number of interim analyses but also are a function of stages of interim
analysis. As a result, the O’Brien-Fleming boundaries can be calculated as
follows:

zik =
ck
√
k

i
, 1 ≤ i ≤ k ≤ K, (2.4.3)

where ck is the critical value for a total of k planned interim analyses. As
an example, suppose that 5 planned interim analyses are scheduled. Then
c5 = 2.04 and boundaries for each stage of these 5 interim analyses are
given as

zi5 =
2.04

√
5

i
, 1 ≤ i ≤ 5.
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Thus, O’Brien-Fleming boundary for the first interim analysis is equal
to (2.04)(

√
5) = 4.561. The O’Brien-Fleming boundaries for the other 4

interim analyses can be similarly computed as 3.225, 2.633, 2.280, and
2.040, respectively. The O’Brien-Fleming boundaries are very conservative
so that the early trial results must be extreme for any prudent and jus-
tified decision-making in recommendation of a possible early termination
when very limited information is available. On the other hand, for the
late phase of the trial when the accumulated information approaches the
required maximum information, their boundaries also become quite close
to the critical value when no interim analysis had been planned. As a re-
sult, the O’Brien-Fleming method does not require a significant increase
in the sample size for what has already planned. Therefore, the O’Brien-
Fleming group sequential boundaries have become one of the most popular
procedures for the planned interim analyses of clinical trials.

2.4.2 Alpha Spending Function

The idea of the alpha spending function proposed by Lan and DeMets
(1983) is to spend (i.e., distribute) the total probability of false positive
risk as a continuous function of the information time. The implementation
of the alpha spending function requires the selection and specification of
the spending function in advance in the protocol. One cannot change and
choose another spending function in the middle of trial. Geller (1994) sug-
gested that the spending function should be convex and have the property
that the same value of a test statistic is more compelling as the sample
sizes increase. Since its flexibility and no requirement for total information
and equal increment of information, there is a potential to abuse the alpha
spending function by increasing the frequency of interim analyses as the re-
sults approach to the boundary. However, DeMets and Lan (1994) reported
that alteration of the frequency of interim analyses has very little impact
on the overall significance level if the O’Brien-Fleming-type or Pocock-type
continuous spending function is used.

Pawitan and Hallstrom (1990) studied the alpha spending function with
the use of the permutation test. The permutation test is conceptually sim-
ple and it provides an exact test for small sample sizes. In addition, it
is valid for complicated stratified analysis in which the exact sampling
distribution is in general unknown and large-sample approximation may
not be adequate. Consider the one-sided alternative. For the kth in-
terim analyses, under the assumption of no treatment effect, the null joint
permutation distribution of test statistics (Z1, ..., ZK) can be obtained by
random permutation of treatment assignments on the actual data. Let
(Z∗

1b, ..., Z
∗
Kb), b = 1, ..., B, be the statistics computed from B treatment

assignments and B be the total number of possible permutations. Given
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α(s1), α(s2) − α(s1),..., α(sk) − α(sK−1), the probabilities of type I error
allowed to spend at successive interim analyses, the one-sided boundaries
z1, ...zK can be determined by

# of (Z∗
1 > z1)

B
= α(s1),

and

# of (Z∗
1 > z1 or Z∗

2 > z2, ..., orZ∗
k > zk)

B
= α(sk)− α(sk−1),

k = 1, ...,K. If B is very large, then the above method can be executed
with a random sample with replacement of size B. The α spending function
for an overall significance level of 2.5% for one-sided alternative is given by

α(s) =
{
α
2 s, if s < 1,
α, if s = 1.

In the interest of controlling the overall type I error rate at the α level of
significance, sample size is necessarily adjusted according to the α spending
function to account for the planned interim analyses. In some cases, sample
size re-estimation without unblinding may be performed according to the
procedure described in Section 1.3 of Chapter 1. More details can be found
in Chapter 8.

2.5 Data Transformation

In clinical research, data transformation on clinical response of the primary
study endpoint may be necessarily performed before statistical analysis
for a more accurate and reliable assessment of the treatment effect. For
example, for bioavailability and bioequivalence studies with healthy human
subjects, the FDA requires that a log-transformation be performed before
data analysis. Two drug products are claimed bioequivalent in terms of
drug absorption if the 90% confidence interval of the ratio of means of the
primary pharmacokinetic (PK) parameters, such as area under the blood
or plasma concentration-time curve (AUC) and maximum concentration
(Cmax), is entirely within the bioequivalence limits of (80%,125%). Let µT
and µR be the population means of the test drug and the reference drug,
respectively. Also, let X and Y be the PK responses for the test drug and
the reference drug. After log-transformation, we assume that logX and
log Y follow normal distributions with means µ∗

X and µ∗
Y and variance σ2.

Then
µT = E(X) = eµ

∗
X+σ2

2 and µR = E(Y ) = eµ
∗
Y +σ2

2 ,
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which implies

log
(
µT
µR

)
= log(eµ

∗
X−µ∗Y ) = µ∗

X − µ∗
Y .

Under both the crossover and parallel design, an exact (1− α)100% confi-
dence interval for µ∗

X − µ∗
Y can be obtained based on the log transformed

data. Hence, an exact (1 − α)100% confidence interval for µT /µR can be
obtained after the back transformation.

Chow and Wang (2001) provided sample size formulas under a parallel
design or a crossover design with and without log-transformation. These
formulas are different but very similar. In practice, scientists often con-
fuse them with one another. The following discussion may be helpful for
clarification.

We note that the sample size derivation is based on normality assump-
tion for the raw data and log-normality assumption for the transformed
data. Thus, it is of interest to study the distribution of logX when X is
normally distributed with mean µ and variance σ2. Note that

Var
(
X − µ

µ

)
=

σ2

µ2
= CV 2.

If CV is sufficiently small, (X − µ)/µ is close to 0. As a result, by Taylor’s
expansion,

logX − logµ = log
(
1 +

X − µ

µ

)
≈ X − µ

µ
.

Then,

logX ≈ logµ+
X − µ

µ
∼ N(logµ,CV 2).

This indicates that when CV is small, logX is still approximately normally
distributed, even if X is from a normal population. Therefore, the proce-
dure based on log-transformed data is robust in some sense. In addition,
the CV observed from the raw data is very similar to the variance obtained
from the log-transformed data.

Traditionally, for the example regarding bioavailability and bioequiva-
lence with raw data, BE can be established if the 90% confidence interval
for µT − µR is entirely within the interval of (−0.2µR, 0.2µR) (Chow and
Liu, 1992). This is the reason why 0.2 appears in the formula for raw data.
However, both the 1992 FDA and the 2000 FDA guidances recommended
that a log-transformation be performed before bioequivalence assessment is
made. For log-transformed data, the BE can be established if the 90% con-
fidence interval for µT /µR is entirely located in the interval (80%,125%).
That is why log 1.25 appears in the formula for log-transformed data. It
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Table 2.5.1: Posterior Power Evaluation Under a Crossover Design

Data Type Power

Raw Data 1− 2Φ

(
0.2

CV
q

1
n1

+ 1
n2

− tα,n1+n2−2

)

Log-transformed Data 1− 2Φ

(
0.223

σe

q
1

n1
+ 1

n2

− tα,n1+n2−2

)

should be noted that log 1.25 = − log 0.8 = 0.2231. In other words, the
BE limit for the raw data is symmetric about 0 (i.e., ±0.2µR), while the
BE limit for the log-transformed data is also symmetric about 0 after log
transformation.

2.5.1 Remark

For the crossover design, since each subject serves as its own control, the
inter-subject variation is removed from comparison. As a result, the formula
for sample size calculation derived under a crossover design only involves the
intra-subject variability. On the other hand, for the parallel design, formula
for sample size calculation under a parallel design includes both the inter-
and intra-subject variabilities. In practice, it is easy to get confused with
the sample size calculation and/or evaluation of posterior power based on
either raw data or log-transformed data under either a crossover design or
a parallel design (Chow and Wang, 2001). As an example, posterior powers
based on raw data and log-transformed data under a crossover design when
the true mean difference is 0 are given in Table 2.5.1.

2.6 Practical Issues

2.6.1 Unequal Treatment Allocation

In a parallel design or a crossover design comparing two or more than
two treatments, sample sizes in each treatment group (for parallel design)
or in each sequence of treatments (for crossover design) may not be the
same. For example, when conducting a placebo-control clinical trial with
very ill patients or patients with severe or life-threatening diseases, it may
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not be ethical to put too many patients in the placebo arm. In this case,
the investigator may prefer to put fewer patients in the placebo (if the
placebo arm is considered necessary to demonstrate the effectiveness and
safety of the drug under investigation). A typical ratio of patient allocation
for situations of this kind is 1:2, i.e., each patient will have a one-third
chance to be assigned to the placebo group and two-third chance to receive
the active drug. For different ratios of patient allocation, the sample size
formulae discussed can be directly applied with appropriate modification
of the corresponding degrees of freedom in the formulas.

When there is unequal treatment allocation, say κ to 1 ratio, sample
size for comparing two means can be obtained as

n =
(σ21/κ+ σ22)(zα/2 + zβ)2

δ2
.

When κ = 1, the above formula reduces to (1.3.3). When σ21 = σ22 = σ2,
we have

n =
(κ+ 1)σ2(zα/2 + zβ)2

κδ2
.

Note that unequal treatment allocation will have an impact on random-
ization in clinical trials, especially in multicenter trials. To maintain the
integrity of blinding of an intended trial, a blocking size of 2 or 4 in ran-
domization is usually employed. A blocking size of 2 guarantees that one of
the subjects in the block will be randomly assigned to the treatment group
and the other one will be randomly assigned to the control group. In a
multicenter trial comparing two treatments, if we consider a 2 to 1 alloca-
tion, the size of each block has to be a mutiple of 3, i.e., 3, 6, or 9. In the
treatment of having a minimum of two blocks in each center, each center
is required to enroll a minimum of 6 subjects. As a result, this may have
an impact on the selection of the number of centers. As indicated in Chow
and Liu (1998), as a rule of thumb, it is not desirable to have the number
of subjects in each center less than the number of centers. As a result, it
is suggested that the use of a κ to 1 treatment allocation in multicenter
trials should take into consideration of blocking size in randomization and
the number of centers selected.

2.6.2 Adjustment for Dropouts or Covariates

At the planning stage of a clinical study, sample size calculation provides
the number of evaluable subjects required for achieving a desired statistical
assurance (e.g., an 80% power). In practice, we may have to enroll more
subjects to account for potential dropouts. For example, if the sample size
required for an intended clinical trial is n and the potential dropout rate is
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p, then we need to enroll n/(1− p) subjects in order to obtain n evaluable
subjects at the completion of the trial. It should also be noted that the
investigator may have to screen more patients in order to obtain n/(1− p)
qualified subjects at the entry of the study based on inclusion/exclusion
criteria of the trial.

Fleiss (1986) pointed out that a required sample size may be reduced if
the response variable can be described by a covariate. Let n be the required
sample size per group when the design does not call for the experimental
control of a prognostic factor. Also, let n∗ be the required sample size for
the study with the factor controlled. The relative efficiency (RE) between
the two designs is defined as

RE =
n

n∗ .

As indicated by Fleiss (1986), if the correlation between the prognostic
factor (covariate) and the response variable is r, then RE can be expressed
as

RE =
100

1− r2
.

Hence, we have
n∗ = n(1− r2).

As a result, the required sample size per group can be reduced if the corre-
lation exists. For example, a correlation of r = 0.32 could result in a 10%
reduction in the sample size.

2.6.3 Mixed-Up Randomization Schedules

Randomization plays an important role in the conduct of clinical trials.
Randomization not only generates comparable groups of patients who con-
stitute representative samples from the intended patient population, but
also enables valid statistical tests for clinical evaluation of the study drug.
Randomization in clinical trials involves random recruitment of the pa-
tients from the targeted patient population and random assignment of pa-
tients to the treatments. Under randomization, statistical inference can
be drawn under some probability distribution assumption of the intended
patient population. The probability distribution assumption depends on
the method of randomization under a randomization model. A study with-
out randomization results in the violation of the probability distribution
assumption and consequently no accurate and reliable statistical inference
on the evaluation of the safety and efficacy of the study drug can be drawn.

A problem commonly encountered during the conduct of a clinical trial
is that a proportion of treatment codes are mixed-up in randomization
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schedules. Mixing up treatment codes can distort the statistical analysis
based on the population or randomization model. Chow and Shao (2002)
quantatively studied the effect of mixed-up treatment codes on the analy-
sis based on the intention-to-treat (ITT) population, which are described
below.

Consider a two-group parallel design for comparing a test drug and a
control (placebo), where n1 patients are randomly assigned to the treat-
ment group and n2 patients are randomly assigned to the control group.
When randomization is properly applied, the population model holds and
responses from patients are normally distributed. Consider first the sim-
plest case where two patient populations (treatment and control) have the
same variance σ2 and σ2 is known. Let µ1 and µ2 be the population means
for the treatment and the control, respectively. The null hypothesis that
µ1 = µ2 (i.e., there is no treatment effect) is rejected at the α level of
significance if

|x̄1 − x̄2|
σ
√

1
n1

+ 1
n2

> zα/2, (2.6.1)

where x̄1 is the sample mean of responses from patients in the treatment
group, x̄2 is the sample mean of responses from patients in the control
group, and zα/2 is the upper (α/2)th percentile of the standard normal
distribution. Intuitively, mixing up treatment codes does not affect the
significance level of the test.

The power of the test, i.e., the probability of correctly detecting a treat-
ment difference when µ1 �= µ2, is

p(θ) = P

 |x̄1 − x̄2|
σ
√

1
n1

+ 1
n2

> zα/2

 = Φ(θ − zα/2) + Φ(−θ − zα/2),

where Φ is the standard normal distribution function and

θ =
µ1 − µ2

σ
√

1
n1

+ 1
n2

. (2.6.2)

This follows from the fact that under the randomization model, x̄1− x̄2 has
the normal distribution with mean µ1 − µ2 and variance σ2

(
1
n1

+ 1
n2

)
.

Suppose that there are m patients whose treatment codes are randomly
mixed-up. A straightforward calculation shows that x̄1−x̄2 is still normally
distributed with variance σ2

(
1
n1

+ 1
n2

)
, but the mean of x̄1 − x̄2 is equal

to [
1−m

(
1
n1

+
1
n2

)]
(µ1 − µ2).
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It turns out that the power for the test defined above is

p(θm) = Φ(θm − zα/2) + Φ(−θm − zα/2),

where

θm =
[
1−m

(
1
n1

+
1
n2

)]
µ1 − µ2

σ
√

1
n1

+ 1
n2

. (2.6.3)

Note that θm = θ if m = 0, i.e., there is no mix-up.
The effect of mixed-up treatment codes can be measured by comparing

p(θ) with p(θm). Suppose that n1 = n2. Then p(θm) depends on m/n1, the
proportion of mixed-up treatment codes. For example, suppose that when
there is no mix-up, p(θ) = 80%, which gives that |θ| = 2.81. When 5%
of treatment codes are mixed-up, i.e., m/n1 = 5%, p(θm) = 70.2%. When
10% of treatment codes are mixed-up, p(θm) = 61.4%. Hence, a small pro-
portion of mixed-up treatment codes may seriously affect the probability
of detecting treatment effect when such an effect exists. In this simple case
we may plan ahead to ensure a desired power when the maximum propor-
tion of mixed-up treatment codes is known. Assume that the maximum
proportion of mixed-up treatment codes is p and that the original sample
size is n1 = n2 = n0. Then

θm = (1− 2p)θ =
µ1 − µ2

σ
√
2

√
(1− 2p)2n0.

Thus, a new sample size nnew = n0/(1 − 2p)2 will maintain the desired
power when the proportion of mixed-up treatment codes is no larger than
p. For example, if p = 5%, then nnew = 1.23n0, i.e., a 23% increase of the
sample size will offset a 5% mix-up in randomization schedules.

The effect of mixed-up treatment codes is higher when the study design
becomes more complicated. Consider the two-group parallel design with
an unknown σ2. The test statistic is necessarily modified by replacing zα/2
and σ2 by tα/2;n1+n2−2 and

σ̂2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
,

where s21 is the sample variance based on responses from patients in the
treatment group, s22 is the sample variance based on responses from patients
in the control group, and tα/2;n1+n2−2 is the upper (α/2)th percentile of
the t-distribution with n1+n2−2 degrees of freedom. When randomization
is properly applied without mix-up, the two-sample t-test has the α level
of significance and the power is given by

1− Tn1+n2−2(tα/2;n1+n2−2|θ) + Tn1+n2−2(−tα/2;n1+n2−2|θ),
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where θ is defined by (2.6.2) and Tn1+n2−2(·|θ) is the non-central t-distri-
bution function with n1+n2− 2 degrees of freedom and the non-centrality
parameter θ. When there are m patients with mixed-up treatment codes
and µ1 �= µ2, the effect on the distribution of x̄1− x̄2 is the same as that in
the case of known σ2. In addition, the distribution of σ̂2 is also changed.
A direct calculation shows that the expectation of σ̂2 is

E(σ̂2) = σ2 +
2(µ1 − µ2)2m
n1 + n2 − 2

[
2−m

(
1
n1

+
1
n2

)]
.

Hence, the actual power of the two-sample t-test is less than

1− Tn1+n2−2(t0.975;n1+n2−2|θm) + Tn1+n2−2(−t0.975;n1+n2−2|θm),

where θm is given by (2.6.3).

2.6.4 Treatment or Center Imbalance

In multicenter clinical trials, sample size calculation is usually performed
under the assumption that there are equal numbers of subjects in each
center. In practice, however, we may end up with an imbalance in sample
sizes across centers. It is a concern (i) what the impact is of this imbalance
on the power of the test and (ii) whether sample size calculation should
be performed in a way to account for this imbalance. In this section, we
examine this issue by studying the power with sample size imbalance across
centers.

For a multicenter trial, the following model is usually considered:

yijk = µ+ Ti + Cj + (TC)ij + εijk,

where i = 1, 2 (treatment), j = 1, ..., J (center), k = 1, ..., nij , Ti is the ith
treatment effect, Cj is the effect due to the jth center, (TC)ij is the effect
due to the interaction between the ith treatment in the jth center, and εijk
are random error which are normally distributed with mean 0 and variance
σ2. Under the above model, a test statistic for

µ1 − µ2 = (µ+ T1)− (µ+ T2) = T1 − T2

is given by

T ∗ =
1
J

J∑
j=1

(ȳ1j − ȳ2j)

with E(T ∗) = T1 − T2 and

Var(T ∗) =
σ2

J2

J∑
j=1

(
1
n1j

+
1
n2j

).

© 2008 by Taylor & Francis Group, LLC



44 Chapter 2. Considerations Prior to Sample Size Calculation

If we assume that n1j = n2j = nj for all j = 1, ..., J , then

Var(T ∗) =
σ2

J2

J∑
j=1

2
nj
.

In this case, the power of the test is given by

Power = 1− Φ

zα/2 − δ

σ
J

√∑J
j=1 2/nj

 .

When nj = n for all j,

Var(T ∗) =
2σ2

Jn

and the power of the test becomes

Power = 1− Φ

(
zα/2 −

δ

σ
√
2/(Jn)

)
.

As it can be seen that

1− Φ

zα/2 − δ

σ
J

√∑J
j=1 2/nj

 ≤ 1− Φ

(
zα/2 −

δ

σ
√
2/(Jn)

)
.

To achieve the same power, the only choice is to increase the sample size if
we assume that the variance remains the same. In this situation, the total
sample size N =

∑J
j=1 nj should satisfy

δ

σ
J

√∑J
j=1 2/nj

=
δ

σ
√
2/n

.

The difficulty is that nj , j = 1, ..., J , are not fixed and we are unable to
predict how many subjects will be in each center at the end of the trial
although we may start with the same number of subjects in each center. The
loss in power due to treatment and/or center imbalance may be substantial
in practice.

2.6.5 Multiplicity

In many clinical trials, multiple comparisons may be performed. In the
interest of controlling the overall type I error rate at the α level, an ad-
justment for multiple comparisons such as the Bonferroni adjustment is
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necessary. The formulas for sample size calculation can still be applied by
simply replacing the α level with an adjusted α level. In practice, it may
be too conservative to adjust the α level when there are too many primary
clinical endpoints or there are too many comparisons to be made. As a rule
of thumb, Biswas, Chan and Ghosh (2000) suggested that a multiplicity
adjustment to the significance level be made when at least one significant
result (e.g., one of several primary clinical endpoints or several pairwise
comparison) is required to draw conclusion. On the other hand, a mul-
tiplicity adjustment is not needed when (i) all results are required to be
significant in order to draw conclusion or (ii) the testing problem is closed.
A test procedure is said to be closed if the rejection region of a particular
univariate null hypothesis at a given significance α-level implies the rejec-
tion of all higher dimensional null hypotheses containing the univariate null
hypothesis at the same significance α-level (Marcus, Peritz, and Gabriel,
1976). When a multiplicity adjustment is required, it is recommended that
either the method of Bonferroni or the procedures described in Hochberg
and Tamhane (1987) be used.

2.6.6 Multiple-Stage Design for Early Stopping

In phase II cancer trials, it is undesirable to stop a study early when the
treatment appears to be effective but desirable to terminate the trial when
the treatment seems to be ineffective. For this purpose, a multiple-stage
design is often employed to determine whether a test drug is promising
enough to warrant further testing (Simon, 1989). The concept of a multiple-
stage design is to permit early stopping when a moderately long sequence of
initial failures occurs. For example, in Simon’s two-stage optimal design, n1
subjects are treated and the trial terminates if all n1 are treatment failures.
If there are one or more successes in stage 1, then stage 2 is implemented
by including the other n2 subjects. A decision is then made based on the
response rate of the n1+n2 subjects. The drawback of Simon’s design is
that it does not allow early termination if there is a long run of failures at
the start. To overcome this disadvantage, Ensign et al. (1994) proposed an
optimal three-stage design which modifies the Simon’s two-stage design. Let
p0 be the response rate that is not of interest for conducting further studies
and p1 be the response rate of definite interest (p1 > p0). The optimal
three-stage design is implemented by testing the following hypotheses:

H0 : p ≤ p0 versus Ha : p ≥ p1.

Rejection of H0 indicates that further study of the test drug should be
carried out. At stage 1, n1 subjects are treated. We would reject Ha (i.e.,
the test drug is not promising) and stop the trial if there is no response.
If there are one or more responses, then proceed to stage 2 by including
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additional n2 subjects. We would then reject H1 and stop the trial if the
total number of responses is less than a prespecified number of r2; otherwise
continue to stage 3. At stage 3, n3 more subjects are treated. We reject
Ha if the total number of responses is less than a prespecified number of
r3. In this case, we conclude the test treatment is ineffective. Based on
the three-stage design described above, Ensign et al. (1994) considered the
following to determine the sample size. For each value of n2 satisfying

(1− p1)n1 < β,

where
β = P (reject H1|p1),

compute the values of r2, n2, r3, and n3 that minimize the null expected
sample size EN(p0) subject to the error constraints α and β, where

EN(p) = n1 + n2{1− β1(p)}+ n3{1− β1(p)− β2(p)},

and βi are the probability of making type II error evaluated stage i. Ensign
et al. (1994) use the value of

β − (1− p1)n1

as the type II error rate in the optimization along with type I error

α = P (reject H0|p0)

to obtain r2, n2, r3, and n3. Repeating this, n1 can be chosen to minimize
the overall EN(p0).

2.6.7 Rare Incidence Rate

In most clinical trials, although the primary objectives are usually for eval-
uation of the effectiveness and safety of the test drug under investigation,
the assessment of drug safety has not received the same level of attention as
the assessment of efficacy. Sample size calculations are usually performed
based on a pre-study power analysis based on the primary efficacy variable.
If sample size is determined based on the primary safety variable such as
adverse event rate, a large sample size may be required especially when
the incidence rate is extremely rare. For example, if the incidence rate is
one per 10,000, then we will need to include 10,000 subjects in order to
observe a single incidence. In this case, we may justify a selected sample
size based on the concept of probability statement as described in Section
1.3.5. O’Neill (1988) indicated that the magnitude of rates that can be
feasibly studied in most clinical trials is about 0.01 and higher. However,
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observational cohort studies usually can assess rates on the order of 0.001
and higher. O’Neill (1988) also indicated that it is informative to examine
the sample sizes that would be needed to estimate a rate or to detect or
estimate differences of specified amounts between rates for two different
treatment groups.
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Chapter 3

Comparing Means

In clinical research, clinical trials are usually conducted for evaluation of
the efficacy and safety of a test drug as compared to a placebo control or an
active control agent (e.g., a standard therapy) in terms of mean responses
of some primary study endpoints. The objectives of the intended clinical
trials usually include (i) the evaluation of the effect, (ii) the demonstra-
tion of therapeutic equivalence/non-inferiority, and (iii) the establishment
of superiority. For evaluation of the effect within a given treatment, the
null hypothesis of interest is to test whether there is a significant difference
in mean response between pre- and post-treatment or mean change from
baseline to endpoint. We refer to this testing problem as a one-sample
problem. For establishment of the efficacy and safety of the test drug, a
typical approach is to test whether there is a difference between the test
drug and the placebo control and then evaluate the chance of correctly de-
tecting a clinically meaningful difference if such a difference truly exists.
Thus, it is of interest to first test the null hypothesis of equality and then
evaluate the power under the alternative hypothesis to determine whether
the evidence is substantial for regulatory approval. For demonstration of
therapeutic equivalence/non-inferiority and/or superiority as compared to
an active control or standard therapy, it is of interest to test hypotheses for
equivalence/non-inferiority and/or superiority as described in Chapter 1.
In this chapter, under a valid design (e.g., a parallel design or a crossover
design), methods for sample size calculation are provided to achieve a de-
sired power of statistical tests for appropriate hypotheses.

In Section 3.1, testing in one-sample problems is considered. Sections
3.2 and 3.3 summarize procedures for sample size calculation in two-sample
problems under a parallel design and a crossover design, respectively. Sec-
tions 3.4 and 3.5 present procedures in multiple-sample problems under
a parallel design (one-way analysis of variance) and a crossover design

49
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(Williams design), respectively. Section 3.6 discusses some practical issues
regarding sample size calculation for comparing means in clinical research,
including sample size reduction when switching from a two-sided test to
a one-sided test or from a parallel design to a crossover design, sensitiv-
ity analysis with respect to change in variability, and a brief discussion
regarding Bayesian approach.

3.1 One-Sample Design

Let xi be the response from the ith sampled subject, i = 1, ..., n. In clinical
research, xi could be the difference between matched pairs such as the
pre-treatment and post-treatment responses or changes from baseline to
endpoint within a treatment group. It is assumed that xi’s are independent
and identically distributed (i.i.d.) normal random variables with mean 0
and variance σ2. Let

x̄ =
1
n

n∑
i=1

xi and s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3.1.1)

be the sample mean and sample variance of xi’s, respectively. Also, let
ε = µ − µ0 be the difference between the true mean response of a test
drug (µ) and a reference value (µ0). Without loss of generality, consider
ε > 0 (ε < 0) an indication of improvement (worsening) of the test drug as
compared to the reference value.

3.1.1 Test for Equality

To test whether there is a difference between the mean response of the
test drug and the reference value, the following hypotheses are usually
considered:

H0 : ε = 0 versus Ha : ε �= 0.

When σ2 is known, we reject the null hypothesis at the α level of sig-
nificance if ∣∣∣∣ x̄− µ0

σ/
√
n

∣∣∣∣ > zα/2,

where za is the upper αth quantile of the standard normal distribution.
Under the alternative hypothesis that ε �= 0, the power of the above test is
given by

Φ
(√

nε

σ
− zα/2

)
+Φ

(
−
√
nε

σ
− zα/2

)
,
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where Φ is the cumulative standard normal distribution function. By ig-
noring a small value ≤ α/2, the power is approximately

Φ
(√

n|ε|
σ

− zα/2

)
.

As a result, the sample size needed to achieve power 1− β can be obtained
by solving the following equation

√
n|ε|
σ

− zα/2 = zβ.

This leads to

n =
(zα/2 + zβ)2σ2

ε2
(3.1.2)

(if the solution of (3.1.2) is not an integer, then the smallest integer that is
larger than the solution of (3.1.2) should be taken as the required sample
size). An initial value of ε (or ε/σ) is needed to calculate the sample size
according to (3.1.2). A lower bound of ε/σ, usually obtained from a pilot
study or historical data, can be used as the initial value. A lower bound of
ε/σ can also be defined as the clinically meaningful difference between the
response means relative to the standard deviation σ.

When σ2 is unknown, it can be replaced by the sample variance s2 given
in (3.1.1), which results in the usual one-sample t-test, i.e., we reject the
null hypothesis H0 if ∣∣∣∣ x̄− µ0

s/
√
n

∣∣∣∣ > tα/2,n−1,

where ta,n−1 is the upper ath quantile of a t-distribution with n−1 degrees
of freedom. Under the alternative hypothesis that ε �= 0, the power of the
one-sample t-test is given by

1− Tn−1

(
tα/2,n−1

∣∣∣∣√nεσ
)
+ Tn−1

(
−tα/2,n−1

∣∣∣∣√nεσ
)
,

where Tn−1(·|θ) is the cumulative distribution function of a non-central t-
distribution with n−1 degrees of freedom and the non-centrality parameter
θ. When an initial value of ε/σ is given, the sample size needed to achieve
power 1− β can be obtained by solving

Tn−1

(
tα/2,n−1

∣∣∣∣√nεσ
)
− Tn−1

(
−tα/2,n−1

∣∣∣∣√nεσ
)

= β. (3.1.3)

By ignoring a small value ≤ α/2, the power is approximately

1− Tn−1

(
tα/2,n−1

∣∣∣∣√n|ε|σ

)
.
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Hence, the required sample size can also be obtained by solving

Tn−1

(
tα/2,n−1

∣∣∣∣√n|ε|σ

)
= β. (3.1.4)

Table 3.1.1 lists the solutions of this equation for some values of α, β,
and θ = |ε|/σ.

When n is sufficiently large, tα/2,n−1 ≈ zα/2, tβ,n−1 ≈ zβ, and

Tn−1

(
tα/2,n−1

∣∣∣∣√nεσ
)

≈ Φ
(
zα/2 −

√
nε

σ

)
. (3.1.5)

Hence, formula (3.1.2) may still be used in the case of unknown σ.

3.1.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 : ε ≤ δ versus Ha : ε > δ,

where δ is the superiority or non-inferiority margin. When δ > 0, the re-
jection of the null hypothesis indicates superiority over the reference value.
When δ < 0, the rejection of the null hypothesis implies non-inferiority
against the reference value.

When σ2 is known, we reject the null hypothesis H0 at the α level of
significance if

x̄− µ0 − δ

σ/
√
n

> zα.

If ε > δ, the power of the above test is

Φ
(√

n(ε− δ)
σ

− zα

)
.

As a result, the sample size needed to achieve power 1− β can be obtained
by solving √

n(ε− δ)
σ

− zα = zβ ,

which leads to

n =
(zα + zβ)2σ2

(ε− δ)2
. (3.1.6)

When σ2 is unknown, it can be replaced by s2 given in (3.1.1). The null
hypothesis H0 is rejected at the α level of significance if

x̄− µ0 − δ

s/
√
n

> tα,n−1.
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Table 3.1.1: Smallest n with Tn−1 (tα,n−1|
√
nθ) ≤ β

α = 2.5% α = 5% α = 2.5% α = 5%
1− β = 1− β = 1− β = 1− β =

θ 80% 90% 80% 90% θ 80% 90% 80% 90%
0.10 787 1053 620 858 0.54 29 39 23 31
0.11 651 871 513 710 0.56 28 36 22 29
0.12 547 732 431 597 0.58 26 34 20 27
0.13 467 624 368 509 0.60 24 32 19 26
0.14 403 539 317 439 0.62 23 30 18 24
0.15 351 469 277 382 0.64 22 28 17 23
0.16 309 413 243 336 0.66 21 27 16 22
0.17 274 366 216 298 0.68 19 25 15 20
0.18 245 327 193 266 0.70 19 24 15 19
0.19 220 293 173 239 0.72 18 23 14 18
0.20 199 265 156 216 0.74 17 22 13 18
0.21 180 241 142 196 0.76 16 21 13 17
0.22 165 220 130 179 0.78 15 20 12 16
0.23 151 201 119 164 0.80 15 19 12 15
0.24 139 185 109 151 0.82 14 18 11 15
0.25 128 171 101 139 0.84 14 17 11 14
0.26 119 158 93 129 0.86 13 17 10 14
0.27 110 147 87 119 0.88 13 16 10 13
0.28 103 136 81 111 0.90 12 16 10 13
0.29 96 127 75 104 0.92 12 15 9 12
0.30 90 119 71 97 0.94 11 14 9 12
0.32 79 105 62 86 0.96 11 14 9 11
0.34 70 93 55 76 0.98 11 14 8 11
0.36 63 84 50 68 1.00 10 13 8 11
0.38 57 75 45 61 1.04 10 12 8 10
0.40 52 68 41 55 1.08 9 12 7 9
0.42 47 62 37 50 1.12 9 11 7 9
0.44 43 57 34 46 1.16 8 10 7 8
0.46 40 52 31 42 1.20 8 10 6 8
0.48 37 48 29 39 1.30 7 9 6 7
0.50 34 44 27 36 1.40 7 8 5 7
0.52 32 41 25 34 1.50 6 7 5 6

© 2008 by Taylor & Francis Group, LLC



54 Chapter 3. Comparing Means

The power of this test is given by

1− Tn−1

(
tα,n−1

∣∣∣∣√n(ε− δ)
σ

)
.

The sample size needed to achieve power 1− β can be obtained by solving

Tn−1

(
tα,n−1

∣∣∣∣√n(ε− δ)
σ

)
= β.

By letting θ = (ε−δ)/σ, Table 3.1.1 can be used to find the required sample
size. From approximation (3.1.5), formula (3.1.6) can be used to calculate
the required sample size when n is sufficiently large.

3.1.3 Test for Equivalence

The objective is to test the following hypotheses

H0 : |ε| ≥ δ versus Ha : |ε| < δ.

The test drug is concluded to be equivalent to a gold standard on average
if the null hypothesis is rejected at significance level α.

When σ2 is known, the null hypothesis H0 is rejected at significance
level α if

√
n(x̄− µ0 − δ)

σ
< −zα and

√
n(x̄− µ0 + δ)

σ
> zα.

The power of this test is given by

Φ
(√

n(δ − ε)
σ

− zα

)
+Φ

(√
n(δ + ε)
σ

− zα

)
− 1. (3.1.7)

Although the sample size n can be obtained by setting the power in (3.1.7)
to 1− β, it is more convenient to use the following method. Note that the
power is larger than

2Φ
(√

n(δ − |ε|)
σ

− zα

)
− 1. (3.1.8)

Hence, the sample size needed to achieve power 1 − β can be obtained by
solving

Φ
(√

n(δ − |ε|)
σ

− zα

)
= 1− β

2
.

This leads to

n =
(zα + zβ/2)2σ2

(δ − |ε|)2 . (3.1.9)
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Note that the quantity in (3.1.8) is a conservative approximation to the
power. Hence, the sample size calculated according to (3.1.9) is conser-
vative. A different approximation is given in Chow and Liu (1992, 2000),
which leads to the following formula for sample size calculation:

n =

{
(zα+zβ/2)

2σ2

δ2 if ε = 0
(zα+zβ)

2σ2

(δ−|ε|)2 if ε �= 0.

When σ2 is unknown, it can be estimated by s2 given in (3.1.1). The
null hypothesis H0 is rejected at significance level α if

√
n(x̄− µ0 − δ)

s
< −tα,n−1 and

√
n(x̄− µ0 + δ)

s
> tα,n−1.

The power of this test can be estimated by

1− Tn−1

(
tα,n−1

∣∣∣∣√n(δ − ε)
σ

)
− Tn−1

(
tα,n−1

∣∣∣∣√n(δ + ε)
σ

)
.

Hence, the sample size needed to achieve power 1 − β can be obtained by
setting the power to 1− β. Since the power is larger than

1− 2Tn−1

(
tα,n−1

∣∣∣∣√n(δ − |ε|)
σ

)
,

a conservative approximation to the sample size needed to achieve power
1− β can be obtained by solving

Tn−1

(
tα,n−1

∣∣∣∣√n(δ − |ε|)
σ

)
=

β

2
,

which can be done by using Table 3.1.1 with θ = (δ − |ε|)/σ. From ap-
proximation (3.1.5), formula (3.1.9) can be used to calculate the required
sample size when n is sufficiently large.

3.1.4 An Example

To illustrate the use of sample size formulas derived above, we first consider
an example concerning a study of osteoporosis in post-menopausal women.
Osteoporosis and osteopenia (or decreased bone mass) most commonly de-
velop in post-menopausal women. The consequences of osteoporosis are
vertebral crush fractures and hip fractures. The diagnosis of osteoporosis is
made when vertebral bone density is more than 10% below what is expected
for sex, age, height, weight, and race. Usually, bone density is reported in
terms of standard deviation (SD) from mean values. The World Health
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Organization (WHO) defines osteopenia as bone density value greater than
one SD below peak bone mass levels in young women and osteoporosis as a
value of greater than 2.5 SD below the same measurement scale. In medical
practice, most clinicians suggest therapeutic intervention should be begun
in patients with osteopenia to prevent progression to osteoporosis.

Test for Equality

Suppose that the mean bone density before the treatment is 1.5 SD (µ0 =
1.5 SD) and after treatment is expected to be 2.0 SD (i.e., µ1 = 2.0 SD).
We have ε = µ1 − µ0 = 2.0 SD −1.5 SD = 0.5 SD. By (3.1.2), at α = 0.05,
the required sample size for having an 80% power (i.e., β = 0.2) for cor-
rectly detecting a difference of ε = 0.5 SD change from pre-treatment to
post-treatment can be obtained by normal approximation as

n =
(zα/2 + zβ)2σ2

ε2
=

(1.96 + 0.84)2

(0.5)2
≈ 32.

On the other hand, the sample size can also be obtained by solving equation
(3.1.4). Note that

θ =
|ε|
σ

= 0.5.

By referring to the column under α = 2.5% (two-sided test) at the row with
θ = 0.5 in Table 3.1.1, it can be found that the sample size needed is 34.

Test for Non-Inferiority

For prevention of progression from osteopenis to osteoporosis, we wish
to show that the mean bone density post-treatment is no less than pre-
treatment by a clinically meaningful difference δ = −0.5 SD. As a result,
by (3.1.6), at α=0.05, the required sample size for having an 80% power
(i.e., β=0.20) can be obtained by normal approximation as

n =
(zα + zβ)2σ2

(ε− δ)2
=

(1.64 + 0.84)2

(0.5 + 0.5)2
≈ 7.

On the other hand, the sample size can also be obtained by using Table
3.1.1. Note that

θ =
ε− δ

σ
= 0.5 + 0.5 = 1.00.

By referring to the column under α = 5% at the row with θ = 1.0 in Table
3.1.1, it can be found that the sample size needed is 8.
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Test for Equivalence

To illustrate the use of the sample size formula for testing equivalence,
we consider another example concerning the effect of a test drug on body
weight change in terms of body mass index (BMI) before and after the treat-
ment. Suppose clinicians consider that a less than 5% change in BMI from
baseline (pre-treatment) to endpoint (post-treatment) is not a safety con-
cern for the indication of the disease under study. Thus, we consider δ=5%
as the equivalence limit. The objective is then to demonstrate safety by test-
ing equivalence in mean BMI between pre-treatment and post-treatment of
the test drug. Assume the true BMI difference is 0 (ε = 0) and the standard
deviation is 10% (σ =0.1), by (3.1.9) with α=0.05, the sample size required
for achieving an 80% power can be obtained by normal approximation as

n =
(zα + zβ/2)2σ2

δ2
=

(1.64 + 1.28)20.102

0.052
≈ 35.

On the other hand, the sample size calculation can also be performed by
using Table 3.1.1. Note that

θ =
δ

σ
=

0.05
0.10

= 0.50.

By referring to the column under α = 5% and 1−β = 90% at the row with
θ = 0.50 in Table 3.1.1, it can be found the sample size needed is 36.

3.2 Two-Sample Parallel Design

Let xij be the response observed from the jth subject in the ith treatment
group, j = 1, ..., ni, i = 1, 2. It is assumed that xij , j = 1, ..., ni, i = 1, 2,
are independent normal random variables with mean µi and variance σ2.
Let

x̄i· =
1
ni

ni∑
j=1

xij and s2 =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(xij − x̄i·)2 (3.2.1)

be the sample means for ith treatment group and the pooled sample vari-
ance, respectively. Also, let ε = µ2 − µ1 be the true mean difference be-
tween a test drug (µ2) and a placebo control or an active control agent
(µ1). Without loss of generality, consider ε > 0 (ε < 0) as an indication
of improvement (worsening) of the test drug as compared to the placebo
control or active control agent. In practice, it may be desirable to have an
unequal treatment allocation, i.e., n1/n2 = κ for some κ. Note that κ = 2
indicates a 2 to 1 test-control allocation, whereas κ = 1/2 indicates a 1 to
2 test-control allocation.
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3.2.1 Test for Equality

The objective is to test whether there is a difference between the mean
responses of the test drug and the placebo control or active control. Hence,
the following hypotheses are considered:

H0 : ε = 0 versus Ha : ε �= 0.

When σ2 is known, the null hypothesis H0 is rejected at the significance
level α if ∣∣∣∣∣∣ x̄1· − x̄2·

σ
√

1
n1

+ 1
n2

∣∣∣∣∣∣ > zα/2.

Under the alternative hypothesis that ε �= 0, the power of the above test is

Φ

 ε

σ
√

1
n1

+ 1
n2

− zα/2

+Φ

 −ε
σ
√

1
n1

+ 1
n2

− zα/2



≈ Φ

 |ε|
σ
√

1
n1

+ 1
n2

− zα/2

 ,

after ignoring a small term of value ≤ α/2. As a result, the sample size
needed to achieve power 1 − β can be obtained by solving the following
equation

|ε|
σ
√

1
n1

+ 1
n2

− zα/2 = zβ .

This leads to

n1 = κn2 and n2 =
(zα/2 + zβ)2σ2(1 + 1/κ)

ε2
. (3.2.2)

When σ2 is unknown, it can be replaced by s2 given in (3.2.1). The null
hypothesis H0 is rejected if∣∣∣∣∣∣ x̄1· − x̄2·

s
√

1
n1

+ 1
n2

∣∣∣∣∣∣ > tα/2,n1+n2−2.

Under the alternative hypothesis that ε �= 0, the power of this test is

1− Tn1+n2−2

tα/2,n1+n2−2

∣∣∣∣ ε

σ
√

1
n1

+ 1
n2


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+ Tn1+n2−2

−tα/2,n1+n2−2

∣∣∣∣ ε

σ
√

1
n1

+ 1
n2

 .

Thus, with n1 = κn2, the sample size n2 needed to achieve power 1−β can
be obtained by setting the power equal to 1− β.

After ignoring a small term of value ≤ α/2, the power is approximately

1− Tn1+n2−2

tα/2,n1+n2−2

∣∣∣∣ |ε|
σ
√

1
n1

+ 1
n2

 .

Hence, the required sample size n2 can also be obtained by solving

T(1+κ)n2−2

(
tα/2,(1+κ)n2−2

∣∣∣∣ √
n2|ε|

σ
√
1 + 1/κ

)
= β.

Table 3.2.1 can be used to obtain the solutions for κ = 1, 2, and some values
of θ = |ε|/σ, α, and β. When κ = 1/2, Table 3.2.1 can be used to find the
required n1 and n2 = 2n1.

From approximation (3.1.5), formula (3.2.2) can be used when both n1
and n2 are large.

3.2.2 Test for Non-Inferority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 : ε ≤ δ versus Ha : ε > δ,

where δ is the superiority or non-inferiority margin. When δ > 0, the
rejection of the null hypothesis indicates the superiority of the test drug
over the control. When δ < 0, the rejection of the null hypothesis indicates
the non-inferiority of the test drug against the control.

When σ2 is known, the null hypothesis H0 is rejected at the α level of
significance if

x̄1 − x̄2 − δ

σ
√

1
n1

+ 1
n2

> zα.

Under the alternative hypothesis that ε > δ, the power of the above test is
given by

Φ

 ε− δ

σ
√

1
n1

+ 1
n2

− zα

 .
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Table 3.2.1: Smallest n with T(1+κ)n−2

(
tα,(1+κ)n−2|

√
nθ/

√
1 + 1/κ

)
≤ β

κ = 1 κ = 2
α = 2.5% α = 5% α = 2.5% α = 5%
1− β = 1− β = 1− β = 1− β =

θ 80% 90% 80% 90% 80% 90% 80% 90%
0.30 176 235 139 191 132 176 104 144
0.32 155 207 122 168 116 155 92 126
0.34 137 183 108 149 103 137 81 112
0.36 123 164 97 133 92 123 73 100
0.38 110 147 87 120 83 110 65 90
0.40 100 133 78 108 75 100 59 81
0.42 90 121 71 98 68 90 54 74
0.44 83 110 65 90 62 83 49 67
0.46 76 101 60 82 57 76 45 62
0.48 70 93 55 76 52 70 41 57
0.50 64 86 51 70 48 64 38 52
0.52 60 79 47 65 45 59 35 48
0.54 55 74 44 60 42 55 33 45
0.56 52 68 41 56 39 51 31 42
0.58 48 64 38 52 36 48 29 39
0.60 45 60 36 49 34 45 27 37
0.65 39 51 30 42 29 38 23 31
0.70 34 44 26 36 25 33 20 27
0.75 29 39 23 32 22 29 17 24
0.80 26 34 21 28 20 26 15 21
0.85 23 31 18 25 17 23 14 19
0.90 21 27 16 22 16 21 12 17
0.95 19 25 15 20 14 19 11 15
1.00 17 23 14 18 13 17 10 14
1.05 16 21 12 17 12 15 9 13
1.10 15 19 11 15 11 14 9 12
1.15 13 17 11 14 10 13 8 11
1.20 12 16 10 13 9 12 7 10
1.25 12 15 9 12 9 11 7 9
1.30 11 14 9 11 8 11 6 9
1.35 10 13 8 11 8 10 6 8
1.40 10 12 8 10 7 9 6 8
1.45 9 12 7 9 7 9 5 7
1.50 9 11 7 9 6 8 5 7
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The sample size needed to achieve power 1− β can be obtained by solving

ε− δ

σ
√

1
n1

+ 1
n2

− zα = zβ .

This leads to

n1 = κn2 and n2 =
(zα + zβ)2σ2(1 + 1/κ)

(ε− δ)2
. (3.2.3)

When σ2 is unknown, it can be replaced by s2 given in (3.2.1). The null
hypothesis H0 is rejected if

x̄1 − x̄2 − δ

s
√

1
n1

+ 1
n2

> tα,n1+n2−2.

Under the alternative hypothesis that ε > δ, the power of this test is given
by

1− Tn1+n2−2

tα,n1+n2−2

∣∣∣∣ ε− δ

σ
√

1
n1

+ 1
n2

 .

The sample size needed to achieve power 1− β can be obtained by solving
the following equation:

Tn1+n2−2

tα,n1+n2−2

∣∣∣∣ ε− δ

σ
√

1
n1

+ 1
n2

 = β.

By letting θ = (ε−δ)/σ, Table 3.2.1 can be used to find the required sample
size.

From approximation (3.1.5), formula (3.2.3) can be used to calculate
the required sample size when n1 and n2 are sufficiently large.

3.2.3 Test for Equivalence

The objective is to test the following hypotheses

H0 : |ε| ≥ δ versus Ha : |ε| < δ.

The test drug is concluded to be equivalent to the control in average if the
null hypothesis is rejected at significance level α.

When σ2 is known, the null hypothesis H0 is rejected at the α level of
significance if

x̄1 − x̄2 − δ

σ
√

1
n1

+ 1
n2

< −zα and
x̄1 − x̄2 + δ

σ
√

1
n1

+ 1
n2

> zα.
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Under the alternative hypothesis that |ε| < δ, the power of this test is

Φ

 δ − ε

σ
√

1
n1

+ 1
n2

− zα

+Φ

 δ + ε

σ
√

1
n1

+ 1
n2

− zα

− 1

≈ 2Φ

 δ − |ε|
σ
√

1
n1

+ 1
n2

− zα

− 1.

As a result, the sample size needed to achieve power 1− β can be obtained
by solving the following equation

δ − |ε|
σ
√

1
n1

+ 1
n2

− zα = zβ/2.

This leads to

n1 = κn2 and n2 =
(zα + zβ/2)2σ2(1 + 1/κ)

(δ − |ε|)2 . (3.2.4)

When σ2 is unknown, it can be replaced by s2 given in (3.2.1). The null
hypothesis H0 is rejected at the α level of significance if

x̄1 − x̄2 − δ

s
√

1
n1

+ 1
n2

< −tα,n1+n2−2 and
x̄1 − x̄2 + δ

s
√

1
n1

+ 1
n2

> tα,n1+n2−2.

Under the alternative hypothesis that |ε| < δ, the power of this test is

1− Tn1+n2−2

tα,n1+n2−2

∣∣∣∣ δ − ε

σ
√

1
n1

+ 1
n2



−Tn1+n2−2

tα,n1+n2−2

∣∣∣∣ δ + ε

σ
√

1
n1

+ 1
n2

 .

Hence, with n1 = κn2, the sample size n2 needed to achieve power 1 − β
can be obtained by setting the power to 1 − β. Since the power is larger
than

1− 2Tn1+n2−2

tα,n1+n2−2

∣∣∣∣ δ − |ε|
σ
√

1
n1

+ 1
n2

 ,

© 2008 by Taylor & Francis Group, LLC



3.2. Two-Sample Parallel Design 63

a conservative approximation to the sample size n2 can be obtained by
solving

T(1+κ)n2−2

(
tα,(1+κ)n2−2

∣∣∣∣√n2(δ − |ε|)
σ
√
1 + 1/κ

)
=

β

2
.

Table 3.2.1 can be used to calculate n1 and n2.
From approximation (3.1.5), formula (3.2.4) can be used to calculate

the required sample size when n1 and n2 are sufficiently large.

3.2.4 An Example

Consider an example concerning a clinical trial for evaluation of the ef-
fect of a test drug on cholesterol in patients with coronary heart disease
(CHD). Cholesterol is the main lipid associated with arteriosclerotic vas-
cular disease. The purpose of cholesterol testing is to identify patients at
risk for arteriosclerotic heart disease. The liver metabolizes the cholesterol
to its free form which is transported in the bloodtream by lipoproteins. As
indicated by Pagana and Pagana (1998), nearly 75% of the cholesterol is
bound to low density lipoproteins (LDLs) and 25% is bound to high density
lipoproteins (HDLs). Therefore, cholesterol is the main component of LDLs
and only a minimal component of HDLs and very low density lipoproteins.
LDL is the most directly associated with increased risk of CHD.

A pharmaceutical company is interested in conducting a clinical trial
to compare two cholesterol lowering agents for treatment of patients with
CHD through a parallel design. The primary efficacy parameter is the LDL.
In what follows, we will consider the situations where the intended trial is
for (i) testing equality of mean responses in LDL, (ii) testing non-inferiority
or superiority of the test drug as compared to the active control agent, and
(iii) testing for therapeutic equivalence. All sample size calculations in this
section are performed for achieving an 80% power (i.e., β = 0.20) at the
5% level of significance (i.e., α = 0.05).

Test for Equality

As discussed in Chapter 1, hypotheses for testing equality are point hy-
potheses. A typical approach for sample size calculation is to reject the
null hypothesis of no treatment difference and conclude that there is a sig-
nificant difference between treatment groups. Then, sample size can be
chosen to achieve an 80% power for detecting a clinically meaningful dif-
ference (i.e., ε). In this example, suppose a difference of 5% (i.e., ε = 5%)
in percent change of LDL is considered of clinically meaningful difference.
By (3.2.2), assuming that the standard deviation is 10% (i.e., σ = 10%),
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the sample size by normal approximaton can be determined by

n1 = n2 =
2(zα/2 + zβ)2σ2

ε2
=

2× (1.96 + 0.84)2 × 0.12

0.052
≈ 63.

On the other hand, the sample size can also be obtained by using Table
3.2.1. Note that

θ =
ε

σ
=

0.05
0.10

= 0.50.

By referring to the column under α = 2.5% at the row with θ = 0.50 in
Table 3.2.1, it can be found that the sample size needed is 64.

Test for Non-Inferiority

Suppose that the pharmaceutical company is interested in establishing non-
inferiority of the test drug as compared to the active control agent. Sim-
ilarly, we assume that the non-inferiority margin is chosen to be 5% (i.e.,
δ = −0.05). Also, suppose the true difference in mean LDL between treat-
ment groups is 0% (i.e., ε=µ2(test)-µ1(control)= 0.00). Then, by (3.2.3),
the sample size by normal approximation can be determined by

n1 = n2 =
2(zα + zβ)2σ2

(ε− δ)2
=

2× (1.64 + 0.84)2 × 0.12

(−0.00− (−0.05))2
≈ 50.

On the other hand, the sample size can also be obtained by using Table
3.2.1. Note that

θ =
|ε− δ|
σ

=
0.05
0.10

= 0.50.

By referring to the column under α = 5% at the row with θ = 0.50 in Table
3.2.1, it can be found that the sample size needed is 51.

Test for Equivalence

For establishment of equivalence, suppose the true mean difference is 1%
(i.e., ε = 0.01) and the equivalence limit is 5% (i.e., δ = 0.05). According
to (3.2.4), the sample size by normal approximation can be determined by

n1 = n2 =
2(zα + zβ/2)2σ2

(δ − |ε|)2 =
2× (1.64 + 1.28)2 × 0.12

(0.05− 0.01)2
≈ 107.

On the other hand, the sample size can also be obtained by using Table
3.2.1. Note that

θ =
δ − |ε|
σ

=
0.04
0.10

= 0.40.

By referring to the column under α = 5%, β = 0.10 at the row with θ = 0.40
in Table 3.2.1, it can be found that the sample size needed is 108.
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3.2.5 Remarks

The assumption that σ21 = σ22 may not hold. When σ21 �= σ22 , statistical
procedures are necessarily modified. If σ21 and σ22 are unknown, this be-
comes the well-known Behrens-Fisher problem. Extensive literature have
been devoted to this topic in the past several decades. Miller (1997) gave
a comprehensive review of research work done in this area.

In practice, it is suggested that superiority be established by testing
non-inferiority first. Once the null hypothesis of inferiority is rejected, test
for superiority is performed. This test procedure controls the overall type I
error rate at the nominal level α because it is a closed test procedure. More
details regarding closed testing procedures can be found in Marcus, Peritz
and Gabriel (1976).

3.3 Two-Sample Crossover Design

In this section, we consider a 2× 2m replicated crossover design comparing
mean responses of a test drug and a reference drug. Let yijkl be the lth
replicate or response (l = 1, ...,m) observed from the jth subject (j =
1, ..., n) in the ith sequence (i = 1, 2) under the kth treatment (k = 1, 2).
The following model is considered:

yijkl = µk + γik + sijk + eijkl, (3.3.1)

where µk is the kth treatment effect, γik is the fixed effect of the ith sequence
under treatment k, and sijk is the random effect of the jth subject in the ith
sequence under treatment k. (sij1, sij2), i = 1, 2, j = 1, ..., n, are assumed to
be i.i.d. as bivariate normal random variables with mean 0 and covariance
matrix

Σ =
(

σ2BT ρσBTσBR
ρσBTσBR σ2BR

)
.

eij1l and eij2l are assumed to be independent normal random variables with
mean 0 and variance σ2WT or σ2WR (depending on the treatment). Define

σ2D = σ2BT + σ2BR − 2ρσBTσBR.

σ2D is the variability due to the effect of subject-by-treatment interaction,
which reflects the heteroscedasticity of the subject random effect between
the test drug and the reference drug.

Let ε = µ2 − µ1 (test − reference),

ȳijk· =
1
m
(yijk1 + · · ·+ yijkm) and dij = ȳij1· − ȳij2·.
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An unbiased estimate for ε is given by

ε̂ =
1
2n

2∑
i=1

n∑
j=1

dij .

Under model (3.3.1), ε̂ follows a normal distribution with mean ε and vari-
ance σ2m/(2n), where

σ2m = σ2D +
1
m
(σ2WT + σ2WR). (3.3.2)

An unbiased estimate for σ2m can be obtained by

σ̂2m =
1

2(n− 1)

2∑
i=1

n∑
j=1

(dij − d̄i·)2,

where

d̄i· =
1
n

n∑
j=1

dij .

Without loss of of generality, consider ε > 0 (ε < 0) as an indication of
improvement (worsening) of the test drug as compared to the reference
drug. In practice, σm is usually unknown.

3.3.1 Test for Equality

The objective is to test the following hypotheses

H0 : ε = 0 versus Ha : ε �= 0.

The null hypothesis H0 is rejected at α level of significance if∣∣∣∣ ε̂

σ̂m/
√
2n

∣∣∣∣ > tα/2,2n−2.

Under the alternative hypothesis that ε �= 0, the power of this test is given
by

1− T2n−2

(
tα/2,2n−2

∣∣∣∣√2nε
σm

)
+ T2n−2

(
−tα/2,2n−2

∣∣∣∣√2nε
σm

)
.

As a result, the sample size needed to achieve power 1− β can be obtained
by setting the power to 1 − β or, after ignoring a small term ≤ α/2, by
solving

T2n−2

(
tα/2,2n−2

∣∣∣∣√2n|ε|
σm

)
= β.
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Table 3.2.1 with κ = 1 and θ = 2|ε|/σm can be used to obtain n. From
approximation (3.1.5),

n =
(zα/2 + zβ)2σ2m

2ε2
(3.3.3)

for sufficiently large n.

3.3.2 Test for Non-Inferiority/Superiority

Similar to test for non-inferiority/superiority under a parallel design, the
problem can be unified by testing the following hypotheses:

H0 : ε ≤ δ versus Ha : ε > δ,

where δ is the non-inferiority or superiority margin. When δ > 0, the
rejection of the null hypothesis indicates the superiority of test drug against
the control. When δ < 0, the rejection of the null hypothesis indicates the
non-inferiority of the test drug over the control. The null hypothesis H0 is
rejected at the α level of significance if

ε̂− δ

σ̂m/
√
2n

> tα,2n−2.

Under the alternative hypothesis that ε > δ, the power of this test is given
by

1− T2n−2

(
tα,2n−2

∣∣∣∣√2n(ε− δ)
σm

)
.

As a result, the sample size needed to achieve power 1− β can be obtained
by solving

T2n−2

(
tα,2n−2

∣∣∣∣√2n(ε− δ)
σm

)
= β,

which can be done by using Table 3.2.1 with κ = 1 and θ = 2(ε − δ)/σm.
When n is sufficiently large, approximation (3.1.5) leads to

n =
(zα + zβ)2σ2m
2(ε− δ)2

. (3.3.4)

3.3.3 Test for Equivalence

The objective is to test the following hypotheses

H0 : |ε| ≥ δ versus Ha : |ε| < δ.
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The test drug is concluded equivalent to the control in average, i.e., the
null hypothesis H0 is rejected at significance level α when

√
2n(ε̂− δ)
σ̂m

< −tα,2n−2 and
√
2n(ε̂+ δ)
σ̂m

> tα,2n−2.

Under the alternative hypothesis that |ε| < δ, the power of this test is

1− T2n−2

(
tα,2n−2

∣∣∣∣√2n(δ − ε)
σm

)

−T2n−2

(
tα,2n−2

∣∣∣∣√2n(δ + ε)
σm

)
.

As a result, the sample size needed to achieve power 1− β can be obtained
by setting the power to 1− β. Since the power is larger than

1− 2T2n−2

(
tα,2n−2

∣∣∣∣√2n(δ − |ε|)
σm

)
,

a conservative approximation of n can be obtained by solving

T2n−2

(
tα,2n−2

∣∣∣∣√2n(δ − |ε|)
σm

)
=

β

2
,

which can be done by using Table 3.2.1 with κ = 1 and θ = 2(δ− |ε|))/σm.
When n is large, approximation (3.1.5) leads to

n =
(zα + zβ/2)2σ2m

2(δ − |ε|)2 . (3.3.5)

Note that an important application of testing for equivalence under
crossover design is testing average bioequivalence (see Section 10.2). By
applying a similar idea as introduced by Chow and Liu (2000), a different
approximate sample size formula can be obtained as

n =

{
(zα+zβ/2)

2σ2
m

2δ2 if ε = 0
(zα+zβ)

2σ2
m

2(δ−|ε|)2 if ε �= 0
.
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3.3.4 An Example

Therapeutic Equivalence

Consider a standard two-sequence, two-period crossover design (m = 1)
for trials whose objective is to establish therapeutic equivalence between
a test drug and a standard therapy. The sponsor is interested in hav-
ing an 80% (1 − β = 0.8) power for establishing therapeutic equivalence.
Based on the results from previous studies, it is estimated that the vari-
ance is 20% (σm = 0.20). Suppose the true mean difference is −10% (i.e.,
ε = µ2(test) − µ1(reference) = −0.10). Furthermore, we assume that the
equivalence limit is 25% (i.e., δ = 0.25). According to (3.3.5),

n =
(zα + zβ/2)2σ2m

2(δ − |ε|)2 =
(1.64 + 1.28)20.202

2(0.25− 0.10)2
≈ 8.

On the other hand, the sample size calculation can also be performed by
using Table 3.2.1. Note that

θ =
2(δ − |ε|)

σm
=

2(0.25− | − 0.10|)
0.20

= 1.50.

By referring to the column under α = 5%, 1 − β = 90% at the row with
θ = 1.50 in Table 3.2.1, it can be found that the sample size needed is 9.

Non-Inferiority

Suppose that the sponsor is interested in showing non-inferiority of the
test drug against the reference with a non-inferiority margin of −20%
(δ = −20%). According to (3.3.4), the sample size needed is given by

n =
(zα + zβ)2σ2m
2(ε− δ)2

=
(1.64 + 0.84)20.202

2(−0.1− (−0.2))2
≈ 13.

On the other hand, the sample size calculation can also be performed by
using Table 3.2.1. Note that

θ =
2(ε− δ)
σm

=
2(−0.10− (−0.20))

0.20
= 1.00.

By referring to the column under α = 5%, 1 − β = 80% at the row with
θ = 1.00 in Table 3.2.1, it can be found that the sample size needed is 14.

3.3.5 Remarks

Sample size calculation for assessment of bioequivalence under higher-order
crossover designs including Balaam’s design, two-sequence dual design, and
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four-period optimal design with or without log-transformation can be found
in Chen, Li, and Chow (1997). For assessment of bioequivalence, the FDA
requires that a log-transformation of the pharmacokinetic (PK) responses
be performed before analysis.

In this section, we focus on 2× 2m replicated crossover designs. When
m = 1, it reduces to the standard two-sequence, two-period crossover de-
sign. The standard 2 × 2 crossover design suffers the following disadvan-
tages: (i) it does not allow independent estimates of the intra-subject vari-
abilities because each subject only receives each treatment once, (ii) the
effects of sequence, period, and carry-over are confounded and cannot be
separated under the study design. On the other hand, the 2× 2m (m ≥ 2)
replicated crossover design not only provides independent estimates of the
intra-subject variabilities, but also allows separate tests of the sequence,
period, and carry-over effects under appropriate statistical assumption.

3.4 Multiple-Sample One-Way ANOVA

Let xij be the jth subject from the ith treatment group, , i = 1, ..., k,
j = 1, ..., n. Consider the following one-way analysis of variance (ANOVA)
model:

xij = µi + εij ,

where µi is the fixed effect of the ith treatment and εij is a random error
in observing xij . It is assumed that εij are i.i.d. normal random variables
with mean 0 and variance σ2. Let

SSE =
k∑
i=1

n∑
j=1

(xij − x̄i·)2

SSA =
k∑
i=1

(x̄i· − x̄··)2,

where

x̄i· =
1
n

n∑
j=1

xij and x̄·· =
1
k

k∑
i=1

x̄i·.

Then, σ2 can be estimated by

σ̂2 =
SSE

k(n− 1)
. (3.4.1)
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3.4.1 Pairwise Comparison

In practice, it is often of interest to compare means among treatments under
study. Thus, the hypotheses of interest are

H0 : µi = µj versus Ha : µi �= µj

for some pairs (i, j). Under the above hypotheses, there are k(k − 1)/2
possible comparisons. For example, if there are four treatments in the study,
then we can also a maximum of six pairwise comparisons. In practice, it
is well recognized that multiple comparison will inflate the type I error.
As a result, it is suggested that an adjustment be made for controlling the
overall type I error rate at the desired significance level. Assume that there
are τ comparisons of interest, where τ ≤ k(k − 1)/2. We reject the null
hypothesis H0 at the α level of significance if∣∣∣∣√n(x̄i· − x̄j·)√

2σ̂

∣∣∣∣ > tα/(2τ),k(n−1).

The power of this test is given by

1− Tk(n−1)

(
tα/(2τ),k(n−1)

∣∣∣∣√nεij√
2σ

)
+ Tk(n−1)

(
−tα/(2τ),k(n−1)

∣∣∣∣√nεij√
2σ

)

≈ 1− Tk(n−1)

(
tα/(2τ),k(n−1)

∣∣∣∣√n|εij |√
2σ

)
,

where εij = µi − µj . As a result, the sample size needed to achieve power
1− β in for detecting a clinically meaningful difference between µi and µj
is

n = max{nij , for all interested comparison}, (3.4.2)

where nij is obtained by solving

Tk(nij−1)

(
tα/(2τ),k(nij−1)

∣∣∣∣√nij |εij |√
2σ

)
= β.

When the sample size is sufficiently large, approximately

nij =
2(zα/(2τ) + zβ)2σ2

ε2ij
.

3.4.2 Simultaneous Comparison

The hypotheses of interest is

H0 : µ1 = µ2 = · · · = µk

versus Ha : µi �= µj for some 1 ≤ i < j ≤ k.
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The null hypothesis H0 is rejected at the α level of significance if

FA =
nSSA/(k − 1)
SSE/[k(n− 1)]

> Fα,k−1,k(n−1),

where Fα,k−1,k(n−1) is the α upper quantile of the F-distribution with k−1
and k(n − 1) degrees of freedom. Under the alternative hypothesis, the
power of this test is given by

P (FA > Fα,k−1,k(n−1)) ≈ P (nSSA > σ2χ2α,k−1),

where χ2α,k−1 is the αth upper quantile for a χ2 distribution with k −
1 degrees of freedom and the approximation follows from the fact that
SSE/[k(n−1)] is approximately σ2 and χ2α,k−1 ≈ (k−1)Fα,k−1,k(n−1) when
k(n− 1) is large. Under the alternative hypothesis, nSSA/σ2 is distributed
as a non-central χ2 distribution with degrees of freedom k − 1 and non-
centrality parameter λ = n∆, where

∆ =
1
σ2

k∑
i=1

(µi − µ̄)2, µ̄ =
1
k

k∑
j=1

µj .

Hence, the sample size needed to achieve power 1 − β can be obtained by
solving

χ2k−1

(
χ2α,k−1

∣∣λ) = β,

where χ2k−1(·|λ) is the cumulative distribution function of the non-central
χ2 distribution with degrees of freedom k−1 and non-centrality parameter
λ. Some values of λ needed to achieve different power (80% and 90%) with
different significance level (1% and 5%) for different number of treatment
groups are listed in Table 3.4.1. Once an initial value ∆ is given and a λ is
obtained from Table 3.4.1, the required sample size is n = λ/∆.

3.4.3 An Example

To illustrate the use of Table 3.4.1 for sample size determination when com-
paring more than two treatments, consider the following example. Suppose
that we are interested in conducting a four-arm (k = 4) parallel group,
double-blind, randomized clinical trial to compare four treatments. The
comparison will be made with a significance level of α = 0.05. Assume that
the standard deviation within each group is σ = 3.5 and that the true mean
responses for the four treatment groups are given by

µ1 = 8.25, µ2 = 11.75, µ3 = 12.00, and µ4 = 13.00.

Then, ∆2 = 1.05. From Table 3.4.1, for a four-group parallel design (k = 4),
the non-centrality parameter λ needed to achieve a power of 80% (β =
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Table 3.4.1: λ Values Satisfying χ2k−1(χ
2
α,k−1|λ) = β

1− β = 0.80 1− β = 0.90
k α = 0.01 α = 0.05 α = 0.01 α = 0.05
2 11.68 7.85 14.88 10.51
3 13.89 9.64 17.43 12.66
4 15.46 10.91 19.25 14.18
5 16.75 11.94 20.74 15.41
6 17.87 12.83 22.03 16.47
7 18.88 13.63 23.19 17.42
8 19.79 14.36 24.24 18.29
9 20.64 15.03 25.22 19.09
10 21.43 15.65 26.13 19.83
11 22.18 16.25 26.99 20.54
12 22.89 16.81 27.80 21.20
13 23.57 17.34 28.58 21.84
14 24.22 17.85 29.32 22.44
15 24.84 18.34 30.04 23.03
16 25.44 18.82 30.73 23.59
17 26.02 19.27 31.39 24.13
18 26.58 19.71 32.04 24.65
19 27.12 20.14 32.66 25.16
20 27.65 20.56 33.27 25.66

0.20) at 5% level of significance is 10.91. As a result, the sample size per
treatment group can be obtained as

n =
10.91
1.05

≈ 11.

3.4.4 Remarks

In practice, a question concerning when pairwise comparisons or a simul-
taneous comparison should be used often rises. To address this question,
consider the following example. Suppose a sponsor is investigating a phar-
maceutical compound for treatment of patients with cancer. The investi-
gator is not only interested in showing efficacy of the test drug but also in
establishing dose response curve. To achieve this study objective, a four-
group parallel trial is designed with four treatments: P(Placebo), A(10
mg), B(20 mg), and C(30 mg). Let µp, µA, µB, and µC represent the true
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mean of the clinical response under the four treatments, respectively. Since
the primary objective of the trial is to demonstrate the efficacy of the test
drug. The following hypotheses for pairwise comparison with the placebo
are useful for demonstration of efficacy of the test drug.

H0 : µP = µA versus Ha : µP �= µA

H0 : µP = µB versus Ha : µP �= µB

H0 : µP = µC versus Ha : µP �= µC .

On the other hand, the following hypotheses for simultaneous comparison
among doses is usually considered for studying dose response

H0 : µA = µB = µC versus Ha : not H0.

Note that in practice, it is often of interest to test the null hypothesis
of no treatment difference against an ordered alternative hypothesis, e.g.,
Ha : µA < µB < µC . In this case, some robust contrast-based trend tests
can be used for sample size calculation.

3.5 Multiple-Sample Williams Design

In clinical research, crossover design is attractive because each subject
serves as his/her control. In addition, it removes the inter-subject vari-
ability from comparison under appropriate statistical assumption. For ex-
ample, the United States Food and Drug Administration (FDA) identifies
crossover design as the design of choice for bioequivalence trials. As a re-
sult, a two-sequence, two-period crossover design comparing two treatments
is often considered in clinical research. In practice, it is often of interest
to compare more than two treatments under a crossover design. When
there are more than two treatments, it is desirable to compare pairwise
treatment effects with the same degrees of freedom. Hence, it is suggested
that Williams design be considered. Under a Williams design, the following
model is assumed:

yijl = Pj′ + γi + µl + eijl, i, l = 1, ..., k, j = 1, ..., n,

where yijl is the response from the jth subject in the ith sequence under
the lth treatment, Pj′ is the fixed effect for the j′ period, j′ is the number of
the period for the ith sequence’s lth treatment,

∑a
j=1 Pj = 0, γi is the fixed

sequence effect, µj is the fixed treatment effect, and eijl is a normal random
variable with mean 0 and variance σ2il. For fixed i and l, eijl, j = 1, ..., n are
independent and identically distributed. For fixed i and j, eijl, l = 1, ..., a
are usually correlated because they all come from the same subject.
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In bioequivalence trials, Williams designs comparing three treatments
(a 6× 3 crossover design) or four treatments (a 4× 4 crossover design) are
commonly employed. The construction of a Williams design can be found
in Jones and Kenward (1989) and Chow and Liu (1992, 2000). Note that if
k is an odd integer, a Williams design results in a 2k × k crossover design.
On the other hand, if k is an even integer, a Williams design reduces to a
k × k crossover design.

It should be noted that the sequence-by-period interaction is not in-
cluded in the above model. This is because that the responses from a given
sequence’s given treatment are all from the same period. Therefore, the
fixed effect of the sequence-by-period interaction cannot be separated from
the treatment effect without appropriate statistical assumption.

Without loss of generality, assume we want to compare treatments 1
and 2. Let

dij = yij1 − yij2.

Then, the true mean difference between treatment 1 and 2 can be estimated
by

ε̂ =
1
kn

k∑
i=1

n∑
j=1

dij ,

which is normally distributed with mean ε = µ1−µ2 and variance σ2d/(kn),
where σ2d is defined to be the variance of dij and can be estimated by

σ̂2d =
1

k(n− 1)

k∑
i=1

n∑
j=1

dij −
1
n

n∑
j′=1

dij′

2

.

3.5.1 Test for Equality

The objective is to test

H0 : ε = 0 versus Ha : ε �= 0.

The null hypothesis H0 is rejected at α level of significance if∣∣∣∣ ε̂

σ̂d/
√
kn

∣∣∣∣ > tα/2,k(n−1).

Under the alternative hypothesis that ε �= 0, the power of this test is ap-
proximately

1− Tk(n−1)

(
tα/2,k(n−1)

∣∣∣∣
√
knε

σd

)
.
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The sample size needed to achieve power 1− β can be obtained by setting
the power to 1−β. When n is sufficiently large, approximation (3.1.5) leads
to

n =
(zα/2 + zβ)2σ2d

kε2
. (3.5.1)

3.5.2 Test for Non-Inferiority/Superiority

The problem of testing superiority and non-inferiority can be unified by the
following hypotheses:

H0 : ε ≤ δ versus Ha : ε > δ,

where δ is the superiority or non-inferiority margin. When δ > 0, the
rejection of the null hypothesis indicates the superiority of test drug over
the control. When δ < 0, the rejection of the null hypothesis indicates the
non-inferiority of the test drug against the control. The null hypothesis H0

is rejected at α level of significance if

ε̂− δ

σ̂d/
√
kn

> tα,k(n−1).

Under the alternative hypothesis that ε > δ, the power of this test is given
by

1− Tk(n−1)

(
tα,k(n−1)

∣∣∣∣ ε− δ

σd/
√
kn

)
.

As a result, the sample size needed to achieve power 1− β can be obtained
by setting the power to 1− β. When n is sufficiently large, approximation
(3.1.5) leads to

n =
(zα + zβ)2σ2d
k(ε− δ)2

. (3.5.2)

3.5.3 Test for Equivalence

The objective is to test the following hypotheses

H0 : |ε| ≥ δ versus Ha : |ε| < δ.

The test drug is concluded equivalent to the control in average if the null
hypothesis H0 is rejected at significance level α, i.e.,

√
kn(ε̂− δ)
σ̂d

< −tα,k(n−1) and

√
kn(ε̂+ δ)
σ̂d

> tα,k(n−1).
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Under the alternative hypothesis that |ε| < δ, the power of the above test
is

1− Tk(n−1)

(
tα,k(n−1)

∣∣∣∣
√
kn(δ − ε)
σd

)
− Tk(n−1)

(
tα,k(n−1)

∣∣∣∣
√
kn(δ + ε)
σd

)
.

The sample size needed to achieve power 1− β can be obtained by setting
the power to 1− β. A conservative approximation to the required sample
size can be obtained by solving

Tk(n−1)

(
tα,k(n−1)

∣∣∣∣
√
kn(δ − |ε|)

σd

)
=

β

2
.

When n is large, approximation (3.1.5) leads to

n =
(zα + zβ/2)2σ2d
k(δ − |ε|)2 .

3.5.4 An Example

Consider a randomized, placebo-controlled, double-blind, three-way (three-
sequence, three-period) crossover trial, which is known as a Williams 6× 3
(k = 3) crossover trial comparing cardiovascular safety of three different
treatments (A, B, and C). Based on the results from the pilot study, it is
estimated that the standard deviation is 0.10 (i.e. δd = 0.10). Suppose the
true mean for A, B, and C are given by 0.20, 0.15, 0.25, respectively. At
the 5% level of significance, the sample size needed for achieving a power
of 80% to reject

H0 : µi = µj vs. Ha : µi �= µj

can be obtained by

nAB =
(1.96 + 0.84)20.102

6(0.20− 0.15)2
≈ 6

nAC =
(1.96 + 0.84)20.102

6(0.20− 0.25)2
≈ 6

nBC =
(1.96 + 0.84)20.102

6(0.15− 0.25)2
≈ 2.

As a result, the sample size need per sequence is given by

n = max{6, 6, 2} = 6.

It should be noted that the sample size can also be obtained by using the
non-central t-distribution like before. However, since there are 6 sequences
in this example, which alternates the degrees of freedom. Both Tables 3.1.1
and 3.2.1 cannot be used.
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3.6 Practical Issues

At the planning stage of a clinical trial, sample size calculation is necessarily
performed based on appropriate statistical test for the hypotheses that
reflect the study objectives under a valid study design. In this section,
some practical issues that are commonly encountered are discussed.

3.6.1 One-Sided Versus Two-Sided Test

In this chapter, statistical tests used for sample size calculation under ei-
ther a parallel design or a crossover design can be classified into either a
one-sided test (i.e., test for non-inferiority and test for superiority) or a
two-sided test (i.e., test for equality and test for equivalence). In clinical
research, test for non-inferiority or test for superiority are also known as
one-sided equivalence test. As discussed in Chapter 1, it is very controver-
sial to use a one-sided test or a two-sided test in clinical research. When
switching from a two-sided test for therapeutic equivalence to a one-sided
test for non-inferiority under a parallel design with 1 to 1 allocation, sample
size could be reduced substantially at a fixed α level of significance. Suppose
that the true mean difference between two treatments is ε = 0. Based on
(3.2.3) and (3.2.4), the ratio of the sample sizes needed for non-inferiority
and therapeutic equivalence is given by

nnon-inferiority
nequivalence

=
(zα + zβ)2

(zα + zβ/2)2
.

Table 3.6.1 summarizes possible sample size reduction when switching
from testing equivalence to testing non-inferiority (one-sided equivalence).
As it can be seen from Table 3.6.1, the sample size could be reduced by
27.8% when switching from testing equivalence to testing non-inferiority at
the α = 0.05 level of significance but still maintain the same power of 80%.

3.6.2 Parallel Design Versus Crossover Design

As indicated in the previous sections, sample size required for achieving
a desired power under a crossover design may be less than that under a
parallel design. Under a parallel design, treatment comparison is made
based on both inter-subject and intra-subject variabilities, whereas treat-
ment comparison is made based on the intra-subject variability under a
crossover design under appropriate statistical assumption. If both designs
are equally efficient regardless their relative merits and disadvantages, then
the choice of the design should be based on an evaluation of the relative
cost-effectiveness between the increase of an additional treatment period in
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Table 3.6.1: Sample Size Reduction from Testing Equivalence
to Testing Non-Inferiority

α β Sample Size Reduction(%)
0.10 0.1 23.3

0.2 31.4
0.05 0.1 20.9

0.2 27.8
0.01 0.1 17.5

0.2 22.9

a crossover design with respect to the increase of additional subjects in a
parallel design.

Consider the sample size in testing equality or equivalence. The ratio
of the sample size for a 2× 2 crossover design (m = 1) over the sample size
for a parallel deisgn is given by

ncrossover
nparallel

=
σ2WT + σ2WR + σ2D

σ2WR + σ2WT + σ2BR + σ2BT
.

Table 3.6.2 summarizes possible sample size reduction when switching from
a parallel design to a crossover design under the assumption that σWT =
σWR = σBR = σBR = 1. As it can be seen, the sample size could be
reduced by 30% by switching a parallel design to a crossover design when
ρ = 0.6.

3.6.3 Sensitivity Analysis

Sample size calculation is usually performed by using initial values of the
difference in mean responses between treatment groups (i.e., ε), the stan-
dard deviation (i.e., σ), and the clinically meaningful difference or a pre-
specified superiority/non-inferiority margin or equivalence limit (i.e., δ).
Any slight or moderate deviations from these initial values could result in
a substantial change in the calculated sample sizes. Thus, it is suggested
that a sensitivity analysis with respect to these initial values be performed.
Sensitivity analysis provides useful information regarding what to expect if
a deviation in any of the initial values shall occur. For example, consider a
one-sample problem

H0 : µ = µ0 versus Ha : µ �= µ0.
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Table 3.6.2: Sample Size Reduction from Parallel Design
to Crossover Design

ρ Sample Size Reduction(%)
0.0 0.00
0.1 0.05
0.2 0.10
0.3 0.15
0.4 0.20
0.5 0.25
0.6 0.30
0.7 0.35
0.8 0.40
0.9 0.45
1.0 0.50

Table 3.6.3: Sample Size Reduction When Variability Decreases

c Sample Size Reduction(%)
1.0 0.00
0.9 0.19
0.8 0.36
0.7 0.51
0.6 0.64
0.5 0.75
0.4 0.84
0.3 0.91
0.2 0.96
0.1 0.99
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According to (3.1.2), if the standard deviation changes from σ to cσ for some
c > 0, the ratio of the sample sizes needed before and after the change is
given by

ncσ
nσ

= c2,

which is independent of the choice of α and β. Table 3.6.3 summarizes
possible sample size reduction when the standard deviation changes from σ
to cσ. People in practice may want to see how much the sample size would
increase when the variability increases, which is equivalent to study how
much sample size would be saved if the variability decreases. As a result,
without loss of generality, we would assume c < 1.

From Table 3.6.3, when the standard deviation decreases by 20% (i.e.,
c = 0.8), the sample size could be reduced by 36% when performing a test
for equivalence at the α = 0.05 level of significance but still maintain the
same power of 80%.
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Chapter 4

Large Sample Tests for
Proportions

In clinical research, primary clinical endpoints for evaluation of the treat-
ment effect of the compound under study could be discrete variables, for
example, clinical response (e.g., complete response, partial response, and
stable disease), survival in cancer trials, and the presence of adverse events
in clinical trials. For evaluation of treatment effect based on discrete clinical
endpoint, the proportions of events that have occurred between treatment
groups are often compared. Under a given study design, statistical tests
for specific hypotheses such as equality or equivalence/non-inferiority can
be carried out based on the large sample theory in a similar manner as
continuous responses discussed in Chapter 3. In this chapter, our primary
focus will be placed on comparing proportions between treatment groups
with binary responses.

The remaining sections of this chapter are organized as follows. In the
next section, a general procedure of power analysis for sample size calcula-
tion for testing one-sample problem is given. Sections 4.2 and 4.3 summa-
rize statistical procedures for sample size calculation for a two-sample prob-
lem under a parallel-group design and a crossover design, respectively. Sec-
tions 4.4 and 4.5 discuss statistical procedures for testing a multiple-sample
problem under a parallel design and a crossover design (Williams design),
respectively. Formulas for sample size calculation for comparing relative
risks between treatment groups under a parallel design and a crossover de-
sign are given in Section 4.6 and 4.7, respectively. Section 4.8 provides some
practical issues regarding sample size calculation for comparing proportions
in clinical research.

83
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4.1 One-Sample Design

Let xi, i = 1, ..., n be the binary response observed from the ith subject.
In clinical research, xi could be the indicator for the response of tumor in
cancer trials, i.e., xi = 1 for responder (e.g., complete response plus partial
response) or xi = 0 for non-responder. It is assumed that xi’s are i.i.d with
P (xi = 1) = p, where p is the true response rate. Since p is unknown, it is
usually estimated by

p̂ =
1
n

n∑
i=1

xi.

Also, let ε = p − p0 be the difference between the true response rate of
a test drug (p) and a reference value (p0). Without loss of generality,
consider ε > 0 (ε < 0) an indication of improvement (worsening) of the
test drug as compared to the reference value. In practice, it is of interest
to test for equality (i.e., p = p0), non-inferiority (i.e., p − p0 is greater
than or equal to a pre-determined non-inferiority margin), superiority (i.e.,
p−p0 is greater than a pre-determined superiority margin), and equivalence
(i.e., the absolute difference between p and p0 is within a difference of
clinical importance). In what follows, formulas for sample size calculation
for testing equality, non-inferiority/superiority, and equivalence are derived.
The formulas provide required sample sizes for achieving a desired power
under the alternative hypothesis.

4.1.1 Test for Equality

To test whether there is a difference between the true response rate of
the test drug and the reference value, the following hypotheses are usually
considered:

H0 : p = p0 versus Ha : p �= p0.

or
H0 : ε = 0 versus Ha : ε �= 0.

Under the null hypothesis, the test statistic
√
nε̂√

p̂(1− p̂)
, (4.1.1)

where ε̂ = p̂−p0 approximately has a standard normal distribution for large
n. Thus, we reject the null hypothesis at the α level of significance if∣∣∣∣∣

√
nε̂√

p̂(1− p̂)

∣∣∣∣∣ > zα/2.
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Under the alternative hypothesis that p = p0 + ε, where ε �= 0, the power
of the above test is approximately

Φ

( √
n|ε|√

p(1− p)
− zα/2

)
.

As a result, the sample size needed for achieving a desired power of 1− β
can be obtained by solving the following equation

√
n|ε|√

p(1− p)
− zα/2 = zβ .

This leads to

n =
(zα/2 + zβ)2p(1− p)

ε2
. (4.1.2)

To use (4.1.2), information regarding p is needed, which may be obtained
through a pilot study or based on historical data. Note that p(1 − p) is a
quadratic function symmetric about 0.5 on its domain (0, 1). Thus, using
(4.1.2) requires an upper bound on p and a lower bound on ε2. For example,
if we know that p ≤ p̃, 1 − p ≤ p̃, and ε2 ≥ ε̃2, where p̃ is a known value
between 0 and 0.5 and ε̃2 is a known positive value, then p(1−p) ≤ p̃(1− p̃)
and a conservative n can be obtained by using (4.1.2) with ε and p replaced
by ε̃ and p̃, respectively.

4.1.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 : p− p0 ≤ δ versus Ha : p− p0 > δ

or
H0 : ε ≤ δ versus Ha : ε > δ,

where δ is the non-inferiority or superiority margin. When δ > 0, the re-
jection of the null hypothesis indicates superiority over the reference value.
When δ < 0, the rejection of the null hypothesis implies non-inferiority
against the reference value.

When p− p0 = δ, the test statistic
√
n(ε̂− δ)√
p̂(1− p̂)

approximately has a standard normal distribution for large n. Thus, we
reject the null hypothesis at the α level of significance if

√
n(ε̂− δ)√
p̂(1− p̂)

> zα.
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If ε > δ, the power of the above test is given by

Φ

(√
n(ε− δ)√
p(1− p)

− zα

)
.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving the following equation

√
n(ε− δ)√
p(1− p)

− zα = zβ.

This leads to

n =
(zα + zβ)2p(1− p)

(ε− δ)2
. (4.1.3)

4.1.3 Test for Equivalence

To establish equivalence, the following hypotheses are usually considered

H0 : |p− p0| ≥ δ versus Ha : |p− p0| < δ

or
H0 : |ε| ≥ δ versus Ha : |ε| < δ.

The proportion of the responses is concluded to be equivalent to the ref-
erence value of p0 if the null hypothesis is rejected at a given significance
level.

The above hypotheses can be tested using two one-sided test procedures
as described in Chapter 3. The null hypothesis is rejected at approximately
α level of significance if

√
n(ε̂− δ)√
p̂(1− p̂)

< −zα and
√
n(ε̂+ δ)√
p̂(1− p̂)

> zα.

When n is large, the power of this test is approximately

Φ

(√
n(δ − ε)√
p(1− p)

− zα

)
+Φ

(√
n(δ + ε)√
p(1− p)

− zα

)
− 1

≥ 2Φ

(√
n(δ − |ε|)√
p(1− p)

− zα

)
− 1.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving the following equations

√
n(δ − |ε|)√
p(1− p)

− zα = zβ/2,

© 2008 by Taylor & Francis Group, LLC



4.1. One-Sample Design 87

which leads to

n =
(zα + zβ/2)2p(1− p)

(δ − |ε|)2 . (4.1.4)

4.1.4 An Example

To illustrate the use of sample size formulas, consider the same example
concerning a study of osteoporosis in post-menopausal women as described
in Section 3.1.4. Suppose in addition to the study of the change in bone
density post-treatment, it is also of interest to evaluate the treatment effect
in terms of the response rate at the end of the study. Sample size calculation
can then be carried out based on the response rate for achieving a desired
power. The definition of a responder, however, should be given in the
study protocol prospectively. For example, a subject may be defined as
a responder if there is an improvement in bone density by more than one
standard deviation (SD) or 30% of the measurements of bone density.

Test for Equality

Suppose that the response rate of the patient population under study after
treatment is expected to be around 50% (i.e., p = 0.50). By (4.1.2), at
α = 0.05, the required sample size for having an 80% power (i.e., β = 0.2)
for correctly detecting a difference between the post-treatment response
rate and the reference value of 30% (i.e., p0 = 0.30) is

n =
(zα/2 + zβ)2p(1− p)

(p− p0)2
=

(1.96 + 0.84)20.5(1− 0.5)
(0.5− 0.3)2

= 49.

Test for Non-Inferiority

For prevention of progression from osteopenia to osteoporosis, we wish to
show that the majority of patients whose change in bone density after
treatment is at least as good as the reference value (30%) (p0 = 30%). Also
assume that a difference of 10% in responder rate is considered of no clinical
significance (δ = −10%). Assume the true response rate is 50% (p = 50%).
According to (4.1.3), at α=0.05, the required sample size for having an 80%
power (i.e., β=0.2) is

n =
(zα + zβ)2p(1− p)

(p− p0 − δ)2
=

(1.64 + 0.84)20.5(1− 0.5)
(0.5− 0.3 + 0.1)2

≈ 18.
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Test for Equivalence

Assume that one brand name drug for osteoporosis on the market has a
responder rate of 60% (i.e., p0 = 0.60). It is believed that a 20% difference
in responder rate is of no clinical significance (i.e., δ = 0.2). Hence, the
investigator wants to show the study drug is equivalent to the market drug
in terms of responder rate. By (4.1.4), at α=0.05, assuming that the true
response rate is 60% (i.e., p = 0.60), the sample size required for achieving
an 80% power is

n =
(zα + zβ/2)2p(1− p)

(δ − |p− p0|)2
=

(1.64 + 1.28)2 × 0.6(1− 0.6)
(0.2− |0.6− 0.6|)2 ≈ 52.

4.1.5 Remarks

For one-sample test for equality, there exists another approach, which is
very similar to (4.1.1) but not exactly the same. This approach will reject
the null hypothesis that ε = 0 if∣∣∣∣∣

√
nε̂√

p0(1− p0)

∣∣∣∣∣ > zα/2. (4.1.5)

Since (4.1.1) estimates the variance of
√
nε̂ without any constraints, we

refer to (4.1.1) as the unconditional method. On the other hand, since
(4.1.5) estimates the variance of

√
nε̂ conditional on the null hypothesis,

we refer to (4.1.5) as the conditional method. Note that both (4.1.1) and
(4.1.5) have asymptotic size α when n is sufficiently large. Then, which
one should be used is always a dilemma because one is not necessarily more
powerful than the other. For the purpose of completeness, the sample size
calculation formula based on (4.1.5) is given below. The same idea can be
applied to the testing problems of non-inferiority/superiority.

Under the alternative hypothesis (ε �= 0), the power of the test defined
by (4.1.5) is approximately

Φ

(√
n|ε| − zα/2

√
p0(1− p0)√

p(1− p)

)
.

As a result, the sample size needed for achieving a desired power of 1− β
can be obtained by solving the following equation:

√
n|ε| − zα/2

√
p0(1− p0)√

p(1− p)
= zβ .

This leads to

n =
[zα/2

√
p0(1− p0) + zβ

√
p(1− p)]2

ε2
.
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4.2 Two-Sample Parallel Design

Let xij be a binary response from the jth subject in the ith treatment
group, j = 1, ..., ni, i = 1, 2. For a fixed i, it is assumed that xij ’s are i.i.d.
with P (xij = 1) = pi. In practice, pi is usually estimated by the observed
proportion in the ith treatment group:

p̂i =
1
ni

ni∑
j=1

xij .

Let ε = p1 − p2 be the difference between the true mean response rates of
a test drug (p1) and a control (p2). Without loss of generality, consider
ε > 0 (ε < 0) an indication of improvement (worsening) of the test drug as
compared to the control value. In what follows, formulas for sample size
calculation to achieve a desired power under the alternative hypothesis are
derived for testing equality, non-inferiority/superiority, and equivalence.

4.2.1 Test for Equality

To test whether there is a difference between the mean response rates of
the test drug and the reference drug, the following hypotheses are usually
considered:

H0 : ε = 0 versus Ha : ε �= 0.

We reject the null hypothesis at the α level of significance if∣∣∣∣∣ p̂1 − p̂2√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2

∣∣∣∣∣ > zα/2. (4.2.1)

Under the alternative hypothesis that ε �= 0, the power of the above test is
approximately

Φ

(
|ε|√

p1(1− p1)/n1 + p2(1− p2)/n2
− zα/2

)
.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by the following equation:

|ε|√
p1(1− p1)/n1 + p2(1− p2)/n2

− zα/2 = zβ.

This leads to

n1 = κn2

n2 = (zα/2+zβ)
2

ε2

[
p1(1−p1)
κ + p2(1− p2)

]
.

(4.2.2)
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4.2.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 : ε ≤ δ versus Ha : ε > δ,

where δ is the superiority or non-inferiority margin. When δ > 0, the
rejection of the null hypothesis indicates the superiority of the test drug
over the control. When δ < 0, the rejection of the null hypothesis indicates
the non-inferiority of the test drug against the control.

We reject the null hypothesis at the α level of significance if

p̂1 − p̂2 − δ√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2

> zα.

Under the alternative hypothesis that ε > δ, the power of the above test is
approximately

Φ

(
ε− δ√

p1(1− p1)/n1 + p2(1− p2)/n2
− zα

)
.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving

ε− δ√
p1(1− p1)/n1 + p2(1− p2)/n2

− zα = zβ ,

which leads to

n1 = κn2

n2 = (zα+zβ)
2

(ε−δ)2
[
p1(1−p1)
κ + p2(1− p2)

]
.

(4.2.3)

4.2.3 Test for Equivalence

The objective is to test the following hypotheses:

H0 : |ε| ≥ δ versus Ha : |ε| < δ.

The null hypothesis is rejected and the test drug is concluded to be equiv-
alent to the control if

p̂1 − p̂2 − δ√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2

< −zα
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and
p̂1 − p̂2 + δ√

p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2
> zα.

Under the alternative hypothesis that |ε| < δ, the power of the above test
is approximately

2Φ

(
δ − |ε|√

p1(1− p1)/n1 + p2(1− p2)/n2
− zα

)
− 1.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving the following equation:

δ − |ε|√
p1(1− p1)/n1 + p2(1− p2)/n2

− zα = zβ/2,

which leads to

n1 = κn2

n2 = (zα+zβ/2)
2

(δ−|ε|)2
[
p1(1−p1)
κ + p2(1− p2)

]
.

(4.2.4)

4.2.4 An Example

Consider the following example concerning the evaluation of anti-infective
agents in the treatment of patients with skin and skin structure infections.
As it is well known, gram-positive and gram-negative pathogens are com-
monly associated with skin and skin structure infections such as strep-
tococci, staphylococci, and various strains of enterobacteriaceae. For the
evaluation of the effectiveness of a test antibiotic agent, clinical assessments
and cultures are usually done at a post-treatment visits (e.g., between 4 and
8 days) after treatment has been completed but prior to treatment with an-
other anti-microbial agent. If the culture is positive, the pathogen(s) is usu-
ally identified and susceptibility testing is performed. The effectiveness of
therapy is usually assessed based on clinical and bacteriological responses at
post-treatment visit. For example, clinical responses may include cure (e.g.,
no signs of skin infection at post-treatment visits), improvment (e.g., the
skin infection has resolved to the extent that no further systemic antibiotic
therapy is needed based on the best judgment of the investigator), failure
(e.g., lack of significant improvement in the signs and symptoms of the skin
infection at or before post-treatment visits such that a change in antibiotic
treatment is required). On the other hand, bacteriological responses may
include cure (e.g., all pathogens eradicated at post-treatment day 4-8 or
material suitable for culturing has diminished to a degree that proper cul-
tures cannot be obtained), colonization (e.g., isolation of pathogen(s) from
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the original site of infection in the absence of local or systemic signs of infec-
tion at post-treatment visits), and failure (e.g., any pathogen(s) isolated at
post-treatment visits coupled with the investigator’s decision to prescribe
alternate antibiotic therapy).

Suppose that a pharmaceutical company is interested in conducting a
clinical trial to compare the efficacy, safety, and tolerability of two anti-
microbial agents when administered orally once daily in the treatment of
patients with skin and skin structure infections. In what follows, we will
consider the situations where the intended trial is for (i) testing equality of
mean cure rates, (ii) testing non-inferiority or superiority of the test drug
as compared to the active control agent, and (iii) testing for therapeutic
equivalence. For this purpose, the following assumptions are made. First,
sample size calculation will be performed for achieving an 80% power (i.e.,
β = 0.2) at the 5% level of significance (i.e., α = 0.05).

Test for Equality

In this example, suppose that a difference of ε = 20% in clinical response
of cure is considered of clinically meaningful difference between the two
anti-microbial agents. By (4.2.2), assuming that the true cure rate for the
active control agent is 65% (p1 = 0.80 and p2 = p1+ε = 0.85), respectively,
the sample size with κ = 1 (equal allocation) can be determined by

n1 = n2 =
(zα/2 + zβ)2(p1(1− p1) + p2(1− p2))

ε2

=
(1.96 + 0.84)2(0.65(1− 0.65) + 0.85(1− 0.85))

0.22
≈ 70.

Test for Non-Inferiority

Now, suppose it is of interest to establish non-inferiority of the test drug as
compared to the active control agent. Similarly, we consider the difference
less than 10% is of no clinical importance. Thus, the non-inferiority margin
is chosen to be 10% (i.e., δ = −0.10). Also, suppose the true mean cure
rates of the treatment agents and the active control are 85% and 65%, re-
spectively. Then, by (4.2.3), the sample size with κ = 1 (equal allocation)
can be determined by

n1 = n2 =
(zα + zβ)2(p1(1− p1) + p2(1− p2))

(ε− δ)2

=
(1.64 + 0.84)2(0.65(1− 0.65) + 0.85(1− 0.85))

(0.20 + 0.10)2

≈ 25.
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Test for Superiority

On the other hand, the pharmaceutical company may want to show superi-
ority of the test drug over the active control agent. Assume the superiority
margin is 5% (δ = 0.05). According to (4.2.3), the sample size with κ = 1
(equal allocation) can be determined by

n1 = n2 =
(zα + zβ)2(p1(1− p1) + p2(1− p2))

(ε− δ)2

=
(1.64 + 0.84)2(0.65(1− 0.65) + 0.85(1− 0.85))

(0.20− 0.05)2

≈ 98.

As it can be seen, testing superiority usually requires larger sample size
than testing non-inferiority and equalty.

Test for Equivalence

For establishment of equivalence, suppose the true cure rate for the two
agents are 75% (p1 = 0.75) and 80% (p2 = 0.80) and the equivalence limit
is 20% (i.e., δ = 0.20). According to (4.2.4), the sample size with κ = 1
(equal allocation) can be determined by

n1 = n2 =
(zα + zβ/2)2(p1(1− p1) + p2(1− p2))

(δ − |ε|)2

=
(1.64 + 1.28)2(0.75(1− 0.75) + 0.80(1− 0.80))

(0.20− 0.05)2

≈ 132.

4.2.5 Remarks

For two-sample test for equality there exists another approach, which is
very similar to (4.2.1) but not exactly the same. This approach will reject
the null hypothesis that ε = 0 if

p̂1 − p̂2√
( 1
n1

+ 1
n2

)p̂(1− p̂)
, (4.2.5)

where
p̂ =

n1p̂1 + n2p̂2
n1 + n2

.

Note that the difference between (4.2.1) and (4.2.5) is the following. In
(4.2.1) the variance of p̂1− p̂2 is estimated by maximum likelihood estimate
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(MLE) without any constraint, which is given by p̂1(1 − p̂1)/n1 + p̂2(1 −
p̂2)/n2. On the other side, in (4.2.5) the same quantity is estimated by MLE
under the null hypothesis (p1 = p2), which gives (1/n1+1/n2)p̂(1− p̂). We
will refer to (4.2.1) as unconditional approach and (4.2.5) as conditional
approach. Which test (conditional/unconditional) should be used is al-
ways a problem because one is not necessarily always more powerful than
the other. However, a drawback of the conditional approach is that it is
difficult to be generalized to other testing problems, e.g., superiority, non-
inferiority/equivalence. Let

p =
n1p1 + n2p2
n1 + n2

.

When n = n1 = n2, which is a very important special case, it can be shown
that (

1
n1

+
1
n2

)
p̂(1− p̂) ≈

(
1
n1

+
1
n2

)p(1− p

)
≥ p1(1− p1)

n1
+
p2(1− p2)

n2

≈ p̂1(1− p̂1)
n1

+
p̂2(1− p̂2)

n2
,

which implies that under the alternative hypothesis, the unconditional ap-
proach has more power than the conditional method. As a result, in this
section and also the following section, we will focus on the unconditional
method because it provides a unified approach for all the testing problems
mentioned above.

Nevertheless, for the purpose of completeness, the conditional approach
for a two-sample test of equality is also presented below. Under the al-
ternative hypothesis that ε �= 0 and n1 = κn2, the power of (4.2.5) is
approximately

Φ

(
|ε|√

(p1(1− p1)/n1 + p2(1− p2)/n2)

−zα/2
√
(1/n1 + 1/n2)p(1− p)√

p1(1− p1)/n1 + p2(1− p2)/n2

)
,

where p = (p1 + κp2)/(1 + κ). As a result, the sample size needed for
achieving a power of 1−β can be obtained by solving the following equation

|ε|√
(p1(1− p1)/n1 + p2(1− p2)/n2)

−zα/2
√
(1/n1 + 1/n2)p(1− p)√

p1(1− p1)/n1 + p2(1− p2)/n2
= zβ.
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This leads to

n1 = κn2
n2 = 1

ε2 [zα/2
√
(1 + 1/κ)p(1− p) + zβ

√
p1(1− p1)/κ+ p2(1− p2)]2.

4.3 Two-Sample Crossover Design

In this section, we consider a 2 × 2m replicated crossover design compar-
ing mean response rates of a test drug and a reference drug. Let xijkl be
the lth replicate of a binary response (l = 1, ...,m) observed from the jth
subject (j = 1, ..., n) in the ith sequence (i = 1, 2) under the kth treat-
ment (k = 1, 2). Assume that (xij11, ..., xij1m, ..., xijk1, ..., xijkm), i = 1, 2,
j = 1, ..., n are i.i.d. random vectors with each component’s marginal dis-
tribution specified by P (xijkl = 1) = pk. Note that the observations from
the same subject can be correlated with each other. By specifying that
P (xijkl = 1) = pk, it implies that there are no sequence, period, and
crossover effects. The statistical model incorporates those effects are more
complicated for binary data compared with continuous data. Its detailed
discussion is beyond the scope of this book.

Let ε = p2(test)− p1(reference),

x̄ijk· =
1
m
(xijk1 + · · ·+ xijkm) and dij = x̄ij1· − x̄ij2·.

An unbiased estimator of ε is given by

ε̂ =
1
2n

a∑
i=1

n∑
j=1

dij .

According to the central limit theorem, ε̂ is asymptotically normally dis-
tributed as N(0, σ2d), where σ

2
d = var(dij) and can be estimated by

σ̂2d =
1

2(n− 1)

a∑
i=1

n∑
j=1

(dij − d̄i·)2,

where

d̄i· =
1
n

n∑
j=1

dij .

Without loss of of generality, consider ε > 0 (ε < 0) as an indication of
improvement (worsening) of the test drug as compared to the reference
drug.
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4.3.1 Test for Equality

The objective is to test the following hypotheses

H0 : ε = 0 versus Ha : ε �= 0.

Then, the null hypothesis will be rejected at α level of significance if∣∣∣∣ ε̂

σ̂d/
√
2n

∣∣∣∣ > zα/2.

Under the alternative hypothesis that ε �= 0, the power of the above test is
approximately

Φ

(√
2nε
σd

− zα/2

)
.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving √

2n|ε|
σd

− zα/2 = tβ.

This leads to

n =
(zα/2 + zβ)2σ2d

2ε2
. (4.3.1)

4.3.2 Test for Non-Inferiority/Superiority

Similar to test for non-inferiority/superiority under a parallel design, the
problem can be unified by testing the following hypotheses:

H0 : ε ≤ δ versus Ha : ε > δ,

where δ is the non-inferiority or superiority margin. When δ > 0, the
rejection of the null hypothesis indicates the superiority of test drug against
the control. When δ < 0, the rejection of the null hypothesis indicates the
non-inferiority of the test drug over the control. The null hypothesis will
be rejected at the α level of significance if

ε̂− δ

σ̂d/
√
2n

> zα.

Under the alternative hypothesis that ε > δ, the power of the above test is
approximately

Φ
(

ε− δ

σd/
√
2n

− zα/2

)
.
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As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving

ε− δ

σd/
√
2n

− zα/2 ≥ zβ .

This leads to

n =
(zα + zβ)2σ2d
2(ε− δ)2

. (4.3.2)

4.3.3 Test for Equivalence

The objective is to test the following hypotheses

H0 : |ε| ≥ δ versus Ha : |ε| < δ.

The test drug will be concluded equivalent to the control on average if the
null hypothesis is rejected at a given significance level. At the significance
level of α, the null hypothesis will be rejected if

√
2n(ε̂− δ)
σ̂d

< −zα and
√
2n(ε̂+ δ)
σ̂d

> zα.

Under the alternative hypothesis that |ε| < δ, the power of the above test
is approximately

2Φ

(√
2n(δ − |ε|)

σd
− zα

)
− 1.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving √

2n(δ − |ε|)
σd

− zα ≥ zβ/2.

This leads to

n ≥
(zα + zβ/2)2σ2d
2(δ − |ε|)2 . (4.3.3)

4.3.4 An Example

Suppose a sponsor is interested in conducting an open label randomized
crossover trial to compare an inhaled insulin formulation manufactured for
commercial usage for patients with type I diabetes to the inhaled insulin
formulation utilized in phase III clinical trials. Unlike subcutaneous injec-
tion, the efficiency and reproducibility of pulmonary insulin delivery is a
concern. As a result, a replicated crossover consisting of two sequences of
ABAB and BABA is recommended (a = 2,m = 2), where A is the inhaled
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insulin formulation for commercial usage and B is the inhaled insulin for-
mulation utilized in phase III clinical trials. Qualified subjects are to be
randomly assigned to receive one of the two sequences. In each sequence,
subjects will receive single doses with a replicate of treatments A and B as
specified in the sequence on days 1, 3, 5, and 7. In this trial, in addition
to the comparison of pharmacokinetic parameters such as area under the
blood concentration time curve and peak concentration (Cmax), it is also
of interest to compare the safety profiles between the two formulations in
terms of the incidence rate of adverse events.

Test for Equality

Assuming σd = 50%, according to (4.3.1), the sample size needed in or-
der to achieve a 80% (β = 0.2) power in detecting 20% (ε = 0.20) difference
in adverse events rate is given by

n =
(zα/2 + zβ)2σ2d

2ε2
=

(1.96 + 0.84)2 × 0.52

2× 0.22
= 24.5 ≈ 25.

Test for Non-Inferiority

Assume σd = 50%, no difference in the mean adverse event rates between
the two treatments (ε = 0), and a non-inferiority margin is δ = −20%. Ac-
cording to (4.3.2), the sample size needed in order to achieve 80% (β = 0.2)
power is given by

n =
(zα + zβ)2σ2d
2(ε− δ)2

=
(1.64 + 0.84)2 × 0.52

2× (0− (−0.2))2
= 19.2 ≈ 20.

Test for Equivalence

Assume σd = 50%, no difference in the mean adverse event rate between
the two treatments (ε = 0), and the equivalence limit is 20% (δ = 0.2). Ac-
cording to (4.3.3), the sample size needed in order to achieve 80% (β = 0.2)
is given by

n =
(zα + zβ/2)2σ2d

2δ2
=

(1.64 + 1.28)20.52

0.22
= 26.6 ≈ 27.

4.3.5 Remarks

For a crossover design, two ways exist to increase the power. One is to
increase the number of subjects, i.e., increase n. An other way is to increase
the number of the replicates from each subject, i.e., increase m. In practice,
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usually increasing m is more cost-effective compared to increasing n. The
power of the test is mainly determined by the variability of ε̂ under the
alternative assumption. Heuristically, the variability of ε̂ can be considered
to consist of two parts, i.e., inter- and intra-subject variability components.
From a statistical point of view, increasing n can decrease both inter- and
intra-subject components of ε̂. As a result, as long as n is sufficiently large,
the power can be arbitrarily close to 1. However, increasing the number
of replicates (m) can only decrease the intra-subject variability component
of ε̂. When m → ∞, the intra-subject variability will go to 0, but the
inter-subject variability still remains. Consequently, the power cannot be
increased arbitrarily by increasing m.

In practice, if the intra-subject variability is relatively small compared
with the inter-subject variability, simply increasing the number of replicates
may not provide sufficient power. In such a situation, the number of sub-
jects should be sufficiently large to acheive the desired statistical power. On
the other side, if the intra-subject variability is relatively large compared
with the inter-subject variability, it may be preferable to increase the num-
ber of repilcates to achieve the desired power and retain a relatively low
cost.

4.4 One-Way Analysis of Variance

Let xij be a binary response from the jth subject in the ith treatment
group, i = 1, ..., a, j = 1, · · · , n. Assume that P (xij = 1) = pi. Define

p̂i· =
1
n

n∑
j=1

xij .

4.4.1 Pairwise Comparison

In practice, it is often of interest to compare proportions among treatments
under study. Thus, the hypotheses of interest are

H0 : µi = µj versus Ha : µi �= µj , for some i �= j.

Under the above hypotheses, there are a(a − 1)/2 possible comparisons.
For example, if there are four treatments in the study, then we can have a
maximum of six pairwise comparisons. In practice, it is well recognized that
multiple comparison will inflate the type I error. As a result, it is suggested
that an adjustment be made for controlling the overall type I error rate
at the desired significance level. Assume that there are τ comparisons of
interest, where τ ≤ a(a− 1)/2. We reject the null hypothesis H0 at the α
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level of significance if∣∣∣∣∣
√
n(p̄i − p̄j)√

p̂i(1− p̂i) + p̂j(1− p̂j)

∣∣∣∣∣ > zα/(2τ).

The power of this test is approximately

Φ

( √
n|εij |√

pi(1− pi) + pj(1− pj)
− zα/(2τ)

)
,

where εij = pi − pj . As a result, the sample size needed for detecting
a clinically meaningful difference between pi and pj can be obtained by
solving √

n|εij |√
pi(1− pi) + pj(1− pj)

− zα/(2τ) = zβ .

This leads to

nij =
(zα/(2τ) + zβ)2[p1(1− p1) + p2(1− p2)]

ε2ij
. (4.4.1)

The final sample size needed can be estimated by

n = max{nij , all interested pairs (i, j)}. (4.4.2)

4.4.2 An Example

Suppose an investigator is interested in conducting a parallel-group clinical
trial comparing two active doses of a test compound against a standard
therapy in patients with a specific carcinoma. Suppose the standard ther-
apy, which is referred to as treatment 0, has a 20% response rate. For
illustration purpose, the two active doses of the test compound are referred
to as treatment 1 and treatment 2, respectively. Suppose the investigator
would like to determine whether test treatments 1 and 2 will achieve the
response rates of 40% and 50%, respectively. As a result, statistical com-
parisons of interest include the comparison between the standard therapy
(treatment 0) vs. treatment 1 and between the standard therapy (treat-
ment 0) vs. treatment 2. In this case, τ = 2. According to (4.4.1), we
have

n01 =
(z0.05/(2×2) + z0.2)2[0.2(1− 0.2) + 0.4(1− 0.4)]

(0.2− 0.4)2
≈ 95

and

n02 =
(2.24 + 0.84)2[0.2(1− 0.2) + 0.5(1− 0.5)]

0.09
≈ 44.

By (4.4.2), the sample size needed in order to achieve an 80% power is given
by n = max{95, 44} = 95.
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4.4.3 Remarks

It should be noted that the maximum approach described in this section is
somewhat conservative in two aspects. First, the α adjustment based on
the method of Bonferrouni is conservative. Other less conservative meth-
ods for α adjustment may be used. Second, the formula is designed to
detect statistically significant differences for all comparisons of interest. In
practice, the comparisons of interest may not be equally important to the
investigator. Hence, one of the comparisons is usually considered as the
primary comparison and sample size calculation is performed based on the
primary comparison. Once the sample size is determined, it can be justified
under appropriate statistical assumption for other comparisons (secondary
comparison) of interest.

4.5 Williams Design

We consider the Williams design described in Section 3.5. Let xijl be
a binary response from the jth (j = 1, ..., n) subject in the ith (i =
1, ..., a) sequence under the lth (l = 1, ..., b) treatment. It is assumed
that (xij1, ..., xijb), i = 1, ..., a, j = 1, ..., n are i.i.d. random vectors with
P (xijl = 1) = pl. The observations from the same subject can be corre-
lated with each other. By specifying that P (xijl = 1) = pl, l = 1, ...,m, it
implies that there is no sequence, period, or crossover effects. The statisti-
cal model incorporates those effects that are more complicated for binary
data compared with continuous data. Its detailed discussion is beyond the
scope of this book.

Without loss of generality, assume that we want to compare treatment
1 and treatment 2. Let

dij = yij1 − yij2.

The true mean difference between treatment 1 and treatment 2 can be
estimated by

ε̂ =
1
an

a∑
i=1

n∑
j=1

dij ,

which is asymptotically normally distributed with mean ε = p1 − p2 and
variance σ2d/an, where σ

2
d is defined to be the variance of dij and can be

estimated by

σ̂2d =
1

a(n− 1)

a∑
i=1

n∑
j=1

(dij −
1
n

n∑
j′=1

dij′)2.

© 2008 by Taylor & Francis Group, LLC



102 Chapter 4. Large Sample Tests for Proportions

4.5.1 Test for Equality

Let ε = µ1 − µ2 be the true mean difference. The objective is to test the
following hypotheses:

H0 : ε = 0 versus Ha : ε �= 0.

Then, the null hypothesis will be rejected at α level of significance if∣∣∣∣ ε̂

σ̂d/
√
an

∣∣∣∣ > zα/2.

Under the alternative hypothesis that ε �= 0, the power of this test is ap-
proximately

Φ
(√

anε

σd
− zα/2

)
.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained as

n =
(zα/2 + zβ)2σ2d

aε2
. (4.5.1)

4.5.2 Test for Non-Inferiority/Superiority

The problem of testing superiority and non-inferiority can be unified by the
following hypothesis:

H0 : ε ≤ δ versus Ha : ε > δ,

where δ is the superiority or non-inferiority margin. When δ > 0, the
rejection of the null hypothesis indicates the superiority of the test drug
over the control. When δ < 0, the rejection of the null hypothesis indicates
the non-inferiority of the test drug against the control. The null hypothesis
will be rejected at α level of significance if

ε̂− δ

σ̂d/
√
an

> zα.

Under the alternative hypothesis that ε > δ, the power of the above test is
approximately

Φ
(

ε− δ

σd/
√
an

− zα

)
.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving

ε− δ

σd/
√
an

− zα = zβ .

This leads to

n =
(zα + zβ)2σ2d
a(ε− δ)2

. (4.5.2)
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4.5.3 Test for Equivalence

The objective is to test the following hypotheses:

H0 : |ε| ≥ δ versus Ha : |ε| < δ.

The test drug will be concluded equivalent to the control on average if the
null hypothesis is rejected at a given significance level. For example, at the
significance level of α, the null hypothesis will be rejected if

√
an(ε̂− δ)
σ̂d

< −zα

and √
an(ε̂+ δ)
σ̂d

> zα.

Under the alternative hypothesis that |ε| < δ, the power of the above test
is approximately

2Φ
(√

an(δ − |ε|)
σd

− zα

)
− 1.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving √

an(δ − |ε|)
σd

− zα = zβ/2.

This leads to

n =
(zα + zβ/2)2σ2d
a(δ − |ε|)2 . (4.5.3)

4.5.4 An Example

Suppose that a sponsor is interested in conducting a 6 × 3 (Williams de-
sign) crossover experiment (i.e., a = 6) to compare two active doses (i.e.,
morning dose and evening dose) of a test compound against a placebo in
patients with sleep disorder. Similarly, we will refer to the placebo and the
two active doses as treatment 0, treatment 1, and treatment 2, respectively.
Qualified subjects will be randomly assigned to receive one of the six se-
quences of treatments. The trial consists of three visits. Each visit consists
of two nights and three days with subjects in attendance at a designated
Sleep Laboratory. On day two of each visit, the subject will receive one
of the three treatments. Polysomnography will be applied to examine the
treatment effect on sleep quality. Suppose the sponsor is interested in ex-
amining the existence of awakeness after the onset of sleep. As a result,
sample size calculation is performed based on the proportion of subjects ex-
periencing wakeness after the onset of sleep. Based on a pilot study, about
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50%, 30%, and 35% of subjects receiving treatment 0, 1, and 2, respectively,
experienced awakeness after the onset of sleep. As a result, for performing
sample size calculation, we assume that the response rates for subjects re-
ceiving treatment 0, 1, and 2 are 50%, 30%, and 35%, respectively. Since
the comparisons of interest include the comparison between treatment 1
and the placebo and between treatment 2 and the placebo, without loss of
generality and for simplicity without adjusting type I error, we will focus
on sample size calculation based on the comparison between treatment 1
and the placebo.

According to the information given above, it follows that the difference
in proportion of subjects experiencing awakeness between treatment 1 and
the placebo is given by 20% (ε = 20%). From the pilot study, it is estimated
that σd = 75%. The significance level is fixed to be α = 5%.

Test for Equality

Since this is a 6 × 3 crossover design, the number of sequence is a = 6.
According to (4.5.1), the sample size needed in order to achieve 80% power
(β = 0.2) is given by

n =
(zα/2 + zβ)2σ2d

aε2
=

(1.96 + 0.84)20.752

6× 0.22
≈ 19.

Test for Superiority

Assuming the superiority margin is 5% (δ = 0.05), the sample size needed
in order to achieve 80% power (β = 0.2) is given by

n =
(zα + zβ)2σ2d
a(ε− δ)2

=
(1.64 + 0.84)20.752

6× (0.2− 0.05)2
≈ 27.

Test for Equivalence

Assuming the equivalence margin is 30% (δ = 0.30), the sample size needed
is given by

n =
(zα + zβ/2)2σ2d
a(δ − |ε|)2 =

(1.64 + 1.28)20.752

6× (0.3− 0.2)2
≈ 80.

4.6 Relative Risk—Parallel Design

In clinical trials, it is often of interest to investigate the relative effect (e.g.,
risk or benefit) of the treatments for the disease under study. Odds ratio has
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been frequently used to assess the association between a binary exposure
variable and a binary disease outcome since it was introduced by Cornfield
(1956). Let pT be the probability of observing an outcome of interest for
a patient treatment by a test treatment and pC for a patient treated by a
control. For a patient receiving the test treatment, the odds that he/she
will have an outcome of interest over that he/she will not have an outcome
are given by

OT =
pT

1− pT
.

Similarly, for a patient receiving the control, the odds are given by

OC =
pC

1− pC
.

As a result, the odds ratio between the test treatment and the control is
defined as

OR =
OT
OC

=
pT (1− pC)
pC(1− pT )

.

The odds ratio is always positive and usually has a range from 0 to 4.
OR = 1 (i.e., pT = pC) implies that there is no difference between the
two treatments in terms of the outcome of interest. When 1 < OR < 4,
patients in the treatment group are more likely to have outcomes of interest
than those in the control group. Note that 1−OR is usually referred to as
relative odds reduction in the literature. Intuitively, OR can be estimated
by

ÔR =
p̂T (1− p̂C)
p̂C(1− p̂T )

,

where p̂T and p̂C are the maximum likelihood estimators of pT and pC ,
respectively, given by

p̂T =
xT
nT

and p̂C =
xC
nC

, (4.6.1)

and xT and xC are the observed numbers of patients in the respective treat-
ment and control groups who have the outcome of interest. The asymptotic
variance for log(ÔR) can be obtained as

var[log(ÔR)] =
1

nT pT (1− pT )
+

1
nCpC(1− pC)

,

which can be estimated by simply replacing pT and pC with their maximum
likelihood estimator p̂T and p̂C .
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4.6.1 Test for Equality

The hypotheses of interest are given by

H0 : OR = 1 versus Ha : OR �= 1.

The test statistic is given by

T = log(ÔR)
[

1
nT p̂T (1− p̂T )

+
1

nC p̂C(1− p̂C)

]−1/2

,

which approximately follows a standard normal distribution when nT and
nC are sufficiently large. Thus, we reject the null hypothesis that OR = 1
if |T | > zα/2. Under the alternative hypothesis that OR �= 1, the power of
the above test can be approximated by

Φ

(
| log(OR)|

[
1

nT pT (1− pT )
+

1
nCpC(1− pC)

]−1/2

− zα/2

)
.

As a result, the sample size needed for achieving a desired power of 1− β
can be obtained by solving

| log(OR)|
[

1
nT pT (1− pT )

+
1

nCpC(1− pC)

]−1/2

− zα/2 = zβ .

Under the assumption that nT /nC = κ (a known ratio), we have

nC =
(zα/2 + zβ)2

log2(OR)

(
1

κpT (1− pT )
+

1
pC(1− pC)

)
. (4.6.2)

4.6.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 : OR ≤ δ′ versus Ha : OR > δ′,

where δ′ is the non-inferiority or superiority margin in raw scale. The above
hypotheses are the same as

H0 : log(OR) ≤ δ versus Ha : log(OR) > δ,

where δ is the non-inferiority or superiority margin in log-scale. When
δ > 0, the rejection of the null hypothesis indicates superiority over the
reference value. When δ < 0, the rejection of the null hypothesis implies
non-inferiority against the reference value.
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Let

T = (log(ÔR)− δ)
[

1
nT p̂T (1− p̂T )

+
1

nC p̂C(1− p̂C)

]−1/2

.

We reject the null hypothesis at the α level of significance if T > zα. Under
the alternative hypothesis that log(OR) > δ, the power of the above test is
approximately

Φ

(
(log(OR)− δ)

[
1

nT pT (1− pT )
+

1
nCpC(1− pC)

]−1/2

− zα

)
.

As a result, the sample size needed for achieving a desired power of 1− β
can be obtained by solving

| log(OR)− δ|
[

1
nT pT (1− pT )

+
1

nCpC(1− pC)

]−1/2

− zα/2 = zβ.

Under the assumption that nT /nC = κ, we have

nC =
(zα + zβ)2

(log(OR)− δ)2

(
1

κpT (1− pT )
+

1
pC(1− pC)

)
. (4.6.3)

4.6.3 Test for Equivalence

To establish equivalence, the following hypotheses are usually considered

H0 : | log(OR)| ≥ δ versus Ha : | log(OR)| < δ.

The above hypotheses can be tested using the two one-sided tests procedure
as described in previous sections. We reject the null hypothesis at α level
of significance if

(log(ÔR)− δ)
[

1
nT p̂T (1− p̂T )

+
1

nC p̂C(1− p̂C)

]−1/2

< −zα

and

(log(ÔR) + δ)
[

1
nT p̂T (1− p̂T )

+
1

nC p̂C(1− p̂C)

]−1/2

> zα.

When | log(OR)| < δ, the power of this test is approximately

2Φ

(
(δ − | log(OR)|)

[
1

nT pT (1− pT )
+

1
nCpC(1− pC)

]−1

− zα/2

)
− 1.

Under the assumption that nT /nC = κ, the sample size needed for achieving
a desired power of 1− β is given by

nC =
(zα + zβ/2)2

(δ − | log(OR)|)2

(
1

kpT (1− pT )
+

1
pC(1− pC)

)
. (4.6.4)
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4.6.4 An Example

Suppose that a sponsor is interested in conducting a clinical trial to study
the relative risk between a test compound and a standard therapy for pre-
vention of relapse in subjects with schizophrenia and schizoaffective disor-
ders. Based on the results from a previous study with 365 subjects (i.e., 177
subjects received the test compound and 188 received the standard ther-
apy), about 25% (45/177) and 40% (75/188) of subjects receiving the test
compound and the standard therapy experienced relapse after the treat-
ment. Subjects who experienced first relapse may withdraw from the study
or continue on. Among the subjects who experienced the first relapse and
stayed on the study, about 26.7% (8/30) and 32.0% (16/50) experienced
the second relapse. the sponsor is interested in studying the odds ratio of
the test compound as compared to the standard therapy for prevention of
experiencing the first relapse. In addition, it also of interest to examine the
odds ratio for prevention of experiencing the second relapse.

Test for Equality

Assume the responder rate in control group is 25% and the rate in test
is 40%, which produces a relative risk

OR =
0.40(1− 0.25)
(1− 0.4)0.25

= 2.

According to (4.6.2) and n = nT = nC (k = 1), the sample size needed in
order to achieve 80% (β = 0.2) at 0.05 (α = 0.05) level of significance is
given by

n =
(1.96 + 0.84)2

log2(2)

[
1

0.4(1− 0.4)
+

1
0.25(1− 0.25)

]
≈ 156.

Test for Superiority

Assume that 20% (δ = 0.2) is considered as a clinically important su-
periority margin for log-scale relative risk. According to (4.6.3) the sample
size needed to achieve 80% power (β = 0.2) is given by

n =
(1.64 + 0.84)2

(log(2)− 0.2)2

[
1

0.4(1− 0.4)
+

1
0.25(1− 0.25)

]
≈ 241.

Test for Equivalence

Assume that the relapse rate of the study drug (25%) is approximately
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equal to a market drug (log(OR) = 0)and that the equivalence margin in
log-scale relative risk is 50% (δ = 0.50). According to (4.6.4) the sample
size needed to achieve 80% (β = 0.2) power to establish equivalence is given
by

n =
(z0.05 + z0.2/2)2

0.52

[
1

0.25(1− 0.25)
+

1
0.25(1− 0.25)

]
≈ 364.

4.7 Relative Risk—Crossover Design

Consider a 1 × 2 crossover design with no period effects. Without loss of
generality, we assume that every subject will receive test first and then be
crossed over to control. Let xij be a binary response from the jth subject
in the ith period, j = 1, ..., n. The number of outcomes of interest under
treatment is given by xT =

∑n
j=1 x1j . The number of outcomes of interest

under control, xC , is similarly defined. Then the true response rates under
treatment and control can still be estimated according to (4.6.1). According
to Taylor’s expansion, it can be shown that

√
n(log(ÔR)− log(OR))

=
√
n

[
1

pT (1− pT )
(p̂T − pT )−

1
pC

pC(1− pC)(p̂C − pC)
]
+ op(1)

=
1√
n

n∑
j=1

[
x1j − pT
pT (1− pT )

− x2j − pC
pC(1− pC)

]
+ op(1)

→d N(0, σ2d),

where

σ2d = var
(

x1j − pT
pT (1− pT )

− x2j − pC
pC(1− pC)

)
.

Let

dj =
(

x1j
p̂T (1− p̂T )

− x2j
p̂C(1− p̂C)

)
.

Then, σ2d can be estimated by σ̂2d, the sample variance based on dj , j =
1, ..., n.

4.7.1 Test for Equality

The hypotheses of interest are given by

H0 : log(OR) = 0 versus Ha : log(OR) �= 0.
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Under the null hypothesis, the test statistic

T =
√
n log(ÔR)

σ̂d

approximately follows a standard normal distribution when nT and nC
are sufficiently large. Thus, we reject the null hypothesis that OR = 1 if
|T | > zα/2. Under the alternative hypothesis that OR �= 1, the power of
the above test can be approximated by

Φ
(√

n| log(OR)|
σd

− zα/2

)
.

As a result, the sample size needed for achieving a desired power of 1− β
can be obtained by solving

√
n| log(OR)|

σd
− zα/2 = zβ .

This leads to

n =
(zα/2 + zβ)2σ2d

log2(OR)
. (4.7.1)

4.7.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 : log(OR) ≤ δ versus Ha : log(OR) > δ,

where δ is the non-inferiority or superiority margin in log-scale. When
δ > 0, the rejection of the null hypothesis indicates superiority over the
reference value. When δ < 0, the rejection of the null hypothesis implies
non-inferiority against the reference value.

When log(OR) = δ, the test statistic

T =
√
n(log(ÔR)− δ)

σ̂d

approximately follows the standard normal distribution when nT and nC
are sufficiently large. Thus, we reject the null hypothesis at the α level of
significance if T > zα. Under the alternative hypothesis that log(OR) > δ,
the power of the above test is approximately

Φ
(
log(OR)− δ

σd
− zα

)
.
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As a result, the sample size needed for achieving a desired power of 1− β
can be obtained by solving

log(OR)− δ

σd
− zα = zβ .

It leads to

n =
(zα + zβ)2σ2d
[log(OR)− δ]2

. (4.7.2)

4.7.3 Test for Equivalence

To establish equivalence, the following hypotheses are usually considered:

H0 : | log(OR)| ≥ δ versus Ha : | log(OR)| < δ.

The above hypotheses can be tested using the two one-sided tests procedure
(see, e.g., Chow and Liu, 1998). We reject the null hypothesis at the α level
of significance if √

n(log(ÔR)− δ)
σ̂d

< −zα

and √
n(log(ÔR) + δ)

σ̂d
> zα.

When | log(OR)| < δ, the power of the above test is approximately

2Φ
(
(δ − | log(OR)|)

σd
− zα

)
− 1.

Then, the sample size needed for achieving a desired power of 1− β can be
obtained by

n =
(zα + zβ/2)2σ2d
(δ − | log(OR)|)2 . (4.7.3)

4.8 Practical Issues

4.8.1 Exact and Asymptotic Tests

It should be noted that all of the formulas for sample size calculation given
in this chapter are derived based on asymptotic theory. In other words, the
formulas are valid when the sample size is sufficiently large. However, “how
large is considered sufficiently large” is always a question to researchers who
are trying to determine the sample size at the planning stage of an intended
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study. Unfortunately, there is no simple rule which can be used to evaluate
whether the sample size is sufficiently large. As an alternative, some exact
tests may be useful when the expected sample size of the intended study is
small (due to budget constraint and/or slow enrollment). Details of various
commonly used exact tests, such as binomial test, Fisher’s exact test, and
mutiple-stage optimal design will be discussed in the next chapter.

4.8.2 Variance Estimates

For testing equality, non-inferiority/superiority, and equivalence, the fol-
lowing test statistic is always considered:

Z =
p̂1 − p̂2 + ε

σ̂
,

where p̂1 and p̂2 are observed response rates from treatment 1 and treatment
2, respectively, and σ̂ is an estimate of the standard error σ, which is given
by

σ =

√
p1(1− p1)

n1
+
p2(1− p2)

n2
.

Under the null hypothesis, Z is asymptotically normally distributed with
mean 0 and standard deviation 1. As an example, for testing non-inferiority
between an active treatment (treatment 1) and an active control (treatment
2), large Z values (i.e., treatment is better than control) favor the alterna-
tive hypothesis. Blackwelder (1982) recommended σ2 be estimated by the
observed variance, which is given by

σ̂2 =
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
.

In practice, however, σ2 can be estimated by different methods. For ex-
ample, Dunnett and Gent (1977) proposed to estimate variance from fixed
marginal totals. The idea is to estimate p1 and p2 under the null hypothesis
restriction p1 − p2 = ε, subject to the marginal totals remaining equal to
those observed. This approach leads to the estimates

p̃1 =
[
p̂1 +

(
n2
n1

)
(p̂2 + ε)

]/(
1 +

n2
n1

)
,

p̃2 =
[
p̂1 +

(
n2
n1

)
(p̂2 − ε)

]/(
1 +

n2
n1

)
.

As a result, an estimate of σ can then be obtained based on p̃1 and p̃2. Tu
(1997) suggested σ2 be estimated by the unbiased observed variance

σ̂2U =
p̂1(1− p̂1)
n1 − 1

+
p̂2(1− p̂2)
n2 − 1

.
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In addition, Miettinen and Nurminen (1985) and Farrington and Manning
(1990) considered estimating σ2 using the constrained maximum likelihood
estimate (MLE) as follows

σ̃2MLE =
p̃1(1− p̃1)

n1
+
p̃2(1− p̃2)

n2
,

where p̃1 and p̃2 are the constrained MLE of p1 and p2 under the null
hypothesis. As indicated in Farrington and Manning (1990), p̃1 can be ob-
tained as the unique solution of the following maximum likelihood equation:

ax3 + bx2 + cx+ d = 0,

where

a = 1 +
n2
n1

,

b = −
[
1 +

n2
n1

+ p̂1 +
(
n2
n1

)
p̂2 + ε

(
n2
n1

+ 2
)]

,

c = ε2 + ε

(
2p̂1 +

n2
n1

+ 1
)
+ p̂1 +

(
n2
n1

)
p̂2,

d = −p̂1ε(1 + ε).

The solution is given by

p̃1 = 2u cos(w)− b/3a and p̃2 = p̃1 − ε,

where

w =
1
3
[
π + cos−1(v/u3)

]
,

v = b3/(3a)3 − bc(6a2) + d/(2a),
u = sign(v)[b2/(3a)2 − c/(3a)]1/2.

Biswas, Chan, and Ghosh (2000) showed that the method of the constrained
MLE performs better than methods by Blackwelder (1982) and Dunnett
and Gent (1977) in terms of controlling type I error rate, power and con-
fidence interval coverage through a simulation study. The power function
(sample size calculation) is sensitive to the difference between true response
rates. A small difference (i.e., ε �= 0) will drop the power rapidly. Conse-
quently, a large sample size is required for achieving a desired power.

4.8.3 Stratified Analysis

In clinical research, stratified randomization is often employed to isolate
the possible confounding or interaction effects that may be caused by prog-
nostic factors (e.g., age, weight, disease status, and medical history) and/or
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non-prognostic factors (e.g., study center). Responses in these strata are ex-
pected to be similar and yet they may be systematically different or subject
to random fluctuation across strata. In the interest of a fair and reliable
assessment of the treatment difference, it is suggested that the stratified
analysis be performed. The purpose of the stratified analysis is to obtain
an unbiased estimate of treatment difference with a desired precision.

Stratified analysis can be performed based on Blackwelder’s approach
or the method proposed by Miettinen and Nurminen (1985) and Farrington
and Manning (1990) by adapting different weights in each strata. In prac-
tice, several weights are commonly considered. These weights include (i)
equal weights, (ii) sample size, (iii) Cochran-Mantel-Haenszel, (iv) inverse
of variance, and (v) minimum risk. Suppose there are K strata. Let nik
be the sample size of the kth stratum in the ith treatment group and wk
be the weight assigned to the kth stratum, where k = 1, ...,K. Basically,
equal weights, i.e., wk = w for all k imply that no weights are considered.
Intuitively, one may consider using the weight based on sample size, i.e.,

wk ∝ (n1k + n2k).

In other words, larger strata will carry more weights as compared to smaller
strata. Alternatively, we may consider the weight suggested by Cochran-
Mantel-Haenszel as follows:

wk ∝
n1kn2k

n1k + n2k
.

These weights, however, do not take into consideration of the heterogeneity
of variability across strata. To overcome this problem, the weight based on
the inverse of variance for the kth stratum is useful, i.e.,

wk ∝ σ−1
k ,

where σ2k is the variance of the kth stratum. The weight of minimum risk is
referred to as the weight that minimizes the mean squared error (Mehrotra
and Railkar, 2000).

Biswas, Chan, and Ghosh (2000) conducted a simulation study to com-
pare the relative performances of Blackwelder’s approach and Miettinen
and Nurminen’s method with different weights for stratified analysis.The
results indicate that Cochran-Mantel-Haenszel weight for Miettinen and
Nurminen’s method and minimum risk weight for Blackwelder’s approach
perform very well even in the case of extreme proportions and/or the pres-
ence of interactions. Inverse variance weight is biased which leads to liberal
confidence interval coverage probability.
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4.8.4 Equivalence Test for More Than Two Propor-
tions

In clinical trials, it may be of interest to demonstrate therapeutic equiva-
lence among a group of drug products for treatment of certain disease under
study. In this case, a typical approach is to perform a pairwise equivalence
testing with or without adjusting the α level for multiple comparisons.
Suppose a clinical trial was conducted to establish therapeutic equivalence
among three drug products (A, B and C) for treatment of women with
advanced breast cancer. For a given equivalence limit, equivalence test can
be performed for testing (i) drug A versus drug B, (ii) drug A versus drug
C, and (iii) drug B versus drug C. It is very likely that we may conclude
that drug A is equivalent to drug B and drug B is equivalent to drug C
but drug A is not equivalent drug C based on pairwise comparison. In this
case, equivalence among the three drug products can not be established. As
an alternative approach, Wiens, Heyse, and Matthews (1996) consider the
following hypotheses for testing equivalence among a group of treatments:

H0 : max
1≤i≤j≤K

|pi − pj | ≥ δ versus Ha : max
1≤i≤j≤K

|pi − pj | < δ .

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : max
1≤i≤K

pi − max
1≤j≤K

pj ≥ δ versus Ha : max
1≤i≤K

pi − max
1≤j≤K

pj < δ .

Under the above hypotheses, formulas for sample size calculation can be
similarly derived.
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Chapter 5

Exact Tests for
Proportions

In the previous chapter, formulas for sample size calculation for comparing
proportions were derived based on asymptotic approximations. In practice,
sample sizes for some clinical trials such as phase II cancer trials are usually
small and, hence, the formulas given in the previous chapter may not be
useful. In this chapter, our primary focus is placed on procedures for sample
size calculation based on exact tests for small samples. Unlike the tests
based on asymptotic distribution, the power functions of the exact tests
usually do not have explicit forms. Hence, exact formulas for sample size
calculation cannot be obtained. However, the sample size can be obtained
numerically by greedy search over the sample space.

In the next two sections, procedures for obtaining sample sizes based
on exact tests for comparing proportions such as the binomial test and
Fisher’s exact test are discussed. In Section 5.3, procedures for sample size
calculation under various optimal multiple-stage designs such as an opti-
mal two-stage design, an optimal three-stage design and a flexible optimal
design for single-arm phase II cancer trials are given. Section 5.4 provides
procedures for sample size calculation under a flexible design for multiple
armed clinical trials. Some practical issues are presented in the last section.

5.1 Binomial Test

In this section, we describe the binomial test, which is probably the most
commonly used exact test for one-sample testing problem with binary re-
sponse in clinical research, and the related sample size calculation formula.
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5.1.1 The Procedure

The test for equality and non-inferiority/superiority can all be unified by
the following hypotheses:

H0 : p = p∗0 + δ versus Ha : p = p1, (5.1.1)

where p∗0 is a predefined reference value and p1 > p0 + δ is an unknown
proportion. When δ = 0, (5.1.1) becomes the (one-sided) test for equality.
When δ < 0 (δ > 0), it becomes the test for non-inferiority (superiority).
Let n be the sample size of a single arm clinical study and m be the number
of observed outcome of interest. When p = p0 = p∗0 + δ, m is distributed
as a binomial random variable with parameters (p0, n). If the number of
the observed responses is greater than or equal to m, then it is considered
at least as favorable as the observed outcome of Ha. The probability of
observing these responses is defined as the exact p-value for the observed
outcome. In other words,

exact p-value =
n∑
i=m

n!
m!(n−m)!

pi0(1− p0)n−i.

For a given significance level α, there exists a nonnegative integer r (called
the critical value) such that

n∑
i=r

n!
i!(n− i)!

pi0(1− p0)n−i ≤ α

and
n∑

i=r−1

n!
i!(n− i)!

pi0(1− p0)n−i > α.

We then reject the null hypothesis at the α level of significance if m ≥ r.
Under the alternative hypothesis that p = p1 > p0, the power of this test
can be evaluated as

P (m ≥ r|Ha) =
n∑
i=r

n!
i!(n− i)!

pi1(1− p1)n−i.

For a given power, the sample size required for achieving a desired power
of 1− β can be obtained by solving P (m ≥ r|Ha) ≥ 1− β.

Tables 5.1.1 and 5.1.2 provide sample sizes required for achieving a
desired power (80% or 90%) for p1 − p0 = 0.15 and p1 − p0 = 0.20, respec-
tively. As an example, a sample size of 40 subjects is required for detection
of a 15% difference (i.e., p1 − p0 = 0.15) with a 90% power assuming that
p0 = 0.10. Note that with the selected sample size, we would reject the null
hypothesis that p0 = 0.10 at the α level of significance if there are 7 (out
of 40) responses.
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Table 5.1.1: Sample Size n and Critical Value r for Binomial Test
(p1 − p0 = 0.15)

1− β = 80% 1− β = 90%
α p0 p1 r n r n

0.05 0.05 0.20 3 27 4 38
0.10 0.25 7 40 9 55
0.15 0.30 11 48 14 64
0.20 0.35 16 56 21 77
0.25 0.40 21 62 27 83
0.30 0.45 26 67 35 93
0.35 0.50 30 68 41 96
0.40 0.55 35 71 45 94
0.45 0.60 38 70 52 98
0.50 0.65 41 69 54 93
0.55 0.70 45 70 58 92
0.60 0.75 43 62 58 85
0.65 0.80 41 55 55 75
0.70 0.85 39 49 54 69
0.75 0.90 38 45 46 55
0.80 0.95 27 30 39 44

0.10 0.05 0.20 2 21 3 32
0.10 0.25 5 31 6 40
0.15 0.30 8 37 11 53
0.20 0.35 12 44 16 61
0.25 0.40 15 46 20 64
0.30 0.45 19 50 26 71
0.35 0.50 21 49 30 72
0.40 0.55 24 50 35 75
0.45 0.60 28 53 39 75
0.50 0.65 31 53 41 72
0.55 0.70 31 49 44 71
0.60 0.75 32 47 43 64
0.65 0.80 33 45 44 61
0.70 0.85 29 37 41 53
0.75 0.90 25 30 33 40
0.80 0.95 22 25 28 32
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Table 5.1.2: Sample Size n and Critical Value r for Binomial Test
(p1 − p0 = 0.20)

1− β = 80% 1− β = 90%
α p0 p1 r N r N

0.05 0.05 0.25 2 16 3 25
0.10 0.30 5 25 6 33
0.15 0.35 7 28 9 38
0.20 0.40 11 35 14 47
0.25 0.45 13 36 17 49
0.30 0.50 16 39 21 53
0.35 0.55 19 41 24 53
0.40 0.60 22 42 28 56
0.45 0.65 24 42 30 54
0.50 0.70 23 37 32 53
0.55 0.75 25 37 33 50
0.60 0.80 26 36 32 45
0.65 0.85 24 31 32 42
0.70 0.90 23 28 30 37
0.75 0.95 20 23 25 29
0.80 1.00 13 14 13 14

0.10 0.05 0.25 2 16 2 20
0.10 0.30 3 18 4 25
0.15 0.35 5 22 7 32
0.20 0.40 7 24 10 36
0.25 0.45 9 26 13 39
0.30 0.50 12 30 15 39
0.35 0.55 13 29 19 44
0.40 0.60 15 30 20 41
0.45 0.65 16 29 24 44
0.50 0.70 17 28 23 39
0.55 0.75 19 29 25 39
0.60 0.80 17 24 25 36
0.65 0.85 16 21 24 32
0.70 0.90 17 21 20 25
0.75 0.95 13 15 17 20
0.80 1.00 10 11 10 11
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5.1.2 Remarks

The exact p-value is well defined only if the sample distribution is com-
pletely specified under the null hypothesis. On the other hand, the test
for equivalence usually involves interval hypothesis, which means that, un-
der the null hypothesis, we only know the parameter of interest is located
within certain interval but are unaware of its exact value. As a result, the
distribution under the null hypothesis cannot be completely specified and,
hence, exact test is not well defined in such a situation.

5.1.3 An Example

Suppose the investigator is interested in conducting a trial to study the
treatment effect of a test compound in curing patients with certain types of
cancer. The responder is defined to be the subject who is completely cured
by the study treatment. According to literature, the standard therapy
available on the market can produce a cure rate of 10% (p0 = 10%). A pilot
study of the test compound shows that the test compound may produce
a cure rate of 30% (p1 = 30%). The objective of the planning trial is
to confirm such a difference truly exists. It is desirable to have a sample
size, which can produce 80% power at 5% level of significance. According to
Table 5.1.1, the total sample size needed is given by 25. The null hypothesis
should be rejected if there are at least 5 subjects who are classified as
responders.

5.2 Fisher’s Exact Test

For comparing proportions between two treatment groups, the hypotheses
of interest are given by

H0 : p1 = p2 versus Ha : p1 �= p2,

where p1 and p2 are the true proportions of treatment 1 and treatment 2,
respectively. Unlike the one-sample binomial test, under the null hypothesis
that p1 = p2, the exact values of p1 and p2 are unknown. Hence, it is
impossible to track the marginal distribution of the events observed from
different treatment groups. In this case, a conditional test such as Fisher’s
exact test is usually considered. In this section, we describe Fisher’s exact
test and the related sample size calculation formula.
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5.2.1 The Procedure

Let mi be the number of responses observed in the ith treatment group.
Then, the total number of observed responses is m = m1 +m2. Under the
null hypothesis that p1 = p2 and conditional on m, it can be shown that
m1 follows a hypergeometric distribution with parameters (m,n1, n2), i.e.,

P (m1 = i|m,n1, n2) =

(
n1
i

)(
n2

m− i

)
(

n1 + n2
m

) .

Any outcomes with the same m but larger than m1 would be considered at
least as favorable to Ha as the observed outcome. Then, the probability of
observing these outcomes, which is at least as observed, is defined as the
exact p-value. In other words,

exact p-value =
m∑
i=m1

(
n1
i

)(
n2

m− i

)
(

n1 + n2
m

) .

We reject the null hypothesis at the α level of significance when the exact
p-value is less than α. Under the alternative hypothesis that p1 �= p2 and
for a fixed n, the power of Fisher’s exact test can be obtained by summing
the probabilities of all the outcomes such that the exact p-value is less than
α. However, it should be noted that no closed form exists for the power of
Fisher’s exact test. As a result, sample size required for achieving a desired
power can only be obtained numerically such as by greedy search for all
possible outcomes.

Table 5.2.1 provides sample sizes required for achieving the desired
power (80% or 90%) under various parameters (i.e., p2 − p1 ranging from
0.10 to 0.35) when testing the null hypothesis that p1 = p2. As an example,
a sample size of 34 subjects is required for detection of a 25% difference
in proportion between treatment groups (i.e., p2 − p1 = 0.25) with an 80%
power assuming that p1 = 0.15.

5.2.2 Remarks

For Fisher’s exact test, the exact p-value is well defined only if the condi-
tional sample distribution is completely specified under the null hypothesis.
On the other side, the test for non-inferiority/superiority and equivalence
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Table 5.2.1: Sample Size for Fisher’s Exact Test

α = 0.10 α = 0.05

p2 − p1 p1 p2 β = 0.20 β = 0.10 β = 0.20 β = 0.10

0.25 0.05 0.30 25 33 34 42

0.10 0.35 31 41 39 52

0.15 0.40 34 48 46 60

0.20 0.45 39 52 49 65

0.25 0.50 40 56 54 71

0.30 0.55 41 57 55 72

0.35 0.60 41 57 56 77

0.40 0.65 41 57 56 77

0.45 0.70 41 57 55 72

0.50 0.75 40 56 54 71

0.55 0.80 39 52 49 65

0.60 0.85 34 48 46 60

0.65 0.90 31 41 39 52

0.70 0.95 25 33 34 42

0.30 0.05 0.35 20 26 25 33

0.10 0.40 23 32 30 39

0.15 0.45 26 35 34 45

0.20 0.50 28 39 36 47

0.25 0.55 29 40 37 51

0.30 0.60 29 40 41 53

0.35 0.65 33 40 41 53

0.40 0.70 29 40 41 53

0.45 0.75 29 40 37 51

0.50 0.80 28 39 36 47

0.55 0.85 26 35 34 45

0.60 0.90 23 32 30 39

0.35 0.05 0.40 16 21 20 25

0.10 0.45 19 24 24 31

0.15 0.50 20 28 26 34

0.20 0.55 23 29 27 36

0.25 0.60 24 29 30 36

0.30 0.65 24 33 31 40

0.35 0.70 24 33 31 40

0.40 0.75 24 29 30 36

0.45 0.80 23 29 27 36

0.50 0.85 20 28 26 34

0.55 0.90 19 24 24 31

0.60 0.95 16 21 20 25
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usually involves interval hypothesis, which means under the null hypothe-
sis, we only know the parameter of interest is located within certain interval
but unware of its exact value. As a result, the distribution under the null
hypothesis can not be completely specified and, hence, Fisher’s exact test
is not well defined in such a situation.

5.2.3 An Example

Suppose the investigator is interested in conducting a two-arm trial to study
the treatment effect of a test compound in preventing the relapse rate in
EAE score. The active control involved in the trial is a standard therapy
aleady available on market. It is assumed that the responder rates for the
test compound and the control are given by 10% (p1 = 20%) and 35%
(p2 = 35%), respectively. The objective of the planning trial is to confirm
such a difference truly exists. It is desirable to have a sample size, which
can produce 80% power at 5% level of significance. According to Table
5.2.1, the sample size needed per arm is given by 39.

5.3 Optimal Multiple-Stage Designs for Sin-
gle Arm Trials

In phase II cancer trials, it is undesirable to stop a study early when the
test drug is promising. On the other hand, it is desirable to terminate the
study as early as possible when the treatment is not effective. For this
purpose, an optimal multiple-stage design is often employed to determine
whether a study drug holds sufficient promise to warrant further testing. In
what follows, procedures for sample size calculation under various optimal
multiple-stage designs are introduced.

5.3.1 Optimal Two-Stage Designs

The concept of an optimal two-stage design is to permit early stopping when
a moderately long sequence of initial failures occurs. Denote the number
of subjects studied in the first and second stage by n1 and n2, respectively.
Under a two-stage design, n1 patients are treated at the first stage. If
there are less than r1 responses, then stop the trial. Otherwise, stage 2
is implemented by including the other n2 patients. A decision regarding
whether the test drug is a promising compound is then made based on
the response rate of the N = n1 + n2 subjects. Let p0 be the undesirable
response rate and p1be the desirable response rate (p1 > p0). If the response
rate of a test drug is at the undesirable level, one wishes to reject it as an
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ineffective compound with a high probability (or the false positive rate is
low), and if its response rate is at the desirable level, not to reject it as a
promising compound with a high probability (or the false negative rate is
low). As a result, it is of interest to test the following hypotheses:

H0 : p ≤ p0 versus Ha : p ≥ p1.

Rejection of H0 (or Ha) means that further (or no further) study of the
test drug should be carried out. Note that under the above hypotheses,
the usual type I error is the false positive rate in accepting an ineffective
drug and the type II error is the false negative rate in rejecting a promising
compound.

To select among possible two-stage designs with specific type I and type
II errors, Simon (1989) proposed to use the optimal design that achieves
the minimum expected sample size when the response rate is p0. Let EN
be the expected sample size. Then, EN can be obtained as

EN = n1 + (1− PET )n2,

where PET is the probability of early termination after the first stage,
which depends upon the true probability of response p. At the end of the
first stage, we would terminate the trial early and reject the test drug if r1
or fewer responses are observed. As a result, PET is given by

PET = B(r1; p, n1),

where B(·; p, n1) denotes the cumulative binomial distribution with param-
eter (p, n1). We would reject the test drug at the end of the second stage
if r or fewer responses are observed. Hence, the probability of rejecting the
test drug with success probability p is given by

B(r1; p, n1) +
min(n1,r)∑
x=r1+1

b(x; p, n1)B(r − x; p, n2),

where b(·; p, n1) denotes the binomial probability function with parameter
(p, n1). For specified values of p0, p1, α, and β, Simon’s optimal two-stage
design can be obtained as the two-stage design that satisfies the error con-
straints and minimizes the expected sample size when the response proba-
bility is p0. As an alternative design, Simon (1989) also proposed to seek
the minimum total sample size first and then achieve the minimum ex-
pected sample size for the fixed total sample size when the response rate is
p0. This design is referred to as the minimax design.

Tables 5.3.1 and 5.3.2 provide sample sizes for optimal two-stage designs
and minimax designs for a variety of design parameters, respectively. The
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Table 5.3.1: Sample Sizes and Critical Values for Two-Stage Designs
(p1 − p0 = 0.15)

Optimal Design Minimax Design
p0 p1 α β r1/n1 r/N r1/n1 r/N

0.05 0.20 0.10 0.10 0/12 3/37 0/13 3/32
0.05 0.20 0/10 3/29 0/13 3/27
0.05 0.10 1/21 4/41 1/29 4/38

0.10 0.25 0.10 0.10 2/21 7/50 2/27 6/40
0.05 0.20 2/18 7/43 2/22 7/40
0.05 0.10 2/21 10/66 3/31 9/55

0.20 0.35 0.10 0.10 5/27 16/63 6/33 15/58
0.05 0.20 5/22 19/72 6/31 15/53
0.05 0.10 8/37 22/83 8/42 21/77

0.30 0.45 0.10 0.10 9/30 29/82 16/50 25/69
0.05 0.20 9/27 30/81 16/46 25/65
0.05 0.10 13/40 40/110 27/77 33/88

0.40 0.55 0.10 0.10 16/38 40/88 18/45 34/73
0.05 0.20 11/26 40/84 28/59 34/70
0.05 0.10 19/45 49/104 24/62 45/94

0.50 0.65 0.10 0.10 18/35 47/84 19/40 41/72
0.05 0.20 15/28 48/83 39/66 40/68
0.05 0.10 22/42 60/105 28/57 54/93

0.60 0.75 0.10 0.10 21/34 47/71 25/43 43/64
0.05 0.20 17/27 46/67 18/30 43/62
0.05 0.10 21/34 64/95 48/72 57/84

0.70 0.85 0.10 0.10 14/20 45/59 15/22 40/52
0.05 0.20 14/19 46/59 16/23 39/49
0.05 0.10 18/25 61/79 33/44 53/68

0.80 0.95 0.10 0.10 5/7 27/31 5/7 27/31
0.05 0.20 7/9 26/29 7/9 26/29
0.05 0.10 16/19 37/42 31/35 35/40
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Table 5.3.2: Sample Sizes and Critical Values for Two-Stage Designs
(p1 − p0 = 0.20)

Optimal Design Minimax Design
p0 p1 α β r1/n1 r/n r1/n1 r/n

0.05 0.25 0.10 0.10 0/9 2/24 0/13 2/20
0.05 0.20 0/9 2/17 0/12 2/16
0.05 0.10 0/9 3/30 0/15 3/25

0.10 0.30 0.10 0.10 1/12 5/35 1/16 4/25
0.05 0.20 1/10 5/29 1/15 5/25
0.05 0.10 2/18 6/35 2/22 6/33

0.20 0.40 0.10 0.10 3/17 10/37 3/19 10/36
0.05 0.20 3/13 12/43 4/18 10/33
0.05 0.10 4/19 15/54 5/24 13/45

0.30 0.50 0.10 0.10 7/22 17/46 7/28 15/39
0.05 0.20 5/15 18/46 6/19 16/39
0.05 0.10 8/24 24/63 7/24 21/53

0.40 0.60 0.10 0.10 7/18 22/46 11/28 20/41
0.05 0.20 7/16 23/46 17/34 20/39
0.05 0.10 11/25 32/66 12/29 27/54

0.50 0.70 0.10 0.10 11/21 26/45 11/23 23/39
0.05 0.20 8/15 26/43 12/23 23/37
0.05 0.10 13/24 35/61 14/27 32/53

0.60 0.80 0.10 0.10 6/11 26/38 18/27 14/35
0.05 0.20 7/11 30/43 8/13 25/35
0.05 0.10 12/19 37/53 15/26 32/45

0.70 0.90 0.10 0.10 6/9 22/28 11/16 20/25
0.05 0.20 4/6 22/27 19/23 21/26
0.05 0.10 11/15 29/36 13/18 26/32
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tabulated results include the optimal sample size n1 for the first stage, the
maximum sample size n, the critical value r1 at the end of the first stage,
and the critical value r at the end of the trial. For example, the first line
in Table 5.3.2 corresponds to a design with p0 = 0.20 and p1 = 0.40. The
optimal two-stage design gives (r1/n1, r/n) = (3/13, 12/43) for achieving
an 80% power at the 5% level of significance, i.e., (α, β) = (0.05, 0.20). In
other words, at the first stage, thirteen subjects are tested. If no more than
3 subjects respond, then terminate the trial. Otherwise, accrual continues
to a total of 43 subjects. We would conclude that the test drug is effective
if there are more than 12 (out of 43 subjects) responses.

5.3.2 Flexible Two-Stage Designs

Chen and Ng (1998) proposed optimal multiple-stage flexible designs for
phase II trials by simply assuming that the sample sizes are uniformly
distributed on a set of k consecutive possible values. As an example, the
procedure for obtaining an optimal two-stage flexible design is outlined
below.

Let ri and ni be the critical value and the sample size for the first stage
and Rj and Nj be the critical value and sample size for the second stage.
Thus, for a given combination of (ni, Nj), the expected sample size is given
by

EN = ni + (1− PET )(Nj − ni),

where
PET = B(ri; p, ni) =

∑
x≤ri

b(x; p, ni).

The probability of rejecting the test drug is then given by

B(ri; p, ni) +
min(ni,Rj)∑
x=ri+1

b(x; p, ni)B(Rj − x; p,Nj − ni).

The average probability of an early termination (APET ) is the average
of PET for all possible ni. The average total probability of rejecting the
test drug (ATPRT ) is the average of the above probability for all possible
combinations of (ni, Nj). The average expected sample size (AEN) is the
average of EN . Chen and Ng (1998) considered the following criteria for
obtaining an optimal flexible design. If the true response rate is p0, we reject
the test drug with a very high probability (i.e., ATPRT ≥ 1−α). If the true
response rate is p1, we reject the test drug with a very low probability (i.e.,
ATPRT ≤ β). There are many solutions of (ri, ni, Rj , Nj)′s that satisfy
the α and β requirements for the specific p0 and p1. The optimal design is
the one that has minimum AEN when p = p0. The minimax design is the
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one that has the minimum Nk and the minimum AEN within this fixed
Nk when p = p0.

Tables 5.3.3-5.3.4 and Tables 5.3.5-5.3.6 provide sample sizes for flexible
two-stage designs and minimax designs for a variety of design parameters,
respectively. The tabulated results include the optimal sample size ni and
the critical value ri for the first stage and the total sample size Nj and
critical value Rj at the end of the second stage. For example, the second
line in Table 5.3.3 corresponds to a design with p0 = 0.10 and p1 = 0.30.
The flexible two-stage design gives 1/11-17, 2/18 for the first stage and
3/24, 4/25-28, 5/29-31 for the second stage for achieving a 90% power at
the 10% level of significance. The optimal flexible two-stage design allows
the first stage sample size to range from 11 (n1) to 18 (n8). The critical
value ri is 1 if ni ranges from 11 to 17, and 2 if ni is 18. If the observed
responses are greater than ri, we accrue 27− ni additional subjects at the
second stage. The flexible optimal two-stage design allows the total sample
size to range from 24 (N1) to 31 (N8). The rejection boundary Rj is 3 if
Nj is 24, 4 if Nj ranges from 25 to 28, and 5 if Nj ranges from 29 to 31.

5.3.3 Optimal Three-Stage Designs

The advantage of a two-stage design is that it does not allow early ter-
mination if there is a long run of failures at the start. To overcome this
disadvantage, Ensign et al. (1994) proposed an optimal three-stage de-
sign, which modifies the optimal two-stage design. The optimal three-stage
design is implemented by testing the following similar hypotheses:

H0 : p ≤ p0 versus Ha : p ≥ p1.

Rejection ofH0 (orHa) means that further (or not further) study of the test
drug should be carried out. At stage 1, n1 patients are treated. We would
reject Ha (i.e., the test treatment is not responding) and stop the trial
if there is no response. If there are one or more responses, then proceed
to stage 2 by including additional n2 patients. We would reject Ha and
stop the trial if the total number of responses is less than or equal to a
pre-specified number of r2; otherwise continue to stage 3. At stage 3, n3
more patients are treated. We would reject Ha if the total responses for the
three stages combined is less than or equal to r3. In this case, we conclude
the test drug is ineffective. On the other hand, if there are more than r3
responses, we reject H0 and conclude the test drug is effective. Based on
the concept of the above three-stage design, Ensign et al. (1994) considered
the following to determine the sample size. For each value of n1 satisfying

(1− p1)n1 < β,
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Table 5.3.3: Sample Sizes and Critical Values for Optimal Flexible
Two-Stage Designs (p1 − p0=0.15)

p0 p1 α β ri/ni Rj/Nj

0.05 0.20 0.10 0.10 0/15-16,1/17-22 2/30-31,3/32-37

0.05 0.20 0/10-12,1/13-17 3/27-34

0.05 0.10 1/17-24 4/41-46,5/47-48

0.10 0.25 0.10 0.10 2/19-25,3/26 6/44-45,7/46-51

0.05 0.20 1/13-15,2/16-20 6/40,7/41-45,8/46-47

0.05 0.10 2/21-24,3/25-28 9/57-61,10/62-64

0.20 0.35 0.10 0.10 6/28-31,7/32-35 15/62,16/63-65,

17/66-68,18/69

0.05 0.20 4/18-21,5/22-24,6/25 17/62-64,18/65-69,

0.05 0.20 6/31,7/32-34,8/35-38 22/82-85,23/86-89

0.30 0.45 0.10 0.10 9/31,10/32-33 27/75-77,28/78-80

11/34-37,12/38 29/81-82

0.05 0.20 7/23,8/24-25, 27/73,28/74-76,

9/26-29,10/30 29/77-78,30/79-80

0.05 0.20 11/35-36,12/37-39, 36/98-99,37/100-102,

13/40-42 38/103-104,39/105

0.40 0.55 0.10 0.10 12/30-31,13/32-33, 37/80-81,38/82-84,

14/34-35,15/36-37 39/85-86,40/87

0.05 0.20 11/25-26,12/27-29, 37/78,38/79-80,

13/30-31,14/32 39/81-82,40/83-85

0.05 0.10 16/38-39,17/40-41, 49/104-105,50/106-107,

18/42-44,19/45 51/108-109,52/110-111

0.50 0.65 0.10 0.10 15/30,16/31-32,17/33-34, 44/78-79,45/80-81,

18/35-36,19/37 46/82-83,47/84,48/85

0.05 0.20 12/23,13/24-25,14/26-27, 45/77-78,46/79-80,

15/28-29,16/30 47/81-82,48/83,49/84

0.05 0.10 21/40,22/41-42,23/43-44, 59/103-104,60/105-106,

24/45-46,25/47 61/107,62/108-109,63/110

0.60 0.75 0.10 0.10 16/27,17/28,18/29-30, 44/67,45/68,46/69-70,

19/31-32,20/33,21/34 47/71,48/72,49/73-74

0.05 0.20 14/22-23,15/24,16/25 46/68,47/69,48/70-71

0.05 0.10 20/32-33,21/34,22/36-36, 61/90-91,62/92,63/93-94,

23/37/24/38-39 64/95,65/96-97

0.70 0.85 0.10 0.10 13/19,14/20,15/21, 40/53,41/54,42/55,43/56,

16/22-23,17/24,18/25-26 44/57-58,45/59,46/60

0.05 0.20 9/13,10/14,11/15,12/16-17, 44/56-57,45/58,46/59,

13/18,14/19,15/20 47/60,48/61-62,49/63

0.05 0.10 17/24,18/26,19/26, 57/73-74,58/75,59/76-77,

20/27-28,21/29,22/30, 60/78,61/79,62/80

23/31

0.80 0.95 0.10 0.10 8/10,9/11,10/12-13, 24/28,25/29,26/30,27/31,

11/14,12/15,13/16,14/17 28/32,29/33,30/34-35

0.05 0.20 7/9,8/10,9/11,10/12, 25/28,26/29,27/30,

11/13,12/14,13/15,14/16 28/31-32,29/33,30/34,

31/35

0.05 0.10 10/12,11/13-14,12/15, 35/40,36/41,37/42,38/43,

13/16,14/17,15/18,16/19 39/44,40/45-46,41/47
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Table 5.3.4: Sample Sizes and Critical Values for Optimal Flexible
Two-Stage Designs (p1 − p0=0.20)

p0 p1 α β ri/ni Rj/Nj

0.05 0.25 0.10 0.10 0/8-13,1/14-15 1/18,2/19-25

0.05 0.20 0/5-10,1/11-12 2/17-22,3/23-24

0.05 0.10 0/8-13,1/14-15 2/24,3/25-31

0.10 0.30 0.10 0.10 1/11-17,2/18 3/24,4/25-28,5/29-31

0.05 0.20 1/8-12,2/13-15 4/26,5/27-32,6/33

0.05 0.10 1/12-14,2/15-19 6/36-39,7/40-43

0.20 0.40 0.10 0.10 2/14,3/15-17,4/18-21 9/35-36,10/37-38,11/39-42

0.05 0.20 2/10-12,3/13-15,4/16-17 10/33-35,11/36-40

0.05 0.10 4/18-20,5/21-24,6/25 13/48,14/49-51,15/52-55

0.30 0.50 0.10 0.10 4/14-16,5/17-19, 15/40-41,16/42-44,

6/20-21 17/45-46,18/47

0.05 0.20 3/11,4/12-14, 16/40-41,16/42-44,

5/15-16/6/17-18 18/45-46,18/47

0.05 0.10 6/19-20,7/21-23, 21/55,22/56-58,

8/24-26 23/59-60,24/61-62

0.40 0.60 0.10 0.10 6/15-16,7/17-19, 21/44-45,22/46-47,

8/20,9/21-22 23/48-49,24/50-51

0.05 0.20 5/12-13,6/14, 22/44-45,23/46-47,24/48-49,

7/15-16,8/17-19 25/50,26/51

0.05 0.10 8/20,9/21-22,10/23-24, 28/58,29/59-60,30/61-62,

11/25-26,12/27 31/63,32/64-65

0.50 0.70 0.10 0.10 7/15,8/16-17,9/18, 24/41-42,25/43/44,

10/19-20,11/21,12/22 26/45,27/46-47,28/48

0.05 0.20 5/10,6/11-12, 25/42,26/43-44,27-45,

7/13-14,8/15,9/16-17 28/46-47,29/48,30/49

0.05 0.10 10/19-20,11/21, 33/55-56,34/57-58,

12/22-23,13/24-25,14/26 35/59,36/60-61,37/62

0.60 0.80 0.10 0.10 7/12,8/13-14,9/15, 24/35-36,25/37,26/38

10/16-17,11/18,12/19 27/39-40,28/41,29/42

0.05 0.20 5/8-9,6/10,7/11, 25/35-36,26/37,27/38,

8/12-13,9/14-15 28/39-40,29/41,30/42

0.05 0.10 11/17-18,12/19,13/20-21, 34/48-49,35/50-51,

14/22,15/23,16/24 36/52,37/53-54,38/55

0.70 0.90 0.10 0.10 6/9,7/10,8/11,9/12-13, 18/23,19/24,20/25-26,

10/14,11/15-16 21/27,22/28,23/29,24/30

0.05 0.20 4/6,5/7,6/8,7/9, 22/27,23/28-29,24/30,

8/10-11,9/12,10/13 25/31,26/32-33,27/34

0.05 0.10 7/10,8/11,9/12-13, 27/34/28/35,29/36,30/37-38,

10/14,11/15,12/16,13/17 31/39,32/40,33/41

© 2008 by Taylor & Francis Group, LLC



132 Chapter 5. Exact Tests for Proportions

Table 5.3.5: Sample Sizes and Critical Values for Minimax Flexible
Two-Stage Designs (p1 − p0=0.15)

p0 p1 α β ri/ni Rj/Nj

0.05 0.20 0.10 0.10 0/16-22,1/23 2/26-28,3/29-33

0.05 0.20 0/10-17 2/23,2/24-30

0.05 0.10 0/22-27,1/28-29 3/33-34,4/35-40

0.10 0.25 0.10 0.10 1/25-27,2/28-32 5/37,6/38-42,7/43-44

0.05 0.20 1/22-24,2/25-29 6/33-37,7/38-40

0.05 0.10 2/25-29,3/30-32 8/49-52,9/53-56

0.20 0.35 0.10 0.10 6/37-39,7/40-42,8/43-440 14/54-55,15/56-59,16/60-61

0.05 0.20 6/28,6/29-31,7/32-35 14/50-51,15/52-54,16/55-57

0.05 0.10 8/41-45,9/46-48 19/71-72,20/73-74,21/75-78

0.30 0.45 0.10 0.10 11/43,12/44-46 23/64,24/65-67,

13/47-48,14/49-50 25/68-69,26/70-71

0.05 0.20 10/36,11/37, 23/60,24/61-63,

12/38-39,13/40-43 25/64-65,26/66-67

0.05 0.10 15/50-52,16/53-55, 32/85-86,33/87-89,

17/56-57 34/90-91,35/92

0.40 0.55 0.10 0.10 16/43-44,17/45-46, 32/69-70,33/71,

18/47,19/48-49,20/50 34/72-73,35/74-75,36/76

0.05 0.20 13/34-35,14/36, 32/65-66,33/67-68,

15/37-39,16/40-41 34/69-70,35/71,36/72

0.05 0.10 23/60-61,24/62-63, 43/91,44/92-93,

25/64-65,26/66-67 45/94,46/95-96,47/97-98

0.50 0.65 0.10 0.10 19/41,20/42-43, 38/67,39/68-69,40/70-71,

21/44-45,22/57-57,23/48 41/72,42/73-74

0.05 0.20 16/33,17/34-35, 38/64-65,39/66,

18/36-37,19/38-39,20/40 40/67-68,41/69,42/70-71

0.05 0.10 26/53,27/54-55,28/56, 52/89-90,53/91-92,

29/57,30/58-59,31/60 54/93-94,55/95,56/96

0.60 0.75 0.10 0.10 22/38-39,23/40,24/41-42, 40/60,41/61,42/62-63,

25/43,26/44-45 43/64,44/65-66,45/67

0.05 0.20 18/31,19/32,20/33-34, 40/57-58,41/59,

21/35,22/36-37,23/38 42/60-61,43/62,44/63-64

0.05 0.10 23/39,24/40-41,25/42-43, 54/80,55/81,56/82,

26/44,27/45,28/46 57/83-84,58/85,59/86-87

0.70 0.85 0.10 0.10 19/28-29,20/30,21/31, 36/46-47,37/48,38/49,

22/32,23/33-34,24/35 39/50-51,40/52,41/53

0.05 0.20 18/25,19/26,20/27-28, 36/45,37/46-47,38/48,

21/29,22/30,23/31,24/32 39/49,40/50-51,41/52

0.05 0.10 26/38,27/39,28/40,29/41, 48/62,49/63,50/64,51/65,

30/42-43,31/44/32/45 52/66,53/67,54/68-69

0.80 0.95 0.10 0.10 9/12,10/13,11/14,12/15, 23/26,24/27-28,25/29,

13/16,14/17,15/18,16/19 26/30,27/31,28/32,29/33

0.05 0.20 6/8,7/9,8/10,9/11, 23/26,24/27,25/28,26/29,

10/12-13,11/14,12/15 27/30,28/31,29/32,30/33

0.05 0.10 22/26,23/27,24/28,25/29, 31/35,32/36,33/37,34/38,

26/30,27/31,28/32,29/33 35/39-40,36/41,37/42
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Table 5.3.6: Sample Sizes and Critical Values for Minimax Flexible
Two-Stage Designs (p1 − p0=0.20)

p0 p1 α β ri/ni Rj/Nj

0.05 0.25 0.10 0.10 0/8-15 1/17,2/18-24

0.05 0.20 0/6-12,1/13 2/14-21

0.05 0.10 0/10-16,1/17 2/21-22,3/23-28

0.10 0.30 0.10 0.10 0/11-13,1/14-18 3/22-23,4/24-26,5/27-29

0.05 0.20 0/11-14,1/15-18 3/19,4/20-22,5/23-26

0.05 0.10 1/17-20,2/21-23,3/24 5/28-30,6/31-35

0.20 0.40 0.10 0.10 3/22-23,4/24, 8/30-31,9/32/33,

5/25-27,6/28-29 10/34-37

0.05 0.20 2/14,3/15-18,4/19-21 9/28-31,10/32-34,11/35

0.05 0.10 5/27-29,11/40,12/41-42,

6/30-32,7/33-34 13/43-45,14/46-47

0.30 0.50 0.10 0.10 6/24-25,7/26-29, 13/35,14/36-37,

8/30,9/31 15/38-40,16/41-42

0.05 0.20 5/18-19,6/20-22,14/33-35,

15/36-37,7/23-24,8/25 16/38-39,17/40

0.05 0.10 7/27,8/28-29,19/47-49,

20/50-51,9/30-31,10/32-34 21/52-53,22/54

0.40 0.60 0.10 0.10 8/23-24,9/25-26, 18/37-38,19/39-40,

10/27,11/28-29,12/30 20/41,21/42-43,22/44

0.05 0.20 6/18,7/19-20,8/21-22, 18/35-36,19/37,

9/23,10/24-25 20/38-39,21/40,22/41-42

0.05 0.10 10/26-27,11/28, 25/50-51,26/52,

12/29-31,13/32-33 27/53-54,28/55-56,29/57

0.50 0.70 0.10 0.10 8/18,9/19-20,10/21, 21/36,22/37-38,23/39,

11/22-23,12/24,13/25 24/40-41,25/42-43

0.05 0.20 7/15,8/16-17,9/18-19, 21/34,22/35-36,23/37-38,

10/20,11/21,12/22 24/39,25/40,26/41

0.05 0.10 14/30-31,15/32,16/33-34, 18/47,29/48,30/49-50,

17/35,18/36,19/37 31/51,32/52-53,33/54

0.60 0.80 0.10 0.10 9/17-18,10/19,11/20, 21/30-31,22/32,23/33,

12/21,13/22-23,14/24 24/34-35,25/36,26/37

0.05 0.20 6/11,7/12-13,8/14, 21/29,22/30-31,23/32,

9/15-16,10/17,11/18 24/33,25/34-35,26/36

0.05 0.10 11/19,12/20-21, 29/41,30/42-43,31/44,

13/22,14/23,15/24-26 32/45,33/46-47,34/48

0.70 0.90 0.10 0.10 5/8,6/9,7/10-11,8/12, 17/22,18/23,19/24,20/25,

9/13,10/14-15 21/26,22/27-28,23/29

0.05 0.20 5/8,6/9,7/10,8/11, 17/21,18/22,19/23,20/24,

9/12-13,10/14,11/15 21/25,22/26-27,23/28

0.05 0.10 8/12,9/13,10/14,11/15, 24/30,35/31,26/32,27/33,

12/16-17,13/18,14/19 28/34-35,29/36,30/37
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where
β = P (reject Ha | p1),

computing the values of r2, n2, r3, and n3 that minimize the null expected
sample size EN(p0) subject to the error constraints α and β, where

EN(p) = n1 + n2{1− β1(p)}+ n3{1− β1(p)− β2(p)},

and βi are the probability of making type II error evaluated at stage i.
Ensign et al. (1994) use the value of

β − (1− p1)n1

as the type II error rate in the optimization along with type I error

α = P (reject H0 | p0)

to obtain r2, n2, r3, and n3. Repeating this, ni can then be chosen to mini-
mize the overall EN(p0).

Tables 5.3.7 and 5.3.8 provide sample sizes for optimal three-stage de-
signs based on the method proposed by Ensign et al. (1994) for a variety
of design parameters. The tabulated results include the optimal size ni
and the critical value ri of the ith stage. For example, the result in Ta-
ble 5.3.7 corresponding to a design with p0 = 0.25 and p1 = 0.40 gives
0/6, 7/26, 24/75 for achieving an 80% power at the 5% level of significance.
In other words, at the first stage, six subjects are treated. If there is no
response, then the trial is terminated. Otherwise, accrual continues to a
total of 26 subjects at the second stage. If there are no more than 7 sub-
jects respond, then stop the trial. Otherwise, proceed to the third stage by
recruiting 49 additional subjects. We would conclude that the test drug is
effective if there are more than 24 responses for the subjects in the three
stages combined.

Note that the optimal three-stage designs proposed by Ensign et al.
(1994) restrict the rejection region in the first stage to be zero response,
and the sample size to at least 5. As an alternative, Chen (1997b) also
extended Simon’s two-stage to a three-stage design without these restric-
tions. As a result, sample sizes can be obtained by computing the values
of r1, n1, r2, n2, r3, and n3 that minimize the expected sample size

EN = n1 + (1− PET1)n2 + (1− PETall)n3

PET1 = B(r1;n1, p) =
∑
x≤r1

b(x;n1, p)

PETall = PET1 +
min(n1,r2)∑
x=r1+1

b(d;n, p)B(r2 − x;n2, p).
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Table 5.3.7: Sample Sizes ni and Critical Values ri for Optimal
Three-Stage Designs - Ensign et al. (1994) (p1 − p0 = 0.15)

Stage 1 Stage 2 Stage 3

p0 p1 α β r1/n1 r2/(n1 + n2) r3/(n1 + n2 + n3)

0.05 0.20 0.10 0.10 0/12 1/25 3/38

0.05 0.20 0/10 2/24 3/31

0.05 0.10 0/14 2/29 4/43

0.10 0.25 0.10 0.10 0/11 3/29 7/50

0.05 0.20 0/9 3/25 7/43

0.05 0.10 0/13 3/27 10/66

0.15 0.30 0.10 0.10 0/12 4/28 11/55

0.05 0.20 0/9 5/27 12/56

0.05 0.10 0/13 6/35 16/77

0.20 0.35 0.10 0.10 0/11 7/34 16/63

0.05 0.20 0/6 6/28 18/67

0.05 0.10 0/9 10/44 23/88

0.25 0.40 0.10 0.10 0/8 8/32 23/76

0.05 0.20 0/6 7/26 24/75

0.05 0.10 0/9 11/41 30/95

0.30 0.45 0.10 0.10 0/7 13/41 28/79

0.05 0.20 0/7 9/27 31/84

0.05 0.10 0/9 14/43 38/104

0.35 0.50 0.10 0.10 0/9 12/34 33/81

0.05 0.20 0/5 12/31 37/88

0.05 0.10 0/8 17/45 45/108

0.40 0.55 0.10 0.10 0/11 16/38 40/88

0.05 0.20 0/5 14/32 40/84

0.05 0.10 0/10 19/45 49/104

0.45 0.60 0.10 0.10 0/6 15/34 40/78

0.05 0.20 0/5 12/25 47/90

0.05 0.10 0/6 20/42 59/114

0.50 0.65 0.10 0.10 0/5 16/32 46.84

0.05 0.20 0/5 12/25 47/90

0.05 0.10 0/6 20/42 59/114

0.55 0.70 0.10 0.10 0/7 19/34 46/75

0.05 0.20 0/5 15/26 48/76

0.05 0.10 0/5 23/40 64/96

0.60 0.75 0.10 0.10 0/5 21/34 47/71

0.05 0.20 0/5 13/21 49/72

0.05 0.10 0/5 14/23 90/98

0.65 0.80 0.10 0.10 0/5 17/26 47/66

0.05 0.20 0/5 12/18 49/67

0.05 0.20 0/5 8/13 74/78

0.70 0.85 0.10 0.10 0/5 14/20 45/59

0.05 0.20 0/5 14/19 46/59

0.05 0.10 0/5 12/17 68/72

0.75 0.90 0.10 0.10 0/5 16/21 36/44

0.05 0.20 0/5 10/13 40/48

0.05 0.10 0/5 8/11 55/57

0.80 0.95 0.10 0.10 0/5 5/7 27/31

0.05 0.20 0/5 7/9 26/29

0.05 0.10 0/5 8/10 44/45
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Table 5.3.8: Sample Sizes ni and Critical Values ri for Optimal
Three-Stage Designs - Ensign et al. (1994) (p1 − p0 = 0.20)

Stage 1 Stage 2 Stage 3

p0 p1 α β r1/n1 r2/(n1 + n2) r3/(n1 + n2 + n3)

0.05 0.25 0.10 0.10 0/9 1/19 2/25

0.05 0.20 0/7 1/15 3/26

0.05 0.10 0/9 1/22 3/30

0.10 0.30 0.10 0.10 0/10 2/19 4/26

0.05 0.20 0/6 2/17 5/29

0.05 0.10 0/9 3/22 7/45

0.15 0.35 0.10 0.10 0/9 2/16 7/33

0.05 0.20 0/5 3/17 9/41

0.05 0.10 0/9 4/23 10/44

0.20 0.40 0.10 0.10 0/8 3/16 11/42

0.05 0.20 0/5 4/17 12/43

0.05 0.10 0/9 4/23 15/54

0.25 0.45 0.10 0.10 0/6 6/23 14/44

0.05 0.20 0/5 5/17 16/48

0.05 0.10 0/7 6/22 20/61

0.30 0.50 0.10 0.10 0/6 6/20 17/46

0.05 0.20 0/5 5/15 19/49

0.05 0.10 0/8 8/24 24/63

0.35 0.55 0.10 0.10 0/6 7/20 20/47

0.05 0.20 0/6 8/20 19/42

0.05 0.10 0/5 10/26 29/67

0.40 0.60 0.10 0.10 0/5 8/20 22/46

0.05 0.20 0/5 7/16 24/48

0.05 0.10 0/5 9/22 30/61

0.45 0.65 0.10 0.10 0/5 10/21 26/50

0.05 0.20 0/5 7/15 24/43

0.05 0.10 0/5 15/30 32/59

0.50 0.70 0.10 0.10 0/5 11/21 26/45

0.05 0.20 0/5 8/15 26/43

0.05 0.10 0/5 12/23 34/57

0.55 0.75 0.10 0.10 0/5 10/18 26/41

0.05 0.20 0/5 9/15 28/43

0.05 0.10 0/5 10/18 35/54

0.60 0.80 0.10 0.10 0/5 6/11 26/38

0.05 0.20 0/5 7/11 30/43

0.05 0.10 0/5 12/19 37/53

0.65 0.85 0.10 0.10 0/5 10/15 25/34

0.05 0.20 0/5 10/14 25/33

0.05 0.20 0/5 10/15 33/44

0.70 0.90 0.10 0.10 0/5 6/9 22/28

0.05 0.20 0/5 4/6 22/27

0.05 0.10 0/5 11/15 29/36

0.75 0.95 0.10 0.10 0/5 6/8 16/19

0.05 0.20 0/5 9/11 19/22

0.05 0.10 0/5 7/9 24/28
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Table 5.3.9: Sample Sizes ni and Critical Values ri for Optimal
Three-Stage Designs - Chen (1997b) (p1 − p0 = 0.15)

Stage 1 Stage 2 Stage 3

p0 p1 α β r1/n1 r2/(n1 + n2) r3/(n1 + n2 + n3)

0.05 0.20 0.10 0.10 0/13 1/22 3/37

0.05 0.20 0/10 1/19 3/30

0.05 0.10 0/14 2/29 4/43

0.10 0.25 0.10 0.10 1/17 3/29 7/50

0.05 0.20 1/13 3/24 8/53

0.05 0.10 1/17 4/34 10/66

0.15 0.30 0.10 0.10 2/20 5/33 11/55

0.05 0.20 2/15 6/33 13/62

0.05 0.10 3/23 8/46 16/77

0.20 0.35 0.10 0.10 3/21 8/37 17/68

0.05 0.20 3/17 9/37 18/68

0.05 0.10 5/27 11/49 23/88

0.25 0.40 0.10 0.10 4/20 10/39 24/80

0.05 0.20 4/17 12/42 25/79

0.05 0.10 6/26 15/54 32/103

0.30 0.45 0.10 0.10 6/24 14/44 28/79

0.05 0.20 5/18 14/41 31/84

0.05 0.10 8/29 19/57 38/104

0.35 0.50 0.10 0.10 7/23 18/49 34/84

0.05 0.20 6/19 17/43 34/80

0.05 0.10 9/28 23/60 45/108

0.40 0.55 0.10 0.10 7/21 19/46 38/83

0.05 0.20 7/19 19/43 39/82

0.05 0.10 12/31 28/64 54/116

0.45 0.60 0.10 0.10 12/28 27/56 43/85

0.05 0.20 8/19 21/42 45/86

0.05 0.10 13/30 29/60 58/112

0.50 0.65 0.10 0.10 10/22 25/48 48/86

0.05 0.20 8/17 21/39 49/85

0.05 0.10 14/29 34/63 62/109

0.55 0.70 0.10 0.10 13/25 25/44 47/77

0.05 0.20 7/14 23/39 49/78

0.05 0.10 15/28 36/61 65/105

0.60 0.75 0.10 0.10 11/20 26/42 57/71

0.05 0.20 8/14 23/36 52/77

0.05 0.10 14/24 36/56 70/105

0.65 0.80 0.10 0.10 11/18 27/40 49/69

0.05 0.20 8/13 27/38 52/72

0.05 0.20 16/25 35/50 66/92

0.70 0.85 0.10 0.10 14/20 18/37 45/59

0.05 0.20 4/7 11/16 44/56

0.05 0.10 12/18 28/38 58/75

0.75 0.90 0.10 0.10 10/14 23/29 38/47

0.05 0.20 9/12 21/26 39/47

0.05 0.10 10/14 23/29 55/67

0.80 0.95 0.10 0.10 5/7 16/19 30/35

0.05 0.20 2/3 16/19 35/40

0.05 0.10 6/8 24/28 41/47
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Table 5.3.10: Sample Sizes ni and Critical Values ri for Optimal
Three-Stage Designs - Chen (1997b) (p1 − p0 = 0.20)

Stage 1 Stage 2 Stage 3

p0 p1 α β r1/n1 r2/(n1 + n2) r3/(n1 + n2 + n3)

0.05 0.25 0.10 0.10 0/9 1/18 2/26

0.05 0.20 0/8 1/13 2/19

0.05 0.10 0/10 1/17 3/30

0.10 0.30 0.10 0.10 0/10 2/19 4/26

0.05 0.20 0/6 2/17 5/29

0.05 0.10 1/13 3/23 7/45

0.15 0.35 0.10 0.10 1/12 3/21 7/33

0.05 0.20 1/9 4/21 8/35

0.05 0.10 2/15 5/27 11/51

0.20 0.40 0.10 0.10 1/10 6/26 11/43

0.05 0.20 1/8 5/22 11/38

0.05 0.10 3/17 7/30 14/50

0.25 0.45 0.10 0.10 3/16 7/25 13/41

0.05 0.20 2/10 6/20 16/48

0.05 0.10 4/18 10/33 19/58

0.30 0.50 0.10 0.10 3/13 9/28 17/46

0.05 0.20 3/11 7/21 18/46

0.05 0.10 4/16 11/32 23/60

0.35 0.55 0.10 0.10 6/18 13/33 20/48

0.05 0.20 3/10 9/23 21/47

0.05 0.10 6/18 15/38 27/62

0.40 0.60 0.10 0.10 7/18 9/26 22/46

0.05 0.20 3/9 10/23 23/46

0.05 0.10 6/16 17/38 32/66

0.45 0.65 0.10 0.10 5/13 13/27 26/50

0.05 0.20 3/8 10/20 29/54

0.05 0.10 6/15 17/34 34/63

0.50 0.70 0.10 0.10 4/10 12/24 26/45

0.05 0.20 4/9 13/23 29/49

0.05 0.10 7/15 19/34 38/65

0.55 0.75 0.10 0.10 5/11 12/21 27/43

0.05 0.20 6/11 14/23 28/43

0.05 0.10 7/14 16/27 36/56

0.60 0.80 0.10 0.10 6/11 14/22 29/43

0.05 0.20 5/9 12/48 28/40

0.05 0.10 6/11 19/29 38/55

0.65 0.85 0.10 0.10 5/9 13/19 25/34

0.05 0.20 5/8 13/18 27/36

0.05 0.20 6/10 16/23 35/47

0.70 0.90 0.10 0.10 5/8 11/15 22/28

0.05 0.20 3/5 10/13 25/31

0.05 0.10 6/9 16/21 31/39

0.75 0.95 0.10 0.10 3/5 6/8 16/19

0.05 0.20 1/2 9/11 19/22

0.05 0.10 6/8 13/16 24/28
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Table 5.3.11: Sample Sizes ni and Critical Values ri for Minimax
Three-Stage Designs - Chen (1997b) (p1 − p0 = 0.15)

Stage 1 Stage 2 Stage 3

p0 p1 α β r1/n1 r2/(n1 + n2) r3/(n1 + n2 + n3)

0.05 0.20 0.10 0.10 0/18 1/26 3/32

0.05 0.20 0/14 1/20 3/27

0.05 0.10 0/23 1/30 4/38

0.10 0.25 0.10 0.10 1/23 3/33 6/40

0.05 0.20 1/17 3/30 7/40

0.05 0.10 1/21 4/39 9/55

0.15 0.30 0.10 0.10 2/23 5/36 11/53

0.05 0.20 2/19 6/36 11/48

0.05 0.10 4/35 8/51 14/64

0.20 0.35 0.10 0.10 5/30 9/45 15/58

0.05 0.20 3/22 7/35 15/53

0.05 0.10 16/65 19/72 20/74

0.25 0.40 0.10 0.10 6/31 11/46 20/64

0.05 0.20 7/30 12/42 20/60

0.05 0.10 9/47 17/67 27/83

0.30 0.45 0.10 0.10 7/29 16/51 25/69

0.05 0.20 8/29 14/42 25/65

0.05 0.10 12/46 25/73 33/88

0.35 0.50 0.10 0.10 12/39 20/57 30/72

0.05 0.20 10/33 18/48 29/66

0.05 0.10 11/36 22/60 40/94

0.40 0.55 0.10 0.10 10/30 19/48 34/73

0.05 0.20 13/33 30/63 34/70

0.05 0.10 20/55 32/77 45/94

0.45 0.60 0.10 0.10 18/41 35/69 38/74

0.05 0.20 13/32 25/53 38/70

0.05 0.10 26/58 47/90 50/95

0.50 0.65 0.10 0.10 19/40 24/64 41/72

0.05 0.20 18/36 36/62 40/68

0.05 0.10 19/43 34/67 54/93

0.55 0.70 0.10 0.10 23/43 36/60 42/68

0.05 0.20 18/33 41/64 42/66

0.05 0.10 23/43 42/84 45/89

0.60 0.75 0.10 0.10 19/35 30/50 43/64

0.05 0.20 19/32 40/58 42/61

0.05 0.10 18/46 50/75 57/84

0.65 0.80 0.10 0.10 22/33 26/41 43/60

0.05 0.20 16/26 27/40 41/55

0.05 0.20 25/41 37/56 55/75

0.70 0.85 0.10 0.10 15/22 18/37 40/52

0.05 0.20 11/17 16/24 39/49

0.05 0.10 13/20 31/42 43/68

0.75 0.90 0.10 0.10 11/17 22/29 33/40

0.05 0.20 8/12 16/21 33/39

0.05 0.10 12/17 23/30 45/54

0.80 0.95 0.10 0.10 1/3 17/20 26/30

0.05 0.20 7/9 16/19 26/29

0.05 0.10 16/20 31/35 35/40
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Table 5.3.12: Sample Sizes ni and Critical Values ri for Minimax
Three-Stage Designs - Chen (1997b) (p1 − p0 = 0.20)

Stage 1 Stage 2 Stage 3

p0 p1 α β r1/n1 r2/(n1 + n2) r3/(n1 + n2 + n3)

0.05 0.25 0.10 0.10 0/13 1/18 2/20

0.05 0.20 0/12 1/15 2/16

0.05 0.10 0/15 1/21 3/25

0.10 0.30 0.10 0.10 0/12 1/16 4/25

0.05 0.20 0/11 2/19 5/25

0.05 0.10 0/14 2/22 6/33

0.15 0.35 0.10 0.10 1/13 3/22 7/32

0.05 0.20 1/12 3/19 7/28

0.05 0.10 1/16 4/28 9/38

0.20 0.40 0.10 0.10 2/16 5/26 10/36

0.05 0.20 2/13 5/22 10/33

0.05 0.10 2/16 6/28 13/45

0.25 0.45 0.10 0.10 3/18 8/31 13/39

0.05 0.20 3/15 6/23 13/36

0.05 0.10 4/21 9/35 17/45

0.30 0.50 0.10 0.10 6/26 11/35 15/39

0.05 0.20 3/13 8/24 16/39

0.05 0.10 5/20 12/36 21/53

0.35 0.55 0.10 0.10 2/11 10/27 18/42

0.05 0.20 4/14 9/24 18/39

0.05 0.10 10/34 17/45 24/53

0.40 0.60 0.10 0.10 5/17 9/26 20/41

0.05 0.20 4/12 11/25 21/41

0.05 0.10 7/20 17/39 27/54

0.45 0.65 0.10 0.10 6/16 13/29 22/41

0.05 0.20 6/15 12/24 22/39

0.05 0.10 15/32 28/51 29/53

0.50 0.70 0.10 0.10 7/17 14/28 23/39

0.05 0.20 7/16 13/25 23/37

0.05 0.10 8/18 18/34 32/53

0.55 0.75 0.10 0.10 13/23 22/35 24/38

0.05 0.20 8/15 14/23 24/36

0.05 0.10 12/22 21/35 32/49

0.60 0.80 0.10 0.10 8/15 14/22 24/35

0.05 0.20 9/15 23/32 24/34

0.05 0.10 15/26 24/37 32/45

0.65 0.85 0.10 0.10 4/8 11/17 23/31

0.05 0.20 6/10 13/18 23/30

0.05 0.20 16/24 28/37 30/40

0.70 0.90 0.10 0.10 5/9 13/18 20/25

0.05 0.20 4/7 19/23 20/25

0.05 0.10 5/9 12/17 26/32

0.75 0.95 0.10 0.10 3/5 6/8 16/19

0.05 0.20 6/8 14/16 17/20

0.05 0.10 9/12 19/22 22/26
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Tables 5.3.9-5.3.10 and 5.3.11-5.3.12 provide sample sizes for optimal
three-stage designs and minimax designs based on the method proposed
by Chen (1997b) for a variety of design parameters. For example, the
result in Table 5.3.9 corresponding to a design with p0 = 0.25 and p1 =
0.40 gives 4/17, 12/42, 25/79 for achieving an 80% power at the 5% level
of significance. In other words, at the first stage, seventeen subjects are
treated. If no more than four responses are obtained, then the trial is
terminated. Otherwise, accrual continues to a total of 42 subjects at the
second stage. If there are no more than 12 subjects respond, then stop
the trial. Otherwise, proceed to the third stage by recruiting 37 additional
subjects. We would conclude that the test drug is effective if there are more
than 25 responses for the subjects in the three stages combined.

5.4 Flexible Designs for Multiple-Arm Trials

In the previous section, we introduced procedures for sample size calcu-
lation under (flexible) optimal multiple-stage designs for single arm phase
II cancer trials. Sargent and Goldberg (2001) proposed a flexible optimal
design considering a phase II trial that allows clinical scientists to select
the treatment to proceed for further testing for a phase III trial based on
other factors when the difference in the observed responses rates between
two treatments falls into the interval [−δ, δ], where δ is a pre-specified
quantity. The proposed rule is that if the observed difference in the re-
sponse rates of the treatments is larger than δ, then the treatment with the
highest observed response rate is selected. On the other hand, if the ob-
served difference is less than or equal to δ, other factors may be considered
in the selection. In this framework, it is not essential that the very best
treatment is definitely selected, rather it is important that a substantially
inferior treatment is not selected when a superior treatment exists.

To illustrate the concept proposed by Sargent and Golberg (2001), for
simplicity, consider a two-arm trial. Let p1 and p2 denote the true re-
sponse rates for the poor treatment and the better treatment, respectively.
Without loss of generality, assume that p2 > p1.

Let p̂1 and p̂2 denote the corresponding observed response rates for
treatment 1 and treatment 2, respectively. Sargent and Glodberg (2001)
considered the probability of correctly choosing the better treatment, i.e.,

PCorr = P{p̂1 > p̂1 + δ|p1, p2}

and the probability of the difference between the two observed response
rates falling into the ambiguous range of [−δ, δ], i.e.,

PAmb = P{−δ ≤ p̂2 − p̂1 ≤ δ|p1, p2}.
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Assuming that each treatment arm has the same number of subjects (i.e.,
n1 = n2 = n). The above two probabilities are given by

PCorr =
n∑
x=0

n∑
y=0

I{(x−y)/n>δ}

(
n

x

)(
n

y

)
px2(1− p2)n−xp

y
1(1− p1)n−y

and

PArm =
n∑
x=0

n∑
y=0

I{−δ≤(x−y)/n≤δ}

(
n

x

)(
n

y

)
px2(1−p2)n−xp

y
1(1−p1)n−y,

where IA is the indicator function of event A, i.e., IA = 1 if event A occurs
and IA = 0 otherwise. Sargent and Goldberg (2001) suggested that n be
selected such that Pcorr + ρPAmb > γ, a pre-specified threshold. Table
5.4.1 provides results for ρ = 0 and ρ = 0.5 for different sample sizes for
p2 = 0.35 and δ = 0.05.

Liu (2001) indicated that by the central limit theorem, we have

PCorr ≈ 1− Φ
(
δ − ε

σ

)
and

PAmb ≈ Φ
(
δ − ε

σ

)
− Φ

(
−δ − ε

σ

)
,

where Φ is the standard normal cumulative distribution function, ε = p2−p1
and

σ2 =
p1(1− p1) + p2(1− p2)

n
.

As indicated in Chapter 4, the power of the test for the following hypotheses

H0 : p1 = p2 versus Ha : p1 �= p2

Table 5.4.1: Probability of Various Outcomes for Different
Sample Sizes (δ = 0.05)

n p1 p2 PCorr PAmb PCorr + 0.5PAmb
50 0.25 0.35 0.71 0.24 0.83
50 0.20 0.35 0.87 0.12 0.93
75 0.25 0.35 0.76 0.21 0.87
75 0.20 0.35 0.92 0.07 0.96
100 0.25 0.35 0.76 0.23 0.87
100 0.20 0.35 0.94 0.06 0.97

© 2008 by Taylor & Francis Group, LLC



5.4. Flexible Designs for Multiple-Arm Trials 143

Table 5.4.2: Sample Sizes Per Arm for Various λ
Assuming δ = 0.05 and ρ = 0 or ρ = 0.5

ρ = 0 ρ = 0.5
p1 p2 λ = 0.90 λ = 0.80 λ = 0.90
0.05 0.20 32 13 16
0.10 0.25 38 15 27
0.15 0.30 0.53 17 31
0.20 0.35 57 19 34
0.25 0.40 71 31 36
0.30 0.45 73 32 38
0.35 0.50 75 32 46
0.40 0.55 76 33 47

is given by

1− β = 1− Φ
(
zα/2 −

ε

δ

)
+Φ

(
−zα/2 −

ε

δ

)
.

Let λ = PCorr + PAmb. Then

λ = 1− Φ
(
zα/2 −

ε

δ

)
+ ρβ.

As a result, sample size per arm required for a given λ can be obtained.
Table 5.4.2 gives sample sizes per arm for δ = 0.05 and λ = 0.80 or 0.90
assuming ρ = 0 or ρ = 0.5 based on exact binomial probabilities.

Note that the method proposed by Sargent and Goldberg (2001) can be
extended to the case where there are three or more treatments. The selec-
tion of the best treatment, however, may be based on pairwise comparison
or a global test. Table 5.4.3 provides sample sizes per arm with three or
four arms assuming δ = 0.05 and λ = 0.80 or 0.90.

5.5 Remarks

Chen and Ng (1998) indicated that the optimal two-stage design described
above is similar to the Pocock sequence design for randomized controlled
clinical trials where the probability of early termination is high, the total
possible sample size is larger, and the expected size under the alternative
hypothesis is smaller (see also Pocock, 1977). The minimax design, on the
other hand, is similar to the O’Brien-Fleming design where the probability
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Table 5.4.3: Sample Size Per Arm for Trials with Three or Four
Arms for ε = 0.15, δ = 0.05, and λ = 0.80 or 0.90

n(ρ = 0) n(ρ = 0.5)
ε r = 3 r = 4 r = 3 r = 4

λ = 0.80
0.2 18 31 13 16
0.3 38 54 26 32
0.4 54 73 31 39
0.5 58 78 34 50

λ = 0.90
0.2 39 53 30 34
0.3 77 95 51 59
0.4 98 119 68 78
0.5 115 147 73 93

of early termination is low, the total possible size is smaller, but the ex-
pected size under the alternative hypothesis is larger (O’Brien and Fleming,
1979). The minimum design is useful when the patient source is limited,
such as a rare cancer or a single-site study.

Recently, multiple-stage designs have been proposed to monitor re-
sponse and toxicity variables simultaneously. See, for example, Bryant and
Day (1995), Conaway and Petroni (1996), Thall, Simon, and Estey (1995,
1996). In these designs, the multivariate outcomes are modeled and family-
wise errors are controlled. It is suggested that this form of design should
be frequently used in cancer clinical trials since delayed toxicity could be
a problem in phase II trials. Chen (1997b) also pointed out that one can
use optimal three-stage design for toxicity monitoring (not simultaneous
with the response). The role of response with that of no toxicity can be
exchanged and the designs are similarly optimal and minimax.

In practice, the actual size at each stage of the multiple-stage design may
deviate slightly from the exact design. Green and Dahlberg (1992) reviewed
various phase II designs and modified each design to have variable sample
sizes at each stage. They compared various flexible designs and concluded
that flexible designs work well across a variety of p′0s, p

′
1s, and powers.
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Chapter 6

Tests for Goodness-of-Fit
and Contingency Tables

In clinical research, the range of a categorical response variable often con-
tains more than two values. Also, the dimension of a categorical variable
can often be multivariate. The focus of this chapter is on categorical vari-
ables that are non-binary and on the association among the components
of a multivariate categorical variable. A contingency table is usually em-
ployed to summarize results from multivariate categorical responses. In
practice, hypotheses testing for goodness-of-fit, independence (or associa-
tion), and categorical shift are usually conducted for evaluation of clinical
efficacy and safety of a test compound under investigation. For example, a
sponsor may be interested in determining whether the test treatment has
any influence on the performance of some primary study endpoints, e.g.,
the presence/absence of a certain event such as disease progression, adverse
event, or response (complete/partial) of a cancer tumor. It is then of inter-
est to test the null hypothesis of independence or no association between
the test treatment (e.g., before and after treatment) and the change in the
study endpoint. In this chapter, formulas for sample size calculation for
testing goodness-of-fit and independence (or association) under an r × c
contingency table is derived based on various chi-square type test statis-
tics such as Pearson’s chi-square and likelihood ratio test statistics. In
addition, procedures for sample size calculation for testing categorical shift
using McNemar’s test and/or Stuart-Maxwell test is also derived.

In the next section, a sample size calculation formula for goodness-of-
fit based on Pearson’s test is derived. Sample size calculation formulas
for testing independence (or association) with single stratum and multiple
strata are introduced based on various chi-square test statistics, respec-
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tively, in Sections 6.2 and 6.3. Test statistics and the corresponding sample
size calculation for categorical shift is discussed in Sections 6.4. Section
6.5 considers testing for carry-over effect in a 2× 2 crossover design. Some
practical issues are presented in Section 6.6.

6.1 Tests for Goodness-of-Fit

In practice, it is often of interest to study the distribution of the primary
study endpoint under the study drug with some reference distribution,
which may be obtained from historical (control) data or literature review.
If the primary study endpoint is a categorical response that is non-binary,
Pearson’s chi-square test is usually applied.

6.1.1 Pearson’s Test

For the ith subject, let Xi be the response taking values from {x1, ..., xr},
i = 1, ..., n. Assume that Xi’s are i.i.d. Let

pk = P (Xi = xk),

where k = 1, ..., r. pk can be estimated by p̂k = nk/n, where nk is the
frequency count of the subjects with response value k. For testing goodness-
of-fit, the following hypotheses are usually considered:

H0 : pk = pk,0 for all k vs. pk �= pk,0 for some k,

where pk,0 is a reference value (e.g., historical control), k = 1, ..., r. Pear-
son’s chi-square statistic for testing goodness-of-fit is given by

TG =
r∑
k=1

n(p̂k − pk,0)2

pk,0
.

Under the null hypothesis H0, TG is asymptotically distributed as a central
chi-square random variable with r− 1 degrees of freedom. Hence, we reject
the null hypothesis with approximate α level of significance if

TG > χ2α,r−1,

where χ2α,r−1 denotes the αth upper quantile of a central chi-square random
variable with r − 1 degrees of freedom. The power of Pearson’s chi-square
test can be evaluated under some local alternatives. (A local alternative
typically means that the difference between treatment effects in terms of
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the parameters of interest decreases to 0 at the rate of 1/
√
n when the

sample size n increases to infinity.) More specifically, if

lim
n→∞

r∑
k=1

n(pk − pk,0)2

pk,0
= δ,

then TG is asymptotically distributed as a non-central chi-square random
variable with r − 1 degrees of freedom and the non-centrality parameter δ.
For a given degrees of freedom r − 1 and a desired power 1 − β, δ can be
obtained by solving for

χ2r−1(χ
2
α,r−1|δ) = β, (6.1.1)

where χ2r−1(·|δ) denotes the non-central chi-square distribution with r − 1
degrees of freedom and the non-centrality parameter δ. Note that χ2r−1(t|δ)
is descreasing in δ for any fixed t. Hence, (6.1.1) has a unique solution. Let
δα,β be the solution of (6.1.1) for given α and β. The sample size needed
in order to achieve the desired power of 1− β is then given by

n = δα,β

[
r∑
k=1

(pk − pk,0)2

pk,0

]−1

,

where pk should be replaced by an initial value.

6.1.2 An Example

Suppose a sponsor is interested in conducting a pilot study to evaluate
clinical efficacy of a test compound on subjects with hypertension. The
objective of the intended pilot study is to compare the distribution of the
proportions of subjects whose blood pressures are below, within and above
some pre-specified reference (normal) range with that from historical con-
trol. Suppose that it is expected that the proportions of subjects after
treatments are 20% (below the reference range), 60% (within the reference
range), and 20% (above the reference range), respectively. Thus, we have
r = 3 and

(p1, p2, p3) = (0.20, 0.60, 0.20)

Furthermore, suppose based on historical data or literature review, the
proportions of subjects whose blood pressures are below, within, and above
the reference range are given by 25%, 45%, and 30%, respectively. This is,

(p10, p20, p30) = (0.25, 0.45, 0.30).

The sponsor would like to choose a sample size such that the trial will
have an 80% (β = 0.20) power for detecting such a difference at the 5%
(α = 0.05) level of significance.
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First, we need to find δ under the given parameters according to (6.1.1):

χ22(χ
2
0.05,3−1|δ) = 0.2.

This leads to δ0.05,0.2 = 9.634. As a result, the sample size needed in order
to achieve an 80% power is given by

n = 9.634
[
(0.20− 0.25)2

0.25
+

(0.60− 0.45)2

0.45
+

(0.20− 0.30)2

0.30

]−1

≈ 104.

6.2 Test for Independence—Single Stratum

A r×c (two-way) contingency table is defined as a two-way table represent-
ing the cross-tabulation of observed frequencies of two categorical response
variables. Let xi, i = 1, ..., r and yj , j = 1, ..., c denote the categories (or
levels) of variables X and Y , respectively. Also, let nij be the cell frequency
of X = xi and Y = yj . Then, we have the following r×c contingency table:

y1 y2 · · · yc
x1 n11 n12 · · · n1c n1·
x2 n21 n22 · · · n2c n2·
· · · · · · · · · · · · · · · · · ·
xr nr1 nr2 · · · nrc nr·

n·1 n·2 · · · n·c

where
n·j =

∑r
i=1 nij (the jth column total),

ni· =
∑c
j=1 nij (the ith row total),

n =
∑r
i=1

∑c
j=1 nij (the overall total).

In practice, the null hypothesis of interest is that there is no association
between the row variable and the column variable, i.e., X is independent of
Y . When r = c = 2, Fisher’s exact test introduced in the previous chapter
can be applied. In the following we consider some popular tests for general
cases.

6.2.1 Pearson’s Test

The following Pearson’s chi-square test statistic is probably the most com-
monly employed test statistic for independence: by

TI =
r∑
i=1

c∑
j=1

(nij −mij)2

mij
,
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where
mij =

ni·n·j
n

.

Define p̂ij = nij/n, p̂i· = ni·/n, and p̂·j = n·j/n. Then TI can also be
written as

TI =
r∑
i=1

c∑
j=1

n(p̂ij − p̂i·p̂·j)2

p̂i·p̂·j
.

Under the null hypothesis that X and Y are independent, TI is asymptoti-
cally distributed as a central chi-square random variable with (r−1)(c−1)
degrees of freedom. Under the local-alternative with

lim
n→∞

r∑
i=1

c∑
j=1

n(pij − pi·p·j)2

pi·p·j
= δ, (6.2.1)

where pij = P (X = xi, Y = yj), pi· = P (X = xi), and p·j = P (Y = yj), TI
is asymptotically distributed as a non-central chi-square random variable
with (r − 1)(c− 1) degrees of freedom and the non-centrality parameter δ.

For given α and a desired power 1− β, δ can be obtained by solving

χ2(r−1)(c−1)(χα,(r−1)(c−1)|δ) = β. (6.2.2)

Let the solution be δα,β . The sample size needed in order to achieve power
1− β is then given by

n = δα,β

 r∑
i=1

c∑
j=1

(pij − pi·p·j)2

pi·p·j

−1

.

6.2.2 Likelihood Ratio Test

Another commonly used test for independence is the likelihood ratio test.
More specifically, the likelihood function for a two-way contingency table
is given by

L =
r∏
i=1

c∏
j=1

p
nij

ij .

Without any constraint, the above likelihood function is maximized at pij =
nij/n, which leads to

max
pij

logL =
r∑
i=1

c∑
j=1

nij log
nij
n
.
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Under the null hypothesis that pij = pi·p·j , the likelihood function can be
re-written as

L =
r∏
i=1

pni·
i·

c∏
j=1

p
n·j
·j .

It is maximized at pi· = ni·/n and p·j = n·j/n, which leads to

max
pij=pi·p·j

logL =
r∑
i=1

c∑
j=1

nij log
ni·nj·
n2

.

Hence, the likelihood ratio test statistic can be obtained as

TL = 2
(
max
pij

logL− max
pij=pi·p·j

logL
)

=
r∑
i=1

c∑
j=1

nij log
nij
mij

,

where mij = ni·n·j/n. Under the null hypothesis, TL is asymptotically
distributed as a central chi-square random variable with (r − 1)(c − 1)
degrees of freedom. Thus, we reject the null hypothesis at approximate α
level of significance if

TL > χ2α,(r−1)(c−1).

Note that the likelihood ratio test is asymptotically equivalent to Pearson’s
test for independence. Under the local alternative (6.2.1), it can be shown
that TL is still asymptotically equivalent to Pearson’s test for testing in-
dependence in terms of the power. Hence, the sample size formula derived
based on Pearson’s statistic can be used for obtaining sample size for the
likelihood ratio test.

6.2.3 An Example

A small scaled pilot study was conducted to compare two treatment (treat-
ment and control) in terms of the categorized hypotension. The results are
summarized in the following 2× 3 (r = 2 and c = 3) contingency table:

Hypotension
below normal above

treatment 2 7 1 10
control 2 5 3 10

4 12 4 20

It can be seen that the treatment is better than the control in terms of
lowering blood pressure. In order to confirm that such a difference truly
exists, the investigator is planning a larger trial to confirm the finding by
applying Pearson’s chi-square test for independence. It is of interest to
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select a sample size such that there is an 80% (β = 0.2) power for detecting
such a difference observed in the pilot study at the 5% (α = 0.05) level of
significance.

We first identify δ under the given parameters according to (6.2.2) by
solving

χ2(2−1)(3−1)(χ
2
0.05|δ) = 0.2.

This leads to δ0.05,0.2 = 9.634. As a result, the sample size required for
achieving an 80% power is given by

n = δ0.05,0.2

 r∑
i=1

c∑
j=1

(pij − pi·p·j)2

pi·p·j

−1

=
9.634
0.0667

≈ 145.

6.3 Test for Independence—Multiple Strata

In clinical trials, multiple study sites (or centers) are usually considered
not only to make sure clinical results are reproducible but also to expedite
patient recruitment so that the intended trials can be done within the
desired time frame. In a multi-center trial, it is a concern whether the
sample size within each center (or stratum) is sufficient for providing an
accurate and reliable assessment of the treatment effect (and consequently
for achieving the desired power) when there is significant treatment-by-
center interaction. In practice, a typical approach is to pool data across all
centers for an overall assessment of the treatment effect. However, how to
control for center effect has become another issue in data analysis. When
the data is binary, the Cochran-Mantel-Haenszel (CMH) test is probably
the most commonly used test procedure, and can adjust for differences
among centers.

6.3.1 Cochran-Mantel-Haenszel Test

To introduce the CMH method, consider summarizing data from a multi-
center trial in the following series of 2× 2 contingency tables:

Binary Reponse
Treatment 0 1 Total
Treatment 1 nh,10 nh,11 nh,1·
Treatment 2 nh,20 nh,21 nh,2·

Total nh,·0 nh,·1 nh,··

where h = 1, ..., H, nh,ij is the number of patients in the hth center (stra-
tum) under the ith treatment with response j. Let ph,ij be the probability
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that a patient in the hth stratum under the ith treatment has response j.
The hypotheses of interest are given by

H0 : ph,1j = ph,2j for all h, j versus Ha : ph,1j �= ph,2j for some h, j.

The CMH test for the above hypotheses is defined as

TCMH =
[
∑H
h=1(nh,11 −mh,11)]2∑H

h=1 vh
,

where

mh,11 =
nh,1·nh,·1

nh
and vh =

nh,1·nh,2·nh,·0yh,·1
n2h(nh − 1)

, h = 1, ..., H.

Under the null hypothesis H0, TCMH is asymptotically distributed as a
chi-square random variable with one degree of freedom. Hence, we reject
the null hypothesis at approximate α level of significance if

TCMH > χ2α,1.

In order to evaluate the power of this test under the alternative hypothesis,
we assume that nh → ∞ and nh/n → πh, where n =

∑H
h=1 nh. Then,

under the local alternative

lim

∣∣∣∣∣∣
∑H
h=1 πh(ph,11 − ph,1·ph,·1)√∑H
h=1 πhph,1·ph,2·ph,·0ph,·1

∣∣∣∣∣∣ = δ, (6.3.1)

where ph,i· = ph,i0+ph,i1 and ph,·j = ph,1j+ph,2j . TCMH is asymptotically
distributed as a chi-square random variable with 1 degree of freedom and
the non-centrality parameter δ2. In such a situation, it can be noted that
TCMH > χα,1 is equivalent to N(δ, 1) > zα/2. Hence, the sample size
required for achieving a desired power of 1−β at the α level of significance
is given by

n =
(zα/2 + zβ)2

δ2
.

6.3.2 An Example

Consider a multi-national, multi-center clinical trial conducted in four dif-
ferent countries (the United States of America, the United Kingdom, France,
and Japan) for evaluation of clinical efficacy and safety of a test compound.
Suppose the objective of this trial is to compare the test compound with
a placebo in terms of the proportions of patients who experience certain
types of adverse events. Let 0 and 1 denote the absence and presence of the
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adverse event. It is expected that the sample size will be approximately
evenly distributed across the four centers (i.e., πh = 25%, h = 1, 2, 3, 4).
Suppose based on a pilot study, the values of ph,ij ’s within each country
are estimated as follows:

Binary Response
center Treatment 0 1 Total

1 Study Drug 0.35 0.15 0.50
Placebo 0.25 0.25 0.50
Total 0.60 0.40 1.00

2 Study Drug 0.30 0.20 0.50
Placebo 0.20 0.30 0.50
Total 0.50 0.50 1.00

3 Study Drug 0.40 0.10 0.50
Placebo 0.20 0.30 0.50
Total 0.60 0.40 1.00

4 Study Drug 0.35 0.15 0.50
Placebo 0.15 0.35 0.50
Total 0.50 0.50 1.00

By (6.3.1), δ is given by 0.3030. Hence the sample size needed in order to
achieve an 80% (β = 0.20) power at the 5% (α = 0.05) level of significance
is given by

n =
(zα/2 + zβ)2

δ2
=

(1.96 + 0.84)2

0.30302
≈ 86.

6.4 Test for Categorical Shift

In clinical trials, it is often of interest to examine any change in laboratory
values before and after the application of the treatment. When the response
variable is categorical, this type of change is called a categorical shift. In
this section, we consider testing for categorical shift.

6.4.1 McNemar’s Test

For a given laboratory test, test results are usually summarized as either
normal (i.e., the test result is within the normal range of the test) or ab-
normal (i.e., the test result is outside the normal range of the test). Let xij
be the binary response (xij = 0: normal and xij = 1: abnormal) from the
ith (i = 1, ..., n) subject in the jth (j = 1: pre-treatment and j = 2: post
treatment) treatment. The test results can be summarized in the following
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2× 2 table:

Post-Treatment
Pre-Treatment Normal Abnormal

Normal n00 n01 n0·
Abnormal n10 n11 n1·

n·0 n·1 n··

where

n00 =
n∑
i=1

(1− xi1)(1− xi2)

n01 =
n∑
i=1

(1− xi1)xi2

n10 =
n∑
i=1

xi1(1− xi2)

n11 =
n∑
i=1

xi1xi2.

Define

p00 = P (xi1 = 0, xi2 = 0)
p01 = P (xi1 = 0, xi2 = 1)
p10 = P (xi1 = 1, xi2 = 0)
p11 = P (xi1 = 1, xi2 = 1)
p1+ = P (xi1 = 1) = p10 + p11

p+1 = P (xi2 = 1) = p01 + p11.

It is then of interest to test whether there is a categorical shift after treat-
ment. A categorical shift is defined as either a shift from 0 (normal) in
pre-treatment to 1 (abnormal) in post-treatment or a shift from 1 (abnor-
mal) in pre-treatment to 0 (normal) in post-treatment. Consider

H0 : p1+ = p+1 versus Ha : p1+ �= p+1,

which is equivalent to

H0 : p10 = p01 versus Ha : p10 �= p01.

The most commonly used test procedure to serve the purpose is McNemar’s
test, whose test statistic is given by

TMN =
n10 − n01√
n10 + n01

.
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Under the null hypothesis H0, TMN is asymptotically distributed as a stan-
dard normal random variable. Hence, we reject the null hypothesis at ap-
proximate α level of significance if

|TMN | > zα/2.

Under the alternative hypothesis that p01 �= p10, it follows that

TMN =
n01 − n10√
n01 + n10

=
√

n

n01 + n10

√
n
(n10
n

− n01
n

)
=

1√
p10 + p01

1√
n

n∑
i=1

di,

where di = xi1 − xi2. Note that di’s are independent and identically dis-
tributed random variables with mean (p01 − p10) and variance p01 + p10 −
(p01 − p10)2. As a result, by the Central Limit Theorem, the power of
McNemar’s test can be approximated by

Φ

(√
n(p01 − p10)− zα/2

√
p01 + p10√

p01 + p10 − (p01 − p10)2

)
.

In order to achieve a power of 1−β, the sample size needed can be obtained
by solving √

n(p01 − p10)− zα/2
√
p01 + p10√

p01 + p10 − (p01 − p10)2
= −zβ .

which leads to

n =
[zα/2

√
p01 + p10 + zβ

√
p10 + p01 − (p01 − p10)2]2

(p10 − p01)2
. (6.4.1)

Define ψ = p01/p10 and πDiscordant = p01 + p10. Then

n =
[zα/2(ψ + 1) + zβ

√
(ψ + 1)2 − (ψ − 1)2πDiscordant]2

(ψ − 1)2πDiscordant
.

6.4.2 Stuart-Maxwell Test

McNemar’s test can be applied only to the case in which there are two
possible categories for the outcome. In practice, however, it is possible
that the outcomes are classified into more than two (multiple) categories.
For example, instead of classifying the laboratory values into normal and
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abnormal (two categories), it is often to classify them into three categories
(i.e., below, within, and above the normal range). Let xij ∈ {1, ..., r} be
the categorical observation from the ith subject under the jth treatment
(j = 1: pre-treatment and j = 2: post-treatment). In practice, the data
are usually summarized by the following r × r contingency table:

Post-Treatment
Pre-Treatment 1 2 · · · r

1 n11 n12 · · · n1r n1·
2 n21 n22 · · · n2r n2·
· · · · · · · · · · · · · · ·
r nr1 nr2 · · · nrr nr·

n·1 n·2 · · · n·r n··

Let
pij = P (xk1 = i, xk2 = j),

which is the probability that the subject will shift from i pre-treatment
to j post-treatment. If there is no treatment effect, one may expect that
pij = pji for all 1 ≤ i, j,≤ r. Hence, it is of interest to test the hypotheses

H0 : pij = pij for all i �= j versus Ha : pij �= pij for some i �= j.

In order to test the above hypotheses, the test statistic proposed by Stuart
and Maxwell is useful (see, e.g., Stuart, 1955). We refer to the test statistic
as Stuart-Maxwell test, which is given by

TSM =
∑
i<j

(nij − nji)2

nij + nji
.

Under the null hypothesis H0, TSM follows a standard chi-square distribu-
tion with r(r−1)/2 degrees of freedom. Hence, for a given significance level
of α, the null hypothesis should be rejected if TSM > χ2α,r(r−1)/2.

Under the local alternative given by

lim
n→∞n

∑
i<j

(pij − pji)2

pij + pji
= δ,

TSM is asymptotically distributed as a non-central chi-square random vari-
able with r(r − 1)/2 degrees of freedom and the non-centrality parameter
δ. For a given degrees of freedom (r(r− 1)/2) and a desired power (1− β),
δ can be obtained by solving

χ2r(r−1)/2(χα,r(r−1)/2|δ) = β, (6.4.2)
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where χ2a(·|δ) is the cumulative distribution function of the non-central chi-
square distribution with degrees freedom a and non-centraliity parameter δ.
Let δα,β be the solution. Then, the sample size needed in order to achieve
a power of 1− β is given by

n = δα,β

∑
i<j

(pij − pji)2

pij + pji

−1

. (6.4.3)

6.4.3 Examples

McNemar’s Test

Suppose that an investigator is planning to conduct a trial to study a test
compound under investigation in terms of the proportions of the patients
with nocturnal hypoglycaemia, which is defined to be the patients with
the overnight glucose value ≤ 3.5 mgL on two consecutive visits (15 min-
utes/per visit). At the first visit (pre-treatment), patients’ overnight glu-
cose levels will be measured every 15 minutes. Whether or not the patient
experience nocturnal hypoglycaemia will be recorded. At the second visit,
patients will receive the study compound and the overnight glucose levels
will be obtained in a similar manner. Patients’ experience on nocturnal
hypoglycaemia will also be recorded. According to some pilot studies, it is
expected that about 50% (p10 = 0.50) of patients will shift from 1 (noctur-
nal hypoglycaemia pre-treatment) to 0 (normal post-treatment) and 20%
(p01 = 0.20) of patients will shift from 0 (normal pre-treatment) to 1 (noc-
turnal hypoglycaemia post-treatment). The investigator would like to select
a sample size such that there is an 80% (β = 0.20) power for detecting such
a difference if it truly exists at the 5% (α = 0.05) level of significance.
According to (6.4.1), the required sample size can be obtained as follows:

n =
[zα/2

√
p01 + p10 + zβ

√
p10 + p01 − (p01 − p10)2]2

(p10 − p01)2

=
[1.96

√
0.20 + 0.50 + 0.84

√
0.20 + 0.50− (0.20− 0.50)2]2

(0.20− 0.50)2

≈ 59.

Stuart-Maxwell Test

A pilot study was conducted to study the treatment effect of a test com-
pound based on the number of monocytes in the blood. The primary study
endpoint is the number of monocytes (i.e., below, within, and above nor-
mal range) in the blood (i.e., r = 3). The results were summarized in the
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following contingency table:

Post-Treatment
Pre-Treatment below normal above

below 3 4 4 11
normal 2 3 3 8
above 1 2 3 6

6 9 10 25

From this pilot study, the results suggest that the test compound can in-
crease the number of monocytes in the blood because the upper off diagonal
elements are always larger than those in the lower off diagonal.

To confirm whether such a trend truly exists, a larger trial is planned
to have an 80% (β = 0.20) power at the 5% (α = 0.05) level of significance.
For this purpose, we need to first estimate δ under the given parameters
according to (6.4.2).

χ23(3−1)/2(χ
2
0.05,3(3−1)/2|δ) = 0.20,

which leads to δα,β = 10.903. As a result, the sample size needed for
achieving an 80% power is given by

n = δα,β

∑
i<j

(pij − pji)2

pij + pji

−1

=
10.903
0.107

≈ 102.

6.5 Carry-Over Effect Test

As discussed earlier, a standard 2 × 2 crossover design is commonly used
in clinical research for evaluation of clinical efficacy and safety of a test
compound of interest. When the response is binary, under the assump-
tion of no period and treatment-by-period interaction (carry-over effect),
McNemar’s test can be applied to test for the treatment effect. In some
cases, the investigator may be interested in testing the treatment-by-period
interaction. In this section, statistical procedure for testing the treatment-
by-period interaction, based on the model by Becker and Balagtas (1993),
is introduced. The corresponding procedure for sample size calculation is
derived.

6.5.1 Test Procedure

Consider a standard two-sequence, two-period crossover design, i.e., (AB,
BA). Let xijk be the binary response from the kth (k = 1, ..., ni) subject
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in the ith sequence at the jth dosing period. Let pij = P (xijk = 1). In
order to separate the treatment, period, and carryover effects, Becker and
Balagtas (1993) considered the following logistic regression model

log
p11

1− p11
= α+ τ1 + ρ1,

log
p12

1− p12
= α+ τ2 + ρ2 + γ1,

log
p21

1− p21
= α+ τ2 + ρ1,

log
p22

1− p22
= α+ τ1 + ρ2 + γ2,

where τi is the ith treatment effect, ρj is the jth period effect, and γk is the
carry-over effect from the first period in the kth sequence. It is assumed
that

τ1 + τ2 = 0
ρ1 + ρ2 = 0
γ1 + γ2 = 0.

Let

γ = γ1 − γ2

= log
p11

1− p11
+ log

p12
1− p12

− log
p21

1− p21
− log

p22
1− p22

.

The hypotheses of interest are given by

H0 : γ = 0 versus Ha : γ �= 0.

Let p̂ij = n−1
∑
k xijk. Then, γ can be estimated by

γ̂ = log
p̂11

1− p̂11
+ log

p̂12
1− p̂12

− log
p̂21

1− p̂21
− log

p̂22
1− p̂22

.

It can be shown that γ̂ is asymptotically distributed as a normal random
variable with mean γ and variance σ21n

−1
1 + σ22n

−1
2 , where

σ2i = var
(

xi1k
pi1(1− pi1)

+
xi2k

pi2(1− pi2)

)
,

which can be estimated by σ̂2i , the sample variance of

xi1k
p̂i1(1− p̂i1)

+
xi2k

p̂i2(1− p̂i2)
, k = 1, ..., ni.
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Hence, the test statistic is given by

T = γ̂

(
σ̂21
n1

+
σ̂22
n2

)−1/2

.

Under the null hypothesis H0, T is asymptotically distributed as a standard
normal random variable. We reject the null hypothesis at approximate α
level of significance if

|T | > zα/2

.
Under the alternative hypothesis that γ �= 0, the power of the this test

procedure can be approximated by

Φ

(
γ

[
σ21
n1

+
σ22
n2

]−1/2

− zα/2

)
.

For a given power of 1−β and assuming that n = n1 = n2, the sample size
needed can be obtained by solving

γ

[
σ21
n

+
σ22
n

]−1/2

− zα/2 = zβ,

which leads to

n =
(zα/2 + zβ)2(σ21 + σ22)

γ2
.

6.5.2 An Example

Consider a single-center, open, randomized, active-controlled, two-sequence,
two-period crossover design with the primary efficacy endpoint of nocturnal
hypoglycaemia. The objective of the study is to compare the study drug
with a standard therapy on the marketplace in terms of the proportion of
the patients who will experience nocturnal hypoglycaemia. As a result, the
investigator is interested in conducting a larger trial to confirm whether
such an effect truly exists. However, based on the results of a small-scale
pilot study, no evidence of statistical significance in the possible carry-over
effect was detected. According to the pilot study, the following parameters
were estimated: γ = 0.89, σ1 = 2.3, and σ2 = 2.4. The sample size needed
in order to achieve an 80% (β = 0.2) power at the 5% (α = 0.05) level of
significance is given by

n =
(zα/2 + zβ)2(σ21 + σ22)

γ2
=

(1.96 + 0.84)2(2.32 + 2.42)
0.892

≈ 110.

Hence, a total of 110 subjects are required in order to have the desired
power for the study.
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6.6 Practical Issues

6.6.1 Local Alternative Versus Fixed Alternative

In this chapter, we introduced various chi-square type test statistics for con-
tingency tables. When the chi-square test has only one degree of freedom, it
is equivalent to a Z-test (i.e., a test based on standard normal distribution).
Hence, the formula for sample size calculation can be derived under the or-
dinary fixed alternative. When the degrees of freedom of the chi-square
test is larger than one (e.g., Pearson’s test for goodness-of-fit and indepen-
dence), it can be verified that the chi-square test statistic is distributed as
a weighted non-central chi-square distribution under the fixed alternative
hypothesis. In order words, it has the same distribution as the random vari-
able

∑k
i=1 λiχ

2(δi) for some k, λi and δi, where χ2(δi) denotes a chi-square
random variable with one degree of freedom and the non-centrality param-
eter δi. The power function based on a weighted non-central chi-square
random variable could be very complicated and no standard table/software
is available. As a result, all the sample size formulas for the chi-square tests
with more than one degree of freedom are derived under the local alterna-
tive. Under the concept of local alternative, one assumes that the difference
in the parameters of interest between the null hypothesis and the alterna-
tive hypothesis shrinks to 0 at a speed of 1/

√
n. In practice, however, it

is more appealing to consider the alternative as fixed. In other words, the
alternative hypothesis does not change as the sample size changes. Further
research in sample size estimation based on a fixed alternative is needed.

6.6.2 Random Versus Fixed Marginal Total

In randomized, controlled parallel clinical trials, the numbers of subjects
assigned to each treatment group are usually fixed. Consequently, when the
data are reported by a two-way contingency table (treatment and response),
one of the margins (treatment) is fixed. However, it is not uncommon (e.g.,
in an observational study) that the number of subjects assigned to each
treatment is also random. In this situation, Pearson’s test for indepen-
dence between treatment and response is still valid. Thus, Pearson’s test
is commonly used in the situation where the marginal distribution of the
numbers of the subjects for each treatment is unknown. When the marginal
distribution of the numbers of the subjects for each treatment is known or
can be approximated by some distribution such as Poisson, Pearson’s test
may not be efficient. Alternatively, the likelihood ratio test may be useful
(see, e.g., Shao and Chow, 1990).
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6.6.3 r × c Versus p × r × c

In this chapter, we focus on procedures for sample size calculation for testing
goodness-of-fit, independence (or association), and categorical shift under
an r × c contingency table. In practice, we may encounter the situation
which involves a p×r×c contingency table when a third variable (e.g., sex,
race, or age). In practice, how to handle this type of three-way contingency
table is always a challenge. One simple solution is combining the third
variable with the treatment variable and applying the standard procedure
designed for a two-way contingency table. Further research regarding how
to handle three-way contingency tables is necessary.
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Chapter 7

Comparing Time-to-Event
Data

In clinical research, in addition to continuous and discrete study endpoints
described in the previous two chapters, the investigator may also be inter-
ested in the occurrence of certain events such as adverse experience, disease
progression, relapse, or death. In most clinical trials, the occurrence of such
an event is usually undesirable. Hence, one of the primary objectives of the
intended clinical trials may be to evaluate the effect of the test drug on the
prevention or delay of such events. The time to the occurrence of an event
is usually referred to as the time-to-event. In practice, time-to-event has
become a natural measure of the extent to which the event occurrence is
delayed. When the event is the death, the time-to-event of a patient is the
patient’s survival time. Hence, the analysis of time-to-event is sometimes
referred to as survival analysis.

In practice, statistical methods for analysis of time-to-event data are
very different from those commonly used for continuous variables (e.g.,
analysis of variance) due to the following reasons. First, time-to-event is
usually subject to censoring, e.g., right (left) or interval censoring, at which
its exact value is unknown but we know that it is larger or smaller than
an observed censoring time or within an interval. Second, time-to-event
data are usually highly skewed, which violates the normality assumption
of standard statistical methods such as the analysis of variance. In this
chapter, for simplicity, we focus on sample size calculation based only on
the most typical censor type (i.e., right censoring) and the most commonly
used testing procedures such as the exponential model, Cox’s proportional
hazards model, and the weighted log-rank test.

The remainder of this chapter is organized as follows. In the next sec-
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tion, basic concepts regarding survival and hazard functions in the analysis
of time-to-event data are provided. In Section 7.2, formulas for sample size
calculation for testing equality, non-inferioirty/superiority, and equivalence
in two-sample problems are derived under the commonly used exponential
model. In Section 7.3, formulas for sample size calculation under Cox’s
proportional hazards model is presented. In Section 7.4, formulas for sam-
ple size estimation based on the weighted log-rank test are derived. Some
practical issues are discussed in Section 7.5.

7.1 Basic Concepts

In this section, we introduce some basic concepts regarding survival and
hazard functions, which are commonly used in the analysis of time-to-event
data. In practice, hypotheses of clinical interest are often involved in com-
paring median survival times, surival functions, and hazard rates. Under a
given set of hypotheses, appropriate statistical tests are then constructed
based on consistent estimators of these parameters.

7.1.1 Survival Function

In the analysis of time-to-event data, the survivalfunction is usually used
to characterize the distribution of the time-to-event data. Let X be the
variable of time-to-event and S(x) be the corresponding survival function.
Then, S(x) is defined as

S(x) = P (X > x).

Thus, S(x) is the probability that the event will occur after time x. When
the event is death, S(x) is the probability of a patient who will survive until
x. Theoretically, X could be a continuous variable, a discrete response, or
a combination of both. In this chapter, however, we consider only the case
where X is a continuous random variable with a density function f(x). The
relationship between S(x) and f(x) is given by

f(x) =
dS(x)
dx

.

A commonly used nonparametric estimator for S(x) is the Kaplan-Meier
estimator, which is given by

Ŝ(t) =
∏
i

(
1− di

ni

)
, (7.1.1)

where the product is over all event times, di is the number of events observed
at the ith event time, and ni is the number of subjects at risk just prior
the ith event time.
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7.1.2 Median Survival Time

In a clinical study, it is of interest to compare the median survial time,
which is defined to be the 50% quantile of the surival distribution. In other
words, if m1/2 is the median survival time, then it should satisfy

P (X > m1/2) = 0.5.

A commonly used nonparametric estimator for m1/2 is given by m̂1/2 =
Ŝ−1(0.5), where Ŝ is the Kaplan-Meier estimator. When the time-to-event
is exponentially distributed with hazard rate λ, it can be shown that the
median survival time is given by log 2/λ.

7.1.3 Hazard Function

Another important concept in the analysis of time-to-event data is the so-
called hazard function, which is defined as

h(x) = lim
∆x→0

P (x ≤ X < x+∆x|X ≥ x)
∆x

.

As it can be seen, h(x) can also be written as

h(x) =
f(x)
S(x)

,

which implies that

S(x) = exp
{
−
∫ x
0

h(t)da
}
.

If we assume a constant hazard rate (i.e., h(t) = λ for some λ), S(x)
becomes

S(x) = exp{−λx}.
In this case, time-to-event X is distributed as an exponential variable with
hazard rate λ.

7.1.4 An Example

A clinical trial was conducted to study a test treatment on patients with
small cell lung cancer. The trial lasted for 1 year with 10 patients entered
in the study simultaneously. The data is given in Table 7.1.1 with “+”
indicating censored observations.

The Kaplan-Meier estimator can be obtained based on (7.1.1) with me-
dian 0.310. The obtained Kaplan-Meier estimator is plotted in Figure 7.1.1.
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Table 7.1.1: Survival Data

Subject Number Survival Time
1 0.29
2 0.25
3 0.12
4 0.69
5 1.00+
6 0.33
7 0.19
8 1.00+
9 0.23
10 0.93

It can be seen from the Kaplan-Meier plot that approximately 80% patients
in the patient population will live beyond 0.2 years. If we assume constant
hazard rate over time, the estimated hazard rate according to (7.2.1) in the
next section is 1.59.

7.2 Exponential Model

In what follows, formulas for sample size calculation based on hazard rates
for median survival times and survival functions between treatment groups
will be derived under an exponential model, which is the simplest paramet-
ric statistical model for time-to-event data. Under the exponential model,
it is assumed that the time-to-event is exponentially distributed with a
constant hazard rate. For survival analysis in clinical trials comparing two
treatments, the hypothesis of interest could be either comparing the haz-
ard rates or the median survival times. However, since the time-to-event is
assumed to be exponentially distributed, the median survival time is deter-
mined by the hazard rate. As a result, comparing median survival times is
equivalent to comparing hazard rates. Without loss of generality, we focus
on comparing hazard rates between treatment groups. In this section, we
will introduce the method by Lachin and Foulkes (1986).

Consider a two-arm parallel survival trial with accrural time period T0
and the follow-up T − T0. Let aij denote the entry time of the jth patient
of the ith treatment group. It is assumed that aij follows a continuous
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Figure 7.1.1: Kaplan-Meier Estimator for S(x)
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distribution with the density function given by

g(z) =
γe−γz

1− e−γT0
, 0 ≤ z ≤ T0.

When γ > 0, the entry distribution is convex, which implies fast patient
entry at beginning. When γ < 0, the entry distribution is concave, which
implies lagging patient entry. For convenience, we define g(z) = 1/T0 when
γ = 0, which implies uniform patient entry. Let tij be the time-to-event
(i.e., the time from the patient entry to the time observing event) for the jth
subject in the ith treatment group, i = 1, 2, j = 1, ..., ni. It is assumed that
tij follows an exponential distribution with hazard rate λi. The information
observed from the sample is (xij , δij) = (min(tij , T −aij), I{tij ≤ T −aij}).
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For a fixed i, the joint likelihood for xij , j = 1, ..., ni can be written as

L(λi) =
γne−γ

Pni
j=1 aij

(1− e−γT0)n
λ

Pni
j=1 δij

i e−λi

Pni
j=1 xij .

It can be shown that the MLE for λi is given by

λ̂i =

∑ni

j=1 δij∑ni

j=1 xij
. (7.2.1)

According to the Central Limit Theorem,

√
ni(λ̂i − λi) =

√
ni

∑ni

j=1(δij − λixij)∑ni

j=1 xij

=
1

E(xij)
1

√
ni

ni∑
j=1

(δij − λixij) + op(1)

→d N(0, σ2(λi)),

where
σ2(λi) =

1
E2(xij)

var(δij − λixij)

and →d denotes convergence in distribution. Note that

E(δij) = E(δ2ij)

= 1−
∫ T0
0

g(a)e−λi(T−a)da

= 1−
∫ T0
0

γe−γa

1− e−γT0
e−λi(T−a)da

= 1 +
γe−λiT

(
1− e(λi−γ)T0)

(λi − γ) (1− e−γT0)
,

E(xij) =
∫ T0
0

g(a)da
∫ T−a
0

λixe
−λixdx+ (T − a)e−λi(T−a)

=
∫ T0
0

g(a)
1− e−λi(T−a)

λi
da

=
1
λi
E(δij),

E(δijxij) =
∫ T0
0

g(a)da
∫ T−a
0

λixe
−λixdx,
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and

E(x2ij) =
∫ T0
0

g(a)da
∫ T−a
0

λix
2e−λixdx+ (T − a)2e−λi(T−a)

=
∫ T0
0

g(a)da
∫ T−a
0

2xe−λixdx

=
2E(δijxij)

λi
.

Hence

var(δij − λixij) = E(δ2ij)− 2λiE(δijxij) + λ2iE(x2ij)

= E(δ2ij)− 2λiE(δijxij) + 2λiE(δijxij)

= E(δ2ij) = E(δij).

That is,

σ2(λi) =
λ2i

E(δij)
= λ2i

[
1 +

γe−λiT
(
1− e(λi−γ)T0)

(λi − γ) (1− e−γT0)

]−1

. (7.2.2)

7.2.1 Test for Equality

Let ε = λ1 − λ2 be the difference between the hazard rates of a control
and a test drug. To test whether there is a difference between the hazard
rates of the test drug and the reference drug, the following hypotheses are
usually considered:

H0 : ε = 0 versus Ha : ε �= 0.

Under the null hypothesis, test statistic

T = (λ̂1 − λ̂2)

[
σ2(λ̂1)
n1

+
σ2(λ̂2)
n2

]−1/2

approximately follows a standard normal distribution for large n1 and n2.
We then reject the null hypothesis at approximate α level of significance if∣∣∣∣∣∣(λ̂1 − λ̂2)

[
σ2(λ̂1)
n1

+
σ2(λ̂2)
n2

]−1/2
∣∣∣∣∣∣ > zα/2. (7.2.3)

Under the alternative hypothesis that λ1 − λ2 �= 0, the power of the above
test is approximately

Φ

(
|λ1 − λ2|

[
σ2(λ1)
n1

+
σ2(λ2)
n2

]−1/2

− zα/2

)
.
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As a result, the sample size needed in order to achieve a desired power of
1− β can be obtained by solving

|λ1 − λ2|
[
σ2(λ1)
n1

+
σ2(λ2)
n2

]−1/2

− zα/2 = zβ.

Under the assumption that n1 = κn2, we obtain that

n2 =
(zα/2 + zβ)2

(λ1 − λ2)2

[
σ2(λ1)
k

+ σ2(λ2)
]
. (7.2.4)

7.2.2 Test for Non-Inferiority/Superiority

Since ε = λ1 − λ2, where λ1 and λ2 are the hazard rates of the control
and test drug, respectively, in practice, a smaller hazard rate is considered
a favor of the test drug. In other words, a negative value of ε implies a
better performance of the test drug than the control. Hence, the problem
of testing non-inferiority and superiority can be unified by the following
hypotheses:

H0 : ε ≤ δ versus Ha : ε > δ,

where δ is the superiority or non-inferiority margin. When δ > 0, the
rejection of the null hypothesis indicates the superiority of the test drug
over the control. When δ < 0, the rejection of the null hypothesis indicates
the non-inferiority of the test drug against the control. Similarly, under the
null hypothesis, test statistic

T = (λ̂1 − λ̂2 − δ)

[
σ2(λ̂1)
n1

+
σ2(λ̂2)
n2

]−1/2

is asymptotically distributed as a standard normal random variable. Thus,
we reject the null hypothesis at approximate α level of significance if

(λ̂1 − λ̂2 − δ)

[
σ2(λ̂1)
n1

+
σ2(λ̂2)
n2

]−1/2

> zα.

Under the alternative hypothesis that ε > δ, the power of the above test is
approximately

Φ

(
(ε− δ)

[
σ2(λ1)
n1

+
σ2(λ2)
n2

]−1/2

− zα

)
.

As a result, the sample size needed in order to achieve a desired power of
1− β can be obtained by solving

(ε− δ)
[
σ2(λ1)
n1

+
σ2(λ2)
n2

]−1/2

− zα = zβ .
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Under the assumption that n1 = κn2, we have

n2 =
(zα + zβ)2

(ε− δ)2

[
σ2(λ1)
k

+ σ2(λ2)
]
. (7.2.5)

7.2.3 Test for Equivalence

The objective is to test the following hypotheses:

H0 : |ε| ≥ δ versus Ha : |ε| < δ.

The null hypothesis is rejected and the test drug is concluded to be equiv-
alent to the control on average if

(λ̂1 − λ̂2 − δ)

[
σ2(λ̂1)
n1

+
σ2(λ̂2)
n2

]−1/2

< −zα

and

(λ̂1 − λ̂2 + δ)

[
σ2(λ̂1)
n1

+
σ2(λ̂2)
n2

]−1/2

> zα.

Under the alternative hypothesis (|ε| < δ), the power of the above testing
procedure is approximately

2Φ

(
(δ − |ε|)

[
σ2(λ1)
n1

+
σ2(λ2)
n2

]−1/2

− zα

)
− 1.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving the following equation

(δ − |ε|)
[
σ2(λ1)
n1

+
σ2(λ2)
n2

]−1/2

− zα = zβ/2.

As a result, the sample size needed for achieving a power of 1− β is given
by n1 = kn2 and

n2 =
(zα + zβ/2)2

(δ − |ε|)2

(
σ2(λ1)
k

+ σ2(λ2)
)
. (7.2.6)

7.2.4 An Example

Suppose that the sponsor is planning a trial among the patients with either
Hodgkin’s disease (HOD) or non-Hodgkin’s lymphoma (NHL). The patients
will be given either an allogeneic (allo) transplant from an HLA-matched
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sibling donor or an autologous (auto) transplant where their own marrow
has been cleansed and returned to them after high dose of chemotherapy.
The primary objective is to compare the patients with allo or auto trans-
plant in terms of time to leukemia. The trial is planned to last for 3
(T = 3) years with 1 year accrual (T0 = 1). Uniform patient entry for both
allo and auto transplant groups is assumed (γ = 0). It is also assumed that
the leukemia-free hazard rates for allo and auto transplant are given by 1
(λ1 = 1) and 2 (λ2 = 2), respectively. According to (7.2.2), the variance
function is given by

σ2(λi) = λ2i

(
1 +

e−λiT − e−λi(T−T0)

λiT0

)−1

.

Test for Equality

Assume that n = n1 = n2. According to (7.2.4), the sample size needed in
order to achieve a 80% (β = 0.2) power at 0.05 level of significance is

n =
(zα/2 + zβ)2

(λ2 − λ1)2

(
σ2(λ1)
k

+ σ2(λ2)
)

=
(1.96 + 0.84)2

(2− 1)2
(0.97 + 3.94)

≈ 39.

Test for Superiority

Assume that n = n1 = n2 and the superiority margin δ = 0.2. According
to (7.2.5), the sample size needed in order to achieve a 80% (β = 0.2) power
at 0.05 level of significance is

n =
(zα + zβ)2

(λ2 − λ1 − δ)2

(
σ2(λ1)
k

+ σ2(λ2)
)

=
(1.64 + 0.84)2

(2− 1− 0.2)2
(0.97 + 3.94)

≈ 48.

Test for Equivalence

Assume that n = n1 = n2, λ1 = λ2 = 1, and the equivalence margin is 0.5
(δ = 0.5). According to (7.2.6), the sample size needed in order to achieve
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a 80% (β = 0.2) power at 0.05 level of significance is

n =
(zα + zβ/2)2

δ2

(
σ2(λ1)
k

+ σ2(λ2)
)

=
(1.64 + 1.28)2

(0.5− 0)2
(0.97 + 0.97)

≈ 67.

7.2.5 Remarks

Unconditional Versus Conditional

According to Lachin (1981), for testing equality of hazard rates based on
exponential model, there exists another way to construct the test statistic
other than (7.2.3). More specifically, the testing procedure can be modified
to reject the null hypothesis if∣∣∣∣∣(λ̂1 − λ̂2)

[
σ2(ˆ̄λ)

(
1
n1

+
1
n2

)]−1/2
∣∣∣∣∣ > zα/2, (7.2.7)

where
ˆ̄λ =

n1λ̂1 + n2λ̂2
n1 + n2

.

As it can be seen, (7.2.7) is very similar to (7.2.3) except using a dif-
ferent estimate for the variance of λ̂1 − λ̂2. The difference is that the
variance estimate used in (7.2.3) is the MLE without constraint while the
variance estimate used in (7.2.7) is a pooled estimate of λ̂1 − λ̂2, which
is consistent conditional on H0. We refer to (7.2.3) as the unconditional
method and (7.2.7) conditional method. In practice, which method (uncon-
ditional/conditional) should be used to test equality is always a dilemma
because one is not necessarily always more powerful than the other under
the alternative hypothesis. However, it is difficult to generalize the condi-
tional method to test non-inferiority/superiority and equivalence because
the MLE under H0 is difficult to find. Although both unconditional and
conditional methods have asymptotic size α under the null hypothesis, the
powers under the alternative hypothesis are not equal to each other. Hence,
the sample size formula for (7.2.7) is different from the sample size formula
for (7.2.3). For the purpose of completeness, it is derived below.

Under the alternative hypothesis (ε �= 0), the power of (7.2.7) is approx-
imately

Φ

([
|ε| −

[
σ2(λ̄)(

1
n1

+
1
n2

)
]
zα/2

] [
σ2(λ1)
n1

+
σ2(λ2)
n2

]−1/2
)
,
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where
λ̄ =

n1λ1 + n2λ2
n1 + n2

.

Hence the sample size needed in order to achieve a power of 1 − β can be
achieved by solving[

|ε| −
[
σ2(λ̄)(

1
n1

+
1
n2

)
]
zα/2

] [
σ2(λ1)
n1

+
σ2(λ2)
n2

]−1/2

= zβ .

Under the assumption that n1 = κn2, it implies that

n2 =
1
ε2

[
zα/2σ

2(λ̄)(
1
k
+ 1) + zβ

(
σ(λ1)
k

+ σ2(λ2)
)1/2

]2
, (7.2.8)

where
λ̄ =

kλ1 + λ2
k + 1

.

Losses to Follow-up, Dropout, and Noncompliance

If we further assume that the losses are exponentially distributed with loss
hazard rate ηi in the ith treatment group, it has been shown by Lachin and
Foulkes (1986) that variance of λ̂i is given by

σ2(λi, ηi, γi) = λ2i

(
λi

λi + ηi
+

λiγie
−(λi+ηi)T

[
1− e(λi+ηi−γi)T0

]
(1− e−γiT0)(λi + ηi)(λi + ηi − γi)

)−1

.

In such a situation, an appropriate test statistic can be constructed by
replacing σ(λ̂i) and σ(ˆ̄λ) by σ(λ̂i, η̂i, γ̂i) and σ(ˆ̄λi, ˆ̄ηi, ˆ̄γi), respectively, where
η̂i and γ̂i are the MLE of ηi and γi, respectively, and

ˆ̄ηi =
n1η̂1 + n2η̂2
n1 + n2

and ˆ̄γi =
n1γ̂1 + n2γ̂2
n1 + n2

.

Hence, appropriate sample size calculation formulas can be obtained by
replaing σ(λi), σ(λ̄) by σ(λi, ηi, γi) and σ(λ̄, η̄, γ̄), respectively, where

η̄i =
n1η1 + n2η2
n1 + n2

and γ̄i =
n1γ1 + n2γ2
n1 + n2

.

7.3 Cox’s Proportional Hazards Model

The most commonly used regression model in survival analysis is Cox’s
proportional hazards model. Let ti be the time-to-event for the ith subject
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and Ci be the corresponding censoring time. Besides ti and Ci, each subject
also provides a p-dimension column vector of covariates denoted by zi.
The most commonly encountered covariates include treatment indicator,
demographical information, medical history, etc. Let h(t|z) be the hazard
rate at time t for an individual with covariate vector z. Cox’s proportional
hazard model assumes

h(t|z) = h(t|0)eb′z,
where b, the coefficient vector with the same dimension as z, can be esti-
mated by maximing the following partial likelihood function

L(b) =
d∏
i=1

eb
′z(i)∑

j∈Ri
eb

′zj
,

the product is over all the observed deaths, z(i) is the covariate vector
associated with the ith observed death, and Ri is the set of individuals
at risk just prior the ith observed death. Maximizing L is equivalent to
solving U(b) = 0, where

U(b) =
d∑
i=1

z(i) −
d∑
i=1

∑
j∈Ri

zje
b′zj∑

j∈Ri
eb

′zj
. (7.3.1)

The corresponding information matrix is given by I(b) with the (a, b)th
element given by

I(b) =
d∑
i=1

∑
j∈Ri

zjz
′
je
b′zj∑

j∈Ri
eb

′zj

−
d∑
i=1

(∑
j∈Ri

Zje
b′zj∑

j∈Ri
eb

′zj

)(∑
j∈Ri

Zje
b′zj∑

j∈Ri
eb

′zj

)′

. (7.3.2)

7.3.1 Test for Equality

In practice, it is of interest to test the following hypotheses:

H0 : b = b0 versus Ha : b �= b0.

To test b = b0, the following score statistic proposed by Schoenfeld (1981)
is used:

χ2SC = U(b0)′I−1(b0)U(b0).

Under the null hypothesis of b = b0, χ2SC is asymptotically distributed as a
chi-square random variable with p degrees of freedom. The null hypothesis
is rejected if χ2SC > χ2α,p, where χ2α,p is the αth upper quantile of a chi-
square random variable with p degrees of freedom.
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The most typical situation in practice is to compare two treatments
without adjusting for other covariates. As a result, we consider the indicator
as the only covariate (zi = 0: treatment 1; zi = 1: treatment 2). Then,
according to (7.3.3) and (7.3.4), it follows that

U(b) = d1 −
d∑
i=1

Y2ie
b

Y1i + Y2ieb
, (7.3.3)

and

I(b) =
d∑
i=1

[
Yie
b

Y1i + Y2ieb
− Y 2

2ie
2b

(Y1i + Y2ieb)2

]
=

d∑
i=1

Y1iY2ie
b

(Y1i + Y2ieb)2
, (7.3.4)

where Yij denotes the number of subjects at risk just prior the ith observed
event and i = 1, 2. In order to test for equality of two survival curves, the
following hypotheses are usually considered:

H0 : b = 0 versus Ha : b �= 0.

Under the null hypothesis, we have

U(b) = d1 −
d∑
i=1

Y2i
Y1i + Y2i

,

and

I(b) =
d∑
i=1

[
Y2i

Y1i + Y2i
− Y 2

2i

(Y1i + Y2i)2

]
=

d∑
i=1

Y2iY1i
(Y1i + Y2i)2

.

Note that the score test statistic χ2SC = U(0)2/I(0) reduces to the following
log-rank test statistic for two-sample problem:

L =

∑d
k=1

(
Ik − Y1i

Y1i+Y2i

)
[∑d

k=1

(
Y1iY2i

(Y1i+Y2i)2

)]−1/2
,

where Ik is a binary variable indicating whether the kth event is from
the first treatment group or not. Thus, we reject the null hypothesis at
approximate α level of significance if L > zα/2. The formula for sample
size calculation introduced below can be viewed as a special case of log-
rank test under the assumption of proportional hazard.

Let pi be the proportion of patients in the ith treatment group, Hi(t) be
the distribution function of censoring, and λi(t), fi(t), and Fi(t) be the haz-
ard, density, and distribution function of survival in group i, respectively.
Define the functions

V (t) = p1f0(t)(1−H1(t)) + p2f1(t)(1−H2(t)),
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and

π(t) =
p2(1− F1(t))(1−H2(t))

p1(1− F0(t))(1−H1(t)) + p2(1− F1(t))(1−H2(t))
.

Then L is asymptotically distributed as a normal random variable with
variance 1 and mean given by

n1/2
∫∞
0

log(λ2(t)/λ1(t))π(t)(1− π(t))V (t)dt[∫∞
0

π(t)(1− π(t))V (t)dt
]1/2 . (7.3.5)

Under the assumption of proportional hazard, log(λ2(t)/λ1(t)) = b is a
constant. Assume that H2(t) = H1(t). Let d =

∫∞
0

V (t)dt, which is the
probability of observing an event. In practice, mostly commonly F1(t) ≈
F0(t). In such a situation, it can be noted that π(t) ≈ p2, then the (7.3.5)
becomes

b(np1p2d)1/2.

Therefore, the two-sided sample size formula with significance level α and
power 1− β is given by

n =
(zα/2 + zβ)2

b2p1p2d
. (7.3.6)

7.3.2 Test for Non-Inferiority/Superiority

We still assume that zi = 0 for treatment 1 and zi = 1 for treatment 2.
The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 : b ≤ δ versus Ha : b > δ,

where δ is the superiority or non-inferiority margin. When δ > 0, the re-
jection of the null hypothesis indicates superiority over the reference value.
When δ < 0, the rejection of the null hypothesis implies non-inferiority
against the reference value. When b = δ, the test statistic

L =

∑d
k=1

(
Ik − Y1ie

δ

Y1ieδ+Y2i

)
[∑d

k=1

(
Y1iY2ieδ

(Y1ieδ+Y2i)2

)]−1/2

follows a standard normal distribution when the sample size is sufficiently
large. Hence, the null hypothesis should be rejected if L > zα. Under the
alternative hypothesis, L is asymptotically distributed as a normal random
variable with variance 1 and mean given by

n1/2
∫∞
0

(log(λ2(t)/λ1(t))− δ)π(t)(1− π(t))V (t)dt[∫∞
0

π(t)(1− π(t))V (t)dt
]1/2 . (7.3.7)
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Under the assumption of proportional hazard, log(λ2(t)/λ1(t)) = b > δ
is a constant. Assume that H2(t) = H1(t). Let d =

∫∞
0

V (t)dt, which
is the probability of observing an event. In practice, mostly commonly
F1(t) ≈ F0(t). In such a situation, it can be noted that π(t) ≈ p2, then the
(7.3.7) becomes

(b− δ)(np1p2d)1/2.

Therefore, the sample size formula with significance level α and power 1−β
is given by

n =
(zα/2 + zβ)2

(b− δ)2p1p2d
. (7.3.8)

7.3.3 Test for Equivalence

Assume that zi = 0 for treatment 1 and zi = 1 for treatment 2. To establish
equivalence, the following hypotheses are usually considered

H0 : |b| ≥ δ versus Ha : |b| < δ.

The above hypotheses can be tested using two one-sided test procedures.
More specifically, the null hypothesis should be rejected if∑d

k=1

(
Ik − Y1ie

δ

Y1ieδ+Y2i

)
[∑d

k=1

(
Y1iY2ieδ

(Y1ieδ+Y2i)2

)]−1/2
< −zα

and ∑d
k=1

(
Ik − Y1ie

−δ

Y1ie−δ+Y2i

)
[∑d

k=1

(
Y1iY2ie−δ

(Y1ie−δ+Y2i)2

)]−1/2
> zα.

The power of the above procedure is approximately

2Φ((δ − |b|)
√
np1p2d− zα)− 1.

Hence, the sample size needed in order to achieve a power of 1 − β at α
level of significance is given by

n =
(zα + zβ/2)2

(δ − |b|)2p1p2d
. (7.3.9)

7.3.4 An Example

Infection of a burn wound is a common complication resulting in extended
hospital stays and in the death of severely burned patients. One of the im-
portant components of burn management is to prevent or delay the infec-
tion. Suppose an investigator is interested in conducting a trial to compare
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a new therapy with a routine bathing care method in terms of the time-
to-infection. Assume that a hazard ratio of 2 (routine bathing care/test
therapy) is considered of clinical importance (b = log(2)). It is further as-
sumed that about 80% of patients’ infection may be observed during the
trial period. Let n = n1 = n2 (p1 = p2 = 0.5).

Test for Equality

According to (7.3.6), the sample size per treatment group needed to achieve
a power of 80% (β = 0.2) at the 5% level of significance (α = 0.05) is given
by

n =
(zα/2 + zβ)2

b2p1p2d
=

(1.96 + 0.84)2

log2(2)× 0.5× 0.5× 0.8
≈ 82.

Test for Superiority

Assume that the superiority margin is 0.3 (δ = 0.3). By (7.3.8), the sample
size per treatment group needed for achieving an 80% (β = 0.2) power at
the 5% level of significance (α = 0.05) is given by

n =
(zα + zβ)2

(b− δ)2p1p2d
=

(1.64 + 0.84)2

(log(2)− 0.3)2 × 0.5× 0.5× 0.8
≈ 200.

Test for Equivalence

Assume that the equivalence limit is 0.5 (i.e., δ = 0.5) and b = 0. Then, by
(7.3.9), the sample size per treatment group required in order to achieve an
80% power (β = 0.2) at the 5% level of significance (α = 0.05) is given by

n =
(zα + zβ/2)2

(δ − |b|)2p1p2d
=

(1.64 + 1.28)2

(0.5− 0.0)2 × 0.5× 0.5× 0.8
≈ 171.

7.4 Weighted Log-Rank Test

When the time-to-event is not exponentially distributed and the assumption
of proportional hazard does not hold, the treatment effects are usually
evaluated by comparing survival curves (Si(t)). To test whether there is
a difference between the true survival curves, the following hypotheses are
usually considered:

H0 : S1(t) = S2(t) versus Ha : S1(t) �= S2(t).
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In such a situation, testing non-inferiority/superiority or equivalence is usu-
ally difficult to be carried out, because Si(t) is an infinite dimensional pa-
rameter and, hence, how to define noninferiority/superiority and equiva-
lence is not clear. As a result, we provide sample size calculation formula
for testing equality only in this section.

7.4.1 Tarone-Ware Test

In order to compare two survival curves, weighted log tests are usually
considered. The test statistic of weighted log-rank test (the Tarone-Ware
statistic) is given by

L =

∑d
i=1 wi

(
Ii − Y1i

Y1i+Y2i

)
[∑d

i=1 w
2
i

(
Y1iY2i

(Y1i+Y2i)2

)]1/2 ,
where the sum is over all deaths, Ii is the indicator of the first group, wi is
the ith weight, and Yij is number of subjects at risk just before the jth death
in the ith group. When wi = 1, L becomes the commonly used log-rank
statistic. Under the null hypothesis of H0 : S1 = S2, L is asymptotically
distributed as a standard normal random variable. Hence, we would reject
the null hypothesis at approximate α level of siginicance if |L| > zα/2.

The sample size calculation formula we are going to introduce in this
section was developed by Lakatos (1986, 1988). According to Lakatos’
method, the trial period should be first partioned into N equally spaced
intervals. Let di denote the number of deaths within the ith interval. Define
φik to be the ratio of patients in the two treatment groups at risk just prior
to the kth death in the ith interval. The expectation of L under a fixed
local alternative can be approximated by

E =

∑N
i=1

∑di

k=1 wik

[
φik
θik

1+φik
θik

− φik

1+φik

]
[∑N

i=1

∑di

k=1

w2
ik
φik

(1+φik
)2

]1/2 , (7.4.1)

where the right summation of the each double summation is over the di
deaths in the ith interval, and the left summation is over the N intervals
that partition the trial period. Treating this statistic asN(E, 1), the sample
size needed in order to achieve a power of 1− β can be obtained by solving

E = zα/2 + zβ .

When N is sufficiently large, we can assume that φik = φi and wik = wi
for all k in the ith interval. Let ρi = di/d, where d =

∑
di. Then, E can

be written as
E = e(D)

√
d,
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where

e(D) =
∑N
i=1 wiρiγi(∑N
i=1 w

2
i ρiηi

)1/2 ,
γi =

φiθi
1 + φiθi

− φi
1 + φi

, (7.4.2)

and
ηi =

φi
(1 + φi)2

. (7.4.3)

It follows that

d =
(zα/2 + zβ)2

(∑N
i=1 w

2
i ρiηi

)
(∑N

i=1 wiρiγi

)2 . (7.4.4)

Let ni denote the sample size in the ith treatment group. Under the as-
sumption that n = n1 = n2, the sample sized needed to achieve a power of
1− β is given by

n =
2d

p1 + p2
,

where pi is the cumulative event rates for the ith treatment group.

7.4.2 An Example

To illustrate the method described above, the example given in Lakatos
(1988) is considered. In order to carry out Lakatos’ method, we need to first
partition the trial period into N equal length intervals. Then, parameters
like γi, ηi, ρi, θi, and φi need to be specified. There are two ways we can
specify them. One is directly specify them for each interval or estimate
them from a pilot study. Then the whole procedure becomes relatively
easy. However, some times only yearly rates are given for the necessary
parameters. Then we need to calculate all those parameters by ourselves.

For example, consider a two-year cardiovascular trial. It is assumed that
the yearly hazard rates in treatment group (i = 1) and control group (i = 2)
are given by 1 and 0.5, respectively. Hence, the yearly event rates in the
two treatment groups are given by 1− e−1 = 63.2% and 1− e−0.5 = 39.3%,
respectively. It is also assumed that the yearly loss to follow-up and non-
compliance rates are 3% and 4%, respectively. The rate at which patients
assigned to control begin taking a medication with an efficacy similar to
the experimental treatment is called “drop-in.” In cardiovascular trials,
drop-ins often occur when the private physician of a patient assigned to
control detects the condition of interest, such as hypertension, and pre-
scribes treatment. In this example, it is assumed that the yearly drop-in
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rate is 5%. Assume that the patient’s status follows a Markov chain with
four possible states, i.e., lost to follow-up, event, active in treatment, and
active in control, which are denoted by L, E, AE and AC , respectively.
Then, the yearly transition matrix of this Markov chain is given by

T =


1 0 0.03 0.03
0 1 0.3935 0.6321
0 0 1− Σ 0.05
0 0 0.04 1− Σ

 .
Entries denoted by 1 − Σ represent 1 minus the sum of the remainder of
the column. Assume, however, we want to partition the 2-year period into
20 equal length intervals. Then we need the transition matrix within each
interval. It can be obtained by replacing each off-diagonal entry x in T by
1− (1− x)1/K . The resulting transition matrix is given by

T1/20 =


1.0000 0.0000 0.0030 0.0030
0.0000 1.0000 0.0951 0.0488
0.0000 0.0000 0.8978 0.0051
0.0000 0.0000 0.0041 0.9431

 .
Then, the patient distribution at the end of the i/10th year is given by
T i1/20x, where x is a four-dimension vector indicating the initial distribution
of patients. So, for treatment group, x = (0, 0, 1, 0)′ indicating that at the
begining of the trial all patients active in treatment. Similarly, for control,
x = (0, 0, 0, 1). For illustration purpose, consider at the time point 0.3 year,
the patient distribution for the treatment group is given by

1.0000 0.0000 0.0030 0.0030
0.0000 1.0000 0.0951 0.0488
0.0000 0.0000 0.8978 0.0051
0.0000 0.0000 0.0041 0.9431


3

0
0
1
0

 =


0.0081
0.2577
0.7237
0.0104

 .

This indicates by the time of 0.3 year, we may expect 0.81% of patients
were lossed to follow-up, 25.77% experienced events, 72.37% were still active
in treatment, and 1.04% switched to some other medication with similar
effects as control (noncompliance). Hence, this vector becomes the third
row and first four columns of Table 7.4.1. Similary, we can produce all the
rows for the first eight columns in Table 7.4.1.

Assuming equal allocation of patients across treatment groups, we have
φ = 1 when ti = 0.1, which means just before time point ti = 0.1, the
ratio of patients at risk between treatment groups is 1. When ti = 0.2, the
patients at risk just prior to ti = 0.2 in control groups are the patients still
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Table 7.4.1: Sample Size Calculation by Lakatos’ Method

ti γ η ρ θ φ L E AC AE

0.1 0.167 0.250 0.098 2.000 1.000 C 0.003 0.095 0.897 0.005

E 0.003 0.049 0.944 0.004

0.2 0.166 0.250 0.090 1.986 0.951 C 0.006 0.181 0.804 0.009

E 0.006 0.095 0.891 0.007

0.3 0.166 0.249 0.083 1.972 0.905 C 0.008 0.258 0.721 0.013

E 0.009 0.139 0.842 0.010

0.4 0.165 0.249 0.076 1.959 0.862 C 0.010 0.327 0.647 0.016

E 0.011 0.181 0.795 0.013

0.5 0.164 0.248 0.070 1.945 0.821 C 0.013 0.389 0.580 0.018

E 0.014 0.221 0.750 0.015

0.6 0.163 0.246 0.064 1.932 0.782 C 0.014 0.445 0.520 0.020

E 0.016 0.259 0.708 0.016

0.7 0.162 0.245 0.059 1.920 0.746 C 0.016 0.496 0.466 0.022

E 0.018 0.295 0.669 0.017

0.8 0.160 0.243 0.054 1.907 0.711 C 0.017 0.541 0.418 0.023

E 0.020 0.330 0.632 0.018

0.9 0.158 0.241 0.050 1.894 0.679 C 0.019 0.582 0.375 0.024

E 0.022 0.362 0.596 0.019

1.0 0.156 0.239 0.046 1.882 0.648 C 0.020 0.619 0.336 0.024

E 0.024 0.393 0.563 0.019

1.1 0.154 0.236 0.043 1.870 0.619 C 0.021 0.652 0.302 0.025

E 0.026 0.423 0.532 0.020

1.2 0.152 0.234 0.039 1.857 0.592 C 0.022 0.682 0.271 0.025

E 0.028 0.450 0.502 0.020

1.3 0.149 0.231 0.036 1.845 0.566 C 0.023 0.709 0.243 0.025

E 0.029 0.477 0.474 0.020

1.4 0.147 0.228 0.034 1.833 0.542 C 0.024 0.734 0.218 0.025

E 0.031 0.502 0.448 0.020

1.5 0.144 0.225 0.031 1.820 0.519 C 0.025 0.755 0.195 0.025

E 0.032 0.525 0.423 0.020

1.6 0.141 0.222 0.029 1.808 0.497 C 0.025 0.775 0.175 0.024

E 0.033 0.548 0.399 0.019

1.7 0.138 0.219 0.027 1.796 0.477 C 0.026 0.793 0.157 0.024

E 0.035 0.569 0.377 0.019

1.8 0.135 0.215 0.025 1.783 0.457 C 0.026 0.809 0.141 0.023

E 0.036 0.589 0.356 0.018

1.9 0.132 0.212 0.023 1.771 0.439 C 0.027 0.824 0.127 0.023

E 0.037 0.609 0.336 0.018

2.0 0.129 0.209 0.021 1.758 0.421 C 0.027 0.837 0.114 0.022

E 0.038 0.627 0.318 0.018

C : Control

E : Experimental
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active (AC+AE) in control group, which is given by 0.897+0.005 = 0.902.
Similarly, the patients at risk in experimental group just prior to t = 0.1 is
given by 0.944 + 0.004 = 0.948. Hence, at ti = 0.2, the value of φ can be
determined by φ = 0.902/0.948 = 0.951. Similarly, the values of φ at other
time points can be calculated. Once φ is obtained, the value of η can be
calculated according to formula (7.4.3).

In the next step, we need to calculate θ, which needs specification of
hazard rates within each interval. First, we know before t = 0.1, all pa-
tients in control group staying active in treatment (AE) and all patients in
the experimental group staying active in control (AC). According to our
assumption, the hazard rates for the two groups are given by 1 and 0.5, re-
spectively. Hence, θ = 2. When t = 0.2, we know in the control group the
proportion of patients experienced events is 0.181 − 0.095 = 0.086. Hence
the hazard rate can be obtained by log(1−0.086)/0.1. Similarly, the hazard
rate in the experimental groups is given by log(1− (0.095− 0.049))/0.1 =
log(1− 0.046)/0.1. Hence, the value of θ is given by log(1− 0.086)/log(1−
0.046) = 1.986. The value of θ at other time points can be obtained simi-
larly.

Finally, we need to calculate ρi. First, we can notice that the total
events for the control and experimental groups are given by 0.837 and 0.627,
respectively. The events experienced in the first interval (ti = 0.1) for the
two groups are given by 0.095 and 0.049, respectively. Hence, the value of ρ
when ti = 0.1 is given by (0.095+0.049)/(0.837+0.627) = 0.098. When ti =
0.2, the event experienced in control is given by 0.181−0.095 = 0.096. The
event experienced in experimental groups is given by 0.095−0.049 = 0.046.
Hence, the value of ρ can be obtained by (0.086+ 0.046)/(0.837+ 0.627) =
0.090. The value of ρ at other time points can be obtained similarly.

Due to rounding error, the readers may not be able to reproduce exactly
the same number of the derived parameters (γ, η, ρ, θ, φ) as us by perfoming
appropriate operation on the first eight columns in Table 7.4.1. However, by
keeping enough decimal digits and following our instructions given above,
one should be able to reproduce exactly the same number as us.

Once all the derived parameters are specified, we can caculate the de-
sired number of events according to (7.4.4), which gives d = 101.684 = 102.
On the other hand, we can notice that the overall event rate for control
group is PC = 0.837 and for experimental groups is PE = 0.627. Hence,
the total sample size needed is given by

n =
2d

PE + PC
=

2× 102
0.837 + 0.627

= 138.947 ≈ 139.
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7.5 Practical Issues

7.5.1 Binomial Versus Time-to-Event

In clinical trials, it is not common to define the so-called responder based on
the study endpoints. For example, in cancer trials, we may define a subject
as a responder based on his/her time to disease progression. We can then
perform an analysis based on the response rate to evaluate the treatment
effect. This analysis reduces to a two-sample problem for comparing pro-
portions as described in the previous chapters. However, it should be noted
that the analysis using the response rate, which is defined based on the time-
to-event data, is not as efficient as the analysis using the time-to-event data,
expecially when the underlying distribution for the time-to-event satisfies
the exponential model or Cox’s proportional hazards model.

7.5.2 Local Alternative Versus Fixed Alternative

The sample size calculation formulas for both Cox’s proportional hazards
model or exponential model are all based on the so-called local alternatives
(see, Fleming and Harrington, 1991), which implies that the difference be-
tween treatment groups in terms of the parameters of interest (e.g., hazard
function or survival function) decrease to 0 at the rate of 1/

√
n, where

n is the total sample size. In practice, this is a dilemma because the al-
ternative hypothesis is always fixed, which does not change as the sample
size changes. However, the sample size estimation for Cox’s proportional
hazard model and the weighted log-rank test are derived based on local
alternatives. As a result, further research in sample size estimation based
on a fixed alternative is an interesting but challenging topic for statisticians
in the pharmaceutical industry.

7.5.3 One-Sample Versus Historical Control

Historical control is often considered in survival analysis when the clinical
trial involves only the test treatment. In practice, two approaches are
commonly employed. First, it is to treat the parameters estimated from
historical control (e.g., hazard rate, survival function, median survival time,
etc.) as fixed reference (true) values. Then, the objective of the study is
to compare the corresponding parameters of the test treatment with the
reference values. This is analogous to the one-sample problem discussed
in the previous chapters. Under the assumption that the time-to-event
is exponentially distributed, formulas can be similarly derived. Another
approach is to utilize the whole sample from the historical study. Then,
the standard testing procedure (e.g., log-rank test) will be used to assess

© 2008 by Taylor & Francis Group, LLC



186 Chapter 7. Comparing Time-to-Event Data

the treatment effects. Some discussion on sample size determination for
this approach can be found in Emrich (1989) and Dixon and Simon (1988).
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Chapter 8

Group Sequential
Methods

Most clinical trials are longitudinal in nature. In practice, it is almost im-
possible to enroll and randomize all required subjects at the same time.
Clinical data are accumulated sequentially over time. As a result, it is of
interest to monitor the information for management of the study. In addi-
tion, it is of particular interest to obtain early evidence regarding efficacy,
safety, and benefit/risk of the test drug under investigation for a possible
early termination. Thus, it is not uncommon to employ a group sequential
design with a number of planned interim analyses in a clinical trial. The
rationale for interim analyses of accumulating data in clinical trials with
group sequential designs have been well documented in the Greenberg Re-
port (Heart Special Project Committee, 1988) more than three decades ago.
Since then, the development of statistical methodology and decision pro-
cesses for implementation of data monitoring and interim analyses for early
termination has attracted a lot of attention from academia, the pharma-
ceutical industry, and health authorities (see, e.g., Jennison and Turnbull,
2000).

Sections 8.1-8.4 introduce Pocock’s test, O’Brien and Fleming’s test,
Wang and Tsiatis’ test, and the inner wedge test for clinical trials with
group sequential designs, respectively. Also included in these sections are
the corresponding procedures for sample size calculation. The application
of these tests to discrete study endpoints such as binary responses and
time-to-event data are discussed in Sections 8.5 and 8.6, respectively. In
Section 8.7, the concept of alpha spending function in group sequential
methods is outlined. Procedures for sample size re-estimation at a given
interim analysis without unblinding are examined in Section 8.8. In Section

187
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8.9, conditional powers at interim analyses are derived for the cases when
comparing means and proportions. Some practical issues are discussed in
the last section.

8.1 Pocock’s Test

In clinical trials, a commonly employed statistical test for a group sequential
design with a number of interim analyses is to analyze accumulating data
at each interim analysis. This kind of test is referred to as a repeated sig-
nificance test (Jennison and Turnbull, 2000). In this section, we introduce
Pocock’s test and the corresponding sample size calculation formula.

8.1.1 The Procedure

Pocock (1977) suggested performing a test at a constant nominal level to
analyze accumulating data at each interim analysis over the course of the
intended clinical trial. Suppose that the investigator is interested in con-
ducting a clinical trial for comparing two treatment groups under a group
sequential design with K planned interim analyses. Let xij be the observa-
tion from the jth subject in the ith treatment group, i = 1, 2; j = 1, ..., n.
For a fixed i, it is assumed that xij ’s are independent and identically dis-
tributed normal random variables with mean µi and variance σ2i . Denote
by nk the information (or the number of subjects) accumulated at the kth
(k = 1, ...,K) interim analysis. For simplicity, we further assume that at
each interim analysis, the numbers of subjects accumulated in each treat-
ment group are the same. Note that in practice, this assumption may not
hold. How to deal with unequal numbers of subjects accumulated in each
treatment group is challenging to clinical scientists. One solution to this
problem is using Lan and DeMets’ alpha spending function, which is dis-
cussed in Section 8.7.1. At each interim analysis, the following test statistic
is usually calculated

Zk =
1√

nk(σ21 + σ22)

 nk∑
j=1

x1j −
nk∑
j=1

x2j

 , k = 1, ...,K.

Note that σ2i is usually unknown and it is usually estimated by the data
available up to the point of the interim analysis. At each interim analysis,
σ2i is usually replaced with its estimates. Denote by CP (K,α) the critical
value for having an overall type I error rate of α. Pocock’s test can be
summarized as follows (see also Jennison and Turnbull, 2000):
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(1) After group k = 1, ...,K − 1,

– if |Zk| > CP (K,α) then stop, reject H0;

– otherwise continue to group k + 1.

(2) After group K,

– if |ZK | > CP (K,α) then stop, rejct H0;

– otherwise stop, accept H0.

As an example, one Pocock type boundary for the standardized test statistic
is plotted in Figure 8.1.1.

As it can be seen that the critical value CP (K,α) only depends upon the
type I error (α) and the total number of planned interim analysis (K), which
is independent of the visit number (k). In other words, for each planned
interim analysis, the same critical value is used for comparing treatment
difference using the standard test statistic Zk. The value of CP (K,α) is
choosing in such a way that the above test procedure has an overall type
I error rate of α under the null hypothesis that µ1 − µ2 = 0. Since there
exists no explicit formula for calculation of CP (K,α), a selection of various
values of CP (K,α) under different choices of parameters (K and α) is given
in Table 8.1.1.

Table 8.1.1: CP (K,α) for Two-Sided Tests with K Interim Analyses

K α = 0.01 α = 0.05 α = 0.10
1 2.576 1.960 1.645
2 2.772 2.178 1.875
3 2.873 2.289 1.992
4 2.939 2.361 2.067
5 2.986 2.413 2.122
6 3.023 2.453 2.164
7 3.053 2.485 2.197
8 3.078 2.512 2.225
9 3.099 2.535 2.249
10 3.117 2.555 2.270
11 3.133 2.572 2.288
12 3.147 2.588 2.304
15 3.182 2.626 2.344
20 3.225 2.672 2.392
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Figure 8.1.1: Pocock Type Stopping Rule
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On the other hand, under the alternative hypothesis (i.e., θ �= 0), the
power of the above test procedure can be determined by the total number
of planned interim analysis (K), type I error rate (α), and type II error
rate (β), and the proportion between σ2 and δ2 (i.e., σ2/δ2), where δ =
|µ1 − µ2|. As discussed in the previous chapters, if there are no interim
analyses planned (i.e., K = 1), then the sample size is proportional to
σ2/δ2. As a result, it is sufficient to specify the ratio RP (K,α, β) of the
maximum sample size of the group sequential test to the fixed sample size.
The values of RP (K,α, β) are given in Table 8.1.2. The maximum sample
size needed for a group sequential trial with K interim analyses can be
obtained by first calculating the fixed sample size without interim analyses,
and then multiplying it by RP (K,α, β).

8.1.2 An Example

Suppose that an investigator is interested in conducting a clinical trial with
5 interim analyses for comparing a test drug (T) with a placebo (P). Based
on information obtained from a pilot study, data from the test drug and
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Table 8.1.2: RP (K,α, β) for Two-Sided Tests with K Interim Analyses

1− β = 0.8 1− β = 0.9
K α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10
1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.092 1.110 1.121 1.084 1.100 1.110
3 1.137 1.166 1.184 1.125 1.151 1.166
4 1.166 1.202 1.224 1.152 1.183 1.202
5 1.187 1.229 1.254 1.170 1.207 1.228
6 1.203 1.249 1.277 1.185 1.225 1.249
7 1.216 1.265 1.296 1.197 1.239 1.266
8 1.226 1.279 1.311 1.206 1.252 1.280
9 1.236 1.291 1.325 1.215 1.262 1.292
10 1.243 1.301 1.337 1.222 1.271 1.302
11 1.250 1.310 1.348 1.228 1.279 1.312
12 1.257 1.318 1.357 1.234 1.287 1.320
15 1.272 1.338 1.381 1.248 1.305 1.341
20 1.291 1.363 1.411 1.264 1.327 1.367

the placebo seem to have a common variance, i.e., σ2 = σ21 = σ22 = 4 with
µT − µP = 1. Assuming these observed values are true, it is desirable to
select a maximum sample size such that there is a 90% (1−β = 0.90) power
for detecting such a difference between the test drug and the placebo at the
5% (α = 0.05) level of significance.

By the formula for sample size calculation given in Chapter 3, the re-
quired fixed sample size when there are no planned interim analyses is

nfixed =
(zα/2 + zβ)2(σ21 + σ22)

(µ1 − µ2)2
=

(1.96 + 1.28)2(4 + 4)
12

≈ 84.

By Table 8.1.2, we have

RP (5, 0.05, 0.1) = 1.207.

Hence, the maximum sample size needed for the group sequential trial is
given by

nmax = RP (5, 0.05, 0.1)nfixed = 1.207× 84 = 101.4.

Hence, it is necessary to have

n = nmax/K = 101.4/5 = 20.3 ≈ 21

subjects per group at each interim analysis.
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8.2 O’Brien and Fleming’s Test

Pocock’s test is straightforward and simple. However, it is performed at
a constant nominal level. As an alternative to Pocock’s test, O’Brien and
Fleming (1979) proposed a test, which is also based on the standardized
statistics Zk, by increasing the nominal significance level for rejecting H0

at each analysis as the study progresses. As a result, it is difficult to reject
the null hypothesis at early stages of the trial.

8.2.1 The Procedure

O’Brien and Fleming’s test is carried out as follows (see, also Jennison and
Turnbull, 2000):

(1) After group k = 1, · · · ,K − 1,

– if |Zk| > CB(K,α)
√
K/k then stop, reject H0;

– otherwise continue to group k + 1.

(2) After group K,

– if |ZK | > CB(K,α) then stop, reject H0;

– otherwise stop, accept H0.

As an example, one O’Brien-Fleming type boundary is plotted in Figure
8.2.2. Note that the value of CB(K,α) is chosen to ensure that the over type
I error rate is α. Like CP (K,α), there exists no closed form for calculating
CB(K,α). For convenience, a selection of various values of CB(K,α) under
different choices of parameters are provided in Table 8.2.1.

Similar to the procedure for sample size calculation for Pocock’s method,
the maximum sample size needed in order to achieve a desired power at a
given level of significance can be obtained by first calculating the sample size
needed for a fixed sample size design, and then multiplying by a constant
RB(K,α, β). For various parameters, the values of RB(K,α, β) are given
in Table 8.2.2.

8.2.2 An Example

Consider the example described in Section 8.1.2. Suppose that the inves-
tigator wish to perform the same group sequential test using O’Brien and
Fleming’s test rather than Pocock’s test. By Table 8.2.2,

RB(5, 0.05, 0.1) = 1.026.
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Figure 8.2.2: O’Brien-Fleming Type Stopping Rule
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Since the required fixed sample size is given by nfixed = 84, the maximum
sample size needed for each treatment group is given by

nmax = RB(5, 0.05, 0.1)nfixed = 1.026× 84 = 86.2 ≈ 87.

Therefore, n = nmax/K = 87/5 = 17.4 ≈ 18 subjects per treatment group
at each interim analysis is required for achieving a 90% power at the 5%
level of significance.

8.3 Wang and Tsiatis’ Test

In addition to Pocock’s test and O’Brien and Fleming’s test, Wang and
Tsiatis (1987) proposed a family of two-sided tests indiced by the parameter
of ∆, which is also based on the standardized test statistic Zk. Wang and
Tsiatis’ test include Pocock’s and O’Brien-Fleming’s boundaries as special
cases.
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Table 8.2.1: CB(K,α) for Two-Sided Tests with K Interim Analyses

K α = 0.01 α = 0.05 α = 0.10
1 2.576 1.960 1.645
2 2.580 1.977 1.678
3 2.595 2.004 1.710
4 2.609 2.024 1.733
5 2.621 2.040 1.751
6 2.631 2.053 1.765
7 2.640 2.063 1.776
8 2.648 2.072 1.786
9 2.654 2.080 1.794
10 1.660 2.087 1.801
11 2.665 2.092 1.807
12 2.670 2.098 1.813
15 2.681 2.110 1.826
20 2.695 2.126 1.842

Table 8.2.2: RB(K,α, β) for Two-Sided Tests with K Interim Analyses

1− β = 0.8 1− β = 0.9
K α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10
1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.001 1.008 1.016 1.001 1.007 1.014
3 1.007 1.017 1.027 1.006 1.016 1.025
4 1.011 1.024 1.035 1.010 1.022 1.032
5 1.015 1.028 1.040 1.014 1.026 1.037
6 1.017 1.032 1.044 1.016 1.030 1.041
7 1.019 1.035 1.047 1.018 1.032 1.044
8 1.021 1.037 1.049 1.020 1.034 1.046
9 1.022 1.038 1.051 1.021 1.036 1.048
10 1.024 1.040 1.053 1.022 1.037 1.049
11 1.025 1.041 1.054 1.023 1.039 1.051
12 1.026 1.042 1.055 1.024 1.040 1.052
15 1.028 1.045 1.058 1.026 1.042 1.054
20 1.030 1.047 1.061 1.029 1.045 1.057
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8.3.1 The Procedure

Wang and Tsiatis’ test can be summarized as follows (see also Jennison and
Turnbull, 2000):

(1) After group k = 1, · · · ,K − 1,

– if |Zk| > CWT (K,α,∆)(k/K)∆−1/2 then stop, reject H0;

– otherwise continue to group k + 1.

(2) After group K,

– if |ZK | > CWT (K,α,∆) then stop, reject H0;

– otherwise stop, accept H0.

As an example, the Wang-Tsiatis type boundary when ∆ = 0.25 is given
in Figure 8.3.3. As it can be seen that Wang and Tsiatis’ test reduces to
Pocock’s test when ∆ = 0.5. When ∆ = 0, Wang and Tsiatis’ test is the
same as O’Brien and Fleming’s test. As a result, values of CWT (K,α,∆)
with ∆ = 0 and 0.5 can be obtained from Tables 8.1.1 and 8.2.1. Values of
CWT (K,α,∆) when ∆ = 0.1, 0.25, and 0.4 are given in Table 8.3.1.

Table 8.3.1: CWT (K,α,∆) for Two-Sided Tests with K
Interim Analyses and α = 0.05

K ∆ = 0.10 ∆ = 0.25 ∆ = 0.40
1 1.960 1.960 1.960
2 1.994 2.038 2.111
3 2.026 2.083 2.186
4 2.050 2.113 2.233
5 2.068 2.136 2.267
6 2.083 2.154 2.292
7 2.094 2.168 2.313
8 2.104 2.180 2.329
9 2.113 2.190 2.343
10 2.120 2.199 2.355
11 2.126 2.206 2.366
12 2.132 2.213 2.375
15 2.146 2.229 2.397
20 2.162 2.248 2.423
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Figure 8.3.3: Wang-Tsiatis Type Stopping Rule with ∆ = 0.25
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Sample size calculation for Wang and Tsiatis’ test can be performed in
a similar manner as those for Pocock’s test and O’Brien and Fleming’s test.
First, we need to calculate the sample size for a fixed sample size design
with given significance level and power. Then, we multiply this sample size
by the constant of RWT (K,α, β,∆) whose values are given in Table 8.3.2.

8.3.2 An Example

For illustration, consider the same example given in Section 8.1.2. Suppose
that the investigator wishes to perform the same group sequential test using
Wang and Tsiatis’ test with ∆ = 0.25. By Table 8.3.2,

RWT (5, 0.05, 0.1, 0.25) = 1.066.

Since the fixed sample size is given by nfixed = 84, the maximum sample
size needed for each treatment group is given by

nmax = RB(5, 0.05, 0.1)nfixed = 1.066× 84 = 89.5 ≈ 90.

© 2008 by Taylor & Francis Group, LLC



8.4. Inner Wedge Test 197

Table 8.3.2: RWT (K,α, β,∆) for Two-Sided Tests with K
Interim Analyses and α = 0.05

1− β = 0.8 1− β = 0.9
K ∆ = 0.01 ∆ = 0.05 ∆ = 0.10 ∆ = 0.01 ∆ = 0.05 ∆ = 0.10
1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.016 1.038 1.075 1.014 1.034 1.068
3 1.027 1.054 1.108 1.025 1.050 1.099
4 1.035 1.065 1.128 1.032 1.059 1.117
5 1.040 1.072 1.142 1.037 1.066 1.129
6 1.044 1.077 1.152 1.041 1.071 1.138
7 1.047 1.081 1.159 1.044 1.075 1.145
8 1.050 1.084 1.165 1.046 1.078 1.151
9 1.052 1.087 1.170 1.048 1.081 1.155
10 1.054 1.089 1.175 1.050 1.083 1.159
11 1.055 1.091 1.178 1.051 1.085 1.163
12 1.056 1.093 1.181 1.053 1.086 1.166
15 1.059 1.097 1.189 1.055 1.090 1.172
20 1.062 1.101 1.197 1.058 1.094 1.180

Thus, at each interim analysis, sample size per treatment group required
for achieving a 90% power at the 5% level of significance is given by

n = nmax/K = 90/5 = 18.

8.4 Inner Wedge Test

As described above, the three commonly used group sequential methods
allow early stop under the alternative hypothesis. In other words, the
trial is terminated if there is substantial evidence of efficacy. In practice,
however, if the trial demonstrates strong evidence that the test drug has no
treatment effect, it is also of interest to stop the trial prematurely. For good
medical practice, it may not be ethical to expose patients to a treatment
with little or no efficacy but potential serious adverse effects. In addition,
the investigator may want to put the resources on other promising drugs.
To allow an early stop with either substantial evidence of efficacy or no
efficacy, the most commonly used group sequential method is the so-called
two-sided inner wedge test, which is also based on the standardized test
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statistics Zk.

8.4.1 The Procedure

The inner wedge test can be carried out as follows (see also Jennison and
Turnbull, 2000):

(1) After group k = 1, ...,K − 1,

– if |Zk| ≥ bk then stop and reject H0;

– if |Zk| < ak then stop and accept H0;

– otherwise continue to group k + 1.

(2) After group K,

– if |Zk| ≥ bK then stop and reject H0;

– if |Zk| < aK then stop and accept H0.

Figure 8.4.4: Inner Wedge Type Stopping Rule with ∆ = 0.25
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Table 8.4.1: Constants CW1(K,α, β,∆), CW2(K,α, β,∆), and
RW (K,α, β,∆) with α = 0.05 and 1− β = 0.8

∆ K CW1 CW2 RW ∆ K CW1 CW2 RW
−0.50 1 1.960 0.842 1.000 −0.25 1 1.960 0.842 1.000

2 1.949 0.867 1.010 2 1.936 0.902 1.026
3 1.933 0.901 1.023 3 1.932 0.925 1.040
4 1.929 0.919 1.033 4 1.930 0.953 1.059
5 1.927 0.932 1.041 5 1.934 0.958 1.066
10 1.928 0.964 1.066 10 1.942 0.999 1.102
15 1.931 0.979 1.078 15 1.948 1.017 1.120
20 1.932 0.988 1.087 20 1.952 1.027 1.131

0.00 1 1.960 0.842 1.000 0.25 1 1.960 0.842 1.000
2 1.935 0.948 1.058 2 1.982 1.000 1.133
3 1.950 0.955 1.075 3 2.009 1.059 1.199
4 1.953 0.995 1.107 4 2.034 1.059 1.219
5 1.958 1.017 1.128 5 2.048 1.088 1.252
10 1.980 1.057 1.175 10 2.088 1.156 1.341
15 1.991 1.075 1.198 15 2.109 1.180 1.379
20 1.998 1.087 1.212 20 2.122 1.195 1.40

The constants ak and bk are given by

ak = [CW1(K,α, β,∆) + CW2(K,α, β,∆)] ∗
√
k/K

−CW2(K,α, β,∆)(k/K)∆−1/2,

bk = CW1(K,α, β,∆)(k/K)∆−1/2.

As an example, one inner wedge type boundary is given in Figure 8.4.4. For
a given desired power (1−β), the sample size can be similarly determined.
First, we calculate the sample size required for a fixed sample size design,
denoted by nfixed. Then, nfixed is multiplied by RW (K,α, β,∆). Values of
CW1(K,α, β,∆), CW2(K,α, β,∆), and RW (K,α, β,∆) are given in Tables
8.4.1 and 8.4.2.

8.4.2 An Example

To illustrate sample size calculation based on the inner wedge test, consider
the following example. A group sequential trial with 5 (K = 5) interim
analyses is planned. The objective is to compare a test drug with a standard

© 2008 by Taylor & Francis Group, LLC



200 Chapter 8. Group Sequential Methods

Table 8.4.2: Constants CW1(K,α, β,∆), CW2(K,α, β,∆), and
RW (K,α, β,∆) with α = 0.05 and 1− β = 0.9

∆ K CW1 CW2 RW ∆ K CW1 CW2 RW
−0.50 1 1.960 1.282 1.000 −0.25 1 1.960 1.282 1.000

2 1.960 1.282 1.000 2 1.957 1.294 1.006
3 1.952 1.305 1.010 3 1.954 1.325 1.023
4 1.952 1.316 1.016 4 1.958 1.337 1.033
5 1.952 1.326 1.023 5 1.960 1.351 1.043
10 1.958 1.351 1.042 10 1.975 1.379 1.071
15 1.963 1.363 1.053 15 1.982 1.394 1.085
20 1.967 1.370 1.060 20 1.988 1.403 1.094

0.00 1 1.960 1.282 1.000 0.25 1. 1.960 1.282 1.000
2 1.958 1.336 1.032 2 2.003 1.398 1.100
3 1.971 1.353 1.051 3 2.037 1.422 1.139
4 1.979 1.381 1.075 4 2.058 1.443 1.167
5 1.990 1.385 1.084 5 2.073 1.477 1.199
10 2.013 1.428 1.127 10 2.119 1.521 1.261
15 2.026 1.447 1.148 15 2.140 1.551 1.297
20 2.034 1.458 1.160 20 2.154 1.565 1.316

therapy through a parallel trial. A inner wedge test with ∆ = 0.25 is
utilized. Based on a pilot study, the mean difference between the two
treatments is 20% (µ1 − µ2 = 0.2) and the standard deviation is 1.00 for
both treatments (σ1 = σ2 = 1). It is desirable to select a sample size to
achieve an 80% (1− β = 0.80) power for detecting such a difference at the
5% (α = 0.05) level of significance. The sample size needed for a fixed
sample size design can be obtained as

nfixed =
(z0.975 + z0.80)2(σ21 + σ22)

(µ1 − µ2)2
=

(1.96 + 0.84)2(1 + 1)
0.22

= 392.

By Table 8.4.2,

nmax = nfixedRW (5, 0.05, 0.2, 0.25) = 392× 1.199 = 470.

Hence, at each interim analysis, the sample size necessary per treatment
group is given by

n =
nmax

K
=

470
5

= 94.
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8.5 Binary Variables

In this section we consider binary response variables.

8.5.1 The Procedure

Let xij be the binary response from the jth subject in the ith treatment
group. Within each treatment group (i.e., for a fixed i), xij ’s are assumed
to be independent and identically distributed with mean pi. Suppose that
there are K planned interim analyses. Suppose also that at each interim
analysis, equal number of subjects is accumulated in each treatment group.
At each interim analysis, the following test statistic is usually considered:

Zk =
√
nk(p̂1,k − p̂2,k)√

p̂1,k(1− p̂1,k) + p̂2,k(1− p̂2,k)
,

where

p̂i,k =
1
ni,k

ni,k∑
j=1

xij

and nk is the number of subjects accumulated by the time of the kth interim
analysis. Since Zk, k = 1, ...,K, are asymptotically normally distributed
with the same distribution as that of Zk’s for the continuous response, the
repeated significance test procedures (e.g., Pocock, O’Brien-Fleming, and
Wang-Tsiatis) can also be applied for binary responses. The resulting test
procedure has an asymptotically type I error rate of α.

8.5.2 An Example

Suppose that an investigator is interested in conducting a group sequential
trial comparing a test drug with a placebo. The primary efficacy study
endpoint is a binary response. Based on information obtained in a pilot
study, the response rates for the test drug and the placebo are given by
60% (p1 = 0.60) and 50% (p2 = 0.50), respectively. Suppose that a total
of 5 (K = 5) interim analyses are planned. It is desirable to select a
maximum sample size in order to have an 80% (1 − β = 0.80) power at
the 5% (α = 0.05) level of significance. The sample size needed for a fixed
sample size design is

nfixed =
(zα/2 + zβ)2(p1(1− p1) + p2(1− p2))

(p1 − p2)2

=
(1.96 + 0.84)2(0.6(1− 0.6) + 0.5(1− 0.5))

(0.6− 0.5)2

≈ 385.
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If Pocock’s test is used, then by Table 8.1.2, we have

nmax = nfixedRP (5, 0.05, 0.20) = 385× 1.229 ≈ 474.

Hence, at each interim analysis, the sample size per treatment group is
474/5 = 94.8 ≈ 95.

On the other hand, if O’Brien and Fleming’s method is employed, Table
8.2.2 gives

nmax = nfixedRB(5, 0.05, 0.20) = 385× 1.028 ≈ 396.

Thus, at each interim analysis, the sample size per treatment group is
396/5 = 79.2 ≈ 80.

Alternatively, if Wang and Tsitis’ test with ∆ = 0.25 is considered,Table
8.3.2 leads to

nmax = nfixedRWT (5, 0.05, 0.20, 0.25) = 385× 1.072 ≈ 413.

As a result, at each interim analysis, the sample size per treatment group
is given by 413/5 = 82.6 ≈ 83.

8.6 Time-to-Event Data

To apply the repeated significance test procedures to time-to-event data,
for simplicity, we only consider Cox’s proportional hazard model.

8.6.1 The Procedure

As indicated in Chapter 7, under the assumption of proportional hazards,
the log-rank test is usually used to compare the two treatment groups.
More specifically, let h(t) be the hazard function of treatment group A and
eθh(t) be the hazard function of treatment group B. Let dk denote the
total number of uncensored failures observed when the kth interim analysis
is conducted, k = 1, ...,K. For illustration purposes and without loss of
generality, we assume that there are no ties. Let τi,k be the survival times
of these subjects, i = 1, ..., dk. Let riA,k and riB,k be the numbers of
subjects who are still at risk at the kth interim analysis at time τi,k for
treatment A and B, respectively. The log-rank test statistic at the kth
interim analysis is then given by

Sk =
dk∑
i=1

(
δiB,k −

riB,k
riA,k + riB,k

)
,
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where δiB,k = 1 if the failure at time τi,k is on treatment B and 0 otherwise.
Jennison and Turnbull (2000) proposed to use N(θIk, Ik) to approximate
the distribution of Sk, where Ik is the so-called observed information and
is defined as

Ik =
dk∑
i=1

riA,kriB,k
(riA,k + riB,k)2

.

Then, the standardized test statistic can be calculated as

Zk =
Sk√
Ik
.

As a result, Zk can be used to compare with the commonly used group
sequential boundaries (e.g., Pocock, O’Brien-Fleming, and Wang-Tsiatis).
Under the alternative hypothesis, the sample size can be determined by first
finding the information needed for a fixed sample size design with the same
significance level and power. Then, calculate the maximum information
needed for a group sequential trial by multiplying appropriate constants
from Tables 8.1.2, 8.2.2, and 8.3.2.

8.6.2 An Example

Suppose that an investigator is interested in conducting a survival trial
with 5 (K = 5) planned interim analyses at the 5% level of significance
(α = 0.05) with an 80% (1− β = 0.80) power. Assume that θ = 0.405. As
indicated by Jennison and Turnbull (2000), the information needed for a
fixed sample size design is given by

Ifixed =
(zα/2 + zβ)2

θ2
=

(1.96 + 0.84)2

0.4052
= 47.8.

If O’Brien and Fleming boundaries are utilized as a stopping rule, then the
maximum information needed in order to achieve the desired power can be
calculated as

Imax = Ifixed ×RB(K,α, β) = 47.8× 1.028 = 49.1,

where the value 1.028 of RB(5, 0.05, 0.2) is taken from Table 8.2.2. If θ
is close to 0, which is true under the local alternative, it is expected that
riA,k ≈ riB,k for each i. Hence, Ik can be approximated by 0.25dk. It
follows that the number of events needed is given by

nd =
Imax

0.25
= 196.4 ≈ 197.

Hence, a total number of 197 events are needed in order to achieve an 80%
power for detecting a difference of θ = 0.405 at the 5% level of significance.
The corresponding sample size can be derived based on nd by adjusting for
some other factors, such as competing risk, censoring, and dropouts.
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8.7 Alpha Spending Function

One of the major disadvantages of the group sequential methods discussed
in the previous sections is that they are designed for a fixed number of in-
terim analyses with equally spaced information time. In practice, however,
it is not uncommon that the interim analysis is actually planned based on
calendar time. As a result, the information accumulated at each time point
may not be equally spaced. The consequence is that the overall type I error
may be far away from the target value.

As an alternative, Lan and DeMets (1983) proposed to distribute (or
spend) the total probability of false positive risk as a continuous function of
the information time in group sequential procedures for interim analyses. If
the total information scheduled to accumulate over the maximum duration
T is known, the boundaries can be computed as a continuous function of
the information time. This continuous function of the information time is
referred to as the alpha spending function, denoted by α(s). The alpha
spending function is an increasing function of information time. It is 0
when information time is 0; and is equal to the overall significance level
when information time is 1. In other words, α(0) = 0 and α(1) = α. Let
s1 and s2 be two information times, 0 < s1 < s2 ≤ 1. Also, denote α(s1)
and α(s2) as their corresponding value of alpha spending function at s1 and
s2. Then, 0 < α(s1) < α(s2) ≤ α. α(s1) is the probability of type I error
one wishes to spend at information time s1. For a given alpha spending
function (α(s)) and a series of standardized test statistic Zk, k = 1, ...,K.
The corresponding boundaries ck, k = 1, ...,K are chosen such that under
the null hypothesis

P (|Z1| < c1, ..., |Zk−1| < ck−1, |Zk| ≥ ck) = α

(
k

K

)
− α

(
k − 1
K

)
.

Some commonly used alpha-spending functions are summarized in Table
8.7.1 and Figure 8.7.5 is used to illustrate a true alpha spending function.

Table 8.7.1: Various Alpha Spending Functions

α1(s) = 2{1− Φ(zα/2/
√
2) O’Brien-Fleming

α2(s) = α log[1 + (e− 1)s] Pocock
α3(s) = αsρ, ρ > 0 Lan-DeMets-Kim
α4(s) = α[(1− eζs)/(1− e−ζ)], ζ �= 0 Hwang-Shih
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Figure 8.7.5: The Alpha Spending Function α(s)
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We now introduce the procedure for sample size calculation based on
Lan-DeMets’ alpha spending function, i.e.,

α(s) = αsρ, ρ > 0.

Although alpha spending function does not require a fixed maximum num-
ber and equal spaced interim analyses, it is necessary to make those assump-
tions in order to calculate the sample size under the alternative hypothesis.
The sample size calculation can be performed in a similar manner. For a
given significance level α and power 1−β, we can first calculate the sample
size needed for a fixed sample size design and then multiply it by a constant
RLD(K,α, β, ρ). The values of RLD(K,α, β, ρ) are tabulated in Table 8.7.2.

Consider the same example as discussed in Section 8.1. In order to
achieve a 90% power at the 5% level of significance, it is necessary to have
nfixed = 84 subjects per treatment group. Then, the maximum sample size
needed for achieving the desired power with 5 interim analyses using the
Lan-DeMets type alpha spending function with ρ = 2 can be calculated as

nmax = nfixed ×RLD(5, 0.05, 0.9, 2) = 84× 1.075 ≈ 92.
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Table 8.7.2: RLD(K,α, β, ρ) for Two-Sided Tests with K Interim
Analyses and α = 0.05

1− β = 0.8 1− β = 0.9
K ρ = 0.01 ρ = 0.05 ρ = 0.10 ρ = 0.01 ρ = 0.05 ρ = 0.10
1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.082 1.028 1.010 1.075 1.025 1.009
3 1.117 1.045 1.020 1.107 1.041 1.018
4 1.137 1.056 1.027 1.124 1.051 1.025
5 1.150 1.063 1.032 1.136 1.058 1.030
6 1.159 1.069 1.036 1.144 1.063 1.033
7 1.165 1.073 1.039 1.150 1.067 1.036
8 1.170 1.076 1.041 1.155 1.070 1.039
9 1.174 1.079 1.043 1.159 1.073 1.040
10 1.178 1.081 1.045 1.162 1.075 1.042
11 1.180 1.083 1.046 1.164 1.077 1.043
12 1.183 1.085 1.048 1.166 1.078 1.044
15 1.188 1.088 1.050 1.171 1.082 1.047
20 1.193 1.092 1.054 1.176 1.085 1.050

Thus, a total of 92 subjects per treatment group is needed in order to have
a 90% power at the 5% level of significance.

8.8 Sample Size Re-Estimation

In clinical trials with planned interim analyses, it is desirable to perform
sample size re-estimation at interim analyses. The objective is to deter-
mine whether the selected sample size is justifiable based on clinical data
accumulated up to the time point of interim analysis. In practice, however,
unblinding the treatment codes for sample size re-estimation may introduce
bias to remaining clinical trials. Shih (1993) and Shih and Zhao (1997) pro-
posed some procedures without unblinding for sample size re-estimation
with interim data for double-blind clinical trials with binary outcomes.

8.8.1 The Procedure

Suppose that yi, i = 1, ..., n (treatment) and yj , j = n + 1, ..., N (control)
are observations from a randomized, double-blind clinical trial. It is as-
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sumed that yi and yj are distributed as B(1, p1) and B(1, p2), respectively.
Suppose that the hypotheses of interest are

H0 : p1 = p2 versus Ha : p1 �= p2.

Further, suppose that N = 2n and a clinically meaningful difference is
∆ = |p1 − p2|. Then, as discussed in Chapter 4, the sample size required
for achieving a desired power of (1 − β) at α level of significance by an
unconditional method is given by

n =
(zα/2 + zβ)2[p1(1− p1) + p2(1− p2)]

∆2
.

As discussed in Chapter 4, there are two methods available for comparing
two proportions. They are, namely, conditional and unconditional meth-
ods. For illustration purposes, we only adopt the formula of unconditional
method. However, the procedure introduced below can easily be general-
ized to the conditional method. The estimated sample size can be obtained
by simply replacing p1 and p2 with their estimates. As a result, sample
size re-estimation at an interim analysis without unblinding is to obtain
estimates of p1 and p2 without revealing the treatment codes. For multi-
center trials, Shih (1993) and Shih and Zhao (1997) suggested the following
procedure for sample size re-estimation without unblinding when 50% of
the subjects as originally planned in the study protocol complete the trial.

First, within each center, each subject is randomly assigned to a dummy
stratum, i.e., either stratum A or stratum B. Note that this stratification
is not based on any of the subjects’ baseline characteristics. The use of
dummy stratification is for sample size re-estimation at the interim stage
and statistical inference should not be affected at the end of the trial.
Now, subjects in stratum A are randomly allocated to the treatment group
with probability π and to the control group with probability 1− π, where
π ∈ (0, 0.5). Similarly, subjects in stratum B are randomly allocated to
the treatment group with probability 1− π and to the control group with
probability π, where π ∈ (0, 0.5). Based on the pooled events rates observed
from each stratum, we then estimate p1 and p2 without unblinding the
treatment codes as follows. We use the results from stratum A to estimate

θ1 = P (yj = 1|subject j ∈ stratum A) = πp1 + (1− π)p2

and that of stratum B to estimate

θ2 = P (yj = 1|subject j ∈ stratum B) = (1− π)p1 + πp2.

Based on the observed events rate θ1 from stratum A and the observed
event rate θ2 from stratum B, p1 and p2 can be estimated by solving the
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following equations simultaneously:

πp1 + (1− π)p2 = θ1

(1− π)p1 + πp2 = θ2.

Thus, the estimates of p1 and p2 are given by

p̂1 =
πθ̂1 − (1− π)θ̂2

2π − 1

and

p̂2 =
πθ̂2 − (1− π)θ̂1

2π − 1
.

Estimates p̂1 and p̂2 can then be used to update the sample size based on the
formula for sample size calculation given above. Note that if the resultant
sample size n∗ is greater than the originally planned sample size n (i.e.,
n∗ > n), it is suggested that an increase in sample size is necessary in order
to achieve the desired power at the end of the trial. On the other hand,
if n∗ < m, a sample size reduction is justifiable. More details regarding
sample size re-estimation without unblinding the treatment codes can be
found in Shih and Zhao (1997).

8.8.2 An Example

Consider a cancer trial comparing the response rates (i.e., complete response
plus partial response) of patients between two treatments (i.e., test and
control). The trial was conducted in two centers (A and B) with 18 patients
each. At center A, each patient is assigned to the test treatment group
with a probability of 0.6 and the control group with a probability of 0.4.
At center B, each patient is assigned to the test treatment group with a
probability of 0.4 and the control group with a probability of 0.6. It follows
that π = 0.4. One interim analysis was planned when half of patients (i.e.,
9 patients per center) completed the trial. At the time of interim analysis,
it is noted that the observed response rates for center A and B are given
by 0.6 (θ1 = 0.6) and 0.5 (θ2 = 0.5), respectively. It follows that

0.4p1 + 0.6p2 = 0.6
0.6p1 + 0.4p2 = 0.5.

This gives p1 = 0.3 and p2 = 0.8. Hence, the sample size needed in order
to achieve a 90% (β = 0.10) at the 5% (α = 0.05) level of significance is
given by
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n =
(zα/2 + zβ)2(p1(1− p1) + p2(1− p2))

(p1 − p2)2

=
(1.96 + 1.64)2(0.3(1− 0.3) + 0.8(1− 0.8))

(0.3− 0.8)2

≈ 20.

Hence, a total of 40 patients are needed in order to achieve the desired
power. This sample size re-estimation suggests that in addition to the
planned 36 patients, four more patients are necessarily enrolled.

8.9 Conditional Power

Conditional power at a given interim analysis in group sequential trials
is defined as the power of rejecting the null hypothesis at the end of the
trial conditional on the observed data accumulated up to the time point of
the planned interim analysis. For many repeated significance tests such as
Pocock’s test, O’Brien and Fleming’s test, and Wang and Tsiatis’ test, the
trial can be terminated only under the alternative hypothesis. In practice,
this is usually true if the test treatment demonstrates substantial evidence
of efficacy. However, it should be noted that if the trial indicates a strong
evidence of futility (lack of efficacy) during the interim analysis, it is uneth-
ical to continue the trial. Hence, the trial may also be terminated under the
null hypothesis. However, except for the inner wedge test, most repeated
significance tests are designed for early stop under the alternative hypoth-
esis. In such a situation, the analysis of conditional power (or equivalently,
futility analysis) can be used as a quantitative method for determining
whether the trial should be terminated prematurely.

8.9.1 Comparing Means

Let xij be the observation from the jth subject (j = 1, ..., ni) in the ith
treatment group (i = 1, 2). xij , j = 1, ..., ni, are assumed to be indepen-
dent and identically distributed normal random variables with mean µi and
variance σ2i . At the time of interim analysis, it is assumed that the first
mi of ni subjects in the ith treatment group have already been observed.
The investigator may want to evaluate the power for rejection of the null
hypothesis based on the observed data and appropriate assumption under
the alternative hypothesis. More specifically, define

x̄a,i =
1
mi

mi∑
j=1

xij and x̄b,i =
1

ni −mi

ni∑
j=mi+1

xij .
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At the end of the trial, the following Z test statistic is calculated:

Z =
x̄1 − x̄2√

s21/n1 + s22/n2

≈ x̄1 − x̄2√
σ21/n1 + σ22/n2

=
(m1x̄a,1 + (n1 −m1)x̄b,1)/n1 − (m2x̄a,2 + (n2 −m2)x̄b,2)/n2√

σ21/n1 + σ22/n2
.

Under the alternative hypothesis, we assume µ1 > µ2. Hence, the power
for rejecting the null hypothesis can be approximated by

1− β = P (Z > zα/2)

= P

 (n1−m1)(x̄b,1−µ1)
n1

− (n2−m2)(x̄b,2−µ2)
n2√

(n1−m1)σ2
1

n2
1

+ (n2−m2)σ2
2

n2
2

> τ


= 1− Φ(τ ),

where

τ =
[
zα/2

√
σ21/n1 + σ22/n2 − (µ1 − µ2)

−
(
m1

n1
(x̄a,1 − µ1)−

m2

n2
(x̄a,2 − µ2)

)]
[
(n1 −m1)σ21

n21
+

(n2 −m2)σ22
n22

]−1/2

.

As it can be seen from the above, the conditional power depends not only
upon the assumed alternative hypothesis (µ1, µ2) but also upon the ob-
served values (x̄a,1, x̄a,2) and the amount of information that has been ac-
cumulated (mi/ni) at the time of interim analysis.

8.9.2 Comparing Proportions

When the responses are binary, similar formulas can also be obtained. Let
xij be the binary response observed from the jth subject (j = 1, ..., ni) in
the ith treatment group (i = 1, 2). Again, xij , j = 1, ..., ni, are assumed to
be independent and identically distributed binary variables with mean pi.
At the time of interim analysis, it is also assumed that the first mi of ni
subjects in the ith treatment group have been observed. Define

x̄a,i =
1
mi

mi∑
j=1

xij and x̄b,i =
1

ni −mi

ni∑
j=mi+1

xij .
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At the end of the trial, the following Z test statistic is calculated:

Z =
x̄1 − x̄2√

x̄1(1− x̄1)/n1 + x̄2(1− x̄2)/n2

≈ x̄1 − x̄2√
p1(1− p1)/n1 + p2(1− p2)/n2

=
(m1x̄a,1 + (n1 −m1)x̄b,1)/n1 − (m2x̄a,2 + (n2 −m2)x̄b,2)/n2√

p1(1− p1)/n1 + p2(1− p2)/n2
.

Under the alternative hypothesis, we assume p1 > p2. Hence, the power for
rejecting the null hypothesis can be approximated by

1− β = P (Z > zα/2)

= P

 (n1−m1)(x̄b,1−µ1)
n1

− (n2−m2)(x̄b,2−µ2)
n2√

(n1−m1)p1(1−p1)
n2

1
+ (n2−m2)p2(1−p2)

n2
2

> τ


= 1− Φ(τ ),

where

τ =
[
zα/2

√
p1(1− p1)/n1 + p2(1− p2)/n2 − (µ1 − µ2)

−
(
m1

n1
(x̄a,1 − µ1)−

m2

n2
(x̄a,2 − µ2)

)]
[
(n1 −m1)p1(1− p1)

n21
+

(n2 −m2)p2(1− p2)
n22

]−1/2

.

Similarly, the conditional power depends not only upon the assumed alter-
native hypothesis (p1, p2) but also upon the observed values (x̄a,1, x̄a,2) and
the amount of information that has been accumulated (mi/ni) at the time
of interim analysis.

8.10 Practical Issues

The group sequential procedures for interim analyses are basically in the
context of hypothesis testing which is aimed at pragmatic study objectives,
i.e., which treatment is better. However, most new treatments such as can-
cer drugs are very expensive or very toxic or both. As a result, if the de-
gree of the benefit provided by the new treatment exceeds some minimum
clinically significant requirement, only then will it be considered for the
treatment of the intended medical conditions. Therefore, an adequate well-
controlled trial should be able to provide not only the qualitative evidence,
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whether the experimental treatment is effective, but also the quantitative
evidence from the unbiased estimation of the size of the effectiveness or
safety over placebo given by the experimental therapy. For a fixed sam-
ple design without interim analyses for early termination, it is possible to
achieve both qualitative and quantitative goals with respect to the treat-
ment effect. However, with group sequential procedure the size of benefit of
the experimental treatment by the maximum likelihood method is usually
overestimated because of the choice of stopping rule. Jennison and Turnbull
(1990) pointed out that the sample mean might not even be contained in
the final confidence interval. As a result, estimation of the size of treatment
effect has received a lot of attention. Various estimation procedures have
been proposed such as modified maximum likelihood estimator (MLE), me-
dian unbiased estimator (MUE) and the midpoint of the equal-tailed 90%
confidence interval. For more details, see Cox (1952), Tsiatis et al., (1984),
Kim and DeMets (1987), Kim (1989), Chang and O’Brien (1986), Chang
et al. (1989), Chang (1989), Hughes and Pocock (1988), and Pocock and
Hughes (1989).

The estimation procedures proposed in the above literature require ex-
tensive computation. On the other hand, simulation results (Kim, 1989;
Hughes and Pocock, 1988) showed that the alpha spending function corre-
sponding to the O’Brien-Fleming group sequential procedure is very con-
cave and allocates only a very small amount of total nominal significance
level to early stages of interim analyses, and hence, the bias, variance, and
mean square error of the point estimator following O’Brien-Fleming pro-
cedure are also the smallest. Current research focuses mainly upon the
estimation of the size of the treatment effect for the primary clinical end-
points on which the group sequential procedure is based. However, there
are many other secondary efficacy and safety endpoints to be evaluated
in the same trial. The impact of early termination of the trial based on
the results from primary clinical endpoints on the statistical inference for
these secondary clinical endpoints are unclear. In addition, group sequential
methods and their followed estimation procedures so far are concentrated
only on the population average. On the other hand, inference of variability
is sometimes also of vital importance for certain classes of drug products
and diseases. Research on estimation of variability following early termi-
nation is still lacking. Other areas of interest for interim analyses include
clinical trials with more than 2 treatments and bioequivalence assessment.
For group sequential procedures for the trials with multiple treatments, see
Hughes (1993) and Proschan et al. (1994). For group sequential bioequiv-
alence testing procedure, see Gould (1995).

In practice, one of the most commonly used methods for sample size
estimation in group sequential trials is to consider the most conservative
scenario. In other words, we assume that the trial will not be stopped
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prematurely. Let CK be the critical value for final analysis. Then, we reject
the null hypothesis at the α level of significance if and only if |ZK | > CK .
Under the null hypothesis, however, the type I error rate is no longer α.
Instead it becomes

α∗ = P (|ZK | > CK).

Hence, the sample size for achieving a desired power can be estimated by
adjusting α to α∗. This method has the merit of simplicity. Besides, it
works well if CK ≈ Zα/2. However, if CK >> Zα/2, the resulting sample
size could be very conservative.
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Chapter 9

Comparing Variabilities

In most clinical trials comparing a test drug and a control (e.g., a placebo
control or an active control), treatment effect is usually established by com-
paring mean response change from the baseline of some primary study end-
points, assuming that their corresponding variabilities are comparable. In
practice, however, variabilities associated with the test drug and the control
could be very different. When the variability of the test drug is much larger
than that of the reference drug, safety of the test drug could be a concern.
Thus, in addition to comparing mean responses between treatments, it is
also of interest to compare the variabilities associated with the responses
between treatments.

In practice, the variabilities are usually classified into two categories,
namely, the intra-subject (or within subject) variability and the inter-
subject (or between subject) variability. Intra-subject variability refers to
the variability observed from repeated measurements from the same sub-
ject under the same experimental conditions. On the other hand, inter-
subject variability is the variability due to the heterogeneity among sub-
jects. The total variability is simply the sum of the intra- and inter-
subject variabilities. In practice, it is of interest to test for equality, non-
inferiority/superiority, and similarity between treatments in terms of the
intra-subject, inter-subject, and/or total variabilities. The problem of com-
paring intra-subject variabilities is well studied by Chinchilli and Esinhart
(1996) through an F statistic under a replicated crossover model. A similar
idea can also be applied to comparing total variabilities under a parallel de-
sign without replicates. However, how to compare inter-subject and total
variabilities under a crossover design is still challenging to biostatisticians
in clinical research.

The remainder of this chapter is organized as follows. In the next two
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sections, formulas for sample size calculation for comparing intra-subject
variabilities and intra-subject CVs are derived, respectively, under both
replicated crossover designs and parallel designs with replicates. Sections
9.3 and 9.4 provide formulas for sample size calculation for comparing
inter-subject variabilities and total variabilities, respectively, under both
crossover designs and parallel designs. Some practical issues are discussed
in the last section.

9.1 Comparing Intra-Subject Variabilities

To assess intra-subject variability, replicates from the same subject are nec-
essarily obtained. For this purpose, replicated crossover designs or parallel
group designs with replicates are commonly employed. In what follows, sta-
tistical tests for comparing intra-subject variabilities under a parallel design
with replicates and a replicated crossover design (e.g., a 2 × 4 replicated
crossover design) are studied.

9.1.1 Parallel Design with Replicates

Let xijk be the observation of the kth replicate (k = 1, ...,m) of the jth
subject (j = 1, ..., ni) from the ith treatment (i =T, R). It is assumed that

xijk = µi + Sij + eijk, (9.1.1)

where µi is the treatment effect, Sij is the random effect due to the jth
subject in the ith treatment group, and eijk is the intra-subject variability
under the ith treatment. It is assumed that for a fixed i, Sij are indepen-
dent and identically distributed as normal random variables with mean 0
and variance σ2Bi, and eijk, k = 1, ...,m, are independent and identically
distributed as a normal random variable with mean 0 and variance σ2Wi.
Under this model, an unbiased estimator for σ2Wi is given by

σ̂2Wi =
1

ni(m− 1)

ni∑
j=1

m∑
k=1

(xijk − x̄ij·)2, (9.1.2)

where

x̄ij· =
1
m

m∑
k=1

xijk. (9.1.3)

It can be seen that ni(m− 1)σ̂2Wi/σ
2
Wi is distributed as a χ2ni(m−1) random

variable.
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Test for Equality

In practice, it is often of interest to test whether two drug products have
the same intra-subject variability. The following hypotheses are then of
interest:

H0 : σ2WT = σ2WR versus Ha : σ2WT �= σ2WR.

A commonly used test statistic for testing the above hypotheses is given by

T =
σ̂2WT
σ̂2WR

.

Under the null hypothesis, T is distributed as an F random variable with
nT (m − 1) and nR(m − 1) degrees of freedom. Hence, we reject the null
hypothesis at the α level of significance if

T > Fα/2,nT (m−1),nR(m−1)

or
T < F1−α/2,nT (m−1),nR(m−1),

where Fα/2,nT (m−1),nR(m−1) is the upper (α/2)th quantile of an F distribu-
tion with nT (m − 1) and nR(m − 1) degrees of freedom. Under the alter-
native hypothesis, without loss of generality, we assume that σ2WT < σ2WR.
The power of the above test is

Power = P (T < F1−α/2,nT (m−1),nR(m−1))
= P (1/T > Fα/2,nR(m−1),nT (m−1))

= P

(
σ̂2WR/σ

2
WR

σ̂2WT /σ
2
WT

>
σ2WT
σ2WR

Fα/2,nR(m−1),nT (m−1)

)
= P

(
FnR(m−1),nT (m−1) >

σ2WT
σ2WR

Fα/2,nR(m−1),nT (m−1)

)
,

where Fa,b denotes an F random variable with a and b degrees of freedom.
Under the assumption that n = nR = nT and with a fixed σ2WT and σ2WR,
the sample size needed in order to achieve a desired power of 1− β can be
obtained by solving the following equation for n:

σ2WT
σ2WR

=
F1−β,n(m−1),n(m−1)

Fα/2,n(m−1),n(m−1)
.

Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 :
σWT
σWR

≥ δ versus Ha :
σWT
σWR

< δ.
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When δ < 1, the rejection of the null hypothesis indicates the superiority of
the test product over the reference in terms of the intra-subject variability.
When δ > 1, the rejection of the null hypothesis indicates the non-inferiority
of the test product over the reference. The test statistic is given by

T =
σ̂2WT
δ2σ̂2WR

.

Under the null hypothesis, T is distributed as an F random variable with
nT (m − 1) and nR(m − 1) degrees of freedom. Hence, we reject the null
hypothesis at the α level of significance if

T < F1−α,nT (m−1),nR(m−1).

Under the alternative hypothesis that σ2WT /σ
2
WR < δ, the power of the

above test is

Power = P (T < F1−α,nT (m−1),nR(m−1))
= P (1/T > Fα,nR(m−1),nT (m−1))

= P

(
σ̂2WR/σ

2
WR

σ̂2WT /σ
2
WT

>
σ2WT
δσ2WR

Fα,nR(m−1),nT (m−1)

)
= P

(
FnR(m−1),nT (m−1) >

σ2WT
δ2σ2WR

Fα,nR(m−1),nT (m−1)

)
.

Under the assumption that n = nT = nR, the sample size needed in order
to achieve a desired power of 1 − β at the α level of significance can be
obtained by solving the following equation for n:

σ2WT
δ2σ2WR

=
F1−β,n(m−1),n(m−1)

Fα,n(m−1),n(m−1)
.

Test for Similarity

For testing similarity, the following hypotheses are usually considered:

H0 :
σ2WT
σ2WR

≥ δ or
σ2WT
σ2WR

≤ 1/δ versus Ha :
1
δ
<

σ2WT
σ2WR

< δ,

where δ > 1 is the similarity limit. The above hypotheses can be decom-
posed into the following two one-sided hypotheses:

H01 :
σWT
σWR

≥ δ versus Ha1 :
σWT
σWR

< δ,

and
H02 :

σWT
σWR

≤ 1
δ

versus Ha2 :
σWT
σWR

>
1
δ
.
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These two one-sided hypotheses can be tested by the following two test
statistics:

T1 =
σ̂WT
δσ̂WR

and T2 =
δσ̂WT
σ̂WR

.

We then reject the null hypothesis and conclude similarity at the α level of
significance if

T1 < F1−α,nT (m−1),nR(m−1) and T2 > Fα,nT (m−1),nR(m−1).

Assuming that n = nT = nR and σ2WT ≤ σ2WR, the power of the above test
is

Power = P

(
Fα,n(m−1),n(m−1)

δ2
<

σ̂2WT
σ̂2WR

< δ2F1−α,n(m−1),n(m−1)

)
= P

(
1

F1−α,n(m−1),n(m−1)δ2
<

σ̂2WT
σ̂2WR

< δ2F1−α,n(m−1),n(m−1)

)
≥ 1− 2P

(
σ̂2WR
σ̂2WT

> δ2F1−α,n(m−1),n(m−1)

)
= 1− 2P

(
Fn(m−1),n(m−1) >

δ2σ2WT
σ2WR

F1−α,n(m−1),n(m−1)

)
.

Thus, a conservative estimate for the sample size required for achieving a
desired power of 1 − β can be obtained by solving the following equation
for n:

δ2σ2WT
σ2WR

=
Fβ/2,n(m−1),n(m−1)

F1−α,n(m−1),n(m−1)
.

An Example

Suppose that an investigator is interested in conducting a two-arm parallel
trial with 3 (m = 3) replicates per subject to compare the variability of
an inhaled formulation of a drug product (treatment) with a subcutaneous
(SC) injected formulation (control) in terms of AUC. In practice, it is ex-
pected that the inhaled formulation has smaller intra-subject variability as
compared to that of SC formulation. Based on PK data obtained from pilot
studies, it is assumed the true standard deviation of treatment and control
are given by 30% (σWT = 0.30) and 45% (σWR = 0.45), respectively. It is
also believed that 10% (δ = 1.1) of σWR is of no clinical importance. Hence,
for testing non-inferiority, the sample size per treatment needed in order to
achieve an 80% power at the 5% level of significance can be obtained by
solving the following equation:

0.302

1.12 × 0.452
=

F0.80,2n,2n

F0.05,2n,2n
.
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The solution can be obtained by a standard numerical iteration technique,
such as the simple grid search, which gives n = 13.

9.1.2 Replicated Crossover Design

Compared with the parallel design with replicates, the merit of a crossover
design is the ability to make comparisons within subjects. In this section,
without loss of generality, consider a 2 × 2m replicated crossover design
comparing two treatments. For convenience, we refer to the two treatments
as a test formulation and a reference formulation. Under a 2×2m replicated
crossover design, in each sequence, each subject receives the test formulation
m times and the reference formulation m times at different dosing periods.
Whenm = 1, the 2×2m replicated crossover design reduces to the standard
two-sequence, two-period (2×2) crossover design. When m = 2, the 2×2m
replicated crossover design becomes the 2×4 crossover design recommended
by the FDA for assessment of population/individual bioequivalence (FDA,
2001).

Suppose that n1 subjects are assigned to the first sequence and n2 sub-
jects are assigned to the second sequence. Let xijkl be the observation from
the jth subject (j = 1, ..., ni) in the ith sequence (i = 1, 2) under the lth
replicate (l = 1, ...,m) of the kth treatment (k = T,R). As indicated in
Chinchilli and Esinhart (1996), the following mixed effects model can best
describe data observed from the 2× 2m replicated crossover design:

xijkl = µk + γikl + Sijk + εijkl, (9.1.4)

where µk is the treatment effect for formulation k, γikl is the fixed effect of
the lth replicate on treatment k in the ith sequence with constraint

2∑
i=1

m∑
l=1

γikl = 0,

SijT and SijR are the random effects of the jth subject in the ith sequence,
(SijT , SijR)′’s are independent and identically distributed bivariate normal
random vectors with mean (0, 0)′ and covariance matrix

ΣB =
(

σ2BT ρσBTσBR
ρσBTσBR σ2BR

)
,

εijkl’s are independent random variables from the normal distribution with
mean 0 and variance σ2WT or σ2WR, and the (SijT , SijR)′ and εijkl are inde-
pendent. Note that σ2BT and σ2BR are the inter-subject variances and σ2WT
and σ2WR are intra-subject variances.
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To obtain estimators of intra-subject variances, it is a common practice
to use an orthogonal transformation, which is considered by Chinchilli and
Esinhart (1996). A new random variable zijkl can be obtained by using the
orthogonal transformation

zijk = P′xijk (9.1.5)

where

x′
ijk = (xijk1, xijk2, . . . , xijkm), z′ijk = (zijk1, zijk2, . . . , zijkm)

and P is an m×m orthogonal matrix, i.e., P′P is a m×m diagonal matrix.
The first column of P is usually defined by the vector (1, 1, . . . , 1)′/

√
m

to obtain zijk1 = x̄ijk. The other columns can be defined to satisfy the
orthogonality of P and var(zijkl) = σ2Wk for l = 2, ...,m. For example, in
the 2× 4 crossover design, the new random variable zijkl can be defined as

zijk1 =
xijk1 + xijk2

2
= x̄ijk. and zijk2 =

xijk1 − xijk2√
2

.

Now, the estimator of intra-subject variance can be defined as

σ̂2WT =
1

(n1 + n2 − 2)(m− 1)

2∑
i=1

ni∑
j=1

m∑
l=2

(zijT l − z̄i.T l)2,

σ̂2WR =
1

(n1 + n2 − 2)(m− 1)

2∑
i=1

ni∑
j=1

m∑
l=2

(zijRl − z̄i.Rl)2,

where

z̄i.kl =
1
ni

ni∑
j=1

z̄ijkl.

It should be noted that σ̂2WT and σ̂2WR are independent.

Test for Equality

The following hypotheses are usually considered for testing equality in intra-
subject variability:

H0 : σ2WT = σ2WR versus Ha : σ2WT �= σ2WR.

Under the null hypothesis, the test statistic

T =
σ̂2WT
σ̂2WR
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is distributed as an F random variable with d and d degrees of freedom,
where d = (n1 + n2 − 2)(m − 1). Hence, we reject the null hypothesis at
the α level of significance if

T > Fα/2,d,d

or
T < F1−α/2, d, d.

Under the alternative hypothesis, without loss of generality, we assume that
σ2WT < σ2WR. The power of the above test is

power = P (T < F1−α/2,d,d)
= P (1/T > Fα/2,d,d)

= P

(
σ̂2WR/σ

2
WR

σ̂2WT /σ
2
WT

>
σ2WT
σ2WR

Fα/2,d,d

)
= P

(
F(d,d) >

σ2WT
σ2WR

Fα/2,d,d

)
.

Under the assumption that n = n1 = n2 and with fixed σ2WT and σ2WR,
the sample size needed in order to achieve a desired power of 1− β can be
obtained by solving the following equation for n:

σ2WT
σ2WR

=
F1−β,(2n−2)(m−1),(2n−2)(m−1)

Fα/2,(2n−2)(m−1),(2n−2)(m−1)
.

Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 :
σWT
σWR

≥ δ versus Ha :
σWT
σWR

< δ.

When δ < 1, the rejection of the null hypothesis indicates the superiority
of test product over the reference in terms of the intra-subject variability.
When δ > 1, the rejection of the null hypothesis indicates the non-inferiority
of the test product over the reference. Consider the following test statistic:

T =
σ̂2WT
δ2σ̂2WR

.

Under the null hypothesis, T is distributed as an F random variable with
d and d degrees of freedom. Hence, we reject the null hypothesis at the α
level of significance if

T < F1−α,d,d.
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Under the alternative hypothesis that σ2WT /σ
2
WR < δ, the power of the

above test is

Power = P (T < F1−α,d,d)
= P (1/T > Fα,d,d)

= P

(
σ̂2WR/σ

2
WR

σ̂2WT /σ
2
WT

>
σ2WT
δσ2WR

Fα,d,d

)
= P

(
F(d,d) >

σ2WT
δ2σ2WR

Fα,d,d

)
.

Thus, under the assumption that n = n1 = n2, the sample size needed in
order to achieve a desired power of 1− β at the α level of significance can
be obtained by solving the following equation for n:

σ2WT
δ2σ2WR

=
F1−β,(2n−2)(m−1),(2n−2)(m−1)

Fα,(2n−2)(m−1),(2n−2)(m−1)
.

Test for Similarity

For testing similarity, the hypotheses of interest are given by

H0 :
σWT
σWR

≥ δ or
σWT
σWR

≤ 1/δ versus Ha :
1
δ
<

σWT
σWR

< δ,

where δ > 1 is the equivalence limit. The above hypotheses can be decom-
posed into the following two one-sided hypotheses:

H01 :
σWT
σWR

≥ δ versus Ha1 :
σWT
σWR

< δ,

and

H02 :
σWT
σWR

≤ 1
δ

versus Ha2 :
σWT
σWR

>
1
δ
.

These two hypotheses can be tested by the following two test statistics:

T1 =
σ̂2WT
δ2σ̂2WR

and T2 =
δ2σ̂2WT
σ̂2WR

.

We then reject the null hypothesis and conclude similarity at the α level of
significance if

T1 < F1−α,d,d and T2 > Fα,d,d.

Assuming that n = n1 = n2, under the alternative hypothesis that σ2WT ≤
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σ2WR, the power of the above test is

Power = P

(
Fα,d,d
δ

<
σ̂2WT
σ̂2WR

< δF1−α,d,d

)
= P

(
1

F1−α,d,dδ
<

σ̂2WT
σ̂2WR

< δF1−α,d,d

)
≥ 1− 2P

(
σ̂2WR
σ̂2WT

> δ2F1−α,d,d

)
= 1− 2P

(
F(d,d) >

δ2σ2WT
σ2WR

F1−α,d,d

)
,

Hence, a conservative estimate for the sample size needed in order to achieve
the power of 1− β can be obtained by solving the following equation:

δ2σ2WT
σ2WR

=
Fβ/2,(2n−2)(m−1),(2n−2)(m−1)

F1−α,(2n−2)(m−1),(2n−2)(m−1)
.

An Example

Consider the same example regarding comparison of intra-subject variabil-
ities between two formulations (i.e., inhaled and SC) of a drug product as
described in the previous subsection. Suppose the intended study will be
conducted under a 2× 4 replicated crossover (m = 2) design rather than a
parallel design with 3 replicates.

It is assumed that the true standard deviation of inhaled formulation
and SC formulation are given by 30% (σWT = 0.30) and 45% (σWR = 0.45),
respectively. It is also believed that 10% (δ = 1.10) of σWR is of no clinical
importance. Hence, the sample size needed per sequence in order to achieve
an 80% power in establishing non-inferiority at the 5% level of significance
can be obtained by solving the following equation:

0.302

1.12 × 0.452
=

F0.80,2n−2,2n−2

F0.05,2n−2,2n−2
.

This gives n = 14.

9.2 Comparing Intra-Subject CVs

In addition to comparing intra-subject variances, it is often of interest to
study the intra-subject CV, which is a relative standard deviation adjusted
for mean. In recent years, the use of intra-subject CV has become increas-
ingly popular. For example, the FDA defines highly variable drug products
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based on their intra-subject CVs. A drug product is said to be a highly
variable drug if its intra-subject CV is greater than 30%. The intra-subject
CV is also used as a measure for reproducibility of blood levels (or blood
concentration-time curves) of a given formulation when the formulation is
repeatedly adminstered at different dosing periods. In addition, the infor-
mation regarding the intra-subject CV of a reference product is usually
used for performing power analysis for sample size calculation in bioavail-
ability and bioequivalence studies. In practice, two methods are commonly
used for comparing intra-subject CVs. One is proposed by Chow and Tse
(1990), which is referred to as conditional random effects model. The other
one is suggested by Quan and Shih (1996), which is a simple one-way ran-
dom effects model. In this section, these two models are introduced and
the corresponding formulas for sample size calculation are derived.

9.2.1 Simple Random Effects Model

Quan and Shih (1996) developed a method to estimate the intra-subject CV
based on a simple one-way random mixed effects model. Comparing this
model with model (9.2.1), it can be noted that the mixed effects model as-
sumes that the intra-subject variability is a constant. An intuitive unbiased
estimator for µi is given by

µ̂i =
1

nim

ni∑
j=1

m∑
k=1

xijk.

Hence, an estimator of the intra-subject CV can be obtained as

ĈVi =
σ̂Wi
µ̂i

.

By Taylor’s expansion, it follows that

ĈVi − CVi =
σ̂Wi
µ̂i

− σWi
µi

≈ 1
2µiσWi

(σ̂2Wi − σ2Wi)−
σWi
µ2i

(µ̂i − µi).

Hence, by the Central Limit Theorem, CVi is asymptotically distributed as
a normal random variable with mean CVi and variance σ∗2

i /ni, where

σ∗2
i =

σ2Wi
2mµ2i

+
σ4Wi
µ4i

=
1
2m

CV 2
i + CV 4

i .

An intuitive estimator of σ∗2
i is given by

σ̂∗2
i =

1
2m

ĈVi
2
+ ĈVi

4
.
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Test for Equality

The following hypotheses are usually considered for testing equality in intra-
subject CVs:

H0 : CVT = CVR versus Ha : CVT �= CVR.

Under the null hypothesis, the test statistic

T =
ĈVT − ĈVR√

σ̂∗2
T /nT + σ̂∗2

R /nR

is asymptotically distributed as a standard normal random variable. Hence,
we reject the null hypothesis at the α level of significance if |T | > zα/2.
Under the alternative hypothesis, without loss of generality, it is assumed
that CVT > CVR. The distribution of T can be approximated by a normal
distribution with unit variance and mean

CVT − CVR√
σ∗2
T /nT + σ∗2

R /nR
.

Thus, the power is approximately

P (|T | > zα/2) ≈ P (T > zα/2)

= 1− Φ

(
zα/2 −

CVT − CVR√
σ∗2
T /nT + σ∗2

R /nR

)
.

Under the assumption that n = n1 = n2, the sample size needed in order
to have a power of 1−β can be obtained by solving the following equation:

zα/2 −
CVT − CVR√
σ∗2
T /n+ σ∗2

R /n
= −zβ .

This leads to

n =
(σ∗2
T + σ∗2

R )(zα/2 + zβ)2

(CVT − CVR)2
.

Test for Non-Inferiority/Superiority

Similarly, the problem of testing non-inferiority and superiority can be uni-
fied by the following hypotheses:

H0 : CVR − CVT < δ versus Ha : CVR − CVT ≥ δ,

where δ is the non-inferiority/superiority margin. When δ > 0, the rejection
of the null hypothesis indicates the superiority of the test drug over the

© 2008 by Taylor & Francis Group, LLC



9.2. Comparing Intra-Subject CVs 227

reference drug. When δ < 0, the rejection of the null hypothesis indicates
that non-inferiority of the test drug over the reference drug.

Under the null hypothesis, the test statistic

T =
ĈV T − ĈV R − δ√
σ̂∗2
T /nT + σ̂∗2

R /nR

is asymptotically distributed as a standard normal random variable. Hence,
we reject the null hypothesis at the α level of significance if T > zα. Under
the alternative hypothesis, the distribution of T can be approximated by a
normal distribution with unit variance and mean

CVT − CVR − δ√
σ∗2
T /nT + σ∗2

R /nR
.

Hence, the power is approximately

P (T > zα/2) = 1− Φ

(
zα/2 −

CVT − CVR − δ√
σ∗2
T /nT + σ∗2

R /nR

)
.

Under the assumption that n = n1 = n2, the sample size needed in order
to have a power of 1− β can be obtained by solving

zα/2 −
CVT − CVR − δ√
σ∗2
T /n+ σ∗2

R /n
= −zβ .

This leads to

n =
(σ∗2
T + σ∗2

R )(zα/2 + zβ)2

(CVT − CVR − δ)2
.

Test for Similarity

For testing similarity, the following hypotheses are usually considered:

H0 : |CVT − CVR| ≥ δ versus Ha : |CVT − CVR| < δ.

The two drug products are concluded to be similar to each other if the null
hypothesis is rejected at a given significance level. The null hypothesis is
rejected at the α level of significance if

ĈV T − ĈV R + δ√
σ∗2
T /nT + σ∗2

R /nR
> zα and

ĈV T − ĈV R − δ√
σ∗2
T /nT + σ∗2

R /nR
< −zα.

Under the alternative hypothesis that |CVT − CVR| < δ, the power of the
above test procedure is approximately

2Φ

(
δ − |CVT − CVR|√
σ∗2
T /nT + σ∗2

R /nR
− zα

)
− 1.
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Hence, under the assumption that n = n1 = n2, the sample size needed in
order to achieve 1− β power at the α level of significance can be obtained
by solving

δ − |CVT − CVR|√
σ∗2
T /nT + σ∗2

R /nR
− zα = zβ/2.

This gives

n =
(zα + zβ/2)2(σ∗2

T + σ∗2
R )

(δ − |CVT − CVR|)2
.

An Example

Consider the same example as described in the previous subsection. Sup-
pose the investigator is interested in conducting a parallel trial to compare
intra-subject CVs between the inhaled formulation and SC formulation of
the drug product under investigation rather than comparing intra-subject
variabilties. Based on information obtained form a pilot study, it is as-
sumed that the true CV of the treatment and control are given by 50% and
70%, respectively. Assume that 10% difference in CV is of no clinical im-
portance. The sample size needed per treatment group in order to establish
non-inferiority can be obtained as follows:

σ21 = 0.25× 0.502 + 0.504 = 0.125
σ22 = 0.25× 0.702 + 0.704 = 0.363.

Hence, the sample size needed in order to achieve an 80% power for estab-
lishement of non-inferiority at the 5% level of significance is given by

n =
(1.64 + 0.84)2(0.125 + 0.363)

(0.10 + 0.70− 0.50)2
≈ 34.

9.2.2 Conditional Random Effects Model

In practice, the variability of the observed response often increases as the
mean increases. In many cases, the standard deviaiton of the intra-subject
variability is approximately proportional to the mean value. To best de-
scribe this type of data, Chow and Tse (1990) proposed the following con-
ditional random effects model:

xijk = Aij +Aijeijk, (9.2.1)

where xijk is the observation from the kth replicate (k = 1, ...,m) of the
jth subject (j = 1, ..., ni) from the ith treatment (i =T, R), and Aij is the
random effect due to the jth subject in the ith treatment. It is assumed
that Aij is normally distributed as a normal random variable with mean
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µi and variance σ2Bi and eijk is normally distributed as a normal random
variable with mean 0 and variance σ2Wi. For a given subject with a fixed
Aij , xijk is normally distributed as a normal random variable with mean
Aij and variance A2

ijσ
2
Wi. Hence, the CV for this subject is given by

CVi =
|AijσWi|
|Aij |

= σWi.

As it can be seen, the conditional random effects model assumes the CV is
constant across subjects.

Define

x̄i·· =
1
nm

ni∑
j=1

m∑
k=1

xijk

Mi1 =
m

ni − 1

ni∑
j=1

(x̄ij· − x̄i··)2

Mi2 =
1

ni(mi − 1)

ni∑
j=1

m∑
k=1

(xijk − x̄ij·)2.

It can be verified that

E(x̄i··) = µi

E(Mi1) = (µ2i + σ2BT )σ
2
Wi +mσ2Bi = τ2i1

E(Mi2) = (µ2i + σ2BT )σ
2
Wi = τ2i2.

It follows that

CVi = σWi =

√
E(Mi2)

E2(x̄i··) + (Mi1 −Mi2)
.

Hence, an estimator of CVi is given by

ĈV i =

√
Mi2

x̄2i·· + (Mi1 −Mi2)/m
.

By Taylor’s expansion,

ĈV i − CVi ≈
1

τi1τi2
(Mi2 − τ2i2)−

µiτi2
τ3i1

(x̄i·· − µi)

− τi2
2mτ3i1

(Mi1 −Mi2 − (τ2i1 − τ2i2))

= k0(x̄i·· − µi) + k1(Mi1 − τ2i1) + k2(Mi2 − τ2i2),
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where

k0 = −µiτi2
τ3i1

k1 = − τi2
2mτ3i1

k2 =
(

1
τi1τi2

+
τi2

2mτ3i1

)
.

As a result, the distribution of ĈV i can be approximated by a normal
random variable with mean CVi and variance σ∗2

i /ni, where

σ∗2
i = var

[
k0x̄ij· +mk1(x̄ij· − x̄i··)2 +

k2
m− 1

m∑
k=1

(xijk − x̄ij·)2
]
.

An intuitive estimator for σ∗2
i is the sample variance, denoted by σ̂∗2

i , of

k0x̄ij· +mk1(x̄ij· − x̄i··)2 +
k2

m− 1

m∑
k=1

(xijk − x̄ij·)2, j = 1, ..., ni.

Test for Equality

For testing equality, the following hypotheses are of interest:

H0 : CVT = CVR versus Ha : CVT �= CVR.

Under the null hypothesis, test statistic

T =
ĈV T − ĈV R√
σ̂∗2
T /nT + σ̂∗2

R /nR

is asymptotically distributed as a standard normal random variable. Hence,
we reject the null hypothesis at the α level of significance if |T | > zα/2.
Under the alternative hypothesis, without loss of generality, we assume
that CVT > CVR. The distribution of T can be approximated by a normal
distribution with unit variance and mean

CVT − CVR√
σ∗2
T /nT + σ∗2

R /nR
.

Hence, the power is approximately

P (|T | > zα/2) ≈ P (T > zα/2)

= 1− Φ

(
zα/2 −

CVT − CVR√
σ∗2
T /nT + σ∗2

R /nR

)
.
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Under the assumption that n = n1 = n2, the sample size required for
having a desired power of 1− β can be obtained by solving

zα/2 −
CVT − CVR√
σ∗2
T /n+ σ∗2

R /n
= −zβ .

This leads to

n =
(zα/2 + zβ)2(σ∗2

T + σ∗2
R )

(CVT − CVR)2
.

Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 : CVR − CVT < δ versus Ha : CVR − CVT ≥ δ,

where δ is the non-inferiority/superiority margin. When δ > 0, the rejection
of the null hypothesis indicates the superiority of the test drug over the
reference drug. When δ < 0, the rejection of the null hypothesis indicates
non-inferiority of the test drug over the reference drug. Under the null
hypothesis, test statistic

T =
ĈV T − ĈV R − δ√
σ̂∗2
T /nT + σ̂∗2

R /nR

is asymptotically distributed as a standard normal random variable. Hence,
we reject the null hypothesis at the α level of significance if T > zα. Under
the alternative hypothesis, the distribution of T can be approximated by a
normal distribution with unit variance and mean

CVT − CVR − δ√
σ∗2
T /nT + σ∗2

R /nR
.

Hence, the power is approximately

P (T > zα/2) = 1− Φ

(
zα/2 −

CVT − CVR − δ√
σ∗2
T /nT + σ∗2

R /nR

)
.

Under the assumption n = n1 = n2, the sample size needed in order to
have the desired power 1− β can be obtained by solving

zα/2 −
CVT − CVR − δ√
σ∗2
T /n+ σ∗2

R /n
= −zβ .

This gives

n =
(σ∗2
T + σ∗2

R )(zα/2 + zβ)2

(CVT − CVR − δ)2
.
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Test for Similarity

For testing similarity, consider the following hypotheses:

H0 : |CVT − CVR| ≥ δ versus Ha : |CVT − CVR| < δ.

The two drug products are concluded to be similar to each other if the null
hypothesis is rejected at a given significance level. The null hypothesis is
rejected at α level of significance if

ĈV T − ĈV R + δ√
σ̂∗2
T /nT + σ̂∗2

R /nR
> zα versus

ĈV T − ĈV R − δ√
σ̂∗2
T /nT + σ̂∗2

R /nR
< −zα.

Under the alternative hypothesis that |CVT − CVR| < δ, the power of
the above test procedure is approximately

2Φ

(
δ − |CVT − CVR|√
σ∗2
T /nT + σ∗2

R /nR
− zα

)
− 1.

Hence, under the assumption that n = n1 = n2, the sample size needed in
order to achieve 1− β power at the α level of significance can be obtained
by solving

δ − |CVT − CVR|√
σ∗2
T /nT + σ∗2

R /nR
− zα = zβ/2.

This gives

n =
(zα + zβ/2)2(σ∗2

T + σ∗2
R )

(δ − |CVT − CVR|)2
.

An Example

Consider the same example as described in the previous subsection. Sup-
pose it is found that the variability of the CV increases as the mean in-
creases. In this case, the conditional random effects model is useful for
comparing the two treatments. Again, we assume that CV of the test drug
and the reference drug are given by 50% and 70%, respectively. Suppose
it is also estimated from other studies that σ∗

T = 0.30 and σ∗
R = 0.35. As-

sume that 10% difference in CV is of no clinical importance. The sample
size needed per treatment group in order to establish non-inferiority can be
obtained as follows:

n =
(1.64 + 0.84)2(0.302 + 0.352)

(0.10 + 0.70− 0.50)2
≈ 15.

As a result, 15 subjects per treatment group are needed in order to have
an 80% power at the 5% level of significance.
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Remarks

For comparing intra-subject variabilities and/or intra-subject CVs between
treatment groups, replicates from the same subject are essential regardless
of whether the study design is a parallel group design or a crossover de-
sign. In clinical research, data are often log-transformed before the anal-
ysis. It should be noted that the intra-subject standard deviation of log-
transformed data is approximately equal to the intra-subject CV of the
untransformed (raw) data. As a result, it is suggested that intra-subject
variability be used when analyzing log-transformed data, while the intra-
subject CV be considered when analyzing untransformed data.

9.3 Comparing Inter-Subject Variabilities

In addition to comparing intra-subject variabilities or intra-subject CVs, it
is also of interest to compare inter-subject variabilities. In practice, it is
not uncommon that clinical results may not be reproducible from subject
to subject within the target population or from subjects within the target
population to subjects within a similar but slightly different population due
to the inter-subject variability. How to test a difference in inter-subject and
total variability between two treatments is a challenging problem to clinical
scientists, especially biostatisticians, due to the following factors. First, un-
biased estimators of the inter-subject and total variabilities are usually not
chi-square distributed under both parallel and crossover design with repli-
cates. Second, the estimators for the inter-subject and total variabilities
under different treatments are usually not independent under a crossover
design. As a result, unlike tests for comparing intra-subject variabilities,
the standard F test is not applicable. Tests for comparing inter-subject
variabilities under a parallel design can be performed by using the method
of a modified large sample (MLS) method. See Howe (1974); Graybill and
Wang (1980); Ting et al. (1990); Hyslop et al. (2000). As indicated ear-
lier, the MLS method is superior to many other approximation methods.
Under crossover designs, however, the MLS method cannot be directly ap-
plied since estimators of variance components are not independent. Lee et
al. (2002a) proposed an extension of the MLS method when estimators of
variance components are not independent. In addition, tests for comparing
inter-subject and total variabilities under crossover designs are studied by
Lee et al. (2002b). Note that the MLS method by Hyslop et al. (2000) is
recommended by the FDA (2001) as a statistical test for individual bioe-
quivalence.

© 2008 by Taylor & Francis Group, LLC



234 Chapter 9. Comparing Variabilities

9.3.1 Parallel Design with Replicates

Under model (9.1.1), define

s2Bi =
1

ni − 1

ni∑
j=1

(x̄ij· − x̄i··)2, (9.3.1)

where

x̄i·· =
1
ni

ni∑
j=1

x̄ij·

and x̄ij· is given in (9.1.3). Note that E(s2Bi) = σ2Bi + σ2Wi/m. Therefore,

σ̂2Bi = s2Bi −
1
m
σ̂2Wi

are unbiased estimators for the inter-subject variances, where σ̂2Wi is defined
in (9.1.2).

Test for Equality

For testing equality in inter-subject variability, the following hypotheses are
usually considered:

H0 :
σBT
σBR

= 1 versus Ha :
σBT
σBR

�= 1.

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : σ2BT − σ2BR = 0 versus Ha : σ2BT − σ2BR �= 0.

Let η = σ2BT − σ2BR. An intuitive estimator of η is given by

η̂ = σ̂2BR − σ̂2BT

= s2BT − s2BR − σ̂2WT /m+ σ̂2WR/m.

A (1− α)×100% confidence interval for η is given by (η̂L, η̂U ), where

η̂L = η̂ −
√
∆L, η̂U = η̂ +

√
∆U
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and

∆L = s4BT

(
1− nT − 1

χ2α/2,nT −1

)2

+ s4BR

(
1− nR − 1

χ21−α/2,nR−1

)2

+
σ̂4WT
m2

(
1− nT (m− 1)

χ21−α/2,nT (m−1)

)2

+
σ̂4WR
m2

(
1− nR(m− 1)

χ2α/2,nR(m−1)

)2

∆U = s4BT

(
1− nT − 1

χ21−α/2,nT −1

)2

+ s4BR

(
1− nR − 1

χ2α/2,nR−1

)2

+
σ̂4WT
m2

(
1− nT (m− 1)

χ2α/2,nT (m−1)

)2

+
σ̂4WR
m2

(
1− nR(m− 1)

χ21−α/2,nR(m−1)

)2

.

We reject the null hypothesis at the α level of significance if 0 �∈ (η̂L, η̂U ).
Under the alternative hypothesis, without loss of generality, we assume that
σ2BR > σ2BT and n = nT = nR. Thus, the power of the above test procedure
can be approximated by

1− Φ
(
zα/2 −

√
n(σ2BT − σ2BR)

σ∗

)
,

where

σ∗2 = 2

[(
σ2BT +

σ2WT
m

)2

+
(
σ2BR +

σ2WR
m

)2

+
σ4WT

m2(m− 1)
+

σ4WR
m2(m− 1)

]
.

As a result, the sample size needed in order to achieve the desired power of
1− β at the α level of significance can be obtained by solving

zα/2 −
√
n(σ2BT − σ2BR)

σ∗ = −zβ .

This leads to

n =
σ∗2(zα/2 + zβ)2

(σ2BT − σ2BR)2
.

Test for Non-Inferiority/Superiority

Similar to testing intra-subject variabilities, the problem of testing non-
inferiority/superiority can be unified by the following hypotheses:

H0 :
σBT
σBR

≥ δ versus Ha :
σBT
σBR

< δ.
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Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : σ2BT − δ2σ2BR ≥ 0 versus Ha : σ2BT − δ2σ2BT < 0.

Define
η = σ2BT − δ2σ2BR.

For a given significance level α, similarly, the (1−α)× 100%th MLS upper
confidence bound of η can be constructed as

η̂U = η̂ +
√
∆U

where ∆U is given by

∆U = s4BT

(
1− nT − 1

χ21−α,nT −1

)2

+ δ4s4BR

(
1− nR − 1

χ2α,nR−1

)2

+
σ̂4WT
m2

(
1− nT (m− 1)

χ2α,nT (m−1)

)2

+
δ4σ̂4WR
m2

(
1− nR(m− 1)

χ21−α,nR(m−1)

)2

.

We then reject the null hypothesis at the α level of significance if η̂U < 0.
Under the assumption that n = nT = nR, using a similar argument to
those in the previous section, the power of the above testing procedure can
be approximated by

1− Φ
(
zα −

√
n(σ2BT − δ2σ2BR)

σ∗

)
,

where

σ∗2 = 2

[(
σ2BT +

σ2WT
m

)2

+ δ4
(
σ2BR +

σ2WR
m

)2

+
σ4WT

m2(m− 1)
+

δ4σ4WR
m2(m− 1)

]
.

As a result, the sample size needed in order to achieve the power of 1− β
at the α level of significance can be obtained by solving

zα −
√
n(σ2BT − δ2σ2BR)

2

σ∗ = −zβ .

This gives

n =
σ∗2(zα + zβ)2

(σ2BT − δ2σ2BR)2
.
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An Example

For illustration purposes, consider the same example as described in the
previous subsection (i.e., a parallel design with 3 replicates). Suppose we
are interested in testing difference in inter-subject variabilities. In this case,
we assume

σBT = 0.30 σBR = 0.40
σWT = 0.20 σWR = 0.30.

Hence, the sample size needed in order to achieve an 80% power (1 − β =
0.80) in establishing non-inferiority with a non-inferiority margin 0.10 (δ =
1.10) at the 5% level of significance (α = 0.05) can be obtained as

σ∗2 = 2

[(
0.302 +

0.202

3

)2

+ 1.14 ×
(
0.402 +

0.302

3

)2

+
0.204

32(3− 1)
+

1.140.304

32(3− 1)

]
= 0.129.

Hence,

n =
0.129(1.64 + 0.84)2

(0.302 − 1.12 × 0.402)2
≈ 74.

9.3.2 Replicated Crossover Design

Under model (9.1.4), estimators of inter-subject variances can be defined
by

s2BT =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(x̄ijT. − x̄i.T.)2,

s2BR =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(x̄ijR. − x̄i.R.)2,

where

x̄i.k. =
1
ni

ni∑
j=1

x̄ijk..

Note that E(s2Bk) = σ2Bk + σ2Wk/m for k = T,R. Therefore, unbiased
estimators for the inter-subject variance are given by

σ̂2BT = s2BT − 1
m
σ̂2WT (9.3.2)

σ̂2BR = s2BR − 1
m
σ̂2WR. (9.3.3)
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Test for Equality

For testing the equality in inter-subject variability, the following hypotheses
are considered:

H0 :
σBT
σBR

= 1 versus Ha :
σBT
σBR

�= 1.

Testing the above hypotheses is equivalent to test the following hypotheses:

H0 : σ2BT − σ2BR = 0 versus Ha : σ2BT − σ2BR �= 0.

Let η = σ2BT − σ2BR. An intuitive estimator of η is given by

η̂ = σ̂2BT − σ̂2BR

= s2BT − s2BR − σ̂2WT /m+ σ̂2WR/m,

where σ̂2BT and σ̂2BR are given in (9.3.2) and (9.3.3), respectively. Random
vector (x̄ijT., x̄ijR.)′ for the jth subject in ith sequence has a bivariate
normal distribution with covariance matrix given by

ΩB =
(

σ2BT + σ2WT /m ρσBTσBR
ρσBTσBR σ2BR + σ2WR/m

)
. (9.3.4)

An unbiased estimator of the covariance matrix ΩB is

Ω̂B =
(

s2BT s2BTR
s2BTR s2BR

)
, (9.3.5)

where

s2BTR =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(x̄ijT. − x̄i.T.)(x̄ijR. − x̄i.R.)

is the sample covariance between x̄ijT. and x̄ijR.. Let λi, i = 1, 2, be the
two eigenvalues of the matrix ΘΩB, where

Θ =
(

1 0
0 −1

)
. (9.3.6)

Hence, λi can be estimated by

λ̂i =
s2BT − s2BR ±

√
(s2BT + s2BR)2 − 4s4BTR

2
for i = 1, 2.

Without loss of generality, it can be assumed that λ̂1 < 0 < λ̂2. In Lee et
al. (2002b), a (1 − α)×100% confidence interval of η is given by (η̂L, η̂U ),
where

η̂L = η̂ −
√
∆L, η̂U = η̂ +

√
∆U ,
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∆L = λ̂21

(
1− ns − 1

χ2α/2,ns−1

)2

+ λ̂22

(
1− ns − 1

χ21−α/2,ns−1

)2

+
σ̂4WT
m2

(
1− ns(m− 1)

χ2α/2,ns(m−1)

)2

+
σ̂4WR
m2

(
1− ns(m− 1)

χ21−α/2,ns(m−1)

)2

∆U = λ̂21

(
1− ns − 1

χ21−α/2,ns−1

)2

+ λ̂22

(
1− ns − 1

χ2α/2,ns−1

)2

+
σ̂4WT
m2

(
1− ns(m− 1)

χ21−α/2,ns(m−1)

)2

+
σ̂4WR
m2

(
1− ns(m− 1)

χ2α/2,ns(m−1)

)2

,

and ns = n1 + n2 − 2. Then, we reject the null hypothesis at the α level of
significance if 0 �∈ (η̂L, η̂U ).

Under the alternative hypothesis, the power of the above test can be
approximated by

1− Φ
(
zα/2 −

√
ns(σ2BT − σ2BR)

σ∗

)
,

where

σ∗2 = 2

[(
σ2BT +

σ2WT
m

)2

+
(
σ2BR +

σ2WR
m

)2

− 2ρ2σ2BTσ
2
BR

+
σ4WT

m2(m− 1)
+

σ4WR
m2(m− 1)

]
.

Thus, the sample size needed in order to achieve the power of 1− β at the
α level of significance can be obtained by solving

zα −
√
ns(σ2BT − σ2BR)

σ∗ = −zβ .

This leads to

ns =
σ∗2(zα/2 + zβ)2

(σ2BT − σ2BR)2
.

Test for Non-Inferiority/Superiority

Similar to testing intra-subject variabilities, the problem of testing non-
inferiority/superiority can be unified by the following hypotheses:

H0 :
σBT
σBR

≥ δ versus Ha :
σBT
σBR

< δ.
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Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : σ2BT − δ2σ2BR ≥ 0 versus Ha : σ2BT − δ2σ2BR < 0.

When δ < 1, the rejection of the null hypothesis indicates the superiority of
the test drug versus the reference drug. When δ > 1, a rejection of the null
hypothesis indicates the non-inferiority of the test drug versus the reference
drug. Let η = σ2BT − δ2σ2BR. For a given significance level of α, similarly,
the (1− α)th upper confidence bound of η can be constructed as

η̂U = η̂ +
√
∆U ,

where ∆U is given by

∆U = λ̂21

(
1− ns − 1

χ21−α/2,ns−1

)2

+ λ̂22

(
1− ns − 1

χ2α/2,ns−1

)2

+
σ̂4WT
m2

(
1− ns(m− 1)

χ21−α/2,ns(m−1)

)2

+
δ4σ̂4WR
m2

(
1− ns(m− 1)

χ2α/2,ns(m−1)

)2

,

ns = n1 + n2 − 2, and

λ̂i =
s2BT − δ2s2BR ±

√
(s2BT + δ2s2BR)2 − 4δ2s4BTR

2
.

We then reject the null hypothesis at the α level of significance if η̂U < 0.
Using a similar argument to the previous section, the power of the above

test procedure can be approximated by

1− Φ
(
zα −

√
ns(σ2BT − δ2σ2BR)

σ∗

)
,

where

σ∗2 = 2

[(
σ2BT +

σ2WT
m

)2

+ δ4
(
σ2BR +

σ2WR
m

)2

− 2δ2ρ2σ2BTσ
2
BR

+
σ4WT

m2(m− 1)
+

δ4σ4WR
m2(m− 1)

]
.

As a result, the sample size needed in order to achieve a power of 1− β at
the α level of significance can be obtained by solving

zα −
√
ns(σ2BT − δ2σ2BR)

σ∗ = −zβ .

This leads to

ns =
σ∗2(zα/2 + zβ)2

(σ2BT − δ2σ2BR)2
.
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An Example

Suppose a 2 × 4 crossover design (ABAB,BABA) is used to compare two
treatments (A and B) in terms of their inter-subject variabilities. Infor-
mation from pilot studies indicates that ρ = 0.75, σBT = 0.3, σBR = 0.4,
σWT = 0.2, and σWR = 0.3. The objective is to establish non-inferiority
with a margin of 10% (δ = 1.10). It follows that

σ∗2 = 2

[(
0.302 +

0.202

2

)2

+ 1.14 ×
(
0.402 +

0.302

2

)2

−2× 1.12(0.75× 0.3× 0.4)2+
0.204

22
+

1.14 × 0.304

22

]
= 0.115.

Hence, the sample size needed in order to achieve an 80% power (1 − β =
0.80) for establishment of non-inferiority at the 5% level of significance
(α = 0.05) is given by

ns =
0.115(1.64 + 0.84)2

(0.302 − 1.12 × 0.402)2
≈ 66.

Since ns = n1+n2−2, approximately 29 subjects per sequence are required
for achieving an 80% power at the 5% level of significance.

9.4 Comparing Total Variabilities

In practice, it may also be of interest to compare total variabilities between
drug products. For example, comparing total variability is required in as-
sessing drug prescribability (FDA, 2001). Total variability can be estimated
under a parallel-group design with and without replicates and under various
crossover designs (e.g., a 2× 2 standard crossover design or a 2× 2m repli-
cated crossover design). In this section, we focus on sample size calculation
under a parallel-group design with and without replicates, the standard
2× 2 crossover design, and the 2× 2m replicated crossover design.

9.4.1 Parallel Designs Without Replicates

For parallel design without replicates, the model in (9.1.1) is reduced to

xij = µi + εij ,

where xij is the observation from the jth subject in the ith treatment group.
Also, we assume that the random variable εij has normal distribution with
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mean 0 and variance σ2Ti for i = T,R. Hence, the total variability can be
estimated by

σ̂2Ti =
1

ni − 1

ni∑
j=1

(xij − x̄i·)2,

where

x̄i· =
1
ni

ni∑
j=1

xij .

Test for Equality

For testing equality in total variability, the following hypotheses are con-
sidered:

H0 : σ2TT = σ2TR versus Ha : σ2TT �= σ2TR.

Under the null hypothesis, the test statistic

T =
σ̂2TT
σ̂2TR

.

is distributed as an F random variable with nT − 1 and nR − 1 degrees of
freedom. Hence, we reject the null hypothesis at the α level of significance
if

T > Fα/2,nT −1,nR−1

or
T < F1−α/2,nT −1,nR−1.

Under the alternative hypothesis (without loss of generality, we assume that
σ2TT < σ2TR), the power of the above test procedure is

Power = P (T < F1−α/2,nT −1,nR−1)
= P (1/T > Fα/2,nR−1,nT −1)

= P

(
σ̂2TR/σ

2
TR

σ̂2TT /σ
2
TT

>
σ2TT
σ2TR

Fα/2,nR−1,nT −1

)
= P

(
FnR,nT

>
σ2TT
σ2TR

Fα/2,nR−1,nT −1

)
.

Under the assumption that n = nR = nT and with a fixed σ2TT and σ2TR,
the sample size needed in order to achieve a desired power of 1− β can be
obtained by solving the following equation for n:

σ2TT
σ2TR

=
F1−β,n−1,n−1

Fα/2,n−1,n−1
.
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Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0 :
σTT
σTR

≥ δ versus
σTT
σTR

< δ.

When δ < 1, the rejection of the null hypothesis indicates the superiority
of test product over the reference in terms of the total variability. When
δ > 1, the rejection of the null hypothesis indicates the non-inferiority of
the test product over the reference. The test statistic is given by

T =
σ̂2TT
δ2σ̂2TR

.

Under the null hypothesis, T is distributed as an F random variable with
nT and nR degrees of freedom. Hence, we reject the null hypothesis at the
α level of significance if

T < F1−α,nT ,nR
.

Under the alternative hypothesis that σ2TT /σ
2
TR < δ2, the power of the

above test procedure is

Power = P (T < F1−α,nR−1,nT −1)
= P (1/T > Fα,nR−1,nT −1)

= P

(
σ̂2TR/σ

2
TR

σ̂2TT /σ
2
TT

>
σ2TT
δ2σ2TR

Fα,nR−1,nT −1

)
= P

(
FnR,nT

>
σ2TT
δ2σ2TR

Fα,nR−1,nT −1

)
.

Under the assumption that n = nT = nR, the sample size needed in order
to achieve a desired power of 1 − β at the α level of significance can be
obtained by solving

σ2TT
δ2σ2TR

=
F1−β,n−1,n−1

Fα,n−1,n−1
.

Test for Similarity

For testing similarity, the hypotheses of interest are given by

H0 :
σTT
σTR

≥ δ or
σTT
σTR

≤ 1/δ versus Ha :
1
δ
<

σTT
σTR

< δ,

where δ > 1 is the similarity limit. The above hypotheses can be decom-
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posed into the following two one-sided hypotheses

H01 :
σTT
σTR

≥ δ versus Ha1 :
σTT
σTR

< δ,

and

H02 :
σTT
σTR

≤ 1
δ

versus Ha2 :
σTT
σTR

>
1
δ
.

These two hypotheses can be tested by the following two test statistics:

T1 =
σ̂2TT
δ2σ̂2TR

and T2 =
δ2σ̂2TT
σ̂2TR

.

We reject the null hypothesis and conclude similarity at the α level of
significance if

T1 < F1−α,nT ,nR
and T2 > Fα,nT ,nR

.

Assuming that n = nT = nR, under the alternative hypothesis that σ2TT ≤
σ2TR, the power of the above test is

Power = P

(
Fα,n−1,n−1

δ2
<

σ̂2TT
σ̂2TR

< δ2F1−α,n−1,n−1

)
= P

(
1

Fα,n−1,n−1δ2
<

σ̂2TT
σ̂2TR

< δ2F1−α,n−1,n−1

)
≥ 1− 2P

(
σ̂2TT
σ̂2TR

>
δ2σ2TT
σ2TR

F1−α,n−1,n−1

)
= 1− 2P

(
Fn−1,n−1 >

δ2σ2TT
σ2TR

F1−α,n−1,n−1

)
.

Hence, a conservative estimate for the sample size needed in order to achieve
the desired power of 1−β can be obtained by solving the following equation
for n:

δ2σ2TT
σ2TR

=
Fβ/2,n−1,n−1

F1−α,n−1,n−1
.

An Example

Consider the example discussed in the previous subsections. Suppose a
parallel-group design without replicates is to be conducted for comparing
total variabilities between a test drug and a reference drug. It is assumed
that σTT = 0.55 and σTR = 0.75. The sample size needed in order to
achieve an 80% power (1 − β = 0.80) at the 5% level of significance (α =
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0.05) in establishing non-inferiority with the non-inferiority margin δ = 1.1
can be obtained by solving

0.552

1.102 × 0.752
=

F0.20,n−1,n−1

F0.05,n−1,n−1
.

This gives n = 40.

9.4.2 Parallel Design with Replicates

In practice, parallel design with replicates can also be used to assess total
variability. The merit of the parallel design with replicates is that it can
serve more than just one purpose. For example, it can not only assess total
variabilities, but also inter-subject and intra-subject variablities. Model
(9.1.1) can be used to represent data here. Unbiased estimators for total
variabilities are given by

σ̂2Ti = s2Bi +
m− 1
m

σ̂2Wi,

where s2Bi is defined in 9.3.1.

Test for Equality

Let η = σ2TT − σ2TR; hence, a natural estimator for η is given by

η̂ = σ̂2TT − σ̂2TR.

For testing equality in total variability, the following hypotheses are con-
sidered:

H0 : σ2TT = σ2TR versus Ha : σ2TT �= σ2TR.

A (1− α)× 100% confidence interval of η is given by (η̂L, η̂U ), where

η̂L = η̂ −
√
∆L, η̂U = η̂ +

√
∆U ,

∆L = s4BT

(
1− nT − 1

χ2α/2,nT −1

)2

+ s4BR

(
1− nR − 1

χ21−α/2,nR−1

)2

+
(m− 1)2σ̂4WT

m2

(
1− nT (m− 1)

χ21−α/2,nT (m−1)

)2

+
(m− 1)2σ̂4WR

m2

(
1− nR(m− 1)

χ2α/2,nR(m−1)

)2

,
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and

∆U = s4BT

(
1− nT − 1

χ21−α/2,nT −1

)2

+ s4BR

(
1− nR − 1

χ2α/2,nR−1

)2

+
(m− 1)2σ̂4WT

m2

(
1− nT (m− 1)

χ2α/2,nT (m−1)

)2

+
(m− 1)2σ̂4WR

m2

(
1− nR(m− 1)

χ21−α/2,nR(m−1)

)2

.

We reject the null hypothesis at the α level of significance if 0 �∈ (η̂L, η̂U ).
Under the alternative hypothesis and assume that n = nT = nR, the power
of the above test procedure can be approximated by

Φ
(
zα/2 −

√
n(σ2TT − σ2TR)

σ∗

)
,

where

σ∗2 = 2

[(
σ2BT +

σ2WT
m

)2

+
(
σ2BR +

σ2WR
m

)2

+
(m− 1)σ4WT

m2
+

(m− 1)σ4WR
m2

]
.

As a result, the sample size needed in order to achieve 1− β power at the
α level of significance can be obtained by solving

zα/2 −
√
n(σ2TT − σ2TR)

σ∗ = −zβ .

This gives

n =
σ∗2(zα/2 + zβ)2

(σ2TT − σ2TR)2
.

Test for Non-Inferiority/Superiority

The problem of testing non-inferiority/superiority can be unified by the
following hypotheses:

H0 :
σTT
σTR

≥ δ versus Ha :
σTT
σTR

< δ.

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : σ2TT − δ2σ2TR ≥ 0 versus Ha : σ2TT − δ2σ2TR < 0.
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When δ < 1, the rejection of the null hypothesis indicates the superiority
of the test drug versus the reference drug. When δ > 1, the rejection of
the null hypothesis indicates the non-inferiority of the test drug versus the
reference drug. Let η = σ2TT − δ2σ2TR. For a given significance level of α,
the (1− α)th upper confidence bound of η can be constructed as

η̂U = η̂ +
√
∆U

where η̂ = σ̂2TT − δ2σ̂2TR and ∆U is given by

∆U = s4BT

(
1− nT − 1

χ21−α,nT −1

)2

+ δ4s4BR

(
1− nR − 1

χ2α,nR−1

)2

+
(m− 1)2σ̂4WT

m2

(
1− nT (m− 1)

χ2α,nT (m−1)

)2

+
δ4(m− 1)2σ̂4WR

m2

(
1− nR(m− 1)

χ21−α,nR(m−1)

)2

.

We then reject the null hypothesis at the α level of significance if η̂U < 0.
Using a similar argument to the previous section, the power of the above
testing procedure can be approximated by

1− Φ
(
zα −

√
n(σ2TT − δ2σ2TR)

σ∗

)
,

where

σ∗2 = 2
[(

σ2BT +
σ2WT
m

)2

+ δ4
(
σ2BR + δ4

σ2WR
m

)2

+
(m− 1)σ4WT

m2
+ δ4

(m− 1)σ4WR
m2

]
.

As a result, the sample size needed in order to achieve the desired power of
1− β at the α level of significance can be obtained by solving

zα −
√
n(σ2TT − δ2σ2TR)

σ∗2 = −zβ .

This gives

n =
σ∗2(zα + zβ)2

(σ2TT − δ2σ2TR)2
.
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An Example

Consider the same example discussed in the previous subsection. Suppose
a trial with a parallel design with 3 replicates (m = 3) is conducted to
compare total variabilities between treatment groups. It is assumed that
σBT = 0.30, σBR = 0.40, σWT = 0.20, and σWR = 0.30. The objective is
to establish the non-inferiority with δ = 1.1. It follows that

σ∗2 = 2

[(
0.302 +

0.202

3

)2

+ 1.14
(
0.42 +

0.32

3

)2

+
(3− 1)0.204

32
+ 1.14

(3− 1)0.34

32

]
= 0.133.

As a result, the sample size needed per treatment group in order to achieve
an 80% (1 − β = 0.80) power at the 5% (α = 0.05) level of significance is
given by

n =
0.133(1.64 + 0.84)2

(0.302 + 0.202 − 1.12(0.42 + 0.32))2
≈ 28.

9.4.3 The Standard 2 × 2 Crossover Design

Under the standard 2× 2 crossover design, model (9.1.4) is still useful. We
omitted the subscript l since there are no replicates.

Intuitive estimators for the total variabilities are given by

σ̂2TT =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(xijT − x̄i·T )2

and

σ̂2TR =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(xijR − x̄i·R)2,

where

x̄i·T =
1
ni

ni∑
j=1

xijT , and x̄i·R =
1
ni

ni∑
j=1

xijR.

Test for Equality

For testing the equality in total variability, again consider the following
hypotheses:

H0 :
σ2TT
σ2TR

= 1 versus Ha :
σ2TT
σ2TR

�= 1.

© 2008 by Taylor & Francis Group, LLC



9.4. Comparing Total Variabilities 249

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : σ2TT − σ2TR = 0 versus Ha : σ2TT − σ2TR �= 0.

Let η = σ2TT − σ2TR. An intuitive estimator of η is given by

η̂ = σ̂2TT − σ̂2TR.

Let

σ2BTR =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(xijT − x̄i.T )(xijR − x̄i.R).

Define λ̂i, i = 1, 2, by

λ̂i =
σ̂2TT − σ̂2TR ±

√
(σ̂2TT + σ̂2TR)2 − 4σ̂4BTR

2
.

Assume that λ̂1 < 0 < λ̂2. In Lee et al. (2002b), a (1−α)×100% confidence
interval of η is given by (η̂L, η̂U ), where

η̂L = η̂ −
√
∆L, η̂U = η̂ +

√
∆U ,

∆L = λ̂21

(
1− n1 + n2 − 2

χ21−α/2,n1+n2−2

)2

+ λ̂22

(
1− n1 + n2 − 2

χ2α/2,n1+n2−2

)2

∆U = λ̂21

(
1− n1 + n2 − 2

χ2α/2,n1+n2−2

)2

+ λ̂22

(
1− n1 + n2 − 2

χ21−α/2,n1+n2−2

)2

.

We reject the null hypothesis at the α level of significance if 0 �∈ (η̂L, η̂U ).
Under the alternative hypothesis, without loss of generality, we assume

σ2TR > σ2TT . Let ns = n1 + n2 − 2. The power of the above test can be
approximated by

1− Φ
(
zα/2 −

√
ns(σ2TT − σ2TR)

σ∗

)
,

where
σ∗2 = 2(σ4TT + σ4TR − 2ρ2σ2BTσ

2
BR).

Hence, the sample size needed in order to achieve the power of 1−β power at
the α level of significance can be obtained by solving the following equation:

zα/2 −
√
ns(σ2TT − σ2TR)

σ∗ = −zβ ,

which implies that

ns =
σ∗2(zα/2 + zβ)2

(σ2TT − σ2TR)2
.
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Test for Non-Inferiority/Superiority

The problem of testing non-inferiority/superiority can be unified by the
following hypotheses:

H0 :
σTT
σTR

≥ δ versus Ha :
σTT
σTR

< δ.

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : σ2TT − δ2σ2TR ≥ 0 versus Ha : σ2TT − δ2σ2TR < 0.

When δ < 1, the rejection of the null hypothesis indicates the superiority
of the test drug versus the reference drug. When δ > 1, the rejection of
the null hypothesis indicates the non-inferiority of the test drug versus the
reference drug. Let η = σ2TT − δ2σ2TR. For a given significance level of α,
similarly, the (1− α)th upper confidence bound of η can be constructed as

η̂U = η̂ +
√
∆U

where ∆U is given by

∆U = λ̂21

(
n1 + n2 − 2
χ2α,n1+n2−2

− 1

)2

+ λ̂22

(
n1 + n2 − 2
χ21−α,n1+n2−2

− 1

)2

,

and λ̂i, i = 1, 2, are given by

λ̂i =
σ̂2TT − δ4σ̂2TR ±

√
(σ̂2TT + δ4σ̂2TR)2 − 4δ2σ̂4BTR

2
.

We reject the null hypothesis at the α level of significance if η̂U < 0. Under
the alternative hypothesis, the power of the above test procedure can be
approximated by

Φ
(
zα −

√
n(σ2TT − δ2σ2TR)

σ∗

)
,

where
σ∗2 = 2(σ4TT + δ4σ4TR − 2δ2ρ2σ2BTσ

2
BR).

Hence, the sample size needed in order to achieve 1− β power at α level of
significance can be obtained by solving

zα −
√
ns(σ2TT − δ2σ2TR)

σ∗ = −zβ .

This gives

ns =
σ∗2(zα + zβ)2

(σ2TT − δ2σ2TR)2
.
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An Example

Consider the same example discussed in the previous subsection. Under
the standard 2× 2 crossover design, it is assumed that ρ = 1, σBT = 0.30,
σBR = 0.40, σWT = 0.20, and σWR = 0.30. The objective is to establish
non-inferiority with a margin δ = 1.1. It follows that

σ∗2 = 2[(0.302 + 0.202)2 + 1.14(0.42 + 0.32)2

−2× 1.12 × 0.302 × 0.42] = 0.147.

As a result, the sample size needed in order to achieve an 80% (1−β =
0.80) power at the 5% (α = 0.05) level of significance is given by

ns =
(0.153)(1.64 + 0.84)2

(0.302 + 0.202 − 1.12 × (0.42 + 0.32))2
≈ 31.

Since ns = n1 + n2 − 2, approximately 17 subjects should be assigned to
each sequence to achieve an 80% (1− β = 0.80) power.

9.4.4 Replicated 2 × 2m Crossover Design

We can use a similar argument for test of inter-subject variabilities under
model (9.1.4) with the estimators

σ̂2Tk = s2Bk +
m− 1
m

σ̂2Wk, k = T,R.

Test for Equality

For testing the equality in total variability, consider the following hypothe-
ses:

H0 :
σ2TT
σ2TR

= 1 versus Ha :
σ2TT
σ2TR

�= 1.

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : σ2TT − σ2TR = 0 versus Ha : σ2TT − σ2TR �= 0.

Let η̂ = σ̂2TT − σ̂2TR. In Lee et al. (2002b), a (1 − α)×100% confidence
interval of η is given by (η̂L, η̂U ), where

η̂L = η̂ −
√
∆L, η̂U = η̂ +

√
∆U ,
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∆L = λ̂21

(
1− ns − 1

χ21−α/2,ns−1

)2

+ λ̂22

(
1− ns − 1

χ2α/2,ns−1

)2

+
(m− 1)2σ̂4WT

m2

(
1− ns(m− 1)

χ2α/2,ns(m−1)

)2

+
(m− 1)2σ̂4WR

m2

(
1− ns(m− 1)

χ21−α/2,ns(m−1)

)2

∆U = λ̂21

(
1− ns − 1

χ2α/2,ns−1

)2

+ λ̂22

(
1− ns − 1

χ21−α/2,ns−1

)2

+
(m− 1)2σ̂4WT

m2

(
1− ns(m− 1)

χ21−α/2,ns(m−1)

)2

+
(m− 1)2σ̂4WR

m2

(
1− ns(m− 1)

χ2α/2,ns(m−1)

)2

,

and λ̂i’s are the same as those used for the test of equality for inter-subject
variabilities. We reject the null hypothesis at the α level of significance if
0 �∈ (η̂L, η̂U ).

Under the alternative hypothesis, without loss of generality, we assume
σ2TR > σ2TT and n = nT = nR. The power of the above test can be
approximated by

1− Φ
(
zα/2 −

√
n(σ2TT − σ2TR)

σ∗

)
,

where

σ∗2 = 2

[(
σ2BT +

σ2WT
m

)2

+
(
σ2BR +

σ2WR
m

)2

− 2ρ2σ2BTσ
2
BR

+
(m− 1)σ4WT

m2
+

(m− 1)σ4WR
m2

]
.

Hence, the sample size needed in order to achieve the power of 1−β at the
α level of significance can be obtained by solving the following equation:

zα/2 −
√
n(σ2TT − σ2TR)

σ∗ = zβ.

This leads to

n =
σ∗2(zα/2 + zβ)2

(σ2TT − σ2TR)2
.
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Test for Non-Inferiority/Superiority

The problem of testing non-inferiority/superiority can be unified by the
following hypotheses:

H0 :
σTT
σTR

≥ δ versus Ha :
σTT
σTR

< δ,

which is equivalent to

H0 : σ2TT − δ2σ2TR ≥ 0 versus Ha : σ2TT − δ2σ2TR < 0.

When δ < 1, the rejection of the null hypothesis indicates the superiority
of the test drug versus the reference drug. When δ > 1, the rejection of
the null hypothesis indicates the non-inferiority of the test drug versus the
reference drug. Let η̂ = σ̂2TT − δ2σ̂2TR. For a given significance level of α,
similarly, the (1− α)th upper confidence bound of η can be constructed as

η̂U = η̂ +
√
∆U

where η̂ = σ̂2TT − δ2σ2TR,

∆U = λ̂21

(
1− ns − 1

χ2α,ns−1

)2

+ λ̂22

(
1− ns − 1

χ21−α,ns−1

)2

+
(m− 1)2σ̂4WT

m2

(
1− ns(m− 1)

χ21−α,ns(m−1)

)2

+
(m− 1)2σ̂4WR

m2

(
1− ns(m− 1)

χ2α,ns(m−1)

)2

,

and λ̂i’s are same as those used for the test of non-inferiority for inter-
subject variabilities. We then reject the null hypothesis at the α level of
significance if η̂U < 0. Using a similar argument to the previous section,
the power of the above testing procedure can be approximated by

1− Φ
(
zα −

√
ns(σ2TT − δ2σ2TR)

σ∗

)
,

where

σ∗2 = 2

[(
σ2BT +

σ2WT
m

)2

+ δ4
(
σ2BR +

σ2WR
m

)2

− 2δ2ρ2σ2BTσ
2
BR

+
(m− 1)σ4WT

m2
+
δ4(m− 1)σ4WR

m2

]
.

© 2008 by Taylor & Francis Group, LLC



254 Chapter 9. Comparing Variabilities

Hence, the sample size needed in order to achieve the power of 1−β at the
α level of significance can be obtained by solving the following equation:

zα/2 −
√
ns(σ2TT − δ2σ2TR)

σ∗ = zβ .

This leads to

ns =
σ∗2(zα/2 + zβ)2

(σ2TT − δ2σ2TR)2
.

An Example

Suppose a 2 × 4 crossover design (ABAB,BABA) is used to compare two
treatments (A and B) in terms of their total variabilities. Information from
pilot studies indicates that ρ = 0.75, σ2BT = 0.3, σ2BR = 0.4, σ2WT = 0.2,
and σ2WR = 0.3. The objective is to establish non-inferiority with a margin
δ = 1.1. It follows that

σ∗2 = 2

[(
0.302 +

0.202

2

)2

+ 1.14
(
0.402 +

0.302

2

)2

−2× 1.12 × (0.75× 0.3× 0.4)2

+
0.204

22
+

1.14 × 0.304

22

]
= 0.106.

Hence, the sample size needed in order to achieve an 80% power (1 − β =
0.80) at the 5% level of significance (α = 0.05) is given by

ns =
(0.106)(1.64 + 0.84)2

(0.32 + 0.22 − 1.12 × (0.42 + 0.32))2
≈ 22.

Since ns = n1+n2−2, approximately 12 subjects per sequence are required
for achieving an 80% power at the 5% level of significance.

9.5 Practical Issues

In recent years, the assessment of reproducibility in terms of intra-subject
variability or intra-subject CV in clinical research has received much at-
tention. Shao and Chow (2002) defined reproducibility of a study drug
as a collective term that encompasses consistency, similarity, and stability
(control) within the therapeutic index (or window) of a subject’s clinical
status (e.g., clinical response of some primary study endpoint, blood lev-
els, or blood concentration-time curve) when the study drug is repeatedly
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administered at different dosing periods under the same experimental con-
ditions. Reproducibility of clinical results observed from a clinical study
can be quantitated through the evaluation of the so-called reproducibility
probability, which will be briefly introduced in Chapter 12 (see also Shao
and Chow, 2002).

For assessment of inter-subject variability and/or total variability, Chow
and Tse (1991) indicated that the usual analysis of variance models could
lead to negative estimates of the variance components, especially the inter-
subject variance component. In addition, the sum of the best estimates of
the intra-subject variance and the inter-subject variance may not lead to
the best estimate for the total variance. Chow and Shao (1988) proposed
an estimation procedure for variance components which will not only avoid
negative estimates but also provide a better estimate as compare to the
maximum likelihood estimates. For estimation of total variance, Chow and
Tse (1991) proposed a method as an alternative to the sum of estimates of
individual variance components. These ideas could be applied to provide a
better estimate of sample sizes for studies comparing variabilities between
treatment groups.
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Chapter 10

Bioequivalence Testing

When a brand-name drug is going off-patent, generic drug companies may
file abbreviated new drug applications for generic drug approval. An ap-
proved generic drug can be used as a substitute for the brand-name drug.
In 1984, the FDA was authorized to approve generic drugs through bioavail-
ability and bioequivalence studies under the Drug Price and Patent Term
Restoration Act. Bioequivalence testing is usually considered as a surrogate
for clinical evaluation of drug products based on the Fundamental Bioequiv-
alence Assumption that when two formulations of the reference product
(e.g., a brand-name drug) and and the test product (a generic copy) are
equivalent in bioavailability, they will reach the same therapeutic effect.
In vivo bioequivalence testing is commonly conducted with a crossover de-
sign on healthy volunteers to assess bioavailability through pharmacokinetic
(PK) responses such as area under the blood or plasma concentration-time
curve (AUC) and maximum concentration (Cmax). For some locally act-
ing drug products such as nasal aerosols (e.g., metered-dose inhalers) and
nasal sprays (e.g., metered-dose spray pumps) that are not intended to be
absorbed into the bloodstream, bioavailability may be assessed by measure-
ments intended to reflect the rate and extent to which the active ingredient
or active moiety becomes available at the site of action. Bioequivalence
related to these products is called in vitro bioequivalence and is usually
studied under a parallel design. Statistical procedures for some types of
bioequivalence studies are described in the FDA guidances (FDA, 2000,
2001). Chow and Shao (2002) provided a review of statistical procedures
for bioequivalence studies that are not provided by the FDA.

In Section 10.1, we introduce various bioequivalence criteria. Section
10.2 introduces sample size calculation for the average bioequivalence. Sam-
ple size formulas for population bioequivalence and individual bioequiva-
lence are provided in Sections 10.3 and 10.4, respectively. Section 10.5
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focuses on sample size calculation for in vitro bioequivalence.

10.1 Bioequivalence Criteria

In 1992, the FDA published its first guidance on statistical procedures
for in vivo bioequivalence studies (FDA, 1992). The 1992 FDA guidance
requires that the evidence of bioequivalence in average bioavailability in
PK responses between the two drug products be provided. Let yR and yT
denote PK responses (or log-PK responses if appropriate) of the reference
and test formulations, respectively, and let δ = E(yT )−E(yR). Under the
1992 FDA guidance, two formulations are said to be bioequivalent if δ falls
in the interval (δL, δU ) with 95% assurance, where δL and δU are given limits
specified in the FDA guidance. Since only the averages E(yT ) and E(yR)
are concerned in this method, this type of bioequivalence is usually referred
to as average bioequivalence (ABE). In 2000, the FDA issued a guidance
on general considerations of bioavailability and bioequivalence studies for
orally administered drug products, which replaces the 1992 FDA guidance
(FDA, 2000). Statistical design and analysis for assessment of ABE as
described in the 2000 FDA guidance are the same as those given in the
1992 FDA guidance.

The ABE approach for bioequivalence, however, has limitations for ad-
dressing drug interchangeability, since it focuses only on the comparison
of population averages between the test and reference formulations (Chen,
1997a). Drug interchangeability can be classified as either drug prescriba-
bility or drug switchability. Drug prescribability is referred to as the physi-
cian’s choice for prescribing an appropriate drug for his/her new patients
among the drug products available, while drug switchability is related to
the switch from a drug product to an alternative drug product within the
same patient whose concentration of the drug product has been titrated
to a steady, efficacious, and safe level. To assess drug prescribability and
switchability, population bioequivalence (PBE) and individual bioequivalence
(IBE) are proposed, respectively (see Anderson and Hauck, 1990; Esinhart
and Chinchilli, 1994; Sheiner, 1992; Schall and Luus, 1993; Chow and Liu,
1995; and Chen, 1997a). The concepts of PBE and IBE are described in
the 1999 FDA draft guidance (FDA, 1999a) and the 2001 FDA guidance
for industry (FDA, 2001). Let yT be the PK response from the test for-
mulation, yR and y′R be two identically distributed PK responses from the
reference formulation, and

θ =
E(yR − yT )

2 − E(yR − y′R)
2

max{σ20 , E(yR − y′R)2/2}
, (10.1.1)

where σ20 is a given constant specified in the 2001 FDA guidance. If yR,
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y′R and yT are independent observations from different subjects, then the
two formulations are PBE when θ < θPBE , where θPBE is an equivalence
limit for assessment of PBE as specified in the 2001 FDA guidance. If yR,
y′R and yT are from the same subject (E(yR − y′R)

2/2 is then the within-
subject variance), then the two formulations are IBE when θ < θIBE , where
θIBE is an equivalence limit for IBE as specified in the 2001 FDA guidance.
Note that θ in (10.1.1) is a measure of the relative difference between the
mean squared errors of yR − yT and yR − y′R. When yR, y

′
R and yT are

from the same individual, it measures the drug switchability within the
same individual. On the other hand, it measures drug prescribability when
yR, y

′
R, and yT are from different subjects. Thus, IBE addresses drug

switchability, whereas PBE addresses drug prescribability. According to the
2001 FDA guidance, IBE or PBE can be claimed if a 95% upper confidence
bound for θ is smaller than θIBE or θPBE , provided that the observed ratio
of geometric means is within the limits of 80% and 125%.

For locally acting drug products such as nasal aerosols (e.g., metered-
dose inhalers) and nasal sprays (e.g., metered-dose spray pumps) that are
not intended to be absorbed into the bloodstream, the FDA indicates that
bioequivalence may be assessed, with suitable justification, by in vitro bioe-
quivalence studies alone (21 CFR 320.24). In the 1999 FDA guidance, in
vitro bioequivalence can be established through six in vitro bioequivalence
tests, which are for dose or spray content uniformity through container life,
droplet or particle size distribution, spray pattern, plume geometry, prim-
ing and repriming, and tail off distribution. The FDA classifies statistical
methods for assessment of the six in vitro bioequivalence tests for nasal
aerosols and sprays as either the nonprofile analysis or the profile analysis.
For the nonprofile analysis, the FDA adopts the criterion and limit of the
PBE. For the profile analysis, bioequivalence may be assessed by compar-
ing the profile variation between test product and reference product bottles
with the profile variation between reference product bottles.

10.2 Average Bioequivalence

It should be noted that testing ABE is a special case of testing equivalence.
As a result, the formulas derived in Chapter 3 for testing equivalence un-
der various designs are still valid for testing ABE. In practice, the most
commonly used design for ABE is a standard two-sequence and two-period
crossover design. Hence, for the sake of convenience, the sample size for-
mula for ABE under such a design is presented here. Details regarding
more general designs can be found in Chapter 3.

For the ABE, a standard two-sequence, two-period (2×2) crossover de-
sign is recommended by the FDA guidances. In a standard 2× 2 crossover
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design, subjects are randomly assigned to one of the two sequences of for-
mulations. In the first sequence, n1 subjects receive treatments in the order
of TR (T = test formulation, R = reference formulation) at two different
dosing periods, whereas in the second sequence, n2 subjects receive treat-
ments in the order of RT at two different dosing periods. A sufficient length
of washout between dosing periods is usually applied to wear off the possi-
ble residual effect that may be carried over from one dosing period to the
next dosing period. Let yijk be the original or the log-transformation of
the PK response of interest from the ith subject in the kth sequence at the
jth dosing period. The following statistical model is considered:

yijk = µ+ Fl + Pj +Qk + Sikl + eijk, (10.2.1)

where µ is the overall mean; Pj is the fixed effect of the jth period (j = 1, 2,
and P1 + P2 = 0); Qk is the fixed effect of the kth sequence (k = 1, 2, and
Q1 + Q2 = 0); Fl is the fixed effect of the lth formulation (when j = k,
l = T ; when j �= k, l = R; FT + FR = 0); Sikl is the random effect of
the ith subject in the kth sequence under formulation l and (SikT , SikR),
i = 1, ..., nk, k = 1, 2, are independent and identically distributed bivariate
normal random vectors with mean 0 and an unknown covariance matrix(

σ2BT ρσBTσBR
ρσBTσBR σ2BR

)
;

eijk’s are independent random errors distributed as N(0, σ2Wl); and Sikl’s
and eijk’s are mutually independent. Note that σ2BT and σ2BR are between-
subject variances and σ2WT and σ2WR are within-subject variances, and that
σ2TT = σ2BT+σ

2
WT and σ2TR = σ2BR+σ

2
WR are the total variances for the test

and reference formulations, respectively. Under model (10.2.1), the ABE
parameter δ defined in Section 10.1 is equal to δ = FT − FR. According
to the 2000 FDA guidance, ABE is claimed if the following null hypothesis
H0 is rejected at the 5% level of significance:

H0 : δ ≤ δL or δ ≥ δU versus H1 : δL < δ < δU , (10.2.2)

where δL and δU are given bioequivalence limits. Under model (10.2.1),

δ̂ =
ȳ11 − ȳ12 − ȳ21 + ȳ22

2
∼ N

(
δ,

σ21,1
4

(
1
n1

+
1
n2

))
, (10.2.3)

where ȳjk is the sample mean of the observations in the kth sequence at
the jth period and σ21,1 is

σ2a,b = σ2D + aσ2WT + bσ2WR (10.2.4)
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with a = 1 and b = 1. Let

σ̂21,1 =
1

n1 + n2 − 2

2∑
k=1

nk∑
i=1

(yi1k − yi2k − ȳ1k + ȳ2k)
2 . (10.2.5)

Then σ̂21,1 is independent of δ̂ and

(n1 + n2 − 2)σ̂21,1 ∼ σ21,1χ
2
n1+n2−2,

where χ2r is the chi-square distribution with r degrees of freedom. Thus,
the limits of a 90% confidence interval for δ are given by

δ̂± = δ̂ ± t0.05,n1+n2−2
σ̂1,1
2

√
1
n1

+
1
n2

,

where t0.05,r is the upper 5th quantile of the t-distribution with r de-
grees of freedom. According to the 2000 FDA guidance, ABE can be
claimed if and only if the 90% confidence interval falls within (−δL, δU ),
i.e., δL < δ̂− < δ̂+ < δU . Note that this is based on the two one-sided
tests procedure proposed by Schuirmann (1987). The idea of Schuirmann’s
two one-sided tests is to decompose H0 in (10.2.2) into the following two
one-sided hypotheses:

H01 : δ ≤ δL and H02 : δ ≥ δU .

Apparently, both H01 and H02 are rejected at the 5% significance level if
and only if δL < δ̂− < δ̂+ < δU . Schuirmann’s two one-sided tests procedure
is a test of size 5% (Berger and Hsu, 1996, Theorem 2).

Assume without loss of generality that n1 = n2 = n. Under the alter-
native hypothesis that |ε| < δ, the power of the above test is approximately

2Φ

(√
2n(δ − |ε|)
σ1,1

− tα,2n−2

)
− 1.

As a result, the sample size needed for achieving a power of 1 − β can be
obtained by solving

√
2n(δ − |ε|)
σ1,1

− tα,2n−2 = tβ/2,2n−2.

This leads to

n ≥
(tα,2n−2 + tβ/2,2n−2)2σ21,1

2(δ − |ε|)2 . (10.2.6)

Since the above equations do not have an explicit solution, for convenience,
for 2× 2 crossover design, the total sample size needed to achieve a power
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Table 10.2.1: Sample Size for Assessment of Equivalence
Under a 2× 2 Crossover Design (m = 1)

Power = 80% Power=90
ε = 0% 5% 10% 15% 0% 5% 10% 15%

σ1,1 = 0.10 3 3 4 9 3 4 5 12
0.12 3 4 6 13 3 4 7 16
0.14 3 4 7 17 4 5 9 21
0.16 4 5 9 22 4 6 11 27
0.18 4 6 11 27 5 7 13 34
0.20 5 7 13 33 6 9 16 42
0.22 6 8 15 40 7 10 19 51
0.24 6 10 18 48 8 12 22 60
0.26 7 11 20 56 9 14 26 70
0.28 8 13 24 64 10 16 29 81
0.30 9 14 27 74 11 18 34 93
0.32 10 16 30 84 13 20 38 105
0.34 11 18 34 94 14 22 43 119
0.36 13 20 38 105 16 25 48 133
0.38 14 22 42 117 17 28 53 148
0.40 15 24 47 130 19 30 59 164

Note: (1) the bioequivalence limit δ is 22.3%; (2) sample size calculation
was performed based on log-transformed data.

of 80% or 90% at 5% level of significance with various combinations of ε
and δ is given in Table 10.2.1.

When sample size is sufficiently large, equation (10.2.6) can be further
simplified into

n =
(zα + zβ/2)2σ21,1

2(δ − |ε|)2 .

An Example

Suppose an investigator is interested in conducting a clinical trial with 2×2
crossover design to establish ABE between an inhaled formulation of a drug
product (test) and a subcutaneous (SC) injected formulation (reference) in
terms of log-transformed AUC. Based on PK data obtained from pilot stud-
ies, the mean difference of AUC can be assumed to be 5% (δ = 0.05). Also
it is assumed the standard deviation for intra-subject comparison is 0.40.
By referring to Table 10.2.1, a total of 24 subjects per sequence is needed
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in order to achieve an 80% power at the 5% level of significance. On the
other side, if we use normal approximation, the sample size needed can be
obtained as

n =
(z0.05 + z0.10)2σ21,1

2(δ − |ε|)2 =
(1.96 + 0.84)2 × 0.402

2(0.223− 0.05)2
≈ 21.

10.3 Population Bioequivalence

PBE can be assessed under the 2× 2 crossover design described in Section
10.2. Under model (10.2.1), the parameter θ in (10.1.1) for PBE is equal
to

θ =
δ2 + σ2TT − σ2TR
max{σ20 , σ2TR}

. (10.3.1)

In view of (10.3.1), PBE can be claimed if the null hypothesis in

H0 : λ ≥ 0 versus H1 : λ < 0

is rejected at the 5% significance level provided that the observed ratio of
geometric means is within the limits of 80% and 125%, where

λ = δ2 + σ2TT − σ2TR − θPBE max{σ20 , σ2TR}

and θPBE is a constant specified in FDA (2001).

Under model (10.2.1), an unbiased estimator of δ is δ̂ given in (10.2.3).
Commonly used unbiased estimators of σ2TT and σ2TR are respectively

σ̂2TT =
1

n1 + n2 − 2

[
n1∑
i=1

(yi11 − ȳ11)2 +
n2∑
i=1

(yi22 − ȳ22)2
]

∼
σ2TTχ

2
n1+n2−2

n1 + n2 − 2

and

σ̂2TR =
1

n1 + n2 − 2

[
n1∑
i=1

(yi21 − ȳ21)2 +
n2∑
i=1

(yi12 − ȳ12)2
]

∼
σ2TRχ

2
n1+n2−2

n1 + n2 − 2
.

Applying linearization to the moment estimator

λ̂ = δ̂2 + σ̂2TT − σ̂2TR − θPBE max{σ20 , σ̂2TR},
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Chow, Shao, and Wang (2003a) obtained the following approximate 95%
upper confidence bound for λ. When σ2TR ≥ σ20 ,

λ̂U = δ̂2 + σ̂2TT − (1 + θPBE)σ̂2TR + t0.05,n1+n2−2

√
V , (10.3.2)

where V is an estimated variance of δ̂2+ σ̂2TT − (1+ θPBE)σ̂2TR of the form

V =
(
2δ̂, 1,−(1 + θPBE)

)
C
(
2δ̂, 1,−(1 + θPBE)

)′
,

and C is an estimated variance-covariance matrix of (δ̂, σ̂2TT , σ̂
2
TR). Since δ̂

and (σ̂2TT , σ̂
2
TR) are independent,

C =

 σ̂2
1,1
4

(
1
n1

+ 1
n2

)
(0, 0)

(0, 0)′ (n1−1)C1
(n1+n2−2)2 + (n2−1)C2

(n1+n2−2)2

 ,

where σ̂21,1 is defined by (10.2.5), C1 is the sample covariance matrix of
((yi11 − ȳ11)2, (yi21 − ȳ21)2), i = 1, ..., n1, and C2 is the sample covariance
matrix of ((yi22 − ȳ22)2, (yi12 − ȳ12)2), i = 1, ..., n2.

When σ2TR < σ20 , the upper confidence bound for λ should be modified
to

λ̂U = δ̂2 + σ̂2TT − σ̂2TR − θPBEσ
2
0 + t0.05,n1+n2−2

√
V0, (10.3.3)

where
V0 =

(
2δ̂, 1,−1

)
C
(
2δ̂, 1,−1

)′
.

The confidence bound λ̂U in (10.3.2) is referred to as the confidence
bound under the reference-scaled criterion, whereas λ̂U in (10.3.3) is re-
ferred to as the confidence bound under the constant-scaled criterion. In
practice, whether σ2TR ≥ σ20 is usually unknown. Hyslop, Hsuan, and Holder
(2000) recommend using the reference-scaled criterion or the constant-
scaled criterion according to σ̂2TR ≥ σ20 or σ̂2TR < σ20 , which is referred
to as the estimation method. Alternatively, we may test the hypothesis of
σ2TR ≥ σ20 versus σ2TR < σ20 to decide which confidence bound should be
used; i.e., if σ̂2TR(n1+n2−2) ≥ σ20χ

2
0.95,n1+n2−2, then λ̂U in (10.3.2) should

be used; otherwise λ̂U in (10.3.3) should be used, where χ2α,r denotes the
αth upper quantile of the chi-square distribution with r degrees of freedom.
This is referred to as the test method and is more conservative than the
estimation method.

Based on an asymptotic analysis, Chow, Shao, and Wang (2003a) de-
rived the following formula for sample size determination assuming that
n1 = n2 = n:

n ≥ ζ(z0.05 + zβ)2

λ2
, (10.3.4)
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where

ζ = 2δ2σ21,1 + σ4TT + (1 + a)2σ4TR − 2(1 + a)ρ2σ2BTσ
2
BR,

δ, σ21,1, σ
2
TT , σ

2
TR, σ

2
BT , σ

2
BR and ρ are given initial values, zt is the upper

tth quantile of the standard normal distribution, 1−β is the desired power,
a = θPBE if σTR ≥ σ0 and a = 0 if σTR < σ0.

Sample sizes n selected using (10.3.4) with 1− β = 80% and the power
Pn of the PBE test based on 10,000 simulations (assuming that the initial
parameter values are the true parameter values) are listed in Table 10.3.1.
It can be seen from Table 10.3.1 that the actual power Pn corresponding to
each selected n is larger than the target value of 80%, although the sample
size obtained by formula (10.3.4) is conservative since Pn is much larger
than 80% in some cases.

An Example

Suppose an investigator is interested in conducting a clinical trial with 2×2
crossover design to establish PBE between an inhaled formulation of a drug
product (test) and a subcutaneous (SC) injected formulation (reference) in
terms of log-transformed AUC. Based on PK data obtained from pilot stud-
ies, the mean difference of AUC can be assumed to be 5% (δ = 0.00). Also
it is assumed that the inter-subject variability under the test and the refer-
ence are given by 0.40 and 0.40, respectively. The inter-subject correlation
coefficient (ρ) is assumed to be 0.75. It is further assumed that the intra-
subject variability under the test and the reference are given by 0.10 and
0.10, respectively. The sample size needed in order to achieve an 80% power
at the 5% level of significance is given by 12 subjects per sequence according
to Table 10.3.1.

10.4 Individual Bioequivalence

For the IBE, the standard 2× 2 crossover design is not useful because each
subject receives each formulation only once and, hence, it is not possible to
obtain unbiased estimators of within-subject variances. To obtain unbiased
estimators of the within-subject variances, FDA (2001) suggested that the
following 2× 4 crossover design be used. In the first sequence, n1 subjects
receive treatments at four periods in the order of TRTR (or TRRT), while
in the second sequence, n2 subjects receive treatments at four periods in
the order of RTRT (or RTTR). Let yijk be the observed response (or log-
response) of the ith subject in the kth sequence at jth period, where i =
1, ..., nk, j = 1, ..., 4, k = 1, 2. The following statistical model is assumed:

yijk = µ+ Fl +Wljk + Sikl + eijk, (10.4.1)
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Table 10.3.1: Sample Size n Selected Using (10.3.4) with 1− β = 80%
and the Power Pn of the PBE Test Based on 10,000 Simulations

Parameter ρ = .75 ρ = 1

σBT σBR σWT σW R δ λ n Pn n Pn

.1 .1 .1 .4 .4726 −.2233 37 .8447 36 .8337

.4227 −.2679 24 .8448 24 .8567

.2989 −.3573 12 .8959 12 .9035

.0000 −.4466 7 .9863 7 .9868

.1 .4 .1 .1 .4726 −.2233 34 .8492 32 .8560

.3660 −.3127 16 .8985 15 .8970

.2113 −.4020 9 .9560 8 .9494

.1 .1 .4 .4 .2983 −.2076 44 .8123 43 .8069

.1722 −.2670 23 .8381 23 .8337

.0000 −.2966 17 .8502 17 .8531

.1 .4 .4 .4 .5323 −.4250 36 .8305 35 .8290

.4610 −.4958 25 .8462 24 .8418

.2661 −.6375 13 .8826 13 .8872

.0000 −.7083 10 .9318 10 .9413

.1 .4 .6 .4 .3189 −.4066 39 .8253 38 .8131

.2255 −.4575 29 .8358 28 .8273

.0000 −.5083 22 .8484 22 .8562

.1 .4 .6 .6 .6503 −.6344 44 .8186 44 .8212

.4598 −.8459 22 .8424 22 .8500

.3252 −.9515 16 .8615 16 .8689

.0000 −1.057 12 .8965 12 .9000

.4 .4 .1 .1 .3445 −.1779 37 .8447 22 .8983

.2436 −.2373 20 .8801 12 .9461

.1722 −.2670 15 .8951 9 .9609

.0000 −.2966 12 .9252 7 .9853

.4 .4 .1 .4 .5915 −.3542 44 .8354 38 .8481

.4610 −.4958 21 .8740 18 .8851

.2661 −.6375 12 .9329 11 .9306

.0000 −.7083 9 .9622 9 .9698

.4 .4 .6 .4 .0000 −.3583 46 .8171 43 .8213

.4 .4 .6 .6 .5217 −.6351 41 .8246 39 .8252

.3012 −.8166 22 .8437 21 .8509

.0000 −.9073 17 .8711 16 .8755

.4 .6 .4 .4 .6655 −.6644 33 .8374 30 .8570

.5764 −.7751 23 .8499 21 .8709

.3328 −.9965 13 .9062 12 .9258

.0000 −1.107 10 .9393 9 .9488

.4 .6 .4 .6 .9100 −.8282 45 .8403 42 .8447

.7049 −1.159 21 .8684 20 .8874

.4070 −1.491 11 .9081 11 .9295

.0000 −1.656 9 .9608 8 .9577

.6 .4 .1 .4 .3905 −.3558 41 .8334 32 .8494

.3189 −.4066 30 .8413 24 .8649

.2255 −.4575 23 .8584 18 .8822

.0000 −.3583 17 .8661 14 .9009

.6 .4 .4 .4 .0000 −.3583 42 .8297 35 .8403

.6 .6 .1 .4 .7271 −.5286 47 .8335 36 .8584

.5632 −.7401 23 .8785 18 .9046

.3252 −.9515 13 .9221 10 .9474

.0000 −1.057 10 .9476 8 .9780

.6 .6 .4 .4 .6024 −.5444 47 .8246 38 .8455

.3012 −.8166 19 .8804 15 .8879

.0000 −.9073 14 .8903 12 .9147
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where µ is the overall mean; Fl is the fixed effect of the lth formulation (l =
T,R and FT + FR = 0); Wljk’s are fixed period, sequence, and interaction
effects (

∑
k W̄lk = 0, where W̄lk is the average of Wljk’s with fixed (l, k),

l = T , R); and Sikl’s and eijk’s are similarly defined as those in (10.2.1).
Under model (10.4.1), θ in (10.1.1) for IBE is equal to

θ =
δ2 + σ2D + σ2WT − σ2WR

max{σ20 , σ2WR}
, (10.4.2)

where σ2D = σ2BT + σ2BR − 2ρσBTσBR is the variance of SikT − SikR, which
is referred to as the variance due to the subject-by-formulation interaction.
Then, IBE is claimed if the null hypothesis H0 : θ ≥ θIBE is rejected at
the 5% level of significance provided that the observed ratio of geometric
means is within the limits of 80% and 125%, where θIBE is the IBE limit
specified in the 2001 FDA guidance. From (10.4.2), we need a 5% level test
for

H0 : γ ≥ 0 versus H1 : γ < 0,

where
γ = δ2 + σ2D + σ2WT − σ2WR − θIBE max{σ20 , σ2WR}.

Therefore, it suffices to find a 95% upper confidence bound γ̂U for γ. IBE
is concluded if γ̂U < 0.

The confidence bound γ̂U recommended in FDA (2001) is proposed by
Hyslop, Hsuan, and Holder (2000), which can be described as follows. For
subject i in sequence k, let xilk and zilk be the average and the difference,
respectively, of two observations from formulation l, and let x̄lk and z̄lk
be respectively the sample mean based on xilk’s and zilk’s. Under model
(10.4.1), an unbiased estimator of δ is

δ̂ =
x̄T1 − x̄R1 + x̄T2 − x̄R2

2
∼ N

(
δ,
σ20.5,0.5

4

(
1
n1

+
1
n2

))
;

an unbiased estimator of σ20.5,0.5 is

σ̂20.5,0.5 =
(n1 − 1)s2d1 + (n2 − 1)s2d2

n1 + n2 − 2
∼

σ20.5,0.5χ
2
n1+n2−2

n1 + n2 − 2
,

where s2dk is the sample variance based on xiTk − xiRk, i = 1, ..., nk; an
unbiased estimator of σ2WT is

σ̂2WT =
(n1 − 1)s2T1 + (n2 − 1)s2T2

2(n1 + n2 − 2)
∼

σ2WTχ
2
n1+n2−2

n1 + n2 − 2
,
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where s2Tk is the sample variance based on ziTk, i = 1, ..., nk; and an unbi-
ased estimator of σ2WR is

σ̂2WR =
(n1 − 1)s2R1 + (n2 − 1)s2R2

2(n1 + n2 − 2)
∼

σ2WRχ
2
n1+n2−2

n1 + n2 − 2
,

where s2Rk is the sample variance based on ziRk, i = 1, ..., nk. Furthermore,
estimators δ̂, σ̂20.5,0.5, σ̂2WT and σ̂2WR are independent. When σ2WR ≥ σ20 ,
an approximate 95% upper confidence bound for γ is

γ̂U = δ̂2 + σ̂20.5,0.5 + 0.5σ̂2WT − (1.5 + θIBE)σ̂2WR +
√
U, (10.4.3)

where U is the sum of the following four quantities:[(
|δ̂|+ t0.05,n1+n2−2

σ̂0.5,0.5
2

√
1
n1

+
1
n2

)2

− δ̂2

]2
,

σ̂40.5,0.5

(
n1 + n2 − 2
χ20.95,n1+n2−2

− 1

)2

,

0.52σ̂4WT

(
n1 + n2 − 2
χ20.95,n1+n2−2

− 1

)2

,

and

(1.5 + θIBE)2σ̂4WR

(
n1 + n2 − 2
χ20.05,n1+n2−2

− 1

)2

. (10.4.4)

When σ20 > σ2WR, an approximate 95% upper confidence bound for γ is

γ̂U = δ̂2 + σ̂20.5,0.5 + 0.5σ̂2WT − 1.5σ̂2WR − θIBEσ
2
0 +

√
U0, (10.4.5)

where U0 is the same as U except that the quantity in (10.4.4) should be
replaced by

1.52σ̂4WR

(
n1 + n2 − 2
χ20.05,n1+n2−2

− 1

)2

.

The estimation or test method for PBE described in Section 10.3 can be
applied to decide whether the reference-scaled bound γ̂U in (10.4.3) or the
constant-scaled bound γ̂U in (10.4.5) should be used.

Although the 2 × 2 crossover design and the 2 × 4 crossover design
have the same number of subjects, the 2 × 4 crossover design yields four
observations, instead of two, from each subject. This may increase the
overall cost substantially. As an alternative to the 2 × 4 crossover design,
Chow, Shao, and Wang (2002) recommended a 2×3 extra-reference design,
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in which n1 subjects in sequence 1 receive treatments at three periods in
the order of TRR, while n2 subjects in sequence 2 receive treatments at
three periods in the order of RTR. The statistical model under this design
is still given by (10.4.1). An unbiased estimator of δ is

δ̂ =
x̄T1 − x̄R1 + x̄T2 − x̄R2

2
∼ N

(
δ,
σ21,0.5
4

(
1
n1

+
1
n2

))
,

where σ2a,b is given by (10.2.4); an unbiased estimator of σ21,0.5 is

σ̂21,0.5 =
(n1 − 1)s2d1 + (n2 − 1)s2d2

n1 + n2 − 2
∼

σ21,0.5χ
2
n1+n2−2

n1 + n2 − 1
;

an unbiased estimator of σ2WR is

σ̂2WR =
(n1 − 1)s2R1 + (n2 − 1)s2R2

2(n1 + n2 − 2)
∼

σ2WRχ
2
n1+n2−2

n1 + n2 − 2
;

and estimators δ̂, σ̂21,0.5, and σ̂
2
WR are independent, since xiT1−xiR1, xiT2−

xiR2, ziR1, and ziR2 are independent. Chow, Shao, and Wang (2002) ob-
tained the following approximate 95% upper confidence bound for γ. When
σ2WR ≥ σ20 ,

γ̂U = δ̂2 + σ̂21,0.5 − (1.5 + θIBE)σ̂2WR +
√
U,

where U is the sum of the following three quantities:[(
|δ̂|+ t0.05,n1+n2−2

σ̂1,0.5
2

√
1
n1

+
1
n2

)2

− δ̂2

]2
,

σ̂41,0.5

(
n1 + n2 − 2
χ20.95,n1+n2−2

− 1

)2

,

and

(1.5 + θIBE)2σ̂4WR

(
n1 + n2 − 2
χ20.05,n1+n2−2

− 1

)2

. (10.4.6)

When σ2WR < σ20 ,

γ̂U = δ̂2 + σ̂21,0.5 − 1.5σ̂2WR − θIBEσ
2
0 +

√
U0,

where U0 is the same as U except that the quantity in (10.4.6) should be
replaced by

1.52σ̂4WR

(
n1 + n2 − 2
χ20.05,n1+n2−2

− 1

)2

.
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Again, the estimation or test method for PBE described in Section 10.3 can
be applied to decide which bound should be used.

To determine sample sizes n1 and n2, we would choose n1 = n2 = n so
that the power of the IBE test reaches a given level 1−β when the unknown
parameters are set at some initial guessing values δ, σ2D, σ

2
WT , and σ2WR.

For the IBE test based on the confidence bound γ̂U , its power is given by

Pn = P (γ̂U < 0)

when γ < 0. Consider first the case where σ2WR > σ20 . Let U be given in
the definition of the reference-scaled bound γ̂U and Uβ be the same as U
but with 5% and 95% replaced by β and 1− β, respectively. Since

P (γ̂U < γ +
√
U +

√
U1−β) ≈ 1− β,

the power Pn is approximately larger than β if

γ +
√
U +

√
U1−β ≤ 0.

Let γ̃, Ũ and Ũ1−β be γ, U and U1−β, respectively, with parameter values
and their estimators replaced by the initial values δ, σ2D, σ

2
WT , and σ2WR.

Then, the required sample size n to have approximately power 1− β is the
smallest integer satisfying

γ̃ +
√
Ũ +

√
Ũ1−β ≤ 0, (10.4.7)

assuming that n1 = n2 = n and the initial values are the true parame-
ter values. When σ2WR < σ20 , the previous procedure can be modified by
replacing U by U0 in the definition of constant-scaled bound γ̂U . If σ̃2WR
is equal or close to σ20 , then we recommend the use of U instead of U0 to
produce a more conservative sample size and the use of the test approach
in the IBE test.

This procedure can be applied to either the 2 × 3 design or the 2 × 4
design.

Since the IBE tests are based on the asymptotic theory, n should be
reasonably large to ensure the asymptotic convergence. Hence, we suggest
that the solution greater than 10 from (10.4.7) be used. In other words,
a sample size of more than n=10 per sequence that satisfies (10.4.7) is
recommended.

Sample sizes n1 = n2 = n selected using (10.4.7) with 1 − β = 80%
and the power Pn of the IBE test based on 10,000 simulations are listed in
Table 10.4.1 for both the 2 × 3 extra-reference design and 2 × 4 crossover
design. For each selected n that is smaller than 10, the power of the IBE
test using n∗ = max(n, 10) as the sample size, which is denoted by Pn∗ , is
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also included. It can be seen from Table 10.4.1 that the actual power Pn is
larger than the target value of 80% in most cases and only in a few cases
where n determined from (10.4.7) is very small, the power Pn is lower than
75%. Using n∗ = max(n, 10) as the sample size produces better results
when selected by (10.4.7) is very small, but in most cases it results in a
power much larger than 80%.

An Example

Suppose an investigator is interested in conducting a clinical trial with 2×4
crossover design to establish IBE between an inhaled formulation of a drug
product (test) and a subcutaneous (SC) injected formulation (reference)
in terms of log-transformed AUC. Based on PK data obtained from pilot
studies, the mean difference of AUC can be assumed to be 0%. Also it is
assumed the intra-subject standard deviation of test and reference are given
by 60% and 40%, respectively. It is further assumed that the inter-subject
standard deviation of test and reference are given by 10% and 40%, respec-
tively. The inter-subject correlation coefficient (ρ) is assumed to be 0.75.
According to Table 10.4.1, a total of 22 subjects per sequence is needed in
order to achieve an 80% power at the 5% level of significance.

10.5 In Vitro Bioequivalence

Statistical methods for assessment of in vitro bioequivalence testing for
nasal aerosols and sprays can be classified as the nonprofile analysis and
the profile analysis. In this section, we consider sample size calculation for
nonprofile analysis.

The nonprofile analysis applies to tests for dose or spray content uni-
formity through container life, droplet size distribution, spray pattern, and
priming and repriming. The FDA adopts the criterion and limit of the
PBE for assessment of in vitro bioequivalence in the nonprofile analysis.
Let θ be defined in (10.1.1) with independent in vitro bioavailabilities yT ,
yR, and y′R, and let θBE be the bioequivalence limit. Then, the two formu-
lations are in vitro bioequivalent if θ < θBE . Similar to the PBE, in vitro
bioequivalence can be claimed if the hypothesis that θ ≥ θBE is rejected at
the 5% level of significance provided that the observed ratio of geometric
means is within the limits of 90% and 110%.

Suppose that mT and mR canisters (or bottles) from respectively the
test and the reference products are randomly selected and one observation
from each canister is obtained. The data can be described by the following
model:

yjk = µk + εjk, j = 1, ...,mk, (10.5.1)
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Table 10.4.1: Sample Size n Selected Using (10.4.7) with 1− β = 80%
and the Power Pn of the IBE Test Based on 10,000 Simulations

Parameter 2× 3extra− reference 2× 4crossover

σD σW T σWR δ n Pn n∗ Pn∗ n Pn n∗ Pn∗
0 .15 .15 0 5 .7226 10 .9898 4 .7007 10 .9998

.1 6 .7365 10 .9572 5 .7837 10 .9948

.2 13 .7718 13 9 .7607 10 .8104

0 .2 .15 0 9 .7480 10 .8085 7 .7995 10 .9570

.1 12 .7697 12 8 .7468 10 .8677

.2 35 .7750 35 23 .7835 23

0 .15 .2 0 9 .8225 10 .8723 8 .8446 10 .9314

.1 12 .8523 12 10 .8424 10

.2 26 .8389 26 23 .8506 23

0 .2 .2 0 15 .8206 15 13 .8591 13

.1 20 .8373 20 17 .8532 17

.2 52 .8366 52 44 .8458 44

0 .3 .2 0 91 .8232 91 71 .8454 71

.2 .15 .15 0 20 .7469 20 17 .7683 17

.1 31 .7577 31 25 .7609 25

.2 .15 .2 0 31 .8238 31 28 .8358 28

.1 43 .8246 43 39 .8296 39

.2 .2 .2 0 59 .8225 59 51 .8322 51

.2 91 .8253 91 79 .8322 79

0 .15 .3 0 7 .8546 10 .9607 6 .8288 10 .9781

.1 7 .8155 10 .9401 7 .8596 10 .9566

.2 10 .8397 10 9 .8352 10 .8697

.3 16 .7973 16 15 .8076 15

.4 45 .8043 45 43 .8076 43

0 .3 .3 0 15 .7931 15 13 .8162 13

.1 17 .7942 17 14 .8057 14

.2 25 .8016 25 21 .8079 21

.3 52 .7992 52 44 .8009 44

0 .2 .5 0 6 .8285 10 .9744 6 .8497 10 .9810

.1 6 .8128 10 .9708 6 .8413 10 .9759

.2 7 .8410 10 .9505 7 .8600 10 .9628

.3 8 .8282 10 .9017 8 .8548 10 .9239

.4 10 .8147 10 10 .8338 10

.5 14 .8095 14 14 .8248 14

.6 24 .8162 24 23 .8149 23

.7 51 .8171 51 49 .8170 49

0 .5 .5 0 15 .7890 15 13 .8132 13

.1 16 .8000 16 13 .7956 13

.2 18 .7980 18 15 .8033 15

.3 23 .8002 23 19 .8063 19

.5 52 .7944 52 44 .8045 44

.2 .2 .3 0 13 .7870 13 12 .7970 12

.1 15 .8007 15 14 .8144 14

.2 21 .7862 21 20 .8115 20

.3 43 .8037 43 40 .8034 40

.2 .3 .3 0 26 .7806 26 22 .7877 22

.1 30 .7895 30 26 .8039 26

.2 .3 .5 0 9 .8038 10 .8502 8 .8050 10 .8947

.1 9 .7958 10 .8392 9 .8460 10 .8799

.2 10 .7966 10 9 .7954 10 .8393

.3 12 .7929 12 11 .8045 11

.4 16 .7987 16 15 .8094 15

n∗ = max(n, 10)
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where k = T for the test product, k = R for the reference product, µT and
µR are fixed product effects, and εjk’s are independent random measure-
ment errors distributed as N(0, σ2k), k = T,R. Under model (10.5.1), the
parameter θ in (10.1.1) is equal to

θ =
(µT − µR)

2 + σ2T − σ2R
max{σ20 , σ2R}

(10.5.2)

and θ < θBE if and only if ζ < 0, where

ζ = (µT − µR)
2 + σ2T − σ2R − θBE max{σ20 , σ2R}. (10.5.3)

Under model (10.5.1), the best unbiased estimator of δ = µT − µR is

δ̂ = ȳT − ȳR ∼ N

(
δ,

σ2T
mT

+
σ2R
mR

)
,

where ȳk is the average of yjk over j for a fixed k. The best unbiased
estimator of σ2k is

s2k =
1

mk − 1

mk∑
j=1

(yjk − ȳk)2 ∼
σ2kχ

2
mk−1

mk − 1
, k = T,R.

Using the method for IBE testing (Section 10.4), an approximate 95% upper
confidence bound for ζ in (10.5.3) is

ζ̃U = δ̂2 + s2T − s2R − θBE max{σ20 , s2R}+
√
U0,

where U0 is the sum of the following three quantities:
|δ̂|+ z0.05

√
s2T
mT

+
s2R
mR

2

− δ̂2


2

,

s4T

(
mT − 1

χ20.95,mT −1

− 1

)2

,

and

(1 + cθBE)2s4R

(
mR − 1

χ20.05,mR−1

− 1

)2

,

and c = 1 if s2R ≥ σ20 and c = 0 if s2R < σ20 . Note that the estimation method
for determining the use of the reference-scaled criterion or the constant-
scaled criterion is applied here. In vitro bioequivalence can be claimed if
ζ̃U < 0. This procedure is recommended by the FDA guidance.
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To ensure that the previously described test has a significant level close
to the nominal level 5% with a desired power, the FDA requires that at least
30 canisters of each of the test and reference products be tested. However,
mk = 30 may not be enough to achieve a desired power of the bioequivalence
test in some situations (see Chow, Shao, and Wang, 2003b). Increasing mk
can certainly increase the power, but in some situations, obtaining repli-
cates from each canister may be more practical, and/or cost-effective. With
replicates from each canister, however, the previously described test proce-
dure is necessarily modified in order to address the between- and within-
canister variabilities.

Suppose that there are nk replicates from each canister for product k.
Let yijk be the ith replicate in the jth canister under product k, bjk be the
between-canister variation, and eijk be the within-canister measurement
error. Then

yijk = µk + bjk + eijk, i = 1, ..., nk, j = 1, ...,mk, (10.5.4)

where bjk ∼ N(0, σ2Bk), eijk ∼ N(0, σ2Wk), and bjk’s and eijk’s are inde-
pendent. Under model (10.5.4), the total variances σ2T and σ2R in (10.5.2)
and (10.5.3) are equal to σ2BT +σ2WT and σ2BR+σ2WR, respectively, i.e., the
sums of between-canister and within-canister variances. The parameter θ
in (10.1.1) is still given by (10.5.2) and θ < θBE if and only if ζ < 0, where
ζ is given in (10.5.3).

Under model (10.5.4), the best unbiased estimator of δ = µT − µR is

δ̂ = ȳT − ȳR ∼ N

(
δ,

σ2BT
mT

+
σ2BR
mR

+
σ2WT
mTnT

+
σ2WR
mRnR

)
,

where ȳk is the average of yijk over i and j for a fixed k.
To construct a confidence bound for ζ in (10.5.3) using the approach

in IBE testing, we need to find independent, unbiased, and chi-square dis-
tributed estimators of σ2T and σ2R. These estimators, however, are not
available when nk > 1. Note that

σ2k = σ2Bk + n−1
k σ2Wk + (1− n−1

k )σ2Wk, k = T,R;

σ2Bk + n−1
k σ2Wk can be estimated by

s2Bk =
1

mk − 1

mk∑
j=1

(ȳjk − ȳk)2 ∼
(σ2Bk + n−1

k σ2Wk)χ
2
mk−1

mk − 1
,

where ȳjk is the average of yijk over i; σ2Wk can be estimated by

s2Wk =
1

mk(nk − 1)

mk∑
j=1

nk∑
i=1

(yijk − ȳjk)2 ∼
σ2Wkχ

2
mk(nk−1)

mk(nk − 1)
;
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and δ̂, s2Bk, s
2
Wk, k = T,R, are independent. Thus, an approximate 95%

upper confidence bound for ζ in (10.5.3) is

ζ̂U = δ̂2 + s2BT + (1− n−1
T )s2WT − s2BR − (1− n−1

R )s2WR
− θBE max{σ20 , s2BR + (1− n−1

R )s2WR}+
√
U,

where U is the sum of the following five quantities,
|δ̂|+ z0.05

√
s2BT
mT

+
s2BR
mR

2

− δ̂2


2

,

s4BT

(
mT − 1

χ20.95,mT −1

− 1

)2

,

(1− n−1
T )2s4WT

(
mT (nT − 1)
χ20.95,mT (nT −1)

− 1

)2

,

(1 + θBE)2s4BR

(
mR − 1

χ20.05,mR−1

− 1

)2

,

and

(1 + cθBE)2(1− n−1
R )2s4WR

(
mR(nR − 1)
χ20.05,mR(nR−1)

− 1

)2

,

and c = 1 if s2BR+(1−n−1
R )s2WR ≥ σ20 and c = 0 if s2BR+(1−n−1

R )s2WR < σ20 .
In vitro bioequivalence can be claimed if ζ̂U < 0 provided that the observed
ratio of geometric means is within the limits of 90% and 110%.

Note that the minimum sample sizes required by the FDA are mk = 30
canisters and nk = 1 observation from each canister. To achieve a desired
power, Chow, Shao, and Wang (2003b) proposed the following procedure
of sample size calculation. Assume that m = mT = mR and n = nT = nR.
Let ψ = (δ, σ2BT , σ

2
BR, σ

2
WT , σ

2
WR) be the vector of unknown parameters

under model (10.5.4). Let U be given in the definition of ζ̂U and U1−β be
the same as U but with 5% and 95% replaced by β and 1− β, respectively,
where 1−β is a given power. Let Ũ and Ũ1−β be U and U1−β , respectively,
with (δ̂, s2BT , s

2
BR, s

2
WT , s

2
WR) replaced by ψ̃, an initial guessing value for

which the value of ζ (denoted by ζ̃) is negative. From the results in Chow,
Shao, and Wang (2003b), it is advantageous to have a large m and a small
n when mn, the total number of observations for one treatment, is fixed.
Thus, the sample sizes m and n can be determined as follows.
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Table 10.5.1: Selected Sample Sizes m∗ and n∗
and the Actual Power p (10,000 Simulations)

Step 1 Step 2 Step 2’

σBT σBR σWT σW R δ p m∗, n∗ p m∗, n∗ p

0 0 .25 .25 .0530 .4893 55, 1 .7658 30, 2 .7886

0 .5389 47, 1 .7546 30, 2 .8358

.25 .50 .4108 .6391 45, 1 .7973 30, 2 .8872

.2739 .9138 −− −− −− −−
.50 .50 .1061 .4957 55, 1 .7643 30, 2 .7875

0 .5362 47, 1 .7526 30, 2 .8312

.25 .25 .25 .25 .0750 .4909 55, 1 .7774 30, 3 .7657

0 .5348 47, 1 .7533 30, 2 .7323

.25 .50 .4405 .5434 57, 1 .7895 30, 3 .8489

.2937 .8370 −− −− −− −−
.50 .50 .1186 .4893 55, 1 .7683 30, 2 .7515

0 .5332 47, 1 .7535 30, 2 .8091

.50 .25 .25 .50 .1186 .4903 55, 1 .7660 30, 4 .7586

0 .5337 47, 1 .7482 30, 3 .7778

.25 .50 .25 .25 .2937 .8357 −− −− −− −−
.50 .25 .1186 .5016 55, 1 .7717 30, 4 .7764

0 .5334 47, 1 .7484 30, 3 .7942

.25 .50 .5809 .6416 45, 1 .7882 30, 2 .7884

.3873 .9184 −− −− −− −−
.50 .50 .3464 .6766 38, 1 .7741 30, 2 .8661

.1732 .8470 −− −− −− −−
.50 .50 .25 .50 .3464 .6829 38, 1 .7842 30, 2 .8045

.1732 .8450 −− −− −− −−
.50 .50 .1500 .4969 55, 1 .7612 30, 3 .7629

0 .5406 47, 1 .7534 30, 2 .7270

In step 1, m∗ = 30, n∗ = 1

Step 1. Set m = 30 and n = 1. If

ζ̃ +
√
Ũ +

√
Ũ1−β ≤ 0 (10.5.5)

holds, stop and the required sample sizes are m = 30 and n = 1;
otherwise, go to step 2.

Step 2. Let n = 1 and find a smallest integer m∗ such that (10.5.5)
holds. If m∗ ≤ m+ (the largest possible number of canisters in a
given problem), stop and the required sample sizes are m = m∗ and
n = 1; otherwise, go to step 3.

Step 3. Let m = m+ and find a smallest integer n∗ such that (10.5.5)
holds. The required sample sizes are m = m+ and n = n∗.

If in practice it is much easier and inexpensive to obtain more replicates
than to sample more canisters, then Steps 2-3 in the previous procedure
can be replaced by
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Step 2′. Let m = 30 and find a smallest integer n∗ such that (10.5.5)
holds. The required sample sizes are m = 30 and n = n∗.

Table 10.5.1 contains selectedm∗ and n∗ according to Steps 1-3 or Steps
1 and 2′ with 1− β = 80% and the simulated power p of the in vitro bioe-
quivalence test using these sample sizes.

An Example

Suppose an investigator is interested in conducting a clinical trial with
a parallel design with no replicates to establish in vitro bioequivalence be-
tween a generic drug product (test) and a brand name drug product (refer-
ence) in terms of in vitro bioavailability. Based on data obtained from pilot
studies, the mean difference can be assumed to be 0% (δ = 0.00). Also, it is
assumed the intra-subject standard deviation of test and reference are given
by 50% and 50%, respectively. It is further assumed that the inter-subject
standard deviation of the test and the reference are given by 50% and 50%,
respectively. According to Table 10.5.1, 47 subjects per treatment group
are needed in order to yield an 80% power at the 5% level of significance.
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Dose Response Studies

As indicated in 21 CFR 312.21, the primary objectives of phase I clinical
investigation are to (i) determine the metabolism and pharmacological ac-
tivities of the drug, the side effects associated with increasing dose and early
evidence in effectiveness and (ii) obtain sufficient information regarding the
drug’s pharmacokinetics and pharmacological effects to permit the design
of well controlled and scientifically valid phase II clinical studies. Thus,
phase I clinical investigation includes studies of drug metabolism, bioavaili-
bility, dose ranging and multiple dose. The primary objectives of phase II
studies are not only to initially evaluate the effectiveness of a drug based
on clinical endpoints for a particular indication or indications in patients
with disease or condition under study but also to determine the dosing
ranges and doses for phase III studies and common short-term side effects
and risks associated with the drug. In practice, the focus of phase I dose
response studies is safety, while phase II dose response studies emphasize
the efficacy.

When studying the dose response relationship of an investigational drug,
a randomized, parallel-group trial involving a number of dose levels of the
investigational drug and a control is usually conducted. Ruberg (1995a,
1995b) indicated that some questions dictating design and analysis are nec-
essarily addressed. These questions include (i) Is there any evidence of the
drug effect? (ii) What does exhibit a response different from the control
response? (iii) What is the nature of the dose-response? (iv) What is the
optimal dose? The first question is usually addressed by the analysis of
variance. The second question can be addressed by the Williams’ test for
minimum effective dose (MED). The third question can be addressed by
model-based approaches, either frequentist or Bayesian. The last question
is a multiple dimensional issue involving efficacy as well as tolerability and
safety such as the determination of maximum tolerable dose (MTD). In

279
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this chapter, we will limit our discussion to the sample size calculations for
addressing the above questions.

In the next three sections, formulas for sample size calculation for
continuous, binary response, and time-to-event study endpoints under a
multiple-arm dose response trial are derived, respectively. Section 11.4
provides sample size formula for determination of minimum effective dose
(MED) based on Williams’ test. A sample size formula based on Cocharan-
Armitage’s trend test for binary response is given in Section 11.5. In Section
11.6, sample size estimation and related operating characteristics of phase
I dose escalation trials are discussed. A brief concluding remark is given in
the last section.

11.1 Continuous Response

To characterize the response curve, a multi-arm design including a control
group and K active dose groups is usually considered. This multi-arm trial
is informative for the drug candidates with a wide therapeutic window. The
null hypothesis of interest is then given by

H0 : µ0 = µ1 = ... = µK , (11.1.1)

where µ0 is mean response for the control group and µi is mean response for
the ith dose group. The rejection of hypothesis (11.1.1) indicated that there
is a treatment effect. The dose response relationship can then be examined
under appropriate alternative hypothesis. Under a specific alternative hy-
pothesis, the required sample size per dose group can then be obtained.
Spriet and Dupin-Spriet (1992) identified the following eight alternative
hypotheses (Ha) for dose responses:

(1) µ0 < µ1 < ... < µK−1 < µK ;

(2) µ0 < ... < µi = ... = µj > ... > µK ;

(3) µ0 < ... < µi = ... = µK ;

(4) µ0 = ... = µi < ... < µK ;

(5) µ0 < µ1 < ... = µi = ... = µK ;

(6) µ0 = µ1 = ... = µi < ... < µK−1 < µK ;

(7) µ0 = µ1 < ... < µi = ... = µK ;

(8) µ0 = ... = µi < ... < µK−1 = µK .
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In the subsequent sections, we will derive sample size formulas for var-
ious study endpoints such as continuous response, binary response, and
time-to-event data under a multi-arm dose response design, respectively.

11.1.1 Linear Contrast Test

Under a multi-arm dose response design, a linear contrast test is commonly
employed. Consider the following one-sided hypotheses:

Ho : L(µ) =
K∑
i=0

ciµi ≤ 0 vs. Ha : L(µ) =
K∑
i=0

ciµi = ε > 0,

where µi could be mean, proportion, or ranking score in the ith arm, ci are
the contrast coefficients satisfying

∑K
i=0 ci = 0, and ε is a constant. The

test statistics under the null hypothesis and the alternative hypothesis can
be expressed as

T (H) =
L(µ̂)√

var(L(µ̂)|Ho)
; H ∈ Ho ∪Ha.

Under the alternative hypothesis, we have ε = E(L(µ̂)|Ha). Denote v2o =
var(L(µ̂)|Ho) and v2a = var(L(µ̂)|Ha). Then, under the null hypothesis,
for large sample, we have

T (Ho) =
L(µ̂; δ)|Ho

vo
∼ N(0, 1).

Similarly, under the alternative hypothesis, it can be verified that

T (Ha) =
L(µ̂; δ)
vo

∼ N(
ε

vo
,
v2a
v2o

)

for large sample, where

v2o = var(L(µ̂; δ)|Ho) =
∑k
i=0 c

2
i var(µ̂i|Ho) = σ2o

∑K
i=0

c2i
ni

v2a = var(L(µ̂; δ)|Ha) =
∑k
i=0 c

2
i var(µ̂i|Ho) =

∑K
i=0

c2iσ
2
i

ni

That is, 
v2o =

σ2
o

n

∑K
i=0

c2i
fi

v2a =
1
n

∑K
i=0

c2iσ
2
i

fi

, (11.1.2)
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where the size fraction fi = ni

n with N =
∑K
i=0 ni. Note that σo and σa are

the standard deviation of the response under H0 and Ha, respectively. Let
µi be the population mean for group i. The null hypothesis of no treatment
effects can be written as follows

Ho : L(µ) =
K∑
i=0

ciµi = 0, (11.1.3)

where
∑K
i=0 ci = 0. Under the following alternative hypothesis

Ha : L(µ) =
K∑
i=0

ciµi = ε, (11.1.4)

and the assumption of homogeneous variances, the sample size can be ob-
tained as

N =
[
(z1−α + z1−β)σ

ε

]2 k∑
i=0

c2i
fi
,

where fi is the sample size fraction for the ith group and the population
parameter σ. Note that, in practice, for the purpose of sample size calcu-
lation, one may use the pooled standard deviation if prior data are available.

An Example

Suppose that a pharmaceutical company is interested in conducting a dose
response study for a test drug developed for treating patients with asthma.
A 4-arm design consisting of a placebo control and three active dose levels
(0, 20mg, 40mg, and 60mg) of the test drug is proposed. The primary
efficacy endpoint is percent change from baseline in FEV1. Based on data
collected from pilot studies, it is expected that there are 5% improvement
for the control group, 12%, 14%, and 16% improvement over baseline in
the 20mg, 40mg, and 60mg dose groups, respectively. Based on the data
from the pilot studies, the homogeneous standard deviation for the FEV1
change from baseline is assumed to be σ = 22%. Thus, we may consider
the following contrasts for sample size calculation:

c0 = −6, c1 = 1, c2 = 2, c3 = 3.

Note that
∑

ci = 0. Moreover, we have ε =
∑3
i=0 ciµi = 58%. For sim-

plicity, consider the balanced case (i.e., fi = 1/4 for i = 0, 1, ..., 3) with
one-sided at α = 0.05, the sample size required for detecting the difference
of ε = 0.58 with an 80% power is then given by
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N =
[
(z1−α + z1−β)σ

ε

]2 K∑
i=0

c2i
fi

=
[
(1.645 + 0.842)0.22

0.58

]2
4((−6)2 + 12 + 22 + 32)

= 178.

In other words, approximately 45 subjects per dose group is required for
achieving an 80% power for detecting the specified clinical difference at the
5% level of significance.

Remark

Table 11.1.1 provide five different dose response curves and the correspond-
ing contrasts.

Sample sizes required for different dose response curves and contrasts
are given in Table 11.1.2. It can be seen from Table 11.1.2 that when the
dose response curve and the contrasts have the same shape, a minimum
sample size is required. If an inappropriate set of contrasts is used, the
sample size could be 30 times larger than the optimal design.

Table 11.1.1: Response and Contrast Shapes

Shape µ0 µ1 µ2 µ3 c0 c1 c2 c3
Linear 0.1 0.3 0.5 0.7 -3.00 -1.00 1.00 3.00

Step 0.1 0.4 0.4 0.7 -3.00 0.00 0.00 3.00

Umbrella 0.1 0.4 0.7 0.5 -3.25 -0.25 2.75 0.75

Convex 0.1 0.1 0.1 0.6 -1.25 -1.25 -1.25 3.75

Concave 0.1 0.6 0.6 0.6 -3.75 1.25 1.25 1.25

Table 11.1.2: Sample Size Per Group for Various Contrasts

Contrast

Response Linear Step Umbrella Convex Concave

Linear 31 35 52 52 52

Step 39 35 81 52 52

Umbrella 55 74 33 825 44

Convex 55 50 825 33 297

Concave 55 50 44 297 33

Note: σ = 1, one-sided α = 0.05
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11.2 Binary Response

Denote pi the proportion of response in the ith group. Consider testing
the following null hypothesis

Ho : p0 = p1 = ... = pk (11.2.5)

against the alternative hypothesis of

Ha : L(p) =
k∑
i=0

cipi = ε, (11.2.6)

where ci are the contrasts satisfying
∑k
i=1 ci = 0.

Similarly, by applying the linear contrast approach described above, the
sample size required for achieving an 80% power for detecting a clinically
significant difference of ε at the 5% level of significance can be obtained as

N ≥

z1−α
√∑k

i=0
c2i
fi
p̄(1− p̄) + z1−β

√∑k
i=0

c2i
fi
pi(1− pi)

ε

2

, (11.2.7)

where p̄ is the average of pi.

Remark

Table 11.2.1 provides sample sizes required for different dose response curves
and contrasts. As it can be seen from Table 11.2.1, an appropriate selection
of contrasts (i.e., it can reflect the dose response curve) yields a minimum
sample size required for achieving the desired power.

Table 11.2.1: Total Sample Size Comparisons for Binary Data

Contrast

Response Linear Step Umbrella Convex Concave

Linear 26 28 44 48 44

Step 28 28 68 48 40

Umbrella 48 68 28 792 36

Convex 28 36 476 24 176

Concave 36 44 38 288 28

Note: One-sided α = 0.05, σ2o = p̄(1− p̄), p̄ =
∑k
i=0 fip̂i
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11.3 Time-to-Event Endpoint

Under an exponential survival model, the relationship between hazard (λ),
median (Tmedian) and mean (Tmean) survival time can be described as
follows

TMedian =
ln 2
λ

= (ln 2)Tmean. (11.3.8)

Let λi be the population hazard rate for group i. The contrast test for
multiple survival curves can be written as

Ho : L(µ) =
k∑
i=0

ciλi = 0 vs. L(µ) =
k∑
i=0

ciλi = ε > 0,

where contrasts satisfy the condition that
∑k
i=0 ci = 0.

Similar to the continuous and binary endpoints, the sample size required
for achieving the desired power of 1− β is given by

N ≥

z1−ασo
√∑k

i=0
c2i
fi

+ z1−β
√∑k

i=0
c2i
fi
σi

ε

2

. (11.3.9)

where the variance σ2i can be derived in several different ways. For simplic-
ity, we may consider Lachin and Foulkes’s maximum likelihood approach
(Lachin and Foulkes, 1986).

Suppose we design a clinical trial with k groups. Let T0 and T be the
accrual time period and the total trial duration, respectively. We can then
prove that the variance for uniform patient entry is given by

σ2(λi) = λ2i

[
1 +

e−λiT (1− eλiT0)
T0λi

]−1

. (11.3.10)

An Example

In a four arm (the active control, lower dose of test drug, higher dose of test
drug and combined therapy) phase II oncology trial, the objective is to de-
termine if there is treatment effect with time-to-progression as the primary
endpoint. Patient enrollment duration is estimated to be T0 = 9 months
and the total trial duration T = 16 months. The estimated median time
for the four groups are 14, 20, 22, and 24 months (corresponding hazard
rates of 0.0495, 0.0347, 0.0315, and 0.0289/month, respectively). For this
phase II design, we use one-sided α = 0.05 and power = 80%. In order to
achieve the most efficient design (i.e., minimum sample size), sample sizes
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from different contrasts and various designs (balanced or unbalanced) are
compared. Table 11.3.1 are the sample sizes for the balanced design. Table
11.3.2 provides sample sizes for unbalanced design with specific sample size
ratios, i.e., (Control : control, lower dose: Control, higher dose : control,
and Combined : control) =(1, 2, 2, 2). This type of design is often seen
in clinical trials where patients are assigned to the test group more than
the control group due to the fact that the investigators are usually more
interested in the response in the test groups. However, this unbalanced
design is usually not an efficient design. An optimal design, i.e., minimum
variance design, where the number of patients assigned to each group is
proportional to the variance of the group, is studied (Table 11.3.3). It can
be seen from Table 11.3.2 that the optimal designs with sample size ra-
tios (1, 0.711, 0.634, 0.574) are generally most powerful and requires fewer
patients regardless the shape of the contrasts. In all cases, the contrasts
with a trend in median time or the hazard rate works well. The contrasts
with linear trend also works well in most cases under assumption of this
particular trend of response (hazard rate). Therefore, the minimum vari-
ance design seems attractive with total sample sizes 525 subjects, i.e., 180,
128, 114, 103 for the active control, lower dose, higher dose, and combined
therapy groups, respectively. In practice, if more patients assigned to the
control group is a concern and it is desirable to obtain more information
on the test groups, a balanced design should be chosen with a total sample
size 588 subjects or 147 subjects per group.

Table 11.3.1: Sample Sizes for Different Contrasts (Balanced Design)

Scenario Contrast Total n

Average dose effect -3 1 1 1 666

Linear response trend -6 1 2 3 603

Median time trend -6 0 2 4 588

Hazard rate trend 10.65 -0.55 -3.75 -6.35 589

Note: sample size ratios to the control group: 1, 1, 1, 1.

Table 11.3.2: Sample Sizes for Different Contrasts (Unbalanced Design)

Scenario Contrast Total n

Average dose effect -3 1 1 1 1036

Linear dose response -6 1 2 3 924

Median time shape -6 0 2 4 865

Hazard rate shape 10.65 -0.55 -3.75 -6.35 882

Note: sample size ratios to the control group: 1, 2 ,2, 2.
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Table 11.3.3: Sample Sizes for Different Contrasts
(Minimum Variance Design)

Scenario Contrast Total n

Average dose effect -3 1 1 1 548

Linear dose response -6 1 2 3 513

Median time shape -6 0 2 4 525

Hazard rate shape 10.65 -0.55 -3.75 -6.35 516

Note: sample size ratios (proportional to the variances): 1, 0.711, 0.634, 0.574.

11.4 Williams’ Test for Minimum Effective
Dose (MED)

Under the assumption of monotonicity in dose response, Williams (1971,
1972) proposed a test to determine the lowest dose level at which there is
evidence for a difference from control. Williams considered the following
alternative hypothesis:

Ha : µ0 = µ1 = ... = µi−1 < µi ≤ µi+1 ≤ ... ≤ µK

and proposed the following test statistic:

Ti =
µ̂i − Ŷ0

σ̂
√

1
ni

+ 1
n0

,

where σ̂2 is an unbiased estimate of σ2, which is independent of Ŷi and
is distributed as σ2χ2v/v and µ̂i is the maximum likelihood estimate of µi
which is given by

µ̂i = max
1≤u≤i

min
i≤v≤K

{∑v
j=u njŶj∑v
j=1 nj

}
.

When ni = n for i = 0, 1, ...,K, this test statistic can be simplified as

Ti =
µ̂i − Ȳ0

s
√
2/n

,

which can be approximated by (Xi−Z0)/s, where s2 is an unbiased estimate
of σ2,

Xi = max
1≤u≤i

i∑
j=u

Zj
i− u+ 1
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and Zj follows a standard normal distribution. We then reject the null
hypothesis of no treatment difference and conclude that the ith dose level
is the minimum effective dose if

Tj > tj(α) for all j ≥ i,

where tj(α) is the upper αth percentile of the distribution of Tj . The critical
values of tj(α) are given in the Tables 11.4.1-11.4.4.

Since the power function of the above test is rather complicated, as
an alternative, consider the following approximation to obtain the required
sample size per dose group:

power = Pr {reject}Ho|µi ≥ µ0 +∆ for some i}
> {Pr {reject}Ho|µ0 = µ1 = ... = µK = µ0 +∆}

≥ Pr

{
ŶK − Ŷ0

σ
√
2/n

> tK(α)|µK = µ0 +∆

}

= 1− Φ

(
tK(α)−

∆
σ
√
2/n

)
,

where ∆ is the clinically meaningful minimal difference. To have a power
of 1− β, required sample size per group can be obtained by solving

β = Φ

(
tK(α) +

∆
σ
√
2/n

zβ

)
.

Thus, we have

n =
2σ2 [tk(α) + zβ ]

2

∆2
, (11.4.11)

where values of tK(α) can be obtained from Tables 11.4.1-11.4.4. It should
be noted that this approach is conservative.

An Example

We consider the previous example of an asthma trial with power = 80%,
σ = 0.22, one-sided α = 0.05. (Note that there is no two-sided William’s
test.) Since the critical value tk(α) is dependent on the degree of free-
dom ν that is related to the sample size n, iterations are usually needed.
However, for the current case we know that ν > 120 or ∞, which leads
to t3(0.05) = 1.75. Thus the sample size for 11% (16%-9%) treatment im-
provement over placebo in FEV1 is given by

n =
2(0.22)2(1.75 + 0.8415)

0.112
= 53 per group.
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Table 11.4.1: Upper 5 Percentile tk(α) for Tk

k = Number of Dose Levels
df/v 2 3 4 5 6 7 8 9 10
5 2.14 2.19 2.21 2.22 2.23 2.24 2.24 2.25 2.25
6 2.06 2.10 2.12 2.13 2.14 2.14 2.15 2.15 2.15
7 2.00 2.04 2.06 2.07 2.08 2.09 2.09 2.09 2.09
8 1.96 2.00 2.01 2.02 2.03 2.04 2.04 2.04 2.04
9 1.93 1.96 1.98 1.99 2.00 2.00 2.01 2.01 2.01
10 1.91 1.94 1.96 1.97 1.97 1.98 1.98 1.98 1.98
11 1.89 1.92 1.94 1.94 1.95 1.95 1.96 1.96 1.96
12 1.87 1.90 1.92 1.93 1.93 1.94 1.94 1.94 1.94
13 1.86 1.89 1.90 1.91 1.92 1.92 1.93 1.93 1.93
14 1.85 1.88 1.89 1.90 1.91 1.91 1.91 1.92 1.92
15 1.84 1.87 1.88 1.89 1.90 1.90 1.90 1.90 1.91
16 1.83 1.86 1.87 1.88 1.89 1.89 1.89 1.90 1.90
17 1.82 1.85 1.87 1.87 1.88 1.88 1.89 1.89 1.89
18 1.82 1.85 1.86 1.87 1.87 1.88 1.88 1.88 1.88
19 1.81 1.84 1.85 1.86 1.87 1.87 1.87 1.87 1.88
20 1.81 1.83 1.85 1.86 1.86 1.86 1.87 1.87 1.87
22 1.80 1.83 1.84 1.85 1.85 1.85 1.86 1.86 1.86
24 1.79 1.81 1.82 1.83 1.84 1.84 1.84 1.84 1.85
26 1.79 1.81 1.82 1.83 1.84 1.84 1.84 1.84 1.85
28 1.78 1.81 1.82 1.83 1.83 1.83 1.84 1.84 1.84
30 1.78 1.80 1.81 1.82 1.83 1.83 1.83 1.83 1.83
35 1.77 1.79 1.80 1.81 1.82 1.82 1.82 1.82 1.83
40 1.76 1.79 1.80 1.80 1.81 1.81 1.81 1.82 1.82
60 1.75 1.77 1.78 1.79 1.79 1.80 1.80 1.80 1.80
120 1.73 1.75 1.77 1.77 1.78 1.78 1.78 1.78 1.78
∞ 1.739 1.750 1.756 1.760 1.763 1.765 1.767 1.768 1.768
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Table 11.4.2: Upper 2.5 Percentile tk(α) for Tk

k = Number of Dose Levels
df/v 2 3 4 5 6 8 10
5 2.699 2.743 2.766 2.779 2.788 2.799 2.806
6 2.559 2.597 2.617 2.628 2.635 2.645 2.650
7 2.466 2.501 2.518 2.528 2.535 2.543 2.548
8 2.400 2.432 2.448 2.457 2.463 2.470 2.475
9 2.351 2.381 2.395 2.404 2.410 2.416 2.421
10 2.313 2.341 2.355 2.363 2.368 2.375 2.379
11 2.283 2.310 2.323 2.330 2.335 2.342 2.345
12 2.258 2.284 2.297 2.304 2.309 2.315 2.318
13 2.238 2.263 2.275 2.282 2.285 2.292 2.295
14 2.220 2.245 2.256 2.263 2.268 2.273 2.276
15 2.205 2.229 2.241 2.247 2.252 2.257 2.260
16 2.193 2.216 2.227 2.234 2.238 2.243 2.246
17 2.181 2.204 2.215 2.222 2.226 2.231 2.234
18 2.171 2.194 2.205 2.211 2.215 2.220 2.223
19 2.163 2.185 2.195 2.202 2.205 2.210 2.213
20 2.155 2.177 2.187 2.193 2.197 2.202 2.205
22 2.141 2.163 2.173 2.179 2.183 2.187 2.190
24 2.130 2.151 2.161 2.167 2.171 2.175 2.178
26 2.121 2.142 2.151 2.157 2.161 2.165 2.168
28 2.113 2.133 2.143 2.149 2.152 2.156 2.159
30 2.106 2.126 2.136 2.141 2.145 2.149 2.151
35 2.093 2.112 2.122 2.127 2.130 2.134 2.137
40 2.083 2.102 2.111 2.116 2.119 2.123 2.126
60 2.060 2.078 2.087 2.092 2.095 2.099 2.101
120 2.037 2.055 2.063 2.068 2.071 2.074 2.076
∞ 2.015 2.032 2.040 2.044 2.047 2.050 2.052
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Table 11.4.3: Upper 1 Percentile tk(α) for Tk

k = Number of Dose Levels
df/v 2 3 4 5 6 7 8 9 10
5 3.50 3.55 3.57 3.59 3.60 3.60 3.61 3.61 3.61
6 3.26 3.29 3.31 3.32 3.33 3.34 3.34 3.34 3.35
7 3.10 3.13 3.15 3.16 3.16 3.17 3.17 3.17 3.17
8 2.99 3.01 3.03 3.04 3.04 3.05 3.05 3.05 3.05
9 2.90 2.93 2.94 2.95 2.95 2.96 2.96 2.96 2.96
10 2.84 2.86 2.88 2.88 2.89 2.89 2.89 2.90 2.90
11 2.79 2.81 2.82 2.83 2.83 2.84 2.84 2.84 2.84
12 2.75 2.77 2.78 2.79 2.79 2.79 2.80 2.80 2.80
13 2.72 2.74 2.75 2.75 2.76 2.76 2.76 2.76 2.76
14 2.69 2.71 2.72 2.72 2.72 2.73 2.73 2.73 2.73
15 2.66 2.68 2.69 2.70 2.70 2.70 2.71 2.71 2.71
16 2.64 2.66 2.67 2.68 2.68 2.68 2.68 2.68 2.69
17 2.63 2.64 2.65 2.66 2.66 2.66 2.66 2.67 2.67
18 2.61 2.63 2.64 2.64 2.64 2.65 2.65 2.65 2.65
19 2.60 2.61 2.62 2.63 2.63 2.63 2.63 2.63 2.63
20 2.58 2.60 2.61 2.61 2.62 2.62 2.62 2.62 2.62
22 2.56 2.58 2.59 2.59 2.59 2.60 2.60 2.60 2.60
24 2.55 2.56 2.57 2.57 2.57 2.58 2.58 2.58 2.58
26 2.53 2.55 2.55 2.56 2.56 2.56 2.56 2.56 2.56
28 2.52 2.53 2.54 2.54 2.55 2.55 2.55 2.55 2.55
30 2.51 2.52 2.53 2.53 2.54 2.54 2.54 2.54 2.54
35 2.49 2.50 2.51 2.51 2.51 2.51 2.52 2.52 2.52
40 2.47 2.48 2.49 2.49 2.50 2.50 2.50 2.50 2.50
60 2.43 2.45 2.45 2.46 2.46 2.46 2.46 2.46 2.46
120 2.40 2.41 2.42 2.42 2.42 2.42 2.42 2.42 2.43
∞ 2.366 2.377 2.382 2.385 2.386 2.387 2.388 2.389 2.389
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Table 11.4.4: Upper 0.5 Percentile tk(α) for Tk

k = Number of Dose Levels
df/v 2 3 4 5 6 8 10
5 4.179 4.229 4.255 4.270 4.279 4.292 4.299
6 3.825 3.864 3.883 3.895 3.902 3.912 3.197
7 3.599 3.631 3.647 3.657 3.663 3.670 3.674
8 3.443 3.471 3.484 3.492 3.497 3.504 3.507
9 3.329 3.354 3.366 3.373 3.377 3.383 3.886
10 3.242 3.265 3.275 3.281 3.286 3.290 3.293
11 3.173 3.194 3.204 3.210 3.214 3.218 3.221
12 3.118 3.138 3.147 3.152 3.156 3.160 3.162
13 3.073 3.091 3.100 3.105 3.108 3.112 3.114
14 3.035 3.052 3.060 3.065 3.068 3.072 3.074
15 3.003 3.019 3.027 3.031 3.034 3.037 3.039
16 2.957 2.991 2.998 3.002 3.005 3.008 3.010
17 2.951 2.955 2.973 2.977 2.980 2.938 2.984
18 2.929 2.944 2.951 2.955 2.958 2.960 2.962
19 2.911 2.925 2.932 2.936 2.938 2.941 2.942
20 2.894 2.903 2.915 2.918 2.920 2.923 2.925
22 2.866 2.879 2.855 2.889 2.891 2.893 2.895
24 2.842 2.855 2.861 2.864 2.866 2.869 2.870
26 2.823 2.835 2.841 2.844 2.846 2.848 2.850
28 2.806 2.819 2.824 2.827 2.829 2.831 2.832
30 2.792 2.804 2.809 2.812 2.814 2.816 2.817
35 2.764 2.775 2.781 2.783 2.785 2.787 2.788
40 2.744 2.755 2.759 2.762 2.764 2.765 2.766
60 2.697 2.707 2.711 2.713 2.715 2.716 2.717
120 2.651 2.660 2.664 2.666 2.667 2.669 2.669
∞ 2.607 2.615 2.618 2.620 2.621 2.623 2.623

© 2008 by Taylor & Francis Group, LLC



11.5. Cochran-Armitage’s Test for Trend 293

Note that this sample size formulation has a minimum difference from
that based on the two sample t-test with the maximum treatment difference
as the treatment difference. For the current example, n = 54 from the two
sample t-test.

11.5 Cochran-Armitage’s Test for Trend

Cochran-Armitage test (Cochran 1954, and Amitage 1955) is a widely used
test for monotonic trend with binary response since it is more powerful than
the chi-square homogeneity test in identifying a monotonic trend (Nam
1987). This test requires preassigned fixed dose scores. Equally spaced
scores are most powerful for linear response. When the true dose-response
relationship is not linear, equally-spaced scores may not be the best choice.
Generally, single contrast-based test attains its greatest power when the
dose-coefficient relationship has the same shape as the true dose-response
relationship. Otherwise, it loses its power. Due to limited information at
the design stage of a dose-response trial, it is risky to use single contrast
test. Note that the rejection of the null hypothesis does not mean the
dose-response is linear or monotonic. It means that based on the data it is
unlikely the dose-response is flat or all doses have the same response.

The test for monotonic trend with binary response, we consider the
following hypotheses:

Ho : p0 = p1 = ... = pk (11.5.12)
vs. Ha : p0 ≤ p1 ≤ ... ≤ pk with p0 < pk.

Cochran (1954) and Amitage (1955) proposed the following test statistic

TCA =

√
N

(N −X)X

∑k
i=1(xi − niX

N )ci√∑k
i=0

ni c2i
N −

(∑k
i=0

ni ci
N

)2 , (11.5.13)

where ci is the predetermined scores (c0 < c1 < ... < ck). xi is the number
of responses in group i (i = 0 for the control group), and pi is the response
rate in group i. ni is the sample size for group i, where X =

∑k
i=0 xi and

N =
∑k
i=0 ni.

Note that the test (one-sided test) by Portier and Hoel (1984) was the
modification (Neuhauser and Hothorn, 1999) from Armitages’ (1955) origi-
nal two-sided test, which is asymptotically distributed as a standard normal
variable under the null hypothesis.

Asymptotic power of test for linear trend and sample size calculation
can be found in Nam (1998), which are briefly outlined below:
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Let xi be the k+1 mutually independent binomial variates representing
the number of responses among ni subjects at dose level di for i = 0, 1, ..., k.
Define average response rate pi = 1

N

∑
i xi, q̄ = 1− p̄, and d̄ = 1

N

∑
nidi.

U =
∑
i xi(di − d̄).

Assume that the probability of response follows a linear trend in logistic
scale

pi =
eγ+λdi

1 + eγ+λdi

An approximate test with continuity correction based on the asymptotically
normal deviate is given by

z =
(U − ∆

2 )√
var(U |H0 : λ = 0)

=
(U − ∆

2 )√
p̄q̄
∑
i

[∑
i ni(di − d̄)2

] ,
where ∆/2 = (di − di−1)/2 is the continuity correction for equally spaced
doses. However, there is no constant ∆ for unequally spaced doses.

The unconditional power is given by

Pr(z ≥ z1−α|Ha) = 1− Φ(u),

where

u = E(U − ∆
2
) + z1−α

√
var(U |Ho)√
var(U |Ha)

.

Thus, we have

E(U)− ∆
2

+ z1−α
√
var(U |Ho) + z1−β

√
var(U |Ha).

For ∆ = 0, i.e., without continuity correction, the sample size is given by

n∗
0 =

1
A2

{
z1−α

√
pq
[∑

ri(di − d̄)2
]
+ z1−β

√[∑
piqiri(di − d̄)2

]}2

,

(11.5.14)
where A =

∑
ripi(di − d̄), p = 1

N

∑
nipi, q = 1 − p, and ri = ni/n0 is the

sample size ratio between the ith group and the control.
On the other hand, sample size with continuity correction is given by

n0 =
n∗
0

4

[
1 +

√
1 + 2

∆
An∗

0

]2
. (11.5.15)

Note that the actual power of the test depends on the specified alterna-
tive. Thus, the sample size formula holds for any monotonic increasing
alternative, i.e., pi−1 < pi, i = 1, ..., k.
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For balance design with equal size in each group, the formula for sample
size per group is reduced to

n =
n∗

4

[
1 +

√
1 +

2
Dn∗

]2
, (11.5.16)

where

n∗ =
{
z1−α

√
k(k2 − 1)pq + z1−β

√∑
b2i piqi

}2

(11.5.17)

and bi = i− 0.5k, and D =
∑

bipi.

Note that the above formula is based on one-sided test at the α level.
For two-sided test, the Type I error rate is controlled at the 2α level. For
equally spaced doses: 1, 2, 3, and 4, the sample sizes required for the five
different sets of contracts are given in Table 11.5.1.

Table 11.5.1: Sample size from Nam Formula

Dose 1 2 3 4 Total n
0.1 0.3 0.5 0.7 26
0.1 0.4 0.4 0.7 32

Response 0.1 0.4 0.7 0.5 48
0.1 0.1 0.1 0.6 37
0.1 0.6 0.6 0.6 49

Table 11.5.2: Power Comparisons with Cochran-Armitage Test

Shape
Equal spaced

scores

Convex

scores

Concave

scores
MERT

No diff 0.03 0.03 0.03 0.03

Linear 0.91 0.82 0.89 0.92

Step 0.84 0.80 0.87 0.90

Umbrella 0.68 0.24 0.86 0.62

Convex 0.81 0.91 0.48 0.83

Concave 0.67 0.34 0.91 0.74

Source: Neuhauser and Hothorn (1999); ni = 10, α = 0.05.
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Neuhauser and Hothorn (1999) studied the power of Cochran–Armitage
test under different true response shape through simulations (Table 11.5.2).
These simulation results confirm that the most powerful test is achieved
when contrast shape is consistent with the response shape.

Gastwirth (1985) and Podgor, et al. (1996) proposed a single maxi-
mum efficiency robust test (MERT) statistic based on prior correlations
between different contrasts, while Neuhauser and Hothorn (1999) proposed
a maximum test among two or more contrasts and claim a gain in power.

11.6 Dose Escalation Trials

For non-life-threatening diseases, since the expected toxicity is mild and
can be controlled without harm, phase I trials are usually conducted on
healthy or normal volunteers. In life-threatening diseases such as cancer
and AIDS, phase I studies are conducted with limited numbers of patients
due to (i) the aggressiveness and possible harmfulness of treatments, (ii)
possible systemic treatment effects, and (iii) the high interest in the new
drug’s efficacy in those patients directly.

Drug toxicity is considered as tolerable if the toxicity is manageable and
reversible. The standardization of the level of drug toxicity is the Common
Toxicity Criteria (CTC) of the United States National Cancer Institute
(NCI). Any adverse event (AE) related to treatment from the CTC cat-
egory of Grade 3 and higher is often considered a dose limiting toxicity
(DLT). The maximum tolerable dose (MTD) is defined as the maximum
dose level with toxicity rates occuring no more than a predetermined value.

There are usually 5 to 10 predetermined dose levels in a dose escalation
study. A commonly used dose sequence is the so called modified Fibonacci
sequence. Patients are treated with lowest dose first and then gradually
escalated to higher doses if there is no major safety concern. The rules for
dose escalation are predetermined. The commonly employed dose escala-
tion rules are the traditional escalation rules (TER), also known as the “3 +
3” rule. The “3 + 3” rule is to enter three patients at a new dose level and
enter another 3 patients when one toxicity is observed. The assessment
of the six patients will be performed to determine whether the trial should
be stopped at that level or to increase the dose. Basically, there are two
types of the “3 + 3” rules, namely, TER and strict TER (or STER). TER
does not allow dose de-escalation, but STER does when 2 of 3 patients have
DLTs. The “3+3” STER can be generalized to the A+B TER and STER
escalation rules. To introduce the traditional A + B escalation rule, let
A,B,C,D, and E be integers. The notation A/B indicates that there are
A toxicity incidences out of B subjects and > A/B means that there are
more than A toxicity incidences out of B subjects. We assume that there
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are n predefined doses with increasing levels and let pi be the probability
of observing a DLT at dose level i for 1 ≤ i ≤ n. In what follows, general
A+B designs without and with dose de-escalation will be described. The
closed forms of sample size calculation by Lin and Shih (2001) are briefly
reviewed.

11.6.1 The A + B Escalation Design without Dose De-
escalation

The general A + B designs without dose de-escalation can be described as
follows. Suppose that there are A patients at dose level i. If less than C/A
patients have DLTs, then the dose is escalated to the next dose level i+ 1.
If more than D/A (where D ≥ C) patients have DLTs, then the previous
dose i − 1 will be considered the MTD. If no less than C/A but no more
than D/A patients have DLTs, B more patients are treated at this dose
level i. If no more than E (where E ≥ D) of the total of A + B patients
have DLTs, then the dose is escalated. If more than E of the total of A
+ B patients have DLT, then the previous dose i − 1 will be considered
the MTD. It can be seen that the traditional “3 + 3” design without dose
de-escalation is a special case of the general A+B design with A = B = 3
and C = D = E = 1.

Under the general A+B design without dose-escalation, the probability
of concluding that MTD has reached at dose i is given by

P (MTD = dose i) = P

(
escalation at dose ≤ i and
stop escalation at dose i+ 1

)

= (1− P i+1
0 −Qi+1

0 )

 i∏
j=1

(P j0 +Qj0)

 , 1 ≤ i < n,

where

P j0 =
C−1∑
k=0

(
A

k

)
pkj (1− pj)A−k,

and

Qj0 =
D∑
k=C

E−k∑
m=0

(
A

k

)
pkj (1− pj)A−k

(
B

m

)
pmj (1− pj)B−m,

in which

Nji =


AP j

0+(A+B)Qj
0

P j
0+Q

j
0

if j < i+ 1
A(1−P j

0−P j
1 )+(A+B)(P j

1−Qj
0)

1−P j
0−Qj

0
if j = i+ 1

0 if j > i+ 1

.
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An overshoot is defined as an attempt to escalate to a dose level at the
highest level planned, while a undershoot is referred to as an attempt to
de-escalate to a dose level at a lower dose than the starting dose level. Thus,
the probability of undershoot is given by

P ∗
1 = P (MTD < dose 1) = (1− P 1

0 −Q1
0), (11.6.18)

and probability of overshoot is given by

P ∗
n = P (MTD ≥ dose n) = Πnj=1(P

j
0 +Qj0). (11.6.19)

The expected number of patients at dose level j is given by

Nj =
n−1∑
i=0

NjiP
∗
i . (11.6.20)

Note that without consideration of undershoots and overshoots, the ex-
pected number of DLTs at dose i can be obtained as Nipi. As a result, the
total expected number DLTs for the trial is given by

∑n
i=1Nipi.

We can use (11.6.20) to calculate the expected sample size at dose level
for given toxicity rate at each dose level. We can also conduct a Monte
Carlo study to simulate the trial and sample size required. Table 11.6.1
summarizes the simulation results. One can do two stage design and
Bayesian adaptive and other advanced design with the software.

Table 11.6.1: Simulation results with 3+3 TER

Dose level 1 2 3 4 5 6 7 Total

Dose 10 15 23 34 51 76 114

DLT rate 0.01 0.014 0.025 0.056 0.177 0.594 0.963

Expected n 3.1 3.2 3.2 3.4 3.9 2.8 0.2 19.7

Note: True MTD = 50, mean simulated MTD =70, mean number of DLTs =2.9
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11.6.2 The A + B Escalation Design with Dose De-
escalation

Basically, the general A + B design with dose de-escalation is similar to
the design without dose de-escalation. However, it permits more patients
to be treated at a lower dose (i.e. dose de-escalation) when excessive DLT
incidences occur at the current dose level. The dose de-escalation occurs
when more thanD/A (whereD ≥ C) or more than E/(A+B) patients have
DLTs at dose level i. In this case, B more patients will be treated at dose
level i−1 provided that only A patients have been previously treated at this
prior dose. If more than A patients have already been treated previously,
then dose i − 1 is the MTD. The de-escalation may continue to the next
dose level i − 2 and so on if necessary. For this design, the MTD is the
dose level at which no more than E/(A+B) patients experience DLTs, and
more than D/A or (no less than C/A and no more than D/A) if more than
E/(A+B) patients treated with the next higher dose have DLTs.

Similarly, under the general A+B design with dose de-escalation, the
probability of concluding that MTD has been reached at dose i is given by

P ∗
i = P (MTD = dose i) = P

(
escalation at dose ≤ i and
stop escalation at dose i+ 1

)
=

n∑
k=i+1

pik,

where

pik = (Qi0 +Qi0)(1− P k0 −Qk0)

i−1∏
j=1

(P j0 +Qj0)

 k−1∏
j=i+1

Qj2,

and

P j1 =
D∑
i=C

(
A

k

)
pkj (1− pj)A−k,

Qj1 =
C−1∑
k=0

E−k∑
m=0

(
A

k

)
pkj (1− pj)A−k

(
B

m

)
pmj (1− pj)B−m,

Qj2 =
C−1∑
k=0

E−k∑
m=E+1−k

(
A

k

)
pkj (1− pj)A−k

(
B

m

)
pmj (1− pj)B−m,

Njn =
AP j0 + (A+B)Qj0

P j0 +Qj0
,
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Also, the probability of undershoot is given by

P ∗
1 = P (MTD < dose 1) =

n∑
k=1

{
(
Πk−1
j=1Q

j
2

)
(1− P k0 −Qk0)},

and the probability of overshooting is

P ∗
n = P (MTD ≥ dose n) = Πnj=1(P

j
0 +Qj0).

The expected number of patients at dose level j is given by

Nj = NjnP
∗
n +

n−1∑
i=0

n∑
k=i+1

Njikpik,

where

Njik =


AP j

0+(A+B)Qj
0

P j
0+Q

j
0

if j < i

A+B if i ≤ j < k
A(1−P j

0−P j
1 )+(A+B)(P j

1−Qj
0)

1−P j
0−Qj

0
if j = k

0 if j > k

.

Consequently, the total number of expected DLTs is given by
∑n
i=1Nipi.

Table 11.6.2 is another example as in Table 11.6.1, but the simulation
results are from STER rather than TER. In this example, we can see that
the MTD is underestimated and the average sample size is 23 with STER,
3 patients more than that with TER. The excepted DLTs also increase
with STER in this case. Note that the actual sample size varies from trial
to trial. However, simulations will help in choosing the best escalation
algorithm or optimal design based on the operating characteristics, such as
accuracy and precision of the predicted MTD, expected DLTs and sample
size, overshoots, undershoots, and the number of patients treated above
MTD.

Table 11.6.2: Simulation results with 3+3 STER

Dose level 1 2 3 4 5 6 7 Total

Dose 10 15 23 34 51 76 114

DLT rate 0.01 0.014 0.025 0.056 0.177 0.594 0.963

Expected n 3.1 3.2 3.5 4.6 5.5 3 0.2 23

Note: True MTD = 50, mean simulated MTD = 41. Mean number of DLTs = 3.3
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11.7 Concluding Remarks

In general, linear contrast tests are useful in detecting specific shapes of the
dose response curve. However, the selection of contrasts should be prac-
tically meaningful. It should be noted that the power of a linear contrast
test is sensitive to the actual shape of the dose response curve Bretz and
Hothorn, 2002). Alternatively, one may consider a slope approach to detect
the shape of the dose response curve (Cheng, Chow, and Wang, 2006).

Williams’ test is useful for identifying the minimum effective dose in
the case of continuous response. Williams’ test has a strong assumption
of monotonic dose response. The test may not be statistically valid if the
assumption is violated. It should be noted that Williams’ test is not a
test for monotonicity. The sample size formula given in (11.4.11) is rather
conservative.

Nam’s and Cochran-Armitage’s methods are equivalent. Their meth-
ods are useful when the response is binary. Basically, both methods are
regression-based methods for testing a monotonic trend. However, they are
not rigorous tests for monotonicity. Testing to true monotonic response is
practically difficult without extra assumptions (Chang and Chow, 2005).

The dose escalation trials are somewhat different because the sample
size is not determined based on the error rates. Instead, it is determined
by the escalation algorithm and dose response (toxicity) relationship and
pre-determined dose levels. For the A+B escalation rules, the sample size
has a closed form as given in Section 11.6. For other designs, sample size
will have to be estimated through computer simulations. It should be noted
that the escalation algorithm and dose intervals not only have an impact
on the sample size, but also affect other important operating characteristics
such as the accuracy and precision of the estimation of the MTD and the
number of DLTs.

© 2008 by Taylor & Francis Group, LLC



Chapter 12

Microarray Studies

One of the primary study objectives for microarray studies is to have a
high probability of declaring genes to be differentially expressed if they are
truly expressed, while keeping the probability of making false declarations
of expression acceptably low (Lee and Whitmore, 2002). Traditional statis-
tical testing approaches such as the two-sample t-test or Wilcoxon test, are
often used for evaluating statistical significance of informative expressions
but require adjustment for large-scale multiplicity. It is recognized that if
a type I error rate of α is employed at each testing, then the probability
to reject any hypothesis will exceed the overall α level. To overcome this
problem, two approaches for controlling false discovery rate (FDR) and
family-wise error rate (FWER) are commonly employed. In this chapter,
formulas or procedures for sample size calculation for microarray studies
derived under these two approaches are discussed.

In the next section, a brief literature review is given. Section 12.2 gives
a brief definition of false discovery rate and introduces formulas and/or
procedures for sample size calculation for the FDR approach given in Jung
(2005). Also included in this section are some examples with and without
constant effect sizes based on two-sided tests. Section 12.3 reviews multiple
testing procedures and gives procedures for sample size calculation for mi-
croarray studies for the FWER approach (Jung, Bang, and Young, 2005).
Also included in this section is an application to leukemia data given in
Golub et al. (1999). A brief concluding remark is given in the last section
of this chapter.

303
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12.1 Literature Review

Microarray methods have been widely used for identifying differentially
expressing genes in subjects with different types of disease. Sample size
calculation plays an important role at the planning stage of a microar-
ray study. Commonly considered standard microarray designs include a
matched-pairs design, a completely randomized design, an isolated-effect
design, and a replicated design. For a given microarray study, formulas
and/or procedures for sample size calculation can be derived following the
steps as described in previous chapters. Several procedures for sample size
calculation have been proposed in the literature in the microarray con-
text (see, e.g. Simon et al., 2002). Most of these procedures focused on
exploratory and approximate relationships among statistical power, sam-
ple size (or the number of replicates), and effect size (often, in terms of
fold-change), and used the most conservative Bonferroni adjustment for
controlling family-wise error rate (FWER) without taking into considera-
tion of the underlying correlation structure (see, e.g., Wolfinger et al., 2001;
Black and Doerge, 2002; Pan et al., 2002; Cui and Churchill, 2003). Jung
et al. (2005) incorporated the correlation structure to derive a sample size
formula, which is able to control the FWER efficiently.

As an alternative to the FWER approach, many researchers have pro-
posed the use of so-called false discovery rate (FDR) (see, e.g., Benjamini
and Hochberg, 1995; Storey, 2002). It is believed that controlling FDR
would relax the multiple testing criteria compared to controlling the
FWER. Consequently, controlling FDR would increase the number of
declared significant genes. Some operating and numerical characteristics
of FDR are elucidated in recent publications (Genovese and Wasserman,
2002; Dudoit et al., 2003).

Lee and Whitmore (2002) considered multiple group cases, including
the two-sample case, using ANOVA models and derived the relation be-
tween the effect sizes and the FDR based on a Bayesian perspective. Their
power analysis approach, however, does not consider the issue of multiplic-
ity. Müller et al. (2004) chose a pair of testing errors, including FDR, and
minimized one while controlling the other one at a specified level using a
Bayesian decision rule. Müller et al. (2004) proposed using an algorithm
to demonstrate the relationship between sample size and the chosen testing
errors based on some asymptotic results for large samples. This approach,
however, requires specification of complicated parametric models for prior
and data distributions, and extensive computing for the Baysian simula-
tions. Note that Lee and Whitmore (2002) and Gadbury et al. (2004)
modelled a distribution of p-values from pilot studies to produce sample
size estimates but did not provide an explicit sample size formula. Most of
the existing methods for controlling FDR in microarray studies fail to show
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Table 12.2.1: Outcomes of m multiple tests
Accepted hypothesis

True hypothesis Null Alternative Total
Null A0 R0 m0

Alternative A1 R1 m1

Total A R m

the explicit relationship between sample size and effect sizes because due to
various reasons. To overcome this problem, Jung (2005) proposed a sample
size estimation procedure for controlling FDR, which will be introduced in
the following section.

In this chapter, our emphasis will be placed on formulas or procedures
for sample size calculation derived based on two approaches for controlling
false discovery rate (FDR) and family-wise error rate (FWER).

12.2 False Discovery Rate (FDR) Control

Benjamini and Hochberg (1995) define the FDR as the expected value of
the proportion of the non-prognostic genes among the discovered genes It
is then suggested that sample size should be selected to control the FDR
at a prespecified level of significance.

Model and Assumptions

Suppose that we conduct m multiple tests, of which the null hypotheses are
true for m0 tests and the alternative hypotheses are true for m1(= m−m0)
tests. The tests declare that, of the m0 null hypotheses, A0 hypotheses are
null (true negative) and R0 hypotheses are alternative (i.e., false rejection,
false discovery or false positive). Among the m1 alternative hypotheses, A1

are declared null (i.e., false negative) and R0 are declared alternative (i.e.,
true rejection, true discovery or true positive). Table 12.2.1 summarizes
the outcome of m hypothesis tests.

According to the definition by Benjamini and Hochberg (1995), the FDR
is given by

FDR = E

(
R0

R

)
. (12.2.1)

Note that this expression is undefined if Pr(R = 0) > 0. To avoid this issue,
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Benjamini and Hochberg (1995) modified the definition of FDR as

FDR = Pr(R > 0)E
(
R0

R
|R > 0

)
. (12.2.2)

These two definitions are identical if Pr(R = 0) = 0, in which case we have
FDR = E(R0/R|R > 0). Note that if m = m0, then FDR = 1 for any
critical value with Pr(R = 0) = 0. As a result, Storey (2003) referred to
the second term in the right hand side of (12.2.2) as pFDR, i.e.,

pFDR = E

(
R0

R
|R > 0

)
and proposed controlling this quantity instead of FDR. Storey (2002)
indicated that Pr(R > 0) ≈ 1 with a large m. In this case, pFDR is
equivalent to FDR. Thus, throughout this chapter, we do not distinguish
between FDR and pFDR. Hence, definitions (12.2.1) and (12.2.2) are
considered to be equivalent. Benjamini and Hochberg (1995) proposed
a multi-step procedure to control the FDR at a specified level. Their
methods, however, are conservative and the conservativeness increases as
m0 increases (Storey et al., 2004).

Suppose that, in the jth testing, we reject the null hypothesis Hj if the
p-value pj is smaller than or equal to α ∈ (0, 1). Assuming independence
of the m p-values, we have

R0 =
m∑
j=1

I(Hj true, Hj rejected)

=
m∑
j=1

Pr(Hj true) Pr(Hj rejected|Hj) + op(m),

which equals m0α, where m−1op(m) → 0 in probability as m → ∞ (Storey,
2002). Ignoring the error term, we have

FDR(α) =
m0α

R(α)
, (12.2.3)

where R(α) =
∑m
j=1 I(pj ≤ α). Note that for a given α, the estimation of

FDR by (12.2.3) requires the estimation of m0.
For the estimation of m0, Storey (2002) considered that the histogram

of m p-values is a mixture of (i) m0 p-values that are corresponding to
the true null hypotheses and following U(0, 1) distribution, and (ii) m1 p-
values that are corresponding to the alternative hypotheses and expected
to be close to 0. Consequently, for a chosen constant λ away from 0, none
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(or few, if any) of the m1 p-values will fall above λ, so that the number of
p-values above λ,

∑m
j=1 I(pj > λ), can be approximated by the expected

frequency among the m0 p-values above λ from U(0, 1) distribution, i.e.
m0/(1− λ). Hence, for a given λ, m0 can be estimated by

m̂0(λ) =

∑m
j=1 I(pj > λ)

1− λ
.

By combining this m0 estimator with (12.2.3), Storey (2002) obtained the
following estimator for FDR(α)

F̂DR(α) =
α× m̂0(λ)

R(α)
=

α
∑m
j=1 I(pj > λ)

(1− λ)
∑m
j=1 I(pj ≤ α)

.

For an observed p-value pj , Storey (2002) defined the minimum FDR
level at which we reject Hj as q-value, which is given by

qj = inf
α≥pj

F̂DR(α).

When FDR(α) is strictly increasing in α, the above formula can be reduced
to

qj = F̂DR(pj).

It can be verified that this assumption holds if the power function of the
individual tests is concave in α, which is the case when the test statistics
follow a standard normal distribution under the null hypotheses. We would
reject Hj (or, equivalently, discovered gene j) if qj is smaller than or equal
to the prespecified FDR level.

Note that the primary assumption of independence amongm test statis-
tics was relaxed to independence only among m0 test statistics correspond-
ing to the null hypotheses by Storey and Tibshirani (2001), and to weak
independence among all m test statistics by Storey (2003) and Story et al.
(2004).

12.2.1 Sample Size Calculation

In this subsection, formulas and/or procedures for sample size calcuation
based on the approach for controlling FDR proposed by Jung (2005) will be
introduced. Let M0 and M1 denote the set of genes for which the null and
alternative hypotheses are true, respectively. Note that the cardinalities
of M0 and M1 are m0 and m1, respectively. Since the estimated FDR is
invariant to the order of the genes, we may rearrange the genes and set
M1 = {1, ...,m1} and M0 = {m1 + 1, ...,m}.
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By Storey (2002) and Storey and Tibshirani (2001), for large m and
under independence (or weak dependence) among the test statistics, we
have

R(α) = E(R0(α)) +E(R1(α)) + op(m)

= m0α+
∑
j∈M1

ξj(α) + op(m),

where Rh(α) =
∑
j∈Mh

I(pj ≤ α) for h = 0, 1, ξj(α) = P (pj ≤ α) is the
marginal power of the single α-test applied to gene j ∈ M1. From (12.2.3),
we have

FDR(α) =
m0α

m0α+
∑
j∈M1

ξj(α)
(12.2.4)

by omitting the error term.
Let Xij (Yij) denote the expression level of gene j for subject i in group

1 (and group 2, respectively) with common variance σ2j . For simplicity, we
consider two-sample t-tests,

Tj =
X̄j − Ȳj

σ̂j

√
n−1
1 + n−1

2

,

for hypothesis j (= 1, ..,m), where nk is the number of subjects in group
k(= 1, 2), X̄j and Ȳj are sample means of {Xij , i = 1, ..., n1} and {Yij , i =
1, ..., n2}, respectively, and σ̂2j is the pooled sample variance. We assume
a large sample (i.e. nk → ∞), so that Tj ∼ N(0, 1) for j ∈ M0. Let
n = n1 + n2 denote the total sample size, and ak = nk/n the allocation
proportion for group k.

Let δj denote the effect size for gene j in the fraction of its standard
error, i.e.

δj =
E(Xj)− E(Yj)

σj
.

At the moment, we consider one-sided tests, Hj : δj = 0 against H̄j : δj > 0,
by assuming δj > 0 for j ∈ M1 and δj = 0 for j ∈ M0. Note that, for large
n,

Tj ∼ N(δj
√
na1a2, 1)

for j ∈ M1. Thus, we have

ξj(α) = Φ̄(zα − δj
√
na1a2),

where Φ̄(·) denotes the survivor function and zα = Φ̄−1(α) is the upper
100α-th percentile of N(0, 1). Hence, (12.2.2) is expressed as

FDR(α) =
m0α

m0α+
∑
j∈M1

Φ̄(zα − δj
√
na1a2)

. (12.2.5)
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From (12.2.5), FDR is decreasing in δj , n and |a1 − 1/2|. Further, FDR
is increasing in α. To verify this, it suffices to show that, for j ∈ M1,
g(α) = ξj(α)/α is decreasing in α, or g′(α) = α−1{ξ′j(α) − α−1ξj(α)} is
negative for all α ∈ (0, 1). Note that the latter condition holds if ξj(α) is
concave in α. For this purpose, we assume that the test statistics follow
the standard normal distribution under the null hypotheses. Let φ(z) =
1/
√
2π exp(−z2/2) and Φ̄(z) =

∫∞
z

φ(t)dt denote the probability density
function and the survivor function of the standard normal distribution,
respectively. Noting that ξj(α) = Φ̄(zα − δj

√
na1a2) and zα = Φ̄−1(α), we

have

g′(α) =
αφ(Φ̄−1(α)− δj

√
na1a2)/φ(Φ̄−1(α))− Φ̄(Φ̄−1(α)− δj

√
na1a2)

α2

=
Φ̄(zα)φ(zα − δj

√
na1a2)/φ(zα)− Φ̄(zα − δj

√
na1a2)

α2
.

Showing g′(α) < 0 is equivalent to showing

φ(zα − δj
√
na1a2)

Φ̄(zα − δj
√
na1a2)

<
φ(zα)
Φ̄(zα)

,

which holds since δj > 0 and φ(z)/Φ̄(z) is an increasing function by the
following lemma.

Lemma 12.2.1. φ(z)/Φ̄(z) is an increasing function.
Proof: Let’s show that

N(z) ≡ log{φ(z)/Φ̄(z)} = −z2

2
− log

∫ ∞

z

exp(− t2

2
)dt

is an increasing function. Since

N′(z) = −z + exp(−z2/2)∫∞
z

exp(−t2/2)dt
,

N′(z) > 0 for z ≤ 0. For z > 0, N′(z) > 0 if and only if

L(z) ≡ 1
z
exp(−z2/2)−

∫ ∞

z

exp(−t2/2)dt

is positive. We have

L′(z) = − 1
z2

exp(−z2/2)− exp(−z2/2) + exp(−z2/2)

= − 1
z2

exp(−z2/2) < 0.

Hence, for z > 0, L is a decreasing function, and limz→0 L(z) = ∞ and
limz→∞ L(z) = 0, so that L(z) is positive. This completes the proof.
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Note that if the effect sizes are equal among the prognostic genes, FDR
is increasing in π0 = m0/m. It can be verified that FDR increases from 0 to
m0/m as α increases from 0 to 1. At the design stage of a microarray study,
m is usually determined by the microarray chips chosen for experiment and
m1, {δj , j ∈ M1} and a1 are projected based on past experience or data
from pilot studies if any. The only variables undecided in (12.2.5) are α and
n. With all other design parameters fixed, FDR is controlled at a certain
level by the chosen α level. Thus, Jung (2005) proposed choosing the sample
size n such that it will guarantee a certain number, say r1(≤ m1), of true
rejections with FDR controlled at a specified level f . Along this line, Jung
(2005) derived a formula for sample size calculation as follows.

In (12.2.5), the expected number of true rejections is

E{R1(α)} =
∑
j∈M1

Φ̄(zα − δj
√
na1a2). (12.2.6)

In multiple testing controlling FDR, E(R1)/m1 plays the role of the power
of a conventional testing, see Lee and Whitmore (2002) and van den Oord
and Sullivan (2003). With E(R1) and the FDR level set at r1 and f ,
respectively, (12.2.5) is then expressed as

f =
m0α

m0α+ r1
.

By solving this equation with respect to α, we obtain

α∗ =
r1f

m0(1− f)
.

Given m0, α∗ is the marginal type I error level for r1 true rejections with
the FDR controlled at f . With α and E(R1) replaced by α∗ and r1,
respectively, (12.2.6) yields an equation h(n) = 0, where

h(n) =
∑
j∈M1

Φ̄(zα∗ − δj
√
na1a2)− r1. (12.2.7)

We can then obtain the sample size by solving this equation. Jung (2005)
recommended solving the equation h(n) = 0 using the following bisection
method:

(a) Choose s1 and s2 such that 0 < s1 < s2 and h1h2 < 0, where hk =
h(sk) for k = 1, 2. (If h1h2 > 0 and h1 > 0, then choose a smaller s1;
if h1h2 > 0 and h2 < 0, then choose a larger s2.)

(b) For s3 = (s1 + s2)/2, calculate h3 = h(s3).
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(c) If h1h3 < 0, then replace s2 and h2 with s3 and h3, respectively. Else,
replace s1 and h1 with s3 and h3, respectively. Go to (b).

(d) repeat (b) and (c) until |s1 − s3| < 1 and |h3| < 1, and obtain the
required sample size n = [s3] + 1, where [s] is the largest integer
smaller than s.

If we do not have prior information on the effect sizes, we may want to
assume equal effect sizes δj = δ (> 0) for j ∈ M1. In this case, (12.2.7) is
reduced to

h(n) = m1Φ̄(zα∗ − δ
√
na1a2)− r1

and, by solving h(n) = 0, we obtain the following formula:

n =
[
(zα∗ + zβ∗)2

a1a2δ2

]
+ 1, (12.2.8)

where α∗ = r1f/{m0(1 − f)} and β∗ = 1 − r1/m1. Note that formula
(12.2.8) is equivalent to the conventional sample size formula for detecting
an effect size of δ with a desired power of 1− β∗ while controlling the type
I error level at α∗.

As a result, the procedure for sample size calculation based on the ap-
proach of controlling FDR proposed by Jung (2005) can be summarized as
follows.

• Step 1: Specify the input parameters:
f = FDR level
r1 = number of true rejections
ak = allocation proportion for group k(= 1, 2)
m = total number of genes for testing
m1 = number of prognostic genes (m0 = m−m1)
{δj , j ∈ M1} = effect sizes for prognostic genes

• Stpe 2: Obtain the required sample size:
If the effect sizes are constant δj = δ for j ∈ M1,

n =
[
(zα∗ + zβ∗)2

a1a2δ2

]
+ 1,

where α∗ = r1f/{m0(1− f)} and β∗ = 1− r1/m1.
Otherwise, solve h(n) = 0 using the bisection method, where

h(n) =
∑
j∈M1

Φ̄(zα∗ − δj
√
na1a2)− r1

and α∗ = r1f/{m0(1− f)}.
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Remarks

Note that for given sample sizes n1 and n2, one may want to check how
many true rejections are expected as if we want to check the power in a
conventional testing. In this case, we may solve the equations for r1. For
example, when the effect sizes are constant, δj = δ for j ∈ M1, we solve
the equation

zα∗(r1) + zβ∗(r1) = δ

√
n−1
1 + n−1

2

with respect to r1, where α∗(r1) = r1f/{m0(1−f)} and β∗(r1) = 1−r1/m1.

Examples

To illustrate the procedure for sample size calculation under the approach
for controlling FDR proposed by Jung (2005), the examples based on one-
sided tests with constant effect sizes and varied effect sizes described in
Jung (2005) are used.

Example 1: One-Sided Tests and Constant Effect Sizes. Suppose
that we want to design a microarray study on m = 4000 candidate genes,
among which about m1 = 40 genes are expected to be differentially ex-
pressing between two patient groups. Note that m0 = m − m1 = 3960.
Constant effect sizes, δj = δ = 1, for the m1 prognostic genes are pro-
jected. About equal number of patients are expected to enter the study
from each group, i.e. a1 = a2 = .5. We want to discover r1 = 24 prognostic
genes by one-sided tests with the FDR controlled at f = 1% level. Then

α∗ =
24× 0.01

3960× (1− 0.01)
= 0.612× 10−4

and β∗ = 1 − 24/40 = 0.4, so that zα∗ = 3.841 and zβ∗ = 0.253. Hence,
from (12.2.8), the required sample size is given as

n =
[
(3.841 + 0.253)2

0.5× 0.5× 12

]
+ 1 = 68,

or n1 = n2 = 34.

Example 2: One-Sided Tests and Varying Effect Sizes. We assume
(m,m1, a1, r1, f) = (4000, 40, 0.5, 24, 0.01), δj = 1 for 1 ≤ j ≤ 20 and
δj = 1/2 for 21 ≤ j ≤ 40. Then

α∗ =
24× 0.01

3960× (1− 0.01)
= 0.612× 10−4
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Table 12.2.2: The bisection procedure for Example 2.

Step s1 s2 s3 h1 h2 h3
1 100.0 200.0 150.0 −4.67 3.59 0.13
2 100.0 150.0 125.0 −4.67 0.13 −1.85
3 125.0 150.0 137.5 −1.85 0.13 −0.80
4 137.5 150.0 143.8 −0.80 0.13 −0.32
5 143.8 150.0 146.9 −0.32 0.13 −0.09
6 146.9 150.0 148.4 −0.09 0.13 0.02
7 146.9 148.4 147.7 −0.09 0.02 −0.04

Source: Jung et al. (2005).

and zα∗ = 3.841, so that we have

h(n) = 20Φ̄(3.841−
√
n/4) + 20Φ̄(3.841− .5

√
n/4)− 24

Table 12.2.2 displays the bisection procedure with starting values s1 = 100
and s2 = 200. The procedure stops after 7 iterations and gives n = [147.7]+
1 = 148.

Two-Sided Tests

Suppose one wants to test Hj : δj = 0 against H̄j : δj �= 0. We reject
Hj if |Tj | > zα/2 for a certain α level, and obtain the power function
ξj(α) = Φ̄(zα/2 − |δj |

√
na1a2). In this case, α∗ is the same as that for

one-sided test case, i.e.,

α∗ =
r1f

m0(1− f)
,

but (12.2.7) is changed to

h(n) =
∑
j∈M1

Φ̄(zα∗/2 − |δj |
√
na1a2)− r1. (12.2.9)

If the effect sizes are constant, i.e. δj = δ for j ∈ M1, then we have a
closed form formula

n =
[
(zα∗/2 + zβ∗)2

a1a2δ2

]
+ 1, (12.2.10)

where α∗ = r1f/{m0(1− f)} and β∗ = 1− r1/m1.
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Now we derive the relationship between the sample size for one-sided test
case and that for two-sided test case. Suppose that the input parameters
m, m1, a1 and {δj , j ∈ M1} are fixed and we want r1 true rejections in
both cases. Without loss of generality, we assume that the effect sizes are
nonnegative. The only difference between the two cases is the parts of α∗

in (12.2.7) and α∗/2 in (12.2.9). Let f1 and f2 denote the FDR levels for
one- and two-sided testing cases, respectively. Then, the two formulas will
give exactly the same sample size as far as these two parts are identical, i.e.

r1f1
m0(1− f1)

=
r1f2

2m0(1− f2)
,

which yields f1 = f2/(2 − f2). In other words, with all other parameters
fixed, the sample size for two-sided tests to control the FDR at f can be
obtained using the sample size formula for one-sided tests (12.2.7) by setting
the target FDR level at f/(2 − f). Note that this value is slightly larger
than f/2. The same relationship holds when the effect sizes for prognostic
genes are constant.

To illustrate the above procedure for sample size calculation under the
approach for controlling FDR proposed by Jung (2005), the following
example based on two-sided tests with constant effect sizes described in
Jung (2005) is considered.

Example 3: Two-sided Tests and Constant Effect Sizes. Jung
(2005) considered (m,m1, δ, a1, r1, f) = (4000, 40, 1, 0.5, 24, 0.01) as those
given in Example 1, but use two-sided tests. Then

α∗ =
24× 0.01

3960× (1− 0.01)
= 0.612× 10−4

and β∗ = 1 − 24/40 = 0.4, so that zα∗/2 = 4.008 and zβ∗ = 0.253. Hence,
from (12.2.10), the required sample size is given as

n =
[
(4.008 + 0.253)2

0.5× 0.5× 12

]
+ 1 = 73.

By the above argument, we obtain exactly the same sample size using
formula (12.2.8) and f = .01/(2 − .01) = 0.005025. Note that this sample
size is slightly larger than n = 68 which was obtained for one-sided tests in
Example 1.

Exact Formula Based on t-Distribution

Jung (2005) indicated that if the gene expression level, or its transforma-
tion, is a normal random variable and the available resources are so limited
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that only a small sample size can be considered, then one may want to
use the exact formula based on t-distributions, rather than that based on
normal approximation. In one-sided testing case, Jung (2005) suggested
modifying (12.2.5) as follows

FDR(α) =
m0α

m0α+
∑
j∈M1

Tn−2,δj
√
na1a2(tn−2,α)

,

where Tν,η(t) is the survivor function for the non-central t-distribution with
ν degrees of freedom and non-centrality parameter η, and tν,α = T−1

ν,0 (α) is
the upper 100α-th percentile of the central t-distribution with ν degrees of
freedom. The required sample size n for r1 true rejections with the FDR
controlled at f solves hT (n) = 0, where

hT (n) =
∑
j∈M1

Tn−2,δj
√
na1a2(tn−2,α∗)− r1

and α∗ = r1f/{m0(1 − f)}. If the effect sizes are constant among the
prognostic genes, then the equation reduces to

Tn−2,δ
√
na1a2(tn−2,α∗) = r1/m1,

but, contrary to the normal approximation case, we do not have a closed
form sample size formula since n is included in both the degrees of freedom
and the non-centrality parameter of the t-distribution functions.

Similarly, the sample size for two-sided t-tests can be obtained by solving
hT (n) = 0, where

hT (n) =
∑
j∈M1

Tn−2,|δj |√na1a2(tn−2,α∗/2)− r1

and α∗ = r1f/{m0(1 − f)}. Note that the sample size for FDR = f with
two-sided testings is the same as that for FDR = f/(2− f) with one-sided
testings as in the testing based on normal approximation.

12.3 Family-wise Error Rate (FWER) Con-
trol

Microarray studies usually involve screening and monitoring of expression
levels in cells for thousands of genes simultaneously for studying the as-
sociation of the expression levels and an outcome or other risk factor of
interest (Golub et al., 1999; Alizadeh and Staudt, 2000; Sander, 2000). A
primary aim is often to reveal the association of the expression levels and
an outcome or other risk factor of interest. Traditional statistical testing
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procedures, such as two-sample t-tests or Wilcoxon rank sum tests, are
often used to determine statistical significance of the difference in gene ex-
pression patterns. These approaches, however, encounter a serious problem
of multiplicity as a very large number—possibly 10,000 or more—of hy-
potheses are to be tested, while the number of studied experimental units
is relatively small— tens to a few hundreds (West et al., 2001).

If we consider a per comparison type I error rate α in each test, the prob-
ability of rejecting any null hypothesis when all null hypotheses are true,
which is called the family-wise error rate (FWER), will be greatly inflated.
So as to avoid this pitfall, the Bonferroni test is used most commonly in this
field despite its well-known conservativeness. Although Holm (1979) and
Hochberg (1988) improved upon such conservativeness by devising multi-
step testing procedures, they did not exploit the dependency of the test
statistics and consequently the resulting improvement is often minor. West-
fall and Young (1989, 1993) proposed adjusting p-values in a state-of-the-
art step-down manner using simulation or resampling method, by which
dependency among test statistics is effectively incorporated. Westfall and
Wolfinger (1997) derived exact adjusted p-values for a step-down method
for discrete data. Recently, the Westfall and Young’s permutation-based
test was introduced to microarray data analyses and strongly advocated by
Dudoit and her colleagues. Troendle, Korn, and McShane (2004) favor per-
mutation test over bootstrap resampling due to slow convergence in high
dimensional data. Various multiple testing procedures and error control
methods applicable to microarray experiments are well documented in Du-
doit et al. (2003). Which test to use among a bewildering variety of choices
should be judged by relevance to research questions, validity (of underlying
assumptions), type of control (strong or weak), and computability. Jung,
Bang, and Young (2005) showed that the single-step test provides a simple
and accurate method for sample size determination and that can also be
used for multi-step tests.

12.3.1 Multiple Testing Procedures

In this subsection, commonly employed single-step and multi-step testing
procedures are briefly described.

Single-Step vs. Multi-Step

Suppose that there are n1 subjects in group 1 and n2 subjects in group 2.
Gene expression data for m genes are measured from each subject. Fur-
thermore, suppose that we would like to identify the informative genes,
i.e., those that are differentially expressed between the two groups. Let
(X1i1, ..., X1im) and (X2i1, ..., X2im) denote the gene expression levels ob-
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tained from subject i (= 1, ..., n1) in group 1 and subject i (= 1, ..., n2)
in group 2, respectively. Let µ1 = (µ11, ..., µ1m) and µ2 = (µ21, ..., µ2m)
represent the respective mean vectors. In order to test whether gene j
(= 1, ...,m) is not differentially expressed between the two conditions, i.e.,
Hj : µ1j − µ2j = 0, the following t-test statistic is commonly considered:

Tj =
X̄1j − X̄2j

Sj

√
n−1
1 + n−1

2

,

where X̄kj is the sample mean in group k (= 1, 2) and S2
j = {

∑n1
i=1(X1ij −

X̄1j)2 +
∑n2
i=1(X2ij − X̄2j)2}/(n1 + n2 − 2) is the pooled sample variance

for the j-th gene.
Suppose that our interest is to identify any genes that are overexpressed

in group 1. This can be formulated as multiple one-sided tests of Hj vs.
H̄j : µ1j > µ2j for j = 1, ...,m. In this case, a single-step procedure, which
adopts a common critical value c to reject Hj (in favor of H̄j , when Tj > c)
is commonly employed. For this single-step procedure, the FWER fixed
at α is given by

α = P (T1 > c or T2 > c, ..., or Tm > c|H0) = P ( max
j=1,...,m

Tj > c|H0),

(12.3.11)
where H0 : µ1j = µ2j for all j = 1, ...,m, or equivalently H0 = ∩mj=1Hj , is
the complete null hypothesis and the relevant alternative hypothesis isHa =
∪mj=1H̄j . In order to control FWER at the nominal level α, the method
of Bonferroni uses c = cα = tn1+n2−2,α/m, the upper α-quantile for the t-
distribution with n1+n2−2 degrees of freedom imposing normality for the
expression data, or c = zα/m, the upper α-quantile for the standard normal
distribution based on asymptotic normality. If gene expression levels are
not normally distributed, the assumption of t−distribution may be violated.
Furthermore, n1 and n2 usually may not be large enough to warrant a
normal approximation. Note that the Bonferroni procedure is conservative
for correlated data even when the assumed conditions are met. In practice,
microarray data are collected from the same individuals and experience
co-regulation. Thus, they are expected to be correlated. To take into
consideration the correlation structure under (12.3.11), Jung, Bang, and
Young (2005) derived the distribution of W = maxj=1,...,m Tj under H0

using the method permutation. Their method is briefly described below.
For a given total sample size n, there are B =

(
n
n1

)
different ways of

partitioning the pooled sample of size n = n1 + n2 into two groups of sizes
n1 and n2. The number of possible permutations B can be very large even
with a small sample size. For the observed test statistic tj of Tj from the
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original data, the unadjusted (or raw) p-values can be approximated by

pj ≈ B−1
B∑
b=1

I(t(b)j ≥ tj)

where I(A) is an indicator function of event A. For gene-specific inference,
Jung, Bang, and Young (2005) define an adjusted p-value for gene j as the
minimum FWER for which Hj will be rejected, i.e.,

p̃j = P ( max
j′=1,...,m

Tj′ ≥ tj |H0).

This probability can be estimated by the following algorithms for permu-
tation distribution:

Algorithm 1 (Single-step procedure)

(A) Compute the test statistics t1, ..., tm from the original data.

(B) For the b-th permutation of the original data (b = 1, ..., B), compute
the test statistics t(b)1 , ..., t

(b)
m and wb = maxj=1,...,m t

(b)
j .

(C) Estimate the adjusted p-values by p̃j =
∑B
b=1 I(wb ≥ tj)/B for j =

1, ...,m.

(D) Reject all hypotheses Hj (j = 1, ...,m) such that p̃j < α.

Alternatively, with steps (C) and (D) replaced, the cut-off value cα can
be determined:

Algorithm 1′

(C′) Sort w1, ..., wB to obtain the order statistics w(1) ≤ · · · ≤ w(B) and
compute the critical value cα = w([B(1−α)+1]), where [a] is the largest
integer no greater than a. If there exist ties, cα = w(k) where k is the
smallest integer such that w(k) ≥ w([B(1−α)+1]).

(D′) Reject all hypotheses Hj (j = 1, ...,m) for which tj > cα.

Below is a step-down analog suggested by Dudoit et al. (2002, 2003),
originally proposed by Westfall and Young (1989, 1993):

Algorithm 2 (Step-down procedure)

(A) Compute the test statistics t1, ..., tm from the original data.
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(A1) Sort t1, ..., tm to obtain the ordered test statistics tr1 ≥ · · · ≥ trm ,
where Hr1 , ..., Hrm are the corresponding hypotheses.

(B) For the b-th permutation of the original data (b = 1, ..., B), com-
pute the test statistics t

(b)
r1 , ..., t

(b)
rm and ub,j = maxj′=j,...,m t

(b)
rj′ for

j = 1, ...,m.

(C) Estimate the adjusted p-values by p̃rj =
∑B
b=1 I(ub,j ≥ trj )/B for

j = 1, ...,m.

(C1) Enforce monotonicity by setting p̃rj ← max(p̃rj−1 , p̃rj ) for j =
2, ...,m.

(D) Reject all hypotheses Hrj (j = 1, ...,m) for which p̃rj < α.

Remarks

Note that as indicated by Westfall and Young (1993), two-sided tests can
be fulfilled by replacing tj by |tj | in steps (B) and (C) in Algorithm 1. It
can be shown that a single-step procedure, controlling the FWER weakly
as in (12.3.11), also controls the FWER strongly under the condition of
subset pivotality.

12.3.2 Sample Size Calculation

Jung, Bang, and Young (2005) derived a procedure for sample size calcu-
lation using the single-step procedure. As indicated by Jung, Bang, and
Young (2005), the calculated sample size is also applied to the step-down
procedure since the two procedures have the same global power. In what
follows, the procedure proposed by Jung, Bang, and Young (2005) using
the single-step procedure is briefly described.

Algorithms for sample size calculation

Suppose that one wishes to choose a sample size for achieving a desired
global power of 1− β. Assuming that the gene expression data

{(Xki1, ..., Xkim), for i = 1, .., nk, k = 1, 2}

are random samples from an unknown distribution with E(Xkij) = µkj ,
V ar(Xkij) = σ2j and Corr(Xkij, Xkij′) = ρjj′ . Let R = (ρjj′)j,j′=1,...,m

be the m × m correlation matrix. Under Ha, the effect size is given by
δj = (µ1j − µ2j)/σj . At the planning stage of a microarray study, we
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usually project the number of predictive genes D and set an equal effect
size among them, i.e.,

δj = δ for j = 1, ..., D
= 0 for j = D + 1, ...,m. (12.3.12)

It can be verified that for large n1 and n2, (T1, ..., Tm) has approximately
the same distribution as

(e1, ..., em) ∼ N(0,R)

under H0 and (ej + δj
√
npq, j = 1, ...,m) under Ha, where p = n1/n and

q = 1− p. Hence, at FWER = α, the common critical value cα is given as
the upper α quantile of maxj=1,...,m ej from (12.3.11). Similarly, the global
power as a function of n is given by

ha(n) = P{ max
j=1,...,m

(ej + δj
√
npq) > cα}.

Thus, a given FWER = α, the sample size n required for detecting the
specified effect sizes (δ1, ..., δm) with a global power 1−β can be obtained as
the solution to ha(n) = 1−β. Note that analytic calculation of cα and ha(n)
is feasible only when the distributions of maxj ej and maxj(ej+δj

√
npq) are

available in simple forms. With a large m, however, it is almost impossible
to derive the distributions. To avoid the difficulty, Jung, Bang, and Young
suggested the following simulation be considered.

A simulation can be conducted to approximate cα and ha(·) by generat-
ing random vectors (e1, ..., em) from N(0,R). For simplicity, Jung, Bang,
and Young (2005) suggested generating the random numbers assuming a
simple, but realistic, correlation structure for the gene expression data such
as block compound symmetry (BCS) or CS (i.e., with only 1 block). Sup-
pose that m genes are partitioned into L blocks, and Bl denotes the set of
genes belonging to block l (l = 1, ..., L). We may assume that ρjj′ = ρ if
j, j′ ∈ Bl for some l, and ρjj′ = 0 otherwise. Under the BCS structure,
(e1, ..., em) can be generated as a function of i.i.d. standard normal random
variates u1, ..., um, b1, ..., bL:

ej = uj
√
1− ρ+ bl

√
ρ for j ∈ Bl. (12.3.13)

As a result, the algorithm for sample size calculation can be summarized
as follows:

(a) Specify FWER (α), global power (1− β), effect sizes (δ1, ..., δm) and
correlation structure (R).

(b) Generate K (say, 10, 000) i.i.d. random vectors {(e(k)1 , ..., e
(k)
m ), k =

1, ...,K} from N(0,R). Let ēk = maxj=1,...,m e
(k)
j .
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(c) Approximate cα by ē[(1−α)K+1], the [(1− α)K + 1]-th order statistic
of ē1, ..., ēK .

(d) Calculate n by solving ĥa(n) = 1−β by the bisection method (Press et
al., 1996), where ĥa(n) = K−1

∑K
k=1 I{maxj=1,...,m(e

(k)
j +δj

√
npq) >

cα}.

Mathematically put, step (d) is equivalent to finding n∗ = min{n :
ĥa(n) ≥ 1− β}.

Note that the permutation procedure may alter the correlation structure
among the test statistics under Ha. Suppose that there are m1 genes in
block 1, among which the first D are predictive. Then, under (12.3.13) and
BCS, we have:

Corr(Tj , Tj′) ≈


(ρ+ pqδ2)/(1 + pqδ2) ≡ ρ1 if 1 ≤ j < j′ ≤ D

ρ/
√
1 + pqδ2 ≡ ρ2 if 1 ≤ j ≤ D < j′ ≤ m1

ρ if D < j < j′ ≤ m1

ρ or j, j′ ∈ Bl, l ≥ 2
(12.3.14)

where the approximation is with respect to large n.
Let R̃ denote the correlation matrix with these correlation coefficients.

Note that R̃ = R under H0 : δ = 0, so that calculation of cα is the same
as in the naive method. However, ha(n) should be modified to

h̃a(n) = P{ max
j=1,...,m

(ẽj + δj
√
npq) > cα}

where random samples of (ẽ1, ..., ẽm) can be generated using

ẽj =


uj
√
1− ρ1 + b1

√
ρ2 + b−1

√
ρ1 − ρ2 if 1 ≤ j ≤ D

uj
√
1− ρ+ b1

√
ρ2 + b0

√
ρ− ρ2 if D < j ≤ m1

uj
√
1− ρ+ bl

√
ρ if j ∈ Bl for l ≥ 2

with u1, ..., um, b−1, b0, b1, ..., bL independently from N(0, 1). Then,
{(ẽ(k)1 , ..., ẽ

(k)
m ), k = 1, ...,K} are i.i.d. random vectors from N(0, R̃), and

ˆ̃ha(n) = K−1
K∑
k=1

I{ max
j=1,...,m

(ẽ(k)j + δj
√
npq) > cα}.

The sample size can be obtained by solving ˆ̃ha(n) = 1− β.
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Remarks

Note that the methods discussed above are different from a pure simula-
tion method in the sense that it does not require generating the raw data
and then calculating test statistics. Thus, the computing time is not of an
order of n × m, but of m. Furthermore, we can share the random num-
bers u1, ..., um, b−1, b0, b1, ..., bL in the calculation of cα and n. We do not
need to generate a new set of random numbers at each replication of the
bisection procedures either. If the target n is not large, the large sample
approximation may not perform well. In our simulation study, we examine
how large n needs to be for an adequate approximation. If the target n is
so small that the approximation is questionable, then we have to use a pure
simulation method by generating raw data.

12.3.3 Leukemia Example

To illustrate the use of the procedure described above, the leukemia data
from Golub et al. (1999) are reanalyzed. There are nall = 27 patients with
acute lymphoblastic leukemia (ALL) and naml = 11 patients with acute
myeloid leukemia (AML) in the training set, and expression patterns inm =
6, 810 human genes are explored. Note that, in general, such expression
measures are subject to preprocessing steps such as image analysis and nor-
malization, and also to a priori quality control. Supplemental information
and dataset can be found at the website http://www.genome.wi.mit.edu
/MPR.

Gene-specific significance was ascertained for alternative hypotheses
H̄1,j : µALL,j �= µAML,j , H̄2,j : µALL,j < µAML,j , and H̄3,j : µALL,j >
µAML,j by SDP and SSP. Jung, Bang, and Young (2005) implemented
their algorithm as well as PROC MULTTEST in SAS with B = 10, 000
permutations (Westfall, Zaykin and Young, 2001). Due to essentially iden-
tical results, we report the results from SAS. Table 12.3.1 lists 41 genes with
two-sided adjusted p-values that are smaller than 0.05. Although adjusted
p-values by SDP are slightly smaller than SSP, the results are extremely
similar, confirming the findings from our simulation study. Note that Golub
et al. (1999) and we identified 1,100 and 1,579 predictive genes without ac-
counting for multiplicity, respectively. A Bonferroni adjustment declared
37 significant genes. This is not so surprising because relatively low corre-
lations among genes were observed in this data. We do not show the results
for H̄3,j ; only four hypotheses are rejected. Note that the two-sided p-value
is smaller than twice of the smaller one-sided p-value as theory predicts and
that the difference is not often negligible (Shaffer, 2002).

In Table 12.3.1, adjusted p-values from 2-sided hypothesis less than .05
are listed in increasing order among total m=6,810 genes investigated. The
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Table 12.3.3: Reanalysis of the leukemia data from Golub et al. (1999)

Alternative hypothesis

µall �= µaml µall < µaml

Gene index (description) SDP SSP SDP SSP

1701 (FAH Fumarylacetoacetate) .0003 .0003 .0004 .0004

3001 (Leukotriene C4 synthase) .0003 .0003 .0004 .0004

4528 (Zyxin) .0003 .0003 .0004 .0004

1426 (LYN V-yes-1 Yamaguchi) .0004 .0004 .0005 .0005

4720 (LEPR Leptin receptor) .0004 .0004 .0005 .0005

1515 (CD33 CD33 antigen) .0006 .0006 .0006 .0006

402 (Liver mRNA for IGIF) .0010 .0010 .0009 .0009

3877 (PRG1 Proteoglycan 1) .0012 .0012 .0010 .0010

1969 (DF D component of complement) .0013 .0013 .0011 .0011

3528 (GB DEF) .0013 .0013 .0010 .0010

930 (Induced Myeloid Leukemia Cell) .0016 .0016 .0013 .0013

5882(IL8 Precursor) .0016 .0016 .0013 .0013

1923 (PEPTIDYL-PROLYL CIS-TRANS

Isomerase) .0017 .0017 .0014 .0014

2939 (Phosphotyrosine independent ligand p62) .0018 .0018 .0014 .0014

1563 (CST3 Cystatin C) .0026 .0026 .0021 .0021

1792 (ATP6C Vacuolar H+ ATPase proton

channel subunit) .0027 .0027 .0023 .0023

1802 (CTSD Cathepsin D) .0038 .0038 .0032 .0032

5881 (Interleukin 8) .0041 .0041 .0036 .0036

6054 (ITGAX Integrin) .0056 .0055 .0042 .0041

6220 (Epb72 gene exon 1) .0075 .0075 .0062 .0062

1724 (LGALS3 Lectin) .0088 .0088 .0071 .0071

2440 (Thrombospondin-p50) .0091 .0091 .0073 .0073

6484 (LYZ Lysozyme) .0101 .0100 .0081 .0080

1355 (FTL Ferritin) .0107 .0106 .0086 .0085

2083 (Azurocidin) .0107 .0106 .0086 .0085

1867 (Protein MAD3) .0114 .0113 .0092 .0091

6057 (PFC Properdin P factor) .0143 .0142 .0108 .0107

3286 (Lysophospholipase homolog) .0168 .0167 .0126 .0125

6487 (Lysozyme) .0170 .0169 .0127 .0126

1510 (PPGB Protective protein) .0178 .0177 .0133 .0132

6478 (LYZ Lysozyme) .0193 .0191 .0144 .0142

6358 (HOX 2.2) .0210 .0208 .0160 .0158

3733 (Catalase EC 1.11.1.6) .0216 .0214 .0162 .0160

1075 (FTH1 Ferritin heavy chain) .0281 .0279 .0211 .0209

6086 (CD36 CD36 antigen) .0300 .0298 .0224 .0222

189 (ADM) .0350 .0348 .0260 .0258

1948 (CDC25A Cell division cycle) .0356 .0354 .0263 .0261

5722 (APLP2 Amyloid beta precursor-like

protein) .0415 .0413 .0306 .0304

5686 (TIMP2 Tissue inhibitor of

metalloproteinase) .0425 .0423 .0314 .0312

5453 (C-myb) .0461 .0459 1.000 1.000

6059 (NF-IL6-beta protein mRNA) .0482 .0480 .0350 .0348

Source: Golub et al. (1999) and Jung et al. (2005).
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total number of studied subjects n was 38 (nall = 27 and naml = 11).
B = 10, 000 times of permutation were used. Note that C-myb gene has
p-value of 0.015 against the hypothesis µall > µaml. Although some gene
descriptions are identical, gene accession numbers are different.

Suppose that we would like to design a prospective study to identify
predictive genes overexpressing in AML based on observed parameter val-
ues. So we assume m = 6, 810, p = 0.3(≈ 11/38), D = 10 or 100, δ = 0.5
or 1, and BCS with block size 100 or CS with a common correlation coef-
ficient of ρ = 0.1 or 0.4. We calculated the sample size using the modified
formula under each parameter setting for FWER α = 0.05 and a global
power 1 − β = 0.8 with K = 5, 000 replications. For D = 10 and δ = 1,
the minimal sample size required for BCS/CS are 59/59 and 74/63 for
ρ = 0.1 and 0.4, respectively. If a larger number of genes, say D = 100,
are anticipated to overexpress in AML with the same effect size, the re-
spective sample sizes reduce to 34/34 and 49/41 in order to maintain the
same power. With δ = 0.5, the required sample size becomes nearly 3.5 to
4 times that for δ = 1. Note that, with the same ρ, BCS tends to require
a larger sample size than CS.

An interesting question is raised regarding the accuracy of the sample
size formula when the gene expression data have distributions other than
the multivariate normal distributions. We considered the setting α = 0.05,
1−β = 0.8, δ = 1, D = 100, ρ = 0.1 with CS structure, which results in the
smallest sample size, n = 34, in the above sample size calculation. Gene
expression data were generated from a correlated asymmetric distribution:

Xkj = µkj + (ekj − 2)
√
ρ/4 + (ek0 − 2)

√
(1− ρ)/4

for 1 ≤ j ≤ m and k = 1, 2. Here, µ1j = δj and µ2j = 0, and ek0, ek1, ..., ekm
are i.i.d. random variables from a χ2 distribution with 2 degrees of freedom.
Note that (Xk1, ..., Xkm) have means (µk1, ..., µkm), marginal variances 1,
and a compound symmetry correlation structure with ρ = 0.1. In this case,
we obtained an empirical FWER of 0.060 and an empirical global power of
0.832 which are close to the nominal α = 0.05 and 1−β = 0.8, respectively,
from a simulation with B = N = 1, 000.

12.4 Concluding Remarks

Microarray has been a major high-throughput assay method to display
DNA or RNA abundance for a large number of genes concurrently. Discov-
ery of the prognostic genes should be made taking multiplicity into account,
but also with enough statistical power to identify important genes success-
fully. Due to the costly nature of microarray experiments, however, often
only a small sample size is available and the resulting data analysis does
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not give reliable answers to the investigators. If the findings from a small
study look promising, a large scale study may be developed to confirm the
findings using appropriate statistical tools. As a result, sample size calcu-
lation plays an important role in the design stage of such a confirmatory
study. It can be used to check the statistical power, r1/m1, of a small scale
pilot study as well.

In recent years, many researchers have proposed the new concepts for
controlling errors such as FDR and positive-FDR (i.e., pFDR), which con-
trol the expected proportion of type I error among the rejected hypotheses
(Benjamini and Hochberg, 1995; Storey, 2002). Controlling these quanti-
ties relaxes the multiple testing criteria compared to controlling FWER in
general and increase the number of declared significant genes. In particu-
lar, pFDR is motivated by Bayesian perspective and inherits the idea of
single-step in constructing q-values, which are the counterpart of the ad-
justed p-values in this case (Ge et al., 2003). In practice, it is of interest
to compare sample sizes obtained using the methods for controlling FDR,
pFDR and FWER. FWER is important as a benchmark because the
re-examination of Golub et al.’s data reveals that classical FWER control
(along with global power) may not necessarily be as exceedingly conserva-
tive as many researchers thought and carries clear conceptual and practical
interpretations.

The formula and/or procedure for the FDR approach described in this
chapter is to calculate the sample size for a specified number of true re-
jections (or the expected number of true rejections given a sample size)
while controlling the FDR at a given level. The input variables to be
pre-specified are total number of genes for testing m, projected number of
prognostic genes m1, allocation proportions ak between groups, and effect
sizes for the prognostic genes. When the effect sizes among the prognostic
genes are the same, a closed form formula for sample size calculation is
available.

It should be noted that although there are many research publications
on sample size estimation in the microarray context, none examined the
accuracy of their estimates. Most of them focused on exploratory and ap-
proximate relationships among statistical power, sample size (or the number
of replicates) and effect size (often, in terms of fold-change), and used the
most conservative Bonferroni adjustment without any attempt to incor-
porate underlying correlation structure (Witte, Elston and Cardon, 2000;
Wolfinger et al., 2001; Black and Doerge, 2002; Lee and Whitmore, 2002;
Pan et al., 2002; Simon, Radmacher and Dobbin, 2002; Cui and Churchill,
2003). By comparing empirical power resulting from naive and modified
methods, Jung, Bang, and Young (2005) showed that an ostensibly similar
but incorrect choice of sample size ascertainment could cause considerable
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underestimation of required sample size. Thus. Jung, Bang, and Young
recommended that the assessment of bias in empirical power (compared to
nominal power) should be done as a conventional step in the research of
sample size calculation.
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Chapter 13

Bayesian Sample Size
Calculation

During the past decade, the approach for sample size determination orig-
inating from Bayesian’s point of view has received much attention from
academia, industry, and government. Although there are still debates be-
tween frequentist and Bayesian, Berger, Boukai and Wang (1997, 1999)
have successfully reconciled the merits from both frequentist and Bayesian
approaches. However, no specific discussions regarding sample size determi-
nation for clinical trials at the planning stage are provided from Bayesian’s
point of view. Their work has stimulated research on sample size calcu-
lation using Bayesian’s approach thereafter. The increasing popularity of
sample size calculation using Bayesian’s approach may be due to the follow-
ing reason. The traditional sample size calculation based on the concept
of frequencist assumes that the values of the true parameters under the
alternative hypothesis are known. This is a strong assumption that can
never be true in reality. In practice, these parameters are usually unknown
and hence have to be estimated based on limited data from a pilot study.
This raises an important question: how to control the uncertainty of the
parameter from the pilot study (Wang, Chow, and Chen, 2005). Note that
the relatively small pilot study may not be the only source of the parameter
uncertainty. In some situations, the magnitude of the non-centrality param-
eter may be obtained simply from subjective clinical opinions (Spiegelhalter
and Freedman, 1986). In such a situation, the true parameter specification
uncertainty seems to be even severe. Some related works can be found in
Joseph and Bélisle (1997), Joseph, Wolfson and du Berger (1995), Lindley
(1997), and Pham-Gia (1997).

Many other researchers (e.g., Lee and Zelen, 2000) questioned the ba-
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sic (frequentist) testing approach, which has been widely used in practice.
More specifically, they argued that instead of using the frequentist type I
and type II error rates for determining the needed sample size, it is more
appropriate to use the posterior error rates from Bayesian’s perspective. In
other words, the Bayesian’s approach concerns “If the trial is significant,
what is the probability that the treatment is effective?” It has been ar-
gued that by ignoring these fundamental considerations, the frequentist’s
approach may result in positive harm due to inappropriate use of the er-
ror rates (Lee and Zelen, 2000). In this chapter, we summarize current
Bayesian’s sample size calculations into two categories. One category con-
siders making use of Bayesian’s framework to reflect investigator’s belief
regarding the uncertainty of the true parameters, while the traditional fre-
quentist’s testing procedure is still used for analyzing the data. The other
category considers determining the required sample size when a Bayesian’s
testing procedure is used. We consider both categories important and use-
ful methodologies for biopharmaceutical research and development. Hence,
in this chapter, we will focus on research work done in these categories.
On the other hand, we do believe the effort done thus far is far less than
enough for providing a comprehensive overview of Bayesian’s sample size
calculations. Therefore, practice issues and possible future research topics
will also be discussed whenever possible.

In the next section, we introduce the procedure proposed by Joseph
and Bélisle (1997). In Section 13.2, the important work by Lee and Zelen
(2000) is summarized. Lee and Zelen (2000) proposed a procedure for sam-
ple size calculation based on the concept for achieving a desired posterior
error probability. The method is simple and yet very general. In Section
13.3, an alternative approach, which is referred to as the bootstrap-median
approach, is proposed. This chapter is concluded with a brief discussion,
where some practical issues and possible future research topics are briefly
outlined.

13.1 Posterior Credible Interval Approach

In their early work, Joseph and Bélisle (1997) had studied the procedure
for sample size calculation from Bayesian’s point of view. As it can be seen
from Chapter 3, for a one-sample two-sided hypotheses, the sample size
needed to achieve the error rate of (α, β) is given by

n ≥
4σ2z1−α/2

l2
. (13.1.1)

Joseph and Bélisle (1997) indicated that such a commonly used (frequentist)
formula may suffer the following drawbacks:

© 2008 by Taylor & Francis Group, LLC



13.1. Posterior Credible Interval Approach 329

(1). The value of the standard deviation σ is usually unknown and yet it
plays a critical role in determination of the final sample size. Conse-
quently, the resultant sample size estimate could be very sensitive to
the choice of σ value.

(2). In practice, statistical inference is made based on the observed data
at the end of the study regardless of the unknown σ value in 13.1.1.
At the planning stage, the investigator will have to determine the
sample size with many uncertainties such as the unknown σ and the
final observed data.

(3). In some situations, prior information regarding the mean difference ε
may be available. Ignoring this important prior information may lead
to an unnecessarily large sample size, which could be a huge waste of
the limited resources.

In order to overcome the above-mentioned limitations, Joseph and Bélisle
(1997) provided three elegant solutions from Bayesian’s perspective. Specif-
ically, three different criteria are proposed for sample size estimation. They
are (i) the average coverage criterion, (ii) average length criterion, and (iii)
worst outcome criterion, which will be discussed in details in the following
sections.

13.1.1 Three Selection Criteria

Under the Bayesian framework, let θ ∈ Θ denote a generic parameter and
its associated parameter space. Then, prior information regarding the value
of θ is described by a prior distribution f(θ). Consider x = (x1, · · · , xn)
a generic data set with n independent and identically distributed random
observations. It is assumed that x ∈ S, where S is the associated sample
space. Then, the marginal distribution of x is given by

f(x) =
∫
Θ

f(x|θ)f(θ)dθ,

where f(x|θ) denote the conditional distribution of x given the parameter
θ. Then, the posterior distribution of θ given x is given by

f(θ|x) = f(x|θ)f(θ)
f(x)

.

Based on the above Bayesian framework, the following three criteria can be
used to select the optimal sample size.
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Average Coverage Criterion

Consider the situation where a fixed posterior interval length l is pre-
specified for an acceptable precision of an estimate. Thus, the concept of
the average coverage criterion (ACC) is to select the minimum sample size
n such that the average coverage probability of such an interval is at least
(1 − α), where α is a pre-specified level of significance. More specifically,
ACC selects the minimum sample size by solving the following inequality

∫
S

{∫ a+l
a

f(θ|x, n)dθ
}
f(x)dx ≥ 1− α,

where a is some statistic to be determined by the data. Adcock (1988)
first proposed to choose the interval (a, a+ l) so that it is symmetric about
the mean. On the other hand, Joseph, et al. (1995) proposed to select
(a, a+l) to be a highest posterior density interval. Note that for a symmetric
distribution like normal, both methods of Adcock (1988) and Joseph, et
al. (1995) lead to the same solution. However, for a general asymmetric
distribution, the two methods may lead to different results.

Average Length Criterion

Note that the ACC criterion fixed the posterior credible interval length l
but optimize the sample size to achieve a desired coverage probability at
the level of (1 − α). Following an idea similar to ACC, another possible
solution is to fix the coverage probability of the posterior credible interval,
then select the sample size so that the resulting posterior credible interval
has a desired length l on average. Such a sample size selection criterion is
referred to as average length criterion (ALC). More specifically, ALC select
the smallest sample size so that∫

S
l′(x, n)f(x)dx ≤ l,

where l′(x, n) is the length of the 100(1 − α)% posterior credible interval
for data x, which determined by solving∫ a+l′(x,n)

a

f(θ|x, n)dθ = 1− α.

As before, different methods exist for the selection of a. For example, a can
be chosen to be the highest posterior density interval or some meaningful
symmetric intervals.
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Worst Outcome Criterion

In practice, the investigators may not be satisfied with the average based
criterion due to its conservativeness. For example, the sample size selected
by the ALC only ensures that the average of the posterior credible interval
length will be no larger than l. On the other hand, one may wish to select
a sample size such that the expected posterior credible interval length is as
close to l as possible. Thus, we may expect about a 50% chance that the
resultant interval length is larger than l, which may not be desirable due
to its conservativeness.

In this situation, the following worst outcome criterion (WOC) may be
useful. More specifically, WOC selects the smallest sample size by solving
the following inequality

inf
x∈S0

{∫ a+l(x,n)
a

f(θ|x, n)dθ
}

≥ 1− α,

where S0 is an appropriately selected subset of the original sample space S.
For example, we may consider S0 to be a region contains 95% of the sample
S. Then, WOC ensures that the length of the posterior credible length will
be at most l for any possible x ∈ S0.

13.1.2 One Sample

We first consider a one-sample problem. Let x = (x1, . . . , xn) be n inde-
pendent and identically distributed observations from N(µ, σ2), where both
µ and σ2 > 0 are unknown parameters. Furthermore, we define precision
λ = σ−2, then we are able to utilize the following conjugate prior

λ ∼ Γ(v, β)
µ|λ ∼ N(µ0, n0λ),

where µ0 and n0 are hyperparameters. For a more detailed discussion
for many standard Bayesian results used in this section, one may refer to
Bernardo and Smith (1994).

Known Precision

When λ is known, it can be shown that the posterior distribution of µ given
x is N(µn, λn), where

λn = (n+ n0)λ

µn =
n0µ0 + nx̄

n0 + n
,
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where x̄ is the usual sample mean. Note that the posterior precision depends
only on the sample size n and is independent of the value of the observed
x. Consequently, all three criteria (ACC, ALC and WOC) lead to the same
solution, which is also equivalent to that of Adcock (1988):

n ≥
4z21−α/2
λl2

− n0. (13.1.2)

Note that if a non-informative prior with n0 = 0 is used, then the above
formula reduces to the usual formula for sample size calculation. Further-
more, by comparing (13.1.2) with (13.1.1), it can be seen that the sample
size obtained from the Bayesian’s approach is smaller than that of the tra-
ditional frequentist estimate by a number n0. This simply reflects the effect
of the usefulness of the prior information.

Unknown Precision

If the precision parameter λ is unknown, then the posterior distribution of
µ given the observed x is given by

µ|x ∼ t2v+n

√
βn

(n+ n0)(v + n/s)
+ µn,

where

µn =
n0µ0 + nx̄

n+ n0
,

βn = β +
1
2
ns2 +

nn0
2(n+ n0)

(x̄− µ0)2,

where s2 = n−1
∑

(xi−x̄)2 and td represents a t-distribution with d degrees
of freedom. As it can be seen, for such a situation, the posterior precision
varies with the value of x. Hence, different selection criteria will lead to
different sample size estimations.

(1) Average Coverage Criterion. Adock (1988) showed that the ACC
sample size can be obtained as follows

n =
4β
vl2

t22v,1−α/2 − n0.

Note that the above formula is very similar to (13.1.2) in the sense
that (i) the precision λ is replaced by the mean precision v/β as
specified in the prior, and (ii) the normal quantile is replaced by an
appropriate t-quantile. However, it should be noted that the degrees
of freedom used in the t-quantile does not increase as the sample
size increases. Consequently, the resultant sample size could be very
different from the frequentist estimator (13.1.1).
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(2) Average Length Criterion. Consider the same Bayesian set up as
for ACC. Then, the minimum sample size selected by ALC can be
obtained by solving the following inequality

2tn+2v,1−α/2

√
2β

(n+ 2v)(n+ n0)
Γ
(
n+2v
2

)
Γ
(
2v−1
2

)
Γ
(
n+2v−1

2

)
Γ(v)

≤ l. (13.1.3)

Unfortunately, there exists no explicit solution for the above inequal-
ity. Since the left hand side can be calculated with a given sample
size n, a bisectional searching algorithm could be useful in finding the
optimal sample size. However, in the case where the sample size n is
large, the numerical evaluation of Γ(0.5n+ v) and Γ(0.5n+ v − 0.5)
could be very unstable. According to Graham et. al. (1994, Math-
World), we have

Γ
(
n+2v
2

)
Γ
(
n+2v−1

2

) =
√
0.5n{1 + o(1)}.

Then, the inequality (13.1.3) can be approximated by the following

√
2ntn+2v,1−α/2

√
2β

(n+ 2v)(n+ n0)
Γ
(
2v−1
2

)
Γ(v)

≤ l. (13.1.4)

Note that the above formula (13.1.4) does provide an adequate ap-
proximation to (13.1.3).

(3) Worst Outcome Criterion. Let S0 ⊂ S be the subset of the sample
space such that ∫

S0

f(x)dx = 1− w,

for some probability w > 0. Also, assume that f(x) ≥ f(y) for any
x ∈ S and y �∈ S. Thus, the sample size needed can be approximated
by

l2(n+ 2v)(n+ n0)
8β{1 + (n/2v)Fn,2v,1−w}

≥ t2n+2v,1−α/2,

where Fd1,d2,1−α is the (1− α)th quantile of the F -distribution with
(d1, d2) degrees of freedom. Note that the subsample space S0 can-
not be exactly the same as S. In this case, we have w = 0, hence
Fn,2v,1−w = ∞. As a result, the sample size is not well defined.
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Table 13.1.1: One-Sample Sample Sizes with Unknown Precision and v = 2

β n0 l α FREQ ACC ALC WOC(90%) WOC(95%)
2 10 0.2 0.20 165 226 247 608 915

0.10 271 445 414 1008 1513
0.05 385 761 593 1436 2153
0.01 664 2110 1034 2488 3727

0.5 0.20 27 28 2 89 138
0.10 44 63 57 154 234
0.05 62 114 86 223 337
0.01 107 330 158 392 590

50 0.2 0.20 165 186 206 568 874
0.10 271 405 374 968 1473
0.05 385 721 553 1396 2113
0.01 664 2070 994 2448 3687

0.5 0.20 27 0 2 48 97
0.10 44 23 2 113 194
0.05 62 74 2 183 297
0.01 107 290 118 352 550

5 10 0.2 0.20 165 578 634 1534 2301
0.10 271 1127 1052 2535 3797
0.05 385 1918 1498 3603 5396
0.01 664 5290 2597 6231 9328

0.5 0.20 27 85 92 237 360
0.10 44 172 159 398 600
0.05 62 299 231 569 856
0.01 107 838 408 991 1486

50 0.2 0.20 165 538 594 1494 2261
0.10 271 1087 1012 2495 3757
0.05 385 1878 1458 3563 5356
0.01 664 5250 2557 6191 9288

0.5 0.20 27 45 2 197 320
0.10 44 132 118 358 560
0.05 62 259 191 529 816
0.01 107 798 368 951 1446

© 2008 by Taylor & Francis Group, LLC



13.1. Posterior Credible Interval Approach 335

Table 13.1.2: One-Sample Sample Sizes with Unknown Precision and v = 5

β n0 l α FREQ ACC ALC WOC(90%) WOC(95%)
2 10 0.2 0.20 165 66 2 124 155

0.10 271 122 110 212 264
0.05 385 189 164 306 380
0.01 664 392 297 537 665

0.5 0.20 27 3 2 10 15
0.10 44 12 2 25 33
0.05 62 22 2 41 52
0.01 107 55 2 79 99

50 0.2 0.20 165 26 2 83 114
0.10 271 82 2 172 224
0.05 385 149 2 266 340
0.01 664 352 2 497 625

0.5 0.20 27 0 2 2 2
0.10 44 0 2 2 2
0.05 62 0 2 2 2
0.01 107 15 2 39 59

5 10 0.2 0.20 165 179 175 327 406
0.10 271 319 301 546 676
0.05 385 487 435 780 965
0.01 664 995 764 1355 1675

0.5 0.20 27 21 2 43 55
0.10 44 43 2 79 99
0.05 62 70 2 117 146
0.01 107 151 109 210 261

50 0.2 0.20 165 139 2 286 365
0.10 271 279 2 506 636
0.05 385 447 394 740 925
0.01 664 955 724 1316 1635

0.5 0.20 27 0 2 2 2
0.10 44 3 2 37 57
0.05 62 30 2 76 105
0.01 107 111 2 170 221
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Mixed Bayesian Likelihood

In practice, although many investigators may acknowledge the usefulness
and importance of the prior information, they will still make final inference
based on the likelihood of the data. For example, the investigator may
want to report the 95% confidence interval in the final analysis. In such a
situation, the sample size needed by ACC can also be found based on the
95% confidence interval. Consider the case where the confidence interval is
symmetric about x̄. It follows that

(a, a+ l) = (x̄− l/2, x̄+ 1/2)

µ|x ∼ x̄+ tn−1

√
ns2

n(n− 1)∫ x̄+l/2
x̄−l/2

f(µ|x)dµ = 2pt

(
l

2

√
n(n− 1)
ns2

, n− 1

)
,

where pt(c, d) is the area between 0 and c under a t-density with d degrees
of freedom. Note that the area only depends on the data via ns2. Hence,
the following algorithm can be used to obtain an approximate solution

(a) Select an initial estimate of the sample size n.

(b) Generate m values of the random variables ns2. Note that ns2|λ ∼
Γ((n− 1)/2, λ/2) and λ from Γ(v, β). Then, marginally ns2 follows a
gamma-gamma distribution with parameter (v, 2β, (n − 1)/2). Note
that a random variable x follows a gamma-gamma distribution if its
density is given by

f(x|v, β, n) = Γ(v + n)βv

Γ(v)Γ(n)
xn−1

(β + x)v+n

for x > 0, v > 0, β > 0, and n > 0. For more details, one can refer to
Bernardo and Smith (1994), p.p., 430.

(c) For each of the m values of ns2i , i = 1, 2, · · · ,m in step (b), calculate

coverage(ns2i ) = 2pi

(
l

2

√
n(n− 1)
ns2i

, n− 1

)
.

(d) Then, compute
1
m

m∑
i=1

coverage(ns2i )

as an approximate to the average coverage probability.
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Repeating steps (b)-(d) for values of n in conjunction with a bisectional
search procedure will lead to an approximate sample size.

Similarly, the WOC sample size can be obtained by solving the following
inequality

2pt

(
l

2

√
n(n− 1)
ns2i

, n− 1

)
≥ 1− α

for about 95% or 99% (for example) of the ns2i values with a fixed sample
size n. On the other hand, the sample size needed by ALC is given by

2tn−1,1−α/2

√
2β

n(n− 1)
Γ(0.5n)

Γ(0.5n− 0.5)
Γ(v − 0.5)

Γ(v)
≤ l.

Therefore, finding the smallest sample size n satisfying the above inequality
provides an estimate for the sample size selected by ALC.

13.1.3 Two-Sample with Common Precision

Similarly, we can apply the idea of ACC, ALC, and WOC to the most
commonly used two-arm parallel-group design. More specifically, let x1 =
(x11, · · · , xn11) and x2 = (x12, · · · , xn22) be two independent sample ob-
tained under two different treatments. Furthermore, it is assumed that
xij , i = 1, · · · , nj are independent and identically distributed normal ran-
dom variables with mean µj and a common precision λ within each treat-
ment. Similar to the one-sample problem, we assume a conjugate prior
distribution for the common precision, i.e.,

λ ∼ Γ(v, β),

for some v and β. That is, given λ, it is assumed that

µj |λ ∼ N(µ0j , n0jλ) with j = 1, 2.

Then, by treating the mean treatment difference θ = µ1−µ2 as the param-
eter of the interest, the methods of ACC, ALC, and WOC can be carried
out in a similar manner as in the one-sample situation.

Known Common Precision

If the common precision λ is known, then by conditioning on the observed
data x1 and x2, the posterior distribution of the treatment difference θ is
given by

θ|x1, x2 ∼ N

{
µn22 − µn11,

λ(n01 + n1)(n02 + n2)
n1 + n2 + n01 + n02

}
, (13.1.5)
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where
µnjj =

n0jµ0j + nj x̄j
n0j + nj

, j = 1, 2.

As it can be seen, the posterior variance of θ only depends on the data via
the sample size n1 and n2. This situation is very similar to the one-sample
case with known precision. Consequently, all of the three methods (i.e.,
ACC, ALC, and WOC) can be applied to obtain the desired sample size.
For the case with equal sample size allocation (i.e., n1 = n2), the smallest
sample size can be estimated by

n1 = n2 ≥
−B +

√
B2 − 4AC
2A

, (13.1.6)

where A = λ2 and

B = λ2(n01 + n02)− 28z21−α/2/l
2

C = n01n02λ
2 −

4(n01 + n02)λz21−α/2
l2

.

In practice, it happens that B2 − 4AC ≤ 0, which implies that the prior
information is sufficient and no additional sampling is needed.

As it can be seen from (13.1.5), if we fix the total information n1+n01+
n2 + n02, then the optimal sample size allocation, which can minimize the
posterior variance, is given by n1+n01 = n2+n02. In such a situation, the
minimum sample size can be obtained by solving the following inequality

n1 ≥
8
λl2

z21−α/2 − n01, (13.1.7)

with n2 = n1 + n01 − n02. If n01 = n02, then the sample size estimated by
(13.1.6) and (13.1.7) reduce to the sample quantity.

Unknown Common Precision

In the situation where the two treatment groups share the same but un-
known precision, the posterior distribution of θ can be derived based on the
normal-gamma prior family as described above. More specifically,

θ|x1, x2 ∼ A+ t2C

√
B

2CD
,

where
A = E(θ|x1, x2) =

n2x̄2 + n02µ02
n2 + n02

=
n1x̄1 + n01µ01

n1 + n01
,

B = 2β + n1s
2
1 + n2s

2
2 +

n1n01
n1 + n01

(x̄1 − µ01)2 +
n2n02

n2 + n02
(x̄2 − µ02)2,
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C =
n1 + n2

2
+ v and D =

(n1 + n01)(n2 + n02)
n1 + n01 + n2 + n02

.

Based on such a posterior distribution, the method of ACC, ALC, and
WOC can be easily implemented, which are outlined below.
Average Coverage Criterion. As it has been shown by Joseph and Bélisle

(1997), the sample size needed must satisfy the following inequality

(n1 + n01)(n2 + n02)
n1 + n2 + n01 + n02

≥ 4β
vl2

t22v,1−α/2.

The above inequality can have an explicit solution if we adopt an equal
sample size allocation strategy (i.e., n1 = n2 = n). In such a situation, the
optimal sample size is given by

n ≥ −B +
√
B2 − 4AC
2A

,

where

A =
vl2

4
,

B =
vl2

4
(n01 + n02)− 2βt22v,1−α/2,

C =
n01n02vl

2

4
− βt22v,1−α/2(n01 + n02).

In the case where unequal sample allocation is allowed, how to mini-
mize the expected posterior variance would be a reasonable criterion for
an effective allocation of the sample sizes between treatment groups. Note
that

x̄i ∼ µ0i + t2vi

√
βi(ni + n0i)
vinin0i

,

nis
2
i ∼ Γ− Γ

(
vi, 2βi,

ni − 1
2

)
.

It can be verified that the expected variance of θ given the data is given by

1
(n1 + n01)(n2 + n02)

n1 + n2 + n01 + n02
n1 + n2 + 2v − 2

×
{
2β +

(n1 + n2 − 2)Γ(v − 1)
Γ(v)

+
2β
v − 1

}
,

which implies that for a fixed total sample size n1 + n2, the minimum
expected posterior variance is achieved if n1 + n01 = n2 + n02.
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Average Length Criterion. Similarly, the sample size selected by ALC
can be obtained by solving the following inequality

2tn1+n2+2v,1−α/2

√
2β(n1 + n01 + n2 + n02)

(n1 + n2 + 2v)(n1 + n01)(n2 + n02)

×
Γ
(
n1+n2+2v

2

)
Γ
(
2v−1
2

)
Γ
(
n1+n2+2v−1

2

)
γ
(
2v
2

) ≤ 1.

In order to solve the above inequality, the standard bisectional search can be
used. For unequal sample size situation, the constraint n1+n10 = n2+n20
can be used.
Worst Outcome Criterion. The WOC selects the sample size n1 and n2

according to the following inequality

l2(n1 + n01)(n2 + n02)
8β(n1 + n01 + n2 + n02)

n1 + n2 + 2v
1 + {(n1 + n2)/2v}Fn1+n2,2v,1−w

≥ t2n1+n2+2v,1−α/2.

Again the simple bisectional search algorithm can be used to find the solu-
tion effectively.
Mixed Bayesian-Likelihood. For the mixed Bayesian-Likelihood method,

there exists no exact solution. Therefore, appropriate simulation method
has to be employed to estimate the desired sample size. Simply speaking,
one can first generate (x̄1, x̄2, n1s21, n2s

2
2) vectors, then ACC, ALC, and

WOC can be estimated via a standard bisectional search algorithm. Then,
by averaging these estimated sample sizes or taking appropriate infimum,
the desired sample size can be obtained. For a more detailed discussion,
one can refer to Section 4.3 of Joseph and Bélisle (1997).

13.1.4 Two-Sample with Unequal Precisions

In this subsection, we consider the problem of two samples with unequal pre-
cisions. Similarly, we denote x1 = (x11, · · · , xni1) and x2 = (x21, · · · , xn21)
independent samples obtained from the two different treatments. Further-
more, it is assumed that within each treatment group, the observation xij is
independent and identically distributed as a normal random variable with
mean µj and precision λj . Once again the normal-gamma prior is used to
reflect the prior information about the mean and the variance, i.e.,

λj ∼ Γ(vj , βj)
µj |λj ∼ N(µ0j , n0jλj).

© 2008 by Taylor & Francis Group, LLC



13.1. Posterior Credible Interval Approach 341

Table 13.1.3: Two-Sample Sample Sizes with Unknown Common Precision
(n = n1 = n2, n0 = n01 = n02, and v = 2)

β n0 l α FREQ ACC ALC WOC(90%) WOC(95%)
2 10 0.2 0.20 329 461 506 1226 1840

0.10 542 899 840 2026 3037
0.05 769 1532 1198 2881 4315
0.01 1327 4230 2076 4983 7460

0.5 0.20 53 66 73 189 287
0.10 87 136 126 317 478
0.05 123 237 184 454 683
0.01 213 669 325 791 1187

50 0.2 0.20 329 421 466 1186 1800
0.10 542 859 800 1986 2996
0.05 769 1492 1158 2841 4275
0.01 1327 4190 2036 4943 7420

0.5 0.20 53 26 2 148 246
0.10 87 96 86 277 438
0.05 123 197 144 414 643
0.01 213 629 285 751 1147

5 10 0.2 0.20 329 1166 1280 3079 4613
0.10 542 2263 2115 5079 7605
0.05 769 3845 3008 7215 10801
0.01 1327 10589 5202 12468 18663

0.5 0.20 53 179 196 485 730
0.10 87 354 330 805 1209
0.05 123 607 473 1147 1721
0.01 213 1686 825 1988 2979

50 0.2 0.20 329 1126 1240 3039 4573
0.10 542 2223 2075 5039 7565
0.05 769 3805 2968 7175 10761
0.01 1327 10549 5162 12428 18623

0.5 0.20 53 139 156 445 690
0.10 87 314 290 765 1169
0.05 123 567 433 1107 1681
0.01 213 1646 785 1948 2939
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Table 13.1.4: Two-Sample Sample Sizes with Unknown Common Precision
(n = n1 = n2, n0 = n01 = n02, and v = 2)

β n0 l α FREQ ACC ALC WOC(90%) WOC(95%)
2 10 0.2 0.20 329 141 141 260 324

0.10 542 253 241 436 540
0.05 769 388 349 623 771
0.01 1327 794 612 1083 1338

0.5 0.20 53 15 2 33 43
0.10 87 33 2 62 78
0.05 123 54 45 92 115
0.01 213 119 88 166 207

50 0.2 0.20 329 101 2 220 283
0.10 542 213 2 395 500
0.05 769 348 308 583 731
0.01 1327 754 572 1043 1298

0.5 0.20 53 0 2 2 2
0.10 87 0 2 20 37
0.05 123 14 2 51 75
0.01 213 79 2 126 167

5 10 0.2 0.20 329 367 373 666 824
0.10 542 648 623 1103 1364
0.05 769 983 890 1570 1941
0.01 1327 1999 1547 2719 3359

0.5 0.20 53 51 48 98 123
0.10 87 96 89 169 210
0.05 123 149 132 244 303
0.01 213 312 238 428 530

50 0.2 0.20 329 327 332 625 784
0.10 542 608 583 1063 1324
0.05 769 943 850 1530 1901
0.01 1327 1959 1507 2679 3319

0.5 0.20 53 11 2 57 83
0.10 87 56 2 128 170
0.05 123 109 2 203 263
0.01 213 272 197 388 490
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Known Precision

If the precisions λ1 and λ2 are known, then the posterior distribution of
the treatment mean difference θ is given by

θ|x1, x2 ∼ N

(
µn22 − µn11,

λn11λn22

λn11 + λn22

)
,

where λni = λi(n0i + ni) and

µnii =
λi(n0iµ0i + nix̄i)

λnii
=

n0iµ0i + nix̄i
n0i + ni

.

If we assume an equal sample size allocation (i.e., n = n1 = n2), then the
sample sizes selected by ACC, ALC, and WOC are all given by

n ≥ −B +
√
B2 − 4AC
2A

,

where A = λ1λ2 and

B = λ1n02λ2 + λ2n01λ1 −
4z21−α/2

l2
(λ1 + λ2),

C = n01λ1n02λ2 −
4z21−α/2

l2
(n01λ1 + n02λ2).

If unequal sample size allocation is considered, then the optimal sample
size is given by

n1 + n01 ≥ 4
l2
z21−α/2

{
1√
λ1λ2

+
1
λ1
,

}
n2 + n02 =

√
λ1
λ2

(n1 + n01).

Unknown Precisions

When λ1 �= λ2, the exact posterior distribution of θ could be complicated.
It, however, can be approximated by

θ|x1, x2 ≈ N(µn1 − µn2, λ
∗),

where
µnj =

n0jµ0j + nj x̄j
nj + n0j

,

λ∗ =
{

2βn11

(n1 + n01)(2v1 + n1 − 2)
+

2βn22

(n2 + n02)(2v2 + n2 − 2)

}−1

.
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Due to the fact that the posterior distribution of θ does not have a stan-
dard form, appropriate numerical methods are necessarily employed for
obtaining the required sample size. In most applications, however, normal
approximation usually provides adequate sample sizes. Note that

x̄j ∼ µ0j +

√
βj(nj + n0j)
vjnjn0j

t2vj

njs
2
j ∼ Γ− Γ

(
vj , 2βj ,

nj − 1
2

)
,

which is minimized if and only if

n2 + n02 =

√
β2(v1 − 1)
β1(v2 − 1)

(n1 + n01).

As a result, the optimal sample size, which minimizes the posterior variance,
can be obtained.

13.2 Posterior Error Approach

Recently, Lee and Zelen (2000) developed a simple and yet general Bayesian
sample size determination theory. It is very similar but different from the
traditional frequentist approach. More specifically, the traditional frequen-
tist approach selects the minimum sample size so that the type I and type
II error rates can be controlled at a pre-specified levels of significance, i.e.,
α and β. Lee and Zelen (2000), on the other hand, proposed to select the
minimum sample size so that the posterior error rate is controlled. Conse-
quently, it is essential to understand what is the posterior error rate and
its relationship with the traditional type I and type II error rates. Under
this framework, the Bayesian sample size calculation for comparing means
and survival rates are illustrated.

13.2.1 Posterior Error Rate

Following the notations of Lee and Zelen (2000), Denote by δ the non-
centrality parameter, which is usually a function of the clinically meaning-
ful difference and the population standard deviation. From a traditional
frequentist point of view, the objective of a clinical trial is to differentiate
between the following two hypotheses

H0 : δ = 0 vs. Ha : δ �= 0.
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In order to utilize the Bayesian framework, we assign a non-degenerate
probability θ > 0 to the joint even δ > 0 or δ < 0. Then, the prior
probability for the null hypothesis (i.e., no treatment effect) would be (1−θ)
by definition.

Consequently, the parameter θ summarizes the prior confidence regard-
ing which hypothesis is more likely to be true. When there is no clear
preference between H0 and H1, θ = 0.5 seems to be a reasonable choice.
However, if one wishes to be more conservative in concluding the treatment
effect, then one may consider a θ < 0.5 (e.g., θ = 0.25). Similarly, one
may also use a θ > 0.5 (e.g., θ = 0.75) to reflect a better confidence about
the treatment effect. Furthermore, equal probability θ/2 is assigned to each
possible alternative δ > 0 and δ < 0. The reason to assign equal probability
to each possible alternative is that if the physician has prior belief that one
treatment is better or worse than the other, then the physician cannot eth-
ically enter the patient into the trial (Lee and Zelen, 2000). Consequently,
it seems that equal probability θ/2 for δ > 0 and δ < 0 is a natural choice.

To facilitate discussion, we further classify the outcomes of a clinical
trial into positive or negative ones. A positive outcome refers to a clinical
trial with conclusion δ �= 0, while a negative outcome refers to a trial with
conclusion δ = 0. For convenience purposes, we use a binary indicator
C = + or C = − to represent positive or negative outcomes, respectively.
On the other hand, we consider T as a similar indicator but it refers to the
true status of hypothesis. In other words, T = + refers to the situation
where the alternative hypothesis is actually true, while T = − refers to the
situation where the null hypothesis is in fact true. It follows immediately
that P (T = +) = θ.

For a pre-specified type I and type II error rates α and β, the traditional
frequentist approach tries to find the minimum sample size so that

α = P (C = +|T = −),
β = P (C = −|T = +).

Similarly, from a Bayesian perspective, Lee and Zelen (2000) suggest to find
the minimum sample size so that the posterior error rates are controlled as

α∗ = P (T = −|C = +),
β∗ = P (T = +|C = −).

Simply speaking, they are the posterior probabilities that the true situation
is opposite to the outcome of the trial. As long as these posterior error rates
are well controlled at given levels of α∗ and β∗, we are able to accept any
trial outcome (either positive or negative) at an acceptable confidence level.

The merit of Lee and Zelen’s method is that their posterior error rates
α∗ and β∗ are closely related to the most commonly used type I and type
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II error rates α and β via the following simple formula

P1 = 1− α∗ = P (T = −|C = −) =
(1− θ)(1− α)

(1− θ)(1− α) + θβ
,

P2 = 1− β∗ = P (T = +|C = +) =
θ(1− β)

(1− β)θ + α(1− θ)
,

where P1 and P2 define the posterior probability that the true status of the
hypothesis is indeed consistent with the clinical trial outcome. Then, we
have

α =
(1− P2)(θ + P1 − 1)
(1− θ)(P1 + P2 − 1)

(13.2.1)

β =
(1− P1)(P2 − θ)
θ(P1 + P2 − 1)

. (13.2.2)

Consequently, for a given θ and (P1, P2), we can first compute the value of
α and β. Then, the traditional frequentist sample size formula can be used
to determine the needed sample size. Note that such a procedure is not only
very simple but also free of model and testing procedures. Hence, it can
be directly applied to essentially any type of clinical trial and any type of
the testing procedures. For illustration purposes, we consider its usage for
comparing means and survival in the next two subsections. Table 13.2.1
provides a number of most likely (θ, P1, P2) values and their associated
(α, β) values.

13.2.2 Comparing Means

In this subsection, we show in detail how Lee and Zelen’s Bayesian approach
can be used to determine the sample size for comparing means. For illustra-
tion purpose, we consider only the most commonly used two-arm parallel
design with equal sample size allocation. The situation with multiple arms
and unequal sample size allocation can be similarly obtained.

Following the notations of Chapter 3, denote xij the response observed
from the jth subject in the ith treatment group, j = 1, ..., ni, i = 1, 2. It
is assumed that xij , j = 1, ..., ni, i = 1, 2, are independent normal random
variables with mean µi and variance σ2. In addition, define

x̄i· =
1
ni

ni∑
j=1

xij and s2 =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(xij − x̄i·)2.

Suppose that the objective of a clinical trial is to test whether there is
a difference between the mean responses of the test drug and a placebo
control or an active control agent. The following hypotheses are of interest:

H0 : ε = 0 versus Ha : ε �= 0.
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Table 13.2.1: Type I and II Errors for Various P1, P2 and θ Values

θ P1 P2 α β P1 P2 α β

0.25 0.80 0.80 0.0222 0.7333 0.90 0.80 0.0571 0.3143
0.85 0.0154 0.7385 0.85 0.0400 0.3200
0.90 0.0095 0.7429 0.90 0.0250 0.3250
0.95 0.0044 0.7467 0.95 0.0118 0.3294

0.85 0.80 0.0410 0.5077 0.95 0.80 0.0711 0.1467
0.85 0.0286 0.5143 0.85 0.0500 0.1500
0.90 0.0178 0.5200 0.90 0.0314 0.1529
0.95 0.0083 0.5250 0.95 0.0148 0.1556

0.50 0.80 0.80 0.2000 0.2000 0.90 0.80 0.2286 0.0857
0.85 0.1385 0.2154 0.85 0.1600 0.0933
0.90 0.0857 0.2286 0.90 0.1000 0.1000
0.95 0.0400 0.2400 0.95 0.0471 0.1059

0.85 0.80 0.2154 0.1385 0.95 0.80 0.2400 0.0400
0.85 0.1500 0.1500 0.85 0.1688 0.0438
0.90 0.0933 0.1600 0.90 0.1059 0.0471
0.95 0.0438 0.1688 0.95 0.0500 0.0500

0.75 0.80 0.80 0.7333 0.0222 0.90 0.80 0.7429 0.0095
0.85 0.5077 0.0410 0.85 0.5200 0.0178
0.90 0.3143 0.0571 0.90 0.3250 0.0250
0.95 0.1467 0.0711 0.95 0.1529 0.0314

0.85 0.80 0.7385 0.0154 0.95 0.80 0.7467 0.0044
0.85 0.5143 0.0286 0.85 0.5250 0.0083
0.90 0.3200 0.0400 0.90 0.3294 0.0118
0.95 0.1500 0.0500 0.95 0.1556 0.0148
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When σ2 is unknown, the null hypothesis H0 is rejected at the α level of
significance if ∣∣∣∣∣∣ x̄1· − x̄2·

s
√

1
n1

+ 1
n2

∣∣∣∣∣∣ > tα/2,n1+n2−2.

For given error rates α and β, as shown in Chapter 3, the minimum sample
size needed can be estimated by

n1 = n2 =
2(zα/2 + zβ)2σ2

ε2
. (13.2.3)

In order to implement the Bayesian approach, one need to first specify
the value of θ to reflect the prior knowledge about the null and the alter-
native hypotheses. Furthermore, one needs to specify the value of (P1, P2),
which controls the posterior error rate. Based on these specifications, one
can obtain the values of (α, β) according to (13.2.1) and (13.2.2). Then, use
the resultant significance levels (α, β) and the formula (13.2.3) to obtain
the desired sample size.

Consider Example 3.2.4 as given in Chapter 3, where a clinical trial
is conducted to evaluate the effectiveness of a test drug on cholesterol in
patients with coronary heart disease (CHD). It is assumed that the clinical
meaning difference is given by ε = 5% and the standard deviation is σ =
10%. It has been demonstrated in Example 3.2.4, if we specify the Type
I and Type II error rate to be (α, β) = (0.05, 0.20), respectively, then the
resulting sample size from (13.2.3) is given by 63. However, if we uses the
Bayesian approach and specify (α∗, β∗) = (0.05, 0.20) with θ = 0.50, then
according to (13.2.1) and (13.2.2) we have (α, β) = (0.24, 0.04). It follows
that the sample size needed is given by

n1 = n2 =
2(zα/2 + zβ)2σ2

ε2
=

2× 2.462 × 0.102

0.052
≈ 49.

Consequently, only 49 subjects per treatment group are needed.
It, however, should be noted that the resultant sample sizes 63 and 49

are not directly comparable, because they are controlling different error
rates. The sample size 63 per treatment group is selected to control the
type I and type II error rates at the levels of 0.05 and 0.20, respectively.
On the other hand, the 49 subjects per treatment group is selected to
control the two posterior error rates α∗ and β∗ at the levels of 0.05 and
0.20, respectively, which correspond to the traditional type I and type II
error rates at the levels of 0.04 and 0.24 according to our computation.
Therefore, which sample size should be used depends on what statistical test
will be used for testing the hypotheses. To provide a better understanding,
various sample sizes needed at different posterior error configuration are
summarized in Table 13.2.2.
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Table 13.2.2: Sample Sizes under Different θ and P = P1 = P2 Specification

θ P α β (ε/σ) n P α β (ε/σ) n

0.25 0.80 0.0222 0.7333 0.1 554 0.90 0.0250 0.3250 0.1 1453

0.2 139 0.2 364

0.3 62 0.3 162

0.4 35 0.4 91

0.5 23 0.5 59

0.25 0.85 0.0286 0.5143 0.1 928 0.95 0.0148 0.1556 0.1 2381

0.2 232 0.2 596

0.3 104 0.3 265

0.4 58 0.4 149

0.5 38 0.5 96

0.50 0.80 0.2000 0.2000 0.1 902 0.90 0.1000 0.1000 0.1 1713

0.2 226 0.2 429

0.3 101 0.3 191

0.4 57 0.4 108

0.5 37 0.5 69

0.50 0.85 0.1500 0.1500 0.1 1227 0.95 0.0500 0.0500 0.1 2599

0.2 307 0.2 650

0.3 137 0.3 289

0.4 77 0.4 163

0.5 50 0.5 104

0.75 0.80 0.7333 0.0222 0.1 1106 0.90 0.3250 0.0250 0.1 1734

0.2 277 0.2 434

0.3 123 0.3 193

0.4 70 0.4 109

0.5 45 0.5 70

0.75 0.85 0.5143 0.0286 0.1 1305 0.95 0.1556 0.0148 0.1 2586

0.2 327 0.2 647

0.3 145 0.3 288

0.4 82 0.4 162

0.5 53 0.5 104
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13.3 The Bootstrap-Median Approach

As indicated earlier, both methods based on the posterior credible interval
and the posterior error rate are useful Bayesian approach for sample size
calculation. The method of posterior credible interval approach explicitly
takes into consideration the prior information. In practice, however, prior
information is either not available or not reliable. In this case, the appli-
cation of Joseph and Bélisle’s method is limited. On the other hand, the
method of posterior error rate does not suffer from this limitation. In prac-
tice, it is suggested that the posterior error rates P1 and P2 be chosen in
such a way that they correspond to the type I and type II error rates from
the frequentist point of view. This method, however, may not be widely
used and accepted given the fact that the traditional testing procedure for
controlling both type I and type II error rates have been widely used and
accepted in practice.

As a result, two important questions are raised. First, if there is no
reliable prior information available, is there still a need for Bayesian sample
size calculation method? Second, if there is a need for Bayesian’s method for
sample size calculation, then how does one incorporate it into the framework
that is accepted from the frequentist point of view? With an attempt to
address these two questions, we will introduce an alternative method.

13.3.1 Background

As indicated in Chapter 1, a pre-study power analysis for sample size cal-
culation is usually performed at the planning stage of an intended clinical
trial. Sample size calculation is done under certain assumptions regarding
the parameters (e.g., clinically important difference and standard deviation)
of the target patient population. In practice, since the standard deviation
of the target patient population is usually unknown, a typical approach is
to use estimates from some pilot studies as the surrogate for the true pa-
rameters. We then treat these estimates as the true parameters to justify
the sample size needed for the intended clinical trial. It should be noted
that the parameter estimate obtained from the pilot study inevitably suffers
from the sampling error, which causes the uncertainty (variation) about the
true parameter. Consequently, it is likely to yield an unstable estimate of
sample size for the intended clinical trial.

In order to fix the idea, we conduct a simple simulation study to exam-
ine the effect of the pilot study uncertainty. For illustration purposes, we
consider a simple one-sample design with the type I and type II error rates
given by 5% and 10%, respectively. Furthermore, we assume that the pop-
ulation standard deviation σ = 1 and the true mean response is ε =25%.
Then, according to (3.1.2), the sample size needed, if the true parameters
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are known, are given by

n =
(zα/2 + zβ)2σ2

ε2
≈ 169.

However, in practice the true parameters are never known. Hence, it has
to be estimated from some pilot studies (with small small sizes). In the
simulation, 10,000 independent simulation runs are generated to examine
the distribution of the sample size estimates, which are obtained based
on the estimates of the parameters of the pilot study. The results are
summarized in Table 13.3.1.

As it can be seen from Table 13.3.1, for a pilot study with sample size
as large as 100, the resulting sample size estimates are still very unstable
with a mean given by 10,302, which is much larger than the ideal sample
size 169. In order to have a more reliable sample size estimate, we need to
increase the size of the pilot study up to 500, which is much larger than the
planned larger scale trial with only 169 subjects! Hence, we conclude that
the uncertainty due to sampling error of the pilot study is indeed a very
important source of risk for the planned clinical trial.

Table 13.3.1: The Effect of the Pilot Study Sample Size
n0 Mean S.D. Minimum Median Maximum
10 20060568 1824564572 2 122 181767638343
50 72746 2754401 10 163 225999504
100 10302 452841 22 168 38265202
500 188 87 56 168 1575
1000 177 49 66 168 594

13.3.2 A Bootstrap-Median Approach

Note that Table 13.3.1 reveals two important points. First, it clearly
demonstrates that there is serious effect of the sample size estimation un-
certainty due to the sampling error of the pilot study. Second, it seems to
suggest that although the mean of the estimated sample size is very un-
stable, its median is more robust. To some extent, this is not a surprising
finding. Let ε̂ and σ̂2 be the sample mean and variance obtained from the
pilot study, respectively. Then, by applying (3.1.2), the estimated sample
size would be given by

n̂ =
(zα/2 + zβ)2

σ̂2
ε̂2.

If we assume that the sample is normally distributed, then we have ε̂
also follows some normal distribution. Hence, we know immediately that
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E(n̂) = ∞, which naturally explains why näıve sample size estimates based
on pilot data could be extremely unstable. However, the median of n̂ is
always well defined and according to Table 13.3.1, it seems be able to ap-
proximate the true sample size with quite a satisfactory precision.

All the above discussion seems to suggest that if we are able to generate
independent copy of the sample (i.e., bootstrap data set), then we are able
to estimate the sample size based on each bootstrapped data set. Then, the
median of the those bootstrap sample size estimates may provide a much
more reliable approximate to the true sample size needed. More specifically,
let S be the original sample, then the following simple bootstrap procedure
can be considered:

(1) First generate the bootstrap data set Sh from S. It is is generated by
simple random sampling with replacement and has the same sample
size as S.

(2) Compute the sample size nh based on the bootstrap data set Sh and
appropriate objective and formula.

(3) Repeat step (1) and (2) for a total of B times, then take the median
of the nh, h = 1, · · · , B to be the final sample size estimate.

In order to evaluate the finite sample performance of the above bootstrap
procedure, a simple simulation study is conducted. It is simulated according
to same parameter configuration used in Table 13.3.1. The number of
bootstrap iteration B is fixed to be B = 1, 000 and the total number of
simulation iterations is fixed to be 100. The results are summarized in
Table 13.3.2. As it can be seen, although the final estimate may still suffer
from instability to some extend, it represents a dramatical improvement as
compared with the results in Table 13.3.1. For detailed discussion about
the bootstrap sample size calculation, we refer to Lee, Wang and Chow
(2006).

Table 13.3.2: The Bootstrap Sample Size Estimation
n0 Mean S.D. Minimum Median Maximum
10 103 71 9 88 239
50 266 275 45 150 1175

100 363 448 28 192 2090
500 182 80 79 154 479
1000 180 51 84 174 408
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13.4 Concluding Remarks

As indicated in Lee, Wang, and Chow (2006), power analysis for sample
size calculation of a later phase clinical study based on limited informa-
tion collected from a pilot study could lead to an extremely unstable es-
timate of sample size. Lee, Wang, and Chow (2006) proposed the use of
bootstrap median approach and evaluated the instability of the estimated
sample size by means of the population squared coefficient of variation, i.e.,
CV = σ/ξ, where ξ and σ are the population mean and standard devia-
tion, respectively. Lee, Wang, and Chow (2006) considered the parameter
θ = (σ2 + ξ2)/ξ2 and showed that

n0.5 = 1.5n−1θ {1 + o(1)} ,

where n0.5 satisfies
P
(
θ̂ ≤ η0.5

)
= 0.5,

where η0.5 is the squared median of sample coefficient of variation.
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Nonparametrics

In clinical trials, a parametric procedure is often employed for evaluation
of clinical efficacy and safety of the test compound under investigation. A
parametric procedure requires assumptions on the underlying population
from which the data are obtained. A typical assumption on the underlying
population is the normality assumption. Under the normality assumption,
statistical inference regarding treatment effects can be obtained through
appropriate parametric statistical methods such as the analysis of variance
under valid study designs. In practice, however, the primary assumptions
on the underlying population may not be met. As a result, parametric
statistical methods may not be appropriate. In this case, alternatively,
a nonparametric procedure is often considered. Nonparametric methods
require few assumptions about the underlying populations, which are ap-
plicable in situations where the normal theory cannot be utilized. In this
chapter, procedures for sample size calculation for testing hypotheses of
interest are obtained under appropriate nonparametric statistical methods.

In the next section, the loss in power due to the violation of the nor-
mality assumption is examined. Nonparametric methods for testing differ-
ences in location are discussed for one-sample and two-sample problems,
respectively, in Sections 14.2 and 14.3. Included in these sections are the
corresponding procedures for sample size calculation. Nonparametric tests
for independence and the corresponding procedure for sample size calcula-
tion are given in Section 14.4. Some practical issues are presented in the
last section.

355
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14.1 Violation of Assumptions

Under a parametric model, normality is probably the most commonly made
assumption when analyzing data obtained from clinical trials. In practice,
however, it is not uncommon that the observed data do not meet the nor-
mality assumption at the end of the trial. The most commonly seen vio-
lation of the normality assumption is that the distribution of the observed
variable is skewed (either to the right or to the left). In this case, a log-
transformation is usually recommended to remove the skewness before data
analysis. For a fixed sample size selected based on the primary assumption
of normality, it is then of interest to know how the power is affected if
the primary assumption is seriously violated. For illustration purposes, in
this section, we address this question for situations when comparing means.
Other situations when comparing proportions or time-to-event data can be
addressed in a similar manner.

Consider a randomized, parallel-group clinical trial comparing a treat-
ment group and an active control agent. Let xij be the observation from
the jth subject in the ith treatment, i = 1, 2, j = 1, ..., n. It is assumed
that log(xij) follows a normal distribution with mean µi and variance σ2.
Let µ∗

i = E(xij) = eµi+σ
2/2. The hypothesis of interest is to test

H0 : µ∗
1 = µ∗

2 versus Ha : µ∗
1 �= µ∗

2,

which is equivalent to

H0 : µ1 = µ2 versus Ha : µ1 �= µ2.

At the planning stage of the clinical trial, sample size calculation is
performed under the assumption of normality and the assumption that a
two-sample t-test statistic will be employed. More specifically, the test
statistic is given by

T1 =
√
n(x̄1 − x̄2)√

2s
,

where x̄i is the sample mean of the ith treatment group and s2 is the
pooled sample variance of xij ’s. We reject the null hypothesis at the α
level of significance if

|T1| > zα/2.

Under the alternative hypothesis that µ1 �= µ2, the power of the above
testing procedure is given by

Φ

( √
n|eµ1 − eµ2 |√

(e2µ1 + e2µ2)(eσ2 − 1)
− zα/2

)
. (14.1.1)
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At end of the trial, it is found that the observed data is highly skewed
and hence a log-transformation is applied. After the log-transformation,
the data appear to be normally distributed. As a result, it is of interest to
compare the power of the two-sample t-test based on either the untrans-
formed (raw) data or the log-transformed data to determine the impact of
the violation of normality assumption on power with the fixed sample size
n selected under the normality assumption of the untransformed data. Let
yij = log(xij). The test statistic is given by

T2 =
√
n(ȳ1 − ȳ2)

2sy
, (14.1.2)

where ȳi is the sample mean of the log-transformed response from the
ith treatment group and s2y the pooled sample variance based on the log-
transformed data. The power of the above test is given by

Φ
(√

n|µ1 − µ2|√
2σ

− zα/2

)
. (14.1.3)

From (14.1.1) and (14.1.3), the loss in power is

Φ

( √
n|eµ1 − eµ2 |√

(e2µ1 + e2µ2)(eσ2 − 1)
− zα/2

)
− Φ

(√
n|µ1 − µ2|√

2σ
− zα/2

)
.

It can be seen that the violation of the model assumption can certainly
have an impact on the power of a trial with a fixed sample size selected un-
der the model assumption. If the true power is below the designed power,
the trial may fail to detect a clinically meaningful difference, when it truly
exists. If the true power is above the designed power, then the trial is
not cost-effective. This leads to a conclusion that incorrectly applying a
parametric procedure to a data set, which does not meet the parametric
assumption, may result in a significant loss in power and efficiency of the
trial. As an alternative, a nonparametric method is suggested. In what
follows, sample size calculations based on nonparametric methods for com-
paring means are provided.

14.2 One-Sample Location Problem

As discussed in Chapter 3, one-sample location problem concerns two types
of data. The first type of data consists of paired replicates. In clinical
research, it may represent pairs of pre-treatment and post-treatment ob-
servations. The primary interest is whether there is a shift in location due
to the application of the treatment. The second type of data consists of
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observations from a single population. Statistical inference is made on the
location of this population. For illustration purposes, in this section, we
focus on nonparametric methods for paired replicates. Let xi and yi be
the paired observations obtained from the ith subject before and after the
application of treatment, i = 1, ..., n. Let zi = yi − xi, i = 1, ..., n. Then,
zi can be described by the following model:

zi = θ + ei, i = 1, ..., n,

where θ is the unknown location parameter (or treatment effect) of interest
and the ei’s are unobserved random errors having mean 0. It is assumed
that (i) each ei has a continuous population (not necessarily the same one)
that is symmetric about zero and (ii) the ei’s are mutually independent.
The hypotheses regarding the location parameter of interest are given by

H0 : θ = 0 versus Ha : θ �= 0.

To test the above hypotheses, a commonly employed nonparametric test is
the Wilcoxon signed rank test. Consider the absolute differences |zi|, i =
1, ..., n. Let Ri denote the rank of |zi| in the joint ranking from least to
greatest. Define

ψi =
{

1 if zi > 0
0 if zi < 0

i = 1, ..., n.

The statistic

T+ =
n∑
i=1

Riψi

is the sum of the positive signed ranks. Based on T+, the Wilcoxon signed
rank test rejects the null hypothesis at the α level of significance if

T+ ≥ t(α2, n)

or

T+ ≤ n(n+ 1)
2

− t(α1, n),

where t(α, n) satisfies
P (T+ ≥ t(α, n)) = α

under the null hypothesis and α = α1 + α2. Values of t(α, n) are given
in the most standard nonparametric references (e.g., Hollander and Wolfe,
1973). It should be noted that under the null hypothesis, the statistic

T ∗ =
T+ − E(T+)√

var(T+)
=

T+ − n(n+ 1)/4√
n(n+ 1)(2n+ 1)/24
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has an asymptotic standard normal distribution. In other words, we may
reject the null hypothesis at the α level of significance for large n if

|T ∗| ≥ zα/2.

To derive a formula for sample size calculation, we note that

T+ =
n∑
i=1

n∑
j=1

I{|zi| ≥ |zj |}ψi

=
n∑
i=1

ψi > +
∑
i�=j

I{|zi| ≥ |zj |}ψi

=
n∑
i=1

ψi +
∑
i<j

(I{|zi| ≥ |zj |}ψi + I{|zj | ≥ |zi|}ψj) .

Hence, the variance of T+ can be obtained as

var(T+) = nvar(ψi)

+
n(n− 1)

2
var(I{|zi| ≥ |zj |}ψi + I{|zj | ≥ |zi|}ψj)

+ 2n(n− 1)cov(ψi, I{|zi| ≥ |zj |}ψi + I{|zj | ≥ |zi|}ψj)
+n(n− 1)(n− 2)cov(I{|zi| ≥ |zj1 |}ψi + I{|zj1 | ≥ |zi|}ψj1 ,
I{|zi| ≥ |zj2 |}ψi + I{|zj2 | ≥ |zi|}ψj2)

= np1(1− p1) + n(n− 1)(p21 − 4p1p2 + 3p2 − 2p22)
+n(n− 1)(n− 2)(p3 + 4p4 − 4p22),

where

p1 = P (zi > 0)
p2 = P (|zi| ≥ |zj |, zi > 0)
p3 = P (|zi| ≥ |zj1 |, |zi| ≥ |zj2 |, zi > 0)
p4 = P (|zj1 | ≥ |zi| ≥ |zj2 |, zj1 > 0, zi > 0).

It should be noted that the above quantities can be readily estimated based
on data from pilot studies. More specifically, suppose that z1, ..., zn are data
from a pilot study. Then, the corresponding estimators can be obtained as

p̂1 =
1
n

n∑
i=1

I{zi > 0}

p̂2 =
1

n(n− 1)

∑
i�=j

I{|zi| ≥ |zj |, zi > 0}
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p̂3 =
1

n(n− 1)(n− 2)

∑
i�=j1 �=j2

I{|zi| ≥ |zj1 |, |zi| ≥ |zj2 |, zi > 0}

p̂4 =
1

n(n− 1)(n− 2)

∑
i�=j1 �=j2

I{|zj1 | ≥ |zi| ≥ |zj2 |}, zj1 > 0, zi > 0}.

Under the alternative hypothesis, E(T+) �= n(n+1)
4 . T+ can be approxi-

mated by a normal random variable with mean E(T+) = np1 + n(n− 1)p2
and variance var(T+). Without loss of generality, assume that E(T+) >
n(n+ 1)/4. Thus, the power of the test can be approximated by

Power = P (|T ∗| > zα/2)
≈ P (T ∗ > zα/2)

= P

(
T+ > zα/2

√
n(n+ 1)(2n+ 1)/24 +

n(n+ 1)
4

)
≈ 1− Φ

(
zα/2/

√
12 +

√
n(1/4− p2)√

p3 + 4p4 − 4p22

)
.

The last approximation in the above equation is obtained by ignoring the
lower order terms of n. Hence, the sample size required for achieving the
desired power of 1− β can be obtained by solving the following equation:

zα/2/
√
12 +

√
n(1/4− p2)√

p3 + 4p4 − 4p22
= −zβ .

This leads to

n =
(zα/2/

√
12 + zβ

√
p3 + 4p4 − 4p22)

2

(1/4− p2)2
.

Remark

As indicated before, when there are no ties,

var(T+) =
1
24

[n(n+ 1)(2n+ 1)] .

When there are ties, var(T+) is given by

var(T+) =
1
24

n(n+ 1)(2n+ 1)− 1
2

g∑
j=1

tj(tj − 1)(tj + 1)

 ,
where g is the number of tied groups and tj is the size of tied group j.
In this case, the above formula for sample size calculation is necessarily
modified.
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An Example

To illustrate the use of sample size formula derived above, we consider
the same example concerning a study of osteoporosis in post-menopausal
women described in Chapter 3 for testing one-sample. Suppose a clinical
trial is planned to investigate the effect of a test drug on the prevention of
the progression to osteoporosis in women with osteopenia. Suppose that
a pilot study with 5 subjects was conducted. According to the data from
the pilot study, it was estimated that p2 = 0.30, p3 = 0.40, and p4 = 0.05.
Hence, the sample size needed in order to achieve an 80% power for detec-
tion of such a clinically meaningful improvement can be estimated by

n =
(zα/2/

√
12 + zβ

√
p3 + 4p4 − 4p22)

2

(1/4− p2)2

=
(1.96/

√
12 + 0.84

√
0.4 + 4× 0.05− 4× 0.32)2

(0.25− 0.3)2

≈ 383.

Thus, a total of 383 subjects are needed in order to have an 80% power to
confirm the observed post-treatment improvement.

14.3 Two-Sample Location Problem

Let xi, i = 1, ..., n1, and yj , j = 1, ..., n2, be two independent random
samples, which are respectively from a control population and a treatment
population in a clinical trial. Suppose that the primary objective is to
investigate whether there is a shift of location, which indicates the presence
of the treatment effect. Similar to the one-sample location problem, the
hypotheses of interest are given by

H0 : θ = 0 versus Ha : θ �= 0,

where θ represents the treatment effect. Consider the following model:

xi = ei, i = 1, ..., n1,

and
yj = θ + en1+j , j = 1, ..., n2,

where the ei’s are random errors having mean 0. It is assumed that (i)
each ei comes from the same continuous population and (ii) the n1 + n2
ei’s are mutually independent. To test the above hypotheses, the Wilcoxon
rank sum test is probably the most commonly used nonparametric test
(Wilcoxon, 1945; Wilcoxon and Bradley, 1964; Hollander and Wolfe, 1973).
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To obtain the Wilcoxon’s rank sum test, we first order the N = n1 + n2
observations from least to greatest and let Rj denote the rank of yj in this
ordering. Let

W =
n∑
j=1

Rj ,

which is the sum of the ranks assigned to the yj ’s. We then reject the null
hypothesis at the α level of significance if

W ≥ w(α2, n2, n1)

or

W ≤ n1(n2 + n1 + 1)− w(α1, n2, n1),

where α = α1 + α2 and w(α, n2, n1) satisfies

P (W ≥ w(α, n2, n1)) = α

under the null hypothesis. Values of w(α, n2, n1) are given in the most stan-
dard nonparametric references (e.g., Hollander and Wolfe, 1973). Under the
null hypothesis, the test statistic

W ∗ =
W − E(W )√

var(W )
=

W − 1
2n2(n2 + n1 + 1)√

1
12n1n2(n1 + n2 + 1)

(14.3.1)

is asymptotically distributed as a standard normal distribution. Thus, by
normal theory approximation, we reject the null hypothesis at the α level
of significance if |W ∗| ≥ zα/2.

Note that W can be written as

W =
n2∑
i=1

 n2∑
j=1

I{yi ≥ yj}+
n1∑
j=1

I{yi ≥ xj}


=

n2(n2 + 1)
2

+
n2∑
i=1

n1∑
j=1

I{yi ≥ xj}.
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Hence, the variance of W is given by

var(W ) = var

n2(n2 + 1)
2

+
n2∑
i=1

n1∑
j=1

I{yi ≥ xj}


= var

 n2∑
i=1

n1∑
j=1

I{yi ≥ xj}


= n1n2var(I{yi ≥ xj}) + n1n2(n1 − 1)cov(I{yi ≥ xj1},
I{yi ≥ xj2}) + n1n2(n2 − 1)cov(I{yi1 ≥ xj}, I{yi2 ≥ xj})

= n1n2p1(1− p1) + n1n2(n1 − 1)(p2 − p21)
+n1n2(n2 − 1)(p3 − p21)

where

p1 = P (yi ≥ xj)
p2 = P (yi ≥ xj1 and yi ≥ xj2)
p3 = P (yi1 ≥ xj and yi2 ≥ xj).

The above quantities can be estimated readily based on data from pilot
studies. More specifically, assume that x1, ..., xn1 and y1, ..., yn2 are the
data from a pilot study. The corresponding estimators can be obtained as

p̂1 =
1

n1n2

n2∑
i=1

n1∑
j=1

I{yi ≥ xj}

p̂2 =
1

n1n2(n1 − 1)

n2∑
i=1

∑
j1 �=j2

I{yi ≥ xj1 and yi ≥ xj2}

p̂3 =
1

n1n2(n2 − 1)

∑
i1 �=i2

n1∑
j=1

I{yi1 ≥ xj and yi2 ≥ xj}.

Under the alternative hypothesis that θ �= 0, it can be shown that
p1 �= 1/2,

E(W ) =
n2(n2 + 1)

2
+ n1n2p1,

and that W can be approximated by a normal random variable with mean

µW =
n2(n2 + 1)

2
+ n1n2p1

and variance

σ2W = n1n2p1(1− p1) + n1n2(n1 − 1)(p2 − p21) + n1n2(n2 − 1)(p3 − p21).
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Without loss of generality, we assume that p1 > 1/2. The power of the test
can be approximated by

Power = P (|W ∗| > zα/2)
≈ P (W ∗ > zα/2)

= P

(
W − n2(n2 + 1)/2− n1n2p1

σW
>

zα/2
√
n1n2(n1 + n2 + 1)/12 + n1n2(1/2− p1)

σW

)
.

Under the assumption that n1/n2 → κ, the above equation can be further
approximated by

Power = 1− Φ

(
zα/2 ∗

√
κ(1 + κ)/12 +

√
n2κ(1/2− p1)√

κ2(p2 − p21) + κ(p3 − p21)

)
.

As a result, the sample size needed in order to achieve a desired power of
1− β can be obtained by solving

zα/2 ∗
√
κ(1 + κ)/12 +

√
n2κ(1/2− p1)√

κ2(p2 − p21) + κ(p3 − p21)
= −zβ ,

which leads to n1 = κn2 and

n2 =
(zα/2

√
κ(κ+ 1)/12 + zβ

√
κ2(p2 − p21) + κ(p3 − p21))

2

κ2(1/2− p1)2
.

Remark

As indicated in (14.3.1), when there are no ties,

var(W ) =
n1 + n2 + 1

12
.

When there are ties among the N observations,

var(W ) =
n1n2
12

[
n1 + n2 + 1−

∑g
j=1 tj(t

2
j − 1)

(n1 + n2)(n1 + n2 − 1)

]
,

where g is the number of tied groups and tj is the size of tied group j. In
this case, the above formula for sample size calculation is necessary modi-
fied.

An Example
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To illustrate the use of the sample size formula derived above, we consider
the same example concerning a clinical trial for evaluation of the effect of
a test drug on cholesterol in patients with coronary heart disease (CHD).
Suppose the investigator is interested in comparing two cholesterol lowering
agents for treatment of patients with CHD through a parallel design. The
primary efficacy parameter is the LDL. The null hypothesis of interest is
the one of no treatment difference. Suppose that a two-arm parallel pilot
study was conducted. According to the data given in the pilot study, it
was estimated that p2 = 0.70, p3 = 0.80, and p4 = 0.80. Hence, the sample
size needed in order to achieve an 80% power for detection of a clinically
meaningful difference between the treatment groups can be estimated by

n =
(zα/2/

√
6 + zβ

√
p2 + p3 − p21)

2

(1/2− p1)2

=
(1.96/

√
6 + 0.84

√
0.80 + 0.80− 2× 0.702)2

(0.50− 0.70)2

≈ 54.

Hence, a total of 54 subjects is needed in order to have an 80% power to
confirm the observed difference between the two treatment groups when
such a difference truly exists.

14.4 Test for Independence

In many clinical trials, data collected may consist of a random sample
from a bivariate population. For example, the baseline value and the post-
treatment value. For such a data set, it is of interest to determine whether
there is an association between the two variates (say x and y) involved in the
bivariate structure. In other words, it is of interest to test for independence
between x and y. Let (xi, yi), i = 1, ..., n, be the n bivariate observation
from the n subjects involved in a clinical trial. It is assumed that (i) (xi, yi),
i = 1, ..., n, are mutually independent and (ii) each (xi, yi) comes from the
same continuous bivariate population of (x, y). To obtain a nonparametric
test for independence between x and y, define

τ = 2P{(x1 − x2)(y1 − y2) > 0} − 1,

which is the so-called Kendall coefficient. Testing the hypothesis that x
and y are independent, i.e.,

H0 : P (x ≤ a and y ≤ b) = P (x ≤ a)P (y ≤ b) for all a and b
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is equivalent to testing the hypothesis that τ = 0. A nonparametric test can
be obtained as follows. First, for 1 ≤ i < j ≤ n, calculate ζ(xi, xj , yi, yj),
where

ζ(a, b, c, d) =
{

1 if (a− b)(c− d) > 0
−1 if (a− b)(c− d) < 0.

For each pair of subscripts (i, j) with i < j, ζ(xi, xj , yi, yj) = 1 indicates
that (xi − xj)(yi − yj) is positive while ζ(xi, xj , yi, yj) = −1 indicates that
(xi − xj)(yi − yj) is negative. Consider

K =
n−1∑
i=1

n∑
j=i+1

ζ(xi, xj , yi, yj).

We then reject the null hypothesis that τ = 0 at the α level of significance
if

K ≥ k(α2, n) or K ≤ −k(α1, n),

where k(α, n) satisfies

P (K ≥ k(α, n)) = α

and α = α1 + α2. Values of k(α, n) are given in the most standard non-
parametric references (e.g., Hollander and Wolfe, 1973). Under the null
hypothesis,

K∗ =
K − E(K)√

var(K)
= K

[
n(n− 1)(2n+ 5)

18

]−1/2

(14.4.1)

is asymptotically distributed as a standard normal. Hence, we would reject
the null hypothesis at the α level of significance for large samples if |K∗| ≥
zα/2. It should be noted that when there are ties among the n x observations
or among the n y observations, ζ(a, b, c, d) should be replaced with

ζ∗(a, b, c, d) =


1 if (a− b)(c− d) > 0
0 if (a− b)(c− d) = 0
−1 if (a− b)(c− d) < 0.
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As a result, under H0, var(K) becomes

var(K) =
1
18

[
n(n− 1)(2n+ 5)−

g∑
i=1

ti(ti − 1)(2ti + 5)

−
h∑
j=1

uj(uj − 1)(2uj + 5)


+

1
9n(n− 1)(n− 2)

[
g∑
i=1

ti(ti − 1)(ti − 2)

]

×

 h∑
j=1

uj(uj − 1)(uj − 2)


+

1
2n(n− 1)

 g∑
j=1

ti(ti − 1)

[ h∑
i=1

uj(uj − 1)

]
,

where g is the number of tied x groups, ti is the size of the tied x group i,
h is the number of tied y groups, and uj is the size of the tied y group j.

A formula for sample size calculation can be derived base on test (14.4.1).
Define

ζi,j = ζ(xi, xj , yi, yj).

It follows that

var(K) = var

n−1∑
i=1

n∑
j=i+1

ζi,j


=

n(n− 1)
2

var(ζi,j) + n(n− 1)(n− 2)cov(ζi,j1 , ζi,j2)

=
n(n− 1)

2
[1− (1− 2p1)2]

+n(n− 1)(n− 2)[2p2 − 1− (1− 2p1)2],

where

p1 = P ((x1 − x2)(y1 − y2) > 0)
p2 = P ((x1 − x2)(y1 − y2)(x1 − x3)(y1 − y3) > 0).

The above quantities can be readily estimated based on data from pilot
studies. More specifically, let (x1, y1), ..., (xn, yn) be the data from a pilot
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study, the corresponding estimators can be obtained by

p̂1 =
1

n(n− 1)

∑
i�=j

I{(xi − xj)(yi − yj) > 0}

p̂2 =
1

n(n− 1)(n− 2)

∑
i�=j1 �=j2

I{(xi − xj1)(yi − yj1)(xi − xj2)(yi − yj2) > 0}.

Under the alternative hypothesis, K is approximately distributed as a
normal random variable with mean

µK =
n(n− 1)

2
(2p1 − 1)

and variance

σ2K =
n(n− 1)

2
[1− (1− 2p1)2] + n(n− 1)(n− 2)[2p2 − 1− (1− 2p1)2].

Without loss of generality, we assume p1 > 1/2. The power of test (14.4.1)
can be approximated by

Power = P (|K∗| > zα/2)
≈ P (K∗ > zα/2)

= P

(
K − n(n− 1)(2p1 − 1)/2

σK
>

zα/2
√
n(n− 1)(2n+ 5)/18− n(n− 1)(p1 − 1/2)

σK

)

≈ 1− Φ

(
zα/2/3−

√
n(p1 − 1/2)√

2p2 − 1− (2p1 − 1)2

)
.

Hence, the sample size needed in order to achieve a desired power of 1− β
can be obtained by solving the following equation:

zα/2/3−
√
n(p1 − 1/2)√

2p2 − 1− (2p1 − 1)2
= −zβ .

This leads to

n =
4(zα/2/3 + zβ

√
2p2 − 1− (2p1 − 1)2)2

(2p1 − 1)2
.

An Example

In a pilot study, it is observed that a larger x value resulted in a larger
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value of y. Thus, it is of interest to conduct a clinical trial to confirm such
an association between two primary responses, x and y, truly exists. Sup-
pose that a two-arm parallel pilot study was conducted. Based on the data
from the pilot study, it was estimated that p1 = 0.60 and p2 = 0.70. Hence,
the sample size required for achieving an 80% power is

n =
(zα/2/3 + zβ

√
2p2 − 1− (2p1 − 1)2)2

(p1 − 0.5)2

=
(1.96/3 + 0.84

√
2× 0.70− 1− (1.20− 1.00)2)2

(0.6− 0.5)2

≈ 135.

Thus, a total of 135 subjects is needed in order to achieve an 80% power
to confirm the observed association in the pilot study.

14.5 Practical Issues

14.5.1 Bootstrapping

When a nonparametric method is used, a formula for sample size calculation
may not be available or may not exist a closed form, especially when the
study design/objective is rather complicated. In this case, the technique of
bootstrapping may be applied. For more details, see Shao and Tu (1999).

14.5.2 Comparing Variabilities

In practice, it is often of interest to compare variabilities between treat-
ments observed from the trials. Parametric methods for comparing vari-
abilities is examined in Chapter 9. Nonparametric methods for comparing
variabilities between treatment groups, however, are much more compli-
cated and require further research.

14.5.3 Multiple-Sample Location Problem

When there are more than two treatment groups, the method of analysis
of variance is usually considered. The primary hypothesis is that there
are no treatment differences across the treatment groups. Let xij be the
observation from the ith subject receiving the jth treatment, where i =
1, ..., nj and j = 1, ..., k. Similar to the analysis of variance model for the
parametric case, we consider the following model:

xij = µ+ τj + eij , i = 1, ..., nj , j = 1, ..., k,
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where µ is the unknown overall mean, τj is the unknown jth treatment
effect and

∑k
j=1 τj = 0. It is assumed that (i) each ei comes from the

same continuous population with mean 0 and (ii) the ei’s are mutually
independent. The hypotheses of interest are

H0 : τ1 = · · · = τk versus Ha : τi �= τj for some i �= j.

To test the above hypotheses, the following Kruskal-Wallis test is useful
(Kruskal and Wallis, 1952). We first rank all N =

∑k
j=1 nj observations

jointly from least to greatest. Let Rij denote the rank of xij in this joint
ranking, Rj =

∑nj

i=1Rij , R·j = Rj/nj , and R·· = N+1
2 , j = 1, ..., k. Note

that Rj is the sum of the ranks received by treatment j and R·j is the
average rank obtained by treatment j. Based on Rj , R·j and R··, the
Kruskal-Wallis test statistic for the above hypotheses can be obtained as

H =
12

N(N + 1)

k∑
j=1

nj(R·j −R··)2

=

 12
N(N + 1)

k∑
j=1

R2
j

nj

− 3(N + 1).

We reject the null hypothesis at the α level of significance if

H ≥ h(α, k, n1, · · · , nk),

where h(α, k, n1, · · · , nk) satisfies

P (H ≥ h(α, k, n1, · · · , nk)) = α

under the null hypothesis. Values of h(α, k, (n1, · · · , nk)) are given in the
most standard nonparametric references (e.g., Hollander and Wolfe, 1973).
Note that under the null hypothesis, H has an asymptotic chi-square distri-
bution with k−1 degrees of freedom (Hollander and Wolfe, 1973). Thus, we
may reject the null hypothesis at the α level of significance for large sam-
ples if H ≥ χ2α,k−1, where χ

2
α,k−1 is the upper αth percentile of a chi-square

distribution with k − 1 degrees of freedom.
Unlike the parametric approach, formulae or procedures for sample

size calculation for testing difference in multiple-sample locations using
nonparametric methods are much more complicated. Further research is
needed.

14.5.4 Testing Scale Parameters

In clinical trials, the reproducibility of subjects’ medical status in terms of
intra-subject variability is often assessed. If the intra-subject variability is
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much larger than that of the standard therapy (or control), safety of the test
product could be a concern. In practice, a replicate crossover design or a
parallel-group design with replicates is usually recommended for comparing
intra-subject variability. Although nonparametric methods for testing scale
parameters are available in the literature (see, e.g., Hollander and Wolfe,
1973), powers of these tests under the alternative hypothesis are not fully
studied. As a result, further research in this area is necessary.
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Chapter 15

Sample Size Calculation
in Other Areas

As indicated earlier, sample size calculation is an integral part of clinical re-
search. It is undesirable to observe positive results with insufficient power.
Sample size calculation should be performed based on the primary study
endpoint using appropriate statistical methods under a valid study design
with correct hypotheses, which can reflect the study objectives. In the pre-
vious chapters, we have examined formulas or procedures for sample size
calculation based on various primary study endpoints for comparing means,
proportions, variabilities, functions of means and variance components, and
time-to-event data. In this chapter, in addition, we discuss several proce-
dures for sample size calculation based on different study objectives and/or
hypotheses using different statistical methods, which are not covered in the
previous chapters.

In the next section, sample size calculations for QT/QTc studies with
time-dependent replicates are examined. Sample size calculation based on
propensity score analysis for non-randomized studies is given in Section
15.2. Section 15.3 discusses sample size calculation under an analysis of
variance (ANOVA) model with repeated measures. Section 15.4 discusses
sample size calculation for assessment of quality of life (QOL) under a time
series model. In Section 15.5, the concept of reproducibility and sensitivity
index for bridging studies is introduced. Also included in this section is
a proposed method for assessing similarity of bridging studies, which is
used for derivation of a procedure for sample size calculation. Statistical
methods and the corresponding procedure for sample size calculation for
vaccine clinical trials are briefly outlined in Section 15.6.

373
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15.1 QT/QTc Studies with Time-Dependent
Replicates

In clinical trials, a 12-lead electrocardiogram (ECG) is usually conducted
for assessment of potential cardiotoxicity induced by the treatment under
study. On an ECG tracing, the QT interval is measured from the begin-
ning of the Q wave to the end of the T wave. QT interval is often used to
indirectly assess the delay in cardiac repolarization, which can pre-dispose
to the development of life threatening cardiac arrhythmias such as torsade
de pointes (Moss, 1993). QTc interval is referred to as the QT interval cor-
rected by heart rate. In clinical practice, it is recognized that the prolon-
gation of the QT/QTc interval is related to increased risk of cardiotoxicity
such as a life threatening arrhythmia (Temple 2003). Thus it is suggested
that a careful evaluation of potential QT/QTc prolongation be assessed for
potential drug-induced cardiotoxicity.

For development of a new pharmaceutical entity, most regulatory agen-
cies such as the United States Food and Drug Administration (FDA) re-
quire the evaluation of pro-arrhythmic potential (see, e.g., CPMP, 1997;
FDA/TPD, 2003; ICH, 2003). As a result, a draft guidance on the clinical
evaluation of QT/QTc interval prolongation and proarrhythmic potential
for non-antiarrhythmic drugs is being prepared by the ICH (ICH E14). This
draft guidance calls for a placebo-controlled study in normal healthy volun-
teers with a positive control to assess cardiotoxicity by examining QT/QTc
prolongation. Under a valid study design (e.g., a parallel-group design or
a crossover design), ECG’s will be collected at baseline and at several time
points post-treatment for each subject. Malik and Camm (2001) recom-
mend that it would be worthwhile to consider 3 to 5 replicate ECGs at
each time point within 2 to 5 minute period. Replicate ECGs are then
defined as single ECG recorded within several minutes of a nominal time
(PhRMA QT Statistics Expert Working Team, 2003). Along this line, Stri-
eter, et al (2003) studied the effect of replicate ECGs on QT variability in
healthy subjects. In practice, it is then of interest to investigate the impact
of recording replicates on power and sample size calculation in routine QT
studies.

In clinical trials, a pre-study power analysis for sample size calculation
is usually performed to ensure that the study will achieve a desired power
(or the probability of correctly detecting a clinically meaningful difference
if such a difference truly exists). For QT studies, the following information
is necessarily obtained prior to the conduct of the pre-study power analysis
for sample size calculation. These information include (i) the variability as-
sociated with the primary study endpoint such as the QT intervals (or the
QT interval endpoint change from baseline) and (ii) the clinically meaning-
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ful difference in QT interval between treatment groups. Under the above
assumption, the procedures as described in Longford (1993) and Chow ,
Shao and Wang (2003c) can then be applied for sample size calculation
under the study design (e.g., a parallel-group design or a crossover design).

In what follows, commonly used study designs such as a parallel-group
design or a crossover design for routine QT studies with recording repli-
cates are briefly described. Power analyses and the corresponding sample
size calculations under a parallel-group design and a crossover design are
derived. Extensions to the designs with covariates (PK responses) are also
considered.

15.1.1 Study Designs and Models

A typical study design for QT studies is either a parallel-group design or
a crossover design depending upon the primary objectives of the study.
Statistical models under a parallel-group design and a crossover design are
briefly outlined below.

Under a parallel-group design, qualified subjects will be randomly as-
signed to receive either treatment A or treatment B. ECG’s will be collected
at baseline and at several time points post-treatment. Subjects will fast at
least 3 hours and rest at least 10 minutes prior to scheduled ECG measure-
ments. Identical lead-placement and same ECG machine will be used for
all measurements. As recommended by Malik and Camm (2001), 3 to 5
recording replicate ECGs at each time point will be obtained within a 2 to
5 minute period.

Let yijk be the QT interval observed from the kth recording replicate of
the jth subject who receives treatment i, where i = 1, 2, j = 1, . . . , n and
k = 1, . . . ,K. Consider the following model

yijk = µi + eij + εijk, (15.1.1)

where eij are independent and identically distributed as a normal with
mean 0 and variance σ2s (between subject or inter-subject variability) and
εijk are independent and identically distributed as a normal with mean 0
and variance σ2e (within subject or intra-subject variability or measurement
error variance). Thus, we have Var(yijk) = σ2s + σ2e .

Under a crossover design, qualified subjects will be randomly assigned
to receive one of the two sequences of test treatments under study. In
other words, subjects who are randomly assigned to sequence 1 will receive
treatment 1 first and then be crossed over to receive treatment 2 after a
sufficient period of washout. Let yijkl be the QT interval observed from the
kth recording replicate of the jth subject in the lth sequence who receives
the ith treatment, where i = 1, 2, j = 1, . . . , n, k = 1, . . . ,K, and l = 1, 2.
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We consider the following model

yijkl = µi + βil + eijl + εijkl, (15.1.2)

where βil are independent and identically distributed normal random period
effects (period uniquely determined by sequence l and treatment i) with
mean 0 and variance σ2p, eijl are independent and identically distributed
normal subject random effects with mean 0 and variance σ2s , and εijkl are
independent and identically distributed normal random errors with mean
0 and variance σ2e . Thus, Var(yijkl) = σ2p + σ2s + σ2e .

To have a valid comparison between the parallel design and the crossover
design, we assume that µi, σ2s , and σ2e are the same as those given in (15.1.1)
and (15.1.2) and consider an extra variability σ2p, which is due to the random
period effect for the crossover design.

15.1.2 Power and Sample Size Calculation

Parallel Group Design

Under the parallel-group design as described in the previous section, to
evaluate the impact of recording replicates on power and sample size cal-
culation, for simplicity, we will consider only one time point post treat-
ment. The results for recording replicates at several post-treatment in-
tervals can be similarly obtained. Under model (15.1.1), consider sample
mean of QT intervals of the jth subject who receives the ith treatment
then Var(ȳij.) = σ2s +

σ2
e

K . The hypotheses of interest regarding treatment
difference in QT interval are given by

H0 : µ1 − µ2 = 0, versus H1 : µ1 − µ2 = d, (15.1.3)

where d �= 0 is a difference of clinically importance. Under the null hypoth-
esis of no treatment difference, the following statistic can be derived

T =
ȳ1.. − ȳ2..√
2
n

(
σ̂2s +

σ̂2
e

K

) ,
where

σ̂2e =
1

2n(K − 1)

2∑
i=1

n∑
j=1

K∑
k=1

(yijk − ȳij.)2,

and

σ̂2s =
1

2(n− 1)

2∑
i=1

n∑
j=1

(ȳij. − ȳi..)2 −
1

2nK(K − 1)

2∑
i=1

n∑
j=1

K∑
k=1

(yijk − ȳij.)2.
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Under the null hypothesis in (15.1.3), T has a central t-distribution with
2n − 2 degrees of freedom. Let σ2 = Var(yijk) = σ2s + σ2e and ρ = σ2

s

σ2
s+σ

2
e
,

then under the alternative hypothesis in (15.1.3), the power of the test can
be obtained as follows

1− β ≈ 1− Φ

zα/2 − δ√
2
n

(
ρ+ 1−ρ

K

)
+

Φ

−zα/2 −
δ√

2
n

(
ρ+ 1−ρ

K

)
 , (15.1.4)

where δ = d/σ is the relative effect size and Φ is the cumulative distribution
of a standard normal. To achieve the desired power of 1− β at the α level
of significance, the sample size needed per treatment is

n =
2(zα/2 + zβ)2

δ2

(
ρ+

1− ρ

K

)
. (15.1.5)

Crossover Design

Under a crossover model (15.1.2), it can be verified that ȳi... is an unbiased

estimator of µi with variance σ
2
p

2 + σ2
s

2n + σ2
e

2nK . Thus, we used the following
test statistic to test the hypotheses in (15.1.3)

T =
ȳ1... − ȳ2...√

σ̂2p +
1
n

(
σ̂2s +

σ̂2
e

K

) ,
where

σ̂2e =
1

4n(K − 1)

2∑
i=1

n∑
j=1

K∑
k=1

2∑
l=1

(yijkl − ȳij.l)2,

σ̂2s =
1

4(n− 1)

2∑
i=1

n∑
j=1

2∑
l=1

(ȳij.l − ȳi..l)2

− 1
4nK(K − 1)

2∑
i=1

n∑
j=1

K∑
k=1

2∑
l=1

(yijkl − ȳij.l)2,

and

σ̂2p =
1
2

2∑
i=1

2∑
l=1

(ȳi..l − ȳ....)2 −
1

4n(n− 1)

2∑
i=1

n∑
j=1

2∑
l=1

(ȳij.l − ȳi..l)2.
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Under the null hypothesis in (15.1.3), T has a central t-distribution with
2n − 4 degrees of freedom. Let σ2 and ρ be defined as in the previous
section, and γ = σ2p/σ

2, then Var(yijkl) = σ2(1+ γ). Under the alternative
hypothesis in (15.1.3), the power of the test can be obtained as follows

1− β ≈ 1− Φ

zα/2 − δ√
γ + 1

n

(
ρ+ 1−ρ

K

)


+Φ

−zα/2 −
δ√

γ + 1
n

(
ρ+ 1−ρ

K

)
 , (15.1.6)

where δ = d/σ. To achieve the desired power of 1 − β at the α level of
significance, the sample size needed per treatment is

n =
(zα/2 + zβ)2

δ2 − γ(zα/2 + zβ)2

(
ρ+

1− ρ

K

)
. (15.1.7)

Remarks

Let nold be the sample size with K = 1 (i.e., there is single measure for each
subject). Then, we have n = ρnold+(1−ρ)nold/K. Thus, sample size (with
recording replicates) required for achieving the desired power is a weighted
average of nold and nold/K. Note that this relationship holds under both a
parallel and a crossover design. Table 15.1.1 provides sample sizes required
under a chosen design (either parallel or crossover) for achieving the same
power with single recording (K = 1), three recording replicates (K = 3),
and five recording replicates (K = 5).

Note that if ρ closes to 0, then these repeated measures can be treated
as independent replicates. As it can be seen from the above, if ρ ≈ 0,
then n ≈ nold/K. In other words, sample size is indeed reduced when
the correlation coefficient between recording replicates is close to 0 (in this
case, the recording replicates are almost independent). Table 15.1.2 shows
the sample size reduction for different values of ρ under the parallel design.
However, in practice, ρ is expected to be close to 1. In this case, we have
n ≈ nold. In other words, there is not much gain for considering recording
replicates in the study.

In practice it is of interest to know whether the use of a crossover design
can further reduce the sample size when other parameters such as d, σ2, and
ρ, remain the same. Comparing formulas (15.1.5) and (15.1.7), we conclude
that the sample size reduction by using a crossover design depends upon
the parameter γ = σ2p/σ

2, which is a measure of the relative magnitude
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of period variability with respect to the within period subject marginal
variability. Let θ = γ

(zα/2+zβ)2
, then by (15.1.5) and (15.1.7) the sample

size ncross under the crossover design and the sample size nparallel under
the parallel group design satisfy ncross =

nparallel
2(1−θ) . When the random period

effect is negligible, that is, γ ≈ 0 and hence θ ≈ 0, then we have ncross =
nparallel

2 . This indicates that the use of a crossover design could further
reduce the sample size by half as compared to a parallel group design when
the random period effect is negligible (based on the comparison of the above
formula and the formula given in (15.1.5)). However, when the random
period effect is not small, the use of a crossover design may not result in
sample size reduction. Table 15.1.3 shows the sample size under different
values of γ. It is seen that the possibility of sample size reduction under
a crossover design depends upon whether the carryover effect of the QT
intervals could be avoided. As a result, it is suggested a sufficient length
of washout be applied between dosing periods to wear off the residual (or
carryover) effect from one dosing period to another. For a fixed sample
size, the possibility of power increase by crossover design also depends on
parameter γ.

Table 15.1.1: Sample Size for Achieving the Same
Power with K Recording Replicates.

K

ρ 1 3 5
1.0 n 1.00n 1.00n
0.9 n 0.93n 0.92n
0.8 n 0.86n 0.84n
0.7 n 0.80n 0.76n
0.6 n 0.73n 0.68n
0.5 n 0.66n 0.60n
0.4 n 0.60n 0.52n
0.3 n 0.53n 0.44n
0.2 n 0.46n 0.36n
0.1 n 0.40n 0.28n
0.0 n 0.33n 0.20n
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Table 15.1.2: Sample Sizes Required Under a Parallel-Group Design.

power = 80% power = 90%
ρ ρ

(K, δ) 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
(3, 0.3) 81 105 128 151 174 109 140 171 202 233
(3, 0.4) 46 59 72 85 98 61 79 96 114 131
(3, 0.5) 29 38 46 54 63 39 50 64 73 84
(5, 0.3) 63 91 119 147 174 84 121 159 196 233
(5, 0.4) 35 51 67 82 98 47 68 89 110 131
(5, 0.5) 23 33 43 53 63 30 44 57 71 84

Table 15.1.3: Sample Sizes Required Under a Crossover Design With
ρ = 0.8.

power = 80%
γ

(K, δ) 0.000 0.001 0.002 0.003 0.004
(3, 0.3) 76 83 92 102 116
(3, 0.4) 43 45 47 50 53
(3, 0.5) 27 28 29 30 31
(5, 0.3) 73 80 89 99 113
(5, 0.4) 41 43 46 48 51
(5, 0.5) 26 27 28 29 30

power = 90%
γ

(K, δ) 0.000 0.001 0.002 0.003 0.004
(3, 0.3) 101 115 132 156 190
(3, 0.4) 57 61 66 71 77
(3, 0.5) 36 38 40 42 44
(5, 0.3) 98 111 128 151 184
(5, 0.4) 55 59 64 69 75
(5, 0.5) 35 37 39 40 42

15.1.3 Extension

In the previous section, we consider models without covariates. In practice,
additional information such as some pharmacokinetic (PK) responses, e.g.,
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area under the blood or plasma concentration time curve (AUC) and the
maximum concentration (Cmax), which are known to be correlated to the
QT intervals may be available. In this case, models (15.1.1) and (15.1.2)
are necessarily modified to include the PK responses as covariates for a
more accurate and reliable assessment of power and sample size calculation
(Cheng and Shao, 2005).

Parallel Group Design

After the inclusion of the PK response as covariate, model (15.1.1) becomes

yijk = µi + ηxij + eij + εijk,

where xij is the PK response for subject j. The least square estimate of η
is given by

η̂ =

∑2
i=1

∑n
j=1(ȳij. − ȳi..)(xij − x̄i.)∑2
i=1

∑n
j=1(xij − x̄i.)2

.

Then (ȳ1.. − ȳ2..) − η̂(x̄1. − x̄2.) is an unbiased estimator of µ1 − µ2 with
variance [

(x̄1. − x̄2.)2∑
ij(xij − x̄i.)2/n

+ 2

](
ρ+

1− ρ

K

)
σ2

n
,

which can be approximated by[
(ν1 − ν2)2

τ21 + τ22
+ 2

](
ρ+

1− ρ

K

)
σ2

n
,

where νi = limn→∞ x̄i., and τ2i = limn→∞
∑n
j=1(xij− x̄i.)2/n. Similarly, to

achieve the desired power of 1−β at the α level of significance, the sample
size needed per treatment group is given by

n =
(zα/2 + zβ)2

δ2

[
(ν1 − ν2)2

τ21 + τ22
+ 2

](
ρ+

1− ρ

K

)
. (15.1.8)

In practice, νi and τ2i are estimated by the corresponding sample mean and
sample variance from the pilot data. Note that if there are no covariates
or the PK responses are balanced across treatments (i.e., ν1 = ν2), then
formula (15.1.8) reduces to (15.1.5).

Crossover Design

After taken the PK response into consideration as a covariate, model (15.1.2)
becomes

yijkl = µi + ηxijl + βil + eijl + εijkl.
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Then (ȳ1... − ȳ2...)− η̂(x̄1.. − x̄2..) is an unbiased estimator of µ1 − µ2 with
variance [

γ +

(
(x̄1.. − x̄2..)2∑
ijl(xijl − x̄i..)2/n

+ 1

)(
ρ+

1− ρ

K

)]
σ2,

which can be approximated by[
γ +

(
(ν1 − ν2)2

τ21 + τ22
+ 1

)(
ρ+

1− ρ

K

)]
σ2,

where νi = limn→∞ x̄i.., and τ2i = limn→∞
∑
jl(xijl − x̄i..)2/n. To achieve

the desired power of 1 − β at the α level of significance, the sample size
required per treatment group is

n =
(zα/2 + zβ)2

δ2 − γ(zα/2 + zβ)2

[
(ν1 − ν2)2

τ21 + τ22
+ 1

](
ρ+

1− ρ

K

)
. (15.1.9)

When there are no covariates or PK responses satisfy ν1 = ν2, formula
(15.1.9) reduces to (15.1.7).

Formulas (15.1.8) and (15.1.9) indicate that under either a parallel group
or a crossover design, a larger sample size is required to achieve the same
power if the covariate information is to be incorporated.

15.1.4 Remarks

Under a parallel group design, the possibility of whether the sample size
can be reduced depends upon the parameter ρ, the correlation between the
QT recording replicates. As indicated earlier, when ρ closes to 0, these
recording repeats can be viewed as (almost) independent replicates. As
a result, n ≈ nold/K. When ρ is close to 1, we have n ≈ nold. Thus,
there is not much gain for considering recording replicates in the study. On
the other hand, assuming that all other parameters remain the same, the
possibility of further reducing the sample size by a crossover design depends
upon the parameter γ, which is a measure of the magnitude of the relative
period effect.

When analyzing QT intervals with recording replicates, we may consider
change from baseline. It is, however, not clear which baseline should be used
when there are also recording replicates at baseline. Strieter et al (2003)
proposed the use of the so-called time-matched change from baseline, which
is defined as measurement at a time point on the post-baseline day minus
measurement at same time point on the baseline. The statistical properties
of this approach, however, are not clear. In practice, it may be of interest to
investigate relative merits and disadvantages among the approaches using
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(i) the most recent recording replicates, (ii) the mean recording replicates,
or (iii) time-matched recording replicates as the baseline. This requires
further research.

15.2 Propensity Analysis in Non-Randomized
Studies

As indicated in Yue (2007), the use of propensity analysis in non-randomized
trials has received much attention, especially in the area of medical device
clinical studies. In non-randomized study, patients are not randomly as-
signed to treatment groups with equal probability. Instead, the probability
of assignment varies from patient to patient depending on patient’s baseline
covariates. This often results in non-comparable treatment groups due to
imbalance of the baseline covariates and consequently invalid the standard
methods commonly employed in data analysis. To overcome this prob-
lem, Yue (2007) recommends the method of propensity score developed by
Rosenbaum and Rubin (1983, 1984) be used.

In her review article, Yue (2007) described some limitations for use of
propensity score. For example, propensity score method can only adjust
or observed covariates and not for unobserved ones. As a result, it is sug-
gested that a sensitivity analysis be conducted for possible hidden bias. In
addition, Yue (2007) also posted several statistical and regulatory issues
for propensity analysis in non-randomized trials including sample size cal-
culation. In this discussion, our emphasis will be placed on the issue of
sample size calculation in the context of propensity scores. We propose a
procedure for sample size calculation based on weighted Mantel-Haenszel
test with different weights across score subclasses.

In the next section, a proposed weighted Mantel-Haenszel test, the corre-
sponding formula for sample size calculation, and a formula for sample size
calculation ignoring strata are briefly described. Subsequent subsections
summarize the results of several simulation studies conducted for evalua-
tion of the performance of the proposed test in the context of propensity
analysis. A brief concluding remark is given in the last section.

15.2.1 Weighted Mantel-Haenszel Test

Suppose that the propensity score analysis defines J strata. Let n denote
the total sample size, and nj the sample size in stratum j (

∑J
j=1 nj = n).

The data on each subject comprise of the response variable x = 1 for
response and 0 for no response; j and k for the stratum and treatment
group, respectively, to which the subject is assigned (1 ≤ j ≤ J ; k = 1, 2).
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We assume that group 1 is the control. Frequency data in stratum j can
be described as follows:

Group
Response 1 2 Total

Yes xj11 xj12 xj1
No xj21 xj22 xj2

Total nj1 nj2 nj

Let Oj = xj11, Ej = nj1xj1/nj , and

Vj =
nj1nj2xj1xj2
n2j(nj − 1)

.

Then, the weighted Mantel-Haenszel (WMH) test is given by

T =

∑J
j=1 ŵj(Oj − Ej)√∑J

j=1 ŵ
2
jVj

,

where the weights ŵj converges to a constant wj as n → ∞. The weights are
ŵj = 1 for the original Mantel-Haenszel (MH) test and ŵj = q̂j = xj2/nj
for the statistic proposed by Gart (1985).

Let aj = nj/n denote the allocation proportion for stratum j (
∑J
j=1 aj =

1), and bjk = njk/nj denote the allocation proportion for group k within
stratum j (bj1+bj2 = 1). Let pjk denote the response probability for group
k in stratum j and qjk = 1 − pjk. Under H0 : pj1 = pj2, 1 ≤ j ≤ J , T is
approximately N(0, 1). The optimal weights maximizing the power depend
on the allocation proportions {(aj , b1j , b2j), j = 1, ..., J} and effect sizes
(pj1 − pj2, 1, ..., J) under H1.

15.2.2 Power and Sample Size

In order to calculate the power of WMH, we have to derive the asymptotic
distribution of

∑J
j=1 ŵj(Oj − Ej) and the limit of

∑J
j=1 ŵ

2
jVj under H1.

We assume that the success probabilities (pjk, 1 ≤ j ≤ J, j = 1, 2) satisfy
pj2qj1/(pj1qj2) = φ for φ �= 1 under H1. Note that a constant odds ratio
across strata holds if there exists no interaction between treatment and the
propensity score when the binary response is regressed on the treatment
indicator and the propensity score using a logistic regression. Following
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derivations are based on H1. It can be verified that

Oj − Ej =
nj1nj2
nj

(p̂j1 − p̂j2)

=
nj1nj2
nj

(p̂j1 − pj1 − p̂j2 + pj2) +
nj1nj2
nj

(pj1 − pj2)

= najbj1bj2(p̂j1 − pj1 − p̂j2 + pj2) + najbj1bj2(pj1 − pj2).

Thus, under H1,
∑J
j=1 ŵj(Oj−Ej) is approximately normal with mean nδ

and variance nσ21 , where

δ =
J∑
j=1

wjajbj1bj2(pj1 − pj2)

= (1− φ)
J∑
j=1

wjajbj1bj2
pj1qj1

qj1 + φpj1

and

σ21 = n−1
J∑
j=1

w2
j

n2j1n
2
j2

n2j

(
pj1qj1
nj1

+
pj2qj2
nj2

)

=
J∑
j=1

w2
jajbj1bj2(bj2pj1qj1 + bj1pj2qj2).

Also, under H1, we have

J∑
j=1

w2
jVj = nσ20 + op(n),

where

σ20 =
J∑
j=1

w2
jajbj1bj2(bj1pj1 + bj2pj2)(bj1qj1 + bj2qj2).

Hence, the power of WMH is given as

1− β = P(|T | > z1−α/2|H1)

= P(
σ1
σ0
Z +

√
n
|δ|
σ0

> z1−α/2)

= Φ̄
(
σ0
σ1
z1−α/2 −

√
n
|δ|
σ1

)
,

where Z is a standard normal random variable and Φ̄(z) = P (Z > z).
Thus, sample size required for achieving a desired power of 1 − β can be
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obtained as

n =
(σ0z1−α/2 + σ1z1−β)2

δ2
. (1)

Following the steps as described in Chow, Shao and Wang (2003c), the
sample size calculation for the weighted Mantel-Haenszel test can be carried
out as follows:

1. Specify the input variables

• Type I and II error probabilities, (α, β).

• Success probabilities for group 1 p11, ..., pJ1, and the odds ratio
φ under H1. Note that pj2 = φpj1/(qj1 + φpj1).

• Incidence rates for the strata, (aj , j = 1, ..., J). (Yue proposes
to use aj ≈ 1/J .)

• Allocation probability for group 1 within each stratum, (bj1, j =
1, ..., J).

2. Calculate n by

n =
(σ0z1−α/2 + σ1z1−β)2

δ2
,

where

δ =
J∑
j=1

ajbj1bj2(pj1 − pj2)

σ21 =
J∑
j=1

ajbj1bj2(bj2pj1qj1 + bj1pj2qj2)

σ20 =
J∑
j=1

ajbj1bj2(bj1pj1 + bj2pj2)(bj1qj1 + bj2qj2).

Sample Size Calculation Ignoring Strata

We consider ignoring strata and combining data across J strata. Let nk =∑J
j=1 njk denote the sample size in group k. Ignoring strata, we may

estimate the response probabilities by p̂k = n−1
k

∑J
j=1 xj1k for group k and

p̂ = n−1
∑J
j=1

∑2
k=1 xj1k for the pooled data. The WHM ignoring strata

reduces to
T̃ =

p̂1 − p̂2√
p̂q̂(n−1

1 + n−1
2 )

,

where q̂ = 1− p̂.
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Noting that njk = najbjk, we have

E(p̂k) ≡ pk =
J∑
j=1

ajbjkpjk/

J∑
j=1

ajbjk (2)

and E(p̂) ≡ p =
∑J
j=1 aj(bj1pj1 + bj2pj2). So, under H1, p̂1 − p̂2 is ap-

proximately normal with mean δ̃ = p1 − p2 and variance n−1σ̃21 , where
σ̃21 = p1q1/b1 + p2q2/b2, qk = 1− pk and bk =

∑J
j=1 ajbjk. Also under H1,

p̂q̂(n−1
1 + n−1

2 ) = n−1σ̃20 + op(n−1), where σ̃20 = pq(b−1
1 + b−1

2 ). Hence, the
sample size ignoring strata is given as

ñ =
(σ̃0z1−α/2 + σ̃1z1−β)2

(p1 − p2)2
. (3)

Analysis based on propensity score is to adjust for possible unbalanced
baseline covariates between groups. Under balanced baseline covariates (or
propensity score), we have b11 = · · · = bJ1, and, from (2), p1 = p2 when
H0 : pj1 = pj2, 1 ≤ j ≤ J is true. Hence, under balanced covariates, the test
statistic T̃ ignoring strata will be valid too. However, by not adjusting for
the covariates (or, propensity), it will have a lower power than the stratified
test statistic T , see Nam (1998) for Gart’s test statistic. On the other hand,
if the distribution of covariates is unbalanced, we have p1 �= p2 even under
H0, and the test statistic T̃ ignoring strata will not be valid.

Remarks

For non-randomized trials, the sponsors usually estimate sample size in
the same way as they do in randomized trials. As a result, the United
States Food and Drug Administration (FDA) usually gives a warning and
requests sample size justification (increase) based on the consideration of
the degree of overlap in the propensity score distribution. When there
exists an imbalance in covariate distribution between arms, a sample size
calculation ignoring strata is definitely biased. The use of different weights
will have an impact on statistical power but will not affect the consistency
of the proposed weighted Mantel-Haenszel test. Note that the sample size
formula by Nam (1998) based on the test statistic proposed by Gart (1985)
is a special case of the sample size given in (1) where ŵj = q̂j and wj =
1− bj1pj1 − bj2pj2.

15.2.3 Simulations

Suppose that we want to compare the probability of treatment success be-
tween control (k = 1) and new (k = 2) device. We consider partitioning the
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combined data into J = 5 strata based on propensity score, and the alloca-
tion proportions are projected as (a1, a2, a3, a4, a5) = (.15, .15, .2, .25, .25)
and (b11, b21, b31, b41, b51) = (.4, .4, .5, .6, .6). Also, suppose that the re-
sponse probabilities for control device are given as (p11, p21, p31, p41, p51) =
(.5, .6, .7, .8, .9), and we want to calculate the sample size required for a
power of 1 − β = 0.8 to detect an odds ratio of φ = 2 using two-sided
α = 0.05. For φ = 2, the response probabilities for the new device are
given as (p12, p22, p32, p42, p52) = (.6667, .7500, .8235, .8889, .9474). Under
these settings, we need n = 447 for MH.

In order to evaluate the performance of the sample size formula, we
conduct simulations. In each simulation, n = 447 binary observations are
generate under the parameters (allocation proportions and the response
probabilities) for sample size calculation. MH test with α = 0.05 is applied
to each simulation sample. Empirical power is calculated as the proportion
of the simulation samples that reject H0 out of N = 10, 000 simulations.
The empirical power is obtained as 0.7978, which is very close to the nom-
inal 1− β = 0.8.

If we ignore the strata, we have p1 = 0.7519 and p2 = 0.8197 by (2)
and the odds ratio is only φ̃ = 1.5004 which is much smaller than φ = 2.
For (α, 1− β) = (.05, .8), we need ñ = 1151 by (3). With n = 422, T̃ with
α = .05 rejected H0 for only 41.4% of simulation samples.

The performance of the test statistics, T and T̃ , are evaluated by gen-
erating simulation samples of size n = 447 under

H0 : (p11, p21, p31, p41, p51) = (p12, p22, p32, p42, p52) = (.1, .3, .5, .7, .9).

Other parameters are specified at the same values as above. For α = 0.05,
the empirical type I error is obtained as 0.0481 for T with MH scores and
0.1852 for T̃ . While the empirical type I error of the MH stratified test
is close to the nominal α = 0.05, the unstratified test is severely inflated.
Under this H0, we have p1 = 0.7953 and p1 = 0.7606 (φ̃ = 0.8181), which
are unequal due to the unbalanced covariate distribution between groups.

Now, let’s consider a balanced allocation case, b11 = · · · = bJ1 = 0.3,
with all the other parameter values the same as in the above simulations.
Under above H1 : φ = 2, we need n = 499 for T and ñ = 542 for T̃ .
Note that the unstratified test T̃ requires a slightly larger sample size due
to loss of efficiency. From N = 10, 000 simulation samples of size n =
499, we obtained an empirical power of 0.799 for T and only 0.770 for T̃ .
From similar simulations under H0, we obtained an empirical type I error
of 0.0470 for T with MH scores and 0.0494 for T̃ . Note that both tests
control the type I error very accurately in this case. Under H0, we have
p1 = p2 = 0.78 (φ̃ = 1).

© 2008 by Taylor & Francis Group, LLC



15.3. ANOVA with Repeated Measures 389

15.2.4 Concluding Remarks

Sample size calculation plays an important role in clinical research when
designing a new medical study. Inadequate sample size could have a signif-
icant impact on the accuracy and reliability of the evaluation of treatment
effect especially in medical device clinical studies, which are often conducted
in a non-randomized fashion (although the method of propensity score may
have been employed to achieve balance in baseline covariates). We propose
a unified sample size formula for weighted Mantel-Haenszel tests based on
large-sample assumption. We found through simulations that our sample
size formula accurately maintains the power. When the distribution of the
covariates is unbalanced between groups, an analysis ignoring the strata
could be severely biased.

15.3 ANOVA with Repeated Measures

In clinical research, it is not uncommon to have multiple assessments in a
parallel-group clinical trial. The purpose of such a design is to evaluate the
performance of clinical efficacy and/or safety over time during the entire
study course. Clinical data collected from such a design is usually analyzed
by means of the so-called analysis of variance (ANOVA) with repeated
measures. In this section, formulas for sample size calculation under the
design with multiple assessments is derived using the method of analysis of
variance with repeated measures.

15.3.1 Statistical Model

Let Bij and Hijt be the illness score at baseline and the illness score at
time t for the jth subject in the ith treatment group, t = 1, ...,mij , j =
1, ..., ni, and i = 1, ..., k. Then, Yijt = Hijt−Bij , the illness scores adjusted
for baseline, can be described by the following statistical model (see, e.g.,
Longford, 1993; Chow and Liu, 2000):

Yijt = µ+ αi + Sij + bijt+ eijt,

where αi is the fixed effect for the ith treatment (
∑k
i=1 αi = 0), Sij is

the random effect due to the jth subject in the ith treatment group, bij is
the coefficient of the jth subject in the ith treatment group and eijt is the
random error in observing Yijt. In the above model, it is assumed that (i)
Sij ’s are independently distributed as N(0, σ2S), (ii) bij ’s are independently
distributed as N(0, σ2β), and (iii) eijt’s are independently distributed as
N(0, σ2). For any given subject j within treatment i, Yijt can be described
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by a regression line with slope bij conditioned on Sij , i.e.,

Yijt = µij + bijt+ eijt, t = 1, ...,mij ,

where µij = µ+αi+Sij . When conditioned on Sij , i.e., it is considered as
fixed, unbiased estimators of the coefficient can be obtained by the method
of ordinary least squares (OLS), which are given by

µ̂ij =
∑k
i=1 Yi

∑k
i=1 t

2
i −

∑k
i=1 ti

∑k
i=1 Yiti

mij
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

b̂ij =
mij

∑k
i=1 Yiti −

∑k
i=1 Yi

∑k
i=1 ti

mij
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

.

The sum of squared error for the jth subject in the ith treatment group,
denoted by SSEij, is distributed as σ2χ2mij−2. Hence, an unbiased estimator
of σ2, the variation due to the repeated measurements, is given by

σ̂2 =

∑k
i=1

∑ni

j=1 SSEij∑k
i=1

∑ni

j=1(mij − 2)
.

Since data from subjects are independent,
∑k
i=1

∑ni

j=1 SSEij is distributed

as σ2χ2n∗ , where n∗ =
∑k
i=1

∑ni

j=1(mij − 2). Conditioning on Sij and bij ,
we have

µ̂ij ∼ N

(
µij ,

σ2
∑k
i=1 t

2
i

mij
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

)
,

b̂ij ∼ N

(
bij ,

σ2mij

mij
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

)
.

Thus, unconditionally,

µ̂ij ∼ N

(
µ+ αi, σ

2
S + σ2

∑k
i=1 t

2
i

mij
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

)
,

b̂ij ∼ N

(
βij , σ

2
β + σ2

mij

mij
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

)
.

When there is an equal number of repeated measurements for each sub-
ject, i.e., mij = m for all i, j, the inter-subject variation, σ2S , can be esti-
mated by

σ̂2S =

∑k
i=1

∑ni

j=1(µij − µi.)2∑k
i=1(ni − 1)

− σ̂2
∑k
i=1 t

2
i

m
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

,
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where

µ̂i. =
1
ni

ni∑
j=1

µ̂ij .

An estimator of the variation of bij can then be obtained as

σ̂2β =

∑k
i=1

∑ni

j=1(bij − bi.)2∑k
i=1(ni − 1)

− σ̂2
m

m
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

,

where

b̂i. =
1
ni

ni∑
j=1

b̂ij .

Similarly, βi can be estimated by

β̂i =
1
ni

ni∑
j=1

bij ∼ N(βi, δ2),

where

δ2 = σ2β +
σ2

ni

m

m
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

.

15.3.2 Hypotheses Testing

Since the objective is to compare the treatment effect on the illness scores,
it is of interest to test the following hypotheses:

H0 : αi = αi′ versus Ha : αi �= αi′ .

The above hypotheses can be tested by using the statistic

T1 =
√
nini′

nini′

(
µ̂i.−µ̂i′.∑k

i=1

∑ni

j=1(µ̂ij − µ̂i.)2/
∑k
i=1(ni − 1)

)
.

Under the null hypotheses of no difference in the illness score between two
treatment groups, T1 follows a t distribution with

∑k
i=1(ni − 1) degrees of

freedom. Hence, we reject the null hypothesis at the α level of significance
if

|T1| > tα/2,
Pk

i=1(ni−1).

Furthermore, it is also of interest to test the following null hypothesis of
equal slopes (i.e., rate of change in illness scores over the repeated measure-
ment)

H0 : βi = βi′ versus Ha : βi �= βi′ .
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The above hypotheses can be tested using the following statistic

T2 =
√
nini′

nini′

(
b̂i.−b̂i′.∑k

i=1

∑ni

j=1(b̂ij − b̂i.)2/
∑k
i=1(ni − 1)

)
.

Under the null hypotheses, T2 follows a t distribution with
∑k
i=1(ni −

1) degrees of freedom. Hence, we would reject the null hypotheses of no
difference in rate of change in illness scores between treatment groups at
the α level of significance if

|T2| > tα/2,
Pk

i=1(ni−1).

15.3.3 Sample Size Calculation

Since the above tests are based on a standard t test, the sample size per
treatment group required for detection of a clinically meaningful difference,
∆, with a desired power of 1− β at the α level of significance is given by

n ≥
2σ∗2(zα/2 + zβ)2

∆2
,

where σ∗2 is the sum of the variance components. When the null hypothesis
H0 : αi = αi′ is tested,

σ∗2 = σ2α = σ2S +
σ2

∑k
i=1 t

2
i

mij
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

,

which can be estimated by

σ̂21 =

∑k
i=1

∑ni

j=1(µ̂ij − µ̂i.)2∑k
i=1(ni − 1)

.

When the null hypothesis H0 : βi = βi′ is tested,

σ∗2 = σ2β + σ2
mij

mij
∑k
i=1 t

2
i − (

∑k
i=1 ti)2

,

which can be estimated by

σ̂22 =

∑k
i=1

∑ni

j=1(β̂ij − β̂i.)2∑k
i=1(ni − 1)

.
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15.3.4 An Example

Suppose a sponsor is planning a randomized, parallel-group clinical trial on
mice with multiple sclerosis (MS) for evaluation of a number of doses of an
active compound, an active control, and/or a vehicle control. In practice,
experimental autoimmune encephalomyelitis (EAE) is usually induced in
susceptible animals following a single injection of central nervous system
extract emulsified in the adjuvant. The chronic forms of EAE reflect many
of pathophysiologic steps in MS. This similarity has initiated the usage
of EAE models for development of MS therapies. Clinical assessment of
the illness for the induction of EAE in mice that are commonly used is
given in Table 15.3.1. Illness scores of mice are recorded between Day 10
and Day 19 before dosing regardless of the onset or the remission of the
attack. Each mouse will receive a dose from Day 20 to Day 33. The post-
inoculation performance of each mouse is usually assessed up to Day 34.
Sample size calculation was performed using the analysis of variance model
with repeated measures based on the assumptions that

1. the primary study endpoint is the illness scores of mice;

2. the scientifically meaningful difference in illness score is considered to
be 1.0 or 1.5 (note that changes of 1.0 and 1.5 over the time period
between Day 19 and Day 34 are equivalent to 0.067 and 0.1 changes
in slope of the illness score curve);

3. the standard deviation for each treatment group is assumed to be
same (various standard deviations such as 0.75, 0.80, 0.85, 0.90, 0.95,
1.0, 1.05, 1.1, 1.15, 1.2, or 1.25 are considered);

4. the null hypothesis of interest is that there is no difference in the pro-
file of illness scores, which is characterized between baseline (at dos-
ing) and a specific time point after dosing, among treatment groups;

5. the probability of committing a type II error is 10% or 20%, i.e., the
power is respectively 90%, or 80%;

6. the null hypothesis is tested at the 5% level of significance;

7. Bonferroni’s adjustment for α significant level for multiple compar-
isons were considered.

Under the one-way analysis of variance model with repeated measures, the
formula for the sample size calculation given in the previous subsection can
be used.
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Table 15.3.1: Clinical Assessment of Induction of EAE in Mice

Stage 0: Normal
Stage 0.5: Partial limp tail
Stage 1: Complete limp tail
Stage 2: Impaired righting reflex
Stage 2.5: Righting reflex is delayed (Not weak enough to be stage 3)
Stage 3: Partial hind limb paralysis
Stage 3.5: One leg is completely paralyzed, and one leg is partially

paralyzed
Stage 4: Complete hind limb paralysis
Stage 4.5: Legs are completely paralyzed and moribund
Stage 5: Death due to EAE

Table 15.3.2 provides sample sizes required for three-arm, four-arm, and
five-arm studies with α adjustment for multiple comparisons, respectively.
For example, a sample size of 45 subjects (i.e., 15 subjects per treatment
group) is needed to maintain an 80% power for detection of a decrease in
illness score by ∆ = 1.5 over the active treatment period between treatment
groups when σ∗ is 1.25.

15.4 Quality of Life

In clinical research, it has been a concern that the treatment of disease
or survival may not be as important as the improvement of quality of life
(QOL), especially for patients with a chronic or life-threatening disease.
Enhancement of life beyond absence of illness to enjoyment of life may
be considered more important than the extension of life. QOL not only
provides information as to how the patients feel about drug therapies, but
also appeals to the physician’s desire for the best clinical practice. It can be
used as a predictor of compliance of the patient. In addition, it may be used
to distinguish between therapies that appear to be equally efficacious and
equally safe at the stage of marketing strategy planning. The information
can be potentially used in advertising for the promotion of the drug therapy.
As a result, in addition to the comparison of hazard rates, survival function,
or median survival time, QOL is often assessed in survival trials.

QOL is usually assessed by a questionnaire, which may consist of a num-
ber of questions (items). We refer to such a questionnaire as a QOL instru-
ment. A QOL instrument is a very subjective tool and is expected to have a
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Table 15.3.2: Sample Size Calculation with α Adjustment
for Multiple Comparisons

Sample Size Per Arm
Three Arms Four Arms Five Arms

Power σ∗ ∆ = 1.0 ∆ = 1.5 ∆ = 1.0 ∆ = 1.5 ∆ = 1.0 ∆ = 1.5
80% 0.75 12 6 14 7 15 7

0.80 14 6 16 7 17 8
0.85 16 7 18 8 20 9
0.90 17 8 20 9 22 10
0.95 19 9 22 10 25 11
1.00 21 10 25 11 27 12
1.05 24 11 27 12 30 14
1.10 26 12 30 14 33 15
1.15 28 13 33 15 36 16
1.20 31 14 35 16 39 17
1.25 33 15 38 17 42 19

90% 0.75 16 7 18 8 19 9
0.80 18 8 20 9 22 10
0.85 20 9 23 10 25 11
0.90 22 10 25 12 28 13
0.95 25 11 28 13 31 14
1.00 28 13 31 14 34 15
1.05 30 14 34 16 37 17
1.10 33 15 38 17 41 18
1.15 36 16 41 19 45 20
1.20 39 18 45 20 49 22
1.25 43 19 49 22 53 24
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large variation. Thus, it is a concern whether the adopted QOL instrument
can accurately and reliably quantify patients’ QOL. In this section, we pro-
vide a comprehensive review of the validation of a QOL instrument, the use
of QOL scores, statistical methods for assessment of QOL, and practical
issues that are commonly encountered in clinical trials. For the assessment
of QOL, statistical analysis based on subscales, composite scores, and/or
overall score are often performed for an easy interpretation. For exam-
ple, Tandon (1990) applied a global statistic to combine the results of the
univariate analysis of each subscale. Olschewski and Schumacher (1990),
on the other hand, proposed to use composite scores to reduce the dimen-
sions of QOL. However, due to the complex correlation structure among
subscales, optimal statistical properties may not be obtained. As an alter-
native, to account for the correlation structure, the following time series
model proposed by Chow and Ki (1994) may be useful.

15.4.1 Time Series Model

For a given subscale (or component), let xijt be the response of the jth
subject to the ith question (item) at time t, where i = 1, ..., k, j = 1, ..., n,
and t = 1, ..., T . Consider the average score over k questions:

Yjt = x̄jt =
1
k

k∑
j=1

xijt.

Since the average scores yj1, ..., yjT are correlated, the following
autoregressive time series model may be an appropriate statistical model
for yjt:

yjt = µ+ ψ(yj(t−1) − µ) + ejt, j = 1, ..., n, t = 1, ..., T,

where µ is the overall mean, |ψ| < 1 is the autoregressive parameter, and
ejt are independent identically distributed random errors with mean 0 and
variance σ2e . It can be verified that

E(ejty′jt) = 0 for all t′ < t.

The autoregressive parameter ψ can be used to assess the correlation of
consecutive responses yjt and yj(t+1). From the above model, it can be
shown that the autocorrelation of responses with m lag times is ψm, which
is negligible when m is large. Based on the observed average scores on
the jth subject, yj1, ..., yjT , we can estimate the overall mean µ and the
autoregressive parameter ψ. The ordinary least-square estimators of µ and
ψ can be approximated by

µ̂j = ȳj. =
1
T

T∑
t=1

yjt
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and

ψ̂j =
∑T
t=2(yjt − ȳj.)(yj(t−1) − ȳj.)∑T

t=2(yjt − ȳj.)2
,

which are the sample mean and sample autocorrelation of consecutive ob-
servations. Under the above model, it can be verified that µ̂j is unbiased
and that the variance of µ̂j is given by

Var(ȳj.) =
γj0
T

(
1 + 2

T−1∑
t=1

T − t

T
ψt

)
,

where γj0 = Var(yjt). The estimated variance of µ̂j can be obtained by
replacing ψ with ψ̂j and γj0 with

cj0 =
T∑
t=1

(yjt − ȳj.)2

T − 1
.

Suppose that the n subjects are from the same population with the same
variability and autocorrelation. The QOL measurements of these subjects
can be used to estimate the mean average scores µ. An intuitive estimator
of µ is the sample mean

µ̂ = ȳ.. =
1
n

n∑
j=1

ȳj..

Under the time series model, the estimated variance of µ̂ is given by

s2(ȳ..) =
c0
nT

(
1 + 2

T−1∑
t=1

T − t

T
ψ̂t

)
,

where

c0 =
1

n(T − 1)

n∑
j=1

[
T∑
t=1

(yjt − ȳj.)2
]

and

ψ̂ =
1
n

n∑
j=1

ψ̂j .

An approximate (1− α)100% confidence interval for µ has limits

ȳ.. ± z1−α/2s(ȳ..),

where z1−α/2 is the (1−α/2)th quantile of a standard normal distribution.
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Under the time series model, the method of confidence interval approach
described above can be used to assess difference in QOL between treat-
ments. Note that the assumption that all the QOL measurements over
time are independent is a special case of the above model with ψ = 0. In
practice, it is suggested that the above time series model be used to account
for the possible positive correlation between measurements over the time
period under study.

15.4.2 Sample Size Calculation

Under the time series model, Chow and Ki (1996) derived some useful
formulas for determination of sample size based on normal approximation.
For a fixed precision index 1−α, to ensure a reasonable high power index δ
for detecting a meaningful difference ε, the sample size per treatment group
should not be less than

nδ =
c(z1−1/2α + zδ)2

ε2
for δ > 0.5,

where

c =
γy
T

(
1 + 2

T−1∑
t=1

T − t

T
ψty

)
+
γu
T

(
1 + 2

T−1∑
t=1

T − t

T
ψtu

)
.

For a fixed precision index 1 − α, if the acceptable limit for detecting an
equivalence between two treatment means is (−∆,∆), to ensure a reason-
able high power φ for detecting an equivalence when the true difference in
treatment means is less than a small constant η, the sample size for each
treatment group should be at least

nφ =
c

(∆− η)2
(z1/2+1/2φ + z1−1/2α)2.

If both treatment groups are assumed to have the same variability and
autocorrelation coefficient, the constant c can be simplified as

c =
2γ
T

(
1 + 2

T−1∑
t=1

T − t

T
ψt

)
.

When n = max(nφ, nδ), it ensures that the QOL instrument will have
precision index 1 − α and power of no less than δ and φ in detecting a
difference and an equivalence, respectively. It, however, should be noted
that the required sample size is proportional to the variability of the aver-
age scores considered. The higher the variability, the larger the sample size
that would be required. Note that the above formulas can also be applied
to many clinical based research studies with time-correlated outcome mea-
surements, e.g., 24-hour monitoring of blood pressure, heart rates, hormone
levels, and body temperature.
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15.4.3 An Example

To illustrate the use of the above sample size formulas, consider QOL as-
sessment in two independent groups A and B. Suppose a QOL instrument
containing 11 questions is to be administered to subjects at week 4, 8, 12,
and 16. Denote the mean of QOL score of the subjects in group A and
B by yit and ujt, respectively. We assume that yit and ujt have distribu-
tions that follow the time series model described in the previous section
with common variance γ = 0.5 sq. unit and have moderate autocorrelation
between scores at consecutive time points, say ψ = 0.5. For a fixed 95%
precision index, 87 subjects per group will provide a 90% power for detec-
tion of a difference of 0.25 unit in means. If the chosen acceptable limits
are (−0.35, 0.35), then 108 subjects per group will have a power of 90%
that the 95% confidence interval of difference in group means will correctly
detect an equivalence with η = 0.1 unit. If sample size is chosen to be 108
per group, it ensures that the power indices for detecting a difference of
0.25 unit or an equivalence are not less than 90%.

15.5 Bridging Studies

In the pharmaceutical industry, the sponsors are often interested in bring-
ing their drug products from one region (e.g., the United States of America)
to another region (e.g., Asian Pacific) to increase the exclusivity of the drug
products in the marketplace. However, it is a concern whether the clinical
results can be extrapolated from the target patient population in one re-
gion to a similar but different patient population in a new region due to a
possible difference in ethnic factors. The International Conference on Har-
monization (ICH) recommends that a bridging study may be conducted to
extrapolate the clinical results between regions. However, little or no in-
formation regarding the criterion for determining whether a bridging study
is necessary based on the evaluation of the complete clinical data package
is provided by the ICH. Furthermore, no criterion on the assessment of
similarity of clinical results between regions is given. In this section, we
propose the use of a sensitivity index as a possible criterion for regulatory
authorities in the new region to evaluate whether a bridging clinical study
should be conducted and the sample size of such a bridging clinical study.

15.5.1 Sensitivity Index

Suppose that a randomized, parallel-group, placebo-controlled clinical trial
is conducted for evaluation of a test compound as compared to a placebo
control in the original region. The study protocol calls for a total of n
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subjects with the disease under study. These n = n1 + n2 subjects are
randomly assigned to receive either the test compound or a placebo control.
Let xij be the response observed from the jth subject in the ith treatment
group, where j = 1, ..., ni and i = 1, 2. Assume that xij ’s are independent
and normally distributed with means µi, i = 1, 2, and a common variance
σ2. Suppose the hypotheses of interest are

H0 : µ1 − µ2 = 0 versus Ha : µ1 − µ2 �= 0.

Note that the discussion for a one-sidedHa is similar. When σ2 is unknown,
we reject H0 at the 5% level of significance if

|T | > tn−2,

where tα,n−2 is the 100(1−α/2)th percentile of a t distribution with n− 2
degrees of freedom, n = n1 + n2,

T =
x̄1 − x̄2√

(n1−1)s21+(n2−1)s22
n−2

√
1
n1

+ 1
n2

, (15.5.1)

and x̄i and and s2i are the sample mean and variance, respectively, based
on the data from the ith treatment group. The power of T is given by

p(θ) = P (|T | > tn−2) = 1− Tn−2(tn−2|θ) + Tn−2(−tn−2|θ), (15.5.2)

where
θ =

µ1 − µ2

σ
√

1
n1

+ 1
n2

and Tn−2(·|θ) denotes the cumulative distribution function of the non-
central t distribution with n− 2 degrees of freedom and the non-centrality
parameter θ.

Let x be the observed data from the first clinical trial and T (x) be the
value of T based on x. Replacing θ in the power function in (15.5.2) by its
estimate T (x), the estimated power can be obtained as follows

P̂ = p(T (x)) = 1− Tn−2(tn−2|T (x)) + Tn−2(−tn−2|T (x)).

Note that Shao and Chow (2002) refer to P̂ as the reproducibility probabil-
ity for the second clinical trial with the same patient population. However,
a different and more sensible way of defining a reproducibility probability
is to define reproducibility probability as the posterior mean of p(θ), i.e.,

P̃ = P (|T (y)| > tn−2|x) =
∫

p(θ)π(θ|x)dθ,
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where y denotes the data set from the second trial and π(θ|x) is the poste-
rior density of θ, given x. When the non-informative prior π(µ1, µ2, σ2) =
σ−2 is used, Shao and Chow (2002) showed that

P̃ = Eδ,u

[
1− Tn−2

(
tn−2

∣∣∣∣ δu
)
− Tn−2

(
−tn−2

∣∣∣∣ δu
)]

,

where Eδ,u is the expectation with respect to δ and u, u−2 has the gamma
distribution with the shape parameter (n − 2)/2 and the scale parameter
2/(n− 2), and given u, δ has the normal distribution N(T (x), u2).

When the test compound is applied to a similar but different patient
population in the new region, it is expected that the mean and variance of
the response would be different. Chow, Shao, and Hu (2002) proposed the
following concept of sensitivity index for evaluation of the change in patient
population due to ethnic differences. Suppose that in the second clinical
trial conducted in the new region, the population mean difference is changed
to µ1−µ2+ε and the population variance is changed to C2σ2, where C > 0.
If |µ1−µ2|/σ is the signal-to-noise ratio for the population difference in the
original region, then the signal-to-noise ratio for the population difference
in the new region is

|µ1 − µ2 + ε|
Cσ

=
|∆(µ1 − µ2)|

σ
,

where

∆ =
1 + ε/(µ1 − µ2)

C
(15.5.3)

is a measure of change in the signal-to-noise ratio for the population dif-
ference, which is the sensitivity index of population differences between
regions. For most practical problems, |ε| < |µ1 − µ2| and, thus, ∆ > 0.
By (15.5.2), the power for the second trial conducted in the new region is
p(∆θ).

As indicated by Chow, Shao, and Hu (2002), there are two advantages
of using ∆ as a sensitivity index, instead of ε (changes in mean) and C
(changes in standard deviation). First, the result is easier to interpret
when there is only one index. Second, the reproducibility probability is a
strictly decreasing function of ∆, whereas an increased population variance
(or a decreased population difference) may or may not result in a decrease
in the reproducibility probability.

If ∆ is known, then the reproducibility probability

P̂∆ = p(∆T (x))

can be used to assess the probability of generalizability between regions.
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For the Bayesian approach, the generalizability probability is

P̃∆ = Eδ,u

[
1− Tn−2

(
tn−2

∣∣∣∣∆δu
)
− Tn−2

(
−tn−2

∣∣∣∣∆δu
)]

.

In practice, the value of ∆ is usually unknown. We may either consider a
maximum possible value of |∆| or a set of ∆-values to carry out a sensi-
tivity analysis (see Table 15.5.1). For the Bayesian approach, we may also
consider the average of P̃∆ over a prior density π(∆), i.e.,

P̃ =
∫

P̃∆π(∆)d∆.

Table 15.5.1 provides a summary of reproducibility probability P̂∆ for
various sample sizes, respectively. For example, a sample size of 30 will give
an 80.5% of reproducibility provided that ∆T = 2.92.

15.5.2 Assessment of Similarity

Criterion for Similarity

Let x be a clinical response of interest in the original region. Here, x
could be either the response of the primary study endpoint from a test
compound under investigation or the difference of responses of the primary
study endpoint between a test drug and a control (e.g., a standard therapy
or placebo). Let y be similar to x but is a response in a clinical bridging
study conducted in the new region. Using the criterion for assessment of
population and individual bioequivalence (FDA, 2001), Chow, Shao, and
Hu (2002) proposed the following measure of similarity between x and y:

θ =
E(x− y)2 − E(x− x′)2

E(x− x′)2/2
, (15.5.4)

where x′ is an independent replicate of x and y, x, and x′ are assumed to
be independent. Note that θ in (15.5.4) assesses not only the difference
between the population means E(x) and E(y) but also the population vari-
ation of x and y through a function of mean squared differences. Also, θ
is a relative measure, i.e., the mean squared difference between x and y is
compared with the mean squared difference between x and x′. It is related
to the so-called population difference ratio (PDR), i.e.,

PDR =

√
θ

2
+ 1,

where

PDR =

√
E(x− y)2

E(x− x′)2
.
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Table 15.5.1: Sensitivity Analysis of Reproducibility Probability P̂∆

n

∆T 10 20 30 40 50 60 100 ∞
1.96 0.407 0.458 0.473 0.480 0.484 0.487 0.492 0.500
2.02 0.429 0.481 0.496 0.504 0.508 0.511 0.516 0.524
2.08 0.448 0.503 0.519 0.527 0.531 0.534 0.540 0.548
2.14 0.469 0.526 0.542 0.550 0.555 0.557 0.563 0.571
2.20 0.490 0.549 0.565 0.573 0.578 0.581 0.586 0.594
2.26 0.511 0.571 0.588 0.596 0.601 0.604 0.609 0.618
2.32 0.532 0.593 0.610 0.618 0.623 0.626 0.632 0.640
2.38 0.552 0.615 0.632 0.640 0.645 0.648 0.654 0.662
2.44 0.573 0.636 0.654 0.662 0.667 0.670 0.676 0.684
2.50 0.593 0.657 0.675 0.683 0.688 0.691 0.697 0.705
2.56 0.613 0.678 0.695 0.704 0.708 0.711 0.717 0.725
2.62 0.632 0.698 0.715 0.724 0.728 0.731 0.737 0.745
2.68 0.652 0.717 0.735 0.743 0.747 0.750 0.756 0.764
2.74 0.671 0.736 0.753 0.761 0.766 0.769 0.774 0.782
2.80 0.690 0.754 0.771 0.779 0.783 0.786 0.792 0.799
2.86 0.708 0.772 0.788 0.796 0.800 0.803 0.808 0.815
2.92 0.725 0.789 0.805 0.812 0.816 0.819 0.824 0.830
2.98 0.742 0.805 0.820 0.827 0.831 0.834 0.839 0.845
3.04 0.759 0.820 0.835 0.842 0.846 0.848 0.853 0.860
3.10 0.775 0.834 0.849 0.856 0.859 0.862 0.866 0.872
3.16 0.790 0.848 0.862 0.868 0.872 0.874 0.879 0.884
3.22 0.805 0.861 0.874 0.881 0.884 0.886 0.890 0.895
3.28 0.819 0.873 0.886 0.892 0.895 0.897 0.901 0.906
3.34 0.832 0.884 0.897 0.902 0.905 0.907 0.911 0.916
3.40 0.844 0.895 0.907 0.912 0.915 0.917 0.920 0.925
3.46 0.856 0.905 0.916 0.921 0.924 0.925 0.929 0.932
3.52 0.868 0.914 0.925 0.929 0.932 0.933 0.936 0.940
3.58 0.879 0.923 0.933 0.937 0.939 0.941 0.943 0.947
3.64 0.889 0.931 0.940 0.944 0.946 0.947 0.950 0.953
3.70 0.898 0.938 0.946 0.950 0.952 0.953 0.956 0.959
3.76 0.907 0.944 0.952 0.956 0.958 0.959 0.961 0.965
3.82 0.915 0.950 0.958 0.961 0.963 0.964 0.966 0.969
3.88 0.923 0.956 0.963 0.966 0.967 0.968 0.970 0.973
3.94 0.930 0.961 0.967 0.970 0.971 0.972 0.974 0.977
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In assessing population bioequivalence (or individual bioequivalence),
the similarity measure θ is compared with a population bioequivalence (or
individual bioequivalence) limit θU set by the FDA. For example, with log-
transformed responses, FDA (2001) suggests

θU =
(log 1.25)2 + ε

σ20
,

where σ20 > 0 and ε ≥ 0 are two constants given in the FDA guidance which
depend upon the variability of the drug product.

Since a small value of θ indicates that the difference between x and y is
small (relative to the difference between x and x′), similarity between the
new region and the original region can be claimed if and only if θ < θU ,
where θU is a similarity limit. Thus, the problem of assessing similarity
becomes a hypothesis testing problem with hypotheses

H0 : θ ≥ θU versus Ha : θ < θU . (15.5.5)

Let k = 0 indicate the original region and k = 1 indicate the new
region. Suppose that there are mk study centers and nk responses in each
center for a given variable of interest. Here, we first consider the balanced
case where centers in a given region have the same number of observations.
Let zijk be the ith observation from the jth center of region k, bjk be the
between-center random effect, and eijk be the within-center measurement
error. Assume that

zijk = µk + bjk + eijk, i = 1, ..., nk j = 1, ...,mk, k = 0, 1, (15.5.6)

where µk is the population mean in region k, bjk ∼ N(0, σ2Bk), eijk ∼
N(0, σ2Wk), and bjk’s and eijk’s are independent. Under model (15.5.6),
the parameter θ in (15.5.4) becomes

θ =
(µ0 − µ1)2 + σ2T1 − σ2T0

σ2T0
,

where σ2Tk = σ2Bk + σ2Wk is the total variance (between center variance
plus within center variance) in region k. The hypotheses in (15.5.5) are
equivalent to

H0 : ζ ≥ 0 versus Ha : ζ < 0, (15.5.7)

where

ζ = (µ0 − µ1)2 + σ2T1 − (1 + θU )σ2T0. (15.5.8)
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Statistical Methods

A statistical test of significance level 5% can be obtained by using a 95%
upper confidence bound ζ̂U for ζ in (15.5.8), i.e., we reject H0 in (15.5.7) if
and only if ζ̂U < 0.

Under model (15.5.6), an unbiased estimator of the population mean in
region k is

z̄k ∼ N

(
µk,

σ2Bk
mk

+
σ2Wk
Nk

)
,

where Nk = mknk and z̄k is the average of zijk’s over j and i for a fixed
k. To construct a 95% upper confidence bound for ζ in (15.5.8) using
the approach in Hyslop, Hsuan, and Holder (2000), which is proposed for
testing individual bioequivalence, we need to find independent, unbiased,
and chi-square distributed estimators of σ2Tk, k = 0, 1. These estimators,
however, are not available when nk > 1. Note that

σ2Tk = σ2Bk + n−1
k σ2Wk + (1− n−1

k )σ2Wk, k = 0, 1;

σ2Bk + n−1
k σ2Wk can be unbiasedly estimated by

s2Bk =
1

mk − 1

mk∑
j=1

(z̄jk − z̄k)2 ∼
(σ2Bk + n−1

k σ2Wk)χ
2
mk−1

mk − 1
,

where z̄jk is the average of zijk’s over i and χ2l denotes a random variable
having the chi-square distribution with l degrees of freedom; σ2Wk can be
estimated by

s2Wk =
1

Nk −mk

mk∑
j=1

nk∑
i=1

(zijk − z̄jk)2 ∼
σ2Wkχ

2
Nk−mk

Nk −mk
;

and z̄k, s2Bk, s
2
Wk, k = 0, 1, are independent. Thus, an approximate 95%

upper confidence bound for ζ in (15.5.8) is

ζ̂U = (z̄0 − z̄1)2 + s2B1 + (1− n−1
1 )s2W1

− (1 + θU )[s2B0 + (1− n−1
0 )s2W0] +

√
U,

where U is the sum of the following five quantities:
|z̄0 − z̄1|+ 1.645

√
s2B0
m0

+
s2B1
m1

2

− (z̄0 − z̄1)2


2

,

s4B1

(
m1 − 1

χ20.05;m1−1

− 1

)2

,
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(1− n−1
1 )2s4W1

(
N1 −m1

χ20.05;N1−m1

− 1

)2

,

(1 + θU )2s4B0

(
m0 − 1

χ20.95;m0−1

− 1

)2

,

(1 + θU )2(1− n−1
0 )2s4W0

(
N0 −m0

χ20.95;N0−m0

− 1

)2

,

and χ2a;l is the 100ath percentile of the chi-square distribution with l degrees
of freedom.

Thus, the null hypothesis H0 in (15.5.7) can be rejected at approxi-
mately 5% significance level if ζ̂U < 0. Similar to population bioequivalence
testing (FDA, 2001), we conclude that the similarity between two regions
(in terms of the given variable of interest) if and only if H0 in (15.5.7) is
rejected and the observed mean difference z̄0 − z̄1 is within the limits of
±0.233.

Consider now the situation where centers contain different numbers of
observations in a given region, i.e., the jth center in region k contains njk
observations. We have the following recommendations.

1. If all njk’s are large, then the previous described procedure is still
approximately valid, provided thatNk is defined to be n1k+· · ·+nmkk

and (1− n−1
k )s2Wk is replaced by

s̃2Wk =
1

Nk −mk

mk∑
j=1

njk∑
i=1

(zijk − z̄jk)2.

2. If njk are not very different (e.g., unequal sample sizes among centers
are caused by missing values due to reasons that are not related to
the variable of interest), then we may apply the Satterthwaite method
(Johnson and Kotz, 1972) as follows. First, replace s2Wk with s̃2Wk.
Second, replace nk with

n0k =
1

mk − 1

Nk − 1
Nk

mk∑
j=1

n2jk

 .

Third, replace s2Bk with

s̃2Bk =
1

(mk − 1)n0k

mk∑
j=1

njk(z̄jk − z̄k)2.
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Then, approximately,

s̃2Bk ∼
(σ2Bk + n−1

0k σ
2
Wk)χ

2
dk

mk − 1

with

dk =
(mk − 1)(ρ̂−1

k + n0k)2

(ρ̂−1
k + n0k)2 + vk

,

where

ρ̂k =
s̃2Bk
s̃2Wk

− 1
n0k

and

vk =
1

mk − 1

mk∑
j=1

n2jk −
mk
Nk

mk∑
j=1

n3jk +
1
N2
k

mk∑
j=1

n2jk

2

− n20k

 .
Finally, replace mk − 1 with dk.

Sample Size Calculation

Chow, Shao, and Hu (2002) proposed a procedure for determination of
sample sizes m1 and n1 in the new region to achieve a desired power for
establishment similarity between regions. The procedure is briefly outlined
below. We first assume that sample sizes m0 and n0 in the original region
have already been determined. Let ψ = (µ0 − µ1, σ

2
B1, σ

2
B0, σ

2
W1, σ

2
W0) be

the vector of unknown parameters and let U be given in the definition of
ζ̂U and Uβ be the same as U but with 5% and 95% replaced by 1− β and
β, respectively, where β is a given desired power of the similarity test. Let
Ũ and Ũβ be U and Uβ , respectively, with (z̄0 − z̄k, s

2
BT , s

2
BR, s

2
WT , s

2
WR)

replaced by ψ̃, an initial guessing value for which the value of ζ (denoted
by ζ̃) is negative. Then, the sample sizes m1 and n1 should be chosen so
that

ζ̃ +
√
Ũ +

√
Ũβ ≤ 0 (15.5.9)

holds. We may start with some initial values of m1 and n1 and gradually
increase them until (15.5.9) holds.

15.5.3 Remarks

In the assessment of sensitivity, regulatory guidance/requirement for de-
termining whether a clinical bridging study is critical as to (i) whether a
bridging study is recommended for providing substantial evidence in the
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new region based on the clinical results observed in the original region, and
(ii) what sample size of the clinical bridging study is needed for extrapolat-
ing the clinical results to the new region with desired reproducibility prob-
ability. It is suggested the therapeutic window and intra-subject variability
of the test compound must be taken into consideration when choosing the
criterion and setting regulatory requirements. A study of historical data
related to the test compound is strongly recommended before a regulatory
requirement is implemented.

The criterion for assessment of similarity proposed by Chow, Shao, and
Hu (2002) accounts for the average and variability of the response of the
primary study endpoint. This aggregated criterion, however, suffers the
following disadvantages: (i) the effects of individual components cannot be
separated and (ii) the difference in averages may be offset by the reduction
in variability (Chow, 1999). As a result, it is suggested that an additional
constraint be placed on the difference in means between two regions (FDA,
2001). An alternative to this aggregated criterion is to consider a set of
disaggregate criteria on average and variability of the primary study end-
point (Chow and Liu, 2000). This approach, however, is not favored by the
regulatory agency due to some practical considerations. For example, we
will never be able to claim the new region is similar to the original region if
the variability of the response of the primary endpoint is significantly lower
than that in the original region.

The FDA recommends the use of PDR for selection of θU . In practice,
the determination of the maximum allowable PDR should depend upon the
therapeutic window and intra-subject variability to reflect the variability
from drug product to drug product and from patient population to patient
population.

15.6 Vaccine Clinical Trials

Similar to clinical development of drug products, there are four phases of
clinical trials in vaccine development. Phase I trials are referred to early
studies with human subjects. The purpose of phase I trials is to explore
the safety and immunogenicity of multiple dose levels of the vaccine under
investigation. Phase I trials are usually on small scales. Phase II trials
are to assess the safety, immunogenicity, and early efficacy of selected dose
levels of the vaccine. Phase III trials, which are usually large in scale, are to
confirm the efficacy of the vaccine in the target population. Phase III trials
are usually conducted for collecting additional information regarding long-
term safety, immuogenicity, or efficacy of the vaccine to fulfill regulatory
requirements and/or marketing objectives after regulatory approval of the
vaccine.
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15.6.1 Reduction in Disease Incidence

As indicated in Chan, Wang, and Heyse (2003), one of the most critical
steps of evaluation of a new vaccine is to assess the protective efficacy of
the vaccine against the target disease. An efficacy trial is often conducted
to evaluate whether the vaccine can prevent the disease or reduce the inci-
dence of the disease in the target population. For this purpose, prospective,
randomized, placebo-controlled trials are usually conducted. Subjects who
meet the inclusion/exclusion criteria are randomly assigned to receive ei-
ther the test vaccine (T) or placebo control (C). Let pT and pC be the true
disease incidence rates of the nT vaccinees and nC controls randomized in
the trial, respectively. Thus, the relative reduction in disease incidence for
subjects in the vaccine group as compared to the control groups is given by

π =
pC − pT

pC
= 1− pT

pC
= 1−R.

In most vaccine clinical trials, π has been widely used and is accepted as a
primary measure of vaccine efficacy. Note that a vaccine is considered 100%
efficacious (i.e., π = 1) if it prevents the disease completely (i.e., PT = 0).
On the other hand, it has no efficacy (i.e., π = 0) if pT = pC . Let xT and
xC be the number of observed diseases for treatment and control groups,
respectively. It follows that the natural estimators for pT and pC are given
by

p̂T =
xT
nT

and p̂C =
xC
nC

.

Let β = pT /pC , which can be estimated by

β̂ =
p̂T
p̂C

.

By Taylor’s expansion and the Central Limit Theorem (CLT), log(β̂) is
asymptotically distributed as a normal random variable with mean log(β)
and variance given by

σ2 =
1− pT
nT pT

+
1− pC
nCpC

. (15.6.1)

For a given confidence level of 1−α, a (1−α) confidence interval of log(β)
is given by

(log(β̂)− zα/2σ̂, log(β̂) + zα/2σ̂),

where σ̂ is obtained according to (15.6.1) by replacing pT and pC by p̂T
and p̂C , respectively. In practice, sample size is usually determined by
specifying the half length (d) of the confidence interval of β. Assuming
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that n = nT = nC , it follows that

zα/2

√
1− pT
npT

+
1− pC
npC

= d.

This leads to

n =
z2α/2

d2

(
1− pT
pT

+
1− pC
pC

)
.

An Example

An investigator is interested in obtaining a 95% confidence interval for
π where it is expected that pT = 0.01 and pC = 0.02. It is desirable to have
a confidence interval in log-scale with half length of 0.20 (d = 0.20). The
sample size needed is then given by

n =
(
1.96
0.2

)2(1− 0.01
0.01

+
1− 0.02
0.02

)
≈ 14214.

15.6.2 The Evaluation of Vaccine Efficacy with Ex-
tremely Low Disease Incidence

In many cases, the disease incidence rate is extremely low. In this case,
a much larger scale of study is required to demonstrate vaccine efficacy
as described in the previous subection. For sufficiently large sample sizes
and small incidence rates, the numbers of cases in the vaccine groups and
the control groups approximately have the Poisson distribution with rate
parameters λT (≈ nT pT ) and λC(≈ nCpC), respectively. As a result, the
number of cases in the vaccine group given the total number of cases (de-
noted by S) is distributed as a binomial random variable with parameter
θ, i.e., b(S, θ), where

θ =
λT

λC + λT
=

nT pT
nT pT + nCpC

=
R

R+ u
=

1− π

1− π + u

and u = nC/nT . Since θ is a decreasing function in π, testing hypotheses
that

H0 : π ≤ π0 versus Ha : π > π0

is equivalent to testing the following hypotheses:

H0 : θ ≥ θ0 versus Ha : θ < θ0,

where
θ0 =

1− π0
1− π0 + u

.
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Let xT and xC be the number of the observed diseases for the treatment and
control, respectively. A natural estimator for θ is given by θ̂ = xT /(xT +
xC). The test statistic is given by

T =
√
xT + xC(θ̂ − θ0)√

θ0(1− θ0)
.

Under the null hypothesis, T is asymptotically distributed as a standard
normal random variable. Hence, we reject the null hypothesis at α level of
significance if T > zα. Under the alternative hypothesis, the power of the
above test can be approximated by

1− Φ

(
zα
√
θ0(1− θ0) +

√
xT + xC(θ0 − θ)√

θ(1− θ)

)
.

In order to achieve a desired power 1 − β, the total number of diseases
needed can be obtained by solving

zα
√
θ0(1− θ0) + (θ0 − θ)√

θ(1− θ)
= −zβ.

This leads to

xT + xC =
[zα

√
θ0(1− θ0) + zβ

√
θ(1− θ)]2

(θ − θ0)2
.

Under the assumption that n = nT = nC , it follows that

n =
[zα

√
θ0(1− θ0) + zβ

√
θ(1− θ)]2

(pT + pC)(θ − θ0)2
.

An Example

Suppose the investigator is interested in conducting a two-arm parallel trial
with equal sample size (u = 1) to compare a study vaccine with a control
in terms of controlling the disease rates. It is expected that the disease rate
for the treatment group is 0.001 and the disease rate for the control group
is 0.002. The hypotheses of interest are given by

H0 : θ ≤ 0.5 versus Ha : θ > 0.5.

Hence, θ0 = 0.5. It can be obtained that

θ =
0.001

0.001 + 0.002
=

1
3
.
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As a result, the sample size needed in order to achieve an 80% (β = 0.20)
power at the 5% (α = 0.05) level of significance is given by

n =
[1.64

√
0.5(1− 0.5) + 0.84

√
1/3(1− 1/3)]2

(0.001 + 0.002)(1/3− 1/2)2
≈ 17837.

Thus, 17837 subjects per arm is needed in order to detect such a difference
with an 80% power.

15.6.3 Relative Vaccine Efficacy

In vaccine trials, when the control is a licensed vaccine (an active control),
the relative efficacy π can be evaluated through the relative risk (i.e., R =
PT /PC) based on the relationship π = 1 − R. If the absolute efficacy of
the control (i.e., πC) has been established, one can estimate the absolute
efficacy of the test vaccine by

πT = 1−R(1− πC).

For a comparative vaccine trial, it is often designed as a non-inferiority trial
by testing the following hypotheses:

H0 : R ≥ R0 versus Ha : R < R0,

where R0 > 1 is a pre-specified non-inferiority margin or a threshold for
relative risk. In practice, the hypotheses regarding relative risk are most
often performed based on log-scale. In other words, instead of testing the
above hypotheses, we usually consider the following hypotheses:

H0 : log(R) ≥ log(R0) versus Ha : log(R) < log(R0).

As it can be seen, this becomes the two-sample problem for relative risk,
which has been discussed in Section 4.6. Hence, detailed discussion is omit-
ted.

15.6.4 Composite Efficacy Measure

As indicated by Chang et al. (1994), in addition to the prevention of the
disease infection, a test vaccine may also reduce the severity of the target
disease as well. As a result, it is suggested that a composite efficacy measure
be considered to account for both incidence and severity of the disease when
evaluating the efficacy of the test vaccine. Chang et al. (1994) proposed
the so-called burden-of-illness composite efficacy measure.

Suppose nT subjects were assigned to receive treatment while nC sub-
jects were assigned to receive control (placebo). Let xT and xC be the
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number of cases observed in treatment and control group, respectively.
Without loss of generality, we assume the first xT subjects in the treat-
ment group and xC subjects in the control group experienced the events.
Let sij , i = T,C; j = 1, ..., xi be the severity score associated with the jth
case in the ith treatment group. For a fixed i = T or C, it is assumed
that sij are independent and identically distributed random variables with
mean µi and variance σ2i . Let pi be the true event rate of the ith treatment
group. The hypotheses of interest is given by

H0 : pT = pC and µT = µC versus Ha : pT �= pC or µT �= µC .

Let

s̄i =
1
ni

xi∑
j=1

sij ,

x̄ =
nT s̄T + nC s̄C
nT + nC

,

s2i =
1

ni − 1

ni∑
j=1

(sij − s̄i)2.

The test statistic is given by

T =
s̄T − s̄C√

x̄2p̂(1− p̂)(1/nT + 1/nC) + p̂(s20/nT + s21/nC)
.

Under the null hypothesis, Chang et al. (1994) showed that T is asymptot-
ically distributed as a standard normal random variable. Hence, we would
reject the null hypothesis if |T | > zα/2. Assume that n = nT = nC and
under the alternative hypothesis, it can be shown that

x̄ →a.s. (µT + µC)/2 = µ∗
p̂ →a.s. (pT + pC)/2 = p∗.

Without loss of generality, we assume pTµT > pCµC under the alternative
hypothesis. Thus, the power of the above test can be approximated by

1− Φ

(
zα/2

√
2µ2∗(p∗(1− p∗)) + 2p∗(σ2T + σ2C)− (µT pT − µRpR)√
pT (σ2T + µ2T (1− pT )) + pR(σ2R + µ2R(1− pR))

)
.

Hence, the sample size needed in order to achieve a desired power of 1− β
can be obtained by solving

zα/2
√
2µ2∗p∗(1− p∗) + 2p∗(σ2T + σ2C)−

√
n(µT pT − µRpR)√

pT (σ2T + µ2T (1− pT )) + pR(σ2R + µ2R(1− pR))
= −zβ .
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This leads to

n =
1

(µT pT − µRpR)2

[
zα/2

√
2µ2∗p∗(1− p∗) + 2p∗(σ2T + σ2C)

+ zβ

√
pT (σ2T + µ2T (1− pT )) + pR(σ2R + µ2R(1− pR))

]2
.

It should be noted that the above formula is slightly different from the one
derived by Chang et al. (1994), which is incorrect.

An Example

Consider a clinical trial with µT = 0.20, µC = 0.30, pT = 0.10, pR = 0.20
and σ2T = σ2C = 0.15. The sample size needed in order to have an 80%
(β = 0.20) power for detecting such a difference at the 5% (α = 0.05) level
of significance is given by

n =
1

(0.2×0.1− 0.3×0.2)2
[
1.96

√
2×0.252×0.15×0.85 + 2×0.15×0.3

+ 0.84
√

0.1(0.152 + 0.2× 0.9) + 0.2(0.152 + 0.3× 0.8)
]2

≈ 468.

As a result, 468 subjects per treatment group are required for achieving an
80% power for detecting such a difference in the burden-of-illness score.

15.6.5 Remarks

In the previous subsections, procedures for sample size calculation in vac-
cine clinical trials were discussed based on a primary efficacy study end-
point using parametric approach. Durham et al. (1998) considered a non-
parametric survival method to estimate the long-term efficacy of a cholera
vaccine in the presence of warning protection. For evaluation of long-term
vaccine efficacy, as indicated by Chan, Wang, and Heyse (2003), the analysis
of time-to-event may be useful for determining whether breakthrough rates
among vaccinees change over time. However, it should be noted that sample
size calculation may be different depending upon the study objectives, the
hypotheses of interest, and the corresponding appropriate statistical tests.

Clinical development for vaccine has recently received much attention
both from regulatory agencies such as the US. FDA and the pharmaceu-
tical industry. For example, Ellenberg and Dixon (1994) discussed some
important statistical issues of vaccine trials (related to HIV vaccine trials).
O’Neill (1988) and Chan and Bohida (1998) gave asymptotic and exact
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formulas for sample size and power calculations for vaccine efficacy stud-
ies, respectively. Chan, Wang, and Heyse (2003) provided a comprehensive
review of vaccine clinical trials and statistical issues that are commonly
encountered in vaccine clinical trials.
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Tables of Quantiles

Upper Quantiles of the Central t Distribution

α

df 0.100 0.050 0.025 0.010 0.005

1 3.0777 6.3138 12.7062 31.8205 63.6567

2 1.8856 2.9200 4.3027 6.9646 9.9248

3 1.6377 2.3534 3.1824 4.5407 5.8409

4 1.5332 2.1318 2.7764 3.7470 4.6041

5 1.4759 2.0150 2.5706 3.3649 4.0322

6 1.4398 1.9432 2.4469 3.1427 3.7074

7 1.4149 1.8946 2.3646 2.9980 3.4995

8 1.3968 1.8595 2.3060 2.8965 3.3554

9 1.3830 1.8331 2.2622 2.8214 3.2498

10 1.3722 1.8125 2.2281 2.7638 3.1693

11 1.3634 1.7959 2.2010 2.7181 3.1058

12 1.3562 1.7823 2.1788 2.6810 3.0545

13 1.3502 1.7709 2.1604 2.6503 3.0123

14 1.3450 1.7613 2.1448 2.6245 2.9768

15 1.3406 1.7531 2.1314 2.6025 2.9467

16 1.3368 1.7459 2.1199 2.5835 2.9208

17 1.3334 1.7396 2.1098 2.5669 2.8982

18 1.3304 1.7341 2.1009 2.5524 2.8784

19 1.3277 1.7291 2.0930 2.5395 2.8609

20 1.3253 1.7247 2.0860 2.5280 2.8453

21 1.3232 1.7207 2.0796 2.5176 2.8314

22 1.3212 1.7171 2.0739 2.5083 2.8188

23 1.3195 1.7139 2.0687 2.4999 2.8073

24 1.3178 1.7109 2.0639 2.4922 2.7969

25 1.3163 1.7081 2.0595 2.4851 2.7874

26 1.3150 1.7056 2.0555 2.4786 2.7787

27 1.3137 1.7033 2.0518 2.4727 2.7707

28 1.3125 1.7011 2.0484 2.4671 2.7633

29 1.3114 1.6991 2.0452 2.4620 2.7564

30 1.3104 1.6973 2.0423 2.4573 2.7500

417
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Upper Quantiles of the χ2 Distribution

α

df 0.100 0.050 0.025 0.010 0.005

1 2.7055 3.8415 5.0239 6.6349 7.8794

2 4.6052 5.9915 7.3778 9.2103 10.5966

3 6.2514 7.8147 9.3484 11.3449 12.8382

4 7.7794 9.4877 11.1433 13.2767 14.8603

5 9.2364 11.0705 12.8325 15.0863 16.7496

6 10.6446 12.5916 14.4494 16.8119 18.5476

7 12.0170 14.0671 16.0128 18.4753 20.2777

8 13.3616 15.5073 17.5345 20.0902 21.9550

9 14.6837 16.9190 19.0228 21.6660 23.5894

10 15.9872 18.3070 20.4832 23.2093 25.1882

11 17.2750 19.6751 21.9200 24.7250 26.7568

12 18.5493 21.0261 23.3367 26.2170 28.2995

13 19.8119 22.3620 24.7356 27.6882 29.8195

14 21.0641 23.6848 26.1189 29.1412 31.3193

15 22.3071 24.9958 27.4884 30.5779 32.8013

16 23.5418 26.2962 28.8454 31.9999 34.2672

17 24.7690 27.5871 30.1910 33.4087 35.7185

18 25.9894 28.8693 31.5264 34.8053 37.1565

19 27.2036 30.1435 32.8523 36.1909 38.5823

20 28.4120 31.4104 34.1696 37.5662 39.9968

21 29.6151 32.6706 35.4789 38.9322 41.4011

22 30.8133 33.9244 36.7807 40.2894 42.7957

23 32.0069 35.1725 38.0756 41.6384 44.1813

24 33.1962 36.4150 39.3641 42.9798 45.5585

25 34.3816 37.6525 40.6465 44.3141 46.9279

26 35.5632 38.8851 41.9232 45.6417 48.2899

27 36.7412 40.1133 43.1945 46.9629 49.6449

28 37.9159 41.3371 44.4608 48.2782 50.9934

29 39.0875 42.5570 45.7223 49.5879 52.3356

30 40.2560 43.7730 46.9792 50.8922 53.6720
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Upper Quantiles of the F Distribution (α = 0.100)

df1

df2 1 2 3 4 5 6 7 8

2 8.5263 9.0000 9.1618 9.2434 9.2926 9.3255 9.3491 9.3668

3 5.5383 5.4624 5.3908 5.3426 5.3092 5.2847 5.2662 5.2517

4 4.5448 4.3246 4.1909 4.1072 4.0506 4.0097 3.9790 3.9549

5 4.0604 3.7797 3.6195 3.5202 3.4530 3.4045 3.3679 3.3393

6 3.7759 3.4633 3.2888 3.1808 3.1075 3.0546 3.0145 2.9830

7 3.5894 3.2574 3.0741 2.9605 2.8833 2.8274 2.7849 2.7516

8 3.4579 3.1131 2.9238 2.8064 2.7264 2.6683 2.6241 2.5893

9 3.3603 3.0065 2.8129 2.6927 2.6106 2.5509 2.5053 2.4694

10 3.2850 2.9245 2.7277 2.6053 2.5216 2.4606 2.4140 2.3772

11 3.2252 2.8595 2.6602 2.5362 2.4512 2.3891 2.3416 2.3040

12 3.1765 2.8068 2.6055 2.4801 2.3940 2.3310 2.2828 2.2446

13 3.1362 2.7632 2.5603 2.4337 2.3467 2.2830 2.2341 2.1953

14 3.1022 2.7265 2.5222 2.3947 2.3069 2.2426 2.1931 2.1539

15 3.0732 2.6952 2.4898 2.3614 2.2730 2.2081 2.1582 2.1185

16 3.0481 2.6682 2.4618 2.3327 2.2438 2.1783 2.1280 2.0880

17 3.0262 2.6446 2.4374 2.3077 2.2183 2.1524 2.1017 2.0613

18 3.0070 2.6239 2.4160 2.2858 2.1958 2.1296 2.0785 2.0379

19 2.9899 2.6056 2.3970 2.2663 2.1760 2.1094 2.0580 2.0171

20 2.9747 2.5893 2.3801 2.2489 2.1582 2.0913 2.0397 1.9985

21 2.9610 2.5746 2.3649 2.2333 2.1423 2.0751 2.0233 1.9819

22 2.9486 2.5613 2.3512 2.2193 2.1279 2.0605 2.0084 1.9668

23 2.9374 2.5493 2.3387 2.2065 2.1149 2.0472 1.9949 1.9531

24 2.9271 2.5383 2.3274 2.1949 2.1030 2.0351 1.9826 1.9407

25 2.9177 2.5283 2.3170 2.1842 2.0922 2.0241 1.9714 1.9292

26 2.9091 2.5191 2.3075 2.1745 2.0822 2.0139 1.9610 1.9188

27 2.9012 2.5106 2.2987 2.1655 2.0730 2.0045 1.9515 1.9091

28 2.8938 2.5028 2.2906 2.1571 2.0645 1.9959 1.9427 1.9001

29 2.8870 2.4955 2.2831 2.1494 2.0566 1.9878 1.9345 1.8918

30 2.8807 2.4887 2.2761 2.1422 2.0492 1.9803 1.9269 1.8841
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Upper Quantiles of the F Distribution (α = 0.100)

df1

df2 9 10 11 12 16 20 25 30

2 9.3805 9.3916 9.4006 9.4081 9.4289 9.4413 9.4513 9.4579

3 5.2400 5.2304 5.2224 5.2156 5.1964 5.1845 5.1747 5.1681

4 3.9357 3.9199 3.9067 3.8955 3.8639 3.8443 3.8283 3.8174

5 3.3163 3.2974 3.2816 3.2682 3.2303 3.2067 3.1873 3.1741

6 2.9577 2.9369 2.9195 2.9047 2.8626 2.8363 2.8147 2.8000

7 2.7247 2.7025 2.6839 2.6681 2.6230 2.5947 2.5714 2.5555

8 2.5612 2.5380 2.5186 2.5020 2.4545 2.4246 2.3999 2.3830

9 2.4403 2.4163 2.3961 2.3789 2.3295 2.2983 2.2725 2.2547

10 2.3473 2.3226 2.3018 2.2841 2.2330 2.2007 2.1739 2.1554

11 2.2735 2.2482 2.2269 2.2087 2.1563 2.1230 2.0953 2.0762

12 2.2135 2.1878 2.1660 2.1474 2.0938 2.0597 2.0312 2.0115

13 2.1638 2.1376 2.1155 2.0966 2.0419 2.0070 1.9778 1.9576

14 2.1220 2.0954 2.0729 2.0537 1.9981 1.9625 1.9326 1.9119

15 2.0862 2.0593 2.0366 2.0171 1.9605 1.9243 1.8939 1.8728

16 2.0553 2.0281 2.0051 1.9854 1.9281 1.8913 1.8603 1.8388

17 2.0284 2.0009 1.9777 1.9577 1.8997 1.8624 1.8309 1.8090

18 2.0047 1.9770 1.9535 1.9333 1.8747 1.8368 1.8049 1.7827

19 1.9836 1.9557 1.9321 1.9117 1.8524 1.8142 1.7818 1.7592

20 1.9649 1.9367 1.9129 1.8924 1.8325 1.7938 1.7611 1.7382

21 1.9480 1.9197 1.8956 1.8750 1.8146 1.7756 1.7424 1.7193

22 1.9327 1.9043 1.8801 1.8593 1.7984 1.7590 1.7255 1.7021

23 1.9189 1.8903 1.8659 1.8450 1.7837 1.7439 1.7101 1.6864

24 1.9063 1.8775 1.8530 1.8319 1.7703 1.7302 1.6960 1.6721

25 1.8947 1.8658 1.8412 1.8200 1.7579 1.7175 1.6831 1.6589

26 1.8841 1.8550 1.8303 1.8090 1.7466 1.7059 1.6712 1.6468

27 1.8743 1.8451 1.8203 1.7989 1.7361 1.6951 1.6602 1.6356

28 1.8652 1.8359 1.8110 1.7895 1.7264 1.6852 1.6500 1.6252

29 1.8568 1.8274 1.8024 1.7808 1.7174 1.6759 1.6405 1.6155

30 1.8490 1.8195 1.7944 1.7727 1.7090 1.6673 1.6316 1.6065
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Upper Quantiles of the F Distribution (α = 0.050)

df1

df2 1 2 3 4 5 6 7 8

2 18.5128 19.0000 19.1643 19.2468 19.2964 19.3295 19.3532 19.3710

3 10.1280 9.5521 9.2766 9.1172 9.0135 8.9406 8.8867 8.8452

4 7.7086 6.9443 6.5914 6.3882 6.2561 6.1631 6.0942 6.0410

5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183

6 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 4.2067 4.1468

7 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 3.7870 3.7257

8 5.3177 4.4590 4.0662 3.8379 3.6875 3.5806 3.5005 3.4381

9 5.1174 4.2565 3.8625 3.6331 3.4817 3.3738 3.2927 3.2296

10 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717

11 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 3.0123 2.9480

12 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 2.9134 2.8486

13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669

14 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987

15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408

16 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 2.6572 2.5911

17 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 2.6143 2.5480

18 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102

19 4.3807 3.5219 3.1274 2.8951 2.7401 2.6283 2.5435 2.4768

20 4.3512 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471

21 4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205

22 4.3009 3.4434 3.0491 2.8167 2.6613 2.5491 2.4638 2.3965

23 4.2793 3.4221 3.0280 2.7955 2.6400 2.5277 2.4422 2.3748

24 4.2597 3.4028 3.0088 2.7763 2.6207 2.5082 2.4226 2.3551

25 4.2417 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371

26 4.2252 3.3690 2.9752 2.7426 2.5868 2.4741 2.3883 2.3205

27 4.2100 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053

28 4.1960 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913

29 4.1830 3.3277 2.9340 2.7014 2.5454 2.4324 2.3463 2.2783

30 4.1709 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662
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Upper Quantiles of the F Distribution (α = 0.050)

df1

df2 9 10 11 12 16 20 25 30

2 19.3848 19.3959 19.4050 19.4125 19.4333 19.4458 19.4558 19.4624

3 8.8123 8.7855 8.7633 8.7446 8.6923 8.6602 8.6341 8.6166

4 5.9988 5.9644 5.9358 5.9117 5.8441 5.8025 5.7687 5.7459

5 4.7725 4.7351 4.7040 4.6777 4.6038 4.5581 4.5209 4.4957

6 4.0990 4.0600 4.0274 3.9999 3.9223 3.8742 3.8348 3.8082

7 3.6767 3.6365 3.6030 3.5747 3.4944 3.4445 3.4036 3.3758

8 3.3881 3.3472 3.3130 3.2839 3.2016 3.1503 3.1081 3.0794

9 3.1789 3.1373 3.1025 3.0729 2.9890 2.9365 2.8932 2.8637

10 3.0204 2.9782 2.9430 2.9130 2.8276 2.7740 2.7298 2.6996

11 2.8962 2.8536 2.8179 2.7876 2.7009 2.6464 2.6014 2.5705

12 2.7964 2.7534 2.7173 2.6866 2.5989 2.5436 2.4977 2.4663

13 2.7144 2.6710 2.6347 2.6037 2.5149 2.4589 2.4123 2.3803

14 2.6458 2.6022 2.5655 2.5342 2.4446 2.3879 2.3407 2.3082

15 2.5876 2.5437 2.5068 2.4753 2.3849 2.3275 2.2797 2.2468

16 2.5377 2.4935 2.4564 2.4247 2.3335 2.2756 2.2272 2.1938

17 2.4943 2.4499 2.4126 2.3807 2.2888 2.2304 2.1815 2.1477

18 2.4563 2.4117 2.3742 2.3421 2.2496 2.1906 2.1413 2.1071

19 2.4227 2.3779 2.3402 2.3080 2.2149 2.1555 2.1057 2.0712

20 2.3928 2.3479 2.3100 2.2776 2.1840 2.1242 2.0739 2.0391

21 2.3660 2.3210 2.2829 2.2504 2.1563 2.0960 2.0454 2.0102

22 2.3419 2.2967 2.2585 2.2258 2.1313 2.0707 2.0196 1.9842

23 2.3201 2.2747 2.2364 2.2036 2.1086 2.0476 1.9963 1.9605

24 2.3002 2.2547 2.2163 2.1834 2.0880 2.0267 1.9750 1.9390

25 2.2821 2.2365 2.1979 2.1649 2.0691 2.0075 1.9554 1.9192

26 2.2655 2.2197 2.1811 2.1479 2.0518 1.9898 1.9375 1.9010

27 2.2501 2.2043 2.1655 2.1323 2.0358 1.9736 1.9210 1.8842

28 2.2360 2.1900 2.1512 2.1179 2.0210 1.9586 1.9057 1.8687

29 2.2229 2.1768 2.1379 2.1045 2.0073 1.9446 1.8915 1.8543

30 2.2107 2.1646 2.1256 2.0921 1.9946 1.9317 1.8782 1.8409
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Tables of Quantiles 423

Upper Quantiles of the F Distribution (α = 0.025)

df1

df2 1 2 3 4 5 6 7 8

2 38.5063 39.0000 39.1655 39.2484 39.2982 39.3315 39.3552 39.3730

3 17.4434 16.0441 15.4392 15.1010 14.8848 14.7347 14.6244 14.5399

4 12.2179 10.6491 9.9792 9.6045 9.3645 9.1973 9.0741 8.9796

5 10.0070 8.4336 7.7636 7.3879 7.1464 6.9777 6.8531 6.7572

6 8.8131 7.2599 6.5988 6.2272 5.9876 5.8198 5.6955 5.5996

7 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 4.9949 4.8993

8 7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 4.5286 4.4333

9 7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 4.1970 4.1020

10 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 3.9498 3.8549

11 6.7241 5.2559 4.6300 4.2751 4.0440 3.8807 3.7586 3.6638

12 6.5538 5.0959 4.4742 4.1212 3.8911 3.7283 3.6065 3.5118

13 6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 3.4827 3.3880

14 6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 3.3799 3.2853

15 6.1995 4.7650 4.1528 3.8043 3.5764 3.4147 3.2934 3.1987

16 6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 3.2194 3.1248

17 6.0420 4.6189 4.0112 3.6648 3.4379 3.2767 3.1556 3.0610

18 5.9781 4.5597 3.9539 3.6083 3.3820 3.2209 3.0999 3.0053

19 5.9216 4.5075 3.9034 3.5587 3.3327 3.1718 3.0509 2.9563

20 5.8715 4.4613 3.8587 3.5147 3.2891 3.1283 3.0074 2.9128

21 5.8266 4.4199 3.8188 3.4754 3.2501 3.0895 2.9686 2.8740

22 5.7863 4.3828 3.7829 3.4401 3.2151 3.0546 2.9338 2.8392

23 5.7498 4.3492 3.7505 3.4083 3.1835 3.0232 2.9023 2.8077

24 5.7166 4.3187 3.7211 3.3794 3.1548 2.9946 2.8738 2.7791

25 5.6864 4.2909 3.6943 3.3530 3.1287 2.9685 2.8478 2.7531

26 5.6586 4.2655 3.6697 3.3289 3.1048 2.9447 2.8240 2.7293

27 5.6331 4.2421 3.6472 3.3067 3.0828 2.9228 2.8021 2.7074

28 5.6096 4.2205 3.6264 3.2863 3.0626 2.9027 2.7820 2.6872

29 5.5878 4.2006 3.6072 3.2674 3.0438 2.8840 2.7633 2.6686

30 5.5675 4.1821 3.5894 3.2499 3.0265 2.8667 2.7460 2.6513
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424 Tables of Quantiles

Upper Quantiles of the F Distribution (α = 0.025)

df1

df2 9 10 11 12 16 20 25 30

2 39.3869 39.3980 39.4071 39.4146 39.4354 39.4479 39.4579 39.4646

3 14.4731 14.4189 14.3742 14.3366 14.2315 14.1674 14.1155 14.0805

4 8.9047 8.8439 8.7935 8.7512 8.6326 8.5599 8.5010 8.4613

5 6.6811 6.6192 6.5678 6.5245 6.4032 6.3286 6.2679 6.2269

6 5.5234 5.4613 5.4098 5.3662 5.2439 5.1684 5.1069 5.0652

7 4.8232 4.7611 4.7095 4.6658 4.5428 4.4667 4.4045 4.3624

8 4.3572 4.2951 4.2434 4.1997 4.0761 3.9995 3.9367 3.8940

9 4.0260 3.9639 3.9121 3.8682 3.7441 3.6669 3.6035 3.5604

10 3.7790 3.7168 3.6649 3.6209 3.4963 3.4185 3.3546 3.3110

11 3.5879 3.5257 3.4737 3.4296 3.3044 3.2261 3.1616 3.1176

12 3.4358 3.3736 3.3215 3.2773 3.1515 3.0728 3.0077 2.9633

13 3.3120 3.2497 3.1975 3.1532 3.0269 2.9477 2.8821 2.8372

14 3.2093 3.1469 3.0946 3.0502 2.9234 2.8437 2.7777 2.7324

15 3.1227 3.0602 3.0078 2.9633 2.8360 2.7559 2.6894 2.6437

16 3.0488 2.9862 2.9337 2.8890 2.7614 2.6808 2.6138 2.5678

17 2.9849 2.9222 2.8696 2.8249 2.6968 2.6158 2.5484 2.5020

18 2.9291 2.8664 2.8137 2.7689 2.6404 2.5590 2.4912 2.4445

19 2.8801 2.8172 2.7645 2.7196 2.5907 2.5089 2.4408 2.3937

20 2.8365 2.7737 2.7209 2.6758 2.5465 2.4645 2.3959 2.3486

21 2.7977 2.7348 2.6819 2.6368 2.5071 2.4247 2.3558 2.3082

22 2.7628 2.6998 2.6469 2.6017 2.4717 2.3890 2.3198 2.2718

23 2.7313 2.6682 2.6152 2.5699 2.4396 2.3567 2.2871 2.2389

24 2.7027 2.6396 2.5865 2.5411 2.4105 2.3273 2.2574 2.2090

25 2.6766 2.6135 2.5603 2.5149 2.3840 2.3005 2.2303 2.1816

26 2.6528 2.5896 2.5363 2.4908 2.3597 2.2759 2.2054 2.1565

27 2.6309 2.5676 2.5143 2.4688 2.3373 2.2533 2.1826 2.1334

28 2.6106 2.5473 2.4940 2.4484 2.3167 2.2324 2.1615 2.1121

29 2.5919 2.5286 2.4752 2.4295 2.2976 2.2131 2.1419 2.0923

30 2.5746 2.5112 2.4577 2.4120 2.2799 2.1952 2.1237 2.0739
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Tables of Quantiles 425

Upper Quantiles of the F Distribution (α = 0.010)

df1

df2 1 2 3 4 5 6 7 8

2 98.5025 99.0000 99.1662 99.2494 99.2993 99.3326 99.3564 99.3742

3 34.1162 30.8165 29.4567 28.7099 28.2371 27.9107 27.6717 27.4892

4 21.1977 18.0000 16.6944 15.9770 15.5219 15.2069 14.9758 14.7989

5 16.2582 13.2739 12.0600 11.3919 10.9670 10.6723 10.4555 10.2893

6 13.7450 10.9248 9.7795 9.1483 8.7459 8.4661 8.2600 8.1017

7 12.2464 9.5466 8.4513 7.8466 7.4604 7.1914 6.9928 6.8400

8 11.2586 8.6491 7.5910 7.0061 6.6318 6.3707 6.1776 6.0289

9 10.5614 8.0215 6.9919 6.4221 6.0569 5.8018 5.6129 5.4671

10 10.0443 7.5594 6.5523 5.9943 5.6363 5.3858 5.2001 5.0567

11 9.6460 7.2057 6.2167 5.6683 5.3160 5.0692 4.8861 4.7445

12 9.3302 6.9266 5.9525 5.4120 5.0643 4.8206 4.6395 4.4994

13 9.0738 6.7010 5.7394 5.2053 4.8616 4.6204 4.4410 4.3021

14 8.8616 6.5149 5.5639 5.0354 4.6950 4.4558 4.2779 4.1399

15 8.6831 6.3589 5.4170 4.8932 4.5556 4.3183 4.1415 4.0045

16 8.5310 6.2262 5.2922 4.7726 4.4374 4.2016 4.0259 3.8896

17 8.3997 6.1121 5.1850 4.6690 4.3359 4.1015 3.9267 3.7910

18 8.2854 6.0129 5.0919 4.5790 4.2479 4.0146 3.8406 3.7054

19 8.1849 5.9259 5.0103 4.5003 4.1708 3.9386 3.7653 3.6305

20 8.0960 5.8489 4.9382 4.4307 4.1027 3.8714 3.6987 3.5644

21 8.0166 5.7804 4.8740 4.3688 4.0421 3.8117 3.6396 3.5056

22 7.9454 5.7190 4.8166 4.3134 3.9880 3.7583 3.5867 3.4530

23 7.8811 5.6637 4.7649 4.2636 3.9392 3.7102 3.5390 3.4057

24 7.8229 5.6136 4.7181 4.2184 3.8951 3.6667 3.4959 3.3629

25 7.7698 5.5680 4.6755 4.1774 3.8550 3.6272 3.4568 3.3239

26 7.7213 5.5263 4.6366 4.1400 3.8183 3.5911 3.4210 3.2884

27 7.6767 5.4881 4.6009 4.1056 3.7848 3.5580 3.3882 3.2558

28 7.6356 5.4529 4.5681 4.0740 3.7539 3.5276 3.3581 3.2259

29 7.5977 5.4204 4.5378 4.0449 3.7254 3.4995 3.3303 3.1982

30 7.5625 5.3903 4.5097 4.0179 3.6990 3.4735 3.3045 3.1726
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426 Tables of Quantiles

Upper Quantiles of the F Distribution (α = 0.010)

df1

df2 9 10 11 12 16 20 25 30

2 99.3881 99.3992 99.4083 99.4159 99.4367 99.4492 99.4592 99.4658

3 27.3452 27.2287 27.1326 27.0518 26.8269 26.6898 26.5790 26.5045

4 14.6591 14.5459 14.4523 14.3736 14.1539 14.0196 13.9109 13.8377

5 10.1578 10.0510 9.9626 9.8883 9.6802 9.5526 9.4491 9.3793

6 7.9761 7.8741 7.7896 7.7183 7.5186 7.3958 7.2960 7.2285

7 6.7188 6.6201 6.5382 6.4691 6.2750 6.1554 6.0580 5.9920

8 5.9106 5.8143 5.7343 5.6667 5.4766 5.3591 5.2631 5.1981

9 5.3511 5.2565 5.1779 5.1114 4.9240 4.8080 4.7130 4.6486

10 4.9424 4.8491 4.7715 4.7059 4.5204 4.4054 4.3111 4.2469

11 4.6315 4.5393 4.4624 4.3974 4.2134 4.0990 4.0051 3.9411

12 4.3875 4.2961 4.2198 4.1553 3.9724 3.8584 3.7647 3.7008

13 4.1911 4.1003 4.0245 3.9603 3.7783 3.6646 3.5710 3.5070

14 4.0297 3.9394 3.8640 3.8001 3.6187 3.5052 3.4116 3.3476

15 3.8948 3.8049 3.7299 3.6662 3.4852 3.3719 3.2782 3.2141

16 3.7804 3.6909 3.6162 3.5527 3.3720 3.2587 3.1650 3.1007

17 3.6822 3.5931 3.5185 3.4552 3.2748 3.1615 3.0676 3.0032

18 3.5971 3.5082 3.4338 3.3706 3.1904 3.0771 2.9831 2.9185

19 3.5225 3.4338 3.3596 3.2965 3.1165 3.0031 2.9089 2.8442

20 3.4567 3.3682 3.2941 3.2311 3.0512 2.9377 2.8434 2.7785

21 3.3981 3.3098 3.2359 3.1730 2.9931 2.8796 2.7850 2.7200

22 3.3458 3.2576 3.1837 3.1209 2.9411 2.8274 2.7328 2.6675

23 3.2986 3.2106 3.1368 3.0740 2.8943 2.7805 2.6856 2.6202

24 3.2560 3.1681 3.0944 3.0316 2.8519 2.7380 2.6430 2.5773

25 3.2172 3.1294 3.0558 2.9931 2.8133 2.6993 2.6041 2.5383

26 3.1818 3.0941 3.0205 2.9578 2.7781 2.6640 2.5686 2.5026

27 3.1494 3.0618 2.9882 2.9256 2.7458 2.6316 2.5360 2.4699

28 3.1195 3.0320 2.9585 2.8959 2.7160 2.6017 2.5060 2.4397

29 3.0920 3.0045 2.9311 2.8685 2.6886 2.5742 2.4783 2.4118

30 3.0665 2.9791 2.9057 2.8431 2.6632 2.5487 2.4526 2.3860
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