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“… covers a wide theme on global urban remote sensing … new 
insights into the gaps, needs, and trends in urban remote sensing at the 
global level. … an excellent reference book for students, researchers, 
and professors in the remote sensing, urban studies, and relevant 
fields, and for professionals and decision-makers in the government, 
industry, and commercial sectors. It will also be suitable as a textbook 
for undergraduate and graduate students who are interested in remote 
sensing, urban, environment, and global change.”
—Dr. Peijun Li, School of Earth and Space Sciences, Peking University, 
China

• Explores innovative methods and techniques in support 
of effective urban remote sensing and sustainable urban 
development

• Examines major research efforts in the world on global urban 
monitoring, assessing, modeling, and prediction

• Provides a comprehensive review on the current state of global 
urban remote sensing

• Introduces GEO’s Global Urban Observation and Information 
Task 2012–2015 work plan

Expert Insight on the Current State of Global Urban Monitoring

Edited by a well-known expert in the field of remote sensing, GIS, 
and other geospatial technologies, Global Urban Monitoring and 
Assessment through Earth Observation draws on the expertise of 
pioneers in the field from across the globe. The book addresses the 
gaps in an effective and long-term manner, highlighting the importance 
of increased coordination and networking among major stakeholders 
and of working together with other key international mechanisms. 
The chapters detail emerging research in the theory, methods, and 
techniques that provide insights into how to solve the major issues of 
sustainable development—one of the most important issues facing 
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Foreword: GEO—A Globally 
Integrated Approach to 
Urban Monitoring
Recognizing the growing need for improved Earth observations, 150 govern-
ments and leading international organizations have established the Group on Earth 
Observations (GEO) to collaborate and implement a Global Earth Observation 
System of Systems (GEOSS). Countries and organizations are sparing data from 
their respective Earth monitoring systems, including satellites in space and in situ 
instruments from terrestrial, oceanic, and atmospheric domains. They are interlink-
ing these systems so that, together, they provide a more complete picture of Earth 
systems dynamics.

Universities, space agencies, and other partners are working together in the Global 
Urban Observation and Information Task (SB-04 of GEO), under the leadership of 
Professor Weng, to expand the use of Earth observations and remotely sensed data 
to provide information on urban environment characteristics and their change over 
time at various spatial scales. They are evaluating user needs and matching them 
with existing or planned technologies and data sets, and they are working with others 
in the GEO community to provide full and open access to data and services in order 
to expand and consolidate the network of researchers, stakeholders, and practitioners 
who are working for a more sustainable future in urban areas.

In fact, cities and densely populated areas are where the impact of human activi-
ties and the effects of natural forcing factors (including global climate change vari-
ability) are most directly felt by society. With half of the world’s population living 
in cities today, urban observation and modeling is a key issue not only for the GEO 
but for resource managers and policy makers alike. Urban areas account for roughly 
3% of the Earth’s surface but host half of the global population. According to the 
2011 revision of the World Urbanization Prospects,* in Europe, the Americas, and 
Oceania more than two-thirds of the population live in urban areas, whereas about 
one-third of the population of Asia and Africa lives in urban areas. Nonetheless, the 
most dramatic increase in urban population would be in these two latter continents. 
In Africa, urban population will increase from 414 million to over 1.2 billion by 
2050, while in Asia it will soar from 1.9 billion to 3.3 billion by 2050. This fast 
and unprecedented dynamic is posing new challenges to governments, decision 
makers, and stakeholders. New settlements and the dramatic expansion of urban 
areas require feasible, affordable, and sustainable solutions for housing, energy, 

* United Nations, Department of Economic and Social Affairs, Population Division, World Urbanization 
Prospects, the 2011 Revision.
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and infrastructure in order to mitigate urban poverty, the expansion of slums, and a 
general deterioration of the urban environment.

Earth observations are key in this process since they provide a uniquely valu-
able vantage point for monitoring many kinds of large-scale dynamics. In situ and 
remotely sensed data can be provided with very little delay and can include raw data, 
maps, optical images, or radar images that accurately measure and track critical 
parameters like land use and classification, meteorological variables, heat islands 
phenomena, and trace gas emissions. Urban population growth is driven by a com-
bination of factors usually related to local triggers whose long-term impacts on the 
environment and economy have a global effect. Growing urban populations will 
have a direct impact on biodiversity and ecosystem hot spots and will increase vul-
nerability and exposure of populations to the effects of climate change variability, 
including sea level rise in coastal regions, extreme weather events, more frequent 
or intense cyclones/hurricanes, longer dry periods and heavier rains that result in 
increased flooding, and large and uncontrollable outbreak and transmission of dis-
eases and pandemics. High- and moderate-resolution imagery can be conveniently 
used to map and parameterize land use (including land use change), urban settle-
ments, physical networks, wildland–urban interfaces, and urban patterns over time. 
In addition, deterministic or stochastic models (e.g., run-off models, meteorological 
models, tsunami models) can be used to design reliable and meaningful scenarios 
whose outputs can improve the adaptation and resilience of urban society even in 
a context where weather-related hazards might worsen because of climate change.

The Global Urban Observation and Information Task (SB-04) in the GEO 
represents a collective effort of tens of governments and organizations as well 
as many individuals to monitor the urban system, share and exchange data, and 
deliver useful information to society. Interlinking observation systems requires 
common standards for architecture and data sharing, but usually the architecture 
of an Earth observation system refers to the way in which its components are 
designed so that they function as a whole. Each GEOSS component, including 
those being contributed by Task SB-04, must be configured so that it can be linked 
with the other participating systems. In addition, each contributor to GEOSS sub-
scribes to the GEO data-sharing principles, which aim to ensure the full and open 
exchange of data, metadata, and products. GEOSS disseminates information and 
analyses directly to users through its GEO Portal (http://www.geoportal.org/), a 
single Internet gateway to the comprehensive and near-real-time data produced 
by GEOSS. GEO Portal integrates diverse data sets, identifies relevant data and 
other portals of contributing systems, and provides access to models and other 
decision-support tools. GEOSS has enabled many countries to access information 
and thereby provide essential services to address challenges that otherwise would 
not yet have been met. Despite significant progress in recent years, there remain 
substantial gaps in ongoing national, regional, and global efforts to address these 
challenges. The GEO has demonstrated that it can play a key role in addressing 
these gaps in an effective and long-term manner through increased coordination 
and networking among its major stakeholders and by working together with other 
key international organizations.
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The chapters in this book show the key accomplishments of some of the best 
researchers in this field and, as discussed earlier, on one of the most relevant phe-
nomenon facing society in the future.

Barbara J. Ryan
The GEO Secretariat, Executive Director

Geneva, Switzerland
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1 What Is Special 
about Global Urban 
Remote Sensing?

Qihao Weng

1.1  URBANIZATION, GLOBAL CHANGES, 
AND URBAN REMOTE SENSING

As the trend of urbanization continues worldwide, environmental problems  associated 
with this process have become an important concern (Weng, 2001). The need for 
monitoring and managing urban areas is amplified by the concern over global 
 climate changes. Although, at this time, we are not clear about how urban  climate is 
complicated by global warming, it is important to understand the  combined impacts 
of urbanization and global warming on urban areas so that we can better manage 
natural resources and develop measures for mitigation and  adaptation (Grimmond, 
2007). Owing to the nature of cities as complex human settlements, urban areas 
are more vulnerable than rural settlements to the impacts of global environmen-
tal change (CCSP, 2008). Most impact concerns, including those on health, water, 
and infrastructures, severe weather events, energy requirements, urban metabolism, 
sea level rise, economic competitiveness, opportunities and risks, and social and 
political structures, can be addressed by, or be better understood with, the Earth 
Observation (EO) technology.

Over the past decade, urban remote sensing has emerged as a new frontier in the 
EO technology by focusing primarily on (1) understanding the biophysical proper-
ties, patterns, and processes of urban landscapes and (2) mapping and monitoring 
of urban land cover and spatial extent. Driven by the societal needs and improve-
ment in sensor technology and image processing techniques, we have recently 
witnessed a substantial increase in research and development, technology transfer, 
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and engineering activities worldwide. As shown in Figure 1.1, the number of  journal 
articles (including review articles) on urban remote sensing has been increasing 
rapidly since 2000. This period coincides with the advent of high spatial resolu-
tion satellite images (especially those with higher than 5 m resolution), spaceborne 
hyperspectral images and Lidar data, and enhanced image processing techniques 
such as object-based image analysis (OBIA), data mining, and data and image fusion 
of different sensors, wavelength regions, and spatial, spectral, and temporal resolutions 
(Weng, 2009). Remote sensing methods and techniques have been applied to urban 
areas by using all ranges of electromagnetic wavelength and close-range sensors 
(Weng, 2012). Table 1.1 lists most relevant peer-reviewed journals for urban remote 
sensing along with the most prolific authors and major research groups. It is appar-
ent from the table that all major remote sensing journals have published articles on 
this subject and that researchers worldwide are interested in using remote sensing 
technology to study urban areas, urbanization, and associated environmental issues.

In the context of global urbanization and environmental changes and having rec-
ognized the benefits of urban imaging and mapping techniques, Group on Earth 
Observation (GEO), an international organization for exploiting EO technologies to 
support decision making, calls for the development of a global urban observation and 
information system. GEO decided to establish, in its 2012–2015 Work Plan, a new 
task of “Global Urban Observation and Information” (Weng et al., 2013). The main 
objectives of this task are as follows: 

 1. To improve the coordination of urban observations, monitoring, forecast-
ing, and assessment initiatives worldwide

 2. To produce up-to-date information on the status and development of the 
urban systems at different scales
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FIGURE 1.1 The number of journal articles (including review articles) on urban remote 
sensing derived from a Scopus search on March 27, 2013, by the author.
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TABLE 1.1 
Literature Search Results Using Scopus on “Urban Remote Sensing”

Most Relevant Journals 
(# of Publications) 

Most Prolific Authors 
(# of Publications on 

the Subject) 

Major Research Groups 
(# of Publication Affiliated with 

the Organization 

International Journal of Remote 
Sensing (245)

Weng, Q. (39) Chinese Academy of Sciences (57)

Gamba, P. (30) Deutsches Zentrum fur Luft- Und 
Raumfahrt (German Aerospace 
Center) (47)

Photogrammetric Engineering & 
Remote Sensing (143)

Nichol, J. (20)
Dell’Acqua, F. (17)

Remote Sensing of Environment (142) Myint, S.W. (14) Indiana State University (44)
IEEE Transactions on Geoscience and 
Remote Sensing (98)

Lu, D. (13) Beijing Normal University (43)
Wong, M.S. (13) NASA Goddard Space 

Flight Center (39)ISPRS Journal of Photogrammetry and 
Remote Sensing (73)

Gong, P. (12)
Lo, C.P. (12) Peking University (35)

Landscape and Urban Planning (64) Stow, D. (12) Arizona State University (31)
Atmospheric Environment (62) Wang, L. (12) Università degli Studi di Pavia (31)
Journal of the Indian Society of 
Remote Sensing (48)

Elvidge, C.D. (11) Wuhan University (29)
Shi, P. (11) Hong Kong Polytechnic University (27)

Environmental Monitoring and 
Assessment (47)

Wu, C. (11) Istanbul Teknik Üniversitesi (27)
Benediktsson, J.A. (10) University of California, Santa 

Barbara (26)Journal of Geophysical Research D 
Atmospheres (35)

Canters, F. (10)
Roberts, D.A. (10) European Commission Joint 

Research Centre, Ispra (26)Computers Environment and Urban 
Systems (33)

Small, C. (10)
Voogt, J.A. (10) Consiglio Nazionale delle 

Ricerche (National Research 
Council, Italy) (25)

Remote Sensing (33) Yamaguchi, Y. (10)
International Journal of Applied Earth 
Observation and Geoinformation (31)

Taubenbock, H. (9)
Jensen, R.R. (9) The University of Western Ontario (24)

IEEE Geoscience and Remote Sensing 
Letters (29)

Li, X. (9) University of Maryland (24)
Bruzzone, L. (9) Indian Institute of Remote Sensing (23)

Sensors (28) Liu, H. (9) UC Berkeley (23)
IEEE Journal of Selected Topics 
in Applied Earth Observations 
and Remote Sensing (27)

Zhou, W. (9) Nanjing University (23)
Clarke, K.C. (9) Instituto Nacional de Pesquisas 

Espaciais (INPE, Brazil) (22)Dech, S. (9)
Geocarto International (26) Emeis, S. (8) Indiana University (21)
Canadian Journal of Remote 
Sensing (25)

Esch, T. (8) Indian Space Research 
Organization (21)Lisini, G. (8)

Chinese Geographical Science (24) Quattrochi, D.A. (8)
Applied Geography (24) Roth, A. (8)

Xian, G. (8)
Yeh, A.G.O. (8)

Note: The search was conducted on March 27, 2013 (document type = article + review;  language = 
English). A total of 2573 papers were found, with the earliest publication date in 1971.
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 3. To fill existing gaps in the integration of global urban land observations with 
 a. Data that characterize urban ecosystems, built environment, air quality, 

and carbon emission
 b. Indicators of population density, environmental quality, and quality 

of life
 c. Patterns of human environmental and infectious diseases
 4. To develop innovative concepts and techniques in support of effective and 

sustainable urban development

This book presents to the readers the current state of global urban monitor-
ing, assessment, modeling, and prediction through EO and related technologies. 
Specifically, it introduces to the readers GEO’s important international collaborative 
effort, the current state of global urban remote sensing, and future directions. A few 
selected innovative works on urban remote sensing are included as they will contrib-
ute to the timely development of innovative concepts and techniques for sustainable 
urban development. This book would be an excellent reference book for students, 
researchers, and professors in academia who conduct remote sensing research and for 
professionals and decision makers in government, industry, and commercial sectors 
who deal with urban planning, civic, environmental, and sustainability issues. It will 
also be suitable as a textbook or as a supplement text for undergraduate and graduate 
students who are interested in remote sensing, urban environment, and sustainability.

1.2  WHAT IS SPECIAL ABOUT GLOBAL URBAN REMOTE SENSING?

The vast majority of urban remote sensing studies have been conducted at local or 
regional scales. A Scopus search shows that there are only 243 papers on “global 
urban remote sensing,” as compared to 2573 articles on “urban remote sensing.” 
Global urban remote sensing differs from studies conducted at local and regional 
scales mainly in the following aspects:

A top-down approach: Most previous urban studies have focused on one locality 
and once only. Even though those methods are effective for spatial studies, the results 
of characterization, analysis, and modeling may not prove effective for spatiotempo-
ral analyses. The limitations include difficulties in characterizing several satellite 
images from various times of the same region or several images of the same time 
for different regions (Rajasekar and Weng, 2009). The transferability of a method 
from one study site to another is always a concern. In contrast, a global study must 
design a scheme that can be applied to all localities, thus possessing the feature of 
a top-down approach. However, the top-down approach may have its own limita-
tions, such as uneven classification and accuracy across different localities (Xian and 
Homer, 2010).

The multiscaling issue: The majority of urban phenomena are scale dependent, 
which means that urban patterns change with the scale of observation. In reality, 
very few geographical phenomena are scale independent, that is, the patterns do 
not change across scales (Cao and Lam, 1992). Urban landscape processes appear 
to be hierarchical in pattern and structure. Therefore, a study of the relationship 
between the patterns at different levels in the hierarchy may help in obtaining a 
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better understanding of the scale and resolution problem in urban areas (Weng et al., 
2004) and in finding the optimal scale for examining the relationship between urban 
landscape pattern and process (Frohn, 1998; Liu and Weng, 2009). For example, Oke 
(2008) suggested that there were often several linked urban heat islands (UHIs) in 
one city and that each was distinguished from the other mainly by scales imposed by 
the biophysical structure of a given city and the structure of the urban atmosphere. 
Each UHI, therefore, requires measurement arrays appropriate to the scale (Oke, 
2008). Most previous literature failed to account for this multiscaling concern in the 
UHI studies (e.g., Streutker, 2002; Imhoff et al., 2010). Weng et al. (2011) were the 
first to examine multiple UHIs of various sizes (spatial extent) using the same sets of 
ASTER imagery. By characterizing the urban thermal landscape at the microscale, 
the mesoscale, and the regional scale, and by further linking UHIs with biophysical 
parameters, they were able to analyze the UHI phenomenon in Indianapolis, United 
States, as a scale-dependent process.

Use of coarse spatial resolution imagery: The relationship between the geograph-
ical scale of a study area and the spatial resolution of a remote sensing image must 
be carefully examined (Quattrochi and Goodchild, 1997). For mapping at the con-
tinental or global scale, coarse spatial resolution data are usually employed. Gamba 
and Herold (2009) assessed eight major research efforts in global urban extent map-
ping and found that most maps were produced at the spatial resolution of 1–2 km. 
When using coarse-resolution images, a threshold has to be defined with respect to 
what constitutes a built-up/impervious pixel (Lu et al., 2008; Schneider et al., 2010). 
Reliable impervious surface data that derive from medium-resolution imagery are 
helpful for validating and predicting urban/built-up extent at the coarse-resolution 
level (Lu et al., 2008). Similarly, fine spatial resolution imagery, such as IKONOS 
and QuickBird data, has been used for purposes of sample training and/or valida-
tion, where medium-resolution imagery is the main data source for a project. Such a 
nested multiscale approach needs to consider the mixed pixel problem. The presence 
of mixed pixels has been recognized as a major problem affecting the effective use 
of satellite imagery in urban studies (Lu and Weng, 2004). The mixed pixel prob-
lem results from the fact that the observational scale (i.e., spatial resolution) fails 
to correspond to the spatial characteristics of the target (Mather, 1999). Different 
approaches have been developed to handle mixed pixels (e.g., Wang, 1990; Ridd, 
1995; Foody, 1999), which should also be applicable for studies at the global scale.

Globally consistent mapping system: Several global urban area maps have been 
created using coarse- or medium-resolution satellite imagery (Gamba and Herold, 
2009; Potere et al., 2009). These maps yield very different levels of accuracy with 
 estimate of the total global urban land varying from 0.27 × 106 to 3.52 × 106 km2 
(Potere et al., 2009). The mapping procedures are often found effective for certain 
regions but not for others. It appears that the mapping accuracy is higher for Europe, 
North America, and Latin America whereas it is lower for Asia and Africa for nearly 
all the existing global urban maps (Potere et al., 2009). Therefore, it is important to 
develop a consistent mapping system that is applicable to all world regions and to 
improve global coverage and data accuracy of urban observation through integrating 
 satellite imagery from multiple platforms/sensors with in situ data. Equally impor-
tant is to define requirements for global urban monitoring and assessment in terms 
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of data products and expectations for data validation, archiving, update, and shar-
ing. These objectives will be addressed by GEO SB-04 team during the period 
2012–2015 (Weng et al., 2013). A fundamental issue that must be addressed is the 
definition of urban areas, which will affect the way we process satellite imagery. 
To support the development of a globally consistent urban mapping, a grid-based 
mapping system that integrates an algorithm of mosaicking for the cities in the 
world, an algorithm of urban area mapping, and a ground truthing may be necessary 
(Miyazaki et al., 2013).

Global perspective on sustainable urban development: Urban areas represent the 
centers of economy, society, culture, and policy. As a result, most of the current and 
future ecological, economic, and societal challenges are either directly or indirectly 
related to human activities in or around settlements. A global urban morphological 
database, as a further step of global urban mapping, will provide a good tool for 
urban climate modeling to better understand the impacts of global climate change 
on urban areas. Furthermore, urban analyses at the global scale that link satellite 
observation data products with socioeconomic, demographic, and in situ data will 
improve knowledge on urban environments and ecosystems, air quality and carbon 
emission, population density, quality of life, and human environmental and infec-
tious diseases. These types of analyses offer irreplaceable, important insights into 
future urban development in the world, which is impossible to derive from local or 
regional studies. The above two objectives will also be pursued by the GEO SB-04 
team in the next few years (Weng et al., 2013).

1.3 SYNOPSIS OF THE BOOK

This book consists of 4 sections and 18 chapters. Section I deals with the needs and 
requirements of global urban observation and assessment, and the priority actions of 
GEO SB-04 between 2012 and 2015 and beyond; Section II introduces four international 
efforts at mapping global urban footprint from Germany, the United States, Japan, and 
the Joint Research Centre of European Commission; Section III selects and presents 
a few important initiatives on urban observation, monitoring, forecasting, and assess-
ment from different countries; and finally, Section IV develops innovative concepts and 
techniques in support of effective urban sensing and sustainable urban development.

Section I starts with an introduction to GEO’s Global Urban Observation and 
Information Task, its origin, rationale, and objectives, and its key activities between 
2012 and 2015. Following the introduction, Chapter 2 describes in detail the GEO’s 
urban supersites initiative through which eight cities, including Los Angeles, Atlanta, 
Mexico City, Athens, Istanbul, Sao Paolo, Beijing, and Hong Kong, are selected as 
test sites for its developing methodology. Through this partnership, the participants 
will generate an agreed set of protocols to share and visualize the intermediate and 
final global information products and other resources and to foster joint studies and 
dissemination of results. In Chapter 3, Gamba and his colleagues propose a frame-
work to exploit EO-derived information in urban studies. The need for multiple 
spatial scales and multiple information about human settlements requires a multi-
scale and multifeature data fusion approach to be included in a specific application. 
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Examples related to land use detection and risk assessment at the built-up area level 
are discussed to provide a clear view of the advantages and drawbacks of the proposed 
framework. Also included in Section I is Chapter 4. A writing team of 17 contribu-
tors were chosen to write by category about the satellite sensors for urban mapping, 
assessing, and monitoring. These categories include optical sensors (fine-, medium-, 
and coarse-resolution sensors), thermal IR sensors (medium- and coarse-resolution), 
SAR (fine-, medium-, and coarse-resolution sensors), and night-light sensors. For 
each type of sensor, the most updated information is provided with respect to

• Date, month, and year a sensor starts to acquire image data
• Data characteristics (spatial, spectral, temporal, and radiometric resolution)
• Satellite orbital characteristics
• How the satellite orbital and image data characteristics of a particular sensor 

satisfy the needs for urban mapping, assessing, and monitoring
• Current practice by conducting a short literature review
• Key limitations
• Future perspective

Section II introduces initiatives directed by co-leads or contributors of GEO SB-04 
to global urban footprint mapping. Chapter 5 presents with the Global Urban 
Footprint (GUF) project conducted by the German Aerospace Center (DLR). The 
German TanDEM-X mission collects a global coverage of VHR imagery that can 
be used to map settlement patterns worldwide in a unique spatial detail. Based on 
a fully automated, operational image analysis procedure, the DLR uses approxi-
mately 180,000 TanDEM-X images to generate a worldwide inventory of human 
settlements—the GUF layer. The free-access version of the GUF shows a spatial 
resolution of 75 m whereas the commercial product will have the spatial resolution 
of about 12 m. The GUF data layer offers valuable information for an analysis of 
the worldwide urbanization pattern. In Chapter 6, Elvidge and his colleagues assess 
national trends in satellite-observed lighting between 1992 and 2012. Analysis of a 
time series of global annual satellite maps of nighttime lights spanning 21 years and 
six satellites reveals several distinct patterns linked to population changes, economic 
development, and improvements in lighting efficiency. The results indicate that there 
are national-level differences in the behavior of nighttime lights over time. Seven cat-
egories of national lighting trends have been defined: (1) rapid growth, (2) moderate 
growth, (3) population-centric lighting, (4) economic-centric lighting, (5) stable light-
ing, (6) erratic lighting, and (7) antipole lighting. Recognition of these patterns may 
lead to improved spatial modeling of socioeconomic processes based on satellite-
observed nighttime lights. In Chapter 7, Miyazaki and his colleagues present the 
methodology for the development of a global built-up area map at 15 m resolution 
using ASTER images and existing GIS data. The methodology includes three compo-
nents: ground truth data for urban sites, an automated algorithm of mosaic operation 
for cities around the world, and an automated algorithm of built-up area mapping. 
These components were implemented in a consistent system with grid computing. A 
built-up area map has been developed for 3,374 cities around the globe using 11,802 
scenes of ASTER data. Chapter 8 investigates the possibility of producing fine-scale 
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geo-information layers using high-resolution or very-high-resolution satellite images 
and covering large regions such as at global, regional, or national scales. This chap-
ter reports about the methodological choices made during the design of the Global 
Human Settlement Layer (GHSL) production and summarizes the main results 
of the experiment conducted by the Joint Research Center (JRC) of the European 
Commission during 2012; this experiment involved 24.3 million square kilometers 
of test areas spread over four continents, automatically mapped to the image data 
collected by a variety of optical satellite and airborne sensors with spatial resolutions 
ranging from 0.5 to 10 m.

Section III exemplifies a few international efforts on the observation, monitoring, 
forecasting, and assessment of urban areas and other types of human settlements. 
Taubenböck et al. in Chapter 9 present an application-oriented approach using multi-
temporal remote sensing data to monitor the spatiotemporal dynamics of megacities, 
using four Chinese megacities—Beijing, Shanghai, Guangzhou, and Shenzhen—as 
case studies. Object-oriented and pixel-based classification image analysis techniques 
are applied to multitemporal Landsat as well as to TerraSAR-X and TanDEM-X data 
to delineate urbanized areas of the megacities at different dates. Assessment of urban 
growth patterns using spatial metrics are then performed to find out their similarities 
and differences. Chapter 10 addresses the special situation of refugees and internally 
displaced persons (IDPs) living in camps, sometimes the size of a large city. After 
defining the differences of refugees and IDPs, it provides examples of a variety of 
camp situations. The methods for mapping and monitoring refugee/IDP camps with 
EO data and for estimating the population in those camps are proposed and exam-
ined. In Chapter 11, Lu et al. present a methodology for mapping built-up areas 
in China at fine spatial resolution with CBERS-2B data and to assess the GHSL 
products generated using the image data. The CBERS-2B panchromatic imagery 
at 2.36  m resolution, covering mainly the eastern part of China, is processed to 
generate GHSL products. A benchmark experiment was conducted between GHSL 
at three scales and the MOD500 urban layer with Chinese Landuse2000 data as the 
reference data. GHSL at every scale ranks better than MODIS data. The GHSL at 
50 m resolution was found to yield the highest accuracy for estimating the popula-
tion of villages, whereas the GHSL at 200 m resolution showed a high degree of 
agreement with the reference data in both cities and villages. In Chapter 12, Xu 
and her colleagues assess the climatological and geographical factors responsible 
for the global pandemic of influenza A (H1N1) in 2009. A time series of global risk 
maps are generated to predict environmental exposure based on modeling Merra 
data including daily temperature, precipitation, and absolute humidity. These maps 
reveal clear seasonal changes in environmental risks over various parts of the world 
and provide information for developing early warning signs. From the indicators that 
define human travel flow in a global travel network, the authors find that a relatively 
small number of countries or cities could account for most of the outbreak cases 
worldwide. These findings confirm that the climatological and geographical factors 
have significant impacts on the global transmission of the virus. The last chapter 
of Section III, Chapter 13,  showcases a methodology for monitoring urban thermal 
environment, based on a study in Athens, Greece, from May until September 2009. 
The goal is to downscale the quarter-hour geostationary land surface temperate 
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(MSG-SEVIRI LST data of 3–5 km pixel size) images to 1 km spatial resolution—
characteristics currently not available with any EO mission—and then to extract the 
surface UHI patterns so as to study their diurnal variability.

Chapters selected for Section IV illustrate innovative concepts, methods, and 
techniques in urban remote sensing in recent years. In Chapter 14, Sagl and Blaschke 
argue that multiple coordinated views of spatiotemporal data provide unprecedented 
opportunities for geographic analysis in times of “big data” and that different types of 
data generation enable an integrated sensing. They analyze the intersection between 
machine-generated (satellite imagery, weather stations) and user-generated (social 
media, mobile phone data) data, and suggest that GIS is at the core of integrated 
urban sensing, especially in urban monitoring studies. They further demonstrate that 
GIS-based integrated urban sensing enables analyses, forecasts, and visualizations 
of a variety of spatial components of socioeconomic phenomena, including people, 
urban commodities, information flows, human interaction with urban commodi-
ties, as well as the relationship between networks of human interaction and natu-
ral environments. Chapter 15 focuses on OBIA for urban studies. With the advent 
of very high spatial resolution satellite images, automatic extraction of urban land 
cover information from them has soared. The authors of this chapter review the 
techniques of OBIA with a major focus on image segmentation and intend to pro-
vide fundamental knowledge of OBIA in the context of urban remote sensing. They 
argue that OBIA can be used to quickly identify land cover parcels and features of 
fast-growing urban areas in spite of many technical challenges and problems. In 
Chapter 16, the OBIA technique is further employed for detecting informal settle-
ments. In Chapter 17, Ehlers and his colleagues develop a methodology for rapid 
detection and visualization of changes in areas of crisis or catastrophes, especially of 
buildings and infrastructure. Because standard methods for automated change detec-
tion failed, several new methods have been developed and tested. These methods 
are based on frequency analysis, segmentation, and texture parameters and can also 
be combined with a decision tree approach. In comparison to five standard change 
detection methods, their new combined approach, called combined edge segment 
texture (CEST), shows superior results. If available, GIS and/or 3D information from 
stereo or shadow analysis can be further included in this change detection algorithm. 
The last chapter of Section IV, Chapter 18, provides a detailed review on the fusion 
of SAR and optical data for urban land cover mapping and change detection with two 
case studies. The fusion of ENVISAT ASAR and a single-date MERIS data with low 
spatial resolution offer the potential to distinguish between several classes, includ-
ing the separation of forest from low-density built-up areas, parks and roads, and so 
forth, which would be impossible with SAR images alone. Similar improvement can 
be seen in the accuracy of change detection where combined SAR and optical data 
outperform the SAR or the optical data alone.
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2 Global Urban 
Observation 
and Information
GEO’s Effort to Address 
the Impacts of Human 
Settlements

Qihao Weng, Thomas Esch, Paolo Gamba, 
Dale Quattrochi, and George Xian

2.1 SCIENTIFIC MOTIVATION AND BACKGROUND OF THE SB-04

The twenty-first century is the first “urban century” according to the United Nations 
Development Programme. The focus on cities reflects awareness of the growing 
 percentage of the world population that live in urban areas. In environmental terms, as 
has been pointed out at the UN Conference on Human Settlement, cities and towns are 
the original producers of many of the global environmental problems related to waste 
disposal and air and water pollution. There is a rapidly growing need for technolo-
gies that will enable monitoring of the world’s natural resources and urban assets and 
managing exposure to natural and man-made risks (Weng and Quattrochi, 2006a). 
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This need is driven by continued urbanization and global  climate change. Although 
currently urbanized land only covers approximately 2% of global land area, more 
than half of the world population (3.3 billion people) lives in the urban environment. 
By 2030, urbanized areas will expand to provide homes for 81% of the world popu-
lation, according to the United Nations, and most of the population growth will be 
in  developing countries. The number of megacities, which is defined as cities with 
population of over 10  million, will increase to 100 by 2025 (as compared to 25 today). 
Thus, there is a critical need to understand urban areas to help improve and foster 
the environmental and human sustainability of cities around the world (Weng and 
Quattrochi, 2006a).

Urban environmental problems have become unprecedentedly important in the 
twenty-first century. This is not a simple consequence of ever-increasing urban 
population and land, but this is because urbanization generates one of the most 
profound examples of human modification of the Earth (Weng, 2011). Alteration 
of the landscape through urbanization involves the transformation of the radiative, 
thermal, moisture, and aerodynamic characteristics of the Earth’s surface (Weng, 
2011). As humans alter the character of the natural landscape in the urbanization pro-
cess, they impact the exchange of heat and moisture between land surface and lower 
atmosphere, create urban heat island (UHI) phenomenon, and influence the local, 
mesoscale, and even larger scale climate (Weng, 2011). A  city is a human-central 
ecosystem. Cities are the most complex of all human settlements and differ from rural 
settlements in a number of ways (Weng and Yang, 2003). A significant distinction 
is that cities have greater size and functional complexity. Economic and societal 
values are stressed whereas the ecological value is often ignored (Weng and Yang, 
2003). Because cities are, by nature, complex human settlements, urban ecosystems 
are more complex, dynamic, and vulnerable to the impacts of global climate change 
(Weng and Yang, 2003). The US Climate Change Science Program (CCSP, 2008) 
defines one of its five goals to be “understanding the sensitivity and adaptability 
of different natural and managed ecosystems and human systems to climate and 
related global changes.” Although vulnerabilities of settlements to impacts of cli-
mate change vary regionally, they generally include some or many of the following 
impact concerns: health, water, and infrastructures, severe weather events, energy 
requirements, urban metabolism, sea level rise, economic competitiveness, oppor-
tunities and risks, and social and political structures. CCSP (2008) further recom-
mends that research on climate change effects on human settlements in the United 
States be given a much higher priority to provide better metropolitan-area scale 
decision making. Earth observation (EO) technology, in conjunction with in  situ 
data collection, has been used to observe, monitor, measure, and model many of 
the components that comprise urban environmental systems and ecosystem cycles 
for decades (Weng, 2012). There are a number of satellite remote sensing systems 
capable of imaging urban areas to the detail needed for global assessment of urban 
ecosystems. Most of these satellite systems are at the level of coarse resolution 
(larger than 100 m in spatial resolution) and medium resolution (10–100 m). Fewer 
satellite systems of high resolution (less than 10 m) can provide data for global mon-
itoring and assessment. Several nations, including the United States, countries of 
the European Union, China, Japan, and India, are developing very capable satellite 
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systems, which are suited for establishment of a global urban observatory, to be 
launched in the next decade. Therefore, international collaboration is needed to pro-
duce consistent global maps of human settlements from various data sources, to 
validate data products, and to provide harmonized information through a common 
land cover classification system for urban areas.

The Group on Earth Observation (GEO) calls for strengthening the cooperation 
and coordination among global observing systems and research programs for inte-
grated global observations. The GEO has further developed a framework for estab-
lishing a Global Earth Observation System of Systems (GEOSS). In the GEOSS 
Implementation Plan of 2005 (Group on Earth Observations, 2005), global urban 
observation and mapping are discussed in several circumstances. Table 2.1 outlines 
the benefits of global urban imaging and mapping. Some observation requirements 
are directed to multiple areas of the societal benefit. Urban extent, land cover, and 
land use maps are not yet available globally but could become available in the next 
2–10 years. The GEOSS plan emphasizes the need for the integration of relevant exist-
ing observation systems and an integrative analysis of the EO mapping products. Gaps 
exist in the integration of global urban land observations with data that characterize 
urban ecosystems, built environment, air quality, and carbon emission, and with the 
indicators of population density, environmental quality, quality of life, and the pat-
terns of human environmental and infectious diseases. Despite the relevance empha-
sized in the GEOSS Implementation Plan and a specific GEO task dealing with global 
land cover, the GEO plan as of 2011 lacks activities relating to urban ecosystems and 
environmental issues.

In April 2010, Dr. Jinlong Fan from the GEO Secretariat contacted Dr. Qihao Weng, 
inquiring about his interest in developing a global urban observation task within the 
framework of GEOSS. Dr. Weng further gained the support of the US GEO representa-
tive in principle by addressing technical issues that the representative raised. Through 
further efforts of Dr. George Xian and Dr. Dale Quattrochi, an urban observation 

TABLE 2.1 
GEO-Defined Societal Benefits and Earth Observation Objectives 
for Global Urban Observation

Societal Benefit Area Global Earth Observation Requirements Relating to Urban Areas 

Disasters Human infrastructure, population density, urban extent/sprawl

Health UHI and air quality, population density, land cover

Energy Land use and land cover, urban extent/sprawl

Climate Land cover, urban extent/sprawl

Water Land use, industrial water demand, population density

Ecosystems Population density, urban extent/sprawl

Agriculture Land cover, population density, urban extent/sprawl

Source: Modified after Herold, M., Some recommendations for global efforts in urban monitor-
ing and assessments from remote sensing. In: P. Gamba and M. Herold (eds.), Global 
Mapping of Human Settlement, CRC Press, Boca Raton, FL, 2009, pp. 11–23.
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task was endorsed by the United States Geological Survey (USGS) and National 
Aeronautics and Space Administration (NASA). In the meantime, Dr. Thomas Esch 
from German Aerospace Center (DLR) indicated to Dr. Weng that he shared the same 
vision, and further convinced the German GEO delegation to support an urban task. 
Dr. Paolo Gamba secured a support letter from IEEE Geoscience and Remote Sensing 
Society, which is a participating organization of GEO. When Dr. Fan finished his term 
at GEO Secretariat and went back to Beijing, he continued to  converse with the China 
GEO delegation in order to secure its support for an urban task.

In a letter to the GEO Secretariat on August 29, 2011, Dr. Weng outlined the main 
reasons why a global urban task—the coordination of urban observations,  monitoring, 
assessment, and modeling initiative worldwide—should be considered as an indepen-
dent task. Several international colleagues, in addition to the authors of this chapter, 
provided insightful comments and suggestions. The rationales are listed here:

• A global urban observation system contributes to all nine societal benefit 
areas of GEO (Table 2.1).

• A global urban observation task relates to many other tasks listed in 
Version  1 of GEO 2012–2015 Work Plan and, therefore, shows a clear 
“cross- cutting” characteristic.

• In the previous GEO work plans, there were no tasks addressing “human 
presence” or “human settlements.” A unique urban observation task would 
draw attention to all aspects of human impacts. The twenty-first century is 
the first urban century in human history.

• EO technologies have evolved rapidly. Urban remote sensing will be the 
next frontier in EO technologies.

We emphasize that urban areas represent centers of economy, society, culture, and 
policy. As a result, most of the current and future ecological, economic, and societal 
challenges are either directly or indirectly related to human activities in or around 
settlements. Urban areas should be addressed as a complex of ecological, physical, 
economic, and social processes occurring at multiple scales. Urbanization is one of 
the most profound examples of human modification of the Earth’s surface. An urban 
observation system has to address the interactions between human settlements and 
physical environments as a whole and not only a specific aspect of human activity.

In December 2011, the GEO approved 26 tasks and related components. 
A new task called “Global Urban Observation and Information” was included in 
its 2012–2015 Work Plan as one of the tasks in the category of Information for 
Societal Benefits and was listed as SB-04.

2.2 OBJECTIVES AND KEY ACTIVITIES, 2012–2015

The objectives of SB-04 are as follows:

• Improve the overall coordination of urban observations, monitoring, fore-
casting, and assessment initiatives worldwide.

• Support the development of global urban observation and analysis systems.
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• Produce up-to-date information on the status and development of the urban 
system—from local to global scale.

• Fill gaps in the integration of global urban observations with (1) data 
 characterizing urban ecosystems, built environment, air quality, and carbon 
emission; (2) indicators of population density, environmental quality, and qual-
ity of life; and (3) patterns of human, environmental, and infectious diseases.

• Develop innovative concepts and techniques in support of effective urban 
sensing and sustainable urban development.

Key activities during the period 2012–2015 include the following:

• Improve global coverage and data accuracy of urban observing systems 
through integrating satellite data observed from multiple platforms/sensors 
with different resolutions, with in situ data.

• Define requirements for global urban monitoring and assessment in terms 
of data products and expectations for data validation, archiving, updating, 
and sharing.

• Develop a global urban observing network under the umbrella of GEOSS, 
establishing regional alliances and encouraging the establishment of a pro-
gram office.

• Create a global urban morphological database for urban monitoring/ 
assessment and climate modeling to better understand the impacts of global 
climate change on urban areas.

• Conduct global urban analyses, including time series for assessing the 
development of megacities (e.g., urban sprawl) and a worldwide inventory 
of human settlements based on satellite data.

• Conduct urban analyses linking EO products to socioeconomic and envi-
ronmental quality data to improve knowledge of urban ecosystems.

• Conduct surveys to assess the magnitude and dynamics of the urban heat 
island effect, particularly for cities in developing countries, and identify 
environmental impacts on megacities.

2.3 URBAN SUPERSITES INITIATIVE

The SB-04 team has selected eight cities as the supersites: Los Angeles, Atlanta, 
Mexico City, Athens, Istanbul, São Paulo, Beijing, and Hong Kong. Further, we have 
identified the following as the benefits of the initiative:

• Identifying and exploiting synergies of resources in R&D as well as appli-
cations and benefits

• Expanding the impact of SB-04 developments by specifically addressing 
selected cities and interested user communities

• Facilitating joint studies and publications and broadening the knowledge on 
global urban remote sensing

• Enhancing interactions among existing SB-04 contributors and encourag-
ing new partners
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• Optimizing the presentation of SB-04’s product portfolio to potential 
stakeholders

• Establishing potential synergies between urban supersites and geohazard 
supersites

We have so far developed a detailed work plan for the initiative by incorporating 
contributions from all co-leads and key contributors (Figure 2.1).

The long-term goal of the urban supersites initiative is to establish an urban super-
sites partnership. Through the partnership, the participants will generate an agreed 
set of protocols that we will use to share and visualize the intermediate and final 
global information products, allowing systematic interlaced analysis tasks between 
the available image-derived information sources (including reference data) and to 
foster joint studies and dissemination of results. Collective urban sensing is consid-
ered to be a promising direction that warrants further investigations.

2.3.1 Objectives Of the GlObal Urban sUpersites initiative

Five main objectives are identified for the urban supersites initiative:

 1. To provide globally distributed data (EO and derived products), to establish 
an urban data repository, and to develop standards for specification and 
validation

 2. To estimate urban extent and associated changes
 3. To assess risks associated with natural disasters, air and water qualities, and 

health hazards caused by vector- and animal-borne diseases
 4. To derive urban biophysical parameters for characterizing urban land 

 surface–atmosphere interactions (e.g., temperature, emissivity, albedo, 
 vegetation cover) and for climate change mitigation and adaptation

 5. To augment and enhance analysis techniques and methods that illustrate the 
causes and effects of urbanization at local, regional, and global scales

Each task is treated as a work package (WP). A group of team members will work to 
define the subobjectives of each WP, the requirements in terms of data products, and 
the expectations for data validation, archiving, updating and sharing; to identify the 
past, current, and future remote sensing datasets and models; and, finally, to set up 
the timeline and milestones for implementation.

2.3.2 Wp1: GlObal hUman settlements Data

Dynamic global urbanization and the constant growth of the settlement area that 
accompanies this phenomenon are some of the most pressing challenges to sustain-
able development. The human habitat, with the built-up area as its basic physical 
manifestation, is the driver for the continuing revolution of society, culture, econ-
omy, and policy. Hence, the urban extent and settlements pattern as well as their spa-
tiotemporal development are key indicators for assessing the impacts of urbanization 
on central sectors such as wealth, health, climate, biodiversity, energy, and water.
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Spaceborne EO has been established as an effective technique for the world-
wide monitoring of human settlements. Currently, there are several EO-derived or 
EO-supported global human settlement layers (GHSL) that are mostly generated on 
the basis of medium-resolution (MR) optical EO imagery (Gamba and Herold, 2009; 
Potere et al., 2009). In this context, the MODIS 500 data set with a spatial resolution 
of 463 m (Schneider et al., 2010) and the GlobCover layer with a spatial resolu-
tion of 309 m (ESA, 2009) are considered to be the geometrically and thematically 
most accurate global data sets on the location and extent of human settlements. 
However, the spatial resolution of the current GHSL does not facilitate the detection 
of small settlements (e.g., villages in rural areas) and the analysis of related phenom-
ena such as peri-urbanization. Therefore, the overall objective of WP1 is to coordi-
nate the generation and provision of spatially and thematically more detailed GHSL 
by  identifying and assessing innovative processing techniques and exploring new 
EO data sets for the mapping of settlement extents based on high resolution (HR) 
and very high resolution (VHR) EO imagery. To achieve this goal, the WP1 includes 
the following tasks:

• Assessment of appropriate and innovative data sources and methods for 
mapping urban extent at the global scale, especially remote sensing data 
that can provide both regional and global scale details

• Mapping and characterization of global settlements pattern in unprec-
edented spatial detail based on remote sensing imagery, including data of 
established systems such as MODIS, Landsat, IRS, and SPOT and recent 
satellites such as Suomi NPP Visible Infrared Imaging Radiometer Suite 
(VIIRS, nighttime lights) or TerraSAR-X/TanDEM-X (SAR data)

• Systematic analysis of the spatiotemporal development of megacities over 
the last 40 years

• Identification and examination of the hot spots of rapid urban growths in 
the last few decades around the world

Considering the expertise and activities of the SB-04 participants, the listed tasks 
will in particular include the examination, application, and comparison of the vari-
ous new data sets and analysis techniques. Regarding new sensor systems, the data 
recorded by the VIIRS of the Suomi NPP satellite is of particular interest since it 
allows for the derivation of new nightlights data. Moreover, new automatic image 
analysis frameworks for the global delineation of built-up areas based on HR/VHR 
optical imagery presented by Pesaresi et al. (2011) and Miyazaki et al. (2013) will be 
taken into consideration. In addition, novel approaches toward the derivation of HR 
GHSL from SAR data collected by ENVISAT ASAR (Gamba and Lisini, 2012) and 
TerraSAR-X/TanDEM-X (Esch et al., 2012) are applied.

2.3.3 Wp2: Urban extent anD assOciateD chanGe

Studies on urban growth monitoring, natural resources management, transportation 
development, and environmental impact assessment require information about urban 
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extents and associated changes. Despite the growing importance of urban land cover 
and land use in regional to global scale system change analyses, it remains diffi-
cult to determine urban extents and changes around the world because of lack of 
 information and inconsistencies in urban definition across administrative boundar-
ies (Maktav et al., 2005; Schneider et al., 2009). Remote sensing is a good solution 
to quantify urban extents and associated changes in both regional and global scales 
(Small, 2005). The spatial extent of urban areas has been mapped successfully for 
a long time using remote sensing data. These efforts include using either hard clas-
sification methods along with medium-resolution remote sensing data or using con-
tinuous variable models by treating the urban landscape as a continuum such as 
percentage of impervious surface (Ridd, 1995; Civco et al., 2002; Xian et al., 2008). 
Data about urban extent and associate structure change can serve as a surrogate to 
monitor urban extent and infrastructure change and to assess changes in the urban 
environment. However, a consistent collection of data for the global urban extent and 
change information is still unavailable.

The objective of WP2 “Estimate urban extent and associated change” of GEO 
SB-04 is to estimate urban extent and associated urban land cover changes in both 
regional and global scales by using existing and new satellite remote sensing data. 
WP2 will focus on evaluating the existing and new remote sensing data that are able 
to estimate urban extents and their changes at both regional and global scales. The 
WP2 tasks will conduct urban extent delineation in the global scale and perform 
urban land cover change analysis for the most rapidly growing cities and regions in 
the world. Implementing the current and new satellite data, the most optimal and 
practical approach, and research projects around the world for urban land quan-
tification is the overall objective of WP2. To achieve this goal, WP2 includes the 
following tasks:

• Assess appropriate data sources and methods for mapping urban extent 
at the global scale, especially remote sensing data that can provide both 
regional and global scale details.

• Highlight hot spots that experienced most rapid growths in both population 
and urban land cover in the last decade around the world.

• Characterize and quantify urban extents by using remote sensing data, 
including nighttime light, MOIDS, Landsat imagery and SAR data.

• Examine urban land cover change patterns for the most rapidly growing 
regions around the world.

The WP2 participants will work closely with several groups that are conducting 
urban land cover mapping for either regional or global scale. In the United States, 
the USGS National Land Cover Database (NLCD) project will complete NLCD 
2011 in 2014. The dataset will be used to highlight urban land cover change in the 
entire United States. The Global Land Cover Mapping data gathered by China 
will be evaluated and suitable portions selected for quantifying the urban extent 
and change.
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2.3.4 Wp3: risks in Urban areas

The use of EO data for risk analysis has undergone a sharp increase in the last few 
years, thanks to the possibility of exploiting data sets at the global level to extract con-
sistent information to map assets exposed to risk (Jaiswal et al., 2013) and to under-
stand their vulnerability (Polli et al., 2009). EO data are currently used, for instance, 
to spatially disaggregate available information about population at a coarser level via 
census tracks (Linard and Tatem, 2012) and provide a suitable input to health risk 
models. The high correlation between human settlements and population location as 
well as the high concentration of production activities and transport/energy infra-
structures within and immediately outside urban areas make urban remote sens-
ing a valuable tool to extract information about exposure assets in multiple scales. 
However, current activities in this area are lacking: there is no global effort to select 
the minimum set of urban features common to multiple hazard models that can be 
extracted from EO data. This is a necessary step to define which information is to 
be collected using remote sensing, possibly via semiautomatic approaches. In line 
with this requirement, the efforts in the TOoLs for Open Multirisk assessment using 
EO data (TOLOMEO ) project (TOLOMEO, 2013) show that the tools for exploit-
ing urban remote sensing data for exposure and vulnerability mapping are still to be 
designed and evaluated on a global scale. It is true, however, that global data layers 
are currently available, and the challenge is more on the interpretation and the data 
fusion side, as well as on the definition of the requirements for mapping products that 
can be obtained via EO data and help in the routines of risk assessment.

According to this scenario, the objectives of the SB-04 working program on 
“risks in urban areas” can be delineated as follows:

The first aim is to survey existing projects to link EO data and risk computation 
at the global level and to assess the usefulness of the global layers to be developed 
within SB-04. In fact, human settlement layers, such as those developed by DLR 
(Taubenbock et al., 2011) and ESA (Herold et al., 2008) or the University of Pavia 
(Gamba and Lisini, 2013), lead to the possibility to spatially disaggregate human 
settlements into buildings or blocks. Accordingly, these results allow an unprec-
edented level of detailed population/infrastructure mapping on a global scale. The 
usefulness of these data, however, has still to be proved, and can be estimated to be 
very different for different risks. For instance, earthquake risk requires information 
about structural elements that can be obtained (and even so, only partially) using 
VHR data (Polli et al., 2009), and the global layers mentioned earlier are not effec-
tive for building vulnerability estimate. They are, however, effective for population 
mapping and thus for economic and toll loss computation after a seismic event, and 
this is true also for many other hazards. Many of the most advanced global risk cal-
culators (Jaiswal et al., 2011; UN-ISDR, 2011) use population as proxy to economic 
data and will benefit from exploiting the SB-04 data sets.

The second aim, connected to the previous one, of this WP is to dictate guidelines 
to further develop existing data sets into more valuable products Specifically, the 
idea of looking for additional information (building spatial density, building height, 
impervious surface percentage, urban land use maps, etc.) at the global level start-
ing from the first SB-04 products is challenging but very interesting. In this sense, 
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the urban supersite initiative is a welcome addition to the GEO task plan. One or 
more test sites will be considered to implement and validate the set of newly pro-
posed implementations. The idea is, however, to provide guidelines to validate future 
improvements of the algorithms and software for new product development rather 
than to implement a complete validation procedure.

To achieve these aims, the work in the WP will be grouped into tasks. After a 
collection of existing technical papers are examined, the best practices in the use of 
EO data in risk-related activities for urban area will be identified, and the definition 
of the requirements for global/regional information products extracted from EO data 
for risk-related activities will be detailed. As an example, different urban land use 
zones according to specific risk-related legends can be explored. There are prelimi-
nary works, for instance, in the case of “urban climate zones” (Gamba et al., 2012) 
that show that it is possible to define a methodology working on different urban areas 
in different parts of the world to extract areas that have homogeneous behavior with 
respect to urban micrometeorological models.

The final step in the development of this research is the implementation of a pilot 
analysis aimed at extracting one or more of these products in one or more test sites, and 
the validation of the results of the pilot analysis using existing data, ground survey, and 
any other approach that the SB-04 partners can implement. The City of São Paulo in 
Brazil will be considered for this final step, thanks to the availability of optical and radar 
data set as well as existing GIS data for urban extents for the whole state of São Paulo.

2.3.5 Wp4: Urban biOphysical parameters

The diversity of urban areas is not only evident in the socioeconomic makeup of 
 cities, but it extends to the biophysical environment in which urban areas preside. 
The interactions with the biophysical environment that is impacted by and impacts 
urban areas constitute a feedback mechanism, which can be complex. Within the 
purview of the urban ecosystem, there are essentially five primary “nodes” that inter-
act with each other: the urban atmosphere, the urban hydrosphere, the urban bio-
sphere, the urban lithosphere (e.g., soils and bedrock), and the “urban fabric,” which 
is comprised of the components that make up the urban landscape (e.g., buildings, 
roads, houses) (Douglas, 1983; Quattrochi, 2006). The reciprocal actions between 
these nodes establish the biophysical environment, which, outside of the urban litho-
sphere (except for such events as earthquakes), are highly reactive with each other. 
The impact of humans on the urban biophysical environment is paramount and can 
enhance the effects created by the interactions of the four primary nodes extant 
of the lithosphere. Moreover, climate change can modify or magnify these effects 
whereby they are synergistic in impact. For example, it is anticipated that climate 
change will affect precipitation amount and the intensity of precipitation events; thus, 
there may be too little precipitation resulting in long periods of droughty conditions, 
or there may be an increase in heavy precipitation over short time spans as a result 
of convective storm activity. Climate change, therefore, will impact the urban atmo-
sphere, hydrosphere, and biosphere, and the interactions that occur between these 
urban ecosystem nodes, and, ultimately, will affect the urban fabric, human health, 
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and the socioeconomic structure of cities (Rosenzweig et al., 2011a,b). Hence, miti-
gation or adaptation strategies to climate change must be implemented for dealing 
with the resulting impacts within the overall perspective of the urban ecosystem 
(Seto and Shepherd, 2009).

Within the scope of observing, measuring, and modeling both the interactions of 
urban biophysical parameters and potential impacts that climate change will have 
on the urban ecosystem, and subsequently on the humans that live in urban areas 
(Chrysoulakis et al., 2013), EO data have been proven to be an invaluable resource. 
The synoptic, near-real-time, and multispectral, multispatial, and multitemporal 
characteristics of EO data offer an unparalleled advantage in collecting data that can 
be used to measure and model human–biophysical interactions across the urban land-
scape, and between the urban surface and the lower atmosphere (Quattrochi et  al., 
2009). As a consequence, EO data are imperative for developing a better understand-
ing of how humans affect the urban biosphere and vice-versa and for identifying and 
monitoring indicators of climate change and the ensuing impacts on urban areas 
(Ridd and Hipple, 2006; Weng and Quattrochi, 2006a). From this construct, WP4 has 
four objectives that, in context, will provide insight for understanding how the urban 
ecosystem operates, how humans interact with the urban biosphere parameters, what 
the potential impacts of climate change will be on urban areas, and what mitigation 
or adaptation strategies can be developed and implemented to lessen  climate change 
impacts both on the biophysical and human environments.

The first WP4 objective is to survey the scientific literature for information from 
studies that have used EO data to derive urban biophysical parameters and char-
acteristics and those that have used EO data to analyze the drivers of urban bio-
sphysical interactions. Foundations for this literature survey have been published 
by Quattrochi and Luvall (2004), Weng and Quattrochi (2006a,b), and Quattrochi 
et al. (2009). Because of the complexity of these interactions, it is necessary to seg-
ment specific biophysical parameters to efficiently and effectively target analysis of 
drivers of interactions where EO data can be most useful within a reasonable span 
of time, for example, goals that are achievable within a 3–5-year period. From this 
perspective, WP4 will focus on drivers of urban land–atmosphere interactions such 
as those related to land surface temperature, emissivity of urban surfaces, albedo, 
and vegetation cover (e.g., evapotranspiration) where EO data have proven to be use-
ful in providing quantitative information for measuring and modeling urban land– 
atmosphere interactions (e.g., Weng et al., 2006; Weng, 2009a). One example of this 
is the application of EO data for analysis of the UHI effect, which has been ongoing 
since the introduction of thermal infrared detecting instruments on EO satellite mis-
sions since the mid-1980s with the introduction of the Landsat Thematic Mapper 
sensor (Quattrochi et al., 2003; Weng, 2009a).

Objectives two and three of WP4 focus on assessing the potential impacts of cli-
mate change on urban areas and to evaluate the usefulness of EO data for the analy-
sis of these impacts (Seto and Shepherd, 2009; Imhoff et al., 2010). A key aspect 
of these objectives is to define indicators of climate change, which can  provide 
meaningful, authoritative, climate-relevant measures about the status, rates, and 
trends of key physical, ecological, and societal variables and values to inform deci-
sions on management, research, and education at local to regional scales. In turn, 
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these  indicators can be used to identify climate-related conditions and impacts to 
help develop effective mitigation and adaptation measures. A foundation for the 
development and expression of climate change indicators is currently being defined 
and described by the US National Climate Assessment (NCA, 2012). Examples of 
specific indicators that are applicable to urban biophysical parameters are heat (air 
quality, ozone, and particulate matter), the UHI, land cover and change, ecological 
health, and wildland/urban interface issues (NCA, 2012).

A fourth objective of WP4 is to investigate how multitemporal and multispectral 
EO data can be integrated into modeling schemes to assist in accomplishing the 
tasks related to the three previous WP4 objectives. “Top-down” and “bottom-up” 
scaled models are required to understand land surface–atmosphere interactions and 
the implications of climate change on these interactions. Here, the power of EO data 
can come to bear via research on the evaluation of land surface thermal parameters 
across urban areas at multispatial scales, through the collection of EO data over 
cities at different temporal periods and from the analysis of multispectral and hyper-
spectral data over thermal infrared, visible, and shortwave infrared (VSWIR) wave-
lengths (Sobrino et al., 2013; Zakšek and Oštir, 2013). Few studies of urban thermal 
properties and the UHI have been conducted using EO data collected from different 
satellite platforms with different spatial resolutions (Pu et al., 2006; Buyantuyev 
et al., 2010). More such studies are needed to quantify and model the variability or 
invariability of specific land surface thermal characteristics, such as the emissivity 
of urban surfaces, that can be integrated into a robust spatial modeling framework 
(i.e., top-down or bottom-up) (Nichol, 2009; Mitraka et al., 2013). EO data collected 
over cities at daily, weekly, or monthly temporal periods for both daytime and night-
time are also required to better understand and quantify the thermal dynamics of 
the urban land surface in a temporally systematic and systemic manner (Nichol, 
2005). Although nascent at the present time, there are future EO satellite missions 
that offer great promise for attaining these temporal data to provide a diurnal time-
sequenced modeling structure of urban thermal dynamics for megacities and smaller 
cities around the world (see Weng et al., 2006; Xiao et al., 2008; Zhou and Wang, 
2011; Xiong et al., 2012 for the rationale to support this objective). Multispectral and 
hypserspectral EO data obtained from different sensors in varying orbits and with 
spatial/temporal configurations are required to observe and quantify urban surface 
reflectance properties that comprise the urban biophysical realm, thereby providing 
information that can be used to develop spectral libraries of urban surface albedo 
and emissivity, which are either not well defined or nonexistent at present (Roberts 
et al., 2012; Zhu et al., 2013). The information contained in these libraries can be 
compared and verified against each other for input into spectral models of urban 
land surface “building blocks”—those surface components that are ubiquitous to and 
comprise the urban landscape.

2.3.6 Wp5: Urban analysis methODs

The impacts of urbanization may be at the local, regional, or global scale. Associated 
with a rapid urbanization worldwide is an exacerbation in environmental issues and 
health problems. EO data can be used to detect and measure changes in urban growth 
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patterns and to elucidate how urbanization impacts the environment and human 
health. Remote sensing data, with their advantages in spectral, spatial, and temporal 
resolutions, have demonstrated their power in providing information about physical 
characteristics of urban areas, including the size, shape, and rate of change and have 
been widely used for mapping and monitoring of urban biophysical features (Jensen 
and Cowen, 1999; Weng, 2012). Some examples of use of remote sensing images 
in the urban areas include providing land cover/use data and biophysical attributes 
(Haack et al., 2002; Weng et al., 2006; Weng and Hu, 2008), extracting and updating 
transportation network (Harvey et al., 2004; Song and Civco, 2004) and buildings 
(Lee et al., 2003; Miliaresis and Kokkas, 2007), and detecting urban expansion (Yeh 
and Li, 1997; Weng, 2002). The EO data products, modeling results, methods, and 
techniques over the past decade have provided substantial support for sustainable 
urban development worldwide.

Furthermore, EO data can be used to assist in taking into account multiple factors 
affecting human health such as those contributing to environmental health hazards 
and contagious and infectious diseases. EO data, in combination with other data 
sources, can provide geospatial information on environmental conditions for under-
standing distributions of water-borne diseases, air quality, soil, and vegetation as 
they influence community health and livestock. For example, remote sensing and 
GIS technologies, in combination with biological, ecological, and statistical meth-
ods, have been extensively applied in West Nile Virus (WNV) epidemiology studies 
globally (Ruiz et al., 2004, 2007; Liu et al., 2008; Pan et al., 2008). Finally, remote 
sensing, GIS, and census data have been integrated to estimate population and resi-
dential density (Harvey, 2002; Li and Weng, 2005), to appraise socioeconomic con-
ditions (Thomson, 2000; Hall et al., 2001), and to evaluate urban environmental 
quality (Nichol and Wong, 2006; Liang and Weng, 2011) and the quality of life in the 
cities (Lo and Faber, 1997; Li and Weng, 2007).

The aims of WP5 are set to address the concerns over urbanization and environ-
mental impacts using EO data and technology and to improve urban remote sensing 
methods and techniques for better global observation and monitoring of the urban-
ization pattern and process. Specific objectives include

• Enhancing urban analysis by developing innovative methods and techniques 
in support of effective urban sensing and sustainable urban development

• Conducting urban analyses by linking EO products with socioeconomic and 
in situ data to improve knowledge of urban environments and ecosystems

• Conducting urban analyses at local, regional, and global scales to improve 
the understanding of the patterns, processes, and consequences of urban-
ization in different geographical and socioeconomic settings

To meet these objectives, the WP participants will focus on the following tasks 
between 2012 and 2015. A literature survey will be conducted of existing satellite 
sensors for urban analysis and monitoring, examining current practices, and address-
ing key limitations and future perspectives of remote sensor technology. Urban land-
scape processes appear to be hierarchical in both pattern and structure. A study of 
the relationship between the patterns at different levels in the hierarchy may help 
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in obtaining a better understanding of the scale problem (Cao and Lam, 1997) and 
in finding the optimal scale for examining the relationship between urbanization 
pattern and process (Liu and Weng, 2009). The use of data from various satellite 
sensors may result in different research results because they usually have different 
spatial resolutions. Therefore, it is important to examine the changes in the spatial 
configuration of any landscape pattern that is the result of using different spatial 
resolutions of satellite imagery. We thus intend to reexamine the scale issue in urban 
observation and analysis.

New frontiers in EO technology since 1999—such as VHR, hyperspectral, Lidar 
sensing, and their synergy with existing technologies—and advances in remote sensing 
imaging science, such as object-oriented image analysis, artificial neural network, data 
fusion, and data mining, are changing the image information we obtain and the way we 
handle the image processing. Both aspects will reshape the scope and contents of urban 
remote sensing. Reflection on these recent changes in EO/remote sensing technology 
and implications for urban analysis become imperative for this WP. The temptation to 
take advantage of the opportunity of combining ever-increasing computational power, 
Internet and modern telecommunication technologies, sensor webs, more plentiful and 
capable digital data, volunteered geographic information, and more advanced data pro-
cessing algorithms has resulted in a new round of attention to the integration of remote 
sensing, GIS, and GPS for environmental, resources, and urban studies (Weng, 2009b). 
Collective urban sensing (Blaschke et al., 2011) and people as sensors (Hay et al., 
2011) are two examples pushing through this direction in order to develop innovative 
methods for observing, monitoring, and analyzing urban systems. Through the collab-
oration of the SB-04 team members, we will develop various approaches to a synergy 
of datasets and techniques for urban analysis in one or more supersites.

2.3.7 Data repOsitOry

We will gather and generate essential datasets for the supersites and establish a data 
repository for these EO data and derived products. The repository will serve the 
urban supersites initiative and function as an information hub for disseminating 
important study results. Selected datasets and results, providing invaluable informa-
tion and reference datasets for decision makers in urban planning, environmental 
management, human health, energy, and sustainability will be accessible to the gen-
eral public too. This tool can also be employed as an education source for students, 
researchers, and professionals worldwide. At the global scale, data users may include 
UN-Habitat, World Bank, urban climate modelers, epidemiologists, and the like.

Raw data to be collected may include VHR SAR (TerraSAR-X), Landsat data, VHR 
Optical data (e.g., IKONOS, QuickBird, WorldView imagery), VIIRS/Suomi NPP, 
and so forth. Thematic layers, which may include urban extent, urban extent change 
maps, essential environmental variables (land surface temperature, emissivity, albedo, 
vegetation cover, impervious surface), and urban morphology (built-up  structures, 
average distance between built-up structures, classification) will be generated.

Within GEO, hot spot areas in terms of urban phenomena addressed by SB-04 
and expected benefits for broad range of SB-04 products will provide interac-
tions and leveraging with SB-02 (Global Land Cover), SB-03 (Global Forest 
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Observation), SB-05 (Impact Assessment of Human Activities), DI-01 (Informing 
Risk Management and Disaster Reduction), HE-01 (Tools and Information for 
Health Decision Making), HE-02 (Tracking Pollutants), EN-01 (Energy and Geo-
Resources Management), CL-01 (Climate Information for Adaptation), WA-01 
(Integrated Water Information including floods and droughts), and EC-01 (Global 
Ecosystem Monitoring). Collaboration with SB-02, SB-05, HE-01, HE-02, and 
CL-01 is high priority of SB-04.
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3 EO Data Processing 
and Interpretation 
for Human Settlement 
Characterization
A Really Global Challenge

Paolo Gamba, Gianni Lisini, Gianni Cristian Iannelli, 
Inmaculada Dopido, and Antonio Plaza

3.1 INTRODUCTION

The need for increasingly accurate models of the complex interactions between man-
kind and the environment calls for more precise monitoring of many different areas, 
from forests to oceans, from inland waters to urban areas. Specifically, human settle-
ments appear to be the focus of a number of issues such as desertification and pollu-
tion as well as water, energy, and waste management. Since most of the population 
nowadays lives in urban areas, threats to human lives, such as diseases and man-made 
and natural disasters, are increasingly perceived as the causes of social and economic 
losses in urban areas. Using urban areas and some of their specific features as essen-
tial input information, scientists and researchers have developed models for climate 
change [1], earthquake risk [2], disease spread [3], and many others. To achieve this 
aim, global analyses, including more information than just the knowledge of urban 
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area locations, are mandatory. And yet the latest global data sets on urban areas 
are still incomplete or limited to the aforementioned sources of information. These 
involve spatial scales that are not completely useful to address intra-urban activities.

The task of extracting and managing urban datasets at different scales by using 
Earth Observation (EO) data is one of the great challenges of remote sensing data 
interpretation. However, many of the most promising techniques that have been pro-
posed have been applied to small or limited data sets so far; this was originally due 
to the limited amount of available data, but currently it is related more to the com-
plexity of designing data analysis procedures for multiple sensors at multiple spatial 
and spectral resolutions. Moreover, the finest spatial resolution available from EO 
sensors does not fit the requirements of all urban studies, and VHR data, with all 
their details, may be less suited to tasks like urban land use mapping. Finally, from 
a global perspective, issues come from the huge amount of data available as well as 
the need for an efficient methodology to extract useful information with a consistent 
approach in different geographical areas.

This chapter initially provides an overview of existing methodologies to address 
some of these issues as well as the challenges related to the implementation/ realization 
of these methodologies. To explain the sort of “high-level” message included in these 
pages, a few examples from existing research by the authors are included.

The remainder of the chapter is organized as follows. Section 3.2 describes a 
general procedure to derive scalable models from EO data and urban features. 
Section 3.3 discusses several challenges still open for research in the aforementioned 
procedure. Section 3.4 concludes with some remarks.

3.2 EO DATA AND URBAN AREAS

This section provides an overview of available mechanisms to derive relevant, 
 scalable models from EO data using features collected in urban environments. 
This includes a description of success cases and processing chains under different 
application scenarios. Remaining challenges are outlined in Section 3.3.

3.2.1 frOm eO Data tO Urban featUres

The standard approach to EO data exploitation in urban area characterization is to extract 
man-made features and use them as basic elements. By exploiting and combining these 
elements, more detailed analyses can be obtained. This is the case, for instance, in urban 
extent delineation—starting from elementary spatial patterns [4], road network extrac-
tion, grouping road candidates [5], or building two-dimensional and three-dimensional 
“builtscape” characterization to clustering 3D primitives [6]. The challenge in this type 
of approach is to design a sufficiently flexible algorithm, able to adapt to the multiple 
and different ways that these features may appear in EO data (particularly, in different 
geographical areas), and to recognize significant clusters as hints or proxies to urban 
elements. However, once the information is available, it may be exploited for a number 
of different applications, thus providing inputs to multiple models.

The main limitation of this processing framework is that the basic urban/artificial 
features are extracted at a given scale so that their use for multiple scale models is 
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not always immediate. For example, after 2D building information is extracted, a 
thermal model for each building may be considered, but a thermal model for a whole 
city would require some sort of reprocessing and clustering of the extracted data. 
Similarly, and as another example, road network extraction may be used for traffic 
modeling, mobility management, or noise pollution monitoring and prevention. To 
be useful, however, a road network extraction approach should be fast, efficient, and 
precise enough in addition to providing an output as scalable as possible.

To improve over existing approaches and propose a unitary framework, the meth-
odology discussed in [7] may be considered. Specifically, the idea is to include in the 
information extraction from an urban scene many different features corresponding 
to multiple scales. These features can be used either to logically and spatially cluster 
them into elements at a lower (coarser) scale or to infer other features at a higher 
(finer) scale. If each feature extraction algorithm is designed within such a framework, 
it can incorporate enough flexibility to combine different features at different scales 
and thus simultaneously obtain more information. Similarly, this framework may be 
used to design techniques that can be tailored to work in multiple geographical areas.

3.2.2 frOm eO Data tO scalable mODels

A different and recently considered way to exploit EO data is related to the direct 
extraction of model-related features, less generic and more connected to the local/
regional (and, eventually, global) models required by current studies. With respect to 
climate change, for instance, the thermal behavior of urban areas has been actively 
investigated [8] but without a strong link to global climate models. Similarly, risk 
analysis is a very important topic related to the impact of natural disasters that 
may occur in and around human settlements [9]. As shown in the aforementioned 
examples, on a city level (or more detailed scale), atmospheric circulation analyses, 
involving urban meteorological models as well as risk computations including physi-
cal and social vulnerability, have already been considered for one or more cities. 
They still need to be tuned and validated on a global scale as opposed to a case by 
case approach. As a preliminary step in this direction, there is a need to character-
ize every urban area at a global scale, according to land use/land cover typologies, 
which are peculiar to different environmental or risk models. This is the case of 
“urban climate zones” (areas with the same microclimatic behavior) for urban mete-
orology [10] or “uniformly built dwellings” (areas with buildings that have the same 
structural typology) for earthquake vulnerability [23].

Specifically, urban climate zones represent a comprehensive classification sys-
tem for characterizing the urban environment with respect to urban meteorology, 
as reported in [10,11]. The same classification scheme was applied to a different 
environment in [12]. These works introduced the concept of “thermal climate zones” 
or “local climate zones,” defined as regions with relatively uniform surface–air tem-
perature distribution across different horizontal scales [10]. These climate zones can 
be differentiated by means of multiple characteristics from the urban 2D and 3D 
landscapes such as the built surface fraction, the building height-to-width ratio, the 
sky view factor (percentage of sky visible from the ground), the height of rough-
ness elements, the anthropogenic heat flux, and the surface thermal admittance. 
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Most of these characteristics, ultimately connected to physical characteristics of the 
urban objects, can be extracted from remote sensing data.

The methodology reported here is based on two different processing chains. The 
first one is devoted to the extraction of spatially homogeneous urban areas within the 
scene, which may be labeled as “block.” The idea is that these blocks may be then 
assigned, using the second part of the procedure, to one of the urban climate zone 
classes by considering a suitable combination of spatial and spectral indexes.

The first processing chain can be subdivided into two subsequent steps. The first 
one is the identification of the human settlement (as opposed to all the other land 
use classes in the area). To achieve this, we use the PanTex index proposed in [13], 
which proved to be effective to extract human settlement extents starting from pan-
chromatic images at 2.5 m spatial resolution. The area identified as human settle-
ment is further segmented into a homogenous zone using a spanning tree reduction 
scheme  [14]. Alternatively, a more complex approach based on a combination of 
geometrical features into closed boundaries can also be used [15].

The employed processing chain, aiming at classifying each homogenous area into 
an urban climate zone class, is based on the joint analysis of a few indexes that, we 
feel, may capture most of the features listed in the introduction. We assume that a 
multiscale version of the same index used for urban area detection may be useful as it 
helps in enhancing spatial patterns at multiple geographical scales. To obtain a mul-
tiscale PanTex, the same textural feature (contrast) used to build the original index is 
now computed with different lag distances (which is equivalent to assuming a differ-
ent spatial resolution of the data). Additionally, the original image and the results of 
an edge extraction technique (implemented using a Sobel filter) are included to insert 
spectral and edge density information, respectively.

Using these indexes, a decision tree classifier is designed using training data and 
is eventually applied to the whole data set. The decision tree structure used to label 
the segmented blocks and assign them to the different climate zones is obtained by a 
detailed analysis of a small sample of the blocks in the first test case described in the 
next section. Although this approach is apparently biased by a specific city structure 
and location, the same rules apparently work in different locations, as also discussed in 
the following paragraphs. The main rationale is that these rules refer to spatial indexes, 
which in turn describe quantitatively the spatial structure of the different parts of a town.

The decision tree, tuned with empirical tests, accepts as inputs three images:

 1. The original image (OR)
 2. The PanTex filter output with a kernel of 5 × 5 pixels applied at the full scale 

data (P1)
 3. The PanTex filter output applied to a subsampled data set at 5 m/pixel (P5)

Experimental results were obtained on August 12, 2008 from a scene by the ALOS 
PRISM sensor with a spatial resolution of 2.5 m and depicting a portion of the town of 
Xuzhou in the Jiangsu province, People’s Republic of China. The challenge, as high-
lighted in the previous section, was to use 2D data without spectral information to 
obtain spatial indexes allowing an analysis of different zones and their classification 
into thermal climate zones. Results depended on both segmentation and accuracy. 
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An  incorrect segmentation may result in less precise classification of the urban 
blocks as the spatial indexes used by the decision tree are averaged for each block. 
However, the rules defined for the decision tree are more important because they 
allow assigning each block to a climate zone, once its spatial boundaries have been 
individuated by the segmentation step. For this reason and because the segmented 
urban image can be obtained by various means—for instance, by using available geo-
graphic information system (GIS) layers for a town—the evaluation described in the 
following paragraph will focus mostly on the second step of the procedure, without 
paying much attention to the approach used to achieve a correct segmentation.

For the test area, only five urban climate zones were considered, that is, those that 
were present in the scene settlements: “open set mid rise,” “compact low rise,” “open set 
low rise,” “dispersed low rise,” and “extensive low rise.” By applying the aforementioned 
procedure to a first set of urban blocks, shown in Figure 3.1 together with the correspond-
ing color legend, a relatively high overall accuracy at the object level is achieved (81%).

(a) (b)

(c)

Typology Color

Red

Blue

Green

Yellow

Purple

Open set mid rise

Open set low rise

Dispersed low rise

Extensive low rise

Compact low rise

FIGURE 3.1 (See color insert.) Experimental results for the urban climate zone extraction 
in a small subsample of the Xuzhou (People’s Republic of China) scene: (a) the urban climate 
zone map to be compared with (b) a ground truth obtained by visual classification and super-
imposed on the original data set. Classes are identified by colors, according to the legends 
displayed in (c).
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In the previous example, the blocks were obtained manually as our focus was 
on the definition of the decision rules to be applied for block labeling. The same 
approach was however applied to the whole urban area, after performing an auto-
matic segmentation, and the results are depicted in Figure 3.2a. These results 
should be compared with the detailed ground truth in Figure 3.2b. Although the 
color patterns appear visually similar, the overall accuracy at the block level is 
about 51% if computed regardless of the block size. Overall accuracy at the pixel 
level instead reaches 63%. The worst discrimination is achieved between the “open 
set low rise” and “dispersed low rise” classes. This may be due to the fact that 
the two typologies are very similar considering only two texture scales. Another 
option considering multiple spatial scales would consist of using differential attri-
bute profiles [16].

One important consideration on these numbers is that the ground truth maps were 
not obtained by a meteorologist but by a remote sensing specialist using the panchro-
matic band only. Accordingly, we do not expect that the ground truth would be 100% 
accurate. In other words, a better validation procedure (including feedback from 
local experts) may be required.

To further illustrate the aforementioned observations, Figure 3.3 shows a pan-
chromatic and the corresponding pansharpened images of a small portion of the 
area. The two additional images in this figure correspond to two different visual 
assessments of the urban climate zones made by two different experts and using the 
same color legend as in Figure 3.1. It is clear that the panchromatic image does not 
allow an easy discrimination between the classes, “open set mid rise” and “open 
set low rise.” The color image may provide hints for discrimination, but these are 
connected to an a priori knowledge of building typologies and, thus not easily 
generalizable.

(a) (b)

FIGURE 3.2 (See color insert.) Climate zone extraction for the town of Xuzhou, People’s 
Republic of China: (a) final results of the proposed segmentation and classification procedure 
and (b) detailed ground truth obtained by manually delineating and labeling individual blocks.
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3.3 OPEN GLOBAL CHALLENGES

The few examples discussed in the previous section show that there are plenty of chal-
lenges still open for research. With the huge amount of EO data sets available and the 
need to consider existing information, many of these challenges can be grouped under 
two separate needs (1) to select and (2) to fuse the more relevant bits of information. 
Accordingly, and following the usual sequence of steps, feature extraction–feature 

(a) (b)

(c) (d)

FIGURE 3.3 (See color insert.) Example of problematic assignment of urban blocks to 
urban climate zones: (a, b) two different visual interpretations by remote sensing experts, to 
be compared with the block borders superimposed on (c) the panchromatic and (d) the color 
image of the same area.
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selection–feature fusion (but considering the need for multiple scales and a model-
based output), urban remote sensing currently faces very interesting challenges.

3.3.1 finDinG the riGht bit

Feature extraction and selection is a very important part of EO data exploitation to 
globally characterize urban areas. As mentioned in [7], a very promising methodol-
ogy for the selection of urban scene features is the use of active learning approaches, 
which allow exploiting both the spectral and the spatial information in urban areas, 
thus enabling determination of the context that better characterizes a specific location.

Following the methodology introduced in [17], for instance, it is possible to 
develop a novel approach to perform semisupervised classification of urban hyper-
spectral images by exploiting the information retrieved with spectral unmixing. This 
is because many pixels in remotely sensed images are “mixed,” that is, given by a 
combination of different substances that reside at the subpixel level. Within this frame-
work, active learning techniques can be used for automatically selecting unlabeled 
samples in a semisupervised fashion. Specifically, the active learning approach in [17] 
selects highly informative unlabeled training samples in order to enlarge the initial 
(possibly very limited) set of labeled samples and perform semisupervised classifica-
tion based on the information provided by well-established discriminative classifiers.

The proposed approach consists, therefore, of three main ingredients: semisuper-
vised learning, spectral unmixing, and active learning.

 1. For the semisupervised part of our approach, the multinomial logistic 
regression (MLR) classifier [18] provides probabilistic outputs, which play 
an essential role in our active learning process. Furthermore, a sparsity- 
inducing prior is added to the regressors to obtain sparse estimates. As a 
result, most of the components of the regressors are zero. This allows con-
trolling the complexity of the proposed techniques and their generalization 
capacity. Finally, we use LORSAL algorithm [19] to learn the MLR classi-
fier as it is able to learn the posterior class distributions directly and deal with 
the high dimensionality of hyperspectral data in a very effective way. This is 
very important for semisupervised learning since, ultimately, we would like 
to include as many unlabeled samples as possible, a task which is difficult 
for normal algorithms from the viewpoint of computational complexity.

 2. The unmixing strategies considered in the second step include those 
attempting to consider spatial information within the extraction procedure. 
The first one is the fully constrained linear spectral unmixing (FCLSU), 
which first assumes that labeled samples are made up of spectrally pure 
constituents (endmembers) and then calculates their abundances and pro-
vides a set of fractional abundance maps (one per labeled class). An alter-
native approach is mixture tuned matched filtering (MTMF), which also 
assumes that the labeled samples are made up of spectrally pure constitu-
ents (endmembers) but then calculates their abundances by means of the 
MTMF method, which is a hybrid between target detection and unmixing, 
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thus providing a set of fractional abundance maps (one per labeled class) 
without the need to know the full set of endmembers in the data.

 3. The third ingredient of our proposed method consists of using active learning 
to improve the selection of unlabeled samples for semisupervised learning. 
In our proposed strategy, the candidate set for the active learning process 
(based on the available labeled and unlabeled samples) is inferred using spa-
tial information (specifically, by applying a first-order spatial neighborhood 
on available samples) so that high confidence can be expected in the class 
labels of the obtained candidate set. This is similar to human interaction 
in supervised active learning, where the class labels are known and given 
by an expert. In a second step, we run active learning to select the most 
informative samples from the candidate set. This is similar to the machine 
interaction level in supervised active learning, where in both cases the goal 
is to find the samples with higher uncertainty. Due to the fact that we use 
a discriminative classifier (MLR) and spectral unmixing techniques, active 
learning algorithms, which focus on the boundaries between the classes 
(which are often dominated by mixed pixels), are preferred. This way, we 
can combine the properties of the probabilistic MLR classifier and spectral 
unmixing concepts to find the most suitable (complex) unlabeled samples 
for improving the classification results through the selected active learning 
strategy. It should be noted that many active learning techniques are avail-
able in the literature [20]. In this work, we use the well-known breaking ties 
(BT) [21] to evaluate the proposed approach. This algorithm finds the sam-
ples minimizing the distance between the first two most probable classes.

Results for the hyperspectral ROSIS Pavia dataset (13 m spatial resolution, 610 × 
340 pixels, 103 spectral bands, 9 ground-truth classes [22]) are shown in Figure 3.4. 
The use of BT alone leads to a mapping result (see Figure 3.4b) with an overall accu-
racy of 75.5%, definitely larger than the one achievable considering a standard super-
vised approach (63.6%). The joint use of unmixing information further improves this 
result, reaching an accuracy value of 79.3% in case FCLSU is used (see Figure 3.4c) 
while MTMF has a slightly worse performance (79.1%).

3.3.2 fUsinG spacebOrne, airbOrne, anD GrOUnD Data

The process of using EO data to characterize urban areas cannot avoid the fact 
that, in urban areas, much information will increasingly be collected and stored. 
Accordingly, the challenge is to include and combine the relevant existing informa-
tion with the EO extracted features to obtain the multiscale model input mandatory 
for global models. In doing so, spaceborne remotely sensed data should somehow be 
“fused” with available spaceborne data, GIS layers, as well as ancillary information 
collected on the ground (e.g., by means of sensors or sensor networks). As an exam-
ple of this procedure, we provide here a quick introduction to the approach developed 
to map exposure within the Global Exposure Database for the Global Earthquake 
Model (GED4GEM) project [23].
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Obtaining building exposure is typically a problem related to the combination of 
information from multiple spatial scales. Indeed, a map of all buildings is currently out 
of reach using EO data only, either because we do not have a full geographical cover-
age or because the methods to extract building features (useful for identifying vulner-
ability) from EO data require inputs from multiple sensors, and this is not feasible for 
wide areas [9]. One possible solution for a globally suitable and manageable approach 
is to combine available EO information with ancillary data at different scales.

The idea is graphically represented in Figure 3.5, and includes the use of globally 
available EO data at coarse-resolution or existing maps to select the built-up areas 
to focus on, VHR EO data to extract building counts, GIS and census/survey data 
available from local/international databases to extract dwelling/building fractions 
according to building typologies, and a good deal of a priori knowledge to logically 
connect all these features.

The part of the methodology relying on EO data can be implemented according to a 
procedure for urban spatial pattern recognition. Specifically, the artificial composition 
of built-up structures and gaps among them (mostly, but not only, roads) is a general 
and globally valid assumption in all urban areas and usually results in a higher local 
contrast within these areas than in any natural environments. Accordingly, an option to 

(a) (b) (c)

Bitumen

Asphalt Meadows Gravel

Metal sheets Bare soil

Self-blocking brick Shadow

Trees

FIGURE 3.4 (See color insert.) Urban land use mapping results in Pavia, Italy: (a) ground 
truth for the hyperspectral ROSIS data sets, (b) mapping results using semisupervised 
 classification but no unmixing information, and (c) mapping results jointly considering 
a semisupervised technique and unmixing information.
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detect urban areas, widely used on EO analysis and already proved reliable at the global 
level for both optical (panchromatic) and SAR data, is the use of the textural features 
[13,24,25]. Here, we specifically refer to the range textural feature [26], computed start-
ing from the occurrence matrix and defined as the difference between the maximum and 
the minimum value of the reflectance in a 5 × 5 pixel kernel moving over the image. 
After range extraction, a few postprocessing steps are performed, as shown in Figure 3.6.

As shown in Figure 3.5, another step in the exposure mapping procedure 
proposed in GED4GEM is building count extraction from VHR data, either for 
the whole area or for some samples. This step can be then performed in many 

Use GIS and existing land
use maps to characterize

urban land use classes
Select small sample
areas for these land

use classes

Join building counts with dwelling
distributions

Compute total number of buildings
of  each type in each land use class

Use EO data to extract and
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FIGURE 3.5 Graphical representation of the proposed procedure to obtain building expo-
sure data and earthquake risk vulnerability data exploiting EO images, ancillary (GIS/map) 
information, and available ancillary data.
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FIGURE 3.6 Data processing chain aimed at urban extent extraction from VHR panchromatic/
SAR data.
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different ways, according to the trade-off between accuracy and adaptivity to dif-
ferent  geographical areas and building styles. A first option, as suggested in [24], is 
to classify the multispectral image available for the area of interest as delineated by 
the previous step and then segment the classification map into significant elements 
with the areas assigned into building classes. A second (less precise) option is to 
have a very rough estimate of the building counts by means of the same approach 
described in Figure 3.6 but this time, looking for the peaks of the range index [25]. 
The choice between these two options depends on the accuracy of the ancillary 
data (e.g., the dwelling distributions into building typologies) and their statistical 
significance. For instance, if the dwelling distribution is available at the country 
level, there is no point in precisely extracting building counts at a spatial resolution 
of a few meters.

3.4 CONCLUSIONS

This chapter briefly touches the huge range of challenges and opportunities brought 
by the use of EO data to monitor urban areas all around the world. These challenges 
are both in the data processing domain as well as in the domain of theoretical infor-
mation extraction. Specifically, it has been made clear by a few examples that the 
use of data from satellites may improve our knowledge of urban areas and provide 
invaluable inputs to models that attempt to capture the interaction between artifi-
cial and natural environments. In many situations, these inputs must be at multiple 
scales, and EO-related information must be combined with data from other sources, 
according to the final application under study.

Moreover, the need to design algorithms and information extraction procedures 
that are valid at the global scale includes the necessity to address settlements and 
artificial elements of the landscape with very different spatial and spectral properties 
in different parts of the world. Distilling what is common to all these properties is 
one of the most serious issues to be considered.

Notwithstanding the many open issues highlighted by this work, this chapter 
includes a few examples of successful application of the multiple scale and mul-
tiple feature framework recently proposed in [7] for EO data information extrac-
tion in urban areas. Moreover, the efforts currently channeled through the Global 
Earth Observation working plan for 2011–2015 and, especially, the task related to the 
design and management of a Global Urban Observatory will help to provide some 
answers to the burning questions that are still open.
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4.1 INTRODUCTION

Urban land cover (ULC) has a considerable impact on local, regional, and global envi-
ronmental change, and has significant ecological, biophysical, social, and climatic effects 
(Seto and Shepherd, 2009; DeFries et al., 2010). These effects are further amplified by the 
temporal duration of urban changes that tend to last for decades and are often irreversible. 
Optical sensors on board various satellite platforms play a significant role in urban moni-
toring and assessment. Two representative examples are indicative of the importance of 
optical sensors. First, since 2009 after USGS made the Landsat archive freely available, 
a 60-fold increase was observed in data downloads (NASA, 2013). Second, in the last 
decade, there has been a strong interest from the commercial sector to launch satellite 
optical sensors. This interest is clearly driven by the constantly increasing demand for 
such products from governmental, military, nonprofit, and commercial sectors.
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Remote sensing thermal infrared (TIR) data have been widely used to retrieve 
land surface temperature (LST) (Quattrochi and Luvall, 1999; Weng et al., 2004). 
A series of satellite and airborne sensors, such as HCMM, Landsat TM/ETM+, 
AVHRR, ASTER, TIMS, have been developed to collect TIR data from the Earth’s 
surface. In addition to LST measurements, these TIR sensors may also be utilized to 
obtain emissivity data of different surfaces with varied resolutions and accuracies. 
LST and emissivity data have been used in urban climate and environmental stud-
ies, mainly for analyzing LST patterns and their relationship with surface charac-
teristics, assessing urban heat island (UHI), and relating LSTs with surface energy 
fluxes for characterizing landscape properties, patterns, and processes (Quattrochi 
and Luvall, 1999). Remotely sensed TIR data are a unique source of information 
to define surface heat islands, which are related to canopy layer heat islands. In 
situ data (in particular, permanent meteorological station data) offer high tempo-
ral resolution and long-term coverage but lack spatial details. Moving observations 
overcome this limitation to some extent but do not provide a synchronized view 
over a city. Only remotely sensed TIR data can provide a continuous and simultane-
ous view of a whole city, which is of prime importance for detailed investigation 
of urban surface temperature. Generally speaking, the application of TIR data has 
been limited in urban surface energy modeling (Voogt and Oke, 2003). Previous 
works have focused on the methods for estimating variables related to energy driv-
ing forces, soil moisture availability, and vegetation–soil interaction from satellite 
remote sensing data, but little has been done to estimate surface atmospheric param-
eters (Schmugge et al., 1998). These parameters are measured in the traditional way 
in the network of meteorological stations or in situ field measurements.

Traditional urban remote sensing studies did not make use of synthetic aperture 
radar (SAR) data, mainly because of issues in their interpretation. SAR sensors 
are active imaging systems that use runtime length and intensity of a transmitted 
microwave pulse for generating a consistent image. The appearance of objects and 
surfaces in radar images is dominated by geometric properties (imaging and object 
geometry, surface roughness) rather than by their chemical or biophysical charac-
teristics (as in the case of optical data). In the geometrically highly structured urban 
landscape, the complex interaction of the radar pulse and the small-scale urban fea-
tures leads to certain ambiguities in the received signal. Hence, especially for very 
high resolution (VHR) SAR, urban imagery lacks clarity. For example, there are 
distortions and shadow regions, which limit the capability for certain applications 
such as the exact delineation of buildings or other urban infrastructural elements. 
Moreover, the appearance of identical urban spots or objects might differ signifi-
cantly depending on the imaging geometry of the data acquisition. Nevertheless, 
the basic phenomena affecting backscattering from man-made structures have been 
extensively discussed (Guida et al., 2008), with a focus not only on clearly defin-
ing mapping limitations but also on discovering very important applications, such 
as differential interferometry and persistent scatterers (Ferretti et al., 2001). The 
three-dimensional (3D) capabilities of SAR systems have also been analyzed with 
respect to urban areas to quantify flood risk, and their all-weather data availabil-
ity is invaluable in managing catastrophic events, both at local and global scales. 
Therefore, notwithstanding the issues highlighted earlier, after the seminal paper 



51Urban Observing Sensors

by Henderson and Xia  in  2001, summarizing the relatively few achievements at 
that point, urban remote sensing using SAR has been flourishing, with applications 
from urban extent extraction (Gamba et al., 2011) to detailed ULC mapping (Hu and 
Ban, 2012), urban change detection (Bovolo and Bruzzone, 2005), and 3D building 
characterization (Soergel et al., 2009), including road network extraction (Hedman 
et al., 2010) and damage detection at both the block (Dell’Acqua et al., 2011) and the 
building levels (Bovolo et al., 2012).

4.2 OPTICAL SENSORS

4.2.1 cOarse spatial resOlUtiOn Optical sensOrs

Regional, continental, and global changes in urban land cover/use have been moni-
tored using optical data with coarse spatial resolution (>100 m), such as NOAA 
advanced very high resolution radiometer (AVHRR) and terra moderate resolu-
tion imaging spectroradiometer (MODIS). The AVHRR sensor was first launched 
by the satellite TIROS-N in November 1978 and then by the NOAA series, which 
started with NOAA-6 in June 1979 and continued with NOAA-7 through NOAA-19 
between 1981 and 2009 (NOAA, 2013). All satellite series launched before 2001 
have ended their missions while NOAA-15 through -19 are still in operation. The 
MODIS sensor on board the Terra satellite was launched in December 1999 as part 
of NASA’s Earth Observing System. It still acquires images although the life expec-
tancy of Terra was designed for 6 years. AVHRR has five spectral bands targeting 
the wavelengths of red, NIR, and three TIR bands, with primary use of cloud, snow, 
ice, vegetation, cloud and surface temperature mapping, and land/water interface 
and hot target monitoring. MODIS has 36 spectral bands ranging from wavelengths 
of  visible to shortwave and TIR, with primary use of land, cloud, vegetation, sedi-
ment, cloud and surface temperature mapping, chlorophyll, atmospheric properties, 
cloud fraction and height derivation, and forest fire and volcano  monitoring. AVHRR 
acquires images of the entire Earth twice a day with a spatial resolution of approxi-
mately 1.1 km at the satellite nadir, while MODIS covers the entire surface of the 
Earth every 1–2 days with a spatial resolution of 250 m (bands 1–2), 500 m (bands 
3–7), and 1 km (bands 8–36). Radiometric resolution is 10 bits for the AVHRR data 
and 12 bits for the MODIS data. The NOAA series are sun-synchronous, polar-
orbiting satellites at 830–870 km above Earth, having 2500 km in swath width, while 
MODIS on board sun-synchronous, near-polar orbiting satellite acquires images 
at an altitude of 705 km at 10:30 a.m. local time in descending node (Terra) or 
1:30 p.m. in ascending node (Aqua), and a swath width of 2330 km (NASA, 2013; 
NOAA, 2013).

It has been a challenge to apply the coarse-resolution remotely sensed data for 
urban observation and monitoring due to its limited spatial resolution (Schneider 
et al., 2003), yet it has proven useful for climatic studies due to its high temporal fre-
quency and large spatial coverage (Gallo et al., 1993; Jonsson, 2004; Stathopoulou and 
Cartalis, 2009). Therefore, the effectiveness of urban studies has been dependent upon 
the fusion of AVHRR data with either finer spatial resolution images such as Landsat 
TM (Stathopoulou et al., 2004) or continuously observed meteorological (ground) 
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data (Bengang and Shu, 2000; Ji and Peters, 2004; Stathopoulou et al., 2006). A major 
advancement for using coarse-resolution data in urban observation was initiated by 
the launch of NASA’s Terra platform and specifically MODIS. The improved spectral 
resolution allows monitoring ecosystem processes across multiple scales (Stefanov 
and Netzband, 2005) and has resulted in a range of applications, including urban land 
use/land cover changes (Netzband and Stefanov, 2004; Clark et al., 2012), heat island 
studies (Schwarz et al., 2011), and vegetation phenology (Zhang et al., 2003). Another 
main application area has been in air quality monitoring to assess aerosol optical 
depth over urban areas (Hutchison et al., 2005) and to investigate particulate matter in 
aerosols during transboundary events, and again in combination with ground-based 
data (Engel-Cox et al., 2004; Alam et al., 2010, 2011).

Data fusion techniques can be applied to fusing coarse spatial resolution imagery 
with either finer spatial or spectral resolution remotely sensed data or both depend-
ing on the study objective. Alternative finer spatial resolution data are not limited 
to  Landsat (Xu et al., 2006; Michishita et al., 2012a), ASTER (Xu et al., 2004), 
IKONOS (Xu et al., 2003), or aerial photographs (Wu et al., 2006). Finer spectral 
resolution data such as EO-1 Hyperion imagery with more than 200 bands (Xu and 
Gong, 2008) can also be combined with the coarse-resolution data in similar ways 
using spectral fusion models (Xu and Gong, 2007). Data fusion algorithms usually 
work on surface reflectance and NDVI that requires a smoothing procedure before 
the MODIS NDVI time series can be reconstructed for various applications (Jin 
and Xu, 2013). MODIS data that have been used to perform classification for urban 
areas resulted in confusion between urban and barren areas (Schneider et al., 2003). 
Few studies have attempted to develop algorithms that can optimize the potential 
of MODIS for urban area mapping (Schneider et al., 2009). Most of the studies that 
use MODIS data necessarily consider a combination with other image data or ancil-
lary information. For example, Langer et al. (2007) fused MODIS and Landsat to 
monitor land cover changes, whereas Kasimu and Tateishi (2008) combined MODIS 
with population statistics and meteorological data for urban area mapping across the 
globe. It is concluded that although coarse-resolution data is advantageous because 
of frequent temporal acquisition and large spatial  coverage for rapid large-scale 
observation and monitoring of urban areas, its ability to produce accurate informa-
tion independently is limited. Therefore, these data sets  produce robust results if 
combined with other data sources using appropriate fusion algorithms (Michishita 
et al., 2012b,c).

4.2.2 meDiUm spatial resOlUtiOn Optical sensOrs

There is strong demand for historical and current ULC  information over large geo-
graphic areas. The Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper 
Plus (ETM+) sensors have spatial and spectral characteristics that are well suited 
for characterizing terrestrial ecosystem features, including the highly heterogeneous 
features of ULC. Landsat TM and ETM+ sensors that have spatial resolution of 30 m 
for visible, near-IR, and shortwave infrared (SWIR) bands provide consistent and 
repetitive observations that are suitable for monitoring dynamics of ULC. In addi-
tion, TM and ETM+ data have been systematically acquired for large portions of 
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the globe since the launch of Landsat 5 in 1984, and thus a rich archive is  available 
for analysis. These data sets have been widely used to monitor ULC change at local 
and regional scales (Small, 2003; Maktav et al., 2005; Potere et al., 2009; Weng 
and Lu, 2009).

Urban extents and structures cannot be clearly determined by using discrete 
classification methods along with medium-resolution remote sensing data, in part 
because of highly heterogeneous features of ULC. Most urban areas, especially in 
single-house development areas, exhibit subpixel characteristics that mix imper-
vious surface with other land covers (e.g., grass) in medium-resolution satellite 
imagery (Lu and Weng, 2004). However, by treating the urban landscape as a con-
tinuum such as percent impervious surface (PIS) while using modeling techniques 
to extract urban characteristics, the continuous field estimate of PIS derived from 
satellite data can serve as a surrogate to determine urban extent and infrastructure 
and to assess changes in the urban environment (Powell et al., 2007; Xian et al., 
2008). The USGS National Land Cover Database (NLCD) has produced land cover 
and impervious surface products by using Landsat as the primary data source, and 
the PIS product has been used to assess the extent of urban development and asso-
ciated ecological effects in the conterminous United States (Imhoff, 2010; Xian 
and Homer, 2010; Xian et al., 2011, 2012). Figure 4.1 shows the distribution of 
impervious surface in the conterminous United States in 2006. The figure further 
provides details of impervious surface change from 2001 to 2006 in two metro-
politan areas: Los Angeles, California, and Atlanta, Georgia. The spatial patterns 
and new growths of ULC between the two times are displayed. The Landsat data 
continuity mission (LDCM) that was launched on February 11, 2013, will ensure 
the continued acquisition of Landsat-like data. LDCM will continue to provide 
valuable medium-resolution data and imagery that will be consistent with current 
standard Landsat data products.

Like Landsat, the SPOT (Système Pour l’Observation de la Terre) program initiated 
by the French government in the 1970s has been designed to provide long-term data 
continuity with successive improvements in sensor performance. SPOT-5 is a current 
popular choice for medium-resolution sensors. Launched on May 3, 2002, in addition 
to other sensors, SPOT-5 carries two high-resolution geometric (HRG) instruments 
with increased spatial resolution (compared to its predecessors) of 2.5 or 5 m in the 
panchromatic (0.48–0.71 μm); 10 m in the green (0.50–0.59 μm), red (0.61–0.68 μm), 
and near-IR (0.78–0.89 μm); and 20 m in the mid-IR (1.58–1.75 μm) bands. Images 
have an 8-bit radiometric resolution. The satellite flies in a sun-synchronous orbit with 
an altitude of 822 km, an inclination of 98.7°, and a 26-day repeat cycle. SPOT-5, due 
to its increased spatial resolution compared to Landsat (especially in the panchromatic 
band), has been extensively applied for ULC classification (e.g., Zhang et al., 2003) 
and building/settlement extraction in urban sprawl areas (e.g., Durieux et al., 2008; 
Rhinane et al., 2011). Meanwhile, SPOT-5 multispectral data at 10 m resolution were 
also employed in studies of suburban mapping and urban land use change detection 
(e.g., Deng et al., 2009; Yang and Wang, 2012). The SPOT-5 imagery was also used for 
urban road mapping (Couloigner et al., 1998). The latest addition to the SPOT family is 
SPOT-6, which was launched on September 9, 2012. SPOT-6 has an increased poten-
tial for urban-related applications due to the even higher spatial resolution.
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Another commonly used medium-resolution satellite sensor for urban studies 
is the advanced spaceborne thermal emission and reflection (ASTER) radiometer, 
which is being flown on the Terra platform since December 1999. ASTER consists 
of three instrument subsystems: visible and near-infrared (VNIR) with three spec-
tral bands and stereoscopic band of 15 m resolution, SWIR with six spectral bands 
of 30 m resolution, and TIR with five spectral bands of 90 m resolution. Ground 
track repeat cycle is 16 days though observations are operated on demand. The 
15 m spatial resolution of VNIR sensor makes ASTER data valuable in extracting 
urban objects (Small, 2005) and mapping impervious surface (Weng and Hu, 2008; 
Orenstein et al., 2011) and ULC (Zhu and Blumberg, 2002; Lu and Weng, 2006). 
The SWIR detectors are not functioning since April 2008 due to anomaly of SWIR 
detector temperatures.

Like other optical sensing systems, Landsat, SPOT, and ASTER have their 
limitations. They are highly restricted by weather conditions, such as clouds, 
haze, snow, and ice covers. Some approaches have been introduced to reduce 
these limitations. For example, the synergistic use of SPOT-5 multispectral 
imagery and SAR remote sensing data has been proposed to map impervious 
surfaces at the subpixel level, and notable improvements were achieved in com-
parison to using SPOT imagery exclusively (Leinenkugel et al., 2011). Similarly, 
the combination of ASTER data with other data sources can be a key technique 
for extending applications of ASTER data to urban areas around the world (e.g., 
Miyazaki et al., in press), where a large city is usually not captured within a single 
ASTER scene. Contextual analysis has also been demonstrated to be useful to 
enhance the classification process using medium-resolution satellite data (Luo 
and Mountrakis, 2010).

Another issue significantly affecting sensor popularity is data availability and 
cost. In ASTER’s case, the major limitation is the on-demand observation schedule, 
which limits spatial coverage. In SPOT’s case, the issue of data cost is prominent as 
the French government has not yet matched the free-of-charge policy for Landsat 
scenes. Decisions by the French government on data distribution policies will signifi-
cantly affect the future popularity of SPOT sensors.

4.2.3 hiGh spatial resOlUtiOn Optical sensOrs

A wide range of high resolution (HR) and VHR spatial sensors are available 
from governmental and commercial consortiums. Figure 4.2 lists known satel-
lite platforms and sensors collecting optical (passive) image data with a spatial 
resolution equal to or finer than 10 m. The list includes more than 50 differ-
ent platforms and sensors active for 2013 or planned for 2014. For spatial res-
olutions of 1 m or higher, only panchromatic sensors are currently available. 
Multispectral data are available only at 2 m pixel size or larger. Multispectral 
sensors with improved spatial resolution are planned for 2014 with GeoEye-2 
and WorldView-3 satellites.

Due to their fine spatial resolution, HR/VHR input image data have been used for 
recognition and characterization of all basic components of human settlements, such 
as built-up structures or buildings (Shettigara et al., 1995; Lin and Nevatia, 1998; 
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Benediktsson et al., 2003; Unsalan and Boyer, 2004; Khoshelham et al., 2010; 
Sirmacek and Unsalan, 2011), roads (Zhu et al., 2005; Chaudhuri et al., 2012), and 
open spaces, including city squares, public and private gardens and parks, walk-
ing areas, parking lots, and the like. In particular, urban open spaces have mostly 
been addressed by analyzing urban vegetated areas (Nichol and Lee, 2005; Nichol 
and Wong, 2007), including by detection of individual tree crowns in urban areas 
(Ouyang et al., 2011; Ardila et al., 2012). At the maximum, HR/VHR resolution 
 imagery allows for civilian usage, even for detection of targets having a smaller 
dimension than the standard settlement components. Such examples of urban anal-
ysis may include detection of cars and other vehicles (Gerhardinger et al., 2005; 
Leitloff et al., 2010), including the analysis of their direction and velocity (Pesaresi 
et al., 2008), and monitoring of human crowds in open spaces (Sirmacek and 
Reinartz, 2011; Schmidt and Hinz, 2011). Furthermore, VHR image data have been 
critical in the detection and monitoring of built-up structures that may be functional 
for disaster and crisis management operations. In particular, detection of damages in 
urban areas has taken place in earthquake and tsunami postdisaster damage assess-
ment (Pesaresi et al., 2007; Chesnel et al., 2008; Ouzounis et al., 2011; Lu et al., 
2012; Parape et al. 2012) and in postconflict damage and reconstruction assessment 
(Pagot and Pesaresi, 2008; Gueguen et al., 2009). Finally, the use of VHR image data 
has been demonstrated for the monitoring and analysis of informal and temporary 
settlements, which are usually not included in the standard land use/land cover clas-
sification schemes. In particular, slum and poor urban areas (Kit et al., 2012; Kohli 
et al., 2012) and refugee and internally displaced people (IDP) camps (Giada et al., 
2003; Jenerowicz et al., 2011; Pesaresi and Gerhardinger, 2011) are special cases of 
temporary human settlements relevant in crisis management operations.

From the methodological point of view, three general image-processing approaches 
have been used to process satellite HR/VHR input data for the analysis of human 
settlements: (1) 2D monocular image-derived features and classification, (2) 3D pro-
cessing of stereo pairs and derived features, and (3) multisource information fusion. 
Each approach has its own advantages and disadvantages. The “information fusion” 
approach has the key advantage of the possibility of combining the best results of 2D 
and 3D processing approaches and usually to increase accuracy and effectiveness 
(Baltsavias et al., 1995; Haala and Hahan, 1995). Moreover, the inclusion of exter-
nal data sources such as digital cartography, cadastral data, socioeconomic surveys, 
and even social media can improve the automatic information extraction process. 
Despite the existence of various approaches, it is worth noting a methodological 
constant, that is, the increased importance of structural (texture, shape) and con-
textual (spatial relations) image descriptors in the inferential models for processing 
HR/VHR image data, when compared with the models using moderate-resolution 
image data. This is due to the fact that as spatial resolution improves, capturing suf-
ficient energy to register an acceptable signal-to-noise ratio becomes more challeng-
ing, leading to limited spectral separability of urban targets, especially with shorter 
wave bands. This decrease of spectral separability encourages the inclusion of struc-
tural and contextual image descriptors in the image information extraction models. 
The importance of structural and contextual HR/VHR image analysis is also ampli-
fied by the fact that urban classification often includes more or less explicitly spatial 
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and contextual criteria in order to discriminate the relevant urban information, such 
as typically local densities of specific features, land cover heterogeneity measures, 
spatial pattern characteristics, and the sizes of built-up structures.

The key limitations concerning satellite VHR image data exploitation involve 
the following: commercial and confidentiality issues, high data volume, intrinsic 
spatial inconsistency, and limited spectral, temporal, and multitemporal archives. 
VHR image data are intrinsically spatially inconsistent: even accurate processing 
of stereo pairs cannot reach subpixel RMSE positional error, assuming a pixel 
size of 0.5 m. Because of the capacity to collect off-nadir image data from VHR 
platforms, the apparent displacement of image pixels increases further due to 
panoramic and parallax distortions. Unfortunately, these effects are more evident 
in above-ground urban targets as in the case of rooftops of buildings that are 
some of the key entities collected in remote sensing urban studies. In practice, 
these facts lead to an expected apparent displacement of the rooftops in the order 
of several tenths of pixels, assuming 0.5 m spatial resolution, tall buildings, and 
usual off-nadir data collection ranges. This fact has direct bearing in increas-
ing the complexity of reference data collection and in decreasing the expected 
accuracy and repeatability of the image information retrieval tasks, especially in 
the frame of monitoring activities. In general, VHR multispectral sensors collect 
less number of bands than low- or medium-resolution sensors. This has a direct 
impact when applying inferential models based on spectral reflectance criteria. 
Moreover, image data input with spatial details of 1 m or more are available 
only in the panchromatic mode, which in VHR platforms is usually by summing 
VNIR bands. This has a direct impact when applying multispectral analysis to 
meter- and submeter-resolution input data. The majority of the available VHR 
platforms declare a nominal revisiting time in the range of 1–5 days. In some 
areas, because of the high probability of cloud cover, this may lead to several 
weeks (or even months) of unavailability of VHR data. VHR platforms are tasked 
only for specific commercial/governmental requests. Therefore, except for some 
places, usually no consistent multitemporal archived data is available for a spe-
cific area of interest, leading to a radical decrease in the multitemporal analysis 
capacity using VHR data.

Future perspectives include the increase of available spatial resolution in both pan-
chromatic and multispectral sensors in the WorldView and GeoEye platforms. They 
reach 0.3 and 1.3 m, respectively, in the pan and multispectral modes. It is still unclear 
how and under which constraints these new data will be available for scientific use 
and for the general public. International commercial and security issues are directly 
proportional to the advances of the sensor and platform technologies, including the 
increasing spatial and spectral resolution and the increasing absolute pointing accu-
racy of the platforms. The de facto standard set by the US government limiting the 
pixel size of satellite sensors to 0.5 m for nonmilitary applications could be potentially 
revised in order to make the new image data available. The list of entities or users 
having access to VHR image data may also change accordingly. As a general trend, 
we can observe that legal and licensing barriers in both the input data and image-
derived information products are becoming more influential as technology advances.
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4.3 TIR SENSORS

4.3.1 cOarse-resOlUtiOn tir sensOrs

Several meteorological satellite missions have on board coarse spatial resolution TIR 
sensors and have by now acquired a considerable global archive of LST images over 
the last 40 years. According to their orbit, these are divided into two distinct groups, 
namely, geostationary missions (e.g., MSG-SEVIRI viewing Europe and Africa, 
GOES over America, Kalpana over India, Fengyun viewing China, and MTSAT 
observing East Asia) and low Earth orbiters like NOAA and Metop AVHRR. In the 
latter group, we may include Terra and Aqua MODIS, due to the similar TIR band 
characteristics and products, although Terra and Aqua are not weather satellites. 
These missions have been providing continuous monitoring of LST distribution at 
the spatial resolution ranging from 3 to 5 km for geostationary platforms to 1.1 km 
at nadir for low Earth orbiters. In most cases, service providers (e.g., NASA, ESA, 
EUMETSAT) distribute LST images as standard data products. The coarse spatial 
resolution of geostationary TIR imagery has prohibited their extensive use for urban 
studies; yet recently, scientific interest in these sensors has been revived as compu-
tational methods for sharpening these imagery to 1 km (Zakšek and Oštir, 2012; 
Keramitsoglou et  al., 2013) or better (Bechtel et al., 2012) have become available. 
A clear advantage of coarse-resolution sensors is their temporal resolution. The tem-
poral measurement frequency of polar orbiting satellite systems at ~850 km is approx-
imately two times per day, yet ordinarily a few acquisitions are available daily from 
similar sensors on board different platforms (see Table 4.1). The geostationary orbit 
TIR sensors provide images of the Earth’s disk from 36,000 km every 15–30 min, 
making them a unique means for capturing the diurnal variability of surface UHIs. 
The specific details of  coarse-resolution TIR sensors are presented in Table 4.1.

LST from multispectral TIR imagery can be retrieved (Schmugge et al., 1998) 
either using a radiative transfer equation to correct the at-sensor radiance to surface 
radiance or by applying the split-window technique for sea surfaces to land surfaces, 
assuming that the emissivity in the channels used for the split window is similar 
(Dash et al., 2002). Land surface brightness temperatures are then calculated as a 
linear combination of the two channels. Jiménez-Muñoz and Sobrino (2008) pro-
vide a complete set of split-window coefficients that can be used to retrieve LST 
from TIR sensors on board the most popular coarse-resolution remote sensing sat-
ellites. Past studies of SUHI have been conducted primarily by using AVHRR or 
MODIS data (Kidder and Wu, 1987; Balling and Brazell, 1988; Roth et al. 1989; 
Gallo et al., 1993; Stathopoulou et al., 2004; Hung et al., 2006; Peng et al., 2012). 
Keramitsoglou et al. (2012) concluded that the spatial resolution of 1 km offered now 
by MODIS and AVHRR, and until April 2012 also by AATSR, is adequate for large-
area urban temperature mapping and for observing the differences between daytime 
and nighttime patterns, although not acquired at the best overpass time to observe 
SUHI (Sobrino et al., 2011). Streutker (2002, 2003) used AVHRR data to quantify 
the SUHI of Houston, Texas, assuming an ellipsoid footprint to derive the SUHI 
parameters of intensity, spatial extent, orientation, and central location. Hung et al. 
(2006) adopted this method to measure the spatial extents and magnitudes of the 
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SUHIs for eight megacities in Asia using both daytime and nighttime MODIS data 
acquired over the period 2001–2003. Rajasekar and Weng (2009a) applied a non-
parametric model by using fast Fourier transformation (FFT) to MODIS imagery for 
characterization of the SUHI over space, so as to derive SUHI magnitude and other 
parameters. Keramitsoglou et al. (2011) applied an object-based image analysis pro-
cedure to extract urban thermal patterns to more than 3000 MODIS images acquired 
from May until September from the years 2000 to 2009 for the Greater Athens Area, 
Greece, revealing the qualitative and quantitative characteristics of Athens’ SUHI 
retaining the original LST values, thus circumventing modeling.

Regarding the near future of sensors and satellite platforms, a number of relevant 
projects are under way. The European Space Agency (ESA) Sentinel-3 satellite is 
planned for launch from 2014, offering a sea and land surface temperature radiom-
eter (SLSTR) with a 1 km resolution in the thermal channels and a daily revisit time. 
The geostationary GOES-R satellite is due in 2015, with a 2 km resolution in the 
thermal channels from a new advanced baseline imager (ABI). The National Polar-
orbiting Operational Environmental Satellite System (NPOESS) is due for launch in 
2016, designed to replace NASA’s Aqua, Terra, and Aura satellites and offering the 
visible and infrared imagery radiometer suite (VIIRS) sensor for LST. Coupled with 
these large “traditional” missions, in the future there is likely to be an increase in 
“small satellites” (Sandau et al., 2010) that enable relatively quick and inexpensive 
missions, which could, for example, help to observe dynamic surface temperature 
patterns.

4.3.2 meDiUm-resOlUtiOn tir sensOrs

Currently, only a few spaceborne sensors with global imaging capacity can deliver 
medium-resolution TIR data required to address urban LST heterogeneity and to 
assess the UHI effect (Weng, 2009). The TM sensor on board Landsat 5 has been 
acquiring images of the Earth nearly continuously from July 16, 1982, to the present, 
with a single TIR band of 120 m resolution, and is thus long overdue. Figure 4.3 shows 
the mean annual surface temperature based on the ATC (annual temperature cycle)-
modeled LST values of all available 115 Landsat-5 TM scenes (less than 30% cloud 
cover) between 2000 and 2010 in Los Angeles. Another TIR sensor that has global 
imaging capacity is with Landsat 7 ETM+ since April 15, 1999. The ETM+ provides 
an enhanced TIR band of 60 m resolution. Unfortunately, the scan-line-corrector on 
board Landsat 7 started malfunctioning after May 31, 2003, which caused a loss of 
approximately 25% of the data, mostly located between scan lines toward the scene 
edges. Although some gap-filling remedy methods can recover some of the data lost, 
the gap-filled data cannot match the quality of the original data. In addition, ASTER 
sensor flown on the Terra satellite collects five TIR bands with a ground resolution 
of 90 m. These multispectral infrared measurements can be converted into LST and 
emissivity products by using the ASTER temperature/emissivity separation algorithm 
(Gillespie et al., 1998). LST values calculated using this algorithm are expected to have 
an absolute accuracy of 1–4 K and relative accuracy of 0.3 K, and surface emissivity 
values an absolute accuracy of 0.05–0.1 and relative accuracy of 0.005 (TEWG, 1999). 
ASTER is an on-demand instrument, which means that data are only acquired over 
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the requested locations. Terra satellite launched in December 1999 as part of NASA’s 
Earth Observing System has a life expectancy of 6 years and is now also overdue.

Landsat TM and ETM+ TIR data have been extensively utilized to derive LSTs 
and to study UHIs (e.g., Nichol, 1994; Weng, 2001, 2003; Weng et al., 2004) for 
American and Asian cities. With ASTER imagery, Lu and Weng (2006) estimated 
hot-object and cold-object fractions and biophysical variables using linear spectral 
mixture analysis and analyzed their relationship across various spatial aggregations. 
Rajasekar and Weng (2009b) applied association rule mining for exploring the rela-
tionship between urban LST and biophysical/social parameters. Moreover, the land-
scape ecology approach was employed to assess the interplay between LST and LULC 
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FIGURE 4.3 (See color insert.) Mean annual surface temperature in Los Angeles deter-
mined by an unconstrained nonlinear optimization with the Levenberg–Marquardt minimi-
zation scheme. LST measurements of all available 115 Landsat-5 TM scenes between 2000 
and 2010 were used for modeling by a sine function. (From Weng, Q. and P. Fu, Remote Sens. 
Environ., 2014, 140, 267.)
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patterns in order to reach the optical scale for analysis (Liu and Weng, 2009). Because 
ASTER sensor collects both daytime and nighttime TIR images, analysis of LST spa-
tial patterns has also been conducted for a diurnal contrast (Nichol, 2005).

Studies using satellite-derived LSTs have been termed surface temperature UHIs 
(Streutker, 2002). Moreover, satellite-derived LSTs are believed to correspond 
more closely with the canopy layer heat islands, although a precise transfer func-
tion between LST and the near-ground air temperature is not yet available (Nichol, 
1994). Voogt and Oke (2003) criticized the slow progress in thermal remote sensing 
of urban areas, which has largely been limited to qualitative description of ther-
mal patterns and simple correlations between LST and LULC types. Xiao et al. 
(2008) further noticed that little research has been done on the statistical relation-
ship between LST and nonbiophysical factors. A key issue in the application of TIR 
data in urban climate studies is how to use LST measurements at the micro scale to 
characterize and quantify UHIs observed at the meso scale (Weng, 2009). Because 
medium-resolution sensors are typically associated with long-repeat-cycle satellites 
(16 days for both Landsat and Terra ASTER sensors), their TIR data are not readily 
useful for UHI monitoring. Bechtel (2012) found that it was feasible to extract mean 
annual surface temperature and yearly amplitude of surface temperature by model-
ing the ATC with Landsat data archive.

Looking into the near future, the LDCM may be the only option. It will have a 
TIR sensor acquiring data at 100 m resolution, but again with a low temporal resolu-
tion of 16 days (http://ldcm.nasa.gov/). The hyperspectral infrared imager (HyspIRI) 
has been defined as a mission with Tier 2 priority of the Decadal Survey (http://
hyspiri.jpl.nasa.gov/). Its TIR imager is expected to provide seven bands between 
7.5 and 12 μm and one band at 4 μm, all with 60 m resolution. The TIR sensor is 
intended for imaging global land and shallow water with a 5-day revisit at the equa-
tor (1-day and 1-night imaging). These improved capabilities would allow for a more 
accurate estimation of LST and emissivity and for deriving unprecedented informa-
tion on biophysical characteristics, but HyspIRI has not yet set a definite time for 
launch due mainly to budget constraints.

4.4 SAR SENSORS

4.4.1 cOarse-resOlUtiOn sar sensOrs

SAR data in any ScanSAR mode are one of the most important sources of infor-
mation for mapping purposes at the global level. The wide geographical coverage 
coupled with almost no blackout time mark SAR sensors as the best option for a num-
ber of land covers at the global level. For human settlements, the wide swath mode 
(WSM) data from the ASAR sensor on board ESA Envisat-1 are currently exploited 
in a semioperational way to globally map built-up arc extents (Gamba and Lisini, 
2013). Table 4.2 provides ENVISAT ASAR sensor characteristics. Indeed, a global 
urban extraction of WSM data, with a spatial posting of 75 m per pixel, represents 
an excellent trade-off between detailed accuracy and computational load. They were 
collected as a sort of background mission whenever the satellite was not busy acquir-
ing in a different mode. The number of acquisitions on the same area is thus variable 
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from one year to the other, but in general the yearly coverage is guaranteed for the 
whole globe, with a few exceptions. The same methodology will presumably be 
applied with minor adaptation to data from future missions, such as ESA Sentinel-1.

4.4.2 meDiUm-resOlUtiOn sar sensOrs

The SAR sensors currently available have a spatial resolution in the range of 10–30 m, 
which has not been, until recently, considered useful for urban applications, or at least 
not very different from those (like urban extent extraction) equally achievable by coarse 
sensors. The main improvement that makes these systems useful for urban application 
is polarimetry, as it allows for the distinction among different scattering mechanisms. 
While this feature may be useful for mapping ULC, it is expected that very high-resolution 
SAR data can provide finer details of urban structures such as buildings and roads and 
thus further improve its application in urban analysis. In the following text, the charac-
teristics of the RADARSAT-1 and -2 satellites are discussed.

Launched in November 1995 and December 2007, respectively, RADARSAT-1 
and -2 are sophisticated Earth observation satellites developed by Canada to monitor 
environmental changes and the planet’s natural resources. The C-band SAR sensors 
on board these satellites are operational radar systems capable of timely delivery of 
large amounts of data for many applications, including urban, marine surveillance, ice 
monitoring, disaster management, environmental monitoring, resource management, 
and mapping, in Canada and worldwide. The RADARSAT SAR system character-
istics are listed in Table 4.3. Polarimetric SAR data have increasingly been used for 
urban analysis (Niu and Ban, 2012). Moreover, by exploiting the multitemporal capa-
bility of medium-resolution SAR with no limitation due to weather conditions, these 
SAR data have also been considered for urban change analysis (Niu and Ban, 2013). 
Finally, several studies have also been undertaken on the fusion of SAR and optical 
data, showing improved ULC mapping over SAR or optical data alone (Gamba and 

TABLE 4.2
ENVISAT ASAR Sensor Characteristics

Sensor ASAR 

Mission lifetime 2002–2012

Orbit 800 km altitude

35 days orbit repeat cycle

5–15 days revisit time (midlatitudes)

Range size 56–100 km (image and alternating polarization modes)

400 km (wide swath and global monitoring modes)

Geometric resolution 30 m (image and alternating polarization modes)

150 m (wide swath mode)

1 km (global monitoring mode)

Spectral resolution 1 channel 5.331 GHz (C-band)

Polarizations HH or VV (single pol)

HH/VV or HH/HV or VV/VH (dual pol)
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Houshmand, 2001; Ban et al., 2010; Ban and Jacob, 2013). The future is connected 
to the RADARSAT constellation. The three-satellite configuration will provide 
complete coverage of Canada’s and most of the world’s land and oceans, offering 
an average daily revisit as well as daily access to 95% of the world to Canadian and 
international users. The satellite launches are currently planned for 2018.

TABLE 4.3
RADARSAT-1 and -2 Sensor Characteristics

Sensor RADARSAT-1 RADARSAT-2 

Mission lifetime >15 years 7 years

Orbit 793–821 km 798 km

Range size 45 km (fine beam) Selective polarization:

100 km (standard beam) 50 km (fine beam)

75 km (high incidence) 100 km (standard beam)

170 km (low incidence) 75 km (high incidence)

150 km (wide) 170 km (low incidence)

300 km (ScanSAR narrow) 150 km (wide)

500 km (ScanSAR wide) 300 km (ScanSAR narrow)

500 km (ScanSAR wide)

Polarimetric:

25 km (fine quad pol)

25 km (standard quad pol)

Selective single polarization:

20 km (ultrafine)

18 km (SpotLight)

50 km (multilook Fine)

Geometric resolution (m) 8 (fine beam) Selective polarization:

30 (standard beam) 10 × 9 (fine beam)

18–27 (high incidence) 25 × 28 (standard beam)

30 (low incidence) 40 × 28 (high incidence)

30 (wide) 20 × 28 (low incidence)

50 m (ScanSAR narrow) 25 × 28 (wide)

100 m (ScanSAR wide) 50 × 50 (ScanSAR narrow)

100 × 100 (ScanSAR wide)

Polarimetric:

11 × 9 (fine quad pol)

25 × 28 (standard quad pol)

Selective single polarization:

3 × 3 (ultrafine)

3 × 1 (SpotLight)

11 × 9 (multilook fine)

Spectral resolution 1 channel 1 channel

Center frequency 5.3 GHz 
(C-band), bandwidth: 30 MHz

Center frequency 5.405 GHz 
(C-band), bandwidth: 100 MHz

Polarizations HH HH, VV, HV, VH
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4.4.3 fine-resOlUtiOn sar sensOrs

The last generation of SAR sensors has been developed to provide better spatial reso-
lution characteristics, in the range of 1 m. This category of sensors has caused a boost 
in the use of SAR data in urban applications, especially connected to very detailed 
analysis (to the building level) of the urban environment. TerraSAR-X (TSX) and 
COSMO/SkyMed are examples of these systems. COSMO/SkyMed has been used 
for many applications, mainly related to risk mapping and interferometry (Ardizzone 
et al., 2012). In the following, a more detailed analysis of TSX is offered, because of 
its peculiar characteristics, connected to the twin TanDEM-X (TDX) mission.

The first German SAR satellite TSX was launched on June 15, 2007, in the context 
of a public–private partnership between the German Aerospace Center (DLR) and the 
EADS Astrium GmbH. Three years later, the TSX mission was amended by a sec-
ond, almost identical X-band SAR satellite—TDX. For the TDX mission (TDM) (TSX 
Add-On for Digital Elevation Measurement), TSX and TDX are flying in an orbit at 514 
km in a so-called helix formation with a typical distance of 250–500 m between the sat-
ellites. With this constellation, TDX is the first bistatic, spaceborne SAR mission. The 
primary mission is the generation of a consistent global digital elevation model with 
unprecedented accuracy. At the same time, TSX and TDX provide highly reconfigu-
rable platforms for testing and demonstrating new SAR techniques and potential appli-
cations. TSX and TDX are scheduled for 5 years of operation, and they collect VHR 
data in three basic imaging modes—SpotLight (SL) and high-resolution SpotLight 
mode (HS), StripMap mode (SM), and ScanSAR mode (SC) (Roth et al., 2005). The 
characteristics of the imaging modes are listed in Table 4.4.

Due to the all-weather and day-and-night data acquisition capability of SAR 
 sensors, the TDM allows to collect two global coverages of VHR images (SM 
mode)  within a period of 3 years (2011–2013). With the unique spatial detail 

TABLE 4.4
TerraSAR-X Sensor Characteristics

Sensor TerraSAR-X 

Mission lifetime 2007–2013 (at least)

Orbit 514 km altitude

11 days orbit repeat cycle

2–4 days revisit time (midlatitudes)

Range size 5–10 km (SpotLight mode)

30 km (StripMap mode single-polarized)

15 km (StripMap mode dual-polarized)

100 km (ScanSAR mode)

Geometric resolution 1 m (SpotLight mode)

3 m (StripMap mode)

16 m (ScanSAR mode)

Spectral resolution 1 channel 9.65 GHz (X-band)

Polarizations HH or VV (single-polarized)

HH/VV or HH/HV or VV/VH (dual-polarized)
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and  temporal consistency of the data set in combination with the complementary 
characteristics of the VHR SAR data compared to medium- or high-resolution  optical 
imagery used for urban analyses on a global scale so far, the TDM is predestined 
to substantially support the global mapping and future monitoring of human settle-
ments. Hence, DLR’s German Remote Sensing Data Center (DFD) has developed a 
fully operational processing chain—the urban footprint processor (UFP)—for the 
delineation of built-up areas from the TDM SAR database (Esch et al., 2012). The 
goal is to provide a public domain global coverage of binary settlement masks show-
ing a spatial resolution of 3 arcsec (~50–75 m)—the global urban footprint (GUF). 
The accuracies of the binary GUF settlement masks usually range between 70% and 
95% depending on the complexity of the landscape and the significance of the built-
up environment (size, height, density, arrangement of houses, vegetation cover, etc.). 
Figure 4.4 shows an example of the GUF mosaic for the region of Accra, Ghana.

30 km

(a)

(c)

(b)

(d)

FIGURE 4.4 (See color insert.) Optical data from Google Earth (a), TerraSAR-X ampli-
tude image (b), calculated texture image (c), and urban footprint mask derived from combined 
classification of amplitude and texture (d).
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With the two global coverages of VHR SAR imagery collected in 2011/2012 
and 2012/2013, the TDM data set represents a suitable baseline for future analy-
ses of global urban sprawl. Apart from classic postclassification change detection 
approaches, the calculation of long-term coherences might serve as an effective 
method to improve the intended GUF product and to provide an alternative method 
for the mapping and monitoring of urban sprawl. Moreover, the extraction of build-
ing structures and the estimation of building densities based on texture measures and 
the modeling of building volume on the building block level using the VHR DEM 
generated in the context of the TDM hold further potential (Esch et al., 2012). From 
an applied perspective, the combined analysis global SAR and optical data sets or 
the combination of settlement masks derived from these complementary sources are 
highly interesting.

4.5 NIGHTTIME LIGHTS

Nighttime lights are a class of satellite observations and derived products based on the 
detection of anthropogenic lighting present at the Earth’s surface. This style of product 
can only be produced using data from sensors that collect low-light imaging data in 
spectral bands covering emissions generated by electric lights. The standard “stable 
lights” product is a cloud-free composite that has been filtered to remove ephemeral 
fires and background noise. Nighttime lights are used to model the spatial distribution 
of variables that would be very difficult to measure in a globally consistent manner. 
Examples of nighttime lights–derived global grids include the spatial distribution of 
population (Doll, 2010; Sutton et al., 2010), economic activity (Ghosh et al., 2010), elec-
trification rates (Elvidge et al., 2010), poverty mapping (Elvidge et al., 2009), density of 
constructed surfaces (Matsumura et al., 2009), food demand, stocks of steel and other 
metals (Takahashi et al., 2010), CO2 emissions from fossil fuels (Rayner et al., 2009), 
and the ecological impact of artificial lighting (Aubrecht et al., 2008).

To date, there have been two systems flown capable of collecting global nighttime 
lights data. The original system is the Defense Meteorological Satellite Program 
(DMSP) operational linescan system (OLS). The more recently launched system is 
the Suomi National Polar Partnership (SNPP) VIIRS. In both cases, the low-light 
imaging was designed to serve the meteorological community, which has an interest 
in detecting moonlit clouds in the visible region to complement thermal observations.

The DMSP nighttime lights represent one of the most widely recognized global 
satellite data products and have proven valuable in a wide range of scientific applica-
tions. DMSP has flown low-light imaging sensors in polar orbits since the mid-1970s 
and has a digital archive that extends back to 1992. The OLS was designed to collect 
visible and TIR data, day and night, for use in observing weather systems and cloud 
cover. The “visible” band may be termed panchromatic, spanning the visible and 
near-infrared (NIR) from 0.5 to 0.9 µm. The DMSP low-light imaging is achieved 
using a photomultiplier tube. The global data are smoothed with five-by-five pixel 
averaging, which results in pixel footprints that are 5 km on a side at nadir and up to 
8 km on a side at the edge of scan. The ground sample distance (GSD) is maintained 
at 2.7 km from nadir to edge of scan. Thus, there is substantial overlap between 
adjacent pixel footprints. The detection limit is estimated at 5E-10 Watts/cm2/sr. 
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The DMSP nighttime lights data have a set of well-known shortcomings (Elvidge 
et al., 2007): coarse spatial resolution, six-bit quantization, saturation on bright lights, 
lack of in-flight calibration, lack of spectral channels suitable for discrimination of 
thermal sources of lighting, and lack of low-light imaging spectral bands suitable 
for discriminating lighting types (Elvidge et al., 2010).

On October 28, 2011, NASA and NOAA launched the SNPP satellite carrying 
the first VIIRS. The VIIRS instrument includes a day/night band (DNB), which 
collects panchromatic (0.5–0.9 µm) low-light imaging data at night using a time 
delay and integration (TDI) charge-coupled device (CCD). The VIIRS instrument 
offers improvement in each of these shortcomings, except multispectral low-light 
 imaging. The DNB pixel footprint is maintained at 742 m from nadir out to the 
edge of scan. Thus, the VIIRS DNB low-light imaging footprint is 45 times smaller 
than the DMSP-OLS footprint. The DNB data have a wide dynamic range, 14-bit 
quantization, and a detection limit estimated at 2E-10 Watts/cm2/sr, which makes 
it possible for the VIIRS to detect clouds, snow, and bright playa lake beds with 
exceedingly dim airglow illumination when no moonlight is present (Miller et al., 
2012). The DNB has an in-flight calibration capability. In addition, the VIIRS col-
lects data at night in a SWIR band that detects combustion sources, but not nighttime 
lights (Zhizhin et al., 2013). This makes it possible to distinguish thermal sources 
of light from electric lighting. All of this results in a far superior nighttime lights 
product when compared to DMSP products (Figure 4.5).

In 2012 and 2013, nighttime lights were collected by both DMSP and VIIRS, 
making it possible to cross-calibrate the nighttime light products generated by 
the two systems. There are two more DMSP satellites to be launched; however, it 
is anticipated that these will fly in dawn–dusk orbits that are ill-suited for global 
mapping of nighttime lights. The second VIIRS is under construction, and NASA/
NOAA is planning the third. There are good prospects for a continuing series of 
VIIRS instruments. While VIIRS nighttime lights are expected to yield substantial 

SNPP VIIRS DNB DMSP-OLS

FIGURE 4.5 Comparison on DNB versus DMSP cloud-free composited nighttime lights of 
Guangzhou, China, in 2012.
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advances in a range of science applications, there has yet to be a satellite mission 
dedicated to nighttime lights. Such a mission would likely have spatial resolution 
under 100 m and multispectral low-light imaging to enable discrimination of lighting 
types (Elvidge et al., 2007).

ACRONYMS

AATSR Advanced along track scanning radiometer
ABI Advanced baseline imager
AVHRR Advanced very high resolution radiometer
ESA European Space Agency
EUMETSAT European Meteorological Satellite Organisation
GOES Geostationary Operational Environmental Satellite
Metop Meteorological Operational Satellite Programme
MODIS Moderate-resolution imaging spectroradiometer
MSG Meteosat second generation
MTSAT Multifunction transport satellite
NASA National Aeronautics and Space Administration
NOAA National Oceanic and Atmospheric Administration
SEVIRI Spinning-enhanced visible and infrared imager
SLSTR Sea and land surface temperature radiometer
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5 Mapping Global 
Human Settlements 
Pattern Using SAR 
Data Acquired by the 
TanDEM-X Mission

Thomas Esch, Mattia Marconcini, Andreas Felbier, 
Achim Roth, and Hannes Taubenböck

5.1 TanDEM-X MISSION

DLR’s first Earth observation radar satellite, TerraSAR-X, was launched in June 2007, 
followed by the almost identical TanDEM-X satellite 3 years later. Both systems are the 
basis for the first bistatic spaceborne SAR mission TanDEM-X (TerraSAR-X add-on for 
Digital Elevation Measurement), with TerraSAR-X and TanDEM-X orbiting in a unique 
helix formation with a typical distance of 250–500 m between the two satellites (Krieger 
et al., 2007). The primary goal of the TanDEM-X mission, which started in 2011, is the 
generation of a consistent global digital elevation model (DEM) with unprecedented 
spatial detail and accuracy. TerraSAR-X and TanDEM-X acquire HR/VHR SAR data 
in three basic imaging modes, namely, SpotLight (SL) and High-Resolution SpotLight 
mode (HS), StripMap mode (SM), and ScanSAR mode (SC) (Roth et al., 2005).
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The targeted accuracy of the global DEM generated in the context of the 
TanDEM-X mission follows the High-Resolution Terrain Information 3 (HRTI-3) 
specifications. The elevation product will be provided in geographic coordinates. 
The grid spacing is 0.4 arcsec in latitude and longitude corresponding to a ground 
resolution of ~12 × 12 m. The longitude spacing is varied every 10° beginning at 
50° and every 5° from 80° to 90° in order to compensate for the convergence of 
the meridians at the poles. Hence, the coarsest spacing is 4 arcsec between 85° and 
90° latitude. In the TanDEM-X mission, the TerraSAR-X and TanDEM-X satellites 
record data in the single-polarized StripMap mode with a resolution of 3.3 m in 
azimuth and 1.2 m in range. Depending on the incidence angle, the range resolution 
converts into 3.0–3.5 m ground resolution (Eineder et al., 2010). The position of the 
strip acquired during the second acquisition phase (2012/2013) is shifted by approxi-
mately 50% compared to the first year (2011/2012).

The TanDEM-X mission will provide a global DEM (to be finished by mid-
2015) that will boost research requiring detailed relief information across the globe. 
Moreover, it provides a highly reconfigurable platform for testing and demonstrating 
new SAR techniques and potential thematic applications. This includes, among oth-
ers, along-track interferometry or experiments exploring the so-called dual receive 
antenna mode required for polarimetric interferometry. A comprehensive descrip-
tion of the potential applications, products, and data access procedures are provided 
in the TanDEM-X Science Plan (Hajnsek et al., 2010).

5.2  WORLDWIDE MAPPING OF HUMAN SETTLEMENT 
PATTERNS USING TanDEM-X DATA

The beginning of the twenty-first century represents a historic moment in the devel-
opment of humankind since the number of urban residents has exceeded the rural 
population for the first time in history, marking the start of an “urban century” (UN, 
2011). On the basis of this development, it is expected that the near future will be 
characterized by rapid and continuous global urbanization with almost two-thirds 
of the world’s population living in cities by 2030. Hence, the monitoring of urban 
and peri-urban development is a key issue to analyze and understand the complexity, 
cross-linking, and increasing dynamics of sprawling and transforming settlements 
and settlement patterns in order to ensure their sustainable future development.

5.2.1 GlObal Urban fOOtprint initiative

Spaceborne Earth observation has successfully been established as a technology 
to provide the required global and up-to-date geoinformation on the position, dis-
tribution, and development of human settlements (Potere and Schneider, 2009). 
However, the geometric resolution of the current global human settlement data sets 
(GHSDs)—for example, GLC2000 (Bartholomé and Belward, 2005), GLOBCOVER 
2009 (Bontemps et al., 2011), or MODIS 500 (Schneider et al., 2009)—is  limited 
to 300–1000 m. Therefore, it is not possible to detect villages or even smaller 
 cities—a limitation that clearly hampers the potential to provide data that can be 
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used to analyze important processes such as peri-urbanization. Moreover, most of 
the GHSDs are derived from optical data; therefore, especially in tropical regions, the 
data are collected over a comparably long period of time due to the almost perma-
nent cloud coverage. However, recent activities aim at the generation of spatially and 
thematically enhanced GHSDs—for example, based on new Night Lights 2012 data 
(NASA, 2012), a built-up index applied to high-resolution (HR) optical and/or SAR 
data (Pesaresi et al., 2011, 2012), by integrating ASTER satellite images and GIS 
data (Miyazaki et al., 2013) or by properly analyzing global Envisat-ASAR imagery 
(Gamba and Lisini, 2012).

With two global coverages of VHR SAR data acquired at 3 m spatial resolution 
and collected within a period of about 1 year, the German TanDEM-X mission is 
predestined to be included among the new initiatives aiming at the provision of inno-
vative GHSDs. Accordingly, the German Remote Sensing Data Center (DFD) of the 
German Aerospace Center (DLR) has developed and implemented a fully automated, 
operational image processing and analysis procedure—the Urban Footprint Processor 
(UFP)—that detects and delineates built-up areas from the global TanDEM-X mission 
data. The outputs of the UFP are binary settlement masks—the Urban Footprint (UF) 
masks—indicating built-up and non-built-up areas at a spatial resolution of 0.4 arcsec 
(~12 m). The global coverage of UF data sets will then be used to generate a worldwide 
inventory of human settlements—the Global Urban Footprint (GUF) layer—that is 
also intended to be made publicly available at a spatial resolution of 3.0 arcsec (~75 m). 
Therewith, the GUF will be of paramount importance in supporting worldwide anal-
yses of settlement patterns in urban and rural areas, and will complement existing 
GHSDs and global land-cover maps that are mostly based on medium- (MR) or high-
resolution (HR) optical imagery.

5.2.2 Urban fOOtprint prOcessOr

A number of analyses have demonstrated the general suitability of VHR and HR 
SAR imagery to serve as a basis for the identification and mapping of built-up areas 
(Esch et al., 2006; Stasolla and Gamba, 2008). In this framework, the basic meth-
odological components for the identification and delineation of built-up areas from 
TerraSAR-X/TanDEM-X StripMap data have been introduced by the authors in Esch 
et al. (2010, 2011, 2012). A texture measure is performed as a first step, followed by 
a classification procedure that focuses on the combined analysis of local backscat-
tering characteristics (intensity) and local image heterogeneity (texture). Since this 
basic approach is primarily focused on the analysis of strong, local backscattering 
centers (i.e., corner reflections) appearing in a highly heterogeneous image region 
(i.e., urban areas), the algorithm is mainly sensitive toward the detection of man-
made structures showing a vertical dimension, whereas flat, smooth urban entities 
such as runways or paved squares will not be classified as built-up areas.

In order to effectively process the TanDEM-X mission mass data set of about 
300 TB—one coverage comprises ~180,000 complex SAR images with each image 
having an average size of ~50,000 × 40,000 pixels—the previously cited approach 
has systematically been enhanced and transformed into a fully automatic process-
ing chain with several additional modules and functionalities (Esch et al., 2013). 
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This processing chain—the so-called Urban Footprint Processor—takes single 
look slant range complex (SSC) StripMap data of one TanDEM-X mission cover-
age (2011/2012) as input. The image analysis and classification module consists of 
three main components: (1) feature extraction, (2) classification, and (3) mosaicking 
and postediting. The input data as well as the intermediate layers and the final prod-
ucts are stored in a specific database W42 (Habermeyer et al., 2009), facilitating the 
effective handling and querying of the data. A schematic view on the UFP concept 
is given in Figure 5.1.

5.2.2.1 Feature Extraction
The first module of the UFP is dedicated to the extraction of the so-called speckle 
divergence (Esch et al., 2010), which allows one to derive texture information suit-
able for highlighting regions characterized by heterogeneous and highly structured 
built-up area. In particular, due to the strong scattering from double-bounce effects in 
urban areas typical of SAR data, the focus is on the analysis of the local speckle and 
its development is estimated accounting for the local image heterogeneity H (Esch 
et al., 2012) defined as:

 
H A

A

= σ
µ

 (5.1)

where σA  and µA represent the standard deviation and mean, respectively, of the 
original backscattering amplitude image A (stored inside a single look slant range 
complex image product, SSC) computed in a local neighborhood. According to Lee 
et al. (1992), the image heterogeneity H, the fading texture F  (which represents the 
heterogeneity caused by speckle), and the true image texture T  are related as follows:

 H T F T F2 2 2 2 2= + +  (5.2)

On the one side, homogeneous surfaces without true structuring (e.g., noncultivated 
bare soil, grasslands) exhibit almost no true texture T ; hence, H approximates the 
fading texture F , which results in very low values with the backscattering almost 
randomly distributed. On the other side, textured surfaces (e.g., urban environments, 
woodlands) show a significant amount of directional, non-Gaussian backscattering 
and are characterized by distinct structures, which result in high values for T , and 
hence in high H. This behavior is taken into consideration for defining a robust mea-
sure that properly describes the true image texture T . In particular, we account for 
the difference between the scene-specific heterogeneity F  and the measured local 
image heterogeneity H and, reasonably, we assume that T  grows with the increasing 
amount of real structures within the resolution cell. According to Equation 5.2, the 
square of the local true image texture T 2 (i.e., the speckle divergence S) is obtained as

 

( )
( )= = −

−
T S

H F
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It is worth noting that F  can be computed as a function of the number of looks N of a 
given SAR image. In particular, as done in Huang and Genderen (1996), we approxi-
mated it as = ⋅ −F Nˆ 0.5233 0.5 . Since we considered radiometrically unenhanced SSC 
products, it holds that N N NA R= ⋅ , where NA and NR represent the number of looks 
in azimuth and range, respectively. In the case of the complex SAR data used in 
this study, both NA and NR are equal to 1, finally leading to a final constant value 

=F̂ 0.5233 (Auquiere, 2001).
In order to reduce the amount of data (due to technical restrictions), a multilook-

ing is finally performed for rescaling both A and S  to a spatial resolution of ~0.4 
arcsec (~12 m), that is, concurrently the highest resolution in which the global DEM 
produced in the context of the TanDEM-X mission will be made available. For this 
purpose, we used the method described in Eineder et al. (2004), which has already 
been implemented in the TerraSAR-X multimode SAR processor.

5.2.2.2 Classification
The aim of the second module of the UFP is to derive a binary settlement layer 
(built-up, non-built-up) for the investigated scene provided as input with the back-
scattering image A and the corresponding speckle divergence S. This is carried out 
by means of a fully automatic and unsupervised technique whose main features are 
as follows.

Pixels showing high values of S  correspond to urbanized areas, while those 
associated with lower values correspond to non-built-up structures. Therefore, for 
each investigated scene, the objective is to determine a specific optimal threshold 
for S capable of effectively discriminating between built-up and non-built-up areas.

All those pixels with a backscattering amplitude lower than the prefixed thresh-
old ThA = 100 (i.e., derived from a number of experiments on hundreds of different 
images and corresponding to ~−10 dB) are initially marked as nonurban and are 
associated with information classes not belonging to built-up areas (e.g., surfaces 
with a smooth mesoscale roughness, water bodies).

A set of M candidate thresholds for S, { }Th m m
MS

=1, Th Th M1
S S> >� , is then deter-

mined based on the specific image dynamics. For each of them, samples are cat-
egorized into urban (Um) or nonurban ( , ))(L L A Sm m= x x  candidates depending on 
whether the corresponding speckle divergence value is greater or lower than Th m

S , 
respectively. Afterward, we compute the Jensen–Shannon divergence D U LJS m m[ || ] 
(Lin, 1991) accounting for both A and S, which allows us to estimate the “distance” 
between U U x xm m= ( , )A S  and L L x xm m= ( , )A S  (i.e., the probability distributions of 
Um and Lm, respectively), where xA A∈  and x SS ∈ .
D U LJS m m[ || ]  increases with increasing Th m

S , while it decreases as the threshold 
gets lower. As soon as the two distributions Um and Lm start to significantly overlap, 
there is a consistent fall in D U LJS m m[ || ]. When this happens, it means that the corre-
sponding threshold Th m*

S  allows optimal separation between the urban and nonurban 
distributions based on the specific statistics of the image under analysis. Then the 
subset Um* is employed for training a one-class classifier based on support vector 
data description—SVDD (Tax and Duin, 2004). SVDD is based on the principles 
of support vector machines (SVM) and aims at determining the hypersphere with 
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minimum radius enclosing all the training samples available for the unique class of 
interest. In our case, samples falling inside the boundary are finally associated with 
built-up areas, whereas all the others are labeled as nonurban. This approach permits 
increasing generalization and obtaining a more consistent and reliable final UF map Gm*.

5.2.2.3 Mosaicking and Postediting
The last module of the UFP is dedicated to specific mosaicking and masking opera-
tions that are applied in an automated postediting phase to further improve the qual-
ity of the generated UF product. Let us assume that K different SAR images { }I k

k
K

=1 
are available and that the corresponding geocoded UF maps { }*Gm

k
k
K

=1 (obtained as 
 output of the second module of the UFP) are employed for creating the final UF 
mosaic M for the investigated study region. The criterion adopted for selecting the 
optimal threshold for S generally results in a robust performance. Nevertheless, in 
some cases it could happen that one or a few UFs exhibit slight under- or overesti-
mation of urban areas with respect to corresponding neighboring UFs in mosaic 
M (which might then show a sort of striping effect). This phenomenon mostly occurs 
for scenes located at the coastline and generally includes mainly water with just a 
few land areas; indeed, this leads to extreme distributions that hinder the proper 
definition of accurate classification settings. In order to solve this problem, we 
implemented a simple but effective technique, which accounts for the fact that each 
TanDEM-X image partly overlaps with at least four of its neighbors. In particular, 
by comparing the number of samples categorized as urban falling in the intersec-
tions between neighboring scenes, we can identify UFs showing under- or overes-
timation. We assume under- or overestimation as soon as the analyzed UF shows a 
significant systematic trend in the deviation of the estimated urban area compared 
to all its neighboring UF scenes. In case of underestimation, we generate three addi-

tional versions + =G{ }m i
k

i*
¯

1
3  (where k  denotes the UF outlier tile to refine) by choosing 

as many relaxed thresholds for S, whereas in case of overestimation, we generate 
three additional maps − =G{ }m i

k
i*

¯
1

3  by choosing as many stricter thresholds for S. In both 
 circumstances, we then select the version that fits best with its neighbors (i.e., the one 
exhibiting the lowest difference with respect to the neighboring UFs in terms of the 
number of urban samples).

It is worth noting that sometimes highly mountainous areas are misclassified 
as built-up regions since they show high values for both A  and S  as an effect of 
the high backscattering and texture in areas showing layover or foreshortening. To 
solve this issue, a dedicated mask has been implemented by taking into consider-
ation the ASTER Global DEM (NASA, 2013) and marking all those pixels showing 
a slope (i.e., the maximum rate of height change between each pixel and its closest 
eight neighbors computed as in Horn [1981]) higher than 20° in the neighborhood 
of a local peak as nonurban. With this approach, the rate of false detections in areas 
with layover or foreshortening could be decreased significantly. As soon as the 
high-resolution TanDEM-X mission DEM becomes available in 2015, this new data 
set will be used to further optimize the presented procedure for the correction of 
topographic effects.
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5.2.3 Urban fOOtprint settlement masks

So far, the UFP has produced both A and S for a total of 140,000 scenes acquired 
in the context of the first TanDEM-X mission coverage (2011/2012) with each scene 
covering an area of ~50 × 30 km. Moreover, a number of globally distributed test 
runs for the final UF/GUF generation have been performed investigating either sin-
gle scenes or extensive mosaics consisting of several hundred images. An accuracy 
assessment of the corresponding results showed that the overall accuracies mostly 
lie in the range of 70%–90%. The validation was performed by visually comparing 
1500 randomly distributed reference points for the study regions to VHR satellite 
data, aerial imagery, or other suitable reference data available. These results are in 
line with the outcomes of earlier studies investigating the methodological precursors 
of the UFP technique (Esch et al., 2010, 2011, 2012; Taubenböck et al., 2011, 2012).

Figure 5.2 shows three mosaics for the region of Japan based on TanDEM-X 
backscattering amplitude images (A), the derived texture data (S), and the UF/GUF 

(a)

(b)

(c)

FIGURE 5.2 Japan mosaics (608 scenes) generated from (a) the original backscattering 
amplitude images, (b) the extracted speckle divergence texture features, and (c) the final set-
tlement masks obtained with the UFP.
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classification, respectively. Each mosaic is composed of 608 single data sets cover-
ing a total area of ~378.000 km2. The UF/GUF for entire Japan clearly visualizes 
the concentration of urban centers along the coastline. The large urban hubs such 
as Osaka or Tokyo stick out, with Tokyo, the largest metropolitan area in the world 
with approximately 36 million inhabitants, showing an immense urban spread 
into the hinterland. To further pinpoint the characteristics of the UF/GUF product, 
Figure 5.3 illustrates several exemplary spatial zooms to specific regions of the 
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FIGURE 5.3 (See color insert.) Optical data (from Google Earth), TanDEM-X mission 
backscattering amplitude A, speckle divergence S , urban footprint G, and the corresponding 
MODIS 500 urban class map for the Japanese cities of Osaka, Saku, Saga, and Furano.
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mosaic of Japan. The UFP products A, S, and UF/GUF are opposed to a VHR 
optical image and the urban area classification provided by the global MODIS 500 
layer. The UF/GUF masks highlight the spatial diversity among the settlement 
patterns. Osaka, a large coastal city, clearly features an urban center with complex 
patterns in the outskirts due to the hilly terrain in the hinterlands. In Saku, a com-
paratively small city, the orographic situation of a valley determines the longitudi-
nal urban outline with axial development directions. Saga, also a small urbanized 
area, shows the most typical structure, with a clear urban center and decreasing den-
sities in suburban areas. In the case of the rural Furano region, the UF/GUF clearly 
indicates the two urban settlements in that region along with several small villages 
distributed in between them. It is interesting to note that the MODIS 500 results 
of the Urban Footprints generally captured the same basic urban extents—at least 
for the large city of Osaka. However, the capability to delineate the settlement pat-
terns is limited to the urban core, while the details in the hinterlands with lower 
densities are not adequately recognized. This becomes obvious for the Saku case, 
as MODIS 500 did not detect any urbanized areas in this complex terrain or in the 
Furano region where not all of the small villages were identified. The examples 
highlight that the UF/GUF products hold certain potential to provide valuable 
geoinformation for a spatially more detailed delineation of urban, peri-urban, and 
rural settlement patterns compared to currently available GHSDs.

Settlement patterns across the globe are highly diverse. This becomes obvious 
by looking at the globally distributed UF/GUF masks generated for the regions 
of Rome (Italy), Izmir (Turkey), Oklahoma City (United States), and Zanzibar 
(Tanzania) shown in Figure 5.4. The different scales of the given examples allow 
us to assess the capabilities of the UF/GUF to see large area settlement patterns in 
their spatial configurations with, for example, Rome or Izmir as dominant urban 
centers and a hierarchical system of smaller urban centers or low-density rural 
settlements. At the same time, structural details of cities are captured, as the exam-
ples of Zanzibar and Oklahoma display. The capability of the algorithm to even 
ignore open spaces without any vertical structures such as buildings or green belts 
within the urban centers becomes obvious. The examples stress that the settlement 
patterns can be extracted and characterized for diverse geographical regions and 
landscape types using the TanDEM-X mission imagery and the UFP technique, 
respectively.

However, the previous validation studies of the UF/GUF products have shown 
that errors mainly comprise errors of commission originating from extreme local 
topographies typically occurring in mountainous or alpine regions as well as areas 
showing strong erosion patterns or a high local mesoscale roughness (e.g., particular 
forms of stone deserts or glacier ice fields). Nevertheless, if spatially not too detailed, 
the corresponding errors can be eliminated at the DEM-based postprocessing stage. 
For the remaining cases, we work on specific pattern recognition techniques to 
 identify the nonurban high-texture regions. In addition to the effects mentioned 
 earlier, man-made objects with a vertical dimension—for example, poles of power 
lines, railway tracks, fortified watersides—also lead to false detections of assumed 
settlements. Here, the specific pattern recognition techniques are also supposed to 
help reduce the number of false alarms.
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5.3 CONCLUSIONS AND OUTLOOK

In this chapter, we have highlighted the new perspectives for the generation of a 
worldwide inventory of human settlements arising from the analysis of the unique 
set of VHR SAR imagery collected by the TanDEM-X mission. In this context, 
we presented DLR’s GUF idea along with its technical implementation, that is, 
the fully automatic processing and image analysis system of the UFP. Using the 

Rome (Italy) Izmir (Turkey)
Sp

ec
kl

e d
iv

er
ge

nc
e 

U
rb

an
 fo

ot
pr

in
t 

M
O

D
IS

 5
00

Oklahoma City (USA) Zanzibar (Tanzania)
G

oo
gl

e 
Ea

rt
h

50 km 15 km 30 km 2 km

Ba
ck

sc
at

te
rin

g 
am

pl
itu

de
 

FIGURE 5.4 Optical data (from Google Earth), TanDEM-X mission backscattering ampli-
tude A, speckle divergence S, urban footprint G, and the corresponding MODIS 500 urban 
class map for the cities of Rome (Italy), Izmir (Turkey), Oklahoma City (United States), and 
Zanzibar (Tanzania).
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TanDEM-X mission data of the first coverage (~140.000 images), we could test 
the performance of the processing chain and assess the resulting UF/GUF mask 
on the basis of several thousand globally distributed images. The results of these 
tests demonstrate the high potential of the GUF approach to provide a spatially 
detailed map of global settlement patterns for urbanized areas as well as for rural 
regions. Moreover, the acquisition of the global data set within the comparably 
short period of ~12 months qualifies this layer as an interesting baseline product 
for future comparative studies of the urbanization in different regions of the world 
from a local up to a global level. With these properties, the GUF data set holds a 
certain potential to boost applications and analyses in the context of urbanization 
patterns, peri-urbanization, spatiotemporal dynamics of settlement development 
as well as population estimation, vulnerability assessment, or the modeling of 
global change.

With the described characteristics, the GUF will provide a unique data set that 
is to some extent complementary to the existing GHSDs derived from MR or HR 
optical imagery. Spaceborne SAR systems, as opposed to optical sensors, are active 
imaging devices operating in a single wavelength or frequency. Hence, the appear-
ance of surfaces or objects in the SAR imagery is determined by geometrical and 
dielectric properties of the illuminated objects than by the biophysical or chemical 
characteristics as in the case of optical data.

However, the outcomes have also shown that the accuracy of the methodology 
can still be improved, in particular in the context of reducing the false alarms rate 
in highly textured areas showing backscattering characteristics that are locally quite 
similar to that of built-up areas (e.g., regions featuring many man-made infrastruc-
tures not representing settlements, extreme topographies, or peculiar forms of rice 
fields and forest areas). Hence, we are currently enhancing and extending the auto-
mated postediting module in order to specifically improve the performance in criti-
cal areas. Moreover, a systematic, worldwide validation campaign based on globally 
distributed in situ ground-truth information is scheduled for the near future. In the 
overall perspective, the completion of a first global GUF data set is planned for 2014. 
In addition to the full-resolution 12 m product, a public domain version will be made 
available at a spatial resolution of 3.0 arcsec (~75 m).

Regarding follow-on research and development, it is planned to adapt the 
UFP to all TerraSAR-X/TanDEM-X imaging modes (ScanSAR, SpotLight) as 
well as to other SAR satellites such as Sentinel-1 or Radarsat-2. Moreover, the 
 calculation and consideration of long-term coherences will be investigated—
between the first and second TanDEM-X mission coverage, but also based on 
data from satellites like Sentinel-1. Initial studies have also shown the poten-
tial to  characterize building structures and estimate building densities based on 
texture measures or the modeling of building volume on building block level 
using the VHR DEM data generated on the basis of TanDEM-X mission imagery. 
Considering ongoing preparations of various HR GHSDs by different teams, a 
systematic comparison of the methodologies and results might help in identifying 
synergies as well as potentials for the enhancement of each GHSD by improving 
the underlying techniques or by combining or including intermediate or final 
products of the different approaches.
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6.1 INTRODUCTION

Nighttime lights are a class of urban remote sensing products derived from  satellite 
sensors with specialized low light imaging capabilities. To date, two sensors have 
collected global nighttime lights data. The original instrument is the operational lin-
escan system (OLS) flown by the U.S. Air Force Defense Meteorological Satellite 
Program (DMSP). The earliest version of the OLS began collecting data in the early 
1970s. A digital OLS data archive was established in 1992 at the National Oceanic 
and Atmospheric Administration (NOAA) National Geophysical Data Center 
(NGDC). The second instrument flown with a global  collection capability for low 
light imaging data is the visible infrared imaging  radiometer suite (VIIRS) flown on 
the NASA/NOAA SNPP satellite, launched in 2011. The VIIRS offers  substantial 
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improvements in spatial resolution, radiometric calibration, and usable dynamic 
range when compared to the DMSP low light imaging data.

The DMSP nighttime lights provide the longest continuous time series of global 
urban remote sensing products, now spanning 21 years. The flagship product is the 
stable lights, an annual cloud-free composite of average digital brightness value for 
the detected lights, filtered to remove ephemeral lights and background noise. The 
stable lights present a panoramic view of humanity from space (Figure 6.1). At a 
glance, one gets a sense of how population, commerce, and resource consumption 
are distributed. There are thousands of points of light forming clusters of various 
shapes, surrounded by the darkness of rural and ocean areas (Elvidge et al., 2001).

Other global urban remote sensing products focus on mapping areas of dense infra-
structure, producing binary grids, assigning each grid cell to urban or nonurban. Small 
towns and development in rural areas are neglected due to a lack of diagnostic signals. 
In contrast, the DMSP and VIIRS measure a human activity—artificial lighting—which 
is commonly present wherever there is built infrastructure. DMSP and VIIRS are able 
to detect faint light sources from small towns and exurban development that are sub-
stantially smaller than the ground footprint of the observations. One of the advantages 
of nighttime lights over the binary urban maps is that they offer the user the option for 
additional processing to meet the objectives of their specific application. For instance, 
to prepare the nighttime lights for a study of dense urban cores, dim lighting from the 
sparse edges of urban areas can be removed by applying a threshold.

Because of their global extent, standardized production, and the relative ease with 
which DMSP nighttime lights can be accessed, they have been widely used as a 
proxy for other more difficult to measure variables. The logic is that urban processes 
are highly correlated with each other. If one process or activity can be measured 
well, it can be used to make reasonable estimates of others. As examples, nighttime 
lights have been used to map economic activity (Ghosh et al., 2010), fossil fuel car-
bon emissions (Rayner et al., 2010), spatial distribution of population (Doll, 2008; 
Sutton, 1997), poverty mapping (Elvidge et al., 2009a), density of constructed sur-
faces (Elvidge et al., 2007), food demand (Matsumura et al., 2009), water use (Zhao 
et al., 2011), and stocks of steel and other metals (Hsu et al., 2013).

The NGDC recently reprocessed the DMSP time series producing 33 annual products 
from six satellites spanning 21 years. This is referred to as the v.4 DMSP stable lights 
time series. One of the key questions for the science community is whether it is possible to 
reliably analyze changes in lighting across the time series. This capability is not assured 
since the visible band on the OLS has no in-flight calibration. From preflight calibrations, 
it is known that the sensors differ from each other in terms of radiometric performance. 
There are also minor differences in spectral bandpasses of the six instruments. Even at 
launch, the sensors had different detection limits and saturation radiances. The saturation 
radiance issue is serious since bright urban cores saturate in this time series. In addition, 
the individual sensors invariably degrade in optical throughput over time. To address all 
of these issues, we have developed an intercalibration that is designed to convert data 
values from individual satellite products into a common range defined by reference year.

This chapter has two primary objectives. The first objective is to evaluate whether 
changes in nighttime lights can be quantitatively analyzed with the intercalibrated 
v.4 DMSP stable lights time series. The second objective is to search for underlying 
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variables that cause changes in satellite-observed lighting. Since the lighting observed 
by the satellite is from illuminated infrastructure, processes that result in the con-
struction of new infrastructure are the causes of increase in satellite-observed lighting. 
We decided to explore the population and gross domestic product (GDP) as candidate 
variables since population growth and economic expansion are logical drivers for the 
expansion of infrastructure. The question on the behavior of lighting is whether there 
is a standard relationship between population and economic activity—or do countries 
differ in the manner in which lighting behaves in response to changes in population 
and economic activity levels?

6.2 REPROCESSING OF THE DMSP ARCHIVE

The DMSP archive was processed on annual increments using the data from each 
available satellite to produce a time series of global cloud-free stable lights products 
using the methods described in Baugh et al. (2010). Each orbit is analyzed in a step-
wise fashion to identify the pixel set meeting the following criteria:

 1. Center half of orbital swath (best geolocation, reduced noise, and sharpest 
features)

 2. No sunlight present
 3. No moonlight present
 4. No solar glare contamination
 5. Cloud-free (based on thermal detection of clouds)
 6. No contamination from auroral emissions
 7. Normal gain settings (no reduced gain data)
 8. Masking of lighting in gas flaring areas

Nighttime image data from individual orbits that meet the aforementioned  criteria 
are added into a global latitude–longitude grid (Platte Carree  projection) having a 
resolution of 30 arcsec. This grid cell size is approximately a square kilometer at the 
equator. The total number of coverages and number of cloud-free coverages are also 
tallied. In the typical annual cloud-free composite, most areas have 20–100 cloud-
free observations, providing a temporal sampling of the locations and brightness 
variation of lights present on the earth’s surface. This is then filtered to remove fires 
based on their high digital number (DN) values and lack of persistence. Background 
noise is removed by setting thresholds based on visible band values found in areas 
known to be free of detectable lighting. In many years, data were available from two 
satellites, and two global composites were included in the analysis. The result is a set 
of 30 global products spanning 18 years (Table 6.1).

6.3 INTERCALIBRATION AND DATA EXTRACTION

Unfortunately, the OLS has no on-board calibration for the visible band. The preflight 
calibration for the individual instruments is of little value because the gain commands 
made to the instrument are not recorded in the data stream. We developed an inter-
calibration for the individual composites following an empirical procedure (Elvidge 
et al., 2009b). This is a regression-based procedure, relying on the assumption that 
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the brightness of lighting in a reference area has changed little over time. Samples 
of lighting from human settlements (cities and towns) were extracted from numerous 
candidate reference areas and examined. In reviewing the data, it was found that the 
data from satellite year F121999 had the highest digital values. Because there is satura-
tion (DN = 63) in the bright cores of urban centers and large gas flares, F121999 was 
used as the reference, and the data from all other satellite years were adjusted to match 
the F121999 data range. In examining the candidate intercalibration areas, it was found 
that many had a cluster of very high values (including saturated data with DN = 63) 
and a second cluster of very low values. We concluded that having a wide spread of DN 
values would be a valuable characteristic since it would permit a more accurate defini-
tion of the intercalibration equation. By examining the scattergrams of the DN values 
for each year versus F121999, we were able to observe evidence of changes in lighting 
based on the width of the primary data axis and quantity of outliers away from the pri-
mary axis. Our interpretation was that areas having very little change in lighting over 
time would have a clearly defined diagonal axis with minimal width. Of all the areas 
examined, Sicily had the most favorable characteristics—an even spread of data across 
the full dynamic range and a clearly defined diagonal cluster of points. A second-order 
regression model was developed for each satellite year, as shown in Table 6.2.

TABLE 6.1
Stable Lights Time Series Includes Data from Six Satellites 
and Spans 21 Years

Year F-10 F-12 F-14 F-15 F-16 F-18 

1992 F101992

1993 F101993

1994 F101994 F121994

1995 F121995

1996 F121996

1997 F121997 F141997

1998 F121998 F141998

1999 F121999 F141999

2000 F142000 F152000

2001 F142001 F152001

2002 F142002 F152002

2003 F142003 F152003

2004 F152004 F162004

2005 F152005 F162005

2006 F152006 F162006

2007 F152007 F162007

2008 F162008

2009 F162009

2010 F182010

2011 F182011

2012 F182012
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An extraction, which summed up the DN values for the lighting found in each 
 country for each of the satellite years, was performed. Lighting from gas flares was 
masked out based on methods described by Elvidge et al. (2009). The extraction 
performs two important adjustments to the values for each grid cell. First, the inter-
calibration is applied based on the offsets and coefficients listed in Table 6.2. The 
form of the calculation is Y = C0 + C1X + C2X2. Calculated values that run over 63 
are truncated at 63. Thus, the application of the intercalibration increases the number 

TABLE 6.2
Coefficients for the Intercalibration Applied the Digital 
Values in the Time Series

Satellite Year C0 C1 C2 R2 Number 

F10 1992 −2.0570 1.5903 −0.0090 0.9075 35,720

F10 1993 −1.0582 1.5983 −0.0093 0.9360 38,893

F10 1994 −0.3458 1.4864 −0.0079 0.9243 36,494

F12 1994 −0.6890 1.1770 −0.0025 0.9071 34,485

F12 1995 −0.0515 1.2293 −0.0038 0.9178 37,571

F12 1996 −0.0959 1.2727 −0.0040 0.9319 35,762

F12 1997 −0.3321 1.1782 −0.0026 0.9245 37,413

F12 1998 −0.0608 1.0648 −0.0013 0.9536 37,791

F12 1999 0.0000 1.0000 0.0000 1.0000 39,157

F14 1997 −1.1323 1.7696 −0.0122 0.9101 36,811

F14 1998 −0.1917 1.6321 −0.0101 0.9723 36,701

F14 1999 −0.1557 1.5055 −0.0078 0.9717 38,894

F14 2000 1.0988 1.3155 −0.0053 0.9278 37,888

F14 2001 0.1943 1.3219 −0.0051 0.9448 38,558

F14 2002 1.0517 1.1905 −0.0036 0.9203 36,964

F14 2003 0.7390 1.2416 −0.0040 0.9432 38,701

F15 2000 0.1254 1.0452 −0.0010 0.9320 38,831

F15 2001 −0.7024 1.1081 −0.0012 0.9593 38,632

F15 2002 0.0491 0.9568 0.0010 0.9658 38,035

F15 2003 0.2217 1.5122 −0.0080 0.9314 38,788

F15 2004 0.5751 1.3335 −0.0051 0.9479 36,998

F15 2005 0.6367 1.2838 −0.0041 0.9335 38,903

F15 2006 0.8261 1.2790 −0.0041 0.9387 38,684

F15 2007 1.3606 1.2974 −0.0045 0.9013 37,036

F16 2004 0.2853 1.1955 −0.0034 0.9039 36,856

F16 2005 −0.0001 1.4159 −0.0063 0.9390 38,984

F16 2006 0.1065 1.1371 −0.0016 0.9199 37,204

F16 2007 0.6394 0.9114 0.0014 0.9511 37,759

F16 2008 0.5564 0.9931 0.0000 0.9450 37,469

F16 2009 0.9492 1.0683 −0.0016 0.8918 33,895

F18 2010 2.3430 0.5102 0.0065 0.8462 36,445

F18 2011 1.8956 0.7345 0.0030 0.9095 36,432

F18 2012 1.8750 0.6203 0.0052 0.9392 37,576
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of saturated pixels (DN = 63). The resulting values are then adjusted to compensate for 
the change in surface area in the 30 arc second grid. The digital values are then concate-
nated to derive the “sum-of-lights” index value (or SOL) from each satellite year for each 
country. To exclude the dim lighting detected in rural areas and to compensate for differ-
ence in the detection limits of the different products, only DNs of six or larger are added 
to the SOL. The output of the SOL extraction is a CSV file, which is then converted to a 
spreadsheet with charts showing the time series results for individual countries.

The objective of the intercalibration is to make it possible to detect changes in the 
brightness of lights across the time series. One indication of a successful intercalibration is 
the convergence of SOL values in years where two satellite products are available. Another 
indication of a successful intercalibration is the emergence of clear trajectories such as 
continuous growth in lighting across the time series. In most countries, the intercalibration 
yielded substantial convergence. The raw versus intercalibrated SOL for Egypt, showing 
both convergence of SOL values in individual years and the emergence of a clear upward 
trajectory in the steady growth in lighting from year to year, is shown in Figure 6.2. From 
reviewing the results for many other countries, it is clear that the intercalibration brought 
about substantial convergence in many countries. The lack of convergence within single 
year pairs in some countries may have been caused by changes in lighting activity between 
the overpass times of the satellites, which can differ by as much as 2 h.

6.4 DEFINING NIGHTTIME LIGHTS BEHAVIOR

Regressions were run between the annual SOL data versus annual population 
and annual GDP. The population data were drawn from U.S. Census Bureau, 
International Data Base (http://www.census.gov/ipc/www/idb/). As an indicator of 
economic activity, we use GDP data, normalized through a purchasing power parity 
(PPP) analysis, drawn from the World Development Indicators database (http://data.
worldbank.org/data-catalog/world-development-indicators). In the data analysis, we 
make use of the correlation coefficient, or Pearson’s R, which is a measure of the 
correlation (linear dependence) between two variables.

By examining the correlation coefficients for SOL with population and SOL and 
GDP (Figure 6.3), it is clear that most countries (90%) fall on a primary diagonal axis. 
This axis is defined by points where the R values with population and GDP are approxi-
mately the same, generally within 0.3 of each other. There are two sets of outlier coun-
tries, where the sign of the R values for population and GDP do not match. We divided 
the countries into seven groups based on the behavior of their lighting relative to popu-
lation and GDP: (1) rapid growth, (2) moderate growth, (3) population centric, (4) GDP 
centric, (5) stable, (6) erratic, and (7) antipole. Each of the seven will be discussed next. 
The decision tree used to sort the countries into the seven groups is shown in Figure 6.4.

6.4.1 cOUntries With rapiD GrOWth in liGhtinG

In the upper tip of the primary axis shown in Figure 6.3 is a tightly packed cluster of coun-
tries with very high correlation coefficients for both GDP and population. Examination 
of the SOL versus time charts for these countries indicates that they have had rapid 
growth in lighting over a substantial portion of the 20-year temporal record. Also, there 
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is very little dispersion in SOL values between satellite products from the same year. 
We define this group as the “rapid growth countries.” They are identified as the set of 
countries where the sum of the GDP and population correlation coefficients exceeds 1.8. 
This category includes 31 countries, starting from the country with the highest sum of 
R values to the lowest: Mali, Portugal, Egypt, Vietnam, Qatar, Libya, Botswana, Oman, 
Iran, Morocco, China, Cyprus, Burkina Faso, Mozambique, Ethiopia, Bhutan, Yemen, 
Senegal, Jordan, Afghanistan, Grenada, Malaysia, Cape Verde, Liberia, St. Lucia, 
United Arab Emirates, Tunisia, Laos, Greece, Chile, and Bolivia. These countries have 
expansions in both population and GDP. The concomitant expansion in lighting is an 
indication that infrastructure has been built to enable higher standards of living. China 
can be considered an exemplar of this group of countries (Figure 6.5). Note that the SOL 
in China grew steadily from 1992 to 2011. There is an indication of minor declines in 
lighting in 2012 relative to 2011.

R of GDP PPP and SOL +
R of population and SOL

Rapid growth>1.8

>1

<–1

Moderate
growth

Antipole

YES

YES

YES

ErraticStable

NO

NO

NO

Population
centric

R of GDP PPP and SOL < 0
and

R of population and SOL > 0.5

R of GDP PPP and SOL > 0.2
and

R of population and SOL < 0

GDP
centricSOL mean >0.15SOL standard deviation

FIGURE 6.4 Decision tree developed for categorizing countries based on the behavior of 
their satellite-observed lighting over time in relation to GDP and population.
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FIGURE 6.5 China is an exemplar of a country with rapid growth in lighting. Note that 
SOL tripled in 20 years. The correlation coefficients with GDP and population are very high: 
(a) Sum of lights versus time, (b) sum of lights versus GDP, and (c) sum of lights versus 
population.
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6.4.2 cOUntries With mODerate GrOWth in liGhtinG

Moderate-growth countries are defined as those where the sum of the GDP and 
population correlation coefficients was larger than 1 and less than 1.8. This group 
includes 65 countries (in descending order): Saudi Arabia, Honduras, Angola, Belize, 
Argentina, Guatemala, Malawi, Spain, Eritrea, Benin, Sudan, Trinidad & Tobago, 
Equatorial Guinea, Sri Lanka, the Gambia, Panama, India, Italy, Suriname, Brazil, 
Peru, Syria, Israel, Congo, Turkmenistan, Ecuador, Antigua & Barbuda, Barbados, 
Algeria, Swaziland, Mauritius, Zambia, Congo DRC, Lesotho, Bahrain, Cambodia, 
Paraguay, Mauritania, Bosnia & Herzegovina, El Salvador, Gabon, Thailand, Cote 
d’Ivoire, Namibia, South Africa, Iraq, Indonesia, Maldives, South Korea, Turkey, 
Chad, Ireland, the Bahamas, Nicaragua, Mongolia, Mexico, Ghana, Sierra Leone, 
Austria, Costa Rica, Uganda, Philippines, Haiti, Djibouti, and France. These coun-
tries exhibit some growth in lighting over time, but the percentage growth is lower, 
and often the duration of the growth is confined to a specific set of years. There 
are typically one or more clear breaks in slope in the SOL versus time records. 
Spain is an exemplar for countries having moderate growth in lighting (Figure 6.6). 
Note that lighting grew by about a third from 1992 to 2008. Lighting has declined 
slightly from 2008 to 2012, a period of economic downturn and government auster-
ity in Spain.

6.4.3 antipOle liGhtinG cOUntries

The rapid and moderate growth countries occupy the quadrant of Figure 6.3 where 
both the GDP and population correlation coefficients are positive. In the opposite 
quadrant of Figure 6.3, there is a loose cluster of 12 countries where both cor-
relation coefficients are negative. The negative sign indicates that lighting either 
declines or remains stable despite growth in population and GDP. We define this 
group as the antipole countries and identify them as the set where the sum of the 
GDP and population correlation coefficients is −1 or greater. There are 13 countries 
in this category, a small number compared to the total for the moderate and rapid 
growth categories. The antipole group includes several countries from the former 
Soviet Union—Tajikistan, Uzbekistan, and Kyrgyzstan. These were among the 
poorest republics of the Soviet Union and remain among the poorest countries in 
Central Asia today. It appears that over time, lighting has been decommissioned, 
probably due to government inability to provide services to the population. Also in 
the antipole group are some of the richest and most well-developed countries in the 
world—Canada, the United Kingdom, Japan, the United States, the Netherlands, 
and Belgium. In these countries, aggregate lighting has declined despite expansions 
in population numbers and GDP. Our interpretation of this decline in lighting is 
that ongoing improvements in lighting efficiency are offsetting the growth in illu-
minated infrastructure. Over the past two decades, there has been a proliferation 
of state and local regulations designed to conserve energy and protect the night 
sky from light pollution. This includes banning incandescent lights and improving 
shielding to limit the quantity of light that shines directly into the sky. Uzbekistan 
is an exemplar of the antipole group (Figure 6.7).
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FIGURE 6.6 Spain is an exemplar of a country with moderate growth in nighttime lights: 
(a) Sum of lights versus time, (b) sum of lights versus GDP, and (c) sum of lights versus 
population.



110 Global Urban Monitoring and Assessment through Earth Observation

y = –15.566x + 4E + 07
R2 = 0.8286

Sum of lights(c)

Po
pu

la
tio

n

4.0E + 05

3.1E + 07
2.9E + 07
2.7E + 07
2.5E + 07
2.3E + 07
2.1E + 07
1.9E + 07
1.7E + 07
1.5E + 07

5.0E + 05 6.0E + 05 7.0E + 05 8.0E + 05 9.0E + 05 1.0E + 06

Sum of lights(b)

y = –144413x + 2E + 11
R2 = 0.7206

1.0E + 11

8.0E + 10

6.0E + 10

4.0E + 10

2.0E + 10

0.0E + 00
4.0E + 05 5.0E + 05 6.0E + 05 7.0E + 05 8.0E + 05 9.0E + 05 1.0E + 06

1.2E + 11

Year

Su
m

 o
f l

ig
ht

s

(a)

1.0E + 06
9.0E + 05
8.0E + 05
7.0E + 05
6.0E + 05
5.0E + 05
4.0E + 05
3.0E + 05
2.0E + 05
1.0E + 05
0.0E + 00

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

F18 SOL

F10 SOL
F12 SOL
F14 SOL
F15 SOL
F16 SOL

G
D

P 
PP

P 
(c

ur
re

nt
 U

S$
)

FIGURE 6.7 Uzbekistan is an exemplar of an antipole lighting country. Lighting has 
declined over time, and the correlation coefficients with GDP and population are negative: 
(a) Sum of lights versus time, (b) sum of lights versus GDP, and (c) sum of lights versus 
population.
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6.4.4 cOUntries With stable Or erratic liGhtinG

There is a large group of countries falling in the middle of the primary axis in Figure 6.3. 
Their SOL values lack strong correlation to either GDP or population. We divide this 
cluster into two groups. In the stable lighting group, we place the countries with SOL 
values that are highly consistent between satellites observing them in the same year. 
This includes 27 countries: Cameroon, Switzerland, Niger, Pakistan, Kuwait, Uruguay, 
Tanzania, Seychelles, Madagascar, St. Vincent & the Grenadines, Nigeria, St. Kitts & 
Nevis, Gaza Strip, Venezuela, Nepal, Australia, Kenya, Bangladesh, Luxembourg, 
Germany, Colombia, Samoa, Finland, Malta, Papua New Guinea, Singapore, and 
New Zealand. Australia is an exemplar for stable lighting (Figure 6.8).

Co-mingled with the stable lighting countries is a group of 29 countries with 
erratic lighting, where there is a zigzag pattern in the SOL values over time. The dis-
crimination between the stable lighting and erratic lighting countries is based on an 
analysis of dispersion in SOL values in the years where two satellites collected data. 
For each country, a calculation is made of the percent dispersion around the mean, 
using the pairs of observations made within single years. Countries with less than 
20% dispersion in this metric are labeled as stable. Countries with more than 20% 
dispersion are labeled as erratic. The erratic country set includes some of the poorest 
countries in the world such as Rwanda, Burundi, and Timor Liste. Also included are 
several European countries such as Sweden, Norway, and Denmark. It is suspected 
that satellite-observed nighttime lights are unstable at high latitudes due to annual 
variations in the extent of snow cover. The Czech Republic is an exemplar of the 
countries with erratic lighting (Figure 6.9).

6.4.5 cOUntries With GDp-centric liGhtinG

There is a cluster of eight countries having a positive correlation coefficient with 
GDP and a negative (or zero) correlation coefficient with population: Albania, 
Armenia, Poland, Croatia, Dominica, Romania, Latvia, and Lithuania. These are in 
the upper left quadrant of Figure 6.3. Because of the positive correlation coefficient 
with GDP, these are referred to as “GDP-centric countries.” In these countries, GDP 
and lighting have been growing, whereas population has declined or has lagged rela-
tive to GDP. Except for Dominica, all of these countries were under the influence 
of the Soviet Union until the early 1990s. Dominica is an exemplar for GDP-centric 
lighting (Figure 6.10).

6.4.6 cOUntries With pOpUlatiOn-centric liGhtinG

There is a set of four countries (Kazakhstan, Moldova, Ukraine, and Russia) where 
lighting has a positive correlation coefficient with population and negative correla-
tion coefficient with GDP. These are in the lower right quadrant of Figure 6.3. Each 
of the countries was part of the former Soviet Union. In these countries, lighting has 
declined over time even though GDP has grown, resulting in the negative correla-
tion coefficients between SOL and GDP. Moldova is an exemplar for this group of 
countries (Figure 6.11).
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FIGURE 6.8 Australia is an exemplar of a country with stable lighting: (a) The SOL pattern 
from each available satellite from 1992 through 2009, (b) scattergram of the SOL versus GDP 
levels with a trend line, and (c) scattergram of the SOL versus population levels with a trend line.
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FIGURE 6.9 The Czech Republic is an exemplar of a country with erratic lighting: (a) The 
SOL pattern from each available satellite from 1992 through 2009, (b) scattergram of the 
SOL versus GDP levels with a trend line, and (c) scattergram of the SOL versus population 
levels with a trend line.
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FIGURE 6.10 Dominica is an exemplar of a country with GDP-centric lighting. There is 
an increase in lighting over time, a positive correlation coefficient with GDP, and a nega-
tive correlation coefficient with population: (a) The SOL pattern from each available satellite 
from 1992 through 2009, (b) scattergram of the SOL versus GDP levels with a trend line, and 
(c) scattergram of the SOL versus population levels with a trend line.
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FIGURE 6.11 Moldova is an exemplar of a country with population-centric lighting. There 
is a decline in lighting over time, a negative correlation coefficient with GDP, and a posi-
tive correlation coefficient with population: (a) The SOL pattern from each available satellite 
from 1992 through 2009, (b) scattergram of the SOL versus GDP levels with a trend line, and 
(c) scattergram of the SOL versus population levels with a trend line.
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6.5 DISCUSSION

Figure 6.12 summarizes the relationships between satellite-observed nighttime lights, 
GDP, and population. Lighting in the majority of countries has relatively equal affinity 
for GDP and population, forming the primary axis in Figure 6.12. The countries along 
this axis have a positive correlation between GDP and population. The densest concen-
tration of countries is in the upper right-hand corner, at the growth tip of the primary 
axis. In these countries, lighting is in tight synchronization with growth in GDP and 
population. This synchronization begins to break down as correlation coefficient val-
ues decline, moving toward the lower left corner of the chart. In the lower left corner, 
the SOL is negatively correlated with population and GDP. These are countries where 
the SOL has either declined or has been stable despite growth in population and GDP. 
A plausible explanation for this behavior is that improvements in lighting technology, 
such as improved shielding, have constrained SOL growth.

There is a second axis defined by countries that are dispersed away from the 
primary axis. For countries along the secondary axis, population and GDP are out 
of synchronization. With one exception, all the countries that are not part of the pri-
mary axis were subjected to economic collapse following the breakup of the Soviet 
Union. After initially declining in the early 1990s, GDP in these countries began to 
rise and eventually surpassed the Soviet era levels. However, population has either 
declined or shifted to a stable level. Because GDP and population are not in syn-
chronization, a secondary axis is formed. If lighting increases, the points plot in the 
upper left quadrant. If lighting decreases, the points plot in the lower right quadrant.
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6.6 CONCLUSION

An examination of the raw stable lights time series finds that there is a lack of radio-
metric consistency that confounds the analysis of changes in the brightness of sur-
face lighting. These issues can be reasonably resolved by applying an intercalibration. 
Evidence that the intercalibration works as intended include the convergence of SOL 
values in years where two satellites have products and the emergence of steady, con-
sistent upward trends in SOL values for countries undergoing rapid economic growth 
such as China and Vietnam. Our conclusion is that the intercalibrated v.4 DMSP night-
time lights time series is suitable for the analysis of changes in urban nighttime lights.

We found that population growth and economic growth are the primary vari-
ables contributing to the expansion of nighttime lights. In examining the two-decade 
record, we found that total lighting grew for more than half of the countries exam-
ined. This expansion in lighting is an indication of the expansion of built infrastruc-
ture, driven both by population growth and economic expansion. This suggests that 
the DMSP time series could be used to map expansion in infrastructure. Population 
and economic activity levels are typically reported as national or subnational sta-
tistics. Our results indicate that nighttime lights are good spatial proxies for use in 
mapping both population and economic activity.

At the aggregate level, total lighting is not growing in the world’s most developed 
nations, such as the United States, Japan, and some European countries. This is 
surprising, especially in the United States where the built infrastructure has grown 
substantially over the past two decades. The best explanation for this lack of growth 
in total lighting is that technological advances in lighting efficiency have kept pace 
with infrastructure expansion. To further test this hypothesis, the area of lighting 
could be examined, a different variable from the SOL studied here.

Satellite-observed lighting can contract in response to catastrophic events such as 
war, economic collapse, and de-population. Many of the countries associated with 
the former Soviet Union exhibited contraction in lighting during the 1990s. Satellite 
observations of lighting may be useful in identifying the urban areas that have been 
most heavily impacted by catastrophic events and in tracking their recovery.

Despite the numerous deficiencies of the DMSP-OLS, it is possible to extract 
coherent trends in satellite-observed lighting from the time series. The DMSP plans 
to fly the remaining two satellites into dawn–dusk orbits that have low value for 
nighttime lights. The DMSP F18 satellite is expected to collect usable nighttime data 
for several more years. In the long term, VIIRS will be the primary instrument col-
lecting low light imaging data suitable for monitoring urban areas worldwide. The 
overlap in VIIRS data collection with DMSP suggests that the current two-decade 
record of nighttime lights can be extended to three or more decades, providing urban 
scientists an extended record for analysis.

The temporal patterns of satellite-observed nighttime lights can be viewed as a 
signature tracking the metabolic processes of a nation. In underdeveloped countries, 
the lighting may go up and down from year to year in an erratic pattern or it may be 
more stable showing neither an upward nor a downward trend. Lighting can be lost 
following catastrophic events (e.g., political dissolution, war, or economic collapse), 
and such information can be used for tracking either economic or population losses. 
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Countries that have shifted from being underdeveloped to rapid economic growth 
typically have rapid growth in lighting, in synchronization with population and eco-
nomic growth. Developed countries tend to have stable and in some cases declining 
lighting, despite their continued economic and population growth.

We attribute the stability in lighting in developed countries to improvements in 
lighting efficiency. While there is continuing growth in urban and suburban infrastruc-
ture, the lighting being installed is more efficient. At the same time, older inefficient 
lighting is being replaced by higher efficiency lighting. For example, older lighting 
may have had either no shielding or limited shielding to prevent light from escap-
ing directly into the sky. New outdoor lighting in developed countries tends to be 
“full- cutoff,” with shielding extending below the position of the light source, blocking 
the direct escape of light into the sky. The improvements in lighting technology are 
driven by the drive toward energy efficiency and environmental concerns over outdoor 
lighting (Rich and Longcore, 2006). This is an example of a Kuznets curve, where a 
society’s environmental impacts decline as prosperity spreads, and there is increased 
environmental awareness and actions taken to protect the environment (Stern, 2004). 
One can imagine that in the future, the drive toward energy efficiency and minimizing 
human impacts on the environment will lead to decline in satellite-observed lighting 
in certain developed countries.

The findings of the national trends in satellite-observed lighting have implications 
for the approaches to be used in modeling either population or economic activity 
levels in individual countries. For instance, if a country has an erratic pattern of 
satellite-observed lighting, there may be wide error bars placed on estimates of GDP 
based on nighttime lights. In contrast, for a country undergoing rapid growth, the 
evidence indicates that nighttime lights will be a very good predictor of economic 
activity levels. For developed countries with stable lighting, the quantity of lighting 
at an aggregate level has very little linkage to the annual changes in population and 
GDP. One final consideration regarding the findings is that the presented results are 
at a national level, and there may be subnational variation that should be considered 
to fully utilize the information content of the nighttime lights.
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7.1 INTRODUCTION

7.1.1 backGrOUnD

Urbanization is a major issue in regional and global environmental changes [1] and 
socioeconomic problems [2]. Global urban area maps are used in various types of stud-
ies to assess the impacts of urbanization on the natural and human environments and to 
evaluate the critical aspects of urbanization such as the size, scale, and form of cities [3]. 
Remote sensing plays an important role in monitoring such geographic aspects of 
urbanization. Several global urban area maps and global land cover maps have been 
developed at coarse resolutions ranging from 300 to 1000 m using coarse-resolution 
satellite images (e.g., Advanced Very High Resolution Radiometer [AVHRR] [4,5], 
VEGETATION [6], Moderate Resolution Imaging Spectroradiometer [MODIS] [7–9], 
Defense Meteorological Satellite Program Operational Linescan System [DMSP-OLS] 
[10,11], and Medium Resolution Imaging Spectrometer [MERIS] [12]). These global 
land cover maps provide valuable information on urbanization for grid-based popula-
tion estimates [13,14], studying food problems [15], predicting epidemics [16,17], 
estimating ecological footprints [18], estimating tsunami mortality [19], and assessing 
damage from rising sea levels [20], especially for less documented regions.

As studies on urbanization have progressed, however, the spatial resolution of 
global urban area maps has been found to be insufficient for measuring the spatial 
structure of urban areas [2], for modeling land use conversion resulting from socio-
economic impacts [21], and for measuring disaster risks in coastal regions [22]. For 
such purposes, which require finer spatial data for urban areas, medium-resolution 
satellite data, such as Landsat and Advanced Spaceborne Thermal Emission and 
Reflection radiometer (ASTER) data, have commonly been used for urban studies 
at city scale [2,23]. Those data are valuable sources of information for identifying 
geographic features of urbanization because of their fine spatial resolution. In addi-
tion, a global coverage of the archive is advantageous in comprehensive and compara-
tive studies on urbanization. Several studies have developed urban area maps from 
medium-resolution satellite images (e.g., [2,23–25]); however, these maps were made 
for specific purposes and regions, and the map-making procedures used are not easily 
applicable to other purposes and regions. Development of a global urban area map at 
medium resolution is greatly needed for further progress in studies on urbanization.

To meet the demand for a medium-resolution global urban area map, we have demon-
strated the development of a global built-up area map from ASTER data. In this chapter, 
we present the development of the global built-up area map according to the following 
steps: (1) development of a ground truth database, (2) development of an automated 
algorithm to generate mosaic image data for cities around the world, (3) development 
of an automated algorithm for extracting built-up areas, (4) system development with 
grid computing, and (5) the resulting built-up area map on a global scale. This chapter 
concludes with perspectives on further development of the global built-up area map.

Because we focused on the development of a comprehensive system, some com-
ponent-specific problems remain, such as the baseline year used for scene selection 
and the accuracy of the built-up area extraction. These problems will be addressed in 
ongoing development efforts discussed in Section 7.7.
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7.1.2 DefinitiOn Of Urban

To develop the global urban area map, we had to define “urban.” The socioeco-
nomic literature defines an urban area by demographic and economic attributes [26]. 
However, identifying an urban area using such a definition depends greatly on the 
administrative units used because socioeconomic statistics are often available by 
administrative unit. When this type of definition is applied, urban development can-
not be monitored at a smaller scale than that of the administrative unit, which pro-
duces imprecision and time inconsistencies among regions and countries [26].

For the definition to be consistent throughout the world, we have to define urban 
areas by their physical aspects. Urban areas are commonly defined in the remote-
sensing literature as places characterized by a built-up environment, consisting of 
nonvegetative, human-constructed elements (e.g., roads, buildings, runways, and 
industrial facilities) [2,8,24]. Nonurban areas are defined as places without any built-
up environment (e.g., open spaces, forests, and agricultural fields). This definition 
has the advantage of being comparable across or within nations.

7.1.3 aster/vnir imaGes

We employed surface reflectance image data derived from the visible and near-
infrared (VNIR) subsystem of ASTER (ASTER/VNIR), which have often been 
used for monitoring the urban environment [25,27,28]. The 15 m spatial resolution 
of ASTER/VNIR is much finer than that of existing global built-up area maps; thus, 
built-up area maps derived from ASTER/VNIR images permit the measurement 
of complex spatial structures at a finer scale. Moreover, ASTER/VNIR has been in 
operation since December 1999 with the goal of generating complete global cloud-
free coverage [29]. We therefore chose ASTER/VNIR as the most suitable source of 
images to use in generating medium-resolution global built-up area maps.

We used ASTER/VNIR images archived and processed on the Global Earth 
Observation Grid at the National Institute of Advanced Industrial Science and 
Technology in Japan [30].

7.2  DEVELOPMENT OF GROUND TRUTH 
DATABASE OF URBAN SITES

Built-up area mapping using remote sensing data is performed with satellite imagery 
and ground truth data. However, for global built-up area mapping, the development 
of ground truth data would involve enormous costs for field surveys and visual inter-
pretation of aerial photos or high-resolution satellite data. Publicly available ground 
truth databases are helpful for global land cover mapping; however, those databases 
do not have enough urban sites for global human settlement mapping. For example, 
the MOD12Q1 V003 Land Cover Product [31], the Global Land Cover Ground Truth 
database [32], and the Degree Confluence Project ground truth validation databases 
[33] include 0, 3, and 11 ground truth data points, respectively, for urban areas. These 
ground truth data are obviously insufficient for validating global built-up area maps, 
which estimate the global urban area to be from 276 × 103 to 3524 × 103 km2 [34].
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To develop such a database, we employed as a primary data source the Global 
Rural–Urban Mapping Project (GRUMP) Alpha Version Settlement Points, which is 
a gazetteer of populated places with latitude and longitude coordinates derived from 
various types of maps. We assumed that built-up areas existed at the point coordinates 
of the populated places within that database because those points were previously used 
as primary input data for an urban area map [10]. In addition, the gazetteer has a large 
number of place names of populated places covering the entire world. Thus, we regard 
this gazetteer as a suitable source of data for a ground truth database for urban sites.

7.2.1 samplinG scheme fOr Urban sites

An unbiased sampling scheme is a primary requirement of ground truth data. Spatially 
balanced systematic sampling at a 1° × 1° grid of latitude and longitude has been pro-
posed for global land cover classification [35]. However, this systematic sampling 
method does not result in a sufficient number of ground truth data points in urban areas, 
which tend to be strongly concentrated in a very small area of the earth’s surface.

To solve the problems posed by the concentrated geographic distribution of urban 
areas, we employed the GRUMP Settlement Points (GSP) gazetteer [36], which is a 
database of place names with point coordinates and an estimated population of 55,412 
places with populations greater than 1,000. Because the point coordinates in GSP 
are provided to allow location of a city [37], the point coordinates corresponding 
to a place name can be regarded as a point chosen randomly within the geographic 
extent represented by the place name. In addition, the place names, attribute data, 
and geographic coordinates were manually linked by human decision. This direct 
human input is indispensable for accurate association of place names with geo-
graphic data because insufficient information from the source prevents automatic 
matching [38]. The precision of the point coordinates for place names in the GSP 
is approximately 1 km. Such precision is enough to represent the urban area of a 
populated place because the urban area of a city is typically more than 1 km2.

7.2.2 resUlt Of DevelOpinG GrOUnD trUth Data

We retrieved the GSP data for approximately 3734 populated places, each inhab-
ited by more than 0.1 million people. We visually interpreted the point coordinates 
of these populated places using false color composite images of ASTER/VNIR. 
For these images, the near-infrared band (0.52–0.60 µm) was assigned to the red 
channel, the red band (0.63–0.69 µm) was assigned to the green channel, and the 
green band (0.76–0.86 µm) was assigned to the blue channel. Three trained opera-
tors visually interpreted the presence of urbanization at each point on the false 
color composite images based on color tone and texture. For a point to be inter-
preted as built-up, two of the three operators had to interpret it as being built-up.

As a result of this analysis, 2144 of the 3734 points were interpreted as built-up, 
1388 were interpreted as non-built-up, 10 were interpreted as being in between built-
up and non-built-up, and 192 could not be interpreted because of clouds or shad-
ows on the image or discrepancies in interpretations among the operators. Thus, the 
number of ground truth data points identified as built-up was much larger than the 
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number of urban points in existing databases. We used 3,532 of the data points with 
ground truth data derived from visual interpretation of false color composite images 
of ASTER/VNIR for 249 cities, including 9,228 built-up and 64,593 non-built-up 
areas, for the development of the global built-up area map.

7.3  DEVELOPMENT OF AN AUTOMATED ALGORITHM 
FOR SELECTING ASTER DATA FOR MOSAIC

For cities with urban areas broader than the coverage of a single scene of ASTER 
data, multiple scenes of ASTER data needed to be selected and mosaicked. Because 
the global built-up area mapping involved thousands of cities, we had to automate 
image selection from the ASTER data for all of the cities. We defined the process as 
consisting of three steps: defining the search extent, searching for ASTER data that 
overlap the search extent, and selecting ASTER data that would maximize the quality 
of the mosaic output. Here, we describe the automated algorithms used in these steps.

7.3.1 DefininG the search extent

ASTER data for a city can be found by searching the data’s coverage, that is, the extent 
to which the data overlap the search extent of cities. Because the search extents of cities 
were not given, we had to define them with existing Geographic Information System 
(GIS) data. Existing global built-up area maps would be a good reference for search 
extents of cities; however, those maps could omit cities with small urban extents [39].

We used GSPs [36] as reference data because of their completeness and defined 
the search extent with a buffer zone of point coordinates. We set the buffer distance 
at 30 km (half of the swath length of ASTER) to ensure complete coverage of the 
search extent by ASTER data.

7.3.2 DetermininG cOmbinatiOn Of aster Data

Image data for the mosaic are often selected manually because cloud contamination 
must be checked to ensure the quality of the mosaic output. In addition, ASTER data 
are not necessarily aligned to path-row grids because of the wide range of the view 
angle. To automate the image selection process, we clarified the minimum require-
ments of the ASTER data to be chosen for the mosaic: overlapping with any segment 
of search extent and having the least cloud contamination among the ASTER data 
overlapping the segment.

Based on these criteria, we employed the following algorithm to determine the 
least cloud-contaminated combination of ASTER data for the mosaic (Figure 7.1):

 1. Search scenes of ASTER data overlapping with search extent from archives 
of ASTER.

 2. Sort the scenes in descending order by percentage of cloud contamination.
 3. Check whether the first scene is necessary to maintain complete coverage 

of the search extent.
 a. If the mosaic completely covers the extent even when the scene is removed, 

the scene is considered to be unnecessary and removed from the set of scenes.
 b. Otherwise, keep the scene with the set of scenes.
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 4. Iterate Step 3 for all of the scenes in order.
 5. Sort the scenes kept within the set in ascending order by percentage of 

cloud contamination so that the scene with the least cloud contamination is 
laid on the top.

7.3.3 resUlts Of aUtOmateD selectiOn Of aster Data fOr the mOsaic

We attempted to develop mosaic ASTER data by city because the output had to be 
associated with city profiles. We used the 3734 data points of cities with more than 
0.1 million people from the GSP data. With search extents overlapping each other, these 
were merged to create a single search extent to eliminate duplicated data processing of 
overlapping scenes. Merging the search extents in this way resulted in the assembly of 
2,214 extents. We searched ASTER data from the archives with cloud contamination 
of less than 20%. We also constrained the search period to be between March 2000 and 
March 2008 to exclude scenes with degraded accuracy in cloud detection due to the 
malfunctioning of shortwave infrared (SWIR) beginning in April 2008.

As a result, for 1,951 of the 2,214 extents, 11,802 scenes of ASTER data were 
successfully arranged for mosaic processing. For the other 263 extents, no scene 
was assigned due to cloud contamination. For 1340 of the 1951 extents, the mosaic 
of ASTER images was well organized; however, for the other 611 extents, the cover-
age was incomplete or considerably contaminated with cloud cover. We manually 
selected scenes of ASTER data for the 611 search extents.

Because the purpose of this study is to demonstrate a comprehensive system 
development, we overlooked inconsistencies within an observation year among 

ASTER data
archive

A
B

B

Testing Scene A Testing Scene B

2. Sort scenes in descending
           order by cloud contamination

1. Searching scenes covering search extent 

A

Scene B is assigned to be necessary
because the urban extent is partly

dropped from the coverage.

Scene A is assigned to be unnecessary
because complete coverage is assured

without Scene A.Set of scenes listed by Step 2

4. Iterate Step 3 for
             all scenes in the set

3. Check necessity of a scene for mosaic

5. Sort the scenes in
      ascending order by

        percentage of cloud
contamination

Search extent
of target city

Set of scenes for 
mosaic of target city

FIGURE 7.1 Steps to determine the least cloud-contaminated combination of ASTER data 
for the mosaic.
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neighboring scenes although such inconsistencies should be considered, especially 
for rapidly growing megacities in developing countries. Further investigation of the 
availability of cloud-free ASTER data for each city would be required for the search 
period to be precise (e.g., 2000–2002, 2003–2005).

7.4  DEVELOPMENT OF AN AUTOMATED ALGORITHM 
FOR EXTRACTING BUILT-UP AREAS FROM ASTER IMAGES

7.4.1 extractinG bUilt-Up areas frOm aster/vnir satellite imaGes

Classification of satellite image pixels as built-up or non-built-up requires two basic 
steps: clustering and labeling. For automated clustering, an unsupervised cluster-
ing method, such as Iterative Self-Organizing Data Analysis Technique (ISODATA), 
has been employed in the past for land cover classification [2,40]. To label clusters 
correctly, the classifier requires external training data. In the conventional method, 
training data for labeling clusters have been acquired by human visual interpretation 
[2,40]. However, it is not feasible to conduct human visual interpretations of all of 
the cities of the world because the labor costs would be prohibitive.

To automate cluster labeling, we employed existing global built-up area maps as 
training data. Well-classified built-up area maps should be good training data for 
clustered satellite images of medium resolution because of their overall classification 
accuracy rates of 0.83–0.98 [39].

For the roughly labeled training data, an iterative machine learning algo-
rithm should work effectively. We employed the Learning with Local and Global 
Consistency (LLGC) algorithm [41], which determines classifiers with an infinite 
number of iterations of spectral clustering. Zhou et al. [41] presented an analytical 
solution to the problem of incorporating infinite iterations into the operations of linear 
algebra, thus reducing computation costs through a few operations of linear algebra.

We arranged the LLGC algorithm to fit with our built-up area mapping using 
ASTER satellite image and coarse-resolution land cover maps (left column of 
Figure 7.2) by the following process.

• Perform ISODATA clustering on ASTER/VNIR surface reflectance image 
data, including the near-infrared band, the red band, and the green band and 
calculate the mean surface reflectance for each band by cluster. The feature vec-
tors (mean surface reflectance) were normalized using the following equation:

 
xij ij j

j
= −ρ µ

σ
 (7.1)

where
ρij is the mean surface reflectance of band j for cluster i
µ j is the mean value of band j among the clusters
σ j is the standard deviation of band j among the clusters

• Partition the clusters with the boundary of the coarse-resolution map, called 
the initial built-up area map (IBAM). We termed the partitioned cluster 
layer the ASTER-IBAM cluster layer.
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• Form an affinity matrix and a Laplacian normalized by numbers of pixels, 
defined as follows:
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where
W is an n × n affinity matrix
σ2 is the distance weight of the feature vector among the data (smaller 

values reduce the distance effect)
D is a diagonal matrix, called the degree matrix, with its ( , )i i  element 

equal to the sum of the ith row of W

• In Equation 7.2, i and j indicate the index of a cluster of the ASTER-IBAM 
cluster layer, and xi is the feature vector or mean surface reflectance for 
cluster i.

• Calculate F, defined as follows:

 
F I L NY= −( )−α 1

 (7.4)

where
I is an n × n unit matrix
Y is an n × 2 matrix, in which, at the initial step, if cluster i is built-up, 
Yi1 0=  and Yi2 1=  and otherwise, Yi1 1=  and Yi2 0=
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FIGURE 7.2 Overview of the automated algorithm of built-up area mapping. (Reprinted with 
permission from Miyazaki, H., Shao, X., Iwao, K., and Shibasaki, R., An automated method 
for global urban area mapping by integrating ASTER satellite images and GIS data, IEEE J. 
Select. Top. Appl. Earth Observ. Remote Sens., 6(2), 1004–1019, 2012. Copyright 2012 IEEE.)
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The ith row of F and Y corresponds to the ith cluster of the ASTER-IBAM 
cluster layer.

• Classify clusters as built-up or non-built-up based on F. For the ith cluster to 
be classified as built-up, Fi2 must be greater than Fi1, and vice versa.

Basically, the clusters were classified as built-up or non-built-up by comparing Fi1 
and Fi2; however, that classification discards information on the compositions of 
built-up and non-built-up classifications in the clusters. Retaining that information is 
useful in identifying built-up areas in regions where relatively few urbanized clusters 
are dominant. We proposed a confidence value that ranged from 0 to 1.

 

LLGC Confidencei i

i i

F
F F

=
+( )
2

2 1
 (7.5)

The confidence value was calculated for each cluster to introduce it into the map 
integration discussed in Section 7.4.2. We call this map the LLGC confidence map.

We applied a built-up area map extracted from MODIS Terra+Aqua Land Cover Type 
Yearly L3 Global 500 m SIN Grid product for 2001 (MCD12) [42] as the IBAM because 
of its two main advantages: it has a resolution of 500 m, which is somewhat finer than 
that of other existing maps, and it was found to be the most accurate map in an accuracy 
assessment of 140 cities [39]. Previous research has shown that MCD12 is a good refer-
ence data source for LLGC with ASTER/VNIR, yielding good results at a resolution of 
15 m although the results depend considerably on the accuracy of MCD12 [43].

7.4.2 inteGratinG maps UsinG lOGistic reGressiOn

Although the clusters were successfully classified by LLGC, the results included mis-
classifications resulting from similarities in surface reflectance among different land 
covers. Cloud contamination in satellite images also leads to misclassifications. These 
disturbances stem from heterogeneities of landscape and image quality among ASTER/
VNIR images. To reduce the number of misclassifications, other map resources with 
lower levels of uncertainty should be used to complement the ASTER/VNIR images.

However, even though a map has less uncertainty, the existing uncertainties would still 
result in discrepancies with other maps. As a solution to this problem, the use of posterior 
probability (PP) has been shown to be an effective tool to represent the likelihood that a 
disputed pixel is actually built up for each combination of conditions given by maps.

Logistic regression methods are the most basic and classical methods for estimat-
ing PP. We defined the following logistic model to estimate the PP of the presence of 
a built-up area in a pixel:

 
P U

Ui
i

i
( ) exp( )

exp( )
urban =

+1
 (7.6)

where
Pi( )urban  is the probability of the presence of a built-up area at a pixel
Ui is defined in the form of a polynomial expression of the explanatory variables
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As an explanatory variable, we introduced the LLGC confidence map. In contrast 
to the binary classification result, the LLGC confidence map has more information 
on the likelihood of built-up or non-built-up categorization, especially on the gradi-
ent transition between an urban center and suburban areas. We believed that this 
feature would contribute to a better estimate of PP values.

We also considered the geographic heterogeneity of accuracy in existing  built-up 
area maps. The accuracy of satellite-based estimates of built-up areas at urban 
 centers is thought to be higher than the accuracy of estimates in rural areas [9]. This 
indicates that pixels close to the urban center are more likely to be urban than those 
close to the urban area boundary.

To reflect geographic heterogeneity within and between land cover classes, we 
calculated the distance from the boundary of an urban cluster (DBU). DBU has 
high negative values at the centers of urban clusters and high positive values in rural 
regions far from any urban center. Calculating DBU with the same resolution as 
that of ASTER/VNIR images would be useful in determining the likelihood that 
a pixel should be built up. We calculated DBU from urban clusters of the MCD12, 
MOD12Q1 V004 Land Cover Product (MOD12) [44] and GRUMP Urban Extent 
Grid [10].

Terrain is also a significant factor in the presence of built-up areas [45]. We 
therefore introduced the degree of slope as an explanatory variable in the logistic 
regression. The degree of slope was calculated from a digital elevation model (DEM) 
derived from the orthorectification of the ASTER/VNIR data.

In summary, the polynomial in Equation 7.6 was defined as follows (see also right 
column of Figure 7.2):

 Ui i i i i i= + + + +β β β β β1 2 3 4 512 12LLGC MCD MOD GRUMP SLP  (7.7)

where
βk is the coefficient for each variable
LLGCi is the confidence value of LLGC at pixel i
MCD12i, MOD12i, and GRUMPi are the DBU at pixel i in MCD12, MOD12, and 

GRUMP, respectively (the values are positive outside of urban areas and nega-
tive inside urban areas)

SLPi is the slope (degrees) at pixel i

In the logistic regression, ground truth data representing the presence of built-up 
areas in a pixel are needed for the response variable, which is defined as 1 for defi-
nitely urban pixels and 0 for definitely non-built-up pixels.

Because regionally tuned models yield better accuracy [6], we defined regions 
for estimation of logistic models. The regions were defined by an iterative 
merge of 10-degree grid cells including the least amount of ground truth data 
with neighboring grid cells so that each region had enough ground truth data. 
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As a result, we defined 30 regions to maintain the minimum required amount of 
ground truth data, more than 100 urban sites for each.

7.4.3  GriD cOmpUtinG fOr the DevelOpment Of GlObal 
bUilt-Up area map

The global built-up area mapping used over 11,802 scenes of ASTER data and 
requires huge computer resources. We employed grid computing to perform 
the large number computations required for the global built-up area map. Grid 
computing is the federation of distributed computer resources to achieve a com-
mon goal [46]. We used GEO Grid, which is an infrastructure operated by the 
National Institute of Advanced Industrial Science and Technology of Japan [30], 
for the development of the global built-up area map. GEO Grid stores 200 TB of 
archives of ASTER data, which have been archived since the launch of ASTER 
in 1999. GEO Grid is also operated with a PC cluster, which contributes to the 
generation of orthorectified ASTER data and other high-level data products. The 
storage system and the PC cluster are connected by a fast network so that data 
processing is performed seamlessly between the storage system and computation 
with PC Cluster.

We implemented a system of global built-up area mapping using free and open-
source software for geospatial (FOSS4G; Table 7.1) and general open-source 
software on the GEO grid. Command-line operation of the FOSS4G and other 
open-source software improved the interoperability of data handling among the 
components of the global built-up area mapping.

TABLE 7.1
Free and Open-Source Software for Geospatial (FOSS4G) Used 
for Global Urban Area Mapping

Software Website Role in This Study

GDAL http://www.gdal.org/ File format conversion of raster data; image 
mosaic

GRASS http://grass.osgeo.org/ Clustering of satellite image; raster data 
processing

R http://www.r-project.org/ Logistic regression; accuracy assessment

Octave http://www.gnu.org/software/octave/ Linear algebra operation of LLGC

PostgreSQL http://www.postgresql.org/ Relational database management

PostGIS http://postgis.refractions.net/ Geospatial data extension of PostgreSQL

SQLite http://www.sqlite.org/ Database operation

SpatiaLite http://www.gaia-gis.it/spatialite Geospatial data extension of SQLite

MapServer http://mapserver.org/ Map rendering engine of processed output
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7.5 RESULTS AND DISCUSSION

7.5.1 bUilt-Up area map

We applied the algorithm for extracting built-up area to 1,951 mosaic ASTER images 
generated with 11,802 scenes for 3,372 cities around the world. LLGC and logistic 
regression were successfully applied to the mosaic ASTER images. Figure 7.3 shows 
examples of the results, illustrating the spatial structures of built-up areas in detail 
at a 15 m spatial resolution. For example, the built-up area map shows the distribu-
tion of minor non-built-up areas, such as open areas, parks, urban forests, and water 
bodies, which were not shown in previously developed global built-up area maps. In 
addition, some major roads were also extracted as built-up areas.

Low-density built-up area High-density built-up area

Areas for which urban areas were determined (3372/3734)

Montreal, Canada

Sao Paulo, Brazil Mumbai, India Jakarta, Indonesia Seoul, South KoreaAlkhartum, Sudan

Tokyo, JapanNew York, USA Paris, France Tianjin, China

FIGURE 7.3 (See color insert.) Examples of the results of the global urban area maps. Red 
pixels in the close-up figures indicate urban areas.
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Goodness of fit was evaluated with Nagelkerke R2 for each region. Minimum, 
median, and maximum of the R2 were 0.22, 0.52, and 0.77, respectively, indicating 
that  fitness of the models varies by regions and the accuracy for regions poor in 
model fitness could be improved by finer partition of the regions.

7.5.2 accUracy assessment

An 85% accuracy rate is widely accepted as a reasonable target. However, setting 
a target for a specific application may be more appropriate [47]. For built-up area 
mapping, because of the lack of a specific target, we deemed that comparing the 
accuracy with that of existing built-up area maps would be appropriate to deter-
mine the level of improvement. We therefore conducted accuracy assessments on the 
LLGC-derived maps, the integrated maps, the GRUMP, and the MOD12. Although 
the spatial resolution of the accuracy assessment should be the same as that of classi-
fied maps [48], we conducted accuracy assessments at a resolution of 15 m for all of 
the built-up area maps because we had to make the assessment protocols equivalent 
among the maps.

Figure 7.4 shows the result of the accuracy assessment in terms of the producer’s 
accuracy, the user’s accuracy, the overall accuracy, and the kappa coefficient of 
accuracy, which are commonly used for accuracy assessment [49]. The integrated 
map had the highest overall accuracy and kappa coefficient among the maps. 
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FIGURE 7.4 Accuracy assessment of the existing urban area maps (GRUMP and MOD12), 
LLGC-derived map and integrated map.
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The relatively high user’s accuracy and low producer’s accuracy of the integrated 
map and LLGC-derived map indicate that these maps are likely to underestimate 
the global built-up area.

The user’s accuracy of the integrated map was lower than that of the LLGC-
derived map, while the producer’s accuracy of the integrated map was higher than 
that of the LLGC-derived map. This indicates that the integration with existing built-
up area maps captured built-up areas omitted by LLGC. The improvement, in terms 
of overall accuracy and the kappa coefficient, of the integrated map over GRUMP 
and MOD12 is notable.

Figure 7.5 shows an accuracy assessment by continent. For all of the continents 
except Asia, the kappa coefficient of the integrated map was higher than that of 
MOD12. For Asia, however, the kappa coefficient of the integrated map was lower 
than that of MOD12. These results indicate the significant impact of cloud contami-
nation on the built-up area extraction for Asia. This might be due to the limited 
amount of cloud-free ASTER data for Asia [50].

Figure 7.6 shows the accuracy assessment by climatic zone. The kappa coefficient 
of the integrated map for the tropical zone was lower than that of MOD12, indicating 
less availability of cloud-free ASTER data [50], as in the case of the integrated map 
for Asia.

For dry zones, the integrated map had a lower kappa coefficient than MOD12. 
This might be due to misclassifications resulting from similarities in surface reflec-
tance among built-up areas, sand, and bare land.

7.5.3 aGreement With existinG bUilt-Up area maps

Accuracy assessments using ground truth data can only capture agreement at sam-
pled sites. Therefore, such assessments are unsuitable for assessing geographic 
trends in quality on a global scale. To illustrate a geographic trend in quality, we 
assessed the degree of agreement between the integrated map and existing built-up 
area maps, assuming that the existing built-up area maps were sufficiently accurate 
to serve as references.

We assessed the degree of agreement by cross tabulation between the classifica-
tion results (the integrated map) and the reference data (MCD12). From the output of 
the cross tabulation, we calculated the producer’s agreement, the user’s agreement, 
the overall agreement, and the kappa coefficient of agreement, which corresponded 
to the producer’s accuracy, the user’s accuracy, the overall accuracy, and the kappa 
coefficient of accuracy assessment using point-based ground truth data. The indexes 
were calculated by 10-degree grid.

Figure 7.7 shows the distribution of the agreement between the integrated map 
and MCD12. The results show poor user’s agreement in the southern part of Africa, 
Southeast Asia, the northeastern part of Europe, and the southern part of North 
America, indicating high rates of commission errors in those regions. This might 
be due to overestimation of built-up areas by LLGC. The results also suggest poor 
user’s accuracy for the LLGC-derived map in Africa (Figure 7.5c) and poor pro-
ducer’s agreement for South America, Europe, and South Asia, indicating high rates 
of omission errors in those regions.
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FIGURE 7.5 Accuracy assessment of the built-up area maps by continent: (a) Asia, (b) Europe, 
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The overall agreement was low in the southeastern part of Africa, the northeast-
ern part of Europe, and Southeast Asia, indicating high rates of both commission 
and omission errors in those regions. The kappa coefficient of agreement was high 
for North America, the western part of Europe, and eastern Asia, indicating accurate 
results for both the integrated map and MCD12.

7.6  EXPERIMENTAL RELEASE OF THE GLOBAL BUILT-UP 
AREA MAP WITH WEB-MAPPING SYSTEM

As a form of publication of the global built-up area map, we developed a publicly avail-
able web-mapping system for the global built-up area map (http://maps.geogrid.org/
examples/basemap/). The web mapping system provides a function for downloading a 
subset GeoTiff of the global built-up area map for an extent selected by the end user. This 
function makes it easy for end users to use the global built-up area map with GIS software.
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In addition, the service also supports Web Map Service (WMS), which is a stan-
dardized protocol for transferring map images over the Internet. Therefore, the global 
built-up area map can be used in the development of new web map services.

7.7 CONCLUSIONS AND FUTURE PERSPECTIVES

In this chapter, we presented the development of a global built-up area map 
using ASTER satellite data and existing built-up area maps. The development 
consisted of four steps: development of ground truth data, development of an 
automated algorithm to generate mosaic ASTER images, development of an auto-
mated algorithm for extracting built-up areas from ASTER images, and system 
implementation with grid technologies. The resulting global built-up area map 
was developed for 3,374 cities with populations of more than 0.1 million people 
using 11,802 scenes of ASTER data. Accuracy assessments of the global built-up 
area map showed that the integrated map was more accurate than the LLGC-
derived map, indicating that the accuracy of the built-up area map was improved 
by the integration with existing built-up area maps. In addition to assessing the 
accuracy, we assessed the quality of the global built-up area map by comparing 
it with the MCD12. This assessment helped to provide an overview of the quality 
with respect to geographic trend, which would not be well illustrated with point-
based ground truth data alone.

Although the data processing required to develop the global built-up area map 
was conducted well using a consistently automated system, there is considerable 
room for improvement in the map’s quality, including the following:

Introducing synthetic aperture radar (SAR) data into the algorithm: cloud con-
tamination is the greatest obstacle to developing a high-quality global built-up area 
map. For cities with heavy cloud contamination, the application of SAR data for urban 
monitoring has been proposed and examined in several studies [51–53]. Integration 
of the ASTER-based built-up area map and a SAR-based built-up area map would 
yield much better accuracy for cloud-contaminated regions, such as Southeast Asia.

Development of ground truth data by crowd sourcing: The amount of ground truth 
data available is important to improving the accuracy of built-up area mapping. With 
regard to this requirement for a large amount of data, crowd sourcing is expected to 
be a good solution. Crowd sourcing is a method of collecting data through the efforts 
of many operators over the Internet [54]. OpenStreetMap is the most active crowd 
sourcing project for geospatial information on roads [55]. Volunteers can contribute 
to developing a worldwide road map by digitizing roads using high-resolution satel-
lite images. This approach would also be applicable to built-up area mapping, with 
operators performing visual interpretation of ASTER images.

We also suggest the development of population grid data at high resolution 
using the global built-up area map as source data. Currently, the population grid 
dataset at 1 km resolution (e.g., the GRUMP Population Grid [36] and LandScan 
[14]) is the most detailed such data available. However, population grid data with 
higher resolution is urgently needed for use in disaster management, especially 
in coastal regions where the sea level rising by a few meters constitutes a disaster 
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with considerable impact [56]. The global built-up area map could contribute to 
the improvement of the spatial resolution of population grid data.
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8 Building of a Global 
Human Settlement 
Layer from Fine-Scale 
Remotely Sensed Data

Martino Pesaresi, Vasileios Syrris, Daniele Ehrlich, 
Matina Halkia, Thomas Kemper, and Pierre Soille

8.1 INTRODUCTION

Is the production of national, continental, or global landmass fine-scale mapping using 
high-resolution remotely sensed imageries feasible with today’s remote sensing tech-
nology? In particular, is fine-scale large-area mapping of built-up areas feasible? Even 
if these questions may be considered trivial and already demonstrated for data scenar-
ios including low- and moderate-resolution images, they are still far from being solved 
if applied to high- and very-high-resolution (HR/VHR) optical images. The reasons 
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behind this are linked to the specific characteristics of the input data scenarios includ-
ing HR/VHR data and to the specific characteristics of the physical targets associ-
ated with the human settlement information to be recognized and analyzed. Quadratic 
increase of input data volume, exponential increase of computational complexity due to 
the necessity to process multiscale structural (shape/size, morphological, and textural) 
image descriptors and the necessity of spatial and thematic uncertainty management, 
and increase of thematic complexity and automatic learning strategies are some of the 
challenges that must be addressed in order to solve the two questions regarding the 
class of HR/VHR input image data. These two main questions were explored during 
the first operational test made by the Joint Research Center (JRC) during 2012 within 
the framework of the Global Human Settlement Layer (GHSL) production. The extent 
of the test area was 24.3 millions of square kilometers and covered parts of four conti-
nents. The imagery was collected by a variety of optical satellite and airborne sensors 
with spatial resolution ranging from 0.5 to 10 m (Pesaresi et al. 2013). It is the largest 
known automatic image classification involving this kind of image input (Figure 8.1).

This chapter discusses the methodological choices made during the design of the 
GHSL experiment and summarizes the main results and conclusions. The chapter 
is organized as follows: Section 8.2 discusses the rationale; Section 8.3 then high-
lights the main technological and methodological challenges addressed by the GHSL 
experiment. Thereafter, Section 8.4 discusses the adopted methodological solutions 
and Section 8.5 introduces the GHSL production workflow. In Section 8.6, the prin-
cipal results are presented from different perspectives. Finally, Section 8.7 discusses 
the lesson learned and concludes the chapter.

8.2 RATIONALE

Satellite imagery today could potentially provide information about the built envi-
ronment worldwide, due to advances in computational and storage capacity, as well 
as data availability and cost-effectiveness. Despite this potentiality of remote sensing 
technologies, there are few global data sets that can be used to map human settlement. 
Examples of available thematic proxies to the global human settlement information 
include world nighttime lights based on the DMSP-OLS sensor (Elvidge et al. 2001), 
MODIS 500 based on land use/land cover (LU/LC) classifications (Bartholome and 
Belward 2005; Schneider et al. 2010), and global population data sets like LandScan 
(Dobson et al. 2000) or the gridded population of the Columbia University Center 
for International Earth Science Information Network in collaboration with Centro 
Internacional de Agricultura Tropical (2012). Since 2011, the Suomi National Polar-
Orbiting Partnership (SUOMI NPP) satellite has been producing night-lights at 
750 m spatial resolution.* An overview, a comparison, and an analysis of eight global 
data sets are provided by Schneider et al. (2010). These available information layers 
can be categorized under two families: (1) those derived from low-resolution (LR) 
satellite sensors (ranging from 3 to 0.5 km) and (2) those derived from a mixture of 
census administrative, cartographic, and GIS sources merged with ad hoc models. 

* National Aeronautics and Space Administration, Goddard Space Flight Center, National Polar-orbiting 
Partnership, http://npp.gsfc.nasa.gov/index.html.
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Because of the nature of the sources and the methodologies used for the production 
of these data, they show an implicit and sometimes explicit generalization scale in 
the range of 1:500 K until 1:2 M. This practically means that BU patches with sizes 
smaller than 100 m or even 1 km have relatively less probability to be represented 
than compact BU patches having a size greater than 1 km. This fact may introduce 
bias in the estimation of total areas occupied by the human settlement, and the bias 
will depend on the spatial settlements patterns existing in different regions. This bias 
will influence the output of the spatial modeling (risk, impact, population) using 
settlements information in input. In general, it can be observed (Tenerelli and Ehrlich 
2011) that these sources introduce an underestimation bias for the total settlement 
footprint that is proportional to the degree of sprawl or dispersion of the settlement 
under analysis. From this point of view, the use of these sources for quantification of 
settlement sprawl or dispersion as required in several models is arguable.

Figure 8.2 shows the results of the analysis of the influence of spatial resolution in 
the representation of BU areas in the region of Toscana, Italy. This region has a total 
surface area of about 23,000 km2 and a total population of 3,667,780 (census 2012). 
The regional settlement pattern comprises small/medium towns with a few hundreds 
of thousands of people and scattered settlements in rural areas and in some productive 
areas (Prato). The input data used in the analysis are derived from the official regional 
cartography made from an aerial photogrammetric survey with a production scale of 
1:2000. The vector data related to the building footprints of the whole region has been 
initially rasterized with a grid cell of 2.5 m. At this spatial resolution, the total BU 
surface is estimated at 234.32 km2, which corresponds to ~1% of the total surface. The 
curve in Figure 8.2 was calculated by decreasing the spatial resolution (equivalently 
increasing the grid cell size) of the representation in a stepwise manner and by the 
subsequent application of a classification rule selecting the BU/NBU class of the cell 
according to the majority of share covered by, respectively, the BU and NBU classes 
in the same cell. Surfaces belonging to BU omission and commission errors were 
calculated thus. In this example, the bias introduced by the spatial resolution used to 
represent the settlement information is clearly noticeable as dominated by increasing 
omission error generated by increasing the cell size (decreasing the spatial resolution) 
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FIGURE 8.2 Analysis of the effect of the spatial resolution parameter in the representation 
of the BU areas of the region of Toscana, Italy.
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in the raster representation of the information. Omission and commission errors 
are almost comparable only until 10 m of spatial resolution, and then they tend to 
diverge for greater cell sizes. The effect is a dramatic underestimation of the total BU 
surface in the region: if we sum the BU correctly detected and the BU accounted in the 
commission error as total BU surface accounted by the model in the specific region, 
we obtain, for example, 102.79 and 21.59 km2 for, respectively, 30 and 250 m of cell 
size. They are only 43.87% and 9.22% of total BU surface calculated with 2.5 m of 
spatial resolution in the same region.

Due to their increased spatial resolution, HR/VHR input image data can poten-
tially contribute toward mitigating the issues described earlier, allowing much finer 
scale analysis than obtained with moderate-resolution imageries. The HR/VHR input 
image data can allow fine-scale recognition and characterization of all basic compo-
nents of the human settlement, namely, BU structures or buildings (Shettigara et al. 
1995; Lin and Nevatia 1998; Benediktsson et al. 2003; Unsalan and Boyer 2004; Zhu 
et al. 2005; Khoshelham et al. 2010; Sirmacek and Unsalan 2011; Chaudhuri et al. 
2012) and open spaces such as city squares, public and private gardens and parks, 
walking areas, and parking lots. Although HR and even VHR data with an almost 
global coverage are available with different sensors, so far no consistent global infor-
mation has ever been extracted from these data. Mapping and monitoring of urban 
areas at HR and VHR scales are mostly limited in terms of temporal and spatial 
coverage and remain at the stage of case studies for individual or a few cities, often 
providing only a single time step (Niebergall et al. 2008; Baud et al. 2010; Ehrlich 
and Bielski 2011). The lack of a consistent global layer with HR/VHR spatial resolu-
tion can be attributed mainly to two reasons. First, the data availability of HR/VHR 
satellite data: most, if not all, HR/VHR satellite missions are operated on a com-
mercial basis and consequently global coverage is costly. Second, the information 
extraction capacity from HR/VHR data: to date, no system has demonstrated the 
capacity to automatically extract global information layers about human settlements 
from HR/VHR satellite data with the necessary accuracy and cost-effectiveness. In 
the global (but also regional or even national) perspective, the common drawbacks 
of available automatic information procedures are as follows: (1) the necessity to col-
lect expensive training sets, (2) the necessity of expensive ad hoc parameter setting 
and tuning, (3) the necessity of expensive computational infrastructures, and (4) the 
necessity of specialized input information not available globally. Thus, so far only 
time-expensive manual or semiautomatic operational procedures are available.

8.3  ON THE COMPLEXITY OF HR/VHR HUMAN 
SETTLEMENT DESCRIPTION

Some of the methodological challenges related to automatic image information 
retrieval from HR/VHR input data are related to computational complexity issues. 
Moreover, automatic recognition and analysis of urban areas and human settle-
ment in general have always been considered a thematically complex issue due to 
the  heterogeneous physical characteristics of the urban fabric and the complexity of 
the use context of the derived information. Assuming an automated image informa-
tion retrieval process P starting from raw data x in input and generating information 
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I about human settlement as output I = P(x), the total complexity Otot of P can be 
described as the product of the complexity of input data Odata by the complexity of 
the thematic information Othema: 

Otot = Odata × Othema.

The thematic and data complexities are described in Sections 8.3.1 and 8.3.2.

8.3.1 Data cOmplexity

The Odata includes two main components: the data volume and the data (in)consistency. 
The data volume complexity increases quadratically with increasing input  spatial detail. 
This practically means that assuming the mapping of the same surface on Earth with the 
same temporal and radiometrical resolution, the processing of VHR input images with 
0.5 m spatial resolution will be at least 1204 times computatio nally more  expensive 
than 30 m resolution image data and 1 million times computationally more expensive 
than the use of 500 m resolution image data. Translating these numbers to time cost, a 
given P(x) designed for delivering information about a given area after 1 h of process-
ing of Landsat 30 m resolution data would require more than 50 days using 50 cm 
resolution data as input. Similarly, a P(x) designed for providing information after 
1 h of 500 m resolution data in a specific area of the globe would require more than 
114 years running on 50 cm data reporting about the same area. These rudimentary 
examples clearly show that the volume of data and related computational complexity 
are major issues in large area analysis using HR/VHR input data. While 2–3 orders of 
operational complexity magnitude can eventually be solved by brute force on multiple 
CPU environments as computer clusters or clouds, 6 orders of magnitude clearly show 
the need of a paradigm shift in the image processing algorithms applied during the 
image information extraction workflow. Odata also includes another important complexity 
component related to the spatial inconsistency of the data: in particular, the number of 
operations needed to fix spatial inconsistencies in the input data. Also, from this point 
of view, VHR imageries are challenging because of their intrinsic spatial inconsistency: 
even accurate processing of stereo pairs cannot reach subpixel root mean square error 
(RMSE) positional error, assuming a pixel size of 0.5 m. Because of the capacity to 
collect off-nadir image data of the VHR platforms, the apparent displacement of image 
pixels is even increasing due to panoramic and parallax distortions. Unfortunately, these 
effects are more evident in above-ground urban targets as in the case of rooftops of 
buildings that are strategic targets in remote sensing of urban areas. In practice, these 
facts lead to an expected apparent displacement of the targets in the order of several 
tens of pixels, assuming 0.5 m spatial resolution, tall buildings, and usual off-nadir data 
collection ranges. This has a direct bearing in increasing the complexity of reference 
data collection and in decreasing the expected accuracy and repeatability of the image 
information retrieval tasks, especially in the frame of monitoring activities.

8.3.2 thematic cOmplexity

The Othema factor can be described as made up of two main components: the 
 heterogeneity of the physical characteristics of the human settlement and the com-
plexity of the use of the information about settlements. From the point of view of the 
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physical composition, the areas occupied by human settlements can be defined as 
the place of the heterogeneity. Almost all the possible materials and surfaces, includ-
ing artificial and organic materials, can be reported as belonging to the settlement 
theme in the same places of the world. Moreover, in many cases we may observe 
that several different materials can be used for settlement components belonging to 
the same thematic class (i.e., clay tiles, corrugated metal, grass, concrete, plastic, 
bitumen, stone, for a building’s roof) and at the same time identical materials can 
be used for making settlement components belonging to different thematic classes 
(i.e., the same stones can be used for paved roads and building roofs). From this point 
of view, the distinction among the settlement components based only on the study 
of materials would have strong limitations. The spatial scale of variability of these 
different materials is typically around a few meters (Small 2001). This situation is 
described here as internal spatial heterogeneity of the Earth’s surfaces covered by 
settlement areas. Furthermore, because the settlements are also often made up of the 
same materials present in the surrounding natural areas, they are not distinguishable 
from the natural or agricultural areas, if we take into account only the characteristics 
of the materials or the surfaces. Typical examples are unpaved roads and bare soil, 
but also many roof materials (as clay tiles, or stone tile) and again bare soil or rocks. 
A very typical example is also the vegetated open spaces in settlements, private green 
surfaces in residential areas, or parks and other public recreational surfaces present 
in many settlements. This situation is described here as mimetism between the settle-
ment theme and the surrounding areas.

The increase in resolution of HR/VHR input data amplifies the characteristics 
of internal spatial heterogeneity and mimetism of the settlement areas. From the 
thematic point of view, it is now well known that increased spatial resolution of 
sensors leads to increased spectral variability of the thematic classes: this is due to 
the changed scale of observation of the image information or targets. Changing the 
scale of observation to 0.5 m spatial resolution may reveal that an apparently simple 
 building roof may become a multilevel universe made of gutters, chimneys, water 
tanks, windows, terraces, and even trees of roof gardens. Illumination  incidence 
angle, surface slope, shadows, spatial pattern of the elements of these surfaces 
(e.g., tiles), and their degree of obsolescence may change their spectral reflectance/
absorption characteristics dramatically. As a result, the spectral variability of the 
class building roof  will also increase, which will weaken the inferential models for 
recognizing building roofs from image data. Attempts to classify the problem into 
subproblems by recognizing the different elements separately lead to an explosion in 
the number of target classes and their specific instances. This typically leads to the 
degradation of the model generality and applicability across different scenes and/or 
different geographical places and to the explosion of the cost needed for the collec-
tion of reference data for training and testing purposes. A fully automatic processing 
chain is required for reproducible, cost-effective, and sustainable image information 
retrieval in the conditions addressed by this study focusing on large areas with HR/
VHR spatial resolution. Nevertheless, increasing input resolution and input inconsis-
tency/variability typically decreases the stability of the inferential models translating 
image data in thematic information and dramatically increases the number of free 
parameters to be tuned. Moreover, more detail typically calls for more expensive 
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training and testing reference data collection, which conflicts with the necessity of 
minimizing human intervention in the classification process. It is worth noting that 
all these mechanisms may show additional multiplicative effects on the whole com-
putational complexity of image information retrieval.

Finally, we discuss the complexity in dealing with information related to 
human settlements. Human settlements display the highest concentration of human 
 artifacts and functions, and they are typically the most valuable part of the territory 
for human societies. In fact, settlements typically show the maximum concentration 
of human activities and man-made structures and objects. Urban areas also show the 
maximum stratification of different functions in the same place. Settlements show 
 overlapping economic interests among social groups as well as with and among 
public authorities. Urban areas typically also show the highest social stratification 
and differentiation that is often coupled with historical development and identity that 
define priorities and agendas of different social groups. All these multiple stratifica-
tions of interests and functions produce a remarkable multiplicity of views, equally 
valid but not coincident of the settlement “fact” or geographical physical entity. This 
explains why human settlement is hardly reducible to a unique descriptive scheme 
or “ontology,” while for other kinds of earth surfaces such as “forests” or “corn 
fields” such reduction can eventually be relatively more successful. This is because 
in  these other cases, it is easier to reach a consensus on a common descriptive 
scheme  defining priorities and semantic hierarchies. Different functions and priori-
ties also define a multiplicity of possible actions on settlements, as is the case of dif-
ferent planning and management strategies. The required information on settlements 
can therefore diverge remarkably in scales, semantics, priorities, and timeliness, by 
varying the social actor, the public authority, or the given point of view defining a 
specific “user.” We describe this situation as complexity of the use context of the 
information regarding the human settlement. No unique description can be fully 
effective, but all descriptions have the same or comparable importance.

8.4 POSSIBLE SOLVING STRATEGY

As we have discussed earlier, automatic detection and analysis of human settlements 
using HR/VHR input image data must address two main challenges related to com-
plexity of input data and complexity of the thematic information to be extracted. While 
input data complexity can be described in terms of data volume and (in)consistencies, 
thematic complexity can be described in terms of heterogeneous and mimetic physical 
characteristics of the targets to be described and complexity of the user definition or 
ontology of the settlement fact. The strategic methodological choices defined in the 
GHSL production system design make sense in the context of the challenges men-
tioned earlier, particularly specific data complexity and thematic complexity mitigation 
measures. Concerning data complexity, the main mitigation measures can be carried 
out in three steps: (1) definition of new optimized processing chains allowing tex-
tural and morphological multiscale image analysis with complexity growing linearly 
with the data volume and independently from the number of scales; (2) optimization 
of the feature space by drastic evidence-based reduction of the assumptions, linking 
image-derived features with information contents; and  (3)  definition of a new data 
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representation schema based on a multiscale discrete field of image descriptors (DFID) 
including interscale mechanisms that are able to minimize spatial and thematic incon-
sistencies. Concerning thematic complexity, the main mitigation measures can be 
deployed in two steps: (1) adoption of a new classification schema based on multiple 
semantic abstraction levels in order to minimize the impact on the automatic process-
ing chains of complex (heterogeneous, inconsistent, rapidly obsolete) user require-
ments about information contents and (2) optimization of semantic interoperability 
by drastic reduction of the abstraction embedded in the “level 0” or basic information 
level extracted during the GHSL production (level 0 is described in the Section 8.4.3).

8.4.1 featUres

The image-derived features used for the first GHSL operational production test of 
June 2012 can be classified under two main image descriptors: textural and morpho-
logical. Textural descriptors were calculated using a rotation-invariant anisotropic 
composition of gray-level co-occurrence matrix (GLCM) contrast textural measure-
ments following the so-called PANTEX methodology (Pesaresi et al. 2008, 2011), 
also applied in experimental sets simulating global processing of HR/VHR data 
(Pesaresi et al. 2011; Ouzounis et al. 2012). Morphological descriptors were calcu-
lated by a multiscale morphological decomposition schema, which is an evolution 
of the Derivative of the Morphological Profile (DMP) methodology (Pesaresi and 
Benediktsson 2001) in the Characteristic-Saliency-Level (CSL) model. The CSL 
was introduced with the purpose of optimization of the computational complexity 
and of the disk space requirements for storage of image-derived features in massive 
multiple-scene input data scenarios (Pesaresi et al. 2012b). The selection of the fea-
tures suitable for the experiment was done based on (1) computational sustainability 
for massive HR/VHR data processing and (2) evidence-based reasoning linking the 
image-derived features with the presence of the image information of interest.

From the point of view of image-derived features, the BU areas detectable in the 
images can be defined as “all the areas in the image showing high local density of 
high-contrast square corners and showing structures with a size in a specific range 
[s1…s2].” The first part of the statement is treated by textural descriptors (corners 
detection) and the second part by multiscale morphological analysis (scale-space 
decomposition). The designed inferential model tries to translate the observed 
physical characteristics of the BU areas in the minimal sufficient number of image 
descriptors. The adoption of textural contrast measurements is justified with the 
observation of the human settlements as determined by locally heterogeneous mate-
rials having a high probability of reflecting heterogeneous quantities of energy in 
specific wavelengths. Moreover, BU structures usually cast shadows and this ampli-
fies the expected heterogeneity of reflectance detected by remote sensors in corre-
spondence to BU areas. Furthermore, humans show a strong preference for building 
settlements made of objects with square corners, and the strong correlation between 
image spatial patterns showing high density of square corners and the presence of 
buildings can thus be measured (Pesaresi et al. 2011; Ouzounis et al. 2012). Finally, 
the expected sizes of BU structures can be estimated by analysis of the spatial char-
acteristics of built-up areas as in Small (2001).
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8.4.2 Data representatiOn

Data representation plays an important role in the GHSL production system design. 
The proposed approach is based on DFID, in analogy to the discrete fields approach in 
physics, where complex phenomena difficult to be modeled in a deterministic way at 
the micro scale show more stable statistical behavior if summarized at the macro scale. 
Accordingly, radiometric, textural, and morphological (shape) descriptors calculated 
at the geometry (resolution, coordinate of the origin, projection) of the input imagery 
are aggregated to the geometry of the global discrete field by analytical projective 
mapping transforms. The scale of the discrete field, and thus the size of the cells, is 
defined by the spatial resolution of the input data and their spatial uncertainty. This 
includes the implicit generalization that may be introduced by specific image descrip-
tors, for example, the window size and the structuring element size in the textural and 
morphological descriptors, respectively. The entities that are classified are the cells of 
the discrete field organized in tiles in order to optimize the I/O through raster data-
base operations. These cells are described by the image descriptors inherited from 
images processed at the original resolution, but then summarized at the size of the 
discrete field cell. Figure 8.3 depicts the proposed DFID concept. Inside and between 
the discrete fields, which may have different scales, various information collection and 
distillation processes may be discerned. In the proposed approach, the most important 
ones are related to aggregation and summarization from fine scale to coarse scale and, 
symmetrically, learning and classification from coarse scale to finer scales. The first 
kind of information processes can often be formalized by deductive and deterministic 
processing chains. On the other hand, the second kind of information processes is typi-
cally based on inductive statistical chains, for example, the learning techniques used 
for selecting the best thresholds in the image features for classification purposes.

Heterogeneous, inconsistent image
spectral, textural, and shape information

Globally consistent multiscale DFID

Inductive—Learning, classification

Deductive—Aggregation, summary

D1,D2,...Dn

D1,D2,...Dn

D1,D2,...Dn

FIGURE 8.3 The general DFID concept. (From Pesaresi, M. et al., IEEE J. Select. Top. 
Appl. Earth Observ. Remote Sens., 6(5), 2102, 2013.)
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With respect to the pixel-oriented image analysis methodology, the proposed 
DFID provides a more consistent approach for integrating heterogeneous image 
descriptors in the same classification task, in particular for integrating textural and 
morphological (shape) multiscale descriptors into traditional radiometric descriptors 
that have a “natural” representation at the scale of the pixel.

With respect to other image analysis methodologies based on image segmentation 
and classification, as the so-called object-oriented image analysis (OBIA) (Bruzzone 
and Carlin 2006; Blaschke et al. 2008), the proposed DFID method has several 
key advantages: (1) explicit management of spatial uncertainty, (2) stabilization of 
the inferential models, (3) possibility of a second-level pattern analysis of the results, 
and (4) reduction of memory requirements.

The DFID method allows complete and consistent management of the spatial uncer-
tainty embedded in the image information at any scale, which is one of the main draw-
backs of OBIA methods assuming spatial uncertainty always negligible with respect to 
the image pixel size. As discussed before, these conditions are illusory in real HR/VHR 
image data processing scenarios, and they may become completely misleading in case 
of thematic information targets having a size comparable with the expected input spa-
tial uncertainty and apparent observable displacement. With regard to the operational 
constraints discussed here, the image information retrieval methodologies based on 
preliminary image segmentation steps face computational problems in postprocessing 
when filtering and reaggregating spurious image segments resulting from misplacement 
of input data collected by different sensors and/or the same sensor at different times.

Moreover, the DFID method stabilizes the inferential information extraction 
model by first aggregating several image object/region instances in the same cell 
and then taking the classification decision based on the whole aggregated attributes. 
This is compatible with some well-established machine learning methodologies, 
for  example, the “bag-of-words” approach. The increase in the number of instances 
makes the statistical inference more stable. At the level of the cell, omission and com-
mission recognition errors may compensate, reducing the whole error rate. The OBIA 
paradigm instead takes the classification decision typically at the level of the single 
object/region, which is more risky from the statistical point of view: potential errors 
made at this point are thus directly propagated in the subsequent inferential steps.

Furthermore, DFID allows computationally efficient multiscale pattern analysis of 
the image information retrieval results. The same mathematical tools allowing pat-
tern analysis on lattice or raster structures can be translated to the analysis of DFID.

Finally, DFID significantly reduces the memory required for storage of image-
derived information and consequently the I/O efficiency of the whole image 
information retrieval workflow. Internal estimations show a reduction in memory 
requirements of 1 to 2 orders of magnitude for comparable image information (detail) 
stored using the DFID and OBIA approaches.

8.4.3 classificatiOn schema

In Pesaresi and Ehrlich (2009), a critical review of the standard LU/LC paradigm was 
made from the perspective of global mapping of human settlements. Based on obser-
vations of internal consistency and external adequacy aspects of the LU/LC paradigm, 



154 Global Urban Monitoring and Assessment through Earth Observation

an alternative approach was proposed, structured with a modular  abstraction model. 
In particular, three basic abstraction levels were identified as useful for the study of 
human settlements: <level0> where the basic settlement components are detected, 
<level1> where they are characterized by their physical characteristics and patterns, 
and <level2> where more abstract use of the settlement space by the population is 
inferred. The degree of generality of the inferential model translating image data in 
information can be described as inversely proportional to the degree of abstraction of 
the target information. Moreover, typically higher semantic abstraction is correlated 
with the need of higher integration with image-external information sources. In the 
first GHSL experimental test reported here, only a partial implementation of the first 
two semantic levels was made. In particular, only BU structures were detected at 
<level0> and they were characterized at <level1> on the basis of their morphological 
characteristics (size criteria).

The basic information contents of the current version of GHSL rely on the defi-
nition of BU structure (building) and BU areas: they are necessary for a quantita-
tive description of human settlements using HR and VHR remotely sensed data 
inputs (Pesaresi and Ehrlich 2009). BU areas are the spatial generalization of the 
notion of building defined as “areas (spatial units) where buildings can be found.” 
The working definition of BU structure (building) used in this experiment setting 
is as follows:

Buildings are enclosed constructions above ground which are intended or used for the 
shelter of humans, animals, things or for the production of economic goods and that 
refer to any structure constructed or erected on its site.

This working definition is adapted from the data specification on buildings deliv-
ered by the Infrastructure for Spatial Information in Europe (INSPIRE),* taking 
into account the specific GHSL constraints and user requirements. In particular, as 
opposed to the INSPIRE definition, the GHSL definition does not include the under-
ground building notion for obvious limitations associated with the input data.

Moreover, the GHSL notion does not impose the permanency of the BU structure 
on the site as INSPIRE does, following the classical topographic mapping tradition. 
The GHSL notion of BU structure is more inclusive and includes temporary human 
settlements for refugees or internally displaced people (IDP) camps.

Finally, in contrast to INSPIRE, the GHSL repository includes BU areas falling 
in the “slum” or informal settlement concept: the area of a city characterized by 
substandard housing and squalor and lacking in tenure security, also called “shanty 
town,” “squatter settlement,” and so on.

It is worth noting that the GHSL definition is only partially fitting with other similar 
available definitions already popular in the RS community such as the USGS “Urban or 
Built-up areas,”† “Impervious Surfaces” (Lu and Weng 2006), “Urban Soil Sealing,”‡ 

* INSPIRE Infrastructure for Spatial Information in Europe, D2.8.III.2 Data specification on building—
Draft guidelines, INSPIRE Thematic Working Group Building 2012. http://inspire.jrc.ec.europa.eu/
documents/Data_Specifications/INSPIRE_DataSpecification_BU_v3.0.pdf.

† http://landcover.usgs.gov/urban/umap/htmls/defs.php.
‡ http://www.eea.europa.eu/articles/ urban-soil-sealing-in-europe.
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and CORINE “Artificial Surfaces.”* Compared to these LU/LC definitions, the 
GHSL classification schema is more general and does not assume any embedded 
urban/rural dichotomy (BU structures are mapped independently if they fall under 
“rural” or “urban” area definitions) and is more focused on quantitative support to 
crisis management and risk and disaster mitigation activities requiring detailed map-
ping of buildings, population, and their vulnerabilities with a multiscale approach. 
Furthermore, the GHSL classification scheme with its simplification and reduction 
of the embedded abstraction was designed to facilitate the semantic interoperability 
and multidisciplinary across-application sharing of data and results. This includes 
the sharing of data between different agencies (UN, WB, EC) working in similar 
areas, but not necessarily sharing exactly the same abstract definitions (Pesaresi and 
Ehrlich 2009).

8.5 GHSL PROCESSING WORKFLOW

8.5.1 inpUt imaGe Data available

The satellite and airborne data used in the first GHSL experiment were acquired with 
optical sensors with a spatial resolution of 10 m or higher in order to allow detection 
of single buildings or groups of buildings. The data are hosted in the Community 
Image Data (CID)† portal. The CID portal is a web portal to search and access 
remote sensing data and derived products hosted at JRC for a variety of applications.

In this study, we use in total 11,438 panchromatic and multispectral satellite data 
sets from SPOT 2 and SPOT 5, RapidEye, CBERS-2B, QuickBird-2, GeoEye-1, 
and WorldView 1 and WorldView 2. In addition, airborne data sets covering the 
whole of Guatemala were available as RGB imagery. The data set under test cov-
ers parts of Europe, South America, Asia, and Africa for a total mapped surface of 
more than 24 million square kilometers. The input data volume is estimated in the 
order of 4.00 + E12 picture elements (pixels), stored in approximately 30 TB of disk 
space taking into account the various number of bands, bit depth, and compression 
formats applied in the available input scenes.

The different data sets cover a wide range of spatial resolutions from 0.5 m air-
borne data sets to 10 m of the SPOT 2 sensor. Radiometrically the entire visible and 
near-infrared part of the spectrum is covered by the test with wide panchromatic 
bands and up to eight multispectral bands of WorldView 2. In addition, some data 
sets consist of pan-sharpened multispectral images with the spatial resolution of the 
panchromatic band.

Around 50% of the VHR input data used in this experiment was available only 
in lossy data compression format: in particular JPEG, MrSid, and ECW formats 
were used in input during this experiment. It is worth noting that these formats 
introduce artifacts both in the radiometric and in the structural (texture, shape) 
image  information descriptors, thus introducing robustness challenges in the 
whole image processing workflow.

* http://www.eea.europa.eu/publications/ COR0-landcover.
† http://cidportal.jrc.ec.europa.eu/.
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Concerning the geocoding, the input quality condition was highly heterogeneous: 
the expected RMS absolute positional accuracy ranged from 3 to 5 m of orthorecti-
fied data, 25 m of raw VHR data, and up to 40 km in the CBERS 2B case.

The available input image data was collected in arbitrary and heterogeneous sea-
sonal conditions, with arbitrary and heterogeneous sun/sensor elevation and azimuth 
parameters. In some 20% of the input data no precise information about collection 
parameters was available, especially in case of large mosaics of VHR input data 
made by third parties.

8.5.2 GlObal reference Data

Several additional data sets were used in the workflow as ancillary data. For the 
orthorectification of some of the satellite data we used the TerraColor* as a reference 
layer. This is an orthorectified global imagery base map at 15 m spatial resolution 
built primarily from Landsat 7 satellite imagery. The Open Street Map† (OSM) data 
were used to extract a HR land–sea border. During the processing, LR global data sets 
are used for reference purposes. One of the data sets is urban class of the MODIS 500 
Land Cover Type product (Schneider et al. 2010). In addition, LandScan (2008 and 
2010)‡ HR global population data sets were used.

The LR reference data were used for learning and consistency checking purposes 
before and after the classification steps, respectively. During the learning, LR ref-
erence data substitute a manual training set collection by a new interscale learning 
mechanism detailed in Pesaresi et al. (2013). Also, LR reference information contrib-
utes to global consistency checking and optimization of several alternative outputs 
done at the end of the image information extraction workflow, during the mosaic and 
integration phase. During the global consistency checking, the active visual train-
ing collection loop is activated. Accordingly, with the proposed DFID paradigm, no 
deterministic masking of HR GHSL information is done using LR information as 
input. Only statistical inferential chains are admitted from LR to HR information 
scales. Consequently, the GHSL output is considered as information extracted from 
HR/VHR input image data. The only deductive mask applied was the land mask 
derived from OSM data, assuming these data were produced at the same or finer scale 
than the GHSL output. Consequently, the seawater versus land dichotomy was not 
extracted from the input imagery by the proposed image information extraction work-
flow, but instead derived from an external source assumed as suitable for the purpose.

8.5.3 General WOrkflOW

There are four main ingredients of the workflow characterizing the GHSL  experiment 
discussed here: (1) the input image data, (2) the reference set, (3) a preprocessing chain, 
and (4) a processing chain (Figure 8.4).

* http://www.terracolor.net.
† http://www.openstreetmap.org/.
‡ Copyright by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract No. 

DE-AC05-00OR22725 with the United States Department of Energy.
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The reference set has the crucial function to support the optimization of the spatial 
and thematic consistency during the GHSL production. The workflow requires the exis-
tence of a global BU reference layer (BUREF) driving the automatic learning, classifi-
cation, and information aggregation operations. This layer contains the best estimation 
of built-up presence at global scale at each iteration of the GHSL production system. At 
the first iteration, the best estimation was produced by two globally available data sets, 
LSPOP and MODIS500, at 1 km spatial resolution (Pesaresi et al. 2013). Independent 
of this initial choice, the whole system is designed to have an incrementally evolution-
ary approach: the output of any given image information extraction run/experiment, 
if passing a validation and consistency check, will contribute to improve (thematic 
accuracy, spatial/temporal completeness) the available BUREF layer. The expectation 
is that this retroaction mechanism will contribute toward a stepwise enhancement of 
the overall reliability and completeness of the GHSL output.

The preprocessing module basically performs two functions: (1) checking and 
optimizing the spatial consistency of the input image data and (2) checking and flag-
ging eventual occlusions and no-data areas in the same images. The spatial consis-
tency is optimized by using an available reference set having 15 m spatial resolution 
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FIGURE 8.4 The workflow applied during the first operational GHSL production test of 
June 2012.
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and an expected RMS spatial tolerance of around 20 m, while the occlusions and 
no-data areas are detected by an internal recognition mechanism.

8.5.4 learninG apprOach

In this experiment, a new interscale learning and classification paradigm was 
 introduced with the objective of allowing a fully automatic processing chain for 
heterogeneous and not calibrated input data set. The general idea behind this new 
approach is to move the calibration step from the input data—where it is placed 
 classically—to the image-derived features (descriptors) before the actual classifi-
cation. The general objective is to stabilize as much as possible the classification 
parameters against the complex input data used in this experiment.

The classical methodologies for standardization of image-derived features rely on 
observation of the statistical distribution of the values of the features in the specific 
scene. This strategy was tested but rejected during the experiment design: it provided 
unstable results in data-processing scenarios involving multiple-scene and hetero-
geneous input data. In particular, scene-relative standardization approaches assume 
homogeneous (or at least comparable) distribution of land cover classes in each 
scene. This condition was largely violated in the discussed experiment set, where 
fully “urban” scenes were processed together with scenes with only a few buildings 
in some remote rural areas.

In the proposed approach, the HR image-derived descriptors are rescaled through 
learning procedures that use LR globally available information layers as reference. Of 
course, a correlation between the HR image descriptors and the LR global reference 
layers must be assumed. The role of the LR reference information layers is to increase 
the consistency and comparability of HR classification outputs produced from het-
erogeneous HR/VHR sources. It is worth noting that in the proposed approach this 
objective is achieved exclusively by the learning procedures described in this section; 
no a priori masking of HR data is performed with the LR reference information.

Image-derived features that are standardized with respect to an explicit objec-
tive function can be used for a fully automatic classification chain. Consequently, the 
advantage of the proposed methodology is that the collection of training samples can 
be avoided. This is particularly important for the whole experiment and in particular for 
testing the sustainability of global HR/VHR image information retrieval. Nevertheless, 
it is evident that between HR image descriptors and LR reference layers there is a scale 
gap that may introduce geospatial generalization issues. In order to mitigate the scale 
gap effects, three different modalities of learning and classification are implemented in 
the experiment: (1) adaptive learning, (2) meta-learning, and (3) discovery.

In the “adaptive learning” modality, the system optimizes the decision thresholds 
in the input features using a given reference layer. The “meta-learning” modality 
is used to study the behavior of these decision thresholds in the set of scenes pro-
cessed and to detect regularities, for example, typical thresholds for a given sensor 
in specific regions. The output of the meta-learning is then exploited during the 
“discovery” modality that can be activated in order to have the chance of recovering 
image information lost because of errors (incompleteness, inconsistencies) in the 
reference data or different scale generalization of the image-derived information 
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and in the available reference data. In practice, adaptive learning optimizes con-
sistencies between the image information under processing and the reference data, 
while the meta-learning and discovery modes proceed to a more tentative image 
information recognition phase where reference data is not available with the neces-
sary thematic, spatial precision.

The typical workflow combining the three modalities is as follows: (1) run adap-
tive learning in all available scenes and classify the outputs by matching with the 
reference and the amount of available reference data, (2) run meta-learning in the set 
of successfully classified scenes with available reference data, and (3) run discovery 
mode in the set of scenes failing the learning and classification at the point (1).

8.5.5 valiDatiOn strateGy

The strategy designed for dealing with GHSL validation is based on active  linking 
of two different measurement sets: (1) accuracy measures using visually collected 
reference samples and (2) consistency measures using LR global reference sets. The 
strategy is inspired by the artificial intelligence “active learning” approach, also 
called “optimal experimental design” in the statistics literature, translated to the 
global multiscene evaluation case (Settles 2009). In particular, an iterative  process 
exploiting interscale information for systematic comparison is established in order to 
maximize the impact of a minimized number of visually labeled samples. Assuming 
similar thematic contents and globally consistent behavior of the coarse-scale 
 reference data, the expectation is that the low agreement areas are the most interest-
ing for optimization of the visual labeling activities. In these areas, we concentrate 
on both the errors of the information under test and the errors or generalization 
effects of the coarse-scale reference data. During the iterative process, the integra-
tion of the samples visually labeled at the iteration n in the global reference data used 
at each iteration n + 1 would stepwise increase the overall reliability of the reference 
data and then the overall reliability of the derived quality measurements. Moreover, 
this mechanism will decrease the probability to select the same areas as priority to 
be visually analyzed.

8.6 DESCRIPTION OF THE FIRST GHSL RESULTS

Figure 8.5 shows the GHSL output on the characterization of BU structures in East 
London, UK. The color encodes the estimated size (surface) of BU structures in 
the range of 10–15,000 m2 from blue (small) to red (large). Note how the modular 
abstraction model proposed for the classification schema as an alternative to the clas-
sical LU/LC model shows some interesting results in the specific area. BU structures 
detected and characterized at the abstraction <level0> and <level1>, respectively, 
of the classification schema show interesting behavior in the specific case if they 
are generalized by spatial aggregation. Local densities of <level1> descriptors seem 
to be correlated with a more abstract <level2> describing the dominant use of the 
settlement surfaces, for example, residential (blue) versus industrial commercial 
(orange-red).
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The quality of the automatic GHSL output has been evaluated in Pesaresi et al. 
(2013) from the perspective of accuracy measurements and global consistency analy-
sis. In this framework, the performance of the same automatic image information 
retrieval workflow has been benchmarked according to different criteria includ-
ing (1) external sources used during the learning phase; (2) different sensors, input 
bands, and resolution; and (3) different geographical regions. The accuracy of the 
whole GHSL output produced during the experiment was estimated by using a total 
of approximately 95,000 and 700,000 samples of BU and NBU classes, respectively, 
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FIGURE 8.5 (See color insert.) GHSL output reporting the characterization of BU struc-
tures in East London, UK. The color encodes the estimated size (surface) of BU structures in 
the range of 10,000–15,000 m2 from blue (small) to red (large). Note how relations between 
the dominant size of BU structures and the use of the settlement areas can be made.
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collected by visual interpretation of HR/VHR input images. The collection of these 
samples was based on a random systematic grid approach as defined in the GHSL 
reference data collection protocol at scale 1:50 K (Pesaresi et al. 2012a). According 
to this procedure, an estimation of a total accuracy of more than 90% was assessed. 
These results are  consistent with other more specific tests done on the same GHSL 
output. In  particular, the GHSL output of 628 SPOT satellite scenes covering the 
major urban agglomerations in Europe was systematically compared with the HR 
European Soil Sealing Layer produced by the European Environment Agency.* 
The test provided a 90.8% ± 3.9% average agreement rate between the two sources 
(Pesaresi and Halkia 2012). In Brazil, a stratified random sampling procedure and 
visual reference data collection was applied to evaluate the GHSL output of more 
than 3000 input CBERS scenes (Kemper et al. 2013). The assessment provided an 
average agreement rate of 94% ± 6%. Finally, a systematic comparison between the 
GHSL output of 2,288 input CBERS scenes and the land cover of China derived 
from Landsat data was performed (Lu et al. 2013). This test provided an average 
98.13% ± 5.6% agreement rate in the best of the benchmarked parameter sets.

By comparing the output of the GHSL produced from HR/VHR input image data 
against the available representations of human settlements produced by using moderate- 
or low-resolution input data, some observations can be made. HR/VHR images allow 
the recognition and classification of single BU structures according to their morphologi-
cal characteristics: in the first GHSL experiment, a classification based on the estimated 
size of BU structures was implemented but of course many others can be designed start-
ing from the basic information about single BU structures. The analysis of single BU 
structures is evidently impossible using input image data with a pixel size approaching 
the size of BU structures or even exceeding it by 1–2 orders of magnitude, as in the case 
of LR image data. The possibility to describe single BU structures is an evident value 
added of processing the HR/VHR image data for analysis of human settlement. The 
description of the morphological characteristics of single BU structures may contribute 
toward understanding the BU area fraction in larger pixel sizes and consequently may 
contribute to understanding the bias functions in the BU areas detected using different 
input sensors. Moreover, the  characterization of  single BU structures may contribute 
toward automatic inferential models  recognizing more abstract semantic information 
layers, for example, different uses (industrial/ residential) of the settlement surfaces, 
their physical vulnerability to specific  hazards, the quality of their living conditions, 
and formal/informal patterns.

By observing the areas of major disagreement between the GHSL output processed 
during the June 2012 experiment and the available global LR reference data, some 
interesting phenomena can be reported. In particular, in some areas of the globe, the 
disagreement is generated by interaction between (1) the specific settlement pattern, 
(2) the spatial generalization rule embedded in the LR reference data, and (3) the 
criteria used for extraction of the settlement information from the LR image data. 
Figure 8.6 shows the detection and characterization of BU structures in the GHSL 

* EEA fast track service precursor on land monitoring—Degree of soil sealing 100 m. http://www.eea.
europa.eu/data-and-maps/data/eea-fast-track-service-precursor-on-land-monitoring-degree-of-soil-
sealing-100m-1.
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output over the city of Dhaka, Bangladesh, compared with urban areas detected using 
moderate-resolution input data. In the image, white squared areas are derived from 
the “urban areas” class of the MODIS 500 source. The large disagreement between 
the two representations of the human settlement and in particular about the estimation 
of the density of BU structures in the north and in the west of the city is noticeable. 
Any impact, exposure, or risk spatial modeling using the two different information 
sources in input would presumably output very different results. Figure 8.7 displays 
a zoom in on the north-west part of the city of Dhaka showing large disagreement 
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recognized by the GHSL workflow. 
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between the GHSL and the MODIS outputs. The map shows the HR image input data 
generating the GHSL output. The settlement pattern shows heterogeneous residential, 
rural, and industrial use with scattered spatial arrangement. Note that a significant 
positive correlation between the presence of dwellings and the presence of trees can 
be observed in the area. The two factors of spatial scattered patterns and the presence 
of a large fraction of stable and strong vegetated surfaces spatially correlated to the 
presence of BU structures may contribute toward explaining the underestimation of 
these areas in classification using LR input images. Similar considerations can be 
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FIGURE 8.7 Zoom in on the north-west part of the city of Dhaka showing large disagree-
ment between the GHSL and the MODIS outputs. The map shows the image input data gen-
erating the GHSL output. The settlement pattern shows heterogeneous residential, rural, and 
industrial use with scattered spatial arrangement. Note that in the area a significant positive 
correlation between the presence of dwellings and the presence of trees can be observed. 
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extracted by observing Figure 8.8 showing the detection and characterization of BU 
structures in the GHSL output over the city of Nairobi, Kenya, compared with urban 
areas detected using moderate-resolution input data. In the image, white squared 
areas are derived from the “urban areas” class of the MODIS 500 source. A large 
disagreement between the two representations of the human settlement is noticeable 
in the north of the city. Figure 8.9 shows a zoom in on the northern part of the city 
of Nairobi where the disagreement between the GHSL and the MODIS outputs can 
be observed. The map shows the HR image input data generating the GHSL output. 
The settlement pattern displays a relatively dense rural settlement that is spatially 
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organized along the crest lines of the hilly region. In this case, probably the major 
factor playing a role in the underestimation of BU areas using LR sensors is the rela-
tive small size of the single BU patches, together with their spatial scattering. 

8.7 CONCLUSIONS

A proof-of-concept of the possibility to build a new GHSL derived from HR and VHR 
optical remotely sensed data was presented. The test involved 24.3 million square 
kilometers of test area spread across four continents, automatically mapped with the 
image data collected by a variety of optical satellite and airborne sensors with a spatial 
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resolution ranging from 0.5 to 10 m. In this mapped area, the total number of people 
 living in 2010 was estimated to be 1,268,448,973 (LandScan). It is the largest known test 
of automatic image classification involving such kind of image input. Several imaging 
modes were tested including panchromatic, multispectral, and pan-sharpened images. 
A new multiscale framework was introduced, integrating the automatic image informa-
tion retrieval with global available geoinformation layers derived from other satellite sen-
sors or GIS modeling. For the first time, the capability of automatic information extraction 
from remotely sensed data at a detailed scale in global realistic scenarios and the capac-
ity to control the global consistency of the output both spatially and thematically were 
demonstrated. The robustness of the adopted image features was tested globally with a 
high variety of input data quality including extremely challenging “worst-case” scenarios 
as data lossy compression, pan-sharpening and data warping operations, large seasonal 
changes, and low signal/noise quality sources (CBERS-2B). New multiscale morphologi-
cal and textural image feature compression and optimization methods were introduced, 
together with new learning and classification techniques allowing the processing of 
HR/VHR image data using LR reference data.

The validation of the automatic results by a visual inspection protocol provided 
an accuracy rate of more than 90%. These results are consistent with other indepen-
dent validation campaigns testing the same classification output with comprehensive 
reference data available in Europe (Pesaresi and Halkia 2012), Brazil (Kemper et al. 
2013), and China (Lu et al. 2013). The average agreement between the automatic 
HR output generated by the experiment and the available LR representation of the 
urban areas was estimated at 91.5%. Because of the comprehensive and systematic 
approach of the experiment, a comparative study across HR/VHR sensors, bands, 
and different geographic areas can be made using precisely the same image informa-
tion extraction methodology and a consistent global reference layer.

The observation of the anomalies in the global agreement ratio will focus the 
attention on specific sensors and specific geographical areas for further analysis, 
validation campaigns, and methodological improvements. In some cases, this anal-
ysis shows that the available LR data underestimate significantly the presence of 
BU structures if compared with HR data. During the GHSL experimental run, this 
phenomenon was reported in several large regions in all the four processed con-
tinents and it is presumably mostly correlated to the fact that the settlements in 
these regions are spatially organized in relatively small patches. Because the large 
majority of the global human settlement footprint surface consists of small- and 
medium-sized BU patches, a significant change in the global estimation of this 
surface is expected from the analysis of HR/VHR data as it is conveyed by the 
proposed GHSL methodology.
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9 Spatial Dynamics and 
Patterns of Urbanization
The Example of Chinese 
Megacities Using 
Multitemporal EO Data

Hannes Taubenböck, Thomas Esch, 
Michael Wiesner, Andreas Felbier, 
Mattia Marconcini, Achim Roth, and Stefan Dech

9.1 INTRODUCTION

Our world is becoming urban. Although more than 50% of the global population 
already lives in urbanized areas, the United Nations (2011) foresees that by 2050, 
the entire expected global population growth of 2.3 billion people will be completely 
absorbed by urban areas. This massive process of urbanization produces immense 
spatial differences in stage, dynamics, or patterns across continents, cultural areas, 
or regions. For instance, Europe, North America, and Japan have been urban 
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societies for decades; China is today experiencing a dynamic process of transfor-
mation toward an urban society, and developing countries (especially of Asia and 
Africa) have only recently entered this transformation process.

In China, this ongoing transformation—from a rural to an urban society—has been 
extremely dynamic in recent years. Thirty years ago, less than 20% of all Chinese 
people lived in cities (UN 2011). Today already more than 50% live in urban areas, 
thus transforming China into an urban society. With this development, China has the 
largest urban population in the world (Chen 2007). Figure 9.1 shows that since 1970, 
the global urban population has grown by 263%; in China the urban population has 
grown by 465%, considerably exceeding the global dynamics. Projections for China 
even estimate 250 million new and additional urban dwellers by 2025 (UN 2011).
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FIGURE 9.1 Transformation of societies based on population figures—Global (a) and 
Chinese (b) development since 1950 and prospects until 2025. (From United Nations, World 
Urbanization Prospects–The 2009 Revision, United Nations, New York, 2011.)
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One result of this massive process of urbanization is the formation of so-called 
megacities, referring to the largest category of more or less individual monocentric 
city areas or regions. The United Nations (2003) define megacities quantitatively as 
a conurbation having more than 10 million inhabitants. In the year 1970, there were 
just two megacities in the world: New York City (United States) and Tokyo (Japan). 
Since then, their number has increased markedly to 28 throughout the world, and it 
is projected that this number will even rise to 37 by 2025 (Figure 9.2). With 16 (or 17 
if we want to classify Istanbul as an Asian megacity) Asia features the largest num-
ber of megacities. China accounts for four megacities, namely, Shanghai, Beijing, 
Guangzhou, and Shenzhen, which are the study sites of this chapter. It is even 
expected that the number of megacities in China will rise to seven by 2025, with the 
cities of Chongqing, Wuhan, and Tianjin also gaining megacity status (Figure 9.4). 
Shanghai is projected to become the third largest city on the planet with respect to 
population (UN 2011).

The massive dynamics and large regions of urban sprawl often strain the ability 
to govern, organize, and plan new settlements, and it is often a difficult task to even 
document and measure what has already happened. In most cases, a large amount 
of spatial, quantitative, and qualitative data and information on urban sprawl exist. 
However, these data sets are seldom easily accessible, available in digital format, 
or unrestricted. These data sets are only in a few cases stored centrally, complete, 
consistent, standardized, substantially documented, and available as time-series 
or up-to-date, not to mention being comparable with data sets of other cities 
(Taubenböck et al. 2012).

In the last decades, Earth observation (EO) sensors developed to a stage where 
global maps of urban areas have been made possible at low spatial resolution from 
300 m to 2 km (Potere and Schneider 2009). Several global land cover data sets include 
the thematic class “urban” (e.g., Bartholome and Belward 2005; Bontemps et al. 2011; 
Elvidge et al. 2001; Schneider et al. 2005), but their comparatively coarse resolution 
is insufficient to represent spatial variation of settlement patterns, especially in low 
density and scattered built-up areas of peri-urban or rural landscapes. Presentation, 
comparison, and evaluation of the various available global “urban” data sets are dis-
cussed by Potere and Schneider (2009). Currently, new EO initiatives aim at improving 
the geometric accuracy level for global urban mapping based on optical (Pesaresi et al. 
2011, 2012) or radar data (Esch et al. 2012, 2013; Gamba and Lisini 2013; Miyazaki 
et al. 2012); however, to date a multitemporal component is still absent.

Multitemporal EO studies analyzing spatial urban growth at medium resolution (here 
defined as 10–100 m) have been conducted for megacities such as Dhaka in Bangladesh 
(e.g., Griffiths et al. 2010) or Tokyo in Japan (e.g., Bagan and Yamagata 2012) as well as 
for large multinuclei city regions (e.g., Sexton et al. 2013), mega-regions (Taubenböck 
et al. 2014), or for cities of different sizes (e.g., Yuan et al. 2005). Taubenböck et al. (2012) 
present a study systematically monitoring all current megacities across the globe. Four 
change detection examples taken from this study (namely, the megacities Delhi [India], 
Tehran [Iran], Kolkata [India], and Rio de Janeiro [Brazil]) are illustrated in Figure 9.3. 
The figure exemplifies spatial urban growth across the globe and its varying dynamics 
and dimensions as well as their evolving pattern differences at the urban footprint level 
at approximately decadal intervals since the 1970s.
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Angel et al. (2005) systematically compared 90 cities, including some Chinese 
cities (e.g., Guangzhou) at two time steps (i.e., 1990 and 2000). Beyond this, 
 several studies measuring and comparing urban patterns have been presented (e.g., 
Civco  et  al. 2009; Jat et al. 2008; Ji et al. 2006; Schneider and Woodcock 2008; 
Taubenböck et al. 2009, 2011b). With a spatial focus on China, for example, mul-
titemporal Landsat data are used to monitor spatial urbanization for the megacities 
Guangzhou (Ma and Xu 2010; Yu and Ng 2006), Beijing (Wu et al. 2006; Xie et al. 
2007), and Shanghai (Chen 2007; Yin et al. 2011). Multitemporal SPOT data are used 
by Cheng and Masser (2003) for monitoring growth in the future megacity of Wuhan 
in the 1990s. One study analyzed the spatial pattern of the megacity Shanghai based 
on gradient analysis. Kong and Nakagoshi (2006) also apply gradient analysis for 
the evaluation of urban green spaces and their patterns in Jinan. Seto and Fragkias 
(2005) compared four cities in the Pearl River Delta (PRD) (i.e.,  Guangzhou, 

0
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Water
Urbanized area ca. 1975
Urbanized area ca. 1990
Urbanized area ca. 2000
Urbanized area ca. 2010

Maximum overlapping
      area

5 10 20 km
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(d)(c)

FIGURE 9.3 (See color insert.) Change detections derived from multitemporal remote sens-
ing data: examples—(a) Delhi, India; (b) Tehran, Iran; (c) Kolkata, India; and (d) Rio de Janeiro, 
Brazil—for global megacity monitoring since the 1970s. (From Taubenböck, H., Esch,  T., 
Felbier, A., Wiesner, M., Roth, A., and Dech, S., Remote Sens. Environ., 117, 162, 2012.)
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Zhongshan,  Dongguan, and Shenzhen) using multitemporal remote sensing data 
from 1988 to 1999 for inter- and intracity analysis.

However, a systematic approach of the urban remote sensing community toward 
global, continental, national, or large area and long-time monitoring of spatial 
urbanization is still absent. The Group on Earth Observation (GEO) is coordinat-
ing international efforts to build a Global Earth Observation System of Systems 
(GEOSS). This initiative was launched in response to calls for action by the 2002 
World Summit on Sustainable Development, aiming at exploiting the growing 
potential of remote sensing data to support decision making. With the topic “SB-04 
Global Urban Observation and Information” as information for societal benefits 
within GEO, the political significance of this topic becomes obvious (GEO 2013). 
However, this goal is also a commitment for the EO community to overcome the 
problem of delivering only case studies or stopping at the stage of scientific proof 
of concepts or methodologies. Rather, these scientific advancements need to be 
systematically applied to deliver new and value-added information to answer key 
geographical questions (as shown, with many examples, in this book [Weng 2014]).

This chapter deals with the following main aims contributing to the GEO frame-
work as well as to existing studies using remote sensing to map and monitor urban-
ization systematically:

• Maximizing the time period for monitoring the spatial effects of urbaniza-
tion based on EO data to a span of almost 40 years (~1975–2011)

• Mapping and monitoring systematically and consistently today’s four 
megacities in China

• Measuring and comparing spatial patterns for derivation of new insights on 
the spatial effects of urbanization

9.2 STUDY SITES: CHINESE MEGACITIES

China is widely viewed as a case of underurbanization, and urbanization has lagged 
rather behind its industrialization as a consequence of restricting policies concerning 
migration toward cities before the economic reform (Chan 1996; Chang 1994; Chang 
and Brada 2002; Liu et al. 2003; Zhang and Zhao 2003). With the unprecedented 
economic growth, however, the country has been witnessing a dramatic growth in 
urbanization since 1978 when the economic reforms began. Its direct contribution 
is evident as the population growth of cities in China is fuelled in large measure 
by rural–urban migration (Heikkila et al. 2007). China prepares, for example, by 
building new towns from scratch (Taubenböck, 2013). One other result of this pro-
cess is that today China accounts for the highest concentration of megacities on our 
planet: Beijing, Shanghai, Guangzhou, and Shenzhen are the megacities of today, 
and the number of megacities in China is expected to grow to seven by 2025 with 
Chongqing, Tianjin, and Wuhan being added to the list (UN 2011; Figure 9.4).

All Chinese megacities have undergone rapid urbanization. Beijing is the capital 
and the center of politics, economics, and culture in China; Shanghai is the economic 
center of eastern China and has a large industrial structure, is a transportation hub, 
and includes a service industry. These two cities are the largest cities in China today. 
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Both turned into megacities as early as in the 1990s. Shanghai as the largest city is 
projected to have more than 28 million inhabitants by 2025.

The megacities Guangzhou and Shenzhen are located within the Pearl River Delta 
at about 100 km distance from each other. They are characterized by export-oriented 
industries as well as financial and other service industries. Both of them became 
megacities very recently. Shenzhen has experienced a remarkable population devel-
opment since urbanization started comparatively late in the early 1990s but with 
incredible dynamics.

All these four megacities and their vicinity city clusters accounted for about 20% of 
the total gross domestic product in China in 2005 (Chan and Yao 2008), proving the 
importance of these urban hubs on the national as well as global economy. The future 
megacities of Tianjin, Chongqing, and Wuhan show very similar population develop-
ments with expectations to cross the megacity line around 2015. Figure 9.4 illustrates 
the location and the population development since the 1970s of both the current four 
megacities and the three future megacities. Apart from this detail, Figure 9.4 gives an 
overview of current and future megacities in East Asia, not shown in detail in Figure 9.2.

9.3 DATA

Earth observation (EO) data allow for consistent, multitemporal and large area data 
for monitoring spatial processes of urbanization. Maximizing the time period for 
monitoring spatial effects of urbanization limits the range for commercially or freely 
available EO data sets. Today’s large extents of the megacities—e.g., the dimension 
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Asian megacities.
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of the core Shanghai metropolitan area in east–west direction roughly spans over 
50  km—require remote sensing data sets with a large swath width for full areal 
 coverage. Moreover, the geometric resolution must allow for the delineation of 
urbanized areas from nonurbanized land cover.

In this framework, Landsat data (e.g., GLCF 2013) are an obvious cost-effective 
choice fulfilling these requirements. Accordingly, we use for our analysis data from 
the Landsat multispectral scanner (MSS) featuring a geometric resolution of 60 m and 
a spectral resolution of four spectral bands (green, red, and two near-infrared bands), 
from the thematic mapper (TM) with 30 m geometric resolution and seven spectral 
bands, and from the enhanced thematic mapper (ETM) also with 30 m geometric 
resolution. Providing data sets since 1972, this program proved essential for long-time 
monitoring and maximizing the time span. With a field of view of 185 km, the Landsat 
satellites are able to survey the large metropolitan areas of the study sites. In our study, 
we consider data from the approximate time-points of 1975, 1990, and 2000.

In addition to these medium-resolution optical data sets, we also take very high- 
resolution radar data into account. In particular, we employ data from the two German 
satellites of TerraSAR-X (TSX) and TanDEM-X (TDX), which have acquired two cov-
erages of the entire landmass of the world for the years 2011 and 2012. While the pri-
mary goal is to provide a global digital elevation model at 12 m resolution (Huber et al. 
2010), this immense data source is also being used to classify urbanized areas globally 
(Esch et al. 2012, 2013a,b). The standard mode for classification of the urban footprint 
is the “stripmap” single polarized mode with approximately 3 m spatial resolution, 
which provides the data set for the latest time step in our study. All technical details of 
the data sets used have been presented by Taubenböck et al. (2012).

9.4 METHODS

Our general workflow presented here includes two separate processes: (1) Classification, 
intending to derive change detections mapping spatial urban growth from the multi-
temporal EO data sets for the megacities and (2) Spatial metrics, intending to quantify, 
analyze, and compare the classified spatial urban patterns of the megacities.

9.4.1  classificatiOn Of mUltitempOral anD 
mUltisensOral remOtely senseD Data

For optimizing the outcome of the monitoring of spatial urbanization based on multi-
sensoral EO data sets, we apply a backdating chronological workflow, starting the clas-
sification procedure with the latest data set, the TSX/TDX data from 2011. With this 
conceptual idea, we aim at reducing the effect of the multisensor and multiscale approach 
because this data set features the highest spatial resolution, and its related urban footprint 
classification results support the classification of Landsat data with lower geometric reso-
lutions. The schematic chronological processing chain is displayed in Figure 9.5.

In the proposed classification procedure, we start our analysis with the latest 
available data set, namely, the TSX/TDX stripmap data having the highest geo-
metric resolution. Hence, we first classify very high resolution (VHR) synthetic 
aperture radar (SAR) images using a pixel-based approach (Esch et al. 2012). 
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Originally, an object-based approach had been developed for radar data; however, 
this approach was transferred to a pixel-based approach without losing accuracy 
but significantly improving processing time. The proposed methodology includes a 
specific preprocessing of the original intensity SAR data followed by an automated, 
threshold-based image analysis procedure.

The preprocessing aims to provide additional texture information for classifi-
cation to highlight highly textured image regions, typically representing highly 
structured, heterogeneous built-up areas (thus, taking advantage of specific char-
acteristics of urban SAR data showing strong scattering due to double bounce 
effects in these areas). In particular, the preprocessing focuses on the analysis of 
local speckle characteristics in order to provide this texture layer (referred to as 
“speckle divergence”). The analysis of the local image heterogeneity by means of 
the coefficient of variation is an established and straightforward approach to define 
the local development of speckle in SAR data. Highly textured landscapes such as 
urban landscapes showing a heterogeneous mix of objects within small areas lead 
to an increase of directional, non-Gaussian backscatter. Hence, the texture for such 
landscapes typically results in comparably high values. This information is used 
along with the original intensity information to automatically extract the urbanized 
areas, based on a fully unsupervised image analysis technique. The main concept 
of this approach is a two-stage procedure: first, a set of optimal thresholds for every 
specific scene is automatically determined by making use of the Jensen–Shannon 
divergence. These thresholds are then used to train a one-class classifier, which is 
based on support vector data description (SVDD) following principles of support 
vector machines (SVM). More details of this methodology are presented in Esch 
et al. (2013a,b). The result is a binary mask delineating “urbanized” from “nonur-
banized” areas, a so-called urban footprint classification.

TerraSAR-X/TanDEM-X

Landsat ETM+

Landsat TM

Landsat MSS Object-based
classification

Object-based
classification

Object-based
classification

Pixel-based
classification

Urban footprint
classification

Urban footprint
classification

Urban footprint
classification

Urban footprint
classification

Spatial limitation

Spatial limitation

Spatial limitation

Input data Method Result/product

Year: 2010

Year: 2000

Year: 1990

Year: 1975

FIGURE 9.5 Processing chain from the multisensoral satellite data to the multitemporal 
urban footprint classification products.
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For backdating our chronological workflow, we use this urban footprint classifica-
tion derived from TSX/TDX data from the year 2011 to support the classification of 
urban areas for the year 2000. Due to the lower geometric resolution of the Landsat 
data and the related problem of mixed pixels, we integrate the urban footprint classifi-
cation from the year 2011 into our classification approach to reduce the possible areas 
for classifying urban areas in 2000 to the particular spatial extension. Thus, we clas-
sify urbanized areas in the Landsat data only if the later time step confirms an urban 
location (referred to as spatial limitation in Figure 9.5). We base our multitemporal 
classification approach on the hypothesis that the megacities of interest are basically 
expanding even if we miss out few areas of negative growth, if they exist at all. First, 
with this idea, we aim to minimize one of the primary obstacles to urban land cover 
classification from optical data sets: the diversity and spectral heterogeneity of urban 
reflectance often leading to misclassifications (Small, 2005). Second, if we start with 
the Landsat MSS data set as baseline approach, we would limit the classification inac-
curacies due to the lower spatial and spectral resolutions of these data sets. This back-
dating workflow is consistently continued with the integration of the urban footprint 
of the particular previous time step as spatial limitation for classification until the 
1970s data set of the MSS data, as is schematically presented in Figure 9.5.

The classification of the various Landsat scenes is based on an object-oriented 
classification procedure (Abelen et al. 2011). An object-based classification approach 
complies with the goal of an urban footprint classification, defined in detail below as 
an abstract spatial approximation of urbanized vs. nonurbanized areas as it reduces 
the so-called salt and pepper effect in pixel-based classifications of optical data sets.

The first step is a multiresolution segmentation, a bottom-up region-merging tech-
nique starting with one pixel objects for areas within the urban footprint information 
available from 2011. The second step is a hierarchical thematic classification using 
decision trees allowing mapping of four different thematic classes, namely, “water,” 
“vegetation,” “undeveloped land,” and “urban area.” Based on a feature selection study 
(Abelen et al. 2011), a set of features is suggested for classification and systematically 
applied to all scenes. This feature selection naturally cannot reflect the complete spec-
tral diversity of urban reflectance; the selected features have to be seen as examples to 
reduce possible classification features, thus assuring methodological consistency when 
different operators are applying the algorithm to many different data sets, such as for 
the four megacities in this study. The thematic classes are identified hierarchically, 
starting with classes of significant separability from other classes and ending with those 
of lower separability, based on suggested features such as the Normalized Difference 
Vegetation Index (NDVI). Although the classification procedure is consistent, the defi-
nition of the thresholds used in the decision tree is scene dependent; this means, the 
procedure depends on the user experience and the time used for calibration, if refer-
ence data are available. With this concept, we aimed at a straightforward classifica-
tion approach being consistent, traceable, and transparent for a large variety of optical 
Landsat scenes at different times and parts of the world.

This concept already includes a change detection strategy due to its backdating 
integration of the previous urban footprint layer; thus, spatial urban growth over time 
can be identified. The details of this procedure have been presented by Taubenböck 
et al. (2012).
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9.4.2 spatial analysis Of Urban patterns

The resulting multitemporal classifications of the four megacities in China reveal 
complex spatial urban patterns. For a systematic spatial analysis (including the tem-
poral development and comparison of these patterns), spatial metrics have recently 
become relevant for urban analysis. These metrics have been adopted from land-
scape ecology, where they are referred to as landscape metrics (Gustafson 1998; 
O’Neill et al. 1988).

In general, spatial metrics can be defined as quantitative and aggregate measure-
ments derived from digital analysis of thematic categorical maps showing spatial het-
erogeneity at a specific scale and resolution (McGarigal and Marks 1994; McGarigal 
et al. 2002). A wide variety of indices have been developed to characterize and quan-
tify the landscape structure and pattern, some of which describe the proportion of 
the landscape with a particular land cover class; the size, number, and perimeter 
of each land cover patch; and the complexity of the shape of the patch (McGarigal 
et al. 2002). In our study, we apply metrics to analyze and compare (1) the measured 
dimension of spatial growth, (2) the dominance of the urban core, (3) the fragmenta-
tion of the urban landscape, and (4) the spatial concentration of urban patches for the 
four current Chinese megacities.

 1. Urban growth is calculated using both absolute and relative measures. 
In particular, absolute measures allow for a spatial comparison of the cities, 
whereas relative measures allow for a comparison in growth dynamics. For 
the latter approach, we take the extent of urbanized areas of each individual 
city in the 1970s as reference (we classify the urban extension at this par-
ticular time step as 100%) and calculate the percentage of urban growth 
with respect to this baseline.

 2. The largest patch index (LPI) at the landscape level aims to quantify 
the percentage of total landscape area comprised by the largest patch 
(for  mathematical details, see Table 9.1). The LPI equals 100 when the entire 
landscape consists of one single patch and approaches zero as the largest 
patch becomes increasingly small (McGarigal et al. 2002; Taubenböck 
et al. 2009). Accordingly, we apply this indicator as a measure to describe 
the dominance of the urban core.

 3. Patch density (PD) is a fundamental indicator for measuring the fragmenta-
tion of a settlement pattern. The PD, defined as the number of urban patches 
per area (in our case the area of interest remains constant), is a measure of 
discrete urban areas in the landscape (for mathematical details, see Table 9.1). 
PD is expected to increase during periods of rapid urban nuclei  development 
(sprawl) but may decrease if urban areas expand and merge into a continuous 
urban fabric (McGarigal et al. 2002; Seto and Fragkias 2005).

 4. The mean Euclidean nearest neighbor distance (ENN) is used as a measure 
of patch dispersion (for mathematical details, see Table 9.1); indeed, smaller 
mean distances imply a fairly compact distribution of patches across land-
scapes, whereas large distances imply a distribution of patches tending to a 
dispersed pattern.



182 Global Urban Monitoring and Assessment through Earth Observation

To ensure spatial comparability for all four megacities, we apply a standardized area 
of interest for the analysis of settlement patterns. The area of interest consists of a 
square with an edge length of 50 km centered in the downtown area of the respective 
city (e.g., for Beijing, we opt for the Tiananmen Square and for Shanghai, we choose 
the People’s Park). In this way, we ensure spatial comparability for the city regions of 
interest, as for example, artificial administrative borders do not allow for consistent 
spatial analysis and comparability across cities.

9.5 RESULTS

In the following discussion, we present experimental results on the mapping of urban 
growth using EO data, its accuracy, and a related discussion on the term “urban 
footprint.” Moreover, we quantify and compare spatial expansion and the evolving 
patterns of megacities in China offering an interpretation from a physical point of 
view on the process of urbanization.

9.5.1 Urban fOOtprint prODUct anD its accUracy

In the following discussion on experimental classification results we consistently 
used the terms “urban area” or “urban footprint,” which are also commonly employed 
in literature. These terms basically refer to the spatial extent of urbanized areas on 
a regional scale; however, this is a spatially and thematically fuzzy definition as this 
can inconsistently refer to either a functional area, the density of population, build-
ings, or the built-up area. The latter definition goes along with Cahn (1978), who 

TABLE 9.1
Mathematical Details of the Applied Spatial Metrics

Metric Formula Units Range

Largest Patch Index (LPI)

n
max a

LPI j
A

ij( )

( )= = ⋅1 100 Percent 0 < LPI ≤ 100

Patch Density (PD) PD n
A
i= ⋅ ⋅( , ) ( )10 000 100 Number per 

100 ha
PD > 0 (constrained by cell size)

Euclidean Nearest-
Neighbor (ENN) Distance

ENN hij= Meters ENN > 0 (without limit)

Source: McGarigal, K. et al., FRAGSTATS v4: Spatial pattern analysis program for categorical and 
continuous maps, Computer software program produced by the authors at the University of 
Massachusetts, Techn. Bericht, University of Massachusetts, Amherst, MA, http://www.umass.
edu/landeco/research/fragstats/fragstats.html.

Note: aij, area (m2) of patch ij; A, total landscape area (m2); ni, number of patches in the landscape of 
patch type (class) i; hij, Distance (m) from patch ij to nearest neighboring patch of the same type 
(class), based on patch edge-to-edge distance, computed from cell center to cell center.
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understood the term “urban footprint” as the land directly occupied by a particular 
physical man-made structure.

From a remote sensing perspective, the latter definition is an obvious choice 
as functional information or population densities are not directly displayed in the 
remote sensing data. Thus, we adopt the idea of Cahn (1978) and define a “settle-
ment mask” for the definition of the urban footprint as a combination of buildings, 
streets, and other impervious surfaces (Taubenböck et al. 2011a). The basic concept 
behind classifying a pixel in an optical data set as “urban” is as follows: Pixels are 
categorized as “urban,” if the corresponding area is dominated by built environ-
ment, which includes human-constructed elements, roads, buildings, runways, and 
industrial facilities. When open land (e.g., vegetation, bare soil) dominates a pixel, 
these areas are not considered urban, even though they may function as urban space 
(Potere et al. 2009). The urban footprint retrieved from radar data is slightly differ-
ent with respect to the physical characteristics of the input data and the algorithm; 
however, due to the generalization of the urban seeds, the basic concept of the urban 
footprint is similar.

On a regional scale, the urban footprint product provides insight into dimension, 
directions, patterns, and location of a city. However, the “urban footprint” should not 
be misunderstood as a spatially and thematically exact measurement of individual 
urban objects, and their detailed spatial arrangements, but as abstract delineation of 
the physical man-made structures of cities (Taubenböck et al. 2012).

Properly evaluating the accuracy of the classification results is essential for assessing 
the performances of the proposed approach. To this aim, we checked the accuracy by 
a visual verification process overlaying the 2011 classification result from TSX/TDX 
data to high-resolution optical satellite data available in Google Earth. Using a random 
distribution of 200 check points per megacity, the accuracy has been calculated for 
every individual city (Table 9.2). For the older time steps of the Landsat classifications, 
VHR optical data sets, such as from Google Earth, are not available. Thus, we com-
pare the check points to the original Landsat data due to missing reference data sets. 
Here, we also use a random distribution of 200 check points per time step and city; 
the results are reported in Table 9.2 in terms of percentage of overall accuracy and the 
kappa coefficient.

TABLE 9.2
Accuracy Assessment of the Various Urban Footprint Products

City

Landsat MSS Landsat TM Landsat ETM+ TerraSAR-X 

Overall 
Accuracy 

(%) 
Kappa 

Coefficient 

Overall 
Accuracy 

(%) 
Kappa 

Coefficient 

Overall 
Accuracy 

(%) 
Kappa 

Coefficient 

Overall 
Accuracy 

(%) 
Kappa 

Coefficient 

Beijing 78.3 0.69 86.0 0.79 91.1 0.80 84.4 0.77

Shanghai 72.7 0.60 78.8 0.74 82.5 0.78 87.2 0.71

Guangzhou 81.2 0.72 84.9 0.77 88.2 0.83 88.1 0.81

Shenzhen 66.7 0.58 76.9 0.71 84.7 0.72 79.4 0.69
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The aforementioned method for accuracy assessment followed an approach pre-
sented in Congalton (1991). Naturally, this evaluation implies errors due to subjec-
tive misclassifications by the person in charge and the visual verification process is 
also dependent on the respective reference data. For 2011, VHR optical data sets 
from Google Earth allow an evaluation on the highest geometric level although the 
classification result of the urban footprint is an abstract, more regional assessment 
of urbanized areas, defined earlier as settlement mask. Thus, because of this differ-
ence in geometric resolutions between classification result and reference data sets, 
errors can be detected in great detail; thus, the assessment of accuracy is often lower 
than visual comparisons to lower resolution Landsat data. However, although this 
reveals subjectivity in the accuracy assessment, we see that, on average, the overall 
accuracy came up to values constantly over 80% and high kappa coefficients. Lower 
accuracies have been identified for the classification results obtained using Landsat 
MSS data; however, due to the backdating chronologic classification workflow, their 
low spatial resolution did not significantly influence the classification accuracy. In 
general, the urban footprint classifications provide high and stable accuracy values 
appropriate for spatial urban settlement analysis.

9.5.1.1 Change Detection of Chinese Megacities
The main result of this study is a consistent monitoring of the four current Chinese 
megacities—Beijing, Shanghai, Guangzhou, and Shenzhen. The change detection 
result displays their spatiotemporal evolution and their respective spatial patterns 
since the 1970s. Figure 9.6 allows a first visual comparison of dynamics, dimensions, 
and patterns. The areas of interests for each megacity are held constant with a 50 km 
edge length; thus, the analysis covers an area of 2500 km².

At first glance, it becomes obvious that the dimension of spatial urbanization of 
China’s current megacities has been massive since the 1970s; its magnitude, how-
ever, does not show an obvious similar trend. Also, the resulting urban patterns do 
not show a characteristic structure.

Beyond this, the chosen area of interest, 2500 km², is generally appropriate for 
the time step 1975 or 1990; however, the current extent of the two largest megacities, 
Beijing and Shanghai, prove that the transformation from urban to suburban to peri-
urban and finally to rural patterns is fluid and spatially not distinct. This brings up 
the question, whether comparing settlement patterns of cities based on standardized 
and thus comparable spatial entities is appropriate. It brings up the research question 
regarding where an appropriate spatial border of today’s megacities would be for 
consistent comparisons.

The problem tackled here becomes obvious when looking at the urban footprint 
classified for the extended region of the megacity Shanghai and its peri-urban and 
rural surroundings (Figure 9.7—with the urban core of Shanghai located in the east 
of the scene). The spatial transition of urban to peri-urban to rural patterns is floating 
within these complex, highly urbanized settlement patterns surrounding Shanghai. 
Thus, defining an appropriate spatial entity for systematic comparison of cities is a 
complex problem since it is unclear without administrative borders (which are arti-
ficial and thus not appropriate for spatial cross city comparisons). Thus, we chose a 
standardized spatial entity for a systematic comparison of cities.
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However, these results, based on the standardized areas of interest, allow iden-
tifying, localizing, and quantifying the dimension and pattern of urban sprawl over 
time, and because consistent data and methods are applied, comparisons across 
 cities are feasible.

9.5.1.2 Measuring and Comparing Spatial Patterns of Chinese Megacities
In general, spatial urbanization in China’s megacities is highly dynamic. However, 
spatial urban expansion across China’s megacities of today is not and has not been 
analogical. For evaluation, we calculate absolute and relative spatial growth displayed 
in Figure 9.8. Basically, the results show that Beijing has—within the 50 km2 area—
the largest urban extension, followed by Shanghai, Guangzhou, and Shenzhen. This 
does not match with the population figures as Shanghai has the largest population 
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FIGURE 9.6 The change detections for the megacities Beijing, Shanghai, Guangzhou, and 
Shenzhen within 50 km2 around the urban centers since the 1970s based on multitemporal 
Landsat and TerraSAR-X data.
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in China (UN 2011). One could conclude that the change detection in two dimen-
sions measured here with EO data neglects urban growth in its third dimension as 
Shanghai is known to have already a higher concentration of high-rise buildings 
than, for example, New York City. Thus, we assume Shanghai’s floor space index is 
significantly higher than the one in Beijing.

The Guangzhou region closes spatially the gap to Shanghai regarding urban exten-
sion. This may be related to a spatial double structure of the area. The megacity of 
Guangzhou has another urban hub, the city of Foshan, nearby. This is clearly visible in 
the urban footprint classifications for 1975 and 1990, with Guangzhou’s urban center 
in the area’s core and the additional urban center Foshan in the southwest of the area. 
Today, the two cities basically form one coalescent multinuclei large area city region.

Using relative measures, it becomes obvious that megacity Shenzhen experienced 
the highest spatial dynamics with an extent in 2011 almost 12 times greater than in 
1975; overall, all Chinese megacities show immense spatial urban expansion rates 
since the 1970s: Guangzhou (8 times), Beijing (7 times), and Shanghai (6 times). 
In relation to global relative growth in megacities, the most explosive spatial growth 
is happening in Asia (Taubenböck et al. 2012). The four considered Chinese cases 
exhibit a spatial behavior similar to that of other Asian megacities such as Mumbai, 
India, or Jakarta, Indonesia (both show today a spatial extent, which is about 8 times 
larger than their spatial extent of 1975), Manila, Philippines (7.5 times) or Seoul, South 
Korea (5.5 times), confirming the statement. Moreover, the growth of Chinese mega-
cities exceeds by far examples from other continents, such as Mexico City, Mexico 
(about 3 times), Cairo, Egypt (about 4.5 times) or London, Great Britain (about 2 times).

N

Nonurbanized areaUrbanized area
50 km2512.50

FIGURE 9.7 The urban footprint of megacity Shanghai and the urban, peri-urban, and rural 
settlement patterns in the megacity’s surroundings.
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In any case, megacity Shenzhen can be seen as an exceptional example from a 
global as well as a continental perspective because of its remarkable spatial dynam-
ics. The remarkable spatial dynamics correspond to the high dynamics of population 
development. The city of Shenzhen with only about 50,000 inhabitants in the 1970s 
turned into a city with more than 10 million inhabitants within only about 35 years 
(UN 2011).

For an analysis and comparison of evolving settlement patterns, we apply the 
three different landscape metrics described in Section 9.4.2 to provide a spatial per-
spective on the urban cores, on landscape fragmentation, and on concentration of 
urban patches in the four Chinese megacities.

In general, the LPI is rising for all megacity regions (Figure 9.9). Beijing and 
Shanghai show the highest values during the entire monitoring period. With an 
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LPI of a value around 50, the urban core is dominating the urban pattern of both 
megacities. In comparison, Guangzhou experienced a dynamic increase of the LPI 
only after the year 2000. The spatial double structure, because of the proximity of 
the other large city of Foshan next to the megacity resulted in a low dominance of 
the urban core until 1990. However, the urban expansion and, in succession, the 
spatial coalescence of the settlement patterns of both cities led to this enormous 
increase in LPI in recent years. Shenzhen shows the lowest LPI value. This is due to 
its location in a very hilly and fragmented coastal area. The influence of orographic 
and related environment conditions channeled the settlement pattern development. 
The result is a highly complex pattern without any typical characteristics of concen-
tric growth around the urban core.

The PD, which is a measure of fragmentation, shows for the two largest 
 cities—Beijing and Shanghai—a similar development with a temporal shift of 
about 10  years: a rise in fragmentation because of basically concentric nonco-
alescent urban sprawl in peripheral regions (Figure 9.9). After the year 2000, PD 
in both megacity regions decreased significantly; the decrease can be interpreted 
as a redensification and, thus, compacting of urbanized areas. It is interesting to 
note that Guangzhou and Shenzhen (both cities having about half the population 
of Beijing and Shanghai today) show the same characteristic trend of an increas-
ing fragmentation, which was true of Beijing and Shanghai 10–20 years earlier. 
This raises the question whether a similar settlement pattern development can be 
expected for these two cities.

Regarding ENN, the general trend for the megacities are decreasing values over 
time, a logical result due to urban expansion and sprawl while keeping the area of 
interest stable (Figure 9.9). However, it is remarkable that the complex structure of 
Shenzhen exhibits the highest ENN values measured at all four megacities, whereas 
the more mono- and concentric urban patterns of Beijing and Shanghai show low-
est ENN values. Deviation from the general temporal trend is only measured for 
Shanghai from 1975 until 1990. There, urban sprawl happened in a pattern with com-
paratively large distances from the dominating urban core. In urban planning, this 
spatial process is often described as a leap-frog development, which causes the rising 
ENN values. However, after 1990, immense redensification processes in the periph-
eral urban areas engage the settlement pattern development in Shanghai within the 
general trend.

Overall, we can state that similar trends in spatial urban growth for megacity 
regions in China are observed. Regarding settlement patterns, similarities as well as 
significant differences have been highlighted.

9.6 CONCLUSION

With respect to the main goals defined in the introduction, this chapter under-
lines the capabilities of remote sensing to (1) enable long-time multitemporal 
approaches (almost 40 years) on a medium geometric resolution for large areas 
such as all  current Chinese megacities, (2) enable to systematically map and 
monitor large areas such as megacities with consistent data and methods with 
sufficient accuracy ( accuracies basically higher than 80%), and (3) provide 
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value addition to remote  sensing  classification results by using spatial metrics 
to  measure and compare the urban patterns with the aim to derive new insights 
on the spatial effects of urbanization. In our case, similarities and differences 
regarding the dimension and patterns of urban expansion have been evaluated 
and discussed. With these capabilities, EO provides a unique data source to sig-
nificantly contribute to mapping, characterizing, and understanding physical 
processes in urban environments.

However, it must be critically stated that remote sensing data and results also 
have  clear limitations. First, the classification accuracy especially when dealing 
with multitemporal and multisensoral data sets is limited. Nevertheless, with accu-
racies of constantly over 80% for the urban footprints, an objective basis is given 
for monitoring, assessing, and evaluating the process of urbanization, at least at a 
regional scale. Second, two-dimensional urban sprawl is mapped with the multi-
temporal approach based on multisensoral remote sensing data. Thus, when using 
these two-dimensional data sets, it must be clear that an important aspect of urban 
expansion is neglected: the  expansion toward the third dimension, for example, 
especially in China, often large-area high-rise buildings replace low-rise buildings. 
Although high-resolution laserscan or stereo data may be highly precise data sets for 
three-dimensional mapping of urban morphology (see e.g., Rottensteiner et al. 2007; 
Sirmacek et al. 2012), large area 3D monitoring approaches using EO data for entire 
megacity regions or beyond are still absent. Taubenböck et al. (2013) approach this 
topic by large-area digital surface models from Indian Cartosat-1 stereo data, clas-
sifying Central Business Districts (CBDs) for entire mega city areas. Third, although 
this chapter contributes—together with many similar studies—to the approach for a 
more comprehensive global documentation and deeper knowledge on spatial urban-
ization processes at the regional scale, an organized combination with other spatial 
data sets enabling continuative studies with a more global perspective is nonexis-
tent; even clear political leadership to do so is absent. And, without claiming to be 
complete, fourth, the physical monitoring of urbanization is only one perspective 
of the analysis of the ongoing urbanization processes. The development of mul-
tidisciplinary thinking, data integration, and method development holds immense 
potential for new insights on this complex issue of global change—a task that is still 
underrepresented.

As discussed, within these critical comments, an enormous potential for future 
(urban) research using EO data becomes visible. EO provides unique possibilities 
for consistent analysis of settlements on global, continental, regional, or local scale. 
And the possibilities to do so are constantly increasing due to constantly increasing 
availability of and accessibility to modern remote sensing technologies, which open 
up new opportunities for a wide range of urban applications. We must make use of 
them in a more structured and organized way. Now.
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10.1 INTRODUCTION

The focus of this book is the monitoring and assessment of urban settlements. As 
such, it looks at the circumstances in which the majority of people around the globe 
are living. Apart from the remaining rural population, there is a considerable part 
of the global population that was forcibly displaced by natural disaster, conflict, or 
persecution. They are often forced to live in temporary or transitional settlements as 
refugees or internally displaced persons (IDPs, see more detailed definition in the 
next section). By the end of 2012, about 44 million people worldwide were consid-
ered as forcibly displaced due to conflict and persecution. They included 15.2 million 
refugees and 28.8 million IDPs (IDMC 2013).

A large part of refugees and IDPs are living in camps that are managed or sup-
ported mostly by national or international relief organizations. These camps may host 
several tens of thousands of refugees or IDPs, sometimes for many years. Although 
we may have some stereotyped ideas about refugee camps, there is a plethora of 
camp situations. One of the objectives of this chapter is to raise awareness about this 
often neglected part of the global population and at the same time to show how Earth 
Observation (EO) can help in improving its situation by providing up-to-date informa-
tion to relief agencies and decision makers. Knowing how many refugees/IDPs there 
are is fundamental for planning and managing efficient relief operations. This chap-
ter reviews the scientific literature to identify how EO may support the mapping and 
monitoring of refugees and IDPs with EO data and proposes a robust methodology that 
was already tested successfully in different camp situations.

10.2 SOME DEFINITIONS

This chapter discusses how EO helps in mapping and monitoring refugees and IDPs. 
In this context, it is important to understand the differences (and similarities) between 
refugees and IDPs.

The status of refugees is clearly defined by international law. The 1951 United 
Nations Convention Relating to the Status of Refugees, also known as the “Geneva 
Convention” defines, in Article 1.A.2, a refugee as “any person who: owing to a well-
founded fear of being persecuted for reasons of race, religion, nationality, member-
ship of a particular social group, or political opinion, is outside the country of his 
nationality, and is unable to or, owing to such fear, is unwilling to avail himself of 
the protection of that country” (UNHCR 2011). The definition was expanded by the 
Convention’s 1967 Protocol to include persons who had fled war or other violence in 
their home country (UNHCR 2011).

The status of IDPs is legally less well defined. However, according to the Guiding 
Principles on Internal Displacement published by the UN Office for the Coordination 
of Humanitarian Affairs (UNOCHA 2004), “internally displaced persons are per-
sons or groups of persons who have been forced or obliged to flee or to leave their 
homes or places of habitual residence, in particular as a result of or in order to avoid 
the effects of armed conflict, situations of generalized violence, violations of human 
rights or natural or human-made disasters, and who have not crossed an internation-
ally  recognized state border.” It is important to note that IDP camps generally tend 
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to have fewer relief resources available, making camp residents more dependent on 
locally available natural resources (UNEP 2007).

In this chapter, we focus our attention on mapping and monitoring of conflict and 
disaster-induced displacement of groups of refugees and IDPs. There are other forms 
of forced migration like environmental displacement, asylum seekers, and smuggled 
and trafficked people, which are not dealt with in this chapter.

10.3 UNIVERSE OF REFUGEE/IDP CAMPS

Millions of refugees and IDPs are living in all kinds of crisis situations. It is crucial to 
understand this variety and its implications in order to develop appropriate methods 
for the mapping and monitoring based on EO data. This section provides a typology 
of camps based on a number of parameters. The first set of parameters describes the 
framework conditions of the camp including the causes for its creation, the status of 
the displaced persons (refugee or IDP), the origin of the installation of the camp, and 
the time the camp already exists (Figure 10.1).

Such kind of information can only be derived indirectly from EO imagery; how-
ever, it has a strong impact on the camp. For example, refugees are more likely to be 
hosted in planned camps, while IDPs are often grouped in self-settled camps. Some 
parameters can be derived from the EO imagery (Figure 10.2). There is informa-
tion related to the size of the camp. Large camps like in Darfur or at the Horn of 
Africa can be detected even with coarser-resolution EO data. For dispersed, frag-
mented IDP gatherings, like the example of Haiti discussed next or the IDPs spread 
in Mogadishu (Somalia), often very high spatial resolution and/or pre-event imagery 
are necessary to identify IDPs. Specific structures of the camp (fences, lined-up 
tents) usually assist in identifying if a camp is a planned or a self-settled area. Very 
high resolution (VHR) imagery helps in estimating the size and to some extent the 
type of dwellings in a camp. Finally, the surroundings of the camp provide informa-
tion about the location, accessibility, and risks of the camp.

The following examples highlight some emblematic camp situations referring to 
the parameters discussed.

Refugee/IDP camps

Cause
Conflict

Natural disaster

Refugee

Self-organized/settled

Planned

Short term (weeks, months)

Medium term (months, years)

Long term (protracted situations, more than 5 years)

IDP
Status

Camp origin

Duration

FIGURE 10.1 Framework conditions for a camp.
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10.3.1 self-OrGanizeD iDp camp after a natUral Disaster in haiti

The starting point for the creation of a refugee/IDP camp is always the (urgent) need for 
people to leave their homes in search of a secure and safe place. The main causes for 
the creation of camps are usually either natural disasters or conflicts. The occurrence 
of a disaster (e.g., earthquake, flood, technical accident) leads mostly to temporary dis-
placement of population from the affected area. In the immediate aftermath, people 
tend to group in safe places as a survival strategy and return to their original habitat 
once the disruption is over, for example, after the floodwater has receded. There are 
also cases where people are permanently displaced, as in the case of the Chernobyl 
and Fukushima nuclear accidents. The large majority of these people continue to live 
as IDPs in the country of origin. Depending on the coping capacity of the country, the 
IDPs are moved as soon as possible into temporary shelters by the national civil pro-
tection or they remain, at least initially, in the disaster area mostly in self-organized 
camps. This is illustrated with an example of an IDP gathering in Port-au-Prince 
(Haiti) in Figure 10.3. In fear of the frequent aftershocks, the people started putting up 
makeshift shelters with plastic tarpaulins to protect themselves from sun and rain. At this 
point they were still entirely self-dependent without access to water, sanitation, and ali-
mentation. Some days later, the entire area was densely covered with tarpaulins hosting 
8,000–10,000 IDPs. This camp was functional until the end of 2012. In the immediate 
aftermath of the disaster, there was a need, first, to identify the locations where IDPs had 
gathered, and, second, to estimate the camp population to scale the emergency relief.

10.3.2 self-OrGanizeD iDp camp DUrinG a cOnflict in sri lanka

In violent conflict situations, people try to flee the fighting zone. Sometimes they 
are even deliberately targeted by the fighting parties. As in the case of disaster 

Refugee/IDP camps

Camp size/structure

Dwelling type

Location

Risk and vulnerability

Accessibility

Isolated

Durable housing

Prefabricated tents/containers

Makeshift shelter

Fragmented agglomeration

Large-scale camps

Open camps

Closed/fenced camp

Connected to host community

Natural hazards

Epidemics

Conflict-related hostilities

FIGURE 10.2 Parameters that can be derived from EO data.
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refugees/IDPs, their first reflex would be to seek refuge in secure places as a survival 
strategy. In this context, usually groups offer more protection and hence the displaced 
gather in informal camps away from the fighting. Such a situation is depicted in Figure 
10.4, where several tens of thousands of IDPs are seen gathered in an ad hoc manner in the 
so-called non–fighting zone (NFZ). The IDPs mostly put up tarpaulin sheds all over the 
NFZ, which were several times reduced in size by the fighting parties. The area resembled 
a big contiguous camp without any kind of coordination. IDPs were largely deprived of 
access to safe water, sanitation, alimentation, and health care from relief agencies. Toward 
the end of the conflict, access to the combat zone was strongly limited, and independent 
information was necessary to monitor the conflict, estimate the entrapped civilian popula-
tion, and support the collection of evidence on alleged war crimes.

10.3.3 planneD iDp camp after a cOnflict in sri lanka

The civilians who managed to escape the fighting in the NFZ and the civilians who 
were still in the NFZ after the end of combat were detained in a number of camps. 
The reasons given by the Sri Lankan government/military for not allowing the 
civilians to return to their homes were the existence of land mines and the need to 
identify Liberation Tigers of Tamil Eelam (LTTE) fighters whom they alleged were 
hiding among the civilians. The largest camp—Menik Farm—consisted of eight 
separate camps that hosted more than 220,000 IDPs (Figure 10.5). The camps were 
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FIGURE 10.3 IDP gathering in Delma/Saint-Martin (Haiti) 5 days after the catastrophic 
magnitude 7.0 Mw earthquake that struck Haiti on January 12, 2010. IDPs are seen gath-
ered in open spaces, because their homes are destroyed or people are afraid of aftershocks. 
(Imagery, © 2010 Digitalglobe.)
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FIGURE 10.4 Mullaitivu (Sri Lanka). IDP tents in the designated “safe zone” for civilians 
trapped in the fight between the Sri Lankan military forces and the LTTE on May 10, 2009. 
(Imagery, © 2009 Digitalglobe.)
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FIGURE 10.5 Close-up view of Menik Farm camp 1 (Sri Lanka) on June 26, 2009, where 
IDPs were detained after the end of the civil war in Sri Lanka. It is an example of a planned 
camp with clearly separated blocks and lined-up dwellings. (Imagery, © 2009 Digitalglobe.)
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established by the military in an isolated location. Each camp was subdivided into 
rectangular blocks separated by driveways. Each block was occupied by clearly lined 
up tents of different sizes. Each camp zone and many blocks were fenced. IDPs were 
initially not allowed to leave the camp, and UN and humanitarian agencies had only 
limited access to the IDPs.

Sri Lanka was initially planning to keep the IDPs in the camps for up to 3 
years. Following the pressure from the international community the camps were 
partially opened up and the IDPs slowly released. Since access to the camps was 
limited to international observers, EO could be used to verify the promises of the 
government.

10.3.4  partly planneD camp in a prOtracteD iDp sitUatiOn 
in DarfUr (sUDan)

In the aftermath of a conflict, refugees and IDPs have to adapt to the situation in the 
camps—they are often trapped there for several years. Wherever possible, they try to 
improve their living conditions by generating income (offering labor, self-sustaining 
food production, trading) and improving their dwellings (building more resistant, 
spacious structures). The refugees and IDPs in the Darfur conflict that started in 
2003 are in such a situation. Ten years after the start of the conflict, 1.4 million IDPs 
and 300,000 refugees still live in camps in protracted refugee/IDP situations. The 
refugees/IDPs find themselves in a long-lasting and intractable state of limbo. Their 
lives may not be at immediate risk, but their basic rights and essential economic, 
social, and psychological needs remain unfulfilled after years in the camps and/or 
exile (UNHCR 2004).

The change in the dwelling situation is clearly visible in Figure 10.6. The figure 
shows the original village of Jaffalo in the center with the typical Darfurian settle-
ment structure: the dwellings are a combination of round thatched-roof huts and 
flat-roofed, mud-brick buildings; the properties are delimited by thorn hedges. The 
right part of Figure 10.6 shows the old Zamzam camp, where the IDPs have already 
adopted the traditional style, though more densely built up. The left part shows the 
extension of the camp, where the new arrivals are living in much more primitive 
conditions. In camp situations, as described for Zamzam with a continuous move-
ment of the population, it is difficult to monitor the actual camp population size. EO 
could monitor the population without resorting to a cost- and labor-intensive and 
often dangerous population census.

Figure 10.6 also addresses an important aspect of refugee/IDP camps: the 
interaction with the host communities and the impact of the camp on the sur-
rounding environment. The sudden influx of large numbers of IDPs or refugees—
often outnumbering the host population—into a spatially limited area can place 
severe pressure on the local resources. In many cases this results in grave con-
sequences for the local environment, leading to further deterioration in the 
socioeconomic and political, as well as sanitary, conditions within the host com-
munities (Hugo 2008).
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10.3.5  refUGee camp in a prOtracteD sitUatiOn 
in an Urban cOntext in lebanOn

The oldest camps in the world are the Palestinian refugee camps, which were 
established after the 1948 Arab–Israeli war. Some of the camps are today entirely 
absorbed by the host cities. Figure 10.7 shows the Bourj el-Barajneh refugee camp 
in Beirut, Lebanon. It is entirely surrounded by dense urban fabric. It is only partly 
distinguishable from the neighboring building development. However, the building 
density is extremely high, with no open spaces observable.

The example of Bourj el-Barajneh clearly shows some of the limits of EO, par-
ticularly in urban environments. Often it is impossible to provide information purely 
from EO data, if it is not combined with additional information from the ground.

On the other hand, today’s refugee/IDP reality is that only a minority now live 
in camps. Many of those forcibly displaced have moved to urban areas in search of 
greater security, including a degree of anonymity, better access to basic services, and 
greater economic opportunities. Today, approximately half of the world’s estimated 
10.5 million refugees and at least 4 million IDPs are assumed to be living in urban 
areas (Fielden 2008, UNHCR 2009, Metcalfe et al. 2011). But the lives of urban 
refugees and IDPs also present dangers: refugees may not have legal documents that 
are respected; they may be vulnerable to exploitation, arrest, and detention; and they 
can be in competition with the poorest local workers for the worst jobs.
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FIGURE 10.6 The village of Jaffalo in Darfur (Sudan) in the center surrounded by the 
Zamzam IDP camp on May 29, 2009. The right part of the image shows an old Zamzam 
camp, the left part the Zamzam extension. At this point, the camp hosted approximately 
100,000 IDPs. (Imagery, © 2009 Digitalglobe.)
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The examples described in this chapter are only a representative sample of the 
many situations encountered by refugees/IDPs every day. The next section provides 
an overview of how EO can support this struggle with up-to-date information.

10.4 SUPPORT OF EO DATA

In most relief operations, the key information needed for efficient planning and 
management is the location and number of the affected population. The size of the 
displaced population in a given site is crucial for an initial assessment to effectively 
allocate resources (food, shelter, health, etc.) and take measures to address added 
pressure on natural resources due to the arrival of the displaced population (Noji 
2005). In particular, in early phases of a conflict, this information is impossible to 
obtain from the ground. This is because the location of the camps is not known and 
it is often impossible to access the area due to ongoing violence or due to the impact 
of the natural disaster. Even at later stages, obtaining up-to-date statistics remains 
difficult. A large number of approaches have been developed, but most methods 
to estimate the population are based on in situ assessments and require statistical 
sampling and analysis (e.g., Brown et al. 2001, Grais et al. 2006). In the first days or 
weeks of an emergency, such knowledge is mostly unavailable. In addition, humani-
tarian access is limited in many IDP situations due to ongoing violence or access 
limitations imposed by the impact of the disaster. Hence, the current guidelines of 
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FIGURE 10.7 Bourj el-Barajneh refugee camp in Beirut (Lebanon) on February 10, 2010. 
This Palestinian refugee camp was established in 1948 and hosts more than 15,000 refugees. 
The white dashed line represents the approximate camp limits. (Imagery, © 2010 Digitalglobe.)
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UNHCR (2001) propose the use of Geographic Information Systems (GIS) and aer-
ial and satellite imagery for estimation of the affected population based on visual 
interpretation and/or simple modeling of the population figures using a statistical 
sampling approach. Ehrlich et al. (2009) provide examples of how remote sensing 
with satellites can indirectly be used to estimate population.

10.4.1 DWellinG anD pOpUlatiOn estimatiOn in camps

The initial studies in the scientific literature focus mostly on the characterization of 
refugee/IDP camps and their surrounding environment due to the limitations in the 
spatial resolution of satellites. Lodhi et al. (1998) analyzed the impact of Afghan 
refugees on the forest cover in the vicinity of their camp in Pakistan using Landsat 
data. Bjorgo (2000) used satellite photography from the Russian KVR-100 camera 
with a spatial resolution of 3.3 m to assess the environment around a Khmer refu-
gee camp in Thailand and successfully correlated the camp area with census-based 
population estimates. The first study to propose an automated procedure to estimate 
the number of dwellings in a refugee camp was published by Giada et al. (2003). 
They tested different approaches to enumerate the dwellings based on statistical 
sampling with visual interpretation, supervised/unsupervised classification, object-
based image analysis, and mathematical morphology, where the last produced the 
best results. Subsequently, more studies were published for the automated enu-
meration of dwellings in camps on the basis of sound precision rather than visual 
interpretation (Jenerowicz et al. 2010, Kranz et al. 2010, Tiede et al. 2010, Kemper 
et al. 2011a). Unfortunately, the studies could not provide population figures and 
validate their methods against ground population estimates. Checchi et al. (2013) 
tested the validity and feasibility of a satellite imagery–based analysis for rapid 
estimation of displaced populations and validated it against field-based population 
estimates. They concluded that in settings with clearly distinguishable individual 
structures, the remote imagery–based method has a good potential to be used oper-
ationally even with automated approaches. According to their findings, it may not 
work in settings with connected shelters, a complex pattern of roofs, or multilevel 
buildings. A particularly interesting aspect of the application of EO imagery is the 
fact that an area can be easily observed multiple times allowing monitoring of the 
situation. Lang et al. (2010) monitored the development of the Zamzam camp in 
Darfur with three time steps between 2004 and 2008. Kemper et al. (2011b) moni-
tored the dismantling of Menik Farm camps in Sri Lanka using an advanced change 
detection methodology.

Today, EO is playing an important role in providing relief agencies with up-to-
date information about the location, structure, and number of dwellings in a camp 
(Figure 10.8), including frequent updates of the situation. This is possible due to 
the enhanced capability of EO in terms of availability, extent, and timeliness of 
satellite imagery covering a certain crisis situation. However, it is necessary to have 
operational mapping centers with the appropriate know-how to provide the needed 
information. In the last few years, several initiatives have been developed with 
regard to operational capacities in this field. There are, just to give some examples, 
international initiatives such as the Emergency Mapping Service of the European 
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Copernicus Programme (http://emergency.copernicus.eu), UNOSAT (http://www.
unitar.org/unosat), or national capabilities such as the German ZKI (Center for 
Satellite-Based Crisis Information; http://www.zki.dlr.de).

10.4.2 assessinG the envirOnmental impact Of refUGee/iDp camps

Refugees and IDPs have a major impact on the host communities and the surround-
ing environment (e.g., Black 1994, Jacobsen 1997). As such, environmental concerns 
related to IDP and refugee streams have become increasingly important, since they 
strongly impact  postconflict recovery. The UNEP has recently started to address the 
environmental impacts of IDP and refugee camps through their postconflict environ-
mental assessment (PCEA) activities. Primary assessments have been conducted in 
Liberia (UNEP 2006), Sudan (UNEP 2007), the Democratic Republic of the Congo 
(UNEP 2011b), and Rwanda (UNEP 2011c). However, despite the fact that such 
PCEAs are often carried out in areas that are remote and unsafe, they are mostly 
based on field surveys that are both time- and cost-intensive, and make little or no 
use of state-of-the-art remote sensing methodologies. There are, however, examples 
showing that this topic can be supported with EO data analysis. Lodhi et al. (1998) 
and Gorsevski et al. (2012) used medium-resolution Landsat data to assess the impact 
of conflict and refugees in Pakistan and Uganda, respectively. Hagenlocher et al. 
(2012) used VHR data to assess the environmental impact of an IDP camp in Darfur 
(Sudan). They developed a weighted natural resource depletion index that integrates 
selected land-use/land-cover target classes and their relative importance for human 

FIGURE 10.8 (See color insert.) Example of an operational refugee camp map. (Map, © 2013 
European Commission.)
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security and/or ecosystem integrity. In 6 years, they observed a noticeable decrease 
in the area covered by single shrubs and small trees, which is clearly linked to the 
presence of a growing number of IDPs.

Over the last few years, there have been significant advances in the usage of EO 
imagery to support refugee/IDP camp management. The following section will pro-
vide a more in-depth description of a robust approach for population estimation in 
camps.

10.4.3  rObUst methODOlOGy fOr enUmeratiOn anD sUbseqUent 
pOpUlatiOn estimatiOn With fielD knOWleDGe

As described in the previous sections, there have been several approaches to auto-
matically or visually estimate the number of dwellings in refugee camps. Most of 
them were tested only in one camp context and stopped at the level of dwelling 
enumeration. In the following sections, we describe a robust methodology that was 
tested in very different camp conditions (among them the situations described previ-
ously in this chapter) and in one case validated with census information. The goal is 
to develop a reliable and consistent method to estimate the total number of dwellings 
in refugee/IDP camps robust enough to provide sound figures under different envi-
ronmental and camp conditions and to combine these with limited field data collec-
tion for the population estimation. With robustness, we refer to the needs of the field 
worker that need population figures (or at least dwelling numbers) accurate enough 
to base decisions on. They need not necessarily be very accurate, but should help in 
a good understanding of the error margin. This is exemplified with an analysis of the 
Al Salam camp in South Darfur (Sudan).

The approach (Figure 10.9) relies on an initial verbal characterization of the camp 
context to identify the searched dwellings and structures. This characterization is 
used for a visual interpretation of a representative sample, which is necessary for 
validation and quality control. It is also translated in terms of image processing 
transformations, enabling the automatic extraction of these dwellings. The interme-
diate result is subsequently refined to binary masks for direct counting. The same 
intermediate result can be used to estimate the number of structures by perform-
ing a regression against the visually interpreted samples (area-based modeling in 
Figure 10.9) to provide an additional measure of quality of the output.

10.4.3.1 Verbal Dwelling Characterization
Camp characterization is a crucial step in understanding the complexity of camp 
reality. Ideally, this phase is supported by field or aerial photography and a point of 
contact in the field that is able to describe specific features in the camp. For the Al 
Salam camp in South Darfur, the World Food Program (WFP) provided such field 
information.

On the basis of a comparison of the satellite image with field pictures 
(Figures 10.10  and 10.11), it can be concluded that dwellings correspond to a mix-
ture of thatched-roof huts, traditional clay constructions with flat roofs, and other 
structures covered with bright materials (e.g., UN tent fabrics or plastic sheets).
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This led to the following characterization of dwellings visible in the satellite 
image:

• Most dwelling structures appear as either dark objects over a brighter back-
ground or bright objects over a darker background. Sometimes dwellings 
made of mud bricks display a flat roof hardly discernible from the sur-
rounding ground (similar intensity levels).

• Disk-shaped dark structures correspond to either thatched-roof huts or foli-
ated tree crowns.

• The minimum size of a dwelling structure can be set to 6 m2 corresponding 
to a dwelling of 3 × 2 m, which is the smallest dwelling identified in the 
images. It is also reasonable to consider that a dwelling structure must be 
compact enough to contain a square of 2 × 2 m.

• Bright structures corresponding to objects above the ground display thin 
shadows in the direction opposite to the sun-azimuth angle.

• Dwellings are clustered within a series of rectangular compounds outlined 
by a fence made of clay walls, thorn hedges, or straw matting. These out-
lines are revealed in the imagery mainly through the shadows they cast so 
that dwellings appear at the interior or edge of an area surrounded by a thin 
dark rectangular outline. Note, however, that the fences contain one or more 
entrances so that these outlines are not closed.

Given the coarser spatial resolution of the multispectral imagery and given the fact 
that most dwelling structures have a size only slightly larger than the multispectral 
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FIGURE 10.9 High-level workflow for remote sensing–based population estimation.
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FIGURE 10.10 (See color insert.) Aerial photograph of the Ardamata camp near Al 
Geneina, West Darfur. (Courtesy of WFP, © 2009 WFP.)
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FIGURE 10.11 Typical example of the Al Salam camp structure comparable to the situation 
in Ardamata (Figure 10.10). (Imagery, © 2009 Digitalglobe.)
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imagery, it is not possible to recognize individual dwellings on the multispectral 
images. Therefore, the identification of single dwellings was made based on pan-
chromatic and pansharpened multispectral imagery. Moreover, the pansharpened 
multispectral imagery is useful for producing a vegetation mask so as to better dis-
criminate thatched-roof huts from tree crowns in the panchromatic imagery (both 
appear as dark disk-shaped objects). By definition, dwellings that are located below 
trees are not visible from satellites operating in the visible wavelengths and are thus 
the source of underestimation of the real number of dwellings.

10.4.3.2 Dwelling Extraction
Dwelling extraction relies on the theory of mathematical morphology, which is 
a theory and technique for the analysis and processing of geometrical structures 
(Soille 2003). The image processing chain aims at automatically extracting dwelling 
structures from the panchromatic input satellite imagery. It has been designed by 
translating the previous verbal description (e.g., shape and minimum/maximum size 
of dwellings) into a series of morphological operators. The theory of morphological 
operators is explained in depth, for example, by Soille (2003).

Morphological area opening and closing (Cheng and Venetsanopoulos 1992, 
Meijster and Wilkinson 2002) suppress all bright and dark objects, whose area is below 
a given threshold value (and considering a given connectivity rule such as the 4- or 
8-connectivity). The suppressed objects are then retrieved by computing the difference 
between the original and the transformed image (top-hat operation). The  following 
top-hat images were calculated:

• Top-hat by 8-connected area opening with an area of 100 pixels. This oper-
ation highlights bright objects of less than 100 pixels. The threshold was 
chosen to exclude larger structures in the camp that are used as health cen-
ters, schools, or similar establishments.

• Top-hat by 8-connected area closing with an area of 100 pixels. This opera-
tion highlights dark objects of less than 100 pixels.

The union (i.e., point-wise maximum) of these two top-hat images corresponds to 
an image containing bright as well as dark structures smaller than 100 pixels. This 
image can be directly used to estimate the number of structures by performing a 
regression against visually interpreted samples (area-based modeling). The top-hat 
images can also be further processed in parallel so as to generate binary masks of 
bright and dark structures. The total number of structures is then used as an estimate 
of the total number of dwellings.

The applied processing chain is as follows:

• Filtering of the top-hat images using containment and size criteria: each 
structure must contain at least a square with a width of 4 pixels and have an 
area of at least 24 pixels. The first filter corresponds to an area opening by 
a 4 × 4 square structuring element and the second to an area opening with 
an area threshold value of 24 pixels.



210 Global Urban Monitoring and Assessment through Earth Observation

• Threshold of the previous images for all intensity values greater than or 
equal to 4 for less contrasted structures corresponds mainly to intensity 
variations in the background.

• Union of the threshold images generates a binary image of filtered bright 
and dark structures.

Figure 10.12 illustrates the successive steps of this process. The resulting binary mask 
still contains isolated trees since they correspond to dark structures in the panchro-
matic image. They are masked out by computing the intersection of the central point 
(centroid) of automatically extracted structures with the mask of vegetation obtained 
by thresholding the Normalized Difference Vegetation Index (NDVI) image computed 
on the multispectral image and resampled at the resolution of the panchromatic image.

10.4.3.3 Random Sampling and Visual Interpretation
Visual interpretation is used for the quality control of the results. It is performed 
on randomly selected samples. The camp area was overlaid with a grid of 80 m by 
80 m in order to randomly select a representative group of grid cells for visual analy-
sis. Approximately 5% of the cells were selected for the random sample. An image 
interpreter was tasked to label each dwelling in a sampling cell with a point tak-
ing into account the minimum and maximum criteria defined earlier. Consequently, 
large structures (such as public facilities, storage, and shopping buildings) were not 
marked. These structures are characterized by a regular spatial arrangement and 

(a) (b) (c)

(d) (e) (f)

FIGURE 10.12 Example of the processing steps of the dwelling extraction: (a) input sample, 
(b) top-hat by area opening, (c) top-hat by area closing, (d) filtered top-hat by area opening, 
(e) filtered top-hat by area closing, and (f) bright (red) and dark (green) structures obtained by 
thresholding of filtered images (d) and (e).
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mostly dwelling structures of a larger size than usual. They are often surrounded 
by solid fences and to some extent separated from the densely situated dwellings. 
In addition, they are matched against the camp maps provided by WFP. The visual 
counting relies on the dwelling characterization described earlier. The distinction 
between tree crowns and thatched-roof huts could be achieved thanks to the use of a 
pan-sharpened false color composition highlighting the vegetated areas in red. The 
individual dwellings were stored as a single point in the database.

10.4.3.4 Regression Analysis
In order to have a greater reliance on the derived dwelling numbers, we used a  statistic 
regression approach to find the relation between the visually interpreted number of 
dwellings and the automatically extracted structures for the random sample. Based 
on that function, the total number of dwellings for the entire camp is estimated. The 
reasons to add this indirect estimation are twofold. First, this area-based approach 
solves problems of attached buildings that are otherwise counted as single  dwellings. 
Second, the regression model allows a sensitivity analysis that provides error  margins 
for the dwelling numbers, which is highly relevant information for the user.

The union of the top-hat area opening and closing results (Figure 10.12b and c) 
is the basis for area estimation. In these gray-level images, nondwelling structures 
are still apparent (e.g., fence structures). Therefore, a fuzzy-logic min/max operator 
was applied to better distinguish between dwellings and nondwelling structures. 
Prior to area estimation, the NDVI was used to eliminate isolated trees. The area 
was then calculated as the sum of gray levels in each randomly selected cell as input 
for the regression model by relating this model to the visually counted number of 
dwellings. The stability of the regression model was tested using different numbers 
of samples for calibration and validation. The number of samples ranges from 10% 
to 90% with 10% intervals. The remainder of the samples was used for validation. 
Each model was repeated 500 times with a different random selection in each run. 
The final regression coefficients for the estimation of the total number of dwellings 
in the camp are the average of the coefficients derived in each step.

10.4.3.5 Field Data Collection
Remote sensing analysis provides the overall number of dwellings in the camp. This 
information is, however, not sufficient for relief agencies, who are interested in the pop-
ulation figures. In order to translate the number of dwellings, it is necessary to derive 
information on the average household size and the average number of dwellings per 
household. This is important especially because in protracted refugee/IDP situations, 
like Darfur, people use some shelters for cooking, sleeping, living, and possibly as stable 
for animals. For the survey in Al Salam, the camp was divided into homogeneous units 
based on visual interpretation of the camp densities. In each unit, two transects were 
randomly selected to collect the relevant information. According to this survey, a house-
hold in Al Salam camp on average consists of 5.72 persons living in 2.79 structures.

10.4.3.6 Results
The analysis of the Al Salam camp is based on a WorldView-2 image acquired on 
November 10, 2010. Although eight multispectral bands were available, only the 
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50 cm resolution panchromatic band was used. For the visual interpretation, 40 cells 
were randomly selected. In these cells, 1522 dwellings were visually detected and 
1363 were mapped automatically. The scatterplot in Figure 10.13a shows the slight 
underestimation of the dwellings compared to the visual interpretation in the selected 
areas; nevertheless, the correlation coefficient is strong at 0.83. The area-based mod-
eling using the regression model produced a mean error of 42 structures (6%) and 
a maximum error of 92 structures (11%) in the sensitivity analysis (Figure 10.13b). 
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FIGURE 10.13 Analysis results of automated processing. Scatterplot of visually versus 
automatically detected dwellings (a) and sensitivity analysis of area-based modeling (b).
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These values are similar to those obtained in earlier experiments (Jenerowicz et al. 
2010, Kemper et al. 2011a,b).

Based on the direct counting of all dwellings in the camp, 17,394 dwellings 
were detected. The estimation of the camp population based on the automatically 
extracted number of dwellings (and the limited field data collection by WFP) 
matched the figures of a camp census conducted by WFP with an error of less 
than 1%. Due to the sensitivity of the figures, we are unable to reveal more detailed 
information.

10.5 CONCLUSION

This chapter described a particular part of the global population, namely, those 
displaced by natural disasters or conflicts that have to persevere in refugee or IDP 
camps, sometimes for many years. The focus was on how these camps are struc-
tured from a remote sensing point of view and how EO may help in identifying 
and monitoring the camps. We made an attempt to classify the camps according to 
some external framework conditions and parameters that can be derived from satel-
lite imagery. If at least some of the parameters can be derived automatically from 
satellite imagery, it would be possible to undertake regular monitoring, which might 
help relief agencies like UNHCR or WFP, which are responsible for a large number 
of camps, to plan their resources better, because they may identify needs in certain 
camps at an early stage.

EO data is useful with regard to refugee/IDP camps in mainly two ways: 
population estimation and environmental impact assessment. The latter is only 
addressed by few publications and has definitively more potential given all the 
research that has been undertaken for monitoring the environment in general. 
More attention has been given to the population estimation in refugee/IDP camps, 
although most analyses stop at the enumeration of dwellings in refugee camps 
without turning it into population data, which is needed for camp management. 
This highlights the clear gap between the scientific community and the practitio-
ners in the field that we have to overcome, if (automated) EO information extrac-
tion is to be used more operationally. The first step has been taken with operational 
units that are able to perform rapid population estimations with up-to-date imagery 
using manual and/or automated approaches and by interacting with practitioners in 
the field to obtain the necessary field information. This link needs to be strength-
ened in any case. We believe that if this is achieved, automated data analysis of 
EO data in combination with field data can provide rapid population estimations 
for scaling the relief needs in the early phases of a crisis. Moreover, at later stages 
regular monitoring will allow tuning of the resources to the actual needs.
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11 Assessment of 
Fine-Scale Built-Up 
Area Mapping in China

Linlin Lu, Huadong Guo, Martino Pesaresi, 
Daniele Ehrlich, and Stefano Ferri

11.1 INTRODUCTION

In view of its vast territory, frequent occurrence of extreme meteorological and geo-
logical events, and socioeconomic conditions, China is one of the most disaster-
affected countries in the world. Frequent natural disasters, consisting of floods, 
droughts, earthquakes, forest fires, snow, typhoons, and marine disasters, have 
caused severe human and economic loss to the country. For example, in 2010, 7844 
people were killed, 2.73 million houses were destroyed, 37.4 million hectares of 
croplands were damaged, and there was an economic loss of 534 billion RMB 
because of   disastrous events (Ministry of Civil Affairs of the People’s Republic 
of China 2011). Disaster (damage) risk quantifies the damages that an element at 
risk may suffer when a hazard strikes. It is an integral part of decision- and policy-
making processes of national and local disaster risk reduction activities. Exposure is 
the collection of the elements at risk that are subject to potential losses (ISDR 2009). 
It is reported to be increasing due to population growth and urbanization and is a 

CONTENTS

11.1 Introduction .................................................................................................. 217
11.2 Background  .................................................................................................. 219
11.3 Quality Assessment ......................................................................................220

11.3.1 Reference Dataset .............................................................................220
11.3.2 Visual Validation .............................................................................. 221
11.3.3 Benchmark Experiment Setting ....................................................... 222
11.3.4 Quality Measurement .......................................................................224

11.4 Results and Discussion .................................................................................224
11.4.1 Overview of the Fine-Scale Chinese GHSL .....................................224
11.4.2 Accuracy Assessment ....................................................................... 227
11.4.3 GHSL Benchmark ............................................................................228

11.5 Conclusions ...................................................................................................230
Acknowledgments ..................................................................................................230
References .............................................................................................................. 231



218 Global Urban Monitoring and Assessment through Earth Observation

major factor in increased disaster risk in hotspot countries (ISDR 2009). Fine-scale, 
standardized exposure information is crucial for disaster risk models, and thus for 
quantitative disaster risk assessment (Bal et al. 2010).

Human settlement maps derived from remote sensing data are widely used to 
generate location information of physical elements exposed to risk (Ehrlich et al. 
2010; Ehrlich and Tenerelli 2012; Guo 2010). Different fundamental abstraction lev-
els have been identified for the study of human settlements derived from remote 
sensing images (Pesaresi and Ehrlich 2009). For instance, level 0 is where settlement 
components are detected, and level 1 indicates their physical characteristics and pat-
terns. This chapter addresses specifically the mapping of built-up areas, which can 
be defined as “areas (spatial units) where buildings can be found.”

With the development of high-resolution (HR) and very high-resolution (VHR) 
satellite sensors, some initiatives aimed at identifying built-up areas based on HR 
and VHR remote sensing data have been established at different scales. Some initia-
tives such as Monitoring Land-use/Cover Change Dynamics (MOLAND), the Urban 
Environmental Project, and the European Urban Atlas provide geo-information on 
urban areas for specific cities (Esch et al. 2012). Coordination of Information on the 
Environment (CORINE) Land Cover maps urban areas with improved geometric 
and thematic detail in Europe (EEA 2010). Several initiatives were designed specifi-
cally for urban area mapping at the global scale. In the ASTER Global URban Area 
Map (AGURAM) project, an automated classification method was developed to pro-
duce urban area maps at 15 m resolution by integrating satellite images taken by the 
Visible and Near-Infrared Radiometer of Advanced Spaceborne Thermal Emission 
and Reflection radiometer (ASTER/VNIR) and GIS data derived from existing urban 
area maps (Miyazaki et al. 2013). The German Remote Sensing Data Center (DFD) 
of the German Aerospace Center (DLR) has applied a fully automated processing 
system that detects and extracts built-up areas to produce an urban footprint mask 
from global TerraSAR-X and TanDEM-X imagery (Esch et al. 2010, 2012). An auto-
matic production framework has been implemented by the Joint Research Centre 
(JRC), European Commission (EC), in order to produce a global human settlement 
layer (GHSL) from the large volume of optical HR images (Pesaresi et al. 2013).

The China–Brazil Earth Resources Satellite (CBERS)-2B panchromatic imagery 
at 2.36 m spatial resolution covering mainly the eastern part of China was processed 
using the JRC work flow to generate GHSL products, which can match the 1:50,000 
scale human settlement specifications. The objective of this chapter is to assess the 
GHSL products generated with CBERS panchromatic data. It is structured as follows: 

The 10 m GHSL products are illustrated and compared with several available 
reference datasets covering representative settlement patterns of China visually. 

In order to quantitatively assess the quality of the GHSL product, validation 
results are calculated by comparing the classification results with manual interpreta-
tion of sampled CBERS scenes. 

A benchmark experiment is conducted between GHSL at three scales and the 
moderate resolution imaging spectroradiometer (MODIS) 500 m urban layer with 
Chinese land use data. 

The improvement of fine-scale built-up area identification and quality measure-
ments are analyzed and discussed.
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11.2 BACKGROUND 

As the most populous country, China has been experiencing unprecedented urbaniza-
tion with rapid economic growth over the past two decades (Deng et al. 2008). The 
2010 population census shows that nearly half of the Chinese population lives in urban 
areas, an increase of 13.5% since 2000 (National Bureau of Statistics of China 2011). 
The spatial distribution of China’s prefectural-level cities and municipalities grouped 
by 2010 population size is illustrated in Figure 11.1. Ma et al. (2012) used coarse spatial 
resolution data, including nighttime data derived from the Defense Meteorological 
Satellite Program’s Operational Linescan System (DMSP/OLS) to measure urbaniza-
tion dynamics for prefectural-level cities and municipalities from 1994 to 2009. The 
combination of medium and coarse spatial resolution images was used for settlement 
mapping at the regional scale by Lu et al. (2008). Liu et al. (2003) produced a national 
land use/cover database with medium-resolution satellite data including Landsat and 
CBERS data at the national scale, and these data were used to successfully simulate 
population distribution (Mao et al. 2012). Taubenböck et al. (2012) analyzed the last 
40 years of growth in three megacities consisting of Beijing, Shanghai, and Guangzhou 
with Landsat and TerraSAR-X data. Yang et al. (2011) extracted HR settlement and 
population information for local studies. The ZY-3 satellite, launched in 2012, is 
China’s first civil HR satellite, producing 1:50,000 scale map products and updates of 
1:25,000 scale maps with settlements as an essential information layer (Tang and Xie 
2012). However, efforts are still lacking in creating finer-scale built-up area products 
with HR remote sensing data over large areas at the national scale.

The first effort to produce a 10 m resolution GHSL covering China was reported 
by Lu et al. (2013). An image information query (I2Q) system to produce GHSL was 
developed and implemented by the JRC (Pesaresi et al. 2013). The I2Q system can 

<0.5 million

N

0.5 million–1 million
1 million–3 million
3 million–10 million
>10 million 0 310 620 1240 km

FIGURE 11.1 (See color insert.) Spatial distribution of China’s prefectural-level cities and 
municipalities grouped by 2010 population size.
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detect and characterize built-up areas based on the average size (scale) of built-up 
structures from a set of optical remotely sensed imagery having spatial resolutions 
in the range of 0.5–10 m. The workflow of the I2Q system includes fully automatic 
image information extraction, which is based on multiscale textural and morphologi-
cal image feature extraction, generalization, and mosaic (Pesaresi et al. 2013). In this 
study, a built-up area was extracted with the JRC I2Q system with CBERS-2B HR data 
as the main input. The CBERS-2B satellite was launched by the CBERS program on 
September 19, 2007. The HR data are captured with an HR CCD camera onboard at a 
single spectral band (0.5–0.8 µm) with a swath of 27 km and resolution of 2.36 m. A total 
of 3810 scenes acquired in 2009 and 2010 were downloaded at a volume of approxi-
mately 306 GB. The following sections assess the quality of GHSL_10, GHSL_50, and 
GHSL_200 products representing GHSL at 10, 50, and 200 m, respectively.

11.3 QUALITY ASSESSMENT

11.3.1 reference Dataset

The reference dataset used in the quality assessment included three kinds of land use 
or urban classification products, a vector dataset, and validation samples collected by 
visual interpretation. A summary of the reference dataset is listed in Table 11.1, and 
a collection of visual interpretations is introduced in Section 11.3.2.

Landuse2000 data were extracted from Landsat Thematic Mapper (TM) images 
using a land use/land cover classification scheme appropriate for the 1:100,000 scale 
(Liu et al. 2003). To produce this map, a total of 508 TM images collected in 1999–
2000 covering the entire Chinese territory with supplements of CBERS-1 CCD data 
in invalid areas were manually interpreted and classified. The final product had an 

TABLE 11.1
Reference of Urban or Urban-Related Maps

Abbreviation Map Definition of Urban Feature Resolution

Landuse2000 Chinese Landuse 2000 
(Liu et al. 2003)

Three raster layers, ild51, ild52, 
and ild53, corresponding to the 
classes “urban settlement,” “rural 
settlement,” and 
“infrastructures,” respectively

1 km

MOD500 MODIS 500 m 2002 
(Schneider et al. 2009)

Areas dominated by built 
environment (>50%), including 
nonvegetated, human-constructed 
elements, with minimum 
mapping unit >1 km

500 m

Glob2009 Globcover 2009 
(Arino et al. 2010)

Artificial surfaces and associated 
areas (urban areas >50%)

300 m

Urban2010 Urban vector map 
(Wang et al. 2012)

Urban built-up areas of 663 cities 
in China in 2010

1:50,000
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average positional accuracy higher than 50 m after orthorectification. The thematic 
accuracy was higher than 90% compared with field validation. The original format 
of the land use data was raster files at 1 × 1 km resolution using the cell-based per-
centage breakdown encoding method. Every file represented a land cover type, and 
the value of each grid cell in the raster file corresponded to the area of the type of 
land use in the grid cell. This study used three raster layers, ild51, ild52, and ild53, 
respectively, corresponding to the classes “urban settlement,” “rural settlement,” and 
“infrastructures.” The union of all three reference classes was taken as a reference for 
matching the semantics of the GHSL output. Specifically, the reference estimation of 
the built-up percentage was derived by the formula y = (ild51 + ild52 + ild53)/10,000.

The MOD500 data are a global distribution of urban land use at 500 m spatial 
resolution using remotely sensed data from MODIS with a supervised decision tree 
classification algorithm (Schneider et al. 2009, 2010). MOD500 maps the 500 × 500 m 
cells as built-up if more than 50% of the land is covered by built-up structures. An 
accuracy assessment based on sites from a stratified random sample of 140 cities 
shows that the new map has an overall accuracy of 93% at the pixel level.

Glob2009 is a 300 m global land cover map derived by an automatic and regionally 
tuned classification of a time series of global Medium Resolution Imaging Spectrometer 
Instrument (MERIS) Fine Resolution mosaics for the year 2009 (Arino et al. 2010). The 
global land cover map counts 22 land cover classes defined with the United Nations 
Land Cover Classification System. The map projection is a Plate-Carrée (WGS84 
ellipsoid). The overall accuracy weighted by the class area reaches 67.5% using 2190 
points globally distributed and including homogeneous and heterogeneous landscapes.

The Urban2010 data are urban built-up areas mapped with manual interpretation 
of Landsat TM/ETM + data from 2008 to 2010. All of the 663 cities were manually 
interpreted. For accuracy analysis, 5% of the cities were randomly selected based 
on HR imagery on Google Earth. The area differences were less than 10% with the 
same mapping standard.

11.3.2 visUal valiDatiOn

Visual validation was conducted on the original CBERS panchromatic imagery. The 
original CBERS data were warped with coordinates using affine transformation and 
the nearest-neighbor resampling algorithm in ArcGIS9.3. The reference data collec-
tion includes the following steps: (1) collection of spatial samples by a systematic 
grid procedure, (2) development of a stratified sampling schema, and (3) interpreta-
tion of each sample by visual inspection of the corresponding part of the image.

The surrounding was defined in this study by assuming an output target nominal 
scale of 1:50,000 and calculating an admitted displacement error with a radius of 
25 m. This gave a generalization grid of 50 × 50 m cells. A stratified sampling schema 
of CBERS scenes was applied to represent scenes with different building densities. 
The building density of each scene was calculated with the Landuse2000 built-up 
density index. Image scenes of different built-up densities including low, medium, 
and high density were selected. For each scene, about 72 grids were delineated. For 
each selected grid, 16 cells were interpreted. Given the adopted dichotomic protocol, 
the interpreter was asked to check if the specific subsample was intersecting a visible 
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building in the image with four possible coded answers: yes, no, not sure, and no 
data available. A classification of “not built-up” or “0” indicates that the cell does not 
contain any building, while “built-up” or “1” means the cell contains one building or 
part of a building.

The standardized GHSL output was the continuous built-up presence index. For 
each 50 × 50 m cell, the maximum built-up index was extracted. The maximum 
built-up index can be dichotomized as built-up or not built-up by selecting a thresh-
old. For the threshold selection, an optimization model can be formulated to test 
the recognition performances of all the possible thresholds in the available range if 
training samples are collected (Pesaresi et al. 2011). In this study, the threshold was 
selected by human interaction, visually comparing the GHSL output with the origi-
nal image. A threshold of 190 was chosen to differentiate built-up and not built-up 
in the final GHSL product. A confusion matrix produced by comparing the polygons 
generated by the threshold of the built-up presence index and the reference dataset 
was produced after manual interpretation.

11.3.3 benchmark experiment settinG

Although a visual validation protocol is highly accurate, it is also very time 
 consuming. The samples interpreted with the adopted protocol covered only a small 
fraction of the territory, and the complete collection of each satellite scene used in 
the experiment would require several years of visual reference data collection for an 
image interpreter. To overcome this issue, a systematic evaluation of the results of 
the automatic image information retrieval was carried out and the Landuse2000 data 
were used as a reference.

The classes considered in this benchmarking exercise include built-up areas rep-
resenting cities (class 5.1), villages (class 5.2), and infrastructure (class 5.3). The 
information was made available as density information at a grid with 1000 × 1000 m 
cells and will be referred to herein as Ref_51, Ref_52, and Ref_53. For this analysis, 
we used Ref_51 and Ref_52. We also combined classes 51, 52, and 53 into a single 
file referred to as Ref_Tot.

The information sources benchmarked include the MOD500 urban layer and the 
built-up information from the GHSL. The 500 × 500 m MODIS cells were recoded 
to 1000 × 1000 m grid cells corresponding to that of the reference information and 
herein will be referred to as MODIS. The GHSL information makes available the 
built-up area information at resolutions of 10, 50, and 200 m. For consistency with 
the reference, the GHSL information was recoded to 1000 × 1000 m, referred to 
herein as GHSL_10, GHSL_50, and GHSL_200. The GHSL built-up area prod-
ucts do not cover the entirety of the territory of eastern China. CBERS data were 
available only in part, and the resulting GHSL covers the territory discontinuously. 
A comparison with the reference and MODIS was conducted only for the area for 
which GHSL data were available, as shown in Figure 11.2.

Two types of comparisons were carried out. One was based on the linear regres-
sion between the continuous values in the reference and target layers and one on the 
agreements between binary maps. The production of binary maps is addressed in the 
next paragraph. The comparison based on linear fit regression aimed to provide an 
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(a)

(b)

(c)

FIGURE 11.2 Reference (a), GHSL (b), and MODIS (c) datasets used in the analysis. Bottom 
right is the city of Shanghai.
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in-depth understanding of the density produced by MODIS and GHSL layers and 
those that  better match the values in the reference. The comparison of binary maps 
aimed to provide an agreement on the extent of built-up land as areal units. In fact, a 
percentage computed on an actual binary built-up layer allows derivation of an areal 
measure that can be expressed in hectares or square kilometers. The areal built-up 
estimate also requires computing the relative omission and commission errors based 
on agreement measures.

The binary maps were produced by defining a threshold within the density con-
tinuum of target and reference data layers. For the Ref_total map and the Ref_51 
map, we assigned a threshold of 0.5 corresponding to 50% of the cell covered by 
built-up land. Cell values were assigned a value of 0 when density was less than 50% 
and 1 when cells had a density larger or equal to 50%. For the Ref_52 map (villages), 
the selected threshold was 10%, which means cells with a built-up density greater 
than 10% were assigned a value of 1. The target datasets were also assigned a thresh-
old analogous to the reference data to which they were compared.

11.3.4 qUality measUrement

For quantitative evaluation of the results, the following notations were adopted. “True 
positive” (Tp) and “true negative” (Tn) samples are samples detected as “built-up” 
(BU) and “not built-up” (NBU), respectively, by the automatic recognition procedure 
and then confirmed by visual inspection. “False positive” (Fp) samples were samples 
classified as BU by automatic recognition and labeled as NBU by visual inspection. 
Correspondingly, “false negative” (Fn) samples were samples classified as NBU by 
automatic recognition and labeled as BU by visual inspection. Then, given a total num-
ber N of samples, we defined the overall accuracy agreement as A = (Tp + Tn)/N, the 
producer’s accuracy as PAbu = Tp/(Tp + Fn), PAnbu = Tn/(Tn + Fp), and the user’s accu-
racy as UAbu = Tp/(Tp + Fp), UAnbu = Tn/(Tn + Fn). For this benchmarking experiment, 
we only used the BU accuracy as a quality measurement, defined as Tp/(Tp + Fp).

11.4 RESULTS AND DISCUSSION

11.4.1 OvervieW Of the fine-scale chinese Ghsl

Most of the cities with a high population density are distributed in eastern China 
(see Figure 11.1). The CBERS imagery processed in the GHSL production experi-
ment covers most of the populated areas in eastern China (Figure 11.3). A total of 
2288 CBERS panchromatic scenes cover 1.67 million km2, which is about 18% 
of Chinese territory. Validation samples are randomly, evenly distributed over the 
whole dataset. The GHSL of the Beijing metropolitan area and corresponding HR 
imagery are illustrated in Figure 11.4. It can be seen that various building patterns in 
the metropolitan areas, including departments, commercial buildings, and airports, 
are recognized as built-up with high values. By contrast, green spaces, croplands, 
and water bodies have low values.

There are a variety of settlement patterns over the large territory of China. 
These patterns as detected through the GHSL procedure in three Chinese cities are 
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depicted at 1:50,000 scale in Figure 11.5. The cities range in size from 3,000 km2 
(Longquan in Zhejiang Province) to 16,000 km2 (Beijing, the capital city). The GHSL 
data covering all cities were compared with available reference datasets. Comparing 
the images visually, Glob2009 underestimates the extent of metropolitan areas of 
a city. Small villages have been identified in Landuse2000 data because it is based 
on the Landsat data, which has much finer spatial resolution than MODIS data. 
Landuse2000 and GHSL show that urbanization occurred in all the cities from 2000 
to 2010. The GHSL products draw the exact picture of the metropolitan area and 
also the surrounding small villages and towns. The improvement of spatial details is 
highly visible. Overall, these observations demonstrate the diversity of global urban 
maps and the improvement of GHSL products.

In this study, the GHSL product was compared with global urban maps. In disaster 
risk assessment tasks, the national land cover/land use databases are often used as a 

GHSL coverage in China

0 250 500 1000 km

N

Validation samples
CBERS scenes

FIGURE 11.3 (See color insert.) Geographic distribution of the CBERS HR input images 
processed during the experiment. Sample grids for visual validation of GHSL are marked in red.
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FIGURE 11.4 (See color insert.) GHSL of the Beijing metropolitan area at 1:200,000 scale (a) 
and high-resolution images from Bing Maps aerial view (b).
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source for exposure information extraction. The settlement information from national 
databases at different scales including 1:250,000, 1:100,000, and 1:50,000 should also 
be acquired and integrated for the GHSL quality assessment at the next step.

11.4.2 accUracy assessment

Quantitative validation of the quality of the 10 m GHSL output against visual 
reference data relies on validation samples covering sample output (ca. 50 of 
the 2000 scenes). The samples were collected from the same 2.5 m resolution 
CBERS-2B panchromatic imagery used for automatic information retrieval. A 
total of 59,680 samples were collected using the GHSL reference data collection 
protocol (Pesaresi et al. 2013). The total ground surface processed employing this 
visual interpretation protocol was over 149 km2. In the sampling sets, 41,946 sam-
ples including 4,701 built-up and 37,245 not built-up samples were valid. Others 
were samples falling in areas outside the scene and clouds or other occlusions and 
sensor failures.

The results of the quantitative analysis for the accuracy assessment are presented 
in Table 11.2, which shows the estimation of the commission and omission errors and 
the producer and user accuracies obtained by matching the results of GHSL classifi-
cation with the reference dataset. The overall accuracy of the built-up and not built-
up classes were 87.04%. The accuracy for the not built-up class was higher than 85%. 
The producer’s accuracy for built-up areas was 74.68% while the user’s accuracy was 
only 32.68%. It is similar to the result of the benchmarking experiment, which might 
be attributed to the resolution as discussed in the following section.

Landuse2000
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FIGURE 11.5 Comparison of GHSL with other global urban maps over various settlement 
patterns covering different parts of China.
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11.4.3 Ghsl benchmark

The benchmark experiment described in Section 11.3.3 provides the following datas-
ets for comparison. The linear regression between the continuous values in reference 
and target layers is listed in Table 11.3, and a comparison of binary maps is given 
in Table 11.4.

For the linear fit of continuous values (Table 11.3), the following conclusions can 
be observed: 

• For Ref_51, MODIS and GHSL_50, both obtained the highest correla-
tion value of 0.57, GHSL_200 and GHSL_10 also obtained relatively high 
values. 

• For Ref_52, the correlation with the three GHSL layers was in general 
lower than for class 51. 

• For MODIS, the linear correlation was insignificant. 

TABLE 11.3
Linear Correlation of Density Values

Comp. Reference Target Linear Correlation

1 Ref_51 MODIS 0.57

2 GHSL_200 0.52

3 GHSL_050 0.57

4 GHSL_010 0.51

5 Ref_52 MODIS 0.12

6 GHSL_200 0.33

7 GHSL_050 0.36

8 GHSL_010 0.35

9 Ref_Tot MODIS 0.35

10 GHSL_200 0.46

11 GHSL_050 0.49

12 GHSL_010 0.44

TABLE 11.2
Commission and Omission Errors 
and Producer’s and User’s Accuracy

Output Class Prod. Acc User Acc.

Built-up 0.7468 0.3268

Not built-up 0.8800 0.9781

Note: Overall accuracy = 0.8704.
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• For Ref_Tot, the highest correlation in absolute terms was obtained with 
GHSL_50 and the second highest with GHSL_200. GHSL_010 performed 
unexpectedly poorly. 

• For the binary comparison (Table 11.4), the best agreement was for 
GHSL_200 with the second best being GHSL_50 for Ref_51. MODIS 
ranked third, while GHSL_010 obtained a low accuracy value. 

• For Ref_52, GHSL_200 resulted in the highest accuracy. MODIS showed 
very low agreement. 

• For Ref_Tot, GHSL_50 and GHSL_200 resulted in high accuracy values 
and GHSL_10 and MODIS resulted in extremely low accuracy values. 

In summary, all GHSL scales rank better than MODIS for the linear fit. MODIS 
ranked best together with GHSL_50 for estimating cities (Ref_51), MODIS ranked 
worst for estimating villages (Ref_52), and GHSL_50 ranked best for estimating 
villages (Ref_52). GHSL_50 was also the best estimator of the combination of cities 
and villages (Ref_Tot). For the binary comparison, MODIS compared well only for 
cities (Ref_51) and with values lower than those of GHSL_200. GHSL 200 showed 
a high degree of agreement in both city (Ref_51) and village estimation (Ref_52). 
GHSL_50 resulted in the best agreement with the combination of cities and villages 
(Ref_Tot). GHSL_010 did not perform as well for all three classes.

The disagreement between GHSL_010 and the reference might be caused by the 
different observation scales of GHSL and that of the reference (Landsat) at 10 m 
resolution. The GHSL at 50 and 200 m resolution obtained high accuracy values in 
both continuous and binary value comparison. The aggregation of GHSL from 10 
to 50 and 200 m increased the agreement between GHSL and the reference. GHSL 
at 200 m resolution performed better for binary values, while GHSL at 50 m resolu-
tion was better for continuous values. This may be attributed to the use of a global 

TABLE 11.4
Agreement Measures between Binary 
Built-Up Layers

Comp. Reference Dataset Target Dataset Bu_Acc 

1 Ref_51_r_0.5 MOD_500_r0.5 0.58

2 GHSL_200_r0.5 0.81

3 GHSL_050_r0.5 0.69

4 GHSL_010_r0.5 0.03

5 Ref_52_r_0.1 MOD_500_r0.1 0.08

6 GHSL_200_r0.1 0.71

7 GHSL_050_r0.1 0.64

8 GHSL_010_r0.1 0.27

9 Ref_Tot_r_0.5 MOD_500_r0.5 0.37

10 GHSL_200_r0.5 0.65

11 GHSL_050_r0.5 0.70

12 GHSL_010_r0.5 0.02
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threshold, which can cause errors for built-up area classification. The threshold 
applied after pixel aggregation increased the accuracy of built-up area detection. 
MODIS data can get comparative performance for cities but shows the lowest values 
for villages. This indicates that the MODIS urban layer can represent built-up areas 
of cities although it barely represents built-up areas of villages and towns.

Despite its effectiveness, the benchmark experiment can be further improved. 
Urban area products with optimized spatial and temporal features can be used as 
reference data. For example, the fact that MODIS data do not include information 
on infrastructures leads to its low correlation with Ref_Tot. Considering the dra-
matic urbanization processes between 2000 and 2010 in eastern China, the temporal 
difference between GHSL and reference data can cause discrepancy. The 30 m reso-
lution global land-cover maps using Landsat TM data in 2009 and 2010 developed 
by Gong et al. (2013) can be a promising data source. In addition, the selection of 
different thresholds should be compared since they have a great influence on the 
assessment results.

11.5 CONCLUSIONS

The GHSL product covering eastern China was produced using CBERS HR data with 
the JRC I2Q framework. The quality assessment of this product was conducted using 
visual validation samples and reference datasets. Comparing the urban area products 
over different settlement patterns, the 10 m GHSL product is a great improvement 
to the state-of-the-art products. Based on visual validation, the 10 m GHSL had an 
overall accuracy of 87.04% and the user’s accuracy of not built-up areas was 97.81%. 
From the benchmarking experiment, all GHSL scales ranked better than MOD500 
data. In particular, the GHSL at 50 and 200 m resolution showed a high degree of 
accuracy in both city and village estimation.

As an initial effort of GHSL production for China, the presented experiment 
proved the effectiveness of HR images for built-up area delineation over a variety 
of settlement patterns. For further improvement of the GHSL  products, images from 
other Chinese HR satellites such as ZY-3, ZY-2C, and GF-1 can also be integrated 
into the procedure. The GHSL products will be helpful for population estimation and 
exposure mapping in disaster risk assessment in China. Information on built-up areas 
at different times can be applied to depict the evolution of urban extents and analyze 
the urbanization process in China.
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12 Climatological and 
Geographical Impacts on 
the Global Pandemic of 
Influenza A (H1N1) 2009

Bing Xu, Zhenyu Jin, Zhiben Jiang, Jianping Guo, 
Michael Timberlake, and Xiulian Ma

12.1 INTRODUCTION

A new subtype of influenza A virus, H1N1 of swine, human, and avian origin, emerged 
in the United States and Mexico in April of 2009, and quickly and extensively spread 
around the globe through human-to-human transmission. As of August  1, 2010, 
worldwide more than 214 countries have reported laboratory-confirmed cases, includ-
ing over 18,449 deaths (WHO 2010). Billions of dollars have been spent on preventing 
and controlling the global influenza pandemic of this virus. However, the mechanisms 
of its spread remain poorly understood. A better understanding of the relationships 
between the transmission of this novel H1N1 virus and the seasonal environmental 
changes, global patterns of human travel, and other physical and social factors will 
provide useful information for developing effective control strategies and improve-
ments in public health preparedness and emergency responses.

Previous studies indicate that humidity and temperature affect both the survival 
and transmission of influenza viruses. Investigations of the effect of relative humidity 
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and temperature on influenza virus transmission among guinea pigs indicated that 
both cold and dry conditions favor transmission (Lowen et al. 2007). However, some 
other studies have indicated that peak periods of influenza A and B occur during 
the rainy and hot seasons in Western India, Dakar, Senegal, and Northeast Brazil 
(Weber and Stilianakis 2008). A recent study found that absolute humidity con-
strains both transmission efficiency and influenza virus survival to a much greater 
extent than relative humidity (Shaman and Kohn 2009).

Undoubtedly, patterns of transmission of the A(H1N1) influenza virus are 
related not only to the physical environment but also to human social activities and 
connectivity on various spatial and temporal scales (Jiang et al. 2012). Driven by 
increased productivity and the advancement of science and technology, particularly 
technological advancement in the information, communication, and transportation 
sectors, information and material exchanges have been dramatically intensified, 
leading to well-connected international networks of economies, science, technol-
ogy, and culture (Xu et al. 2013). Globalization appears to be causing profound, 
sometimes unpredictable, changes in the ecological, biological, and social condi-
tions that shape exposure to infectious diseases in certain populations (Saker et al. 
2004; Wu et al. 2013). Globalization, manifest in the increasing frequency and 
velocity in the circulation of commodities, people, and ideas, has fundamentally 
altered the patterns of virus spread and intensified the level of transmission. Human 
migration and travel have been sources of epidemics throughout history. It is well 
recognized that human and cargo traffic facilitates the movement of pathogens from 
place to place across the world (Aron and Patz 2001). Population mobility produces 
health outcomes that can affect the migrant and host populations either positively 
or negatively (Xu et al. 2006).

We wanted to estimate the surviving ability of the virus by examining its living 
environment as we did for other disease vectors (Seto et al. 2002; Xu et al. 2003, 
2004). In this study, we first explored the relationship between climatological condi-
tions and the number of A(H1N1) cases worldwide. Then we used the latest available 
tourism flow data across countries and air passenger data across cities worldwide to 
describe the level of flows of the human population over the earth’s surface and to 
infer the potential for virus transmission.

12.2 DATA AND METHOD

12.2.1 GeOcODeD inflUenza a (h1n1) OUtbreak Data

We cross-checked and compiled geocoded outbreak data downloaded from 
http://www.mapcruzin.com*. This global geographic A(H1N1) dataset dating from 
April 20 to May 24, 2009, registered each outbreak event as located at the centroid 
of its nearest city or county. We estimated most of the positional registration errors 
in densely populated areas to be within 50 km.

* http://www.mapcruzin.com. H1N1 novel swine flu ArcGIS shapefile and data. The data behind were 
compiled by Dr. Henry Niman, a biomedical researcher in Pittsburgh, Pennsylvania, using technology 
provided by Rhiza Labs and Google. Accessed July 7, 2013.
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12.2.2 climatOlOGical Data prOcessinG anD mODelinG

The climatological data are extracted from the MERRA* data. The MERRA 
(Modern-Era Retrospective Analysis for Research and Applications) dataset is rean-
alyzed data from the NASA Goddard Earth Observing System Data Assimilation 
System Version 5 (GEOS-5). Retrospective analyses integrate a variety of  observing 
systems with numerical models to produce a temporally and spatially consistent 
synthesis of observations and analyses of variables not easily observed. MERRA 
data were derived by combining all available global surface observations every 3 h 
and interpolating the surface. Daily climate variables, including air temperature, 
relative humidity, atmospheric pressure, and precipitation at a spatial resolution 
of half-degree latitude by two-third-degree longitude, composed the input dataset. 
Using the date and location of the outbreak, we extracted the corresponding tem-
perature, relative humidity, atmospheric pressure, and precipitation at that location.

Absolute humidity is defined as vapor density or vapor concentration. In a system 
of moist air, it is the ratio of water vapor present to the volume occupied by the mix-
ture, namely, the density of the water vapor component. Relative humidity is defined 
as the ratio of the vapor pressure to the saturation vapor pressure with respect to 
water (Dai 2006). Absolute humidity is described by the following equations:
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where
ρω is the absolute humidity (kg/m3)
e is the vapor pressure (hPa)
es is the saturation vapor pressure (hPa)
T is the temperature (K)
r is the relative humidity (hPa/hPa)

We calculated the absolute humidity and found that its relationship with the num-
ber of confirmed cases occurring on each particular day and location was more sig-
nificant than that of relative humidity. The frequency curves of temperature, absolute 

* MERRA, Modern-Era Retrospective Analysis for Research and Applications, were provided by the 
Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center through 
the NASA GES DISC online archive. http://gmao.gsfc.nasa.gov/research/merra/intro.php. Accessed 
July 7, 2013.
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humidity, and precipitation all conformed to normal distributions. Thus, we applied 
a moving average smoother to each frequency plot, and fitted the data with nonlinear 
Gaussian functions. We first processed the daily temperature, absolute humidity, 
and precipitation data on a month-by-month basis from January 1 to December 31, 
2008. Their corresponding normal distribution curves were then applied, and finally, 
predicative risk maps for each month were obtained by calculating the average of the 
three density function values. Analysis of the global outbreaks of the influenza has 
given rise to a new understanding of the characteristic physical conditions that favor 
the survival and transmission of the virus.

12.2.3 cOUntry-level tOUrism flOW Data sUmmary

The World Tourism Organization (UNWTO) publishes Tourism Satellite Account 
(TSA) data that are compiled by countries around the world (UNWTO 2009). We 
compiled nonresident tourist data at national borders, including data on the number 
of tourists arriving by air, land, and sea. This tourist category includes travelers 
taking trips to major destinations outside their usual environment other than to be 
employed by resident entities in the countries visited. We averaged the total number 
of departures and arrivals of tourists at the country level and normalized the data, 
defining this as the tourism index.

12.2.4 spatial pOint pattern analysis

On a global scale, outbreaks can be considered as point events in space. A point pat-
tern analysis of A(H1N1) outbreaks was used here to determine where the cases were 
spread as well as to determine which spatial scales are optimal for disease cluster-
ing. Choosing the right scale is critical for subsequent analyses. We used exploratory 
spatial statistical techniques to examine the patterns of A(H1N1) outbreaks. Ripley’s 
K function describes how the expected value of a point process changes over differ-
ent spatial lags (Gatrell et al. 1996). A peak value in Ripley’s K function indicates a 
clustering at the scale of the corresponding lag. Because our analysis here was on a 
global scale, the spatial lag is in spherical distance.

An estimate of the spatial K function can be calculated by (Ripley 1981):

 

K d R
n

I i j
i

n

j i
d( ) ( , )=

= ≠
∑∑2
1

 (12.4)

where
R is the total area of the study
n is the number of observed events
I i jd ( , ) is an indicator function that takes the value of 1 when the spherical dis-

tance between point i and point j is less than d

In clustering, K(d) would be greater than A(d), which is the area of the spherical cir-
cle of arc-radius d, and less than A(d) under regularity. We then apply a transforma-
tion to K(d) to have L d R K d R d( ) *arccos( ( ( ) / ))= − −1 2 2π  and plot L(d) against d.
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The upper and lower bounds are determined by undertaking Monte Carlo 
simulations 20 times. For each simulation, we generate the same number of ran-
dom points as the cases, and then calculate their K functions. To each lag, the 
upper and lower bounds are the minimum and maximum K values among the set 
of 20 simulations.

12.2.5 city-level air passenGer flOW netWOrk analysis

Global intercity air passenger flow data were obtained from the International Civil 
Aviation Organization (ICAO), which provides estimates of the number of air pas-
sengers traveling between pairs of cities on commercial airlines (ICAO 1990). We 
first compiled a city-level matrix-based network dataset that provided information on 
the origin–destination passenger travel. The network consisted of the 338 cities and 
2284 edges that connect major cities worldwide. The topology of the network can 
be symbolized by a 338 × 338 connectivity matrix C, whose entry Cij is 1 if there is 
a link pointing from node i to node j. The in-degree and out-degree of a given node 
in the network is defined as the number of flowing-in and flowing-out connections 
of the city. The passenger flow intensity was modeled by another 338 × 338 matrix, 
where each row–column combination represented the volume of passenger travel or 
the amount of connectivity between cities. These two matrices allowed us to mea-
sure the networks and analyze their structural properties. We were able to obtain the 
degree and the intensity of connectivity among cities, and to measure the significance 
of city and network linkages.

The clustering coefficient indicates the position of a node in its neighborhood. 
The neighborhood Γυ of a given city υ is a graph, which includes all nodes that have 
flights to and from υ. The clustering coefficient C Γυ( ) of neighborhood Γυ of city υ 
characterizes the extent to which cities in Γυ are connected to every other city (Watts 
and Strogatz 1998; Li and Cai 2004).

 
C

E
Cm

Γ
Γ

υ
υ( ) = ( )

2   (12.5)

where
E Γυ( ) is the number of real connections in Γυ consisting of m cities

Cm
2  is the total number of all possible connections in Γυ

It tells us how well connected the neighborhood of the node is. If the neighborhood is 
fully connected, the clustering coefficient is 1, and a value close to 0 means that there 
are far fewer connections in the neighborhood compared to the node itself.

Air traffic data are known to be symmetrical with a nearly perfect correlation 
between in-degree and out-degree (Li and Cai 2004; Ma and Timberlake 2008). In 
our case, the bivariate correlation was as high as 0.996. The mean values of out-
degree and out-flow passengers were 6.8 and 882,434, respectively. This indicates 
that each city, on average, is connected to around seven other cities and that the 
average in/out flow of passengers for each city was somewhere close to 1 million 
annually.
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12.3 RESULTS AND DISCUSSION

We have characterized the circulation of the current A(H1N1) virus from climato-
logical and geographical perspectives. We have used both physical and social data 
to understand the roles that these factors have played in the recent global pandemic 
of A(H1N1) influenza.

We first explored the climatological impact on the H1N1 pandemic. We derived 
the absolute humidity from the relative humidity, atmospheric pressure, and temper-
ature and constructed a frequency plot for each climatological variable (Figure 12.1). 
Then we applied a moving average smoother to each frequency curve and fitted 
the data with the nonlinear Gaussian functions Ntemperature, Nabs_humidity, 
Nprecipitation, and Nrel_humidity, giving means and standard deviations of 18.28 
and 6.07, 9.8 and 4, 20.2 and 10.52, and 75.76 and 23.36, respectively.

We found that absolute humidity was a more significant predictor than relative 
humidity. The correlation coefficient and the root mean squared error using absolute 
humidity to predict the number of cases are 0.7 and 119.4, in comparison with those 
using relative humidity, 0.6 and 122.42, respectively. We processed the daily tempera-
ture, absolute humidity, and precipitation data from January 1 to December 31, 2009. 
The predicative risk maps for each month were obtained and visualized (Figure 12.2).

Therefore, seasonal patterns of human exposure to the A(H1N1) virus at a par-
ticular location can be inferred by seasonal variation in climatological conditions, 
such as the absolute humidity, precipitation, and temperature, at that location. These 
variables can be used as physical predictors for assessing the spatial and temporal 
distribution of disease exposure risk. Here, the disease exposure risk was defined as 
the average frequency score from the frequency values found on the fitted curves in 
Figure 12.1 using these predictors (Figure 12.2).

From Figure 12.2, we can clearly see seasonal trends in the predicted risks of influ-
enza outbreaks. High-risk areas in the northern hemisphere gradually move northward 
between April and August from the subtropics to the cold temperate regions, such as 
Canada, Europe, areas in the Far East, and the west coast of the United States, and 
then gradually move southward between November and February to the subtropics, 
such as Mexico, Florida, India, and parts of South Asia. In the southern hemisphere, 
in regions such as the west coast and eastern part of South America, the northern 
part of Australia, and the mid-south of Africa, we see a similar pattern of northerly 
movement between April and August, except that the amplitude of the movement 
is reduced. A pattern of southerly movement between November and February is 
observed in regions such as the southwest coastal areas of South America, Africa, the 
southern part of Australia, and New Zealand. Once again, the amplitude of movement 
is smaller than that observed in the northern hemisphere. It is noteworthy that tropi-
cal regions around the equator such as most of Southeast Asia including Indonesia, 
Malaysia, Singapore, the Philippines, and Thailand were not exposed to high risks 
throughout the year. We hypothesize that this may be due to the fact that absolute 
humidity is greater than 20 g/m3 and precipitation is greater than 44 mm per day all 
year round and that the corresponding risk for these high values was low according 
to the fitted normal distribution curves. Climatological conditions in these regions are 
predicted to be unfavorable for harboring the virus. However, we are still uncertain 
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Global H1N1 influenza risk map (January 2009)

Global H1N1 influenza risk map (March 2009)

Global H1N1 influenza risk map (May 2009) Global H1N1 influenza risk map (June 2009)

Global H1N1 influenza risk map (August 2009)Global H1N1 influenza risk map (July 2009)

Global H1N1 influenza risk map (April 2009)

Global H1N1 influenza risk map (February 2009)
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FIGURE 12.2 (See color insert.) Global risk prediction maps for January through 
December. The warmer the color, the more suitable conditions were for virus survival, and 
the higher the risk predicted.
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about the role that social factors such as human travel network play in the transmis-
sion of the pandemic H1N1 virus.

We then explored the geographical impact on the H1N1 pandemic. Figure 12.3 
shows the tourism index for each country superimposed on the predicted disease 
risks for June and indicates that the tourism index corresponds well with the total 
number of confirmed cases at the country level.

The 20 countries with the highest tourism indices were chosen for further analy-
sis and are listed in Table 12.1. The total number of confirmed influenza A(H1N1) 
cases in these 20 countries accounts for 98.2% of all cases worldwide, with the top 
10 countries accounting for 95.5% of all cases. We investigated whether most of the 
cases were dispersed by the large volume of tourists traveling between the most fre-
quently visited countries, particularly among the top 10 countries. It is interesting to 
note that Singapore, China, Malaysia, and Thailand have not had a large number of 
cases so far in spite of their relatively large volume of tourists. An examination of the 
transmission risk maps for the virus shows that these countries are low-risk areas for 
the entire year, with the exception of the northern part of Thailand that is predicted 
to be suitable for virus survival in December and the southern part of China that is 
predicted to be suitable for virus survival in the spring and fall of each year. The 
outbreak cases are also dependent on the strength of the containment strategies that 
each country implements. It is notable that China implemented prevention measures 
more strictly than some other countries. These prevention measures include body 

Global H1N1 influenza risk map (September 2009) Global H1N1 influenza risk map (October 2009)
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FIGURE 12.2 (continued) (See color insert.) Global risk prediction maps for January 
through December. The warmer the color, the more suitable conditions were for virus sur-
vival, and the higher the risk predicted.
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TABLE 12.1
Total Number of Confirmed Infections in the 
20 Countries with the Highest Tourism Indices

Country Name Tourism Index Number of Cases 

United States 1.00 7796

Germany 0.87 17

United Kingdom 0.75 165

Spain 0.63 148

France 0.63 18

Italy 0.48 23

Netherlands 0.39 3

Canada 0.36 773

Mexico 0.32 5165

Singapore 0.24 0

China 0.21 9

Malaysia 0.17 2

Turkey 0.17 1

Switzerland 0.17 1

Japan 0.16 367

Portugal 0.14 1

Thailand 0.13 4

Austria 0.10 1

South Korea 0.10 10

Saudi Arabia 0.09 0

Global H1N1 in�uenza risk map (June 2009)
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FIGURE 12.3 (See color insert.) Tourism index—a useful indicator of the size of influenza 
outbreaks. The tourism index for each country (0–1) is superimposed on the predicted dis-
ease risks (0–1) for June. Pink circles depict the total number of confirmed cases worldwide 
reported until May 24, 2009.
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temperature checks for all passengers in cities, compulsory isolation of adjacent pas-
sengers once an infection is detected, and voluntary self-isolation of passengers if 
they have come from countries that have a high rate of infections. Both unfavorable 
physical conditions and isolation measures may have delayed the outbreaks in these 
countries by several weeks to several months. Japan and South Korea have higher 
population densities in their major cities, thus increasing the risk of infection due to 
close interaction in public places. In addition, these two countries are predicted to 
have their highest virus activity period during May and October.

We studied the spatial pattern of the outbreak locations. Figure 12.4 shows 
values of the K function calculated from all the global outbreaks. There are two 
peaks located at approximately 600 and 3000 km. We also calculated the K function 
of major global cities, whose peak value at 600 km coincides with that of disease out-
breaks. The distance of 600 km corresponds to the average travel distance from state 
to state in the United States, and the average travel distance within country or across 
countries in Europe. Therefore, the spatial pattern of the outbreaks is strikingly simi-
lar to that of global air travel patterns and average state-to-state travel. We hypoth-
esize that the outbreaks are mainly due to air passenger flow worldwide and that 
the virus may have been dispersed from state to state in the United States and from 
country to country in Europe in this manner. From Figure 12.4 we can see that there 
is a continuous trend of increasing clustering distances up to 600 km and can thus 
infer that within states or between points separated by shorter distances, the virus 
may spread by other means of transportation, such as automobiles or trains. We also 
calculated the average distance between clustered outbreak centers and found that it 
peaked around 3000 and 7000 km, corresponding to cross-country travel distance 
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600 and 3000 km. The dashed lines are upper and lower bounds of 20 times Monte Carlo 
simulation indicating randomness.
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in North America and the cross-continent travel distance on the global scale, respec-
tively, indicating virus dispersal patterns at various spatial scales.

Using air passenger data at the city level, we then examined how A(H1N1) cases 
are distributed in relation to global cities, in other words, the impact of major cities 
on the spread of the influenza virus. We compiled a city-level matrix-based net-
work dataset that provided information on the origin–destination passenger travel. 
The network consisted of the 338 cities and 2284 edges that connect major cities 
worldwide. These matrices allowed us to measure the networks and analyze their 
structural properties. We were able to obtain the degree and the intensity of con-
nectivity among cities and to measure the significance of city and network linkages. 
The clustering coefficient was calculated for each city. The closer the value is to 0, 
the more dominant is its position in its neighborhood. For each city, we gathered 
information on all confirmed influenza A(H1N1) cases within a 300 km radius buffer 
zone, to examine if the degree and the intensity of the network connectivity could 
explain the disease spread, namely, the impact of cities on the disease spread. We 
chose a 300 km radius buffer zone around each city based on the clustering peak of 
outbreaks starting at around 600 km determined earlier, and the average distance 
between global cities. The number of cases attributed to any two cities will not over-
lap if they are more than 600 km apart. If one outbreak fell within the buffer zones of 
more than two cities, it would be counted with the city closest to it. We chose the first 
30 cities whose clustering coefficients are closest to 0, and the total number of con-
firmed cases, out-degree, and out-passengers for these cities is given in Table 12.2.

From Table 12.2, it is noteworthy that Phoenix, accounting for 517 cases, ranks sec-
ond only to London, although it has the least out-passenger flow (292,052) and out-degree 
connections (5) among the top 30 cities. Phoenix is more connected with the outside 
world in comparison with its neighboring cities. In other words, Phoenix has the most 
important position in terms of connectivity among its neighbors. This may explain in 
part why a city with relatively small passenger flows has a large number of infections.

We found that cases occurring in the buffer zones of these 30 cities accounted for 
46% (6,284/13,659) of the cases that occurred around all 338 cities in the dataset and 
43% (6,284/14,783) of all cases worldwide. Choosing the clustering coefficient as the 
criteria for ranking cities better explained the data variation by 10% more than out-
degree or out-passenger. To examine which cities contributed the remaining 54% of 
cases, we examined the situation in North America. Cases in North America alone 
account for 88% of those that occurred around the 338 cities in the dataset and 81% 
of all cases worldwide. When we consider all 70 cities in North America, rather than 
the first 13 cities in Table 12.2, the power of the explanation for the data variation 
increases significantly to 51% (6,992/13,659) for the 338 cities in the dataset and to 47% 
(6,992/14,783) of all cases. Of these, the United States accounts for 30% (4,131/13,659) 
of cases in the 338 cities and 28% (4,132/14,783) of all cases, whereas Mexico accounts 
for 19% (2,637/13,659) of cases in the 338 cities and 18% (2,637/14,783) of all cases. 
In this way, 97% (13,276/13,659) of global cases that fall within a 300 km buffer zone 
of the 338 cities and 90% (13,276/14,783) of all cases worldwide are explained by the 
87 cities that include the top 30 global cities and the extra 57 cities in North America.

The international human mobility and global air traffic patterns that define human 
connectivity at various spatial scales will help to make recommendations on targeted 
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intervention strategies and facilitate implementation of pandemic preparedness and 
emergency responses at various levels of agencies.

However, the study has its limitations. The risk prediction based on climate is 
limited by the fact that the H1N1 outbreak data in the study mostly reflect the early 
outbreaks of H1N1 and do not necessarily give a full picture of the climatological 
suitability for viral survival. The relatively coarse spatial resolution of climate data 

TABLE 12.2
Thirty Cities in Order of Increasing Value of Clustering Coefficient, 
along with Their Out-Degree, Out-Passenger Numbers and the Total 
Number of Confirmed Cases That Fall within a 300 km Buffer Zone 
of the City

City Name 
Confirmed 

Cases 
Clustering 
Coefficient Out Degree Out Passenger 

London 120 0.09 100 27,941,442

Phoenix, AZ 517 0.10 5 292,053

Paris 14 0.13 80 16,839,504

Toronto 263 0.14 41 4,769,019

Seoul 3 0.15 49 8,930,291

New York, NY 687 0.15 58 9,031,816

Frankfurt 0 0.15 67 12,347,765

Miami, FL 14 0.15 32 4,392,462

Mexico City 2327 0.16 37 3,291,871

Dubai 0 0.18 41 6,140,128

Los Angeles, CA 159 0.19 39 6,092,931

Amsterdam 3 0.19 53 10,425,018

Houston, TX 173 0.20 11 1,376,558

Singapore 0 0.21 46 11,068,494

Boston, MA 424 0.22 13 1,113,498

Montreal 66 0.22 12 1,495,484

Lisbon 1 0.22 20 2,563,461

Bangkok 4 0.23 43 8,355,832

Calgary 61 0.24 7 483,906

Las Vegas, NV 93 0.24 5 424,020

Tokyo 16 0.24 41 11,179,695

Cologne 0 0.24 7 588,086

Chicago, IL 920 0.25 22 3,312,411

Munich 9 0.25 30 3,756,055

Moscow 1 0.25 42 3,551,047

Madrid 31 0.26 40 6,467,379

Buenos Aires 0 0.28 28 2,665,830

Hong Kong 6 0.28 37 10,188,085

Orlando, FL 21 0.29 5 593,971

Osaka 351 0.29 25 3,528,752
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used, relatively low positioning accuracy of the outbreak data, and the quality of the 
outbreak data itself also limit the modeling results.

12.4 CONCLUSIONS

A time series of global risk maps were developed to predict environmental exposure 
based on a model of gridded reanalysis data including daily temperature, precipita-
tion, and absolute humidity. These maps reveal clear seasonal changes and the conse-
quent environmental risks over various parts of the world and provide information for 
developing early warning signs. Seasonal trends in the predicted risks of influenza 
outbreaks are clearly captured. High-risk areas in the northern and southern hemi-
spheres gradually move northward between April and August, and then gradually 
move southward between November and February. The amplitude of movement in 
the southern hemisphere is smaller than that observed in the northern hemisphere. 
It is noteworthy that tropical regions around the equator were not exposed to high 
risks throughout the year. However, social factors such as global human travel played 
an important role in the introduction and transmission of the pandemic H1N1 virus.

The K function of major global cities peaked at approximately 600 and 3000 km, 
which coincides with disease outbreaks. The spatial pattern of the outbreaks is strik-
ingly similar to that of global air travel patterns and average state-to-state travel. 
We hypothesize that the outbreaks are mainly due to air passenger flow worldwide 
and that the virus may have been dispersed from state to state in the United States 
and from country to country in Europe in this manner. We can also infer that within 
states or between points separated by shorter distances, the virus may have been 
spread by other means of passenger traffic such as by automobiles or trains. The 
3000 and 7000 km peaks, corresponding to cross-country travel distance in North 
America, and the cross-continent travel distance on the global scale, respectively, 
indicate virus dispersal patterns at various spatial scales.

The tourism index developed in the study corresponds well with the total number of 
confirmed cases at the country level. The total number of confirmed influenza A (H1N1) 
cases in the selected 20 countries with the highest tourism indices accounts for 98.2% of 
all cases worldwide, with the top 10 countries accounting for 95.5% of all cases.

The impact of major global cities on the spread of the influenza virus was also 
examined through air passenger data at the city level. The clustering coefficient indi-
cates the dominant position of a city in terms of connectivity among its neighbors. 
This actually explains in part why a city with relatively small passenger flows has a 
large number of infections. A total of 97% (13,276/13,659) of global cases that fall 
within a 300 km buffer zone of the 338 cities and 90% (13,276/14,783) of all cases 
worldwide are explained by the 87 cities that include the top 30 global cities and the 
extra 57 cities in North America.

In summary, from the indicators that define human travel flow and clustering dom-
inance of connectivity in a global travel network, we found that a relatively small 
number of countries or cities could account for most of the outbreak cases worldwide. 
Together with previous findings, all these confirmed that the climatological and geo-
graphical factors pose significant impacts on global transmission of the virus and could 
be incorporated into the development of targeted control and prevention strategies.
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13.1 INTRODUCTION

Urbanization is tied in with the replacement of natural surfaces by artificial construc-
tion materials whose thermal properties are notably different. Urban areas generally 
have higher solar radiation absorption and greater thermal capacity and conductivity. 
These differences between the urban and rural areas contribute to the development 
of the urban heat island (UHI) phenomenon (Oke 1982; Voogt and Oke 2003; Weng 
and Lu 2008), which is mostly profound during nighttime. Sometimes, in the morn-
ing and at midday, an urban heat sink—also called a negative heat island—may 
be observed, which is considered a brief stage in the development of the UHI that 
occurs due to differences in the urban–rural warming rates (Oke 1987).

In-depth analysis of this diurnal phenomenon is significant to a range of issues in 
urban climatology, global environmental changes, human–environment interactions, 
energy demand, and health-related issues, and it is also important for planning and 
management practices (Chrysoulakis 2002; Chrysoulakis et al. 2013). The estimated 
three billion people living in the urban areas in the world are directly exposed to 
UHI, which will increase in the future as, according to United Nations, projections, 
urban populations will continue to grow over the next decades (UN 2012). It has 
been shown (e.g., Keramitsoglou et al. 2013a) that the spatial distribution of heat 
wave hazard is higher in urban areas due to a series of factors including the presence 
of UHI. As a result, the urban population is especially vulnerable to heat waves in 
terms of increased morbidity and mortality (Dousset et al. 2011). Furthermore, the 
rise in external ambient temperatures in urban environments is also inevitably asso-
ciated with energy increase to meet raised comfort requirements. There is a distinc-
tion between the differential heating of the air above the city known as the canopy 
layer UHI (Arnfield 2003; Stewart 2011) and the heating of the surface skin called 
surface UHI (SUHI; Voogt and Oke 2003).

To quantify UHI, the existing permanent meteorological stations offer adequate 
temporal resolution and long-term archives but are usually located at areas not rel-
evant to monitoring UHI, such as airports. Therefore, they are not suitable to capture 
the spatial variability of the air and surface temperature fields in and around the city. 
Remotely sensed thermal infrared (TIR) data are a unique source of information 
to estimate SUHI, which are also related to canopy layer heat islands. Currently, 
several space missions have onboard TIR sensors. Meteosat Second-Generation–
Spinning-Enhanced Visible and Infrared Imager (MSG-SEVIRI), Geostationary 
Operational Environmental Satellite (GOES), National Oceanic and Atmospheric 
Administration–Advanced Very High Resolution Radiometer (NOAA-AVHRR), 
Terra and Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS), 
Landsat-7 Enhanced Thematic Mapper (ETM+), Landsat Data Continuity Mission 
(LDCM, Landsat-8), Thermal Infrared Sensor (TIRS), Terra Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER), and Fengyun series have 
been providing continuous monitoring of land surface temperature (LST) distribu-
tion at a spatial resolution ranging from 5 km to 60 m. The temporal resolutions vary 
from quarter-hour to 16 days, respectively. Voogt and Oke (2003) reviewed studies 
that had used remote sensing to examine UHI, while Tomlinson et al. (2011) reviewed 
satellites and sensors relevant to LST measurements in the context of meteorology 
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and climatology. Nevertheless, the trade-off between spatial and temporal resolution 
of satellite sensors is the limiting factor for the utilization of TIR data for different 
applications: the TIR datasets have been used extensively in urban thermal applica-
tions but are limited by the choices they offer, that is, to use data with either high 
spatial and low temporal resolution or high temporal and low spatial resolution.

In particular, geostationary satellites (e.g., MSG-SEVIRI viewing Europe and 
Africa, GOES viewing America, Kalpana viewing India, Fengyun viewing China, 
and MTSAT observing East Asia) are the only remote sensing platforms that can 
offer continuous monitoring of LST distribution at quarter-hourly to hourly basis, 
which is only adequate for the diurnal study of the SUHI phenomenon. Their coarse 
spatial resolution, however, has prohibited their extensive use for urban studies; yet, 
recently, scientific interest in these sensors has been revived as computational meth-
ods for sharpening them to 1 km (Keramitsoglou et al. 2013b; Zakšek and Oštir 
2012) or closer (Bechtel et al. 2012) have become available. An exhaustive review of 
LST sharpening has been recently published (Zhan et al. 2013).

The challenging option of high spatial and high temporal resolution is demon-
strated in this chapter for the assessment of the thermal morphological patterns of 
cities. This is achieved by downscaling geostationary imagery to quarter-hour LST 
images of 1 km spatial resolution from May to September 2009 and then extracting 
the SUHI thermal patterns to study the spatial and temporal (diurnal) variability 
of the phenomenon. In the results, a special paragraph is included to illustrate the 
potential of further exploitation of such products for the estimation of city energy 
demand. The analysis was applied to the Mediterranean coastal city of Athens, 
Greece, a city that exhibits a strong SUHI phenomenon.

13.2 DATA AND AREA OF INTEREST

13.2.1 Data

The input datasets were LST products from the SEVIRI on board the MSG satellite. 
MSG is in a geostationary orbit at 36,000 km above the geographical point of 0° 
latitude and 0° longitude. SEVIRI has 8 spectral bands in the TIR range out of 12 in 
total. LST maps are produced operationally by EUMETSAT using the generalized 
split-window (GSW) algorithm (Wan and Dozier 1996). The MSG LST product is 
computed within the area covered by the MSG disk, over four specific geographical 
regions (Europe, North Africa, South Africa, and South America), every 15 min. For 
each time slot and geographical region (Europe in the case presented here), the LST 
field and respective quality control data are generated and disseminated by the Land 
Surface Analysis Satellite Applications Facility (LSA SAF; Trigo et al. 2011). For 
the present analysis, the quarter-hour LST products from May 1 to September 30, 
2009, were used.

Finer spatial resolution input datasets (referred to as “components” hereafter) were 
used for downscaling the MSG LST images. These can be grouped into dynamic 
and static components, the former changing within season. Dynamic components 
included (i) the Normalized Difference Vegetation Index (NDVI) and the Enhanced 
Vegetation Index (EVI) from the MODIS global MOD13A2 16-day average product, 
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and (ii) emissivity in bands 31 and 32 from the MOD11A2 8-day average product, 
composed from the daily 1 km clear-sky LST product. Both dynamic components 
are provided on a 1 km sinusoidal grid and are available free online (e.g., from 
http://reverb.echo.nasa.gov/reverb/).

The static components included (i) a digital terrain model as of the Shuttle Radar 
Topography Mission (SRTM; http://srtm.usgs.gov/) from which elevation, aspect, 
and slope were extracted, and (ii) a European CORINE land cover vector dataset 
(www.eea.europa.eu). The land cover dataset (thematic information) was decom-
posed so as to provide percentages (numeric information) of certain land cover 
classes within a pixel of 1 km. We considered urban, agricultural land, vegetation, 
and water land cover classes (Keramitsoglou et al. 2013b; Zakšek and Oštir 2012).

13.2.2 athens Greater area

On the southeastern edge of the Greek mainland lies the Athens Greater Area as 
shown in Figure 13.1. The urban area shown on the top right map is confined by 
high mountains interrupted by small openings, while it is open to the sea from the 
south (Saronikos Gulf). Athens is the capital and largest city of Greece. The Athens 
larger urban zone (LUZ) is the eighth most populated LUZ in the European Union 
with a population of about 4,000,000, according to Eurostat (http://epp.eurostat.
ec.europa.eu/). Mild and relatively wet winters as well as warm dry summers are the 
characteristics of Athens’ warm thermo-mediterranean climate. The city of Athens 
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FIGURE 13.1 Location map and urban land cover of Athens Greater Area on the top row. 
Three areas of the urban fabric are highlighted and representative subareas are presented in 
the bottom row: C, Athens city center; IND, industrial area of Elefsina-Aspropyrgos; and CZ, 
coastal urban zone. (Photo from Microsoft Bing Maps Platform data.)
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is characterized by a strong UHI effect, mainly caused by the accelerated industrial-
ization and urbanization during recent years (Livada et al. 2002; Santamouris et al. 
2007). This has been well documented using in situ meteorological measurements 
(e.g., Giannopoulou et al. 2011; Santamouris et al. 2007) as well as satellite imagery 
(e.g., Keramitsoglou et al. 2011; Stathopoulou et al. 2009). The acknowledgment of 
the problem by the community was shown in an interesting note on heat mitigation, 
which was a crucial part of the winning proposal submitted to a prestigious competi-
tion named “Re-Think Athens” sponsored by the Onassis Foundation for the trans-
formation of the Athens city center (the winner was OKRA www.okra.nl, announced 
in March 2013).

Apart from the central area of the Attica basin (“C” in Figure 13.1), two more 
areas are of interest here: one is the industrial area of Elefsina-Aspropyrgos (“IND” 
in Figure 13.1; see also Keramitsoglou et al. 2011) and the other is the coastal 
urban zone (“CZ”). The small settlements around the dense urban fabric will not 
be discussed in this study as their thermal signature is negligible in the scale under 
consideration.

13.3 METHODOLOGY

The methodology adopted is illustrated in Figure 13.2. Geostationary MSG-SEVIRI 
LST data of 3–5 km pixel size acquired every 15 min provided the temporal variabil-
ity required for the diurnal analysis, yet at a coarse spatial resolution. The first critical 
step was the downscaling of cloud-free geostationary LST images to 1 km/15 min 
resolutions. At a finer scale of 1 km, dynamic components (emissivity and vegeta-
tion indices) were selected appropriately according to their date to match the LST 
images. Static components (topography and land cover) were also integrated into the 
downscaling procedure. Downscaling was performed using support vector regres-
sion (SVR) machines and gradient boosting (GB; Keramitsoglou et al. 2013b). The 
output resembled a low Earth orbit LST product—such as the one from MODIS—
with a revisiting capability of 15 min, resulting in 96 images per day. SUHI patterns 
were then identified on the images and extracted. The time series of SUHI patterns as 
well as the ones of urban and rural LSTs were subsequently processed to reveal the 
diurnal behavior of the thermal urban morphological patterns.

LST 3 km/15΄

LST 1 km/15΄
Dynamic

components Downscaling

Static
components

Cloud
screening

Pattern
extraction

Time series of
SUHI patterns

Time series of
LSTs

FIGURE 13.2 Conceptual flow of data and procedures to analyze the diurnal variability of SUHI.
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13.3.1 preprOcessinG

LST datasets were coded in Hierarchical Data Format (HDF5) and contained the 
following data fields: (i) LST, (ii) quality control information, and (iii) LST error 
estimate (Frietas et al. 2010; Trigo et al. 2008). The LST SEVIRI-based fields were 
generated pixel by pixel, maintaining the original resolution of SEVIRI level 1.5 
data. These correspond to rectified images to 0° longitude, which present a typi-
cal geo-reference uncertainty of about 1/3 of a pixel. Data were kept in the native 
geostationary projection. We extracted the area of interest around the Athens center 
(~150 km × 150 km) and generated a binary LST image containing only valid pixels 
according to the corresponding quality control flags. The identification of cloudy 
pixels is provided as part of the LST product. To cloud-screen the images, we set a 
threshold of 30% cloudiness over land and a more stringent one of 10% over Athens 
city. These two thresholds ensured that only top-quality images were maintained for 
further analysis: 8240 images were automatically selected and downscaled. A proce-
dure was also developed to select the corresponding file for the finer-scale dynamic 
components (see Section 13.2.1) to be integrated into downscaling.

13.3.2 DOWnscalinG Of msG

Even though 1 km might not seem an appropriate spatial resolution for monitor-
ing the thermal urban environment, it has been shown, for example, by Rajasekar 
and Weng (2009) and Keramitsoglou et al. (2011), that this resolution (from MODIS 
images for instance) is indeed appropriate for the estimation of basic parameters 
of SUHI: intensity, spatial extent, orientation, and central location. Downscaling of 
geostationary LST maps (~3–5 km) to a finer resolution (1 km) is one field worth 
investigating, as the results will combine the 1 km spatial with quarter-hour tempo-
ral resolution and thus open the prospect of numerous applications. To improve the 
spatial resolution of the geostationary imagery, one has to use information layers of 
better resolution correlated to LST. Specifically for statistical downscaling, the cor-
relation between LST and auxiliary data, such as vegetation cover, topography, and 
other factors that are offered in a finer scale, is employed (Zakšek and Oštir 2012). 
The approach developed by Yang et al. (2010) combined many auxiliary datasets: 
leaf area index, NDVI, soil water content index, and reflectance of visible and near-
infrared bands. To find the optimal downscaling solution, they employed an artificial 
neural network. Zakšek and Oštir (2012) used the correlation existing between LST 
and the land cover and microrelief parameters to enhance the spatial resolution of 
the SEVIRI LST over central Europe to 1000 m using the moving window analysis. 
Keramitsoglou et al. (2013b) used the same underlying principle with sophisticated 
regression methodologies (such as SVR and neural networks improved by gradient 
boosting) that were applied globally to the entire image, circumventing limitations 
of previous studies.

In the present analysis, we used SVR light support vector machines (SVM; 
Joachims 2002) coupled with gradient boosting (SVR/GB; Friedman 2001), which 
proved to be the most robust, high-performance methodology reaching correlation 
coefficients from 0.69 to 0.81 when compared to the other LST maps derived from 
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MODIS and AVHRR. Keramitsoglou et al. (2013b) provide an assessment of the 
downscaling procedure against coincident 1 km LST images. In brief, first upscaling 
was performed to finer spatial resolution components (see Section 13.2.1) and a new 
set was derived at the geostationary LST image geometry (coarse resolution, ~3 km). 
The second step was the development of the SVR/GB model: a unique regression 
model was defined for each input LST coarse-resolution image. The third step was 
the application of the regression model to the fine-scale components for the genera-
tion of the 1 km LST map. By applying this three-step procedure to the geostationary 
LST imagery, we produced a time series of 1 km spatial resolution LST maps every 
quarter-hour from May 1 to September 30, 2009.

13.3.3 patterns extractiOn

Despite the large number of publications on urban LST and UHIs using satellite 
and airborne sensors, Voogt and Oke (2003) criticized that thermal remote sensing 
of urban areas has progressed slowly largely due to qualitative descriptions of ther-
mal patterns and simple correlations between LST and land use/land cover types. 
There are a number of published works on the characterization of thermal patterns; 
Rajasekar and Weng (2009), for example, applied a nonparametric model by using 
fast Fourier transformation (FFT) to MODIS imagery for characterization of SUHI 
over space, in order to derive SUHI magnitude and other parameters, and Hung et al. 
(2006) adopted the Gaussian method proposed by Streutker (2002) to measure the 
spatial extents and magnitudes of SUHIs for eight megacities in Asia. In spite of these 
advances, new methods for the estimation of SUHI parameters from multitemporal 
and multilocation TIR imagery are still needed given the increased interest in the 
urban climate community to use remote sensing data (Weng 2009). Keramitsoglou 
et al. (2011) extracted the thermal hot spots from more than 3000 MODIS LST maps 
of Athens, retaining their original values and thus circumventing modeling.

The methodology of Keramitsoglou et al. (2011) has been used in the present 
analysis to process thousands of derived LST downscaled images, to identify and 
extract the SUHI patterns, to characterize them in terms of spatial extent and inten-
sity, to study their diurnal behavior, and to investigate any correlations between spa-
tial and thermal attributes. The main computational procedure for thermal pattern 
analysis was the extraction of pixels whose LST was higher than the suburban refer-
ence LST plus a predefined threshold value (let us say 3°C). These were first regis-
tered as potential SUHI hot pixels. Separation of hot pixel groups was automatically 
performed through appropriate segmenting of the initial image by partitioning the 
potential hot pixels. The grouped SUHI pixels were subsequently treated as different 
regions (objects), allowing several features related to these objects to be extracted. 
Once the objects of interest were extracted, a number of parameters per “SUHI 
object” were calculated and appropriately stored in a database. These parameters 
included temporal, spatial (weighted centroid location, extent in square kilometers), 
and thermal information (e.g., minimum, maximum LST). It is worth noting that the 
methodology is appropriate for both coastal cities, where the discontinuity of sea–
land interface would cause complications in a modeling approach (as in Rajasekar 
and Weng 2009), and inland cities.
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13.4 RESULTS AND DISCUSSION

13.4.1 DiUrnal analysis Of heat islanD anD sink

A comparison between the LSTs of the dense urban area and a reference suburban 
area was performed by calculating the average LST value of each area and sub-
sequently calculating the differences between the average urban minus the aver-
age rural LST. The evolution of these differences can provide a characterization of 
the daily evolution of the SUHI phenomenon during the period under consideration 
(May–September 2009). Based on this, two areas were delineated as urban areas in 
the city center (located in “C”), including only dense urban land use with an altitude 
not exceeding 200 m, and a rural area to serve as reference selected at the vicinity of, 
but not including, the Athens airport, covering nondense urban fabric and other rural 
land cover. For consistency with the urban area, the reference area was also below 
200 m altitude. A total of 8240 downscaled LST images were completely cloud-free 
over the Athens center and therefore analyzed. In the absence of clouds, a measure-
ment was available every quarter-hour.

The diurnal analysis of the results is shown in Figure 13.3. SUHI takes positive 
(heat island) and negative (heat sink) values during the day. This finding for Athens 
is also in agreement with Stathopoulou et al. (2009) at a much finer scale using 
a single image from Landsat-TM. The figure shows that, on average, SUHI was 
positive for 18 h and negative for 6 h during the day. Analysis of monthly averages 
showed identical behavior, and therefore it is not presented (approximate sunrise and 
sunset times are shown in the figure). Further, it is of interest to note that no shift 
was observed due to different sunrise and sunset times. The maximum SUHI val-
ues occurred from 20:00 to 03:00 (all times are coordinated universal time [UTC], 
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change is also shown in gray line.
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local time was 3 h ahead) when the phenomenon was well developed and stable 
(this will be shown by means of more figures during the analysis). A sharp drop 
occurred from 03:00 to 08:00 with a maximum change rate of 1.55°C/h at 05:00. 
Subsequently, the difference between urban and rural LSTs increased obtusely 
reaching 0°C and then became positive while the SUHI phenomenon and pattern 
(see also Section 13.4.2) was formed. The strong diurnal variability of the SUHI phe-
nomenon can be attributed primarily to the different properties of materials found in 
rural and urban areas, indicatively (adapted from US EPA 2008):

• Reflectance of solar radiation—urban areas reflect less solar radiation and 
absorb more than rural areas.

• Thermal emissivity, which is related to the ability to emit TIR radiation—
emissivity of construction materials found in Athens is higher than that 
found in rural areas.

• Heat capacity, which refers to the ability to store heat—cities absorb and 
store twice the amount of heat compared to rural areas.

• Thermal admittance of materials, which is a measure of the ability of a 
material to transfer heat in the presence of a temperature difference on 
opposite sides of the material and which affects the material’s thermal 
response to variation in outside temperature—materials with a low thermal 
admittance, such as asphalt and brick, found largely in urbanized areas, 
exhibit greater diurnal temperature variability than materials with high 
thermal admittance of rural areas.

13.4.2 DiUrnal analysis Of sUhi patterns

The object-based image analysis procedure of Keramitsoglou et al. (2011) was used 
to extract the SUHI patterns from the 1 km/15 min downscaled LST maps. This 
allowed for the analysis of the diurnal behavior of the phenomenon. The spatial and 
thermal attributes associated with the SUHI objects were calculated and used for the 
analyses of their intensity, position, and spatial extent. In total, 4507 patterns were 
extracted from the images between May 1 and September 30, 2009, with a threshold 
of 3° above the rural LST (R + 3). One of the most informative graphs of this analysis 
is presented in Figure 13.4. On the top diagram, one can observe the number of 
occurrences of the SUHI pattern every quarter-hour from 00:00 until 23:45 UTC. For 
example, 90 (out of the 4507) patterns were observed at 0:00 UTC in the 5 months 
considered in the analysis, regardless of the date. The stability of the phenomenon 
during nighttime is apparent. The drop of the number of patterns is steep between 
03:00 and 05:00, to a negligible number and subsequently the occurrences gradually 
rise after 11:00. This behavior is similar to the one observed in Figure 13.3; however, 
it is worth noting that in this case, we observe patterns rather than LST differences. 
The bottom panel in Figure 13.4 shows the corresponding average area extent diur-
nally with the same characteristics. The two panels together imply that the average 
well-developed SUHI pattern is ~250 km2 (for a threshold LST of R + 3°); during the 
transition phases (steep decay and gradual growth), the area extent varies consider-
ably by an order of magnitude (e.g., from 20 km2 at 06:00 to 200 km2 at 20:00 UTC).
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Having realized the diurnal development of the SUHI patterns, two figures elu-
cidate their spatial distribution in the area under study. Figure 13.5 presents hourly 
snapshots of the pattern and its decay for the night of July 16/17, 2009. The pattern 
under consideration is shown in orange. The time series from 21:00 to 04:00 on the 
next day shows the well-developed SUHI of Athens and its decay. The pattern cen-
troid is within area “C” (see also Figure 13.1). The pattern also spreads along the 
urban coastal zone of Athens (area “CZ”) and to a lesser extent to the industrial area of 
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patterns per quarter-hour from May until September 2009 (in total 4507 patterns); (b) the aver-
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Elefsina-Aspropyrgos (“IND” area), for that particular day. The red color on the maps 
denotes SUHI intensity more than 4°C. Blue and green pixels show LST less than that 
of the reference rural area (R) and between R and the threshold of R + 3, respectively.

Regarding the spatial extent of SUHI, it is of interest to investigate the 
“ participation” of each pixel in the pattern, regardless of time. This is presented in 
Figure 13.6. The three panels show the SUHI pattern for three different thresholds of 
3°C, 4°C, and 5°C above the LST of the reference rural area. The darker areas show 
high “participation” of these pixels in the pattern. When increasing the threshold, the 
spatial extent is smaller. The left panel shows that the 3°C SUHI pattern covers all the 
three areas of Athens that we considered earlier, that is, the city center, the industrial 
area (“IND”), and the urban coastal zone (“CZ”). The high intensities (4°C and 5°C 
threshold) are limited to the city and a persistent feature is present at Piraeus port, 
the chief port in Greece and the largest passenger port in Europe. This distribution 
is in agreement with single-image studies at a finer scale (Stathopoulou et al. 2009).

21:00 22:00 23:00 00:00

04:0001:00 02:00 03:00

LST≤ R R < LST< R+3 R+3 ≤ LST< R+4 LST> R+4

FIGURE 13.5 (See color insert.) Hourly development and decay of SUHI patterns for a 
summer day (July 16/17, 2009); time is in UTC. The reader is advised to focus on the orange 
and red patterns that represent the SUHI patterns at different times.

3°C 4°C 5°C
100

50

0

FIGURE 13.6 Average SUHI pattern for different LST thresholds (R + 3, R + 4, R + 5). The 
level of gray depicts the “participation” of each pixel in the pattern (from 0% to 100%). Time 
of the day is indifferent.
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The analysis showed that the SUHI extent was not correlated directly with any 
thermal feature such as the maximum or minimum LST; instead, the spatial extent 
of a hot spot was highly correlated with its intensity. By thermal intensity, we refer to 
the discrepancy between the maximum LST of the SUHI pattern and the rural refer-
ence LST (R). In other words, thermal intensity shows the LST difference between 
the urban hot spot and the rural area.

Similar to the analysis of Keramitsoglou et al. (2011) for the daytime thermal hot 
spots, the correlation between the SUHI pattern extent and intensity is presented in 
Figure 13.7. This finding is new and could not be observed for the SUHI pattern with 
a correlation coefficient high enough to be trusted in the previous study (the study 
was carried out using only MODIS LST images).

The spatial extent of a hot spot is defined as the area covered by the aggregated 
cluster of pixels whose LST is higher than the rural reference plus a predefined 
threshold value. The construction materials of urban areas exhibit a high thermal 
inertia (i.e., a low response to temperature changes), and, consequently, they warm 
up later in the course of the day and continue releasing heat slowly after sunset and 
during nighttime, when most of the rural surfaces have cooled down. Therefore, 
as the difference between urban and rural areas increases, the thermal intensity 
of SUHI increases, and the cluster of warm pixels (SUHI pattern) becomes larger, 
explaining the strong correlation between them.

13.4.3 cOOlinG DeGree hOUrs

The rise in external ambient temperatures in urban environments, compared to rural 
environments, is associated with a series of interconnected impacts, namely, comfort, 
energy increase to meet raised comfort requirements, and health. Energy demand for 
cooling of buildings is an indicator of the impact of climate on the energy sector. 
Conventionally, cooling degree days (CDD) and hours (CDH) are the most common 
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FIGURE 13.7 SUHI pattern analysis shows a strong correlation between the area extent of 
the pattern and its intensity (4507 points). Time of the day is indifferent.
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practical methods for assessing the effect of air temperature on the energy performance 
of a building, and they are used as a reasonable approximation of the cooling energy 
needs of a city with respect to it. In recent years, the majority of houses and work envi-
ronments in Athens have air-conditioning systems. In the event of a heat wave, power 
demand is much increased, often causing significant region-wide blackouts. In such 
circumstances, the health of the population is at further risk. By definition, a CDH is 
recorded if the average air temperature for the hour rises above a base temperature that 
differs between cities. Until recently, CDH could be calculated only at certain points 
where meteorological stations were installed (e.g., Kolokotroni et al. 2010; Papakostas 
and Kyriakis 2005; Tselepidaki et al. 1994). The lack of an adequate number of ground 
stations prohibits any meaningful spatial analysis at and around the urban web.

Here we attempt to estimate CDH by using the downscaled 1 km/1 h LST maps 
rather than air temperatures. The advantage is the dense space-time grid, which is 
not available by other measurements. The drawback is that the switch from air tem-
peratures to LST may not be as straightforward as presented here. The motivation 
for this step originated from two previously published works: one of Stathopoulou 
et al. (2006) that related midday LST from NOAA-AVHRR data and mean daily air 
temperature observations recorded at standard meteorological stations in Athens and 
subsequently estimated CDD from the satellite data, and a recent study by Clinton 
and Gong (2013) that defined CDD in 2010 globally as data in which the urban pixel 
temperature exceeds 20°C at the time of measurement.

Assuming, thus, that the magnitude of the positive deviation of a pixel with tem-
perature LST at hour h from the base temperature is related to the energy demand, 
the total number of cooling degree hours for a day based on LST rather than air 
temperature can be expressed as

 

CDH LST� ( ) .T Tb
h

h b( ) = −
=

+∑
0

23

The “+” sign indicates that only positive values are summed up. The spatial distribu-
tion of CDH in a city is related to the demand for air conditioning. This potential of 
using downscaled LST images at 1 km on an hourly basis is illustrated in Figure 13.8. 
Two days have been selected here: one is a typical summer day in July in Athens with 
maximum air temperature at 33°C (shown in the top row) and another day character-
ized as hot, with air temperature being above 37°C for more than 3 h (Keramitsoglou 
et al. 2013a; shown in the bottom row). For the hot day, the spatial distribution of 
CDH is also of relevance for a higher base LST (above 23°C). In the case of a typi-
cal summer day, the figures show that the urban areas of Athens have at least double 
CDH compared to the rural areas (see also Figure 13.1 for the exact location of the 
urban fabric in Athens), the patterns of high CDHs reflecting the patterns of SUHI 
(as in Figure 13.5). The selection of base LST definitely plays an important role, 
and further analysis should be conducted to correlate air temperature and LST base 
temperatures (similar to Stathopoulou et al. 2006). In any case, it is common practice 
(e.g., Papakostas and Kyriakis 2005) to present CDD and CDH results for various 
base temperatures.
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Elevated urban LSTs lead to increased cooling energy consumption and peak 
electricity demand. The maps of Figure 13.8 are in agreement with previous studies 
calculating the cooling load of buildings for the city of Athens (Hassid et al. 2000; 
Santamouris et al. 2001). They reported that during summer noon hours, the cooling 
load of urban buildings at the city center is about double compared to the respective 
load in the surrounding Athens area; the peak electricity load for cooling purposes 
may be tripled, especially for base air temperatures higher than 26°C. However, 
it is anticipated that local or global climate change will amplify these effects: 
Assimakopoulos et al. (2012) projected that the energy consumption in buildings in 
Athens will further increase due to climate change.

It needs to be stressed that the methodology described is a first approximation to 
relate the spatial distribution of LST degree hours to energy demand and serves more 
like a demonstration of the potential uses of the downscaled LST images. It needs 
to be further validated before it can be trusted and used operationally, and this will 
serve as motivation for future research.

13.5 CONCLUSIONS

In this chapter, the results from the synergistic use of two innovative algorithms, 
namely, downscaling of geostationary LST images (Keramitsoglou et al. 2013b) and 
extraction of thermal patterns (Keramitsoglou et al. 2011), have been presented for 
the study of the diurnal behavior of SUHI in Athens. Five months from May 1 to 
September 30, 2009, of quarter-hour LST products over Europe have been acquired 
(13,709 products in total), 60% of which passed all the stringent cloudiness and qual-
ity criteria and were further processed.

The SUHI of Athens is stable and well developed from 20:00 to 03:00 UTC. 
In turn, a sharp drop in LST difference and pattern extent occurs from 03:00 to 
08:00, with a maximum SUHI change rate of 1.55°C/h at 05:00. The phenomenon 
starts developing again after 11:00 UTC. The average well-developed SUHI pat-
tern is ~250 km2 (for a threshold LST of R + 3°C), and the pattern extent is highly 
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FIGURE 13.8 (See color insert.) Cooling degree hours in degrees for a single day for vari-
ous base LSTs (Tb). Top row represents a typical day in July and the bottom row a hot day.
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correlated with its intensity at all times. The SUHI pattern covers the city center, the 
industrial area of Elefsina-Aspropyrgos, and the urban coastal zone; however, higher 
intensities are limited to the city and a persistent feature is present at Piraeus port. 
The downscaled LST images allow for a first approximation of the spatial distribu-
tion of CDH, a feature related to energy demand. It was found that during a typical 
summer day, the urban areas of Athens have at least double CDHs compared to the 
rural areas and the patterns of high CDHs reflect the patterns of SUHI. Another fea-
ture of interest is that between 5:00 and 11:00 UTC in the morning, urban LSTs are 
lower than rural LSTs, the difference reaching a maximum at 8:00 (urban heat sink).

The results presented here are complementary to the ones previously pub-
lished for Athens Greater Area, which use either in situ meteorological data (e.g., 
Giannopoulou et al. 2011; Livada et al. 2002), single-date high-resolution satellite 
imagery (e.g., Stathopoulou et al. 2009), or a limited number of satellite overpasses 
at 1 km spatial resolution (Stathopoulou et al. 2006). However, it is the first time that 
such a long dataset with a spatial resolution of 1 km and the quarter-hour temporal 
resolution has been processed for the city of Athens. The present approach provides a 
new insight into the diurnal variations of the spatial distribution of SUHI in Athens.

Apart from the advancement in understanding the particular case study of Athens, 
the proposed methodologies are fast, use open-source libraries, integrate freely avail-
able global datasets, and can therefore be considered for further exploitation of geo-
stationary LST datasets. At present, LST products are archived from different TIR 
sensors on different geostationary missions (MSG-SEVIRI, US GOES, Chinese FY3). 
These can be exploited and reanalyzed to generate high-level innovative products 
designed specifically for cities. The analysis presented here demonstrates that, when 
appropriately downscaled, the geostationary orbit imagery can reveal a wealth of 
information at high temporal resolution of 15 min, currently not available by any 
Earth Observation mission, opening a range of applications. Optimized exploitation 
can be tailored for different purposes, with several different end users such as urban 
climate modelers, health responders, and energy demand suppliers.

With global temperatures rising (the warmest September being in 2012), Earth 
experiencing warmer temperatures than several decades ago, and future climate pro-
jections showing that the extreme events of the present might be common phenom-
ena in the future, it is envisaged that such exploitation of satellite-derived products 
addressing the urban thermal environment will be essential means for supporting 
urban planning and decision making for the mitigation of SUHI.
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14 Integrated Urban 
Sensing in the 
Twenty-First Century

Günther Sagl and Thomas Blaschke

Today, vast volumes of highly diverse sensor data are generated, and this amount 
is growing exponentially. As highlighted in several chapters of this book (e.g., 
Chapters 2, 5, 8, or 10), high- resolution remotely sensed data serve day-to-day appli-
cations. Virtual Globes such as Google Earth have brought such images to every-
body’s fingertips. Lesser known to the wider public are two other fields of data 
generation: real-time in situ sensing of environmental parameters and sensing of 
human behavior in space and time. Environmental data are mainly sensor-generated. 
Examples include weather stations or intelligent mobile sensor pods. We call these 
“machine-generated” data. On the contrary, direct measurements of humans in 
space and time are predominantly restricted for privacy reasons. Information about 
persons or groups and their behavior in space and time is either derived from so-
called volunteered geographic information (VGI) or it may be derived from proxy 
data, for example, from mobile communication networks or social media. In this 
chapter, we argue that multiple coordinated views of spatiotemporal data provide 
unprecedented opportunities for geographic analysis in times of “big data.” Together, 
these different types of data generation enable an integrated sensing. We focus on 
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urban areas where the density of relevant information is already high. We claim that 
integrated urban sensing opens new vistas to physical and social dynamics at the 
environment–human interface. We analyze the intersection of machine-generated 
(satellite imagery, weather stations) and user-generated (social media, mobile phone 
data) data and we contend that geographic information systems (GIS) as a tool and 
geographic information science (GIScience) principles are together the lynchpin of 
integrated urban sensing. In particular, GIS plays a major role in urban monitoring 
studies. We demonstrate that GIS-based integrated urban sensing enables analyses, 
forecasts, and visualizations of a variety of spatial components of socioeconomic 
phenomena. This includes people, urban commodities, and their respective changes, 
but also information flows and human interaction with urban commodities as well 
as the relationships among networks of human interaction and natural environments.

14.1 INTRODUCTION

At the beginning of the twenty-first century, a wide range of technologies are able 
to sense, directly or indirectly, a variety of environmental, human, and social 
 phenomena—thereby facilitating the “Digital Earth” concept introduced by Gore 
(1998). Such sensing technologies generate vast and rapidly increasing volumes of 
digital sensor data. It is claimed that these data may at least partially reflect the 
dynamics of both environmental and social phenomena in remarkable spatial and 
temporal detail, and thus open novel research opportunities for the GIScience 
domain as well (cf. Annoni et al., 2011, Goodchild et al., 2012, Hey et al., 2009).

The focus of this chapter is on urban areas. Conceptually, the methods described 
would work everywhere the information content is dense enough. We avoid a dis-
cussion on what “dense enough” means when targeting cities. The term “city” com-
prises not only a geographical area characterized by a dense accumulation of people 
or buildings, but implicitly includes a multilayered construct containing multiple 
dimensions of social, technological, and physical interconnections and services 
(Blaschke et al., 2011).

In this chapter, we will discuss concepts which in synopsis may support our 
vision of integrated urban sensing. In the empirical part, we will concentrate on the 
research question of how the spatial and temporal nature of the acquired data might 
be characterized. The hypothesis is that rather than utilizing relatively small samples 
of individuals, as social sciences may have to, we can gain insights into a “collective 
behavior” which may characterize some aspects of urban life. The aim is to abstract 
beyond individual characteristics of probes—moving objects in general including 
humans and commodities. We will demonstrate methods to analyze, visualize, and 
explain some of the patterns we identified. The results are not immediately scalable 
to larger studies but we could prove the appropriateness of the methods in several 
earlier studies (Sagl et al., 2011, 2012a–c). Indubitably, we build on the ideas of 
Resch and coworkers (Resch et al., 2011, 2012a,b).

Resch et al. (2012b) even suggest a concept of a “live city,” in which the city 
is regarded as an actuated near real-time control system creating a feedback loop 
between the citizens, environmental monitoring systems, the city management, 
and ubiquitous information services, thereby facilitating the “smart city” concept. 
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In  this chapter, we will utilize the clarification of the term “live”—as opposed to 
common understanding of “near real time”—of Resch et al. (2012b) but we will stay 
at the analytical level. The aim is to report on the methods of integrated urban sens-
ing, and we will leave out a discussion of a “live city.” Such a discussion would need 
to comprehensively cover privacy and legislative issues. Nevertheless, a visionary 
outlook can be provided. On purpose, such an outlook is limited to the analytical 
capabilities and excludes anticipated societal developments. Some analytical capa-
bilities will be demonstrated and it will be briefly discussed as to whether this poten-
tial may lead to new vistas of space-time analysis.

Within the context of “live city” and “smart city,” the need of an advanced 
understanding of environmental and social dynamics such as the weather or 
human behavior is obvious. This also refers to the broad spectrum of sustain-
able resource management and its various application domains such as electricity, 
heat, water, transportation, and urban planning as well as safety, security, health 
care, etc. The cross-integration of multiscale ubiquitous sensor data into spatial, 
temporal, and spatiotemporal analysis can potentially enhance our  understanding 
of resources’ demand and, thus, their efficient allocation (cf. Hancke et al., 2013). 
Hence, integrated urban sensing enables a more holistic view on urban phenomena 
and processes, thereby facilitating the concepts of live and smart cities. In fact, 
integrated urban sensing might be a promising way for quantifying urban perfor-
mance with respect to both the physical as well as the social and human capital 
(Ho Van et al., 2009).

The research in the context of integrated urban sensing is diverse. An increasing 
amount of scholars aim to explore the possibilities of statistical methods of analysis 
that are better suited for the peculiarities of space-time data. GIS methods are at 
the core of such options. GIS-based spatial analysis techniques can help unlock and 
visualize the substantial spatial and temporal components of the geographic phe-
nomena of interest. In addition to the scientific value of such techniques, GIS enables 
researchers to generate sophisticated visualizations and computer animations that 
are useful for education. Ultimately, such visualizations serve to convey the results 
of research on urban systems to a wider public (Blaschke et al., 2012).

In this chapter, we address the need for multiscale integrated sensing for cross-
scale integrated monitoring of urban spaces. We do so by linking together three 
dimensions involved in sensing: machine- or user-generated data, the underlying 
geographic phenomena, and the type of sensing (Figure 14.1). “Scale” herein refers to 
both temporal and spatial scales and can be seen as the overarching meta- dimension 
in the context of sensing, analyzing, and monitoring geographic phenomena. We rely 
on the concepts of GIScience (Goodchild, 2010) but we do not discuss the role of 
GIScience as such. There is a significant body of literature about what exactly makes 
spatial special (e.g., Goodchild, 1991) and we refer to Blaschke and Strobl (2010), 
who orchestrate various trends and developments in this field under 10 themes.

Specifically, we focus on environmental data, human data including their  mobility, 
and social data. In the following sections, we present several case studies of how 
“sensors” and “sensor networks” in combination with GIScience concepts can be 
employed to investigate spatial and temporal characteristics of physical and social 
phenomena across multiple spatial and temporal scales.
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14.2  TRIPLE D: DIMENSIONS, DOMAINS, AND DATA 
OF INTEGRATED URBAN SENSING

In this section, we illustrate and interlink dimensions, domains, and data in the 
context of integrated urban sensing (Figure 14.2). For instance, social sensor data 
(representing some social phenomena) are predominately user-generated and 
sensed in situ while environmental sensor data (representing some physical phe-
nomena) are typically machine-generated (views 2 and 3); there are hardly any sen-
sor data that are sensed remotely and generated by users (view 1). Although such 
links between the dimensions of sensing might be obvious, we want to make their 
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contributions to integrated urban sensing more explicit, specifically with respect 
to different spatial and temporal scales.

Some examples of data types corresponding to Figure 14.2 are as follows:

 1. VGI and mobile network traffic
 2. VGI in the context of environmental status updates
 3. Satellite imagery
 4. Measurements from sensors and sensor networks
 5. Human settlements extracted from satellite imagery
 6. Counter data at entrances and exits of shopping malls, public transport, etc.

14.2.1 characterizinG DOmains Of Urban sensinG

Sensors and sensor networks generate digital representations of the Earth’s sur-
face, or measure the healthiness of vegetation, or the pressure of a snow pack 
which could potentially destroy a rooftop. Most prominent examples of sensors are 
weather stations. They measure air temperature, rain fall, solar radiation, particu-
late matter, etc. They are therefore multisensor stations. Likewise, satellites carry 
multiple sensors which measure reflectance values of atmospheric parameters 
such as ozone. However, many sensors, as well as the generation of sensor data, 
can be characterized in a binary manner (Table 14.1). For instance, air tempera-
ture is  typically measured periodically and on purpose using a single calibrated 
in situ sensor that generates accurate measurements. On the other hand, the user-
generated traffic in mobile phone networks is managed by the network’s backend 
in order to enable mobile users to communicate wirelessly almost everywhere at 
any time. As a by-product, the log files from such a backend can reflect the human 
behavior patterns of millions of mobile users in remarkable spatial and temporal 
detail. Therefore, the mobile network, which is not intended for sensing, can, how-
ever, be used indirectly as a large-scale sensor for human behavior.

TABLE 14.1
Binary Characterization of Sensor 
Devices and Sensor Data: Some Examples

In situ Remote

Single sensor Multiple sensor

Terrestrial Aquatic

Machine-generated User-generated

Singularly Periodical

Direct Indirect

On purpose Not intent for sensing

Demanded By-product

Voluntarily provided Involuntarily provided
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In Figure 14.3, we make an attempt to contrast the following additional character-
istics of urban sensing techniques by using three levels: low/bad, moderate/medium, 
and high/good.

• Availability refers to existence and quantity of sensor data.
• Accessibility depends on availability and refers to the easiness of data access.
• Resolution refers to the spatial, temporal, as well as thematic (i.e., qualita-

tive) granularity.
• Integratability refers to the easiness of including sensor data in analysis 

workflows.
• Degree of efficiency is the ratio between information achieved and techni-

cal complexity.
• Cost/benefit ratio shows the data’s added value considering the monetary 

investment.
• Privacy concerns refer to the impingement upon individual or collective 

privacy rights.

In addition to machine-generated sensor data, the data generated and shared via 
the Internet voluntarily by individuals (summarized by the term VGI; Goodchild, 
2007) and the data generated but shared involuntarily by users of digital systems 
(e.g., using a mobile phone within a mobile network and thereby generating network 
traffic) represent an increasingly large and broad sample of the society’s behavior 
(cf. Shoval, 2007).

Different sensors and sensing technologies generate sensor data that represent 
a geographic phenomenon of interest at different spatial and temporal granularity: 
remotely sensed data typically have a lower spatial and a lower temporal resolu-
tion than in situ sensed data but comprise wider coverage. On the other hand, the 
granularity of VGI or data from social media is even far from being constant, as 
is their spatial accuracy, their semantics, and many other data quality parameters. 
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However, the volume and sample size of data are exploding (Hey et al., 2009), not 
least due to the use of “thick” mobile devices such as smart phones, which are 
typically constantly connected to the Internet, social media, and other services of 
the Web 2.0.

Therefore, we will distinguish two major groups of data. Environmental data 
are mainly generated by “real” sensors, for instance, weather stations or intelligent 
mobile sensor pods. We call these “machine-generated” data. On the contrary, direct 
measurements of humans in space and time are predominantly restricted for privacy 
reasons. Information about persons or groups and their behavior in space and time is 
derived either from VGI or from proxy data. Proxy data can stem from, for instance, 
mobile communication networks or social media. For simplicity, we call this second 
group “user-generated” data (refer to Figure 14.2).

14.2.2 Why are remOte sensinG Data left OUt here?

Although remote sensing is at the core of this book, we will refrain from cov-
ering remote sensing concepts herein. Rather, we will focus on other aspects of 
“Earth observation.” First, all the other 17 chapters in this book describe in detail 
remote sensing platforms and sensors, methods of data acquisition and analysis, 
and interpretation. Second, remotely sensed data are often seen as the process of 
generating thematic interpretations from digital signals that model parts of the 
Earth’s surface. Following this definition, we would use the results as thematic lay-
ers in integrated sensing applications as categorical data, usually from interval to 
nominal levels of measurement. Third, Blaschke et al. (2011) have already focused 
on the integration of remote sensing and other forms of sensing for urban applica-
tions. Unclassified image data may be more “objective” and have a greater range 
of measurement but many applications require classified thematic interpretations. 
This way, we hope to be able to contribute to more holistic and integrative urban 
observation systems.

In particular, we postulate non-remote sensing data to be crucially important for 
the following functions:

 1. Characterizing urban ecosystems, built environment, air quality, and car-
bon emission

 2. Developing indicators of population density, environmental quality, and 
quality of life

 3. Characterizing patterns of human, environmental, and infectious diseases

These points reflect goals of the Group of Earth Observation (GEO) task SB-04-C1—
Global Urban Observation and Information, for which this book is planned to be a 
major contribution. We strongly believe that remote sensing data are undoubtedly at 
the core of these tasks but non-remote sensing (in situ, social network, etc.) data are 
indispensible, too, and we therefore concentrate on the latter. For example, remote 
sensing data together with climatological station data are the starting point for mod-
eling urban climate, microclimatological parameters, and phenomena like urban 
heat islands. Nevertheless, in order to better understand the impacts of global climate 
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change on urban areas, validations are needed and the “people’s view” needs to be 
incorporated—which is a ground view. We postulate that in most cases up to date, 
people-centered information on the status and development of urban environments 
and personal spaces will be needed. They may not only be used to fill gaps in global 
urban observations but they will also in the future be indispensible when charac-
terizing urban ecosystems, population density in built-up environment, air quality, 
environmental quality, and carbon emission.

For the sake of completeness, it must be stated that remote sensing also deliv-
ers data that are used as proxies for environmental parameters without classifica-
tion. Well-known examples include the Normalized Differenced Vegetation Index 
(NDVI), the Leaf Area Index (LAI), and land surface temperature (LST), which can 
be used directly in integrated urban sensing and analysis.

We conclude that remote sensing is a mature technology, particularly for larger-
scale observations, that has been significantly utilized in a world increasingly employ-
ing geospatial data. However, fine-grained urban remote sensing data are—aside 
from numerous case studies—hardly available across large areas. In the remainder 
of this chapter, we will therefore focus on additional and emerging sensing methods 
that are supposedly less familiar to the target audience of this book.

14.2.3 envirOnmental sensinG: “machine-GenerateD” Data

Environmental sensing, environmental analysis, and environmental monitoring are all 
well-established fields. The fields may overlap, the terms may be used ambiguously by 
different communities and their methodologies, and paradigms may undergo changes. 
They are, nevertheless, not new and do not need to be discussed in detail herein.

What is relatively new is the information technology (IT)  framework—typically 
referred to as the Sensor Web (cf. Delin and Jackson, 2001, Resch, 2012, Zyl et al., 
2009)—which enables complex combinations of sensing methods and arrange-
ments of different sensing devices to assess a variety of environmental phenomena. 
Furthermore, information had to often be constructed out of data only retrospec-
tively, that is, the data acquisition was totally decoupled from the data analysis. 
Sagl et al. (2012d) describe an exercise where mobile radioactive radiation sensor 
measurements were spatially interpolated in near real time for supporting rescue 
forces in time-critical decision making. Although not a typical urban sensing sce-
nario, this can convincingly illustrate the advantage of creating timely information: 
in a classic workflow, experts would have gathered radiation information in the field 
and would have created maps containing isolines of certain radiation concentra-
tions afterward. Such a classic mapping exercise could take hours, which could 
be critical in this example. Sagl et al. (2012d) could show that near–real time and 
fully automated analysis  workflows based on standardized services speed up this 
process significantly while hiding the heterogeneity of underlying sensors and sen-
sor networks. Purposely, we refer to the term “near real time” as it does not impose 
rigid deadlines but suggests the dynamic adaptation of a time period according to 
different usage contexts (Resch, 2012). The terms “live” and “near real time” are 
seemingly appropriate and used synonymously herein.
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14.2.4 hUman sensinG: “User-GenerateD” Data

The digital traces that people continuously leave behind—voluntarily or not—while 
using communication devices such as mobile phones or interacting with social 
media platforms reflect their behavior in great detail. These traces can be seen as 
social  sensor data (Sagl et al., 2012c) and can serve as proxy for human activity 
and  mobility. A spatial and temporal analysis of such proxy data can thus provide 
insights into the social dimension and, moreover, the functional configuration of 
complex urban systems.

Herein, we focus on the potential of user-generated data from mobile networks 
and social media. For instance, Sagl et al. (2012b) show that both characteristic and 
exceptional urban mobility patterns can be derived from handovers (i.e., movements 
between pairs of radio cells) within a mobile network. Such insights can help to bet-
ter understand the daily “pulse” of urban movements in the city (Sevtsuk and Ratti, 
2010), thereby providing additional information for, for example, public transporta-
tion management strategies. In the context of urban mobility, online social networks 
such as Foursquare can also be used to examine differences and similarities, and 
derive even universal laws, in human movements across several metropolitan areas 
around the globe (Noulas et al., 2012). In summary, such studies clearly demonstrate 
the significance of different user-generated “sensor” data for multiscale integrated 
urban analysis.

However, the different nature of user-generated data samples results in differ-
ences in terms of representativeness and semantic expressiveness: from a user’s 
perspective, “involuntarily” provided mobile network traffic naturally represents a 
relatively large proportion of the population across social classes; however, it is typi-
cally lacking in content. For instance, the number of text messages sent/received is 
known but not the text itself, or the number and duration of calls is known but not the 
topic of the talk itself. This is in contrast to social media data, which, first, typically 
represent a rather specific subgroup of the population, and, second, contain content 
of some semantic value (e.g., the number and the text of Twitter messages, so-called 
tweets, are known). In addition, “when data collection is situated ‘outside’ the thing 
being studied, observation remains arguably neutral. But when data collection is 
embedded among the actors within a setting, as in participant observation, a cycle of 
interactivity is launched in which observation changes behavior that changes obser-
vation and so on” (Cuff et al., 2008, p. 28). These aspects shall be taken into account 
when analyzing user-generated data—or social sensor data in the context of inte-
grated urban sensing.

14.2.5 cOmbininG envirOnmental With sOcial sensinG

Several approaches exist that aim to combine environmental (or physical) sensing 
with social sensing. Typically, such approaches are driven by different contexts. 
For instance, take the concept of “people as sensors”: individual and context-
dependent information directly complement sensor measurements of physical 
phenomena from well-calibrated hardware (Resch, 2013). Following this concept 
of complementing “real” sensor measurements, Hayes and Stephenson (2011) 
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describe “online sensing” and use blogs, wikis, Twitter, Forums, etc., instead of 
“people as sensors” directly (although one may say that people are acting as  sensors 
and  putting data on these social media sources). In fact, they show how online 
sensors such as geo-coded images on Flickr or tags from Twitter messages can 
complement the temporal and spatial coverage of physical sensor  measurements, 
even for cross-correlation. Kamel Boulos et al. (2011) provide a comprehensive 
review on overlapping domains of sensing including the Sensor Web and citi-
zen sensing in the broad context of environmental and public health surveillance 
and crisis/ disaster management. They argue that crowd sourcing allows for both 
horizontal and vertical sharing of environmental and social-related informa-
tion, that is, between and among people using, for example, Twitter, Facebook, 
etc.  (horizontally) or between people and other “machines” (vertically), such as 
 comparing in-house prices with Amazon prices. They claim that “crowd reach-
ing,” which is supposed to be the counterpart of crowd sourcing, should be more 
established to reach the masses with useful and individualized information such 
as health tips. However, a clear distinction between crowd reaching and location-
based services (LBS) remains.

Rather than supporting or complementing data and information from and 
among different sources, Blaschke et al. (2011) argue for the integration of sev-
eral geospatial technologies—including remote sensing—in order to gain a more 
holistic view on urban systems on different spatial and temporal scales. On a 
rather local or regional scale, Sagl et al. (2011) introduced an approach to bridge 
the gap between large-scale social sensing and environmental monitoring in order 
to potentially disclose insights into some instantaneous interactions between 
 people and their environmental context factors. First, they derived basic weather 
conditions such as “normal” or “adverse” from time series of several meteorologi-
cal variables (air temperature, rainfall, solar radiation, etc.). Second, these condi-
tions were then linked to aggregated mobile phone usage, which served as a proxy 
for the collective human behavior, using frequency domain analysis methods. 
In order to take into account the spatial and temporal domain, this approach was 
developed further and resulted in the “context-aware analysis approach,” which 
allows for investigating one geographic phenomenon in the context of another; 
moreover, it allows for quantifying environment–human relationship aspects 
(Sagl et al., 2012a).

Thus, in the context of integrated urban sensing, diverse technologies can be seen 
as sensors or sensor networks that are able to generate sensor data reflecting the 
underlying geographic phenomenon in great detail, thereby contributing to a more 
holistic understanding of urban phenomena.

14.3 CASE STUDIES

We present three case studies which demonstrate how sensor data from different 
sensing technologies are combined. Additionally, we present a conceptual frame-
work for fully integrating both environmental and social dynamics. GIScience con-
cepts are implicitly or explicitly used to investigate physical and social phenomena 
in both time and space.
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14.3.1 cOllective Urban Dynamics

The first example is adopted from Sagl et al. (2012c) for this book chapter. It dem-
onstrates user-generated mobile network traffic and geo-tagged photos from Flickr 
(a  social media platform) can be used to provide additional insights into how 
 collective social activity shapes urban systems. We used different geo-visualization 
techniques to effectively communicate such insights.

Figure 14.4 shows the overall activity in a mobile network within the course of 
a typical working day in the city of Udine, northern Italy. While the city center is 
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FIGURE 14.4  (See color insert.) Collective human activity in the city (Udine, northern 
Italy)—spatiotemporal mobile communication activity on a typical working day as seen from 
a mobile network operator’s perspective. (From Sagl, G. et al., From social sensor data to 
collective human behaviour patterns: Analysing and visualising spatio-temporal dynamics 
in urban environments, in Jekel, T., Car, A., Strobl, J., and Griesebner, G., eds., GI-Forum 
2012: Geovisualization, Society and Learning, Wichmann Verlag, Berlin, Germany, 2012c.)
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clearly identifiable, the urban periphery behaves differently in the morning as com-
pared to the evening. The actual interactive Google Earth application behind these 
screenshots enables an advanced understanding of where and when people actively 
use the mobile network.

The second example is adopted from Sagl et al. (2012b). It shows that a purely 
visual analytics approach can be used to extract characteristic and exceptional urban 
mobility information from mobile network traffic, more specifically from the num-
ber of handovers (i.e., the number of movements between pairs of radio cells). We 
show, among other things, the symmetry and similarity of the normalized  mobility 
among four urban environments for each day of the week. On the scale of the main 
administrative urban unit, the overall urban mobility patterns show a surprisingly 
high degree of similarity and symmetry. All patterns show that the maximal total 
 mobility is reached on Tuesday, closely followed by Wednesday; the minimal total 
mobility is clearly on Sunday. However, the absolute net  migration flows start to 
diverge on Wednesday and converge again on Sunday. Gorizia, the smallest of the 
four cities, shows the comparably highest mobility activity on Friday and Saturday, 
which is confirmed as an asymmetric mobility behavior. In  addition, we identified 
several exceptional patterns in the data and associated them to  real-world events 
such as soccer matches or concerts. This enables an automated identification and 
classification of exceptional urban mobility behavior and thus potentially facilitates 
incident management.

14.3.2 cOntext-aWare Urban spaces

The consolidation of environmental and social sensor data on a common space-
time basis enables a context-aware analysis, that is, the analysis of one geographic 
phenomenon in the context of another (e.g., human mobility in the context of the 
weather), thereby facilitating the identification and characterization of relation-
ships, correlations, and possibly even causalities. In a first step, we focused on 
the evaluation of potential relations between phenomena of interest (e.g., between 
specific or even extreme weather conditions and the collective human mobility). 
This includes the use of established as well as the development of novel analysis 
methods and the evaluation of both. As described in detail in Sagl et al. (2012a), 
analysis methods from the time, space, and frequency domains have been applied 
in order to reveal relationships between weather and telecom data. In fact, using 
the maximal information coefficient (MIC) (Reshef et al., 2011), which is a novel 
statistic to measure the dependence for two-variable associations, we mapped 
the strength of that relationship back to the geographic space (Figure 14.5). The 
locations marked in white (Figure 14.5, L1–L4) indicate that the strength of the 
relationship between adverse weather conditions and unusual human behavior 
correlates with the functional configuration of the city—in this case, locations 
with an obviously high degree of human dynamics: L1 covers a bus hub with 
a large parking lot; L2 covers the “Centro Studi Volta,” a school for multidisci-
plinary activities; L3 is within a main residential area; and L4 is an official living 
place for nomadic people and gypsies.
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14.3.3  inteGrateD sensinG fOr a mOre hOlistic 
GeO-prOcess UnDerstanDinG

A variety of “sensors” and “sensor networks” can be used to systematically assess 
and monitor dynamic geographic phenomena at different spatial and temporal scales. 
However, the monitoring is typically done for each phenomenon individually (e.g., 
for air temperature or mobility). In order to enhance—or at least verify—our under-
standing of both environmental and social processes for multidisciplinary studies, 
a more holistic monitoring framework is needed. One way to fully integrate the 
spatiotemporal dynamics of both environmental and social phenomena is the “adap-
tive geo-monitoring framework” (Figure 14.6). It extends the “adaptive monitoring 
approach” (Lindenmayer and Likens, 2009) by adding the spatial dimension and the 
mutual context-awareness of dynamic geographic phenomena.

As described in more detail in Sagl (2012), the adaptive geo-monitoring frame-
work enables further context-aware analysis approaches considering integrated 
(statistical) analysis methods from the space, time, and frequency domains. Sagl 
(2012) has demonstrated this concept for a small subset of potential applications. He 
explored spatial, temporal, and periodic relationships between basic weather condi-
tions and some collective human behavior aspects.

The framework is designed to enable a more holistic process understanding of 
environmental and social phenomena across spatial and temporal scales. The term 
“adaptive” refers to, for instance, two or three spatial dimensions, zero or one tem-
poral dimension, and n attribute dimensions; near–real time or “live” as well as 
postprocessing workflows; aggregation and decomposition of sensor data depending 
on the thematic focus (e.g., air quality as a composition of particulate matter, CO2, 
NOx, etc.); interpolation and extrapolation of the phenomenon of interest respecting 

Sunday 09/13 7 pm–Monday 09/14 10 pm (28 h)

L4 MIC
0.000–0.143
0.144–0.286
0.287–0.429
0.430–0.571
0.572–0.714
0.715–0.857
0.858–1.000

0 0.5

0.5

1 m

1 km0

N

L1
L3

L2

FIGURE 14.5 (See color insert.) Measuring the strength of the relationship between 
adverse weather conditions and unusual human activity using the MIC. 0, no relationship; 
1, functional relationship. (Modified from Sagl, G. et al., Sensors, 12, 9835, 2012a.)
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different operational scales (e.g., diurnal and local versus seasonal and regional vari-
ability of air temperature); and hybrid reasoning methods by iteratively applying the 
inductive and deductive research approach.

Hence, the adaptive geo-monitoring approach potentially provides novel capa-
bilities for examining the spatiotemporal behavior of physical and social phenomena 
through ubiquitous sensing and context-aware analysis.

14.4 DISCUSSION AND CONCLUSION

Within the overall realm of Global Urban Monitoring and Assessment—which is 
part of the title of this book—this chapter focused on integrated urban sensing. In 
contrast to the majority of chapters, remote sensing issues were widely excluded 
here although remote sensing plays a pivotal role for integrated sensing strategies of 
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almost all kinds of information on the Earth’s surface. The reason is that Blaschke 
et al. (2011) explicitly focused on the integration of remote sensing and other forms 
of sensing for urban applications and we aimed not to repeat ourselves.

In a recent editorial, Tsou and Leitner (2013) postulated an emerging paradigm 
which aims at mapping cyberspace and social media. A special issue of the journal 
Cartography and Geographic Information Science provides discussions of social 
theories, innovative mapping methods, sentiment analysis, spatial modeling and 
statistics, space-time analysis, and geo-visualization examples within this field. We 
want to particularly highlight the contribution of Li et al. (2013) in this special issue: 
these authors provide an excellent overview of the big data study in social media by 
analyzing the spatial pattern of some 20 million Twitter messages and 4.2 million pic-
tures from Flickr. These spatial patterns of big data prove a strong linkage between 
the uneven distribution of social media messages and the characteristics of local 
residents (messengers) cross-referenced from census data. Again, we may only be 
at a starting point of such developments—while remote sensing is believed to be a 
relatively mature field.

Our chapter highlighted only very few and limited examples within the realm of 
such trends, or even a paradigm shift as claimed by Tsou and Leitner. The urban social 
dynamics derived from user-generated sensor data demonstrate that “social sensor 
networks,” specifically mobile networks and social media, significantly support our 
view on dynamic urban systems. From the novel context-aware analysis approach, 
we conclude that it is a promising way to provide insights into  environment–human 
interface aspects, thereby potentially enabling a holistic process understanding of 
environmental and social dynamics in urban spaces.

However, we want to stress that we are aware that we had only explored isolated 
aspects of human–environment interaction. Such an analysis alone would be too 
reductionistic. Without venturing into a debate of environmental determinism, it 
is stated that many factors influence the collective human behavior. In this respect, 
weather is certainly only one factor that can influence human behavior. The respec-
tive case study in Section 14.3 therefore demonstrated mainly that correlations can 
be investigated—in principle. To what degree the results explain causalities will 
depend on the application. In fact, we need to be careful since many of the data 
sources and methods described in this chapter are used as proxies for processes 
that are much more complex. Such processes can only partially be explained by the 
datasets and methods used. For social behavior, one needs to critically examine the 
extent to which mobile phone data and particularly social media data may help us 
to better understand social communication behavior. Communication is not bound 
to mobile phone calls and texts. We cannot use these alone to learn about social 
communication although an increasing number of people use electronic means to 
communicate. Nevertheless, we strongly believe that our research outcomes can be 
the basis for further research on environment–human interface aspects and may 
stimulate interdisciplinary research activities toward the development of an adap-
tive framework for real-time monitoring and modeling of environment–human 
feedback loops.

After all these new technological opportunity potentials, the reader finally needs 
to be reminded of the limitations of all technology: any technology is at its best 
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as good as a wise user has planned for it to be. We have stressed the increasing 
 ability to add location to almost all existing information. In a way, we may claim 
that this will unlock the wealth of existing knowledge about social, economic, and 
environmental matters. Furthermore, it could play a vital role in understanding and 
addressing many of the challenges we face in an increasingly complex and intercon-
nected world. Nevertheless, we are still at the beginning of an era of data affluence 
in mankind and we will have to guide day-to-day users in this field. There are many 
remaining and even some new issues of data privacy and new educational duties. In 
this respect, we do not believe that some space-time behavior analysis methods are 
now sold as new approaches to old problems only (Timmermans et al., 2002). Rather, 
new problems and new research questions arise.

Integrated urban sensing is a novel attempt to identify another dimension of  cities 
as a “living space.” The approach is clearly in its infancy, but we believe that we 
will soon see applications where decisions makers will use such information. Maybe 
a major in the future will better know where her or his people are at what time of 
the day. While integrated urban sensing will help us understand the spatiotemporal 
pattern of humans and of groups—even with anonymous and aggregated data—it 
will not tell us “why.” In the times of “big data,” we will sophisticate our reasoning 
methods but we need to keep in mind that only part of social interaction has a spatial 
component.
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15 Object-Based 
Image Analysis for 
Urban Studies

Vivek Dey, Bahram Salehi, Yun Zhang, 
and Ming Zhong

15.1 INTRODUCTION

Remote sensing (RS) has proven to be an indispensable technology for urban studies 
because of its ability to frequently update (in a few weeks) the information of urban 
areas. Although RS includes airborne imagery, light detection and ranging (LIDAR), 
radio detection and ranging (RADAR) imagery, etc., this work limits its analysis to 
space-borne satellite imagery. This is because space-borne RS is a cost-effective 
alternative for urban land-use mapping and urban feature change detection, as com-
pared to airborne imagery and LIDAR data (Weng and Quattrochi 2006, Netzband 
et al. 2007, Yang 2011).

Although RS technologies have existed for nearly four decades, RS has achieved 
its grounds in urban studies only in the last decade. This is attributed to the tremen-
dous growth in the sensor technologies for RS. As a result, the spatial resolution of 
remotely-sensed Earth observation satellite images has been refined continuously 
from 80 m of Landsat-1 (launched in 1972) to 0.46 m of WorldView-2 (launched in 
2009). Similarly, spectral resolution has been refined from 4 multispectral bands to 
220 hyperspectral bands of Hyperion satellite (launched in 2000) sensor, but they 
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have low spatial resolution (30 m). While spatial resolution of hyperspectral bands is 
good for a wide range of applications in urban studies (such as urban forestry, urban 
heat island, and impervious surface mapping), very high resolution (VHR) imagery 
(having <1 m spatial resolution) is required for the identification of individual urban 
features (such as roads, buildings, and trees) at local scales of urban areas (Blaschke 
2010, Blaschke et al. 2011). The products of VHR images are more crucial for urban 
studies (such as urban planning) because of the level of detail they can provide.

Behind the development of RS for urban studies is the paradigm shift of tech-
nology from pixel-based image analysis to object-based image analysis (OBIA) for 
analyzing VHR satellite images (Castilla and Hay 2008). This shift is the result of the 
change in the US government laws which relaxed the restriction on the spatial resolu-
tion of commercially available satellite images and the availability of commercially 
available object-based image processing software, eCognitionTM since 2000 (Aplin 
et al. 1997, Blaschke and Strobl 2001, Castilla and Hay 2008). The reason behind the 
failure of the pixel-based image analysis was its inability to match or even come closer 
to human perception of images and to achieve a better classification result with a high-
spatial resolution image as compared to a low-spatial resolution image (Blaschke and 
Strobl 2001, Flanders et al. 2003, Blaschke et al. 2006). Humans perceive an image 
feature as a group of pixels, and this perception is much more pronounced in a VHR 
image (<1 m) as compared to a Landsat-7 TM image of 30 m resolution. Figure 15.1 
shows the difference in visual perception (e.g., identification of individual houses 
and trees) with an increase in spatial resolution. Fortunately, OBIA has been widely 
researched in other disciplines, such as computer vision and medical image process-
ing. Consequently, OBIA was easily able to support increasing amounts of research 

(a) (b)

FIGURE 15.1 (See color insert.) Depiction of the visual details in low- and high- resolution 
satellite images of same dimension, 512 × 512 pixels of downtown Fredericton, Canada: 
(a) Landsat TM 30 m MS and (b) QuickBird 2.44 m MS. (From Wuest, B.A., Towards 
improving segmentation of very high resolution satellite imagery, MScE thesis, Department 
of Geodesy and Geomatics Engineering Technical Report No. 261, University of New 
Brunswick, Fredericton, New Brunswick, Canada, 2008.)
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in  the last decade on the processing of RS images (Blaschke 2010). However, the 
context of application of OBIA for RS images and in other disciplines is different. 
Hence, OBIA techniques are required to be adapted for VHR RS images (Castilla 
and Hay 2008).

Because of this increasing interest in OBIA in RS and urban studies, this chap-
ter reviews existing OBIA techniques, provides overall information on OBIA tech-
niques, and draws conclusions on the advantages and limitations of current OBIA 
techniques. The overall information on OBIA techniques includes the concept of 
OBIA, its renaming to geographic object-based image analysis (GEOBIA), its major 
technical developments and applications for urban studies (mainly segmentation), 
commercially available software for OBIA, accuracy assessment for OBIA, and 
future prospects of OBIA.

15.2 CONCEPT OF OBIA AND RENAMING TO GEOBIA

The fundamental and most problematic step of OBIA is image segmentation. The next 
step of OBIA is to classify these homogeneous objects into a meaningful geographic 
representation, such as residential houses and roads, using internal features of the 
objects and their mutual relationships with other objects (Hay and Castilla 2008). 
For example, one can identify the boundaries of the residential houses, small residen-
tial buildings, large commercial buildings, and possibly some trees in Figure 15.1b of 
urban downtown of Fredericton, Canada. These boundaries correspond to boundaries 
of human-perceived homogeneous geo-objects. This example reveals that the applica-
tion of OBIA on high– spatial  resolution images has two major benefits, which are 
specified as follows:

 1. It can provide geographic information systems (GIS) ready information, which 
consists of vector boundaries of the geo-objects and their features as the asso-
ciated attributes, for example, building feature extraction (Dey et al. 2011).

 2. It enables urban mapping at small scales. For example, OBIA enables mapping 
at a small scale of a community area in a city. Such mapping is an essential 
aspect of urban studies, for example, urban planning, transportation planning, 
and land-use development.

These benefits assume that the results from computer-based OBIA and human- perceived 
reference results are comparable (Zhang et al. 2008). For  accurate urban studies, fully 
automated OBIA is still not used due to visually pleasing aspect of the results of image 
segmentation (Zhang et al. 2008, Marpu et al. 2010).

Before delving into image segmentation, it is important to understand the context 
of OBIA for RS images and why the new acronym, GEOBIA, is closer to this context 
than conventional OBIA. Hay and Castilla (2008) stated that the shift of RS image 
analysis from pixel-based to OBIA is a paradigm shift, and this shift has been widely 
embraced by the RS community that deals with geographic objects. In order to have a 
distinct identity pertinent to challenges and problems of GIScience, the term GEOBIA 
was coined during the first international conference on OBIA for RS images held at 
the University of Salzburg on July 4–5, 2006 (Hay and Castilla 2008). Further, Hay 
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and Castilla (2008) defined the primary objective of GEOBIA as “a discipline is 
to develop theory, methods and tools sufficient to replicate (and/or exceed experi-
enced) human interpretation of RS images in automated/semi-automated ways.” As 
stated by Hay and Castilla (2008), the emphasis of GEOBIA should be to produce 
geographic information from RS images (i.e., classification of segmented polygons 
to geographic objects) using OBIA techniques rather than developing new OBIA 
techniques, which should be adapted from rich existing and continuous research on 
image segmentation from other disciplines, such as computer vision and medical 
image processing.

Nevertheless, it is important to understand the existing techniques of image 
segmentation to analyze which one is best suited for GEOBIA. Therefore, the next 
section describes in more detail image segmentation and its techniques, which are 
suitable for the analysis of VHR RS images.

15.2.1 imaGe seGmentatiOn fOr Urban vhr rs imaGes

In an image segmentation process, the image is partitioned into segments (also known 
as regions or objects) such that each segment is distinct from its surrounding segments 
based on the homogeneity criteria (Pal and Pal 1993, Blaschke 2010). Homogeneity 
criteria are employed to determine discontinuity (i.e., edges), similarity (i.e., regions), 
or both (Gonzalez and Woods 2002). This constitutes two distinct approaches of 
image segmentation, namely, region-based and edge-based segmentation. Edge-based 
segmentation methods mainly involve edge detection followed by a contour-generating 
algorithm (Schiewe 2002). Edge-based methods often identify noise as edges, which 
result in oversegmentation. Due to these problems, edge-based methods are not dis-
cussed further. The second approach is a region-based process, which is further sub-
categorized as a top-down approach, that is, breaking an image into grids to achieve 
segmentation, and a bottom-up approach, that is, growing a region/segment from 
a single pixel. Both approaches are followed by merging and refinement of regions 
(Guindon 1997, Wuest and Zhang 2009, Corcoran et al. 2010). These approaches state 
how pixels can be grouped to achieve image segmentation. In addition, they also give 
an idea about the possible techniques that can be employed for image segmentation.

15.2.2 aDvantaGes Of imaGe seGmentatiOn

Though image segmentation is often categorized as one of the most critical tasks in 
image processing, its benefits supersede its drawbacks (Pal and Pal 1993, Blaschke 
et al. 2006). The major benefits of image segmentation–based object formation in the 
RS image analysis are as follows: (a) it identifies image objects (regions) as perceived 
by the human eye; (b) it enables the use of shape, size, and contextual information for 
analysis; (c) it allows the use of topological relationships for vector-based GIS opera-
tions; (d) it decreases the execution time of classification and increases its accuracy; 
(e) it minimizes the modifiable areal unit problem (MAUP), caused by the depen-
dency of statistical results (e.g., mean and standard deviation) on the spatial units (the 
chosen spatial resolution of study); and (f) it reduces the fuzzy boundary problems 
(Blaschke et al. 2006, Blaschke 2010). However, these benefits are outcomes of using 
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an appropriate OBIA technique of RS domain for a certain application. The appro-
priateness of an OBIA technique is determined based on the homogeneity criteria 
used in that technique. For example, Song and Civco (2004) used the shape index 
and density features, which are useful for linear objects, to identify road objects after 
segmentation of a preclassified IKONOS satellite image using eCognitionTM.

15.2.3 hOmOGeneity criteria fOr imaGe seGmentatiOn

Digital production of geo-objects aims at imitating the visual cognition of humans in 
analyzing images (Blaschke and Strobl 2001). Hence, it is obvious that homogeneity 
criteria should be derived from features of the visual cognitive ability of humans, 
that is, visual cues for image analysis (Estes 1999). These visible cues can also be 
called image interpretation elements. In the digital world, these image interpretation 
elements are derived from features of objects (groups of aggregated pixels), such as 
area, brightness, contrast, and geometry. The major image interpretation elements 
include (1) spectral; (2) spatial, which includes texture, morphology (shape and size), 
and context; (3) connectivity; and (4) association. A brief discussion of each of these 
image interpretation elements is provided next.

Spectral features consist of mainly contrast, brightness, and color and are the most 
important features in the interpretation of both pixel-based image analysis and OBIA. 
On the other hand, spatial interpretation is more prominent in OBIA and consists of 
features related to neighborhoods of a pixel or an object. For example, the density 
feature of an object gives an idea about the compactness of the object, whereas a high-
density object represents a near-square building object and a very-low-density object 
represents a road object (Benz et al. 2004, Definiens AG 2009). Textures are basically 
distinct spatial patterns on an image. For example, high residential density areas and 
commercial areas have distinct textures on a VHR RS image.

Shape and size features determine the geometry of an object and are important 
for scale- and shape-based segmentation. For example, a segmentation procedure 
of an urban area image might exploit the fact that all the residential buildings have 
a rectangular shape at different scales and sizes. Figure 15.2 illustrates the concept 

(a) 20 m pixel (b) 5 m pixel (c) 1.25 m pixel

FIGURE 15.2 Concept of the appropriate scale of representation of an object. Two objects 
of rectangular, R, and star, S, shapes have been taken as examples, where (a) at 20 m spatial 
resolution (SR) shows that both objects are undetectable; (b) at 5 m SR shows that R is detect-
able but S is not; and (c) at 1.25 m SR shows that both objects are detectable. (Reprinted from 
ISPRS J. Photogram. Remote Sensing, 65, Blaschke, T., Object based image analysis for 
remote sensing, 2–16. Copyright 2010, from Elsevier.)
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of scale in GEOBIA. Among shape and size features, compactness and smoothness 
features are the most widely used for image segmentation because of their utility in 
the segmentation technique of eCognitionTM. A square-shaped building is a compact 
shape whereas a road feature is less compact. On the other hand, a building feature 
is a highly smooth object whereas a tree is less smooth.

Context is a spatial property because it is always based on the spatial neighborhood 
of an object or pixel. Context proves crucial for human cognition in identifying objects 
having similar spectral and shape properties. For example, a shadow of an object gives 
a  clue that the object has a height component and it might be a building. Connec tivity 
is important in identifying special geo-objects such as roads and rivers.  Connec tivity uti-
lizes topological properties of adjacency for object analysis. Finally, association features 
in conjunction with context provide cues for associating an object with its geographi-
cal counterpart. For example, a parking lot is associated with multiple cars and thus is 
differentiable from spectrally similar roads in a VHR image of an urban area. These 
image interpretation elements are crucial in both segmentation and classification aspects 
of GEOBIA (Dey et al. 2010, Salehi et al. 2012a).

A plethora of research work has been done on GEOBIA with these interpretation 
elements, and the major techniques used in these works are as follows: (1) clustering, 
(2) mathematical model-based techniques, and (3) multiscale models. The following 
sections deal with the development of these techniques in the context of GEOBIA.

15.2.3.1 Clustering Techniques
Clustering techniques have been traditionally employed for unsupervised image clas-
sification to group pixels based on certain homogeneity criteria. Segmentation and 
clustering are conceptually different with respect to their origins. While traditional 
clustering techniques rely on aggregation of pixels in the spectral domain, segmenta-
tion attempts to aggregate pixels in a spatial domain (Haralick and Shapiro 1985). 
Therefore, this technique has remained unpopular. However, a hybrid of clustering 
and other techniques can be used for image segmentation. For example, Wang et al. 
(2010) proposed a multiscale region-based image segmentation (RISA), which utilizes 
a hybrid of K-means clustering, and a region-merging approach. They showed that 
RISA generates results comparable with results of eCognitionTM using scale, spectral, 
compactness, and smoothness criteria of objects for urban land cover mapping.

15.2.3.2 Mathematical Model–Based Techniques
This group of techniques employs widely used mathematical concepts, which can 
also be utilized for image segmentation purposes. The major techniques of this group 
employed for image segmentation in GEOBIA are Markov random field (MRF), fuzzy 
logic, artificial neural network (ANN), and level set model. While MRF uses the 
concept of spatial neighborhood for image segmentation and is particularly good in 
determining textured objects, fuzzy logic uses the concept of fuzziness to determine 
boundaries of objects (Pal and Pal 1993, Shankar 2007, Dey et  al. 2010). Similarly, 
ANN and the level set model use several optimization techniques to outline the objects 
(Shankar 2007). In most of their implementation, these four techniques require several 
parameters to be optimized for image segmentation (Dey et al. 2010). A few recent 
applications of these techniques include the following: (1) Lizarzo and Barros (2010) 
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applied fuzzy logic for a complete GEOBIA, that is, including both segmentation and 
classification, on a QuickBird image using various spectral, shape, size, and customized 
spatial features; and (2) Karantzalos and Argialas (2009) applied level set techniques 
for segmentation-based urban building and road feature detection from a QuickBird 
image. However, these techniques are relatively less popular for GEOBIA because they 
inherently lack the usage of the concept of scale in a geographic sense (Castilla and 
Hay 2008, Dey et al. 2010). Further, there is a lack of commercially available software 
utilizing these techniques.

15.2.3.3 Multiscale Model–Based Techniques
Multiscale model is a conceptual model that inherits the concept of scale, a core 
 feature of geo-objects, in its analysis (Castilla and Hay 2008). The idea of a  multiscale 
model is to identify different objects at different scales such that they are hierarchi-
cally related to each other. For example, a single-family residential house is extracted 
at a lower scale as compared to a community comprising multiple residential houses. 
The multiscale model is widely popular for applications of GEOBIA on VHR images 
of both urban areas and other land covers (e.g., agriculture and glacier) (Blaschke 
2010). In addition, commercially available software, eCognitionTM  (available since 
2000), has implemented a segmentation algorithm based on multiscale region grow-
ing and merging and named the algorithm Fractal net evaluation approach (FNEA). 
 eCognitionTM has complete capability of GEOBIA application, which includes object-
based classification as well as creation of refined vector boundaries of geo-objects 
(Baatz and Schäpe 2000, Definiens AG 2009). Segmentation  outputs of FNEA have 
become a de facto standard for comparison of other developing segmentation tech-
niques in GEOBIA and have been used for all sorts of applications in urban studies 
such as urban sprawl, urban heat island, land-use/land-cover mapping, environmen-
tal mapping, urban disaster management, etc. (Neubert et al. 2008, Blaschke 2010, 
Blaschke et al. 2011). Owing to the popularity of the multiscale model, particularly 
FNEA, it is further expatiated in the following sections.

15.2.3.3.1 Analysis of Multiscale Model
Apart from FNEA, none of the other multiscale models gained wide attention for 
GEOBIA. A few other examples include multiscale object-specific analysis (MOSA) 
by Hay and Marceau (2004), which was applied for the segmentation of an IKONOS 
image for agricultural landscape, and RISA by Wang et al. (2010), which was applied 
for the segmentation of an urban QuickBird image to determine land covers. Although 
FNEA benefits a lot by being implemented in commercial software, it owes its popu-
larity to its ability of solving/softening a majority of five major problems in a general 
segmentation technique. These five major problems are as follows:

 1. Optimal parameter estimation: Most of the segmentation techniques 
require parameter estimation before segmentation. For example, FNEA, a 
multiscale model, requires estimation of three parameters, namely, scale, 
shape, and compactness, and these parameters impact the segmentation 
results to a significant level (Benz et al. 2004, Möller et al. 2007, Tian and 
Chen 2007). The traditional approach of estimation of these parameters is 



294 Global Urban Monitoring and Assessment through Earth Observation

a trial-and-error approach (Benz et al. 2004). Efficient implementation of 
FNEA in commercial software and several researches on efficient param-
eter estimation of FNEA have significantly reduced the effort of parameter 
estimation (Möller et al. 2007, Tian and Chen 2007, Drăgut et al. 2010, 
Tong et al. 2012).

 2. Reproduction of results: In region-based segmentation approaches, 
a  bottom-up approach of region growing requires random seed pixel 
generation (Pal and Pal 1993). This randomization produces a differ-
ent segmentation result for each run of segmentation with the same 
parameters. Hence, one cannot use a trial-and-error approach for param-
eter estimation because a reliable result cannot be regenerated with the 
same set of parameters. eCognitionTM has implemented a proprietary 
algorithm for this random seed pixel generation, which ensures repro-
duction of the same segmentation result on every run with the same 
parameters.

 3. Inclination on operator: Despite the development of many objective assess-
ment techniques of segmentation accuracy, visual/subjective assessment of 
segmentation results is widely used (Zhang 1997, Castilla and Hay 2008, 
Lang et al. 2009, Corcoran et al. 2010, Dey et al. 2010, Marpu et al. 2010). 
Hence, an optimum segmentation result involves an operator’s discretion. 
Although eCognitionTM does not directly provide any objective assessment 
techniques, it provides predefined and customizable features of an object, 
which can be used in comparison with the reference results of a vector-
based GIS dataset.

 4. Undersegmentation and oversegmentation: Each and every segmentation 
result has to deal with the problem of undersegmentation and overseg-
mentation (Zhang 1997, Marpu et al. 2010). Figure 15.3 depicts a case of 
under- and oversegmented results. Therefore, deciding on an optimum 
segmentation result is the key in GEOBIA. Castilla and Hay (2008) pro-
vided an excellent definition of an optimal yet practical segmentation 
result: “[A] good segmentation is one that shows little over-segmentation 
and no under-segmentation, and a good segmentation algorithm is one 

(a) (b) (c)

FIGURE 15.3 Illustration of (a) oversegmentation, (b) correct segmentation, and (c) underseg-
mentation of a building object (in black outline) of a QuickBird image of Fredericton, Canada.
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that enables the user to derive a good segmentation without excessive 
fine tuning of input parameters.” FNEA also suffers from this problem. 
GEOBIA still needs human interpretation for a decision on optimal seg-
mentation (Zhang et al. 2008).

 5. Execution time of algorithm: Due to an accelerated increase in the com-
putational power, execution time has become a less significant factor. 
Nevertheless, a trial-and-error based approach, also required in FNEA, for an 
optimal segmentation result deprives us from a quicker analysis of terabytes 
of RS images being generated daily (Möller et al. 2007, Tian and Chen 2007, 
Drăgut et al. 2010, Tong et al. 2012).

15.2.4 Other seGmentatiOn techniqUes

Among other model-based segmentation techniques, watershed-based and hierar-
chical split and merge region (HSMR) techniques are the latest. Watershed-based 
techniques utilize a seed pixel–based region-growing method whereas HSMR uses a 
top-down region-based approach of image splitting and merging, followed by bound-
ary refinement (Beucher 1992, Wuest and Zhang 2009). Wuest and Zhang (2009) 
applied their HSMR technique for urban land-use mapping of a QuickBird image 
using scale, shape, and size features. Watershed-based techniques have seen some 
recent developments for urban VHR image segmentation, such as size-constrained 
region merging (SCRM) by Castilla et al. (2008) on a QuickBird image of an agri-
cultural area. In an evaluation of available segmentation techniques in GEOBIA, 
Marpu et al. (2010) found that SCRM produces results comparable to that of eCogni-
tionTM. However, SCRM lacks the implementation of a multiscale representation of 
image objects (Castilla et al. 2008).

Among commercially available software, ENVI EX feature extraction (since 
2007), ERDAS IMAGINE objective (since 2008), and Feature Analyst (since 2001) 
are alternatives to eCognitionTM for GEOBIA. ENVI EX feature extraction software 
uses a multiscale segmentation algorithm that uses more than five user-defined param-
eters for GEOBIA with an ability to show a window-based preview of segmentation. 
ERDAS IMAGINE objective uses machine-learning algorithms along with morpho-
logical, edge-based, and vector operations for GEOBIA (Mehta et al. 2012, Susaki 
2012). Feature Analyst also uses machine-learning algorithms for GEOBIA (Optiz 
and Blundell 2008). A more comprehensive list of commercial segmentation software 
and their performance comparisons can be found in Marpu et al. (2010). All of these 
commercial software incorporate crucial image properties (e.g., spectral, spatial, tex-
ture, shape, size, and association) used for GEOBIA. In addition to these commercially 
available software, programming packages for segmentation are also available for 
quick development of customized algorithms. Two of the examples include the com-
mercially available segmentation package of MATLAB® and the open-source segmen-
tation package from OPENCV. However, these software and programming packages 
need more research to establish their effectiveness in solving the five major problems 
of image segmentation stated in Section 15.2.3.3.1 (Blaschke 2010, Marpu et al. 2010).

Based on the last several sections on image segmentation techniques for GEOBIA, 
it can be concluded that the RS community has widely relied on eCognitionTM for 
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image segmentation and classification in GEOBIA. Secondly, there is a lack of an 
objective measure to assess the accuracy of image segmentation. Finally, visual 
assessments of segmentation results are considered to be a norm in GEOBIA.

15.3 OTHER PROCESSES IN GEOBIA

Apart from image segmentation, GEOBIA also involves classification of objects 
into valid geo-objects based on scales of the object. Even with a fixed segmenta-
tion process, there are many groups of techniques for classification. A few exam-
ples from earlier sections are the FIRME model of Lizarzo and Barros (2010) 
and the segmentation-based classification of objects by Blaschke et al. (2006). 
Although the same set of image interpretation elements can be utilized for both 
segmentation and  classification, their conceptual interpretations are different. 
Unlike segmentation, classification mostly uses ancillary data and height data for 
the categorization of objects into geo-objects (Salehi et al. 2012a). eCognitionTM, 
ENVI EX, Feature Analyst, and ERDAS IMGINE objective also provide a wide 
range of inbuilt and customized attributes/features of objects for performing a 
rule-based classification (Benz et al. 2004). Similar to segmentation, classifica-
tion opens a whole gamut of techniques for GEOBIA. However, in this chapter, 
the analysis is limited to past progressions of image segmentation in GEOBIA. 
Authors suggest referring to Salehi et al. (2012b) for a comprehensive review of 
classification techniques for GEOBIA.

Although image segmentation and subsequent object-based classification pro-
vide a vector-based output, the result is not directly GIS-ready. Figure 15.4 shows 

FIGURE 15.4 Typical image segmentation result of urban VHR GeoEye-1 image, 0.41 m 
for panchromatic and 1.65 m for multispectral bands, of Hobart city. (From GeoEye-1 image 
of Hobart, Tasmania, Australia. Licensed to authors for reproduction in research papers.)
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an example of an image segmentation process of an urban VHR pan-sharpened 
GeoEye-1 RS image of Hobart city in Australia (Zhang 2004). The image reveals 
that a typical image segmentation process does not result in smooth boundaries as 
seen in vector GIS data of an urban area comprising boundaries of buildings, roads, 
parcels, etc. Hence, after association of these segments into geographic objects, fur-
ther processing is required to obtain the results in a GIS-ready format. These pro-
cessing steps include mainly boundary smoothening and attribute table generation 
for vector boundaries. However, these steps are standard procedures and are not 
listed among bottlenecks of GEOBIA.

15.4 CONCLUSION

This chapter reviewed the developments of OBIA in the context of urban studies. 
As OBIA in RS is associated with geo-objects, the research community of RS 
agreed to rename it as GEOBIA to more clearly reflect its adherence to RS 
(Castilla and Hay 2008). GEOBIA is crucial in urban studies due to its capability 
of analyzing a VHR RS image similar to human interpretation of images and of 
identifying urban features and their changes at different spatio-temporal scales. 
As a bonus, GEOBIA results in the production of vector boundaries, which 
are close to a GIS-ready format. The application of GEOBIA in urban stud-
ies includes urban land-use mapping, urban heat island, transportation mapping, 
urban forest analysis, urban sprawl, and urban pollution monitoring (Netzband 
et al. 2007).

This chapter mainly focused on the segmentation aspect of GEOBIA. The chapter 
categorized the segmentation techniques into seven major categories: (1) clustering, 
(2) MRF, (3) fuzzy logic, (4) ANN, (5) level set, (6) multiscale, and (7) watershed model. 
Table 15.1 provides a list of selected review papers having theoretical possibilities for 
future applications. FNEA, a multiscale model implemented by eCognitionTM, is the 
most widely used technique among the GEOBIA research community and has become 
a standard technique, similar to the Gaussian maximum likelihood technique for pixel-
based classification. Hence, for urban studies, the best OBIA technique is FNEA using 
eCognitionTM for all urban studies because it has shown consistent results in all fields 
of urban applications (Blaschke 2010). Nevertheless, commercially available software 
such as ENVI EX, ERDAS IMAGINE objective, and Feature Analyst are emerging, 
which are in the same league as eCognitionTM.

Despite several advances in the objective accuracy assessment of image seg-
mentation techniques, visual assessment of segmentation results by a human 
operator is still widely used (Zhang et al. 2008, Marpu et al. 2010). Therefore, it 
is suggested that both visual and objective assessment techniques should be used 
for determining optimal image segmentation for detection of over- and underseg-
mentation. In addition to image segmentation, GEOBIA includes classification 
steps, which have their own pros and cons and are also a bottleneck in GEOBIA. 
The use of ancillary data is proving to be effective in image segmentation and is 
the way to go for successful classification even with eCognitionTM-based classifi-
cation (Salehi et al. 2012a).
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16.1  WHY AUTOMATED DETECTION OF INFORMAL 
SETTLEMENTS FROM REMOTE SENSING DATA?

16.1.1 infOrmal settlements in the cOntext Of WOrlDWiDe UrbanizatiOn

According to estimations of UN-HABITAT (2011), the number of people living in 
urban areas worldwide will increase from 3.5 billion in 2010 to 4.9 billion in 2030. 
This is equivalent to an urbanization rate of 1.81% per year from 2010 to 2020 and 
1.60% per year between 2020 and 2030, respectively. That is, on average, the num-
ber of people living in urban areas worldwide is increasing per year by 1.71%. The 
largest portion of urbanization will take place in developing countries: from 2010 
to 2020, the rate will be at 2.21% per year and from 2020 to 2030, it will decrease 
to 1.92% per year. From the group of developing countries, the African continent 
will have the highest urbanization rates: 3.21% per year for the period from 2010 to 
2020 and 2.91% per year from 2020 to 2030, of which the largest portion belongs to 
sub-Saharan Africa with 3.51% per year (2010 to 2020) and 3.17% per year (2020 
to 2030). Irrespective of the reasons for such enormous migration movements, 
these numbers indicate that cities in the developing countries, especially the sub- 
Saharan countries, will face an enormous increase in population pressure. Following 
UN-HABITAT (2007), among the “nearly one billion people alive today one in 
every six human beings are slum dwellers, and that number is likely to double in the 
next thirty years.” This number is estimated to be 2 billion by 2030. That is, besides 
a general increase in urbanization, the portion of the urban population living under 
slum conditions will increase from 28.57% from now to 40.82% in 2030. This means 
that by 2030 there will be 2 billion people in urban areas lacking access to safe 
water, improved sanitation, and secure tenure living in overcrowded and unsecure 
housing structures with environmental degradation. “Alarmingly, there is currently 
little or no planning to accommodate these people or provide them with services” 
(UN-HABITAT 2007). With this background, programs such as the “United Nations 
Millennium Development goal to improve the lives of at least 100 million slum dwell-
ers by 2020” (UN-HABITAT 2007) were started. However, regarding the increase 
in rates of slum dwellers, it is obvious that global and local policies and instruments 
are necessary to improve the living conditions in informal settlements and to fight 
poverty at all. “Much more political will is needed at all levels of government to 
confront the huge scale of slum problems that many cities face today, and will no 
doubt face in the foreseeable future” (Anna Kajumulo Tibaijuka, Executive Director 
of UN-HABITAT, in UN-HABITAT 2007). The described situation makes it clear 
that there is an increasing need to detect informal settlements at least for inventory 
reasons but also for continuous monitoring, mapping, and finally upgrading in terms 
of providing a minimum standard of housing conditions.

16.1.2 Dynamics Of infOrmal settlements

Although established informal settlements and the cores of informal settlements 
show rather durable structures, the situation is different in reality at the informal 
settlements’ borders. Due to their informal character, dwellings are relatively easily 
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built, extended, or demolished, which allows the dwellings’ residents to react very 
flexibly on changing living conditions and therefore either to move quickly and 
 easily if necessary or to extend their dwellings if necessary and possible. This has 
an impact on the location and physiognomy of informal settlements including the 
footprints and general structure, which can change very rapidly. However, although 
alternating structures are observable in some cases, in most cases, peripheral growth 
takes place. That is, informal settlements located at a city’s periphery in general 
grow faster than the centrally located ones. Moreover, informal settlements usually 
grow faster at their outer border than in the core areas (APHRC 2002; Sartori et al. 
2002; Kuffer 2003; Weber and Puissant 2003; Radnaabazar 2004; Davis 2006). This 
growth has an impact on neighboring land coverage (Sliuzas and Kuffer 2008), be it 
settlement, agriculture, or uncultivated land with habitats for potentially invaluable 
species and their ecosystems. In some informal settlements, even vertical growth can 
be observed (Canham and Wu 2008; Sliuzas et al. 2008; UNESCO 2012). Because 
of these expeditious changes of informal settlements’ shape, conventional meth-
ods of mapping fail. Feasible methods are rather implemented by integrating the 
settlements’ inhabitants themselves. They can contribute to an up-to-date spatial 
data acquisition by volunteered mapping. The most prominent example of such an 
approach is the Map Kibera Project (MKP) (http://mapkiberaproject.org/). Besides 
the production of shared geo-information, MKP enforced community and neighbor-
hood building. In this context, Veljanovski et al. (2012) report the supporting role of 
very-high-resolution (VHR) remote sensing data in conjunction with object-based 
image analysis (OBIA) methods, especially for population estimation. For ex post 
change detection, that is, monitoring of already elapsed periods, remote sensing data 
and appropriate analysis methods proved to be the only reliable data source. Such 
ex post approaches are the basis for estimating past population sizes and densities 
together with their development. This information can be used to project respective 
future population developments by comparing past and recent image patterns with 
socioeconomic data. This way, hot spots of urbanization within informal settlements 
are identifiable by means of remote sensing image analysis. But even if there is no 
accompanying ground mapping, remote sensing is a valuable instrument for moni-
toring the development of informal settlements (Kuffer 2003; Sliuzas et al. 2008).

16.1.3 cOmmOn anD Different patterns Of infOrmal settlement

As several authors (Sliuzas et al. 2008; Kit et al. 2012; Taubenböck and Kraff 
2013) have pointed out, there is an increasing need for mapping and monitor-
ing informal settlements globally. Although several individual approaches for 
detecting informal settlements from mostly VHR remote sensing data have been 
introduced so far, there is no unique standard method available to delineate or 
even analyze them from remote sensing data (Sliuzas et al. 2008). The reasons 
therefore are manifold and are explainable by the individual characteristics of 
informal settlements rather than by a lack of understanding of the phenomenon. 
That is, each informal settlement shows an individual fingerprint and simulta-
neously fits typical general characteristics of informal settlements (Hofmann 
2005; Taubenböck and Kraff 2013). The latter can be defined as general slum 
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ontology  (GSO), as introduced by Kohli et al. (2012). The GSO acts as a top-
level (Guarino 1997a,b) or canonical (Subieta 2000) ontology for informal settle-
ments. For operational tasks (e.g., the definition of OBIA rule sets), the GSO 
can be reapplied, adapted, and extended as needed. The resulting ontology then 
reflects the individual characteristics of the informal settlement of concern. That 
is, there exists already a general description of what makes an informal settle-
ment, namely, a dense and irregular network of usually unpaved roads and lanes 
and a dense and irregularly arranged grid of small shacks or small houses, just to 
name those that are detectable from remote sensing data. However, this descrip-
tion is rather fuzzy and the de facto pattern of an individual informal settlement 
depends very often on local criteria such as cultural background, available con-
struction material, topography, existing infrastructure, and existing formal settle-
ment structures. The degree of local influence factors on the deviation from the 
“ideal,” that is, top-level or canonical, informal settlement is hardly predictable. 
However, the defined ontologies can act as input for the creation of an OBIA rule 
set, which needs to be adapted and extended according to the current situation. 
Therefore, recent methods of automated detection of informal settlements from 
remote sensing data still include a relatively high proportion of manual adaptation 
to local conditions (Hofmann, 2005; Hofmann et al. 2008a,b, Sliuzas et al. 2008).

16.2  AUTOMATION AND ROBUSTNESS 
IN THE CONTEXT OF OBIA

As stated by several authors (Blaschke and Strobl 2001; Hofmann 2001; Benz 
et al. 2004; Niebergall et al. 2008; Sliuzas et al. 2008; Veljanovski et al. 2012), 
OBIA has numerous advantages, especially in the domain of analyzing VHR 
remote sensing data, since it operates on image objects as aggregates of pixels 
rather than on single pixels. Thus, on the one hand, effects such as the salt-and-
pepper effect (Blaschke and Strobl 2001) are avoided and, on the other hand, a 
large feature space can be used for further image object analysis (Benz et al. 
2004). Sometimes, OBIA has been criticized due to its dependency on the image 
segmentation used (Hay and Castilla 2006; Smith and Morton 2008). In this con-
text, many discussions have been held about the suitability and performance of 
different segmentation algorithms (Meinel and Neubert 2004; Van Coillie et al. 
2008; Zhang et al. 2008) and how to assess segmentation quality (Neubert and 
Herold 2008; Neubert et al. 2008). However, OBIA is an iterative process, start-
ing with arbitrary initial image segmentation and continuing with step-by-step, 
knowledge-based improvement of image segments according to the analysis task 
(Baatz et al. 2008). The resulting image objects can be considered as the image 
representatives of the real-world objects that are to be detected. With this back-
ground, a very important point when regarding the segmentation quality and 
representation capabilities of image objects is whether scale is represented rea-
sonably by the image object hierarchy. That is, do sub- and superlevel image 
objects reflect the interscale relationships of the real-world objects they repre-
sent? And can these interscale relationships be expressed with sufficient quality? 
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For the case of detecting informal settlements, this means that, on a lower scale, 
typical structural elements, such as small buildings and shacks, shadows of small 
buildings and shacks, as well as small roads and lanes, need to be outlined well 
enough in order to indicate on a higher scale a high density of dwellings and an 
irregularly shaped network of small roads—one of the major properties of infor-
mal settlements. Automation of informal settlement detection increases with the 
robustness of the underlying rule set. That is, for a given rule set, the fewer the 
manual adaptations and interactions necessary to produce sufficient results in 
similar images, the more robust the rule set is considered to be. Consequently, a 
highly robust rule set increases the automation of informal settlement detection.

16.2.1  Different imaGe Data anD the neeD fOr aDaptinG 
initial seGmentatiOn parameters

When developing OBIA rule sets, this is usually done using one or two ref-
erence images reflecting a subset of the image data to be used and depicting 
the objects of interest to be detected. That is, the rule set to be developed is 
generated for a relatively clear defined task concerning objects of interest and 
the type of image data to be used. For reapplying developed classification rules 
on different images, the initial image objects should be comparable in size and 
shape. However, the spatial resolution of VHR remote sensing data can vary 
from approximately 0.25 to 5 m. Different spatial resolutions lead to a vary-
ing number of pixels per real-world object to be represented. Thus, in order to 
produce comparable image objects, the initial segmentation parameters need to 
be adapted with respect to the different spatial resolutions used (Hofmann et al. 
2008a). Besides, the radiometric resolution has an impact on image object gen-
eration, as it increases or decreases details of local contrast. For recent remote 
sensing images, the radiometric resolution can be of 8, 11, 12, or even 16 bits. 
That is, the radiation at a pixel’s location is quantized in 28 = 256, 211 = 2,048, 
212 = 4,096, or 216 = 65,536 discrete values. When segmenting images of different 
radiometric resolution, more or less randomly shifted object borders can arise 
(see Figure 16.1). Last but not least, the spectral coverage of the sensors’ bands 
lets objects of interest appear differently, and therefore they can have an impact 
on initial segmentation results as well.

16.2.2 aDaptinG imaGe seGmentatiOn parameters

Most segmentation algorithms directly or indirectly take local contrast into 
account. Changing the radiometric resolution has an impact on local contrast and 
thus on the generation of comparable image objects. Consider a spectral differ-
ence segmentation that agglomerates pixels to image objects if their mutual gray 
value differences are below a given threshold. Different quantization leads to 
different gray value gradients in the pixels’ neighborhood. Consequently, in the 
image with higher radiometric resolution, object borders are generated at posi-
tions where they would not appear in the lower radiometric resolution. Vice versa, 



308 Global Urban Monitoring and Assessment through Earth Observation

existing gradients in the image with lower radiometric resolution get smoothed in 
the image with higher radiometric resolution. Consequently, local contrast is too 
low for generating an object border and the border disappears (see Figures 16.1 
and 16.2). Hence, a generic segmentation adaptation for images with different 
radiometric resolutions is hardly feasible.

For region-growing algorithms taking the object size into account, the spatial 
resolution is relevant, too: the smaller the pixel size, the more pixels need to be 
agglomerated in order to create objects of similar size (Figure 16.1). For multireso-
lution segmentation (MRS), as introduced by Baatz and Schäpe (2000), Hofmann 
et al. (2008a) demonstrated a method for compensating different spatial resolutions. 
Different bandwidths are not compensable at all. But bands with bandwidths only 
existing in one image can be excluded from segmentation, while redundant bands 
can be merged into one band and similar bands can be used equally. Especially when 
working with pan-sharpened data, this issue can have an impact on object genera-
tion: for pan-sharpening, usually only those multispectral channels should be used 
that are covered by the spectrum of the panchromatic channel. But the latter can vary 
from sensor to sensor. Thus, pan-sharpened data from one sensor are not necessarily 
equal to that of another sensor.

16.2.3 rObUstness Of Obia rUle sets

The term robustness is applied in a variety of domains (Jen 2003). Constructions, 
for example, are considered to be robust if they function stable even beyond their 
specifications. Organisms are called robust if they are able to adapt to changing 
living conditions in terms of survival and reproduction (Kitano 2007). Societal 
structures can be seen as robust if they continue to exist under changing socio-
economic conditions (Berman 1997). Computer software is often called robust 
if it keeps functioning under conditions it was intentionally not made for, such 
as unexpected user behavior, invalid input data, or other stressful environmental 
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FIGURE 16.1 Different radiometric and spatial resolutions and their impact on object gen-
eration. (a) High resolution (32 gray values and 1 spatial unit). (b) Low resolution (4 gray val-
ues and 8 spatial units). Object borders are indicated by dotted vertical lines; scanning units 
are indicated by dotted horizontal lines. The original signal is indicated by the solid line; the 
scanned signal is given in gray bars.
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conditions, for example, hardware faults (IEEE 1990; Kropp et  al. 1998; 
Fernandez et al. 2005; Shahrokni and Feldt 2013). In the context of OBIA, rule 
sets can be considered robust if they produce similar results with similar qual-
ity on similar images with minimum adaptation effort (Hofmann et al. 2011). 
As we saw already in Section 16.2.2, different image properties have an impact 
on the initial segmentation results and therefore on the object quality. Thus, 
a prerequisite for a sensible rule set evaluation is comparable image objects. 
After a rule set has been adapted to an image and has produced acceptable 
classification results, the rule set’s deviations in conjunction with the achieved 

(a) (b)

(c) (d)

FIGURE 16.2 Different segmentation results (spectral difference) for different radio-
metric resolutions. (a) 8-bit, spectral difference threshold = 10. (b) 16-bit, spectral dif-
ference threshold = 10. (c) 16-bit, spectral difference threshold = 30. (d) 16-bit spectral 
difference threshold = 90.
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classification accuracy can be investigated. Analyzing these  deviations can be 
considered as the robustness analysis of a rule set. It becomes more reliable the 
more often it is applied on different varying but similar images. Classification 
rules are usually of the following form:

If <condition> is fulfilled then assign Object O to Class C

In OBIA classification, rules are used to assign image objects to respective classes. 
They can be nested, that is, objects which fulfill a variety of (pre)conditions can be 
selected for class assignment:

If <condition1> is fulfilled then

   If <condition2> is fulfilled then

       …

         If <conditionn> is fulfilled then assign Object O to Class C

The conditions 1 to n can be pooled into one condition using a logical AND operator:

If <condition1> AND <condition2> AND … <conditionn> are fulfilled then 
assign Object O to Class C

When classifying, for all image objects the conditions are evaluated in terms of 
TRUE and FALSE. Thus, nested rules have the advantage of reducing computing 
time, since for the first condition to be FALSE, the evaluation of all following rules 
is skipped. Consequently, the number of objects to be fully evaluated is reduced to 
the number of objects fulfilling all conditions. However, conditions can also be com-
bined with logical OR operators:

If <condition1> OR <condition2> OR … <conditionn> is fulfilled then assign 
Object O to Class C

In such cases, all conditions need to be evaluated per object, since the object is 
only not assigned to class C if all of the conditions 1 to n are FALSE. Classification 
rules as described earlier can also be considered as class descriptions. That is, 
class C is described by the conditions to be fulfilled per object in order to assign 
the object to class C. Elaborate class descriptions can consist of a variety of com-
bined AND and OR conditions, as well as of explicit negations (NOT or ¬). In 
order to analyze the robustness of an existing rule set, it is necessary to measure 
its deviations if it is adapted and applied to similar images. Rule set deviations can 
be of the following forms:

 1. Adding or subtracting classes to or from the rule set
 2. Adding or subtracting single rules to or from class descriptions
 3. Changing logical operators in rules
 4. Changing relational operators in rules
 5. Changing thresholds in rules
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Enumerating these deviations is a first attempt to quantifying a rule set’s robustness: 
the more the deviations, the less robust the rule set is. In the case that fuzzy clas-
sification rules (Benz et al. 2004) are applied, changes in the shape of each fuzzy 
membership function need to be considered, too (Hofmann et al. 2011), which is 
somewhat equivalent to points (4) and (5). Taking classification accuracy into account 
means comparing the accuracy that was achieved in the original image(s) the rule set 
was developed on with the accuracy achieved in all different images with respective 
adapted rule sets. For comparison reasons, the accuracy needs to be measured for 
the original rule set and all adapted rule sets identically, whereas the method used is 
indifferent but should be chosen adequately. Although there is a variety of accuracy 
assessment methods available (Van Rijsbergen 1979; Congalton and Green 1999), 
not all of them are suited for particular cases and not all of them produce equal val-
ues; therefore, for quantifying a rule set’s robustness, normalizing the classification 
accuracy is necessary. Thus, measuring a rule set’s robustness is always bound to the 
chosen method of accuracy assessment. For a rule set developed on one image and 
being adapted and reapplied on a similar image, we can formally describe the rule 
set’s robustness r as follows:

 
r q q

d
=

+
2 1

1
/

 (16.1)

with q1 the accuracy achieved in the original image, q2 the accuracy achieved in the 
image the rule set was reapplied on, and q1, q2 ∈ {0…1}. d is the sum of all deviations 
of the rule set after adaptation as outlined under points (1) to (5) earlier. After a rule 
set is adapted and applied on several images, its mean robustness can be calculated 
easily. To determine the deviation for fuzzy rules (cases 4 and 5), the following 
points need to be considered: a membership function expresses the degree of mem-
bership µ with µ ∈ …{ }0 1  to a class regarding a value range vr with an upper bound 
vu and a lower value bound vl of a given property. A value of µ(v) = 0 indicates for an 
object no membership concerning property value v. A value of µ(v) = 1 in contrast 
means a full membership. The center value a of the membership function is given by 
a v vrl= + ( )/2  or a v vru= − ( )/2 . It indicates the crisp property value the membership 
function represents in terms of a classification rule. Fuzzy membership functions can 
be roughly categorized as depicted in Table 16.1.

In principle, fuzzy membership functions can have any kind of shape. However, 
in practice, three types have been established since they are easier to interpret and 
understand than complex shape functions. Nevertheless, membership functions can 
also be of linear shape, that is, without soft transitions at the extremes. Combining 
a fuzzy-lower-than with a fuzzy-greater-than function leads to a t-norm function, 
whereas vu of the greater-than function is identical to vl of the lower-than function. 
Both are identical to a of the created t-norm function. t-norm functions can also have 
a value range of µ(v) = 1.0, which gives them a plateau-like shape. In the case where 
the slope of the membership function is at µ′(v) = 1.0 for value v and the membership 
at this value is at µ(v) = 1.0 or µ(v) = 0.0, the membership function is called crisp, 
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which is equal to threshold setting. If the function has only one property value v with 
µ′(v) = 1.0 and µ(v) = 1.0, the function is called a singleton, which is the same as the 
identity: µ(v) ≡ 1.0. The deviation δF of a membership function after adaptation to 
a similar image is the sum of the membership function’s shift δa and its stretch or 
compression δv:

	 δF = δa + δv (16.2)

where δa = 0 if the function of concern is not shifted and δv = 0 if the function 
is neither stretched nor compressed. In the case where the membership function 
has been shifted in a positive direction along the v-axis, its deviation is given 
by δa a a= −1 2 1( )/ . For a negative shift, it can be determined by δa a a= −1 1 2( )./  
Analogously, the function’s stretch or compression can be determined by 
δv vr vr= −1 2 1( )/  for stretching a function and δv vr vr= −1 1 2( )/  for compress-
ing it. By systematically analyzing all possible rule set deviations as described 
earlier, critical rules can be determined automatically: rules that deviate in a 
wide range, that is, have a high value for δF, or classes that often have different 
descriptions have a high negative impact on the overall robustness of the rule set 
(see Table 16.3). For a good rule set design in terms of transferability, one should 
consider skipping or exchanging such rules or classes by other, potentially more 
robust (i.e., less deviating) rules.

16.3 OBIA RULE SETS FOR DETECTING INFORMAL SETTLEMENTS

16.3.1 imaGe OntOlOGy fOr infOrmal settlements

Developing an OBIA rule set in principle means to define rules that translate object 
properties into semantically meaningful real-world classes (Arvor et al. 2013). This 
is either done implicitly by sample-based classification mechanisms or explicitly by 
defining respective classification rules (Section 16.2.3). The latter has the advantage 
of being easily adapted to changing imaging conditions, if necessary, and allows 
formulating additional expert knowledge, such as spatial relationships. However, 
for being transferable, an OBIA rule set should reflect at least the underlying top-
level ontology (Section 16.1.3). That is, the structure of the rule set, its classes, and 

TABLE 16.1
Principal Categories of Fuzzy Membership Functions

Category Symbol µ(vl) µ(a) µ(vu)

t-Norm (triangular) 0.0 1.0 0.0

Fuzzy-lower-than 1.0 0.5 0.0

Fuzzy-greater-than 0.0 0.5 1.0
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the classes’ spatial dependencies together with some basic concepts should be  similar 
to the respective ontology (Hofmann 2005; Kholi et al. 2012, Figure 16.3).

The domain description image:: indicates that the ontology describes object classes 
as they can be observed in remote sensing data. Each image:: class refers to a respective 
real-world class. The class image::settlement area is described by two principal character-
istics: existence prerequisites of other object classes and physical object conditions. The 
former are described by the has-relations: image::settlement area has image::buildings, 
image::road network, image::vegetated area. The latter describe measurable thresholds 
in a fuzzy manner, such as many small subobjects or shape ≠ elongated. Consequently, 
if an image object cannot refer to building, road, or vegetation subobjects or if it is 
too elongated, it cannot be a settlement area at all. The class image::informal settle-
ment is described as a subclass of image::settlement area by the is_a relation. Thus, 
it inherits the properties of image::settlement area. That is, the same prerequisites are 
valid for image::informal settlement but it distinguishes itself by its informal charac-
teristics (image::buildings = informal, image::road network = informal, and rel. area 
of image::vegetation ≈ 0%). The rules that make image::buildings = informal and 
image::road network = informal are to be defined in separate ontologies. The same 
holds for the fuzzy concepts elongated or high inner contrast.

is a

image::object

image::settlement area

image::informal settlement

image::formal settlement

if and texture.shape = many small subobjects

rel. area of image::vegetation < 50%
rel. area of image::building > 10%

texture.color = high inner contrast

shape ≠ elongated

has

image::vegetated area

image::buildings

image::road network

area > 1000 m2

is a

is a

ifand

rel. area of image::vegetation ≈ 0%

image::buildings = informal

image::road network = informal

FIGURE 16.3 Top-level ontology for informal settlements, their components, and their 
appearance in remote sensing data (image::).
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16.3.2 transfOrminG the OntOlOGy intO a rUle set

For detecting informal settlements in VHR remote sensing images, a respective 
OBIA rule set has been developed, based on a pan-sharpened IKONOS scene depict-
ing the so-called Cape Flats in Cape Town. The scene was captured on March 19, 
2000. The rule set was adapted and reapplied on a pan-sharpened QuickBird scene 
showing the Ilha do Governador in Rio de Janeiro on May 14, 2002. As a develop-
ment framework, the cognition network language (CNL) has been used, which is 
implemented in the software eCognition® (Trimble 2013).

16.3.2.1 Initial Segmentation Rules
The rule set starts with a two-level MRS, whereas on the top level, the aver-
age object size is at 5923 m2 and on the base at 49 m2. The segmentation 
parameters for the IKONOS scene were determined empirically by trial and 
error. Inspecting the segmentation results visually, the top-level segmentation 
depicts relatively good settlement structures at block level, including infor-
mal settlements. On the base level, small structures such as road segments, 
shacks, small buildings, and shadows are relatively well outlined. However, in 
many cases, the shacks and their shades are visually hardly distinguishable 
and neither is the segmentation. Nevertheless, with the two-level segmenta-
tion (see Figure 16.4) approach, the ontological relationships image::settlement 
area has image::buildings, image::settlement area has image::road network, 
and image::settlement area has image::vegetated area can be described as 
 spatial-hierarchical sub- and superobject relationships. Similarly, the properties 
texture.shape and texture.color can be described by statistical parameters of the 
subobjects shape and color properties per superobject, such as the mean area 
of subobjects per superobject or the mean spectral difference of subobjects per 
superobject (Trimble 2012a). The segmentation of the QuickBird scene has been 
adapted according to the ratio between the sensors’ pixel size (Section 16.2.1; 
Table 16.2) and applied with comparable results (Figure 16.5).

Top level

Base level

Classification

Formal settlementInformal settlement

Mean area of subobjectsMean asymmetry of subobjectsRel. area of small red roofsRel. area of small bright roofsRel. area of small shadows/dark objects
Rel. area of vegetation

Small red roofSmall shadows/dark objectsSmall bright roofVegetation

Initial segmentation

(a) (b)

FIGURE 16.4 (See color insert.) Object-hierarchical relationships after segmentation 
(parameterization, see Table 16.2) and classification between top- and base-level objects. For 
detailed class descriptions, see Table 16.3. Every top-level object relates to its subobjects in 
the base level and vice versa (a). Relationships to subobjects can be used for classification of 
superobjects (b).
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TABLE 16.2
MRS Parameters Used for Initial Image Segmentation

IKONOS, Cape Town QuickBird, Rio de Janeiro

Top Level Base Level Top Level Base Level

Scale parameter 100 10 144 14

wcolor 0.2 0.1 0.2 0.1

wshape 0.8 0.9 0.8 0.9

Compactness 0.5 0.5 0.5 0.5

Smoothness 0.5 0.5 0.5 0.5

300 m600 m

600 m 300 m

Informal settlement

Formal settlement

Small shadows/dark objects Red roofs

Bright small roofs/objects Vegetation

FIGURE 16.5 (See color insert.) Segmentation and classification results for IKONOS (top)  
and QuickBird (bottom). Left: top segmentation level with respective classes. Right: base 
segmentation level with respective classes. Blue rectangle in the left images indicates the 
location of the right images.
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Since the initial segmentation result reflects informal settlement areas clearly, no 
further segmentation enhancements were performed.

16.3.2.2 Classification Rules
The classification rules were directly applied on the initially generated image objects, 
where the class descriptions intended to reflect the underlying ontology as well as 
possible. Respective classes described by fuzzy membership functions were devel-
oped, where the rule set initially consisted of three top-level classes: settlement, infor-
mal settlement, and formal settlement. Formal settlement and informal settlement 
are subclasses of settlement and therefore inherit its properties (see Section 16.3.1; 
Trimble 2012b: 95–111 and Table 16.3). The class formal settlement then acts as the 
inverse of class informal settlement. That is, objects fulfilling the criteria of settle-
ment in general but not those of informal settlement are a formal settlement if they 
are fuzzy-greater than 1850 m2. At base level, single shacks or other buildings with 
informal character (image::buildings = informal) are not undoubtedly identifiable. 
Thus, two classes were created indicating the settlement’s structure in a rather fuzzy 
manner: bright small roofs/objects and small shadows/dark objects. While the for-
mer roughly outlines small square objects with bright roofs (e.g., shacks with roofs 
made from metal sheets), the latter just outlines dark objects that can be a shack or 
its shadow or both. The classes red roofs (image::buildings ≠ informal) and vegeta-
tion (image::vegetation) are rather clear: red roofs are simply determined by a high 
ratio of the red band to the green band in an object, while vegetation shows a high 
fraction of the near-infrared band in an object. At the top segmentation level, the 
ontological concepts for informal settlement image::buildings = informal is real-
ized by pointing to the corresponding classes at base level, that is, evaluating the 
settlement structure. For this purpose, the following properties have been used: area 
of subobjects (1), relative area of bright small roofs/objects subobjects (1), relative 
area of red roofs subobjects (1), and relative area of small shadows/dark objects 
subobjects (1) (see Figure 16.4 and Table 16.3). The concept image::road network = 
informal is realized by the rule asymmetry of subobjects: mean (1). Asymmetry 
measures how elongated an object is. The higher the asymmetry, the more elongated 
the object is. An irregular road network, such as that of informal settlements, leads to 
a relatively lower mean asymmetry within a settlement area. Accordingly, the asym-
metry of subobjects: mean (1) of informal settlement areas must be lower than that 
of formal settlement areas. The concept relative area of image::vegetation ≈ 0% was 
directly implemented as a fuzzy membership function. For detailed class descrip-
tions, refer to Table 16.2.

The class descriptions applied were all performed using the respective fuzzy 
membership functions (see Section 16.2.3). This approach has two advantages: 
(1)  it  allows to better express fuzzy concepts, such as red or rectangular, and 
(2)  slight property variations in the data can be more easily captured. This is of 
advantage, especially for the detection of informal settlements, since even on a local 
level their patterns can be varied. Additionally, transitional forms of settlements are 
detectable by their membership degree to informal settlement and formal settlement, 
respectively. That is, a transitional settlement type has an overall membership to both 
classes by µ ≠ 0 and at least µ > 0.3, which is the threshold set for defuzzification. 
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Assuming that the developed rule set reflects the ontology for informal settlements 
at best, for each classified object it can be expressed to what degree (of membership) 
it fulfills the criteria of the informal settlement prototype. Vice versa, each image 
object is a gradual member of the class (concept) informal settlement or formal set-
tlement of the ontology.

16.4 ROBUSTNESS ANALYSIS OF THE DEVELOPED RULE SET

16.4.1 rObUstness measUrement

In order to analyze the robustness of the developed rule set, it was reapplied to the 
segmented QuickBird scene of Rio and single rules were adapted manually until 
acceptable classification results were obtained. The respective deviations were deter-
mined as outlined in Section 16.2.3 and displayed in Table 16.3. In both scenes, the 
classification accuracy has been generated by comparing each classification with 
a complete manual reference map. In the IKONOS scene, 215 ha (true positives) 
of informal settlements were classified correctly, whereas 50 ha were omitted by 
the classifier (false negatives) and 93 ha were mapped wrongly as informal settle-
ment (false positives). This leads to precision prec, recall rec, and quality qual (Van 
Rijsbergen 1979; Heipke et al. 1997) as follows:

 
prec =

+
=True positives

True positives false positives
m2 151 138 2, ,

22 151 138 930 314
0 702 2, , ,
.

m m+
=  

 
(16.3)

 
rec =

+
=True positives

True positives false negatives
m2 151 138

2

2, ,
,, , ,

.
151 138 499 624

0 812 2m m+
=  

 
(16.4)

 

qual =
+ +
True positives

True positives false positives false negativves

m
m m m

=
+ +

=2 151 138
2 151 138 930 314 499 624

0 60
2

2 2 2
, ,

, , , ,
.  (16.5)

As prec ∈ {0…1}, rec ∈ {0…1}, and qual ∈ {0…1}, no normalization for robust-
ness analysis is necessary. In the QuickBird scene, we could achieve accuracies of 
prec = 0.52, rec = 0.68, and qual = 0.31. Regarding the rule set deviation, in the present 
case, two rules were added to the QuickBird rule set: relative area of vegetation sub-
objects (1) for the description of informal settlements (for the Cape Town scene, this 
rule was not necessary) and shape index for describing the fuzzy class bright small 
roofs/objects. No classes were added or deleted and no logical or relational operators 
were added, deleted, or changed. That is, the rest of the deviations are changes of 
the fuzzy membership functions’ values δF. According to Table 16.2, they sum up to 
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ΣδF = 56.35, which leads to an overall deviation of d = 56.35 + 2 = 58.35. Together 
with the achieved accuracies, we obtain a robustness of rprec = 0.012 if we use preci-
sion, rrec = 0.014 if we use recall, and rqual = 0.009 if we use quality as the criterion. 
Considering that for r > 1, classification results are improving (q2 > q1) with little or 
no deviation (d ≈ 0) and that for r < 1, the rule set was adapted (d > 0) but results did 
not improve (q2 ≤ q1), the rule set must be seen as not very robust. Vice versa, if r was 
at ~1.0 or higher, the rule set would be very robust.

16.4.2 interpretatiOn Of rObUstness measUrement resUlts

Regarding the deviations of the fuzzy membership functions δF, there are some rules 
with no deviation (δF = 0.0), some with slight deviation (0.0 < δF ≤ 0.1), one rule 
with higher deviation (δF = 4.16), and one rule with extreme deviation (δF = 50.79). 
While the rules with no and slight deviation can be interpreted as robust, the remain-
ing rules seem to react more sensitively on image variations. In relation to the over-
all deviation d = 58.35, the impact of the extreme deviating rule on the rule set’s 
robustness is very high (~87% of the overall deviation but only 1 rule out of 20). 
This indicates that the rule relative area of red roofs subobjects (1) is not easily 
transferable and should therefore be skipped or substituted, if possible. The impact 
of the rule ratio red channel/ratio green channel is comparably ~8.2% low although 
the sum of all other deviations equals 2.8%. Since the rule relative area of red roofs 
subobjects (1) indicates the density of small buildings with red roofs, the following 
considerations make the rule’s high deviation plausible: while in South Africa the 
shacks’ roofs are mainly made of plastic, iron sheets, or wood, in Rio, brick is more 
common. Thus, the relative area of red roofs subobjects (1) per informal settlement 
object must be higher in Rio. The deviation for the class red roofs could be explained 
by different construction material, too.

Excluding δF for relative area of red roofs subobjects (1) from the calculation 
of d, the robustness core parameters change to ΣδF = 5.56 and d = 7.56, leading to a 
slightly increased robustness of rprec = 0.09, rrec = 0.10, and rqual = 0.06, respectively. 
If, additionally, the deviation for ratio red channel/ratio green channel of the class 
red roofs is excluded, overall deviations of ΣδF = 1.4 and d = 3.4 are produced, lead-
ing to a robustness of rprec = 0.17, rrec = 0.19, and rqual = 0.12.

16.5  OUTLOOK TOWARD SEMIAUTOMATED TECHNIQUES 
OF MAPPING INFORMAL SETTLEMENTS

Although OBIA is a reasonable method for analyzing VHR remote sensing data, 
especially in the context of detecting and monitoring informal settlements, the 
design of rule sets is of core importance. For transferability and flexibility reasons, 
it should reflect the underlying ontology of the objects of concern. Simultaneously, 
it needs to take into account the imaging situation of the data used. This implies 
that there is no general rule set for the detection of informal settlements  possible, 
but the effort for adaptation can be reduced if the rule set reflects the top-level ontol-
ogy as well as possible. By measuring the robustness of rule sets, on the one hand, 
the suitability of a given rule set for a given application can be determined and, 
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on the other hand, critical rules can be identified; that is, rules that might need to 
be adapted if the rule set is applied on similar data. As long as the ontology is not 
violated, such rules should be avoided or substituted. In the presented case, the 
rule set was applied directly on the initially generated image objects with rela-
tively good results. As pointed out, a generic adaptation of initial segmentation 
parameters to varying image data is hardly feasible. However, classification results 
could certainly be improved if further dedicated (re)segmentation procedures 
were applied, generating optimal image objects. Especially the structural elements 
buildings and road network, which are key elements in identifying (informal) set-
tlements, were described and detected in a fuzzy manner. Although robustness 
analysis has been applied only on two images, the results indicate a majority of 
robust rules in the developed rule set. Recent OBIA technologies allow creating 
solutions for highly automated image analysis. When reapplied on similar images, 
the necessary adjustments of a rule set can be performed even by a nonspecial-
ist very easily. An example is given by eCognition Architect (Trimble 2013). For 
the present case, it would be easily possible to embed the developed rule set in a 
respective eCognition Architect environment. Necessary adaptations, especially 
those for critical rules, could be performed using respective slider widgets and/or 
buttons in a graphical user interface (GUI). This way, a variety of VHR images 
could be analyzed fast and as automated as possible.
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17.1 INTRODUCTION

A large number of algorithms for change detection from multitemporal remotely 
sensed images have been developed and applied. An overview and comparison of 
different methods can be found, for example, in Coppin et al. (2004), Lu et al. (2003), 
Mas (1999), Macleod and Congalton (1998), and Singh (1989). In general, change 
detection methods can be divided into three categories (Mas, 1999): (1) image 
enhancement methods, (2) multitemporal analysis, and (3) postclassification compar-
ison. Other approaches combine several methods or consist of novel methodologies 
(an overview can be found in Lu et al., 2003). Image enhancement methods combine 
data mathematically to enhance image quality (Im et al., 2008). Examples include 
standards methods such as image difference, image ratio, and principal component 
and regression analysis.

Multitemporal methods (Coppin et al., 2004) are based on an isochronic analysis 
of multitemporal image data. This means that n bands of an image taken on date 
T1 and n bands of an image of the same area taken on date T2 are merged to form a 
multitemporal image with 2n bands. This merged image is then used to extract the 
changed areas (Khorram et al., 1999).

Postclassification analysis is probably the most common change detection 
technique and allows an assessment of the kind of change from one class to 
another. It is, however, very sensitive to the achieved classification accuracy. 
Using pre-event geographic information systems (GIS) information is another 
way of enhancing change detection reliability and accuracy using object-based 
analyses (Bovolo, 2009; Chen et al., 2012; Im et al., 2008; Li et al., 2011; 
Lohmann et al., 2008; Sofina et al., 2012). Recently, inclusion of 3D information 
has become an additional part of a reliable change detection process (Martha 
et al., 2010; Tian et al., 2013).

In summary, a wide range of different methods have been developed, display-
ing different grades of flexibility, robustness, practicability, and significance. Most 
authors, however, agree that no single best algorithm for change detection exists. 
Therefore, new methods are still being developed and/or adapted, especially for 
the detection of damaged buildings and infrastructure in conflict or crisis areas. 
This chapter is no exception to this, as it describes the development of, and the 
results for, a set of new change detection algorithms. They were tested with high 
and very high resolution (VHR) satellite images from QuickBird, GeoEye, and 
Cartosat sensors. Besides using multitemporal remote sensing images, additional 
information from GIS and 3D analysis can be incorporated into this cooperative 
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suite of algorithms. The method can be used in catastrophic events or  humanitarian 
crises to show the impact of this particular event.

17.2  MULTITEMPORAL IMAGE CHANGE DETECTION 
WITH COMBINED EDGE SEGMENT TEXTURE ANALYSIS

In general, simple methods such as image difference or image ratio do not produce 
reliable change information in complex areas, which means that there is a need to 
develop a different procedure for automated change detection (Klonus et al., 2012). 
This procedure is based on several different principles: frequency-based filtering, 
segmentation, and texture analysis. The frequency domain is used because it allows 
the direct identification of relevant features such as edges of buildings. If no features 
are directly visible (such as partial destruction with still standing outside walls), tex-
ture parameters are used for debris identification. A segmentation algorithm is used 
to extract the size and shape of buildings. These methods are combined in a decision 
tree to improve accuracy. The combination of these processing steps is called com-
bined edge segment texture (CEST) analysis.

17.2.1 fOUrier transfOrm–baseD alGOrithms

The Fourier transform is defined for single-band or panchromatic images (Cooley 
and Tukey, 1965). Based on a frequency analysis in the spectral domain, isotropic 
band pass filters can be designed to highlight selected frequencies and—as such—
structures in the images. The design of band pass filters in the frequency domain 
is based on image size and resolution and the estimated size of buildings and man-
made structures where changes are to be detected. The orientation of buildings has 
no influence due to the use of isotropic band pass filters. The filtered images are 
then transformed back into the spatial domain for further analysis. Higher frequen-
cies visualize the position of buildings; the highest frequencies, however, contain 
mostly noise and are not useful for object identification and extraction. Lower fre-
quencies contain mostly general image background, which is also not used for further 
analysis. To avoid the Gibbs problem, the filter was smoothed with a Hanning window 
(Brigham, 1997; Ehlers and Klonus, 2004).

After the adaptive band pass filtering, four different methods are possible for 
extracting changed structures: (1) subtraction in the frequency domain, (2) correla-
tion in the frequency domain, (3) correlation in the spatial domain, and (4) edge 
detection in the spatial domain. Of these methods, the best results are obtained using 
the edge detection algorithm (Klonus et al., 2012). Consequently, we incorporated 
this method as a standard into the CEST analysis. The edge detection in the spatial 
domain consists of the following steps: The band pass filtered images T1 and T2 are 
first transformed into the spatial domain by an inverse fast Fourier transform (FFT). 
Thereafter, an edge detection operator is applied to both images (Figure 17.1). The 
best results are obtained by the Canny edge detector (Canny, 1986). To avoid small 
registration errors, morphological closing is used before subtracting the scenes from 
each other; a morphological opening is then applied.
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17.2.2 chanGe DetectiOn baseD On textUre parameters

Frequency-based filtering is particularly suited to detect changes in edge structures. 
If edges remain intact, however, textural features may be used for change analysis. 
To calculate texture parameters, we make use of the Haralick features. This approach 
is based on the gray-level co-occurrence matrix (GLCM) (Haralick et al., 1973). The 
idea is that buildings can have higher texture values than areas without buildings 
(see, e.g., Ehlers and Tomowski, 2008; Myint, 2007). This is especially true if the 
surrounding environment is very homogeneous and the buildings are very small 
or destroyed (with surrounding debris). A GLCM describes the likelihood of the 
change of the gray value i to the gray value j of two neighboring pixels (Tomowski 
et al., 2006). To calculate GLCM, the frequency of all possible gray value combina-
tions at two neighbor locations is counted for a defined number of directions (e.g., 0°, 
45°, 90°, or 135°). The calculation of the average of these matrices for every element 
yields a direction-independent symmetric matrix.

Finally, to calculate the likelihood Pi,j of a gray value change, every value in this 
matrix is divided by the maximum number of all possible gray value changes:
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where
V denotes the value in the symmetric GLCM
i and j are the row and column indexes
N is the number of rows and columns

The calculation of GLCM for images of high radiometric resolution is very time 
consuming. To reduce this effect, Haralick et al. (1973) suggest different texture fea-
tures (the now well-known “Haralick” features), which represent the characteristic 
of a matrix in one comprehensive value and can be calculated using a moving win-
dow technique. Initial tests with several Haralick features showed that “energy” and 
“inverse difference moment” (IDM, also known as “homogeneity”) produced the 
best results for man-made objects (Klonus et al., 2012). Consequently, these features 
were used for the CEST approach.

Image T1
FFT FFT–1

FFT–1FFT

Frequency image
(spectrum S1)

Filtered image S1́  in
frequency domain

Filtered
image T2́

Filtered
image T2́

Edge image
E1

Subtraction Change
image

Edge image
E2

Filtered image S2́  in
frequency domain

MultiplicationSmoothed
band pass filter

Frequency image
(spectrum S2)

Band pass
filter design

Image T2

FIGURE 17.1 Change detection with filtering in the Fourier domain and subsequent edge 
detection.
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The GLCM (8 bits) for every image is calculated after an initial histogram match-
ing of the multitemporal images (Figure 17.2). Based on the GLCM, the texture fea-
tures IDM and energy are computed with differently sized windows (ranging from 
3 × 3 to 17 × 17 pixels). The size of the window depends largely on image resolution 
and on the size of the man-made structures to be analyzed. The calculated texture 
images at dates T1 and T2 are the input for a selective bitemporal principal com-
ponent analysis (PCA), which is an excellent tool for the visualization of change 
(Figure 17.3) (Tomowski et al., 2011).

17.2.3 chanGe DetectiOn baseD On seGmentatiOn

Object- or segment-based image analysis has gained a lot of interest in the remote sens-
ing community (see, e.g., Baatz and Schäpe, 2000; Blaschke et al., 2008). Segmenting 
an image seems to be an excellent preanalysis tool, especially for VHR images. 

Image T1

Image T1

Image T2

Image T2

GLCM calculation

Derivation of texture features Derivation of texture features

GLCM calculation

Histogram
matching

FIGURE 17.2 Steps for derivation of texture features for change detection. Histogram match-
ing and GLCM computation precede the calculation of texture parameters for each image.

F t2

F t1

PC 2

PC 1Change pixel

No change pixel

Feature
Space

FIGURE 17.3 Change detection through bitemporal selective PCA. Unchanged pixels are 
clustered along the first principal component, whereas changed pixels are located along the 
second principal component.
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Consequently, we developed a gray value Euclidean distance–based segmentation 
procedure to be used for change detection. The gray value range is calculated and 
divided by a constant. This result is used as a threshold. For each pixel, the Euclidean 
distance to each neighboring pixel is calculated. If the Euclidean distance of the gray 
values is below the threshold, they belong to the same segment. After an indepen-
dent segmentation of the images at dates T1 and T2, the segments of T1 are selected 
and overlaid on the T2 image. For each segment, the T1–T2 correlation coefficient 
is calculated. The result is then assigned to each pixel in the segment. Segments 
with high correlation represent no changes. Segments with low correlation represent 
changes. This procedure is repeated with segments from image T2 overlaid on image 
T1 (Figure 17.4). The average correlation value is assigned to each individual pixel. 
As a final step, thresholds are used to extract the change segments.

17.2.4 cOmbineD chanGe DetectiOn: the cest methOD

Finally, all three methods are combined in a decision-tree approach (Figure 17.5). 
The basis for the classification is the result of the change detection algorithm 
using edge detection based on frequency filtering. If the edge parameter shows 
“no change,” the pixel in the image is classified as “no change.” If the edge 
parameter shows “new building,” the pixel is classified as new if the texture fea-
ture “energy” is in agreement. If energy shows “change” and one of the features 
such as “homogeneity” or “segmentation” shows “change,” the result is “new.” 
Otherwise, it is classified as unchanged. If the edge parameter shows “change,” it 
is classified as “change” if the texture feature “energy” has a corresponding value. 
If energy shows “no change,” the pixel will be classified as “no change.” If energy 
shows “new” but the segment and homogeneity parameters show “change,” 

Original
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T2

Segments
T2

Using threshold and
comparison of images

Segments
T1

Segmentation
Correlation

Result

Correlated
image T1T2

Correlated
image T2T1

FIGURE 17.4 Change detection based on image segmentation. Segmentation overlay and 
correlation are calculated for both directions.
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the pixel is assigned to “change.” Otherwise, it is classified as unchanged. The 
CEST procedure was tested against a number of standard change detection meth-
ods (difference, ratio, PCA, multivariate alteration detection [MAD], postclas-
sification analysis).

17.3  CEST RESULTS FOR MULTITEMPORAL 
IMAGE CHANGE DETECTION

17.3.1 stUDy area

The study area is located in Sudan and represents an area that experienced dra-
matic changes during the Darfur conflict. This conflict is a dispute between differ-
ent ethnic groups and the Sudanese government. Although the conflict in Sudan has 
recently been less intense than it was in the past, all sides to the conflict continue 
to commit violations of international humanitarian law, such as attacks on civilians 
and on humanitarian convoys. It is estimated that more than 300,000 people have 
already died in this conflict and more than 2 million people have been displaced 
(http://www.amnestyusa.org/research/science-for-human-rights).

The study site is located in South Darfur and shows part of the town Abu Suruj 
in West Darfur. The panchromatic images were taken by QuickBird-2 on March 2, 
2006; a subset of the scene is presented in Figure 17.6, before the attack (T1—Figure 
17.6a), and on February 28, 2008, after the attack (T2—Figure 17.6b). These images 
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Edges = 0

Edges = 2

Energy = 2

Energy = 1

Energy = 0

Energy = 0

Energy = 2

Energy = 1

Segments = 1

Homogeneity = 1

Homogeneity = 0
and Segments = 0

Homogeneity = 0
and Segments = 0

Homogeneity = 1

0

1

2

Segments = 1

FIGURE 17.5 Decision tree for the combination of change detection methods. Edges = result 
of edge detection based on filtering in the Fourier domain. Segments = result of change detec-
tion using segmentation. Homogeneity and energy = results of Haralick’s texture features. 
Numbers are related to the following classes: class 0 = unchanged buildings, class 1 = changed 
or destroyed buildings, and class 2 = new buildings.
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were provided by Amnesty International, courtesy of DigitalGlobe. Because of new 
settlement areas, this study site is very complex. It contains changes due to destruc-
tion and—at the same time—changes due to construction. A change detection pro-
cedure should be capable of depicting both types of change. This is demonstrated in 
Figure 17.7, which shows the manually digitized man-made structures. Black denotes 
no changes (background), white stands for new buildings (construction), and gray 
represents changed buildings (destruction). Most changed buildings are located in the 
east of the image with new buildings in the west. Figures 17.8 and 17.9 show subsets of 
Figure 17.6. Figures 17.8a and 17.9a present the T1 image recorded on March 2, 2006, 
whereas Figures 17.8b and 17.9b show the T2 image recorded on February 28, 2008. 
Figure 17.8 displays buildings that are destroyed in T2 but did exist in T1. The two 
existing buildings in Figure 17.9a were destroyed during 2007, but new buildings are 
constructed at the same place and are visible in T2 (Figure 17.9b).

A visual comparison and overlay of man-made structures show a high correspon-
dence for both images, so that a new coregistration was not necessary and the problem 
of possible pseudo change was negligible. These images were used for change analy-
sis. They were preprocessed using a histogram matching procedure. An atmospheric 
correction was not applied due to missing ground truth data, sparse vegetation, and 
only one image band.

17.3.2 resUlts anD accUracy assessment

In this section, change classification results of the standard methods, the new CEST 
method, and the achieved accuracies are presented. For assessing the accuracy, three 
classes were selected:

Class 0 = unchanged buildings
Class 1 = changed or destroyed buildings
Class 2 = new buildings

(b)(a)

FIGURE 17.6 Panchromatic QuickBird-2 images recorded on March 2, 2006 (a) and on 
February 28, 2008 (b) of the town Abu Suruj (2048 × 2048 pixels). (Images are provided by 
Amnesty International, courtesy of DigitalGlobe.)
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FIGURE 17.7 Manually digitized reference image of the town Abu Suruj (2048 × 2048  pixels). 
Black denotes no changes (background), white stands for new buildings ( construction), and gray 
represents changed buildings (destruction).

(a) (b)

FIGURE 17.8 Subset of the panchromatic QuickBird-2 images recorded on March 2, 2006 
(a), and on February 28, 2008 (b), of the town Abu Suruj. The left image shows intact build-
ings and the right image shows destroyed buildings.
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The reference is a manual digitization of buildings through an independent pho-
tointerpreter (see Figure 17.7). Accuracy assessment for classes 1 and 2 is based 
on 404 randomly chosen digitized objects. Only for class 0, all 404 objects were 
used. If most of the pixels inside an object are pixels of the correct class, the 
whole object was considered as correctly detected. Producers’ accuracy, users’ 
accuracy, and kappa coefficients are calculated for all scenarios. The CEST 
method was tested against the standard procedures image difference, image ratio, 
principle component analysis, MAD, and postclassification analysis. The results 
for CEST and the image difference and MAD algorithms (Nielsen et al., 1998) are 
compared in Figure 17.10. Figure 17.11 provides a close-up view of a subsection in 
the images. All methods, however, were analyzed and visually and quantitatively 
compared.

17.3.2.1 Visual Analysis
With a simple change detection method such as image difference, it is possible to 
detect three classes (positive change, negative change, and no change). In this pro-
cess, however, large areas of pseudo change are detected due to changes in brightness 
of the sediment in the images. Most of the new buildings that appear in the T2 image 
are correctly detected. Buildings that are unchanged are often identified as destroyed 
or changed buildings. These results are also confirmed by the accuracy assessment 
(see Figure 17.12). For image ratio, it is difficult to find a threshold between new 
and changed/destroyed buildings. Therefore, most of the buildings are detected as 
new buildings. As with image difference, buildings that are unchanged are often 
detected as destroyed or changed. This leads to the extremely low producers’ accu-
racy of 8.2% for the class “changed or destroyed buildings.” The amount of detected 
pseudo change is relatively low in comparison to image difference. The image pro-
cessed with the PCA change detection procedure also shows a lot of pseudo change. 
Similar to the image ratio, most of the buildings are detected as new buildings. Also, 
nearly 45% of the unchanged buildings are classified as changed/destroyed. On the 
other hand, 30% of the destroyed or changed buildings are classified as unchanged. 

(a) (b)

FIGURE 17.9 Subset of the panchromatic QuickBird-2 images recorded on March 2, 2006 
(a), and on February 28, 2008 (b), of the town Abu Suruj. The image in (a) shows two intact 
buildings that were destroyed in the image in (b), but new buildings were constructed on the 
same location.
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The MAD method produces acceptable results for the classes “unchanged build-
ings” and “new buildings.” More than 60% of the unchanged buildings, however, 
were detected as changed/destroyed. Additionally, MAD produces a large amount 
of pseudo change. For the postclassification analysis, we used the isodata algorithm 
(Jensen, 2005) because no appropriate training areas were available. The postclassifi-
cation method produces the lowest accuracies. Nevertheless, the producers’ accuracy 
shows that 90% of the changed buildings can be detected but a users’ accuracy of 50% 
means that half of the destroyed buildings are classified as unchanged. Again, pseudo 
change poses a big problem. For the CEST analysis, it proved possible to identify 
unchanged areas, new settlements, and destroyed settlements, even single huts and 
changed walls. As can be seen from the comparison of Figure 17.10 with Figure 17.7, 

(a) (b)

(c)

FIGURE 17.10 Results of change detection using image difference (a), MAD algorithm (b), 
and CEST (c): black denotes no changes (background), white stands for new buildings (con-
struction), and gray represents changed buildings (destruction).
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CEST has much less noise than the second best algorithm, the MAD. Moreover, 
 misclassification of vegetation as changed buildings is significantly less. In addition, 
the walls of the buildings are more accurate than those of the other methods. In total, 
the combination of all three methods generates the most reliable and accurate results 
for change detection. This is confirmed by the quantitative analysis in the follow-
ing section.

(a) (b)

(c)

FIGURE 17.11 Blow-up of a subsection of Figure 17.10: image difference (a) shows many 
false alarms (white color), MAD (b) underestimates the changed (destroyed) buildings, CEST 
(c) gives a reliable depiction of the destruction area and has just a few false alarms.
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17.3.2.2 Quantitative Analysis
The results of the visual analysis are confirmed by the quantitative accuracy 
assessment. The accuracies of the CEST method are the best in this study. As 
much as 97% of the unchanged buildings are correctly detected. Although nearly 
35% of the changed or destroyed buildings are identified as unchanged, the CEST 
result is still acceptable. In comparison to all other algorithms, however, the com-
bined method shows the highest users’ and producers’ accuracies (Figure 17.12) 
and also produces less pseudo change. Accuracy figures are based on a per-pixel 
analysis.
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FIGURE 17.12 (a) Users’ and (b) producers’ accuracy for the six change-detection meth-
ods (left column “changed or destroyed buildings,” center column “new buildings,” and 
right column “unchanged buildings”). For users’ accuracy, CEST has always the highest 
values with one exception: The difference method performs slightly better for the class “new 
buildings”. For producers’ accuracy, CEST is always among the top methods. Image ratio and 
postclassification show the worst results of all methods.
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A comparison of overall accuracy is presented in Figure 17.13. As expected, the 
CEST approach shows the highest accuracy with about 80%. The next best are the 
PCA and MAD algorithms with 65% and 61%, respectively. The worst results are 
produced by the postclassification approach with less than 40%. Evidently, the CEST 
approach provides the best result whereas all other algorithms have lower accuracies 
and produce a large amount of noise. The superiority of the CEST method is also 
confirmed by transferring the procedure to other areas where changes have occurred. 
Details can be found in Klonus et al. (2012).

17.3.2.3 Automated Change Map
The produced change images are to a large degree abstract and hard to interpret. 
This is particularly true for people not related to remote sensing such as members of 
official organizations or rescue forces. For planning after a crisis or a catastrophe, 
the interpretation of change images should be as easy as possible. An algorithm was 
developed to automatically produce a map that can be easily interpreted. The first 
step is to generalize the change image. Inside a 20 × 20 pixels window, the amount 
of change is determined using the information in the change image. The change 
percentage of this area is calculated and then divided into a number of distinctive 
general classes. If less than 15% of the area has changed, all pixels are classified as 
unchanged. Change above 80% marks extensive change and change between 15% 
and 80% marks low to moderate change. Areas of new buildings with a surface 
cover of at least 15% are shown as “new areas.” The original image of T2 is used as 
background for automatically created change maps and for the results. Unchanged 
areas are transparent, low to moderate change areas are shown as yellow overlay, 
and areas of strong changes as red overlay. New building areas are shown in green 
(Figure 17.14). If this technique is applied to areas after catastrophic events, this 
change map makes it possible to quickly identify the most affected areas or the 
areas for which high casualties are likely. For the Abu Suruj area, it could be eas-
ily depicted that the town has increased, but also that large parts have changed. 
Buildings were destroyed and new buildings were built on these sites or next to the 
destroyed buildings.
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FIGURE 17.13 Overall accuracy for the change detection methods in the study area.
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17.4  CHANGE DETECTION BASED ON GIS 
AND REMOTE SENSING INTEGRATION

CEST is based on a comparison of remotely sensed images of the same scene obtained 
at different times. However, for many areas of the Earth, reliable information about 
buildings and infrastructure exists that may be more accurate and up to date than 
a remote sensing image that may have been taken a long time ago. Moreover, to 
achieve successful analysis, it is desirable to take images acquired by the same sen-
sor at the same time of a season, at the same time of the day, and—for electro-optical 
sensors—in cloudless conditions (Hall et al., 1991). The accuracy of change detec-
tion analysis is also adversely affected by variation of acquisition angles. This situa-
tion can be improved by taking additional information into account. A comparative 
analysis of two different data types (vector map and remotely sensed image) is gen-
erally performed by extracting spectral, textural, and structural measurements from 
the image for each individual vector object.

In this method, we employ a single postevent remotely sensed image and GIS 
vector data with an original urban layout for the detection of building destructions 
caused by a catastrophic event. A general idea of the proposed approach is the gen-
eration of feature sets that characterize the actual state of each individual building 
and further classification based on the extracted information (Figure 17.15).

To perform a successful classification, the selected features should depict the 
distinct information that identifies the most effective characteristics specific for all 

FIGURE 17.14 (See color insert.) Generalized change map of Abu Suruj: new buildings 
(green), low to moderate change (yellow), and extensive change (red).
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objects belonging to the same class. For the determination of building conditions, we 
focus on building roofs due to their visibility in the images. Thus, two characteris-
tic parameters are employed for developing an integrated change detection system: 
image homogeneity and integrity of building contour (Sofina et al., 2012).

17.4.1 imaGe hOmOGeneity

Obviously, if a building is damaged or destroyed, the structure of its roof image is usu-
ally changed, which can be identified by texture analysis. An image area corresponding 
to the roof of an intact building is usually homogeneous with a low variation of image 
brightness. Fragments of destruction, on the other hand, adversely affect image homo-
geneity. To extract this information, the texture feature “IDM” (Haralick et al., 1973) is 
calculated. Instead of the commonly used average value of four angular feature direc-
tions (i.e., 0°, 45°, 90°, 135°), the maximum value (IDM_max) is used as a representative 
characteristic for the identification of building conditions (Sofina et al., 2012).

17.4.2 bUilDinG cOntOUr inteGrity

Intact buildings in a remotely sensed image usually display clear contours of the 
building outline. In the case of damage or destruction, the contour of the building 
can be partially corrupted (or displaced) or completely absent. The possibility of 
recognizing the explicit building’s contour is used as a representative indicator 
of its condition. This information is extracted by the “detected part of contour” 
(DPC) method developed by Sofina et al. (2011). The basic idea behind this method 
is the correspondence of the building contour in the remotely sensed image with 

Remotely
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FIGURE 17.15 General scheme of the GIS/remote sensing change detection technique.
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the building footprint of the related vector object. The DPC parameter reaches a 
maximum value of 100% if the contour of the investigated building can be entirely 
identified. The first step in the calculation of the DPC involves an edge detection 
algorithm that is applied to the image for extracting building edges. For our pur-
pose, we again use the Canny edge detector. It yields a raster map with pixel values 
corresponding to the direction of detected edges. The pixels that do not belong to 
any edge have a “no data” value. Given that buildings are symbolized as polygons 
in the vector map, control points are selected along each side of the polygons. For 
each control point, a search area on the raster map is defined, where pixels with 
appropriate contour direction are counted. The DPC value is then calculated as the 
ratio of the detected number of pixels and pixels expected for the intact building. 
For a detailed description of this method, see Sofina and Ehlers (2012).

17.4.3 experiments

The high potential of the proposed change detection approach is demonstrated on 
data obtained after the powerful tsunami waves in the wake of the Great East Japan 
Earthquake on March 11, 2011, which resulted in extensive destruction of roads, rail-
ways, dams, and buildings as well as in the loss of thousands of lives. Figure 17.16a 
presents a pre-earthquake image (April 27, 2005) and Figure 17.16b a post-earthquake 
image (March 12, 2011) of Kamaishi, provided by Google Earth. As no cadastral 
information was available to us, we obtained the building footprints by manual digiti-
zation. A total of 61 vector objects were digitized from the pre-event remotely sensed 
image, thus simulating a GIS cadastral map.

The classification of the building conditions was performed by means of a super-
vised k-nearest neighbor (k-NN) algorithm using both DPC and the maximum of the 
IDM feature (IDM_max). In our analyses, the IDM_max proved to be the most repre-
sentative among the texture measurements. For learning the classification algorithm, 

(a) (b)

FIGURE 17.16  (See color insert.) Test dataset: The pre-event image (© DigitalGlobe 
2013) used for digitizing the ground truth information (a) and the postevent image (© GeoEye 
2013) used for change detection (b). (Satellite images, courtesy of Google Earth.)
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30% of the vector dataset (containing 20 objects) was randomly selected as train-
ing examples. The scatter plot between the DPC and the IDM_max parameters 
illustrates the high separability of the objects (Figure 17.17a). Low values of DPC 
and IDM_max correspond to destroyed buildings (square boxes) and high values to 
intact ones (circles). It is evident that these two classes can easily be separated. The 
resulting damage map is presented in Figure 17.17b, where white objects symbolize 
intact buildings and black objects the destroyed ones.

Accuracy assessment is summarized in the confusion matrix (Table 17.1). An 
overall classification accuracy of 97.5% proves the validity of the presented inte-
grated GIS/remote sensing approach.

The DPC/IDM approach demonstrates high efficiency for building damage 
assessment. It is also a robust, fast, and automatic algorithm. Vector maps provide 
additional information as well as the exact position, size, and shape of each object, 
which represents a major advantage of this approach. Moreover, due to the object-
oriented algorithm, the “map-to-image” strategy enables the extraction of valuable 
information from the remotely sensed image with regard to an individual vector 
object. This method constitutes an excellent choice for change detection inside urban 
areas if GIS information is available.
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FIGURE 17.17 (a) Scatter plot between DPC and IDM_max features. The classes 
“unchanged buildings” (circles) and “destroyed buildings” (square boxes) can easily be sepa-
rated; (b) resulting damage map: white objects represent intact buildings, black objects rep-
resent destroyed buildings.

TABLE 17.1
Confusion Matrix for Accuracy Assessment, 
Obtained from the Classification

Prediction

A
ct

ua
l c

la
ss Intact Destroyed

Intact 14 1 15

Destroyed 0 26 26

14 27 41
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17.5 INCLUSION OF 3D INFORMATION

Over the last few years, integration of 3D information into the task of change 
detection has gained increasing interest and importance. This is particularly due 
to the launch of VHR satellite systems like IKONOS, WorldView, and Cartosat 
that are able to capture stereo images and the development of effective techniques 
for the automatic processing of this type of data. As an example, semiglobal 
matching (SGM) has become a widely used approach for generating digital sur-
face models (DSMs) from airborne and more recently also from satellite stereo 
and multiview imagery (d’Angelo and Reinartz, 2011). The task of change detec-
tion can benefit from the additional information provided by these approaches, 
especially in urban areas.

17.5.1 chanGe DetectiOn baseD On Dsm cOmparisOn

Change detection approaches can take advantage of height information directly, 
for example, by means of DSM differencing, or use it indirectly, for example, as 
additional contextual knowledge in image classification, and then detect changes 
in the classification results (Chaabouni-Chouayakh et al., 2010). Subsequent work 
discusses the effects of denoising the source models by introducing shadow and 
hole masks into DSM differencing and of combining height and shape informa-
tion to better differentiate between real changes and false alarms (Chaabouni-
Chouayakh and Reinartz, 2011; Tian et al., 2011). In addition, GIS reference data 
can be incorporated to verify the existence of buildings for one of the time frames 
(Dini et al., 2012). Champion et al. (2010) extracted 3D primitives from multiple 
images or DSMs and used them along with 2D contours for detecting changes in a 
2D  building database.

17.5.2 bUilDinG extractiOn UsinG mOrphOlOGical seGmentatiOn

As far as optical images are concerned, shadows can be used as an alternative source 
of 3D information, which can be used to generate 3D building models. Shadows are 
particularly helpful for detecting buildings as they indicate the presence of objects 
that are higher than the ground. Height is very crucial for differentiating between 
buildings and spectrally and morphologically similar objects like parking lots, 
sports fields, and roads. It has been successfully utilized as contextual information 
for building outline extraction in recent approaches. In this context, it is assumed 
that buildings are represented in the intensity image by local maxima whereas shad-
ows are local minima. However, as the overall intensity of the two feature types can 
vary considerably over the image, satisfactory results cannot be achieved by simple 
intensity thresholding. For reliable identification of local maxima and minima, white 
top hat and black top hat transformations are used (Serra, 1983). Here, the notion 
of “top hat” refers to the difference between the original and the morphologically 
filtered image. The well-known morphological operators opening and closing are 
often applied as filters. Depending on the shape and size of the chosen structuring 
element as well as the objects in the image, this procedure can result in artifacts in 
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the filtered image. To avoid these artifacts, opening and closing by  reconstruction 
are  preferable (Gonzalez and Woods, 2008; Pesaresi and Benediktsson, 2001). Here, 
derivative morphological profiles (DMPs) are proposed, which can be calculated 
as the difference between pairs of morphologically filtered images by using sequen-
tially increasing structuring elements. The idea of multiscale morphological seg-
mentation is based on the assumption that the derivative of profile curves can be 
considered as some sort of a structural or morphological signature of an object class. 
Thus, it can be used to discriminate pixels by their morphological characteristics 
(Fauvel et al., 2005).

In the following section, we will concentrate on the development of a suit-
able extraction procedure for 3D information, which will later be included in 
the CEST change detection procedure. As no stereo pair or 3D information is 
available for the previous study sites, we developed this procedure for a test area 
with suitable stereo coverage. It can, however, be transferred to other areas with 
available stereo images.

17.5.3 Datasets anD stUDy site

Although the final aim of our research is the automated 3D change detection for 
different satellite sensors, the method was developed using Cartosat images. The 
sensor provides panchromatic stereo images with a spatial resolution of 2.5 m. It is 
especially interesting as it features high spatial resolution, and a growing number of 
countries worldwide will have their own satellite systems with similar characteristics 
in the near future. Thus, a generic change detection approach is required that can be 
applied to such types of images.

DSMs generated from Cartosat images by means of SGM have lower resolution 
than the original 5 m stereo pairs. Moreover, they typically have some crucial inac-
curacies in comparison to optical images. Hence, the shapes of building footprints 
are rather distorted, neighboring buildings can hardly be separated and form some 
sort of 3D composite object, and some buildings are also completely missing. A 
source for these problems is missing mutual information for some corresponding 
parts of the stereo images (Tian and Reinartz, 2011). Poor DSM quality is particu-
larly reported at the shadow side of buildings.

The Cartosat images used in this work were acquired in 2008 and depict the 
Anatolian Coast of Istanbul. This region is especially interesting due to its rap-
idly developing real estate and new residential areas. In order to clearly illustrate 
the approach, a smaller subset of this area was chosen, which is located north 
of the Sabiha Gökçen airport (see Figure 17.18a). As can be noticed, it is often 
difficult to recognize object boundaries. Some edges of building footprints are 
blurred and overexposed, so that there is no visible boundary between objects and 
background. Due to their rectangular shape, it is also difficult to distinguish flat 
objects like sports fields or parking lots from building roofs. In addition, the basic 
hypothesis that buildings are usually brighter than their background as assumed 
in Jin and Davis (2005) and Huang and Zhang (2012) does not always apply. 
Hence, the availability of shadows is often the only way to detect the presence of 
3D objects.
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FIGURE 17.18 (See color insert.) (a) Cartosat orthophoto with 2.5 m resolution, (b) filtered 
orthophoto with 0.5 m resolution, (c) extracted shadows, (d) estimated ground plans overlaid 
with skeletons, (e) reconstructed 3D building models, and (f) DSM with 5 m resolution gener-
ated from the original stereo pair.
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17.5.4 prOpOseD 3D chanGe DetectiOn apprOach

17.5.4.1 Shadow Extraction
Shadows at the used image resolution may just cover 2–3 pixels, which makes 
comprehensive analysis problematic and complex. For this reason, we increase the 
image resolution by bilinear interpolation, which avoids abrupt intensity changes 
between neighboring pixels. Numerous experiments on morphological segmentation 
by means of closing by reconstruction show that the direct usage of interpolated 
images does not provide satisfactory results. Important shadow features are missing 
because of insufficient background contrast. Moreover, the heterogeneity regarding 
the intensity inside a shadowed region can yield only a partial identification, so that 
only a small part of a single feature is identified or the feature is divided into two 
parts. In order to enhance the image features with a controlled frequency response, 
a filtering in the frequency domain is performed. First, a high-frequency filter is 
applied in order to sharpen object edges and accentuate smaller features, which may 
hardly be perceptible in the original resolution. Here, a small constant (an offset) is 
added to the transfer function of the high pass filter, which preserves image tonality. 
The second parameter is a filter multiplier, which controls the contribution of high 
frequencies (Gonzalez and Woods, 2008). The filter image is then smoothed with a 
low pass filter, which reduces pixel patterns that result from the previous steps. The 
result is shown in Figure 17.18b. In this example, a 5% threshold of the frequency 
spectrum is used for high pass filtering with offset and multiplier values 0.5 and 2.0, 
respectively.

The results of closing by reconstruction with a circular structuring element of 
pixel size 10 can be seen in Figure 17.18c. It reveals the effectiveness of this method 
for identifying local minima. It is especially important as shadow features, in some 
cases, can have even lighter intensities than rooftops. Moreover, even very dark roof-
tops can also be successfully distinguished from adjacent shadows.

17.5.4.2 Building Outline Generation
In the next step, the extracted shadows are used to generate building outlines. 
However, depending on the shape and orientation of a building, only those parts of 
the building that face away from the sun actually cast shadows and those shadow 
areas might not even be connected. This makes it rather impossible to generate 
complete building outlines. However, if we decompose the shadow into linearly 
shaped components, one can assume that each component is bordered by a four-
sided building polygon at its sun-facing side. While the length of this polygon can 
be derived from the length of the adjoining shadow component, the width has to be 
estimated by using a realistic constant value. If two consecutive components form 
a convex angle (with regard to the building interior), then both components are 
bordered by the same four-sided polygon and its length and width can be derived. 
As concave angles between components cannot be utilized as easily, they are 
ignored in the process, resulting in the drawback that two small  building objects 
are often extracted instead of a larger one. Keeping these assumptions in mind, 
one can generate rough building outlines of quadrangular shape as explained in 
the following paragraph.
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The binary shadow image is skeletonized by reducing the boundaries until the 
shadow areas are only one pixel wide. Then the remaining skeleton pixels are 
traced according to their 8-neighborhood, generating connected linear compo-
nents that are subsequently simplified by the Douglas–Peucker algorithm (Douglas 
and Peucker, 1973). The resulting piecewise linear curves reflect well the topol-
ogy of the shadows. They are, however, geometrically inaccurate at the vertices, 
because skeletonizing tends to smoothen the corners. Therefore, each line segment 
is recalculated from its constituent skeleton pixels, which are identified as lying 
closer to the currently regarded segment than to any other segment of the curve. 
An exhaustive search over all the lines going through any two pixels is performed, 
choosing the one that best fits all pixels. As the number of pixels per line segment 
is rather small, this approach still performs efficiently. It has the additional advan-
tage that the pixels at the end of the line can be simultaneously filtered out if they 
start to deviate too far from the line. The line segments are then pulled toward the 
sun, so that they are located optimally between the boundary pixels of the shadow 
and their neighboring building pixels. Finally, four-sided building outlines can be 
synthesized from these linear shadow components (Figure 17.18d).

Once the building outlines are available, their heights are derived by shadow 
simulation. A large number of 3D building models are generated, all with uniformly 
increasing heights. At this time, only flat roofs are considered, but the process can 
be extended to other shapes like saddleback and hipped roofs. Then their shadows 
are rendered based on the same “sun parameters” as the Cartosat images. We make 
use of the shadow mapping algorithm (Williams, 1978). The scene is rendered from 
the sun’s position, creating a so-called shadow map. Then the scene is rendered 
again, but now from the sensor’s viewpoint. Each rendered fragment is transformed 
into light space and checked against the shadow map. If it is further away than the 
stored value, then it is lying in shadow. The simulated shadows are compared to the 
extracted shadow image, and the height that results in the best fit is chosen.

17.6 CONCLUSIONS AND FUTURE WORK

In this chapter, a new automated change detection method (CEST) and some possi-
ble extensions are presented. CEST consists of (a) adaptive filtering in the frequency 
domain with edge detection in the spatial domain, (b) calculation of the texture features 
“homogeneity” and “energy” with a PCA change detection approach, and (c) segment 
based correlation. This combined method is compared to five standard change detection 
algorithms (image difference, image ratio, PCA, MAD, and postclassification analysis). 
Results are visually and quantitatively analyzed. The accuracy assessment shows that 
the CEST method is far superior to the standard techniques for change detection. 
Despite the fact that CEST is more complex than the tested standards methods, CEST 
can be completely automated and transferred to other areas. The combined method 
yields an overall accuracy of 80% and more than 90% of the unchanged buildings could 
be correctly identified.

If available, existing building information that is stored in a GIS or a cadastral data-
base can be incorporated into the change detection process. It is shown that the com-
bination of the DPC algorithm and the IDM texture feature is a very reliable option 
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for change analysis with classification accuracies of better than 95%. Consequently, 
the GIS option will be included in the future CEST procedure (see Figure 17.19).

Cadastral databases do not usually provide 3D information, which is another 
important input into the change detection process. We therefore developed an algo-
rithm to extract building heights from shadows that are visible in satellite images 
of very high spatial resolution. The success of this procedure encouraged us to also 
include the 3D information extraction process in the CEST method. Figure 17.19 
presents a general concept for a robust and reliable change analysis using remotely 
sensed data, GIS, and 3D information.
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18.1 STATE OF THE ART

18.1.1  fUsiOn Of synthetic apertUre raDar anD Optical 
Data fOr Urban lanD cOver mappinG

Urban areas are regarded as a very complex landscape in terms of the diversity 
of land cover types and the shape and pattern of various urban features. Accurate 
and up-to-date information on urban land cover is a challenging task but of cru-
cial importance for urban planning, environment protection, and policy-making. 
Urban extent extraction and land cover mapping have been studied using a range 
of remotely sensed data and algorithms. Gamba and Herold (2009) summarized 
the topic with a special focus on global monitoring. High-resolution optical 
imagery and object-based approaches are often used for urban applications at 
the local level, while regional or global analysis generally exploits moderate- or 
coarse-resolution optical images and pixel-based methods (Gamba and Lisini, 
2013). In addition to optical data, synthetic aperture radar (SAR) systems have 
been playing an increasingly important role in urban analysis due to their ability 
to acquire images day and night in all weathers and to the fact that the number 
of advanced SAR systems in operation is increasing (Rogan and Chen, 2004). 
However, the specific imaging characteristics of SAR systems and the existence 
of speckle noise make the interpretation of SAR images in urban areas generally 
more difficult compared to the analysis of optical images. Nevertheless, SAR 
data have been investigated for urban extent extraction and land cover mapping 
with promising results (Ban et al., 2010, Gamba et al., 2011; Hu and Ban, 2012, 
Niu and Ban, 2013).

The fusion of optical and SAR data for land cover classification is of increasing 
interest due to their distinct and complementary features (Ban, 2003; Ban and Jacob, 
2013). Optical images contain information on the reflective and emissive character-
istics of surface features, while SAR images record the intensities of radar returns 
from surface features, which are mainly determined by SAR systems properties and 
surface structure and dielectric properties (Xia and Henderson, 1997; Amarsaikhan 
and Douglas, 2004). Land cover types that are difficult to discriminate in optical 
images may be easily separated with SAR images and vice versa because of the com-
plementary information provided by the two datasets (Amarsaikhan and Douglas, 
2004). The integration of optical and SAR data for land cover classification has been 
widely investigated in the literature and this topic was recently summarized by Zhu 
et al. (2012). All studies indicate that the results from the combined use of opti-
cal and SAR data are better than those obtained using an individual data source 
(Amarsaikhan et al., 2012; Zhu et al., 2012).

Various combinations of optical and SAR images acquired by a range of sensors 
have been explored for urban extent extraction and land cover mapping. Landsat 
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), SPOT, and 
QuickBird are typical optical data sources, while SAR data are often acquired by 
SAR systems with moderate or high resolutions such as environmental satellite 
(ENVISAT), advanced synthetic aperture radar (ASAR), RADARSAT SAR, and 
TerraSAR-X SAR (Alparone et al., 2004; Ban et al., 2010; Leinenkugel et al., 2011).
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The simplest way of fusing optical and SAR data for urban extent and land cover 
mapping is to place all images in a single dataset and then apply certain classifiers 
to generate a classification map. Zhu et al. (2012) tested the integration of Landsat 
ETM+ and single-season advanced land-observing satellite (ALOS) phased array type 
L-band synthetic aperture radar (PALSAR) data for the classification of 17 land cover 
categories in urban and peri-urban environments. The contribution of different dimen-
sions (spectral, polarimetric, temporal, and spatial) of input data to a random forest 
classifier was evaluated with map accuracy statistics. The results demonstrated the 
value of combining multitemporal Landsat imagery, ALOS PALSAR data, and texture 
variables for land cover classification in urban and peri-urban environments. Griffiths 
et al. (2010) combined Landsat TM/ETM+ images and SAR images from ERS-1/2 
and ASAR by simply stacking them and then employed support vector machines 
(SVMs) to map urban growth in the Dhaka megacity region between 1990 and 2006. 
Soria-Ruiz et al. (2010) demonstrated that the combination of Radarsat-1 C-band SAR 
data and Landsat ETM+ band 5 and 7 images produced more accurate land cover 
maps than the use of Landsat ETM+ band 2–4 images in a region experiencing rapid 
urbanization. If either type of dataset contains too many images, principal component 
analysis (PCA) could be used to decrease the number of inputs of that dataset in order 
to reduce the training time of the classifier (Pacifici et al., 2008). Haack et al. (2002) 
compared space-borne radar and optical data for urban delineation and found that the 
classification of combined radar and TM data produced better results.

Some fusion techniques can be used to derive a new dataset from the original 
optical and SAR data that is then used for urban extent and land cover mapping. 
Amarsaikhan et al. (2012) compared the performances of six fusion techniques for 
the enhancement of urban features and improvement of urban land cover classifica-
tion. The six fusion techniques include multiplicative method, Brovey transform, 
PCA, Gram–Schmidt fusion, wavelet-based fusion, and Elhers fusion. Of these 
methods, wavelet-based fusion of optical and SAR data produced the best results. Lu 
et al. (2011) investigated the fusion of Landsat TM and radar (i.e., ALOS PALSAR 
L-band and RADARSAT-2 C-band) data for mapping impervious surfaces. TM and 
radar data were fused by the wavelet-merging technique to produce a new dataset, 
which was then unmixed to four fraction images. The impervious surface image was 
extracted from two fraction images. Their research indicated that the fusion image 
with 10 m spatial resolution was suitable for such applications and radar data with dif-
ferent wavelengths did not show significant difference in improving the performance 
of impervious surface mapping. Cao and Jin (2007) applied PCA to fuse ETM+ 
infrared and SAR images and selected the first three components of PCA as inputs 
used to train the classifier. The results showed that fusion of the infrared and SAR 
images improved classification accuracy. Alparone et al. (2004) presented a multisen-
sor image fusion algorithm based on generalized intensity modulation for the inte-
gration of multispectral and SAR images. The algorithm was applied to Landsat-7 
ETM+ and ERS-2 SAR images of an urban area and the results demonstrated that 
the algorithm had the advantage of preserving spectral and textural information of 
both datasets, which can be useful for visual analysis and classification. Henderson 
et al. (2002) merged SAR data with TM data using four different techniques, namely, 
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concatenation, image addition, image weighting, and PCA fusion, and then used the 
fused data for land cover mapping in a rapidly urbanizing coastal area. Their results 
indicated that simple fusion techniques improve classification accuracy more than 
complex image merge methods do.

Fusion of optical and SAR data can also be conducted at object or feature level 
for urban land cover classification. Ban and Jacob (2013) investigated the fusion of 
multitemporal ENVISAT ASAR and Chinese HJ-1B multispectral data for detailed 
urban land cover mapping using an object-based approach and an SVM classifier. 
After image segmentation, several features were calculated for each image object 
from SAR and optical images and these features were used as input into SVM. The 
results showed that the fusion of SAR and multispectral data improved classification 
accuracy, and fewer multitemporal SAR images could be used for fusion and clas-
sification if multitemporal multiangle dual-look-direction SAR data are carefully 
selected. Amarsaikhan et al. (2007) found that the rule-based method at feature level 
achieved higher accuracy than a standard supervised classification method for urban 
land cover mapping with the integrated use of optical and InSAR data.

Decision level fusion is another approach to the combined utilization of optical 
and SAR data for urban land cover mapping. Ban et al. (2010) applied an object-
based and knowledge-based approach to urban land use/land cover mapping with 
QuickBird multispectral data and multitemporal RADARSAT Fine-Beam C-HH 
SAR data. Decision level fusion of QuickBird classification and RADARSAT SAR 
classification took advantage of the best classifications of both optical and SAR data. 
Several confused classes from QuickBird images were separated by the integration 
of SAR classification results.

Urban extent extraction and classification can be carried out using individual 
datasets, but with the assistance of the other dataset. For example, impervious 
surface estimation was conducted using SPOT-5 data (Leinenkugel et al., 2011). 
Single-polarized TerraSAR-X data and the object-oriented classification approach 
were used in the study to delineate settlement areas in order to exclude irrelevant 
areas such as natural and undeveloped land from the impervious surface estima-
tion process. Optical images can also be used as ancillary data to improve SAR 
image classification in urban areas. Normalized Difference Vegetation Index 
(NDVI) derived from optical data can be utilized to exclude small green urban 
areas when extracting built-up extent with SAR data (Gamba and Aldrighi, 2012).

Palubinskas (2012) presented a general workflow for optical and SAR data fusion 
and examined the aspects and parameters that can influence the quality of opti-
cal and SAR data fusion and classification accuracy. The aspects and parameters 
include data acquisition/selection, orthorectification, coregistration, feature extrac-
tion, clustering, fusion, classification, and quality assessment. Data selection usually 
depends on the availability of optical and SAR data and the requirements of the 
specific application. Improvement of data inputs to the classifiers tends to be more 
beneficial for urban land cover classification than improvement of classification algo-
rithms (Zhu et al., 2012). The method for fusing optical and SAR data in a specific 
application should be carefully selected in order to take maximum advantage of the 
information contained in the data.



357Fusion of SAR and Optical Data

18.1.2 fUsiOn Of sar anD Optical Data fOr Urban chanGe DetectiOn

Similar to mapping urban land cover, monitoring urban land cover change in a 
timely and accurate manner is of critical importance for urban planning, environ-
mental monitoring, and sustainable management of land resources. Remote sensing 
data have become a major source used for change detection due to the advances in 
sensor technology. The ultimate purpose of image fusion is to enhance and improve 
change detection results for intended applications. Fusion typically involves differ-
ent types of images, for example, images with different sensors and/or spatial or 
spectral resolution. In change detection analysis, the fusion of SAR and optical data 
is important from two perspectives. First, the limited availability of data, often opti-
cal data due to cloud cover, forces the generation of a change indicator through the 
comparison of an image pair acquired over the same area but from a different sensor. 
Although the images were acquired with sensors that have different modalities, they 
are two different representations of the same physical reality and consequently can 
be compared (Inglada and Giros, 2004). Recently, similarity measures have played 
an essential role in performing such complicated image comparison. Mercier et al. 
(2008), for example, successfully used the Kullback–Leibler divergence to com-
pare an ERS SAR image with a SPOT image. Second, single-source multitemporal 
images (optical or radar) are known for their limited capacity to provide exhaustive 
observation of changes that have occurred on the ground. Change detection analysis 
can benefit from the complementary nature of the change information represented 
by SAR and optical multitemporal datasets. In an attempt to improve the quality 
of the binary change map, for example, Bruzzone and Prieto (2000) proposed an 
unsupervised change detection approach that uses consensus theory to integrate 
many change variables. Poulain et al. (2009) fused features extracted from SAR and 
high-resolution optical images to update cartographic database. Their methodology 
is not change detection in the traditional sense, as the detection of new buildings is 
achieved by comparing high-resolution images with the existing older vector data-
base. To achieve this goal, many primitives were extracted from the optical and SAR 
images, for example, edges, vegetation, and shadows. Evidence constructed based on 
these features is then fused using the Dempster–Shafer evidence theory to provide 
a score for each building. This score is then used to decide whether or not to update 
the vector database.

Although important, only few studies were found in the literature on fusion of 
SAR and optical data for urban change detection. For example, Onana et al. (2003) 
fused change information extracted from multitemporal SAR images with the NDVI 
image extracted from a single SPOT image. Based on multitemporal SAR images, 
they extracted two change variables, namely, pixel-by-pixel ratio measure and cross-
correlation measure. The SPOT-based NDVI image was fused with the change indi-
cators mentioned earlier at the interpretation level, where a set of IF-THEN structures 
were used. A similar approach was used by Bujor et al. (2001), who extracted dis-
tances from each pixel to the nearest road from a topographic map instead of the 
NDVI image. The problem with these approaches is that intensive prior information 
is required as the fusion rules were developed by codifying expert knowledge.
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Many change detection techniques, however, have been developed in recent 
decades for the analysis of multitemporal SAR or optical images, respectively, and 
will be reviewed here. Successful change detection needs to consider characteris-
tics of remote sensing systems and the environment to be monitored, and select a 
suitable method for change detection. Two steps are essential in change detection: 
(i) deriving change variables from multitemporal remote sensing images and (ii) gen-
erating change maps. In this chapter, the approaches for deriving change variables 
from multitemporal optical and SAR data are briefly presented first. Then the meth-
ods for generating change maps are summarized into four groups: (1) unsupervised 
approaches, (2) supervised approaches, (3) object-based approaches, and (4) other 
approaches.

18.1.2.1  Deriving Change Variables from Multitemporal 
Remote Sensing Images

A comprehensive review was provided by Lu et al. (2004) on the mathematical oper-
ators that can be used to compare multitemporal optical remote sensing images, 
for example, image differencing (ID), image ratioing (IR), and image regression. 
Berberoglu and Akin (2009) found IR to be effective in reducing topographic effects 
like variation in illumination and shadowing. However, IR produces relatively poor 
results compared with ID. Change vector analysis (CVA) is an extension of the con-
cept of ID, which is particularly tailored for comparing multispectral multitempo-
ral images. He et al. (2011) extended the CVA technique to include textural change 
information. Bovolo and Bruzzone (2007) found that the use of CVA magnitude does 
not in fact utilize all the information contained in the multitemporal multispectral 
difference image. They suggested transforming the spectral change vector from the 
Cartesian to the polar coordinate system, in which they developed rigorous statistical 
distributions for the magnitude and the direction random variables.

Comparison of multitemporal optical remote sensing images can also be car-
ried out in a new transformed space instead of in the raw data domain defined by 
the observed multitemporal images. A simple example is differencing multitempo-
ral NDVI images, where the measured intensities in each image—that is, red and 
near-infrared values—are first transformed to the NDVI space (Lyon et al., 1998). 
Similarly, Cakir et al. (2006) transformed each individual image in the multitem-
poral dataset to a component space using correspondence analysis. The difference 
image is then constructed in this new space.

Comparison of multitemporal SAR images is commonly carried out using the 
ratio operator as ratioing of the multitemporal radar intensities is shown to be better 
adapted to the statistical characteristics of SAR data than subtracting (Rignot and 
van Zyl, 1993; Moser and Serpico, 2006). Ratio-related operators have also been 
used to compare SAR images, including the log ratio (Bazi et al., 2005), modified 
ratio (Ban and Yousif, 2012), and the normalized mean ratio (Ma et al., 2012). Bujor 
et al. (2003) compared different types of parameters to quantify temporal changes 
based on SAR images and found the ratio operator to be especially suitable for the 
detection of steplike changes. Hachicha and Chaabane (2010) suggested two dif-
ferent types of change indicators that were developed based on the assumption 
that SAR amplitudes are Rayleigh-distributed. The first indicator (Rayleigh ratio 
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detector) works per pixel and uses first-order statistics, while the second one, the 
Rayleigh Kullback–Leibler divergence, utilizes higher-order statistics.

The comparison of multitemporal SAR images can also be carried out using 
similarity measures. These measures have been used extensively in the field of auto-
matic image-to-image registration as a means of quantifying similarity in the spatial 
domain. In the context of change detection analysis, given two coregistered images, 
similarity measures can be used to quantify temporal rather than spatial similarity 
(Alberga, 2009). The strength of similarity measures lies in the fact that the estima-
tion of the change indicator takes into account the pixel and its neighborhood in con-
trast to traditional arithmetic operators, which work per pixel and normally ignore 
the contextual information (Inglada and Mercier, 2007).

18.1.2.2 Unsupervised Change Detection
The advantage of unsupervised change detection algorithms is that no prior knowl-
edge about the study area (in the form of training data) is required. An unsupervised 
change detection algorithm normally accepts multitemporal images as input and out-
puts a binary (or ternary) change map that shows changed versus unchanged areas. 
The main disadvantage of this type of algorithm is therefore the lack of detailed 
from–to change information. Unsupervised change detection approaches include 
image algebra (e.g., band differencing, band ratioing), CVA, unsupervised classi-
fication of multidate images or change variables, PCA, chi square transformation, 
minimum-error thresholding algorithms, and contextual-based methods.

Image algebra is relatively easy to implement and interpret, but it cannot pro-
vide “from–to” change information and requires careful selection of the “change/
no change” threshold. Image differencing subtracts pixel by pixel the same band of 
images acquired at two times to produce a new image. A threshold is then selected 
by analyzing the difference image to transform the difference image into a binary 
“change/no change” map. IR is similar to ID, except that the comparison between 
images is conducted by computing the ratio. ID can be extended to compare the 
vegetation index derived from multiple dates of images. For example, researchers 
computed an NDVI on two dates and then subtracted one from the other to generate 
a change image (e.g., Townshend and Justice, 1995; Lyon et al., 1998). Bruzzone and 
Prieto (2000) proposed two automatic techniques (based on the Bayes theory) for the 
analysis of the difference image. One allows an automatic selection of the decision 
threshold that minimizes the overall change detection error probability under the 
assumption that pixels in the difference image are independent of one another. The 
other analyzes the difference image by considering the spatial–contextual informa-
tion included in the neighborhood of each pixel. Their experimental results con-
firmed the effectiveness of both proposed techniques.

In spectral CVA, each pixel at each date is represented by its vector in spec-
tral feature space and the spectral change vector is then computed as the difference 
between the feature vectors at the two dates. The magnitude of the change vector 
is used to detect the presence of change using a carefully selected threshold, while 
the direction of the change vector contains information about the type of change. 
Kontoes (2008) used the CVA method to detect land cover change in three test sites 
and achieved high overall accuracies. Sohl (1999) investigated five change detection 
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techniques in the Abu Dhabi Emirate using Landsat TM data, including univariate 
image differencing, an “enhanced” image differencing, vegetation index differenc-
ing, postclassification differencing, and CVA. The enhanced ID technique provided 
most accurate specific quantitative values of change, while the CVA excelled at pro-
viding rich qualitative detail about the nature of a change.

Unsupervised classification of multidate images has been used to detect land cover 
changes (Jensen, 2005). Images of different dates are first placed together in a sin-
gle dataset and then unsupervised classification can be performed on this composite 
 dataset to create clusters. The analyst identifies and labels the clusters as “change” or 
“no change.” This method requires only single classification, but it is difficult to label 
change classes. Mas (1999) tested six change detection techniques including direct 
multidate unsupervised classification for detecting areas of changes in a coastal zone 
in Mexico and found that postclassification comparison (PCC) was the most accurate 
procedure.

The techniques based on PCA can be used to perform change detection by applying 
the principal component transformation to the multidate composite image. The trans-
formation produces a new, uncorrelated PCA image dataset (Jensen, 2005). The major 
components of the dataset tend to account for variation in the image data that is not 
due to land cover change, while the minor components are likely to enhance spectral 
contrasts between the two dates (Collins and Woodcock, 1996). Another way to apply 
PCA for change detection is to perform PCA separately and then subtract the second-
date component image from the corresponding one (Kwarteng and Chavez, 1998). 
The difficulty of using PCA for change detection lies in interpreting and labeling each 
component image. Another disadvantage is that this method cannot provide detailed 
“from–to” change information. It is possible, however, to classify the PCAs of multitem-
poral images using supervised classification. Li and Yeh (1998), for example, used the 
method to monitor rapid land use change and urban expansion in the Pearl River Delta.

Ridd and Liu (1998) introduced a chi square transformation method for change 
detection. The advantage of the method is that multiple bands are simultaneously 
considered to produce a single-change image. A potential disadvantage is that change 
related to specific spectral direction may not be readily identified. Another drawback 
of this method is that it does not perform well in an area where a large portion of the 
image is changed.

The minimum-error thresholding algorithm proposed by Kittler and Illingworth 
(1986) has been used extensively in the field of change detection. This algorithm was 
developed based on the Bayesian decision theory using the histogram-fitting tech-
nique to estimate the unknown probabilities and an optimum threshold for separat-
ing the object from the background in the image. The Kittler–Illingworth algorithm 
is known to be a fast and effective thresholding tool. Melgani et al. (2002) used the 
algorithm successfully thresholding a change variable derived from multispectral 
multitemporal images. To deal with the non-Gaussian nature of the SAR images, the 
minimum-error thresholding algorithm was generalized by Bazi et al. (2005) and 
Moser and Serpico (2006), whose studies propose different types of density function 
models suitable for describing the statistics of the changed and unchanged classes in 
an SAR change image. Ban and Yousif (2012) examined four different density func-
tion models for urban change detection using multitemporal SAR data and found 
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that the log normal, the Nakagami ratio, produced better change detection results 
than the generalized Gaussian model and the Weibull ratio model. Essentially, the 
algorithm assumes the existence of one object (i.e., one typology of change) and one 
background. Bazi et al. (2006) successfully applied the algorithm to a case in which 
more than one typology of change existed in the study area—that is, to a case with 
more than one threshold. The main drawback of the multithreshold version of the 
Kittler–Illingworth algorithm is its high computational complexity.

Several contextual-based techniques have been developed for unsupervised 
change detection using multitemporal images. For example, Bruzzone and Prieto 
(2000) developed two unsupervised change detection methods. The first method 
automatically selects the decision threshold that minimizes the probability of error. 
The second method analyzes the difference image by taking into consideration the 
spatio–contextual information included in the neighborhood of each pixel. Celik 
(2010) considered unsupervised change detection to be an intensive search for a 
change mask that optimizes a minimum mean square (MSE) criterion function. The 
genetic algorithm is used to search for this optimum mask—that is, the change map. 
Celik (2009) used the PCA technique to map local neighborhoods in the difference 
image to a higher-dimensional space defined using nonoverlapping image blocks. 
The k-means algorithm was then used to automatically separate the changed from 
the unchanged areas. Moser et al. (2007) developed an unsupervised change detection 
algorithm based on Markov random field (MRF). In their work, the approximate 
change map necessary to run the MRF-based algorithm was obtained by applying 
the Kittler–Illingworth algorithm. Similarly, a context-based unsupervised change 
detection algorithm was proposed by Bruzzone and Prieto (2002) using a Parzen 
estimate to model the likelihood function of the observations.

18.1.2.3 Supervised Change Detection
Traditionally, supervised change detection is carried out using PCC logic. It con-
sists of classifying each image in the multitemporal dataset independently using the 
same classification scheme. The detailed from–to change information can then be 
extracted by comparing the classified images on a pixel-by-pixel basis. For example, 
Yuan et al. (2005) applied the method to a series of Landsat images in order to study 
the dynamics of the land cover change over the Twin Cities Metropolitan Area. Del 
Frate et al. (2008) used PCC to extract change information from multitemporal SAR 
images. Instead of using the maximum likelihood classifier, the authors used an 
artificial neural network for the classification of each SAR image. Walter (2004) 
and Zhou et al. (2008) extracted the change information by comparing images clas-
sified using object-based techniques instead of a per-pixel classification. Castellana 
et al. (2007) improved the accuracy of the change detection process by combining 
supervised postclassification logic with an unsupervised change detection algorithm.

Supervised change detection is not restricted to PCC logic. For example, Volpi 
et al. (2013) investigated supervised change detection using two techniques, namely, 
multidate classification and analysis of difference image. To address the problem of 
high intraclass variability, the authors suggested using an SVM classifier. Similarly, 
Nemmour and Chibani (2006) extracted urban growth in the Algerian capital from 
Landsat multitemporal images using the SVM classifier.
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The main drawback with the supervised change detecting method is the need 
for high-quality training data to classify each image in the multitemporal dataset. 
This turns out to be very difficult to achieve, especially for older images. Many 
semisupervised change detection algorithms have been developed that require only a 
limited amount of ground information or limited interaction from the analyst (Moser 
et al., 2002).

18.1.2.4 Object-Based Change Detection
Object-based change detection (OBCD) can be defined as “the process of identify-
ing differences in geographic objects at different moments using object-based image 
analysis” (Chen et al., 2012). Compared with the traditional pixel-based change detec-
tion, OBCD is able to improve the identification of changes for the geographic entities 
found over a given landscape. There are mainly four ways to perform OBCD: direct 
comparison, comparison after object-based classification, multitemporal segmenta-
tion and comparison, and integration of pixel-based and object-based approaches.

Direct comparison detects changes by directly comparing image objects and apply-
ing a threshold. Multitemporal images are usually segmented separately and changes 
are then analyzed based on objects’ spectral information (e.g., averaged band values) 
and/or associated features of the objects (e.g., texture and geometry). This approach 
is straightforward, but it needs to search for spatially corresponding objects in mul-
titemporal images and select an appropriate change threshold. Lefebvre et al. (2008) 
proposed an OBCD method that jointly deals with the analysis of the object contours 
and the analysis of texture evolution. A geometric change index and a content change 
index were developed. Their results indicated that both object contour and texture 
features were effective for change detection purposes in very-high-resolution images. 
Hall and Hay (2003) introduced an object-based multiscale digital change detection 
approach, which first segmented panchromatic SPOT images from two dates and 
then directly applied an ID method to detect object changes at different scales. Their 
results showed that the proposed approach had the ability to automatically detect 
changes at multiple scales as well as suppress sensor-related noise.

A direct comparison of image objects cannot easily provide “from–to” change 
information. Similar to pixel-based postclassification change detection, compari-
son after object-based classification detects land cover changes by comparing the 
independently classified objects from multitemporal images. The performance of 
OBCD is strongly influenced by both segmentation and classification procedures. 
For example, Laliberte et al. (2004) conducted image segmentation and object-based 
classification on 11 aerial photos and 1 QuickBird image spanning 67 years to moni-
tor vegetation changes over time and found the usefulness of incorporating both 
spectral and spatial information in classification. Im et al. (2008) evaluated the per-
formance of incorporating object correlation images and neighborhood correlation 
images within the classification feature space. Their results showed that object-based 
change classifications incorporating these new features produced more accurate 
change detection classes. Blaschke (2005) argued that standard change detection 
and accuracy assessment techniques, which mainly rely on statistically assessing 
individual pixels, are not satisfactory for image objects that exhibit shape, bound-
ary, homogeneity, or topological information. Therefore, a Geographic Information 
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Systems (GIS) conceptual framework for image OBCD was developed and a series 
of rules were defined by considering object size, shape, and location.

In multitemporal segmentation and comparison approach, multitemporal images 
are combined and segmented together, producing spatially corresponding change 
objects. Consequently, the comparison of image objects is straightforward as objects 
at the same location in multitemporal images are of the same sizes and shapes. 
However, it is unclear whether this form of change detection is influenced by seg-
menting multitemporal images together, because different objects may exist at the 
same geographic location on different dates (Chen et al., 2012).

Integration of pixel-based and object-based approaches is another popular way 
to detect changes. The preliminary change information can be obtained using 
pixel-based techniques. Better change results are then generated by applying the 
object-based paradigm. Several studies have confirmed the effectiveness of integrat-
ing pixel-based procedures into OBCD schemes (e.g., Al-Khudhairy et al., 2005; 
McDermid et al., 2008; Bovolo, 2009). The integration of pixel- and object-based 
schemes reduces noisy and spurious changes, but it remains unclear how the final 
results are affected by the different combinations of pixel- and object-based schemes 
(Chen et al., 2012).

18.1.2.5 Other Approaches
In addition to the change detection techniques discussed earlier, there are also some 
less frequently used methods developed by researchers. Several studies employed 
integrated GIS and remote sensing method for change detection. Yang and Lo (2002) 
used an unsupervised classification approach, a GIS-based image spatial reclassifi-
cation procedure, and PCC with GIS overlay to map the spatial dynamics of land 
use and land cover change in the Atlanta metropolitan area. The integration of GIS 
showed many advantages over traditional change detection methods. Weng (2002) 
investigated land use change dynamics in the Zhujiang Delta of China by the com-
bined use of satellite remote sensing, GIS, and stochastic modeling technologies and 
indicated that such integration was an effective approach for analyzing the direction, 
rate, and spatial pattern of land use change. Durieux et al. (2008) applied an object-
based classification methodology to SPOT 5 images with a 2.5 m resolution. The 
extracted buildings were compared with the existing reference GIS maps to monitor 
building construction in urban sprawl areas.

Many novel change detection techniques were also developed in the past two 
decades. For example, Wang (1993) constructed a knowledge-based vision system 
for detecting land cover changes at urban fringes. Zhang et al. (2002) proposed a 
new structural method based on road density combined with spectral bands for 
urban built-up land change detection in Beijing, China. Kasetkasem and Varshney 
(2002) addressed the problem of image change detection based on MRF models. 
Nielsen (2007) proposed an iteratively reweighted multivariate alteration detection 
(IR-MAD) method for change detection in multi- and hyperspectral imagery. Chen 
et al. (2013) proposed a semisupervised context-sensitive technique for change 
detection in high-resolution multitemporal remote sensing images by analyzing 
the posterior probability of a probabilistic Gaussian process classifier within an 
MRF model.
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18.2 CASE STUDIES

18.2.1  fUsiOn Of envisat asar anD meris Data 
fOr Urban lanD cOver mappinG

18.2.1.1 Introduction
The objective of this research is to evaluate multitemporal, multi-incidence-
angle, dual-polarization ENVISAT ASAR, and the synergy of ASAR and MERIS 
data for urban land cover classification. The study area is located in the Greater 
Toronto Area (GTA), Ontario, Canada, where rapid urban expansion and sprawl 
has encroached onto the Oak Ridges Moraine, one of the most distinct and envi-
ronmentally significant landforms in southern Ontario. The major land use/land 
cover classes are high-density built-up areas, low-density built-up areas, roads, for-
ests, parks, golf courses, water, and four types of agricultural lands (winter wheat, 
pasture, corn, and soybeans). These 11 classes, adapted from the United States 
Geological Survey (USGS) land use/land cover classification scheme, were chosen 
to characterize the complex landscape and diverse land cover types in the GTA.

Eleven-date ENVISAT ASAR images in alternating polarization mode (C-HH 
and C-HV) with a spatial resolution of 30 m and a pixel spacing of 12.5 m were 
acquired from June to October in 2004 (Figure 18.1). The detailed descriptions of 
these images are given in Table 18.1. These 11-date SAR images can be grouped into 
two categories based on their beam position. The first group of images was acquired 
with a steep incidence angle in IS2 beam mode while the second group was acquired 
with shallow incidence angles.

FIGURE 18.1 (See color insert.) ENVISAR ASAR image over part of Toronto.
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Three 15-band MERIS scenes were acquired based on vegetation phenology, one 
in early-season scene on June 12, 2004: one in mid-season scene on August 8, 2004 
(Figure 18.2) and one in late-season scene on September 18, 2004.

Field data on various land use/land cover types, their roughness and moisture 
conditions, vegetation heights, and ground coverages were collected during each sat-
ellite overpass. Photographs were taken during fieldwork to assist image interpreta-
tion and analysis. Other sources of data such as digital topographic data, Landsat 
ETM+ imagery, and orthophotos were also used to georeference ASAR data and to 
assist selecting ground reference data for classification, calibration, and validation.

FIGURE 18.2 (See color insert.) ENVISAT MERIS image over Toronto.

TABLE 18.1
ENVISAT C-HH and C-HV ASAR Imagery

Acquisition Date Beam Position Incidence Angle Range (Degree) 

2004-06-28 IS2 19.2–26.7

2004-07-08 IS6 39.1–42.8

2004-07-24 IS7 42.5–45.2

2004-08-02 IS2 19.2–26.7

2004-08-12 IS6 39.3–42.1

2004-08-31 IS5 35.8–39.4

2004-09-06 IS2 19.2–26.7

2004-09-16 IS6 39.1–42.8

2004-10-02 IS7 42.5–45.2

2004-10-11 IS2 19.2–26.7

2004-10-21 IS6 39.1–42.8
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18.2.1.2 Methodology
18.2.1.2.1 Geometric Correction of SAR Images
To remove these relief displacements and bring the 11 images from several incidence 
angles to the same database, multitemporal ENVISAT ASAR imagery was orthorec-
tified to the National Topographic Database (NTDB) using satellite orbital models 
and a digital elevation model at 30 m resolution.

18.2.2.2.2 Texture Analysis
Texture is one of the significant parameters recognized by the human visual system, 
besides pixel brightness and color, for identifying objects or regions of interest in an 
image. Various studies showed that in most cases, texture, not intensity, is the most 
important source of information in high-resolution radar images (e.g., Ulaby et al., 
1986; Dobson et al., 1995). In this study, gray level co-occurrence matrix (GLCM)–
based texture measures including mean and standard deviation (SD) were analyzed. 
Using second-order spatial statistics, GLCM, which is a two-dimensional array, can 
provide conditional joint probabilities of all pairwise combinations of pixels within 
a computation window. An 11 × 11 window size was selected based on trials. The 
mean apply averaging of gray level in the local window and SD calculates the gray 
level SD in the local window using the following formulas (Jensen, 2005):
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18.2.2.2.3 Selection of Calibration and Validation Blocks
For each land use/land cover class, pixel sample blocks were randomly extracted in 
order to calibrate the classifier. To assess the accuracy of the classifications, valida-
tion pixels, independent from the calibration pixels, were randomly selected for each 
land use/land cover class. The selections of calibration and validation blocks were 
based on field data, Landsat ETM+ images, NTDB vectors, and maps.

18.2.2.2.4 Image Classification
Artificial neural networks (ANNs) are computer programs designed to simulate the 
human learning process through establishment and reinforcement of linkages between 
input data and output data. Presenting a nonparametric and distribution-free approach 
to image classification, ANN has been increasingly used in remote sensing applications 
(e.g., Foody, 1995; Jensen et al., 2001; Ban, 2003; Kavzoglu and Mather, 2003; Jensen, 
2005). A neural network consists of interconnected processing elements called nodes 
or neurons. It is an adaptive system that changes its structure during a learning phase.

The most interesting feature in neural networks is the possibility of learn-
ing. In remote sensing applications, ANNs are often composed of three elements. 
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An input layer consists of the source data, which in the context of remote sens-
ing are multispectral and/or SAR observations. The output layer consists of the 
classes required by the analyst. With training data, ANN establishes an associa-
tion between input and output data by the establishment of weights within one or 
more hidden layers during the training phase. ANNs are trained through the back-
propagation algorithm. This can be thought of as a retrospective examination of 
the links between input and output data in which differences between expected 
and actual results can be used to adjust weights (Campbell, 2002).

ANN is reported by many authors to be a more robust classifier than the tra-
ditional statistical approaches in the classification of multiresolution, multisource 
remote sensing/geographic data (e.g., Wilkinson et al., 1995, Ban, 2003). Therefore, 
it is desirable to investigate the effectiveness of ANNs for classifications of space-
borne multiresolution multisensor data.

18.2.2.2.5 Classification Accuracy Assessment
To assess the quality of the image classifications, various measures including overall 
accuracy and Kappa coefficient of agreement (or Kappa) were analyzed to compare 
classification results with the validation or reference data in confusion matrices.

18.2.1.3 Results and Discussion
18.2.1.3.1 Classification of ASAR Data
The classification results demonstrated that, for identifying urban land use/land 
cover classes, ASAR raw data yielded very poor results. The combination of seven-
date ASAR raw data in shallow incidence angles performed much better (9% in 
classification accuracy) than four-date ASAR raw data in steep incidence angles. The 
best overall validation accuracy and Kappa, however, were very low (Table 18.2). 
The inaccuracies were, in part, due to speckle in the raw radar images.

Classification of ASAR texture images yielded much better accuracies than that 
of raw SAR data (Table 18.2). Between the two texture measures, mean texture mea-
sure performed much better than SD. Similar to the results of ASAR raw data, the 
classifications of texture images in shallow incidence angles yielded 12% and 10% 
better classification accuracies using mean and combined mean and SD, respec-
tively, than that of the steep-angle IS2 texture images. The best classification result 
of 78.88% (Kappa, 0.77) was achieved with combined mean and SD texture images 
in both shallow and steep incidence angles. The results indicate that combinations 
of various texture measures, which can extract unique spatial relationships from the 
same SAR data, showed improvement over single-set texture measure because of 
their different, complementary information.

Table 18.3 presents the confusion matrix of the best ASAR classification result. 
Several land use/land cover classes such as water, winter wheat, and corn achieved 
very good classification accuracy. Classification accuracies for the majority of land 
cover classes were in the 70%–80% range. Classification of parks and forests yielded 
poor results. Forest was confused with low-density built-up areas because low-
density built-up areas were dominated by trees and small houses. Parks were con-
fused with roads and golf courses while golf courses were confused with roads due 
to their similar low backscatter characteristics in SAR images.
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TABLE 18.2
ANN Classification Accuracies of ASAR Images

ASAR Data Alone Overall Accuracy (%) Kappa 

IS2 raw 30.75 0.24

IS5_6_7 raw 39.52 0.33

June 28, mean and SD, C-HH and C-HV 48.34 0.43

July 08 and 24, mean and SD, C-HH and C-HV 57.94 0.54

June 28 and July 08 and July 24, mean and SD, C-HH and C-HV 63.23 0.59

June 28 and August 02, mean and SD, C-HH and C-HV 55.81 0.51

July 08 and July 24 and August 12 and August 31, mean and SD 68.25 0.65

June and July and August, mean and SD, C-HH and C-HV 68.98 0.66

IS2, mean, C-HH and C-HV 51.38 0.46

IS2, mean and SD, C-HH and C-HV 63.49 0.60

IS5_6_7, mean, C-HH and C-HV 63.40 0.60

IS5_6_7, mean and SD, C-HH and C-HV 73.61 0.71

All, mean and SD, C-HV 65.74 0.62

All, mean and SD, C-HH 70.90 0.68

All, mean, C-HH and C-HV 68.93 0.66

All, mean and SD, C-HH and C-HV 78.88 0.77

TABLE 18.3
Confusion Matrix for Classification of IS5_6_7 Mean and SD Texture 
Images Combined

 Reference Data 

Classified 
Data Water Roads LB HB 

Golf 
Courses Forest Parks Corn Soybeans 

Winter 
Wheat Pasture 

Water 93.3 5.7 0 0 1 0 0 0 0 0 0

Roads 0 74.2 0.1 0 13.2 0 7.6 0 0 2.4 2.6

LB 0 0 74.9 24.8 0 0.2 0 0 0 0 0

HB 0 5 13.5 79.2 0 1.6 0.3 0 0 0.3 0

Golf courses 0.9 16.6 0 0 70.1 0.3 12.2 0 0 0 0

Forest 0 0 25.1 3.2 0.1 67.7 0 0 0.7 0 3.2

Parks 0 18.9 1.2 0 12.7 1.7 61.6 0.9 0 0.4 2.6

Corn 0 0.3 3.1 0 0 0.1 0 88.9 2 2.6 2.9

Soybeans 0 0 0.3 0.4 0 0.2 0 11.1 82.7 0 5.3

Winter wheat 0 0 0 0 0 0 0 3.4 0.3 92.5 3.7

Pasture 0 0 1.9 0 0 7.3 0 0.1 1.6 7.4 81.7

Note: Values in italics highlight the overall accuracy for each land cover class.
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18.2.1.3.2 Synergy of ASAR and MERIS Data
The classification accuracies for various ASAR and MERIS data combinations are pre-
sented in Table 18.4. The results demonstrate that it is possible to achieve reasonable clas-
sification accuracy using early- to mid-season ASAR and MERIS images (70%). The 
best classification accuracy was achieved using the combination of all ASAR images 
and the August 8 MERIS images at peak vegetation season (overall 82%, Kappa 0.8, 
Table 18.5, Figure 18.3). This represents 4% increase in classification accuracy over the 
best classification of ASAR data alone. With the addition of August 8 MERIS data, 
confusions between forest and low-density built-up areas, and between parks, roads, 
and golf courses decreased significantly. Classification accuracies for all classes either 
improved or remained similar except for winter wheat. Winter wheat was confused 
with other agricultural classes. The addition of more MERIS images from other dates, 
however, decreased classification accuracy. This is in part caused by confusion among 
some land cover classes due to seasonal changes in vegetation that resulted in significant 
differences in spectral reflectance. The lower overall accuracy could also be caused by 
the use of more MERIS images in much lower spatial resolution (Figure 18.4).

18.2.1.4 Conclusions
Multitemporal multi-incidence–angle dual polarization ENVISAT ASAR data and syn-
ergy of ASAR and MERIS data were evaluated for extracting urban land cover infor-
mation. Eleven-date ENVISAT ASAR images were acquired from June to October in 
2004 for the classification of 11 land cover classes. The results demonstrated that, for 
identifying landscape/land cover classes, texture images yielded much better results than 
ASAR raw data. The classification of multitemporal ASAR texture images in shallow 
incidence angles yielded superior results than that of ASAR texture measures in steep 
incidence angles. The best classification result of 78.88% (Kappa, 0.766) was achieved 
with combined mean and SD texture images in both shallow and steep incidence angles.

The synergy of all ASAR texture images and August 8 MERIS images improved the 
classification accuracy by 4% (overall 82%, Kappa 0.8). The addition of MERIS data 
was able to resolve confusion between several classes in SAR images such as forest and 
low-density built-up areas, parks, and roads due to their similar backscatter character-
istics. The addition of more MERIS images from other dates, however, decreased clas-
sification accuracy. This is in part caused by confusion among some land cover classes 
due to seasonal changes in vegetation that resulted in significant differences in spectral 
reflectance. The lower overall accuracy could also be caused by the use of more MERIS 
images in much lower spatial resolution. The results indicate that attention needs to be 
focused on the selection of the optical data in appropriate seasons in data fusion.

18.2.2 fUsiOn Of sar Optical Data fOr Urban chanGe DetectiOn

18.2.2.1 Introduction
The objective of this research is to evaluate the fusion of SAR and optical data 
for urban change detection using the Kittler–Illingworth minimum-error thresh-
olding algorithm. A multitemporal SAR image pair, that is, ERS-2 SAR image 
acquired on September 7, 1999, and ENVISAT acquired on September 19, 2008, 
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TABLE 18.5
Confusion Matrix for Classification of ASAR and August 8 MERIS Images 
Combined

 Reference Data 

Classified 
Data Water Roads LB HB 

Golf 
Courses Forest Parks Corn Soybeans 

Winter 
Wheat Pasture 

Water 92.1 3.3 0 0 4.5 0 0 0 0 0 0

Roads 0 78.1 0 0 2.9 0 18.1 0 0 0.7 0.2

LB 0 0 70 30 0 0 0 0 0 0 0

HB 0 4.5 8.1 85.2 0 0 1.4 0 0 0.9 0

Golf courses 0 8.5 0 0 76.8 0 14.7 0 0 0 0

Forest 0 0 13.9 0.3 0 75.4 0.4 0.5 5 0.3 4.3

Parks 0 8.8 0.4 0 0 0 90.8 0 0 0 0

Corn 0 0 0 0 0 0.4 0 89.1 4.7 5.7 0

Soybeans 0 0 6.4 2.8 0 0 0 0 87.6 0 3.2

Winter wheat 0 0 0 0 0 0 0.2 11.4 22.3 59.9 6.2

Pasture 0 0 0 0 0 8.3 0 0.3 0 1.5 89.9

Note: Values in italics highlight the overall accuracy for each land cover class.

Water
Major road
LB
HB
Golf courses
Forest
Recreation areas
Corn fields
Soy fields
Winter wheat
Orange

FIGURE 18.3 (See color insert.) Urban land cover classification result: ASAR and MERIS.
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and a multitemporal Landsat image pair acquired on November 3, 1999, and July 
6, 2008, were selected to investigate the synergy of SAR and optical data for urban 
change detection in Shanghai.

18.2.2.2 Methodology
In the traditional Kittler–Illingworth minimum-error thresholding algorithm, a sin-
gle change variable is often used and the spatial dependence between neighboring 
pixels is deliberately ignored to convert the sophisticated threshold selection process 
to a simple search in one-dimensional feature space (Bazi et al., 2005, 2006; Inglada 
and Mercier, 2007; Ban and Yousif, 2012). This one-dimensional feature space is 
essential to the histogram fitting technique used to estimate the unknown probabili-
ties. The situation is complex when the change variable of interest is represented 
in a multidimensional feature space. In change detection, the change variable can 
be a vector consisting of many change indicators derived from multitemporal SAR 
and multispectral images. In this case, the application of the Kittler–Illingworth 
algorithm requires the projection or transformation of the multidimensional change 
variable to a one-dimensional feature space before the application of the Kittler–
Illingworth algorithm (Melgani et al., 2002).

Water
Major road
LB
HB
Golf courses
Forest
Recreation areas
Corn fields
Soy fields
Winter wheat
Orange

FIGURE 18.4 (See color insert.) Urban land cover classification result: MERIS.
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Bayesian decision theory is not restricted to scalar feature only. Measured feature 
can be a vector of random variables represented in multidimensional space that will 
necessitate a multivariate distribution to describe its likelihood. In this research, 
multivariate Gaussian will be adopted to model no change/change classes, as it rep-
resents the simplest multivariate model. Considering an unsupervised change detec-
tion problem with its binary nature, let us assume the change variable r to be an 
n-dimensional, random variable that is distributed according to multivariate normal 
distribution with n × 1 mean vector μi and n × n covariance matrix Σi, conditioned to 
change or no change classes. Then, the conditional multivariate normal distribution 
is given by
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where
Σi is the determinant
i : c for change class
i : u for no change class

If the conditional density functions and prior probabilities of change and no change 
classes are know in advance, it is possible to design a classifier that assigns a mea-
sured change vector r to one of the two possible classes as shown in Equation 18.2 
(Duda et al., 2001):
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This linear discriminant function is the result of the combination of two individual 
discriminant functions associated with change and no change classes. This combina-
tion does not change the decision surface as explained by Duda et al. (2001).

To construct a multiband change image that accentuates changed areas, let us 
assume that we have two sets of coregistered multitemporal images. The first data-
set is a pair of SAR images from which a change variable is derived based on the 
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modified ratio operator as described in Equation 18.2. The second dataset consists 
of two Landsat multispectral images, the change variable of which is constructed 
by taking the absolute value of the differenced bands of interest. It should be under-
stood that the first SAR and first Landsat images were acquired at the same time, 
and the same also applies to the second SAR and second Landsat images. Equation 
18.3 shows the multiband change image that resulted from combining the change 
variables derived from SAR and optical multitemporal images:
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where
∆ρBand = −BV BVBand

date
Band
date1 2

MR is themodified ratioof SAR images

The selection of the multispectral bands to be used in the combined change vector 
will depend on the nature of the change detection problem; for example, a subset 
of bands that turn out to be suitable for identifying changes in green cover may not 
perform well in identifying change associated with urban areas. Sometimes, the high 
correlation between two individual change variables, for example, may also force the 
use of one of them in the analysis to reduce unnecessary computation complexity 
without serious loss of information. Therefore, the selection of the suitable band is 
dictated by the problem in hand and no general rules can be applied here.

The combined SAR and optical solution for change detection was implemented on 
Shanghai data (Figure 18.5). The absolute difference of the green and mid-infrared 
bands of the Landsat multitemporal images was used together with the SAR modified 
ratio to construct the multidimensional change variable. The combined iterative solu-
tion consists of first estimating the class statistics from the multiband change image 
using the previously generated binary change map as a mask, followed by thresh-
olding the multiband change image and producing a new binary change map. This 
iterative solution continues until some termination condition is met. As a convergence 
criterion, the change in the percentage of scene being classified as change between 
successive iterations should be less than or equal to 10−4%. The convergence of the 
solution signifies the complete separation between two distinctive groups of pixels. 
In order to test the ability of the algorithm to converge under initial solutions of dif-
ferent qualities, the algorithm was run several times using different initial change 
maps obtained by thresholding the SAR modified ratio image under the generalized 
Gaussian (GG), log normal (LN), Nakagami ratio (NR), and Weibull ratio (WR) 
models (Ban and Yousif, 2012). Starting from an initial change map, the combined 
SAR and optical algorithm starts to refine the classification using the multidimen-
sional change image. The effect of using both SAR and optical data was introduced 
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gradually during the clustering process. Throughout any single iteration, pixels move 
between change/no change classes, improving the in-between class discrimination 
and enhancing the accuracy of the estimation of the parameters of the density model.

18.2.2.3 Results and Discussion
The behaviors of the different measures of accuracy under different initial conditions 
are plotted in Figure 18.6, showing the variations versus iterations of the positive 
change detection accuracy, negative change detection accuracy, Kappa coefficient of 
agreement, overall error rate, and false alarm. The zero in the abscissa of each of the 
plots in Figure 18.7 corresponds to the value of the measure of accuracy of the solution 
obtained by using the SAR data alone. Table 18.6 provides the values of the different 
measures of accuracy of the initial solution and the last result obtained after using the 
iterative combined solution. The table also shows the number of iteration required 
for each type of solution to converge. As both Figure 18.6 and Table 18.6 indicate, 
all measures of accuracy converge to the same final  values, though after a different 
number of iterations, pointing out the differences in the quality of the initial solu-
tions. Considering first the detection accuracy in positive changed areas, originally 
the result obtained using the modified ratio operator was good for all density models. 
Therefore, the amount of improvement introduced into this measure is moderate. The 
largest improvement occurred in the Weibull ratio solution for which the detection 
accuracy increased from 79.7% to 96.4%. On the other hand, the generalized Gaussian 
solution received the smallest amount of correction where the accuracy jumped 

Modified ratio
operator

SAR
image 2

SAR
image 1

Landsat
image 2

Landsat
image 1

Absolute ID
operator

MR

rnx1

Using change map with change vector
Estimate μi and ∑i of change and
no change classes
Compute Pi

Using μi, ∑i, and Pi, compute:
Discriminant function
Classify the change variable
into change/no change.
Binary change map

Binary
change map

Convergent criterion:
Result converges

Yes/No.

Final
change map

No Yes

Minimum error
thresholding

|∆ρBlue|
|∆ρGreen|
|∆ρRed|

FIGURE 18.5 Flowchart of unsupervised change detection using fusion of SAR and 
optical data.
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FIGURE 18.6 Variations of measures of accuracy versus iterations of the SAR and optical 
combined solution: (a) positive change detection accuracy, (b) negative change detection accu-
racy, and (c) Kappa coefficient.

(continued)
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from 82% to 96%, indicating that this solution was originally the best. Figure 18.6a 
also shows how the curves of all the models look similar to each other and that the 
curves of the log normal and Nakagami ratio models are identical, confirming the 
similarity of the solutions obtained under these two models. For the negative change 
detection accuracy, the situation is different. As mentioned earlier, the main draw-
back of using the SAR data alone is the low detection accuracy in negative change 
areas due to the domination of new built-up areas with their high positive intensity 
of change. Nevertheless, using the combined solution, the accuracy increased sig-
nificantly from 55.8%, 57.5%, and 42.5% for the log normal, Nakagami ratio, and 
Weibull ratio models, respectively, to 75.6%, as shown in Table 18.6 and Figure 18.6b. 
The Weibull ratio model received the largest correction, confirming that this solution 
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FIGURE 18.6 (continued) Variations of measures of accuracy versus iterations of the SAR 
and optical combined solution: (d) overall error rate, (e) false alarm rate, and (f) legend.
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was the worst. In contrast, the detection accuracy decreased slightly for the general-
ized Gaussian model, which may suggest that the solution under this model slightly 
overestimated the negative change class.

These results show that changes characterized by an increase in intensity 
over time are well documented by SAR images, unlike those characterized by 

(a) (b)

(c) (d)

FIGURE 18.7 (See color insert.) Detected changed areas in yellow, overlaid in a false 
color composite using (a) false color composite of 03.11.1999 Landsat image, (b) false color 
composite of 06.07.2008 Landsat image, (c) SAR and optical combined solution, and (d) SAR 
modified ratio with log normal solution.

TABLE 18.6
Accuracy Assessment (%) of the Change Detection Results Obtained Using 
Combined SAR and Optical Solution with the Algorithm Being Initiated 
Using GG, LN NR, and WR Models

SAR GG 
Model 

SAR LN 
Model 

SAR NR 
Model 

SAR WR 
Model 

Optical 
CVA 

SAR and 
Optical 

Positive change detection 
accuracy (%)

85.27 81.68 82.03 79.69 80.84 96.42

Negative change detection 
accuracy (%)

80.90 55.80 57.46 42.54 63.22 75.56

Kappa 0.78 0.70 0.71 0.65 0.69 0.85

Overall error (%) 13.87 19.02 18.56 22.36 20.11 9.89

False alarm (%) 9.86 4.60 4.75 3.35 11.04 7.51

Number of iterations 30 27 27 28
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intensity decrease. Accordingly, the probability of detecting negative change based 
on SAR data alone is very low even when using the modified ratio image. This limi-
tation in the capabilities of the SAR images can only be overcome through the use of 
both SAR and optical images in the combined solution, which significantly enhances 
the detection accuracy in areas with negative change.

As a result of the improvement that occurred on the detection accuracy in posi-
tive and negative change areas, the Kappa coefficient of agreement shows significant 
enhancements for different initial solutions, as shown in Figure 18.6c. The Kappa 
coefficient increased from 0.79, 0.70, 0.71, and 0.65 for the solutions obtained, using 
the generalized Gaussian, log normal, and Nakagami ratio models, respectively, to 
0.85 for the combined solution. As it was the worst solution, the Weibull distribution 
again received the largest enhancement among all other initial solutions.

One of the negative aspects of the change detection solutions based on SAR data 
alone is the high overall error. However, using the combined solution, the overall 
error rate has reduced significantly, underlining the positive effects of the optical 
data. This is particularly true for the solutions obtained using log normal, Nakagami 
ratio, and Weibull ratio models, which decrease from 19.0%, 18.6%, and 22.4%, 
respectively, to 9.9%. Regarding the generalized Gaussian model, its original overall 
error rate was the best among the others; therefore, only a small correction is added 
as reflected by the relatively smoother overall error variation curve (Figure 18.6d).

The solution obtained by applying the generalized Gaussian model to the SAR images 
suffered from the exceptionally high false alarm rate. Initializing the combined algo-
rithm with the binary change map obtained using this model, the false alarm decreased 
from 9.9% to 7.5% after 30 iterations (Table 18.6). On the contrary, the false alarm rate 
increased slightly for the other three solutions, as shown in Figure 18.6e. This last result 
is acceptable in light of the improvements connected with the overall error rate, Kappa 
coefficient, and detection accuracies in areas with intensity decrease/increase that are 
quite immense compared with the loss associated with the false alarm rate.

The SAR and optical combined solution is in reality a clustering algorithm that 
restricts the classes to follow a multivariate Gaussian model. An iterative approach is 
adopted to reach an unambiguous separation between the classes. As such, the num-
ber of iterations required can be considered as a measure of the quality of the solution 
used to initiate the algorithm (training data). In other words, the number of iterations 
is somehow a measure of the work exerted by the algorithm to achieve a perfect clas-
sification. The higher the quality of the initial solution, the smaller is the number 
of iterations required for convergence. Therefore, the last row in Table 18.6 clearly 
indicates that the quality of the solution obtained by using the modified ratio opera-
tor with the generalized Gaussian model was the worst since the algorithm required 
30 iterations to converge. This is mainly due to its very high false alarm rate.

To visually appreciate the enhancement introduced by using both SAR and optical 
in a combined solution, Figure 18.7 shows (a) the false color composite of the first-date 
Landsat images, (b) the false color composite of the second-date Landsat image, and 
the detected change in red overlaid in a false color composite using (c) the SAR data 
alone and (d) the SAR and optical combined solution. Comparing these two figures, 
the SAR and optical combined solution is able to detect both new built-up areas and 
new roads while new roads were missed when using SAR data alone.



381Fusion of SAR and Optical Data

18.2.2.4 Conclusions
This case study investigated the fusion of multitemporal SAR and optical data for 
urban change detection using the Kittler–Illingworth minimum-error thresholding 
algorithm. The experiment result showed that improvements took place in almost all 
measures of accuracy, especially in detection accuracy in areas with negative change, 
which was the main problem when using multitemporal SAR data alone. The Kappa 
coefficient of agreement increases significantly from 0.78 (the best change detection 
accuracy using SAR alone) or 0.68 (the CVA result using optical data) to 0.85 using 
the SAR and optical combined solution.
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