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Preface

Though there are many recent additions to graduate-level introductory books
on Bayesian analysis, none has quite our blend of theory, methods, and ap-
plications. We believe a beginning graduate student taking a Bayesian course
or just trying to find out what it means to be a Bayesian ought to have some
familiarity with all three aspects. More specialization can come later.

Each of us has taught a course like this at Indian Statistical Institute or
Purdue. In fact, at least partly, the book grew out of those courses. We would
also like to refer to the review (Ghosh and Samanta (2002b)) that first made
us think of writing a book. The book contains somewhat more material than
can be covered in a single semester. We have done this intentionally, so that
an instructor has some choice as to what to cover as well as which of the
three aspects to emphasize. Such a choice is essential for the instructor. The
topics include several results or methods that have not appeared in a graduate
text before. In fact, the book can be used also as a second course in Bayesian
analysis if the instructor supplies more details.

Chapter 1 provides a quick review of classical statistical inference. Some
knowledge of this is assumed when we compare different paradigms. Following
this, an introduction to Bayesian inference is given in Chapter 2 emphasizing
the need for the Bayesian approach to statistics. Objective priors and objec-
tive Bayesian analysis are also introduced here. We use the terms objective
and nonsubjective interchangeably. After briefly reviewing an axiomatic de-
velopment of utility and prior, a detailed discussion on Bayesian robustness is
provided in Chapter 3. Chapter 4 is mainly on convergence of posterior quan-
tities and large sample approximations. In Chapter 5, we discuss Bayesian
inference for problems with low-dimensional parameters, specifically objec-
tive priors and objective Bayesian analysis for such problems. This covers
a whole range of possibilities including uniform priors, Jeffreys’ prior, other
invariant objective priors, and reference priors. After this, in Chapter 6 we
discuss some aspects of testing and model selection, treating these two prob-
lems as equivalent. This mostly involves Bayes factors and bounds on these
computed over large classes of priors. Comparison with classical P-value is
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also made whenever appropriate. Bayesian P-value and nonsubjective Bayes
factors such as the intrinsic and fractional Bayes factors are also introduced.

Chapter 7 is on Bayesian computations. Analytic approximation and the
E-M algorithm are covered here, but most of the emphasis is on Markov chain
based Monte Carlo methods including the M-H algorithm and Gibbs sampler,
which are currently the most popular techniques. Follwing this, in Chapter 8
we cover the Bayesian approach to some standard problems in statistics. The
next chapter covers more complex problems, namely, hierarchical Bayesian
(HB) point and interval estimation in high-dimensional problems and para-
metric empirical Bayes (PEB) methods. Superiority of HB and PEB methods
to classical methods and advantages of HB methods over PEB methods are
discussed in detail. Akaike information criterion (AIC), Bayes information
criterion (BIC), and other generalized Bayesian model selection criteria, high-
dimensional testing problems, microarrays, and multiple comparisons are also
covered here. The last chapter consists of three major methodological appli-
cations along with the required methodology.

We have marked those sections that are either very technical or are very
specialized. These may be omitted at first reading, and also they need not be
part of a standard one-semester course.

Several problems have been provided at the end of each chapter. More
problems and other material will be placed at http://www.isical.ac.in/~
tapas/book

Many people have helped — our mentors, both friends and critics, from
whom we have learnt, our family and students at ISI and Purdue, and the
anonymous referees of the book. Special mention must be made of Arijit
Chakrabarti for Sections 9.7 and 9.8, Sudipto Banerjee for Section 10.1, Partha
P. Majumder for Appendix D, and Kajal Dihidar and Avranil Sarkar for help
in several computations. We alone are responsible for our philosophical views,
however tentatively held, as well as presentation.

Thanks to John Kimmel, whose encouragement and support, as well as
advice, were invaluable.

Indian Statistical Institute and Purdue University Jayanta K. Ghosh
Indian Statistical Institute Mohan Delampady
Indian Statistical Institute Tapas Samanta

February 2006
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1

Statistical Preliminaries

We review briefly some of the background that is common to both classical
statistics and Bayesian analysis. More details are available in Casella and
Berger (1990), Lehmann and Casella (1998), and Bickel and Doksum (2001).
The reader interested in Bayesian analysis can go directly to Chapter 2 after
reading Section 1.1.

1.1 Common Models

A statistician, who has been given some data for analysis, begins by providing
a probabilistic model of the way his data have been generated. Usually the
data can be treated as generated by random sarmpling or some other random
mechanism. Once a model is chosen, the data are treated as a random vec-
tor X = (X1, X>,...,Xn). The probability distribution of X is specified by
f(x|0) which stands for a joint density (or a probability mass function), and 6
is an unknown constant or a vector of unknown constants called a parameter.
The parameter 8 may be the unknown mean and variance of a population
from which X is a random sample, e.g., the mean life of an electric bulb or
the probability of doing something, vide Examples 1.1, 1.2, and 1.3 below.
Often the data X are collected to learn about 8, i.e., the modeling precedes
collection of data. The set of possible values of 8, called the parameter space,
is denoted by @, which is usually a p-dimensional Euclidean space RP or some
subset of it, p being a positive integer. Our usual notation for data vector and
parameter vector are X and 8, respectively, but we may use X and 6 if there
is no fear of confusion.

Ezample 1.1. (normal distribution). X1, Xa, ..., X,, are heights of n adults (all
males or all females) selected at random from some population. A common
model is that they are independently, normally distributed with mean p and
variance o2, where —oo < y < oo and o2 > 0, i.e., with @ = (u,0?),
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f(x|6) = fozw H{\/;_mexp(—%;‘—)j)}.

i=1

We write this as X,’s are i.i.d. (independently and identically distributed)
N(u,0?).

If one samples both genders the model would be much more complicated
— X,’s would be i.i.d. but the distribution of each X; would be a mixture of
two normals N(up,02%) and N(ua,0%,) where F and M refer to females and
males.

Ezample 1.2. (exponential distribution). Suppose a factory is producing some
electric bulbs or electronic components, say, switches. If the data are a random
sample of lifetimes of one kind of items being produced, we may model them
as i.i.d. with common exponential density

f(zil6) = %e_z"/e, z; >0, 0>0.

Fzample 1.3. (Bernoulli, binomial distribution). Suppose we have n students
in a class with

1 if ith student has passed a test;
X; = .
0 otherwise.

We model X;’s as i.i.d. with the Bernoulli distribution:
f(il6) = {1-0 if 2, = 0,
which may be written more compactly as % (1 — §)' =%, The parameter 0 is
the probability of passing. The joint probability function of Xy, Xo,..., X, is
f(|6) = [] f(=:l6) = H {6=(1-6)'""}, 6 €(0,1).
=1

If Y = YT X, the number of students who pass, then P(Y =y) = (Z)Gy(l -
#)"~¥, which is a binomial distribution, denoted B(n,§).

Ezample 1.4. (binomial distribution with unknown n’s and unknown p). Sup-
pose Y1,Ys, ..., Y, are the number of reported burglaries in a place in k years.
One may model Y;’s as independent B(n;, p), where n; is the number of actual
burglaries (some reported, some not) in ith year and p is the probability that
a burglary is reported. Here 8 is (n,...,nk,p).

Ezample 1.5. (Poisson distribution). Let X1, Xs,. .., X, be the number of ac-
cidents on a given street in n years. X;’s are modeled as i.i.d P(}A), i.e., Poisson
with mean A,

Ti

P(X;==;) = f(zi|N) = exp(—)\)—>\—

L2, =0,1,2,...,  A>0.
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Ezample 1.6. (relation between binomial and Poisson). It is known B(n,p)
is well approximated by P(}) if n is large, p is small but np = X is nearly
constant, or, more precisely, n — 00, p — 0 in such a way that np — A. This
is used in modeling distribution of defective items among some particular
products, e.g., bulbs or switches or clothes. Suppose a lot size n is large.
Then the number of defective items, say X, is assumed to have a Poisson
distribution. ’

Closely related to the binomial are three other distributions, namely, geo-
metric, negative binomial, which includes the geometric distribution, and the
multinomial. All three, specially the last, are important.

Ezample 1.7. (geometric). Consider an experiment or trial with two possible
outcomes — success with probability p and failure with probability 1 — p. For
example, one may be trying to hit a bull’s eye with a dart. Let X be the
number of failures in a sequence of independent trials until the first success is
observed. Then

P{X=z}=(1-p)*p, 2=0,1,...

This is a discrete analogue of the exponential distribution.

Ezample 1.8. (Negative binomial). In the same setup as above, let k be given
and X be the number of failures until k successes are observed. Then

kE—1
P{X=z}= (x:Vl >pk(1—p)x, z=0,1,...

This is the negative binomial distribution. The geometric distribution is a
special case.

Ezample 1.9. (multinomial). Suppose an urn has N balls of k colors, the num-
ber of balls of jth color is N; = Np; where 0 < p; <1, Z}f p; = 1. We take
a random sample of n balls, one by one and with replacement of the drawn
ball before the next draw. Let X; = j if the ith ball drawn is of jth color
and let n; = frequency of balls of the jth color in the sample. Then the joint
probability function of X1, Xo,..., X, is

k
flp) =[] »}",
Jj=1
and the joint probability function of ny,...,ng is

Y k

n: n;

Ins! !H;j ’
nl.ng.-unk.j 1

The latter is called a multinomial distribution. We would also refer to the
joint distribution of X’s as multinomial.
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Instead of considering specific models, we introduce now three families of
models that unify many theoretical discussions. In the following X is a k-
dimensional random vector unless it is stated otherwise, and f has the same
connotation as before.

1.1.1 Exponential Families

Consider a family of probability models specified by f(x|8), 8 € ©. The family
is said to be an exponential family if f(x|@) has the representation

f(@16) = exp { c(8) + > t;(2)4;(8) ¢ (=), (11)

where ¢(.), A;(.) depend only on @ and t;(.) depends only on x. Note that
the support of f(x|@), namely, the set of & where f(x|@) > 0, is the same as
the set where h(x) > 0 and hence does not depend on 6. To avoid trivialities,
we assume that the support does not reduce to a single point.

Problem 1 invites you to verify that Examples 1.1 through 1.3 and Exam-
ple 1.5 are exponential families.

It is easy to verify that if X;, ¢ = 1,...,n, are i.i.d. with density f(«x|8),
then their joint density is also exponential:

n

H f(x;|6) = exp < nc(6) + Z T;A;(0) H h(x;),
j=1 i=1

i=1

with Ty = 370, ().
There are two convenient reparameterizations. Using new parameters we
may assume A;(@) = 6;. Then

P

f(x]6) = exp c(8) + Y _t;(x)0; ¢ h(z). (1.2)

j=1

The general theory of exponential families, see, e.g., Brown (1986), ensures
one can interchange differentiation and integration. Differentiation once under
the integral sign leads to

g dc
_ 9 = 9% L Eat(X), i=1.....p. .
0= Eg ( 5 08 F(X16)) = 5+ Bgts(X). j=Looop (1)
In a similar way,
0%log f Olog f Olog f
Fo (69,-80,-/) = ( 00; 06y ) ‘ a4
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In the second parameterization, we set n; = Eg(t;(X)), ie.,

de |
nj——%’]—l""’p' (1.5)

In Problem 3, you are asked to verify for p = 1 that 7, is a one-one function
of 8. A similar argument shows 17 = (1,...,7,) is a one-one function of 6.

The parameters @ are convenient mathematically, while the usual statisti-
cal parameters are closer to 1. You may wish to calculate n’s and verify this
for Examples 1.1 through 1.3 and Example 1.5.

1.1.2 Location-Scale Families

Definition 1.10. Let X be a real- valued random variable, with density

Faln o) = 19(““),

a o

where g is also a density function, —oo < p < 0o, o > 0. The parameters y
and o are called location and scale parameters.

With X as above, Z = (X — u)/o has density g. The normal N(u,0?) is a
location-scale family with Z being the standard normal, N(0,1). Example 1.2
is a scale family with y = 0, ¢ = 6. We can make it a location-scale family if
we set

Lexp (—=£) for z > p;
Help, o) = { 0 otherwise,

but then it ceases to be an exponential family for its range depends on u. The
other examples, namely, Bernoulli, binomial, and Poisson are not location-
scale families.

Ezxample 1.11. Let X have uniform distribution over (8, 62) so that

if 61 <z < 0y
otherwise.

fiale) = { 77

This is also a location-scale family, with a reparameterization, which is not
an exponential family.

FExample 1.12. The Cauchy distribution specified by the density

1 o

fzlp, o) = ;m,

—0<r <X

is a location-scale family that is not exponential. It has several interesting
properties. As |z| — oo, it tends to zero but at a much slower rate than the
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0

0.2

o v .

-b -4 -2 0 2 4 6

Fig. 1.1. Densities of Cauchy(0, 1) and normal(0, 2.19).

normal. One can verify that E(]X|") = oo for r = 1,2, ... under any g, o. So
Cauchy has no finite moment. However, Figure 1.1 shows remarkable similarity
between the normal and Cauchy, except near the tails. The Cauchy density is
much flatter at the tails than the normal, which means z’s that deviate quite
a bit from g will appear in data from time to time. Such deviations from u
would be unusual under a normal model and so may be treated as outliers by
a data analyst. It provides an important counter-example to the law of large
numbers or central limit theorem when one has infinite moments. It also plays
an important role in robustness studies (see, e.g., Section 3.9).

Finally, many of the attractive statistical properties of the normal arise
from the fact that it is both an exponential and a location-scale family, thereby
inheriting interesting properties of both.

1.1.3 Regular Family

We end this section with a third very general family, defined by what are
called mathematical regularity conditions.

Definition 1.13. A family of densities f(x|0) is said to satisfy Cramer-Rao
type regularity conditions if the support of f(x|@), i.e., the set of T for which
f(x|0) > 0, does not depend on @, f is k times continuously differentiable with
respect to 0 (with k usually equal to two or three) and one can differentiate
under the integral sign as indicated below for real-valued 4:
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By (g 1os(x10)) = [~ { e siale) | f(elt)de
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and similarly,

B (j—;logﬂxw) -/ (d%logf(wlwff(:vl@) dr. (L)

—0oQ

The condition that the support of f(:|6) is free of § is required for the
last two relations to hold. The results of Chapter 4 require regularity condi-
tions of this kind. The exponential families satisfy these regularity conditions.
Location-scale families may or may not satisfy, usually the critical assumption
is that relating to the support of f. Thus the Cauchy location-scale family
satisfies these conditions but not the uniform or the exponential density

f(zlp, o) = %eXp <—%> T >

1.2 Likelihood Function

A concept of fundamental importance is the likelihood function. Informally,
for fixed @, the joint density or probability mass function (p.m.f.) f(x[0),
regarded as a function of 0, is called the likelihood function. When we think
of f as the likelihood function we often suppress & and write f as L(8). The
likelihood function is not unique in that for any c¢(x) > 0 that may depend on
z but not on 8, c(x)f(x|0) is also a likelihood function. What is unique are
the likelihood ratios L(82)/L(64), which indicate how plausible is 82, relative
to 64, in the light of the given data x. In particular, if the ratio is large, we
have a lot of confidence in 85 relative to 81 and the reverse situation holds if
the ratio is small. Of course the threshold for what is large or small isn’t easy
to determine.

It is important to note that the likelihood is a point function. It can provide
information on relative plausibility of two points 81 and 82, but not of two
O-sets, say, two non-degenerate intervals.

If the sample size n is large, usually the likelihood function has a sharp
peak as shown in the following figure. Let the value of @ where the maximum is
attained be denoted as the maximum likelihood estimate (MLE) 8; we define
it formally later. In situations like this, one feels 0 is very plausible as an
estimate of 8 relative to any other points outside a small interval around 0.
One would then expect 0 to be a good estimate of the unknown 8, at least
in the sense of being close to it in some way (e.g., of being consistent, i.e,
converging to 6 in probability). We discuss these things more carefully below.
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Fig. 1.2. L(6) for the double exponential model when data is normal mixture.

Classical statistics also asserts that under regularity conditions and for large
n, the maximum likelihood estimate minimizes the variance approximately
within certain classes of estimates. Problem 10 provides a counter-example
due to Basu (1988) when regularity conditions do not hold.

Definition 1.14. The mazimum likelihood estimate (MLE) 0 is a value of 6
where the likelihood function L(8) = f(x|@) attains its supremum, i.e.,

sup £((6) = f(x/6).
Usually, the MLE can be found by solving the likelihood equation

é%logf(a:w) =0,5=1,...,p. (1.8)
f]

In Problem 4(b), you are asked to show the likelihood function is log-
concave, i.e., its logarithm is a concave function. In this case, if (1.8) has a
solution, it is unique and provides a global maximum. There are well-known
theorems, see, e.g., Rao (1973), which show the existence of a solution of (1.8)
which converges in probability to the unknown true 8 if the dimension is fixed
and Cramer-Rao type regularity conditions hold. If (1.8) has multiple roots,
one has to be careful. A simple solution is to first find a \/n-consistent estimate
Ty, 1., an estimate T,, such that \/n(T},, — @) is bounded in probability. Then
choose a solution that is nearest to Tp,.
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1.3 Sufficient Statistics and Ancillary Statistics

Given the importance of likelihood function, it is interesting and useful to
know what is the smallest set of statistics Ty (), . .., Tm (@) in terms of which
one can write down the likelihood function. As expected this makes it neces-
sary to introduce sufficient statistics.

Definition 1.15. Let X be distributed with density f(x|0). Then T = T(X)
= (T1(X), ..., Tm(X)) is sufficient for 8 if the conditional distribution of X
given T is free of 6.

A basic fact for verifying whether T is sufficient is the following factoriza-
tion theorem: T is sufficient for 8 iff f(x|0) = g(T1(x),..., Tn{x),8)h(x).

Using this, you are invited to prove (Problem 20) that the likelihood func-
tion can be written in terms of T iff T is sufficient.

Thus the problem of finding the smallest T in terms of which one can
write down the likelihood function reduces to the problem of finding what are
called minimal sufficient statistics.

Definition 1.16. A sufficient statistic Ty is minimal sufficient (or smallest
among sufficient statistics) if Tq is a function of every sufficient statistic.

Clearly, a one-one function of a minimal sufficient statistic is also mini-
mal sufficient. In spite of the somewhat abstract definition, minimal sufficient
statistics are usually easy to find by inspection. Most examples in this book
would be covered by the following fact (Problem 19).

Fact. Suppose X,;,i = 1,2,...,n are i.i.d. from exponential family. Then
(T; =37 t;(X;),j=1,...,p) together form a minimal sufficient statistics
and hence is the smallest set of statistics in terms of which we may write down
the likelihood function.

Using this, you can prove (3.7 X;,> | X?) is minimal sufficient for p
and o? if X1, X,,..., X, are i.i.d. N(p,0?). This in turn implies (X, s? =
—=3°(X; — X)?) is also minimal sufficient for (,0?), being a one-one func-
tion of (37 X;, >.7 X?). In the same way, X is minimal sufficient for both i.i.d.
B(1,p) and P()). In Problem 10, one has to show X1y = min(X1, Xa,..., Xy)
and X(,) = max(Xy, Xo,...,X,) are together minimal sufficient for U (8, 29).
A bad case is that of i.i.d. Cauchy(u,o?). It is known (see, e.g., Lehmann
and Casella (1998)) that the minimal sufficient statistic is the set of all order
statistics (X (1), X(a),- - -, X(n)) Where X(1y and X(,) have been defined earlier
and X,y is the rth X when the X;’s are arranged in ascending order (as-
suming all X;’s are distinct). This is a bad case because the order statistics
together are always sufficient when X;’s are i.i.d., and so if this is the minimal
sufficient statistic, it means the density is so complicated that the likelihood
cannot be expressed in terms of a smaller set of statistics. The advantage
of sufficiency is that we can replace the original data set & by the minimal
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sufficient statistic. Such reduction works well for i.i.d. random variables with
an exponential family of distributions or special examples like U(61,6,). It
doesn’t work well in other cases including location-scale families.

There are various results in classical statistics that show a sufficient statis-
tic contains all the information about § in the data X. At the other end is
a statistic whose distribution does not depend on 6 and so contains no infor-
mation about 8. Such a statistic is called ancillary.

Ancillary statistics are easy to exhibit if Xi,...,X, are ii.d. with a
location-scale family of densities. In fact, for any four integers a, b, ¢, and
d, the ratio

X) =Xy _ Z(a) — Zpp)
Xy =Xy Ze)~ Za

is ancillary because the right-hand side is expressed in terms of order statistics
of Z;’s where Z; = (X; — p)/o, i =1,...,n are i.i.d. with a distribution free
of p and o.

There is an interesting technical theorem, due to Basu, which establishes
independence of a sufficient statistic and an ancillary statistic. The result
is useful in many calculations. Before we state Basu’s theorem, we need to
introduce the notion of completeness.

Definition 1.17. A statistic T or its distribution is said to be complete if for
any real valued function ¥(T),

Egp(T(X)) =0V 6 implies Y(T(X)) =0
(with probability one under all §).

Suppose T is discrete. The condition then simply means the family of
p.m.f.’s fT(t|f) of T is rich enough that there is no non-zero ¥(t) that is
orthogonal to f7(t]6) for all 8 in the sense Y, ¥(¢) f7 (¢6) = 0 for all 6.

Theorem 1.18. (Basu). Suppose T is a complete sufficient statistic and U
is any ancillary statistic. Then T and U are independent for all 6.

Proof. Because T is sufficient, the conditional probability of U being in some
set B given T is free of 6 and may be written as P3(U € B|T) = ¢(T).
Since U is ancillary, Eg(¢p(T)) = Py(U € B) = ¢, where ¢ is a constant.
Let (T} = &(T) — c. Then Egyp{T) = 0 for all 8, implying ¥(T) = 0 (with
probability one), i.e., Po(U € B|T) = Pp(U € B). O

It can be shown that a complete sufficient statistic is minimal sufficient.
In general, the converse isn’t true. For exponential families, the minimal suf-
ficient statistic (T1,...,T,) = (37 t1(Xi),..., 2 1 tp(X,)) is complete. For
X1, X2, ..., Xy iid. U(6,62), (X(1), X(n)) is a complete sufficient statistic.
Here are a couple of applications of Basu’s theorem.
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Ezample 1.19. Suppose X1, Xo,..., X, are i.i.d. N(u,0?). Then X and s% =
- 37(Xi — X)? are independent. To prove this, treat o2 as fixed to start
with and p as the parameter. Then X is complete sufficient and s? is ancillary.
Hence X and s? are independent by Basu’s theorem.

Ezample 1.20. Suppose X1, Xa,..., X, are i.i.d U(61,63). Then for any 1 <
r<n, Y = (X — X))/ (X@w) — X() is independent of (X (), X(ny). This
follows because Y is ancillary.

A somewhat different notion of sufficiency appears in Bayesian analysis.
Tts usefulness and relation to (classical) sufficiency is discussed in Appendix E.

1.4 Three Basic Problems of Inference in Classical
Statistics

For simplicity, we take p = 1, so 0 is a real-valued parameter. Informally,
inference is an attempt to learn about #. There are three natural things one
may wish to do. One may wish to estimate 8 by a single number. A classical
estimate used in large samples is the MLE 0. Secondly, one may wish to
choose an interval that covers 8 with high probability. Thirdly, one may test
hypotheses about 6, e.g., test what is called a null hypothesis Hy : § = 0
against a two-sided alternative H; : 6 # 0. More generally, one can test
Hy : § = 6y against Hy : 8 # 6y where §p is a value of some importance. For
example, 8 is the effect of some new drug on one of the two blood pressures,
or By is the effect of an alternative drug in the market and one is trying to
test whether the new drug has different effects. If one wants to test whether
the new drug is better then instead of Hy : 8 # 6y, one may like to consider
one-sided alternatives Hy : 6 < 0y or Hy : 6 > 6.

1.4.1 Point Estimates

In principle, any statistic 7(X) is an estimate though the context usually
suggests some special reasonable candidates like sample mean X or sample
median for a population mean like y of N(u,?). To choose a satisfactory or
optimal estimate one looks at the properties of its distribution. The two most
important quantities associated with a distribution are its mean and variance
or mean and the standard deviation, usually called the standard err