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CHAPTER

Introduction and How to Use
This Book

INTRODUCTION

The last thing many designers and researchers in the field of user experience think of is statistics. In
fact, we know many practitioners who find the field appealing because it largely avoids those
impersonal numbers. The thinking goes that if usability and design are qualitative activities, it’s
safe to skip the formulas and numbers.

Although design and several usability activities are certainly qualitative, the impact of good and
bad designs can be easily quantified in conversions, completion rates, completion times, perceived
satisfaction, recommendations, and sales. Increasingly, usability practitioners and user researchers
are expected to quantify the benefits of their efforts. If they don’t, someone else will—unfortunately
that someone else might not use the right metrics or methods.

THE ORGANIZATION OF THIS BOOK

This book is intended for those who measure the behavior and attitudes of people as they interact
with interfaces. This book is not about abstract mathematical theories for which you may someday
find a partial use. Instead, this book is about working backwards from the most common questions
and problems you’ll encounter as you conduct, analyze, and report on user research projects. In
general, these activities fall into three areas:

1. Summarizing data and computing margins of error (Chapter 3).

2. Determining if there is a statistically significant difference, either in comparison to a benchmark
(Chapter 4) or between groups (Chapter 5).

3. Finding the appropriate sample size for a study (Chapters 6 and 7).

We also provide:

* Background chapters with an overview of common ways to quantify user research (Chapter 2)
and a quick introduction/review of many fundamental statistical concepts (Appendix).

* A comprehensive discussion of standardized usability questionnaires (Chapter 8).

* A discussion of enduring statistical controversies of which user researchers should be aware and
able to articulate in defense of their analyses (Chapter 9).

* A wrap-up chapter with pointers to more information on statistics for user research (Chapter 10).

Each chapter ends with a list of key points and references. Most chapters also include a set of problems
and answers to those problems so you can check your understanding of the content.

Quantifying the User Experience. DOI: 10.1016/B978-0-12-384968-7.00001-1 1
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HOW TO USE THIS BOOK

Despite there being a significant proportion of user research practitioners with advanced degrees,
about 10% have PhDs (UPA, 2011); for most people in the social sciences, statistics is the only
quantitative course they have to take. For many, statistics is a subject they know they should under-
stand, but it often brings back bad memories of high school math, poor teachers, and an abstract
and difficult topic.

While we’d like to take all the pain out of learning and using statistics, there are still formu-
las, math, and some abstract concepts that we just can’t avoid. Some people want to see how the
statistics work, and for them we provide the math. If you’re not terribly interested in the compu-
tational mechanics, then you can skip over the formulas and focus more on how to apply the
procedures.

Readers who are familiar with many statistical procedures and formulas may find that some of
the formulas we use differ from what you learned in your college statistics courses. Part of this is
from recent advances in statistics (especially for dealing with binary data). Another part is due to
our selecting the best procedures for practical user research, focusing on procedures that work well
for the types of data and sample sizes you’ll likely encounter.

Based on teaching many courses at industry conferences and at companies, we know the statis-
tics background of the readers of this book will vary substantially. Some of you may have never
taken a statistics course whereas others probably took several in graduate school. As much as possi-
ble, we’ve incorporated relevant discussions around the concepts as they appear in each chapter
with plenty of examples using actual data from real user research studies.

In our experience, one of the hardest things to remember in applying statistics is what statistical test
to perform when. To help with this problem, we’ve provided decision maps (see Figures 1.1 to 1.4) to
help you get to the right statistical test and the sections of the book that discuss it.

What Test Should | Use?

The first decision point comes from the type of data you have. See the Appendix for a discussion of
the distinction between discrete and continuous data. In general, for deciding which test to use, you
need to know if your data are discrete-binary (e.g., pass/fail data coded as 1’s and 0’s) or more con-
tinuous (e.g., task-time or rating-scale data).

The next major decision is whether you’re comparing data or just getting an estimate of preci-
sion. To get an estimate of precision you compute a confidence interval around your sample metrics
(e.g., what is the margin of error around a completion rate of 70%; see Chapter 3). By comparing
data we mean comparing data from two or more groups (e.g., task completion times for Products A
and B; see Chapter 5) or comparing your data to a benchmark (e.g., is the completion rate for Pro-
duct A significantly above 70%; see Chapter 4).

If you’re comparing data, the next decision is whether the groups of data come from the same or
different users. Continuing on that path, the final decision depends on whether there are two groups
to compare or more than two groups.

To find the appropriate section in each chapter for the methods depicted in Figures 1.1 and 1.2,
consult Tables 1.1 and 1.2. Note that methods discussed in Chapter 10 are outside the scope of this
book, and receive just a brief description in their sections.
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Method

One-Sample t (Log)

One-Sample t

Confidence Interval around Median
t (Log) Confidence Interval

t Confidence Interval

Paired t
ANOVA or Multiple Paired t

Two-Sample t
ANOVA or Multiple Two-Sample t

Table 1.1 Chapter Sections for Methods Depicted in Figure 1.1

Chapter: Section [Page]

W W w s

5
5:
9:

: Comparing a Task Time to a Benchmark [54]

: Comparing a Satisfaction Score to a Benchmark [50]
. Confidence Interval around a Median [33]

. Confidence Interval for Task-Time Data [29]

: Confidence Interval for Rating Scales and Other

Continuous Data [26]

: Within-Subjects Comparison (Paired t-Test) [63]

Within-Subjects Comparison (Paired t-Test) [63]
What If You Need to Run More Than One Test? [256]

10: Getting More Information [269]

5:
5:
9:

Between-Subjects Comparison (Two-Sample t-Test) [68]
Between-Subjects Comparison (Two-Sample t-Test) [68]
What If You Need to Run More Than One Test? [256]

10: Getting More Information [269]

Method

One-Sample z-Test
One-Sample Binomial
Adjusted Wald Confidence Interval

McNemar Exact Test

Adjusted Wald Confidence Interval for
Difference in Matched Proportions

N — 1 Two-Proportion Test and Fisher
Exact Test

Adjusted Wald Difference in Proportion
Chi-Square

Table 1.2 Chapter Sections for Methods Depicted in Figure 1.2

Chapter: Section [Page]

4:

4:

5:

5:

Comparing a Completion Rate to a Benchmark
(Large Sample Test) [49]
Comparing a Completion Rate to a Benchmark
(Small Sample Test) [45]

. Adjusted-Wald Interval: Add Two Successes and Two

Failures [22]

: McNemar Exact Test [84]
. Confidence Interval around the Difference for Matched

Pairs [89]
N — 1 Two-Proportion Test [79]; Fisher Exact Test [78]

Confidence for the Difference between Proportions [81]

10: Getting More Information [269]

For example, let’s say you want to know which statistical test to use if you are comparing com-
pletion rates on an older version of a product and a new version where a different set of people par-

ticipated in each test.

1. Because completion rates are discrete-binary data (1 = pass and 0 = fail), we should use the

decision map in Figure 1.2.

2. Start at the first box, “Comparing Data?,” and select “Y” because we are comparing a data set
from an older product with a data set from a new product.
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. This takes us to the “Different Users in Each Group” box—we have different users in each

group so we select “Y.”
Now we’re at the “3 or More Groups” box—we have only two groups of users (before and
after) so we select “N.”

. We stop at the “N — 1 Two-Proportion Test and Fisher Exact Test” (Chapter 5).

What Sample Size Do | Need?

Often the first collision a user researcher has with statistics is in planning sample sizes. Although
there are many “rules of thumb” on how many users you should test or how many customer
responses you need to achieve your goals, there really are precise ways of finding the answer. The
first step is to identify the type of test for which you’re collecting data. In general, there are three
ways of determining your sample size:

1.

Estimating a parameter with a specified precision (e.g., if your goal is to estimate completion
rates with a margin of error of no more than 5%, or completion times with a margin of error of
no more than 15 seconds).

. Comparing two or more groups or comparing one group to a benchmark.
. Problem discovery, specifically the number of users you need in a usability test to find a

specified percentage of usability problems with a specified probability of occurrence.

To find the appropriate section in each chapter for the methods depicted in Figures 1.3 and 1.4,
consult Table 1.3.

For example, let’s say you want to compute the appropriate sample size if the same users will

rate the usability of two products using a standardized questionnaire that provides a mean score.

1.
2.

Because the goal is to compare data, start with the sample size decision map in Figure 1.3.
At the “Comparing Groups?” box, select “Y” because there will be two groups of data, one for
each product.

Table 1.3 Chapter Sections for Methods Depicted in Figures 1.3 and 1.4

Method Chapter: Section [Pagel]

2 Proportions 6: Sample Size Estimation for Chi-Square Tests (Independent
Proportions) [128]

2 Means 6: Comparing Values—Example 6 [116]

Paired Proportions 6: Sample Size Estimation for McNemar Exact Tests (Matched
Proportions) [131]

Paired Means 6: Comparing Values—Example 5 [115]

Proportion to Criterion 6: Sample Size for Comparison with a Benchmark Proportion [125]

Mean to Criterion 6: Comparing Values—Example 4 [115]

Margin of Error Proportion 6: Sample Size Estimation for Binomial Confidence Intervals [121]

Margin of Error Mean 6: Estimating Values—Examples 1-3 [112]

Problem Discovery Sample Size 7: Using a Probabilistic Model of Problem Discovery to Estimate

Sample Sizes for Formative User Research [143]
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3. At the “Different Users in Each Group?” box, select “N”” because each group will have the same users.
4. Because rating-scale data are not binary, select “N” at the “Binary Data?” box.
5. We stop at the “Paired Means” procedure (Chapter 6).

You Don’t Have to Do the Computations by Hand

We’ve provided sufficient detail in the formulas and examples that you should be able to do all
computations in Microsoft Excel. If you have an existing statistical package like SPSS, Minitab, or
SAS, you may find some of the results will differ (e.g., confidence intervals and sample size com-
putations) or they don’t include some of the statistical tests we recommend, so be sure to check the
notes associated with the procedures.

We’ve created an Excel calculator that performs all the computations covered in this book. It
includes both standard statistical output (p-values and confidence intervals) and some more user-
friendly output that, for example, reminds you how to interpret that ubiquitous p-value and that you
can paste right into reports. It is available for purchase online at www.measuringusability.com/
products/expandedStats. For detailed information on how to use the Excel calculator (or a custom
set of functions written in the R statistical programming language) to solve the over 100 quantita-
tive examples and exercises that appear in this book, see Lewis and Sauro (2012).

KEY POINTS FROM THE CHAPTER

* The primary purpose of this book is to provide a statistical resource for those who measure the
behavior and attitudes of people as they interact with interfaces.

* Our focus is on methods applicable to practical user research, based on our experience,
investigations, and reviews of the latest statistical literature.

* As an aid to the persistent problem of remembering what method to use under what
circumstances, this chapter contains four decision maps to guide researchers to the appropriate
method and its chapter in this book.

CHAPTER REVIEW QUESTIONS

1. Suppose you need to analyze a sample of task-time data against a specified benchmark. For
example, you want to know if the average task time is less than two minutes. What procedure
should you use?

2. Suppose you have some conversion-rate data and you just want to understand how precise the
estimate is. For example, in examining the server log data you see 10,000 page views and 55
clicks on a registration button. What procedure should you use?

3. Suppose you’re planning to conduct a study in which the primary goal is to compare task
completion times for two products, with two independent groups of participants providing the
times. Which sample size estimation method should you use?

4. Suppose you’re planning to run a formative usability study—one where you’re going to watch
people use the product you’re developing and see what problems they encounter. Which sample
size estimation method should you use?


http://www.measuringusability.com/products/expandedStats
http://www.measuringusability.com/products/expandedStats
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Answers

1.

Task-time data are continuous (not binary-discrete), so start with the decision map in Figure 1.1.
Because you’re testing against a benchmark rather than comparing groups of data, follow the “N”
path from “Comparing Data?” At “Testing Against a Benchmark?,” select the “Y” path. Finally, at
“Task Time?,” take the “Y” path, which leads you to “I-Sample ¢ (Log).” As shown in Table 1.1,
you’ll find that method discussed in Chapter 4 in the “Comparing a Task Time to a Benchmark”
section on p. 54.

. Conversion-rate data are binary-discrete, so start with the decision map in Figure 1.2. You’re just

estimating the rate rather than comparing a set of rates, so at “Comparing Data?,” take the “N”
path. At “Testing Against a Benchmark?,” also take the “N” path. This leads you to “Adjusted
Wald Confidence Interval,” which, according to Table 1.2, is discussed in Chapter 3 in the
“Adjusted-Wald Interval: Add Two Successes and Two Failures” section on p. 22.

. Because you’re planning a comparison of two independent sets of task times, start with the decision

map in Figure 1.3. At “Comparing Groups?,” select the “Y” path. At “Different Users in Each
Group?,” select the “Y” path. At “Binary Data?,” select the “N” path. This takes you to “2 Means,”
which, according to Table 1.3, is discussed in Chapter 6 in the “Comparing Values” section. See
Example 6 on p. 116.

For this type of problem discovery evaluation, you’re not planning any type of comparison, so start
with the decision map in Figure 1.4. You’re not planning to estimate any parameters, such as task
times or problem occurrence rates, so at “Estimating a Parameter?,” take the “N” path. This leads
you to “Problem Discovery Sample Size,” which, according to Table 1.3, is discussed in Chapter 7
in the “Using a Probabilistic Model of Problem Discovery to Estimate Sample Sizes for Formative
User Research” section on p. 143.
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CHAPTER

Quantifying User Research

WHAT IS USER RESEARCH?

For a topic with only two words, “user research” implies different things to different people.
Regarding “user” in user research, Edward Tufte (Bisbort, 1999) famously said: “Only two industries
refer to their customers as ‘users’: computer design and drug dealing.”

This book focuses on the first of those two types of customers. This user can be a paying customer,
internal employee, physician, call-center operator, automobile driver, cell phone owner, or any person
attempting to accomplish some goal—typically with some type of software, website, or machine.

The “research” in user research is both broad and nebulous—a reflection of the amalgamation of
methods and professionals that fall under its auspices. Schumacher (2010, p. 6) offers one definition:

User research is the systematic study of the goals, needs, and capabilities of users so as to specify
design, construction, or improvement of tools to benefit how users work and live.

Our concern is less with defining the term and what it covers than with quantifying the behavior
of users, which is in the purview of usability professionals, designers, product managers, marketers,
and developers.

DATA FROM USER RESEARCH

Although the term user research may eventually fall out of favor, the data that come from user
research won’t. Throughout this book we will use examples from usability testing, customer surveys,
A/B testing, and site visits, with an emphasis on usability testing. There are three reasons for our
emphasis on usability testing data:

1. Usability testing remains a central way of determining whether users are accomplishing their goals.

2. Both authors have conducted and written extensively about usability testing.

3. Usability testing uses many of the same metrics as other user research techniques (e.g.,
completion rates can be found just about everywhere).

USABILITY TESTING

Usability has an international standard definition in ISO 9241 pt. 11 (ISO, 1998), which defined usability
as the extent to which a product can be used by specified users to achieve specified goals with effective-
ness, efficiency, and satisfaction in a specified context of use. Although there are no specific guidelines
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on how to measure effectiveness, efficiency, and satisfaction, a large survey of almost 100 summative
usability tests (Sauro and Lewis, 2009) reveals what practitioners typically collect. Most tests contain
some combination of completion rates, errors, task times, task-level satisfaction, test-level satisfaction,
help access, and lists of usability problems (typically including frequency and severity).

There are generally two types of usability tests: finding and fixing usability problems (formative
tests) and describing the usability of an application using metrics (summative tests). The terms for-
mative and summative come from education (Scriven, 1967) where they are used in a similar way
to describe tests of student learning (formative—providing immediate feedback to improve learning,
versus summative—evaluating what was learned).

The bulk of usability testing is formative. It is often a small-sample qualitative activity where
the data take the form of problem descriptions and design recommendations. Just because the goal
is to find and fix as many problems as you can does not mean there is no opportunity for quantifi-
cation. You can quantify the problems in terms of frequency and severity, track which users
encountered which problems, measure how long it took them to complete tasks, and determine
whether they completed the tasks successfully.

There are typically two types of summative tests: benchmark and comparative. The goal of a
benchmark usability test is to describe how usable an application is relative to a set of benchmark
goals. Benchmark tests provide input on what to fix in an interface and also provide an essential
baseline for the comparison of postdesign changes.

A comparative usability test, as the name suggests, involves more than one application. This can
be a comparison of a current with a prior version of a product or comparison of competing
products. In comparative tests, the same users can attempt tasks on all products (within-subjects
design) or different sets of users can work with each product (between-subjects design).

Sample Sizes

There is an incorrect perception that sample sizes must be large (typically above 30) to use statistics
and interpret quantitative data. We discuss sample sizes extensively in Chapters 6 and 7, and
throughout this book show how to reach valid statistical conclusions with sample sizes less than 10.
Don’t let the size of your sample (even if you have as few as 2-5 users) preclude you from using
statistics to quantify your data and inform your design decisions.

Representativeness and Randomness

Somewhat related to the issue of sample sizes is that of the makeup of the sample. Often the con-
cern with a small sample size is that the sample isn’t “representative” of the parent population.
Sample size and representativeness are actually different concepts. You can have a sample size of 5
that is representative of the population and you can have a sample size of 1,000 that is not represen-
tative. One of the more famous examples of this distinction comes from the 1936 Literary Digest
Presidential Poll. The magazine polled its readers on who they intended to vote for and received
2.4 million responses but incorrectly predicted the winner of the presidential election. The problem
was not one of sample size but of representativeness. The people who responded tended to be indi-
viduals with higher incomes and education levels—not representative of the ultimate voters (see
http://fen.wikipedia.org/wiki/The_Literary_Digest).
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The most important thing in user research, whether the data are qualitative or quantitative, is that
the sample of users you measure represents the population about which you intend to make state-
ments. Otherwise, you have no logical basis for generalizing your results from the sample to the
population. No amount of statistical manipulation can correct for making inferences about one
population if you observe a sample from a different population. Taken to the extreme, it doesn’t
matter how many men are in your sample if you want to make statements about female education
levels or salaries. If you want to gain insight into how to improve the design of snowshoes, it’s bet-
ter to have a sample of 5 Arctic explorers than a sample of 1,000 surfers. In practice, this means if
you intend to draw conclusions about different types of users (e.g., new versus experienced, older
versus younger) you should plan on having all groups represented in your sample.

One reason for the confusion between sample size and representativeness is that if your popula-
tion is composed of, say, 10 distinct groups and you have a sample of 5, then there aren’t enough
people in the sample to have a representative from all 10 groups. You would deal with this by
developing a sampling plan that ensures drawing a representative sample from every group that you
need to study—a method known as stratified sampling. For example, consider sampling from differ-
ent groups if you have reason to believe:

* There are potential and important differences among groups on key measures (Dickens, 1987).
* There are potential interactions as a function of a group (Aykin and Aykin, 1991).

* The variability of key measures differs as a function of a group.

* The cost of sampling differs significantly from group to group.

Gordon and Langmaid (1988) recommended the following approach to defining groups:

Write down all the important variables.
If necessary, prioritize the list.

Design an ideal sample.

Apply common sense to combine groups.

PN~

For example, suppose you start with 24 groups, based on the combination of six demographic loca-
tions, two levels of experience, and the two levels of gender. You might plan to (1) include equal
numbers of males and females over and under 40 years of age in each group, (2) have separate
groups for novice and experienced users, and (3) drop intermediate users from the test. The result-
ing plan requires sampling for 2 groups. A plan that did not combine genders and ages would
require sampling 8 groups.

Ideally, your sample is also selected randomly from the parent population. In practice this can be
very difficult. Unless you force your users to participate in a study you will likely suffer from at
least some form of nonrandomness. In usability studies and surveys, people decide to participate
and this group can have different characteristics than people who choose not to participate. This
problem isn’t unique to user research. Even in clinical trials in which life and death decisions are
made about drugs and medical procedures, people have to participate or have a condition (like can-
cer or diabetes). Many of the principles of human behavior that fill psychology textbooks dispropor-
tionally come from college undergrads—a potential problem of both randomness and
representativeness.

It’s always important to understand the biases in your data and how that limits your conclusions.
In applied research we are constrained by budgets and user participation, but products still must
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ship, so we make the best decisions we can given the data we are able to collect. Where possible
seek to minimize systematic bias in your sample but remember that representativeness is more
important than randomness. In other words, you’ll make better decisions if you have a less-than-
perfectly random sample from the right population than if you have a perfectly random sample
from the wrong population.

Data Collection

Usability data can be collected in a traditional lab-based moderated session where a moderator
observes and interacts with users as they attempt tasks. Such test setups can be expensive and time
consuming and require collocation of users and observers (which can prohibit international testing).
These types of studies often require the use of small-sample statistical procedures because the cost
of each sample is high.

More recently, remote moderated and unmoderated sessions have become popular. In moderated
remote sessions, users attempt tasks on their own computer and software from their location while a
moderator observes and records their behavior using screen-sharing software. In unmoderated
remote sessions, users attempt tasks (usually on websites), while software records their clicks, page
views, and time. For an extensive discussion of remote methods, see Beyond the Usability Lab
(Albert et al., 2010).

For a comprehensive discussion of usability testing, see the chapter “Usability Testing” in the
Handbook of Human Factors and Ergonomics (Lewis, 2012). For practical tips on collecting metrics
in usability tests, see A Practical Guide to Measuring Usability (Sauro, 2010) and Measuring the
User Experience (Tullis and Albert, 2008).

In our experience, although the reasons for human behavior are difficult to quantify, the out-
come of the behavior is easy to observe, measure, and manage. Following are descriptions of the
more common metrics collected in user research, inside and outside of usability tests. We will use
these terms extensively throughout the book.

Completion Rates

Completion rates, also called success rates, are the most fundamental of usability metrics (Nielsen,
2001). They are typically collected as a binary measure of task success (coded as 1) or task failure
(coded as 0). You report completion rates on a task by dividing the number of users who success-
fully complete the task by the total number who attempted it. For example, if 8 out of 10 users
complete a task successfully, the completion rate is 0.8 and usually reported as 80%. You can also
subtract the completion rate from 100% and report a failure rate of 20%.

It is possible to define criteria for partial task success, but we prefer the simpler binary measure
because it lends itself better for statistical analysis. When we refer to completion rates in this book,
we will be referring to binary completion rates.

The other nice thing about a binary rate is that they are used throughout the scientific and statis-
tics literature. Essentially, the presence or absence of anything can be coded as 1’s and 0’s and then
reported as a proportion or percentage. Whether this is the number of users completing tasks on
software, patients cured from an ailment, number of fish recaptured in a lake, or customers purchas-
ing a product, they can all be treated as binary rates.
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Usability Problems

If a user encounters a problem while attempting a task and it can be associated with the interface,
it’s a user interface problem (UI problem). Ul problems, typically organized into lists, have names,
a description, and often a severity rating that takes into account the observed problem frequency
and its impact on the user.

The usual method for measuring the frequency of occurrence of a problem is to divide the num-
ber of occurrences within participants by the number of participants. A common technique (Rubin,
1994; Dumas and Redish, 1999) for assessing the impact of a problem is to assign impact scores
according to whether the problem (1) prevents task completion, (2) causes a significant delay or
frustration, (3) has a relatively minor effect on task performance, or (4) is a suggestion.

When considering multiple types of data in a prioritization process, it is necessary to combine
the data in some way. One approach is to combine the data arithmetically. Rubin (1994) described
a procedure for combining four levels of impact (using the criteria previously described with 4
assigned to the most serious level) with four levels of frequency (4: frequency > 90%; 3: 51-89%;
2: 11-50%; 1: < 10%) by adding the scores. For example, if a problem had an observed frequency
of occurrence of 80% and had a minor effect on performance, its priority would be 5 (a frequency
rating of 3 plus an impact rating of 2). With this approach, priority scores can range from a low of
2 to a high of 8.

A similar strategy is to multiply the observed percentage frequency of occurrence by the impact
score (Lewis, 2012). The range of priorities depends on the values assigned to each impact level.
Assigning 10 to the most serious impact level leads to a maximum priority (severity) score of 1,000
(which can optionally be divided by 10 to create a scale that ranges from 1 to 100). Appropriate
values for the remaining three impact categories depend on practitioner judgment, but a reasonable
set is 5, 3, and 1. Using those values, the problem with an observed frequency of occurrence of
80% and a minor effect on performance would have a priority of 24 (80 x 3/10).

From an analytical perspective, a useful way to organize UI problems is to associate them with
the users who encountered them, as shown in Table 2.1.

Knowing the probability with which users will encounter a problem at each phase of development
can become a key metric for measuring usability activity impact and return on investment (ROI).
Knowing which user encountered which problem allows you to better estimate sample sizes, problem
discovery rates, and the number of undiscovered problems (as described in detail in Chapter 7).

Table 2.1 Example of a Ul Problem Matrix
User 1 User 2 User 3 User 4 User 5 User 6 Total Proportion

Problem 1 X X X X 4 0.67
Problem 2 X 1 0.167
Problem 3 X X X X X X 6 1
Problem 4 X X 2 0.33
Problem 5 X 1 0.167
Total 3 2 1 2 4 2 14 p =047

Note: The X’s represent users who encountered a problem. For example, user 4 encountered problems 3 and 4.
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Task Time

Task time is how long a user spends on an activity. It is most often the amount of time it takes
users to successfully complete a predefined task scenario, but it can be total time on a web page or
call length. It can be measured in milliseconds, seconds, minutes, hours, days, or years, and is typi-
cally reported as an average (see Chapter 3 for a discussion on handling task-time data). There are
several ways of measuring and analyzing task duration:

1. Task completion time: Time of users who completed the task successfully.
2. Time until failure: Time on task until users give up or complete the task incorrectly.
3. Total time on task: The total duration of time users spend on a task.

Errors

Errors are any unintended action, slip, mistake, or omission a user makes while attempting a task.
Error counts can go from 0 (no errors) to technically infinity (although it is rare to record more
than 20 or so in one task in a usability test). Errors provide excellent diagnostic information on
why users are failing tasks and, where possible, are mapped to UI problems. Errors can also be ana-
lyzed as binary measures: the user either encountered an error (1 =yes) or did not (0 =no).

Satisfaction Ratings

Questionnaires that measure the perception of the ease of use of a system can be completed imme-
diately after a task (post-task questionnaires), at the end of a usability session (post-test question-
naires), or outside of a usability test. Although you can write your own questions for assessing
perceived ease of use, your results will likely be more reliable if you use one of the currently avail-
able standardized questionnaires (Sauro and Lewis, 2009). See Chapter 8 for a detailed discussion
of standardized usability questionnaires.

Combined Scores

Although usability metrics significantly correlate (Sauro and Lewis, 2009), they don’t correlate
strongly enough that one metric can replace another. In general, users who complete more tasks
tend to rate tasks as easier and to complete them more quickly. Some users, however, fail tasks and
still rate them as being easy, or others complete tasks quickly and report finding them difficult.
Collecting multiple metrics in a usability test is advantageous because this provides a better picture
of the overall user experience than any single measure can. However, analyzing and reporting on
multiple metrics can be cumbersome, so it can be easier to combine metrics into a single score.
A combined usability metric can be treated just like any other metric and can be used advantageously
as a component of executive dashboards or for determining statistical significance between products
(see Chapter 5). For more information on combining usability metrics into single scores, see Sauro
and Kindlund (2005), Sauro and Lewis (2009), and the “Can You Combine Usability Metrics into
Single Scores?” section in Chapter 9.
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A/B TESTING

A/B testing, also called split-half testing, is a popular method for comparing alternate designs on web
pages. In this type of testing, popularized by Amazon, users randomly work with one of two deployed
design alternatives. The difference in design can be as subtle as different words on a button or a dif-
ferent product image, or can involve entirely different page layouts and product information.

Clicks, Page Views, and Conversion Rates

For websites and web applications, it is typical practice to automatically collect clicks and page
views, and in many cases these are the only data you have access to without conducting your own
study. Both these measures are useful for determining conversion rates, purchase rates, or feature
usage, and are used extensively in A/B testing, typically analyzed like completion rates.

To determine which design is superior, you count the number of users who were presented with
each design and the number of users who clicked through. For example, if 1,000 users experienced
Design A and 20 clicked on “Sign-Up,” and 1,050 users saw Design B and 48 clicked on “Sign-
Up,” the conversion rates are 2% and 4.5%, respectively. To learn how to determine if there is a
statistical difference between designs, see Chapter 5.

SURVEY DATA

Surveys are one of the easiest ways to collect attitudinal data from customers. Surveys typically
contain some combination of open-ended comments, binary yes/no responses, and Likert-type rating
scale data.

Rating Scales

Rating scale items are characterized by closed-ended response options. Typically, respondents are
asked to agree or disagree to a statement (often referred to as Likert-type items). For numerical
analysis, the classic five-choice Likert response options can be converted into numbers from 1 to 5
(as shown in Table 2.2).

Once you’ve converted the responses to numbers you can compute the mean and standard devia-
tion and generate confidence intervals (see Chapter 3) or compare responses to different products
(see Chapter 5). See Chapter 8 for a detailed discussion of questionnaires and rating scales specific
to usability, and the “Is It Okay to Average Data from Multipoint Scales?” section in Chapter 9 for
a discussion of the arguments for and against computing means and conducting standard statistical
tests with this type of data.

Table 2.2 Mapping of the Five Classic Likert Response Options to Numbers
This — Strongly Disagree Disagree Neutral Agree Strongly Agree
Becomes This — 1 2 3 4 5
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Net Promoter Scores®

Even though questions about customer loyalty and future purchasing behavior have been around for
a long time, a recent innovation is the net promoter question and scoring method used by many
companies and in some usability tests (Reichheld, 2003, 2006). The popular net promoter score
(NPS) is based on a single question about customer loyalty: How likely is it that you’ll recommend
this product to a friend or colleague? The response options range from 0 to 10 and are grouped into
three segments:

Promoters: Responses from 9 to 10
Passives: Responses from 7 to 8
Detractors: Responses from 0 to 6

By subtracting the percentage of detractor responses from the percentage of promoter responses you
get the net promoter score, which ranges from —100% to 100%, with higher numbers indicating a
better loyalty score (more promoters than detractors). Although the likelihood-to-recommend item
can be analyzed just like any other rating scale item (using the mean and standard deviation), the
segmentation scoring of the NPS requires slightly different statistical treatments (see Chapter 5).

Note: Net Promoter, NPS, and Net Promoter Score are trademarks of Satmetrix Systems, Inc., Bain &
Company, and Fred Reichheld.

Comments and Open-ended Data

Analyzing and prioritizing comments is a common task for a user researcher. Open-ended com-
ments take all sorts of forms, such as:

* Reasons why customers are promoters or detractors for a product.
* Customer insights from field studies.

*  Product complaints to calls to customer service.

*  Why a task was difficult to complete.

Just as usability problems can be counted, comments and most open-ended data can be turned
into categories, quantified and subjected to statistical analysis (Sauro, 2011). You can then further
analyze the data by generating a confidence interval to understand what percent of all users likely
feel this way (see Chapter 3).

REQUIREMENTS GATHERING

Another key function of user research is to identify features and functions of a product. While it’s
rarely as easy as asking customers what they want, there are methods of analyzing customer beha-
viors that reveal unmet needs. As shown in Table 2.3, these behaviors can be observed at home or
the workplace and then quantified in the same way as UI problems. Each behavior gets a name and
description, and then you record which users exhibited the particular behavior in a grid like the one
shown in the table.

You can easily report on the percentage of customers who exhibited a behavior and generate
confidence intervals around the percentage in the same way you do for binary completion rates
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Table 2.3 Example of a Ul Behavior Matrix
User 1 User 2 User 3
Behavior 1 X X
Behavior 2 X
Behavior 3 X X X

(see Chapter 3). You can also apply statistical models of discovery to estimate required sample
sizes, requirement discovery rates, and the number of undiscovered requirements (see Chapter 7).

KEY POINTS FROM THE CHAPTER

* User research is a broad term that encompasses many methodologies that generate quantifiable
outcomes, including usability testing, surveys, questionnaires, and site Vvisits.

* Usability testing is a central activity in user research and typically generates the metrics of
completion rates, task times, errors, satisfaction data, and user interface problems.

* Binary completion rates are both a fundamental usability metric and a metric applied to all areas
of scientific research.

* You can quantify data from small sample sizes and use statistics to draw conclusions.

* Even open-ended comments and problem descriptions can be categorized and quantified.
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CHAPTER

How Precise Are Our Estimates?
Confidence Intervals

INTRODUCTION

In usability testing, like most applied research settings, we almost never have access to the entire
user population. Instead we have to rely on taking samples to estimate the unknown population
values. If we want to know how long it will take users to complete a task or what percent will com-
plete a task on the first attempt, we need to estimate from a sample. The sample means and sample
proportions (called statistics) are estimates of the values we really want—the population parameters.

When we don’t have access to the entire population, even our best estimate from a sample will
be close but not exactly right, and the smaller the sample size, the less accurate it will be. We need
a way to know how good (precise) our estimates are.

To do so, we construct a range of values that we think will have a specified chance of contain-
ing the unknown population parameter. These ranges are called confidence intervals. For example,
what is the average time it takes you to commute to work? Assuming you don’t telecommute, even
your best guess (say, 25 minutes) will be wrong by a few minutes or seconds. It would be more
correct to provide an interval. For example, you might say on most days it takes between 20 and
30 minutes.

Confidence Interval = Twice the Margin of Error

If you’ve seen the results of a poll reported on TV along with a margin of error, then you are already
familiar with confidence intervals. Confidence intervals are used just like margins of errors. In fact, a
confidence interval is twice the margin of error. If you hear that 57% of likely voters approve of pro-
posed legislation (95% margin of error +3%) then the confidence interval is six percentage points wide,
falling between 54% and 60% (57% — 3% and 57% + 3%).

In the previous example, the question was about approval, with voters giving only a binary
“approve” or “not approve” response. It is coded just like a task completion rate (0’s and 1’s) and
we calculate the margins of errors and confidence intervals in the same way.

Confidence Intervals Provide Precision and Location

A confidence interval provides both a measure of location and precision. That is, we can see that the
average approval rating is around 57%. We can also see that this estimate is reasonably precise. If we
want to know whether the majority of voters approve the legislation we can see that it is very unlikely
(less than a 2.5% chance) that fewer than half the voters approve. Precision, of course, is relative. If
another poll has a margin of error of +2%, it would be more precise (and have a narrower confidence
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interval), whereas a poll with a margin of error of 10% would be less precise (and have a wider
confidence interval). Few user researchers will find themselves taking surveys about attitudes toward
government. The concept and math performed on these surveys, however, is exactly the same as
when we construct confidence intervals around completion rates.

Three Components of a Confidence Interval

Three things affect the width of a confidence interval: the confidence level, the variability of the
sample, and the sample size.

Confidence Level

The confidence level is the “advertised coverage” of a confidence interval—the “95%” in a 95%
confidence interval. This part is often left off of margin of error reports in television polls. A confi-
dence level of 95% (the typical value) means that if you were to sample from the same population
100 times, you’d expect the interval to contain the actual mean or proportion 95 times. In reality,
the actual coverage of a confidence interval dips above and below the nominal confidence level
(discussed later). Although a researcher can choose a confidence level of any value between 0%
and 100%, it is usually set to 95% or 90%.

Variability

If there is more variation in a population, each sample taken will fluctuate more and therefore create
a wider confidence interval. The variability of the population is estimated using the standard devia-
tion from the sample.

Sample Size

Without lowering the confidence level, the sample size is the only thing a researcher can control in
affecting the width of a confidence interval. The confidence interval width and sample size have an
inverse square root relationship. This means if you want to cut your margin of error in half, you
need to quadruple your sample size. For example, if your margin of error is +20% at a sample size
of 20, you’d need a sample size of approximately 80 to have a margin of error of +10%.

CONFIDENCE INTERVAL FOR A COMPLETION RATE

One of the most fundamental of usability metrics is whether a user can complete a task. It is usually
coded as a binary response: 1 for a successful attempt and O for an unsuccessful attempt. We saw
how this has the same form as many surveys and polls that have only yes or no responses. When
we watch 10 users attempt a task and 8 of them are able to successfully complete it, we have
a sample completion rate of 0.8 (called a proportion) or, expressed as a percent, 80%.

If we were somehow able to measure all our users, or even just a few thousand of them, it is ex-
tremely unlikely that exactly 80% of all users would be able to complete the task. To know the likely
range of the actual unknown population completion rate, we need to compute a binomial confidence
interval around the sample proportion. There is strong agreement on the importance of using confi-
dence intervals in research. Until recently, however, there wasn’t a terribly good way of computing
binomial confidence intervals for small sample sizes.
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Confidence Interval History

It isn’t necessary to go through the history of a statistic to use it, but we’ll spend some time on the
history of the binomial confidence interval for three reasons:

1. They are used very frequently in applied research.
2. They are covered in every statistics text (and you might even recall one formula).
3. There have been some new developments in the statistics literature.

As we go through some of the different ways to compute binomial confidence intervals, keep in
mind that statistical confidence means confidence in the method of constructing the interval—not
confidence in a specific interval (see sidebar “On the Strict Interpretation of Confidence Intervals”).
To bypass the history and get right to the method we recommend, skip to the section “Adjusted-
Wald Interval: Add Two Successes and Two Failures.”

One of the first uses of confidence intervals was to estimate binary success rates (like the one
used for completion rates). It was proposed by Simon Laplace 200 years ago (Laplace, 1812) and is
still commonly taught in introductory statistics textbooks. It takes the following form:

ﬁiz@_g) f’(ln—f’)

where

p is the sample proportion
n is the sample size
2(1-9) is the critical value from the normal distribution for the level of confidence (1.96 for 95%

confidence)

For example, if we observe 7 out of 10 users completing a task, we get the following 95% confi-
dence interval around our sample completion rate of 70% (7/10):

0.7(1-0.7)

0 =0.7+1.96v0.021 = 0.7 +£0.28

0.7+£1.96
According to this formula we can be 95% confident the actual population completion rate is somewhere
between 42% and 98%. Despite Laplace’s original use, it has come to be known as the Wald interval,
named after the 20th-century statistician Abraham Wald.

Wald Interval: Terribly Inaccurate for Small Samples

The problem with the Wald interval is that it is terribly inaccurate at small sample sizes (less than
about 100) or when the proportion is close to 0 or 1—conditions that are very common with small-
sample usability data and in applied research. Instead of containing the actual proportion 95 times
out of 100, it contains it far less, often as low as 50—-60% of the time (Agresti and Coull, 1998).
In other words, when you think you’re reporting a 95% confidence interval using the Wald method,
it is more likely a 70% confidence interval. Because this problem is greatest with small sample
sizes and when the proportion is far from 0.5, most introductory texts recommend large sample
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sizes to compute this confidence interval (usually at least 30). This recommendation also contributes
to the widely held but incorrect notion that you need large sample sizes to use inferential statistics.
As usability practitioners, we know that we often do not have the luxury of large sample sizes.

Exact Confidence Interval

Over the years there have been proposals to make confidence interval formulas more precise for all
sample sizes and all ranges of the proportion. A class of confidence intervals known as exact intervals
work well for even small sample sizes (Clopper and Pearson, 1934) and have been discussed in the
usability literature (Lewis, 1996; Sauro, 2004). Exact intervals have two drawbacks: they tend to be
overly conservative and are computationally intense, as shown in the Clopper-Pearson formula:

-1

{1 " n—x+1 }
'XFZX,Z(H—X+ 1),1-al2

n—x

a1
1+
(x+1)F. 2(x+l),2(n—x),(z/2:|

<p<

For the same 7 out of 10 completion rate, an exact 95% confidence interval ranges from 35% to 93%.

As was seen with the Wald interval, a stated confidence level of, say, 95% is no guarantee of an
interval actually containing the proportion 95% of the time. Exact intervals are constructed in a way
that guarantees that the confidence interval provides at least 95% coverage. To achieve that goal,
however, exact intervals tend to be overly conservative, containing the population proportion closer
to 99 times out of 100 (as opposed to the nominal 95 times out of 100). In other words, when you
think you’re reporting a 95% confidence interval using an exact method, it is more likely a 99%
interval. The result is an unnecessarily wide interval. This is especially the case when sample sizes
are small, as they are in most usability tests.

Adjusted-Wald Interval: Add Two Successes and Two Failures

Another approach to computing confidence intervals, known as the score or Wilson interval, tends
to strike a good balance between the exact and Wald in terms of actual coverage (Wilson, 1927).
Its major drawback is it is rather tedious to compute and is not terribly well known, so it is thus
often left out of introductory statistics texts. Recently, a simple alternative based on the work origi-
nally reported by Wilson, named the adjusted-Wald method by Agresti and Coull (1998), simply
requires, for 95% confidence intervals, the addition of two successes and two failures to the
observed number of successes and failures, and then uses the well-known Wald formula to compute
the 95% binomial confidence interval.

Research (Agresti and Coull, 1998; Sauro and Lewis, 2005) has shown that the adjusted-Wald method
has coverage as good as the score method for most values of the sample completion rate (denoted p), and
is usually better when the completion rate approaches 0 or 1. The “add two successes and two failures”
(or adding 2 to the numerator and 4 to the denominator) is derived from the critical value of the normal
distribution for 95% intervals (1.96, which is approximately 2 and, when squared, is about 4):

2 2
z 1.96
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where

x is the number who successfully completed the task
n is the number who attempted the task (the sample size)

We find it easier to think of and explain this adjustment by rounding up to the whole numbers
(two successes and two failures), but since we almost always use software to compute confidence inter-
vals, we use the more precise 1.96 in the subsequent examples. Unless you’re doing the computations
on the back of a napkin (see Figure 3.1), we recommend using 1.96—it will also make the transition
easier when you need to use a different level of confidence than 95% (e.g., a 90% confidence level uses
1.64 and a 99% confidence level uses 2.57).

The standard Wald formula is updated with the new adjusted values of p,,; and ng;:

i)adj(l _i)adj)

nadj

ﬁadj * Z(l a)
For example, if we compute a 95% adjusted-Wald interval for 7 out of 10 users completing a task,
we first compute the adjusted proportion (p,):

1.96* 1.96*
PO e S S T S K- SO X7 RO
“IT10+1.96°  10+1.96> 10+3.84  13.84

Then substitute the adjusted proportion, p,;, and the adjusted sample size, n,, into the Wald equation:

0.645 (1 —0.645)

1384 =0.645+1.96v0.0165 = 0.645+0.25

0.645 +1.96
If 7 out of 10 users complete a task we can be 95% confident the actual completion rate is between 39%
and 90% (pretty close to the back-of-napkin estimate in Figure 3.1). Table 3.1 shows the intervals for all
three methods.
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FIGURE 3.1
Back-of-napkin adjusted-Wald binomial confidence interval.
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Table 3.1 Comparison of Three Methods for Computing Binomial Confidence Intervals

Cl Method Low % High % Interval Width Comment
Wald 42 98 57% Inaccurate
Exact 35 93 59% Too wide
Adjusted-Wald 39 90 50% Just right

Note: All computations performed at www.measuringusability.com/wald.htm.

ON THE STRICT INTERPRETATION OF CONFIDENCE INTERVALS
What You Need to Know When Discussing Confidence Intervals with Statisticians

We love confidence intervals. You should use them whenever you can. When you do, you should watch out for
some conceptual hurdles. In general, you should know that a confidence interval will tell you the most likely
range of the unknown population mean or proportion. For example, if 7 out of 10 users complete a task, the
95% confidence interval is 39% to 90%. If we were able to measure everyone in the user population, this is
our best guess as to the percent of users who can complete the task.

It is incorrect to say, “There is a 95% probability the population completion rate is between 39% and 90%.”
While we (Jeff and Jim) will understand what you mean, others may be quick to point out the problem with that
statement.

We are 95% confident in the method of generating confidence intervals and not in any given interval. The
confidence interval we generated from the sample data either does or does not contain the population completion rate.

If we run 100 tests each with 10 users from the same population and compute confidence intervals each time, on
average 95 of those 100 confidence intervals will contain the unknown population completion rate. We don’t know if
the one sample of 10 we had is one of those 5 that doesn’t contain the completion rate. So it’s best to avoid using
“probability” or “chance” when describing a confidence interval, and remember that we're 95% or 99% confident in the
process of generating confidence intervals and not any given interval. Another way to interpret a confidence interval is to
use Smithson’s (2003, p. 177) plausibility terminology: “Any value inside the interval could be said to be a plausible
value; those outside the interval could be called implausible.”

Because it provides the most accurate confidence intervals over time, we recommend the adjusted-
Wald interval for binomial confidence intervals for all sample sizes. At small sample sizes the adjust-
ment makes a major improvement in accuracy. For larger sample sizes the effect of the adjustments has
little impact but does no harm. For example, at a sample size of 500, adding two successes and two
failures has much less of an impact on the calculation than when the sample size is 5.

There is one exception in our recommendation. If you absolutely must guarantee that your interval
will contain the population completion rate no less than 95% of the time then use the exact method.

Best Point Estimates for a Completion Rate

With small sample sizes in usability testing it is a common occurrence to have either all participants
complete a task or all participants fail (100% and 0% completion rates). Although it is possible that
every single user will complete a task or every user will fail it, it is less likely when the estimate
comes from a small sample size. In our experience, such claims of absolute task success also tend
to make stakeholders dubious of the small sample size. While the sample proportion is often the
best estimate of the population completion rate, we have found some conditions where other
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estimates tend to be slightly better (Lewis and Sauro, 2006). Two other noteworthy estimates of the
completion rate are:

* Laplace method: Add one success and one failure.
* Wilson method: add two successes and two failures (used as part of the adjusted-Wald interval).

Guidelines on Reporting the Best Completion Rate Estimate
If you find yourself needing the best possible point estimate of the population completion rate,
consider the following rules on what to report (in addition to the confidence interval).

If you conduct usability tests in which your task completion rates typically take a wide range of
values, uniformly distributed between 0% and 100%, then you should use the Laplace method. The
smaller your sample size and the farther your initial estimate of the population completion rate is
from 50%, the more you will improve your estimate of the actual completion rate.

If you conduct usability tests in which your task completion rates are roughly restricted to the
range of 50% to 100% (the more common situation in usability testing), then the best estimation
method depends on the value of the sample completion rate. If the sample completion rate is:

1. Less than or equal to 50%: Use the Wilson method (which you get as part of the process of
computing an adjusted-Wald binomial confidence interval).

2. Between 50% and 90%: Stick with reporting the sample proportion. Any attempt to improve on
it is as likely to decrease as to increase the estimate’s accuracy.

3. Greater than 90% but less than 100%: Apply the Laplace method. Do not use Wilson in this
range to estimate the population completion rate, even if you have computed a 95% adjusted-
Wald confidence interval!

4. Equal to 100%: Use the Laplace method.

Always use an adjustment when sample sizes are small (n < 20). It does no harm to use an
adjustment when sample sizes are larger. Keep in mind that even these guidelines will only slightly
improve the accuracy of your estimate of the completion rate, so this is no substitution for comput-
ing and reporting confidence intervals.

How Accurate Are Point Estimates from Small Samples?

Even the best point estimate from a sample will differ by some amount from the actual population
completion rate. To get an idea of the typical amount of error, we created a Monte Carlo simulator.
The simulator compared thousands of small-sample estimates to an actual population completion
rate. At a sample size of five, on average, the completion rate differed by around 11 percentage
points from the population completion rate; 75% of the time the completion differed by less than
21 percentage points (see www.measuringusability.com/blog/memory-math.php).

The results of this simulation tell us that even a very small-sample completion rate isn’t useless even
though the width of the 95% confidence interval is rather wide (typically 30+ percentage points). But
given any single sample, you can’t know ahead of time how accurate your estimate is. The confidence
interval will provide a definitive range of plausible values. From a practical perspective, keep in mind
that the values in the middle of the interval are more likely than those near the edges. If 95 percent
confidence intervals are too wide to support decision making, then it may be appropriate to lower the
confidence level to 90% or 80%. See Chapter 6 for a discussion of appropriate statistical criteria for
industrial decision making.
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Confidence Interval for a Problem Occurrence

The adjusted-Wald binomial confidence interval is one of the researcher’s most useful tools. Any
measure that can be coded as binary can benefit from this confidence interval. In addition to a comple-
tion rate, another common measure of usability is the number of users likely to encounter a problem.

Even in primarily qualitative formative usability tests, simple counts of user-interface problems
are taken. For example, three out of five users might experience the same problem with a design.
Understanding the actual percent of users affected by the problem can guide the prioritization of
problems and reduce some of the skepticism that comes with small sample sizes.

Using the adjusted-Wald formula, if three out five users experience a problem with a design, we
can be 95% confident between 23% and 88% of all users are likely to experience the same problem.
Although there is more uncertainty with small samples (the interval in this example is 65 percentage
points wide), the confidence interval is still very informative. Specifically, it tells us we can be
fairly certain that, if left uncorrected, one-fifth or more of all users would encounter the problem.

CONFIDENCE INTERVAL FOR RATING SCALES AND OTHER
CONTINUOUS DATA

The best approach for constructing a confidence interval around numeric rating scales is to compute the
mean and standard deviation of the responses and then use the ¢-distribution. If you’re used to treating rat-
ing scale responses as discrete frequencies, see Chapter 9 (“Is it OK to average data from multipoint
scales”). The t-distribution is like the normal distribution (also called the z-distribution) except that it takes
the sample size into account. With smaller sample sizes, our estimate of the population variance is rather
crude and will fluctuate more from sample to sample. The #-distribution adjusts for how good our estimate
is by making the intervals wider as the sample sizes get smaller. As the sample size increases (especially
at or above a sample size of 30), the #-confidence interval converges on the normal z-confidence interval.
After a sample size exceeds 100 or so, the difference between confidence intervals using the z and ¢ is
only a fraction of a point. In other words, the #-distribution will provide the best interval regardless of
your sample size, so we recommend using it for all sample sizes.
The #-confidence interval takes the following form:

J?il‘( =S
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where

X is the sample mean

n is the sample size

s is the sample standard deviation

t(l_%) is the critical value from the #-distribution for n—1 degrees of freedom and the specified

level of confidence

The confidence interval formula can appear intimidating. A simplified way of thinking about it
is to think of the confidence interval as two margins of error around the mean. The margin of error
is approximately two standard errors, and the standard error is how much we expect sample means
to fluctuate given the sample size (see Figure 3.2).
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FIGURE 3.2
Diagram of confidence interval.

To construct the interval, we need the mean, standard error, sample size, and critical value from
the z-distribution, using the appropriate value of 7 for our sample size and desired confidence level.
We can obtain the mean and standard deviation from our sample data.

L
Example 1

For example, let's use the following scores from the System Usability Scale (SUS), collected when users
rated the usability of a CRM application.

90,77.5,72.5,95,62.5,57.5,100, 95, 95,80,82.5,87.5

From these data we can generate the three basic ingredients needed to generate the t-confidence
interval:

Mean: 82.9
Standard deviation: 13.5
Sample size: 12

The standard error is our estimate of how much the average sample means will fluctuate around the
true population mean. It is the standard deviation divided by the square root of the sample size:

Standarderror = 5= = 13-

NG \/ﬁ=3,9
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In a normal distribution, we’d expect 95% of sample means to fall within 1.96 standard errors of the mean
(see the “Crash Course” in the Appendix for a refresher on this relationship). The standard error is the
same thing as the standard deviation of the sampling distribution of means. It is called the standard error
to differentiate it from the standard deviation of the raw data and remind us that every sample mean has
some error in estimating the population mean.

Because our sample size is fairly small, 95% of sample means will actually fluctuate more than
two standard errors. The exact number depends on our sample size, found by looking up values from the
t-distribution in a statistics textbook, the Excel function =TINV(0.05,11), or the online calculator at www
.usablestats.com/calcs/tinv.

To find the f-critical value, we need alpha and the degrees of freedom. Alpha is the Greek symbol for
the level of significance used in the study, typically 0.05. It is also one minus the confidence level, which
is typically 95% (1 — 0.95 = 0.05).

The degrees of freedom (df) for this type of confidence interval is the sample size minus 1 (12 —1=11).
Table 3.2 is an abbreviated t-table similar to ones you would find in a textbook. We first find 11 df and move
to the right in the table until we reach our desired significance level (0.05).

We find the critical value of 2.2. Such a result is typically written as (f s, 11) = 2.2. It tells us that at
a sample size of 12 we can expect 95% of sample means to fall within 2.2 standard deviations of the
population mean. We then express this as the margin of error:

Marginoferror=2.2-3- =22x39=86
& NG

Table 3.2 Abbreviated t-Table
Level of Significance
df 0.2 0.1 0.05 0.01 0.001
1 3.08 6.31 12.71 63.66 636.62
2 1.89 2.92 4.3 9.92 31.6
3 1.64 2.35 3.18 5.84 12.92
4 1.53 213 2.78 4.6 8.61
5 1.48 2.02 2.57 4.03 6.87
6 1.44 1.94 2.45 3.71 5.96
7 1.41 1.89 2.36 3.5 5.41
8 1.4 1.86 2.31 3.36 5.04
9 1.38 1.83 2.26 3.25 4.78
10 1.37 1.81 2.23 317 4.59
11 1.36 1.8 2.2 3.11 4.44
12 1.36 1.78 2.18 3.05 4,32
13 1.35 1.77 2.16 3.01 4.22
14 1.35 1.76 214 2.98 414
15 1.34 1.75 213 2.95 4.07
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The confidence interval is twice the margin of error, with upper and lower bounds computed by adding it
to and subtracting it from our sample mean:

Confidence interval = 82.9 —8.6t082.9 + 8.6

=74.3t091.5
Thus, we can be 95% confident that the true score is between 74.3 and 91.5.
||
L
Example 2

Fifteen users were asked to find information about a mutual fund on a financial services company website.
After attempting the task, users answered a single seven-point Likert question about how difficult the task
was. A rating of 1 corresponds to the response “Very Difficult” and a 7 corresponds to “Very Easy.”

The responses were:

3,5,3,7,1,6,2,5,1,1,3,2,6,2,2
From these data we can generate the three basic ingredients we need to generate the t-confidence
interval.

Mean: 3.27
Standard deviation: 2.02
Sample size: 15

The critical value from the tdistribution is (fp0s, 14) = 2.14. Plugging the values in the formula we get:

_ 2.02
t, = =327+214522 —3274+1.1
i (v Vi *

Thus, we can be 95% confident that the population rating on this question is between 2.2 and 4.4.

Confidence Interval for Task-time Data

Measuring time on task is a good way to assess task performance. Although it is an ideal continuous
metric because it can be measured at very small increments, there is a complication with task time.
Users cannot take any less than a fraction of a second to complete a typical usability task, but can take
many minutes or hours, so task-time data have a tendency to be positively skewed (see Figure 3.3).

Confidence intervals, like many statistical procedures, assume the underlying data have at least
an approximately symmetrical distribution. Figure 3.3 shows a nonsymmetrical distribution, so the
mean is no longer a good measure of the center of the distribution. A few long task times have a
strong pull on the mean, and for positively skewed data, the mean will always be higher than the
center. Before we consider computing the best confidence interval around task-time averages, we
need to discuss the best average time.
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FIGURE 3.3

Positively skewed task-time data. Note: Sample task from an unattended usability test with 192 users who
completed the task. The median is 71 and the arithmetic mean is 84.

Mean or Median Task Time?

Up to this point we’ve been using the arithmetic mean as the measure of central tendency for rating
scale data and referring to it as the average. The confidence intervals are providing the most likely
boundary of the population mean. For many positively skewed datasets like home prices or employee
salaries, the median is a better measure of the center. By definition, the median provides the center
point of the data—the point at which half the values are above the point and half are below. We suspect
this is what most practitioners are trying to get at when they report an “average” task time.

For example, the task times of 100, 101, 102, 103, and 104 have a mean and median of 102. Adding
an additional task time of 200 skews the distribution, making the mean 118.33 and the median 102.5.

It would seem that using the median would be the obvious choice for reporting the average task
time, and this is indeed what many textbooks teach and what many practitioners do. There are,
however, two major drawbacks to the median: variability and bias.

Variability

The strength of the median in resisting the influence of extreme values is also its weakness. The median
doesn’t use all the information available in a sample. For odd samples, the median is the central value;
for even samples, it’s the average of the two central values. Consequently, the medians of samples
drawn from a continuous distribution are more variable than their means (Blalock, 1972). The increased
variability of the median relative to the mean is amplified when sample sizes are small, because with
the introduction of each new value, the median can jump around a lot. Even though the underlying
distribution is continuous, the sample values are not—they are essentially discrete.

Bias

One of the desirable properties of the sample mean is that it is unbiased. That is, any sample mean is
just as likely to overestimate or underestimate the population mean. The median doesn’t share this
property. At small samples, the sample median of completion times tends to consistently overestimate
the population median—meaning it is a biased statistic (Cordes, 1993).
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Although the sample mean generally has better properties than the sample median, we know that
due to the skewness of the distributions of usability task times, the population mean will be larger than
the center value of the distribution (the population median). The “right” measure of central tendency
depends on the research question, but for many usability situations, practitioners want to estimate the
center of the distribution.

Geometric Mean

To find the best estimate of the middle task time for small-sample usability data, we conducted an
analysis of several alternatives for average task times (e.g., the arithmetic mean, median, geometric
mean, and trimmed means). We used a large set of usability tasks and found the geometric mean to
be a better estimate of the center than any of the other types of averages we assessed, including the
sample median (Sauro and Lewis, 2010). For sample sizes less than 25, the geometric mean has
less error and bias than the median or mean (see Figure 3.4). Because this average is not familiar to
most usability practitioners, we explain it in more detail below.

Computing the Geometric Mean

To find the geometric mean, first convert raw task times using a log transformation, find the mean of
the transformed values, and then convert back to the original scale by exponentiating. The log transfor-
mation can be done using the Excel function =LLN(), using the In button on most hand calculators or
using the web calculator at www.measuringusability.com/time_intervals.php.

For example, the following 10 raw task times—94, 95, 96, 113, 121, 132, 190, 193, 255, 298—get
transformed into the respective log values 4.54, 4.55, 4.56, 4.73, 4.8, 4.88, 5.25, 5.26, 5.54, 5.7. The
arithmetic mean of these log values is 4.98. We can then exponentiate this value using the Excel
function =EXP() or the ¢* button on a calculator to get the geometric mean of 146 seconds.

40 A
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—*— Mean
35 7, P —~®-- Median
<% GeoMean
7 301 ¢
=
Z 251
S
L 20 -
15 A
10 -

2 4 6 8 10 12 14 16 18
Sample size
FIGURE 3.4

Comparison of central tendency of mean, median, and geometric mean for task-time data as a function of
sample size.
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The raw times have an arithmetic mean of 159 seconds and median of 127 seconds. Over
time the geometric mean will be the better estimate of the center for sample sizes less than
around 25. For larger sample sizes, the sample median will be a better estimate of the population
median. When possible, we recommend that practitioners use the geometric mean with small
samples along with the confidence intervals around this average, computing the upper and lower
bounds using the transformed data, and then exponentiating those bounds to get back to the origi-
nal time scale.

Log-transforming Confidence Intervals for Task-time Data

We can also generate the confidence intervals for task times using the log values. Once the data
have been converted to their logs, we use the same procedure we did for confidence intervals
around rating scale data, and then transform the data back to the original scale:

Slog

X‘log +1 «
—— n
(-5)v

L
Example 1
Here are raw completion times and the same times expressed as their natural log:

Raw times: 94, 95, 96, 113, 121, 132, 190, 193, 255, 298
Log times: 4.54, 4.55, 4.56, 4.73, 4.8, 4.88, 5.25, 5.26, 5.54, 5.7

Next we follow the same steps to find the standard error and critical value from the t-distribution to
generate the margin of error:

Mean of the logs: 4.98
Standard deviation of logs: 0.426
Sample size: 10

We use the standard deviation and sample size to generate the standard error of the mean (our estimate of
how much sample means will vary at this sample size):

Standard error = \/iﬁ = 04—\/%5 =0.135

We look up the critical value from the tdistribution for 9 degrees of freedom (10 — 1) and get (ty 05, 9) = 2.26.
Next we plug in our values to get the margin of error:

Margin of error = 2265 =2.26x0.135 = 0.305
vn

The confidence interval is twice the margin of error and is expressed by adding and subtracting it from the
log mean:

Log confidence interval = 4.98 — 0.305t04.98 + 0.305
=4.68t05.29
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The final step is to convert this log confidence interval back to the original scale by exponentiating the
values:

Confidence interval = % to £(529)
= 10810 198 seconds
We can then be 95% confident the population median task time is between 108 and 198 seconds.
|
=
Example 2

The following 11 task times come from users who completed a task in a contact-manager software
program:

Raw times: 40, 36, 53, 56, 110, 48, 34, 44, 30, 40, 80

Log times: 3.689, 3.584, 3.970, 4.025, 4.7, 3.871, 3.526, 3.784, 3.401, 3.689, 4.382
Mean of the logs: 3.87

Standard deviation of logs: 0.384

Sample size: 11

The critical value from the tdistribution is (05, 10) = 2.23.

zogit< )E —387+2239384 _ 387,005

1-2)Vn V11
Log confidence interval = 3.87 —0.258103.87 + 0.258
=3.62t04.13
— e(3.62) to 6(4.13)
= 371062 seconds

We can then be 95% confident the population median task time is between 37 and 62 seconds.

Confidence Interval for Large Sample Task Times

As the sample size gets larger (especially above 25) the sample median does a better job of estimating
the population median and should be used as the best average task (see Figure 3.4). For large-sample
task times it also makes sense to compute a confidence interval around the median. The procedure for
doing this is explained in the following section.

Confidence Interval Around a Median

Certain types of data (e.g., task times, reaction times, or salary data) tend to be skewed and the median
tends to be a better estimate of the middle value than the mean. For small-sample task-time data the
geometric mean estimates the population median better than the sample median. As the sample sizes get
larger (especially above 25) the median tends to be the best estimate of the middle value.
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When providing the median as the estimate of the average you should also include confidence
intervals. The computations for a confidence interval around the median involve more than just
inserting the median in place of the mean.

As with all confidence interval formulas there are a number of ways to compute them. Following
is a method that uses the binomial distribution to estimate the intervals and should work well for most
large-sample situations.

The median is the point where 50% of values are above a value and 50% are below it. We can
think of it as being at the 50th percentile. The point where 25% of the value falls below a point is
called the 25th percentile (also the 1st quartile) and the 75th percentile is higher than 75% of all
values (the 3rd quartile).

The following formula constructs a confidence interval around any percentile. The median (0.5)
would be the most common but it could also be used to find any percentile such as 0.05, 0.97, or 0.25:

nPiZ<_Z> np(1-p)

where

n is the sample size
p is the percentile expressed as a proportion (0.5 for the median)
Z(1 ) is the critical value from the normal distribution (1.96 for a 95% confidence level)

np(1 —p) is the standard error

The results of the equation are rounded up to the next integer and the boundary of the confidence
interval is between the two values in the ordered data set.

I

Example 1

The following task times come from 30 users who successfully completed a task in a desktop accounting package:
167 158 136
124 77 317
85 65 120
136 80 186
110 95 109
330 96 116
76 100 248
57 122 96
173 115 137
76 152 149

The median task time is 118 seconds. The 95% confidence interval around the median is

2
=30(0.5)+1.96,/30x0.5(1 - 0.5)
=15+1.96x2.74

=15+5.36 = 9.63and 20.37 = 10t0 21

npiZ<17a> np(l-p)
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So we need to find the 10th and 21st value in our ordered data set:

57
65
76
76
77
80
85
95
96
96

100
109
110
115
116
120
122
124
136
136

137
149
152
158
167
173
186
248
317
330

35

The 95% confidence interval around the median of 118 seconds is between 96 and 137 seconds.

i
Example 2

The following task times come from 27 users who successfully completed a task in a desktop accounting
package. Arranged from the shortest to longest times, they are:

82

96
100
104
105
110
111
117
118

The median task time for these 27 users is 133 seconds.
np¢z<

=27(5)+1.96,/27x05(1-05)

118 141
118 150
127 161
132 178
133 201
134 201
134 211
139 223
141 256
a) np(1-p)
2

=135+1.96x%x2.6

=13.5+5.1 =8.4and 18.6 = the 9thand 19th times

The 95% confidence interval around the median of 133 seconds ranges from 118 to 141 seconds.
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KEY POINTS FROM THE CHAPTER

Due to sampling error, even the best point estimate from a sample will usually be wrong.

You should use confidence intervals around all point estimates to understand the most likely
range of the unknown population mean or proportion.

Computing a confidence interval requires four things: an estimate of the mean, an estimate of
the variability (derived from the sample standard deviation), the desired confidence level
(typically 95%), and the sample size.

Use the adjusted-Wald binomial confidence interval for completion rates. For rough estimates of
95% adjusted-Wald binomial confidence intervals, add two successes and two failures to the
observed completion rate.

For satisfaction data using rating scales, use the f-confidence interval (which takes the sample
size into account).

The geometric mean is the best estimate of the middle task time from small sample sizes (<25).

Task-time data are positively skewed and should be log-transformed prior to using the #-confidence
interval.

For large sample task-time data (>25) the median is the best point estimate of the middle task time,
so you should compute a confidence interval around the median using the binomial distribution
method.

Table 3.3 provides a list of formulas used in this chapter.

Table 3.3 List of Chapter 3 Formulas

Wald binomial confidence
interval

Confidence interval for
continuous data

percentile

Confidence interval around a

Type of Evaluation Formula Notes

Wald binomial confidence 51— F Commonly taught, but not recommended

. A p(1-p) : ;

interval pxz (1-9) n for small sample sizes—use z for desired
level of confidence.

Adjusted-Wald binomial 02— D) Relatively new procedure, recommended

confidence interval Pagj £2 (1 N ey for all sample sizes—see below for
formulas for pag and Nag;.

Adjustment of p for adjusted- X+zj Need to compute this to use in formula

Wald binomial confidence Pagj = 22 for adjusted-Wald binomial confidence

interval n+z interval.

Adjustment of n for adjusted- Nagj =N+Z Need to compute this to use in formula

for adjusted-Wald binomial confidence
interval.

Use t for the appropriate degrees of
freedom and confidence level.

For large sample sizes only—to use as
confidence interval around the median,
set p =0.5.
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CHAPTER REVIEW QUESTIONS

1. Find the 95% confidence interval around the completion rate from a sample of 12 users where
10 completed the task successfully.
2. What is the 95% confidence interval around the median time for the following 12 task times:

198, 220, 136, 162, 143, 130, 199, 99, 136, 188, 199

3. What is the 90% confidence interval around the median time for the following 32 task times:

251 21 60
108 43 34
27 47 48
18 15 219
195 37 338
82 46 78
222 107 117
38 19 62
81 178 40
181 95 52
140 130

4. Find the 95% confidence interval around the average SUS score for the following 15 scores
from a test of an automotive website:

70, 50, 67.5, 35, 27.5, 50, 30, 37.5, 65, 45, 82.5, 80, 47.5, 32.5, 65

5. With 90% confidence, if two out of eight users experience a problem with a registration element
in a web form, what percent of all users could plausibly encounter the problem should it go
uncorrected?

Answers
1. Use the adjusted-Wald binomial confidence interval. The adjustment is 11.9/15.84 = 0.752:

Padi(1 = Dagj 752(1-0.752
Ragj 15.84

=0.752+0.212 = 95% Cl between 54.0% and 96.4%

Pa=3(1-5)

2. The log times are: 5.288, 5.394, 4.913, 5.088, 4.963, 4.868, 5.293, 4.595, 4.913, 5.236, and
5.293, which makes the geometric mean = ¢>°® = 160.24 seconds. The 95% CI is:

- Stog 0.246 _
x,ogit(l_%) n 5.0812.23—\/ﬁ =5.08+£0.166

= 105 = 136 to 189 seconds
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3. The sample median is 70 seconds. The critical value from the normal distribution is 1.64 for a
90% level of confidence.

np %2 (,_g)\/np(1-p)

=32(0.5) + 1.64,/(32)(0.5)(1 - 0.5)

=16+ 1.64(2.83)

=16+4.64 = 11.36 and 20.64 = the 12th and 21st times
= 90% Cl between 47 and 107 seconds

4. A t-confidence interval should be constructed using a critical value of (75, 14) = 2.14. The
mean and standard deviation are 52.3 and 18.2, respectively:

_ s 182 _
Xi(1g) = = 52'3i2'14—\/ﬁ =523+10.1

The 95% confidence interval for the average SUS score of 52.3 is between 42.2 and 62.4.
5. Compute a 90% adjusted-Wald binomial confidence interval. For 90% confidence, the value of z
is 1.64. The adjusted proportion is 3.35/10.71 = 0.313.
. Paagi(1 = Pugy) 0.313(1-0.313)
70 gy | ———=0313+1.64y)| —MM=
Pag =2(1-4) Nadj 10.71

=0.313+0.233

We can be 90% confident between 8% and 54.6% of all users will encounter this problem if two
out of eight encountered it in the lab.
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CHAPTER

Did We Meet or Exceed Our Goal?

INTRODUCTION

Confidence intervals are an excellent way for showing both the location and precision of an estimate.
All other things being equal, estimates based on larger sample sizes will have a more precise estimate
of the unknown population mean or proportion.

Once you get used to using confidence intervals with small sample sizes you may start to notice
that the boundaries of the interval can be rather wide. For example, if eight out of nine users complete
a task, we can be 95% confident that actual population completion rate is between 54.3% and 99.9%.
While this interval is informative (e.g., there’s a very small chance the completion rate will be less
than 50%) there is still a lot of uncertainty. In fact, the interval is almost 50 percentage points wide,
which reflects a margin of error of plus or minus 23%. Many people familiar with televised poll
results with margins of error of less than 5% may believe a margin of error close to 25% is rather
unhelpful.

ERRATA SHEET EFFECTIVENESS: A RISK ASSESSMENT
When Arguing for Change, the Width of the Interval Doesn’t Matter as Much as the Specific Endpoints

From the files of Jim Lewis

In the early 1990s, my lab received a request to test a critical change to the documentation of a new computer.
Because it would have been expensive to update the content of the installation guide at the time of the discovery
of the need to change the instructions (many copies had already been printed), our assignment was to assess the
effectiveness of inserting an errata sheet at the top of the packaging where customers would see it first upon opening
the box. The words “DO THIS FIRST” appeared at the top of the sheet in 24-point bold type (see Figure 4.1). Despite
its location and prominent heading, six of eight participants installing the computer ignored the errata sheet, setting it
aside without attempting to use its instructions. Because we ran this test before the development of the adjusted-Wald
binomial confidence interval, we reported the exact binomial confidence interval. The observed failure rate was 75%,
with a 95% exact confidence interval ranging from 35% to 97%. Although we wound up with a very wide confidence
interval (spanning 62 percentage points) due to the small sample size and had not established a criterion before
running the test, we argued that the lower limit of the confidence interval indicated that it was very unlikely that the
true failure rate in the population would be less than 35%. Development was unwilling to accept that level of risk,
and spent the money needed to update the documentation rather than relying on the errata sheet.

(Continued)
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(Continued)

Important installation information

DO THIS FIRST!

Your system programs must be updated to avoid a system
malfunction.

If you have an IBM* Personal System/2* Model XX, immediately place
this sheet in your Quick Reference between pages 18 and 19, and
perform the following instructions before starting step 22 on page 19.

If you have an IBM* Personal System/2* Model YY, immediately place
this sheet in your Quick Reference between pages 10 and 11, and
perform the following instructions before starting step 8 on page 10.

FIGURE 4.1
Test errata sheet.

FIGURE 4.2

50% is an improbable result.

Such high margins of error are the consequences of small-sample studies. All is not lost however;
often with statistics it is a matter of reframing the results. One of the best ways to reframe the results
is to compare them to a specific benchmark or goal. For example, as stated earlier, we can be at least
95% confident more than half the users will complete the task. We are able to make that statement
because the lower boundary of the confidence interval does not dip below 54%, and therefore any-
thing below 54% becomes an improbable result (having less than a 2.5% chance of occurring over
the long run—see Figure 4.2).
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100%
90%
80% A
70% -
60% -
50% A
40% -
30% A
20% -
10% -

0% -

FIGURE 4.3

60% is a plausible result.

Using the boundaries of the confidence interval is a simple way to determine whether you’ve
met or exceeded a goal. If you wanted to be sure at least half the users can complete the task before
you move to the next design iteration (or release the software) then you have statistically significant
evidence from just nine users.

Perhaps 50% is too low of a bar. Can we be sure at least 60% of users can complete the same
task? Because the confidence interval boundary goes below 60% we can’t be 95% confident at least
60% of users can complete the task (see Figure 4.3).

Instead of just eye balling the boundaries of confidence intervals to determine whether we’ve
exceeded a benchmark there are statistical ways to get more precise answers. As we’ve seen with
the confidence interval computations, the method we use will depend on the type of data (discrete-
binary versus continuous) as well as the sample size. We will first cover the methods for comparing
completion rates then proceed to the continuous measures of satisfaction scores and task times.

WHERE DO CRITERIA COME FROM?

There Are a Variety of Sources of Varying Quality

Some approaches to the development of criteria are:

Base criteria on historical data obtained from previous tests that included the task.
Base criteria on findings reported in published scientific or marketing research.

Use task modeling such as GOMS or KLM to estimate expert task-time performance (Sauro, 2009).
Negotiate criteria with the stakeholders who are responsible for the product.

RS

Ideally, the goals should have an objective basis and shared acceptance among stakeholders such as marketing
and development (Lewis, 1982). The best objective basis for measurement goals are data from previous usability
studies of predecessor or competitive products. For maximum generalizability, the source of historical data should be
studies of similar types of participants completing the same tasks under the same conditions (Chapanis, 1988). If
this type of information is not available (or really, even if it is), it is important for test designers to recommend
objective goals and to negotiate with the other stakeholders for the final set of shared goals.

(Continued)
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(Continued)

Whatever approach you take, don't let analysis paralysis prevent you from specifying goals. “Defining usability
objectives (and standards) isn’t easy, especially when you're beginning a usability program. However, you're not
restricted to the first objective you set. The important thing is to establish some specific objectives immediately,
so that you can measure improvement. If the objectives turn out to be unrealistic or inappropriate, you can revise
them” (Rosenbaum, 1989, p. 211). If you find yourself needing to make these types of revisions, try to make
them in the early stages of gaining experience and taking initial measurements with a product. Do not change
reasonable goals to accommodate an unusable product.

ONE-TAILED AND TWO-TAILED TESTS

In Chapter 3 we used confidence intervals to describe the most likely range of an unknown population
parameter (a completion rate or average task time). For that purpose, the usual practice is to build the
interval so the sum of the probabilities of greater and smaller values is equal to one minus the level of
confidence. For example, if it’s a symmetrical 95% confidence interval, then the probability of values
below the lower limit is 2.5% and the probability of values above the upper limit is also 2.5%. In
addition to providing information about the most likely range of the parameter, this confidence inter-
val implies a two-sided test with alpha equal to 0.05. It’s a two-sided test because you care about
both sides of the confidence interval. Anytime you care about outcomes that can be either signifi-
cantly higher than a criterion or might just as well be significantly lower (e.g., when testing one pro-
duct against another without any preconception of which is better), you’d use a two-sided test.

The topic of this chapter, however, is on testing against a benchmark. When testing against a
benchmark, you usually only care about one side of the outcome. For example, if you’ve estab-
lished a maximum defect rate, then you have reached your benchmark only if the observed defect
rate is significantly lower than the target. The same is true for task times—you’ve beat the bench-
mark if the times you measure are significantly faster than the target time. For percent of successful
completions, you’ve achieved your goal only when the success rate you measure is significantly
greater than the benchmark (see Figure 4.4, “One-tailed test”).

As we go through the methods and examples in this chapter, we’ll cover two ways to conduct
one-sided tests of significance for assessing an observed outcome against a preestablished bench-
mark. The traditional way is to estimate the likelihood of having obtained the observed result if the
benchmark is true. Another way is to construct a confidence interval and then to compare, as

Two-tailed test («=0.05) One-tailed test («=0.05)

0.025 0.025 0.05

z -1.96 0 1.96 z 0 1.65

FIGURE 4.4

One- and two-sided rejection regions.
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appropriate, the upper or lower limit of the interval with the benchmark. For successful completions
you would compare the lower limit with the benchmark—if the lower limit is higher than the
benchmark, then the result indicates statistical significance. For completion times you’d compare
the upper limit with the benchmark—if the upper limit is lower than the benchmark, then you have
evidence of a statistically significant outcome.

There is, however, a trick to doing one-sided testing with confidence intervals. You no longer
care about what happens on one side of the interval, so you need to put all of the rejection area on
one side of the confidence interval. You do that by doubling the value of alpha that you’re going to
use for the test, then subtract that from 100% to determine the confidence level you should use for
the confidence interval. For example, if you're going to set alpha to 0.05 (5%), then you need to
build a 90% confidence interval. If you’re going to use a more liberal value for alpha, say, 10%,
then you’d need to construct an 80% confidence interval. If this seems a little confusing right now,
don’t worry, there will be plenty of examples showing how to do this.

COMPARING A COMPLETION RATE TO A BENCHMARK

To determine whether there is sufficient evidence that more than a set percent of users can complete a
task we perform one of two statistical tests depending on whether we have a small or large sample size.
In this case, small sample sizes are a function of both the number of users tested and the observed com-
pletion rate and failure rate. The closer the observed completion rate and failure rates are to 50%, the
larger the sample size needed to achieve a set level of precision and confidence. As a general rule
(Agresti and Franklin, 2007), the sample size is “small” when the number of users tested times the pro-
portion (p) or times one minus the proportion (g) is less than 15 (np < 15 or ng < 15). Put another way,
you need at least 15 failures and 15 successes for the sample to be considered “large.” For example, if
eight out of nine users complete a task (p =0.89), the small-sample method would be used since the
value of np =9(0.89) =8 (and there aren’t at least 15 successes and 15 failures). In practice, you should
plan on using the small-sample method if the total number of users tested is less than 30. In lab-based
testing it is unusual to have a sample size much larger than this so we’ll cover it first.

Small-Sample Test

For small sample sizes we use the exact probabilities from the binomial distribution to determine
whether a sample completion rate exceeds a particular benchmark. The formula for the binomial
distribution is

p(x) =)C! (nni x)!PX(l _p)(n—x)

where

x is the number of users who successfully completed the task
n is the sample size

The computations are rather tedious to do by hand, but are easily computed using the Excel
function BINOMDIST() or the online calculator available at www.measuringusability.com/onep.php.
The term n! is pronounced “n factorial” and is n X (n—1) X (n—=2) X --- X2x 1.
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L
Example 1

During an early stage design test eight out of nine users successfully completed a task. Is there sufficient
evidence to conclude that at least 70% of all users would be able to complete the same task?

We have an observed completion rate of 8/9=88.9%. Using the exact probabilities from the binomial
we can find the probability of obtaining eight or more successes out of nine trials if the population comple-
tion rate is 70%. To do so we find the probability of getting exactly eight successes and the probability of
getting exactly nine successes:

_ 9 81 _079-8_ _9 (1)_ _
p(8)= 8!(9—8)!0’7 (1-0.7) =8 0.0576(0.3)V=9(0.01729) =0.1556
_ 9 91 _0 79 _ _9 (0) — =
p(9) = —9!(9 —9), 0.7°(1-0.7) () 0.04035(0.3)”=0.04035(1) =0.04035

In Excel:

=BINOMDIST(8,9,0.7,FALSE) =0.1556
=BINOMDIST(9,9,0.7,FALSE) =0.04035

So the probability of eight or nine successes out of nine attempts is 0.1556 + 0.04035=0.1960. In
other words, there is an 80.4% chance the completion rate exceeds 70%. Whether this is sufficient
evidence largely depends on the context of the test and the consequences of being wrong. This result is
not suitable for publication. For many early design tests, however, this is sufficient evidence that efforts are
better spent on improving other functions.

The probability we computed here is called an “exact” probability—"exact” not because our answer is
exactly correct but because the probabilities are calculated exactly, rather than approximated as they are
with many statistical tests such as the t-test. Exact probabilities with small sample sizes tend to be conser-
vative—meaning they overstate the long-term probability and therefore understate the actual chances of
having met the completion-rate goal.

Mid-probability

One reason for the conservativeness of exact methods with small sample sizes is that the probabil-
ities have a finite number of possible values instead of taking on any number of values (such as
with the #-test). One way to compensate for this discreteness is to simulate a continuous result by
using a point in between the exact probabilities—called a mid-probability.

In the previous example we’d only use half the probability associated with the observed number
of successes plus the entire probability of all values above what we observed. The probability of
observing eight out of nine successes given a population probability of 70% is 0.1556. Instead of
using 0.1556 we’d use %(0.1556) =0.07782. We add this half-probability to the probability of nine
out of nine successes (0.07782 + 0.04035), which gets us a mid-p-value of 0.1182. We would now
state that there is an 88.2% chance the completion rate exceeds 70%. Compare this result to the
exact p-value of 0.1960 (an 80.4% chance the completion rate exceeds 70%). Due to its method of
computation, the mid-p will always look better than the exact-p result.
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Use this calculator to generate both a one-sample confidence interval and to test against a critera
or benchmark.

# Passed Total Tested Test Proportion

8 9 |s Greater Than || 070

Results

The probability the observed proportion 0.89 comes from a population greater than 0.70 is
88.18% .

Exact Binomial P-Value is 0.196

95% Adjusted-Wald CI (54.31, 100)

FIGURE 4.5

p and mid-p results for eight successes out of nine attempts compared to criterion of 70% success.

Although mid-p-values tend to work well in practice they are not without controversy (as are
many techniques in applied statistics). Statistical mathematicians don’t think much of the mid-
p-value because taking half a probability doesn’t appear to have a good mathematical foundation—
even though it tends to provide better results. Rest assured that its use is not just some fudge-factor
that tends to work. Its use is justified as a way of correcting for the discreteness in the data like
other continuity corrections in statistics. For more discussion on continuity corrections see Gonick
and Smith (1993, pp. 82-87).

A balanced recommendation is to compute both the exact-p and mid-p-values but emphasize the
mid-p (Armitage et al., 2002). When you need just one p-value in applied user research settings, we
recommend using the less conservative mid-p-value unless you must guarantee that the reported
p-value is greater than or equal to the actual long-term probability. This is the same recommenda-
tion we gave when computing binomial confidence intervals (see Chapter 3)—use an exact method
when you need to be absolutely sure you’ve not understated the actual probability (and just know
you’re probably overstating it). For almost all applications in usability testing or user research,
using just the mid-p-value will suffice. Online calculators often provide the values for both methods
(e.g., www.measuringusability.com/onep.php; see Figure 4.5).

L
Example 2
The results of a benchmarking test showed that 18 out of 20 users were able to complete the task
successfully. Is it reasonable to report that at least 70% of users can complete the task?

We have an observed completion rate of 18/20=90%. Using the exact probabilities from the
binomial we can find the probability of obtaining 18 or more successes out of 20 trials if the population
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completion rate is 70%. To do so we find the probability of getting exactly 18, 19, and 20 successes,

as follows:
20! 18 (20-18)
_ 20! 19 (20-19) _
_ 20! 20 (20-20) _
p(20) = m0.7 (1-0.7) =0.000798

The exact p-value is 0.02785 + 0.00684 + 0.000798 =0.0355.
The mid-p-value is 0.5(0.02785) + 0.00684 + 0.000798 =0.0216.

Both p-values are below the common alpha threshold of 0.05 and so both provide compelling
evidence that at least 70% of users can complete the task. It's also a result that’s suitable for
publication.

It is generally a good idea to compute a confidence interval with every statistical test because the
confidence interval will give you an idea about the precision of your metrics in addition to statistical signifi-
cance. To compute the confidence interval for a one-sided test, set the confidence level to 90% (because
you only care about one tail, this is a one-sided test with alpha equal to 0.05) and compute the interval;
if the interval lies above 0.7, then you've provided compelling evidence that at least 70% of users can
complete the task. As shown in Figure 4.6, using the adjusted-Wald confidence interval we get a 90%
confidence interval between 73% and 97.5%.

Input Table Results Table
Passed Total Tested Confidence Intervals Point Estimates
18 20 Low High Margin of Emor”
Adj. Wald ||0.7299 09748 01225 Best Estimsate | (0.3636
Exact 0.7174 09819 0.1323 MLE 0.9000
Score 0.7383 09663 01140 LePlsce 0.8636
Confidence Level: | 30% | v | Wald 0.7897 1.0103 0.1103 Jefirey's 0.8510
Using Alpha) 0.10 Wilson 0.8523
Likely Fopulstion Completion Rate
Unknown [ %
FIGURE 4.6

90% confidence intervals for 18 of 20 successful task completions.
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Large-Sample Test

The large-sample test is based on the normal approximation to the binomial and uses a z-score to
generate a p-value. It is only appropriate when there are at least 15 successes and 15 failures in the
sample. For example, if 24 out of 41 users complete a task successfully there are 24 successes and
16 failures, making the large-sample test the appropriate choice.

While many of the assumptions that come with statistical tests are flexible, such as violating
the normality assumption with a ¢-test, when tests use only one-tailed p-values they tend to
be particularly vulnerable to inaccuracies. Because we use a one-sided test when we want to
know whether a completion rate exceeds a benchmark (and therefore one-tailed p-values), it is
important to use the small-sample binomial test unless there are at least 15 successes and 15
failures.

The large-sample test statistic takes the following form:

p=r
p(1—-p)
n

7=

where

p is the observed completion rate expressed as a proportion (e.g., 0.9 indicates a 90%
completion rate)

p is the benchmark (e.g., 0.7)

n is the number of users tested

=
Example 1
The results from a remote-unmoderated test of a website task found that 85 out of 100 users were able to
successfully locate a specific product and add it to their shopping cart. Is there enough evidence to con-
clude that at least 75% of all users can complete this task successfully?

There are at least 15 successes and 15 failures, so using the large-sample method is appropriate. Fill-
ing in the values we get:

,__b-p _ 085-075 _ 01 _,34

\/,0(1 -p) \/0.75(1 —0.75) 00433
n 100

We look up the obtained z-score of 2.309 using a normal table of values or use the Excel function =
NORMSDIST(2.309) to get the cumulative distribution of z up to 2.309 (which is 0.9895), and then sub-
tract that from 1 to get the one-tailed p-value of 0.0105. This means that there is around a 1% chance of
seeing an 85% completion rate from a sample of 100 users if the actual completion rate is less than 75%.
Put more succinctly we can say there is around a 99% chance at least 75% of users can complete the
task. The 95% adjusted-Wald confidence interval is between 76.6% and 90.8%.

|



50 CHAPTER 4 Did We Meet or Exceed Our Goal?

L
Example 2
If 233 out of 250 users were able to complete a task in an unmoderated usability test, is there enough
evidence to conclude at least 90% of all users can complete the task?

There are at least 15 successes and 15 failures, so using the large-sample method is appropriate:

p-p _ 0932-09 _ 0.032

\/p(l -p) \/0.9(1 —09) 0019
n 250

=1.687

We look up the obtained z-score of 1.687 using a normal table of values or use the Excel function = NORMS-
DIST(1.687) =0.9541 and subtract that from 1 to get the one-tailed p-value of 0.0459, which indicates a
statistically significant result. We can be 95.4% sure at least 90% of users can complete the task given that
233 out of 250 did. The 90% adjusted-Wald confidence interval is between 90.1% and 95.4%.

||

COMPARING A SATISFACTION SCORE TO A BENCHMARK

Post-test questionnaires like the System Usability Scale (SUS) are popular for both lab-based and
unmoderated usability tests as they provide some idea about what users think about the usability of
the product or website tested. For practical statistical evaluation, questionnaire data can be treated
as continuous data so we can use one one-sample #-test for both small and large sample sizes (see
Chapter 9 for a discussion of the controversy of using parametric statistics on questionnaire data).

A SUS score, like most questionnaire data, is hard to interpret without some meaningful compar-
ison. Bangor et al. (2008) and Lewis and Sauro (2009) have published some benchmarks for the
SUS across different products. For example, an average SUS score for cell phones is around 67.
We can use this value to determine whether a current cell phone usability test exceeds this bench-
mark. To test the benchmark we will use the one-sample #-test. The r-distribution is also used when
constructing confidence intervals (see Chapter 3) and comparing two means for satisfaction data
(see Chapter 5). The test statistic looks like the following:

where

X is the sample mean

u is the benchmark being tested

s is the sample standard deviation
n is the sample size

The fraction in is called the standard error of the mean (SEM). The result of the equation will
tell us how many standard errors there are between our sample mean and the benchmark. The more
standard errors there are the more evidence we will have that our sample exceeds the benchmark.
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L
Example 1

Twenty users were asked to complete some common tasks (dialing, adding contacts, and texting) on a
new cell phone design. At the end of the test the users responded to the 10-item SUS questionnaire. The
mean SUS score was 73 and the standard deviation was 19. Is there enough evidence to conclude that
the perceived usability of this cell phone is better than the industry average of 67 as reported by Bangor
et al. (2008)?

_X—p _73-67 _ 6 _
t="5"="19 =gzp3-14

Vi V20

The observed difference of six SUS points is 1.41 standard errors from the benchmark. To know how
likely this difference is from a sample size of 20 we look up the one-tailed probability value in a ftable
(the degrees of freedom for this type of ftest is n — 1, in this case, 19), use the online calculator available
at www.usablestats.com/calcs/tdist, or use the Excel function =TDIST(1.41,19,1).

USING THE EXCEL TDIST FUNCTION WHEN T IS NEGATIVE
Working Around a Puzzling Limitation
From the files of Jeff Sauro

For some reason, the Excel TDIST function does not work with negative values of f. There are a couple of
ways to work around this limitation. You can either reverse the observed value and the benchmark in the
numerator, or you can use the absolute value function inside TDIST, for example, =TDIST(ABS(-0.66),10,1)
when the value of tis —0.66, there are 10 degrees of freedom, and you're running a one-sided test. It took
me a while to figure out why Excel sometimes wasn’t producing p-values—it happened when t was negative.

The parameters are the test statistic (1.41), the degrees of freedom (19), and a one-tailed test (1).
We get the probability of 0.0874, meaning we can be around 91% confident this cell phone has an
average score greater than the industry average of 67. For most development environments this is
sufficient evidence to conclude the cell phone is above average.

We can generate a two-sided 80% confidence interval around our sample mean with the data we
have here (the 80% confidence interval would correspond to a one-tailed test at an alpha of 0.1).
The only additional information we need is the critical value from the #-distribution for a confidence
level of 0.8 and 19 degrees of freedom. Using the Excel function =TINV(0.2,19), the critical value
of tis 1.33:

. ) 19
+t —=73+133—=—=73+5.6
T (._g)ﬁ ST

The margin of error is 5.6 points, so we can be 80% confident the population’s true SUS score
is between 67.4 and 78.6. The lower boundary of the 80% confidence interval does not dip
below 67.
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L
Example 2

In a recent unmoderated usability test 172 users attempted tasks on a rental car website and then
answered the SUS questionnaire. The mean response was 80 and the standard deviation was 23. Can we
conclude that the average SUS score for the population is greater than 75?

j_X—p _80-75_ 5

S 23— 1528
vno 172

The observed difference of five SUS points is 2.85 standard errors from the benchmark. Finding the
probability associated with this difference we get a p-value of 0.002 (=TDIST(2.85,171,1)). There is less
than a 1% chance that a mean of 80 for a sample size of 172 would come from a population with a mean
less than 75. In other words, we can be more than 99% confident that the average score for all users of
this website exceeds 75.

The 90% confidence interval around the average SUS score is:

S —80+1.65-23_ =80+29

=lg)va V172

The two-sided 90% confidence interval is between the SUS scores of 77.1 and 82.9.

Do at Least 75% Agree? Converting Continuous Ratings to Discrete

As is the case with any continuous measure like satisfaction ratings you can always “downgrade”
the results into discrete-binary responses. This is what happens when managers look at “top-box” or
“top-two-box” scores. For example, on a five-point rating scale you can report the number of users
who “agreed” by converting 4’s and 5’s into 1’s and 1-3 into 0’s. You could then answer the question,
“Do at least 70% of users ‘agree’ with the statement ‘I feel confident conducting business with this
website’?” You would then analyze the data using the binary completion-rate method (for both large
and small sample sizes) instead of the continuous method.

For example, below are the responses from 12 users who completed two tasks on the Walmart
website and responded to the item “I feel confident conducting business with this website” at the
end of the test. A 1 is Strongly Disagree and a 5 is Strongly Agree. Can we conclude at least 75%
of users feel confident conducting business on Walmart.com (ratings of 4 or 5)?

4,4,5,5,5,5,3,5,1,5,5,5
Converting these responses to binary we get:

1,1,1,1,1,1,0,1,0,1,1, 1

We have 10 out of 12 users who agreed with the statement. The small-sample binomial mid-p-value
is 0.275, which indicates a 72.5% chance that 75% of all users agree with the statement. For most
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applications that is not a high level of certainty so it would be difficult to confidently conclude that at
least 75% of all users agree with the statement “I feel confident conducting business with this website.”
The 80% adjusted-Wald confidence interval around the percentage of users who agree is between 65.3%
and 93.4%. The interval contains the benchmark of 75%, which isn’t even near the lower limit of
65.3%, reinforcing the point that we don’t have convincing evidence that at least 75% of users agree.

Disadvantages of Converting Continuous Ratings to Discrete

When you convert continuous ratings to discrete data you lose information. During the process both a
4 and a 5 become a 1. You no longer have as precise a measure of the intensity of agreement or dis-
agreement. The disadvantage of losing the intensity of agreement is that it becomes harder to measure
improvements. It will take a larger sample size to detect improvements and achieve benchmarks. For
example, using the same 12 ratings from the Walmart.com website the average response is a 4.33
(standard deviation = 1.23). Instead of testing whether a certain percentage of “agree” responses (top-
2-box) exceeds a benchmark, you could use 4 as the lower boundary of “agree” and compute a one-
sample ¢-test to answer the same question, this time taking into account the intensity of the agreement.

_i-p_433-4_ 033

=5 =123 “o3s5 9%
vno U

The value of ¢ for this one-tailed test is 0.929 with 11 degrees of freedom (p =0.186), so there
is an 81.4% chance that the mean for all users exceeds 4. Although we generally recommend using
the original raw continuous data when testing claims, there are many times when reporting on com-
pany dashboards requires conforming to a top-box or top-2-box approach with specific criteria such
as 90% must “agree.”

Net Promoter Score*
Another common example of converting continuous rating scale data into discrete top-2-box scoring
is the popular Net Promoter Score (NPS; www.netpromoter.com/np/calculate.jsp). The NPS is a
measure of loyalty that uses only a single question—"“How likely are you to recommend this product
to a friend?”—and is measured on an 11-point scale (0 =not at all likely to 10 = extremely likely).
Promoters are those who rate a 9 or 10 (top-2-box), detractors are those who rate 0 to 6, and passive
responders are those who rate a 7 or 8. The “Net” in Net Promoter Score comes from the scoring pro-
cess whereby you subtract the percent of detractors from the percent of promoters. In fact, usability
explains a lot of the variability in the NPS (Sauro, 2010).

For example, 15 users attempted to make travel arrangements on the website expedia.com. At the
end of the usability test they were asked the NPS question. Here are their responses:

10,7,6,9,10,8,10,10,9,8,7,5,8,0,9

When we convert these responses to detractors (0-6), passive (7-8), and promoters (9—10), we have
seven promoters and three detractors generating an NPS of 4/15 =26.7%.

*Net Promoter, NPS, and Net Promoter Score are trademarks of Satmetrix Systems, Inc., Bain & Company, and Fred
Reichheld.
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WHAT IS A GOOD NET PROMOTER SCORE?
Evidence from 17 Consumer and Productivity Software Products

From the files of Jeff Sauro

The appeal of top-box scoring approaches like the Net Promoter Score is that they appear easier to interpret
than a mean. Many executives are comfortable working with percentages. So knowing there is a higher per-
centage of customers likely to recommend your product than dissuade others from using it may be more helpful
than just knowing the mean response is a 7.5.

Despite this appeal, one still needs to know what a “good” score is beyond a negative versus positive
proportion. A leading competitor, the industry average, and historical data for the same product are all helpful—
but all usually difficult to obtain. One of the first adopters of the Net Promoter Score was Intuit, the software
company that makes QuickBooks and TurboTax. It's not surprising that many software companies now use the
NPS as a key corporate metric. | commissioned a study in March 2011 to survey the sentiments of customers of
17 consumer and productivity software products. | found the average NPS score was a 21% with a range of
—26% to 56%—with the best showing coming for customers of TurboTax. For more details on the study see
www.measuringusability.com/software-benchmarks.php. The average and high NPSs for your industry can be
used as valid benchmarks if the comparisons are meaningful for your product.

COMPARING A TASK TIME TO A BENCHMARK

Task-time data are a continuous metric like satisfaction data. However, as was explored in Chapter 3,
task-time data tend to be positively skewed (having a long right tail). One of the assumptions
underlying most statistical procedures is that the data are approximately symmetrical and bell-
shaped (e.g., t-confidence intervals in Chapter 3, two-sample #-tests in Chapter 5). Fortunately
many statistical tests are “robust” to violations of this normality assumption. Unfortunately, a
one-sided, one-sample 7-test is particularly vulnerable to this violation (Agresti and Franklin,
2007). To remedy this problem we will use the same procedure we used in Chapter 3. We first
convert the raw task times to log times and perform the same one-sample ¢-test we used for the
questionnaire data.

where

X1, is the mean of the log values
s1n 1 the standard deviation of the log values

One slight difference in this formula is that we subtract the observed time from the benchmark
(in the expectation that our sample mean is less than the benchmark we want to test). This is not
always the case as we’ll see in the first example taken from an actual scenario.
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HOW LONG SHOULD A TASK TAKE?
It Depends on the Context of the Task

From the files of Jeff Sauro

As soon as you start collecting time on task in a usability test you will want to know what an acceptable
time is. Task times are highly dependent on the context of the task. Even slight variations in the same task
scenario can substantially change task times and make finding a comparison difficult. For example, a common
task in customer relationship management (CRM) software is adding a sales contact to the database. An
acceptable time will differ if the required information is just an email address versus an email, phone, street
address, and sales notes. There isn’t a single solution to this issue. In my experience, I've had the most luck
having the same participants attempt the same tasks on the older version of the interface (the products are
presented in alternating orders). This provides both a benchmark on the old interface, using the exact same
task, and immediately tells you if the users can perform the task faster (or at least as fast) on the new inter-
face. See Chapter 5 for more information on comparing task times for a within-subjects design. For more infor-
mation see www.measuringusability.com/blog/task-times.php.

Another common method for determining ideal task times is to identify the expert or fastest task time and set
the unacceptable time to 1.5 times (or another multiple) this time for each task. However, it's unclear what a
good multiple should be (Sauro and Kindlund, 2005). More research is needed to make this approach more
meaningful, so use it as a last resort.

L
Example 1
As shown in Figure 4.7, the rental car website Budget.com has posted the slogan “Rent a car in just
60 seconds.”

Twelve users in a lab-based usability test were all able to successfully rent a car from Boston’s Logan
International Airport.

Task times: 215, 131, 260, 171, 187, 147, 74, 170, 131, 165, 347, 90
Geometric mean task time: 160 seconds

Is there evidence to suggest that the average task time is less than 60 seconds?
First, we log-transformed the values using the Excel function =LN().

Log-transformed times: 5.37, 4.88, 5.56, 5.14, 5.23, 4.99, 4.3, 5.14, 4.88, 5.11, 5.85, 4.5
Mean of log times: 5.08

Standard deviation of log times: 0.423

Log of benchmark: 4.09

_ log(u) —log(%) _ 4.09-5.08 _ -0.98 _

log(s) 0423 ~ 0.122 = —8.087
NG V12

The test statistic is negative because our sample geometric mean (see Chapter 3) is 160 seconds.
When the sample average takes longer than the benchmark you know right away that there’s less than a
50% chance that we can claim that the average task time is less than the benchmark. In this example the
average time was almost three times the benchmark! When we look up the probability associated with this
t-statistic we get the p-value of 0.9999965. In other words, there’s far less than a 1% chance of obtaining
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Budget.
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FIGURE 4.7
Rent a car in just 60 seconds.

an average time of 160 seconds if the population average time is less than 60 seconds. The 95% confidence
interval (f-critical value = 2.2) for the average task time is:

— SIog 0.423
Xiog £+t — =508+22-—"==5.08+0.269
log ( a) \/}." /“-12

Confidence interval = e*8V tg (539
=123t0210seconds

Using the geometric mean as a proxy for the median (given a sample size of 12), we can be about
95% confident the median task time is between 123 and 210 seconds (Sauro and Lewis, 2010).

Even though we knew right away that we have little evidence that the average time to rent a car is less than
60 seconds (because the average time was greater than the benchmark) it is sometimes useful to go through
the motions of computing the statistics. The reason is that some might wrongly have the perception that an
average time from only 12 users is not meaningful. The statistical result tells us in fact that we have strong evi-
dence that the average user time will exceed 60 seconds. If someone was concerned about the small sample
size used to test this benchmark and was considering increasing the sample size, these data tell us there's
less than one chance in a million the average time could be less than 60 seconds—even if the sample size is
10 times as large! This is a reoccurring theme in usability testing with small samples—you can determine an
interface is unusable very easily with a small sample size, but to show statistically that an interface is usable,
you need a large sample size (see Chapter 6 on failure rates and Chapter 7 on problem discovery rates).

If you are wondering how Budget.com can still have this claim on their website, the reason is that it is
referring to users who are part of their loyalty program and have their information prepopulated, and most
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importantly the claim doesn’t mention anything about an “average time.” It could be referring to the fastest
possible completion time. Whether casual users appreciate this subtlety is a different question and is why
it made for a good test case at the Comparative Usability Evaluation-8 at the 2009 UPA Conference
(Molich et al., 2009).

|

MY FAVORITE MEANINGLESS CLAIM
Up to 98% Accuracy—or More!
From the files of Jim Lewis

Not surprisingly, marketing claims generally have looser guidelines than peer-reviewed publications. My favor-
ite claim came from an off-the-shelf dictation package, advertising “Up to 98% accuracy—or more!"—which is a
claim that actually says the accuracy is somewhere between O and 100%. I'm sure the next year, it said, “Up to
99% accuracy—or more!” Even if the product hadn’t changed, it would still be true.

L
Example 2

Eleven users completed a common task in a financial application (a journal entry). Can we be at least 90%
sure users can enter this journal entry in less than 100 seconds?

Raw task times: 90, 59, 54, 55, 171, 86, 107, 53, 79, 72, 157
Geometric mean: 82.3 seconds

Log times: 4.5, 4.08, 3.99, 4.01, 5.14, 4.45, 4.67, 3.97, 4.37, 4.28, 5.06
Mean of log times: 4.41

Standard deviation of log times: 0.411

Log of benchmark: 4.61

_ log(u) —log(x) _4.61-4.41 _ 0.19

log(s) 0411 =0104 -1
Vn V11

We look up the probability of this t-statistic on 10 degrees of freedom for a one-tailed test =
TDIST(1.53,10,1) =0.0785. The probability of seeing an average time of 82.3 seconds if the actual popula-
tion time is greater than 100 seconds is around 7.85%. In other words, we can be about 92.15%
confident users can complete this task in less than 100 seconds.

The 80% confidence interval (tcritical value = 1.37) for the average task time is:

Vvn

Confidence interval = e?9 to ¢(*5®)
= 691098 seconds

- Siog 0.411
Xogtly N =441+137=2=441+0.17
(1’2) 11

If we were able to test all users on this task and application, we can be about 80% confident the median
task time will be between 69 and 98 seconds (using the geometric mean as a proxy for the median). As
discussed earlier in the chapter we report the two-tailed 80% confidence interval because we're interested
in a one-tailed test with an alpha of 0.1.
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KEY POINTS FROM THE CHAPTER

The statistical test you use for completion rates depends on the sample size: A sample size is
considered small unless you have more than 15 successes and 15 failures.

For determining whether a certain percentage of users can complete a task for small sample sizes
use the mid-probability from the binomial distribution.

For determining whether a certain percentage of users can complete a task for large sample sizes
use the normal approximation to the binomial.

You can always convert continuous rating scale data into discrete-binary data and test a
percentage that agrees with a statement, but in so doing, you lose information.

For comparing a set of satisfaction scores from a survey or questionnaire with a benchmark, use
the one-sample #-test for all sample sizes.

For determining whether a task time falls below a benchmark, log-transform the times and then
perform a one-sample t-test for all sample sizes.

Table 4.1 provides a list of formulas used in this chapter.

Table 4.1 List of Chapter 4 Formulas

Type of Evaluation Formula Notes

Binomial probability formula p(x)= n! p(1 _p)m—x) Used in exact and mid-p binomial
xI(n-x)! tests (small sample).

Normal approximation to the > p-p Used for large-sample binomial tests

binomial (Wald) o —p) (large sample if at least 15 successes

n and 15 failures).
One-sample t-test f X- Used to test continuous data (e.g.,
% satisfaction scores, completion times).

t-based confidence interval Yit( ; 1)% Used to construct confidence interval

T2

around the mean

as alternative test against a criterion
for continuous data.

CHAPTER REVIEW QUESTIONS

1.

2.

Twenty-five out of 26 users were able to create an expense report in a financial application.
Is there enough evidence to conclude that at least 90% of all users can complete the same task?
In an unmoderated usability test of an automotive website, 150 out of 180 participants correctly
answered a qualifying question at the end of a task to demonstrate they’d successfully completed
the task. Can at least 75% of users complete the task?

. An “average” score for websites using the System Usability Scale is 70 (Bangor et al., 2008).

After completing two tasks on the Travelocity.com website, the average SUS score from 15
users was a 74.7 (sd = 12.9). Is this website’s usability significantly above average?

Twelve users attempted to locate a toy on the toysrus.com website and rated the difficulty of the
task an average of 5.6 (sd = 1.4) on a seven-point scale (where a 7 means very easy). Is there
evidence that the average rating is greater than 5?
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5. Six participants called an interactive voice response system to find out the appropriate replacement
head for an electric shaver and the nearest location to pick one up. All participants completed the
task successfully, with the following task completion times (in minutes): 3.4, 3.5, 1.7, 2.9, 2.5,
and 3.2. Do the data support the claim that callers, on average, can complete this task in less than
3 minutes?

Answers

1. Twenty-five out of 26 users successfully completed the task. There are fewer than 15 successes
and 15 failures, so this is a small sample. Using the Excel =BINOMDIST function to compute
the exact probably for getting 25/26 successes and 26/26 successes and adding them together to
get the probability of the observed or greater number of successes, we get:

=BINOMDIST(26,26,0.9,FALSE) =0.065
=BINOMDIST(25,26,0.9,FALSE) =0.187
P(25 or 26 successes | 26 trials and p =0.9) =0.065+0.187=0.2513

So, the likelihood of getting 25 or 26 successes if the true success rate is 90% is about 0.25, which
is not terribly compelling. Taking 1 —0.25 = 0.75, there is a 75% likelihood that the completion rate
exceeds 90%.

Things look a little better if you use the recommended mid-p approach, using half of the
probability for P(25), which is 0.093, for a combined probability (P(25, 26)) of 0.158, indicating
an 84% likelihood that the completion rate exceeds 90%—better, but still not compelling.

A third approach to answering this question is to use the calculator at www.measuringusability
.com/wald.htm to compute an 80% adjusted-Wald binomial confidence interval, using 80% confi-
dence to achieve a one-sided test with alpha set to 0.1—a reasonable set of criteria for a single-
shot industrial test (see Chapter 6), as shown in Figure 4.8.

Input Table Results Table

Passed Total Tested Confidence Intervals Point Estimates

25 26 Low High Margin of Emgr
Adj. Wald | (.8736 0.9946 0.0605 Best Estimate  |(.9286
. Calculate | s [0.8585 | 09960 | |0.0687 we  [09615
Score 0.6798 0.9884 0.0543 LaPlace 0.9286
Confidence Level:| 30% |v | Wald 09132 | |1.0099 0.0483 lefieys  |(0.9444
Using Alpha: .20 Wilsen 0.934

FIGURE 4.8
Results of adjusted-Wald confidence interval for question 1.
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The confidence interval approach provides a conclusion consistent with the exact- and mid-p
methods. Because the adjusted-Wald interval contains the benchmark of 0.9, there is insufficient
evidence to conclude that in the tested population at least 90% of users could successfully com-
plete the task. An advantage of computing the confidence interval is that you get an idea about
what benchmarks the data in hand would support. For example, because the lower limit of the
interval is 87.36%, the data would support the claim that at least 85% of users could successfully
complete the task.

. For this test, 150 out of 180 participants completed the task successfully, and the question is

whether this provides compelling evidence that at least 75% of users from the tested population
would also successfully complete the task. Because there are more than 15 successes and more
than 15 failures, it is okay to use the large sample method—the normal approximation to the
binomial—to answer the question. The observed success rate is 150/180 = 0.833, the sample
size is 180, and the benchmark is 0.75, so:

.—_P-p _ _0833-075 _ 0.083

\/p(l -p) \/0.75(1 —0.75) 0.0323
n 180

=2.582

If the success rate in the population is actually equal to 0.75, then the probability of getting a
z-score of 2.582 is 0.0049:

=NORMSDIST(2.582) = 0.9951
p=1-0.9951=0.0049

To get a better mental picture of what this means, use the calculator at www.measuringusability
.com/wald.htm to compute a 98% adjusted-Wald binomial confidence interval, using 98% confi-
dence to achieve a one-sided test with alpha set to 0.01. As shown in Figure 4.9, the lower limit
of the adjusted-Wald confidence interval exceeds the benchmark, which provides compelling
evidence of having met the benchmark.

Input Table Results Table
Passed Total Tested Confidence Intervals Point Estimates
150 180 Low High Msrgin of Error®
Adj. Wald (07716 0.8811 0.0548 Best Estimate || (.5297
. Calculate | e (07707 | (08346 | [0.0570 we (08333
Score 0.7720 0.8807 0.0543 LaPlace 0.8297
ConfidencsLevek 9% [w| | woy  [07780 | [08878 | [0.0544 stevs  |0.8315
Using Alpha; .05 Wilson 0.6264
FIGURE 4.9
Results of adjusted-Wald confidence interval for question 2.
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3. Here we need to determine if the observed SUS mean of 74.7, given a sample size of 15 (so
there are 14 degrees of freedom) and standard deviation of 12.9, is significantly greater than the
benchmark of 70. Applying the formula for a one-sided, one-sample r-test:

_X—p_747-70 _ 47 _

=% =719 —333-'4
VNG

The result of this test is #(14) = 1.41, p = 0.09:
=TDIST(1.41,14,1)=p=0.09

To run the statistical test using a confidence interval, use confidence of 80% to set the one-sided
alpha to 0.1. The critical value of # for 80% confidence and 14 degrees of freedom is 1.345. The
standard error of the mean, as shown in the previous equation, is 3.33. The critical difference for
the confidence interval, therefore, is 1.345 X 3.33, or about 4.5, so the confidence interval ranges
from 70.2 to 79.2. Because the lower limit of the confidence interval barely exceeds the bench-
mark, there is reasonable, though not overwhelming, evidence of having met the benchmark.

4. In this problem we need to determine if the observed mean of 5.6, given a sample size of 12 (so
there are 11 degrees of freedom) and standard deviation of 1.4, is significantly greater than the
benchmark of 5. Applying the formula for a one-sided, one-sample #-test:

_E-u _56-5_ 06

t="5 =771 “oa0a '
Vi n

The result of this test is #(11) = 1.48, p = 0.08.
=TDIST(1.48,11,1) =p=0.08

Just like question 3, to run the statistical test using a confidence interval, use confidence of 80%
to set the one-sided alpha to 0.1. The critical value of ¢ for 80% confidence and 11 degrees of
freedom is 1.363. The standard error of the mean, as shown in the previous equation, is 0.404.
The critical difference for the confidence interval, therefore, is 1.363 X 0.404, or about 0.55, so
the confidence interval ranges from 5.05 to 6.15. Again, as in question 3, the lower limit of the
confidence interval barely exceeds the benchmark, so there is reasonable, but not overwhelming,
evidence of having met the benchmark.

5. The data in this problem are task times, so it’s a good idea to start by calculating their natural
log values (in Excel, =LN()), which are 1.22, 1.25, 0.53, 1.06, 0.92, and 1.16. For these six
values, the mean is 1.025, the standard deviation is 0.271, the standard error of the mean is
0.111, and the criterion is 1.1 (LN(3) = 1.1). Using these values to compute #:

p—% _1.10-1.025 _ 0.075
ST T 0271 0111

i

t= =0.676

For this test #(5) = 0.676, p = 0.26. This is far from compelling evidence of having beaten the
benchmark.
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To run the statistical test using a confidence interval, set the confidence to 80% for a one-sided
alpha of 0.1. The critical value of ¢ for 80% confidence and 5 degrees of freedom is 1.476. The stan-
dard error of the mean, as shown in the previous equation, is 0.111. The critical difference for the
confidence interval, therefore, is 1.476(0.111), or about 0.164, so the confidence interval of the log
values ranges from 0.861 to 1.189. Using the EXP function to convert these natural log values back
to times in minutes, the confidence interval ranges from 2.4 to 3.3 minutes. The upper bound of the
confidence limit exceeds the criterion of 3 minutes, so the results do not support the claim that most
callers would complete the task in less than 3 minutes. The confidence interval does suggest that,
given the data in hand, most callers would complete the task in less than 3.5 minutes.
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CHAPTER

Is There a Statistical Difference
between Designs?

INTRODUCTION

Many researchers first realize the need for statistics when they have to compare two designs or products
in an A/B test or competitive analysis. When stakes are high (or subject to scrutiny), just providing
descriptive statistics and declaring one design better is insufficient. What is needed is to determine
whether the difference between designs (e.g., among conversion rates, task times, or ratings) is greater
than what we’d expect from chance. This chapter is all about determining whether a difference is
statistically significant and how large or small of a difference likely exists in the untested population.

COMPARING TWO MEANS (RATING SCALES AND TASK TIMES)

A central theme in this book is to understand the role of chance in our calculations. When we can’t
measure every user to compute a mean likelihood to recommend or a median task time, we have to
estimate these averages from a sample.

Just because a sample of users from Product A has a higher average System Usability Scale
(SUS) score than a sample from Product B does not mean the average SUS score for all users is
higher on Product A than Product B (see Sauro, 2011a for more information on using the SUS for
comparing interface usability). Chance plays a role in every sample selection and we need to
account for that when comparing means.

To determine whether SUS scores, Net Promoter Scores, task times, or any two means from
continuous variables are significantly different (such as comparing different versions of the same
product over time or against a competitive product), you first need to identify whether the same
users were used in each test (within-subjects design) or whether there was a different set of users
tested on each product (between-subjects design).

Within-subjects Comparison (Paired t-test)

When the same users are in each test group you have removed a major source of variation between
your sets of data. In such tests you should alternate which product users encounter first to minimize
carryover effects. If all users first encounter Product A, this runs the risk of unfairly biasing users,
either for or against Product A. The advantages are that you can attribute differences in measure-
ments to differences between products, and you can detect smaller differences with the same
sample size.

Quantifying the User Experience. DOI: 10.1016/B978-0-12-384968-7.00005-9 63
© 2012 Jeff Sauro and James R. Lewis. Published by Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/B978-0-12-384968-7.00005-9

64 CHAPTER 5 Is There a Statistical Difference between Designs?

To determine whether there is a significant difference between means of continuous or rating-scale
measurements, use the following formula:

Slsle

where

D is the mean of the difference scores

sp is the standard deviation of the difference scores

n is the sample size (the total number of pairs of users)

t is the test statistic (look-up using the #-distribution based on the sample size for two-sided area)

See Technical Note 1 below.

=
Example 1: Comparing Two SUS Means
For example, in a test between two expense-reporting applications, 26 users worked (in random order)
with two web applications (A and B). They performed several tasks on both systems and then completed
the 10-item SUS questionnaire, with the results shown in Table 5.1 (subtracting the score for B from the
score from A to get the difference score).

Product A had a mean SUS score of 82.2 and Product B had a mean SUS score of 52.7. The mean of
the difference scores was 29.5 with a standard deviation of 14.125. Plugging these values in the formula,
we get

29.5
14.125

V26
t=10.649

We have a test statistic (f) equal to 10.649. To determine whether this is significant, we need to look up
the p-value using a t-table, the Excel function =TDIST(), or the calculator available at http.//www.usablestats
.com/calcs/tdist.

The degrees of freedom for this type of test are equal to n — 1, so we have 25 degrees of freedom (26 — 1).
Because this is a two-sided test (see Technical Note 1), the p-value is =TDIST(10.649,25,2) = 0.0000000001.
Because this value is so small, we can conclude that there’s less than a one in a billion chance that the
population mean SUS scores are equal to each other. Put another way, we can be over 99.999% sure
Products A and B have different SUS scores. Product A’s SUS score of 82.2 is statistically significantly higher
than Product B’s of 52.7, so we can conclude users perceive Product A as easier to use.

Technical Note 1: We're using the two-sided area (instead of the one-sided area that was used in
comparing a mean to a benchmark in Chapter 4) because we want to see whether the difference
between SUS means is equal to O, which is a two-sided research question. It is tempting to look at the
results and see that Product A had a higher mean and then use just a one-sided test. Although it
wouldn’t matter in this example, it can happen that the one-sided test generates a significant p-value
but the corresponding two-sided p-value is not significant. Waiting until after the test has been
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User A

1 77.5

2 90

3 80

4 77.5

5 100

6 95

7 82.5

8 97.5

9 80
10 87.5
11 77.5
12 87.5
13 82.5
14 50
15 77.5
16 82.5
17 80
18 65
19 72.5
20 85
21 80
22 100
23 80
24 57.5
25 97.5
26 95
Mean 82.2

60
62.5
45
20
80
42.5
32.5
80
52.5
60
42.5
87.5
52.5
10
67.5
40
57.5
32.5
67.5
47.5
45
62.5
40
45
65
72.5

52.7

Table 5.1 Pairs of SUS Scores and Their Differences for Example 1

Difference

17.5
27.5
35
57.5
20
52.5
50
17.5
27.5
27.5
35

0
30
40
10
42.5
22.5
32.5

5
37.5
35
37.5
40
12.5
32.5
225

29.5

65

conducted to determine whether to use a one- or two-sided test improperly capitalizes on chance. We
strongly recommend sticking with the two-sided area for comparing two means (also see Chapter 9,

“Should You Always Conduct a Two-Tailed Test?”).

Confidence Interval around the Difference

With any comparison we also want to know the size of the difference (often referred to as the effect
size). The p-value we get from conducting the paired #-test tells us only that the difference is significant.
A significant difference could mean just a one-point difference in SUS scores, which would not be of
much practical importance. As sample sizes get large (above 100), as is common in remote unmoderated
testing, it becomes more likely to see a statistically significant difference when the actual effect size is
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not practically significant. The confidence interval around the difference helps us distinguish between tri-
vial (albeit statistically significant) differences and differences users would likely notice.

To generate a confidence interval around the difference scores to understand the likely range of
the true difference between products, use the following formula

D+t

Q“h
= o]

where

D is the mean of the difference scores (as was used in computing the test statistic)

n is the sample size (the total number of users)

sp is the standard deviation of the difference scores (also used in computing the test statistic)

t, is the critical value from the #-distribution for n — 1 degrees of freedom and the specified level
of confidence. For a 95% confidence interval and sample size of 26 (25 degrees of freedom), the
critical value is 2.06. See http.//www.usablestats.com/calcs/tdist to obtain critical values from the
t-distribution, or in Excel use =TINV(0.05,25).

Plugging in the values we get

14.125

V26
29.5+5.705

29.5+2.06

We can be 95% confident the actual difference between product SUS scores is between 23.8 and 35.2.

Practical Significance

The difference is statistically significant, but is it practically significant? The answer to this question
depends on how we interpret the lowest and highest plausible differences. Even the lowest estimate of the
difference of 23.8 points puts Product A at 45% higher than Product B. It also helps to know something
about SUS scores. A difference of 23.8 points crosses a substantial range of products and places Product
A’s perceived usability much higher than Product B’s relative to hundreds of other product scores (Sauro,
2011a). Given this information it seems reasonable to conclude that users would notice the difference in
the usability and it suggests that the difference is both statistically and practically meaningful.

Technical Note 2: For the confidence interval formula we use the convention that ¢, represents
a two-sided confidence level. Many, but not all, statistics books use the convention t( - %) which
2

is based on a table of values that is one sided. We find this approach more confusing in this
chapter because in most cases you’ll be working with two-sided rather than one-sided confidence
intervals. It is also inconsistent with the Excel TINV function, which is a very convenient way to
get desired values of + when computing confidence intervals.

Comparing Task Times

In earlier chapters we saw how task times have a strong positive skew from some users taking a long
time to complete a task. This skew makes confidence intervals (see Chapter 3) and tests against
benchmarks (see Chapter 4) less accurate. In those situations we applied a log transformation to the
raw times to improve the accuracy of the results. When analyzing difference scores, however,
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the two-tailed paired #-test is widely considered robust to violations of normality, especially when the
skew in the data takes the same shape in both samples (Agresti and Franklin, 2007; Box, 1953;
Howell, 2002). Although sample mean task times will differ from their population median, we can
still accurately tell whether the difference between means is greater than what we’d expect from
chance alone using the paired #-test, so there is no need to complicate this test with a transformation.

Example 2: Comparing Two Task Times

In the same test of two accounting systems used in Example 1, task times were also collected. One task
asked users to create an expense report. Of the 26 users who attempted the task, 21 completed it suc-
cessfully on both products. These 21 task times and their difference scores appear in Table 5.2. Failed
task attempts are indicated with a minus sign and not included in the calculation.

User A

1 223
2 140
3 178
4 145
5 256
6 148
7 222
8 141
9 149
10 150
11 138
12 160
13 117
14 292
15 127
16 151
17 127
18 211
19 106
20 121
21 146
22 135
23 111
24 116
25 187
26 120
Mean 158

184
195

210
299
148
184

229

200
549
235
210
218
196
162
176
269
336
167
203
247
174

228

Table 5.2 Pairs of Completion Times and Their Differences for Example 2

Difference

-123
-201

-87
-60
—54
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The mean difference score is —77 seconds and the standard deviation of the difference scores is
61 seconds. Plugging these values in the formula we get

We have a test statistic (f) equal to —=5.78 with 20 (n — 1) degrees of freedom and the decision prior to run-
ning the study to conduct a two-sided test. To determine whether this is significant we need to look up the
p-value using a t-table, the Excel function =TDIST(), or the calculator available at hitp://www.usablestats
.com/calcs/tdist. Using =TDIST(5.78,20,2), we find p=0.00001, so there is strong evidence to conclude
that users take less time to complete an expense report on Product A. If you follow the steps from the previous
example, you'll find that the 95% confidence interval for this difference ranged from about 49-104 seconds—
a difference that users are likely to notice.

In this example, the test statistic is negative because we subtracted the typically longer task time (from
Product B) from the shorter task time (Product A). We would get the same p-value if we subtracted the smaller
time from the larger time, changing the sign of the test statistic. When using the Excel TDIST function, keep in
mind that it only works with positive values of .

Normality Assumption of the Paired t-test

As we’ve seen with the paired #-test formula, the computations are performed on the difference
scores. We therefore are only working with one sample of data, which means the paired ¢-test is
really just the one-sample #-test from Chapter 4 with a different name.

The paired #-test therefore has the same normality assumption as the one-sample #-test. For large
sample sizes (above 30), normality isn’t a concern because the sampling distribution of the mean is
normally distributed (see Chapter 9). For smaller sample sizes (less than 30) and for two-tailed
tests, the one-sample #-test/paired #-test is considered robust against violations of the normality
assumption. That is, data can be non-normal (as with task-time data) but still generate accurate
p-values (Box, 1953). For this reason, we recommend sticking with the two-sided test when using
the paired z-test.

Between-subjects Comparison (Two-sample ttest)

When a different set of users is tested on each product there is variation both between users and
between designs. Any difference between the means (e.g., questionnaire data, task times) must be
tested to see whether it is greater than the variation between the different users.
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To determine whether there is a significant difference between means of independent samples of
users, we use the two-sample z-test (also called #-test on independent means). It uses the following
formula:

X —Xx
(= 1 2
2 2
51, %
+_
n ny

where

X1 and X, are the means from samples 1 and 2

s1 and s, are the standard deviations from samples 1 and 2

n; and n, are the sample sizes from samples 1 and 2

t is the test statistic (look-up using the #-distribution based on the sample size for the two-
sided area)

L
Example 1: Comparing Two SUS Scores

For example, in a test between two CRM applications, the following SUS scores were obtained after 11 users
attempted tasks on Product A and 12 users attempted the same tasks on Product B, for a total of 23 different
users tested (see Table 5.3).

Table 5.3 Data for Comparison of SUS
Scores from Independent Groups
A B
50 50
45 52.5
57.5 52.5
47.5 50
52.5 52.5
57.5 47.5
52.5 50
50 50
52.5 50
55 40
47.5 42.5
57.5
51.6 49.6
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Product A had a mean SUS score of 51.6 (sd =4.07) and Product B had a mean SUS score of 49.6
(sd =4.63). Plugging these values in the formula we get

__516-496
4.07° N 4.63°
11 12
t=1.102

The observed difference in SUS scores generates a test statistic (f) equal to 1.102. To determine
whether this is significant, we need to look up the p-value using a ftable, the Excel function =TDIST, or
the calculator available at http://www.usablestats.com/calcs/tdist.

We have 20 degrees of freedom (see the next sidebar on “Degrees of Freedom for the Two-sample
t-test”) and want the two-sided area, so the p-value is =TDIST(1.102,20,2) = 0.2835. Because this value
is rather large (and well above 0.05 or 0.1) we can’t conclude that the difference is greater than chance.
A p-value of 0.2835 tells us the probability that this difference of two points is due to chance is 28.35%.
Put another way, we can be only about 71.65% sure that Products A and B have different SUS scores—a
level of certainty that is better than 50/50 but that falls well below the usual criterion for claiming a signifi-
cant difference. Product A’s SUS score of 51.6, while higher, is not statistically distinguishable from
Product B’s score of 49.6 at this sample size.

If we had to pick one product, there’s more evidence that Product A has a higher SUS score, but in
reality it could be that the two are indistinguishable in the minds of users or, less likely, that users
think Product B is more usable. In most applied research settings, having only 71.65% confidence that
the products are different is not sufficient evidence for a critical decision.

With time and budget to collect more data, you can use the estimates of the standard deviation and the
observed difference to compute the sample size needed to detect a two-point difference in SUS scores (see
Chapter 6). Given a sample standard deviation of 4.1 and a difference of two points (95% confidence and
80% power), you'd need a sample size of 136 (68 in each group) to reliably detect a difference this small.

DEGREES OF FREEDOM FOR THE TWO-SAMPLE 7-TEST

It's a Little More Complicated Than the One-sample Test, but That'’s What Computers Are for

It's simple to calculate the degrees of freedom for a one-sample t-test—just subtract 1 from the sample size (n — 1).
There’s also a simple formula for computing degrees of freedom for a two-sample -test, which appears in many
statistics books—add the independent sample sizes together and subtract 2 (n; + n, — 2).

Instead of using that simple method for the two-sample ttest, in this book we use a modification called the
Welch-Satterthwaite procedure (Satterthwaite, 1946; Welch, 1938). It provides accurate results even if the
variances are unequal (one of the assumptions of the two-sample t-test) by adjusting the number of degrees of
freedom using the following formula:
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where s; and s, are the standard deviations of the two groups, and n; and n, are the group’s sample sizes. For
fractional results, round the degrees of freedom (df’) down to the nearest integer. For the data in Table 5.3, the
computation of the degrees of freedom is

(4.072 . 4.632>2
df = = 5 2 > = 10.8 =20.8, which rounds down to 20
4.072 4.63°y 052
11 12

11-1 T 12-1

The computations are a bit tedious to do by hand, but most software packages compute it automatically, and
it’s fairly easy to set up in Excel. If, for some reason, you don’t have access to a computer and the variances are
approximately equal, you can use the simpler formula (n; + n, — 2). If the variances are markedly different (e.g.,
the ratio of the standard deviations is greater than 2), as a conservative shortcut you can subtract 2 from the
smaller of the two sample sizes.

Confidence Interval around the Difference
With any comparison, we also want to know the size of the difference (the effect size). The p-value
we get from conducting the two-sample #-test only tells us that a significant difference exists. For
example, a significant difference could mean just a one-point difference in SUS scores (which
would not be of much practical importance) or a 20-point difference, which would be meaningful.
There are several ways to report an effect size, but for practical work, the most compelling and
easiest to understand is the confidence interval. We can use the following formula to generate a
confidence interval around the difference scores to understand the likely range of the true difference
between products:

2 2
& 4 Sp ., %
(X] —.Xz) + 1, + =

ny np

where

X1 and X, are the means from samples 1 and 2

s1 and s, are the standard deviations from samples 1 and 2

n; and n, are the sample sizes from samples 1 and 2

t, is the critical value from the ¢-distribution for a specified level of confidence and degrees of
freedom. For a 95% confidence interval and 20 degrees of freedom, the critical value is 2.086.
See http://www.usablestats/calcs/tdist for obtaining critical values from the #-distribution.

Plugging in the values we get

4.07% + 4.632

51.6 —49.6 +2.086 T 2

2+3.8

So, we can be 95% confident that the actual difference between product SUS scores is between
—1.8 and 5.8. Because the interval crosses zero, we can’t be 95% sure that a difference exists; as
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previously stated, we’re only 71.8% sure. Although Product A appears to be a little better than
Product B, the confidence interval tells us that there is still a modest chance that Product B has a
higher SUS score (by as much as 1.8 points).

=
Example 2: Comparing Two Task Times
Twenty users were asked to add a contact to a CRM application. Eleven users completed the task on the
existing version and nine different users completed the same task on the new enhanced version. Is there
compelling evidence to conclude that there has been a reduction in the mean time to complete the task?
The raw values (in seconds) appear in Table 5.4.

The mean task time for the 11 users of the old version was 37 seconds with a standard deviation of
22.4 seconds. The mean task time for the 9 users of the new version was 18 seconds with a standard
deviation of 13.4 seconds. Plugging in the values we get

' X1 —Xo
G
m o

. 37-18
2247 1347
11 T 9

t=2.33

The observed difference in mean times generates a test statistic (f) equal to 2.33. To determine whether
this is significant we need to find the p-value using a ttable, the Excel function =TDIST, or the calculator
available at hitp://www.usablestats.com/calcs/tdist.

Table 5.4 Data for Comparison of Task
Times from Independent Groups
Oold New

18 12

44 35

35 21

78 9

38 2

18 10

16 5

22 38

40 30

77

20
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We have 16 degrees of freedom (see the sidebar on “Degrees of Freedom for the Two-sample t-test”)
and want the two-sided area, so the p-value is =TDIST(2.33,16,2) = 0.033. Because this value is rather
small (less than 0.05) there is reasonable evidence that the two task times are different. We can conclude
users take less time with the new design. From this sample we can estimate the likely range of the difference
between mean times by generating a confidence interval. For a 95% confidence interval with 16 degrees of
freedom, the critical value of tis 2.12. See http.//www.usablestats.com/calcs/tdist for obtaining critical values
from the tdistribution.

Plugging the values into the formula we get

2 2
N “ S S
(Xl—X2)it5 n_11+n_22
37_1842.12, /224  134°
* 11 9
19+17.2

We can be 95% confident the difference in mean times is between about 2 and 36 seconds.

Assumptions of the ttests
The two-sample 7-test has four assumptions:

1. Both samples are representative of their parent populations (representativeness).

2. The two samples are unrelated to each other (independence).

3. Both samples are approximately normally distributed (normality).

4. The variances in both groups are approximately equal (homogeneity of variances).

As with all statistical procedures, the first assumption is the most important. The p-values, confi-
dence intervals, and conclusions are only valid if the sample of users is representative of the population
about which you are making inferences. In user research this means having the right users attempt the
right tasks on the right interface.

Meeting the second assumption is usually not a problem in user research as the values from one
participant are unlikely to affect the responses of another. The latter two assumptions, however, can
cause some consternation and are worth discussing.

Normality

Like the one-sample #-test, paired #-test, and most parametric statistical tests, there is an underlying
assumption of normality. Specifically, this test assumes that the sampling distribution of the mean
differences (not the distribution of the raw scores) is approximately normally distributed. When this
distribution of mean differences is not normal, the p-values can be off by some amount. For large
samples (above 30 for all but the most extreme distributions) the normality assumption isn’t an
issue because the sampling distribution of the mean is normally distributed according to the Central
Limit Theorem (see Chapter 9).
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Fortunately, even for small sample sizes (less than 30), the #-test generates reliable results when
the data are not normally distributed. For example, Box (1953) showed that a typical amount of
error is a manageable 2%. For example, if you generate a p-value of 0.02, the long-term actual
probability might be 0.04. This is especially the case when the sample sizes in both groups are
equal, so, if possible, you should plan for equal sample sizes in each group, even though you might
end up with uneven sample sizes.

Equality of Variances

The third assumption is that the variances (and equivalently the standard deviations) are approxi-
mately equal in both groups. As a general rule, you should only be concerned about unequal var-
iances when the ratio between the two standard deviations is greater than 2 (e.g., a standard deviation
of 4 in one sample and 12 in the other is a ratio of 3) (Agresti and Franklin, 2007). The robustness of
the two-sample 7-test also extends to violations of this assumption, especially when the sample sizes
are roughly equal (Agresti and Franklin, 2007; Box, 1953; Howell, 2002). For a method of adjusting
degrees of freedom to help compensate for unequal variances, see the sidebar “Degrees of Freedom
for the Two-sample #-test.”

Don’t Worry Too Much about Violating Assumptions (Except Representativeness)

Now that we’ve covered the assumptions for the two-sample 7-test, we want to reassure you that
you shouldn’t concern yourself with them too much for most practical work—except of course
representativeness. No amount of statistical manipulation can overcome the problem of measuring
the wrong users performing the wrong tasks.

We’ve provided the detail on the other assumptions here so you can be aware that they exist. You
might have encountered warnings about non-normal data and heterogeneous variances in statistics
books, or from colleagues critical of the use of #-tests with typical continuous or rating-scale usability
metrics. It is our opinion that the two-sample #-test, especially when used with two-sided probabilities
and (near) equal sample sizes, is a workhorse that will generate accurate results for statistical compari-
sons in user research. It is, however, always a good idea to examine your data, ideally graphically to
look for outliers or unusual observations that could have arisen from coding errors or errors users
made while responding. These types of data-quality errors can have a real effect on your results—an
effect that properly conducted statistics cannot fix.

COMPARING COMPLETION RATES, CONVERSION RATES, AND A/B TESTING

A binary response variable takes on only two values: yes/no, convert/didn’t convert, purchased/didn’t
purchase, completed the task/failed the task, and so on. These are coded into values of 1 and O,
respectively. Even continuous measures can be degraded into binary measures, for example, a propor-
tion of users taking less than a minute to complete a task, or a proportion of responses scoring 9 or 10
on an 11-point scale. These types of binary measures appear extensively in user research.

As with the continuous method for comparing task times and satisfaction scores, we need to con-
sider whether the two samples being compared have different users in each group (between-subjects)
or use the same people (within-subjects).
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Between-subjects

Comparing the two outcomes of binary variables for two independent groups happens to be one of the
most frequently computed procedures in applied statistics. Surprisingly, there is little agreement on
the best statistical test for this situation. For large sample sizes, the chi-square test is typically recom-
mended. For small sample sizes, the Fisher exact test (also called the Fisher—Irwin test) is typically
recommended. However, there is disagreement on what constitutes a “small” or “large” sample size
and what version of these tests to use. A recent survey of medical and general statistics textbooks by
Campbell (2007) found that only 2 of 14 books agreed on what procedure to recommend for compar-
ing two independent binary outcomes.

The latest research suggests that a slight adjustment to the standard chi-square test, and equivalently
to the two-proportion test, generates the best results for almost all sample sizes. The adjustment is sim-
ply subtracting 1 from the total sample size and using it in the standard chi-square or two-proportion
test formulas (shown later in this chapter). Because there is so much debate on this topic we spend the
next few pages describing the alternatives that you are likely to encounter (or were taught) and then pre-
sent the recommended N — 1 chi-square test and N — 1 two-proportion test. You can skip to the “N — 1
Chi-square Tests” section if you have no interest in understanding the alternative formulas and their
drawbacks.

Chi-square Test of Independence

One of the oldest methods and the one typically taught in introductory statistics books is the
chi-square test. Karl Pearson, who also developed the most widely used correlation coefficient,
proposed the chi-square test in 1900 (Pearson, 1900).

It uses an intuitive concept of comparing the observed counts in each group with what you
would expect from chance. The chi-square test makes no assumptions about the parent population
in each group, so it is a distribution-free, nonparametric test. It uses a 2 X 2 (pronounced two by
two) table with the nomenclature shown in Table 5.5.

To conduct a chi-square test, compare the result of the following formula to the chi-square
distribution with one degree of freedom.

£= (ad — bc)*N
mnrs

Table 5.5 Nomenclature for Chi-square Tests of Independence

Pass Fail Total
Design A a b m
Design B c d n

Total r s N
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DEGREES OF FREEDOM FOR CHI-SQUARE TESTS
For a 2 x 2 Table, It's Always One

The general formula for calculating the degrees of freedom for a chi-square test of independence is to multiply
one less than the number of rows by one less than the number of columns:

df=(r-1)(c-1)

In a 2 x 2 table, there are two rows and two columns, so all chi-square tests conducted on these types of tables
have one degree of freedom.

Table 5.6 Data for Chi-square Test of Independence
Pass Fail Total
Design A 40 20 60
Design B 15 20 35
Total 55 40 95

For example, if 40 out of 60 (67%) users complete a task on Design A, can we conclude it is
statistically different from Design B where 15 out of 35 (43%) users passed? Setting this up in
Table 5.6 we have the following.

Filling in the values in the formula, we get

» (40x20-20% 15)* X 95
60 X 35 X 55 X 40
72 =5.1406

We use a table of chi-square values or the Excel function =CHIDIST(5.1406, 1), and get the p-value of
0.0234. Because this value is low, we conclude the completion rates are statistically different. Design A
has the higher completion rate and so it is statistically higher than B’s.

Small Sample Sizes

The chi-square test tends to generate accurate results for large sample sizes, but is not recommended
when sample sizes are small. As mentioned earlier, both what constitutes a small sample size and
what alternative procedure to use are the subjects of continued research and debate.

The most common sample size guideline is to use the chi-square test when the expected cell
counts are greater than 5 (Cochran, 1952, 1954). This rule appears in most introductory statistics texts
despite being somewhat arbitrary (Campbell, 2007). The expected counts are different than the actual
cell counts, computed by multiplying the row and column totals for each cell and then dividing by
the total sample size. From the previous example, this generates the following expected cell counts:

(rxm) (55%60)
- —34.74
N 95 34.7
(sxXm) _ (40 x 60) 9596
N 95
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Table 5.7 Conversion Rates for Two Designs

Pass Fail Total
Design A 1 (@ 1(b) 12 (m)
Design B 5 (c) 5 (d) 10 (n)
Total 16 () 6 (s) 22 (N)

(rxn) (55x35)

= =20.26
N 95
(sxn) _ (40 x 35) 1474
N 95

The minimum expected cell count for the data in the example is 14.74, which is greater than 5, and
s0, according to the common sample size guideline, the normal chi-square test is appropriate.

Here is another example comparing conversion rates on two designs with a total sample size of 22
and some expected cell counts less than 5. The cell nomenclature appears in parenthesis in Table 5.7.
Eleven out of 12 users (92%) completed the task on Design A; 5 out of 10 (50%) completed it on
Design B.

Filling in these values we get

e (ad — bc)*N
mnrs

,  (11x5-1x5)*x22
12x 10X 16 X6

2 =4.7743

Looking up this value in a chi-square table or using the Excel function =CHIDIST(4.7743, 1)
we get the p-value of 0.0288, so we conclude there is a statistically significant difference between
conversion rates for these designs.

However, in examining the expected cell frequencies we see that two of them are less than 5.

(rxm) (16x12)

N - m =8.73
sXm 6x12
(N ) _( s ) _397
rXn 1610
(N)z( X ) _797
sXn 6x10
(;)z( >2<2 ) _om3

With low expected cell counts, most statistics textbooks warn against using the chi-square test
and instead recommend either the Fisher exact test (a.k.a. Fisher—Irwin test) or the chi-square test
with Yates correction. Before covering those alternative methods, however, we should mention the
two-proportion test.
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Two-proportion Test
Another common way for comparing two proportions is the two-proportion test. It is mathemati-
cally equivalent to the chi-square test. Agresti and Franklin (2007) have suggested a rule of thumb
for its minimum sample size that there should be at least 10 successes and 10 failures in each
sample.

It generates a test statistic that is looked up using the normal (z) distribution to find the p-values.
It uses the following formula and will be further discussed in a subsequent section (“N — 1 Two-
proportion Test”).

(P1 =P»)

Fisher Exact Test

The Fisher exact test uses exact probabilities instead of approximations as is done with the chi-
square distribution and f-distributions. As with the exact binomial confidence interval method
used in Chapter 4, exact methods tend to be conservative and generate p-values that are higher
than they should be and therefore require larger differences between groups to achieve statistical
significance.

The Fisher exact test computes the p-values by finding the probabilities of all possible combina-
tions of 2 X 2 tables that have the same marginal totals (the values in cells m, n, r, and s) that are
equal to or more extreme that the ones observed. These values are computed for each 2 X 2 table
using the following formula:

_ mlnlrls!
P= bl dIN

The computations are very tedious to do by hand and, because they involve factorials, can gener-
ate extremely large numbers. Software is used in computing the p-values because there are typically
dozens of tables that have the same marginal or more extreme marginal totals (m, n, r, and s) even for
modest sample sizes. An online Fisher exact test calculator is available at www.measuringusability
.com/fisher.php.

The two-tailed p-value generated from the calculator is 0.0557. Using 0.05 as our threshold for
significance, strictly speaking, we would conclude there is nort a statistically significant difference
between designs using the Fisher exact test. In applied use, we’d likely come to the same conclusion
if we have 94.4% confidence or 95% confidence—namely, that it’s unlikely that the difference is due
to chance.

Yates Correction
The Yates correction attempts to approximate the p-values from the Fisher exact test with a simple
adjustment to the original chi-square formula:

<|ad —bc|— %)2N

Xyates =
yates mnrs
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Using the same example from before, we get the Yates chi-square test statistic of

2
(|11><5—1><5\— %) %22
12x10x16%x6

2
X yates =
;@m =2.905

Looking up this value in a chi-square table or using the Excel function =CHIDIST(2.905, 1) we
get the p-value of 0.0883. Using 0.05 as our threshold for significance, we would conclude there is
not a statistically significant difference between designs using the Yates correction (although, as
with the Fisher exact test, this outcome would probably draw our attention to the possibility of a
significant difference).

For this example, the p-value for the Yates correction is higher than the Fisher exact test, which
is a typical result. In general, the Yates correction tends to generate p-values higher than the Fisher
exact test and is therefore even more conservative, overstating the true long-term probability of a
difference. For this reason and because most software programs can easily calculate the Fisher exact
test, we do not recommend the use of the chi-square test with the Yates correction.

N — 1 Chi-square Test

Pearson also proposed an alternate form of the chi-square test in his original work (Campbell, 2007,
Pearson, 1900). The numerator, instead of being multiplied by N (the total sample size), is multiplied
by N - 1:

, (ad—bc)*(N-1)

h mnrs
Campbell (2007) has shown this simple adjustment to perform better than the standard chi-square,
Yates variant, and Fisher exact tests for almost all sample sizes. It tends not to work well when the
minimum expected cell count is less than one. Fortunately, having such low expected cell counts
doesn’t happen a lot in user research, and when it does, the Fisher exact test is an appropriate substitute.
Using the N — 1 chi-square test, we get the following p-value from the example data used before:

,  (11x5-1x5)*x21
12x10x16%x6
7 =4.557

Looking up this value in a chi-square table or using the Excel function =CHIDIST(4.557, 1) we
get the p-value of 0.0328. Using 0.05 as our threshold for significance, we would conclude there is
a statistically significant difference between designs.

N — 1 Two-proportion Test

An alternative way of analyzing a 2 X 2 table is to compare the differences in proportions. Similar
to the two-sample #-test where the difference between the means was compared to the ¢-distribution,
the N — 1 chi-square test is equivalent to an N — 1 two-proportion test. Instead of using the chi-square
distribution to generate the p-values, we use the normal (z) distribution.
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Many readers may find this approach more intuitive for three reasons:

1. Tt is often easier to think in terms of completion rates or conversion rates (measured as proportions)
rather than the number of users who pass or fail.

2. We use the more familiar and readily available normal distribution as the reference distribution
for finding p-values and don’t need to worry about degrees of freedom.

3. The confidence interval formula uses the difference between the two proportions and makes for
an easier transition in computation and understanding.

The N — 1 two-proportion test uses the standard large sample two-proportion formula (as shown

in the previous section) except that it is adjusted by a factor of 4 /%. This adjustment is algebrai-

cally equivalent to the N — 1 chi-square adjustment. The resulting formula is

A A N-1
Py —P2) N

pox(L+1)
np ny

7=

where

p, and p, are the sample proportions

_(X1tx
pP= (nl +ny

numbers attempting
o=1-°P

N is the total sample size in both groups

), where x; and x, are the numbers completing or converting, and n, and n, are the

Using the example data we have 11 out of 12 (91.7%) completing on Design A and 5 out of 10
(50%) completing on Design B, for a total sample size of 22.
First we compute the values for P and Q and substitute them in the larger equation:

p=<“+5>=0.727 and Q=1-0.727=0.273

12+10
22-1
0917-0.5),/22=1
= .1
727 %0272 (— —)
\/07 7x0.272 % 12+10
2=2.135

We can use a normal (z) table to look up the two-sided p-value, or the Excel function
=(1-NORMSDIST(2.135))*2, which generates a two-sided p-value of 0.0328—the same p-value we
got from the N — 1 chi-square test, demonstrating their mathematical equivalence.

Table 5.8 summarizes the p-values generated from the sample data for all approaches and our
recommended strategy.
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Table 5.8 Summary of p-values Generated from Sample Data for Chi-square and Fisher Tests

Method p-value Notes

N — 1 Chi-Square/N — 1 0.0328 Recommended: when expected cell counts are all >1

Two-Proportion Test

Chi-Square/Two-Proportion Test 0.0288 Not recommended: understates true probability for small
sample sizes

Chi-Square with Yates Correction 0.0883 Not recommended: overstates true probability for all
sample sizes

Fisher Exact Test 0.0557 Recommended: when any expected cell count is <1

Confidence for the Difference hetween Proportions

As with all tests of statistical comparisons, in addition to knowing whether the difference is signifi-
cant, we also want to know how large of a difference likely exists. To do so for this type of com-
parison, we generate a confidence interval around the difference between two proportions. The
recommended formula is an adjusted-Wald confidence interval similar to the one used in Chapter 4,
except that it is for a difference between proportions (Agresti and Caffo, 2000) instead of around a
single proportion (Agresti and Coull, 1998).

The adjustment is to add a quarter of a squared z-critical value to the numerator and half a squared
z-critical value to the denominator when computing each proportion. For a 95% confidence level the
two-sided z-critical value is 1.96. This is like adding two pseudo observations to each sample—one
success and one failure—as shown in the following:

2 2

z 1.96
T T T x409604 _x+1
Pagj 2 1962 n+192 “n+2

nt S ot

This adjustment is then inserted into the more familiar (to some) Wald confidence interval formula:

ﬁadjl(l _ﬁadjl) + ﬁade(] _ﬁade)

(Padjt = Padp) £ %a \/

Nagj1 Nadjp

where

Z4 1 the two-sided critical value for the level of confidence (e.g., 1.96 for a 95% confidence
interval). With the same example data we’ve used so far, we will compute a 95% confidence
interval. First we compute the adjustments.

For Design A, 11 out of 12 users completed the task, and these become our x and n, respectively:

2
1+ 1.96

2

z

4 4 _ 11409604 _ 11.96 _ ¢sq
z

2

ﬁadjl = - 2 = -
12+ 1.96 12+1.92 13.92

2
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For Design B, 5 out of 10 users completed the task, and these become our x and n, respectively:

2 2
z 1.96
5 e T Ta 5409604 _ 596 _
adj2 — 2 ) = = =0U.
D 104150 104192 1192

Note: When the sample proportion is 0.5, the adjusted p will also be 0.5, as seen in this example.
Plugging these adjustments into the main formula we get

0859(1-0.859)  05(1-05)

.859-0. 1.
(0.859-0.5) + 96\/ 13.92 11.92
0.359+£0.338

By adding and subtracting 0.338 to the difference between proportions of 0.359, we get a 95%
confidence interval that ranges from 0.022 to 0.697. That is, we can be 95% confident that the
actual difference between design completion rates is between 2% and 70%.

=
Example 1: Comparing Two Completion Rates

A new version of a CRM software application was created to improve the process of adding contacts to a
distribution list. Four out of nine users (44.4%) completed the task on the old version and 11 out of 12
(91.7%) completed it on the new version. Is there enough evidence to conclude the new design improves
completion rates? We will use the N — 1 two-proportion test:

P N-1

Filling in the values we get

P=(4+11)=0-714 and Q=1-0.714=0.286

9+12
21-1
(0:917-0.444), /=2
7=
1.1
\/0.714><O.286>< (5 + E)
7=2313

We can use a normal (2) table to look up the two-sided p-value or the Excel function NORMSDIST for the
test statistic of 2.313. To use NORMSDIST, you need to copy the formula = (I-NORMSDIST(2.313))*2,
which generates a p-value of 0.0207. Because this value is low, we have reasonable evidence to conclude
the completion rate on the new CRM design has improved. To estimate the actual improvement in the
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completion rate for the entire user population, we now generate a 95% confidence interval around the
difference in proportions using the adjusted-Wald procedure:

1.96°

2
Z
o T TR 44006 496 g 4,
“at 2 1962 9+192 1092
n+% 9+
> 2
72 1.96°
ot _MTAT 1140961196 geg
adj2 — 2 > = = =U.
n+Z 12+1‘26 124192 1392

The critical value of z for a 95% confidence level is 1.96:

0.859(1-0.859) _0.454(1-0.454)
13.92 10.92

(0.859 —0.454) + 1.96\/
0.405 +0.347

The 95% confidence interval is 0.058 to 0.752; that is, we can be 95% confident the actual improvement in
completion rates on the new task design is between 6% and 75%.

=
Example 2: A/B Testing

An A/B test was conducted live on an e-commerce website for two weeks to determine which product page
converted more users to purchase a product. Concept A was presented to 455 users and 37 (8.13%) pur-
chased the product. Concept B was presented to 438 users and 22 (5.02%) purchased the product. Is there
evidence that one concept is statistically better than the other? Using the NV — 1 two-proportion test we get

=< 37422

455+ 438

893-1
(0813 -0.502)+ /==

1 1
0.066 x0.934 x (@ n @)
7=1.87

) =0.066and Q=1-0.066=0.934

Z=

Looking up the test statistic 1.87 in a normal table, we get a two-sided p-value of 0.06. The probability
the two concepts have the same conversion rate is around 6%. That is, there is about a 94% probability
the completion rates are different. The 90% confidence interval around the difference in conversion rates
(which uses the critical value of 1.64) is

7 1.64°
fm—HZ— 3+ = 374068 _ 3768 0083
D 2 4es, LO#  455+135 45635
> 2
7 1.64°
bd,l_”Z 22+ 204068 _ 2268 0,052
adjl = 5> = 5 = = =0.
ne % 438+ 1,24 438+ 1.35 439.35
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0.083(1-0.083) 0.052(1 - 0.052)
(0.083—0.052)11.64\/ L e

0.031+0.027

The 90% confidence interval around the observed difference of 0.031 ranges from 0.004 to 0.058.
That is, if Concept A was used on all users (assuming the two-week period was representative) we could
expect it to convert between 0.4% and 6% more users than Concept B. As with any confidence interval,
the actual long-term conversion rate is more likely to be closer to the middle value of 3.1% than to either
of the extreme endpoints. For many large-volume e-commerce websites however, even the small estimated
lower limit of 0.4% for Concept A could translate into a lot more revenue.

Within-subjects

When the same users are used in each group the test design is within-subjects (also called matched
pairs). As with the continuous within-subjects test (the paired #-test) the variation between users has
been removed and you have a better chance of detecting differences (higher power) with the same
sample size as a between-subjects design.

To determine whether there is a significant difference between completion rates, conversion
rates, or any dichotomous variable we use the McNemar exact test and generate p-values by testing
whether the proportion of discordant pairs is greater than 0.5 (called the sign test) for all sample
sizes.

McNemar Exact Test

The McNemar exact test uses a 2 X 2 table similar to those in the between-subjects section, but the
primary test metric is the number of participants who switch from pass to fail or fail to pass—the
discordant pairs (McNemar, 1969).

Unlike the between-subjects chi-square test, we cannot set up our 2 X 2 table just from the sum-
mary data of the participants who passed and failed. We need to know the number who had a dif-
ferent outcome on each design—the discordant pairs of responses. Table 5.9 shows the
nomenclature used to represent the cells of the 2 X 2 table for this type of analysis.

We want to know if the proportion of discordant pairs (cells b and c) is greater than what we’d
expect to see from chance alone. For this type of analysis, we set chance to 0.5. If the proportion
of pairs that are discordant is different from 0.5 (higher or lower), than we have evidence that there
is a difference between designs.

Table 5.9 Nomenclature for McNemar Exact Test

Design B Pass Design B Fail Total
Design A a b m
Design B c d n

Total r S N
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To test the observed proportion against the hypothesized proportion of 0.5, we use the nonpara-
metric binomial test. This is the same approach we took for small samples in Chapter 4 in the sec-
tion “Comparing a Completion Rate to a Benchmark.” When the proportion tested is 0.5, the
binomial test goes by the special name the “sign test.”

The sign test uses the following binomial probability formula:

(n—x)

P = o (1)

xl(n—x
where
x is the number of positive or negative discordant pairs (cell ¢ or cell b, whichever is smaller)

n is the total number of discordant pairs (cell b + cell c)
p=0.5

Note: The term n! is pronounced “n factorial” and is nX (n—1) X (n—2) X --- X2X 1.
As discussed in Chapter 4, we will again use mid-probabilities as a less-conservative alternative to
exact probabilities, which tend to overstate the value of p, especially when sample sizes are small.

L
Example 1: Completion Rates
For example, 15 users attempted the same task on two different designs. The completion rate on Design A
was 87% and on Design B was 53%. Table 5.10 shows how each user performed, with O’s representing
failed task attempts and 1's for passing attempts.

Next we total the number of concordant and discordant responses in a 2 x 2 table (see Table 5.11).

Table 5.10 Sample Data for McNemar Exact Test
User Design A Design B
1 1 0
2 1 1
3 1 1
4 1 0
5 1 0
6 1 1
7 1 1
8 0 1
9 1 0
10 1 1
11 0 0
12 1 1
13 1 0
14 1 1
15 1 0
Comp Rate 87% 53%
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Table 5.11 Concordant and Discordant Responses for Example 1
Design B Pass Design B Fail Total
Design A Pass 7 @ 6 (b) 13 (M)
Design A Fall 1() 1(d) 2 (n)
Total 8 7(s) 15 (N)

Concordant Pairs
* Seven users completed the task on both designs (cell a).
* One user failed on Design A and failed on Design B (cell d).

Discordant Pairs
* Six users passed on Design A but failed on Design B (cell b).
*  One user failed on Design A and passed on Design B (cell c).

Table 5.12 shows the discordant users along with a sign (positive or negative) to indicate
whether they performed better (+ sign) or worse (— sign) on Design B. By the way, this is where
this procedure gets its name the “sign test’—we’re testing whether the proportion of pluses to
minuses is significantly different from 0.5.

In total, there were seven discordant pairs (cell b + cell ¢). Most users who performed differently
performed better on Design A (six out of seven). We will use the smaller of the discordant cells to
simplify the computation, which is the one person in cell ¢ who failed on Design A and passed on
Design B. (Note that you will get the same result if you used the larger of the discordant cells, but
it would be more work.) Plugging these values in the formula, we get

__ 001 _ n =\7-0) _
p(0)= 0!(7_0)!0.5 (1-0.5) =0.0078

_ 1=\ _
p(l)= 71!(7_1)!0.5 (1-0.5)"""=0.0547

The one-tailed exact p-value is these two probabilities added together, 0.0078 + 0.0547 = 0.0625,
so the two-tailed probability is double this (0.125). The mid-probability is equal to half the exact
probability for the value observed plus the cumulative probability of all values less than the one
observed. In this case, the probability of all values less than the one observed is just the probability of
zero discordant pairs, which is 0.0078:

Mid-p = 50.0547 +0.0078
Mid-p = 0.0352

The one-tailed mid-p-value is 0.0352, so the two-tailed mid-p-value is double this (0.0704).
Thus, the probability of seeing one out of seven users perform better on Design A than B if there
really was no difference is 0.0704. Put another way, we can be about 93% sure Design A has
a better completion rate than Design B.
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Table 5.12 Discordant Performance
from Example 1

User Relative Performance on B

oW O 0o o~ =
+

—_

The computations for this two-sided mid-p value are rather tedious to do by hand, but are fairly easy
to get using the Excel function = 2*(BINOMDIST(0,7,0.5,FALSE)+0.5*BINOMDIST(1,7,0.5,FALSE)).

If you need to guarantee that the reported p-value is greater than or equal to the actual long-term
probability, then you should use the exact p-values instead of the mid-p-values. This is similar to the
recommendation we gave when comparing the completion rate to a benchmark (Chapter 4) and when
computing binomial confidence intervals (Chapter 3). For most applications in user research, the
mid-p-value will work better (lead to more correct decisions) over the long run (Agresti and Coull, 1998).

Alternate Approaches

As with the between-subjects chi-square test, there isn’t much agreement among statistics texts (or
statisticians) on the best way to compute the within-subjects p-value. This section provides informa-
tion about additional approaches you might have encountered. You may safely skip this section if
you trust our recommendation (or if you’re not interested in more geeky technical details).

Chi-Square Statistic

The most common recommendation in statistics textbooks for large-sample within-subject comparisons is
to use the chi-square statistic. It is typically called the McNemar chi-square test (McNemar, 1969), as
opposed to the McNemar exact test, which we presented in an earlier section. It uses the following formula:

2 (C_b)2
T oc+b

You will notice that the formula only uses the discordant cells (b and ¢). You can look up the test
statistic in a chi-square table with one degree of freedom to generate the p-value, or use the Excel func-
tion CHIDIST. Using the data from Example 1 with seven discordant pairs we get a test statistic of

2 (126)

=3.571

Using the Excel function =CHIDIST(3.571,1), we get the p-value of 0.0587, which, for this example, is
reasonably close to our mid-p-value of 0.0704.

However, to use this approach, the sample size needs to be reasonably large to have accurate
results. As a general guide, it is a large enough sample if the number of discordant pairs (b + ¢) is
greater than 30 (Agresti and Franklin, 2007).
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You can equivalently use the z-statistic and corresponding normal table of values to generate a
p-value instead of the chi-square statistic, by simply taking the square root of the entire equation:

7= c—b
c+b
6-—1 5
= =—=1.89
Ve+1 V7

Using the Excel function NORMSDIST(=2*NORMSDIST(1.89)), we get p=0.0587, demonstrating
the mathematical equivalence of the methods.

Yates Correction to the Chi-square Statistic
To further complicate matters, some texts recommend using a Yates-corrected chi-square for all
sample sizes (Bland, 2000). As shown in the following, the Yates correction is

s (le=b[ 1)’
b+c

Using the data from Example 1 with seven discordant pairs we get

2
%227(“‘67“1) =229

We look up this value in a chi-square table of values with one degree of freedom or use the
Excel function =CHIDIST(2.29,1) to get the p-value of 0.1306. For this example, this value is even
higher than the exact p-value from the sign test, which we expect to overstate the magnitude of p.
A major criticism of the Yates correction is that it will likely exceed the p-value from the sign test.
Recall that this overcorrection also occurs with the Yates correction of the between-subjects
chi-square test. For this reason, we do not recommend the use of the Yates correction.

Table 5.13 provides a summary of the p-values generated from the different approaches and our
recommendations.

Table 5.13 Summary of p-values Generated from Sample Data for McNemar Tests
Method p-value Notes
McNemar Exact Test 0.0704 Recommended: for all sample sizes will provide best average
using Mid-probabilities long-term probability, but some individual tests may understate
actual probability
McNemar Exact Test 0.125 Recommended: for all sample sizes when you need to guarantee
using Exact Probabilities the long-term probability is greater than or equal to the p-value
(a conservative approach)
McNemar Chi-Square 0.0587 Not recommended: understates true probability for sample sizes
Test/z-Test and is unclear about what constitutes a large sample size
McNemar Chi-Square Test 0.1306 Not recommended: overstates true probability for all sample sizes
with Yates Correction




Comparing Completion Rates, Conversion Rates, and A/B Testing 89

Confidence Interval around the Difference for Matched Pairs

To estimate the likely magnitude of the difference between matched pairs of binary responses, we
recommend the appropriate adjusted-Wald confidence interval (Agresti and Min, 2005). As
described in Chapter 3 for confidence intervals around a single proportion, this adjustment uses the
same concept as that for the between-subjects confidence interval around two proportions.

When applied to a 2 X 2 table for a within-subjects setup (as shown in Table 5.14), the adjust-
ment is to add one-eighth of a squared critical value from the normal distribution for the specified
level of confidence to each cell in the 2 X 2 table. For a 95% level of confidence, this has the effect
of adding two pseudo observations to the total number of trials (N). )

Using the same notation from the 2 X 2 table with the “adj” meaning to add % to each cell, we
have the formula

R R (P12ag + P21aaj) = (P21aaj — P12 d‘)z
(pZadj _pladj) iZ(l\/ = = Nadj = =

where
Mg lj

Pladj = Nadj

_ JTagi
Poadj = N, i

adj

Proadj = N —
a Nadj

~ Cad/'

Poradj = ]
N gqj

Z, 1s the two-sided z critical value for the level of confidence (e.g., 1.96 for a 95% confidence level)
2

2
% is the adjustment added to each cell (e.g., for a 95% confidence level this is %zOAS)

The formula is similar to the confidence interval around two independent proportions. The key
difference here is how we generate the proportions from the 2 X 2 table.

Table 5.15 shows the results from Example 1 (so you don’t need to flip back to the original
page). Table 5.16 shows the adjustment of 0.5 added to each cell.

Table 5.14 Framework for Adjusted-Wald Confidence Interval

Design B Pass Design B Fail Total
Design A Pass Qag) Daqj Mgy
Design A Fail Caqj Aagj Nagj
Total Fagj Sadj Nagj

Table 5.15 Results from Example 1

Design B Pass Design B Fail Total
Design A Pass 7 @ 6 (b) 13 (m)
Design A Fall 1) 1) 2 (n)

Total 8( 7 (s) 15 (N)
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Table 5.16 Adjusted Values for Computing Confidence Interval
Design B Pass Design B Fail Total
Design A Pass 7.5 (Aag) 6.5 (bag) 14 (Maq)
Design A Fall 1.5 (Caq) 1.5 (dag) 3 (Nag)
Total 9 (rag) 8 (Saq) 17 (Nag)

You can see that the adjustment has the effect of adding two pseudo users to the sample as we
go from a total of 15 to 17. Filling in these values to the formula for a 95% confidence interval
(which has a critical z-value of 1.96) we get

. 14

pladj: ﬁ =0.825
. 9

p2adj = ﬁ =0.529
. 6.5

P12agj = 17 =0.383

. 1.5
P21adj = 17 - 0.087

R R (P12adj + P21aai) — (Pa1ags _f’lzadj)z
(pZadj _pladj) * Zrz\/ N

(0.383 +0.087) — (0.087 — 0.383)?
17

(0.529 —0.825) + 1.96\/

—0.296 +0.295

The 95% confidence interval around the difference in completion rates between designs is —59.1%
to —0.1%. The confidence interval goes from negative to positive because we subtracted the design
with the better completion rate from the one with the worse completion rate.

There’s nothing sacred about the order in which you subtract the proportions. We can just as
easily subtract Design B from Design A, which would generate a confidence interval of 0.1%
to 59.1%. Neither confidence interval quite crosses 0, so we can be about 95% confident there is a
difference. It is typically easier to subtract the smaller proportion from the larger when reporting
confidence intervals, so we will do that through the remainder of this section.

The mid-p-value from the McNemar exact test was 0.0704, which gave us around 93% confi-
dence that there was a difference—just short of the 95% confidence indicated by the adjusted-Wald
confidence interval (which is based on a somewhat different statistical procedure), but likely confi-
dent enough for many early-stage designs to move on to the next research question (or make any
indicated improvements to the current design and move on to testing the next design).
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In most applied settings, the difference between 94% confidence and 95% confidence shouldn’t
lead to different decisions. If you are using a rigid cutoff of 0.05, such as for a publication, then
use the p-value to decide whether to reject the null hypothesis. Keep in mind that most statistical
calculations approximate the role of chance. Both the approximation and the choice of the method
used can result in p-values that fluctuate by a few percentage points (as we saw in Table 5.13), so
don’t get too hung up on what the “right” p-value is. If you are testing in an environment where
you need to guarantee a certain p-value (medical device testing comes to mind), then increasing
your confidence level to 99% and using the exact p-values instead of the mid-p-values will signifi-
cantly reduce the probability of identifying a chance difference as significant.

L
Example 2: Completion Rates

In a comparative usability test, 14 users attempted to rent the same type of car in the same city on two dif-
ferent websites (Avis.com and Enterprise.com). All 14 users completed the task on Avis.com but only 10 of
14 completed it on Enterprise.com. The users and their task results appear in Tables 5.17 and 5.18.

Table 5.17 Completion Data from CUE-8 Task
User Avis.com Enterprise.com
1 1 1
2 1 1
3 1 0
4 1 0
5 1 1
6 1 1
7 1 1
8 1 0
9 1 1
10 1 1
11 1 1
12 1 0
13 1 1
14 1 1
Comp Rate 100% 71%

Table 5.18 Organization of Concordant and Discordant Pairs from CUE-8 Task

Enterprise.com Pass Enterprise.com Fail Total
Avis.com Pass 10 (@) 4 (b) 14 (m)
Avis.com Fall 0 (c) 0 (d) 0 (n)

Total 10 (n 4 (s) 14 (N)
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Table 5.19 Discordant Performance from CUE-8 Task
User Relative Performance on Enterprise.com
3 -
4 —
8 —
12 -

Is there sufficient evidence that more users could complete the task on Avis.com than on Enterprise.com
(as designed at the time of this study)?

In total there were four discordant users (cell b+ cell ¢), all of whom performed better on Avis.com.
Table 5.19 shows the improvement performance difference for the four users on Enterprise.com.

Plugging the appropriate values in the formula we get

n!

— e X1 (n=x)
p(x)= Xn—x1" (1-p)
_ 4! 0 (4-0) _

The one-tailed exact p-value is 0.0625, so the two-tailed probability is double this (0.125). The mid-
probability is equal to half the exact probability for the value observed plus the cumulative probability of all
values less than the one observed. Because there are no values less than 0, the one-tailed mid-probability
is equal to half of 0.0625:

Mid-p= %(0.0625)
Mid-p=0.0313

The one-tailed mid-p-value is 0.0313, so the two-tailed mid-p-value is double this (0.0625). Thus, the
probability of seeing zero out of four users perform worse on Enterprise.com if there really was no differ-
ence is 0.0625. Put another way, we can be around 94% sure Avis.com had a better completion rate than
Enterprise.com on this rental car task at the time of this study.

COMPARING RENTAL CAR WEBSITES
Why Enterprise.com Had a Worse Completion Rate
From the files of Jeff Sauro

In case you were wondering why Enterprise.com had a worse completion rate, the task required users to add
a GPS system to the rental car reservation. On Enterprise.com, this option only appeared after you entered your
personal information. It thus led four users to spend a lot of time hunting for that option and either giving up or
saying they would call customer service. Allowing users to add that feature (which changes the total rental price)
would likely increase the completion rate (and rental rate) for Enterprise.com.

The 95% confidence interval around the difference is found by first adjusting the values in each

2
interior cell of the 2 X 2 table by 0.5(%:0.48 zO.S), as shown in Table 5.20.
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Table 5.20 Adjusted Counts for CUE-8 Task

Design B Pass Design B Fail Total
Design A Pass 10.5 (@aq) 4.5 (bag) 15 (Maq)
Design A Fall 0.5 (Cag) 0.5 (dag) 1 (Nag))
Total 11 (rag) 5 (Saq)) 16 (Nag)

Finding the component parts of the formula and entering the values we get

(P12adj + Pa1agi) = (P21aqj _ﬁIZadj)z

(ﬁzadj -p ladj) * 2 \/ Nog

Mygj 1

Pragj = m =16 =0.938

Pragj = ]%:; = % =0.688

Pr2adj = % = 1_65 =0.281

ﬁzladj ]%Z = (1—5 =0.03

(0.938—0.688) + 1.96\/ (0.281+0.03) I6(0~03 —0.281)°
0.250£0.245

We can be 95% confident the difference between proportions is between 0.5% and 49.5%. This
interval does not cross zero, which tells us we can be 95% confident the difference is greater than
zero. It is another example of a significant difference seen with the confidence interval but not with
the p-value. We didn’t plan on both examples having p-values so close to 0.05. They are a conse-
quence of using data from actual usability tests. Fortunately, you are more likely to see p-values
and confidence intervals point to the same conclusion.

KEY POINTS FROM THE CHAPTER

When comparing two designs or products, you need to account for chance differences between

sample data by generating a p-value from the appropriate statistical test.

To understand the likely range of the difference between designs or products, you should

compute a confidence interval around the difference.

To determine which statistical test you need to use, you need to identify whether your outcome
measure is binary or continuous and whether you have the same users in each group (within-

subjects) or a different set of users (between-subjects).



Table 5.21 Formulas Used in This Chapter

Name of Formula

Paired t-test (dependent
means)

Confidence interval
around the difference
between paired means
Two-sample t-test
(independent means)

Welch-Satterthwaite
procedure adjustment to
degrees of freedom

Confidence interval
around two independent
means

N —1 chi-square test
for comparing two
independent proportions
(equal to the N — 1
two-proportion test)

N —1 two-proportion test
for comparing two
independent proportions

Formula

mnrs

, (ad=bc)®(N=1)

Notes

Used for all sample sizes when the same users are
used in both groups.

Used for all sample sizes.

Used for all sample sizes when different users are in
each sample. It is robust to violations of normality
and unequal variances especially when using the
Welch-Satterthwaite procedure to adjust the
degrees of freedom.

Adjusts the degrees of freedom used in a two-
sample t-test, which makes the test more robust
to violations of normality and unequal variances.

Used for all sample sizes.

The test is the same as the standard chi-square test
except it is adjusted by multiplying the numerator

by N —1. The test is algebraically equivalent to the

N — 1 two-proportion test. It works well as long as the
expected cell counts are greater than 1 (otherwise use
the Fisher exact test).

The test is the same as the standard two-proportion
test except it is adjusted by multiplying the numerator
by 4 /N—/\_ﬂ. The test is algebraically equivalent to the
N —1 chi-square test. It works well as long as the
expected cell counts are greater than 1 (otherwise
use the Fisher exact test).
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Fisher exact test on two
independent proportions

Adjusted-Wald
confidence interval for the
difference between
independent proportions

McNemar exact test for
matched proportions

Adjusted-Wald
confidence interval for
difference between
matched proportions

m!nlrls!
~alblcld!N!

f)adﬂ (1 _ﬁadjﬂ)

(badﬂ - ﬁade) iZa\/

+ Pagio(1 = Pag)
Nagj1 Nagj2

(n=x)

(D12a0) + P21ag)) = (P21aqs _[j1zadj)2

(ﬁzad/ —/51adj) iZa\/

Nag

Only recommended when expected cell counts are
less than 1 (which doesn’t happen a lot). Software
computes the p-values by finding all possible
combinations of tables equal to or more extreme
than the marginal totals observed.

The adjustment is to add a quarter of a squared
z-critical value to the numerator and half a squared
z-critical value to the denominator when computing
each proportion.

This is the binomial probability formula, which is
used on the proportion of discordant pairs. See the
chapter for the process of using this and the
mid-p-value.

The interval is adjusted by adding %2 to each cell. For

a 95% confidence level this is about 0.5.
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For comparing data from two continuous means such as questionnaire data or task times:
For between-subjects: Use the two-sample t-test if different users are in each sample. The
procedure can handle non-normal data and unequal variances. Compute a f-confidence
interval around the difference between means.
For within-subjects: Use the paired r-test if the same users are in each sample. The procedure can
handle non-normal data. Compute a #-confidence interval around the difference between means.
There is surprisingly little agreement in the statistics literature on the best statistical approach for
comparing binary measures. Our recommendations appear the most promising given the current
research.
For comparing a binary outcome measure such as a task completion rate or conversion rate
(as used in A/B testing):
For between-subjects: Use the N — 1 two-proportion test if different users are in each sample
and compute an adjusted-Wald confidence interval around the difference in the proportions.
For within-subjects: Use the McNemar exact test (using the mid-probability variant) if the
same users are in each sample. Compute an adjusted-Wald confidence interval around the
difference in the matched proportions.
Table 5.21 provides a list of the formulas used in this chapter.

CHAPTER REVIEW QUESTIONS

1.

Ten users completed the task to find the best priced nonstop roundtrip ticket on JetBlue.com. A
different set of 14 users attempted the same task on AmericanAirlines.com. After each task
attempt, the users answered the seven-point Single Ease Question (SEQ; see Sauro, 2011b).
Higher responses indicate an easier task. The mean response on JetBlue was 6.1 (sd = 0.88) and
the mean response on American Airlines was 4.86 (sd = 1.61). Is there enough evidence from
the sample to conclude that users think booking a flight on American Airlines is more difficult
than on JetBlue? What is the likely range of the difference between mean ratings using a 90%
level of confidence?

. Two designs were tested on a website to see which would convert more users to register for a

webinar. Is there enough evidence to conclude one design is better?
Design A: 4 out of 109 converted

Design B: 0 out of 88 converted

Compute a 90% confidence interval around the difference.

. A competitive analysis of travel websites was conducted. One set of 31 users completed tasks on

Expedia.com and another set of 25 users completed the same tasks on Kayak.com. Users rated
how likely they would be to recommend the website to a friend on an 11-point scale (0 to 10,
with 10 being extremely likely). The mean score on Expedia.com was 7.32 (sd = 1.87) and the
mean score on Kayak.com was 5.72 (sd = 2.99). Is there evidence that more people would
likely recommend Expedia.com over Kayak.com? What is the likely range for the difference
between means using a 95% confidence level?

Using the same set of data from question 3, the responses were segmented into promoters,
passive, and detractors as shown in Table 5.22. This process degrades a more continuous
measure into a discrete-binary one (which is the typical approach when computing the Net
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Table 5.22 Data for Question 4
Website Segment Response Range No. of Responses
Expedia.com Promoters 9-10 7
Passive 7-8 14
Detractors 0-6 10
Kayak.com Promoters 9-10 5
Passive 7-8 8
Detractors 0-6 12

Table 5.23 Data for Question 5

User Budget.com Enterprise.com

O N0 O~ WN =

©

10
11
12
13
14 1 1

Comp Rate 86% 71%

4 4 4 a4 40 a4 40O 4 a4 4o
A4 O 4 4 A4 0 4 4 400 4 =

Promoter Score). Is there evidence to conclude that there is a difference in the proportion of
promoters (the top-2-box scores) between websites?

. The same 14 users attempted to rent a car on two rental car websites: Budget.com and
Enterprise.com. The order of presentation of the websites was counterbalanced, so half of the
users worked with Budget first, and the other half with Enterprise. Table 5.23 shows which
users were successful on which website. Is there enough evidence to conclude that the websites
have different completion rates? How much of a difference, if any, likely exists between the
completion rates (use a 90% level of confidence)?

. After completing five tasks on both Budget.com and Enterprise.com, the 14 users from question
5 completed the System Usability Scale (see Table 5.24). The mean SUS scores were 80.4 (sd =
11) for Budget.com and 63.5 (sd = 15) for Enterprise.com. Is there enough evidence to conclude
that the SUS scores are different? How large of a difference likely exists in the entire user
population using a 95% confidence interval?
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Table 5.24 Data for Question 6

User Budget.com Enterprise.com Difference
1 90 65 25

2 85 82.5 25

3 80 55 25

4 92.5 67.5 25

5 82.5 82.5 0

6 80 37.5 42.5

7 62.5 77.5 -15

8 87.5 67.5 20

9 67.5 35 32.5
10 92.5 62.5 30

11 65 57.5 7.5
12 70 85 -15

13 75 55 20

14 95 60 35
Mean (sd) 80 (11) 64 (15) 16.8 (18)

Answers

1. A two-sample r-test should be conducted using the following formula:

f= X=X _ 6.1 —4.86 —242

2 2
< N < \/0.88 L L6l
i, 10 14

The degrees of freedom for this test are:

(0.882 1.612>2

10 14 _ 0.068954
0.88> 2 1612 2 0.003303
(o) (1)

10-1 14—-1
Looking up the test statistic in a 7-table with 20 degrees of freedom we get a p-value of 0.025.
There is sufficient evidence for us to conclude that users find completing the task on American

Airlines more difficult. For a 90% level of confidence with 20 degrees of freedom, the ¢-critical
value is 1.72 and the formula is

. . 5 Sy 0.88 1.61
- tA\l—+—==124+1.72 ——=1.24+0.88
(% Xz)ia”nl+n2 + 1/ 10 + 1 +

df' = =20.9,which rounds down to 20
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So we can be 90% confident the difference between mean ratings is 0.36 to 2.12 between the
two airline websites.
2. Conduct an N — 1 two-proportion test:

X1 +X 440
P= = =0.02

« A N-—-1 197 -1
(P1 =P\ —— (0.367=0) X | —o—
N 97 _ o

7= =

L1 1,1
\/PQx <_ + _> \/0.02x0.98>< (109 + 88)

n ny

Looking up the test statistic 1.81 in a normal table we get a two-tailed p-value of 0.07. This
means there is about a 93% chance the designs are different, which is probably strong enough
evidence for almost all circumstances. The 90% confidence interval around the difference is
computed using the adjusted-Wald formula. First compute the adjustment for each proportion.
The critical value of z for a 90% level of confidence is 1.64.

2 2
z 1.64
Ny MY T 44068 468
Pagp="""2= L6~ 1091135 ~ 11035 ~ 00423
n+s 109+ L
2 2
2 2
2 1.64
5 P P 04068 _ 0.68 00075
adj2 — > — 7= = =0.
. 1.24 88+135 8935

Then insert this adjustment into the confidence interval formula:

0.0423(1—0.0423)  0.0075(1 —0.0075)
110.35 89.35

(0.0423 — 0.0075) + 1.64\/

The 90% interval is 0 to 0.07, which means we can be 90% confident the difference between
conversion rates favors Design A somewhere between 0% and 7%.

3. Use a two-sample #-test because we have independent samples and a continuous response
variable. Using the two-sample r-test formula we get:

e X=X _ 7.32-5.72 —2133

2 2
ﬁ+é \/1.87 L 299
. 31 25
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With the following degrees of freedom:

<1.872 N 2.992)2
31 25 ~0.221283

1872%  [299°%  0.005753
(50), (%)
—+

31-1 25-1

df' = =38.5, which rounds down to 38

Looking up the test statistic 2.33 using a #-table with 38 degrees of freedom shows a p-value of
0.025. Thus, there is only a 2.5% probability that the difference between means is due to
chance. Put another way, there is a 97.5% probability that the mean score on Expedia.com is
higher than on Kayak.com. The t-critical value for a 95% confidence level with 38 degrees of
freedom (http://www.usablestats.com/calcs/tinv) is 2.02.

2 2 2 2
P 51, % 1.87 2.99
+t, +—==(7.32-5.72) £2.02 + =16+14
(51 =) £t ng  n ( ) 31 25 -

We can be 95% confident the difference between mean scores on the likelihood-to-recommend
question is between 0.2 and 3 in favor of the Expedia.com website.
4. We have two independent proportions, so we use the N — 1 two-proportion test.

p= (022 o (T£5 ) )14
ny+ny 31425

55y, N1 56— 1
(1 =P\ [~ (0226-02)x >
= = =0.232
1,1
\/PQx (nil + ni2> \/0.214><().786>< (ﬁ + g)

Looking up the test statistic of 0.232 in a normal (z) table, we get a two-sided p-value of 0.817.
Given this sample there is only an 18.3% chance that the proportion of promoters is different
between Expedia.com and Kayak.com. Note how the evidence for a difference has dropped
when examining top-2-box scores compared to the difference between means in question 3.
When we compared the means in question 3 we found a statistical difference. This illustrates
that when you reduce a continuous measure to a binary outcome measure, you lose information.
The result in this case is little evidence for a difference in top-2-box scores, an example of the
loss of sensitivity due to the reduction of multipoint scale data to binary.

5. We need to conduct a McNemar exact test. First set up the 2 X 2 table, as shown in Table 5.25.
We can see that four users had different outcomes (discordant pairs) between websites (from
cells b and ¢). The minus signs in Table 5.26 indicate worse performance on Enterprise.com—
three users performed worse on Enterprise.com and one performed better. To find the
probability of having one out of four discordant pairs if the probability is really 0.5, we use the
binomial probability formula to find the mid-p-value. In Excel, the formula is =2*(BINOMDIST
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Table 5.25 Arrangement of Concordant and Discordant Data for Question 5
Enterprise.com Pass Enterprise.com Fail Total
Budget.com Pass 9 (@) 3 (b) 12 (m)
Budget.com Fail 1(@©) 1(d) 2 (n)
Total 10 () 5(s) 14 (N)

Table 5.26 Discordant Data for Question 5
User + or — Difference
3 —

4 _

5 -

6 +

Table 5.27 Adjusted Data for Question 5

Enterprise.com Pass Enterprise.com Fail Total
Budget.com Pass 9.34 (@aq) 3.34 (bag) 12.7 (Mag)
Budget.com Fail 1.34 (Caq) 1.34 (dag) 2.7 (Nag)
Total 10.7 (rag) 4.7 (Sag) 15.4 (Nag)

(0,4,0.5,FALSE)+0.5*BINOMDIST(1,4,0.5,FALSE)), which generates a two-tailed mid-p-value
of 0.375. That is, there’s only a 62.5% chance the completion rates are different given the data
from this sample. Although the observed completion rates are different, they aren’t different
enough for us to conclude that Budget.com’s completion rate on this task is significantly
different from Enterprise.com’s.

To compute the 90% confidence interval around the difference between proportions, we use
the adjusted-Wald procedure. The critical value of z for a 90% level of confidence is 1.64, mak-
ing the adjustment % =0.34.

We update the 2 X 2 table with the 0.34 adjustment to each cell (see Table 5.27). Finding the
component parts of the formula and entering the values, we get

N N - - 2
5y —p1 )2 \/(Pu,“,j +P21m,j> - (Pzp,dj _P12m//)
adj adj/ — &

Nug
. Magi  11.7
=2t 1T 826
Pl =N, T 154
pry =1 =107 — 0,695

Noy 154
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X baj _3.34

= 334 0217
Pruw= N T 154
~ Cadj 134

= cad 134 087
Prus =N, T 154

(0.217 +0.087) — (0.087 = 0.217)*
15.4

(0.826 — 0.695) + 1.64\/

0.131+£0.225

The 90% confidence interval is —9.5% to 35.5%. Because the interval crosses 0, this also tells
us there’s less than a 90% chance that the completion rates are different.
6. We perform a paired #-test because the same users worked with each website. The test statistic is

D 168 _
1=, =15 =348
Vi /14

Looking up the test statistic of 3.48 in a t-table with 13 degrees of freedom or using the Excel
function =TDIST(3.48,13,2), we get the two-sided p-value of 0.004. We have strong evidence to
conclude that users think the Budget.com website is easier to use as measured by the SUS. The
t-critical value with 13 degrees of freedom for a 95% level of confidence is 2.16, so the result-
ing 95% confidence interval is

— S
D+1t,~2

N
18

=168+2.16——
Vid

=16.8+104

We can be 95% confident the mean difference for the entire user population is between 6.4 and 27.2.
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CHAPTER

What Sample Sizes Do We Need?

Part 1: Summative Studies

INTRODUCTION
Why Do We Care?

Before tackling the question of determining the sample sizes needed by usability practitioners, we
should address the question of “Why do we care?” The primary motive behind sample size estima-
tion, as illustrated in Figure 6.1, is economics.

If additional samples didn’t cost anything—didn’t take any additional time or cost any additional
money—then we’d always conduct studies with very large samples. That is the case with some
types of user research (e.g., Internet surveys delivered via email or conducted using Internet services
such as Mechanical Turk, which has a low incremental cost typically ranging from $0.25 to $1.00
per participant). The reason that survey samples rarely contain fewer than several hundred respon-
dents is due to the cost structure of surveys (Alreck and Settle, 1985). The fixed costs of the survey
include activities such as determining information requirements, identifying survey topics, selecting a
data collection method, writing questions, choosing scales, composing the questionnaire, and so on.
For this type of research, the additional or marginal cost of including hundreds of additional respon-
dents can be very small relative to the fixed costs.

This, however, is not the case for most moderated usability testing. Imagine the cost of adding
participants to a usability study:

* In which there might be as little as a week or two between the availability of testable software
and the deadline for providing recommendations for improvement.

*  When resources allow the observation of only one participant at a time.

*  With a set of tasks that takes two days to complete.

Usability researchers have devoted considerable attention to sample size estimation due to the
typically high cost of observing participants in moderated testing (and this is not unique to usability—
medical studies involving functional magnetic resonance imaging (fMRI) are very expensive, with
a substantial incremental cost for additional subjects).

The Type of Usabhility Study Matters

There are two major conceptions of usability: summative and formative (Lewis, 2012), based on
methodological distinctions for assessment originally developed in the field of education (Scriven,
1967). The summative conception is that the primary focus of usability should be on measurements
related to the accomplishment of global task goals (measurement-based evaluation). The formative

Quantifying the User Experience. DOI: 10.1016/B978-0-12-384968-7.00006-0 1 05
© 2012 Jeff Sauro and James R. Lewis. Published by Elsevier Inc. All rights reserved.
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FIGURE 6.1
You don'’t have to be Einstein to figure out the relationship between sample size and economics.

conception is that practitioners should focus on the detection and elimination of usability problems
(diagnostic evaluation). The different conceptions imply differences in the appropriate statistical
models to use for sample size estimation.

Usability testing emerged from the experimental methods of psychology (in particular, cognitive
and applied psychology) and human factors engineering (Dumas and Salzman, 2006). Experimenters
conducting traditional experiments develop a careful plan of study that includes the exact number of
participants to expose to the different experimental treatments. The more formative (diagnostic,
focused on problem discovery) the focus of a usability test, the less it is like a traditional experiment.
The more summative (focused on measurement) a usability test is, the more it should resemble the
mechanics of a traditional experiment.

The focus of this chapter is on sample size estimation for summative usability studies. We will
cover sample size estimation for formative usability studies in Chapter 7.

Basic Principles of Summative Sample Size Estimation

Sometimes you might just want to estimate the value of a measure. For example, how satisfied are
users with the usability of a given website? At other times you might want to compare a measure
with a specific goal, or to compare alternatives. For example, can users complete a given task in less
than two minutes; or can they complete the task more quickly with a new version of a program than
they could with a competitor’s version? Figure 6.2 illustrates these three questions.

In Chapters 3, 4, and 5, we’ve covered methods for conducting statistical tests to answer these
questions. The purpose of this section is to show how to estimate the number of participants you
will need to achieve specific measurement goals.

Traditional sample size estimation requires estimates of the variance of the measure of interest
and a judgment of how precise the measurement must be, where precision includes the magnitude
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lllustration of three traditional statistical questions.

of the critical difference and the desired statistical confidence level (Walpole, 1976). Once you have
that information, the rest is mathematical mechanics.

Estimates of variance can come from previous studies that used the same method (same or simi-
lar tasks and measures). If no historical estimate is available and it isn’t possible to conduct a pilot
study, another approach is to define the critical difference as a fraction of the standard deviation
(Diamond, 1981), specifying the critical difference in standard units—in other words, as a critical
effect size—rather than directly in units of the target measure.

All other things being equal, precise measurement is preferable to imprecise measurement. The
more precise a measurement is, however, the more it will cost, which gets us back to the basic
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motivation for sample size estimation that running more participants than necessary is wasteful of
resources (Kraemer and Thiemann, 1987).

In addition to the economic incentive to estimate sample size, the process of carrying out sample size
estimation can also lead to a realistic determination of how much precision is required to make the neces-
sary decision(s) (Alreck and Settle, 1985). Consider using a “what if” approach to help stakeholders
determine their required precision. Start by asking what would happen if the average value from the
study was off the true value by 1%—usually a difference this small won’t affect the final decision. If that
amount of discrepancy doesn’t matter, what if the measurement was off by 5%? If that level of impreci-
sion is acceptable, continue until the stakeholders indicate that the measurement would be too imprecise
to guide their decision making. Then start the process again, this time addressing the required level of
statistical confidence. Note that statistically unsophisticated decision makers are likely to start out by
expecting 100% confidence, which is possible only if you can sample every unit in the population, in
which case you wouldn’t need to use statistics to guide decision making. Presenting stakeholders with
the sample sizes needed to achieve different levels of precision and confidence can help them achieve a
realistic data collection plan, collecting just enough data to answer the question(s) at hand.

ESTIMATING VALUES

“Before the middle of the eighteenth century there is little indication ... of a willingness of astronomers
to combine observations; indeed ... there was sometimes an outright refusal to combine them ... the
idea that accuracy could be increased by combining measurements made under different conditions was
slow to come. They feared that errors in one observation would contaminate others, that errors would
multiply, not compensate” (Stigler, 1986, p. 4).

TRUE SCORE THEORY AND THE CENTRAL LIMIT THEOREM
Why Averaging Scores Leads to Greater Accuracy as You Increase the Sample Size

The fundamental theorem of true score theory is that every observed score (x) has two components: the true score (t)
and some error (e), mathematically, x;=t+ e, Given unbiased measurement, the value of f will be consistent, but the
value of e will vary randomly, that is, will sometimes add to ¢ and other times will subtract from it. As you increase
the sample size and take the average, the true value will emerge because the randomly varying errors will cancel out.
The roots of this argument reach back to 1755, when Thomas Simpson published a treatise entitled An Attempt to
Show the Advantage Arising by Taking the Mean of a Number of Observations in Practical Astronomy. Simpson laid
some of the foundations for the estimation of confidence intervals when he argued that positive and negative errors
should be equally probable and that there were assignable limits within which errors would typically fall (Cowles, 1989).
The Central Limit Theorem also has a rich history, first proved by Simon Laplace in 1810, but with historical roots
that go back to James Bernoulli’s publication of Ars Conjectandiin 1713 (Cowles, 1989). The Central Limit Theorem
states that as n approaches infinity, the cumulative distribution of the standardized sample mean (the distribution of 2)
approaches the cumulative standardized normal distribution (Bradley, 1976). In other words, for any actual distribu-
tion (normal or not), as the sample size increases, the sampling distribution of the mean becomes more and more
normal, with the mean at the center of the sampling distribution and 95% of sample means within + two standard
errors of the true mean. It is important to remember that this does not apply to the location of the true mean in the
distribution of individual scores. If the true distribution is skewed, as is often the case for completion times, the mean
will not be the best indicator of the center of the distribution. What the Central Limit Theorem does indicate is that as
the sample size increases, the accuracy of the estimation of the mean will improve, that is, that the errors in multiple
observations compensate rather than multiplying.
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From true score theory and the Central Limit Theorem, we now know that combining observa-
tions sharpens rather than contaminates our estimates. For many of the situations encountered by
usability practitioners, manipulating the one-sample #-test provides a path to determining how many
observations it will take to achieve a desired accuracy for the estimate. It would be simpler to use
the one-sample z-test, but for practical moderated usability testing, the sample sizes will almost
always be too small to justify the use of z instead of .

Just a quick reminder before we continue—many of the sample size estimation procedures
described in this chapter are new, so it’s important for us to document how we got from the for-
mula for the test statistic to the sample size formula. If you don’t care about the math, that’s fine—
just skip over the equations and go right to the examples. Now, back to the math.

The formula for computing ¢ is

where d is an observed difference and sem is the standard error of the mean, which in turn is the
standard deviation divided by the square root of the sample size, or

S
sem= —

i

Knowing this, we can use algebra to get n on the left side of the equation:

_d_
s/\/n

s _d
N/
vn_t
s d

_ t(s)
V=g

25
n=?

To calculate n, therefore, we need values for s2, t, and d.

For s°, we need an estimate of the variance (the square of the sample standard deviation) as pre-
viously described—typically from a similar experiment (either a previous usability test or a pilot
test). If no estimate of the variance is available, it is possible to define d as some proportion of s
(see the “Example 3: No Estimate of Variability” section) or, for certain kinds of measurements, to
use a rule of thumb to estimate the variance (see the “Rules of Thumb for Estimating Unknown
Variance” sidebar).

d is the critical difference for the experiment—the smallest difference between the obtained and
true value that you need to be able to detect. There is no mathematical approach to determining the
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appropriate value of d. This is a matter of judgment, either based on the experimenter’s knowledge
of the domain or using the “what if” approach previously described.

t is the critical value of 7 for the desired level of statistical confidence. Again, the level of statis-
tical confidence to use is a matter of judgment, but is often set between 80% and 99%, most often
to either 90% or 95%. For more information on the considerations that affect this decision, see the
“What Are Reasonable Test Criteria?” sidebar.

Using ¢ in this process, though, introduces a complication. Unlike z, the value of ¢ depends on
its degrees of freedom (df), which in turn depends on the sample size, which is what we’re trying
to compute. For a one-sample #-test,

df =n—-1

Diamond (1981) described a way to get around this difficulty by using iteration. Returning to
Figure 6.2, assume that the person in the first panel, let’s call him Bob, has timed his drive to work
for one week. The times (in minutes) for Monday through Friday were 12, 14, 12, 20, and 16 (to
keep this example simple, we’ll ignore the possibility of systematically different traffic patterns as a
function of the day of the week). The variance (s%) for these five measurements is 11.2. Bob has
always felt like it takes him about 15 minutes to get to work, so he decides that he will set his critical
difference to 10% of the expected time, or 1.5 minutes (a completely arbitrary but reasonable deci-
sion). He also decides to set the statistical confidence to 95% (again, arbitrary but reasonable). In
other words, using reasoning similar to that used for the construction of #-based confidence intervals,
he wants to collect enough data to ensure that he can be 95% confident that the resulting estimate of
his drive time will be within 1.5 minutes of his actual drive time. Bob now has all of the elements he
needs to calculate the required sample size: the variability is 11.2 (s =3.35), the confidence level is
95%, and the critical difference is 1.5.

The steps are:

-y

. Start with the z-score for the desired level of confidence in place of ¢. For 95% confidence, this is 1.96.

2. Compute n = (z%s%)/d*, which for this example is n=(1.96%)(11.2)/1.5%, which equals 19.1.
Because you should round sample size estimates up to the next whole number, the initial
estimate is n =20.

3. Next, adjust the estimate by replacing the z-score with the ¢-score for a sample size of 20. For
this estimate, use n — 1 (19 in this case) to compute the degrees of freedom (df) to use to find
the value for ¢ in the next iteration (which is 2.093). Note that the value of z will always be
smaller than the appropriate value of 7, making the initial estimate smaller than it should be.

4. Recalculate n using 2.093 in place of 1.96 to get 21.8, which rounds up to 22.

5. Because the appropriate value of ¢ is now a little smaller than 2.093 (because the estimated
sample size is now larger, with 22 — 1, or 21, degrees of freedom), recalculate n again, this time
using a ¢ of 2.08. The new estimate of n is 21.5, which rounds up to 22.

6. Stop iterating when you get the same estimate of n on two iterations or you begin cycling

between two values for n, in which case you should average the values (and, if necessary, round

up). See Table 6.1 for the full set of iterations for this example. For Bob to achieve his goals,
he will need to measure the duration of his drive to work 22 times.
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Table 6.1 Sample Size Iteration Procedure for t-tests
Initial 1 2

t 1.96 2.093 2.08
£ 3.84 4.38 4.33
52 11.2 11.2 11.2
d 1.5 1.5 1.5
a? 2.25 2.25 2.25
ar 19 21 21

Unrounded 19.1 21.8 215
Rounded up 20 22 22

Diamond (1981) points out that sometimes all you need is the initial estimate and one iteration, as
long as you don’t mind having a sample size that’s a little larger than necessary. If the cost of each
sample is very high, though, it makes sense to iterate until reaching one of the stopping criteria. Note
that the initial estimate establishes the lower bound for the sample size (20 in this example), and the
first iteration establishes the upper bound (22 in this example).

SHOULD BOB HAVE USED THE GEOMETRIC MEAN?
Yes, but There’s an Important Trick ...

In Chapter 3 we recommended using the geometric mean for estimates of typical completion times when the sample
size is less than 25. Bob's driving times are a type of completion time, so should he have done his sample size calcu-
lations using the geometric mean, with natural logs of the driving times rather than their actual values? The natural
logs of his driving times are 2.48490665, 2.63905733, 2.48490665, 2.995732274, and 2.772588722. The
average of these log times is 2.675438325 with a variance of 0.046488657, so the geometric mean is 14.5 minutes
(as expected, slightly less than the arithmetic mean of 14.8 minutes) and its standard deviation is about 1.24 minutes
(less than half of the regular standard deviation of 3.35). But what should he use for d?

You might think that you should just take the natural log of the critical difference (for 1.5 the natural log is
0.405), but due to the nature of logarithms, that wouldn’t work. Instead, you need to add the critical difference
to the arithmetic mean, take the natural logarithm of that, then subtract the natural logarithm of the arithmetic
mean (Lynda Finn, personal communication, April 28, 2011). Expressed mathematically:

dp=In(x+d)- In(X)
For Bob’s driving times, this would be
dn=1In(14.84+1.5)—In(14.8)=1In(16.3)— In(14.8)=2.791165 - 2.694627 =0.096538

If you use 0.046488657 for the variance and 0.096538 for the critical difference in place of the values
shown in Table 6.1, it turns out that you arrive at the same conclusion—to achieve this measurement goal you'll
need a total sample size of 22. Note, however, that these data are only slightly skewed. The more skewed the
time data are, the greater the difference in the estimated sample sizes. Because the log-transform applied to

(Continued)
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(Continued)

completion time data almost always reduces the estimate of the variance, it is often the case that you'll
determine that you need a smaller sample size than you would if you used the raw (untransformed) data.

If the cost of additional samples is low, then this won’t matter much, but if it's high, then this could reduce the
cost of the experiment without sacrificing any of the measurement goals. If you know you're going to use the
log-transform on your data, then you definitely want to do your sample size estimation with this in mind.

B
Example 1: A Realistic Usability Testing Example Given Estimate of Variability

This example illustrates the computation of a sample size requirement for the estimation of a value given an
existing estimate of variability and realistic criteria. For speech recognition, it is important to track the recog-
nizer's accuracy due to the usability problems that misrecognitions can cause. For this example, suppose:

® Recognition variability (variance) from a previous similar evaluation is 5.5 (s=2.345).
® Critical difference (d) is 1.5%.
® Desired level of confidence is 90% (so the initial value of z=1.645).

Table 6.2 shows the iterative steps that lead to the final sample size estimation for this example. After three
iterations, the process settles on a sample size of 9.

Table 6.2 lIterations for Example 1
Initial 1 2 3

t 1.645 1.943 1.833 1.86
£ 2.71 3.78 3.36 3.46
s? 55 55 55 5.5
d 1.5 1.5 1.5 1.5
a? 2.25 2.25 2.25 2.05
df 6 9 8 8

Unrounded 6.6 9.2 8.2 8.5
Rounded up 7 10 9 9

B
Example 2: An Unrealistic Usability Testing Example

Suppose a stakeholder wasn'’t satisfied with the criteria used in Example 1, and wanted a higher level of
confidence and a smaller critical difference, such as:

® Recognition variability (variance) from a previous similar evaluation is 5.5 (s=2.345).
® Critical difference (d) is 0.5%.
® Desired level of confidence is 99% (so the initial value of z=2.576).

The results appear in Table 6.3.
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Table 6.3 Iterations for Example 2
Initial 1 2

t 2.576 2.61 2.609
2 6.64 6.81 6.81
s? 55 55 55
d 0.5 0.5 0.5
a? 0.25 0.25 0.25
df 145 149 149

Unrounded 146 149.9 149.8
Rounded up 146 150 150

The initial estimate is 146, which goes up to 150 with the first iteration, and then stays there. There
might be some settings in which usability investigators would consider 146-150 participants a reasonable
and practical sample size, but they are rare. Confronted with these results, the hypothetical stakeholder
would very likely want to reconsider the criteria.

L
Example 3: No Estimate of Variability

Examples 1 and 2 had estimates of variance, either from a previous study or a quick pilot study. Suppose
you don’t have any idea what the measurement variability is, however, and it isn’t possible to run a pilot
study to get an initial estimate (no time or too expensive). Diamond (1981) provided a method for getting
around this problem but, to apply it, you need to give up the definition of the critical difference (d) in terms
of the variable of interest and replace it with a definition in terms of a fraction of the standard deviation—in
other words, to define d as an effect size.

The typical use of an effect size is as a standardized measure of the magnitude of an outcome, com-
puted by dividing the difference (d) between the observed and hypothesized values of a parameter by the
standard deviation. The motivation behind the development of the effect size was to have a measure of
effect that, unlike the observed significance level (p), is independent of the sample size (Minium et al.,
1993). Cohen (1988) suggested using 0.2, 0.5, and 0.8 as rule-of-thumb values for small, medium, and
large effects.

Assume that with 80% confidence, you want to be able to detect a fairly small effect; specifically, you
want to be able to detect effects that are equal to or greater than one-third of a standard deviation. In the
previous examples, we used d as the symbol for the critical difference, so in this example we'll use e as
the symbol for the effect size, which leads to
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The measurement criteria are:

® Recognition variability from a previous similar evaluation is N/A.
Critical difference (d) is 0.33s.
Desired level of confidence is 80% (so the initial value of z=1.282).

The initial sample size estimate is

22 1.282%(s%)  1.282%(s%)  1.64
=25 ) L= 202149
#  (033s? 033(s?) 011

which rounds up to 15. The result of the first iteration, replacing 1.282 with t for 14 degrees of freedom
and 80% confidence (1.345), results in a sample size estimation of 16.5, which rounds up to 17. Thus,
the appropriate sample size is somewhere between 15 and 17. The next iteration confirms a final esti-
mate of 17.

If you prefer an alternative approach when the variance is completely unknown, there are rules of
thumb for the typical variability encountered for certain types of data. See the sidebar “Rules of Thumb for
Estimating Unknown Variance.”

RULES OF THUMB FOR ESTIMATING UNKNOWN VARIANCE
Strategies for When You Don’t Have Any Other Estimates of Variance

If you have an idea about the largest and smallest values for a population of measurements but don’t have all the
data values that you would need to actually estimate the variability, you can estimate the standard deviation (s)
by dividing the difference between the largest and smallest values by 6. This technique assumes that the
population distribution is normal and then takes advantage of the fact that 99% of a normal distribution will

lie in the range of plus or minus three standard deviations of the mean (Parasuraman, 1986).

Nielsen (1997) surveyed 36 published usability studies and found that the mean standard deviation for
measures of expert performance was 33% of the mean value of the usability measure (i.e., if the mean comple-
tion time was 100 seconds, the mean standard deviation was about 33 seconds). For novice user learning (across
12 studies), the mean standard deviation was 46% of the measure of interest. For error rates (across 13 studies),
it was 59%.

Churchill (1991) provided a list of typical variances for data obtained from rating-scale items (such as those
used in the System Usability Scale). Because the number of points in a scale item affects the possible variance
(more points increase reliability, but also allow for more variance), you need to take the number of scale points
into account. For 5-point scales, the typical variance is 1.2 to 2; for 7-point scales it is 2.4 to 4; and for
10-point scales it is 3 to 7. Because rating-scale data tend to have a more uniform rather than normal distribution,
Churchill suggested using a number nearer the high end of the listed range when estimating sample sizes.

COMPARING VALUES

Sometimes you need to do more than just estimate a value. You might also need to compare one
value with another. That comparison could be an estimated value against a static benchmark, or it
could be one estimated value against another. The following examples illustrate how to perform
such comparisons with continuous data using confidence intervals based on #-scores.
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L
Example 4: Comparison with a Benchmark

For an example comparing a measurement to a benchmark, suppose that you have a product requirement
that the SUS score for installation should be at least 75. In a preliminary evaluation, the mean SUS score
was 65. Development has fixed a number of usability problems found in that preliminary study, so you're
ready to measure the SUS for installation again, using the following measurement criteria:

® Variability from the previous evaluation is 5 (s=2.236).
® C(Critical difference (d) is 1 point.
® Desired level of confidence is 95% (so the initial value of z equals 1.645).

The interpretation of these measurement criteria is that you want to be 95% confident that you can
detect a difference as small as one point between the mean of the data gathered in the test and the
benchmark you're trying to beat. In other words, the installation will pass if the observed mean SUS is
76 or higher, because the sample size should guarantee a lower limit to the confidence interval that is
no less than one point above the mean (as long as the observed variance is less than or equal to
the initial estimate of the variance). As discussed in Chapter 4, this is a one-sided test, so the initial
value of z given 95% confidence should be 1.645, not 1.96. Otherwise, the procedure for determining
the sample size in this situation is the same as that of Example 1, with the computations shown
in Table 6.4. The outcome of these iterations is an initial sample size estimation of 14, ending with an
estimate of 16.

Table 6.4 lIterations for Example 4
Initial 1 2

t 1.645 1.771 1.753
£ 2.71 3.14 3.07
s? 5 5 5
d 1 1 1
a? 1 1 1
ar 13 15 15

Unrounded 18.5 15.7 15.4
Rounded up 14 16 16

=
Example 5: Within-subjects Comparison of an Alternative

As discussed in Chapter 4, when you obtain two comparable measurements from each participant in a test
(a within-subjects design), you can use a paired ftest to assess the results. Another name for this is a dif-
ference scores t-test because you work with the mean and standard deviation of the difference scores
rather than the raw scores. Suppose that you plan to obtain recognition accuracy scores from participants
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Table 6.5 Iterations for Example 5
Initial 1 2 3 4

t 2.576 3.169 2.921 3.012 2.977
£ 6.64 10.04 8.53 9.07 8.86
§? 10 10 10 10 10
d 25 2.5 25 25 25
a? 6.25 6.25 6.25 6.25 6.25
df 10 16 13 14 14

Unrounded 10.6 16.1 13.6 14.5 14.2
Rounded up 11 17 14 15 15

who have dictated test texts into your product under development and a competitor’'s current product
using the following criteria:

® Difference score variability from a previous evaluation is 10 (s=3.162).
Critical difference (d) is 2.5%.
® Desired level of confidence is 99% (so the initial value of z equals 2.576).

This situation is similar to that of the previous example because the goal of a difference scores ttest is
to determine if the average difference between scores is significantly different from 0. So, one way to think
about this test is that the usability criterion is O and you want to be 99% confident that if the true differ-
ence between system accuracies is 2% or more, you will be able to detect it because the confidence inter-
val around the mean difference will not contain O. This example differs, however, in that you're conducting
a two-tailed test with 99% confidence because you're making no prior assumption about which system is
better, so the initial value of z should be 2.576, not 2.236. Table 6.5 shows the iterations for this example,
leading to n=15.

L
Example 6: Between-subjects Comparison of an Alternative

So far, the examples have involved one group of scores, making them amenable to similar treatment. If
you need to compare scores from two independent groups, however, things get a little more complicated.
For example, you could have different sample sizes for each group. If you are dealing with that complex of
a situation, or dealing with even more complex sample size estimation for multifactor or multivariable
experiments typically analyzed with analysis of variance or other more advanced linear modeling, you will
need to consult more advanced references such as Brown (1980), Kraemer and Thiemann (1987), or
Winer et al. (1991).

To simplify things for this example (which should be fairly common in usability testing), assume that
the groups are essentially equal (especially with regard to performance variability), which should be the
case if the groups contain participants from a single population who have received random assignment to
treatment conditions. In this case it is reasonable to believe that the variances (and thus the sample sizes)
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Table 6.6 Iterations for Example 6
Initial 1 2 3

t 2.576 2.831 2.787 2.797
e 6.64 8.02 7.77 7.82
§? 10 10 10 10
d 25 2.5 25 25
a? 6.25 6.25 6.25 6.25
df 21 25 24 25

Unrounded 21.2 25.7 24.9 25
Rounded up 22 26 25 26

for both groups should be about equal. For this specific simplified situation, the formula for the initial esti-
mate of the sample size for each group is
27°5°
d2

n=

Note the similarity to the formula presented in Example 1, but with the numerator multiplied by 2. For
example, suppose that you need to conduct the experiment described in Example 5 with independent
groups of participants, keeping the measurement criteria the same:

Difference score variability from a previous evaluation is 10 (s=3.162).
® Critical difference (d) is 2.5%.
® Desired level of confidence is 99% (so the initial value of z equals 2.576).

As shown in Table 6.6, the iterations converge on a sample size of 26 participants per group, for a total
sample size of 52. There is a well-known efficiency advantage for within-subjects designs over these types
of between-subjects designs, illustrated in this example. Because participants act as their own controls in
within-subjects experiments, their difference scores eliminate a substantial amount of variability relative to
the raw scores, which leads to lower sample size requirements. For the same measurement precision, the
estimated sample size for Example 5 was 15 participants, about 29% of the sample size requirement
estimated for this example.

=
Example 7: Where's the Power?

The power of a test refers to its ability to detect a difference between observed measurements and
hypothesized values if one exists. The power of a test is not an issue when you're just estimating the value
of a parameter, but it is an issue when testing a hypothesis (as in Examples 4-6)—either comparing a
result to a benchmark or comparing alternatives. In traditional hypothesis testing, there is a null (Hp) and
an alternative (H,) hypothesis. The typical null hypothesis is that there is no difference between groups.
The typical alternative hypothesis is that the difference is something greater than zero. When the
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Reality

Hy is true H, is false
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(p<0) probability: a 1=

FIGURE 6.3

The possible outcomes of a hypothesis test.

alternative hypothesis is that the difference is nonzero, the test is two-tailed because you can reject the
null hypothesis with either a sufficiently positive or a sufficiently negative result. As discussed in Chapter 4,
if the only meaningful outcome is in one direction (e.g., when comparing a result against a benchmark),
you can (and should) use a one-tailed test. Figure 6.3 shows the possible outcomes of a hypothesis test
and shows the relationships among those outcomes and the concepts of confidence, power, and the
acceptable probabilities of Type | and Type Il errors (also, see the Appendix, “Errors in Statistics”).

In hypothesis testing, there are two ways to be right and two ways to be wrong. The two ways to be right
are (1) to fail to reject the null hypothesis (Hp) when it is true, or (2) to reject the null hypothesis when it is
false. The two ways to be wrong are (1) to reject the null hypothesis when it is true (Type | error—a false
alarm), or (2) to fail to reject the null hypothesis when it is false (Type Il error—a miss). Strictly speaking, you
never accept the null hypothesis, because the failure to acquire sufficient evidence to reject the null hypoth-
esis could be due to (1) no significant difference between groups, or (2) a sample size too small to detect an
existing difference. So, rather than saying that you accept the null hypothesis, you say that you have failed to
reject it. Regardless of rejecting or failing to reject the null hypothesis based on the value of p, you should
also report either the effect size or, even better, provide a confidence interval.

The formula used in Example 5 for the initial sample size estimate was

In the example, the z-score was set for 99% confidence (which means that «=0.01). To take power into
account in this formula, we need to add another z-score to the formula—the z-score associated with the
desired power of the test (as illustrated in Figure 6.3). Thus, the formula becomes

(Za+25)°5°
d2
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and for each iteration, you need to add together the values for the appropriate ¢, and ; depending on the
different test criteria set for the desired levels of confidence and power.

You might wonder where the value for power was in Example 5. When beta () equals 0.5 (i.e., when
the power is 50%), the one-sided value of zz is O, so z; disappears from the formula. Note that when
using this method for sample size estimation, the z and f values for g should always be one sided, regard-
less of whether the test itself will be one or two sided (Diamond, 1981).

So, in Example 5 the implicit power was 50%. Suppose you want to increase the power of the test to
80% (reducing g to 0.2). What happens to the recommended sample size?

Difference score variability from a previous evaluation is 10 (s=3.162).

Critical difference (d) is 2.5.

Desired level of confidence is 99% (so the initial value of z, is 2.576).

Desired power is 80% (so the initial one-sided value of z; is 0.842—you could use =ABS(NORMSINV
(0.2)) to find this value in Excel)

® Sum of desired confidence and power is z,+ z;=3.418.

With this change, as shown in Table 6.7 the iterations converge on a sample size of 22 (compared to
the previously estimated sample size of 15 when the target power was 50%). The sample size is larger,
but this is the price paid to increase the power of the test without affecting its level of protection against
Type | errors (false alarms).

Note that if this sample size turned out to be too large for the available testing resources, then you can
get to a smaller sample size by making any or all of the following three changes to the criteria as part of
the process of planning the test:

® |ncrease the value of the critical difference.
Reduce the power of the test.
® Reduce the confidence level.

Table 6.7 lterations for Example 7
Initial 1 2 3

t, 2.576 2.878 2.819 2.831
ts 0.842 0.862 0.858 0.859
tosp 3.418 3.740 3.677 3.690
2.4 11.68 13.99 13.52 13.62
s? 10 10 10 10
d 2.5 2.5 2.5 2.5
a? 6.25 6.25 6.25 6.25
af 18 22 21 21

Unrounded 18.7 22.4 21.6 21.8
Rounded up 19 23 22 22
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WHAT ARE REASONABLE TEST CRITERIA?
It Depends ...

In scientific publishing, the primary criterion for statistical significance is to set the permissible Type | error (a)
equal to 0.05. Based on writings by Karl Pearson, “Student” (Gosset), and Wood and Stratton, this convention
was apparently in use starting in the first decade of the 20th century (Cowles, 1989). In 1925, Sir Ronald Fisher
was the first to explicitly cite 0.05 as a convenient limit for judging significance, “in the context of examples of
how often deviations of a particular size occur in a given number of trials—that twice the standard deviation is
exceeded about one in 22 trials, and so on” (Cowles, 1989, p. 175).

This practice is equivalent to having 95% confidence that the effect is real rather than random and has a
strong focus on controlling the Type | error. There is no corresponding typical practice for the Type Il error (),
although some suggest setting it to 0.2 (Diamond, 1981), and others have recommended making it equal to a
(Kirakowski, 2005). The rationale behind the emphasis on controlling the Type | error in scientific publication is
the belief that it is better to delay the introduction of good information into the scientific database (a Type Il
error) than to let in erroneous information (a Type | error).

In industrial evaluation, the appropriate values for Type | and Il errors depend on the demands of the
situation; specifically, whether the cost of a Type | or Il error would be more damaging to the organization.
Because usability practitioners are often resource-constrained, especially with regard to making timely decisions
while competing in dynamic marketplaces, we've included examples that use 80% or 90% confidence rather
than 95% and fairly large values for d—examples that illustrate a greater balance between Type | and Il errors
than is typical in work intended for scientific publication. As Nielsen (1997, p. 1544) suggested, “a confidence
level of 95% is often used for research studies, but for practical development purposes, it may be enough to aim
for an 80% level of confidence.” For an excellent discussion of this topic for usability researchers, see Wickens
(1998), and for other technical issues and perspectives, see Landauer (1997).

Another way to look at the issue is to ask the question, “Am | typically interested in small high-variability
effects or large low-variability effects?” In usability testing, the customary emphasis is on the detection of large
low-variability effects (either large performance effects or frequently occurring problems). You can prove the exis-
tence of large low-variability effects with fairly small sample sizes. Although it can be tempting to equate sample
size with population coverage, that just isn’t true. A small sample size drawn from the right population provides
better evidence than a large sample size drawn from the wrong population. Furthermore, the statistics involved
in computing t-based confidence intervals from small samples compensate for the potentially underestimated
variance in the small sample by forcing the confidence interval to be wider than that for a larger sample
(specifically, the value of t is greater when samples are smaller).

WHAT CAN | DO TO CONTROL VARIABILITY?

When you design a study, you have full control over many of the variables. You can set the level of
confidence (or alternatively, the value of @), the power of the study (or alternatively, the value of ),
the magnitude of the critical difference (d), and the final sample size (n). The element in the equation
over which you have the least control is the variability of a measurement (52). There are, however,
some things you can do to keep measurement variance as small as possible, including:

Make sure that your participants understand what they are supposed to do. Unless potential
participant confusion is part of the evaluation (and it could be), it will only add to measurement
variance.

If appropriate, let participants get familiar with the testing situation by having them complete
practice trials, but be careful that you do not unduly reveal study-relevant information.
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* If appropriate, use expert rather than novice participants. By definition, expertise implies reduced
performance variability (Mayer, 1997).

¢ If you need to include both expert and novice users, you should be able to get equal measurement
precision for both groups with unequal sample sizes (fewer experts needed than novices, which is
good because experts are usually harder to recruit as participants than novices).

* If appropriate, study simple rather than complex tasks.

* Use data transformations for measurements that tend to exhibit correlations between means and
variances or standard deviations. For example, frequency counts often have proportional means
and variances (treated with the square-root transformation), and time scores often have
proportional means and standard deviations (treated with the logarithmic transformation) (Myers,
1979; Sauro and Lewis, 2010).

* For comparative studies, if possible, use within-subjects designs rather than between-subjects designs.

* Keep user groups as homogeneous as possible (but note that although this reduces variability, it
can threaten a study’s external validity if the test group is more homogenous than the
population under study) (Campbell and Stanley, 1963).

IMPORTANT! Apply these tips only when they do not adversely affect the validity and general-
izability of your study. Having a study that is valid and generalizable is far more important than
reducing variance. That said, however, the smaller your variance, the more precise your measure-
ment, and the smaller will be the required sample size for a target level of precision.

SAMPLE SIZE ESTIMATION FOR BINOMIAL CONFIDENCE INTERVALS

The methods for proportions are similar to those for s-tests. Rather than needing an estimate of the var-
iance of the mean (s%), you need an estimate of the expected proportion ( p), where p = x/n (the number
of successes over the number of binomial trials). This is because the variance of a binomial measure-
ment is p(1 — p). If you do not have any prior expectation of the value of p (e.g., from a previous test),
then the safest thing to do is to assume p = 0.5 because that’s the value of p that has the largest variance
(which will push you toward a relatively larger sample size). For example, when p is 0.5, p(1 — p) is
0.5(0.5) =0.25; when p is 0.25, p(1 — p) is 0.25(0.75) = 0.1875, 75% of the maximum variance of 0.25.

Binomial Sample Size Estimation for Large Samples

The conditions that require a large sample size for a binomial test are the same as those that require
a large sample size for a t-test: high confidence, high power, large variance, and a small critical dif-
ference. As presented in Chapter 3, the critical difference for the Wald (large sample) interval is

p(1-p)

d=z

The value of z depends on

* The desired confidence level.
* The desired level of power.
*  Whether the test is one or two sided.
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Following essentially the same algebraic steps as those shown earlier in the chapter to isolate n
on the left side of the equation for the critical difference of a confidence interval based on a #-test,

you get
_Z2G)(1-p)
= 7
Note the similarity to
AP
R

They are identical, with the exception of substituting (p)(1 — p)—the estimate of binomial variance—
for 57

For example, assume you want to estimate the success rate of users logging into a website using
a new login procedure, using the following criteria:

* Success rate from a previous evaluation is not available, so use p =0.5.
* C(ritical difference (d) is 0.05.
* Desired level of confidence is 95% (so the value of z equals 1.96).

Then the required sample size will be ((1.962)(0.5)(0.5))/0.05>, which is 385 (384.1 rounded up).

Consider another example, with everything the same except the estimate of p. Assume that you’ve
collected login success data with your current login procedure and currently 90% (p =0.9) of users suc-
cessfully authenticate. You’ve made changes that you believe are very likely to improve the success
rate to 95% (p =0.95) and want to collect data to estimate the success rate. Under those conditions,
your estimated sample size would be ((1.96%)(0.95)(0.05))/0.05% = 72.99, which rounds up to 73.

This illustrates a fact that user researchers must accept. Even with fairly modest goals—95%
confidence (z=1.96), 50% power (z=0), and a critical difference of +0.05—the required sample
size will be larger than is common practice in moderated usability studies, although not out of line
with the sample sizes typical in unmoderated user research. If you must work with small samples
and you collect binomial data such as success rates, you must be prepared to deal with large bino-
mial confidence intervals and to use interpretive strategies such as those discussed in Chapters 3
and 4 to make those intervals useful despite their large size (see the sidebar “User Assessment of
the Value of a Disk Drive In-use Indicator for Floor-standing Personal Computers”).

USER ASSESSMENT OF THE VALUE OF A DISK DRIVE IN-USE INDICATOR FOR
FLOOR-STANDING PERSONAL COMPUTERS
Out of Sight, Out of Mind?
From the files of Jim Lewis

In the late 1980s, my lab received word of a plan to remove the disk drive in-use indicator from the next
version of our floor-standing personal computers. The designers had reasoned that because the unit was on the
floor, typically under a desk, they could save a little money on each unit by eliminating the LED that flashed
when the disk drive was in use. To test this hypothesis we randomly selected 20 users of floor-standing compu-
ters at our site and got their permission to cover their existing in-use indicators with aluminum tape. We checked
back with those users a week later, and found that seven of them (35%) had removed the tape because they
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found the absence of the in-use indicator so disturbing. This was well before the development of the adjusted-
Wald binomial confidence interval (Agresti and Coull, 1998), so we assessed the result with a 95% exact bino-
mial confidence interval, which ranged from 15-59%. From this result we argued that the best case was that
about one out of every six users would have a strong negative reaction to the absence of the disk drive in-use
indicator, and the worst case was that the proportion of disaffected users would be three out of five. The evi-
dence from this user study did not support the designers’ intuition. In this case, our discovery of the issue and
consequent presentation of the results was too late to affect the design, but based on our study, there was an
effort to monitor user reaction in the field—user reaction that was consistent with our results. For these reasons,
the disk drive in-use indicator came back in all following floor-standing models in that product line.

Binomial Sample Size Estimation for Small Samples

In previous chapters, we’ve recommended using the adjusted-Wald binomial confidence interval rather
than the standard Wald, especially with small samples (n < 100). From a historical perspective, the
adjusted-Wald interval is fairly new, published by Agresti and Coull in 1998. We do not know of any
published work describing sample size estimation for this type of binomial confidence interval, but due
to its similarity with the standard Wald interval, we can provide some practical guidance.

We start with a review of how to adjust the Wald formula to get to the adjusted-Wald. After you
decide on the required confidence level, you look up its corresponding value of z. For a given x and n
(where p=x/n), you add 2210 x (to get x,q) and Zton (to get n,g). Thus, the adjusted value of p is

2
X+ ZE X
N+ g

padj =

From this equation, we can see three things:

1. To get from the adjusted value of n used in the adjusted-Wald formula to the actual value of n,
it’s necessary to subtract z> from Nagj-

2. With one exception (p=0.5), the adjusted value of p will always be less than the value of p, so
the binomial variance will increase, with a corresponding increase in the width of the confidence
interval. When p =0.5, the adjusted value of p remains 0.5.

3. As the values of x and n increase, the effect of the adjustment on the value of p decreases, so
this adjustment is more important for smaller than for larger sample sizes.

HOW DOES BINOMIAL VARIANCE WORK?
The More Extreme the Value of p, the Lower the Variance
At first it might seem a bit counterintuitive, but more moderate values of p correspond to higher variability in
outcomes. The highest possible binomial variability occurs when p=0.5—the statistical equivalent of a coin toss.
When you toss a fair coin, you really have no idea on any given toss whether the outcome will be heads or tails.
On the other hand, imagine a 10-sided die with nine gray faces and one white (Figure 6.4). You can be pretty
sure that most tosses of that die will result in a gray face up; in fact, the probability of getting gray is 0.9. For
the fair coin, the variability is 0.5(0.5) =0.25; for the 10-sided die, the variability is 0.9(0.1) = 0.09—much less
than 0.25.

(Continued)
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(Continued)

FIGURE 6.4
Examples of moderate and extreme values of p.

Using the formula for sample size estimation for the standard Wald interval as a model, the
formula for the adjusted-Wald is

z (ﬁad_;) (1- f’adj)

nadj = d2

Substituting np for x, the formula for p,; is

)

Ha 2
np+2

Poti = ———
adj I’l+Z2

Because n,=n+ 22, then n=n, —zz, so the final estimate of n is

_ z (ﬁadj)(l —ﬁadj) 5
= T -7

We know the values of z and d because we select them. The value of p comes from a previous
evaluation or, if unknown, gets set to 0.5 to maximize the variance and the resulting sample size
estimate. The value of n, however, is unknown because that’s what we’re trying to estimate. To
deal with that, we recommend a three-step process:

1. Get an initial estimate of n using the standard Wald formula from the previous section:

_ZG)(1-p)

= 7 i
nﬁ+%
n+z2

— 7% to get the final estimate of n.

2. Use that initial estimzatF to calfulate Puadj USING oy =
2 (Pagi) (1 = Dagy)
42

For example, suppose you have reason to believe that the current success rate for a particular task is
0.75, and want to see if that’s correct. You know you won’t be able to conduct a large-scale study; in
fact, you probably won’t be able to test more than 20 people. For this reason, you realistically set your
target precision to 0.20, and balance that by setting your confidence to 95% (so z=1.96). To recap:

3. Then use p,,; in n=

* Success rate from a previous evaluation (p) is 0.75.
* C(ritical difference (d) is 0.20.
* Desired level of confidence is 95% (so the value of z equals 1.96).
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Input Table Results Table
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FIGURE 6.5
Result of sample size estimation example for adjusted-Wald binomial confidence interval.

First, compute the initial sample size estimate using the standard Wald formula:
_Z(p)(1-p) _ 1.96°(0.75)(1 —0.75)
- 0.2
Rounded up, the initial estimate of n is 19.
Next, use that initial estimate of n to compute the adjusted value of p:

2 2
mp+ 5 19(75)+ 1.967

=18.01

Pogi = =0.708

n+z2  19+41.96°

And use that adjusted value of p to compute the final estimate of n:

Z(Pag) (L =Pug)  ,  1.96%(0.708)(1—0.708)
n—=——— —7"=
d? 0.2’
Rounded up, the final estimate of n is 17.

If n is going to equal 17 and the expected value of p is 0.75, then the expected value of x is np,
which is 17(0.75) =12.75, which rounds to 13. We have to round the estimate up because x can
only be a whole number. For this reason, the value of the resulting x/n will not usually equal the
expected value of p, but it can get close—in this case it’s 13/17=0.7647. If we put these values of

x and 7 in the online calculator at www.measuringusability.com/wald.htm, we find that the observed
value of d is 0.1936, just 0.0064 less than the target value of 0.20 (see Figure 6.5).

-1.96>=16.02

Sample Size for Comparison with a Benchmark Proportion

The general strategies for comparing a result with a benchmark target are the same for any test,
whether based on continuous data and using #-tests or on count data and using binomial tests. To
compute the required sample size, you need to:

* Determine the value of the benchmark.
* Set the desired levels of confidence and power assuming a one-tailed test.
* Decide on the required level of precision.


http://www.measuringusability.com/wald.htm
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For example, suppose a first design of the installation process for a new dictation program had a
success rate of 55%, so for the next version you want to show that you’ve improved the success
rate to at least 65%. You decide to use the standard levels of 95% confidence and 80% power,
which have corresponding one-sided z-scores of 1.645 and 0.8416 (and which sum to 2.4866), and
to set the required level of precision to 20%. With a benchmark of at least 65% and precision of
20%, the target value of p to use for sample size estimation is 0.85 (0.65 + 0.20). Basically, you
want to set up a test in which you can show beyond a reasonable doubt that you have achieved
your goal for successful installation (if that is indeed the case), so you need to set your actual target
to the benchmark plus the planned level of precision. To compute the recommended sample size for
this scenario, use the following procedure based on the adjusted-Wald formula.

First, compute the initial sample size estimate using the standard Wald formula (for this
scenario, with 95% confidence for a one-tailed test and 80% power, use z =2.4866):

e 2(p)(1-p) _ 2.48667(0.85)(1 - 0.85)

=19.7
&2 0.2?

Rounded up, the initial estimate of n is 20. The initial estimate will always be too small, but it
gives us a place to start our search for the right sample size.

The next step is to compute the equivalent confidence for the nominal levels of confidence and
power for a one-tailed test (because this will be the sample size for a comparison against a bench-
mark). The one-tailed equivalent confidence when z=2.4866 is 0.99355 (99.355% confidence; see
the sidebar “Equivalent Confidence”).

EQUIVALENT CONFIDENCE
Taking Power into Account for Confidence Intervals

After you combine the zscores for desired levels of confidence and power, the resulting sum could have come
from any pair of component z-scores that add up to that number (see Chapter 9, Table 9.2). To take power into
account when constructing confidence intervals, you can act as if the entire composite zscore was for confi-
dence, implicitly adjusting power to 50% (for which z;=0). The value of the equivalent confidence depends on
whether the resulting confidence interval is one- or two-tailed. For most uses, it should be two-tailed. For confi-
dence intervals associated with benchmark tests, it should be one-tailed. For two-tailed equivalent confidence
you can insert the zscore into the Excel function =1-2*(1-NORMSDIST(Z)). For one-tailed equivalent confidence
you can use =NORMSDIST(Z).

For example, suppose you decided to set confidence to 95% and power to 80% for a two-tailed test. The z
for confidence (two-tailed) would be 1.96 and for power (always one-tailed) would be 0.84, for a total z of 2.8.
Using this value of zin=1-2*(1-NORMSDIST(2.8)) returns 0.9949, or 99.49% equivalent confidence. For the
corresponding one-tailed situation, the z for 95% confidence would be 1.645 and for 80% power would be
0.84, for a total z of 2.4866. Using that zin =NORMSDIST(2.4866) returns 0.99355, or 99.355% equivalent
confidence.

You normally won’t need to worry about equivalent confidence, but it is useful when working out sample size
estimates for testing rates against benchmarks. For a specified set of conditions, the confidence interval using
equivalent confidence and the minimum acceptable sample size should just barely exclude the benchmark.

The last step is to set up a table of one-tailed adjusted-Wald confidence intervals starting with
n = 20 and continuing until the lower bound of the confidence interval is higher than the criterion
of 0.65. For x, multiply n by the target value of p (0.85 in this example) and round it to the nearest
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Table 6.8 Estimating the Sample Size for Assessing a Rate against a Benchmark of 0.65 and
Critical Difference of 0.20 with 95% Confidence and 80% Power

Ifn= X p Xadj Nagj Padj dag; Lower Bound
20 17 0.8500 20.0913 26.1826 0.7674 0.2053 0.5620
21 18 0.8571 21.0913 27.1826 0.7759 0.1989 0.5770
22 19 0.8636 22.0913 28.1826 0.7839 0.1928 0.5911
23 20 0.8696 23.0913 29.1826 0.7918 0.1871 0.6042
24 20 0.8333 23.0913 30.1826 0.7651 0.1919 0.5732
25 21 0.8400 24.0913 31.1826 0.7726 0.1866 0.5859
26 22 0.8462 25.0913 32.1826 0.7797 0.1817 0.5980
27 23 0.8519 26.0913 33.1826 0.7863 0.1769 0.6094
28 24 0.8571 27.0913 34.1826 0.7925 01724 0.6201
29 25 0.8621 28.0913 35.1826 0.7984 0.1682 0.6303
30 26 0.8667 29.0913 36.1826 0.8040 0.1641 0.6399
31 26 0.8387 29.0913 37.1826 0.7824 0.1683 0.6141
32 27 0.8438 30.0913 38.1826 0.7881 0.1644 0.6236
33 28 0.8485 31.0913 39.1826 0.7935 0.1608 0.6327
34 29 0.8529 32.0913 40.1826 0.7986 0.1573 0.6413
35 30 0.8571 33.0913 41.1826 0.8035 0.1539 0.6496
36 31 0.8611 34.0913 42.1826 0.8082 0.1507 0.6574

whole number. As shown in Table 6.8, when n =36 the lower bound is just over 0.65 (although it
is very close when n =35), with x=31.

As a check, what would happen if we got exactly 31 successes out of 36 attempts and applied
the small-sample method from Chapter 4 for testing a rate against a benchmark? The mid-p likeli-
hood of that outcome by chance is about 0.003 (for exact and large-sample tests it’s about 0.004),
so we would conclude that the evidence strongly supports an actual rate significantly higher than
the criterion of 0.65. The strength of the result relative to setting @ =0.05 is due to setting the
power of the test to 80%. With a sample size of 36 and one-tailed a =0.05, you could tolerate up
to seven failures and still have reasonably compelling evidence of an actual rate significantly higher
than 0.65. For a small-sample test with n =36, x=29, and a true rate of 0.65, the likelihood of that
result by chance would be 0.023. The likelihood of eight failures would be 0.053, just missing the
pre-established cutoff of 0.05.

If you do not need the lower limit of the confidence interval to exceed the benchmark, you can
use a more standard formula to compute an adequate sample size for a hypothesis test. Using Excel
functions, that formula (Cohen, 1988) is:

=CEILING(2*((z, + zB) / (SQRT(2)*ABS(2*ASIN(SQRT(p)) — 2*ASIN(SQRT(»)))))"2,1)

where b is the benchmark and p is the sum of the benchmark and the required level of precision.
Due to its less stringent requirements, the estimated sample size using this formula will always be
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less than the equivalent confidence method. For this example, the estimated sample size using this
formula is 28:

=CEILING(2*((2.486)/(SQRT(2)* ABS(2* ASIN(SQRT(0.85)) — 2*ASIN(SQRT(0.65)))))"2,1) = 28

SAMPLE SIZE ESTIMATION FOR CHI-SQUARE TESTS
(INDEPENDENT PROPORTIONS)

In Chapter 5, we discussed the implications of the recent research by Campbell (2007) regarding
when to use Fisher or chi-square tests for small-sample studies and, if using chi-square, which type to
use. This research indicated that you should only use the Fisher test (specifically, the Fisher—Irwin
test with two-sided tests carried out by Irwin’s rule) if you have at least one cell in the 2 X 2 table
where the expected (not the observed) value is 0, which will not typically be the case in user research.
In most cases, user researchers comparing two proportions using a 2 X 2 table should use the N — 1
chi-square test (the standard chi-square test, but with N replaced by N — 1).

The formula for computing chi-square for a 2 X 2 table does not lend itself to easy conversion
to a formula for computing the estimated sample size. Fortunately, Campbell pointed out that it is
equivalent to the chi-square test “to test the value of Z from the ratio of the difference in two pro-
portions to the standard error of the difference” (2007, p. 3672), modifying the standard formula for
z by the factor {(N — 1)/N}"2. This equivalence allows us to use a fairly direct approach to sample
size estimation for N — 1 chi-square tests of 2 X 2 tables—one that is similar to the approach taken
throughout this chapter.

To keep the computations manageable and for conceptual simplification, we’re going to assume an
equal sample size for each group. This is under the control of the investigator when conducting a
designed experiment such as a usability study, but is not always under control for other types of user
research. If you have no idea what your final sample sizes will be, it is reasonable to assume they will
be the same. If you have some prior knowledge of how the sample sizes will be different, you can use
online calculators such as the one at www.statpages.org/proppowr.html to get the estimate, but bear in
mind that at the time of writing this chapter, these calculators compute the sample size for a standard
chi-square test of 2 X 2 tables, not the currently recommended N — 1 chi-square test.

The formula for a standard z-test of the difference in two proportions assuming equal group
sizes is

where

d is the difference between the two proportions, p; and p,
p1=x1/n and p, = x,/n, where n is the sample size of each group and x,, represents the number of
events of interest, for example, the number of successful task completions

qgisl-p


http://www.statpages.org/proppowr.html
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To adjust this standard z-test to the one that is the same as the recommended N — 1, multiply the

previous formula by
2n—1
2n

We use 2n instead of N because the N in a chi-square test is the total sample size for both groups.
Under the assumption of equal group sizes, N is equal to 2n. When we do this, we get

2n—1
d 2n
= ——
|2P4
n
To convert this from a z-test to an equation for estimating sample size, we need to use algebra to
get n on the left side of the equation. The steps are:

z @zd 2n—1
n 2n
Zz@ - 2n—1
n 2n
d&?2n-1
2pg) =1 5 )
27 (2pq) =d*(2n 1)
(42°pq)
7 =(2n-1)
(42°pq)
2= (229
2
4z°pq +1
282 2
_2p(l-p) 1
a2 2

So, to compute the estimated sample size for an N — 1 chi-square test, we need values for:

* z: The sum of the two-tailed z-value for confidence and the one-tailed value for power; for
example, 90% confidence and 80% power would correspond to respective z-values of 1.645 and
0.842, which sum to 2.487.

e p: The average of the expected values of p; and p, (determined from previous experiments, pilot
studies, or stakeholder consensus).

* d: The minimum practical difference that you need to detect, which is the difference between p,
and p, (note that the closer these values are, the smaller d will be, which can dramatically
increase the sample size required to discriminate between them with statistical significance).

Suppose you’ve recently run a test comparing successful completion rates for the installation of
the current version of a product and a new version in which you’ve made changes to improve the
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ease of installation. In that previous study, the successful completion rate for the current version
was 0.7 and for the new version was 0.8. You’ve made some additional changes that should elimi-
nate some of the problems participants had with the new version—enough that you think you
should get a successful completion rate of at least 0.9 (90% success). With this background infor-
mation, you decide to see what sample size you would need given:

* z: For 90% confidence and 80% power you get z-values of 1.645 and 0.842, which sum to 2.487.
* p: The expected average of p, and p,, which is 0.8 (the average of 0.7 and 0.9).
* d: The difference between p; and p, is 0.2.

Plugging these values into the equation, you get

_2(2487)°(0.8)(02) 1
"= 0.2 "2

n=49.98

For these levels of confidence, power, and precision, you’d need 50 participants in each group (100
in total). Assume that you don’t have the time or money to run 100 participants, so you decide to
relax your level of confidence to 80%. With 80% confidence and 80% power you get z-values of
1.282 and 0.842, which sum to 2.124. Everything else stays the same.
Now you get:
2(2.124)*(0.8)(0.2)

n= +
0.2?

N[ —

n=36.6

A group size of 37 is a little better, but a total sample size of 74 still stretches the resources of most
moderated usability studies. So you try one more time, this time setting power to 50% (so its corre-
sponding z-score is 0), and you get

_2(1.282)%(0.8)(0.2)

n= +
0.2?

N[ —

n=13.6

For these levels of confidence, power, and precision, you’ll need 14 participants per group (28 in total).

Although some statisticians frown upon ever reusing data, you do already have data for the current
version of the product. As long as your sample size from that previous study is equal to or greater
than 14 and you can reasonably assume that you’re drawing the old and new samples from the same
population (i.e., that the test conditions are essentially equivalent despite the passage of time), you
have data from which you could draw (if needed) a random selection of 14 participants. If you have
fewer than 14 participants, you could run the difference to get your sample size up to 14. Regardless,
you will need to run about 14 participants with the latest version of the product in development. With
data from 28 participants (half using the current version, half using the most recent version), you can
conduct your N — 1 chi-square test (or, equivalently, an N — 1 two-proportion test).
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On the other hand, if you determine that these levels of confidence, power, and precision are
inadequate for your needs, you can cancel the study and use your resources for some other user
research project that might be more likely to be productive. The point is that you are making this
decision with a clear understanding of the potential risks and benefits of conducting the study with
the estimated sample size.

SAMPLE SIZE ESTIMATION FOR MCNEMAR EXACT TESTS
(MATCHED PROPORTIONS)

As discussed in Chapter 5, when you run a within-subjects study, the most appropriate test to use to
assess differences in proportions (such as success rates) is the McNemar exact test. Like the chi-
square test, the McNemar exact test does not lend itself to easy conversion to a formula for comput-
ing the estimated sample size. Again, like the chi-square test, there is an alternative approach using
confidence intervals based on the direct comparison of proportions (Agresti and Min, 2005) that we
can use to derive a formula for estimating the sample size requirement for this type of test. The
standard Wald version of that confidence interval formula is

(P21 = P12) iz\/[(ﬁlz +pa1) = (P —P12)’)/n

This is a bit more complicated than the confidence interval formula for estimating a single value
of p. Table 6.9 provides the definitions of the various probabilities used in this confidence interval
formula.

The various proportions in Table 6.9 are the cell counts divided by the number of participants.
For example, the proportion associated with the discordant pairs in which participants succeed with
Design A but fail with Design B is p,, =b/n. The other proportion of discordant pairs, where parti-
cipants succeed with Design B but fail with Design A, is p,, =c/n. The success rate for Design A
(py) is (@ +b)/n, and the success rate for Design B (p,) is (a + c)/n.

Note that the difference between proportions that appear in the confidence interval formula is
(P21 —P12)> €ven though the most likely difference of interest is that between the success rates
(p, —Py)- I’s okay, though, because in this type of test the difference between the success rates for
the two designs is equal to the difference between the proportions of discordant pairs.

. . (a+c¢) (a+D) (a+c—a-b) (c=b) ¢ b . )

d=p,—p,= - = = =———=Du—"Pn
n n n n n o n

Table 6.9 Definitions for Test of Matched Proportions (McNemar Exact Test)

Pass Design B Fail Design B Total
Pass Design A a(ps1) b(p12) a+b(py)
Fail Design A c(Pyy) d(Ds) c+d(1=py)

Total a+c(p,) b+d(1-ps,) n (1.0)
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To derive a sample size formula from the standard Wald confidence interval formula, we need to
set the critical difference (the part to the right of the + sign) to d, then solve for n.

(P21 = P12) iz\/[(ﬁlz +P21) = (P _1312)2]/”
d=z\/[([712 +p21) = (P —P12)’]/n

L= Z[(Pra+Pa) = (Pa _1512)2]
nd> =22 (P12 +Pa1) — (Pay _1312)2}
n= Z[(P1a+ Do) = (P _ﬁlz)z]

22
n= Z2[@12 +poy) — (d)z]
= e
_ Z2(}512 +Pa1) _ Zz(dz)
" &~
2 /A “
n=’ (P12 +P21) _ P2

d2

The previous formula comes from the standard Wald formula for a binomial confidence interval
for matched proportions. Agresti and Min (2005) explored a number of adjustment methods and
showed that making an adjustment similar to the adjusted-Wald for a single proportion (Agresti
and Coull, 1998) leads to more accurate estimation in the long run. Based on their results, we
recommend adding the value of z%/8 to each of the interior cells of the layout shown in Table 6.9.
For a 95% confidence interval, the value of z is 1.96, so the value of 7% is 3.8416 and the value of
2*/8 is 0.48—just about 0.5. Another way of conceptualizing this adjustment for a back-of-the-
envelope 95% confidence interval is that you’re adding one success and one failure to the actually
obtained counts, distributing them evenly across the four cells. Multiplying z%/8 by 4, the value of
Nagi =N+ 2.

Next, you can calculate adjusted values for the discordant proportions (p,,, p,,, keeping in mind
that b=p,n and ¢ =p,,n):

2

A Z
R pppnt g
Padgjin = —Zz
n+ =

2

2
. Z
R pyn+ g
Padpp1 = 7Z2
n+ =
2

dagj = Padj21 — Padj12



Sample Size Estimation for McNemar Exact Tests (Matched Proportions) 133

Plugging these adjusted values into the standard Wald sample size formula, we get

2 /A ~
_Z (Padgjiz *Pagp1)
= g

adj

Because the adjusted value of n for this method is ng=n+ 212, then n= Nadj — Z%/2; therefore,

_ z (Pagjiz + Pagj21)

2 2
n=s——————-—7"-77/2
2
dadj
2/ n o
_Z (Padjiz + Pagj21) _152
= 1
dadj

Using a strategy similar to what we used for sample size estimation for a single proportion, sample
size estimation for this type of test will have three steps:

1. Use the sample size formula derived from the standard Wald confidence interval for matched
proportions to get an initial estimate of the required sample size. To do this, you will need to
make decisions about the amount of confidence and power for the test and the minimum size of
the difference that you need to be able to detect (d), and you will need estimates of the
discordant proportions p;, and p,;. If you don’t have any idea about the expected values of p,,
and, p,,, then subtract d/2 from 0.5 for your estimate of p,, and add d/2 to 0.5 for your estimate
of p,;. Doing this will maximize the binomial variability for the selected value of d, which will
in turn maximize the sample size estimate, ensuring an adequate sample size, but at the potential
cost of running more participants than necessary.

Use the sample size estimate from step 1 to get the adjusted values: p 125 Pugin1> and dgj.

Use the sample size formula derived from the adjusted-Wald confidence interval for matched
proportions to compute the final estimate of n (the number of participants required for the test).

wnN

For example, suppose you recently ran a pilot study in which you had 10 participants attempt
to complete a car reservation with two websites using counterbalanced orders of presentation,
with the overall success rates for Websites A and B equal to 0.8 and 0.9, respectively. In that
study, one participant was successful with Website A but was unsuccessful with Website B
(p1,=0.10) and two were successful with Website B but not with Website A (p,; =0.20), so the
difference in the proportions was 0.1. If these results remained stable, how many participants
would you need to run to achieve statistical significance with 95% confidence (a@=0.05) and 50%
power (f=0.5)? For this confidence and power, the value of z is 1.96 (1.96 for 95% confidence
and 0 for 50% power).

First, use the standard Wald formula for matched proportions to get an initial estimate of n:

_ Z(Pr + Do) 2
n=—— =z
L 196(0.1+02)

e —-1.96°=111.4



134 CHAPTER 6 What Sample Sizes Do We Need? Part 1

Rounded up, the initial estimate of n is 112. Using that estimate to adjust the discordant proportions
and their difference, we get

2 2
ﬁl2n+% 1(112) + 126

. 8
Dagji2 = > = >— =0.102529
n+% 112+ 126
2
2 2
pun+S 02(112)+ %
Pag1 = 7 = 1962 =0.200843
< .
= 112
n+ 5 + >

dag;=0.200843 — 0.102529 =0.098314
Finally, use the adjusted-Wald formula for matched proportions to get the final estimate of n:

Z (Pagjtz + Pagio1)
n=—>—- "9’
d2

adj

—1.57

. 1.96(0.102529 +0.200843)
B 0.098314°

—-1.5(1.96)°=114.8

Rounded up, the final sample size estimate is 115 participants. As a practical matter, if you estimate
an odd number of participants, you should add one more so you can evenly counterbalance the order
in which participants use the two products, so the final planned sample size should be 116.

As a check, let’s compute the resulting adjusted-Wald confidence interval. If one of the end-
points of the interval is close to 0 given this pattern of results, then the estimated sample size is
appropriate. For p, =0.8, p,=0.9, p,, =0.1, and p,, =0.2 with a sample size of 116, the resulting
95% adjusted-Wald confidence interval ranges from —0.005 to 0.192, with the lower limit just
below 0. Rounding to the nearest percentage, the interval for the difference in proportions ranges
from 0% to 19%, confirming the adequacy of the estimated sample size for the given conditions.

THE IMPORTANCE OF SAMPLE SIZE ESTIMATION

The book The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century (Salsburg, 2001)
chronicles the personal and professional stories of the most influential statisticians of the 20th century. Salsburg,
himself a practicing biostatistician who had met many of the subjects of his book, occasionally reveals insights

from his own work, including this rationale for the importance of sample size estimation before conducting a study
(p. 265):

A careful examination of resources available often produces the conclusion that it is not possible to answer
that question with those resources. | think that some of my major contributions as a statistician were when |
discouraged others from attempting an experiment that was doomed to failure for lack of adequate resources.
For instance, in clinical research, when the medical question posed will require a study involving hundreds of
thousands of patients, it is time to reconsider whether that question is worth answering.
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KEY POINTS FROM THE CHAPTER

® Sample size estimation is an important part of planning a user study, especially when the cost of
a sample is high.

¢ Different types of studies require different methods for sample size estimation. This chapter
covers methods for user studies (e.g., summative usability studies) that use measurements that
are continuous (e.g., time on task), multipoint scale (e.g., usability questionnaires), or discrete
(e.g., successful task completions).

¢ Different research goals (e.g., estimation of a value, comparison with a benchmark, or
comparison among alternatives) require different methods for sample size estimation.

® To obtain a sample size estimation formula, take the formula for the appropriate test and solve for n.

® Sample size formulas for estimation of a value or comparison with benchmarks or alternatives
require (1) an estimate of the expected measurement variance, (2) a decision about the required
level of confidence, (3) a decision about the required power of the test, and (4) a decision about
the smallest difference that it is important for the test to be able to detect. Table 6.10 provides a
list of the sample size formulas discussed in this chapter.

CHAPTER REVIEW QUESTIONS

1. Assume you’ve been using a single 100-point item as a post-task measure of ease of use in past
usability tests. One of the tasks you routinely conduct is installation. For the most recent usability
study of the current version of the software package, the variability of this measurement (s*) was
25 (s = 5). You’re planning your first usability study with a new version of the software, and all
you want to do is get an estimate of this measure with 90% confidence and to be within +2.5
points of the true value. How many participants do you need to run in the study?

2. Continuing with the data in question 1, what if your research goal is to compare your result with a
benchmark of having a result greater than 75? Also, assume that for this comparison you want a
test with 80% power and want to be able to detect differences that are at least 2.5 points above
the benchmark. The estimated variability of measurement is still 25 (s = 5) and desired confidence
is still 90%. How many participants do you need to run in the study?

3. What if you have improved the installation procedures for the new version, and want to test it
against the previous version in a study where each participant performs the installation task with
both the current and new versions, with the ability to detect a difference of at least 2.5 points?
Assume that power and confidence remain at 80% and 90%, respectively, and that the estimated
variability is still 25 (s = 5). How many participants do you need to run in the study?

4. Next, assume that the installation procedure is so time consuming that you cannot get participants
to perform installation with both products, so you’ll have to have the installations done by
independent groups of participants. How many participants do you need to run in the study?
Assume that nothing else changes—power and confidence remain at 80% and 90%, respectively,
variance is still 25, and the critical difference is still 2.5.

5. Continuing with the situation described in question 4, suppose your resources (time and money)
will only allow you to run a total of 20 participants to compare the alternative installation
procedures. What can you do to reduce the estimated sample size?



Table 6.10 List of Sample Size Formulas for Summative Testing

Type of Evaluation

Estimation (nonbinary data)

Comparison with a benchmark
(nonbinary data)

Comparison of alternatives
(nonbinary data within-subjects)

Comparison of alternatives
(nonbinary data between-subjects,
assuming equal group sizes)

Estimation (binary data, large
sample)

Estimation (binary data, small
sample)

Estimation (binary data, small
sample)

Comparison of alternatives (binary
data, between-subjects)

Comparison of alternatives (binary
data, within-subjects)

Comparison of alternatives (binary
data, within-subjects)

Comparison of alternatives (binary
data, within-subjects)

Formula
£s?
n= ?
(ta+15)°s%)
= 7
(ta+15)’s%)
2(t,+1)°s%)
= g
_ZG)(1-p)
= 7
2
np+=
Pog = ——2
W ntz2
_ Zz(ﬁad/‘)m _ﬁadj) 2
22°p(1-p) 1
n=—g  *3
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Z2(D1o+Da1) o
2
z 2
R p12n+§ R p21l’7+%
Pagjt2 = — 7 Pagjo1 = —
n+= n+%
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ne 4 (padj12 +padj21) 1522

Ol2

adj

Notes

Start by using the appropriate two-sided z-score in place of
t for the desired level of confidence, then iterate to the final
solution, as described in the text.

Start by using the appropriate one-sided values of z for the
values of t for the desired levels of confidence (@) and power
(p), then iterate to the final solution, as described in the text.

Start by using the appropriate values of z for the values of t for
the desired levels of confidence (two-sided @) and power (one-
sided f), then iterate as described in the text.

Start by using the appropriate values of z for the values of t for
the desired levels of confidence (two-sided a) and power (one-
sided ), then iterate to the final solution, as described in the text,
to get the estimated sample size requirement for each group.

Use for large sample studies, or as the first step in the process
for small sample studies. For this and the rest of the equations
below, 7 is the sum of z, and 2z (confidence plus power).

Use for the second step in the process for small sample
studies to get the adjusted estimate of p.

Use for the third step in the process for small sample studies
to get the adjusted estimate of n.

Use to estimate group sizes for N — 1 chi-square tests
(independent proportions).

Use for the initial estimate of n for a McNemar exact test
(matched proportions).

Use for the second step in the process of estimating n for a
McNemar exact test (matched proportions).

Use for the third step in the process of estimating n for a
McNemar exact test (matched proportions).
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6. Suppose that in addition to your subjective assessment of ease of use, you have also been
measuring installation successes and failures using small-sample moderated usability studies. For
the most recent usability study, the installation success rate was 65%. Using this as your best
estimate of future success rates, what sample size do you need if you want to estimate with
90% confidence the new success rate within +15 percentage points of the true value?

7. You’re pretty confident that your new installation process will be much more successful than the
current process—in fact, you think you should have about 85% correct installation, which is much
better than the current success rate of 65%. The current installation process is lengthy, typically
taking two to three days to complete with verification of correct installation, so each participant
will perform just one installation. You want to be able to detect the expected difference of 20
percentage points between the success rates with 80% confidence and 80% power, and are
planning to run the same number of participants with the current and new installation procedures.
How many participants (total including both groups) do you need to run?

8. For another product (Product B for “Before”), the current installation procedure is fairly short
(about a half-hour), but that current process has numerous usability issues that have led to an
estimated 50% failure rate on first attempts. You’ve tracked down the most serious usability
issues and now have a prototype of an improved product (Product A for “After”). In a pilot
study with 10 participants, 4 participants succeeded with both products, 1 failed with both,
4 were successful with Product A but not Product B, and 1 was successful with Product B but
not Product A. What are the resulting estimates for p;, p,, p12, and p,;? If you want to run a
larger-scale test with 95% confidence and 80% power, how many participants should you plan
to run if you expect this pattern of results to stay roughly the same?

Answers

1. The research problem in this exercise is to estimate a value without comparison to a benchmark
or alternative. From the problem statement, the variability (s?) is 25 (s = 5) and the critical
difference (d) is 2.5. This situation requires iteration to get to the final sample size estimate,
starting with the z-score associated with two-sided testing and 90% confidence, which is 1.645.
As shown in Table 6.11, the final sample size estimate for this study is 13 participants.

Table 6.11 Iterations for Question 1

Initial 1 2 3
t 1.645 1.812 1.771 1.782
£ 2.71 3.29 3.14 3.18
s? 25 25 25 25
d 25 2.5 25 25
a? 6.25 6.25 6.25 6.25
df 10 13 12 12
Unrounded 10.8 13.1 12.5 12.7
Rounded up 11 14 13 13
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2. Relative to question 1, we’re moving from a simple estimation problem to a comparison with a
benchmark, which means that we now need to consider the power of the test and, because we’re
testing against a benchmark, will use a one-sided rather than a two-sided test. Like the previous
exercise, this will require iteration, starting with the sum of the one-sided z-scores for 90%
confidence and 80% power, which are, respectively, 1.282 and 0.842. As shown in Table 6.12,
the final sample size estimate for this study is 20 participants.

3. Relative to question 2, we’re moving from a comparison with a fixed benchmark to a within-
subjects comparison between alternative designs, so the test should be two sided rather than one
sided. The two-sided z-score for 90% confidence and one-sided z-score for 80% power are,
respectively, 1.645 and 0.842. Table 6.13 shows the process of iterating for this situation, with a
final sample size estimate of 27 participants.

Table 6.12 Iterations for Question 2

Initial 1 2
t, 1.282 1.33 1.328
ty 0.842 0.862 0.861
tasp 2.123 2.192 2.189
[ 4.51 4.81 4.79
s° 25 25 25
d 2.5 2.5 2.5
a? 6.25 6.25 6.25
df 18 19 19
Unrounded 18 19.2 19.2
Rounded up 19 20 20

Table 6.13 Iterations for Question 3

Initial 1 2
ty 1.645 1.711 1.706
ty 0.842 0.857 0.856
tasp 2.487 2.568 2.561
tasp? 6.18 6.59 6.56
52 25 25 25
d 2.5 2.5 2.5
a? 6.25 6.25 6.25
df 24 26 26
Unrounded 24.7 26.4 26.2
Rounded up 25 27 27
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4. Relative to question 3, we’re moving from a within-subjects experimental design to one that is
between-subjects. That means that the formula for starting the iterative process starts with n = 2zs%/d”
rather than n = zs°/d” (where z is the sum of the z-scores for confidence and power, z, and z3)—
essentially doubling the required sample size at that point in the process. Furthermore, the estimation is
for the size of one group, so we’ll need to double it again to get the estimated sample size for the entire
study. Table 6.14 shows the process of iterating for this situation, with a final sample size estimate of
51 participants per group, and a total sample size estimate of 102 participants.

5. Keeping many of the conditions of the situations the same, over the course of the first four review
questions, we’ve gone from needing a sample size of 13 to simply estimate the ease-of-use score
within a specified level of precision, to 20 to compare it against a benchmark, to 27 to perform a
within-subjects usability test, to 102 to perform a between-subjects usability test. Clearly, the change
that led to the greatest increase in the sample size estimate was the shift from a within-subjects to a
between-subjects comparison of alternatives. Therefore one way to reduce the estimated sample size
is to strive to run within-subjects studies rather than between-subjects when you must compare
alternatives. The other aspects of experimental design that you can control are the choices for
confidence level, power, and critical difference. Let’s assume that you were able to change your
plan to a within-subjects study. Furthermore, you have worked with your stakeholders to relax the
requirement for the critical difference (d) from 2.5 to 3.5. As shown in Table 6.15, these two
changes—switching from a between-subjects to a within-subjects design and increasing the critical
difference by just one point—Ilead to a study design for which you should only need 15 participants.
Note that if the critical difference were relaxed to 5 points, the required sample size would be just 8
participants. Also note that this is only one of many ways to reduce the sample size requirement—
for example, you could have reduced the levels of confidence and power.

6. For this question, the variable of interest is a binomial pass/fail measurement, so the appropriate
approach is the sample size method based on the adjusted-Wald binomial confidence interval. We
have the three pieces of information that we need to proceed: the success rate from the previous
evaluation (p) is 0.65, the critical difference (d) is 0.15, and the desired level of confidence is 90% (so
the two-sided value of z is 1.645). We first compute an initial sample size formula using the standard

Table 6.14 Iterations for Question 4

Initial 1 2 3
t, 1.645 1.677 1.675 1.676
ty 0.842 0.849 0.849 0.849
tasp 2.487 2.526 2.524 2.525
tasp? 6.18 6.38 6.37 6.37
s° 25 25 25 25
d 25 25 2.5 2.5
a? 6.25 6.25 6.25 6.25
df 49 51 50 50
Unrounded 49.5 51 51 51
Rounded up 50 52 51 51
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Table 6.15 lterations for Question 5

Initial 1 2
t, 1.645 1.782 1.761
ty 0.842 0.873 0.868
tasp 2.487 2.655 2.629
Lo p? 6.18 7.05 6.91
2 25 25 25
d 3.5 3.5 3.5
a? 12.25 12.25 12.25
af 12 14 14
Unrounded 12.6 14.4 14.1
Rounded up 13 15 15

Wald formula (n = z°p(1 — p)/d®), which for this problem is n = (1.645)%(0.65)(0.35)/0.15% = 27.4,
which rounds up to 28. Next, we use that initial estimate of n to compute the adjusted value of
P(Pagj = (np + 7°12)/(n + 7)), which for this problem is p,g = ((28)(0.65) + 1.645%/2)/(28 + 1.645%) =
0.6368. We next use the adjusted value of p and the initial estimate of n to compute the adjusted
estimate of 7 (g5 = (Z*(Pug)(1 = Paai)ld”) — z°), which for this problem is ((1.645)*(0.6368)(0.3632)/
0.15%) — 1.645% = 25.11, which rounds up to 26. As a check, we could set the expected number of
successes (x) to 0.65(26), which rounds to 17. A 90% adjusted-Wald binomial confidence interval for
17/26 has an observed p of 0.654, an adjusted p of 0.639, and a margin of error of 0.147, just a little
more precise than the target precision of 0.15.

7. Because in this problem you’re planning to compare success rates between independent groups,
the appropriate test is the N — 1 chi-square test. From the conditions of the problem, we have
information needed to do the sample size estimation: the expected values of p; and p, (0.65 and
0.85, respectively, for an average p = 0.75 and difference d = 0.20) and the sum of the z-scores
for 80% confidence (two-sided z = 1.282) and 80% power (one-sided z = 0.842) of 2.124.
Plugging these values into the appropriate sample size estimation formula, we get n = (2(2.124%)
(0.75)(0.25))/0.2* + 0.5 = 42.8, which rounds up to 43 participants per group, for a total of 86
participants. This is outside the scope of most moderated usability tests. Relaxing the power to
50% (so its associated z-score would be 0, making the total value of z = 1.282) would reduce
the estimate of n per group to 16 (total sample size of 32).

8. The appropriate statistical test for this type of study is the McNemar exact test (or, equivalently,
a confidence interval using the adjusted-Wald method for matched proportions). From the pilot
study, the estimates for the different key proportions are p; = 0.8, p, = 0.5, p1» = 0.4, and p,; =
0.1, so d = 0.3. Using the three-step process, first compute an initial estimate of n with the
standard Wald formula, using z = 2.8 (the sum of 1.96 for two-tailed 95% confidence and 0.84
for one-tailed 80% power).

. 2.8%(0.140.4)

03 -2.8=357
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Rounded up, this initial estimate is 36. Next, compute the adjustments:

2
0.1(36) + %
Puiiz = ———— o =0.114729
36 fddhedil
3
2
0.4(36) + =5
a1 = 72828 =0.385271
36+ 2

dag;=0.385271 —0.114729 =0.270541
Then compute the final sample size estimate, which, after rounding up, is 42:

o 2.87(0.114729 + 0.385271)

EECIE -1.5(2.8)>=41.8

You can check this estimate by computing a confidence interval to see if it includes or excludes 0.
Because the power of the test is 80%, you need to compute an equivalent confidence to use that
combines the nominal power and confidence of the test (see the sidebar on “Equivalent Confi-
dence”). The composite z for this problem is 2.8, so the equivalent confidence to use for a two-sided
confidence interval is 99.4915%. The closest integer values for a, b, c, and d are, respectively, 17,
17, 4, and 4, for the following values:

p1:34/42=0.81
p2:21/42=0.5
p12: 17/42=0.405
P21:4/42=0.095

The resulting confidence interval ranges from —0.55 to —0.015—=close to but not including 0.
Using an n of 40, the expected values of p;, p,, p12, and p,; are exactly 0.8, 0.5, 0.4, and 0.1,
respectively, and the confidence interval ranges from —0.549 to 0.0025, just barely including O.
The bounds of these confidence intervals support the sample size estimate of 42, but if samples
were expensive, 40 would probably be adequate.
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CHAPTER

What Sample Sizes Do We Need?

Part 2: Formative Studies

INTRODUCTION

Sample size estimation for summative usability studies (the topic of Chapter 6) draws upon techniques
that are either the same as or closely related to methods taught in introductory statistics classes at the
university level, with application to any user research in which the goal is to obtain measurements. In con-
trast to the measurements taken during summative user research, the goal of a formative usability study is
to discover and enumerate the problems that users have when performing tasks with a product. It is possi-
ble, though, using methods not routinely taught in introductory statistics classes, to statistically model the
discovery process and to use that model to inform sample size estimation for formative usability studies.
These statistical methods for modeling the discovery of problems also have applicability for other types
of user research, such as the discovery of requirements or interview themes (Guest et al., 2006).

USING A PROBABILISTIC MODEL OF PROBLEM DISCOVERY TO ESTIMATE
SAMPLE SIZES FOR FORMATIVE USER RESEARCH

The Famous Equation: P(x>1)=1—-(1—p)”

The most commonly used formula to model the discovery of usability problems as a function of
sample size is

Px>1)=1-(1-p)"

In this formula, p is the probability of an event (e.g., the probability of tossing a coin and getting
heads, as opposed to the use of the symbol p in previous chapters to represent the observed signifi-
cance level of a test or a proportion), n is the number of opportunities for the event to occur (e.g., the
number of coin tosses), and P(x >1) is the probability of the event occurring at least once in n tries.

For example, the probability of having heads come up at least once in five coin tosses (where x
is the number of heads) is

P(x>1)=1-(1-0.5)" =0.969

Even though the probability of heads is only 0.5, by the time you toss a coin five times you’re
almost certain to have seen at least one of the tosses come up heads; in fact, out of a series of
tosses of five coins, you should see at least one head about 96.9% of the time. Figure 7.1 shows
how the value of 1 — (1 — p)” changes as a function of sample size and value of p.
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FIGURE 7.1

Probability of discovery as a function of nand p.

THE PROBABILITY OF AT LEAST ONE EQUALS ONE MINUS THE PROBABILITY OF NONE
A Lesson from James V. Bradley

From the files of Jim Lewis

There are several ways to derive 1 — (1 — p)”. For example, Nielsen and Landauer (1993) derived it from a
Poisson probability process. | first encountered it in college in a statistics class | had with James V. Bradley in
the late 1970s at New Mexico State University.

Dr. Bradley was an interesting professor, the author of numerous statistical papers and two books: Probability;
Decision; Statistics and Distribution-Free Statistical Tests. He would leave the campus by 4:00 PM every after-
noon to get to his trailer in the desert because if he didn’t, he told me his neighbors would “steal everything that
wasn’t nailed down.” He would teach t-tests, but would not teach analysis of variance because he didn't believe
psychological data ever met their assumptions (a view not held by the authors of this book). | had to go to the
College of Agriculture’s stats classes to learn about ANOVA.

Despite these (and other) eccentricities, he was a remarkable and gifted teacher. When we were studying the
binomial probability formula, one of the problems he posed to us was to figure out the probability of occurrence of at
least one event of probability p given n trials. To work this out, you need to start with the binomial probability formula
(Bradley, 1976), where P(x) is the probability that an event with probability p will happen x times in n trials:

P(x) = Wl_x)!px(l -p)""

The trick to solving Bradley’s problem is the realization that the probability of an event happening at least
once is one minus the probability that it won’t happen at all (in other words 1 — P(x=0), which leads to

P =1 (g 00"
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Because the value of 0! is 1 and any number taken to the Oth power also equals 1, we get

n! n
>1)=1- (-1 _
Px>1)=1 (l(n)! 1(1-p) )
Px>1)=1-(1-p)"
So, starting from the binomial probability formula and solving for the probability of an event occurring at
least once, we derive 1 — (1 — p)”. | first applied this as a model of problem discovery to estimate sample size

requirements for formative usability studies in the early 1980s (Lewis, 1982), and have always been grateful to
Dr. Bradley for giving us that problem to solve.

Deriving a Sample Size Estimation Equation from 1 — (1 — p)”

To convert P(x>1)=1— (1 — p)" to a sample size formula, we need to solve for n. Because n is an
exponent, it’s necessary to take logs, which leads to

(1-p)"=1-Px2>1)
n(In(1=p)) =In(1-p(x=1))

For these equations, we used natural logarithms (In) to avoid having to specify the base, which
simplifies the formulas. Excel provides functions for both the natural logarithm (LN) and for logarithms
of specified base (LOG). When working with logarithms in Excel, use whichever function you prefer.

To use this equation to compute n, we need to have values for p and P(x > 1). The most practi-
cal approach is to set p to the lowest value that you realistically expect to be able to find with the
available resources (especially the time and money required to run participants in the formative
usability study). Set P(x > 1) to the desired goal of the study with respect to p.

For example, suppose you decide to run a formative usability study and, for the tasks you use
and the types of participants you observe, you want to have an 80% chance of observing, at least
once, problems that have a probability of occurrence of 0.15. To accomplish this goal, you’d need
to run 10 participants.

In(1-0.8)
n=———=-—
In(1-0.15)
In(0.2)
n=
In(0.85)
n=99

Note that if you run 10 participants, then you will have a slightly better than 80% chance of
observing (at least once) problems that have probabilities of occurrence greater than 0.15. In fact,
using this formula, it’s easy to set up tables to use when planning these types of studies that show
this effect at a glance. Table 7.1 shows the sample size requirements as a function of the selected
values of p (problem occurrence probability) and P(x > 1) (likelihood of detecting the problem at
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Table 7.1 Sample Size Requirements for Formative User Research

P(x > 1)= Plx 21)= P(x 2 1)= P(x 2 1)= P(x > 1)= P(x > 1)=
p 0.5 0.75 0.85 0.9 0.95 0.99
0.01 69 (168) 138 (269) 189 (337) 230 (388) 299 (473) 459 (662)
0.05 14 (34) 28 (53) 37 (67) 45 (77) 59 (93) 90 (130)
0.1 7 (17) 14 (27) 19 (33) 22 (38) 29 (46) 44 (64)
0.15 5(11) 9 (18) 12 (22) 15 (25) 19 (30) 29 (42)
0.25 3(7) 5(10) 7 (13) 9 (15) 11 (18) 17 (24)
0.5 1(3) 2 (5) 3 (6) 4.(7) 5(8) 7(11)
0.9 1@ 12 13 1) 23 24
Note: The first number in each cell is the sample size required to detect the event of interest at least once; numbers in
parentheses are the sample sizes required to observe the event of interest at least twice.

least once). Table 7.1 also shows in parentheses the likelihood of detecting the problem at least
twice. It isn’t possible to derive a simple equation to compute the sample size for detecting a
problem at least twice, but it is possible to use linear programming with the Excel Solver function
to estimate the required sample sizes that appear in Table 7.1.

Table 7.2 shows similar information, but organized by sample size for n=1 through 20 and for
various values of p, with cells showing the likelihood of discovery—in other words, of occurring at
least once in the study.

Using the Tables to Plan Sample Sizes for Formative User Research

Tables 7.1 and 7.2 are useful when planning formative user research. For example, suppose you
want to conduct a formative usability study that has the following characteristics:

* Lowest probability of problem occurrence of interest is 0.25.
*  Minimum number of detections required is 1.
* Cumulative likelihood of discovery (goal) is 90%.

For this study, Table 7.1 indicates that the appropriate sample size is nine participants.

If you kept the same criteria except you decided you would only pay attention to problems that
occurred more than once, then you’d need 15 participants. As an extreme example, suppose your
test criteria were:

* Lowest probability of problem occurrence of interest is 0.01.
*  Minimum number of detections required is 1.
* Cumulative likelihood of discovery (goal) is 99%.

For this study, the estimated sample size requirement is 459 participants—an unrealistic require-
ment for most moderated test settings. This type of exercise can help test planners and other stake-
holders make the necessary adjustments to their expectations before running the study. Also, keep
in mind that there is no requirement to run the entire planned sample through the usability study
before reporting clear problems to development and getting those problems fixed before continuing.
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Table 7.2 Likelihood of Discovery for Various Sample Sizes

P n=1 n=2 n=3 n=4 n=5
0.01 0.01 0.02 0.03 0.04 0.05
0.05 0.05 0.1 0.14 0.19 0.23
0.1 0.1 0.19 0.27 0.34 0.41
0.15 0.15 0.28 0.39 0.48 0.56
0.25 0.25 0.44 0.58 0.68 0.76
0.5 0.5 0.75 0.88 0.94 0.97
0.9 0.9 0.99 1 1 1

p n=6 n=7 n=8 n=9 n=10
0.01 0.06 0.07 0.08 0.09 0.1
0.05 0.26 0.3 0.34 0.37 0.4
0.1 0.47 0.52 0.57 0.61 0.65
0.15 0.62 0.68 0.73 0.77 0.8
0.25 0.82 0.87 0.9 0.92 0.94
0.5 0.98 0.99 1 1 1

0.9 1 1 1 1 1

p n=11 n=12 n=13 n=14 n=15
0.01 0.1 0.1 0.12 0.13 0.14
0.05 0.43 0.46 0.49 0.51 0.54
0.1 0.69 0.72 0.75 0.77 0.79
0.15 0.83 0.86 0.88 0.9 0.91
0.25 0.96 0.97 0.98 0.98 0.99
0.5 1 1 1 1 1

0.9 1 1 1 1 1

P n=16 n=17 n=18 n=19 n=20
0.01 0.15 0.16 017 0.17 0.18
0.05 0.56 0.58 0.6 0.62 0.64
0.1 0.81 0.83 0.85 0.86 0.88
0.15 0.93 0.94 0.95 0.95 0.96
0.25 0.99 0.99 0.99 1 1

0.5 1 1 1 1 1

0.9 1 1 1 1 1

These sample size requirements are typically for total sample sizes, not sample sizes per iteration
(Lewis, 2012).

Once you’ve settled on a sample size for the study, Table 7.2 is helpful for forming an idea
about what you can expect to get from the sample size for a variety of problem probabilities. Con-
tinuing the first example in this section, suppose you’ve decided that you’ll run nine participants in
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your study to ensure at least a 90% likelihood of detecting at least once problems that have a prob-
ability of occurrence of 0.25. From Table 7.2, what you can expect with nine participants is:

* For p=0.01, P (at least one occurrence given n=9): 9%

* For p=0.05, P (at least one occurrence given n=9): 37%
¢ For p=0.1, P (at least one occurrence given n=9): 61%

¢ For p=0.15, P (at least one occurrence given n=9): 77%
¢ For p=0.25, P (at least one occurrence given n=9): 92%
* For p=0.5, P (at least one occurrence given n=9): 100%
¢ For p=0.9, P (at least one occurrence given n=9): 100%

This means that with nine participants you can be reasonably confident that the study, within the
limits of its tasks and population of participants (which establish what problems are available for
discovery), is almost certain to reveal problems for which p > 0.5. As planned, the likelihood of dis-
covery of problems for which p=0.25 is 92% (> 90%). For problems with p < 0.25, the rate of dis-
covery will be lower, but will not be 0. For example, the expectation is that you will find 77% of
problems for which p=0.15, 61% of problems for which p =0.1, and 37% (just over one-third) of
the problems available for discovery of which p=0.05. You would even expect to detect 9% of the
problems with p=0.01. If you need estimates that the tables don’t cover, you can use the general
formula (where In means to take the natural logarithm):

ln(l—P(le))

" T (-p)

ASSUMPTIONS OF THE BINOMIAL PROBABILITY MODEL

The preceding section provides a straightforward method for sample size estimation for formative
user research that stays within the bounds of the assumptions of the binomial probability formula.
Those assumptions are (Bradley, 1976):

* Random sampling.

* The outcomes of individual observations are independent.

* Every observation belongs to one of two mutually exclusive and exhaustive categories, for
example, a coin toss is either heads or tails.

* Observations come from an infinite population or from a finite population with replacement (so
sampling does not deplete the population).

In formative user research, observations are the critical incidents of interest, for example, a
usability problem observed in a usability test, a usability problem recorded during a heuristic
evaluation, or a design requirement picked up during a user interview. In general, the occurrences of
these incidents are consistent with the assumptions of the binomial probability model (Lewis, 1994).

* Ideally, usability practitioners should attempt to select participants randomly from the target
population to ensure a representative sample. Although circumstances rarely allow true random
sampling in user research, practitioners do not usually exert any influence on precisely who



Additional Applications of the Model 149

participates in a study, typically relying on employment agencies to draw from their pools to
obtain participants who are consistent with the target population.

* Observations among participants are independent because the events of interest experienced by
one participant cannot have an effect on those experienced by another participant. Note that the
model does not require independence among the different types of events that can occur in the
study.

* The two mutually exclusive and exhaustive event categories are (1) the event occurred during a
session with a participant or (2) the event did not occur during the session.

* Finally, the sampled observations in a usability study do not deplete the source.

Another assumption of the model is that the value of p is constant from trial to trial (Ennis and Bi,
1998). It seems likely that this assumption does not strictly hold in user research due to differences
in users’ capabilities and experiences (Caulton, 2001; Woolrych and Cockton, 2001; Schmettow,
2008). The extent to which this can affect the use of the binomial formula in modeling problem
discovery is an ongoing topic of research (Briand et al., 2000; Kanis, 2011; Lewis, 2001; Schmettow,
2008, 2009)—a topic to which we will return later in this chapter. But note that the procedures
provided earlier in this chapter are not affected by this assumption because they take as given (not as
estimated) a specific value of p.

ADDITIONAL APPLICATIONS OF THE MODEL

There are other interesting, although somewhat controversial, things you can do with this model.

Estimating the Composite Value of p for Multiple Problems or Other Events

An alternative to selecting the lowest value of p for events that you want to have a good chance of
discovering is to estimate a composite value of p, averaged across observed problems and study
participants. For example, consider the hypothetical results shown in Table 7.3.

For this hypothetical usability study, the composite estimate of p is 0.5. There are a number of
ways to compute the composite, all of which arrive at the same value. You can take the average of
the proportions, either by problems or by participants, or you can divide the total number of cells in
the table (100 — 10 participants by 10 discovered problems) by the number of cells filled with an
“x” (50).

Adjusting Small Sample Composite Estimates of p

Composite estimates of p are the average likelihood of problem occurrence or, alternatively, the esti-
mated problem discovery rate. This estimate can come from previous studies using the same method
and similar system under evaluation or can come from a pilot study. For standard scenario-based
usability studies, the literature contains large sample examples that show p ranging from 0.03 to 0.46
(Hwang and Salvendy, 2007, 2009, 2010; Lewis, 1994, 2001, 2012). For heuristic evaluations, the
reported value of p from large sample studies ranges from 0.08 to 0.6 (Hwang and Salvendy, 2007,
2009, 2010; Nielsen and Molich, 1990). The well-known (and often misused and maligned) guideline
that five participants are enough to discover 85% of problems in a user interface is true only when
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Table 7.3 Hypothetical Results for a Formative Usability Study
Problem

Participant 1 2 3 4 5 6 7 8 9 10 Count Proportion
1 X X X X 6 0.6
2 X X X 5 0.5
3 X X X X 5 0.5
4 X X X X 4 0.4
5 X X X X X X 6 0.6
6 X X X X 4 0.4
7 X X X X 4 0.4
8 X X X X 5 0.5
9 X X X 5 0.5

10 X X X X 6 0.6

Count 10 8 6 5 5 4 5 3 3 1 50

Proportion 1 0.8 0.6 0.5 0.5 0.4 0.5 0.3 0.3 0.1 0.5

Note: x = specified participant experienced specified problem.

p equals 0.315. As the reported ranges of p indicate, there will be many studies for which this guide-
line (or any similar guideline, regardless of its specific recommended sample size) will not apply,
making it important for usability practitioners to obtain estimates of p for their usability studies.

If, however, estimates of p are not accurate, then other estimates based on p (e.g., sample size
requirements or estimates of the number of undiscovered events) will not be accurate. This is very
important when estimating p from a small sample because small sample estimates of p (from fewer than
20 participants) have a bias that can result in substantial overestimation of its value (Hertzum and Jacob-
sen, 2001). Fortunately, a series of Monte Carlo experiments (Lewis, 2001; see the sidebar “What Is a
Monte Carlo Experiment?”’) demonstrated the efficacy of a formula that provides a reasonably accurate
adjustment of initial estimates of p (p.), even when the sample size for that initial estimate has as few
as two participants (preferably four participants, though, because the variability of estimates of p is
greater for smaller samples; Lewis, 2001; Faulkner, 2003). This formula for the adjustment of p is

pra =4[ (1= D]+ [

where GT,,; is the Good-Turing adjustment to probability space (which is the proportion of the number
of problems that occurred once divided by the total number of different discovered problems; see the
sidebar “Discounting Observed Probabilities with Good-Turing”). The p,/(1 + GT,4;) component in
the equation produces the Good-Turing adjusted estimate of p by dividing the observed, unadjusted
estimate of p (p.s) by the Good-Turing adjustment to probability space—a well-known discounting
method (Jelinek, 1997). The (p., — 1/n)(1 — 1/n) component in the equation produces the deflated esti-
mate of p from the observed, unadjusted estimate of p and n (the number of participants used to
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estimate p). The rationale for averaging these two different estimates (one based on the number of dif-
ferent discovered problems or other events of interest and the other based on the number of participants)
is that the Good-Turing estimator tends to overestimate the true value (or at least the large sample esti-
mate) of p, but the deflation procedure tends to underestimate it. The combined estimate is more accu-
rate than either component alone (Lewis, 2001).

WHAT IS A MONTE CARLO EXPERIMENT?
It's Really Not Gambling

Monte Carlo, part of the principality of Monaco, is home to one of the most famous casinos in the world. In
statistics, a Monte Carlo experiment refers to a brute-force method of estimating population parameters (e.g.,
means, medians, and proportions) by repeatedly drawing random samples of cases from a larger database of
cases. With the advent of cheap computing, Monte Carlo and other types of resampling methods (e.g., jackknif-
ing and bootstrapping) are becoming more accessible and popular. Although the Monte Carlo method uses ran-
dom sampling, because there are typically a large number of iterations (the default in some statistical packages
is 1,000), it can provide very accurate estimates.

One of the earliest uses of the Monte Carlo method in usability engineering was in Virzi's (1990, 1992) inves-
tigations of sample size requirements for usability evaluations. He reported three experiments in which he mea-
sured the rate at which trained usability experts identified problems as a function of the number of naive
participants they had observed. For each experiment, he ran a Monte Carlo simulation to randomly create 500
different arrangements of the cases, where each case was the set of usability problems observed for each partici-
pant (similar to the data shown in Table 7.3). With the results of these Monte Carlo experiments, he measured
the cumulative percentage of problems discovered for each sample size and determined empirically that the
results matched the expected results for the cumulative binomial probability formula ((P(x>1)=1—(1 — p)").

DISCOUNTING OBSERVED PROBABILITIES WITH GOOD-TURING
A Way to Reduce Overestimated Values of p

The Good-Turing adjustment is a discounting procedure. The goal of a discounting procedure is to attempt to
allocate some amount of probability space to unseen events. The application of discounting is widely used in the
field of statistical natural language processing, especially in the construction of language models (Manning and
Schiitze, 1999).

The oldest discounting method is LaPlace’s law of succession (Jelinek, 1997; Lewis and Sauro, 2006;
Wilson, 1927), sometimes referred to as the “add one” method because you add one to the count for each
observation. Most statisticians do not use it for this purpose, however, because it has a tendency to assign too
much probability to unseen events, underestimating the true value of p.

Because it is more accurate than the law of succession, the Good-Turing (GT) estimate is more common.
There are many ways to derive the GT estimator, but the end result is that the total probability mass reserved for
unseen events is E(N;)/N, where E(N;) is the expected number of events that happen exactly once and N is the
total number of events. For a given sample, the value used for E(N;) is the observed number of events that
happened exactly once. In the context of a formative user study, the events are whatever the subject of the
study is (e.g., in a usability study, they are the observed usability problems).

For example, consider the hypothetical data for the first four participants from Table 7.3, shown
in Table 7.4. The average value of p shown in Table 7.4 for these four participants, like that of the
entire matrix shown in Table 7.3, is 0.5 (four participants by 10 problems yields 40 cells, with
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Problems

Participant 1

1 X
2 X
3 X
4 X
Count 4
Proportion 1

N

X X X X

4
;

D

X X X X

4
;

1
0.25

Problem

6

3
0.75

9 10
0O O
0 O

Table 7.4 Hypothetical Results for a Formative Usability Study: First Four Participants and All

Proportion

0.75
0.625
0.625
0.5

0.5

Note: x = specified participant experienced specified problem.

Participant

AN —

Count
Proportion

xX X X X

4
’

N

X X X X

4
’

'S

X X X X

4
’

Problem

5

1
0.25

0.75

Table 7.5 Hypothetical Results for a Formative Usability Study:
Problems Observed with Those Participants

0.5

First Four Participants and Only

Proportion

0.86
0.71
0.71
0.57

0.71

Note: x = specified participant experienced specified problem.

20 filled). However, after having run the first four participants, Problems 3, 9, and 10 have yet to

be discovered. Removing the columns for those problems yields the matrix shown in Table 7.5.

In Table 7.5, there are still 20 filled cells, but only a total of 28 cells (four participants by seven
problems). From that data, the estimated value of p is 0.71—much higher than the value of 0.5
from the table with data from 10 participants. To adjust this initial small sample estimate of p, you

need the following information from Table 7.5:

* Initial estimate of p (p.s): 0.71
* Number of participants (n): 4

* Number of known problems (N): 7

* Number of known problems that have occurred only once (N,,.): 1
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This first step is to compute the deflated adjustment:

Paef = Kpm - %) (1 _ %)}
Paef = [(0.71 - i) (1 _ i)}

Paer = [(0.71 =0.25)(1 —0.25)]
Paer = (0.46)(0.75)
pdef =0.345
The second step is to compute the Good—Turing adjustment (where GT,; is the number of known

problems that occurred only once (N,,,..) divided by the number of known problems (N)—in this
example, 1/7, or 0.143):

Pest

pGT = (1 + N("‘lce)
N
071
pGT - 1
1+3)
(143
_ 071
Per = 1143
per = 0.621

Finally, average the two adjustments to get the final adjusted estimate of p:

_0.345+0.621
Padj = - 2

pudj = 048

With adjustment, the small sample estimate of p in this hypothetical example turned out to be
very close to (and to slightly underestimate) the value of p in the table with 10 participants. As is
typical for small samples, the deflation adjustment was too conservative and the Good—Turing
adjustment was too liberal, but their average was close to the value from the larger sample size. In
a detailed study of the accuracy of this adjustment for four usability studies, where accuracy is the
extent to which the procedure brought the unadjusted small sample estimate of p closer to the value
obtained with the full sample size, Lewis (2001) found:

* The overestimation of p from small samples is a real problem.
e It is possible to use the combination of deflation and Good-Turing adjustments to compensate
for this overestimation bias.
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* Practitioners can obtain accurate sample size estimates for discovery goals ranging from 70% to
95% (the range investigated by Lewis, 2001) by making an initial adjustment of the required
sample size after running two participants, then adjusting the estimate after obtaining data from
four participants.

Figures 7.2 and 7.3 show accuracy and variability results for this procedure from Lewis (2000,
2001). The accuracy results (Figure 7.2) show, averaged across 1,000 Monte Carlo iterations for each
of the four usability problem discovery databases at each sample size, that the adjustment procedure
greatly reduces deviations from the specified discovery goal of 90% or 95%. For sample sizes from 2
through 10 participants, the mean deviation from the specified discovery goal was between —0.03
and +0.02, on average just missing the goal for sample sizes of two or three, and slightly overreaching
the goal for sample sizes from 5 to 10, but all within a range of 0.05 around the goal.

Figure 7.3 illustrates the variability of estimates of p, showing both the 50% range (commonly
called the interquartile range) and the 90% range, where the ranges are the distances between the
estimated values of p that contain, respectively, the central 50% or central 90% of the estimates
from the Monte Carlo iterations. More variable estimates have greater ranges. As the sample size
increases, the size of the ranges decreases—an expected outcome because, in general, increasing
sample size leads to a decrease in the variability of an estimate.

A surprising result in Figure 7.3 was that the variability of the deviation of adjusted estimates of
p from small samples was fairly low. At the smallest possible sample size (n =2), the central 50%
of the distribution of adjusted values of p had a range of just £0.05 around the median (a width of
0.1); the central 90% were within 0.12 of the median. Increasing n to 6 led to about a 50% decrease
in these measures of variability—=0.025 for the interquartile range and +0.05 for the 90% range,
and relatively little additional decline in variability as n increased to 10.

In Lewis (2001) the sample sizes of the tested usability problem databases ranged from 15 to 76,
with large sample estimates of p ranging from 0.16 to 0.38 for two usability tests and two heuristic
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Variability of adjustment procedure.

evaluations. Given this variation among the tested databases, these results stand a good chance of

generalizing to other problem discovery (or similar types of) databases (Chapanis, 1988).

Estimating the Number of Problems Available for Discovery and the Number of

Undiscovered Problems

Once you have an adjusted estimate of p from the first few participants of a usability test, you can
use it to estimate the number of problems available for discovery, and from that, the number of
undiscovered problems in the problem space of the study (defined by the participants, tasks, and
environments included in the study). The steps are:

1.

Use the adjusted estimate of p to estimate the proportion of problems discovered so far.

2. Divide the number of problems discovered so far by that proportion to estimate the number of

problems available for discovery.
Subtract the number of problems discovered so far from the estimate of the number of problems
available for discovery to estimate the number of undiscovered problems.

For example, let’s return to the hypothetical data given in Table 7.5. Recall that the observed

(initial) estimate of p was 0.71, with an adjusted estimate of 0.48. Having run four participants, use
1 — (1 =p)" to estimate the proportion of problems discovered so far, using the adjusted estimate
for p and the number of participants in the sample for n:

P(discovery so far) =1—(1-p)"
P(discovery so far) = 1 —(1-0.48)*
P(discovery so far) = 0.927



156 CHAPTER 7 What Sample Sizes Do We Need? Part 2

Given this estimate of having discovered 92.7% of the problems available for discovery and
seven problems discovered with the first four participants, the estimated number of problems avail-
able for discovery is

7

0027 = 16

N(problems available for discovery) =

As with sample size estimation, it’s best to round up, so the estimated number of problems avail-
able for discovery is eight, which means that, based on the available data, there is one undiscovered
problem. There were actually 10 problems in the full hypothetical database (see Table 7.4), so the
estimate in this example is a bit off. Remember that these methods are probabilistic, not deterministic,
so there is always the possibility of a certain amount of error. From a practical perspective, the esti-
mate of eight problems isn’t too bad, especially given the small sample size used to estimate the
adjusted value of p. The point of using statistical models is not to eliminate error, but to control risk,
attempting to minimize error while still working within practical constraints, improving decisions in
the long run while accepting the possibility of a mistake in any specific estimate.

Also, note the use of the phrase “problems available for discovery” in the title of this section. It
is important to always keep in mind that a given set of tasks and participants (or heuristic evalua-
tors) defines a pool of potentially discoverable usability problems from the set of all possible usabil-
ity problems. Even within that restricted pool there will always be uncertainty regarding the “true”
number of usability problems and the “true” value of p (Hornbak, 2010; Kanis, 2011). The tech-
nique described in this section is a way to estimate, not to guarantee, the probable number of dis-
coverable problems or, in the more general case of formative user studies, the probable number of
discoverable events of interest.

TWO CASE STUDIES
Applying These Methods in the Real World

From the files of Jim Lewis

In 2006, | published two case studies describing the application of these methods to data from formative
usability studies (Lewis, 2006a). The first study was of five tasks using a prototype speech recognition application
with weather, news, and email/calendar functions. Participant 1 experienced no usability problems; Participant 2
had one problem in each of Tasks 2, 4, and 5; and Participant 3 had the same problem as Participant 2 in Task 2,
and different problems in Tasks 1, 4, and 5. Thus, there were a total of 6 different problems in a problem-by-
participant matrix with 18 cells (3 participants times 6 problems), for an initial estimate of p=7/18=0.39. All but
one of the problems occurred just once, so the adjusted estimate of p was 0.125 (less than half of the initial esti-
mate). Solving for 1 — (1 — p)” with p=0.125 and n= 3 gives an estimated proportion of problem discovery of
about 0.33. Dividing the number of different problems by this proportion (6/0.33) provided an estimate that there
were about 19 problems available for discovery, so it would be reasonable to continue testing in this space (these
types of participants and these tasks) for a while longer—there are still about 13 problems left to find.

A second round of usability testing of seven participants with a revised prototype with the same functions but
an expanded set of tasks revealed 33 different usability problems. The initial estimate of p was 0.27, with an
adjusted estimate of 0.15. Given these values, a sample size of seven should have uncovered about 68% of the
problems available for discovery. With 33 observed problems, this suggests that for this set of testing conditions
there were about 49 problems available for discovery, with 16 as yet undiscovered.

To practice with data from a third case study (Lewis, 2008), see Chapter Review Questions 4-6 at the end of
this chapter.
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WHAT AFFECTS THE VALUE OF p?

Because p is such an important factor in sample size estimation for formative user studies, it is impor-
tant to understand the study variables that can affect its value. In general, to obtain higher values of p:

* Use highly skilled observers for usability studies.

* Use multiple observers rather than a single observer (Hertzum and Jacobsen, 2001).

* Focus evaluation on new products with newly designed interfaces rather than older, more refined
interfaces.

* Study less-skilled participants in usability studies (as long as they are appropriate participants).

* Make the user sample as homogeneous as possible, within the bounds of the population to which
you plan to generalize the results (to ensure a representative sample). Note that this will increase
the value of p for the study, but will likely decrease the number of problems discovered, so if you
have an interest in multiple user groups, you will need to test each group to ensure adequate
problem discovery.

* Make the task sample as heterogeneous as possible, and include both simple and complex tasks
(Lewis, 1994; Lewis et al., 1990; Lindgaard and Chattratichart, 2007).

* For heuristic evaluations, use examiners with usability and application-domain expertise (double
experts) (Nielsen, 1992).

* For heuristic evaluations, if you must make a trade-off between having a single evaluator spend a
lot of time examining an interface versus having more examiners spend less time each examining
an interface, choose the latter option (Dumas et al., 1995; Virzi, 1997).

Note that some (but not all) of the tips for increasing p are the opposite of those that reduce mea-
surement variability (see Chapter 6).

WHAT IS A REASONABLE PROBLEM DISCOVERY GOAL?

For historical reasons, it is common to set the cumulative problem discovery goal to 80—-85%. In
one of the earliest empirical studies of using 1 — (1 —p)” to model the discovery of usability
problems, Virzi (1990, 1992) observed that for the data from three usability studies “80% of the
usability problems are detected with four or five subjects” (Virzi, 1992, p. 457). Similarly, Nielsen’s
“Magic Number 5” comes from his observation that when p =0.31 (averaged over a set of usability
studies and heuristic evaluations), a usability study with five participants should usually find 85%
of the problems available for discovery (Nielsen, 2000; Nielsen and Landauer, 1993).

As part of an effort to replicate the findings of Virzi (1990, 1992), Lewis (1994), in addition to
studying problem discovery for an independent usability study, also collected data from economic simu-
lations to estimate the return on investment (ROI) under a variety of settings. The analysis addressed the
costs associated with running additional participants, fixing problems, and failing to discover problems.
The simulation manipulated six variables (shown in Table 7.6) to determine their influence on:

* The sample size at maximum ROL
* The magnitude of maximum ROL
* The percentage of problems discovered at the maximum ROI.



158 CHAPTER 7 What Sample Sizes Do We Need? Part 2

Table 7.6 Variables and Results of the Lewis (1994) ROI Simulations
Percentage of
Problems

Sample Size at Magnitude of Discovered at

Independent Variable Value Maximum ROI Maximum ROI Maximum ROI
Average likelihood of 0.1 19 3.1 86
problem discovery (p) 0.25 14.6 22.7 97
0.5 7.7 52.9 99
Range: 11.3 49.8 13
Number of problems 30 11.5 7 91
available for discovery 150 14.4 26 95
300 15.4 45.6 95
Range: 3.9 38.6 4
Daily cost to run a study 500 14.3 33.4 94
1000 13.2 19 93
Range: 1.1 14.4 1
Cost to fix a discovered 100 1.9 7 92
problem 1000 15.6 45.4 96
Range: 3.7 38.4 4
Cost of an undiscovered 200 10.2 1.9 89
problem (low set) 500 12 6.4 93
1000 13.5 12.6 94
Range: 3.3 10.7 5
Cost of an undiscovered 2000 14.7 12.3 95
problem (high set) 5000 15.7 417 96
10000 16.4 82.3 96
Range: 1.7 70 1

The definition of ROI was savings/costs, where:

* Savings was the cost of the discovered problems had they remained undiscovered minus the cost
of fixing the discovered problems.

* Costs was the sum of the daily cost to run a usability study plus the costs associated with
problems remaining undiscovered.

The simulations included problem discovery modeling for sample sizes from 1 to 20, for three
values of p covering a range of likely values (0.1, 0.25, and 0.5), and for a range of likely numbers
of problems available for discovery (30, 150, 300), estimating for each combination of variables the
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number of expected discovered and undiscovered problems. These estimates were crossed with a
low set of costs ($100 to fix a discovered problem; $200, $500, and $1,000 costs of undiscovered
problems) and a high set of costs ($1,000 to fix a discovered problem; $2,000, $5,000, and $10,000
costs of undiscovered problems) to calculate the ROIs. The ratios of the costs to fix discovered
problems to the costs of undiscovered problems were congruent with software engineering indexes
reported by Boehm (1981). Table 7.6 shows the average value of each dependent variable (last
three columns) for each level of all the independent variables, and the range of the average values
for each independent variable. Across the independent variables, the average percentage of discov-
ered problems at the maximum ROI was 94%.

Although all of the independent variables influenced the sample size at the maximum ROI, the
variable with the broadest influence (as indicated by the range) was the average likelihood of pro-
blem discovery (p), which also had the strongest influence on the percentage of problems discov-
ered at the maximum ROI. This lends additional weight to the importance of estimating the
parameter when conducting formative usability studies due to its influence on the determination of
an appropriate sample size. According to the results of this simulation:

* If the expected value of p is small (e.g., 0.1), practitioners should plan to discover about 86% of
the problems available for discovery.

* If the expected value of p is greater (e.g., 0.25 or 0.5), practitioners should set a goal of
discovering about 98% of the problems available for discovery.

* For expected values of p between 0.1 and 0.25, practitioners should interpolate to estimate the
appropriate discovery goal.

An unexpected result of the simulation was that variation in the cost of an undiscovered problem
had a minor effect on the sample size at maximum ROI (although, like the other independent vari-
ables, it had a strong effect on the magnitude of the maximum ROI). Although the various costs
associated with ROI are important to know when estimating the ROI of a study, it is not necessary
to know these costs when planning sample sizes.

Note that the sample sizes associated with these levels of problem discovery are the total sam-
ple sizes. For studies that will involve multiple iterations, one simple way to determine the sam-
ple size per iteration is to divide the total sample size by the number of planned iterations.
Although there is no research on how to systematically devise nonequal sample sizes for itera-
tions, it seems logical to start with smaller samples, and then move to larger ones. The rationale
is that early iterations should reveal the very high-probability problems, so it’s important to find
and fix them quickly. Larger samples in later iterations can then pick up the lower-probability
problems.

For example, suppose you want to be able to find 90% of the problems that have a probability of
0.15. Using Table 7.2, it would take 14 participants to achieve this goal. Also, assume that the devel-
opment plan allows three iterations, so you decide to allocate 3 participants to the first iteration, 4 to
the second, and 7 to the third. Again referring to Table 7.2, the first iteration (n =3) should detect
about 39% of problems with p =0.15—a far cry from the ultimate goal of 90%. This first iteration
should, however, detect 58% of problems with p =0.25, 88% of problems with p =0.50, and 100% of
problems with p =0.9, and fixing those problems should make life easier for the next iteration. At the
end of the second iteration (n =4), the total sample size is up to 7, so the expectation is the discovery
of 68% of problems with p=0.15 (and 87% of problems with p =0.25). At the end of the third
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iteration (n=7), the total sample size is 14, and the expectation is the target discovery of 90% of
problems with p =0.15 (and even discovery of 77% of problems with p =0.1).

RECONCILING THE “MAGIC NUMBER 5” WITH “EIGHT IS NOT ENOUGH”

Some usability practitioners use the “Magic Number 5” as a rule of thumb for sample sizes for for-
mative usability tests (Barnum et al., 2003; Nielsen, 2000), believing that this sample size will
usually reveal about 85% of the problems available for discovery. Others (Perfetti and Landesman,
2001; Spool and Schroeder, 2001) have argued that “Eight Is Not Enough”; in fact, their experience
showed that it could take over 50 participants to achieve this goal. Is there any way to reconcile
these apparently opposing points of view?

Some History: The 1980s

Although strongly associated with Jakob Nielsen (see, for example, Nielsen, 2000), the idea of run-
ning formative user studies with small sample iterations goes back much further—to one of the
fathers of modern human factors engineering, Alphonse Chapanis. In an award-winning paper for
the IEEE Transactions on Professional Communication about developing tutorials for first-time
computer users, Al-Awar et al. (1981, p. 34) wrote:

Having collected data from a few test subjects—and initially a few are all you need—you are
ready for a revision of the text. Revisions may involve nothing more than changing a word or a
punctuation mark. On the other hand, they may require the insertion of new examples and the
rewriting, or reformatting, of an entire frame. This cycle of test, evaluate, rewrite is repeated as
often as is necessary.

Any iterative method must include a stopping rule to prevent infinite iterations. In the real
world, resource constraints and deadlines often dictate the stopping rule. In the study by Al-Awar
et al. (1981), their stopping rule was an iteration in which 95% of participants completed the tutorial
without any serious problems.

Al-Awar et al. (1981) did not specify their sample sizes, but did refer to collecting data from “a
few test subjects.” The usual definition of “few” is a number that is greater than one, but indefi-
nitely small. When there are two objects of interest, the typical expression is “a couple.” When
there are six, it’s common to refer to “a half dozen.” From this, it’s reasonable to infer that the
per-iteration sample sizes of Al-Awar et al. (1981) were in the range of three to five—at least, not
dramatically larger than that.

The publication and promotion of this method by Chapanis and his students had an almost
immediate influence on product development practices at IBM (Kennedy, 1982; Lewis, 1982) and
other companies, notably Xerox (Smith et al., 1982) and Apple (Williams, 1983). Shortly thereafter,
John Gould and his associates at the IBM T. J. Watson Research Center began publishing influen-
tial papers on usability testing and iterative design (Gould, 1988; Gould and Boies, 1983; Gould
et al., 1987; Gould and Lewis, 1984), as did Whiteside et al. (1988) at DEC (Baecker, 2008;
Dumas, 2007; Lewis, 2012).
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Some More History: The 1990s

The 1990s began with three important Monte Carlo studies of usability problem discovery from
databases with (fairly) large sample sizes. Nielsen and Molich (1990) collected data from four heu-
ristic evaluations that had independent evaluations from 34 to 77 evaluators (p ranged from 0.2 to
0.51, averaging 0.34). Inspired by Nielsen and Molich, Virzi (1990) presented the first Monte Carlo
evaluation of problem discovery using data from a formative usability study (n =20; later expanded
into a Human Factors paper in 1992 in which p ranged from 0.32 to 0.42, averaging 0.37). In a
discussion of cost-effective usability evaluation, Wright and Monk (1991) published the first graph
showing the problem discovery curves for 1 — (1 — p)” for different values of p and n (similar to
Figure 7.1). In 1993, Nielsen and Landauer used Monte Carlo simulations to analyze problem detec-
tion for 11 studies (6 heuristic evaluations and 5 formative usability tests) to see how well the
results matched problem discovery prediction using 1 — (1 — p)"” (p ranged from 0.12 to 0.58, aver-
aging 0.31). The conclusions drawn from the Monte Carlo simulations were:

The number of usability results found by aggregates of evaluators grows rapidly in the interval
from one to five evaluators but reaches the point of diminishing returns around the point of ten
evaluators. We recommend that heuristic evaluation is done with between three and five evalua-
tors and that any additional resources are spent on alternative methods of evaluation (Nielsen and
Molich, 1990, p. 255).

The basic findings are that (a) 80% of the usability problems are detected with four or five subjects,
(b) additional subjects are less and less likely to reveal new information, and (c) the most severe
usability problems are likely to have been detected in the first few subjects (Virzi, 1992, p. 457).

The benefits are much larger than the costs both for user testing and for heuristic evaluation. The
highest ratio of benefits to costs is achieved for 3.2 test users and for 4.4 heuristic evaluators. These
numbers can be taken as one rough estimate of the effort to be expended for usability evaluation for
each version of a user interface subjected to iterative design (Nielsen and Landauer, 1993).

Lewis (1994) attempted to replicate Virzi (1990, 1992) using data from a different formative
usability study (n =15, p=0.16). The key conclusions from this study were:

Problem discovery shows diminishing returns as a function of sample size. Observing four to five par-
ticipants will uncover about 80% of a product’s usability problems as long as the average likelihood
of problem detection ranges between 0.32 and 0.42, as in Virzi. If the average likelihood of problem
detection is lower, then a practitioner will need to observe more than five participants to discover 80%
of the problems. Using behavioral categories for problem severity (or impact), these data showed no
correlation between problem severity (impact) and rate of discovery (Lewis, 1994, p. 368).

One of the key differences between the findings of Virzi (1992) and Lewis (1994) was whether
severe problems are likely to occur with the first few participants. Certainly, there is nothing in 1 —
(1 — p)" that would account for anything other than the probable frequency of occurrence as influenc-
ing early appearance of an event of interest in a user study. In a study similar to those of Virzi (1992)
and Lewis (1994), Law and Hvannberg (2004) reported no significant correlation between problem
severity and problem detection rate. This makes the count of studies two to one against the early
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detection of severe problems (just because they are severe rather than because they are severe and
frequent)—but it’s still only three studies. The safest strategy is for practitioners to assume indepen-
dence of frequency and impact (severity) until further research adequately resolves the discrepancy
between the outcomes of these studies.

The Derivation of the “Magic Number 5”

These studies of the early 1990s are the soil (or perhaps, euphemistically speaking, the fertilizer) that
produced the “Magic Number 5 guideline for formative usability assessments (heuristic evaluations
or usability studies). The average value of p from Nielsen and Landauer (1993) was 0.31. If you set n
to 5 and compute the probability of seeing a problem at least once during a study, you get

P(x>1)=1-(1-p)"
P(x>1)=1-(1-031)
P(x>1) =0.8436

In other words, considering the average results from published formative usability evaluations (but
ignoring the variability), the first five participants should usually reveal about 85% of the problems
available for discovery in that iteration (assuming a multiple-iteration study). Over time, in the
minds of many usability practitioners, the guideline became:

The Magic Number 5: “All you need to do is watch five people to find 85% of a product’s usabil-
ity problems.”

In 2000, Jakob Nielsen, in his influential Alert Box blog, published an article entitled “Why
You Only Need to Test with 5 Users” (www.useit.com/alertbox/20000319.html). Citing the analysis
from Nielsen and Landauer (1993), he wrote:

The curve [1 — (1 —0.31)"] clearly shows that you need to test with at least 15 users to discover
all the usability problems in the design. So why do I recommend testing with a much smaller
number of users? The main reason is that it is better to distribute your budget for user testing
across many small tests instead of blowing everything on a single, elaborate study. Let us say that
you do have the funding to recruit 15 representative customers and have them test your design.
Great. Spend this budget on three tests with 5 users each. You want to run multiple tests because
the real goal of usability engineering is to improve the design and not just to document its weak-
nesses. After the first study with 5 users has found 85% of the usability problems, you will want
to fix these problems in a redesign. After creating the new design, you need to test again.

GOING FISHING WITH JAKOB NIELSEN
It’s All about Iteration and Changing Test Conditions
From the files of Jim Lewis

In 2002 | was part of a UPA panel discussion on sample sizes for formative usability studies. The other mem-
bers of the panel were Carl Turner and Jakob Nielsen (for a write-up of the conclusions of the panel, see Turner
et al., 2006). During his presentation, Nielsen provided additional explanation about his recommendation
(Nielsen, 2000) to test with only five users, using the analogy of fishing (see Figure 7.4).
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I think I've got most of
the fish out of Pond A...
probably time to start
fishing in Pond B....

FIGURE 7.4
Imaginary fishing with Jakob Nielsen.

Suppose you have several ponds in which you can fish. Some fish are easier to catch than others, so if you
had 10 hours to spend fishing, would you spend all 10 fishing in one pond, or would you spend the first 5 in one
pond and the second 5 in the other? To maximize your capture of fish, you should spend some time in both
ponds to get the easy fish from each.

Applying that analogy to formative usability studies, Nielsen said that he never intended his recommendation
of five participants to mean that practitioners should test with just five and then stop altogether. His recommen-
dation of five participants is contingent on an iterative usability testing strategy with changes in the test condi-
tions for each of the iterations (e.g., changes in tasks or the user group in addition to changes in design intended
to fix the problems observed in the previous iteration). When you change the tasks or user groups and retest with
the revised system, you are essentially fishing in @ new pond, with a new set of (hopefully) easy fish to catch
(usability problems to discover).
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Eight Is Not Enough: A Reconciliation

In 2001, Spool and Schroeder published the results of a large-scale usability evaluation from which they
concluded that the “Magic Number 5 did not work when evaluating websites. In their study, five par-
ticipants did not even get close to the discovery of 85% of the usability problems they found in the web-
sites they were evaluating. Perfetti and Landesman (2001), discussing related research, stated:

When we tested the site with 18 users, we identified 247 total obstacles-to-purchase. Contrary to
our expectations, we saw new usability problems throughout the testing sessions. In fact, we saw
more than five new obstacles for each user we tested. Equally important, we found many serious
problems for the first time with some of our later users. What was even more surprising to us was
that repeat usability problems did not increase as testing progressed. These findings clearly under-
mine the belief that five users will be enough to catch nearly 85 percent of the usability problems
on a Web site. In our tests, we found only 35 percent of all usability problems after the first five
users. We estimated over 600 total problems on this particular online music site. Based on this
estimate, it would have taken us 90 tests to discover them all!

From this description, it’s clear that the value of p for this study was very low. Given the estimate
of 600 problems available for discovery using this study’s method, then the percentage discovered
with 18 users was 41%. Solving for p in the equation 1 — (1 — p)'®=0.41 yields p =0.029. Given this
estimate of p, the percentage of problem discovery expected when n=5is 1 — (1 — 0.41)°>=0.137
(13.7%). Furthermore, 13.7% of 600 is 82 problems, which is about 35% of the total number of
problems discovered in this study with 18 participants (35% of 247 is 86)—a finding consistent with
the data reported by Perfetti and Landesman (2001). Their discovery of serious problems with later
users is consistent with the findings of Lewis (1994) and Law and Hvannberg (2004), in which the
discovery rate of serious problems was the same as that for other problems.

For this low rate of problem discovery and large number of problems, it is unsurprising to con-
tinue to find more than five new problems with each participant. As shown in Table 7.7, you
wouldn’t expect the number of new problems per participant to consistently fall below five until
after the 47th participant. The low volume of repeat usability problems is also consistent with a low
value of p. A high incidence of repeat problems is more likely with evaluations of early designs
than those of more mature designs. Usability testing of products that have already had the common,
easy-to-find problems removed is more likely to reveal problems that are relatively idiosyncratic.
Also, as the authors reported, the tasks given to participants were relatively unstructured, which is
likely to have increased the number of problems available for discovery by allowing a greater vari-
ety of paths from the participants’ starting point to the task goal.

Even with a value of p this low (0.029), the expected percentage of discovery with 8 partici-
pants is about 21%, which is better than not having run any participants at all. When p is this
small, it would take 65 participants to reveal (at least once) 85% of the problems available for dis-
covery, and 155 to discover almost all (99%) of the problems. Is this low value of p typical of web-
site evaluation? Perhaps, but it could also be due to the type of testing (e.g., relatively unstructured
tasks or the level of description of usability problems). In the initial publication of this analysis,
Lewis (2006b, p. 33) concluded:

There will, of course, continue to be discussions about sample sizes for problem-discovery usability
tests, but I hope they will be informed discussions. If a practitioner says that five participants are all
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Table 7.7 Expected Problem Discovery When p=0.029 and There Are 600 Problems
Percent Total Number
Sample Size Discovered Discovered New Problems
1 2.9% 17 17
2 5.7% 34 17
3 8.5% 51 17
4 11.1% 67 16
5 13.7% 82 15
6 16.2% 97 15
7 18.6% 112 15
8 21% 126 14
9 23.3% 140 14
10 25.5% 153 13
ih 27.7% 166 13
12 29.8% 179 13
13 31.8% 191 12
14 33.8% 203 12
15 35.7% 214 ih
16 37.6% 225 ih
17 39.4% 236 iR
18 41.1% 247 1
19 42.8% 257 10
20 44.5% 267 10
21 46.1% 277 10
22 47.7% 286 9
23 49.2% 295 9
24 50.7% 304 9
25 52.1% 313 9
26 53.5% 321 8
27 54.8% 329 8
28 56.1% 337 8
29 57.4% 344 7
30 58.6% 352 8
31 59.8% 359 7
32 61% 366 7
33 62.1% 373 7
34 63.2% 379 6
35 64.3% 386 7
36 65.3% 392 6
37 66.3% 398 6
38 67.3% 404 6
39 68.3% 410 6

(Continued )
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Table 7.7 Expected Problem Discovery When p=0.029 and There Are 600 Problems—cont’d
Percent Total Number
Sample Size Discovered Discovered New Problems
40 69.2% 415 5
41 70.1% 420 5
42 70.9% 426 6
43 71.8% 431 5
44 72.6% 436 5
45 73.4% 440 4
46 74.2% 445 5
47 74.9% 450 5
48 75.6% 454 4
49 76.4% 458 4
50 77% 462 4
51 77.7% 466 4
52 78.4% 470 4
53 79% 474 4
54 79.6% 478 4
55 80.2% 481 3
56 80.8% 485 4
57 81.3% 488 3
58 81.9% 491 3
59 82.4% 494 3
60 82.9% 497 3
61 83.4% 500 3
62 83.9% 503 3
63 84.3% 506 3
64 84.8% 509 3
65 85.2% 511 2
66 85.7% 514 3
67 86.1% 516 2
68 86.5% 519 3
69 86.9% 521 2
70 87.3% 524 3

you need to discover most of the problems that will occur in a usability test, it’s likely that this
practitioner is typically working in contexts that have a fairly high value of p and fairly low problem
discovery goals. If another practitioner says that he’s been running a study for three months, has
observed 50 participants, and is continuing to discover new problems every few participants, then
it’s likely that he has a somewhat lower value of p, a higher problem discovery goal, and lots of
cash (or a low-cost audience of participants). Neither practitioner is necessarily wrong—they’re just
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working in different usability testing spaces. The formulas developed over the past 25 years provide
a principled way to understand the relationship between those spaces, and a better way for practi-
tioners to routinely estimate sample-size requirements for these types of tests.

HOW COMMON ARE USABILITY PROBLEMS?
Websites Appear to Have Fewer Usability Problems Than Business or Consumer Software

From the files of Jeff Sauro

Just how common are usability problems in websites and software? Surprisingly there is very little out there
on the frequency of usability problems. Part of the reason is that most usability testing happens early in the
development phase and is at best documented for an internal audience. Furthermore, once a website is launched
or product released, what little usability testing is done is typically more on benchmarking than on finding and
fixing problems.

| recently reviewed usability publications and a collection of usability reports from various companies. | only
included tests on completed applications and live websites, excluding those that were in the design phase and
didn’t have current users at the time of testing. My investigation turned up a wide range of products and web-
sites from 24 usability tests. Examples included rental car websites, business applications (financial and HR),
and consumer productivity software (calendars, spreadsheets, and word processors). | didn’t include data from
heuristic evaluations or cognitive walk-throughs because | wanted to focus just on problems that users actually
experienced.

After adjusting the values of p for the various studies, | had data from 11 usability studies of business appli-
cations, 7 of consumer software, and 6 from websites. The mean values of p (and their 95% confidence inter-
vals) for the three types were:

® Business applications: 0.37 (95% confidence interval ranged from 0.25 to 0.5).
Consumer software: 0.23 (95% confidence interval ranged from 0.13 to 0.33).
® Websites: 0.04 (95% confidence interval ranged from 0.025 to 0.06).

The confidence intervals for business applications and consumer software overlapped, but not for websites,
which showed substantially lower problem discovery rates than the other types. It is important to keep in mind
that these applications and websites were not randomly drawn from the populations of all applications and
websites, so these findings might not generalize. Despite that possibility, the results are reasonable.

Business applications are typically customized to integrate into enterprise systems, with users often receiving
some training or having specialized skills. Business software typically contains a lot of complex functionality, so
it makes sense that there are more things that can impede a good user experience.

Websites, on the other hand, are typically self-service and have a fraction of the functionality of large-scale
business applications. Furthermore, switching costs for websites are low, so there is little tolerance for a poor
user-experience. If users can’t walk up and use a website, they're gone.

For more details, see www.measuringusability.com/problem-frequency.php.

MORE ABOUT THE BINOMIAL PROBABILITY FORMULA AND ITS SMALL
SAMPLE ADJUSTMENT

Origin of the Binomial Probability Formula

Many of the early studies of probability have their roots in the desire of gamblers to increase their odds
of winning when playing games of chance, with much of this work taking place in the 17th century
with contributions from Newton, Pascal, Fermat, Huygens, and Jacques Bernoulli (Cowles, 1989).
Consider the simple game of betting on the outcome of tossing two coins and guessing how many
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heads will appear. An unsophisticated player might reason that there can be zero, one, or two heads
appearing, so each of these outcomes has a 1/3 (33.3%) chance of happening. There are, however, four
different outcomes rather than three. Using T for tails and H for heads, they are:

* TT (0 heads)
* TH (1 head)
* HT (1 head)
* HH (2 heads)

Each of these outcomes has the same chance of 1/4 (25%), so the probability of getting zero
heads is 0.25, of getting two heads is 0.25, and of getting one head is 0.5. The reason each outcome
has the same likelihood is because, given a fair coin, the probability of a head is the same as that of
a tail—both equal to 0.5. When you have independent events like the tossing of two coins, you can
compute the likelihood of a given pair by multiplying the probabilities of the events. In this case,
0.5 X 0.5=0.25 for each outcome.

It’s easy to list the outcomes when there are just two coin tosses, but as the number of tosses
goes up, it gets very cumbersome to list them all. Fortunately, there are well-known formulas for
computing the number of permutations or combinations of n things taken x at a time (Bradley,
1976). The difference between permutations and combinations is when counting permutations, you
care about the order in which the events occur (TH is different from HT), but when counting com-
binations, the order doesn’t matter (you only care that you got one head, but you don’t care whether
it happened first or second). The formula for permutations is

The number of combinations for a given set of n things taken x at a time will always be equal to
or less than the number of permutations. In fact, the number of combinations is the number of per-
mutations divided by x!, so when x is O or 1, the number of combinations will equal the number of
permutations. The formula for combinations is

n!

an = N
xl(n—=x)!

For the problem of tossing two coins (n=2), the number of combinations for the number of
heads (x) being zero, one, or two is

2! 2!

0T 02—-0) T 02!
2! 2!

= =2
2€) 12— 1
2! 21

= 22-2) 20
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Having established the number of different ways to get zero, one, or two heads, the next step is to
compute the likelihood of the combination given the probability of tossing a head or tail. As mentioned
before, the likelihood for any combination of two tosses of a fair coin is 0.5 X 0.5=0.25. Expressed
more generally, the likelihood is

p(1=p)"™

So, for the problem of tossing two coins where you’re counting the number of heads (x) and the
probability of a head is p =0.5, the probabilities for x=0, 1, or 2 are

0.5°(1-0.5)"" =0.5*=0.25
0.5'(1 —0.5)2_1 =0.5(0.5) = 0.5 =0.25
0.5°(1-0.5)"%=0.5>=0.25
As previously noted, however, there are two ways to get one head (HT or TH) but only one way
to get HH or TT, so the formula for the probability of an outcome needs to include both the joint

probabilities and the number of combinations of events that can lead to that outcome, which leads
to the binomial probability formula:

n!

P(x) = mpx(l -p)"
Applying this formula to the problem of tossing two coins, where x is the number of heads:
P(0) = W!—O)!O‘So(l ~0.5)%° = 1(0.5) = 0.25
P(1) = W’_l)!o.slu ~0.5)>" =2(0.5%) = 0.5
P(2) = W’_Z)lo.sz(l ~ 0.5 = 1(0.5%) = 0.25

How Does the Deflation Adjustment Work?

The first researchers to identify a systematic bias in the estimation of p due to a small sample of
participants were Hertzum and Jacobsen (2001; corrected paper published 2003). Specifically, they
pointed out that, as expected, the largest possible value of p is 1, but the smallest possible value of
p from a usability study is not 0—instead, it is 1/n. As shown in Table 7.8, p equals 1 only when
all participants encounter all observed problems (Outcome A); p equals 1/n when each observed
problem occurs with only one participant (Outcome B). These are both very unlikely outcomes, but
establish clear upper and lower boundaries on the values of p when calculated from this type of
matrix. As the sample size increases, the magnitude of 1/n decreases, and as n approaches infinity,
its magnitude approaches 0.

Having a lower boundary substantially greater than O strongly contributes to the overestimation
of p that happens when estimating it from small sample problem discovery studies (Lewis, 2001).
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Table 7.8 Two Extreme Patterns of Three Participants Encountering Problems

Outcome A Problems

Participant 1 2 3 Count Proportion
1 X X X 3 1

2 X X X 3 1

3 X X X 3 1

Count 3 3 3 9

Proportion 1 1 1 1
Outcome B Problems

Participant 1 2 3 Count Proportion
1 X 1 0.33

2 X 1 0.33

3 X 1 0.33

Count 1 1 1 3

Proportion 0.33 0.33 0.33 0.33

The deflation procedure reduces the overestimated value of p in two steps: (1) subtracting 1/n from
the observed value of p, and then (2) multiplying that result by (1 — 1/r). The result is usually
lower than the corresponding larger sample estimate of p, but this works out well in practice as a
counterbalance to the generally overoptimistic estimate obtained with the Good-Turing adjustment.

A FORTUITOUS MISTAKE
Unintentionally Computing Double Deflation Rather Than Normalization
From the files of Jim Lewis

As described in Lewis (2001), when | first approached a solution to the problem posed by Hertzum and
Jacobsen (2001), | wanted to normalize the initial estimate of p, so the lowest possible value (Outcome B in
Table 7.8) would have a value of O and the highest possible value (Outcome A in Table 7.8) would stay at 1.
To do this, the first step is to subtract 1/n from the observed value of p in the matrix. The second step for
normalization would be to divide, not multiply, the result of the first step by (1 — 1/n). The result of applying
this procedure would change the estimate of p for Outcome B from 0.33 to O.

p_l
pnnrm=j
n
1 1

Prorm = M =0
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And it would maintain the estimate of p=1 for Outcome A.

Like normalization, the deflation equation reduces the estimate of p for Outcome B from 0.33 to O.
—(p-1(1_1
s = (p n) (1 n)

= (- 0-B -0

But for Outcome A, both elements of the procedure reduce the estimate of p:

1 1 2\ (2 4
pur = (1-3)(1-3) = (5) (§) = 5 - 0444

At some point, very early when | was working with this equation, | must have forgotten to write the division sym-
bol between the two elements. Had | included it, the combination of normalization and Good-Turing adjustments
would not have worked well as an adjustment method. Neither | nor any of the reviewers noticed this during the
publication process of Lewis (2001), or in any of the following publications in which | have described the formula.
It was only while | was working through this chapter, 10 years after the publication of Lewis (2001), that | discov-
ered this. For this reason, in this chapter, I've described that part of the equation as a deflation adjustment rather
than using my original term, normalization. | believe | would have realized this error during the preparation of Lewis
(2001) except for one thing: it worked so well that it escaped my attention until now. In practice, multiplication of
these elements (which results in double deflation rather than normalization) appears to provide the necessary mag-
nitude of deflation of p to achieve the desired adjustment accuracy when used in association with the Good-Turing
adjustment. This is not the formula | had originally intended, but it was a fortuitous mistake.

WHAT IF YOU DON'T HAVE THE PROBLEM-BY-PARTICIPANT MATRIX?
A Quick Way to Approximate the Adjustment of p
From the files of Jeff Sauro

To avoid the tedious computations of deflating the estimate of p, | wondered how good a regression equation
might work to predict adjusted values of p from their initial estimates. | used data from 19 usability studies for
which | had initial estimates of p and the problem discovery matrix to compute adjusted estimates of p, and got
the following formula for predicting p,q; from p:

Pagj = 0.9p—0.046

As shown in Figure 7.5, the fit of this equation to the data was very good, explaining 98.4% of the variability
N Pagj-

So, if you have an estimate of p for a completed usability study but don't have access to the problem-by-
participant problem discovery matrix, you can use this regression equation to get a quick estimate of p,q. Keep
in mind, though, that it is just an estimate, and if the study conditions are outside the bounds of the studies
used to create this model, that quick estimate could be off by an unknown amount. The parameters of the
equation came from usability studies that had:

® A mean p of 0.33 (ranging from 0.05 to 0.79).
® A mean of about 13 participants (ranging from 6 to 26).
® A mean of about 27 problems (ranging from 6 to 145).

(Continued)
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FIGURE 7.5
Fit of regression equation for predicting p,q; from p.

OTHER STATISTICAL MODELS FOR PROBLEM DISCOVERY
Criticisms of the Binomial Model for Problem Discovery

In the early 2000s, there were a number of published criticisms of the use of the binomial model for
problem discovery. For example, Woolrych and Cockton (2001) pointed out that a simple point esti-
mate of p might not be sufficient for estimating the sample size required for the discovery of a
specified percentage of usability problems in an interface. They criticized the formula 1 — (1 — p)”
for failing to take into account individual differences among participants in problem discoverability
and claimed that the typical values used for p (0.3) derived from Nielsen and Landauer (1993)
tended to be too optimistic. Without citing a specific alternative distribution, they recommended the
development of a formula that would replace a single value of p with a probability density function.

In the same year, Caulton (2001) also criticized simple estimates of p as only applying given a
strict homogeneity assumption: that all types of users have the same probability of encountering all
usability problems. To address this, Caulton added to the standard cumulative binomial probability
formula a parameter for the number of heterogeneous groups. He also introduced and modeled the
concept of problems that heterogeneous groups share and those that are unique to a particular sub-
group. His primary claims were (1) the more subgroups, the lower will be the expected value of p;
and (2) the more distinct the subgroups are, the lower will be the expected value of p.

Kanis (2011) recently evaluated four methods for estimating the number of usability problems
from the results of initial participants in formative user research (usability studies and heuristic
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evaluations). The study did not include the combination deflation-discounting adjustment of Lewis
(2001), but did include a Turing estimate related to the Good-Turing component of the combination
adjustment. The key findings of the study were:

* The “Magic Number 5” was an inadequate stopping rule for finding 80-85% of usability problems.

* Of the studied methods, the Turing estimate was the most accurate.

* The Turing estimate sometimes underestimated the number of remaining problems (consistent with
the finding of Lewis (2001) that the Good-Turing adjustment of p tended to be higher than the full-
sample estimates), so Kanis proposed using the maximum value from two different estimates of the
number of remaining problems (Turing and a “frequency of frequency” estimators) to overcome this
tendency.

Expanded Binomial Models

Schmettow (2008) also brought up the possibility of heterogeneity invalidating the usefulness of
1 — (1 —p)". He investigated an alternative statistical model for problem discovery: the beta-
binomial. The potential problem with using a simple binomial model is that the unmodeled variabil-
ity of p can lead to a phenomenon known as overdispersion (Ennis and Bi, 1998). In user research,
for example, overdispersion can lead to overly optimistic estimates of problem discovery—you
think you’re done, but you’re not. The beta-binomial model addresses this by explicitly modeling
the variability of p. According to Ennis and Bi (1998, p. 391-392):

The beta-binomial distribution is a compound distribution of the beta and the binomial distribu-
tions. It is a natural extension of the binomial model. It is obtained when the parameter p in the
binomial distribution is assumed to follow a beta distribution with parameters a and b. ... It is
convenient to reparameterize to u=al/(a+b), 6 =1/(a + b) because parameters u and € are more
meaningful. y is the mean of the binomial parameter p. € is a scale parameter which measures the
variation of p.

Schmettow (2008) conducted Monte Carlo studies to examine the relative effectiveness of the
beta-binomial and the small sample adjustment procedure of Lewis (2001), referred to by Schmettow
as the pgr_nom procedure, for five problem discovery databases. The results of the Monte Carlo simu-
lations were mixed. For three of the five cases, the beta-binomial had a better fit to the empirical
Monte Carlo problem discovery curves (with the binomial overestimating the percentage of problem
discovery), but in the other two cases the pgr_y,.» provided a slightly better fit. Schmettow (2008)
concluded:

* For small studies or at the beginning of a larger study (n < 6) use the pgr_n,m procedure.

*  When the sample size reaches 10 or more, switch to the beta-binomial method.

* Due to possible unmodeled heterogeneity or other variability, have a generous safety margin
when usability is mission-critical.

Schmettow (2009) has also studied the use of the logit-normal binomial model for problem dis-
covery. Like the beta-binomial, the logit-normal binomial has parameters both for the mean value of
p and its variability. Also like the beta-binomial, the logit-normal binomial (zero-truncated to account
for unseen events) appeared to perform well for estimating the number of remaining defects.
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Capture-recapture Models

Capture—recapture models have their origin in biology for the task of estimating the size of
unknown populations of animals (Dorazio and Royle, 2003; Walia et al., 2008). As the name
implies, animals captured during a first (capture) phase are marked and released, then during a sec-
ond (recapture) phase the percentage of marked animals is used to estimate the size of the popula-
tion. One of the earliest examples is from Schnabel (1938), who described a method to estimate the
total fish population of a lake (but only claiming an order of magnitude of precision). Similar to the
concerns of usability researchers about the heterogeneity of the probability of individual usability
problems, an area of ongoing research in biological capture-recapture analyses is to model heterogene-
ity among individual animals (not all animals are equally easy to capture) and among sampling occa-
sions or locations (Agresti, 1994; Burnham and Overton, 1979; Coull and Agresti, 1999; Dorazio,
2009; Dorazio and Royle, 2003).

During the time that usability engineers were investigating the statistical properties of usability
problem discovery, software engineers, confronted with the similar problem of determining when to
stop searching for software defects (Dalal and Mallows, 1990), were borrowing capture-recapture
methods from biology (Briand et al., 2000; Eick et al., 1993; Walia and Carver, 2008; Walia et al.,
2008). It may be that some version of a capture—recapture model, like the beta-binomial and logit-
normal binomial models studied by Schmettow (2008, 2009), may provide highly accurate, though
complex, methods for estimating the number of remaining usability problems following a formative
usability study (or, more generally, the number of remaining events of interest following a forma-
tive user study).

Why Not Use One of These Other Models When Planning Formative User Research?

To answer this question for analyses that use the average value of p across problems or participants,
we need to know how robust the binomial model is with regard to the violation of the assumption
of homogeneity. In statistical hypothesis testing, the concept of robustness comes up when compar-
ing the actual probability of a Type I error with its nominal (target) value (Bradley, 1978). Whether
t-tests and analyses of variance are robust against violations of their assumptions has been an
ongoing debate among statisticians for over 50 years, and shows no signs of abating. As discussed
in other chapters, we have found the #-test to be very useful for the analysis of continuous and rat-
ing-scale data. Part of the reason for the continuing debate is the lack of a quantitative definition of
robustness and the great variety of distributions that statisticians have studied. We can probably
anticipate similar discussions with regard to the various methods available for modeling discovery
in formative user research.

The combination adjustment method of Lewis (2001) is reasonably accurate for reducing values
of p estimated from small samples to match those obtained with larger samples. This does not, how-
ever, shed light on how well the binomial model performs relative to Monte Carlo simulations of
problem discovery based on larger sample studies. Virzi (1992) noted the tendency of the binomial
model to be overly optimistic when sample sizes are small—a phenomenon also noted by critics of
its use (Caulton, 2001; Kanis, 2011; Schmettow, 2008, 2009; Woolrych and Cockton, 2001). But
just how misleading is this tendency?

Figure 7.6 and Table 7.9 show comparisons of Monte Carlo simulations (1,000 iterations)
and binomial model projections of problem discovery for five user studies (using the program
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Monte Carlo and binomial problem discovery curves for five usability evaluations.
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Table 7.9 Analyses of Maximum Differences between Monte Carlo and Binomial Models for Five
Usability Evaluations
Total Max

Total Number of Max Difference
Database/Type of Sample Problems Difference (Number of
Evaluation Size Discovered (Proportion) Problems) Atn= p
KANIS (usability test) 8 22 0.03 0.7 3 0.35
MACERR (usability 15 145 0.05 7.3 6 0.16
test)
VIRZI90 (usability 20 40 0.09 3.6 5 0.36
test)
SAVINGS (heuristic 34 48 0.13 6.2 7 0.26
evaluation)
MANTEL (heuristic 76 30 0.21 6.3 6 0.38
evaluation)
Mean 30.6 57 0.102 4.8 5.4 0.302
Standard deviation 27.1 50.2 0.072 2.7 1.5 0.092
N studies 5 5 5 5 5 5
sem 12.1 22.4 0.032 1.2 0.7 0.041
df 4 4 4 4 4 4
t-crit-90 2.13 2.13 2.13 2.13 2.13 2.13
a-crit-90 25.8 47.8 0.068 2.6 1.4 0.087
90% ClI upper limit 56.4 104.8 0.170 74 6.8 0.389
90% ClI lower imit 4.8 9.2 0.034 2.3 4.0 0.215

from Lewis, 1994). Lewis (2001) contains descriptions of four of the studies (MACERR, VIRZI90,
SAVINGS, and MANTEL). KANIS appeared in Kanis (2011).

Table 7.9 shows, for this set of studies, the mean maximum deviation of the binomial from the
Monte Carlo curve was 0.102 (10.2%, with 90% confidence interval ranging from 3.4% to 17%). Given
the total number of problems discovered in the usability evaluations, the mean deviation of expected
(binomial) versus observed (Monte Carlo) was 4.81 problems (with 90% confidence interval ranging
from 2.3 to 7.4). The sample size at which the maximum deviation occurred (“At n =) was, on average,
5.4 (with 90% confidence interval ranging from 4 to 6.8, about 4 to 7). There was a strong relationship
between the magnitude of the maximum deviation and the sample size of the study (r=0.97, 90% con-
fidence interval ranging from 0.73 to 1, #3) = 6.9, p =0.006). The key findings are:

* The binomial model tends to overestimate the magnitude of problem discovery early in an
evaluation, especially for relatively large sample studies.

* The average sample size at which the maximum deviation occurs (i.e., the typical point of
maximum overoptimism) is at the “Magic Number 5.”

* On average, however, that overestimation appears not to lead to very large discrepancies
between the expected and observed numbers of problems.

To summarize, the data suggest that although violations of the assumptions of the binomial
distribution do affect binomial problem discovery models, the conclusions drawn from binomial
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models tend to be robust against those violations. Practitioners need to exercise care not to claim
too much accuracy when using these methods, but, based on the available data, can use them with
reasonable confidence.

It would be helpful to the field of usability engineering, however, to have more large sample
databases of usability problem discovery to include in analyses of problem discovery. The best
model to use likely depends on different characteristics of the problem discovery databases (e.g.,
large or small sample size, user test or heuristic evaluation, etc.). To conduct generalizable usability
research on this topic, we need more examples. Usability practitioners who have large sample pro-
blem discovery databases should include these matrices in their reports (using a format similar to
those of Virzi, 1990; Lewis, 2001; or Kanis, 2011), and should seek opportunities for external publi-
cation in venues such as the Journal of Usability Studies. Usability researchers should include any
new problem discovery databases as appendices in their journal articles.

This type of research is interesting and important (at least, we think so), but it is also important
not to lose sight of the practical aspects of formative user research, which is based on rapid iteration
with small samples (Barnum et al., 2003; Lewis, 2012; Nielsen, 2000). This practical consideration
lies at the heart of iterative test and redesign, for example, as expressed by Medlock et al. (2005,
p- 489) in their discussion of the Rapid Iterative Test and Evaluation (RITE) method:

Pretend you are running a business. It is a high-risk business and you need to succeed. Now imagine
two people come to your office:

* The first person says, “I’ve identified all problems we might possibly have.”
¢ The second person says, “I’ve identified the most likely problems and have fixed many
of them. The system is measurably better than it was.”

Which one would you reward? Which one would you want on your next project? In our experience,
businesses are far more interested in getting solutions than in uncovering issues.

The beta-binomial, logit-normal binomial, and capture-recapture models may turn out to provide
more accurate models than the simple binomial for the discovery of events of interest in user
research. This is an ongoing research topic in usability engineering, as well as in biology and soft-
ware engineering. Time (and more Monte Carlo studies) will tell. For now, however, the most prac-
tical approach is to use the simple method taught at the beginning of this chapter unless it is
mission-critical to have a very precise estimate of the number of events available for discovery and
the number of undiscovered events, in which case the usability testing team should include a statis-
tician with a background in advanced discovery modeling.

Most usability practitioners do not need this level of precision in their day-to-day work. In fact,
using the basic method (see the “Using a Probabilistic Model of Problem Discovery to Estimate
Sample Sizes for Formative User Research” section at the beginning of this chapter), there is no
need to attempt to compute any composite estimate of p or the number of undiscovered problems,
thus avoiding the more complex issues discussed in the remainder of the chapter. This is analogous
to the observation of Dorazio and Royle (2003) in their discussion of estimating the size of closed
populations of animals (p. 357):

Generally, we expect the MLE [maximum likelihood estimate] to perform better as the proportion
of the population that is observed in a sample increases. The probability that a single individual
detected with probability p is observed at least once in T capture occasions is 1 — (1 — p).
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Therefore, it is clear that increasing 7 is expected to increase the proportion of the population that is
observed, even in situations where individual capture rates p are relatively small. In many practical
problems T may be the only controllable feature of the survey, so it is important to consider the
impact of T on the MLE’s performance.

KEY POINTS FROM THE CHAPTER

The purpose of formative user research is to discover and enumerate the events of interest in the
study (e.g., the problems that participants experience during a formative usability study).

The most commonly used discovery model in user research is P(x > 1)=1— (1 — p)", derived
from the binomial probability formula.

The sample size formula based on this equation is n =1n(1 — P(x > 1))/In(1 — p), where P(x > 1)
is the discovery goal, p is the target probability of the events of interest under study (e.g., the
probability of a usability problem occurring during a formative usability test), and In means to
take the natural logarithm.

Tables 7.1 and 7.2 are useful for planning formative user research.

To avoid issues associated with estimates of p averaged across a set of problems or participants
(which violates the homogeneity assumption of the binomial model), set p equal to the
smallest level that you want to be able to discover (so you are setting rather than estimating
the value of p).

If you are willing to take some risk of overestimating the effectiveness of your research when n
is small (especially in the range of n=4 to 7), you can estimate p by averaging across a set of
observed problems and participants.

If this estimate comes from a small sample study, then it is important to adjust the initial
estimate of p (using the third formula in Table 7.10).

For small values of p (around 0.1), a reasonable discovery goal is about 86%; for p between
0.25 and 0.5, the goal should be about 98%; for p between 0.1 and 0.25, interpolate.

Note that the sample sizes for these goals are total sample sizes—the target sample size per
iteration should be roughly equal to the total sample size divided by the planned number of
iterations; if not equal, then use smaller sample sizes at the beginning of the study for more
rapid iteration in the face of discovery of higher-probability events.

You can use this adjusted estimate of p to roughly estimate the number of events of interest
available for discovery and the number of undiscovered events.

The limited data available indicates that even with the overestimation problem, the discrepancies
between observed and expected numbers of problems are not large.

Alternative models may provide more accurate estimation of problem discovery based on
averages across problems or participants, but requires more complex modeling, so if a mission-
critical study requires very high precision of these estimates, the team should include a
statistician with a background in discovery modeling.

Table 7.10 provides a list of the key formulas discussed in this chapter.



Table 7.10 List of Sample Size Formulas for Formative Research

Name of Formula

The famous equation:
1T-(0-py

Sample size for formative
research

Combined adjustment for
small sample estimates of p

Quick adjustment formula

Binomial probability formula

Formula

P> 1)=1~(1 - p)

In(1 —P(x21))

"= Tni-p)

pus= 1 (a1 (- D))+ 1 [ 2]

Pagi=0.9(0) — 0.04

PO = Gt = (Q’_X)!pxm —p)™

Notes

Computes the likelihood of seeing events of
probability p at least once with a sample size of
n—derived by subtracting the probability of O
occurrences (binomial probability formula) from 1.

The equation above, solved for n—to use, set

P(x > 1) to a discovery goal (e.g., 0.85 for 85%)
and p to the smallest probability of an event that
you are interested in detecting in the study; In
stands for “natural logarithm.”

From Lewis (2001)—two-component adjustment
combining deflation and Good-Turing discounting:
Pest iS the estimate of p from the observed data;
GTaq is the number of problem types observed only
once divided by the total number of problem types.
Regression equation to use to estimate p,q; when
problem-by-participant matrix not available.
Probability of seeing exactly x events of probability
p with n trials.
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CHAPTER REVIEW QUESTIONS

1.

Assume you need to conduct a single-shot (not iterative) formative usability study that can detect
about 85% of the problems that have a probability of occurrence of 0.25 for the specific participants
and tasks used in the study (in other words, not 85% of all possible usability problems, but 85% of the
problems discoverable with your specific method). How many participants should you plan to run?

. Suppose you decide that you will maintain your goal of 85% discovery, but need to set the

target value of p to 0.2. Now how many participants do you need?

You just ran a formative usability study with four participants. What percentage of the problems
of p = 0.5 are you likely to have discovered? What about p = 0.01, p = 0.9, or p = 0.25?

Table 7.11 shows the results of a formative usability evaluation of an interactive voice response
application (Lewis, 2008) in which six participants completed four tasks, with the discovery of
12 distinct usability problems. For this matrix, what is the observed value of p across these
problems and participants?

. Continuing with the data in Table 7.11, what is the adjusted value of p?
. Using the adjusted value of p, what is the estimated total number of the problems available for

discovery with these tasks and types of participants? What is the estimated number of undiscovered
problems? How confident should you be in this estimate? Should you run more participants, or is it
reasonable to stop?

Answers

1.

From Table 7.1, when p = 0.25, you need to run seven participants to achieve the discovery goal
of 85% (P(x > 1) = 0.85). Alternatively, you could search the row in Table 7.2 for p = 0.25 until
you find the sample size at which the value in the cell first exceeds 0.85, which is at n = 7.

. Tables 7.1 and 7.2 do not have entries for p = 0.2, so you need to use the following formula,

which indicates a sample size requirement of 9 (8.5 rounded up).

ln(l—p(XZI)) In(1-0.85) In(0.15)  _1.897 _

"= = = = 0223

In(1-p)  In(1-0.20)  1In(0.80) 85

. Table 7.2 shows that the expected percentage of discovery when n =4 and p = 0.5 is 94%. For

p = 0.01, it’s 4% expected discovery; for p = 0.9, it’s 100%; for p = 0.25, it’s 68%.

. For the results shown in Table 7.11, the observed average value of p is 0.28. You can get this

by averaging the average values across the six participants (shown in the table) or the average
values across the 12 problems (not shown in the table), or dividing the number of filled cells by
the total number of cells (20/(6 x 12) = 20/72 = 0.28).

. To compute the adjusted value of p, use the following formula. The deflation component is

(0.28 = 1/6)(1 — 1/6) = 0.11(0.83) = 0.09. Because there were 12 distinct problems, 8 of which
occurred once, the Good-Turing component is 0.28/(1 +8/12) = 0.28/1.67 = 0.17. The average
of these two components—the adjusted value of p—is 0.13.

= [ (-] [ ]
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Table 7.11 Results from Lewis (2008) Formative Usability Study

Problem
Participant 1 2 3 4 5 6 7 8 9 10 11 12 Count Proportion
1 X X 2 017
2 X X X X X 5 0.42
3 X X 2 017
4 X X X 3 0.25
5 X X X X 4 0.33
6 X X X X 4 0.33
Count 1 2 3 1 1 1 1 1 11 5 2 20
Note: X = specified participant experienced specified problem.

6. The adjusted estimate of p (from question 5) is 0.13. We know from Table 7.11 that there were
12 problems discovered with six participants. To estimate the percentage of discovery so far, use
1 — (1 —p)". Putting in the values of n and p, you get 1 — (1 —0.13)® = 0.57 (57% estimated
discovery). If 57% discovery equals 12 problems, then the estimated number of problems available
for discovery is 12/0.57 = 21.05 (rounds up to 22), so the estimated number of undiscovered
problems is about 10. Because a sample size of 6 is in the range of overoptimism when using the
binomial model, there are probably more than 10 problems remaining for discovery. Given the
results shown in Table 7.9, it’s reasonable to believe that there could be an additional 2—7
undiscovered problems, so it’s unlikely that there are more than 17 undiscovered problems. This
low rate of problem discovery (p,4 = 0.13) is indicative of an interface in which there are few high-
frequency problems to find. If there are resources to continue testing, it might be more productive to
change the tasks in an attempt to create the conditions for discovering a different set of problems
and, possibly, more frequently occurring problems.
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CHAPTER

Standardized Usability
Questionnaires

INTRODUCTION
What Is a Standardized Questionnaire?

A questionnaire is a form designed to obtain information from respondents. The items in a question-
naire can be open-ended questions, but are more typically multiple choice, with respondents selecting
from a set of alternatives (e.g., “Please select the type of car you usually drive”) or points on a rating
scale (e.g., “On a scale of 1 to 5, how satisfied were you with your recent stay at our hotel?”). This
chapter does not provide comprehensive coverage of the techniques for designing ad-hoc or special-
purpose questionnaires. For information about those techniques, see references such as Parasuraman
(1986), Kuniavsky (2003), Courage and Baxter (2005), Brace (2008), Tullis and Albert (2008), or
Azzara (2010).

The primary focus of this chapter is to describe current standardized questionnaires designed to
assess participants’ satisfaction with the perceived usability of products or systems during or immedi-
ately after usability testing. A standardized questionnaire is a questionnaire designed for repeated use,
typically with a specific set of questions presented in a specified order using a specified format, with
specific rules for producing metrics based on the answers of respondents. As part of the development
of standardized questionnaires, it is customary for the developer to report measurements of its reliabil-
ity, validity, and sensitivity—in other words, for the questionnaire to have undergone psychometric
qualification (Nunnally, 1978).

Advantages of Standardized Usability Questionnaires
Standardized measures offer many advantages to practitioners, specifically (Nunnally, 1978):

* Objectivity: A standardized measurement supports objectivity because it allows usability practi-
tioners to independently verify the measurement statements of other practitioners.

* Replicability: Tt is easier to replicate the studies of others, or even one’s own studies, when
using standardized methods. For example, research on usability measurement has consistently
shown that standardized usability questionnaires are more reliable than nonstandardized (ad-hoc,
homegrown) usability questionnaires (Hornbak, 2006; Hornbak and Law, 2007; Sauro and
Lewis, 2009).

* Quantification: Standardized measurements allow practitioners to report results in finer detail than
they could using only personal judgment. Standardization also permits practitioners to use
powerful methods of mathematics and statistics to better understand their results (Nunnally,
1978). Although the application of statistical methods such as #-tests to multipoint scale data has a
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history of controversy (for details, see Chapter 9), our research and practice indicates that these
methods work well with multipoint scale data.

* Economy: Developing standardized measures requires a substantial amount of work. However,
once developed, they are very economical to reuse.

* Communication: It is easier for practitioners to communicate effectively when standardized
measures are available. Inadequate efficiency and fidelity of communication in any field
impedes progress.

* Scientific generalization: Scientific generalization is at the heart of scientific work. Standardiza-
tion is essential for assessing the generalization of results.

What Standardized Usability Questionnaires Are Available?

The earliest standardized questionnaires in this area focused on the measurement of computer satisfac-
tion (e.g., the Gallagher Value of MIS Reports Scale and the Hatcher and Diebert Computer Acceptance
Scale), but were not designed for the assessment of usability following participation in scenario-based
usability tests (see LalLomia and Sidowski [1990] for a review of computer satisfaction questionnaires
published between 1974 and 1988). The first standardized usability questionnaires appropriate for
usability testing appeared in the late 1980s (Chin et al., 1988; Kirakowski and Dillon, 1988; Lewis,
1990a, 1990b). Some standardized usability questionnaires are for administration at the end of a study.
Others are for a quick, more contextual assessment at the end of each task or scenario.

Currently, the most widely used standardized usability questionnaires for assessment of the per-
ception of usability at the end of a study (after completing a set of test scenarios) and those cited in
national and international standards (ANSI, 2001; ISO, 1998) are the:

¢ Questionnaire for User Interaction Satisfaction (QUIS) (Chin et al., 1988)

* Software Usability Measurement Inventory (SUMI) (Kirakowski and Corbett, 1993;
McSweeney, 1992)

¢ Post-Study System Usability Questionnaire (PSSUQ) (Lewis, 1990a, 1992, 1995, 2002)

* Software Usability Scale (SUS) (Brooke, 1996)

Questionnaires intended for administration immediately following the completion of a usability
test scenario include the:

* After-Scenario Questionnaire (ASQ) (Lewis, 1990b, 1991, 1995)

* Expectation ratings (ER) (Albert and Dixon, 2003)

* Usability Magnitude Estimation (UME) (McGee, 2003, 2004)

* Single Ease Question (SEQ) (Sauro, 2010b; Tedesco and Tullis, 2006)
* Subjective Mental Effort Question (SMEQ) (Sauro and Dumas, 2009)

RECOMMENDED QUESTIONNAIRES

For Poststudy, Try the SUS; for Post-task, the SEQ or SMEQ

If you've come to this chapter looking for a recommendation about what standardized usability questionnaires to
use, here it is. For the reasons detailed in the body of the chapter, the SUS, originally developed to be a “quick-
and-dirty” measure of satisfaction with usability, has become one of the most popular poststudy standardized
questionnaires with practitioners, and recent research indicates that although it is quick, it is far from “dirty.”
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Recent studies of post-task questionnaires generally support the use of single items, and the two best of
those are the SEQ and the SMEQ. For pure simplicity and decent psychometric qualification, it's hard to beat the
SEQ (e.g., “Overall, this task was Very Easy/Very Difficult”). If using the SEQ, however, we recommend using
seven rather than five scale steps to increase its reliability of measurement (Lewis, 1993; Nunnally, 1978; Sauro
and Dumas, 2009). For online questionnaires, consider using the SMEQ to take advantage of its slightly better
sensitivity.

Keep in mind, however, that these are general recommendations. All of the standardized usability questionnaires
have their strengths and weaknesses, and you might find that one of the others is a better fit for your specific
situation.

Assessing the Quality of Standardized Questionnaires:
Reliability, Validity, and Sensitivity

The primary measures of standardized questionnaire quality are reliability (consistency of measurement)
and validity (measurement of the intended attribute) (Nunnally, 1978). There are several ways to assess
reliability, including test-retest and split-half reliability. The most common method for the assessment
of reliability is coefficient alpha (also known as Cronbach’s alpha), a measurement of internal consis-
tency (Cortina, 1993; Nunnally, 1978). Coefficient alpha can range from 0 (no reliability) to 1 (perfect
reliability). Measures that can affect a person’s future, such as IQ tests or college entrance exams,
should have a minimum reliability of 0.9 (Nunnally, 1978). For other research or evaluation, measure-
ment reliability in the range of 0.7 to 0.8 is acceptable (Landauer, 1997).

A questionnaire’s validity is the extent to which it measures what it claims to measure. Research-
ers commonly use the Pearson correlation coefficient to assess criterion-related validity (the relation-
ship between the measure of interest and a different concurrent or predictive measure). These
correlations do not have to be large to provide evidence of validity. For example, personnel selection
instruments with validities as low as 0.3 or 0.4 can be large enough to justify their use (Nunnally,
1978). Another approach to validity is content validity, typically assessed through the use of factor
analysis (a statistical method that also helps questionnaire developers discover or confirm clusters of
related items that can form reasonable subscales).

If a questionnaire is reliable and valid, then it should also be sensitive to experimental manipulation.
For example, responses from participants who experience difficulties working with Product A but find
Product B easy to use should reflect Product B’s relatively better usability through statistically signifi-
cant differences. There is no direct measurement of sensitivity similar to those for reliability and valid-
ity. An indirect measure of sensitivity is the minimum sample size needed to achieve statistical
significance when comparing products. The more sensitive a questionnaire, the smaller is the minimum
required sample size.

Number of Scale Steps

The question of the “right” number of scale steps often comes up when discussing questionnaire
design. In general, more scale steps are better than fewer scale steps in standardized questionnaires,
but with rapidly diminishing returns. For mathematical reasons (and confirmed by empirical studies),
the reliability of individual items increases as a function of the number of steps (Nunnally, 1978).
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As the number of scale steps increases from 2 to 20, the increase in reliability is very rapid at first and
tends to level off at about 7, and after 11 steps there is little gain in reliability from increasing the
number. The number of steps in an item is very important for measurements based on a single item
(thus our recommendation to use a seven-step version of the SEQ) but is less important when comput-
ing measurements over a number of items (as in the computation of an overall or subscale score from
a multi-item questionnaire).

A question related to the number of scale steps is whether to provide an even or odd number of
steps (and the related issue of whether to offer a Not Applicable, or NA, choice off the scale). An odd
number of steps provides a neutral point for respondents who honestly have no definite attitude with
regard to the content of the item. An even number of steps forces respondents to either express a posi-
tive or negative attitude (although they always have the choice to refuse to respond to the item). For
questionnaire design in general, there is no simple recommendation for an odd versus an even number
of steps. As Parasuraman (1986, p. 399) put it, “the choice between a forced or nonforced format must
be made after carefully considering the characteristics unique to the situation.” The designers of most
standardized usability questionnaires with items containing a relatively small number of steps have cho-
sen an odd number of steps, implicitly indicating a belief that it is possible, perhaps even common, for
respondents to have a neutral attitude when completing a usability questionnaire (the exception is earlier
versions of the QUIS, which had 10 steps ranging from 0 to 9—the current Version 7 has nine steps
ranging from 1 to 9, with an NA choice; see http.://lap.umd.edu/quis/). Given that the most common use
of these types of questionnaires is to compare relative usability, it doesn’t much matter whether there is
an odd or even number of steps.

POSTSTUDY QUESTIONNAIRES

Table 8.1 lists key characteristics of the four best-known poststudy questionnaires.

ONLINE VERSIONS OF POSTSTUDY USABILITY QUESTIONNAIRES
Thanks to Gary Perlman

Gary Perlman has created a website (www.acm.org/perlman/question.html) at which you can view or even use
a variety of online versions of poststudy usability questionnaires, including the QUIS, the CSUQ (a variant of the
PSSUQ), and the SUS. See his website for details.

QUIS (Questionnaire for User Interaction Satisfaction)

Description of the QUIS
The QUIS was the first published of these four questionnaires (Chin et al., 1988). According to the
QUIS website (http://lap.umd.edu/QUIS/), a multidisciplinary team of researchers in the Human—
Computer Interaction Lab (HCIL) at the University of Maryland at College Park created the QUIS
to assess users’ subjective satisfaction with specific aspects of the human—computer interface.

The current version of the QUIS (7) contains “a demographic questionnaire, a measure of overall
system satisfaction along six scales, and hierarchically organized measures of nine specific interface
factors (screen factors, terminology and system feedback, learning factors, system capabilities,
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Table 8.1 Key Characteristics of Four Poststudy Questionnaires

Requires Number Number of Global
Questionnaire License Fee of ltems Subscales Reliability Validity Notes

QUIS Yes ($50-750) 27 5 0.94 Construct validity;
evidence of
sensitivity

SUMI Yes (€0-1,000) 50 5 0.92 Construct validity;
evidence of
sensitivity;
availability of norms

PSSUQ No 16 3 0.94 Construct validity;
concurrent validity;
evidence of
sensitivity; some
normative
information

SUS No 10 2 0.92 Construct validity;
evidence of
sensitivity; some
normative
information

5.4 Messages which appear on screen:

1 2 3 4 5 6 7 8 9 NA
Confusing O O O O O O O O O Clear O

FIGURE 8.1
Sample QUIS item.

technical manuals, online tutorials, multimedia, teleconferencing, and software installation)” (http://
lap.umd.edu/QUIS/about.html, downloaded March 17, 2011). QUIS 7 is available in five languages
(English, German, Italian, Brazilian Portuguese, and Spanish) and two lengths, short (41 items) and
long (122 items), using nine-point bipolar scales for each item (see Figure 8.1). According to the
QUIS website, most people use the short version, and only the sections that are applicable to the
system or product.

To use the QUIS, it’s necessary to license it from the University of Maryland’s Office of Tech-
nology Commercialization. The current fees are $50 for a student license, $200 for an academic or
other nonprofit license, and $750 for a commercial license.

Psychometric Evaluation of the QUIS

The primary source for information on the psychometric evaluation of the QUIS is Chin et al. (1988),
which reported research on the QUIS Versions 3 through 5. The first long version of the QUIS had
90 items (5 for overall reaction to the system and 85 component-related questions organized into
20 groups, in which each group had one main and several related subcomponent questions), using
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10-step bipolar scales numbered from 0 to 9 and all scales aligned with the negative response on the
left and an off-scale NA response.

The psychometric evaluation reported by Chin et al. (1988) was for a short form of Version 5
(27 items covering overall reactions to the software, screen, terminology and system information,
learning, and system capabilities). Data from 127 participants who completed four QUIS question-
naires each (one for a liked system, one for disliked, one for an MS-DOS command-line applica-
tion, and one for any of several contemporary menu-driven applications) indicated an overall
reliability of 0.94 (no information provided for the subscales). A factor analysis (n = 96) of the cor-
relations among the items was, for the most part, consistent with expectation (an indication of con-
struct validity), but with some notable exceptions; for example, the items hypothesized to be in a
screen factor did not group as expected. Comparison of ratings for liked and disliked systems
showed means for liked systems were higher (better) than those for disliked systems with 13 of the
comparisons statistically significant (three with p < 0.05; five with p < 0.01; four with p < 0.001),
providing evidence of sensitivity.

Slaughter et al. (1994) compared responses from paper and online formats of the QUIS Version
5.5, completed by 20 participants following use of a word processor (with questionnaires completed
in counterbalanced order and one week between completions). Consistent with the findings of most
research comparing paper and online questionnaire formats, there was no significant difference in
user ratings.

SUMI (Software Usabhility Measurement Inventory)

Description of the SUMI

The SUMI is a product of the Human Factors Research Group (HFRG) at University College Cork in
Ireland, led by Jurek Kirakowski. Their first standardized questionnaire was the Computer Usability
Satisfaction Inventory (CUSI; Kirakowski and Dillon, 1988). The CUSI was a 22-item questionnaire
(overall reliability: 0.94) with two subscales, one for Affect (reliability of 0.91) and the other for
Competence (reliability of 0.89).

In the early 1990s, the HFRG replaced the CUSI with the SUMI (Kirakowski, 1996). The SUMI
is a 50-item questionnaire with a Global scale based on 25 of the items and five subscales for Effi-
ciency, Affect, Helpfulness, Control, and Learnability (10 items each). As shown in the example in
Figure 8.2 (the first item of the SUMI), the items have three scale steps (Agree, Undecided, Disagree).
The SUMI contains a mixture of positive and negative statements (e.g., “The instructions and prompts
are helpful”; “I sometimes don’t know what to do next with this system”). To view the entire SUMI,
see hittp://sumi.ucc.ie/en/.

The SUMI is currently available in 12 languages (Dutch, English, Finnish, French, German,
Greek, Italian, Norwegian, Polish, Portuguese, Swedish, and Spanish). The use of the SUMI
requires a license from the HFRG. The HFRG offers three services with differing fees: offline

Statements 1-10 of 50. Agree Undecided Disagree
This software responds too slowly to inputs. O O @)

FIGURE 8.2
Sample SUMI item.
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(€1,000), online (€500), and online student (no charge). For descriptions of the services and their
requirements, see http://sumi.ucc.ie/pricing.html.

Psychometric Evaluation of the SUMI

During its development, the SUMI underwent a considerable amount of psychometric development
and evaluation (Kirakowski, 1996). The initial pool of SUMI items was 150. After content analysis
by a group of 10 HCI experts and software engineers, the remaining pool contained 75 items.
A factor analysis of responses to these 75 items by 139 end users plus detailed item analysis led to
the final 50 items and a decision to use a three-step agreement scale for the items. Factor analysis
of an independent sample of 143 users who completed the 50-item version of the SUMI revealed
five subscales:

* Efficiency: The degree to which the software helps users complete their work.

* Affect: The general emotional reaction to the software.

* Helpfulness: The degree to which the software is self-explanatory, plus the adequacy of help
facilities and documentation.

* Control: The extent to which the user feels in control of the software.

* Learnability: The speed and facility with which users feel they mastered the system or learned to
use new features.

In addition to these subscales, there is a Global scale based on the 25 items that loaded most
strongly on a general usability factor. After making a few minor changes to get to the final version of
the SUMI, the researchers at HFRG collected over 1,000 completed questionnaires from 150 systems,
confirmed the preliminary factor structure, and used coefficient alpha to calculate the reliability of the
SUMI scales. This large sample was also the start of one of the most powerful features of the SUMI:
a normative database with which practitioners can compare their results to those of similar products
and tasks, keeping in mind that variation in products and tasks can weaken the generalizability of
norms (Cavallin et al., 2007). Table 8.2 shows the scales and their reliabilities.

Other psychometric features of the SUMI are scale standardization and sufficient data for item-
level analysis. When analyzing raw SUMI scores (obtained by adding the responses for each item),
HFRG uses proprietary formulas to convert raw scores to standard scores with a mean of 50 and
standard deviation of 10. From the properties of the normal distribution, this means that about 68%
of SUMI standard scores will fall between 40 and 60 and, by definition, those below 40 are below
average and those above 60 are above average. Item-level analysis uses the standardization database
to identify items that fall far away from the expected distribution of Agree, Undecided, and Dis-
agree responses, which can sometimes provide more precise diagnostic information to use when
interpreting the results.

Table 8.2 Reliabilities of the SUMI Scales
SUMI Scale Reliability SUMI Scale Reliability

Global 0.92 Helpfulness 0.83
Efficiency 0.81 Control 0.71
Affect 0.85 Learnability 0.82
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The factor analyses conducted during the development and evaluation of the SUMI provide
evidence of construct validity. There appear to be no published data on predictive or concurrent
validity. A number of evaluations have demonstrated the sensitivity of the SUMI. For example,
analysis of SUMI scores obtained from 94 users of word-processing systems showed significant
differences in SUMI scale scores as a function of the system participants were using. There was
also a significant interaction between the systems used and the different SUMI scale scores, which
indicates that the various scales measured different aspects of user satisfaction with their systems
(Kirakowski, 1996).

PSSUQ (Post-study System Usability Questionnaire)
Description of the PSSUQ

The PSSUQ is a questionnaire designed to assess users’ perceived satisfaction with computer systems or
applications. The origin of the PSSUQ was an internal IBM project called SUMS (System Usability
MetricS), headed by Suzanne Henry. The SUMS researchers created a large pool of items based on the
contextual usability work of Whiteside et al. (1988). After content analysis by that group of human
factors engineers and usability specialists, 18 items remained for the first version of the PSSUQ (Lewis,
1990a, 1992).

An independent IBM investigation into customer perception of usability of several different user
groups indicated a common set of five usability characteristics (Doug Antonelli, personal communica-
tion, January 5, 1991). The 18-item version of the PSSUQ addressed four of those characteristics
(quick completion of work, ease of learning, high-quality documentation and online information, and
functional adequacy), but did not cover the fifth (rapid acquisition of productivity). The inclusion of
an item to address this characteristic led to the second version of the PSSUQ, containing 19 items
(Lewis, 1995). After several years’ use of the PSSUQ Version 2, item analysis indicated that three
questions in that version (3, 5, and 13) contributed relatively little to the reliability of the PSSUQ,
resulting in a third version with 16 items (Lewis, 2002, 2012b) after removing them (see Figure 8.3).

The instructions provided to participants in moderated usability tests before completing the
PSSUQ are (Lewis, 1995, p. 77):

This questionnaire gives you an opportunity to tell us your reactions to the system you used. Your
responses will help us understand what aspects of the system you are particularly concerned about
and the aspects that satisfy you. To as great an extent as possible, think about all the tasks that
you have done with the system while you answer these questions. Please read each statement and
indicate how strongly you agree or disagree with the statement. If a statement does not apply to
you, circle NA. Please write comments to elaborate on your answers. After you have completed
this questionnaire, I’ll go over your answers with you to make sure I understand all of your
responses. Thank you!

The PSSUQ items produce four scores—one overall and three subscales. The rules for comput-
ing them are:

* Overall: Average the responses for Items 1 through 16 (all the items)
* System Quality (SysQual): Average Items 1 through 6

* Information Quality (InfoQual): Average Items 7 through 12

* Interface Quality (IntQual): Average Items 13 through 15
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The Post-Study Usability Questionnaire Strongly Strongly
Version 3 agree disagree
12 3 456 7 NA

Overall, | am satisfied with how easy it is to use this

1 O|O0|O0|O|O|O|0O (o}
system.

2 It was simple to use this system. o|O0O|O|O|O|O|O (@]

3 Iwas aple to complete the tasks and scenarios quickly ololololololo o
using this system.

4 | felt comfortable using this system. o|0|Oo|O|O|0O|O (0]

5 It was easy to learn to use this system. o|O0O|O|O|O|O|O (@]

6 | believe | could become productive quickly using this ololololololo o
system.

7 Thesys_tem gave error messages that clearly told me ololololololo o
how to fix problems.

8 Whenever | made a mistake using the system, | could ololololololo o

recover easily and quickly.

The information (such as online help, on-screen
9 messages and other documentation) provided with o|O|O|O|O|O|O (@]
this system was clear.

10 It was easy to find the information | needed. o|0|O0|O|O|0O|O (0]

The information was effective in helping me complete

" the tasks and scenarios. 0|0|0|0|0j0]0 ©

12 The organization of information on the system ololololololo o
screens was clear.

13 The interface* of this system was pleasant. O|0(O0|O|0O|O|O o

14 | liked using the interface of this system. Oo|0|Oo|O|O|0O|O (0]

15 Thlssy'stem has all the functions and capabilities | ololololololo o
expect it to have.

16 Overall, | am satisfied with this system. Oo|0|O0|O|O|0O|O (0]

*The “interface” includes those items that you use to interact with the system. For example, some components of the
interface are the keyboard, the mouse, the microphone, and the screens (including their graphics and language).

FIGURE 8.3
The PSSUQ Version 3.

The resulting scores can take values between 1 and 7, with lower scores indicating a higher
degree of satisfaction. Note that some practitioners prefer higher scores to indicate higher satisfac-
tion, and switch the labels for “Strongly Agree” and “Strongly Disagree” (e.g., see Tullis and
Albert, 2008, p. 140). From a strict interpretation of standardization, it’s best to avoid this type of
manipulation unless there is evidence that it does not affect the factor structure of the items. On the
other hand, the various psychometric evaluations of the PSSUQ since its initial publication suggest
that it should be robust against these types of minor manipulations (Lewis, 2002). If comparing
across published studies, however, it is critical to know which item alignment was in use and, if
necessary, to adjust one of the sets of scores. To reverse a seven-point PSSUQ score, subtract it
from 7 and add 1. For example, that would change a 1 to a 7 and a 7 to a 1, and would leave a 4
unchanged.



194 CHAPTER 8 Standardized Usability Questionnaires

The PSSUQ does not require any license fee (Lewis, 2012b, p. 1303). Researchers who use it
should cite their source (if using Version 3, please cite this book), and should make clear in their
method sections how they aligned the items. Our experience has been that practitioners can add
items to the questionnaires if there is a need, or, to a limited extent, can remove items that do not
make sense in a specific context. Using the PSSUQ as the foundation for a special-purpose ques-
tionnaire, however, ensures that practitioners can score the overall PSSUQ scale and subscales,
maintaining the advantages of standardized measurement.

Psychometric Evaluation of the PSSUQ
The earliest versions of the PSSUQ showed very high scale and subscale reliability. For Version 3,
the reliabilities are (Lewis, 2002, 2012b):

*  Overall: 0.94
* SysQual: 0.9
* InfoQual: 0.91
*  IntQual: 0.83

All of the reliabilities exceed 0.8, indicating sufficient reliability to be useful as standardized usabil-
ity measurements (Anastasi, 1976; Landauer, 1997; Nunnally, 1978).

Factor analyses have been consistent across the various versions of the PSSUQ, indicating sub-
stantial construct validity (Lewis, 1990a, 1992, 1995, 2002). In addition to construct validity, the
PSSUQ has shown evidence of concurrent validity. For a sample of 22 participants who completed
all PSSUQ (Version 1) and ASQ items in a usability study (Lewis et al., 1990), the overall PSSUQ
score correlated highly with the sum of the ASQ ratings that participants gave after completing
each scenario (r(20) = 0.8, p = 0.0001). The overall PSSUQ score correlated significantly with the
percentage of successful scenario completions (r(29) = —0.4, p = 0.026). SysUse ((36) = —0.4,
p = 0.006) and IntQual (r(35) = —0.29, p = 0.08) also correlated with the percentage of successful
scenario completions.

The PSSUQ has also proved to be sensitive to manipulation of variables that should affect it, and
insensitive to other variables (Lewis, 1995, 2002). In the office applications study described by Lewis
et al. (1990), three different user groups (secretaries without mouse experience, business professionals
without mouse experience, and business professionals with mouse experience) completed a set of
tasks with three different office systems in a between-subjects design. The overall scale and all three
subscales indicated significant differences among the user groups, and InfoQual showed a significant
system effect.

Analyses of variance conducted to investigate the sensitivity of PSSUQ measures using data collected
from usability studies over five years (Lewis, 2002) indicated that the following variables significantly
affected PSSUQ scores (as indicated by a main effect, an interaction with PSSUQ subscales, or both):

* Study (21 levels—the study during which the participant completed the PSSUQ)

* Developer (4 levels—the company that developed the product under evaluation)

* Stage of development (2 levels—product under development or available for purchase)

* Type of product (5 levels—discrete dictation, continuous dictation, game, personal communica-
tor, or pen product)

* Type of evaluation (2 levels—speech dictation study or standard usability evaluation)
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The following variables did not significantly affect PSSUQ scores:

* Gender (2 levels—male or female)
* Completeness of responses to questionnaire (2 levels—complete or incomplete)

For gender, neither the main effect nor the interaction was significant. The difference between
the female and male questionnaire means for each of the PSSUQ scales was only 0.1. Although
evidence of gender differences would not affect the usefulness of the PSSUQ, it’s notable that the
instrument does not appear to have an inherent gender bias.

Analysis of the distribution of incomplete questionnaires in the Lewis (2002) database showed that of
210 total questionnaires, 124 (59%) were complete and 86 (41%) were incomplete. Across the incom-
plete questionnaires, the completion rate for SysUse and IntQual items were, respectively, 95% and
97%; but the average completion rate for InfoQual items was only 60%. Thus, it appears that the primary
cause of incomplete questionnaires was the failure to answer one or more InfoQual items. In most cases
(78%), these incomplete questionnaires came from studies of speech dictation, which did not typically
include documentation, or standard usability studies conducted on prototypes without documentation.

Unlike most attitude questionnaires with scales produced by summing the item scores, an early
decision in the design of the PSSUQ was to average rather than sum item scores (Lewis, 1990a,
1992). The results of the analysis of completeness support this decision. As shown in Figure 8.4,
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FIGURE 8.4
The PSSUQ completeness by factor interaction.
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the completeness of responses to the questionnaire had neither a significant main effect nor a signif-
icant interaction. The difference between the complete and incomplete questionnaire means for each
of the PSSUQ scales was only 0.1, and the changes cancelled out for the Overall score (means of
2.7 for both complete and incomplete questionnaires). This finding is important because it supports
the practice of including rather than discarding partially completed PSSUQ questionnaires when
averaging items to compute scale scores. The data do not provide information concerning how
many items a participant might ignore and still produce reliable scores, but they do suggest that, in
practice, participants typically complete enough items.

PSSUQ Norms and Interpretation of Normative Patterns

PSSUQ item and scale norms correlate highly across versions. Table 8.3 shows the best available
norms for Version 3 (means and 99% confidence intervals), using the original alignment such that
lower scores are better than higher scores. Note that the means of all items and scales fall below the
scale midpoint of 4 and, with the exception of Item 7 (“The system gave error messages that clearly
told me how to fix problems”), the upper limits of the 99% confidence intervals are also below the
scale midpoint. This demonstrates why for the PSSUQ (and probably for all similar questionnaires),
practitioners should not use the scale midpoint exclusively as a reference from which to judge partici-
pants’ perceptions of usability. The best reference is one’s own data from similar evaluations with
similar products, tasks, and users. If such data are not available, then the next best reference is the
PSSUQ norms.

There are probably very few cases in which you could use these norms for direct assessment of
a product under evaluation. These data came from a variety of sources that included different types
of products at different stages of development and the performance of different types of tasks using
systems that were available from the mid-1990s through the early 2000s. Despite this, there are
some interesting and potentially useful patterns in the data, which have been consistent across the
different versions of the questionnaire.

Ever since the introduction of the PSSUQ, the item that has received the poorest rating—
averaging from 0.45 to 0.49 scale steps poorer than the next poorest rating—is Item 7 (e.g., “The
system gave error messages that clearly told me how to fix problems”). Also, the mean ratings of
InfoQual tend to be poorer than mean ratings of IntQual, with differences for the various versions
ranging from 0.5 to 1.1.

The consistently poor ratings for Item 7 suggest:

 If this happens in your data, it shouldn’t surprise you.

* It really is difficult to provide usable error messages throughout a product.

* It will probably be worth the effort to focus on providing usable error messages.

* If you find the mean for this item to be equal to or less than the mean of the other items in
InfoQual, you have probably achieved better-than-average error messages.

The consistent pattern of poor ratings for InfoQual relative to IntQual indicates that if you find
this pattern in your data, you shouldn’t conclude that you have terrible documentation or a great
interface. If, however, this pattern appeared in the data for a first iteration of a usability study and
the redesign focused on improving the quality of information, then any significant decline in the
difference between InfoQual and IntQual would be suggestive of a successful intervention.
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Table 8.3 PSSUQ Version 3 Norms (Means and 99% Confidence Intervals)

Item Item Text Lower Limit Mean Upper Limit

1 Overall, | am satisfied with how easy 2.6 2.85 3.09
it is to use this system.

2 It was simple to use this system. 2.45 2.69 2.93

3 | was able to complete the tasks 2.86 3.16 3.45
and scenarios quickly using this
system.

4 | felt comfortable using this system. 2.4 2.66 2.91

5 It was easy to learn to use this 2.07 2.27 2.48
system.

6 | believe | could become productive 2.54 2.86 317
quickly using this system.

7 The system gave error messages 3.36 3.7 4.05
that clearly told me how to fix
problems.

8 Whenever | made a mistake using the 2.93 3.21 3.49
system, | could recover easily and
quickly.

9 The information (e.g., online help, 2.65 2.96 3.27

on-screen messages, and other
documentation) provided with this
system was clear.

10 It was easy to find the information | 2.79 3.09 3.38
needed.

11 The information was effective in 2.46 2.74 3.01
helping me complete the tasks and
scenarios.

12 The organization of information on the 2.41 2.66 2.92
system screens was clear.

13 The interface of this system was 2.06 2.28 2.49
pleasant.

14 | liked using the interface of this 2.18 2.42 2.66
system.

15 This system has all the functions and 2.51 2.79 3.07
capabilities | expect it to have.

16 Overall, | am satisfied with this 2.55 2.82 3.09
system.

Scale Scale Scoring Rule

SysUse Average Items 1-6. 2.57 2.8 3.02

InfoQual Average Items 7-12. 2.79 3.02 3.24

IntQual Average Items 13-15. 2.28 2.49 2.71

Overall Average Items 1-16. 2.62 2.82 3.02

Note: These data are from 21 studies and 210 participants, analyzed at the participant level.
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SUS (Software Usability Scale)

Description of the SUS

Despite being a self-described “quick-and-dirty” usability scale, the SUS (Brooke, 1996), developed
in the mid-1980s, has become a popular questionnaire for end-of-test subjective assessments of
usability (Lewis, 2012b; Zviran et al., 2006). The SUS accounted for 43% of post-test questionnaire
usage in a recent study of a collection of unpublished usability studies (Sauro and Lewis, 2009).
Research conducted on the SUS (described below) has shown that although it is fairly quick, it is
probably not all that dirty. The SUS (shown in Figure 8.5) is a questionnaire with 10 items, each with
five scale steps. The odd-numbered items have a positive tone; the tone of the even-numbered items
is negative.

According to Brooke (1996), participants should complete the SUS after having used the system
under evaluation but before any debriefing or other discussion. Instructions to the participants should
include asking them to record their immediate response to each item rather than thinking too much
about them. The SUS scoring method requires participants to provide a response to all 10 items. If for
some reason participants can’t respond to an item, they should select the center point of the scale.

The first step in scoring a SUS is to determine each item’s score contribution, which will range
from O to 4. For positively worded items (odd numbers), the score contribution is the scale position
minus 1 (x; — 1). For negatively worded items (even numbers), the score contribution is 5 minus the
scale position (5 — x;). To get the overall SUS score, multiply the sum of the item score contributions
by 2.5. Thus, overall SUS scores range from 0 to 100 in 2.5-point increments.

The System Usability Scale Strongly Strongly
Standard Version disagree agree
12 3 45
1 | think that | would like to use this system. O|0|0|0O|0O
2 | found the system unnecessarily complex. O|0|0|0|0O
3 | thought the system was easy to use. O|0|0O|0O|0
I think that | would need the support of a technical
4 person to be able to use this system. 0|0]|0|0|0
| found the various functions in the system were
5 well integrated. ojojoj010
| thought there was too much inconsistency in this
6 system. O|0|0|0|0O
| would imagine that most people would learn to
7 use this system very quickly. 010101010
8 | found the system very cumbersome to use. O|0|0|0O|0O
9 | felt very confident using the system. O|0|0|0O|0
10 I needed to learn a lot of things before | could get
going with this system. 00000

FIGURE 8.5
The standard version of the SUS.
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The SUS does not require any license fee. “The only prerequisite for its use is that any
published report should acknowledge the source of the measure” (Brooke, 1996, p. 194). See the
References section of this chapter for the information needed to acknowledge Brooke (1996) as the
source of the SUS.

Since its initial publication, some researchers have proposed minor changes to the wording of the
items. For example, Finstad (2006) and Bangor et al. (2008) recommend replacing “cumbersome” with
“awkward” in Item 8. The original SUS items refer to “system,” but substituting the word “website” or
“product,” or using the actual website or product name seems to have no effect on the resulting scores
(Lewis and Sauro, 2009). Of course, any of these types of minor substitutions should be consistent
across the items.

Psychometric Evaluation of the SUS

The 10 SUS items were selected from a pool of 50 potential items, based on the responses of 20
people who used the full set of items to rate two software systems, one that was relatively easy to
use, and one that was relatively difficult to use. The items selected for the SUS were those that pro-
vided the strongest discrimination between the systems. In his original paper, Brooke (1996)
reported strong correlations among the selected items (absolute values of » ranging from 0.7 to 0.9),
but he did not report any measures of reliability or validity, referring to the SUS as a “quick-and-
dirty” usability scale. For these reasons, he cautioned against assuming that the SUS was any more
than a unidimensional measure of usability (p. 193): “SUS yields a single number representing a
composite measure of the overall usability of the system being studied. Note that scores for indi-
vidual items are not meaningful on their own.” Given data from only 20 participants, this caution
was appropriate.

An early assessment (using coefficient alpha) of the SUS indicated a reliability of 0.85 (Lucey,
1991). More recent estimates using larger samples have found its reliability to be just over 0.9
(0.91 from Bangor et al., 2008, using 2,324 cases; 0.92 from Lewis and Sauro, 2009, using 324
cases).

Recent studies have also provided evidence of the validity and sensitivity of the SUS. Bangor et al.
(2008) found the SUS to be sensitive to differences among types of interfaces and changes made to a
product. They also found significant concurrent validity with a single seven-point rating of user friendli-
ness (r = 0.806). Lewis and Sauro (2009) reported that the SUS was sensitive to the differences in a set
of 19 usability tests.

In the most ambitious investigation of the psychometric properties of the SUS to date, Bangor et al.
(2008) conducted a factor analysis of their 2,324 SUS questionnaires and concluded there was only one
significant factor, consistent with prevailing practitioner belief and practice. The method applied by
Bangor et al., however, did not exclude the possibility of additional structure. Lewis and Sauro (2009)
reanalyzed the data from Bangor et al. and an independent set of SUS cases from Sauro and Lewis
(2009), and discovered that the factor structures of the two data sets converged at a two-factor solution.
Later in the same year, Borsci et al. (2009), using a different measurement model and an independent
set of data (196 Italian cases), arrived at the same conclusion: a two-factor solution with Items 1, 2, 3,
5,6, 7,8, and 9 on one factor and Items 4 and 10 on the other.

Based on the content of the items, Lewis and Sauro (2009) named the eight-item subscale
“Usable” and the two-item subscale “Learnable.” Using the data from Sauro and Lewis (2009), the
subscale reliabilities (coefficient alpha) were 0.91 for Usable and 0.7 for Learnable. An analysis of
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variance on the data showed a significant study by scale interaction—evidence of scale sensitivity.
To make the Usable and Learnable scores comparable with the Overall SUS score so they also
range from 0 to 100, just multiply their summed score contributions by 3.125 for Usable and 12.5
for Learnable.

The results of our research into the factor structure of the SUS show that it would be possible to
use the new Usable subscale in place of the Overall SUS. The Overall scale and Usable subscale
had an extremely high correlation (» = 0.985), and the reduction in reliability in moving from the
10-item Overall SUS to the eight-item Usable scale was negligible (coefficient alpha went from
0.92 to 0.91). The time saved by dropping Items 4 and 10, however, would be of relatively little
benefit compared to the advantage of getting an estimate of perceived learnability, a cleaner esti-
mate of perceived usability, and an Overall SUS score comparable with the rest of the industry. For
these reasons, we encourage practitioners who use the SUS to continue doing so, but to recognize
that in addition to working with the standard Overall SUS score, they can easily compute its Usable
and Learnable subscales, extracting additional information from their SUS data with very little addi-
tional effort.

WHERE DID THE 3.125 AND 12.5 MULTIPLIERS COME FROM?

Getting SUS Subscales to Range from O to 100

The standard SUS raw score contributions can range from O to 40 (10 items with five scale steps ranging from
0 to 4). To get the multiplier needed to increase the apparent range of the summed scale to 100, divide 100 by
the maximum sum of 40, which equals 2.5. Because the Usable subscale has eight items, its range for summed
score contributions is 0 to 32, so its multiplier needs to be 100 divided by 32, which is 3.125. Following the
same process for the Learnable subscale, you get a multiplier of 12.5 (100 divided by 8). You can use the same
method to compute the multipliers needed to estimate overall scores from incomplete SUS questionnaires.

SUS Norms

The recent research on the psychometric properties of the SUS has also provided some normative
data. For example, Table 8.4 shows some basic statistical information about the SUS from the data
reported by Bangor et al. (2008) and Lewis and Sauro (2009).

Of particular interest is that the central tendencies of the Bangor et al. (2008) and the Lewis and
Sauro (2009) Overall SUS distributions were not identical, with a mean difference of 8. The mean
of the Bangor et al. distribution of Overall SUS scores was 70.1, with a 99.9% confidence interval
ranging from 68.7 to 71.5. The mean of our Overall SUS data was 62.1, with a 99.9% confidence
interval ranging from 58.3 to 65.9. Because the confidence intervals did not overlap, this difference
in central tendency as measured by the mean was statistically significant (p < 0.001). There were
similar differences (with the Bangor et al. scores consistently higher) for the first quartile (10 points),
median (10 points), and third quartile (12.5 points). The distributions’ measures of dispersion
(variance, standard deviation, and interquartile range) were close in value. The difference in central
tendency between the data sets is most likely due to the different types of users, products, and tasks
included in the data sets.

As expected, the statistics and distributions of the Overall SUS and Usable scores from the current
data set were very similar. In contrast, the distributions of the Usable and Learnable scores were
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Table 8.4 SUS Statistics from Bangor et al. (2008) and Lewis and Sauro (2009)

Bangor et al. (2008) Lewis and Sauro (2009)
Statistic Overall Overall Usable Learnable
N 2,324 324 324 324
Minimum 0 7.5 0 0
Maximum 100 100 100 100
Mean 70.14 62.1 59.44 72.72
Variance 471.32 494.38 531.54 674.47
Standard deviation 21.71 22.24 23.06 25.97
Standard error of the mean 0.45 1.24 1.28 1.44
Skewness NA -0.43 -0.38 -0.8
Kurtosis NA —0.61 -0.6 -0.17
First quartile 55 45 40.63 50
Median 75 65 62.5 75
Third quartile 87.5 75 78.13 100
Interquartile range 32.5 30 37.5 50
Critical z (99.9%) 3.09 3.09 3.09 3.09
Critical d (99.9%) 1.39 3.82 3.96 4.46
99.9% confidence interval 71.53 65.92 63.4 77.18
upper limit
99.9% confidence interval 68.75 58.28 55.48 68.27
lower limit
Note: Add and subtract critical d (computed by multiplying the critical z and the standard error) from the mean to get the
upper and lower bounds of the 99.9% confidence interval.

distinct. The distribution of Usable, although somewhat skewed, had lower values at the tails than in
the center. By contrast, Learnable was strongly skewed to the right, with 29% of its scores having the
maximum value of 100. Their 99.9% confidence intervals did not overlap, indicating a statistically
significant difference (p < 0.001).

Sauro (2011a) analyzed data from 3,187 completed SUS questionnaires. Figure 8.6 shows the
distribution of the scores.

The individual responses have a clear negative skew. There are also peaks in scores at 50, around
75 and 90, and at 100. There are two important things to keep in mind when looking at this fre-
quency distribution. First, although there are a finite number of possible responses, the combination of
average SUS scores for a study is virtually infinite. For example, the frequency distribution in Figure
8.6 has data from 112 different studies. Of these, only five pairs of studies, 10 total (9%), have the
same average SUS score. Note that due to the discrete nature of multipoint scale measures, the med-
ian is restricted to about 80 values, which is one of the key reasons to assess the central tendency of
multipoint scale scores with the mean rather than the median (Lewis, 1993).

Second, the skew doesn’t hurt the accuracy of statistical calculations or the computation of the
mean. As discussed in previous chapters, even though the distribution of individual responses is
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FIGURE 8.6
Distribution of 3,187 SUS scores.

skewed and not normally distributed, we typically base our statistical calculations on the distribution
of the study means, not the individual scores. Normality does become an issue when we want to
convert raw SUS scores into percentile ranks, but fortunately, a transformation procedure is avail-
able that adjusts SUS scores to a normal distribution (see the sidebar “Getting Normal’).

GETTING NORMAL
Converting SUS Scores to Percentile Ranks

From the files of Jeff Sauro

Using data from 446 studies and over 5,000 individual SUS responses, I've found the overall mean score
of the SUS is 68 with a standard deviation of 12.5. To get a better sense of how to use that information to
interpret a raw SUS score, you can use Table 8.5 to convert the raw score into a percentile rank. In essence, this
percentile rank tells you how usable your application is relative to the other products in the total database. The
distribution of SUS data is slightly negatively skewed, so the table entries were transformed prior to conversion
(specifically, a logarithmic transformation on reflected scores; see Sauro, 2011a for details). To use the table,
start in the “Raw SUS Score” column and find the score closest to the one for your study, and then examine the
percentile rank column to find the percentage of products that fall below your score. For example, a SUS score
of 66 has a percentile rank of 44%. This means that a score of 66 is considered more usable than 44% of the
products in the Sauro (2011a) database (and less usable than 56%). Anything with a percentile below 50% is,
by definition, below average, and anything above 50% is above average.
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Table 8.5 Percentile Ranks for Raw SUS Scores

Raw SUS Score Percentile Rank Raw SUS Score Percentile Rank
5 0.3% 69 53%

10 0.4% 70 56%

15 0.7% 71 60%

20 1% 72 63%

25 1.5% 73 67%

30 2% 74 70%

35 4% 75 73%

40 6% 76 77%

45 8% 77 80%

50 13% 78 83%

55 19% 79 86%

60 29% 80 88%

65 41% 85 97%

66 44% 0 99.8%

67 47% 95 99.9999%

68 50% 100 100%

With the advent of large sample data sets of SUS scores, there have been a few attempts to pro-
vide a “grading scale” for their interpretation. For example, Bangor et al. (2009) added a seven-point
scale user-friendliness item as an eleventh question to nearly a thousand SUS questionnaires (‘“Overall,
I would rate the user-friendliness of this product as:” (from left to right) “Worst Imaginable; Awful;
Poor; OK; Good; Excellent; Best Imaginable”). They developed a grading scale in which SUS scores
below 60 were an “F,” between 60 and 69 were a “D,” between 70 and 79 were a “C,” between 80
and 89 were a “B,” and 90 and above were an “A.”

In the spirit of the relative (as oppose