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Preface

Time series and random fields are main topics in modern statistical techniques.
They are essential for applications where randomness plays an important role.
Indeed, physical constraints mean that serious modelling cannot be done us-
ing only independent sequences. This is a real problem because asymptotic
properties are not always known in this case.

The present work is devoted to providing a framework for the commonly used
time series. In order to validate the main statistics, one needs rigorous limit
theorems. In the field of probability theory, asymptotic behavior of sums may
or may not be analogous to those of independent sequences. We are involved
with this first case in this book.

Very sharp results have been proved for mixing processes, a notion intro-
duced by Murray Rosenblatt [166]. Extensive discussions of this topic may be
found in his Dependence in Probability and Statistics (a monograph published
by Birkhaiiser in 1986) and in Doukhan (1994) [61], and the sharpest results
may be found in Rio (2000) [161]. However, a counterexample of a really simple
non-mixing process was exhibited by Andrews (1984) [2]. The notion of weak
dependence discussed here takes real account of the available models, which
are discussed extensively. Our idea is that robustness of the limit theorems
with respect to the model should be taken into account. In real applications,
nobody may assert, for example, the existence of a density for the inputs in
a certain model, while such assumptions are always needed when dealing with
mixing concepts. Our main task here is not only to provide the reader with
the sharpest possible results, but, as statisticians, we need the largest possible
framework. Doukhan and Louhichi (1999) [67] introduced a wide dependence
framework that turns out to apply to the models used most often. Their simple
way of weakening the independence property is mainly adapted to work with
stationary sequences.

We thus discuss examples of weakly dependent models, limit theory for such
sequences, and applications. The notions are mainly divided into the two fol-
lowing classes:

e The first class is that of “Causal” dependence. In this case, the conditions
may also be expressed in terms of conditional expectations, and thus the
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vi PREFACE

powerful martingale theory tools apply, such as Gordin’s [97] device that
allowed Dedecker and Doukhan (2003) [43] to derive a sharp Donsker
principle.

e The second class is that of noncausal processes such as two-sided linear
processes for which specific techniques need to be developed. Moment
inequalities are a main tool in this context.

In order to make this book useful to practitioners, we also develop some ap-
plications in the fields of Statistics, Stochastic Algorithms, Resampling, and
Econometry. We also think that it is good to present here the notation for the
concepts of weak dependence. Our aim in this book was to make it simple to
read, and thus the mathematical level needed has been set as low as possible.
The book may be used in different ways:

e First, this is a mathematical textbook aimed at fixing the notions in the
area discussed. We do not intend to cover all the topics, but the book
may be considered an introduction to weak dependence.

e Second, our main objective in this monograph is to propose models and
tools for practitioners; hence the sections devoted to examples are really
extensive.

e Finally, some of the applications already developed are also quoted for
completeness.

A preliminary version of this joint book on weak dependence concepts was
used in a course given by Paul Doukhan to the Latino Americana Escuela de
Matemaética in Merida (Venezuela). It was especially useful for the preparation
of our manuscript that a graduate course in Merida (Venezuela) in September
2004 on this subject was based on these notes. The different contributors and
authors of the present monograph participated in developing it jointly. We
also want to thank the various coauthors of (published or not yet published)
papers on the subject, namely Patrick Ango Nzé (Lille 3), Jean-Marc Bardet
(Université Paris 1), Odile Brandiere (Orsay), Alain Latour (Grenoble), Hélene
Madre (Grenoble), Michael Neumann (Iena), Nicolas Ragache (INSEE), Math-
ieu Rosenbaum (Marne la Vallée), Gilles Teyssiere (Goteborg), Lionel Truquet
(Université Paris 1), Pablo Winant (ENS Lyon), Olivier Wintenberger (Uni-
versité Paris 1), and Bernard Ycart (Grenoble). Even if all their work did
not appear in those notes, they were really helpful for their conception. We
also want to thank the various referees who provided us with helpful comments
either for this monograph or for papers submitted for publication and related
to weak dependence.

We now give some clarification concerning the origin of this notion of weak
dependence. The seminal paper [67] was in fact submitted in 1996 and was part
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of the PhD dissertation of Sana Louhichi in 1998. The main tool developed in
this work was combinatorial moment inequalities; analogous moment inequali-
ties are also given in Bakhtin and Bulinski (1997) [8]. Another close definition
of weak dependence was provided in a preprint by Bickel and Bithlmann (1995)
[17] anterior to [67], also published in 1999 [18]. However, those authors aimed
to work with the bootstrap; see Chapter 13 and Section 2.2 in [6]. The approach
of Wu (2005) [188] detailed in Remark 3.1, based on L2-conditions for causal
Bernoulli shifts, also yields interesting and sharp results.
This monograph is essentially built in four parts:

Definitions and models
In the first chapter, we make precise some issues and tools for investigating
dependence: this is a motivational chapter. The second chapter introduces
formally the notion of weak dependence. Models are then presented in a
long third chapter. Indeed, in our mind, the richness of examples is at the
core of the weak dependence properties.

Tools
Tools are given in two chapters (Chapters 4 and 5) concerned respectively
with noncausal and causal properties. Tools are first used in the text for
proving the forthcoming limit theorems, but they are essential for any type
of further application. Two main tools may be found: moment bounds and
coupling arguments. We also present specific tightness criteria adapted to
work out empirical limit theorems.

Limit theorems
Laws of large numbers (and some applications), central limit theorems,
invariance principles, laws of the iterated logarithm, and empirical central
limit theorems are useful limit theorems in probability. They are precisely
stated and worked out within Chapters 6-10 .

Applications
The end of the monograph is dedicated to applications. We first present
in Chapter 11 the properties of the standard nonparametric techniques.
After this, we consider some issues of spectral estimation in Chapter 12.
Finally, Chapter 13 is devoted to some miscellaneous applications, namely
applications to econometrics, the bootstrap, and subsampling techniques.

After the table of contents, a useful short list of notation allows rapid access to
the main weak dependence coefficients and some useful notation.

Jérome Dedecker, Paul Doukhan, Gabriel Lang, José R. Ledn,
Sana Louhichi, and Clémentine Prieur



Contents

Preface

List of notations

1

Introduction
From independence to dependence . . . . .. .. ... .. ....

1.1
1.2
1.3
14
1.5

Mixing

Mixingales and near epoch dependence . . . . . . . .. ... ...
Association . . . .. ...
Nonmixing models . . . . . . . . .. ... L

Weak dependence
2.1 Function spaces . . . . . . . . .. o
2.2 Weak dependence . . . . . . . ... oo

2.2.1
2.2.2
2.2.3
224

Models
3.1 Bernoullishifts . . . ... ... ... ... ...

3.2

3.1.1
3.1.2
3.1.3
3.14
3.1.5

7, k, A and (-coefficients . . . . . ... ... ...
0 and T-coefficients . . . . .. ... ...
&, B and ¢-coefficients. . . . . . .. ...
Projective measure of dependence . . . . .. ... .. ..

Volterra processes . . . . . . .. ...
Noncausal shifts with independent inputs . . . . ... ..
Noncausal shifts with dependent inputs . . . ... .. ..
Causal shifts with independent inputs . . . . ... .. ..
Causal shifts with dependent inputs . . . .. ... .. ..

Markov sequences . . . . . . . ..o

3.2.1
3.2.2
3.2.3
3.24

Contracting Markov chain. . . . . .. ... .. ... ...
Nonlinear AR(d) models . . . . .. ... ... ... ....
ARCH-type processes . . . . . . . ..
Branching typemodels . . . . . . ... ..o

ix

10
11
12
14
16
19



CONTENTS

3.3 Dynamical systems . . . . .. ... .o oL
3.4 Vector valued LARCH(00) processes . . . . . . .. ... .....
3.4.1 Chaotic expansion of LARCH(co) models . . . ... ...
3.4.2 Bilinearmodels . . . . ... ... ... L.
3.5 (-dependent models . . . .. ... ...
3.5.1 Associated processes . . . . .. ...
3.5.2  Gaussian processes . . . . . ... e e e
3.5.3 Interacting particle systems . . . . ... .. ...
3.6 Othermodels . . . .. ... ... ...
3.6.1 Random AR models . ... ... ... .. ... .....
3.6.2 Integer valued models . . . . ... ... ... .. ...
3.6.3 Random fields . ... ... ... ... ... ...
3.6.4 Continuous time . . . . . ... ...

Tools for non causal cases

4.1 Indicators of weakly dependent processes. . . . . . .. ... ...

4.2 Low order moments inequalities . . . . . . . . ... .. ... ...
4.2.1 Variances . . . . . . ..o e
422 A (2+)-order momentbound . . ... ...

4.3 Combinatorial moment inequalities . . . . . . . .. .. ... ...
4.3.1 Marcinkiewicz-Zygmundtype inequalities . . . . . . . . ..
4.3.2 Rosenthal type inequalities . . . . .. ... ... ... ..
4.3.3 A first exponential inequality . . . .. ... ... ... ..

4.4 Cumulants. . . . . . ... L
4.4.1 General properties of cumulants . . . . ... ... .. ..
4.4.2 A second exponential inequality . . . . . . ... ... ...
4.4.3 From weak dependence to the exponential bound . . . . .

4.5 Tightness criteria . . . . . . . .. ... oL

Tools for causal cases

5.1 Comparisonresults . . . . . . .. ... L

5.2 Covariance inequalities . . . . . . . . . ... ...
5.2.1 A covariance inequality for vy . . . ... ...
5.2.2 A covariance inequality for fand ¢ . . .. .. ... ...

5.3 Coupling. . . . . .. . e
5.3.1 A coupling result for real valued random variables . . .
5.3.2 Coupling in higher dimension . . . . . . .. .. ... ...

5.4 Exponential and moment inequalities . . . . . . .. .. ... ...
5.4.1 Bennett-type inequality . . . . .. ... .. ...
5.4.2 Burkholder’s inequalities . . . . . . ... ...
5.4.3 Rosenthal inequalities using Rio techniques . . . . . . ..
5.4.4 Rosenthal inequalities for 7i-dependent sequences . . . . .
5.4.5 Rosenthal inequalities under projective conditions . . .

5.5 Maximal inequalities . . . . . . .. ..o oo

67
67
69
69
70
73
7
79
82
84
84
93
96
98

103
103
110
110
111
114

. 115

116
119
120
123
125
130

. 131



CONTENTS

6 Applications of SLLN
6.1 Stochastic algorithms with non causal dependent input . . . . . .
6.1.1 Weakly dependent noise . . . . . . .. .. ... ... ...
6.1.2 ~i-dependent noise . . . . ... ...
6.2 Examples of application . . . . . ... ... ... 0L
6.2.1 Robbins-Monro algorithm . . . .. .. ... ... ... ..
6.2.2 Kiefer-Wolfowitz algorithm . . . . .. .. ... ... ...
6.3 Weighted dependent triangular arrays . . . . ... ... .. ...
6.4 Linear regression . . . . . . . ... ... Lo

7 Central limit theorem
7.1 Non causal case: stationary sequences . . .. ... .. ... ...
7.2 Lindeberg method . . . . . ... .. .. ... L.
7.2.1 Proof of the main results . . . .. .. ... ... .....
7.2.2 Rates of convergence . . . . . ... ..o
7.3 Non causal random fields . . .. ... ... ... ... ... ..
7.4 Conditional central limit theorem (causal) . . . . . .. ... ...
7.4.1 Definitions and preliminary lemmas . . . . ... ... ..
7.4.2 Invariance of the conditional variance . . . ... ... ..
7.4.3 End of the proof . . . . ... ... ... 0.
7.5 Applications . . . . . ...
7.5.1 Stable convergence . . . . . . .. ... ...
7.5.2  Sufficient conditions for stationary sequences . . . . . ..
7.5.3 ~-dependent sequences . . . . . .. ...
7.5.4 @& and J)—dependent SEQUENCES .« .« v v v v e e
7.5.5 Sufficient conditions for triangular arrays . . ... .. ..

8 Donsker principles
8.1 Non causal stationary sequences . . . .. .. ... ... ... ..
8.2 Non causal random fields . . . ... ... .. ... .. ...
8.2.1 Moment inequality . . . . .. ... ... oL
8.2.2 Finite dimensional convergence . . . . . . . .. ... ...
8.2.3 Tightness . . . . . . . .. .. oo
8.3 Conditional (causal) invariance principle . . . . . . . ... .. ..
8.3.1 Preliminaries . . . . . .. ... ... oL
8.3.2 Finite dimensional convergence . . . . . . . .. .. .. ..
8.3.3 Relative compactness . . . . .. ... ... ...
8.4 Applications . . . . . ...
8.4.1 Sufficient conditions for stationary sequences . . . .. ..
8.4.2 Sufficient conditions for triangular arrays . . . .. .. ..

9 Law of the iterated logarithm (LIL)
9.1 Bounded LIL under a non causal condition . . .. ... ... ..
9.2 Causal strong invariance principle . . . . . . . .. ... ... ...

Xi

135
135
137
140
142
142
143
143
145

153
153
155
158
161
163
173
174
176
178
182
182
184
189
192
194



xii

CONTENTS

10 The empirical process 223
10.1 A simple condition for the tightness . . . .. ... .. ... ... 224
10.2 n-dependent sequences . . . . . .. ..o 225
10.3 a, B and gi;—dependent SEQUENCES . . v v v v e e e e e 231
10.4 0 and 7-dependent sequences . . . . . . ... 233
10.5 Empirical copula processes . . . . . . . . ... 234
10.6 Random fields . . . . . . . ... ... ... oo 236

11 Functional estimation 247
11.1 Some non-parametric problems . . . . . ... ... L. 247
11.2 Kernel regression estimates . . . . . . .. .. ... 0. 248

11.2.1 Second order and CLT results . . . . . . .. .. ... ... 249
11.2.2 Almost sure convergence properties . . . . . . . . . . . .. 252
11.3 MISE for B—dependent SEQUENCES .« .« v v v e e e e e 254
11.4 General kernels . . . . . . . . ... ... 260

12 Spectral estimation 265
12.1 Spectral densities . . . . . .. ..o o 265
12.2 Periodogram . . . . . .. ... Lo L o 269

12.2.1 Whittle estimation . . . . . . . . ... .. . 274
12.3 Spectral density estimation . . . .. ... ... 275
12.3.1 Second order estimate . . . . . . ... ... ... ... .. 277
12.3.2 Dependence coefficients . . . . . ... .. ... 279

13 Econometric applications and resampling 283

13.1 Econometrics . . . . . .. ... Lo 283
13.1.1 Unit root tests . . . . . . . . ... . L 284

13.1.2 Parametric problems . . . . . .. ... 0oL 285

13.1.3 A semi-parametric estimation problem . . . . . . . .. .. 285

13.2 Bootstrap . . . . . .. .. 287
13.2.1 Block bootstrap . . . . . . ... oo 288

13.2.2 Bootstrapping GMM estimators . . . . ... ... . ... 288

13.2.3 Conditional bootstrap . . . . . . . ... ... ... ... 290

13.2.4 Sieve bootstrap . . . . . . . ... ... 290

13.3 Limit variance estimates . . . . . . . . . .. ..o 292
13.3.1 Moments, cumulants and weak dependence . . . .. . .. 293

13.3.2 Estimation of the limit variance . . . . . . . . ... . ... 295

13.3.3 Law of the large numbers . . . . . .. ... ... ... .. 297

13.3.4 Central limit theorem . . . . . . ... ... ... ..... 299

13.3.5 A non centered variant . . . . . . . ... L. L. 302
Bibliography 305
Index 317



List of notations

We recall here the main specific or unusual notation used throughout this

monograph.

As usual, #A denotes the cardinal of a finite set A, and N,Z, R, C are the standard
sets of calculus. For clarity and homogeneity, we note in this list:

e a <Xbora= O(b) means that a < Cb for a constant C' > 0 and a,b > 0,

a<<bora=o(b) as b — 0, for a,b > 0, means limy_oa/(a+b) =1,

e aAb, aVbare the minimum and the maximum of the numbers a,b > 0,
e M,U,V, A, B are o-algebras, and (2, 4, P) is a probability space,
e XY, Z, ... denote random variables (usually &, ( are inputs),

1
e LP(E,&,m) are classes of measurable functions: ||f[l, = ([, |f(z)[’dm(z))»

o0,

e ['is a cumulative distribution function,
® is the normal cumulative distribution function, and ¢ = ®’ is its density,

<

e n is a time (space) delay, r,s € N are “past-future” parameters, p is a moment
order, and F, G are function spaces.

a(ld,V) p. 4,
a(M,X) p. 16,
ar(n) p. 19,
BV p. 11,
BV

Q(U,V) p- 4,
B(M,X) p. 16,
Br(n) p. 19,
Ch,r p. 73,
ex r(n) p. 87,
cx .(n) p. 87,
(M, X) p. 19,
Yp(n) p- 19,
On p. 25,
e(X,Y) p. 11,

§1.2, eqn. (1.2.1),
§2.2.3, def. 2.5-1,
§2.2.3, def. 2.2.15,
§2.1,

8 1.2, eqn. (1.2.4),
§2.2.3, def. 2.5-2,
§2.2.3, def .2.2.15,
§ 4.3, def. 4.1,
§4.4.1, eqn. (4.4.7),
§4.4.1, eqn. (4.4.8),
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Chapter 1

Introduction

This chapter is aimed to justify some of our choices and to provide a basic
background of the other competitive notions like those linked to mixing condi-
tions. In our mind mixing notions are not related to time series but really to
o-algebras. They are consequently more adapted to work in areas like Finance
where history, that is the o-algebra generated by the past is of a considerable
importance.

Having in view the most elementary ideas, Doukhan and Louhichi (1999) [67] intro-
duced the more adapted weak dependence condition developped in this monograph.
This definition makes explicit the asymptotic independence between ‘past’ and ‘fu-
ture’; this means that the ‘past’ is progressively forgotten. In terms of the initial
time series, ‘past’ and ‘future’ are elementary events given through finite dimensional
marginals. Roughly speaking, for convenient functions f and g, we shall assume that

Cov (f(‘past’), g(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is sufficiently large. Such
inequalities are significant only if the distance between indices of the initial time series
in the ‘past’ and ‘future’ terms grows to infinity. The convergence is not assumed to
hold uniformly on the dimension of the ‘past’ or ‘future’ involved. Another direction to
describe the asymptotic behavior of certain time series is based on projective methods.
It will be proved that this is coherent with the previous items.

Sections in this chapter first provide general considerations on independence,
then we define classical mixing coefficients, mixingales and association to con-
clude with simple counterexamples.

1.1 From independence to dependence

We recall here some very basic facts concerning independence of random vari-
ables. Let P,F be random variables defined on the same probability space
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(Q, A, P) and taking values in measurable spaces (Ep,&p) and (Er,Er). Inde-
pendence of both random variables P, F writes

P(X €AY eB) =P(Xc AP(Y € B), VY(A,B)e& x&  (1.1.1)

extending this identity by linearity to stepwise constant functions and using
limits yields a formulation of this relation which looks more adapted for appli-
cations:

Cov(f(P),g(F)) =0,  V(f,g9) € L=(Ep,&p) x L(EF,EF)

where, for instance, L (Ep,Ep) denotes the subspace of £°(Ep,R) (the space
of bounded and real valued functions), of measurable and bounded function
f : (Ep,gp) — (R,B}R)

If the spaces Ep, Er are topological spaces endowed with their Borel o-algebras
(the o-algebra generated by open sets) then it is sufficient to state

Cov(f(P),g(F)) =0, Y(f,9) € PxF (1.1.2)

where P, F are dense subsets of the spaces of continuous functions Fp — R
and Fp — R. In order to qualify a simple topology on both spaces it will be
convenient to assume that Ep and Eg are locally compact topological spaces
and the density in the space of continuous functions will thus refer to uniform
convergence of compact subsets of Fp, Fp.

From a general principle of economy, we always should wonder about the small-
est classes P, F possible. The more intuitive (necessary) condition for indepen-
dence is governed by the idea of orthogonality.

In this idea we now develop some simple examples for which, however

Orthogonality = Independence.

e Bernoulli trials

If Ep = Er = {0, 1} are both two-points spaces, the random variables now follow
Bernoulli distributions and independence follows form the simple orthogonality
of Cov(P,F) = 0. Indeed from the standard bilinearity properties of the covari-
ance, we also have Cov(1-P,F) = 0, Cov(P,1-F) = 0 and Cov(1-P,1-F) =0
which respectively means that eqn. (1.1.1) holds if (A, B) = ({a},{b}) with
(a,b) = (0,0) or respectively (1,0), (0,1) and (1,1). The problem of this exam-
ple is that in this case the o-algebras generated by P, F are very poor and this
example will thus not fit the forthcoming case of ‘important’ past and future.

e (Gaussian vectors
If now Ep = R and Er = RY then if the vector Z = (P,F) € RP™? is
Gaussian then its distribution only depends on its second order properties™,

*This only means that Z’s distribution depends only on the expressions EZ; and EZ;Z;
for 1 <i,5<dif Z=(Z1,...,2Zq).
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hence coordinate functions are enough to determine independence. In more
precise words two random vectors P = (Py,...,P,) and F = (F1,..., Fy) are
independent if and only if Cov(P;, Fj) =0 for any 1 <i<pandany 1 <j <gq.
This is a very simple characterization of independence which clearly does not
extend to any category of random variables.

For example, let X, Y € R be independent and symmetric random variables such
that P(X = 0) =0 if we set P = X and F = sign(X)Y then

Cov(P,F) = E(|X|Y) —EX -EF = E|X|-EY —EX -EF =0

because X and Y are centered random variables even if those variables are not
independent if the support of Y’s distribution contains more than two points.

A simple situation of uncorrelated individually standard Gaussian random vari-
ables which are not independent is provided’ with the couple (P, F) = (N, RN)
where N ~ N(0,1) and R is a Rademacher random variable (that means
P(R=1)=P(R=—1)=}) independent of N.

e Associated vectors (cf. § 1.4)

Again, we assume that EFp = RP and Er = R?, then the random vector X =
(P,F) € RP™ = R? is called associated in case

Cov(h(X), k(X)) >0

for any measurable couple of functions h, k : R — R such that both E(h*(X) +

k*(X)) < oo and the partial functions x; — h(z1,...,zq) and ; — k(z1,...,24)
are non-decreasing for any choice of the remaining coordinates z1, ...,x;—1,
ZTjt+1,...,2q4 € Rand any 1 < j < d. A essential property of such vectors is

that here too, orthogonality implies independence. This will be developed in a
forthcoming chapter.

An example of associated vectors is that of independent coordinates. Even if
it looks uninteresting case in our dependent setting, this leads to much more
involved examples of associated random vectors through monotonic functions.
The class of such coordinatewise increasing functions is a cone of L?(X), the class
of functions such that Eh*(X) < oo, hence the set of associated distributions
looks like a (very thin) cone of the space of distributions on R

The same idea applies to Gaussian distributions which is even finite dimensional
in the large set of laws on R

If now, we consider a time series X = (X,,)nez with values in a locally compact
topological space E (typically E = R?) we may consider one variable P of the
past and one variable F' of the future:

P:(Xilw"aXiu)a F:(Xj17"'7Xj'u)7
TIn this case both variables are indeed centered with Normal distributions and

E{N(RN)} = ER-EN? = 0 while |[N| = |RN]| is not independent of itself since it is not
a.s. a constant.
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for i; <ig < --- iy <j1 <joa <o Sjv,u,UEN* :{1,2,...}.
Independence of the time series X thus writes as the independence of P and F
for any choices i1 <5 < -+ < 4y, < J1 < Jo < -+ < j,. Independence of the
times series up to time m, also called m-dependence, is now characterized as
independence of P and F if i, + m < j;. Finally, asymptotic independence of
past and future will thus be given by arbitrary asymptotics

er)= sup  sup [Cov(f(P),g(F))| (1.1.3)
d(P,F)>r (f,9)€FXG

where d(P,F) = j; —i,. The only problem of the previous definition is that the
corresponding dependence coefficient should also be indexed by suitable multi-
indices (i1,142,...,%,) and (j1,J2,...,J»). This definition will be completed in
chapter 2 by considering classes P, C P and F, C F and suprema as well
with respect to ordered multi-indices (i1, 42, . . ., 4,) and (j1, J2, - . ., ju) such that
jl - Zu Z r.

1.2 Mixing

Mixing conditions, as introduced by Rosenblatt (1956) [166] are weak depen-
dence conditions in terms of the o—algebras generated by a random sequence.
In order to define such conditions we first introduce the conditions relative to
sub-o—algebras U,V C A on an abstract probability space (£, .4, P):

al,V) = sup [PUNV)—PU)PV) (1.2.1)
veu,vey
pU,V) = EILQ(MS)upe]LZ(V)|Corr(u,v)| (1.2.2)
_ e POV
o) = s g —BW) (1.2.3)
I J
BUY) =, s SSTBWNY) - PRI (1:2.4)

WUir<i<r € ul | =1 j=1

J
Vii<j<g €V

In the definition of 3, the supremum is considered over all measurable partitions
(Ui)i<i<r, (Vi)i<j<g of Q. The above coefficients are, respectively, Rosenblatt
(1956) [166]’s strong mixing coefficient a(U, V), Wolkonski and Rozanov (1959)
[187]’s absolute regularity coefficient 5(U, V), Kolmogorov and Rozanov (1960)
[112]’s maximal correlation coefficient p(i,V), and Ibragimov (1962) [110]’s
uniform mixing coefficient ¢(U, V). A more comprehensible formulation for 3 is
written in terms of a norm in total variation

BU,V) = |Pugy — Py @ Pyllrv
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here Py, Py, denote the restrictions of P to o—fields U,V and Pygy is a law on
the product o—fields defined of rectangles by Pygy(U,V) = P(U,V). In case
U,V are generated by random variables U, V' this may be written

pU,V) = Pw,v) —Pv@Py|rv

as the total variation norm of distributions of (U, V') and (U, V*) for some inde-
pendent copy V* of V. The Markov frame is however adapted to prove S-mixing
since this condition holds under positive recurrence.
In fact any coefficient p such that u(U,V) € [0,+oc] is well defined and such
that independence of U,V implies u(U,V) = 0 may be considered as a mix-
ing coefficient. Once a mixing coefficient has been chosen, the corresponding
mixing condition is defined for random processes (X;):ez and for random fields
(Xt)teza:

px(r) =supc(o(Xe,t <i),0(Xs,t >i+71)) (1.2.5)

i€z

and the random process is called p-mixing in case pux(r) —r—oco 0. Here u =
a, B, ¢ or p thus yield the coefficient sequences ax (1), Bx(r), ¢x(r) or px(r);
many other coeflicients may also be introduced.

For the more difficult case of random fields, one needs a more intricate definition.
The one we propose depends on two additional integers, and the random field
(X¢)teza is p-mixing in case for any u,v € N*, ¢x y,4(7) —r—00 0, where now

x.ab(r) = sup clo(X,t € A),0(Xy,t € B)) (1.2.6)
#A=a,#B=b,d(A,B)>r

the supremum is considered over finite subsets with cardinality u, v and at least
r distant (where a metric has been fixed on Z9).
The following relations hold:

p — mixing

.. = o — mixin
[ — mixing } &

¢ — mixing = {
and no reverse implication holds in general.
Examples for such conditions to hold are investigated in Doukhan (1994) [61],
and Rio (2000) [161] provides up-to-date results in this setting. We only quote
here that those conditions are usually difficult to check.

1.3 Mixingales and Near Epoch Dependence

Definition 1.1 (Mc Leish (1975) [129], Andrews (1988) [3]). Let p > 1 and let
(Fn)nez be an increasing sequence of o-algebras. The sequence (X, Fn)nez is
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called an LLP-mizingale if there exist nonnegative sequences (¢p)nez and
(¥(n))nez such that (n) — 0 as n — oo and for all integers n € Z, k > 0,

1 X0 —E (X0 | Fast) lp < cato(k+1), (13.1)
IE (X0 | Faoi)lp < cato (). (13.2)

This property of fading memory is easier to handle than the martingale condi-
tion. A more general concept is the near epoch dependence (NED) on a mixing
process. Its definition can be found in Billingsley (1968) [20] who considered
functions of ¢—mixing processes.

Definition 1.2 (Potscher and Prucha (1991) [152]). Let p > 1. We consider a
c-mizing process (defined as in eqn. (1.2.5)) (Vy.), oy - For any integers i < j,
set F! = o (Vi,...,V;). The sequence (X,,, Fp)nez is called an LP-NED process
on the c-mizing process (Vy.), oy if there exist nonnegative sequences (cn)nez
and (Y(n))nez such that (n) — 0 as n — oo and for all integersn € Z, k > 0,

|~ B 1 ) | < cw b,

This approach is developed in details in Potscher and Prucha (1991) [152].
Functions of MA (co) processes can be handled using NED concept. For instance,
limit theorems can be deduced for sums of such Functions of MA(co) processes.
These previous definitions translate the fact that a k-period — ahead in the
first case, both ahead and backwards in the second definition — projection is
convergent to the unconditional mean. They are known to be satisfied by a wide
class of models. For example, martingale differences can be described as ;-
mixingale sequences, and linear processes with martingale difference innovations
as well.

1.4 Association

The notion of association was introduced independently by Esary, Proschan and
Walkup (1967) [85] and Fortuin, Kastelyn and Ginibre (1971) [87].

The motivations of those authors were radically different since the first ones
were working in reliability theory and the others in mechanical statistics, and
their condition is known as FKG inequality.

Definition 1.3. The sequence (Xi)iez is associated, if for all coordinatewise
increasing real-valued functions h and k,

Cov(h(X¢,t € A),k(Xy,t € B)) >0
for all finite disjoint subsets A and B of Z and if moreover
E (h(X¢,t € A)? + k(Xy,t € B)?) < o0.
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This extends the positive correlation assumption to model the notion that two
stochastic processes have a tendency to evolve in a similar way.

This definition is deeper than the simple positivity of the correlations. Be-
sides the evident fact that it does not assume that the variances exist, one
can easily construct orthogonal (hence positively correlated) sequences that do
not have the association property. An important difference between the above
conditions is that its uncorrelatedness implies independence of an associated se-
quence (Newman, 1984 [136]). Let for instance (&x, 7y ) be independent and i.i.d.
N(0,1) sequences. Then the sequence (X, )nez defined by Xy = & (nx — mk—1)
is neither correlated nor independent, hence it is not an associated sequence.
Heredity of association only holds under monotonic transformations. This un-
pleasant restriction will disappear under the assumption of weak dependence.
The following property of associated sequences was a guideline for the forth-
coming definition of weak dependence. Association does not imply at all any
mixing assumptiont. The forthcoming inequality (1.4.1) also contains the idea
that weakly correlated associated sequences are also ‘weakly dependent’. The
following result provide a quantitative idea of the loss of association to indepen-
dence:

Theorem 1.1 (Newman, 1984 [136]). For a pair of measurable numeric func-
tions (f,g) defined on A C R¥, we write f < g if both functions g+ f and g— f
are non-decreasing with respect to each argument. Let now X be any associated
random vector with range in A. Then

(f; < giy fori=1,2) (|cov (f1(X), f2(X))| < Cov(gl(X),gg(X))).

This theorem follows simply from several applications of the definition to the co-
ordinatewise non-decreasing functions g; — f; and g; + f;. By an easy application
of the above inequalities one can check that

kool
|Cov(f(X SZZ

for R¥ or R! valued associated random vectors X and Y and C! functions f and
g with bounded partial derivatives. For this, it suffices to note that f < fy if
of

Denote by R(z) the real part of the complex number z. Theorem 1.1 can be
extended to complex valued functions, up to a factor 2 in the left hand side of the
above inequality (1.4.1). Indeed, we can set now f < g if for any real number

Cov(X;,Y;), (1.4.1)

g
axz o 10y

one makes use of Theorem 1.1 with fi(z1,...,2p) =

'E.g. Gaussian processes with nonnegative covariances are associated while this is well
known that this condition does not implies mixing, see [61], page 62.
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w the mapping ¢ = (t1,...,t;) — R (g(t) + e ) £(1)) is non-decreasing

with respect to each argument. Also, for any real numbers t1, ..., g,
ko k
Eez(t1X1+“'+thk) _ Rt Xy L. RetteXk <2 Z Z |ti||tj|COV(Xi, X])
i=1 j=1

On the opposite side, negatively associated sequences of r.v.’s are defined by a
similar relation than the aforementioned covariance inequality, except for the
sense of this inequality. This property breaks the seemingly parallel definitions
of positively and negatively associated sequences.

1.5 Nonmixing models

Finite moving averages X, = H (&, &n—1,- - -, &n—m) are trivially m-dependent.
However this does not remain exact as m — oco. For example, the Bernoulli
shift X, = H(&n, &1, ...) (with H(z) = Y52, 27 **F Y1) is not mixing; this
is an example of a Markovian, non-mixing sequence.
Indeed, its stationary representation writes X,, = ZEO:O 2_k_1§n,k. Here &,
is the k-th digit in the binary expansion of the uniformly chosen number X, =
0.6p&n—1 -+ € ]0,1]. This proves that X,, is a deterministic function of Xy which
is the main argument to derive that such models are not mixing ([61], page 77,
counterexample 2 or [2]); more precisely, as X, is some deterministic function
of Xy the event A = (X < %) belongs both to the sigma algebras of the past
(X, t <0) an and the sigma algebras of the future o(X¢, ¢ > n), hence with
the notation in § 1.2,

1 1 1

a(n) = [P(AN A) — PAP(A)| = — = .

2 4 4
The same arguments apply to the model described before of an autoregressive
process with innovations taking p distinct values. The difference between two
such independent processes of this type or ((—1)"X,,), provide example of non-
associated and non-mixing processes.
Assume now that more generally &; ~ b(s) follows a Bernoulli distribution with
parameter 0 < s < 1. Concentration properties then hold e.g. X,, is uniform if
s = %, and it has a Cantor marginal distribution if s = é
Much more stationary models may be in fact proved to be nonmixing; e.g. for
integer valued models (3.6.2) this is simple to prove that X; = 0 = Xg = 0
and P(Xy = 0) €]0, 1[. With stationarity this easily excludes this model to be
strong mixing since, setting P(Xy = 0) := p,

a(n) > | B((Xo = 0) N (X, = 0)) — B(Xo = 0B(X,, = 0) = p(1 —p) > 0.



Chapter 2

Weak dependence

Many authors have used one of the two following type of dependence: on the
one hand mixing properties, introduced by Rosenblatt (1956) [166], on the other
hand martingales approximations or mixingales, following the works of Gordin
(1969, 1973) [97], [98] and Mc Leisch (1974, 1975) [127], [129]. Concerning
strongly mixing sequences, very deep and elegant results have been established:
for recent works, we mention the books of Rio (2000) [161] and Bradley (2002)
[30]. However many classes of time series do not satisfy any mixing condition
as it is quoted e.g. in Eberlein and Taqqu (1986) [83] or Doukhan (1994) [61].
Conversely, most of such time series enter the scope of mixingales but limit
theorems and moment inequalities are more difficult to obtain in this general
setting.

Between those directions, Bickel and Bithlmann (1999) [18] and simultaneously
Doukhan and Louhichi (1999) [67] introduced a new idea of weak dependence.
Their notion of weak dependence makes explicit the asymptotic independence
between ‘past’ and ‘future’; this means that the ‘past’ is progressively forgotten.
In terms of the initial time series, ‘past’ and ‘future’ are elementary events
given through finite dimensional marginals. Roughly speaking, for convenient
functions f and g, we shall assume that

Cov (f(‘past’), g(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is sufficiently
large. Such inequalities are significant only if the distance between indices of
the initial time series in the ‘past’ and ‘future’ terms grows to infinity. The
convergence is not assumed to hold uniformly on the dimension of the ‘past’ or
‘future’ involved.

The main advantage is that such a kind of dependence contains lots of pertinent
examples and can be used in various situations: empirical central limit theorems
are proved in Doukhan and Louhichi (1999) [67] and Borovkova, Burton and

9
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Dehling (2001) [25], while applications to Bootstrap are given by Bickel and
Bithlmann (1999) [18] and Ango Nzé et al.(2002) [6] and to functional estima-
tion (Coulon-Prieur & Doukhan, 2000 [40]).

In this chapter a first section introduces the function spaces necessary to de-
fine the various dependence coefficients of the second section. They are classi-
fied in separated subsections. We shall first consider noncausal coefficients and
then their causal counterparts; in both cases the subjacent spaces are Lipschitz
spaces. A further case associated to bounded variation spaces is provided in the
following subsection. Projective measure of dependence are included in the last
subsection.

2.1 Function spaces

In this section, we give the definitions of some function spaces used in this book.

e Let m be any measure on a measurable space (£2,.4). For any p > 1, we
denote by IL?(m) the space of measurable functions f from Q to R such

that
1/p
o = ([17@ @) <,
fllcom = inf{M> O/m(|f| > M) :O} < 0o, for p= occ.
For simplicity, when no confusion can arise, we shall write L” and || - ||,
instead of LP(m) and || - ||p,m.-

Let X be a Polish space and ¢ be some metric on X' (X need not be Polish with
respect to 9).

e Let A(0) be the set of Lipschitz functions from X to R with respect to the
distance §. For f € A(9), denote by Lip (f), f’s Lipschitz constant. Let

AW(8) = {f € A(6) / Lip (f) < 1}.

e Let (2,4, P) be a probability space. Let X be a Polish space and § be a
distance on X. For any p € [1, 0], we say that a random variable X with
values in & is LP-integrable if, for some xo in &X', the real valued random
variable §(X, z¢) belongs to L?(P).

Another type of function class will be used in this chapter: it is the class of
functions with bounded variation on the real line. To be complete, we recall,
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Definition 2.1. A o-finite signed measure is the difference of two positive o-
finite measures, one of them at least being finite. We say that a function h
from R to R is o-BV if there exists a o-finite signed measure dh such that
h(xz) = h(0) + dh([0,z]) if x > 0 and h(z) = h(0) — dh([z,0]) if = <0 (h is left
continuous). The function h is BV if the signed measure dh is finite.

Recall also the Hahn-Jordan decomposition: for any o-finite signed measure p,
there is a set D such that

pi(A) = p(AND) >0, —p_(A) = p(A\D) < 0.

4 and p_ are mutually singular, one of them at least is finite and p = gy —p—.
The measure |p| = u4 + p— is called the total variation measure for u. The
total variation of p writes as ||u]] = |u|(R).

Now we are in position to introduce

e BV) the space of BV functions h : R — R such that ||dh| < 1.

2.2 Weak dependence
Let (Q, A, P) be a probability space and let X be a Polish space. Let
F=|JF and G= ] Gu.
ueN* ueN~
where F, and G, are two classes of functions from X" to R.

Definition 2.2. Let X and Y be two random variables with values in X" and
XV respectively. If W is some function from F x G to Ry, define the (.7-',9, \I/)—
dependence coefficient e(X,Y) by
C X Y
(X, Y)= sup |COVUELIWDI (2.2.1)
J€Fug€Gy V(f,9)
Let (X,)nez be a sequence of X-valued random variables. Let T'(u,v, k) be the
set of (i,7) in Z* X Z¥ such that i1 < -+ < iy < iy +k < j1 < -+ < j,. The
dependence coefficient e(k) is defined by
e(k) = sup sup e((Xiy, o, Xiy), (XG0, X5)) -

w,v (i,5)€l(u,v,k)
The sequence (Xp)nez is (F,G, V)-dependent if the sequence (e(k))ren tends to
zero. If F = G we simply denote this as (F, V)-dependence.

Remark 2.1. Definition 2.2 above easily extends to general metric sets of in-
dices T equipped with a distance & (e.g. T = 79 yields the case of random fields).
The set I'(u,v, k) is then the set of (i,7) in T* x T such that

E=min{d(i¢,jm)/ 1 <l<u,1<m<wv}.
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2.2.1 n,k, A and (-coefficients

In this section, we focus on the case where F, = G,. If f belongs to F,, we
define dy = u.

In a first time, F, is the set of bounded functions from X* to R, which are
Lipschitz with respect to the distance §; on A" defined by

O1(2,y) = D 0(wi,yi) - (2.2.2)

In that case:

e the coefficient 7 corresponds to
U(f,9) = dgllgllecLip (f) + dgll fllocLip (9) . (2.2.3)
e the coefficient A\ corresponds to

V(f,9) = dyllgllocLip (f) + dg|| fllocLip (9) + dydgLip (f)Lip (g) . (2.2.4)

To define the coefficients x and (, we consider for F, the wider set of functions
from X™ to R, which are Lipschitz with respect to the distance §; on X'™, but
which are not necessarily bounded. In that case we assume that the variables
X; are L'-integrable.

e the coefficient x corresponds to
V(f,9) = dydyLip (f)Lip (g) , (2.2.5)

e the coefficient ¢ corresponds to
U(f,g9) = min(dy, dg)Lip (f)Lip (g) - (2.2.6)

These coefficients have some hereditary properties. For example, let A : X — R
be a Lipschitz function with respect to 0, then if the sequence (X, )nez is 7, K,
A or ¢ weakly dependent, then the same is true for the sequence (h(X,,))nez.
One can also obtain some hereditary properties for functions which are not
Lipschitz on the whole space X, as shown by Lemma 2.1 below, in the special
case where X = R* equipped with the distance §(z,y) = maxi<i<g |T; — ¥il.

Proposition 2.1 (Bardet, Doukhan, Leén, 2006 [11]). Let (X, )nez be a se-
quence of RF-valued random variables. Let p > 1. We assume that there exists
some constant C' > 0 such that maxi<;<i || X;l|, < C. Let h be a function from
R* to R such that h(0) = 0 and for z,y € R*, there exist a in [1,p[ and ¢ > 0
such that

h(x) = h(y)| < clz —y|(j2]*" + [yl .
We define the sequence (Yy,)nez by Y, = h(X,,). Then,



2.2. WEAK DEPENDENCE 13
o if (X))nez is n-weak dependent, then (Y, )nez also, and
ny(n) = O (n(n)7=1 ) ;
o if (Xy)nez is A-weak dependent, then (Yy)nez also, and
Ay (n) =0 ()\(n) pi:iz) .

Remark 2.2. The function h(x) = 2% satisfies the previous assumptions with
a = 2. This condition is satisfied by polynomials with degree a.

Proof of Proposition 2.1. Let f and g be two real functions in F,, and F, respec-
tively. Denote (™) = (z A M)V (—=M) for x € R. Now, for = = (x1,...,21) €
R¥, we analogously denote z(*) = (... 2™)). Assume that (i, j) belong
to the set I'(u,v,r) defined in Definition 2.2. Define X; = (X;,,...,X;,) and
X; = (Xj,,...,X;,). We then define functions F : R** — R and G : R"* — R
through the relations:

o F(X;) = f(M(Xy,), ..., hX,,)), FO(X;) = f(R(XM), ... h(XMDY),

o G(X;) = g(h(X,),....h(X;,)), GM(X;) = g(h(XIM™), ... h(X M)
Then:

Cov(F(X5), G(X;) — G (X))
+|Cov(F(X;:), M (X;))]

2] flloo EIG(X;) — G (X))
+2|glloo EIF(X;) — FOD (X))
+|Cov(FM) (X3), G (X5))|

|Cov(F(X3), G(X5))|

IN

IN

But we also have from the assumptions on h and Markov inequality,

E|G(X;) - GO (Xp)| < Lipg Y E[h(X;,) — (X))
=1

< 2cLingE(|le|a1\le|>M)7
=1

< 2cvLipgC?M*™P,

The same thing holds for F. Moreover, the functions FM) : R** — R and
GM) ;. RYF — R satisfy Lip FM) < 2¢M 'Lip (f) and Lip GM) < 2eMe!
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Lip (9), and |[F™)|| o < || £lloos |G ||oe < ||glse- Thus, from the definition of

weak dependence of X and the choice of i, j, we obtain respectively, if M > 1

|Cov (FM (X3), GM (X)) | < 2¢(uLip (f)g]loe + vLip (9)[|f[loc) M~ (r),
< 2¢(dyLip (£)llgllo + dgLip (9)[| flloc) M A(r)
_|_

4c*dpd,Lip (f)Lip (g)M>* 2 (7).
Finally, we obtain respectively, if M > 1:

[Cov(F(X3),G(X;))] < 2c(uLip fllglloc + vLip g floc)
x (M 'n(r) +2CPM*P),
< ¢(uLip f + vLip g + wvLip fLip g)
x (M?*72\(r) + M7P).

Choosing M = n(r)" ™" and M = A(r) /#7272 respectively, we obtain the
result. 0O

In the definition of the coefficients 7, x, A and (, we assume some regularity
conditions on F,, = G,,. In the case where the sequence (X,,),ez is an adapted
process with respect to some increasing filtration (M;);cz, it is often more
suitable to work without assuming any regularity conditions on F,. In that
case G, is some space of regular functions and F,, # G,. This last case is called
the causal case. In the situations where both F,, and G, are spaces of regular
functions, we say that we are in the non causal case.

2.2.2 0 and T-coefficients

Let F, be the class of bounded functions from X, to R, and let G, be the class
of functions from X, to R which are Lipschitz with respect to the distance &y
defined by (2.2.2). We assume that the variables X; are L'-integrable.

e The coeflicient 6 corresponds to
U(f,9) = dg| fllocLip (9) - (2.2.7)

The coefficient # has some hereditary properties. For example, Proposition 2.2
below gives hereditary properties similar to those given for the coefficients n
and A in Lemma 2.1.

Proposition 2.2. Let (X,)nez be a sequence of R*-valued random variables.
We define the sequence (Y )nez by Yo = h(X,,). The assumptions on (X, )nez
and on h are the same as in Lemma 2.1. Then,
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o if (Xp)nez is 0-weak dependent, (Yy,)nez also, and
Oy (n) = 0O (o(n) ZZT) .

The proof of Proposition 2.2 follows the same line as the proof of Proposition
2.1 and therefore is not detailed.

We shall see that the coefficient 6 defined above belongs to a more general class
of dependence coefficients defined through conditional expectations with respect
to the filtration o(X;,j < 1).

Definition 2.3. Let (2, A, P) be a probability space, and M be a o-algebra of A.
Let X be a Polish space and § a distance on X. For any ILP-integrable random
variable X (see § 2.1) with values in X, we define

0p(M, X) = sup{||E(g(X)|M) —E(9(X)],/ g € AV ()} (2.2.8)

Let (X;)iez be a sequence of LP-integrable X -valued random variables, and let
(M)iez be a sequence of o-algebras of A. On X', we consider the distance &,
defined by (2.2.2). The sequence of coefficients 0, (k) is then defined by

1
Opr(k) = max , ~ Sup Op (M, (X5, ..., X5,)). (2.2.9)
=T (i,5)€T(1,6,k)
When it is not clearly specified, we shall always take M; = o(Xg, k <1).
The two preceding definitions are coherent as proved below.

Proposition 2.3. Let (X;)icz be a sequence of L'-integrable X -valued random
variables, and let M; = 0(Xj;,j <1i). According to the definition of 8(k) and to
the definition 2.3, we have the equality

0(k) = 01 00 (k). (2.2.10)

Proof of Proposition 2.3. The fact that 0(k) < 0 o (k) is clear since, for any f
in Fy, g in Gy, and any (¢,7) € I'(u, v, k),

‘Cov(f(Xiu--inu) Q(ijw)va))‘

Iflle 7 wLip(g

< B ) 2 (" o, 2

To prove the converse inequality, we first notice that

6‘(./\/11, (le, e 7Xj'u) = kEIElOOG (Mk,i7 (le, . 7va)), (2211)
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where My, ; = o(X;,k < j <1i). Now, letting
f(ka s 7X ) - SlgD{E J1a B anu)|Mk,i) - ]E(g(lev s 7va))}7
we have that, for (i,4) in T'(1,v, k) and g in AM)(8,),

IE(g(X0s -y X5, ) [Mii) —E(g(XG,, -, X5,)
= Cov(f(Xp,..., Xi),9(Xj,,...,Xj,)) <vb(k) .
We infer that .
(Mk 2] ( j17 . X ) ( )
and we conclude from (2.2.11) that 01 o (k) < 6(k). The proof is complete. [
Having in view the coupling arguments in § 5.3, we now define a variation of
the coefficient (2.2.8) where we exchange the order of ||.||, and the supremum.
This is the same step as passing from a—mixing to f—mixing, which is known
to ensure nice coupling arguments (see Berbee, 1979 [16]).

Definition 2.4. Let (22, A, P) be a probability space, and M a o-algebra of A.
Let X be a Polish space and § a distance on X. For any LP—integrable (see
§ 2.1)) X-valued random variable X, we define the coefficient 1, by:

ge?\l(llr))(g){/g(x)PX|M(d$) —/g(x)]P’X(dx)}

where Px is the distribution of X and Px | is a conditional distribution of X
given M. We clearly have

(M, X) = (2.2.12)

0,(M,X) < 7,(M, X). (2.2.13)

Let (X;)iez be a sequence of LP-integrable X-valued random wvariables. The
coefficients 1, »(k) are defined from 7, as in (2.2.9).

2.2.3 @, ( and ¢-coefficients.

In the case where X = (R?)", we introduce some new coefficients based on
indicator of quadrants. Recall that if 2 and y are two elements of R?, then
x <y if and only if z; < y; for any 1 < i < d.

Definition 2.5. Let X = (X4,...,X,) be a (Rd)r—valued random variable and
M a o-algebra of A. Fort; in R? and x in RY, let gy, i(x) = Lo, —P(X; < t5).

Keeping the same notations as in Definition 24, define for t = (t1,...,t,) in
RY)",

LX\M /Hgt“ CEZ ]Px|M(dCE) and LX EHgt“

Define now the coefficients
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1 aM, X) = sup [[Lxjm(t) = Lx ()]
te(R4)r

2. fM, X) =

sup | Lxaa(t) = Lx (D) | -
te(Rd)r 1

3. ¢(M,X) = sup |Lxjm(t) = Lx(t)]oo-
te(Rd)r

Remark 2.3. Note that if r = 1,d = 1 and é(x,y) = |z — y|, then, with the
above notation,

71<M,X>=/|\LX|M<t>||1dt.

The proof of this equality follows the same lines than the proof of the coupling
property of 71 (see Chapter 5, proof of Lemma 5.2).

In the definition of the coefficients 8 and 7, we have used the class of func-
tions A(M)(§). In the case where d = 1, we can define the coefficients &(M, X),
B(M, X) and ¢(M, X) with the help of bounded variation functions. This is
the purpose of the following lemma:

Lemma 2.1. Let (Q,A,P) be a probability space, X = (X1,...,X,) a R"-
valued random variable and M a o-algebra of A. If f is a function in BVy, let
fO(x) = f(x) —E(f(X:)). The following relations hold:

L aM, X) = E(T]r0x0|m) -5 ([0,
ol ) f1,...?}l};Bv1 <i1:[1f1 ( ) (il:llfz ( )) 1
2. BM, X) = 1).”?;1123% /Hf (@:) (Px i — Px) (dz)

3 (M, X) = sup

f1,e fr€BVY

E (H £ (Xi)IM> ~E (H £ (X»)

i=1 i=1

o0

Remark 2.4. Forr =1 and d = 1, the coefficient &(M, X) was introduced
by Rio (2000, equation 1.10c [161]) and used by Peligrad (2002) [140], while
71 (M, X) was introduced by Dedecker and Prieur (2004a) [45]. Let (M, o(X)),
B(M, (X)) and p(M, (X)) be the usual mizing coefficients defined respectively
by Rosenblatt (1956) [166], Rozanov and Volkonskii (1959) [187] and Ibragimov
(1962) [110]. Starting from Definition 2.5 one can easily prove that

&M, X) < 2a(M,a(X)), BM,X) < B(M,0(X)), pM,X) < $(M,0(X)).
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Proof of Lemma 2.1. Let f; be a function in BV;. Assume without loss of
generality that f;(—oo) = 0. Then

fO (@) = - / (Lot — B(X; < 1)) dfi(t).

Hence,

/Hf (2:)Px | (dz) = / /Hgt ()P x m dl‘)dez i)

and the same is true for Px instead of Px . From these inequalities and the
fact that |df;|(R) < 1, we infer that

k

k
o | [T woPxatan) — [ T[57 Px(an)

fio fe€BVY i1
< sup [Lxm(t) — Lx(t)] -
teRT

The converse inequality follows by noting that x — 1,<; belongs to BV, . 0O
The following proposition gives the hereditary properties of these coefficients.

Proposition 2.4. Let (Q, A, P) be a probability space, X an R"-valued, random
variable and M a o-algebra of A. Let g1, ..., g be any nondecreasing functions,
and let g(X) = (91(X1),...,9-(X;)). We have the inequalities &(M, g(X)) <
a(M, X), f(M,g(X)) < (M, X) and $(M,g(X)) < ¢(M, X). In particu-
lar, if F; is the distribution function of X;, we have &(M, F(X)) = a(M, X),
BM, F(X)) = H(M, X) and (M, F(X)) = 3(M, X).

Notations 2.1. For any distribution function F', we define the generalized
inverse as

F~'z) =inf{t eR/F(t) > z}. (2.2.14)
For any non-increasing cadlag function f : R — R we analogously define the
generalized inverse
F7Hu) = inf{t/f(t) < u}.

Proof of Proposition 2.4. The fact that &(M,g(X)) < &(M,X) is immedi-
ate, from its definition. We infer that &(M, F(X)) < &M, X). Applying
the first result once more, we obtain that a(M,F HF(X))) < &M, F(X)).

To conclude, it suffices to note that F~* o F/(X) = X almost surely, so that
a(M, X) < a(M,F(X)). Of course, the same arguments apply to G(M, X)
and p(M, X). O

We now define the coefficients a,.(k), B.(k) and ¢, (k) for a sequence of o-
algebras and a sequence of R%valued random variables.
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Definition 2.6. Let (2, A,P) be a probability space. Let (X;)icz be a sequence
of Re-valued random variables, and let (M;)icz be a sequence of o-algebras of
A. Forr e N* and k > 0, define

ar (k) = max sup &M, (X;,,...,X;)) . (2.2.15)
LSIST (4 5)en(1,1,k)

The coefficients B,.(k) and ¢, (k) are defined in the same way. When it is not
clearly specified, we shall always take M; = o(Xy, k < 1).

2.2.4 Projective measure of dependence

Sometimes, it is not necessary to introduce a supremum over a class of functions.
We can work with the simple following projective measure of dependence

Definition 2.7. Let (2, A,P) be a probability space, and M a c-algebra of A.
Let p € [1,00]. For any LP—integrable real valued random variable define

(M, X) = [E(X|M) = E(X)]|,- (2.2.16)

Let (X;)iez be a sequence of LP —integrable real valued random variables, and
let (M;)iez be a sequence of o-algebras of A. The sequence of coefficients vy (k)
is then defined by

(k) = Sug“Yp(Mi,XHk) : (2.2.17)
1€

When it is not clearly specified, we shall always take M; = o( Xy, k <1).

Remark 2.5. Those coefficients are defined in Gordin (1969) [97], if p > 2 and
in Gordin (1973) [98] if p = 1. Mc Leish (1975a) [128] and (1975b) [129] uses
these coefficients in order to derive various limit theorems. Let us notice that

(M, X) < 0,(M, X). (2.2.18)



Chapter 3

Models

The chapter is organized as follows: we first introduce Bernoulli shifts, a very
broad class of models that contains the major part of processes derived from a
stationary sequence. As an example, we define the class of Volterra processes
that are multipolynomial transformation of the stationary sequence. We will
discuss the dependence properties of Bernoulli shifts, whether the initial is a
dependent or independent sequence. When the innovation sequence is indepen-
dent, we will distinguish between causal and non-causal processes. After these
general properties, we focus on Markov models and some of their extensions,
as well as dynamical systems which may be studied as Markov chains up to a
time reversal. After this we shall consider LARCH(co)-models which are built
by a mix of definition of Volterra series and Markov processes and will provide
an attractive class of non linear and non Markovian times series. To conclude,
we consider associated processes and we review some other types of stationary
processes or random fields which satisfy some weak dependence condition.

3.1 Bernoulli shifts

Definition 3.1. Let H : R? — R be a measurable function. Let (£,)nez be a
strictly stationary sequence of real-valued random variables. A Bernoulli shift
with innovation process (§n)nez is defined as

X, = H ((§n-i)icz) , n € Z. (3.1.1)
This sequence is strictly stationary.

Remark that the expression (3.1.1) is certainly not always clearly defined; as H
is a function depending on an infinite number of arguments, it is generally given
in form of a series, which is usually only defined in some LL? space. In order to

21
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define (3.1.1) in a general setting, we denote for any subset J C Z:

H ((élj)je‘;) =H ((S—j 1j€J)jeZ)'

For finite subsets J this expression is generally well defined and simple to handle.
In order to define such models in L™ we may assume

> Wi < 00, (3.1.2)
n=1

where, for some m > 1:

m

it = EH (€3 jien) = H (€120 (3.1.3)

This condition indeed proves that the sequence H ((f,j)m <n) has the Cauchy

property and thus converges in the Banach space L™ of the classes of random
variables with a finite moment order m.

In fact the strict definition of the function H as an element of the space
L™(RZ,B(R?), 1) is the following. Denote by u the distribution of a process
¢ = (&)tez. The measure p is a probability distribution on the measurable
space (RZ, B(R?)). If as before we assume that ¢ is stationary, that S C R is
the support of the distribution of &y, and that S C R? is the support of the
distribution of the sequence &, then the random variable H defines a function
over § O S@ where S@ is the set of sequences with values 0 excepted for
finitely many indices. Now given a function defined over R®) the previous
condition (3.1.2) ensures that such a function may be extended to a function
H € L™(R? B(R?), p).

Dependence properties. No mixing properties have been derived for such
models excepted for the simple case of m-dependent Bernoulli shifts, i.e. when
H depends only on a finite number of variables.

3.1.1 Volterra processes

The most simple case of infinitely dependent Bernoulli shift is the infinite moving
average process with independent innovations:

Xt = Zai&ﬂ‘ (3.1.4)

This simple case is generalised by Volterra processes defined with use of poly-
nomials of the innovation process. A Volterra process is a stationary process
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defined through a convergent Volterra expansion

X: = v+ Z Vieit, where (3.1.5)
k=1

Vk;t - Z ak;il,...,ikft—il e gt—ik) (31'6)
i <o <

and vy denotes a constant and (ak;il7,,,,1»,6)(1-1,___“)621@ are real numbers for each
k > 1. Let p > 1, then this expression converges in P, provided that E|& [P < co
and the weights satisfy

oo
Z Z |ak;i1,...7ik|p<oo.

k=111 <---<ig

If the sequences ay;i,,...;,, = 0 as i3 < 0 then the process is causal in the sense
that X; is measurable with respect to 0{&;,7 < t}. In this case t may be seen
as the usual time o{&;,7 < t} denotes the history at epoch t.

Assume now that p = 2, E&y = 0 and E¢? = 1, then the k—th order ho-
mogeneous chaotic processes Vj.; are pairwise orthogonal, and it is thus enough
to prove the existence of such homogeneous processes (3.1.6) in L? in order
to obtain the existence of the more general Volterra processes (3.1.5). Normal
convergence of V., follows clearly from the convergence of the series defining its
variance I'}

l"i = Z alzl;w»yik—l,ik < 00.

0<iy < <ip_1

For the general infinite order Volterra series (3.1.5), the corresponding variance
is trivially related by orthogonality:

r? = ZF% < oo.
k=1

The formula defining Volterra processes can be generalized to expansions

Xp=vo+ Y Vi, where Vi = D kiiy, inemin - &ohy  (31.7)
k=1 (i1yeeeyin ) EZF

and vy denotes a constant and (ak;il).”,ik)(il)'..7ik)ezk are real numbers for each
k > 1. The major difference with the preceding definition is the fact that the
indices in the product are not all different. Let p > 1, then the series converges
in L? provided that the weights satisfy

ZE|§0|pk Z |ak;i1,---7ik|p < Q. (318>
k=1

i1 <<
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The drawback of this generalization is the loss the properties of orthogonality
and moments derived for the models (3.1.5). It is but possible to rewrite the
process as a sum of orthogonal term by relaxing the condition of identical dis-
tribution and independence of the innovation process. Consider more general
Volterra processes defined under the same condition (3.1.8) by

k k.1 .k
Vk;t = Z a;l;)“wjkf‘g*jl) e gt(*jk) (3'1'9)

J1<-<Jjk

For a fixed k > 0, the series ({Ek’l))tez are i.i.d. and mutually orthogonal for
[ < k. Clearly, models (3.1.5) have this form but it is also interesting to see
that models (3.1.7) may also be written as sums of such models. Consider an
expansion (3.1.7), we may assume without loss of generality that j; < -+ <
i and that E§y = 0; we replace each power of an innovation variable by its
decomposition on the Appell polynomial of the distribution of &. For example
the squares will be replaced by

& =& —0°)+0”=A (&) + 0>

For higher order polynomials, recall that Appell polynomials (see e.g. Doukhan,
2002 [62]) are defined as Ay (&—;) = & ;+- - - in such a way that EA,(&)P(&) =
0 if the degree of the polynomial P is less than k. Replacing all the powers with
the help of such Appell polynomial leads to a decomposition (3.1.9) in orthogonal
terms.

Dependence properties. Note that such models may have no weak depen-
dence properties, as in the case of simple moving averages, see Doukhan, Op-
penheim and Taqqu (2003) [72] for a thorough survey of strongly dependent
Volterra processes. No mixing property have been derived in the general case.
The degenerated case of m dependence, when V; depends only on the &_; for
i =1 to m, so that only a finite number of coefficients in each series are nonzero,
satisfies any of the mixing properties. The mixing properties of causal linear
processes corresponding to the term Vi, with a;, = 0 when ¢; < 0 were derived
under the strong additional assumption that &y’s distribution admits a density
which is itself an absolutely continuous function; see Doukhan, 1994 [61] for ref-
erences, in this monograph the proof of mixing for non causal linear processes
is not complete.

3.1.2 Noncausal shifts with independent inputs

Assume here that the shift is well defined and that the sequence of innovations
(&) is ii.d.
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Dependence properties. In order to prove weak dependence properties,
once the existence and measurability of the function H is ensured, it is suf-
ficient to assume the sequence {4, }ren defined by:

E|H (&—j.j € Z) — H (&4—51j<,nJ € Z)| =6, (3.1.10)

converges to 0 as r tends to infinity. Note that a simple bound for §, is 6, <
> isr wii- The following elementary lemma is easily proved:

Lemma 3.1. Bernoulli shifts are n—weakly dependent with

n(r) < 2009

Proof. Let x = H((€n—i1)ij<s)). Clearly, the two sequences (X,(f))ngi and

(X,(f))nzlurr are independent if r > 2s; now consider Cov(f,g) for the functions
f = f( X, ..., Xin), 8 = 9(Xj,,...,X,,), where f and g are bounded and
f.og € AV(|-|1) with |-|; defined by (2.2.2). Let i; < --- <4, and j; < --- < 7,
such that j; —4, > 2s. From the previous remark, f(*) = f(X-(S), ... in(j)) and

21

gl =g(X J(f), X j(f)) are independent, and consequently

[Cov(f,g)] < ‘COV(f—f(S),g)‘+‘COV(f(S),g—g(S))‘

< 2l | = £9)] + 201 ]l E | — )

< 2Hg||ooLiprE\Xit—X§j> +2|\f|\ooLingE‘th—X§f)
t=1 t=1

< 2(ullgllclip f + v[| fllcLipg)ds . O

The sequence (dy )k is related to the modulus of uniform continuity of H. Under
the following regularity conditions:

|H(ui, i€ Z) — H(’Ui, RS Z)| < Zaz|ul — ’Ui|b,
i€Z

for some non negative constants (a;);ez,0 < b < 1 and if the sequence (&;)icz
has finite b-th order moment, then d; < Z aiE|§i|b.

[i|>k
Recall here that processes can be n-weakly dependent and nonmixing, see § 1.5.

3.1.3 Noncausal shifts with dependent inputs

The condition of independent inputs ¢ may be relaxed. E.¢g. in eqn. (3.1.4),
instead of independence, assume that the sequence (&, )nez is ne-weak dependent
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then the process (Xy, )nez is n-weak dependent with 7(r) < ne(r/2) 4, /2. Such
an heredity property of weak dependence is unknown under mixing. A general
statement of this property is provided below in lemma 3.3. Let us now note
by (& )iez a weakly dependent innovation process. The coefficient A is proved
to very useful to study Bernoulli shifts X,, = H(§,—;,j € Z) with weakly
dependent innovation process (&;); from the forthcoming lemma (see Doukhan
and Wintenberger, 2005 [77]).

Let H : R* — R be a measurable function and X,, = H(&,_;,i € Z). In order
to define X,,, we assume that H satisfies: for each s € Z, if x,y € R? satisfy
x; = y; for each index i # s

|H(x) — H(y)| < bs(sliplxillV1)lws — Yl (3.1.11)

where z is defined by zs = 0 and z; = x; = y; for each ¢ # s. This assumption
is stronger than in the case of independent innovations (see equation (3.1.10)).
The following lemma proves the existence of such models:

Lemma 3.2. Let X,, = H(,—;,1 € Z) be a Bernoulli shift such that H : RZ —
R satisfies the condition (3.1.11) with 1 > 0 and some sequence by > 0 such that
S, Islbs < co. Assume that E|&|™ < oo with Im +1 < m/ for some m > 2.
Then X,, = H(&,—;,1 € Z) is a strongly stationary process, well defined in L™.

The existence of example (3.1.4) was stated without proof, we now precise more
involved examples of Bernoulli shifts with dependent innovations:

Example 3.1 (Volterra models with dependent inputs.). Consider

(k)
S D DRI,

k=0 j1,..,jk
then if x,y are as in eqn. (3.1.11):

k
H@)=H@) = Y ) i @i Ty (T —Ys) Ty o T

1<u<k<K

Jut1s s Ik

From the triangular inequality we derive that suitable constants in condition
(3.1.11) may be chosen asl =K —1 and

()
bs —ZZ ai)

where Z(k’s) stands for the sums over all indices in Z* and one of the indices
J1s- ., ]k takes the value s
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Example 3.2 (Uniform Lipschitz Bernoulli shifts). Assume that the condition
(8.1.11) holds with I = 0, then the previous result still holds. An example of
such a situation is the case of LARCH(c0) non-causal processes with bounded
(m’ = +00) and dependent stationary innovations.

Proof of lemma 3.2. We first prove the existence of Bernoulli shift with de-

pendent innovations in L!. The same proof leads to the existence in L™ for
all m > 1 such that Im +1 < m’. Here we set () = (§-iljjj<s)icz and

Er (€_il_s<i<s)iez for i € Z U {oo}. In order to prove the existence of
Bernoulli shift with dependent innovations, we show that H(£(°)) is the sum
of a normally convergent series in IL'. Then formally

Xo=H(E™)) = H(0) + (H(EW) ~ H(0))
+§j( H(ES) — HED) + (HE) ~ HEW).

With (3.1.11) we obtain

|H(EW) = H(©0)] < bolél,

[HE) —HED] < bea(sup fel VDI,
H(ED) - HEW] < be(sup [€-4l' V DIE
Holder inequality yields
H(EW) - \}]MHS“> HED)| +E[H(ED) - H(E)

<> 20ifbi(ll&ll + 1%l (3.1.12)

€L

Hence assumption [ +1 < m/ with »_,_, [i[b; < oo together imply that the
variable H () is well defined. The same way proves that the process X,
H(&,_4,1 € Z) is a well defined process in L' and that it is strongly stationary.
We can extend this result in L™ for all m > 1 such that Im +1 < m/.

Dependence properties. Such models are proved to exhibit either A- or
n-weak dependence properties, as described below.

Lemma 3.3. Assume that the conditions of lemma 3.2 are satisfied
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e if the innovation process (& )icz is A\-weakly dependent (with coefficients
Ae(r)), then X, is A-weakly dependent with

Ak) =c inf (Z| |b) (2r+1)2A5(k—2r)2i‘115).

r<[k/2]

e if the innovation process (&;)icz is n-weakly dependent (with coefficients
ne(r)) then X, is n-weakly dependent and there exists a constant ¢ > 0
such that

n(k) = c 1nf Z| |b; | v ( o + 1)1+m'll775(/€—2r):§’?> .

<[k/2]

Because Bernoulli shifts of k-weak dependent innovations are neither - nor 7-
weakly dependent, the case of k dependent innovation is here included in that
of X\ dependent inputs.

The proof of lemma 3.2 will be given below. If the weak dependence coeffi-
cients of £ are regularly decreasing, it is easy to explicit the decay of the weak
dependence coefficients of X:

Proposition 3.1. Here A > 0 and n > 0 are constants which can differ in each
case.

o Ifb; = O(i7") for some b > 2 and A¢(i) = O (i), resp. ne(i) =
O@G™) (as i | o0) then from a simple calculation, we optimize both

m/—1-1

terms in order to prove that A(k) = O <I€_)‘(1_§)M’1+l>, resp. n(k) =

(b—2)(m' —2)
@ <k M (p=1)(m’ =1)~ l). Note that in the case m' = oo this exponent is ar-

bitrarily close to A for large values of b > 0 and takes all possible values
between 0 and .

o If b = O(e™™) for some b > 0 and Ae(i) = O (e™™), resp. n¢(i) =
. b(m’ —1-1)
O (e7™) (asi 1 o0) we have A(k) = O (k2eAkb(m/—1+l>+2n(m'—1—z) ) , Tesp.

m o1l b(m’ ~2)
nk)=0k -1 e "kb(m/—1J+2n<m/—2>>, The geometrical decays for both

(b;)i and coefficients of the innovations ensure the geometric decay of the
weakly dependence coefficient of the Bernoulli shift.

o [fthe Bernoulli shift coefficients have a geometric decay, say b; = O (e*ib)
and Xe(i) = O(i™), resp. me(i) = O™ (as i 1 o0) we find



3.1. BERNOULLI SHIFTS 29

A(k) = O ((log k)%AZ'—M), resp. n(k) = O ((log k) o1 g ”m/—f>
Ifm' = oo this means that we only lose at most a factor log? k with respect
to the dependence coefficients of the input dependent series (§;);.

Proof of lemma 3.3. We exhibit some Lipschitz function by using a convenient
truncation. Write £ = £V (=T) AT for a truncation T which will be precisely

stated later. Asin the proof of Lemma 3.1, we denote by X = H((&n—iljij<r))

and XS) = H((&,,_;1)i<s)). Furthermore, for any k£ > 0 and any (u+ v)-tuples

such that s1 < - < sy < sy +k < t1 < -+ < ty, set Xg = (Xgy,...,Xs,),
Xe = (X1,.., %) and X7 = (x\7 x") x = x0 x7),

Then we have for all f, g satisfying || f|co, [|¢]|lcc < 1 and Lip f + Lip g < oo:

Cov(f(Xs), g(Xe)| < [Cov(f(Xs) — FXS),g(X0)]  (3.1.13)
+ Cov(F(X), g(Xe) — g(X\7))] (3.1.14)
+ |Cov(F(x),g(x )], (3.1.15)

Using that ||g|lco < 1, the term (3.1.13) in the sum is bounded by

2Lip f - E[ Y (X,, - X))
i=1

< 2uLipf(lrga<x E|X,, — X{)| + max E[X(") - if’\).

With the same arguments as in the proof of the existence of H(£(>)) (see equa-
tion (3.1.12)), the first term in the right hand side is bounded by (|[&oll1 +

1€0[l;51) X5 2li[bi. Notice now that if 2,y are sequences with z; = y; = 0 if

|i| > 7 then a repeated application of the previous inequality (3.1.11) yields
|H(z) — H(y)| < L(llzl% vyl v Dlle =yl (3.1.16)

where L =3, |i[b; < co. The second term is bounded by using (3.1.16):

Bl () - 1 (")

l
LE <max |gz|) S {lglte o1}

r<i<
—r<j<r

E|x( - X7

IN

IN

L(2r +1)°E ( max |€7,| {|§J|1|£]>T})

L(2r + 1)2||€o|\me”1’m

IN
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The term (3.1.14) is analogously bounded. We write (3.1.15) as

Cov(F" (& i1 <i<u, il <), G (&g 1 <i <, lj] <),

where F : R¥Cr+1) R and G : R¥2r+1) L R, If r < [k/2], assume that
¢ is n weakly dependent (resp. A-weak dependent) to bound this covariance by

¥ (Lip F(T),Lip G(T),u(Zr + 1),v(2r + 1))eg—_2,, where ¥(u,v,a,b) = wvab and
€ = n; (resp. ¥(u,v,a,b) = uvab + ua +vb and €; = \;). Let © = (x1,...,2y)

and ¥y = (y1,...,ys) where x;,y; € R**1: a bound for Lip F(T) writes as the
supremum over sequences ,y of:

lf(H(zs, 41,1 < i Su [l <7) = f(H(ys 1 S i< I < 7))
> izt g = wjll '
Using (3.1.16), we have:

Lip fL S (s, lloe V 1 lloo v 1) llzs, =y, |

(r) (r)
[F () = F (y)| <
i=1
< LiprTlZ Z |$5i+l_y5i+l|'
i=1 —r<I<r

Hence Lip F") < Lip f - L - T" and, similarly, Lip G < Lipg- L - T".
e Under n-weak dependence, we bound the covariance as:

[Cov(f(Xe), g(Xe))| < (uliip f + vLipg)
x [43 lilbillgolls + Igolli D)

>r
+(@2r+ 1)L ((2r +1)2)| &)™ T 4 Tl (k — 27‘)) }
We then fix the truncation 7™ 1 = 2(2r + 1)||&||7% /n¢(k — 2r) to obtain the

result of the lemma 3.3 in the n-weak dependent case.
e Under A-weak dependence, we obtain:

|Cov(f(Xs),g(Xt))| < (uLip f + vLip g + uvLip fLip g)
x ({4 lilbi (gl + ol 1)

i>r
+ @+ DL (2020 + DT ol + T (b —2r) }
v {(@r+ DL (k- 20} )

With the truncation such that 7'+ ~1 = 2H§0||m:/(L/\§(k— 2r)), we obtain the
result of the lemma 3.3 in the present n-weak dependent case. O]
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3.1.4 Causal shifts with independent inputs

Let (&;)icz be a stationary sequence of random variables with values in a mea-
surable space X'. Assume that there exists a function H defined on a subset of
XN with values in R and such that H (&, & 1,€ o, ...) is defined almost surely.
The stationary sequence (X,,)nez defined by

Xp = H(én €no1,6n2,...) (3.1.17)

is called a causal function of (&;);cz.

In this section, we assume that (&;);ez is i.i.d. In this causal case, another way
to define a coupling coefficient is to consider a non increasing sequence (gp,n)nzo
(p may be infinite) such that

Opn = [ X0 = Xallp, (3.1.18)

where X; = H(ét,ét,l,ét,g, R fn =&, if n> 0 and fn = ¢/ for n <0 for an
independent copy (&} )tez of (&)icz. Here X; has the same distribution as X
and is independent of Mg = o(X;,7 <0).

Dependence properties. In this section, we shall use the results of chapter
5 to give upper bounds for the coefficients 0, o (1), Tp.oo(n), &x(n), Br(n) and
¢r(n). More precisely, we have that

L. 0y oo(n) < Tpoo(n) < dpn.

2. Assume that Xy has a continuous distribution function with modulus of
continuity w. Let g,(y) = y(w(y))'/?. For any 1 < p < 0o, we have

() < ) <26( 0 o

In particular, if Xy has a density bounded by K, we obtain the inequality
Br(n) < 2k(K 6, )P/ PH1),

3. Assume that Xy has a continuous distribution function, with modulus of
uniform continuity w. Then

dr(n) < Pr(n) < dr(n) < kw(boon).
4. For ék(n) it is sometimes interesting to use the coefficient

G = IIE(| X0 — X[ IMo) [P

- d
With the same notations as in point 2, ¢x(n) < Qk( P ))p
g
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The point 1. can be proved by using Lemma 5.3. The points 2. 3. and 4. can
be proved as the point 3. of Lemma 5.1, by using Proposition 5.1 and Markov
inequality.

Application (causal linear processes). In that case X,, = Zajfn_j. One
Jj=0
can take 9, , = 2|/, Z laj|. For p =2 and E{; = 0 one may set
jzn
1

0. = (2EE Y a?)’

Jjzn

For instance, if a; = 2771 and & ~ B(1/2), then §; « < 27% Since X is
uniformly distributed over [0, 1], we have ¢; (i) < 27, Recall that this sequence
is not strongly mixing (see section 1.5).

Remark 3.1. By interpreting causal Bernoulli shifts as physical systems, de-
noted X¢ = g(...,e—1,€) Wu (2005) [188] introduces physical dependence coef-
ficients quantifying the dependence of outputs (X;) on inputs (¢;). He considers
the nonlinear system theory’s coefficient

5t = Hg( -5 €0y - "7€t7176t) _g( "76717667' "76t717€t)H2

with € an independent copy of €. This provides a sharp framework for the study
of the question of CLT random processes and shed new light on a variety of prob-
lems including estimation of linear models with dependent errors in Wu (2006)
[191], nonparametric inference of time series in Wu (2005) [192], representa-
tions of sample quantiles (Wu 2005 [189]) and spectral estimation (Wu 2005
[190]) among others. This specific IL?-formulation is rather adapted to CLT and
it is not directly possible to compare it with T-dependence because coupling is
given here with only one element in the past. Justification of the Bernoulli shift
representation follows from Ornstein (1973) [158].

3.1.5 Causal shifts with dependent inputs

In this section, the innovations are not required to be i.i.d., but the method
introduced in the preceding section still works. More precisely, assume that
there exists a stationary sequence (£});ez distributed as (§;);ecz and independent

of (&)ico. Define X, = H(€,, ¢, 1, € ,,...). Clearly X, is independent of
Mg = o(X;,i < 0) and distributed as X,,. Hence one can apply the result of
Lemma 5.3: if (6p.n)n>0 I a non increasing sequence satisfying (3.2.2), then the
upper bounds 1. 2. 3. and 4. of the preceding section hold.

In particular, these results apply to the case where the sequence (&;)cz is -

mixing. According to Theorem 4.4.7 in Berbee (1979) [16], if € is rich enough,
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there exists (&])icz distributed as (&)icz and independent of (§;):<o such that
P(& # & for some i > k) = B(0(&i,i < 0),0(&,1 = k)).
Application (causal linear processes). In that case X,, = Ejzo aj&n—j-

For any p > 1, we can take the non increasing sequence (3, ,,)n>0 such that

dp,n 2 |10 _goHpZ |aj| + Z |all[&i—; — &i- J”p Z |a;l[&i—5 — i—j”P'

Jjzn Jj=0

From Proposition 2.3 in Merlevede and Peligrad (2002) [130], one can take

B0 (€xk<0),0(Ex k>i—3)) 1/p
o > 60— Ellp 3 oyl + Z ol (2 [ Q2 (w) " du,

ji>n

where Q¢, is the generalized inverse of the tail function z — P(|§o] > ) (see
Lemma 5.1 for the precise definition).

3.2 Markov sequences

Let (Xn)n>1-4 be sequence of random variables with values in a Banach space
(B, || - ||)- Assume that X,, satisfies the recurrence equation

Xp=F(Xn_1,..., Xn_a:&n)- (3.2.1)

where F'is a measurable function with values in B, the sequence (§,)n>0 is i.i.d.
and (&,)n>0 is independent of (X, ..., X4-1). Note that if X,, satisfies (3.2.1)
then the random variable Y,, = (X,,,..., X,,_4+1) defines a Markov chain such
that Y, = M(Y,,—1;&,) with

M(xla'“axd;é-): (F(xl,...7$d;£),x1,...,$d,1).

Dependence properties. Assume that (Xn)ngd—l is a stationary solution
to (3.2.1). As previously, let Yy = (Xo, ..., X1 _q), and let Yy = (Xo,..., X1 q)
be and independent vectors with the same law as Yy (that is a distribution
invariant by M). Let then X, = F(Xn 1yeeoy X 4;&n). Clearly, for n > 0,
X,, is distributed as X,, and independent of /\/lo =0(X;,1—-d<i<0). As
in the preceding sections, let (gp,n)nzo (p may be infinite) be a non increasing

sequence such that ~
opn > (E[| X, — X, ||P)V/P. (3.2.2)

Applying Lemma 5.3, we infer that

1

IN

Op,00(n) < Tp,oo(n2)
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For the coefficients @y (n), B (n) and ¢y (n) in the case B = R, the upper bounds
2., 3., and 4. of section 3.1.4 also hold under the same conditions on the distri-
bution function of Xj.

Assume that, for some p > 1, the function F' satisfies

d d
(EF(2;6) — Fi:e)lIP)r <Y aillai—will, Y ai<1. (3.2.3)
=1

i=1
Then one can prove that the coefficient 7, «o(n) decreases at an exponential
rate. Indeed, we have that

d
§ p7n i

For two vectors z,y in RY, we write 2 < y if 2; < y; for any 1 < i < d. Using
this notation, we have that

(Sp,n; ey Sp,n—d+l)t S A(Sp,n—la ceey Sp,n—d)t )

with the matrix A equal to

ay a2 - - - Qq4—1 Q4
1 0 - - - 0 0
o 1 - - - 0 0
o o - - - 1 0

Iterating this inequality, we obtain that
(Bpyns -+ Opin—ds1)’ < A™(Gp0, -+ Op1-a)" -

Since Z‘ii:l a; < 1, the matrix A has a spectral radius strictly smaller than 1.
Hence, we obtain that there exists C' > 0 and p in [0, 1] such that §,,, < Cp™.
Consequently

Op.co(n) < Tpoo(n) < Cp™.
If B = R and the condition (3.2.3) holds for p = 1, and if the distribution
function Fx of Xy is such that |Fx(x) — Fx(y)| < Kl|x —y|” for some ~ in |0, 1],
then we have the upper bound

an(n) < Br(n) < 26K Y OFD /(1) pry/(+1)
If the condition (3.2.3) holds for p = oo, then
agp(n) < Bk(n) < &k(n) < kKC“p™.

We give below some examples of the general situation described in this section.
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3.2.1 Contracting Markov chain.

For simplicity, let B = R, and let || - || be a norm on R?. Let F be a R? valued
function and consider the recurrence equation

Xn = F(Xn-1;6n). (3.2.4)
Assume that
AP =E||F(0;&1)[P < oo and E||F(x,&) — F(y,&)||P < aP|lz —y||”, (3.2.5)

for some a < 1 and p > 1. Duflo (1996) [81] proves that condition (3.2.5) implies
that the Markov chain (X;);en has a stationary law p with finite moment of
order p. In the sequel, we suppose that p is the distribution of Xy (i.e. the
Markov chain is stationary).

Bougerol (1993) [27] and Diaconis and Friedmann (1999) [60] provide a wide
variety of examples of stable Markov chains, see also Ango-Nzé and Doukhan
(2002) [7].

Dependence properties. Mixing properties may be derived for Markov
chains (see the previous references and Mokkadem (1990) [132]), but this prop-
erty always need an additional regularity assumption on the innovations, namely
the innovations must have some absolutely continuous component. By contrast,
no assumption on the distribution of £; is necessary to obtain a geometrical de-
cay of the coefficient 7, o (n). More precisely, arguing as in the previous section,
one has the upper bounds: if X, is independent of Xy and distributed as Xy,

Op,00(n) < Tp,oo(n) < || Xo — Xollpa™.

In the same way, if each component of Xy has a distribution function which is
Holder, then the coefficients a(n) and S (n) decrease geometrically (see lemma
5.1).

Let us show now that contractive Markov chains can be represented as
Bernoulli shifts in a general situation when X; and (; take values in Euclidean
spaces R? and RP| respectively, d, D > 1 with || - || denoting indifferently a norm
on R” or on R?. Any homogeneous Markov chain X; may also be represented
as solution of a recurrence equation

Xp = F(Xp1,6n) (3.2.6)

where F(u, z) is a measurable function and (&, ),>0 is an i.i.d. sequence inde-
pendent of Xy, see e.g. Kallenberg (1997, Proposition 7.6) [111].

Proposition 3.2 (Stable Markov chains as Bernoulli shifts). The stationary
iterative models (3.2.6) are Bernoulli shifts (3.1.17) if condition (3.2.5) holds.
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Proof. We denote by p the distribution of ¢ = ((,)nen on (RD)N. We de-
fine the space LP(1, R?) of R?-valued Bernoulli shifts functions H such that
H((o,C1,-..) € LP. We shall prove as in Doukhan and Truquet (2006) [76] that
the operator of ]LP(ILL,Rd) ®: H— K with K(Co, Cla .. ) = M(H(Cl, <2, .. .), CO)
satisfies the contraction principle. Then, Picard fixed point theorem will allows
to conclude.

We first mention that the condition (3.2.5) implies ||M (z, (o)ll, < A + a|z|
hence with independence of the sequence ¢ this yields | K|, < A + a|H]||,;
thus ®(ILP (u, R?)) C LP(u, RY). Now for H, H' € LLP(u, R?) we also derive with
analogous arguments that |®(H) — ®(H')||, < a|H — H'||,. O

Remark 3.2. [t is also possible to derive the Bernoulli shift representation
through a recursive iteration in the autoregressive formula.

3.2.2 Nonlinear AR(d) models

For simplicity, let B = R. Autoregressive models of order d are models such
that:
Xn=r(Xp-1,..., Xn-a) +&n. (3.2.7)

In such a case, the function F' is given by
Fluyy...,uq, &) =r(ug,...,uq) + &,

Assume that E|&; [P < oo and that

d
[r(uty .. ug) — r(vi, ... v)| < Zaﬂui —v;
i=1
d
for some aq,...,aq > 0 such that a = Zai < 1. Then the condition (3.2.3)
i=1

holds, and we infer from section 3.2 that the coefficients 7, o (n) decrease expo-
nentially fast.

3.2.3 ARCH-type processes
For simplicity, let B = R. Let

F(u,z) = A(u) + B(u)z (3.2.8)

for suitable Lipschitz functions A(u), B(u),u € R. The corresponding iterative
model (3.2.6) satisfies (3.2.5) if

a = Lip (A) + [|& |, Lip (B) < 1.
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If p=2and E(&,) = 0, it is sufficient to assume that

o= /(Lip (4)) + E(€) (Lip (B))® < 1.

Some examples of iterative Markov processes given by functions of type (3.2.8)
are:

e nonlinear AR(1) processes (case B = 1);

e stochastic volatility models (case A = 0);

e classical ARCH(1) models (case A(u) = au, B(u) = /3 + 7u2 « ﬁ v >0).
In the last example, the inequality (3.2.5) holds for p =2 with a? = o + E£2.
A general description of these models can be found in Section 3.4.2.

3.2.4 Branching type models

Here B = R and &, is RP-valued. Let &, = ( 7(11), . 7&(LD)). Letnow Ay, ..., Ap
be Lipschitz functions from R to R, and let

D
F (u, (2(1), .. .,z(D))) = ZAj(“)Z(j)7

Jj=1

for (21, ..., 2(P)) € RP. For such functions F, if E(&li)éj)) =0 for i # j, the
relation (3.2.5) holds with p = 2 if

@ = 3 Wi (4)PE(E)) <1

Jj=1
Some examples of this situation are

e If D=2 and 551) ~ b(p) is a Bernoulli variable independent of a centered
variable 552) € L? and A;(u) = u, As(u) = 1 then the previous relations
hold if p < 1.

o If D = 3, {El) = 5(2) ~ b(p) is independent of a centered variable
(3) € L2, then one obtamb usual threshold models if Az = 1.
ThlS only means that X,, = F,(X,,—1) + f,(l) where F), is an i.i.d. se-

quence, independent of the sequence ({,(13)),121, and such that F,, = A;
with probability p and F,, = A, else.
The condition (3.2.5) with p = 2 writes here

= p (Lip (A1))” + (1 — p) (Lip (42))* < 1.
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3.3 Dynamical systems

Let I = [0,1], T be a map from I to I and define X; = T*. If y1 is invariant by T,
the sequence (X;);>0 of random variables from (I, i) to I is strictly stationary.
Denote by ||g[/1,» the L -norm with respect to the Lebesgue measure A on I and
by |lv|| = |v|(I) the total variation of v.

Covariance inequalities. In many interesting cases, one can prove that, for
any BV function h and any k in L*(I, ),

|Cov(h(Xo), k(Xn))| < anllk(Xn) 1 ([[P]l1x + [IdA]) (3.3.1)

for some non increasing sequence a,, tending to zero as n tends to infinity. Note
that if (3.3.1) holds, then

|Cov(h(Xo), k(Xn))| |Cov(h(Xo) — h(0), k(Xn))|

an |[E(Xn)[1([[ = R(0)]]1,x + [ldA]) -

IN

Since ||h — h(0)||1,x < ||dh||, we obtain that

|[Cov(h(Xo), k(Xn))| < 2an|[k(Xn)1]|dR]| . (3.3.2)

The associated Markov chain. Define the operator £ from L!(I,)\) to
LY(I,\) via the equality

/ L) @)k()\(dz) = / h(z)(k o T)(2) A (dz)
0 0

where h € LY(I,\) and k € L>(I,)\). The operator L is called the Perron-
Frobenius operator of T'. Assume that p is absolutely continuous with respect
to the Lebesgue measure, with density f,. Let I* be the support of p (that is
(I*)¢ is the largest open set in I such that p((1*)) = 0) and choose a version
of f, such that f, > 0 on I* and f, = 0 on (I*)°. Note that one can always
choose £ such that L(f.h)(z) = L(f.h)(2)1f,(2)>0- Define a Markov kernel
associated to T' by

L(fuh)(x)
K(h)(z)= """ 15, (2)>0 + u(h) 1y, (2)—0- (3.3.3)
fu(z)
It is easy to check (see for instance Barbour et al.(2000) [9]) that (Xo, X1, ..., X,)
has the same distribution as (Y;,,Y,—1,...,Yp) where (Y;);>0 is a stationary

Markov chain with invariant distribution u and transition kernel K.

Spectral gap. In many interesting cases, the spectral analysis of £ in the
Banach space of BV-functions equipped with the norm ||Al|, = ||dh| + ||h]]1,x
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can be done by using the Theorem of Ionescu-Tulcea and Marinescu (see Lasota
and Yorke (1974) [115]): assume that 1 is a simple eigenvalue of £ and that the
rest of the spectrum is contained in a closed disk of radius strictly smaller than
one. Then there exists an unique T-invariant absolutely continuous probability
p whose density f, is BV, and

L7 (h) = A(R) f, + T (h) (3.3.4)

with ¥(f,) = 0 and || U™ (h)|, < Dp™||hl, for some 0 < p < 1 and D > 0.
Assume moreover that

= < 0. (3.3.5)

v

1
£ 1,50
Starting from (3.3.3), we have that

k() =ty + 1
o

Let ||+ ||oo,x be the essential sup with respect to A\. Taking Cy = 2D~(||df.||+1),
we obtain [[K"(h) = u(h)]loox < C1p"[|B]o-
This estimate implies (3.3.1) with a,, = C1p". Indeed,

|Cov(h(Xo), k(X)) |Cov(h(Yy), k(Yo))]
[[E(Y0)(E(h(Yn)|o(Y0)) — E(h(Yn)))ll2
IO 1K™ (B) = pa(h) oo, x

Cip" [[E(Yo) [l (ldhll + [1Al[1.2) -

INIA TN

Moreover, we also have that

[dK™ ()|l = [[dK™ (h = h(0))]] 29[ (fu (e = 2 (0))) |

<
< 8Dp"y(1+ [ldfylDlldR]l . (3.3.6)

Dependence properties. If (3.3.2) holds, the upper bound
é(U(Xn)a XO) S 2an
follows from the following lemma.

Lemma 3.4. Let (2, A, P) be a probability space, X a real-valued random vari-
able and M a o-algebra of A. We have the equality

(M, X)=sup {ICov(Y,h(X))| /Y is M-measurable, |Y|1<1 and he BV1 }.
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Proof of Lemma 3.4. Write first |Cov(Y, h(X))| = |E(Y (E(h(X)|M)—E(h(X))))]-
For any positive ¢, there exists A in M such that P(A;) > 0 and for any w in
A,

[E(h(X)|M)(w) = E(h(X))] > [[E(A(X)|M) = E(h(X))]loc — &

Define the random variable

1a. .
Yei= by sien (E((X)1M) — B((X)))

Y. is M-measurable, E|Y;| = 1 and
|Cov(Yz, h(X))| = [E(A(X)|M) = E(h(X))]loc — &

This is true for any positive €, we infer from Definition 2.5 that

(M, X) < sup{|Cov(Y,h(X))| /Y is M-measurable, ||Y|; <1 and h € BV;}.

The converse inequality follows straightforwardly from Definition 2.5. O

Now, if (3.3.4) and (3.3.5) hold, we have that: for any n > i; > --- > iy >0,

d(o(Xp, bk >n), Xn_iyy oy, Xni) <C)p™,

for some positive constant C'(I). This is a consequence of the following lemma
by using the upper bound (3.3.6).

Lemma 3.5. Let (Y;);>0 be a real-valued Markov chain with transition kernel
K. Assume that there exists a constant C such that

for any BV function f and any n >0, |[dK"(f)] < C|df]|l . (3.3.7)

Then, for any i; > --- > i3 >0,

Ho(Y), Vi Yirss) < (L4 C -+ O )d(0(Yi), Yiews) -

Consequently, if (3.3.4) and (3.3.5) hold, the coefficients ¢y, (i) of the associated
Markov chain (Y;);>¢ satisfy: for any k > 0,

di(i) < Ok

Proof of Lemma 3.5. We only give the proof for two points i; = i and i = j,
the general case being similar. Let fx(x) = f(x) — E(f(Y%)). We have, almost
surely,

E(frti(Yeti)gr+5 Yeri) 1 Ye) = E(frri Vi) gt (Vi) =
E(frsi (Verd) (K7 (9)) ki YVeri) Vi) = B ks (Virs) (K77 (9)) ks (Yiera))-
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Let f and g be two functions in BV;. It is easy to see that

A @il < il 10 (9D lloc
A ()| i loc
< (1 A (@)l

Hence, applying (3.3.7), the function (K77%(g))k1ifrsi/(1+C) belongs to BV;.
The result follows from Definition 2.5. O

Application: uniformly expanding maps. A large class of uniformly ex-
panding maps T is given in Broise (1996) [31], Section 2.1, page 11. If Broise’s
conditions are satisfied and if 7" is mixing in the ergodic-theoretic sense, then
the Perron-Frobenius operator £ satisfies the assumption (3.3.4). Let us recall
some well know examples (see Section 2.2 in Broise):

1. T(x) = Bx — [Bx] for B > 1. These maps are called -transformations.

2. I is the finite union of disjoints intervals (I1)1<k<n, and T'(z) = apz + by,
on I, with |ag| > 1.

3. T(z) = a(z™t — 1) — [a(z™ — 1)] for some a > 0. For a = 1, this
transformation is known as the Gauss map.

Remark 3.3. Expanding maps with a neutral fixed point. For some
maps which are non uniformly expanding, in the sense that there exists a point
for which the right (or left) derivative of T is equal to 1, Young (1999) [194]
gives some sharp upper bounds for the covariances of Hélder functions of T™.
For instance, let us consider the maps introduced by Liverani et al. (1999) [123]:

x(1+272Y) ifxel0,1/2]

for0 <y <1, T(ﬂf):{zx_1 if w € [1/2,1],

for which there exists a unique invariant probability p. Contrary to uniformly
expanding maps, these maps are not ¢-dependent. For X €]0,1], let ox(z,y) =

|z —y|* and let 09) be the coefficient associated to the distance §y (see definition
2.83). Starting from the upper bounds given by Young, one can prove that there
exist some positive constants C1(\,v) and Ca(\,7) such that

Ol Av A CQ )\7
O < Py < A0

n v n v
Approzimating the indicator function fi(t) = lg<¢ by A-Hélder functions for
small enough A, one can prove that for any ¢ > 0, there exist some positive
constant Cs(e,vy) such that

Cl(r}:;’/) < d(U(Tn),T) < C?;(fla:ye) )
n v n v
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3.4 Vector valued LARCH(oc0) processes

A vast literature is devoted to the study of conditionally heteroskedastic models.
One of the best-known model is the GARCH model (Generalized Autoregressive
Conditionally Heteroskedastic) introduced by Engle (1982) [84] and Bollerslev
(1986) [23]. A usual GARCH(p, ¢) model can be written:

p q
2 2 2
re = o0&, 0p =ap+ E Bioy_; + § ;T

i=1 j=1

where a9 > 0, 3; > 0, a;j > 0, p >0, ¢ > 0 are the model’s parameters and
the & are i.i.d.

If the B; are null, we have an ARCH(g) model which can be extended in
LARCH(o0) model (see Robinson, 1991 [165], Giraitis, Kokozska and Leipus,
2000 [92]). These models are often used in finance because their properties
are close to the properties observed on empirical financial data such as volatil-
ity clustering, white noise behaviour or autocorrelation of the squares of those
series. To reproduce other properties of the empirical data, such as leverage ef-
fect, a lot of extensions of the GARCH model have been introduced: EGARCH,
TGARCH. ..

A simple equation in terms of a vector valued process allows simplifications in
the definition of various ARCH type models Let (£;):ez be an i.i.d. sequence of
random d x m-matrices, (a;);en+ be a sequence of m x d matrices, and a be a
vector in R™. A vector valued LARCH(oc0) model is a solution of the recurrence
equation

Xt = ft a+ Zant,j (341)
j=1

Some examples of LARCH(oco) models are now provided. Even if standard
LARCH(oc0) models simply correspond to the case of real valued X; and aj,
general LARCH(oo) models include a large variety of models, such as

1. Bilinear models, precisely addressed in the forthcoming subsection 3.4.2.
They are solution of the equation:

Xi=G|la+ Z%‘thj +0+ Zﬂthfj

Jj=1 Jj=1

where the variables are real valued and (; is the innovation. This is easy to
see that such models take the previous form with m = 2 and d = 1: write
Qj

for this & = ( ¢ 1 ),a:<g)andaj:(ﬁj)forjzl,Z,...
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2. GARCH(p, ¢) models, are defined by
Tt = Ot
2 g 2 . 2
op = Z:lﬁjatfj +7+ Zﬂjrtfj
j= j=

where ag > 0, a; 2 0, §; > 0 (and the variables € are centered at ex-
pectation). They may be written as bilinear models: for this set ag =

Yo/ /(1 =3 Bi) and > izt =Y 420 /(1 = 3 B;2%) (see Giraitis et al.(2006)
[93]).
3. ARCH(c0) processes, given by equations,

Tt = OtEt

oo
op = Po+ X Biei;
i=1

They may be written as bilinear models: set & = (& 1), a= (;%0 ),
150

KO, .
a;= (Al%j) with A\; = E(¢3), #* = Var ().

4. Models with vector valued innovations

Xt:@l <Oél + ZOZ}th> +/L% <ﬂl + Zﬁ}th> +"/1 + Z’yjl-Xt,j
=1 j=1 j=1

J

Jj=1

Y, =¢ <a2 + X ath_j> +p7 <[32 + zﬁ;n_j> +92+ Y3
j=1 J=1
may clearly be written as LARCH(oco) models with now m = d = 2.

3.4.1 Chaotic expansion of LARCH(occ) models

We provide sufficient conditions for the following chaotic expansion

oo
Xe=&la+) > apbjiag . ap&ji—ja| - (3.4.2)
k=1j1,....5k =1
For a k x | matrix M, and || - || a norm on R¥, let as usual
[M|[= sup ||Mz].
z€RL ||| <1

For a random matrix M we set || M |5 = E(||M[?).
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Theorem 3.1. Assume that either Z lla; IPE(I&]|P < 1 for some p < 1, or
i>1
ZHajH (EH&OH”):’ < 1 for p > 1. Then one stationary of solution of eqn.

j=>1
(3.4.1) in ILP is given by (3.4.2).

In this section we set

= llajll, A=A(1), and X, = A&l (3.4.3)

jzw

Proof. We first prove that expression (3.4.2) is well defined. Set

o0
S=3 > lap&—-aié—ji—l

k=1 ji,.,jx>1

Clearly

S <

NE

Z gl Nag &=l - NEe—jr —— el
e

k=1 ji,..,jk=1

Using that the sequence (&, )nez is i.i.d., we obtain for p > 1,

N

o0
1S, < D> > lagll - llage gl 16— sl
k=1j1,....5k 21

(oo}

> (éllpA)
k=1

IN

If A, < 1, the last series is convergent and S belongs to L?. If p < 1 we conclude
as for p = 1, using the bound

o0 p o0
<Z|aj1€t—j1 S g &gy g ”) < ZHahft—J& g &gy 1
k=1 k=1
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Now we prove that the expression (3.4.2) is a solution of eqn. (3.4.1),

Xy = &((H- > ajl&—jl"'a]’kft—jl—m—jka)

E>1,
Jis--s ik 21
= & a+§ aj, &e— J1a+§ ajy &e—j E ajzgt*jlsz"'ajkét*h*jz*'“*jka
Jj1z1 k>2,j121 J2sendk 21

& <a + Z aji§e—j, (a + Z Wja€(t—j1)—jo *** Qi §(t—j1)—ja— -~k a))

j121 k>2,

13 (a + i ant,j). O

Theorem 3.2. Assume that p > 1 in the assumption of theorem 3.1, and
assume that o =3 |laj|[[&oll, < 1. If a stationary solution (Y)iez to equation
(8.4.1) exists (a.s.), if Yy is independent of the o-algebra generated by {Es; 8 > t},
for each t € Z, then this solution is also in LP and it is (a.s.) equal to the
previous solution (Xy)iez defined by equation (3.4.2).

Proof. Step 1. We first prove that || Y]], < co. From the equation (3.4.1), from
the stationarity of {Y;}+cz and from the independence assumption, we derive
that

1Yollp < ollp | llall + Z lla; Yol

7j=1

Hence, the first point in the theorem follows from [|Y5]],

||€o|\p|\a|\
—

<
Step 2. As in Giraitis et al. (2000) [92] we write YV, = (a + ZJ>1 a;Yi— J) =
X"+ S with

m
lavd N apbgan gl

mo
X" =
k=1j1, ,jr=1
m _— . . “ e . - - - . .
S = & E , ajy &t—jy &t —j1 = iom Vi A1 Y1 =i
Ji s dmy1 21
We have

1570 < I€lls D Nagll- - laj HEN 1Yol = [ Yollpe™

Jisdmr 21
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We recall the additive decomposition of the chaotic expansion X; in equation
(3.4.2) as a finite expansion plus a negligible remainder that can be controlled
X = X" + R where

R;n =& Z Z ajlgt*jl ’ "a’jk&*jl'"*jka )

k>m g1, k21

satisfies
k o™
IR < llallliéoll, Y @* < HaHHﬁole_w — 0.

k>m

Then, the difference between those two solutions is controlled as a function of
m with X; —Y; = R} — 5}", hence

1Xe =Yilly < (1R [lp + 115"l

™ m
SN gpllallllé“ollp + IYollp

(pm
< 27 Jallel,

thus, Y; = X; a.s. O

Dependence properties. To our knowledge, there is no study of the weak
dependence properties of ARCH or GARCH type models with an infinite num-
ber of coefficients. Mixing seems difficult to prove for such models excepted in
the Markov case (a; = 0 for large enough j), because this case is included in the
Markov section for which we already mention that additional assumptions are
needed to derive mixing. This section refers to Doukhan, Teyssiere and Winant
(2005) [75], who improve on the special case of bilinear models precisely con-
sidered in Doukhan, Madré and Rosenbaum (2006) [69]. We use the notations
given in (3.4.3).

Theorem 3.3. The solution (3.4.2) of eqn. (3.4.1) is 0—weakly dependent with

t—1

o) < 2K <E|§O|Zw—m (1) A) lall for any ¢ <.

k=1

Proof. Consider f : (R%)"* — R with ||f|jec < oo and g : (RY)Y — R with

Lip (9) < oo, that is [g(z) — g(y)| < Lip(g)([lz1 — yull + -+ + [lzw — wull). Let
i < o0 <y, J1 <+ < Jou, such that j; — i, > r. To bound weak dependence
coeflicients we use an approximation of the vector v = (le, e 7va) by v in
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such a way that, for each index j € {j1,...,jx} and s <, the random variable
X is independent of X;_,. More precisely, let

Xi=&la+d D ap&g a8 5y

k=1j1++jr<s

Now, let f(u) = f(X,,,...,X;,) and g(v) = g (Xj,,...,X;,). We have that

|Cov(f(u),g(v))| < [E(f(u)(g(v)—g(¥) —E(f(n)E(g(v) —g(¥))|
< 2flElg(v) = g(¥)
< 2| fllooLip (9)) EIX;, — X, |
k=1
< 20| flloLip (9)E[ X0 — Xol|-

Hence 0(r) < 2E||Xo — Xol|| for any s < r, which implies the bound of the
theorem. This bound is made explicit for simple decay rates. More precisely

o(t) Kt~ under Riemanian decay A(z) < Cz~°
K(qV AV, under geometric decay A(z) < Cq”

Further approximations. In order to simulate and also to better understand
their behaviour, it is an important feature to see how far those models are from
simple processes. Weak dependence was proved with independent approxima-
tions

o0
Xi=&|a+) Y ap&g a6 g ja
k=1 jit+-+ijx<s
of the LARCH models; we precise this approximation through coupling argu-
ments and we also prove below proximity to the Markov sequence obtained by
truncating the series which defines them.

Coupling. The approximation X, of X; has not the same distribution as X;.
But we are in the case of causal Bernoulli shifts with independent inputs, so
that the method of Section 3.1.4 applies. Let (£});ez be an independent copy of
(&)iez, and let &, = &, if n > 0 and &, = &, for n < 0. Finally, let

o0
XtZ&(aJrZ > %ﬁtm"'ajkﬁt—j1—~~—jka)-
k=1j1,...Jk

Here Xt has the same distribution as Xy and is independent of the o-algebra
Mo = o(X;,i <0). Consequently, if d, ,, is a non increasing sequence satisfying
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(3.2.2), we obtain the upper bounds 7, - (n) < Sp,n. Since for any s < n, we
have that || X,, — X, < 2||Xo — Xol|p, we obtain that

t—1 t
: k=14 (¢ A
Tp.oo(n) < inf 2E(|€oll» <]E||€0||P];k)\p A <k +t _p)\p llall-

For p = 1, we recover the upper bound of Theorem 3.3. If d = 1, we obtain
the same upper bounds for ag(n), Bx(n) and ¢x(n) as in Section 3.1.4, by
assuming that the distribution function of Xy is continuous (similar bounds me
bay obtained for d > 1 by assuming that each component of Xy has a continuous
distribution function, see Lemma 5.1).

Markov approximation. Consider equation (3.4.1) truncated at rank N,
N
XN =¢ la+t Zanﬁj
j=1
The previous solution rewrites as

XN=gla+d, D ap&jiai& 5 ja

k=1NZj1,....5k 21

The corresponding error is then bounded by

E[X — x| < DA,
k=1

In the Riemanian decay case, the error is > po N~ and in the geometric
decay case, the error is ¢V /(1 — ¢V).

3.4.2 Bilinear models

Those models are defined through the recurrence relation
Xe=Gla+Y aXi | +8+) 8iXi
j=1 j=1

the variables here are real valued and (; now denotes the innovation. To see
that this is still a LARC H (c0) model, we set as before

G=(¢ 1), a:<g), andaj:<oéé’),forj21.
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One usually takes § = 0. ARCH(oc0) and GARCH(p, ¢) models are particular
cases of the bilinear models. Giraitis and Surgailis (2002) [95] prove that under
some restrictions, there is a unique second order stationary solution for these
models. This solution has a chaotic expansion. Assume that the power series

A(z) = Zajzj and B(z) = Zﬁjzj exist for |z] <1, let

j=1 J=1
1 = Az = ;
G(z) = - B(2) j:Zlg]zj and H(z)= 1 (Bzz) = ;hjzj

we will note [|h[|5 = =72 [h;[P. Then:
Proposition 3.3 (Giraitis, Surgailis, 2002 [95]). If ((t)¢ is i-i.d., and ||h]2 < 1,
then there is a unique second order stationary solution :

Xt =« Z Z gt781h81782 e hsk_lfsk <S1 U Csk (344)

k=1 sp<...<s1<t

Lemma 3.6. Ezpansion (3.4.2) coincides with the chaotic expansion in propo-
sition 3.3.

Proof.  Assuming that 3 = 0, the expansion (3.4.2) writes as:
Hme ;Sk<'“<81<tz(<tatisl + Brs)x

X (<S1O‘S1—52 + ﬂ51—52) e (Csk—lask—l_sk + ﬁsk—l_sk)cska

or X; = G+ S1 + 52 with

Sl = Z Ctatfﬁ (Csl sy —sy + 581*52) T (Csk—lask—1*8k + 5Sk—175k)<5ka
k>1
s < - <81 <t
Sy = Z ﬂt—51 (<S1O‘S1—S2 + ﬂ51—52) T (Csk—lask—l_sk + ﬁsk—l_sk)cska
E>1

S < - < s1 <t

Under additional assumptions Giraitis and Surgailis prove the expansion:

X = QZ Z gt—51h51—52 o .h‘sk—l_sk <51 o 'Csk

k=1 sp<---<s1<t
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rewritten as X; = G+ 11 + T with

Tl = Z Z Cthtfm Cs1 hs1782<32 T hsk_lfskgska

k=1sp<--<s1<t

I = Z Z gt—51h51—52<51 e 'hsk,l—skCSkOC

k=1sp<---<s1<t

The terms in the sum (7}) take a form:

Ct(at,igmﬁigl)ﬂgl) x 'ﬂigﬁ,sl)Ca (asl,igmﬂig)%g) x '51»;22),32) e

.. 'Csk_l(a

sxr—i By - ﬂié’jﬁ o )G

hence between each couple (s, (s,., read from the left to the right one founds
a term (ay;) followed with several (3;)’s in such a way that the sum of all indices
equals 5,11 — sp.

On the one hand, quote that expanding terms in the (S7) yields a sum of prod-
ucts of such terms proves that (51)’s is included in (7%)’s.

On the other hand, expand the term k = k + p1 + -+ + pr (55, 85_1,--+,51) =
(Sk, z';’?, o Jgk), Sk—1y---,S1, z'l(jll), e ng),ig ), t) in the sum (S7) yields the
generic term in (7} ) expansion. Hence (S1) and (T4)’s expansions coincide.
Analogously (T2) = (S2), by quoting that the generic term in (T%) writes:

(ﬂt,igl)ﬁigl)ﬂém & 'ﬂi;}l),sl)csl(a 2B "'ﬂig,s) e

S1—1

G (@ 0 B0 00 'ﬁiéi)_sk)CskOA u

Sp—1—1

Conditional densities of Bilinear models. Another more specific feature
of those models is the following result on the existence of conditional densities
(see Doukhan et al.1995 [69]). This is relevant for subsampling techniques and
density estimation. We use the fact that the bilinear equation may be written

X = Atg + Bt with At =a+ Z CLth,j, Bt = ijXt,j
j=1 Jj=1

Hence, conditionally to the past o-algebra (the history of {(s,s < t}), the
distribution of X; is as smooth as the one of (; if A; # 0. Now if we are
interested by higher order marginal distributions we need a bit more work.
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Split /L and Bt into

t—1 0o

Ay = Zant,j + Ay, A = Zant,j
j=1 j=t

~ t—1 00

By = Y bXi j+B,  Bi=) bjX;
j=1 j=t

where A; and B; are measurable with respect to the o algebra of the past
0{(s,s < 0}. This entails, for instance:

X1
Xo

AlCl + By
(a1C1 + AQ)CQ + (b1<l + BZ)-

Thus conditionally to f:ll, B, Ay and B, the previous system is triangular and it
thus may be solved if A1, a1(; + A2 do not vanish. The following result extends
this observation:

Lemma 3.7 (Conditional densities Doukhan et al. [69]). Assume that the
random variables (G;)iez and the coefficients a; are non negative for j =1,2,.. ..
Also suppose that ¢; are independent random variables with a density fc, for
all i € {1,...,n}. Then, conditionally with respect to the past of the process
c{(s,s < 0}, the random vector (X1, ..., X,) admits the density fn(x1,...,Tn)

defined by:
o 1 61 511
(21, ) = |(110¢2"'Oén|fC1 (051) "'an <Oln>

with ﬁj =x;— blﬁjfl — b2$j72 — = bj,1$1 — Bj and Qj = a1Tj—1+a2Tj—2+
ceFajzr + A for 1 < j<n (here a; = Ay).

Corollary 3.1 (Density). Under the same assumptions as in lemma 3.7, with
a #0 and ()¢ i-i.d. with a density f bounded by M then
falze, .. szn) < (M/a)" for all (x1,...,2,).

Corollary 3.2 (Density of a couple). Under the same assumptions as in lemma
3.7, and if ¢, are i.i.d. with density f, then g; the density of the couple (X1, X;)
satisfies || gillco < || f12/ A1 for all i > 1.

Remark 3.4. Asymptotic properties of a standard kernel density estimate relies
on such bounds. Indeed an expression of its variance follows jointly from weak
dependence properties and such assumptions on the two dimensional
distributions.
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Proof of lemma 3.7. We work conditionally to the infinite past from X,. We
write

anl Anflgnfl + anl
M . = . )
X1 A1G1+ By
where

1 —a1(n—b1  —a2Cu—bs ... —ap_1Gp —bp_1
0 1 —a1Cn—1— 01 ... —an—2Qn—1 —bn_2
0 0 0 1 —a1G2 — by
0 0 0 0 1

This may be rewritten as,

 Xi-B
1 = A,
¢ Xo— 01Xy — B
2 a1 X1 + Ay
¢ Xy =01 Xpo1 — b2 Xy —- = b1 X1 — B,

a1 Xp_1+aeXy_o+-Fa1 X1+ A,

where the previous coefficients A; and B; are deterministic in this conditional
setting. Thus,

Eg(X17X27'~'7Xn) — /g(¢_1(u1,...,un)) fCl(ul)an(un)duldun

with f¢, the density of ¢; and with ((i,...,¢n) = ¢(X1,...,X,). Here, put

(u1,...,up) = ¢(x1,...,2,). The function ¢ has a diagonal Jacobian, hence
an - 1
or;  a;

for 1 < j < n and the result follows. O

Proof of the corollaries. The first corollary follows by integration from lemma
3.7. We prove the result for the density of the couple (X7, X4), and we can
prove the general result in the same way. With

fa(xy, @, 23, 04) = o ':'l'a4|f(gi)“.f(gi)’



3.5. (-DEPENDENT MODELS 93

an integration with respect to x2 and x3 implies that

2
ga(1,24) = /f4($1,$2,$3,x4)dm2dx3 < ”ﬂ /f <ﬂ2) f <ﬂ3> dxs dx3

g az) |azas]
Hence with
Ty — bz — Bo 3 — bixg — bowy — B3
9 - b
a1y + A a1T2 + asxy + As

we write x93 = u X (@121 + A2) + bix1 + Ba, x5 = v X (a1(u X (@121 + A2) +
bix1 + B2) + asxy + Asz) + b1(u X (@121 + Az) + bixy + Ba) + baxy + Bs. The
Jacobian matrix is diagonal and the absolute value of the Jacobian is equal to
[(a1x1 + Ag)(arxe + aswy + As)l|, and thus

-

2
sitora) < 0 [ 101 @) duao < 1]

3.5 (-dependent models

In this section, we give some classes of (-dependent models: associated processes,
Gaussian processes and interacting particle systems.

3.5.1 Associated processes

An analogous formula to (1.4.1) proves that associated random variables belong
to the class of (-dependent models. Several associated models are obtained from
nondecreasing transformations of independent variables. For Gaussian vector,
Pitt (1982) [146] gave a necessary and sufficient condition to be associated. We
discuss Pitt’s result in the sequel.

Theorem 3.4. Let X = (X1,...,X,) be a Gaussian vector with mean vector
0 and covariance matriz ¥ = (0;; = Cov(X;, X;))i<ij<n. The condition

Cov(X;,X;) >0, foral i,j=1,....,n (3.5.1)
1s mecessary and sufficient for the variables to be associated.

Proof of Theorem 3.4. The method of the proof below is due to Pitt (1982).
Assuming Condition (3.5.1), the task is to prove that

Cov(f(X),9(X)) =0,

for all nondecreasing functions f and g defined on R™ (the second implication
being trivial).
We suppose, without loss of generality, that ¥ is non-singular and that the
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function f and g are continuously differentiable with bounded derivatives g ;;cf .
K3

and ggg ,fori=1,...,n. Let Z be an independent copy of X. For any X € [0, 1],

3

let Y(\) be the random vector defined by
Y(A) =AX + 11— X2

Clearly, for each fixed A, Y(A) is a Gaussian vector with covariance matrix X
and

COV(Xi, }/j()\)) = )\O’i)j.
Set

Clearly
Cov(f(X),9(X)) = F(1) — F(0). (3.5.2)
It is sufficient to show that F’(\) exists and F/(A\) > 0 for 0 < A < 1. To this

end, let ¢ and p be respectively the density of X and the conditional density of
Y (A) given X = x. We have :

(b(ﬂi) = \/(27i)n|2| exp —; Z CijTi%j |, with 271 = (Ci,j)lgi,jgn
ij=1
and ) \
) _ r—=y
p()hxay)_ (1_)\2)n/2¢<\/1—A2>
Hence
F(A) = - o(z) f(x)g(\; x)dz, (3.5.3)

where g(\; x) is defined by

g(\z) = /np(k;w,y)g(y)dy,
which is equal to
g(\z) = /n gz —y)oa(y)dy, (3.5.4)

where

Palx) = (1— )1\2)11/2(;5 <\/1x— /\2> '

Now Equation (3.5.4) proves that the partial derivatives 99 éi’x) exist and are
3
bounded. Moreover, since g is increasing and X is positive, we have
dg(A; )

> 0. 0.
oo, 20 (3.5.5)
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Next an explicit calculation based on the heat equations

I 19°¢ 9o _ 0% for i

80’1',1' n 2 833127 80’1',3‘ N 8xi8xj’ I
shows that
op = b k)\—Zx-c--(/\x»— ; Z/\CE —vi)(Az; —y;)
12D 1— )2 7 AT )\2 ! g /

1
- Z Jaa;axj leaxz : (3.5.6)

)

We obtain, combining (3.5.3), (3.5.4) and (3.5.6)

, 1 9%g(\; Ag(A;
Fy==, [ e@iw | Yo aifa;)—zxi géxlx) da.
i,j ! i !

An integration by parts gives

1 Of(x) 9g(A; x)
F'(\) = i ' dx. 5.7
0= o0 | s 5 | o (35.7)
We have 853(633) > 0, since f is increasing. This fact, together with (3.5.5),

(3.5.1) and (3.5.7) proves that F’(\) > 0, for any A € [0,1]. This conclusion
together with (3.5.2) proves Theorem 3.4. O

Remark 3.5. Stable processes have the same linear structure as normal pro-
cesses since arbitrary linear combinations of stable variables are stable. Lee,
Rachev and Samorodnitsky (1990) [118] gave necessary and sufficient conditions
for a stable random vector to be associated.

3.5.2 (Gaussian processes

Gaussian processes belong to the class of (-dependent models. This property is
a consequence of the following lemma.

Lemma 3.8. Denote X¢ = (X;)ico if C C Z. Let (Xp)nez be a Gaussian
centered process. Then for all real-valued functions h, k with bounded first partial
derivatives, one has

|Cov(h(Xa),k(XB))| <
i€A,j

H ICov(X:, X;)]. (3.5.8)

>~ lonl o,
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Remark 3.6. The proof of Lemma 3.8 is along the paper of Pitt (1982) [146].
For more details, we refer the reader to the proof of Lemma 19 in Doukhan and
Louhichi (1999) [67].

3.5.3 Interacting particle systems

In this subsection, we develop an example of (-dependent interacting particle
systems (cf. Proposition 3.4 below). Before stating the main result of this
paragraph, we briefly recall the basic construction of general interacting particle
systems, described in sections 1.3 and 1.4 of Liggett’s book (1985) [122].

Let S be a countable set of sites, W a finite set of states, and X = W the set
of configurations, endowed with its product topology, that makes it a compact
set. On each site the state evoluate as a Markov chain. But we are interested
in the case where the evolution of neighbour sites are linked. We define a Feller
process on X by specifying the local transition rates: to a configuration n and a
finite set of sites T is associated a nonnegative measure cr (7, ) on W7. Loosely
speaking, we want the configuration to change on T after an exponential time
with parameter

Crn = Z CT(%C) :

CewT

After that time, the configuration becomes equal to ¢ on T, with probability
er(n,¢)/er,y. Let ¢ denote the new configuration, which is equal to ¢ on 7,
and to n outside T'. The infinitesimal generator should be:

Qf)=>_ > exm. QM) = f(0)) - (3.5.9)

TCS¢ewT

For © to generate a Feller semigroup acting on continuous functions from X
into R, some hypotheses have to be imposed on the transition rates cr (1, -).
The first condition is that the mapping n — ¢r(n, ) should be continuous (and
thus bounded, since X" is compact). Let us denote by ¢p its supremum norm.

Cr = sSup crqy.
neX

It is the maximal rate of change of a configuration on T'. One essential hypothesis
is that the maximal rate of change of a configuration at one given site is bounded.

B = sup Z e < Q. (3.5.10)
€S Tsx

If f is a continuous function on X, one defines A¢(x) as the degree of dependence
of f on x:

Ag(z) =sup{|f(n) — f(OI/n,¢ € X and n(y) =C(y) Vy #z } .
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Since f is continuous, Ay (z) tends to 0 as = tends to infinity, and f is said to
be smooth if Ay is summable:

A=) A(a) < oo

zeS

It can be proved that if f is smooth, then Qf defined by (3.5.9) is indeed a
continuous function on X and moreover:

1[I < BIIIf]]-

We also need to control the dependence of the transition rates on the configu-
ration at other sites. If y € S is a site, and T C S is a finite set of sites, one
defines

er(y) = sup { ller(m, -) —cr(nz, )l / m(z) =n2(2) V2 #y },

where || - ||+, is the total variation norm:

ler(m, -) —cr(m, e = Z ler(m, €) — er(n2, Q)] -
cewr

If x and y are two sites such that x # y, the influence of y on z is defined as:

Y, y) =Y er(y).

T>x

We will set v(x,2) = 0 for all . The influences v(x,y) are assumed to be
summable:
M = sup Z Y(z,y) < 0. (3.5.11)
€S yeS

Under both hypotheses (3.5.10) and (3.5.11), it can be proved that the closure
of Q generates a Feller semigroup {S;, ¢ > 0} (Theorem 3.9 p. 27 of Liggett
(1985)). A generic process with semigroup {S;, ¢ > 0} will be denoted by
{nt, t > 0}. The expectations with respect to its distribution, starting from
19 = n will be denoted by E,,. For each continuous function f, one has:

Sef(m) = Ey[f ()] = E[f(n:) [0 = n].

We have now all the ingredients to control the covariance of f(ns) and g(n:) for
a finite range interacting particle system when the underlying graph structure
has bounded degree. Proposition 3.4 shows that if f and g are mainly located on
two finite sets R; and Ra, then the covariance of f and ¢ decays exponentially
in the distance between R; and Ra.

From now on, we assume that the set of sites S is endowed with an undirected
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graph structure, and we denote by d the natural distance on the graph. We will
assume not only that the graph is locally finite, but also that the degree of each
vertex is uniformly bounded.

VeeS #{yeS/dxy) =1}<r,

where # denotes the cardinality of a finite set. Thus the size of the sphere or
ball with center x and radius n is uniformly bounded in x, and increases at most
geometrically in n.

r

- 2(7"—1)”.

#yeS/day)=ny< " 0-)" #yeS/day) <n}<

1
Let R be a finite subset of S. We shall use the following upper bounds for the
number of vertices at distance n, or at most n from R.

#{reS/dx,R)=n} <#{ye S/dx,R) <n} < 2""#R, (3.5.12)

with p = log(r — 1).
In the case of an amenable graph (e.g. a lattice on Z?), the ball sizes have a
subexponential growth. Therefore, for all € > 0, there exists ¢ such that:

#{reS/dxz,R)=n} <#{ye S/dx, R) <n}<ce".

What follows is written in the general case, using (3.5.12). It applies to the
amenable case replacing p by ¢, for any € > 0.
We are going to deal with smooth functions, depending weakly on coordinates
away from a fixed finite set R. Indeed, it is not sufficient to consider functions
depending only on coordinates in R, because if f is such a function, then for
any t > 0, Sy f may depend on all coordinates.

Definition 3.2. Let f be a function from S into R, and R be a finite subset of
S. The function f is said to be mainly located on R if there exists two constants
a and B> p such that o > 0, 8 > p and for all x € R:

Ap(z) < ae PR, (3.5.13)

Since 3 > p, the sum ) Ajf(x) is finite. Therefore a function mainly located
on a finite set is necessarily smooth.

The system we are considering will be supposed to have finite range interactions
in the following sense (cf. Definition 4.17 p. 39 of Liggett (1985)).

Definition 3.3. A particle system defined by the rates cp(n,-) is said to have
finite range interactions if there exists k > 0 such that if d(x,y) > k:

1. ¢p =0 for all T containing both x and vy,
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2. y(x,y) =0.

The first condition imposes that two coordinates cannot simultaneously change
if their distance is larger than k. The second one says that the influence of a
site on the transition rates of another site cannot be felt beyond distance k.
Under these conditions, the following covariance inequality holds.

Proposition 3.4. Assume (3.5.10) and (3.5.11). Assume moreover that the
process is of finite range. Let Ry and Ro be two finite subsets of S. Let [ be a
constant such that B > p. Let f and g be two functions mainly located on Ry
and Ra, in the sense that there exist positive constants Ky, kg such that,

Ap(z) < kpe PR and  Ay(z) < e PR,
Then for all positive reals s,t,

su)pé Covy,(f(ns), g(ne)) SC/if/ig(#R1/\#Rg)eD(tJrs)e*(B*p)d(Rl’RQ), (3.5.14)
ne

where,

2BePk ek
— (B+p)k —
D =2Me and C = D <1+1—e—5+P)'

Proof. We refer the reader to the proof of Proposition 3.3 in Doukhan et al.
(2005) [64]. O

Remark 3.7. Shashkin (2005) [176] obtains a similar inequality for random
fields indexed by Z¢. For transitive graphs, the covariance inequality stated in
Proposition 3.4 was studied by Doukhan et al. (2005) [64] in order to derive a
functional central limit theorem for interacting particle systems.

3.6 Other models
3.6.1 Random AR models

Assume here that
X = A X1 + &,

where the sequence & € R? is still i.i.d. but now A; is assumed to be a station-
ary sequence of random d x d matrices. A stationary solution of the previous
equation has the formal expansion

X = Z A A&k
k=0
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A first and simple case for convergence of this series is E||Ag||P < 1 for a suitable
matrix norm, in the case where the sequence (A;) is i.i.d. and that A, A;_q, ...
are independent of the inputs (&;). For this we also assume E||&||? < oo for
some p > 1. This condition™ also implies convergence of the previous series in
L.

For d = 1, a simple example of this situation is the bilinear model A; = a+b&;_1.
If now A; = ¢ + ijl b;&—; for a stationary sequence ((;) independent of (&)
the condition ;

P

J
E|Go+> b <1
j=1

implies absolute convergence of the previous series in L through Holder’s in-
equality. The previous relation holds if

J
Sollps + lI€ollps > IIbjll < 1.

Jj=1

Those models are also suitable for the previous section related to Markov chains,
but a special case of this situation is provided if the sequence (4;) is stationary
and independent of the sequence (& ). In this case the assumption

> E[ApAg_ - Ag|P < 00
k=0

implies the convergence of the previous series in L if E||&]|” < cc.
Extension of such models, solutions of the non Markov equation

X = Z Oz{Xt_j + (3, (361)
JjEA

are seen in Doukhan and Truquet (2006) [76] as random fields (7) with infinitely
many interactions. If b = 7., [lag|l, < 1 the solution of equation (3.6.1)
writes a.s. and in LP,

o0
_ g1 J2 Ji
X =G+ E E Qp Qi - .Oétfjlf"'*ji—lCt*(j1+”'+ji)'

i=1 j1,...,5: €A

*Existence of the model in this case also relies on the weaker assumption Elog ||Ao|| < 0;
in this case the previous series only converges a.s. and dependence conditions are not easy
to derived; for this a concentration inequality is needed and a log transformation should be
applied to the obtained coefficients.

fInnovations ¢; are vectors of R¥ and coefficients o are k x k matrices, || - | is a norm of
algebra on this set of matrices and X will be an E valued random field. Let A C Z%\ {0}, we
assume that the i.i.d. random field £ = ((ai icA, Ct> rezd takes now its values in (kak)A X F;

here M}« denotes the set of k X k matrices.
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3.6.2 Integer valued models

The idea of Galton Watson models conducted Alain Latour (see [116], [117],
[65]) to the construction of integer valued extensions of the standard economet-
ric models. As they are discrete valued no mixing condition may usually be
expected from such models (see section 1.5) and this is why they fit nicely in
the weak dependent frame.

Definition 3.4 (Steutel and van Harn Operator). Let (Y;)jen be a sequence of
independent and identically distributed (i.i.d.) non-negative integer-valued vari-
ables with mean o and variance \, independent of X, a non-negative integer-
valued variable. The Steutel and van Harn operator, ao is defined by:

aoX:{ Z;'leyi’ if X #0,

0, otherwise.

The sequence (Y;);en is called a counting sequence. Note that, as indicated in
Definition 3.4, the mean of the summands Y; associated with the operator ao
is denoted by a. Suppose that o is another Steutel and van Harn operator
based on a counting sequence (Y;);en. The operator ao and o are said to
be independent if, and only if, the counting sequences (Y;);en and (ﬁ)ieN are
mutually independent. One may first think to Poisson distributed variables Y;
with parameter a. The first example, Galton Watson with immigration

Xt = ao thl + ft (362)

was extended in various papers by Alain Latour (see e.g. [116] or [117]) for
bilinear type extensions (see Doukhan, Latour and Oraichi, 2006 [65]).

We would like to extend the integer-valued model class to give a non-negative
integer-valued bilinear process, denoted by INBL(p, ¢, m,n), similar to the real-
valued bilinear process. A time series (X;)ien is generated by a bilinear model,
if it satisfies the equation:

p q m n
Xi=a+ Z a; Xi—; + Z cjei—j + Z Z b (et—eXt—k) + €1 (3.6.3)
i=1 j=1 k=1¢=1

where (g¢):en is a sequence of i.i.d. random variables, usually but not always with
zero mean, and where o, a;, 1 =1,...,p,¢;, 7=1,...,¢q,and bpp, k =1,...,m,
¢=1,...,n are real constants. In (3.6.3), we can “formally” substitute Steutel
and van Harn operators to some of the parameters giving an equation of the
form

p q m n
Xt = Z a; © thi + Z CjOEt—j + Z Z b@k o (Etngtfk) + &¢ (364)
i=1 j=1 k=1/¢=1
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where the operators a;0,7=1,...,p, ¢cjo, j =1,...,q, and b0, k =1,...,m,
¢=1,...,n, are mutually independent and (g¢)en is a sequence of i.i.d. non-
2

negative integer-valued random variables of finite mean p and finite variance o,
independent of the operators. As in Latour et al., we restrict to the first-order
bilinear model

Xi=aoXy_1+bo (Et—lXt—l) + & (365)

where the sequence involved in the operator ao and bo are respectively of mean
a and b and variance o and . Y and Y denote generic variables used in ao and
bo, respectively. If a +b- u < 1 Doukhan, Latour and Oraichi (2006) [65] prove
that this model is strictly stationary in L'; it is 6—weakly dependent with

O(r) <2(a+b-p)"E(Xo).

If moreover ||Y|, + [l€oll,||Y|l, < 1 this solution belongs to LP. Moment esti-
mators thus yield \/n—consistent estimators of the parameters in the previously
cited paper. We finally mention that in the case of non negative coefficients
such models are also associated sequences.

3.6.3 Random fields

Analogously, one may define some simple stationary random fields. Let T be
any group (in an additive notation) with some metric d, then Bernoulli shifts
still write

Xt = H((gsft)seT)

for a function H : RT — R if (& )ter is stationary, this is also the case of
(X¢)ter. In order to derive dependence properties of such models one better
considers i.i.d. innovations and we assume that

E|H((&)ser) — H((EM)ser)| —r—oo 0

if we set {t(r) = & for d(s,0) < r and {t(r) = z is a fixed point of {’s values set.
Another option is to use a i.i.d. sequence ¢ = (§})ier independent and with
the same distribution as £ and to set §tr) = ¢ for d(s,0) >r.

Here again linear random fields as well as Volterra random fields are simple to
define. Standard sets T' are Z% and (Z/nZ)". 1t is less natural to work here with
continuous time processes because i.i.d. white noise are discontinuous processes:
they are thus less natural to define. A nice example of this situation is given in
the next subsection.

LARCH(c0) random fields

Let (&)ieza be a stationary sequence of random d x m-matrices, (a;j)jen+ be
a sequence of m X d matrices, and a be a vector in R™. A vector valued
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LARCH(c0) random field model is a solution of the recurrence equation

Xe=& |a+ Zant—j , tezd (3.6.6)
J#0

Such LARCH(00) models include a large variety of models, as those in § 3.4 but
the main point is here that causality in no more assumed in general. The same
proof as in Section 3.4 entails the

Proposition 3.5 (Doukhan, Teyssiere, Winant, 2006 [75]). Assume that

€olloo Y llayll < 1,
#0

then one stationary of solution of eqn. (3.6.6) in LP is given as

Xe=&la+d) D apbjap...a5bji——ja (3.6.7)

k=1 j1,....jx#0

In the following of this section we set A(z) = 32,5, e[, A = A(1) and
A = All6olloo where [|(j1, .-, ji)l| = 1] + -+ + Lkl

Approximations. We assume here that the random field (§;);cza is i.d.d..
One first approximates here X; by a random variable independent of Xy. Set

Xi=& |a+), > Wy §t—jr " Ui &ty — i O

k=1 {71 [l4+l7x [ <t

Proposition 3.6. One bound for the error is given by:

t—1
. _ ¢ A
EILX, — il < Eléo] <E||§o| St )+ A) ol
k=1

We now specialize this result. Assume that b, C' > 0 are constants, then there
exists some constant K > 0 such that

1X, - Xl < { %, under Riemaniann decay A(z) < Ca~°
t tll X

K(qV AV, under geometric decay A(z) < Cq®
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Markov approximation. Consider equation (3.6.6) truncated at rank N,

XtN =& (a + ZO<|UH§N antJ\ij). The previous solution rewrites as

o0
XtN = ft a—+ Z Z aj1€t—j1 o .a’jkgt—jl—'“—jka’

k=10<]|71[ls- s TklI<N

Then E||X; — XV < 3°p2, A(N)E. This error has rate ;- ; N~ for Riema-
nian decays and ¢" /(1 — ¢") in the geometric case. Moreover:

Theorem 3.5. The solution (3.6.7) of eqn. (3.6.6) is n—weakly dependent with

t—1 n At
) = oo <||fo|oo2m“A O A) ol
k=1

This bound may be made explicit for the decays considered previously.

Models with infinite memory

We also mention rapidly here truly non linear extensions of LARCH(co0) models
which are the chains with infinite memory from Doukhan and Wintenberger
(2006) [78] and the random fields with infinite interactions from Doukhan and
Truquet (2007) [55], those models are respectively solutions of the equations*

Xt = F(thlaXt727"';§t)a tEZ,
X, = F((X,f_j)#O &), t ez,

those models are usual excited by i.i.d. inputs £&. Even if no explicit chaotic
solution seems to be available in general, such models are well defined and L”
stationary if

IF(2560) = F(y; &o)llm <Y asllay—uill,  a=Y a; <1,
J#0 J#0
in the previous inequality® one should take m = p both for causal random
processes and causal random fields (accurately defined in the above mentioned
work) and m = oo else. Moreover the weak dependence coefficients are proved
to follow analogous decays with now «; = ||a;|| in theorem 3.4.2. More precisely,
the respectively 7 or n weak dependence coefficients have rates driven by the

relation )
inf (ap + a-).
ot (ar + 2 o
li|>p
fHere the function F(z;u) is perhaps not defined over all RN x R or RZ? x R but it is

enough that it is defined on trajectories of the solution.
§For respectively j € N* and j € Z4\ {0}.
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With the previous geometric decays, the bound is the same as in the paragraph
related to theorem 3.3 and for Riemanian decays pr a; < Ci~% a log loss

appears and 71 oo (r) < Klog?!r - r=.

3.6.4 Continuous time

In the continuous time setting one better consider a process with independent in-
crements, (Z;)er, then a simple extension of linear processes is defined through
the Wiener integral

th/oo F(t — s)dZ,

It is for example simple to define such integrals for a Brownian motion but other
possibilities are all the classes of Lévy processes. Among them, the SaS-Lévy
motion is described in Samorodnitsky and Taqqu (1994) [172].

Analogues of Volterra processes are now multiple stochastic integrals. A com-
plete theory is developed by Major (1981) [126].

More examples are provided in the monograph by Doukhan, Oppenheim and
Taqqu (2003) [72].



Chapter 4

Tools for non causal cases

Moment inequalities are the main tools when using non causal weak dependence.
A first useful section addresses the weak dependence properties of indicators of
processes, useful both for moment inequalities and for the empirical process. Af-
ter this separate sections address variances of sums, (2 4 §)-order moments and
higher order moments. They yield both Rosenthal type and Marcinkiewicz-
Zygmund inequalities. Finally cumulants sums are also considered as depen-
dence coefficients and they are used in order to derive sharp exponential in-
equalities. A last section is devoted to prove tightness criteria for empirical
processes through suitable moment inequalities.

4.1 Indicators of weakly dependent processes
Define, for positive real number z, the function g, : R — R by

9u(Y) = lo<y — Lo<—y.

We are interested along this chapter by (Z, ¥)-dependent sequences, where

1-{Q® .. ) wi>0, uenw},

and V(f,g) = c(dy,dy), for some positive function ¢ defined on N* x N*, in this
case we will simply say that the sequence is (Z, ¢)-dependent. Set

A0={®j:1fi/ fieANL®, i R—>R,i=1,...,u, UEN*}.

The following lemma relates 7, k or § weak dependence to Z weak dependence
under additional concentration assumptions.

67
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Lemma 4.1. Let (X,,)nen be a sequence of r.v’s. Suppose that, for some positive
real constants C, a, A

supsupP (z < X; <z + X)) < CA™. (4.1.1)
z€R ieN

(i) If the sequence (X,,) is (Ao, n)-dependent, then it is (Z, c)-dependent with
e(r) = n(r) e and c(u,v) = 2(8C) 1ta (u+v).

(ii) If the sequence (X,) is (Ao, k)-dependent, then it is (Z, c)-dependent with
2(14+a)

e(r) = k(r)2+e and c(u,v) = 2(8C) 2fa (u+wv) 2+,

(i11) If the sequence (X,,) is (Ao, 0)-dependent, then it is (Z,c)-dependent with
e(r) = 0(r) "o and c(u,v) = 2(8C) 1+e (u + v)1+a.

(iv) If the sequence (X,,) is (Ao, \)-dependent (with X(r) < 1), then it is (Z,c)-
dependent with c¢(u,v) = 2 ((80) e 4 (8C) 243&) (u+v) 0 and e(r) =
A(r) 2¥a

Proof of Lemma /4.1. First recall that for all real numbers 0 < x;,y; < 1,
|1 T — Y1 Ym| < Doiey |2 — yi|- Let then g, f € Z, i.e.

91, Yu) = 9oy (Y1) - G, (Yu), and [y, Y0) = Gy (Y1) -+~ Gar, (Y0)

for some u,v € N* and a:i,a:;- > 0.
For fixed x > 0 and a > 0 let

y Yy x
fm(y) = 1y>w - lygfw + (CL - a + 1) 1acfa<y<w + (CL + a - 1) 171<y<7w+a~

Then Lip(f,) = a™! and || fs]/co = 1.
Define now h and k respectively by

Ry, - yu) = for (1) fo, (W), (Y1, y0) = fz’l (y1)- "fz’v(yv)

then Lip(h) < a~ !, Lip(k) < a~!. Consider iy < -+ <y <y +7<j; < -+ <
Jv and set Cov(h, k) := Cov(h(Xi,, ..., Xi,), k(Xj,, ..., X;,))-

(i) n-weak dependence = |Cov(h, k)| < (u+ v)n(r)/a.
(ii) k-weak dependence = |Cov(h, k)| < ((u + v)/a)® k(r).

(iii) 6-weak dependence = |Cov(h, k)| < vé(r)/a.

Inequality (4.1.1) yields |Cov(g, f) — Cov(h, k)| < 8Ca®(u + v) and
(i) |Cov(g, f)| < 8Ca*(u+v) + (u+v)n(r)/a,
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(i) |Cov(g, )] < 8Ca“(u+v)+ (“Z”)Z k(r), or
(iii) |Cov(g, f)| < 8Ca*(u+v) + 26(r).
The lemma follows by setting respectively
1/(1a) 1/(2+a) 1/(14a)
o n(r) o ((utv)s(r) oo 0r)

The case of A dependence is obtained by the summation of both cases (i) and
(ii). O

4.2 Low order moments inequalities

Our proof for central limit theorems is based on a truncation method. For a
truncation level T' > 1 we shall denote X = fr(Xy) — Efr(Xx) with f7(X) =
XV (=T)AT. Let us simply remark that X; has moments of any orders
because it is bounded. Suppose that ¢ = E|X|™ is finite for some m > 0.
Furthermore, for any a < m, we control the difference E|fr(Xo) — Xo|* with
Markov inequality:

E[fr(Xo) — Xo|* < E[Xo|"1q x>y < 0T ™,
thus using Jensen inequality yields
X0 — Xolla < 2uaT" . (4.2.1)

Deriving from this truncation, we are now able to control the limiting variance
as well as the higher order moments.

4.2.1 Variances

Lemma 4.2 (Variances). If one of the following conditions holds then the series
Zkzo |Cov(Xo, Xi)| is convergent

i k(k) < oo (4.2.2)
k=0
iA(k)ﬁif < o (4.2.3)
k=0

Proof. Using the fact that X = gr(Xp) is a function of Xy with Lip gr = 1,
llgr]lco < 2T we derive, for T large enough,

|Cov(Xo, Xi)| < k(k), or < (2T 4 1)A(k) < 4T X(k) respectively (4.2.4)
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In the x-dependent case, truncation can thus be omitted and
|Cov(Xo, Xi)| < (k) (4.2.5)
we only consider \ dependence below. Now we develop
Cov(Xo, Xi) = Cov(Xo, Xg) + Cov(Xg — Xo, Xi) + Cov(Xo, X — Xi)

and using a truncation 7' to be determined we use the two previous bounds
1 1

(4.2.1) and (4.2.4) with Holder inequality with the exponents + = =1 to
a m

derive

|Cov(Xo, Xp)| < 4TA(K) + 2[[ Xo[[m[| X0 = Xolla
< 4T)\(/€) +4ul/a+l/mT17m/a
< ATAKk) + pT?™).

Note that we used the relation 1 — m/a = 2 — m. Thus using the truncation
such that 7™ = Ak Yields the bound

|Cov(Xo, Xp)| < 8um 1 A(k)m—1. O (4.2.6)

4.2.2 A (2+ ¢)-order moment bound

Lemma 4.3. Assume that the stationary and centered process (X;)icz satisfies
E|Xo?*¢ < oo, and it is either k-weakly dependent with k(r) = O (r~"%) or A-
weakly dependent with A(r) = O (T’A). Then if k > 2 + é, or A >4+ z, then
for all § €]0, AN B A 1] (where A and B are constants smaller than ¢ and only
depending of ¢ and respectively Kk or A, see 4.2.10 and 4.2.11), there exist C > 0
such that:

1Snlla < Cy/n, where A =2+4.

Remarks.

. 5 1/A
e The constant C' satisfies C' > <26/2 B 1) kEZZK]ov(Xo,Xk)I. Under

the conditions of this lemma, Lemma 4.2 entails

c= Z |Cov(Xo, Xi)| < 0.
kEZ

e The result is sketched from Bulinski and Sashkin (2005) [33]; notice, how-
ever that their condition of dependence is of a causal nature while our is
not which explains a loss with respect to the exponents A and . In their
(—weak dependence setting the best possible value of the exponent is 1
while it is 2 for our non causal dependence.
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Proof of lemma 4.3. Analogously to Bulinski and Sashkin (2005) [33], who
sketch Ibragimov (1962) [110], we proceed by recurrence on k for n < 2 to
prove the property:

|1+ S]], < CVn. (4.2.7)

We then assume (4.2.7) for all n < 2K—1. We note N = 2X and we want to
bound [|1 + |Sn|||la. We always can share the sum Sy in three blocks, the
two first with the same size n < 2K~! denoted A and B, and the third V
placed between the two first and of size ¢ < n. We then have |1 + [Sn||a <
|1+ |A|+|B||la+|V]|a. The term ||V is directly bounded with ||[1+ |V | a
and the property of recurrence, i.e. C'\/q. Writing q = N? with b < 1, then this
term is of order strictly smaller than v/N. For |1+ |A| 4 |B|||a, we have:

E(1+|A|+ [B])*(1 +|A| + |B])°,
E(1+2|A| +2|B| + (|A| + |B|)*)(1 + |A| + |B)°.

E(1+ |A| +|B)2 <
<

An expansion yields the terms:
o E(L+]A[+[B|)° <1+ A} +|Bl3 < 1+2¢°(v/n)’,

o E[A|(1+[A|+[B|)° <E|A[((1+|B)° +|A]°) < E[A|(1+|B])° + E[A]'*.
The term E|A|'*? is bounded with [|A[|2*° and then ¢'+%(y/n)'+%. The
term E|A|(1+|B|)? is bounded using Holder || Al|145/2[1+|B| [|% and then
is at least of order cC®(y/n)'*9.

e We have the analogous with B instead of A.

e E(|A| + |B|)%(1 + |A| + |B|)°. For this term, we use an inequality from
Bulinski:

E (1Al +BI)?(1 + Al +[B])°)
< E[A|® +E|B|® +5(EA%(1 + |B|)° + EB2(1 + |A])?).

The term E|A|? is bounded using (4.2.7) by C?(y/n)?. The second term
is the analogous with B. The third is treated with particular care in the
following.

We now want to control EA%(1 + |B|)? and the analogous with B. For this, we
introduce the weak dependence. We then have to truncate the variables. We
denote X the variable X V (=T) A T for a real T that will determined later.
We then note by extension A and B the sums of the truncated variables X;.
Remarking that |B| — |B| > 0, we have:

E|A[2(1 +|B|)® < EA%(|B| — |B|)’ + E(A2 — A%)(1 + |B|)® + EA*(1 + |B|)’.
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We begin by control EA?(|B|—|B|)°. Set m = 2+, then using Hélder inequality
with 2/m + 1/m’ = 1 yields:

EA*(|B| - |B))° < A5 (B] = 1B [l

[lA]|a is bounded using (4.2.7) and we remark that:
(IB|—|B]))’™" < (|B|_|B|1{Vi7|X,i|§T})6ml < |B|6ml1{3i,\xi\>T} < |B|6ml1|B\>T-
We then bound 1,7 < (|B|/T)* with a = m — dm'. Then

E||B| - |B||"™ < E|B™T*™ ™.
Then, by convexity and stationarity, we have E|B|™ < n™E|X|™. Then:

EA%(|B| - |B|)? < n>tm/m pé=m/m’,
Finally, remarking that m/m’ = m — 2, we obtain:
EA2(|B| — |B|)? < n™TA~™,

We obtain the same bound for the second term:

E(A% — A%)(1 + |B|)® < n™TA~™.
For the third term, we introduce a covariance term:

EA’(1+|B|)® < Cov(A®, (1+|B])°) + EA’E(1 + |B|)°.

The last term is bounded with |A[3|B|) < ¢ \/nA. The covariance is controlled
by the weak-dependence notions:

e in the rs-dependent case: n*T'k(q),

e in the A\-dependent case: n3T?\(q).

We then choose either the truncation 7™ %1 = n™=2/k(q) or T™ 0 =
n™=3/X(q). Now the three terms of the decomposition have the same order:

m— m—A\1/(m—06-1)
E|A[*(1 +B])° (¥ 22k ()" )

E|A*(1 + |B|)5 = (n5m_3A)\(q)m_A)1/(m76) under A-dependence.

IA

under k-dependence,

b . 3m—2A4+br(A—m)
Set ¢ = NP, we note that n < N/2 and this term has order N m—6-1
5m—3A+bA(A—m)
under k-weak dependence and the order N m=s under A-weak depen-

dence. Those terms are thus negligible with respect to N2/2 if:

k> 3m72AbznA1£2A(T7671), under k-dependence, (4.2.8)

A > 5m73bA(;ﬁ/A2)(m*6) ,  under A-dependence. (4.2.9)
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Finally, using this assumption, b < 1 and n < N/2 we derive the bound for
some suitable constants ai, as > 0:

E(1+|Sx))2 < (2—5/’4’0A £5.279/26A alN_“2) (\/N)A .

Using the relation linking C' and ¢, we conclude that (4.2.7) is also true at the

step NN if the constant C satisfies 27%/2C2 4+5.279/2¢2 4, N~ < C2. Choose
1/A

A 26/2
C> <5c25—/|—2a_1 ] ) with ¢ = Z |Cov(Xo, Xi)|, then the previous relation
kEZ

holds.
Finally, we use eqns. (4.2.8) and (4.2.9) to find a condition on ¢. In the case of
k-weak dependence, we rewrite inequality (4.2.8) as:

0>024+06(2—3—C) —rC+2C+1.
It leads to the following condition on A:

V2 —=3-02+4(k¢ -2 -1)+(+3 -2k

0 < 2 = A. (4.2.10)
We do the same in the case of the A\-weak dependence:
2A—6—C)2+4(\—4C—2 —2)\
5 VA0 OTHAN — =2+ (4620 (4.2.11)

2

Remark: those bounds are always smaller than (. [J

4.3 Combinatorial moment inequalities

Let (X,,)nen be a sequence of centered r.v.s. Let S, = Z?:l X;. In this section,
we obtain bounds for |[E(S?)|, when ¢ € N and ¢ > 2. Our main references are
here Doukhan and Portal (1983) [73], Doukhan and Louhichi (1999) [67], and
Rio (2000) [161].

We first introduce the following coefficient of weak dependence.

Definition 4.1. Let (X,,) be a sequence of centered r.v.s. For positive inte-
ger r, we define the coefficient of weak dependence as non-decreasing sequences
(Cr.q)q>2 such that

sup |COV(,XVt1 s Xtm,Xtm+1 ce th)| = Cr)q, (431)

where the supremum is taken over all {t1,...,tq} such that 1 < t; < --- <,
and m, r satisfy ty 41—t = 1.
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Below, we provide explicit bounds of C,. 4 in order to obtain inequalities for mo-
ments of the partial sums S,,. We shall assume, that either there exist constants
C, M > 0 such that for any convenient g-tuple {t1,...,t,} as in the definition,

Crq < CMie(r), (4.3.2)

or, denoting by Qx the quantile function of |X| (inverse of the tail function
t— P(|X]| > t), see (2.2.14)),

e(r)

Crq < c(q) ;@ (x)---Qx,, (z)dz, (4.3.3)

The bound (4.3.2) holds mainly for bounded sequences. E.g. if || X, ]|co < M
and X is (A NL*>, ¥)-weak dependent, we have:

Cr’q S 1H13X \I/(j®m,j®(qim)7m7 q— m)qu(r)’

<m<gq

where j(r) = 213<1 + 1p51 — 1o 1. If (A, k,u,v) = c(u,v)Lip (h)Lip (k),
the bound becomes

< - = 2¢(r).
C’r,q_llgnniuéqc(m,q m)MI%e(r)

The bound (4.3.3) holds for more general r.v.s, using moment or tail assump-
tions. With Lemma 4.1, we derive that if the concentration property (4.1.1)
holds then the 1 (resp. k) weak dependence implies (Z, ¢)-weak dependence.

Now relation (4.3.3) follows from the following lemma.

Lemma 4.4. If the sequence (X, )nen is (Z,c)-weak dependent, then

e(r)
Cov(Xs, - Xo, . Xo - Xo)| < Gy / Qua(0) -+ Qu, (w)du,
0

where Cq = (MaxXyv<q c(u,v)) V2. The quantity Qq, denotes the inverse of the
tail function t — P(| Xy, | > t) (inverse are defined in eqn. 2.2.14)).

Proof of Lemma 4.4. Let YT =0VY and Y~ =0V (-Y),

+oo “+o0
/ ly<y+dz = / 1,.<ydz, and
0 0

—+oo +oo
/ 1w<y—d$ = / 1z<_ydﬂf.
0 - 0 h

The inclusion-exclusion formula entails,

Y+

v

VoY = [JO77 = ¥7) = D07y iy

tq
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where " denotes a summation over all the permutations {i1,...,7,} of
{1,...,¢}. Using Fubini’s theorem, the preceding integral representation yields

VY, = (-1

X
T
-
B
IA
=

o lwrﬁyw 117‘+1S7Y7‘+1 T 11q§*Yiq dry - -d{Eq

I< y)dxl-"qu.

Il
aé\
et
£
b<

Again Fubini’s theorem yields

q
E(Y;---Y,) = /d EJ] (Qei<v, = Laj<oy,) day -+ - day. (4.3.4)
RY =1

Now, eqn. (4.3.4) applied with Y; = Xy, for i = 1,..., ¢, together with Fubini’s
theorem implies

Cov (Xt -+ Xty s Xtoin ...th):/R Cov (H fi(Xt,) H fi (X, ) dzy - - - dxg,

=1 zm+1

where f;(y) = 1;,<y — 13,<—y. Define

= |Cov (H fi(Xe) H fi(X4) )‘ (4.3.5)

=1 zm+1

In the sequel, we give two bounds of the quantity B. The first bound does not
use the dependence structure, only that |f;(y)| = 1,,<|y. Thus

B < 2inf(®x,, (21), ... Px,, (). (4.3.6)

with ®x(z) = P(]X| > x). The second bound is deduced from the (Z, ¢)-weak
dependence property. In fact, we have (recall that r = t,,11 — t,,)

B < c(u,v)e(r). (4.3.7)
The bound (4.3.7) together with (4.3.6) yields
B < Cyinf(e(r), @x, (z1),..., Px,, (xq))-
Hence

|COV(Xt1 Xtm ? Xtm+1 T X q)

+oo —+oo
< cq\/2/ / inf(e(r), @x,, (z1), ..., Px,, (¥q))dz1 - -~ dg.
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The proof of Theorem 1-1 in Rio (1993) [157] can be completely implemented
here. We give it for completeness. Let U be an uniform-[0,1] r.v, then

e(r) A 1r<nj1n Px,, (z;) = PU<e(r),U<Ox, (21),...,U < Px, (24))
= P(U <e(r),z1 <Qx, (U),...,24 < Qx,, (U)).
We obtain, collecting the above results
|Cov(Xe, - Xy Xtyyr - Xi, )| £ CeEQx,, (U) -+ Qx,, (U)ly<e(r)-

The lemma is thus proved. [J

In order to make possible to use such bounds it will be convenient to express
bounds of the quantities

N
sabN—ZrH/ Q4 (s (4.3.8)
r=0

under conditions of summability of the series ¢, for suitable constants a > 0 and
N,b> 0 and a tail function @ of a random variable X such that E|X[**® < oo
for some 6 > 0. Set for convenience A, = Y _ (i + 1) for 7 > 0 and = 0 for
r <0, and B, = E(T) Q"(s)ds for r > 0 (= 0 for r < 0), then expression s, 4 x
rewrites as follovvs Abel transform with Holder inequality for the conjugate
exponents p =1 + b/ 0 and ¢ = 1 + /b implies the succession of inequalities

N
Sa,b,N = Z(Ar - Arfl)Br
=0

N—-1
= Y Ax(By = Bri1) + AvBy

L ot
- /0 Z Ardje(r41),e(r)](8) + AnLjo,e(n)) (5 )) Q"(s)ds

1 N1 Vo »

< () (Z A0+ At )as) ([ @)

3 1/p bqy1/a
< (X A2(elr) — elr + 1)) + Ae(N)) " (BIX|™)

r=0
Hence

N 1/p
Sa,b,N < (Z(Ag — Af_l)e(r)> (E|X|b+§)b/(b+5)
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Now we note that 7¢*1/(a+1) < A, < (r +1)%"1/(a + 1) so that
AP A < (1D (1) a1 < 2 1 (g 1

hence, setting ¢ = (2p)'/?(a + 1)/,

N 8/(b+6)
Sap,N <€ <Z(T + 1)a+(a+l)b/6€(7")> 1X 1155
r=0

We summarize this in the following lemma.

Lemma 4.5. Leta > 0,b > 0 be arbitrary then there exists a constant ¢ = ¢(a,b)
such that for any real random valued variable X with quantile function Qx, we
have for any N >0

N e(r N

)
Z(T + 1)a Qg((s)ds < C(Z(r+ 1)a+(a+1)b/6€(,r))

r=0 0 r=0

5/(b+6)
11X [1p45-

4.3.1 Marcinkiewicz-Zygmund type inequalities
Our first result is the following Marcinkiewicz-Zygmund inequality.

Theorem 4.1. Let (X,)nen be a sequence of centered r.v.s fulfilling for some
fizredqe N, ¢ >2
Cryg=0""%), as r— oco. (4.3.9)

Then there exists a positive constant B not depending on n for which
IE(S4)| < Bn?/2. (4.3.10)

Proof of Theorem 4.1. For any integer q > 2, let

Ay(n) = S E(Xy Xy, | (4.3.11)

1<t < <tg<n

Clearly,
[E(SD| < q'Aq(n). (4.3.12)

Hence, in order to bound |E(S?)|, it remains to bound A,(n). For this, we argue
as in Doukhan and Portal (1983) [73]. Clearly

Aq(n) < Z IE(X, - X, )E(Xe ey o X, )
1<ty < <ty<n
+ Z |COV(Xt1 T thL7thL+1 T th)|'

1<ty <<ty <n
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The first term on the right hand of the last inequality is bounded by:

qg—1
Z IE(X, - X, )E(Xe o X, )| < ZAm(n)Aq_m(n).
1<t <<ty <n m=1
Hence
qg—1
< SN 4n(n (n) + V,(n). (4.3.13)
m=1
with
Van) = > |Cov(Xy, - Xo, Xy - X1, (4.3.14)
(t1,--+,tq)EG,

where G, is the set of {t1,...,t,} fulfilling 1 < ¢; < --- < ¢, < n with r =
b1 — bm = MaXi<jcq(tiv1 — ti).
Our task now is to bound the expression V,(n) defined by (4.3.14). Clearly

< Z Z |COV(AXV151 o 'XtmaXtm+1 T th)lv

t1=1
where Z* denotes a sum over such a collection 1 <t; <--- <t, <n with fixed
t1, and r = ti4+1 — tm = maxlgigq,l(tiﬂ — ti) S [0, n— 1] Again

n—1 xx

*
Z |Cov (X, -- 'Xtm7Xtm+1 o 'th)| < Z Z |Cov (X, -- 'Xtm7Xtm+1 o 'th)|'
r=0

*kk

where Z denotes the (¢ — 2)-dimensional sums each over

{(t1,. . tg) ) tica <t; <tii+7r, i#1,m+1}.

Hence Zl (r 4+ 1)777, with [Cov(Xy, -+ Xt Xtyy - Xe,)| < Crgy we
deduce that )
<D+ 1)C, (4.3.15)
ti1=1r=0

We obtain, collecting inequalities (4.3.13) and (4.3.15),

q—1 n—1
Apn(n)Ag-m(n) +n Y (r+1)172C, . (4.3.16)
m=1 r=0

By induction on ¢, and using the last inequality together with condition (4.3.9),
it is easy to check that A,(n) < K,n%?. Theorem 4.1 follows from (4.3.12). O
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4.3.2 Rosenthal type inequalities

The following lemma, which is a variant of Lemma 1 page 195 in Billingsley
(1968) [20], gives moment inequalities of order ¢ € {2,4}.

Lemma 4.6. If (X,,)nen is a sequence of centered r.v.s, then

n_l 2 n—1
B <03 o msh ) (1520) 1a S vy
r=0 —0

(4.3.17)

Proof of Lemma 4.6. We take respectively ¢ = 2 and ¢ = 4 in the rela-
tion (4.3.16). The obtained formulas, together with (4.3.12) and the fact that
A1(n) = 0 for any positive integer n, prove Lemma 4.6. O

The following theorem deals with higher order moments.

Theorem 4.2. Let q be some fized integer not less than 2. Assume that the
dependence coefficients C,.,, associated to the sequence (X,,) satisfy, for every
nonnegative integer p, p < q, and for some positive constants C and M,

Crp < CMPe(r). (4.3.18)
Then, for any integer n > 2

D) _2)' n—1 qa/2 n—1
(qq_ oM <Cn26(r)> v (CnZ(r+1)q2e(r)>

r=0 r=0

E(s9)] <
(4:3.19)

Proof of Theorem 4.2. The relation (4.3.16) together with Condition (4.3.18)
gives,

qg—1 n—1
A (n (n) +CMn Y " (r+1)""¢(r). (4.3.20)
m=1 r=0

In order to solve the above inductive relation, we need the following lemma.

Lemma 4.7. Let (Uy)g>0 and (Vy)gso0 be two sequences of positive real numbers
satisfying for some v > 0, and for all ¢ € N*

q—
Z Uy + MV, (4.3.21)

m=1
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with Uy = 0 < V3. Suppose that for every integers m,q fulfilling 2 <m < q—1,
there holds

VIV V) (T2 V) < (G2 V). (4.3.22)
Then, for any integer q > 2
Ma
v< ( 2qq_ 1 ) V2 ). (4.3.23)

Remark 4.1. Note that a sufficient condition for (4.3.22) to hold is that for all
p, qgsuch that 2 <p<qg-—1

LA Ve (4.3.24)

Proof of Lemma 4.7. Let (Uy)g>0 and (V4)g>0 be two sequences of positive real
numbers as deﬁned by Lemma 4.7. We deduce from (4.3.21) and (4.3.22), that

the sequence (U,), defined by U, = U,/ M q(VQQ/ 2y V,) satisfies the relation,

q—
Z qm—I—l [7120

In order to prove (4.3.23), it suffices to show that, for any integer ¢ > 2,
~ 1/ 2¢—2
U, <d, := , 4.3.25
T g < g—1 ) (4:329)

where d, is called the ¢g-th number of Catalan. The proof of the last bound is
done by induction on ¢q. Clearly (4.3.25) is true for ¢ = 2. Suppose now that
(4.3.25) is true for every integer m less than ¢ — 1. The inductive hypothesis
yields with 01 =0:

q—
Z dgm + 1. (4.3.26)

The last inequality, together with the identity d, = Y7 d mdq—m (cf. Comtet
(1970) [39], page 64), implies U, < d,, proving (4.3.25) and thus Lemma 4.7. O

We continue the proof of Theorem 4.2. We deduce from (4.3.20) that the se-
quence (Aq(n))q satisfies (4.3.21) with

n—1
Vg i=Vy(n) = CM™n Y (r+ 1) %(r).

r=0

Hence, to prove Theorem 4.2, it suffices to check condition (4.3.22).

A A 1 A e VA A ARV Ul 7 S Y T
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To control each of these terms, we use three inequalities. Let p be a positive
integer, 2 < p < g — 1. We deduce from,

n—1 n—1 3712) n—1 2:5
Z(r +1)P2¢(r) < (Z e(r)) (Z(T + l)q_ze(r)> ,
r=0 r=0 r=0
that, for 2 <p <gq—1,
p—2 q—p
V, < VIRVl (4.3.27)

Define the discrete r.v. Z by P(Z =7+ 1) = e(r)/ Z;.Zol €;. Jensen inequality
implies || Z]|p—2 < || Z|lq—2 if 1 <p—2 < ¢ — 2 so that
V, < Vil (4.3.28)
ForO<a<1,
ViRviee < ity (4.3.29)
Using (4.3.28), we get

(a—=m)a  m— 2

V V(‘I m)/2<v2(q 2) Vq
q—m—2

VQm/2Vq . <V2(" Q)V q-2
From (4.3.27) we obtain
ViV < Vi 2 Vi
Now (4.3.29) implies that these three bounds are less than VQq/ >V Ve, O

Theorem 4.3. If (X,,)nen is a centered and (Z,c)-weak dependent sequence,
then

(¢g—1)

noo1 a/2
Y% <Cg Zl/o (e_l(u) An)Q? (u)du) ,

where €1 (u) is the generalized inverse of ) (see eqn. (2.2.14)).

syl < 207 {c > [ an) ™ @t

Proof of Theorem 4.3. We begin from relation (4.3.16), and we try to evaluate
the coefficient of dependence C. , for (Z,1)-weak dependent sequences. For
this, we need the forthcoming lemma.

Lemma 4.8. If the sequence (X, )nen is (Z,c)-weak dependent, then

<CZ/ ! QY (u)du
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Proof of Lemma 4.8. We use Lemma 4.4. Arguing exactly as in Rio (1993)
[157], we obtain

e(r)

N < oYY | @t
r=0 (i1,...,iq)EG,
e(r) q

S0 SHED SH A o A0
r=0 (i1,...,iq)EG,

< OY % /
r=0 (iy,.. zq)EUk< (r+1)

Now fixing ¢; and noting that the number of completing (¢1,...,%j-1,%j41,...,1q)

to get an sequence in J, ., Gy, is less than (r + 1)771:

n n—1

+ 1)1l

Z( <1)Z€Uk< Gk /(T+1 Z;Jr oV e(r+1) r ( )
y u) An) T Qf (u)du
< 2 [

Lemma 4.8 is now completely proved. [J
We continue the proof of Theorem 4.3. We deduce from Lemma 4.8 and In-

equality (4.3.16), that the sequence (A4(n)), fulfills relation (4.3.21). So, as in
the proof of Theorem 4.2, Theorem 4.3 is proved, if we prove that the sequence

Vo(n) == (cp V2) S0 fol (e (u) An)" ™" QF(u)du satisfies (4.3.22). We have,
/1 (e M (w) A n)p_l QF (u)du
0

) </01 e Q?(U)du> : </o1 (M) Am)" Q?(u)du> }

The last bound proves that the sequence (V},(n)), fulfills the convexity inequality
(4.3.27), which in turns implies (4.3.22). O

4.3.3 A first exponential inequality

For any positive integers n and ¢ > 2, we consider the following assumption,

_ 2 q!
qu—nZ(r—kl )12 Crq < Ap o (4.3.30)
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where 3 is some positive constant and A,, is a sequence independent of g.
As a consequence of Theorem 4.2, we obtain an exponential inequality.

Corollary 4.1. Suppose that (4.3.18) and (4.3.30) hold for some sequence A,, >
1 for any n > 2. Then for any positive real number x

P (|Sn| > x\/An) < Aexp (—B\/ﬁx) , (4.3.31)
for universal positive constants A and B.
Remark 4.2.
e One may choose the explicit values A = e*T1/12\/87, and B = /2.

e Let us note that condition (4.3.30) holds if C,., < CM9e="" for positive
constants C, M,b. In such a case A, is of order n. E.q. this holds if
[Xnllo < M and | X,|l2 < o under (A N L, U)-weak dependence if
e(r) = O(e™) and U (h, k,u,v) < @tV Lip (h)Lip (k) for some 6§ > 0.
For this, either compare the series > (r—+1)9"2e=" with integrals or with
derivatives of the function t — 1/(1 —t) =", t" at point t = e~ .

e The use of combinatorics in those inequalities makes them relatively weak.
E.g. Bernstein inequality, valid for independent sequences allows to replace
the term \/z in the previous inequality by x* under the same assumption
no? > 1; in the mizing cases analogue inequalities are also obtained by
using coupling arguments (not available here), e.g. the case of absolute
regularity is studied in Doukhan (1994) [61].

Proof of Corollary 4.1. Theorem 4.2 written with ¢ = 2p yields

2p)! [ dp—2
E(S2P) < (2];) ( 2]73_ . )(szm\/M{n). (4.3.32)

Hence inequality (4.3.32) together with condition (4.3.30) implies

B(s) < P2 <(2A")”v 2,00)

- (@2p-1)! B2 B2
(4p —2)! o (2p)!
p— 1A

< (A, vAP)(;];g!.

From Stirling formula and from the fact that A,, > 1 we obtain
2p P
E(S?) _ A

P(|Sn| > z) < o S $2pggp€1/12_4p\/8ﬂp(4p)4p
<

16 »
e'12\/8n <xﬁe7/4p2\/A"> .
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Now setting h(y) = (Cy,y)*¥ with C2 = ;26_7/4\/14”, one obtains

P(|S,| > z) < e/'2\/8xh(p).

Define the convex function g(y) = log h(y). Clearly

1
inf = .
ylerﬁwg(y) g <€On)
Suppose that eC,, < 1 and let pg = [e(lj }, then

P(|S,| > z) < e/*2V/8nh(po) < e4+1/12\/87rexp(ec )

Suppose now that eC,, > 1, then 1 < e*t1/12{/87 eXp(e_C4 )
In both cases, inequality (4.3.31) holds and Corollary 4.1 is proved. [J

Remark. More accurate applications of those inequalities are proposed in
Louhichi (2003) [125] and Doukhan & Louhichi (1999) [67]. In particular in
Section 3 of [67] conditions for (4.3.18) are checked, providing several other
bounds for the coefficients C, 4.

4.4 Cumulants

The main objective of this section is to reinterpret the cumulants which classi-
cally used expressions to measure the dependence properties of a sequence.

4.4.1 General properties of cumulants

Let Y = (Y7,...,Y;) € R* be a random vector, setting ¢y (t) = EeY =
Eexp (z Z;ﬂ:l thj) for t = (t1,...,t5) € R*, we write m,(Y) = EY{* .- YP*
for p = (p1,...,pr) f E(Y1|° +--- +|Y1]°) < o0 and [p| = p1 + - +pp = 5.
Finally if the previous moment condition holds for some r € N*/ then the
function log ¢y (t) has a Taylor expansion

i1l
log ¢y (t) = Z sz; kp(Y)tP +o(|t]"), ast—0

[p|<r
for some coefficients k,(Y) called the cumulant of Y of order p € R* if |p| < s
where we set p! = pil--ppl, 2 = 7" #F if t = (t1,...,tx) € RF and p =
(pla e 7pk)'
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In the case p = (1,...,1), to which the others may be reduced, we denote
k(1,0 (Y) = K(Y). Moreover, if pp = {i1,... i} C{1,...,k}

kp(Y) =k, ..., Y:,), m,(Y)=m(;,...,Y,).

Leonov and Shyraev (1959) [119] (see also Rosenblatt, 1985, pages 33-34 [168])
obtained the following expressions

KY) = > (- (w—10 > J[mw, ) (4.4.1)

u=1 L seees by =1
k

my) = > > Hf% (4.4.2)
u=1fi1,...,py j=1

The previous sums are considered for all partitions 1, . . ., i, of the set {1,..., k}.

We now recall some notions from Saulis and Statulevicius (1991) [173]. For this
we reformulate their notations.

Definition 4.2. Centered moments of a random vector Y = (Yi,...,Yy) are
defined by setting E (Y1,...,Y;) = EY1¢(Ya,...,Y]) where the centered random

=
variables ¢(Ya, ..., Y]) are defined recursively, by setting c(&1) = € = & —E&,

(&5t &) = & el 60) = & (elEjory - E1) = BelEjr, . 61)
We also write Y,, = (Y;/j € p) as a p—tuple if p C {1,...,k}.

Quote for comprehension that E (&) =0, E (n,€) = Cov(n, ) and,
E (€,n,6) = E((ng) — E(QE®E) — E(n)E(CE) — E(EE((n).

A remarkable result from Saulis and Statulevicius (1991) will be informative

Theorem 4.4 (Saulis, Statulevicius, 1991 [173]).

k u
H(Ylw'wyk) = Z(_l)u_l Z Nu(MlavMU)H EYNJ
u=1 Hlsens b Jj=1

where sums are considered for all partitions py, ..., p, of the set {1,...,k} and
the integers Ny (u1, ..., fy) € [0, (u—1)IA [’;} !] , defined for any such partition,
satisfy the relations

u—1
Z Nu(le 7Mu) = ch‘z(u_j)kilf
=1

HiseeosHu
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k

o ) N(ku)=(k—1)!

u=1
Using this representation the following bound will be useful

Lemma 4.9. Let Yi,...,Y; € R be centered random variables. For k > 1, we
set My, = (k — 1)128 "L max;<;<x E|Y;|*, then

[k(Y1,...,Yp)| < My, (4.4.3)

MM, < My, if k)1 > 2. (4.4.4)

Mention that a consequence of this lemma will be used in the following;:

u
[T lep(Yas o Yo )l < My, g, (4.4.5)
i=1
We shall use this inequality for components Y; = X ,ga) of a stationary sequence

of RP —valued random variable hence max;>1 E|Y;|P < max;<j<p E|Xéj) [P and
we may set

— _ 1op—1 (]) P
My = (p—1)2"" max EXG" (4.4.6)

Proof of lemma 4.9. The second point in this lemma follows from the elementary
inequality a!b! < (a + b)! and the first one is a consequence of theorem 4.4 and
of the following lemma

Lemma 4.10. For any j,p > 1 and any real random variables &y, &1, &2, . . . with
identical distribution,

less&i-1s-s60)llp < 2 max 1l with [illy = EV/7lg].

Proof of lemma 4.10. For simplicity we shall omit suprema replacing
max;<; [|&||p by [|€1]|p- First of all, Hélder inequality implies

le€lly < lI€allp + B | < 2[[&1llp,

We now use recursion; setting Z; = ¢(§;,&-1,...,&) yields Z; = §(Z;-1 —
EZ;_1) hence Minkowski and Holder inequalities entail

1€5Z5-1llp + 1€0llpEZ; 1|

[€0llpsl1Zi-1llq + IS0llpill Zj -1l

2o lll€oll?G

12l

INIA A
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1 1
where =~ + 1= 1; from p > 1 we infer ¢(j — 1) < pj to conclude. (J
q p-

Proof of lemma 4.9. Here again, we omit suprema and we replace max;< s [|Yjlp
by [|Yoll,- With lemma 4.10 we deduce that |E Y, | < 2/71| Yo} with I = #p.
Indeed, write Z = ¢(Ya,...,Y]), then with ; + % =1 we get

E (1, Y| = [EYi 2] < Yol ZIl, < 2 1Yol

since ¢(I — 1) = [. Hence theorem 4.4 implies,

k u
S0 Nulpn, o) []2# V0l

k(Y] <
u=1 1. .y fbu i=1
k
< Y 2Nk W)Yol
u=1
k
< 2MYYOlE D N (ki)
u=1
= 271k — )Y Yoll7- 0

The following lemmas are essentially proved in Doukhan & Leén (1989) [66] for
real valued sequences (X, )nez. Let now (X,,)nez denote a vector valued and
stationary sequence (with values in R?), we define*, extending Doukhan and
Louhichi (1999)’s coefficients,

Cx.qr) = sup ‘Cov (xf) e xfe, x (o) -Xt(jq))} (4.4.7)

1 ti1

tl+1*tlz7‘

We also define the following decreasing coefficients, for further convenience,

cx,q(r) = [max ex,1(r)pg—t, with = 1IgrbaLSXDI['E|X0|t. (4.4.8)
In order to state the following results we set, for 1 < ay,...,a, < D,

R(g) @) (o, ) = Ry (X6, X X))
The following decomposition lemma will be very useful. It explain how cu-
mulants behave naturally as covariances. Precisely, it proves that a cumulant

*For D = 1 this coefficient was already defined in definition 4.1 as Cy 4 but the present
notation recalls also the underlying process.
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KQ(Xkys -+, Xpg) is small if kyq — ky is large, by < --- < kg, and the process
is weakly dependent. This is a natural extension of one essential property of
the cumulants which states that such a cumulant vanishes if the index set can
be partitioned into two strict subsets such that the vector random variables
determined this way are independent.

Definition 4.3. Let t = (t1,...,t,) be any p—tuple in ZP such that t; < --- <
tp, we denote r(t) = maxi<j<p(ti41 — t;), the mazimal lag within the succession

(t1,.. . tp).
We now introduce another dependence coefficient

Kip(r) = max max ‘K,p (Xt(lal), . ,Xt(a”)) ‘ (4.4.9)
tp < < tp 1<ai,...,ap <D P
CTRSE

Lemma 4.11. Let (X,)nez be a stationary process, centered at expectation
with finite moments of any order. Then if Q > 2 we have, using the notation
in lemma 4.9,

Q Q—s+1
ixalr) < ex.olr +ZMQ A3 e

Proof of lemma 4.11. We denote X( 9 = Hle X ) for any p—tuples n € ZP and
a=(ai,...,ap) €{1,...,D}? (thlS way admits repetitions of the succession 7).
We assume that k1 < --- < kg satisfy kjp1 — ki = r = maxi<s<p(ksp1 —ks) > 0,
then if p = {p1, ..., py} ranges over all the partitions of {1,..., @} there is some
pi (which we denote v),) satisfies v, = [1,1]Nv, # 0 and v} = [I+1,Q]Nv, # 0.
Using formula (4.4.2), we obtain, with n = {1,...,1},

(X X)) = Cov(X U XY =3 N kg Kk, (44.10)
w {p}

where K, = H Ku; (k) and where the previous sum extends to partitions
iV

= {p1, ..., pu} of {1,...,Q} such that there exists some 1 < ¢ < u with

wiNv # () and p;Nv # (. For simplicity the previous formulas omit the reference

to indices (a1, ..., aq) which is implicit. We use the simple but essential remark

that

r(yﬂ(k)) > r(k) to derive |/£,,M(k)| < KX H, (1)

We now use lemma 4.9 to deduce |M,| < Mg_4,, as in eqn. (4.4.5). This
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yields the bound

[Q/2]
’K (X]ng)’ c ,XIS;Q))‘ < C)QQ(T) + Z (u - 1 Z MQ #W'KW(/C)(X( ))|

u=2 M1y
[Q/2] Q-2

< COxo)+ D (w—1Y" Mg wrxslr) >, 1
u=2 s=2 Hlseoos I

Huy =

[Q/2] Q-2

< COxo)+ D> (=D (u—1)9*Mg_srix.s(r)
u=2 s=2
Q-2 Q —s+1

< Mg s

< Cxofr +ZQ—3+1{2] Q-skx,s(T)

since the inequality 25:1 (u—1)P < lerl UPT! follows from a comparison between
a sum and an integral. [J

Rewrite now the lemma 4.11 as

Q-2

kx.q(r) <exo(r) + Y Baskix,s(r)
s=2

thus the following formulas follow

kx2(r) < expa(r),
kx3(r) < exgs(r),
kxa(r) < exa(r)+ Bagkxa(r)
< exa(r) + Baaexa(r),
kx5(r) < exs(r) + Bsskx3(r) + Bsakx,a(r)
< ¢x,5(r) + Bssex,3(r) + Bsacx 2(r),
kx,6(r) < c¢x6(r)+ Bsakx,a(r) + Bsskx 3(r) + Beakx,2(r)
< ex,6(r) + Bsa (ex,a(r) + Baocx 2(r)) + Bg,scx 3(r) + Bs2cx,2(r)
< ex,6(r) + Bsuacx,a(r) + Bgscx,3(r) + (Bs,2 + BsaBa2)cx 2(r).

A main corollary of lemma 4.11 is the following, it is proved by induction.

Corollary 4.2. For any Q) > 2, there exists a constant Ag > 0 only depending
on Q, such that

kx,Q(r) < Agcy o(r).
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Remark 4.3. This corollary explains an equivalence between the coefficients
cx,q(r) and the kq(r) which may also be preferred as a dependence coefficient.
A way to derive sharp bounds for the constants involved is, using theorem 4.4,
to decompose the corresponding sum of centered moments in two terms, the first
of them involving the maximal covariance of a product.

Section 12.3.2 will provide multivariate extensions devoted to spectral analysis.

For completeness sake remark that formula (4.4.10) implies with Bg o = 1 that

Q
cx,o(r) < Z Bq skx,s(r). Hence there exists some constant Ag such that
5=2

<;4V * * _ * B
exalr) < Aqkk o), R q(r) = max m (g

Finally, we have proved that constants ag, Ag > 0 satisfy

aQcx (r) < kx o(r) < Agcx o(r)
Hence, for fixed @ those inequalities are equivalent.

The previous formula (4.4.10) implies that the cumulant

KX, ,X;iZQ)) =y Ka,ﬁ,kCOV(Xc(szLV ng’)“))
o,

writes as the linear combination of such covariances with o C {1,...,l} and
Bc{l+1,...,Q} where the coefficients K, g are some polynomials of the cu-
mulants. For this one replaces the Q—tuple (X,g‘lll)7 . ,XIEZQ)) by (Xi(a))ie,,#(k)
for each partition f, in formula (4.4.10) and use recursion.

Such representation is useful namely if one precisely knows such covariances;
let us mention the cases of Gaussian and associated processes for which addi-
tional informations are provided.

The main attraction for cumulants with respect to covariance of products is
that if a sample (X4, ,...,X,) is provided, the behaviour of the cumulant is
that of cx q(r(k)) with appears as suprema over a position ! of the maximal lag
in the sequence k. This means an automatic search of this maximal lag r(k)
may be performed with the help of cumulants.

Examples. The constants Ag, which are not explicit, may be determined
for some low orders. A careful analysis of the previous proof allows the sharp
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bounds'
kx,2(r) cx,2(r)
kx3(r) = cx3(r)
kxa(r) < exa(r) +3pscex,2(r)
kx5(r) < exs(r) + 10pecx 3(r) + 10uscx 2(r)
kxe(r) < exe(r)+ 15pgcx a(r) + 20uscx 3(r)) + 150pacx 2(r)

Our main application of those inequalities is the
Lemma 4.12. Set
— N . S (a1) yr(az) (aq)
KQ = kzo kzolgalf??f@@ ’n (X0 XX )’ L (4411)
2= Q=

We use notation (4.4.8). For each Q > 2, there exists a constant By such that

ka < B Y (r+1)22Ch o)
r=0

Proof of lemma 4.12. For this we only decompose the sums

—1) (a1) x-(a2) (GQ)) }
kg < (Q-1) Z 1§a1?%§Q§D}K(X0 Xy X
ka<-<kg
= (Q—-1!Ekg

by considering the partition of the indice set
E={k=(ka,...,kg) e N 1/ky <. <kg}
into E, = {k € E/ r(k) =r} for r > 0, then
- N (a1) y(a2) <aQ>)‘

The previous lemma implies that there exists some constant Ag > 0 such that

Z max ‘m(Xéal),Xlgzz),...,X,ng))‘ < AQ#E Cx o(r)

1<ay,...,ag<D
keE, — tes

and the simple bound #E, < (Q — 1)(r + 1)9~2 concludes the proof. [

TTo bound higher order cumulants we shall prefer lemma 4.11 rough bounds to those
involved combinatorics coefficients.
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Lemma 4.13. Let us assume now that D = 1 (the process is real valued and
we omit the super-indices a;). If the series (4.4.11) is finite for each Q < p we
set q=[p/2] (g =p/2 if p is even and q = (p—1)/2 if p is odd) then

P

n q
E ZXj < Zn“%, where (4.4.12)
Jj=1 u=1
29
SID VD DR
Tu il pa! P1 Pu

v=1pi+:-+pu=p

Proof. As in Doukhan and Louhichi (1999) [67], we bound

E(X)+ -+ Xn)P| = Z EXy, - Xg,
1<ki,....kp<n

App = Z |EX, - Xy, |
1<k, kp<n

IN

Let now p = {i1,...,iy} C {1,...,p} and k = (k1,...,kp), we set for conve-
nience

p(k) = (kiy, ... ki) € NV (4.4.13)

In order to count the terms with their order of multiplicity, it is indeed not
suitable to define the previous item as a set and cumulants or moments are
defined equivalently in this case. Hence, as in Doukhan and Leén (1989) [66],
we compute, using formula (4.4.2) and using all the partitions pq,.. ., of
{1,...,p} with exactly 1 < u < p elements

Apw = D> > > [Aww®

1<ki,....kp<nu=1p1,...; 1y j=1

= > > > IrwwE)
u=1

H1seespbu 1<k, . kp<n j=1

& !
= Z Z v.p..pryx

r=1 pr+-tpr=p PV

<11 S kX Xy,,)  (4414)

u=11<ky,....,kp, <n

' u
[Apn| < § n* E "1?.~p | | | Kp; (4.4.15)
! ul
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Identity (4.4.14) follows from a simple change of variables and takes in account
that the number of partitions of {1,...,p} into u subsets with respective cardi-
nalities pq, ..., py is simply the corresponding multinomial coefficient. Remark
that, for A € N, and taking X’s stationarity in account, we obtain

Z |/€pu(Xk1,...,Xk>\)|§7’LK,)\

Using this remark and the fact that cumulants of order 1 vanish and the only
non-zero terms are those for which p1,...,p, > 2 and thus 2u < p, hence u < ¢
we finally deduce inequality (4.4.15). O

Remark 4.4. If ks < C? for s < p and for a constant C > 0, the bound
(4-4.15) rewrites as CP Y"1 _ uPn® by using the multinomial identity.

4.4.2 A second exponential inequality

This section is based on Doukhan and Neumann (2005), [71]. In this section we
will be concerned with probability and moment inequalities for

Sn=X1 4+ Xa,

where X1, ..., X, are zero mean random variables which fulfill appropriate weak
dependence conditions. We denote by o2 the variance of S,. Result are here
stated without proof and we defer the reader to [71].

The first result is a Bernstein-type inequality which generalizes and improves
previous inequalities of this chapter.

Theorem 4.5. Suppose that Xq,...,X,, are real-valued random wvariables de-
fined on a probability space (0, A, P) with EX; = 0 and P(|X;| < M) =1, for
alli =1,...,n and some M < oco. Let ¥ : N2 — N be one of the following
functions: (a) ¥(u,v) = 2v, (b) V(u,v) = u+v, (¢) V(u,v) = wv, or (d)
U(u,v) = afu+v) + (1 —a)uw, for some a € (0,1).

We assume that there exist constants K, L1, Lo < co, u > 0, and a nonincreas-
ing sequence of real coefficients (p(n))n>0 such that, for all u-tupl