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Preface

Time series and random fields are main topics in modern statistical techniques.
They are essential for applications where randomness plays an important role.
Indeed, physical constraints mean that serious modelling cannot be done us-
ing only independent sequences. This is a real problem because asymptotic
properties are not always known in this case.

The present work is devoted to providing a framework for the commonly used
time series. In order to validate the main statistics, one needs rigorous limit
theorems. In the field of probability theory, asymptotic behavior of sums may
or may not be analogous to those of independent sequences. We are involved
with this first case in this book.

Very sharp results have been proved for mixing processes, a notion intro-
duced by Murray Rosenblatt [166]. Extensive discussions of this topic may be
found in his Dependence in Probability and Statistics (a monograph published
by Birkhaüser in 1986) and in Doukhan (1994) [61], and the sharpest results
may be found in Rio (2000) [161]. However, a counterexample of a really simple
non-mixing process was exhibited by Andrews (1984) [2]. The notion of weak
dependence discussed here takes real account of the available models, which
are discussed extensively. Our idea is that robustness of the limit theorems
with respect to the model should be taken into account. In real applications,
nobody may assert, for example, the existence of a density for the inputs in
a certain model, while such assumptions are always needed when dealing with
mixing concepts. Our main task here is not only to provide the reader with
the sharpest possible results, but, as statisticians, we need the largest possible
framework. Doukhan and Louhichi (1999) [67] introduced a wide dependence
framework that turns out to apply to the models used most often. Their simple
way of weakening the independence property is mainly adapted to work with
stationary sequences.

We thus discuss examples of weakly dependent models, limit theory for such
sequences, and applications. The notions are mainly divided into the two fol-
lowing classes:

• The first class is that of “Causal” dependence. In this case, the conditions
may also be expressed in terms of conditional expectations, and thus the
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powerful martingale theory tools apply, such as Gordin’s [97] device that
allowed Dedecker and Doukhan (2003) [43] to derive a sharp Donsker
principle.

• The second class is that of noncausal processes such as two-sided linear
processes for which specific techniques need to be developed. Moment
inequalities are a main tool in this context.

In order to make this book useful to practitioners, we also develop some ap-
plications in the fields of Statistics, Stochastic Algorithms, Resampling, and
Econometry. We also think that it is good to present here the notation for the
concepts of weak dependence. Our aim in this book was to make it simple to
read, and thus the mathematical level needed has been set as low as possible.
The book may be used in different ways:

• First, this is a mathematical textbook aimed at fixing the notions in the
area discussed. We do not intend to cover all the topics, but the book
may be considered an introduction to weak dependence.

• Second, our main objective in this monograph is to propose models and
tools for practitioners; hence the sections devoted to examples are really
extensive.

• Finally, some of the applications already developed are also quoted for
completeness.

A preliminary version of this joint book on weak dependence concepts was
used in a course given by Paul Doukhan to the Latino Americana Escuela de
Matemática in Merida (Venezuela). It was especially useful for the preparation
of our manuscript that a graduate course in Merida (Venezuela) in September
2004 on this subject was based on these notes. The different contributors and
authors of the present monograph participated in developing it jointly. We
also want to thank the various coauthors of (published or not yet published)
papers on the subject, namely Patrick Ango Nzé (Lille 3), Jean-Marc Bardet
(Université Paris 1), Odile Brandière (Orsay), Alain Latour (Grenoble), Hélène
Madre (Grenoble), Michael Neumann (Iena), Nicolas Ragache (INSEE), Math-
ieu Rosenbaum (Marne la Vallée), Gilles Teyssière (Göteborg), Lionel Truquet
(Université Paris 1), Pablo Winant (ENS Lyon), Olivier Wintenberger (Uni-
versité Paris 1), and Bernard Ycart (Grenoble). Even if all their work did
not appear in those notes, they were really helpful for their conception. We
also want to thank the various referees who provided us with helpful comments
either for this monograph or for papers submitted for publication and related
to weak dependence.

We now give some clarification concerning the origin of this notion of weak
dependence. The seminal paper [67] was in fact submitted in 1996 and was part
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of the PhD dissertation of Sana Louhichi in 1998. The main tool developed in
this work was combinatorial moment inequalities; analogous moment inequali-
ties are also given in Bakhtin and Bulinski (1997) [8]. Another close definition
of weak dependence was provided in a preprint by Bickel and Bühlmann (1995)
[17] anterior to [67], also published in 1999 [18]. However, those authors aimed
to work with the bootstrap; see Chapter 13 and Section 2.2 in [6]. The approach
of Wu (2005) [188] detailed in Remark 3.1, based on L

2-conditions for causal
Bernoulli shifts, also yields interesting and sharp results.

This monograph is essentially built in four parts:

Definitions and models
In the first chapter, we make precise some issues and tools for investigating
dependence: this is a motivational chapter. The second chapter introduces
formally the notion of weak dependence. Models are then presented in a
long third chapter. Indeed, in our mind, the richness of examples is at the
core of the weak dependence properties.

Tools
Tools are given in two chapters (Chapters 4 and 5) concerned respectively
with noncausal and causal properties. Tools are first used in the text for
proving the forthcoming limit theorems, but they are essential for any type
of further application. Two main tools may be found: moment bounds and
coupling arguments. We also present specific tightness criteria adapted to
work out empirical limit theorems.

Limit theorems
Laws of large numbers (and some applications), central limit theorems,
invariance principles, laws of the iterated logarithm, and empirical central
limit theorems are useful limit theorems in probability. They are precisely
stated and worked out within Chapters 6–10 .

Applications
The end of the monograph is dedicated to applications. We first present
in Chapter 11 the properties of the standard nonparametric techniques.
After this, we consider some issues of spectral estimation in Chapter 12.
Finally, Chapter 13 is devoted to some miscellaneous applications, namely
applications to econometrics, the bootstrap, and subsampling techniques.

After the table of contents, a useful short list of notation allows rapid access to
the main weak dependence coefficients and some useful notation.

Jérôme Dedecker, Paul Doukhan, Gabriel Lang, José R. León,
Sana Louhichi, and Clémentine Prieur
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List of notations

We recall here the main specific or unusual notation used throughout this
monograph.
As usual, #A denotes the cardinal of a finite set A, and N, Z, R, C are the standard
sets of calculus. For clarity and homogeneity, we note in this list:

• a � b or a = O(b) means that a ≤ Cb for a constant C > 0 and a, b ≥ 0,

• a � b or a = o(b) as b → 0, for a, b ≥ 0, means limb→0 a/(a + b) = 1,

• a ∧ b, a ∨ b are the minimum and the maximum of the numbers a, b ≥ 0,

• M,U ,V,A,B are σ-algebras, and (Ω,A, P) is a probability space,

• X, Y, Z, . . . denote random variables (usually ξ, ζ are inputs),

• L
p(E, E ,m) are classes of measurable functions: ‖f‖p =

(∫
E
|f(x)|pdm(x)

) 1
p <

∞,

• F is a cumulative distribution function,
Φ is the normal cumulative distribution function, and φ = Φ′ is its density,

• n is a time (space) delay, r, s ∈ N are “past-future” parameters, p is a moment
order, and F ,G are function spaces.

α(U ,V) p. 4, § 1.2, eqn. (1.2.1), mixing coefficient
α̃(M, X) p. 16, § 2.2.3, def. 2.5-1, dependence coefficient
α̃r(n) p. 19, § 2.2.3, def. 2.2.15, dependence sequence
BV p. 11, § 2.1, bounded variation spaces
BV1

β(U ,V) p. 4, § 1.2, eqn. (1.2.4), mixing coefficient
β̃(M, X) p. 16, § 2.2.3, def. 2.5-2, dependence coefficient
β̃r(n) p. 19, § 2.2.3, def .2.2.15, dependence sequence
Cn,r p. 73, § 4.3, def. 4.1, moment coefficient sequence
cX,r(n) p. 87, § 4.4.1, eqn. (4.4.7), vector moment sequence
c�X,r(n) p. 87, § 4.4.1, eqn. (4.4.8), maximum moment sequence
γp(M, X) p. 19, § 2.2.4, def. 2.2.16, dependence coefficient
γp(n) p. 19, § 2.2.4, def. 2.2.16, dependence sequence
δn p. 25, § 3.1.2, def. 3.1.10, Bernoulli shift coefficient
ε(X,Y ) p. 11, § 2.2, eqn. (2.2.1), general coefficient
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ε(n) pp. 4–11, §§ 1.1–2.2, eqn. (1.1.3), coefficient sequence
η(n) p. 12, § 2.2.1, eqn. (2.2.3), dependence sequence
f−1 p. 18, § 2.2.3, eqn. (2.2.14), inverse of a monotonic f(
F ,G,Ψ

)
p. 11, § 2.2, eqn. (2.2.1), weak dependence(

F ,Ψ
)

φ(U ,V) p. 4, § 1.2, eqn. (1.2.3), mixing coefficient
φ̃(M, X) p. 16, § 2.2.3, def. 2.5-3, dependence coefficient
φ̃r(n) p. 19, § 2.2.3, def. 2.2.15, dependence sequence
I p. 67, § 4.1, class of indicators
κp(n) p. 88, § 4.4.1, def. 4.4.9, cumulant sequence
κ(n) p. 12, § 2.2.1, eqn. (2.2.5), dependence sequence
L p. 38, § 3.3, Perron Frobenius operator
L
p-NED p. 6, § 1.3, def. 1.2, NED notion

Λ(δ),Λ(1)(δ) p. 10, § 2.1, Lipschitz spaces
λ(n) p. 12, § 2.2.1, eqn. (2.2.4), dependence sequence
μX(n) p. 5, § 1.2, eqn. (1.2.5), μ-mixing sequence
μX,r,s(n) p. 5, § 1.2, eqn. (1.2.6), μ-mixing field
ψ(n) p. 5, § 1.3, L

p-mixingale coefficient
QX(·) p. 74, § 4.3, eqn. (4.3.3), quantile function
ρ(U ,V) p. 4, § 1.2, eqn. (1.2.2), mixing coefficient
θ(n) p. 14, § 2.2.2, eqn. (2.2.7), dependence sequence
θp(M, X) p. 15, § 2.2.2, eqn. (2.2.8), dependence coefficient
θp,r(n) p. 15, § 2.2.2, eqn. (2.2.9), dependence sequence
τp(M, X) p. 16, § 2.2.2, eqn. (2.2.12), coupling coefficient
τp,r(n) p. 16, § 2.2.2, eqn. (2.4), coupling sequence
ζ(n) p. 12, § 2.2.1, eqn. (2.2.6), dependence sequence
ωp,n p. 22, § 3.1, eqn. (3.1.3), shift increment coefficient

LIST   OF NOTATIONS



Chapter 1

Introduction

This chapter is aimed to justify some of our choices and to provide a basic
background of the other competitive notions like those linked to mixing condi-
tions. In our mind mixing notions are not related to time series but really to
σ-algebras. They are consequently more adapted to work in areas like Finance
where history, that is the σ-algebra generated by the past is of a considerable
importance.
Having in view the most elementary ideas, Doukhan and Louhichi (1999) [67] intro-
duced the more adapted weak dependence condition developped in this monograph.
This definition makes explicit the asymptotic independence between ‘past’ and ‘fu-
ture’; this means that the ‘past’ is progressively forgotten. In terms of the initial
time series, ‘past’ and ‘future’ are elementary events given through finite dimensional
marginals. Roughly speaking, for convenient functions f and g, we shall assume that

Cov (f(‘past’), g(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is sufficiently large. Such

inequalities are significant only if the distance between indices of the initial time series

in the ‘past’ and ‘future’ terms grows to infinity. The convergence is not assumed to

hold uniformly on the dimension of the ‘past’ or ‘future’ involved. Another direction to

describe the asymptotic behavior of certain time series is based on projective methods.

It will be proved that this is coherent with the previous items.

Sections in this chapter first provide general considerations on independence,
then we define classical mixing coefficients, mixingales and association to con-
clude with simple counterexamples.

1.1 From independence to dependence

We recall here some very basic facts concerning independence of random vari-
ables. Let P,F be random variables defined on the same probability space

1
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(Ω,A,P) and taking values in measurable spaces (EP, EP) and (EF, EF). Inde-
pendence of both random variables P,F writes

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B), ∀(A,B) ∈ EP × EF (1.1.1)

extending this identity by linearity to stepwise constant functions and using
limits yields a formulation of this relation which looks more adapted for appli-
cations:

Cov(f(P), g(F)) = 0, ∀(f, g) ∈ L
∞(EP, EP) × L

∞(EF, EF)

where, for instance, L
∞(EP, EP) denotes the subspace of �∞(EP,R) (the space

of bounded and real valued functions), of measurable and bounded function
f : (EP, EP) → (R,BR).
If the spaces EP, EF are topological spaces endowed with their Borel σ-algebras
(the σ-algebra generated by open sets) then it is sufficient to state

Cov(f(P), g(F)) = 0, ∀(f, g) ∈ P × F (1.1.2)

where P ,F are dense subsets of the spaces of continuous functions EP → R

and EF → R. In order to qualify a simple topology on both spaces it will be
convenient to assume that EP and EF are locally compact topological spaces
and the density in the space of continuous functions will thus refer to uniform
convergence of compact subsets of EP, EF.
From a general principle of economy, we always should wonder about the small-
est classes P ,F possible. The more intuitive (necessary) condition for indepen-
dence is governed by the idea of orthogonality.

In this idea we now develop some simple examples for which, however

Orthogonality =⇒ Independence.

• Bernoulli trials

If EP = EF = {0, 1} are both two-points spaces, the random variables now follow
Bernoulli distributions and independence follows form the simple orthogonality
of Cov(P, F) = 0. Indeed from the standard bilinearity properties of the covari-
ance, we also have Cov(1−P, F) = 0, Cov(P, 1−F) = 0 and Cov(1−P, 1−F) = 0
which respectively means that eqn. (1.1.1) holds if (A,B) = ({a}, {b}) with
(a, b) = (0, 0) or respectively (1, 0), (0, 1) and (1, 1). The problem of this exam-
ple is that in this case the σ-algebras generated by P, F are very poor and this
example will thus not fit the forthcoming case of ‘important’ past and future.

• Gaussian vectors

If now EP = R
p and EF = R

q, then if the vector Z = (P, F) ∈ R
p+q is

Gaussian then its distribution only depends on its second order properties∗,

∗This only means that Z’s distribution depends only on the expressions EZi and EZiZj

for 1 ≤ i, j ≤ d if Z = (Z1, . . . , Zd).
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hence coordinate functions are enough to determine independence. In more
precise words two random vectors P = (P1, . . . , Pp) and F = (F1, . . . , Fq) are
independent if and only if Cov(Pi, Fj) = 0 for any 1 ≤ i ≤ p and any 1 ≤ j ≤ q.
This is a very simple characterization of independence which clearly does not
extend to any category of random variables.

For example, let X, Y ∈ R be independent and symmetric random variables such
that P(X = 0) = 0 if we set P = X and F = sign(X)Y then

Cov(P,F) = E(|X|Y ) − EX · EF = E|X| · EY − EX · EF = 0

because X and Y are centered random variables even if those variables are not
independent if the support of Y ’s distribution contains more than two points.

A simple situation of uncorrelated individually standard Gaussian random vari-
ables which are not independent is provided† with the couple (P, F) = (N, RN)
where N ∼ N (0, 1) and R is a Rademacher random variable (that means
P(R = 1) = P(R = −1) = 1

2
) independent of N .

• Associated vectors (cf. § 1.4)

Again, we assume that EP = R
p and EF = R

q, then the random vector X =
(P,F) ∈ R

p+q = R
d is called associated in case

Cov(h(X), k(X)) ≥ 0

for any measurable couple of functions h, k : R
d → R such that both E(h2(X) +

k2(X)) < ∞ and the partial functions xj 
→ h(x1, . . . , xd) and xj 
→ k(x1, . . . , xd)
are non-decreasing for any choice of the remaining coordinates x1, . . . ,xj−1,
xj+1,. . . , xd ∈ R and any 1 ≤ j ≤ d. A essential property of such vectors is
that here too, orthogonality implies independence. This will be developed in a
forthcoming chapter.

An example of associated vectors is that of independent coordinates. Even if
it looks uninteresting case in our dependent setting, this leads to much more
involved examples of associated random vectors through monotonic functions.

The class of such coordinatewise increasing functions is a cone of L
2(X), the class

of functions such that Eh2(X) < ∞, hence the set of associated distributions
looks like a (very thin) cone of the space of distributions on R

d.

The same idea applies to Gaussian distributions which is even finite dimensional
in the large set of laws on R

d.

If now, we consider a time series X = (Xn)n∈Z with values in a locally compact
topological space E (typically E = R

d) we may consider one variable P of the
past and one variable F of the future:

P = (Xi1 , . . . , Xiu), F = (Xj1 , . . . , Xjv),

†In this case both variables are indeed centered with Normal distributions and
E{N(RN)} = ER · EN2 = 0 while |N | = |RN | is not independent of itself since it is not
a.s. a constant.
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for i1 ≤ i2 ≤ · · · ≤ iu < j1 ≤ j2 ≤ · · · ≤ jv, u, v ∈ N
∗ = {1, 2, . . .}.

Independence of the time series X thus writes as the independence of P and F
for any choices i1 ≤ i2 ≤ · · · ≤ iu < j1 ≤ j2 ≤ · · · ≤ jv. Independence of the
times series up to time m, also called m-dependence, is now characterized as
independence of P and F if iu +m ≤ j1. Finally, asymptotic independence of
past and future will thus be given by arbitrary asymptotics

ε(r) = sup
d(P,F)≥r

sup
(f,g)∈F×G

|Cov(f(P), g(F))| (1.1.3)

where d(P,F) = j1 − iu. The only problem of the previous definition is that the
corresponding dependence coefficient should also be indexed by suitable multi-
indices (i1, i2, . . . , iu) and (j1, j2, . . . , jv). This definition will be completed in
chapter 2 by considering classes Pu ⊂ P and Fv ⊂ F and suprema as well
with respect to ordered multi-indices (i1, i2, . . . , iu) and (j1, j2, . . . , jv) such that
j1 − iu ≥ r.

1.2 Mixing

Mixing conditions, as introduced by Rosenblatt (1956) [166] are weak depen-
dence conditions in terms of the σ−algebras generated by a random sequence.
In order to define such conditions we first introduce the conditions relative to
sub-σ−algebras U ,V ⊂ A on an abstract probability space (Ω,A,P):

α(U ,V) = sup
U∈U ,V ∈V

|P(U ∩ V ) − P(U)P(V )| (1.2.1)

ρ(U ,V) = sup
u∈L2(U),v∈L2(V)

|Corr(u, v)| (1.2.2)

φ(U ,V) = sup
U∈U ,V ∈V

∣
∣
∣
∣
P(U ∩ V )

P(U)
− P(V )

∣
∣
∣
∣ (1.2.3)

β(U ,V) =
1
2

sup
I, J ≥ 1

(Ui)1≤i≤I ∈ UI ,

(Vj )1≤j≤J ∈ VJ

I∑

i=1

J∑

j=1

|P(Ui ∩ Vj) − P(Ui)P(Vj)| (1.2.4)

In the definition of β, the supremum is considered over all measurable partitions
(Ui)1≤i≤I , (Vj)1≤j≤J of Ω. The above coefficients are, respectively, Rosenblatt
(1956) [166]’s strong mixing coefficient α(U ,V), Wolkonski and Rozanov (1959)
[187]’s absolute regularity coefficient β(U ,V), Kolmogorov and Rozanov (1960)
[112]’s maximal correlation coefficient ρ(U ,V), and Ibragimov (1962) [110]’s
uniform mixing coefficient φ(U ,V). A more comprehensible formulation for β is
written in terms of a norm in total variation

β(U ,V) = ‖PU⊗V − PU ⊗ PV‖TV
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here PU ,PV denote the restrictions of P to σ−fields U ,V and PU⊗V is a law on
the product σ−fields defined of rectangles by PU⊗V(U, V ) = P(U, V ). In case
U ,V are generated by random variables U, V this may be written

β(U ,V) = ‖P(U,V ) − PU ⊗ PV ‖TV

as the total variation norm of distributions of (U, V ) and (U, V �) for some inde-
pendent copy V � of V. The Markov frame is however adapted to prove β-mixing
since this condition holds under positive recurrence.
In fact any coefficient μ such that μ(U ,V) ∈ [0,+∞] is well defined and such
that independence of U ,V implies μ(U ,V) = 0 may be considered as a mix-
ing coefficient. Once a mixing coefficient has been chosen, the corresponding
mixing condition is defined for random processes (Xt)t∈Z and for random fields
(Xt)t∈Zd :

μX(r) = sup
i∈Z

c(σ(Xt, t ≤ i), σ(Xt, t ≥ i+ r)) (1.2.5)

and the random process is called μ-mixing in case μX(r) →r→∞ 0. Here μ =
α, β, φ or ρ thus yield the coefficient sequences αX(r), βX(r), φX(r) or ρX(r);
many other coefficients may also be introduced.

For the more difficult case of random fields, one needs a more intricate definition.
The one we propose depends on two additional integers, and the random field
(Xt)t∈Zd is μ-mixing in case for any u, v ∈ N

�, cX,u,v(r) →r→∞ 0, where now

μX,a,b(r) = sup
#A=a,#B=b,d(A,B)≥r

c(σ(Xt, t ∈ A), σ(Xt, t ∈ B)) (1.2.6)

the supremum is considered over finite subsets with cardinality u, v and at least
r distant (where a metric has been fixed on Z

d).
The following relations hold:

φ− mixing ⇒
{
ρ− mixing
β − mixing

}
⇒ α− mixing

and no reverse implication holds in general.
Examples for such conditions to hold are investigated in Doukhan (1994) [61],
and Rio (2000) [161] provides up-to-date results in this setting. We only quote
here that those conditions are usually difficult to check.

1.3 Mixingales and Near Epoch Dependence

Definition 1.1 (Mc Leish (1975) [129], Andrews (1988) [3]). Let p ≥ 1 and let
(Fn)n∈Z be an increasing sequence of σ-algebras. The sequence (Xn,Fn)n∈Z is
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called an L
p-mixingale if there exist nonnegative sequences (cn)n∈Z and

(ψ(n))n∈Z such that ψ(n) −→ 0 as n → ∞ and for all integers n ∈ Z, k ≥ 0,

‖Xn − E (Xn | Fn+k) ‖p ≤ cnψ (k + 1) , (1.3.1)
‖E (Xn | Fn−k) ‖p ≤ cnψ (k) . (1.3.2)

This property of fading memory is easier to handle than the martingale condi-
tion. A more general concept is the near epoch dependence (NED) on a mixing
process. Its definition can be found in Billingsley (1968) [20] who considered
functions of φ−mixing processes.

Definition 1.2 (Pötscher and Prucha (1991) [152]). Let p ≥ 1. We consider a
c-mixing process (defined as in eqn. (1.2.5)) (Vn)n∈Z

. For any integers i ≤ j,
set F j

i = σ (Vi, . . . , Vj) . The sequence (Xn,Fn)n∈Z is called an L
p-NED process

on the c-mixing process (Vn)n∈Z
if there exist nonnegative sequences (cn)n∈Z

and (ψ(n))n∈Z such that ψ(n) −→ 0 as n → ∞ and for all integers n ∈ Z, k ≥ 0,
∥
∥
∥Xn − E

(
Xn | Fn+k

n−k
) ∥∥
∥
p
≤ cnψ (k) .

This approach is developed in details in Pötscher and Prucha (1991) [152].
Functions of MA(∞) processes can be handled using NED concept. For instance,
limit theorems can be deduced for sums of such Functions of MA(∞) processes.
These previous definitions translate the fact that a k-period – ahead in the
first case, both ahead and backwards in the second definition – projection is
convergent to the unconditional mean. They are known to be satisfied by a wide
class of models. For example, martingale differences can be described as L1-
mixingale sequences, and linear processes with martingale difference innovations
as well.

1.4 Association

The notion of association was introduced independently by Esary, Proschan and
Walkup (1967) [85] and Fortuin, Kastelyn and Ginibre (1971) [87].
The motivations of those authors were radically different since the first ones
were working in reliability theory and the others in mechanical statistics, and
their condition is known as FKG inequality.

Definition 1.3. The sequence (Xt)t∈Z is associated, if for all coordinatewise
increasing real-valued functions h and k,

Cov(h(Xt, t ∈ A), k(Xt, t ∈ B)) ≥ 0

for all finite disjoint subsets A and B of Z and if moreover

E
(
h(Xt, t ∈ A)2 + k(Xt, t ∈ B)2

)
< ∞.
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This extends the positive correlation assumption to model the notion that two
stochastic processes have a tendency to evolve in a similar way.
This definition is deeper than the simple positivity of the correlations. Be-
sides the evident fact that it does not assume that the variances exist, one
can easily construct orthogonal (hence positively correlated) sequences that do
not have the association property. An important difference between the above
conditions is that its uncorrelatedness implies independence of an associated se-
quence (Newman, 1984 [136]). Let for instance (ξk, ηk) be independent and i.i.d.
N (0, 1) sequences. Then the sequence (Xn)n∈Z defined by Xk = ξk(ηk − ηk−1)
is neither correlated nor independent, hence it is not an associated sequence.
Heredity of association only holds under monotonic transformations. This un-
pleasant restriction will disappear under the assumption of weak dependence.
The following property of associated sequences was a guideline for the forth-
coming definition of weak dependence. Association does not imply at all any
mixing assumption‡. The forthcoming inequality (1.4.1) also contains the idea
that weakly correlated associated sequences are also ‘weakly dependent’. The
following result provide a quantitative idea of the loss of association to indepen-
dence:

Theorem 1.1 (Newman, 1984 [136]). For a pair of measurable numeric func-
tions (f, g) defined on A ⊂ R

k, we write f 
 g if both functions g+f and g−f
are non-decreasing with respect to each argument. Let now X be any associated
random vector with range in A. Then

(fi 
 gi, for i = 1, 2) ⇒
(∣∣Cov(f1(X), f2(X))

∣∣ ≤ Cov(g1(X), g2(X))
)
.

This theorem follows simply from several applications of the definition to the co-
ordinatewise non-decreasing functions gi−fi and gi+fi. By an easy application
of the above inequalities one can check that

|Cov(f(X), g(Y ))| ≤
k∑

i=1

l∑

j=1

∥
∥∥
∥
∂f

∂xi

∥
∥∥
∥
∞

∥
∥∥
∥
∂g

∂yj

∥
∥∥
∥
∞

Cov(Xi, Yj), (1.4.1)

for R
k or R

l valued associated random vectors X and Y and C1 functions f and
g with bounded partial derivatives. For this, it suffices to note that f 
 f1 if

one makes use of Theorem 1.1 with f1(x1, . . . , xp) =
p∑

i=1

∥
∥
∥∥
∂f

∂xi

∥
∥
∥∥
∞
xi.

Denote by R(z) the real part of the complex number z. Theorem 1.1 can be
extended to complex valued functions, up to a factor 2 in the left hand side of the
above inequality (1.4.1). Indeed, we can set now f 
 g if for any real number

‡E.g. Gaussian processes with nonnegative covariances are associated while this is well
known that this condition does not implies mixing, see [61], page 62.
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ω the mapping t = (t1, . . . , tk) �→ R
(
g(t) + eiω(t1+···+tk)f(t)

)
is non-decreasing

with respect to each argument. Also, for any real numbers t1, . . . , tk,

∣
∣
∣Eei(t1X1+···+tkXk) − Eeit1X1 · · · EeitkXk

∣
∣
∣ ≤ 2

k∑

i=1

k∑

j=1

|ti||tj |Cov(Xi, Xj).

On the opposite side, negatively associated sequences of r.v.’s are defined by a
similar relation than the aforementioned covariance inequality, except for the
sense of this inequality. This property breaks the seemingly parallel definitions
of positively and negatively associated sequences.

1.5 Nonmixing models

Finite moving averages Xn = H(ξn, ξn−1, . . . , ξn−m) are trivially m-dependent.
However this does not remain exact as m → ∞. For example, the Bernoulli
shift Xn = H(ξn, ξn−1, . . .) (with H(x) =

∑∞
k=0 2−(k+1)xk) is not mixing; this

is an example of a Markovian, non-mixing sequence.
Indeed, its stationary representation writes Xn =

∑∞
k=0 2−k−1ξn−k. Here ξn−k

is the k-th digit in the binary expansion of the uniformly chosen number Xn =
0.ξnξn−1 · · · ∈ [0, 1]. This proves that Xn is a deterministic function ofX0 which
is the main argument to derive that such models are not mixing ([61], page 77,
counterexample 2 or [2]); more precisely, as Xn is some deterministic function
of X0 the event A = (X0 ≤ 1

2 ) belongs both to the sigma algebras of the past
σ(Xt, t ≤ 0) an and the sigma algebras of the future σ(Xt, t ≥ n), hence with
the notation in § 1.2,

α(n) ≥ |P(A ∩A) − P(A)P(A)| =
1
2

− 1
4

=
1
4
.

The same arguments apply to the model described before of an autoregressive
process with innovations taking p distinct values. The difference between two
such independent processes of this type or ((−1)nXn)n provide example of non-
associated and non-mixing processes.
Assume now that more generally ξj ∼ b(s) follows a Bernoulli distribution with
parameter 0 < s < 1. Concentration properties then hold e.g. Xn is uniform if
s = 1

2 , and it has a Cantor marginal distribution if s = 1
3 .

Much more stationary models may be in fact proved to be nonmixing; e.g. for
integer valued models (3.6.2) this is simple to prove that Xt = 0 ⇒ X0 = 0
and P(X0 = 0) ∈]0, 1[. With stationarity this easily excludes this model to be
strong mixing since, setting P(X0 = 0) := p,

α(n) ≥
∣
∣
∣P
(
(X0 = 0) ∩ (Xn = 0)

)
− P(X0 = 0)P(Xn = 0)

∣
∣
∣ = p(1 − p) > 0.



Chapter 2

Weak dependence

Many authors have used one of the two following type of dependence: on the
one hand mixing properties, introduced by Rosenblatt (1956) [166], on the other
hand martingales approximations or mixingales, following the works of Gordin
(1969, 1973) [97], [98] and Mc Leisch (1974, 1975) [127], [129]. Concerning
strongly mixing sequences, very deep and elegant results have been established:
for recent works, we mention the books of Rio (2000) [161] and Bradley (2002)
[30]. However many classes of time series do not satisfy any mixing condition
as it is quoted e.g. in Eberlein and Taqqu (1986) [83] or Doukhan (1994) [61].
Conversely, most of such time series enter the scope of mixingales but limit
theorems and moment inequalities are more difficult to obtain in this general
setting.
Between those directions, Bickel and Bühlmann (1999) [18] and simultaneously
Doukhan and Louhichi (1999) [67] introduced a new idea of weak dependence.
Their notion of weak dependence makes explicit the asymptotic independence
between ‘past’ and ‘future’; this means that the ‘past’ is progressively forgotten.
In terms of the initial time series, ‘past’ and ‘future’ are elementary events
given through finite dimensional marginals. Roughly speaking, for convenient
functions f and g, we shall assume that

Cov (f(‘past’), g(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is sufficiently
large. Such inequalities are significant only if the distance between indices of
the initial time series in the ‘past’ and ‘future’ terms grows to infinity. The
convergence is not assumed to hold uniformly on the dimension of the ‘past’ or
‘future’ involved.
The main advantage is that such a kind of dependence contains lots of pertinent
examples and can be used in various situations: empirical central limit theorems
are proved in Doukhan and Louhichi (1999) [67] and Borovkova, Burton and

9
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Dehling (2001) [25], while applications to Bootstrap are given by Bickel and
Bühlmann (1999) [18] and Ango Nzé et al.(2002) [6] and to functional estima-
tion (Coulon-Prieur & Doukhan, 2000 [40]).
In this chapter a first section introduces the function spaces necessary to de-
fine the various dependence coefficients of the second section. They are classi-
fied in separated subsections. We shall first consider noncausal coefficients and
then their causal counterparts; in both cases the subjacent spaces are Lipschitz
spaces. A further case associated to bounded variation spaces is provided in the
following subsection. Projective measure of dependence are included in the last
subsection.

2.1 Function spaces

In this section, we give the definitions of some function spaces used in this book.

• Let m be any measure on a measurable space (Ω,A). For any p ≥ 1, we
denote by L

p(m) the space of measurable functions f from Ω to R such
that

‖f‖p,m =
(∫

|f(x)|pm(dx)
)1/p

< ∞,

‖f‖∞,m = inf
{
M > 0

/
m(|f | > M) = 0

}
< ∞, for p = ∞.

For simplicity, when no confusion can arise, we shall write L
p and ‖ · ‖p

instead of L
p(m) and ‖ · ‖p,m.

Let X be a Polish space and δ be some metric on X (X need not be Polish with
respect to δ).

• Let Λ(δ) be the set of Lipschitz functions from X to R with respect to the
distance δ. For f ∈ Λ(δ), denote by Lip (f), f ’s Lipschitz constant. Let

Λ(1)(δ) = {f ∈ Λ(δ) / Lip (f) ≤ 1}.

• Let (Ω,A,P) be a probability space. Let X be a Polish space and δ be a
distance on X . For any p ∈ [1,∞], we say that a random variable X with
values in X is L

p-integrable if, for some x0 in X , the real valued random
variable δ(X,x0) belongs to L

p(P).

Another type of function class will be used in this chapter: it is the class of
functions with bounded variation on the real line. To be complete, we recall,
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Definition 2.1. A σ-finite signed measure is the difference of two positive σ-
finite measures, one of them at least being finite. We say that a function h
from R to R is σ-BV if there exists a σ-finite signed measure dh such that
h(x) = h(0) + dh([0, x[) if x ≥ 0 and h(x) = h(0) − dh([x, 0[) if x ≤ 0 (h is left
continuous). The function h is BV if the signed measure dh is finite.

Recall also the Hahn-Jordan decomposition: for any σ-finite signed measure μ,
there is a set D such that

μ+(A) = μ(A ∩D) ≥ 0, −μ−(A) = μ(A\D) ≤ 0.

μ+ and μ− are mutually singular, one of them at least is finite and μ = μ+−μ−.
The measure |μ| = μ+ + μ− is called the total variation measure for μ. The
total variation of μ writes as ‖μ‖ = |μ|(R).

Now we are in position to introduce

• BV1 the space of BV functions h : R → R such that ‖dh‖ ≤ 1.

2.2 Weak dependence

Let (Ω,A,P) be a probability space and let X be a Polish space. Let

F =
⋃

u∈N∗
Fu and G =

⋃

u∈N∗
Gu ,

where Fu and Gu are two classes of functions from X u to R.

Definition 2.2. Let X and Y be two random variables with values in X u and
X v respectively. If Ψ is some function from F ×G to R+, define the

(
F ,G,Ψ

)
-

dependence coefficient ε(X,Y ) by

ε(X,Y ) = sup
f∈Fu g∈Gv

|Cov(f(X), g(Y ))|
Ψ(f, g)

. (2.2.1)

Let (Xn)n∈Z be a sequence of X -valued random variables. Let Γ(u, v, k) be the
set of (i, j) in Z

u × Z
v such that i1 < · · · < iu ≤ iu + k ≤ j1 < · · · < jv. The

dependence coefficient ε(k) is defined by

ε(k) = sup
u,v

sup
(i,j)∈Γ(u,v,k)

ε((Xi1 , . . . , Xiu), (Xj1 , . . . , Xjv )) .

The sequence (Xn)n∈Z is (F ,G,Ψ)-dependent if the sequence (ε(k))k∈N tends to
zero. If F = G we simply denote this as (F ,Ψ)-dependence.

Remark 2.1. Definition 2.2 above easily extends to general metric sets of in-
dices T equipped with a distance δ (e.g. T = Z

d yields the case of random fields).
The set Γ(u, v, k) is then the set of (i, j) in T u × T v such that

k = min {δ(i�, jm) / 1 ≤ � ≤ u, 1 ≤ m ≤ v } .
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2.2.1 η, κ, λ and ζ-coefficients

In this section, we focus on the case where Fu = Gu. If f belongs to Fu, we
define df = u.
In a first time, Fu is the set of bounded functions from X u to R, which are
Lipschitz with respect to the distance δ1 on X u defined by

δ1(x, y) =
u∑

i=1

δ(xi, yi) . (2.2.2)

In that case:

• the coefficient η corresponds to

Ψ(f, g) = df‖g‖∞Lip (f) + dg‖f‖∞Lip (g) , (2.2.3)

• the coefficient λ corresponds to

Ψ(f, g) = df‖g‖∞Lip (f) + dg‖f‖∞Lip (g) + dfdgLip (f)Lip (g) . (2.2.4)

To define the coefficients κ and ζ, we consider for Fu the wider set of functions
from X u to R, which are Lipschitz with respect to the distance δ1 on X u, but
which are not necessarily bounded. In that case we assume that the variables
Xi are L

1-integrable.

• the coefficient κ corresponds to

Ψ(f, g) = dfdgLip (f)Lip (g) , (2.2.5)

• the coefficient ζ corresponds to

Ψ(f, g) = min(df , dg)Lip (f)Lip (g) . (2.2.6)

These coefficients have some hereditary properties. For example, let h : X → R

be a Lipschitz function with respect to δ, then if the sequence (Xn)n∈Z is η, κ,
λ or ζ weakly dependent, then the same is true for the sequence (h(Xn))n∈Z.
One can also obtain some hereditary properties for functions which are not
Lipschitz on the whole space X , as shown by Lemma 2.1 below, in the special
case where X = R

k equipped with the distance δ(x, y) = max1≤i≤k |xi − yi|.
Proposition 2.1 (Bardet, Doukhan, León, 2006 [11]). Let (Xn)n∈Z be a se-
quence of R

k-valued random variables. Let p > 1. We assume that there exists
some constant C > 0 such that max1≤i≤k ‖Xi‖p ≤ C. Let h be a function from
R
k to R such that h(0) = 0 and for x, y ∈ R

k, there exist a in [1, p[ and c > 0
such that

|h(x) − h(y)| ≤ c|x− y|(|x|a−1 + |y|a−1) .

We define the sequence (Yn)n∈Z by Yn = h(Xn). Then,
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• if (Xn)n∈Z is η-weak dependent, then (Yn)n∈Z also, and

ηY (n) = O
(
η(n)

p−a
p−1

)
;

• if (Xn)n∈Z is λ-weak dependent, then (Yn)n∈Z also, and

λY (n) = O
(
λ(n)

p−a
p+a−2

)
.

Remark 2.2. The function h(x) = x2 satisfies the previous assumptions with
a = 2. This condition is satisfied by polynomials with degree a.

Proof of Proposition 2.1. Let f and g be two real functions in Fu and Fv respec-
tively. Denote x(M) = (x ∧M) ∨ (−M) for x ∈ R. Now, for x = (x1, . . . , xk) ∈
R
k, we analogously denote x(M) = (x(M)

1 , . . . , x
(M)
k ). Assume that (i, j) belong

to the set Γ(u, v, r) defined in Definition 2.2. Define Xi = (Xi1 , . . . , Xiu) and
Xj = (Xj1 , . . . , Xjv ). We then define functions F : R

uk → R and G : R
vk → R

through the relations:

• F (Xi) = f(h(Xi1), . . . , h(Xiu)), F (M)(Xi) = f(h(X(M)
i1

), . . . , h(X(M)
iu

)),

• G(Xj) = g(h(Xj1), . . . , h(Xjv )), G(M)(Xj) = g(h(X(M)
j1

), . . . , h(X(M)
jv

)).

Then:

|Cov(F (Xi), G(Xj))| ≤ |Cov(F (Xi), G(Xj) −G(M)(Xj))|
+|Cov(F (Xi), G(M)(Xj))|

≤ 2‖f‖∞ E|G(Xj) −G(M)(Xj))|
+2‖g‖∞ E|F (Xi) − F (M)(Xi)|
+|Cov(F (M)(Xi), G(M)(Xj))|

But we also have from the assumptions on h and Markov inequality,

E|G(Xj) −G(M)(Xj))| ≤ Lip g
v∑

l=1

E|h(Xjl) − h(X(M)
jl

)|

≤ 2cLip g
v∑

l=1

E
(
|Xjl |a1|Xjl

|>M
)
,

≤ 2c v Lip gCpMa−p.

The same thing holds for F . Moreover, the functions F (M) : R
uk → R and

G(M) : R
vk → R satisfy LipF (M) ≤ 2cMa−1Lip (f) and LipG(M) ≤ 2cMa−1



14 CHAPTER 2. WEAK DEPENDENCE

Lip (g), and ‖F (M)‖∞ ≤ ‖f‖∞, ‖G(M)‖∞ ≤ ‖g‖∞. Thus, from the definition of
weak dependence of X and the choice of i, j , we obtain respectively, if M ≥ 1
∣
∣Cov

(
F (M)(Xi), G(M)(Xj)

)∣∣ ≤ 2c(uLip (f)‖g‖∞ + vLip (g)‖f‖∞)Ma−1η(r),

≤ 2c(dfLip (f)‖g‖∞ + dgLip (g)‖f‖∞)Ma−1λ(r)
+ 4c2dfdgLip (f)Lip (g)M2a−2λ(r).

Finally, we obtain respectively, if M ≥ 1:

|Cov(F (Xi), G(Xj))| ≤ 2c(uLip f‖g‖∞ + vLip g‖f‖∞)
×
(
Ma−1η(r) + 2CpMa−p),

≤ c(uLip f + vLip g + uvLip fLip g)
×(M2a−2λ(r) +Ma−p).

Choosing M = η(r)1/(1−p) and M = λ(r)−1/(p+a−2) respectively, we obtain the
result. �

In the definition of the coefficients η, κ, λ and ζ, we assume some regularity
conditions on Fu = Gu. In the case where the sequence (Xn)n∈Z is an adapted
process with respect to some increasing filtration (Mi)i∈Z, it is often more
suitable to work without assuming any regularity conditions on Fu. In that
case Gu is some space of regular functions and Fu �= Gu. This last case is called
the causal case. In the situations where both Fu and Gu are spaces of regular
functions, we say that we are in the non causal case.

2.2.2 θ and τ-coefficients

Let Fu be the class of bounded functions from Xu to R, and let Gu be the class
of functions from Xu to R which are Lipschitz with respect to the distance δ1
defined by (2.2.2). We assume that the variables Xi are L

1-integrable.

• The coefficient θ corresponds to

Ψ(f, g) = dg‖f‖∞Lip (g) . (2.2.7)

The coefficient θ has some hereditary properties. For example, Proposition 2.2
below gives hereditary properties similar to those given for the coefficients η
and λ in Lemma 2.1.

Proposition 2.2. Let (Xn)n∈Z be a sequence of R
k-valued random variables.

We define the sequence (Yn)n∈Z by Yn = h(Xn). The assumptions on (Xn)n∈Z

and on h are the same as in Lemma 2.1. Then,
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• if (Xn)n∈Z is θ-weak dependent, (Yn)n∈Z also, and

θY (n) = O
(
θ(n)

p−a
p−1

)
.

The proof of Proposition 2.2 follows the same line as the proof of Proposition
2.1 and therefore is not detailed.
We shall see that the coefficient θ defined above belongs to a more general class
of dependence coefficients defined through conditional expectations with respect
to the filtration σ(Xj , j ≤ i).

Definition 2.3. Let (Ω,A,P) be a probability space, and M be a σ-algebra of A.
Let X be a Polish space and δ a distance on X . For any L

p-integrable random
variable X (see § 2.1) with values in X , we define

θp(M, X) = sup{‖E(g(X)|M) − E(g(X))‖p / g ∈ Λ(1)(δ)}. (2.2.8)

Let (Xi)i∈Z be a sequence of L
p-integrable X -valued random variables, and let

(Mi)i∈Z be a sequence of σ-algebras of A. On X l, we consider the distance δ1
defined by (2.2.2). The sequence of coefficients θp,r(k) is then defined by

θp,r(k) = max
�≤r

1
�

sup
(i,j)∈Γ(1,�,k)

θp (Mi, (Xj1 , . . . , Xj�)) . (2.2.9)

When it is not clearly specified, we shall always take Mi = σ(Xk, k ≤ i).

The two preceding definitions are coherent as proved below.

Proposition 2.3. Let (Xi)i∈Z be a sequence of L
1-integrable X -valued random

variables, and let Mi = σ(Xj , j ≤ i). According to the definition of θ(k) and to
the definition 2.3, we have the equality

θ(k) = θ1,∞(k). (2.2.10)

Proof of Proposition 2.3. The fact that θ(k) ≤ θ1,∞(k) is clear since, for any f
in Fu, g in Gv, and any (i, j) ∈ Γ(u, v, k),

∣
∣
∣Cov

(f(Xi1 , . . . , Xiu)
‖f‖∞

,
g(Xj1 , . . . , Xjv )

vLip (g)

)∣∣
∣

≤ 1
v

∥
∥
∥E
(g(Xj1 , . . . , Xjv )

Lip (g)

∣
∣
∣Miu

)
− E

(g(Xj1 , . . . , Xjv )
Lip (g)

)∥∥
∥

1
≤ θ1,∞(k).

To prove the converse inequality, we first notice that

θ(Mi, (Xj1 , . . . , Xjv ) = lim
k→−∞

θ (Mk,i, (Xj1 , . . . , Xjv )) , (2.2.11)
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where Mk,i = σ(Xj , k ≤ j ≤ i). Now, letting

f(Xk, . . . , Xi) = sign
{
E(g(Xj1 , . . . , Xjv )|Mk,i) − E(g(Xj1 , . . . , Xjv ))

}
,

we have that, for (i, j) in Γ(1, v, k) and g in Λ(1)(δ1),

‖E(g(Xj1 , . . . , Xjv )|Mk,i) − E(g(Xj1 , . . . , Xjv ))‖1

= Cov(f(Xk, . . . , Xi), g(Xj1 , . . . , Xjv )) ≤ vθ(k) .

We infer that
1
v
θ(Mk,i, (Xj1 , . . . , Xjv ) ≤ θ(k)

and we conclude from (2.2.11) that θ1,∞(k) ≤ θ(k). The proof is complete. �
Having in view the coupling arguments in § 5.3, we now define a variation of
the coefficient (2.2.8) where we exchange the order of ‖.‖p and the supremum.
This is the same step as passing from α−mixing to β−mixing, which is known
to ensure nice coupling arguments (see Berbee, 1979 [16]).

Definition 2.4. Let (Ω,A,P) be a probability space, and M a σ-algebra of A.
Let X be a Polish space and δ a distance on X . For any L

p−integrable (see
§ 2.1)) X -valued random variable X, we define the coefficient τp by:

τp(M, X) =

∥
∥
∥∥
∥

sup
g∈Λ(1)(δ)

{∫
g(x)PX|M(dx) −

∫
g(x)PX(dx)

}∥∥
∥∥
∥
p

(2.2.12)

where PX is the distribution of X and PX|M is a conditional distribution of X
given M. We clearly have

θp(M, X) ≤ τp(M, X) . (2.2.13)

Let (Xi)i∈Z be a sequence of L
p-integrable X -valued random variables. The

coefficients τp,r(k) are defined from τp as in (2.2.9).

2.2.3 α̃, β̃ and φ̃-coefficients.

In the case where X = (Rd)r, we introduce some new coefficients based on
indicator of quadrants. Recall that if x and y are two elements of R

d, then
x ≤ y if and only if xi ≤ yi for any 1 ≤ i ≤ d.

Definition 2.5. Let X = (X1, . . . , Xr) be a (Rd)r-valued random variable and
M a σ-algebra of A. For ti in R

d and x in R
d, let gti,i(x) = 1x≤ti −P(Xi ≤ ti).

Keeping the same notations as in Definition 2.4, define for t = (t1, . . . , tr) in
(Rd)r,

LX|M(t) =
∫ r∏

i=1

gti,i(xi)PX|M(dx) and LX(t) = E

r∏

i=1

gti,i(Xi).

Define now the coefficients



2.2. WEAK DEPENDENCE 17

1. α̃(M, X) = sup
t∈(Rd)r

‖LX|M(t) − LX(t)‖1.

2. β̃(M, X) =
∥
∥∥ sup
t∈(Rd)r

|LX|M(t) − LX(t)|
∥
∥∥

1
.

3. φ̃(M, X) = sup
t∈(Rd)r

‖LX|M(t) − LX(t)‖∞.

Remark 2.3. Note that if r = 1, d = 1 and δ(x, y) = |x − y|, then, with the
above notation,

τ1(M, X) =
∫

‖LX|M(t)‖1dt .

The proof of this equality follows the same lines than the proof of the coupling
property of τ1 (see Chapter 5, proof of Lemma 5.2).

In the definition of the coefficients θ and τ , we have used the class of func-
tions Λ(1)(δ). In the case where d = 1, we can define the coefficients α̃(M, X),
β̃(M, X) and φ̃(M, X) with the help of bounded variation functions. This is
the purpose of the following lemma:

Lemma 2.1. Let (Ω,A,P) be a probability space, X = (X1, . . . , Xr) a R
r-

valued random variable and M a σ-algebra of A. If f is a function in BV1, let
f (i)(x) = f(x) − E(f(Xi)). The following relations hold:

1. α̃(M, X) = sup
f1,...,fr∈BV1

∥
∥
∥∥
∥
E

(
r∏

i=1

f
(i)
i (Xi)

∣
∣∣M
)

− E

(
r∏

i=1

f
(i)
i (Xi)

)∥∥
∥∥
∥

1

.

2. β̃(M, X) =

∥
∥
∥∥
∥

sup
f1,...,fr∈BV1

∣
∣
∣∣
∣

∫ r∏

i=1

f
(i)
i (xi)

(
PX|M − PX

)
(dx)

∣
∣
∣∣
∣

∥
∥
∥∥
∥

1

.

3. φ̃(M, X) = sup
f1,...,fr∈BV1

∥
∥
∥∥
∥
E

(
r∏

i=1

f
(i)
i (Xi)|M

)

− E

(
r∏

i=1

f
(i)
i (Xi)

)∥∥
∥∥
∥
∞

.

Remark 2.4. For r = 1 and d = 1, the coefficient α̃(M, X) was introduced
by Rio (2000, equation 1.10c [161]) and used by Peligrad (2002) [140], while
τ1(M, X) was introduced by Dedecker and Prieur (2004a) [45]. Let α(M, σ(X)),
β(M, σ(X)) and φ(M, σ(X)) be the usual mixing coefficients defined respectively
by Rosenblatt (1956) [166], Rozanov and Volkonskii (1959) [187] and Ibragimov
(1962) [110]. Starting from Definition 2.5 one can easily prove that

α̃(M, X) ≤ 2α(M, σ(X)), β̃(M, X) ≤ β(M, σ(X)), φ̃(M, X) ≤ φ(M, σ(X)).
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Proof of Lemma 2.1. Let fi be a function in BV1. Assume without loss of
generality that fi(−∞) = 0. Then

f
(i)
i (x) = −

∫
(1x≤t − P(Xi ≤ t)) dfi(t) .

Hence,

∫ k∏

i=1

f
(i)
i (xi)PX|M(dx) = (−1)k

∫ ( ∫ k∏

i=1

gti,i(xi)PX|M(dx)
) k∏

i=1

dfi(ti) ,

and the same is true for PX instead of PX|M. From these inequalities and the
fact that |dfi|(R) ≤ 1, we infer that

sup
f1,...,fk∈BV1

∣
∣
∣
∫ k∏

i=1

f
(i)
i (xi)PX|M(dx) −

∫ k∏

i=1

f
(i)
i (xi)PX(dx)

∣
∣
∣

≤ sup
t∈Rr

|LX|M(t) − LX(t)| .

The converse inequality follows by noting that x �→ 1x≤t belongs to BV1 . �
The following proposition gives the hereditary properties of these coefficients.

Proposition 2.4. Let (Ω,A,P) be a probability space, X an R
r-valued, random

variable and M a σ-algebra of A. Let g1, . . . , gr be any nondecreasing functions,
and let g(X) = (g1(X1), . . . , gr(Xr)). We have the inequalities α̃(M, g(X)) ≤
α̃(M, X), β̃(M, g(X)) ≤ β̃(M, X) and φ̃(M, g(X)) ≤ φ̃(M, X). In particu-
lar, if Fi is the distribution function of Xi, we have α̃(M, F (X)) = α̃(M, X),
β̃(M, F (X)) = β̃(M, X) and φ̃(M, F (X)) = φ̃(M, X).

Notations 2.1. For any distribution function F , we define the generalized
inverse as

F−1(x) = inf
{
t ∈ R

/
F (t) ≥ x

}
. (2.2.14)

For any non-increasing càdlàg function f : R → R we analogously define the
generalized inverse

f−1(u) = inf{t/f(t) ≤ u}.

Proof of Proposition 2.4. The fact that α̃(M, g(X)) ≤ α̃(M, X) is immedi-
ate, from its definition. We infer that α̃(M, F (X)) ≤ α̃(M, X). Applying
the first result once more, we obtain that α̃(M, F−1(F (X))) ≤ α̃(M, F (X)).
To conclude, it suffices to note that F−1 ◦ F (X) = X almost surely, so that
α̃(M, X) ≤ α̃(M, F (X)). Of course, the same arguments apply to β̃(M, X)
and φ̃(M, X). �
We now define the coefficients α̃r(k), β̃r(k) and φ̃r(k) for a sequence of σ-
algebras and a sequence of R

d-valued random variables.
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Definition 2.6. Let (Ω,A,P) be a probability space. Let (Xi)i∈Z be a sequence
of R

d-valued random variables, and let (Mi)i∈Z be a sequence of σ-algebras of
A. For r ∈ N

∗ and k ≥ 0, define

α̃r(k) = max
1≤l≤r

sup
(i,j)∈Γ(1,l,k)

α̃(Mi, (Xj1 , . . . , Xjl)) . (2.2.15)

The coefficients β̃r(k) and φ̃r(k) are defined in the same way. When it is not
clearly specified, we shall always take Mi = σ(Xk, k ≤ i).

2.2.4 Projective measure of dependence

Sometimes, it is not necessary to introduce a supremum over a class of functions.
We can work with the simple following projective measure of dependence

Definition 2.7. Let (Ω,A,P) be a probability space, and M a σ-algebra of A.
Let p ∈ [1,∞]. For any L

p−integrable real valued random variable define

γp(M, X) = ‖E(X |M) − E(X)‖p. (2.2.16)

Let (Xi)i∈Z be a sequence of L
p−integrable real valued random variables, and

let (Mi)i∈Z be a sequence of σ-algebras of A. The sequence of coefficients γp(k)
is then defined by

γp(k) = sup
i∈Z

γp(Mi, Xi+k) . (2.2.17)

When it is not clearly specified, we shall always take Mi = σ(Xk, k ≤ i).

Remark 2.5. Those coefficients are defined in Gordin (1969) [97], if p ≥ 2 and
in Gordin (1973) [98] if p = 1. Mc Leish (1975a) [128] and (1975b) [129] uses
these coefficients in order to derive various limit theorems. Let us notice that

γp(M, X) ≤ θp(M, X) . (2.2.18)



Chapter 3

Models

The chapter is organized as follows: we first introduce Bernoulli shifts, a very
broad class of models that contains the major part of processes derived from a
stationary sequence. As an example, we define the class of Volterra processes
that are multipolynomial transformation of the stationary sequence. We will
discuss the dependence properties of Bernoulli shifts, whether the initial is a
dependent or independent sequence. When the innovation sequence is indepen-
dent, we will distinguish between causal and non-causal processes. After these
general properties, we focus on Markov models and some of their extensions,
as well as dynamical systems which may be studied as Markov chains up to a
time reversal. After this we shall consider LARCH(∞)-models which are built
by a mix of definition of Volterra series and Markov processes and will provide
an attractive class of non linear and non Markovian times series. To conclude,
we consider associated processes and we review some other types of stationary
processes or random fields which satisfy some weak dependence condition.

3.1 Bernoulli shifts

Definition 3.1. Let H : R
Z → R be a measurable function. Let (ξn)n∈Z be a

strictly stationary sequence of real-valued random variables. A Bernoulli shift
with innovation process (ξn)n∈Z is defined as

Xn = H ((ξn−i)i∈Z) , n ∈ Z. (3.1.1)

This sequence is strictly stationary.

Remark that the expression (3.1.1) is certainly not always clearly defined; as H
is a function depending on an infinite number of arguments, it is generally given
in form of a series, which is usually only defined in some L

p space. In order to

21
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define (3.1.1) in a general setting, we denote for any subset J ⊂ Z:

H
(
(ξ−j)j∈J

)
= H

(
(ξ−j 1j∈J )j∈Z

)
.

For finite subsets J this expression is generally well defined and simple to handle.
In order to define such models in L

m we may assume

∞∑

n=1

ωm,n < ∞, (3.1.2)

where, for some m ≥ 1:

ωmm,n = E

∣
∣
∣H
(
(ξ−j)|j|≤n

)
−H

(
(ξ−j)|j|<n

)∣∣
∣
m

. (3.1.3)

This condition indeed proves that the sequence H
(
(ξ−j)|j|≤n

)
has the Cauchy

property and thus converges in the Banach space L
m of the classes of random

variables with a finite moment order m.
In fact the strict definition of the function H as an element of the space

L
m(RZ ,B(RZ), μ) is the following. Denote by μ the distribution of a process

ξ = (ξt)t∈Z. The measure μ is a probability distribution on the measurable
space (RZ ,B(RZ)). If as before we assume that ξ is stationary, that S ⊂ R is
the support of the distribution of ξ0, and that S ⊂ R

Z is the support of the
distribution of the sequence ξ, then the random variable H defines a function
over S ⊃ S(Z) where S(Z) is the set of sequences with values 0 excepted for
finitely many indices. Now given a function defined over R

(Z) the previous
condition (3.1.2) ensures that such a function may be extended to a function
H ∈ L

m(RZ ,B(RZ), μ).

Dependence properties. No mixing properties have been derived for such
models excepted for the simple case of m-dependent Bernoulli shifts, i.e. when
H depends only on a finite number of variables.

3.1.1 Volterra processes

The most simple case of infinitely dependent Bernoulli shift is the infinite moving
average process with independent innovations:

Xt =
∞∑

−∞
aiξt−i (3.1.4)

This simple case is generalised by Volterra processes defined with use of poly-
nomials of the innovation process. A Volterra process is a stationary process
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defined through a convergent Volterra expansion

Xt = v0 +
∞∑

k=1

Vk;t, where (3.1.5)

Vk;t =
∑

i1<···<ik
ak;i1,...,ikξt−i1 · · · ξt−ik , (3.1.6)

and v0 denotes a constant and (ak;i1,...,ik)(i1,...,ik)∈Zk are real numbers for each
k ≥ 1. Let p ≥ 1, then this expression converges in L

p, provided that E|ξ0|p < ∞
and the weights satisfy

∞∑

k=1

∑

i1<···<ik
|ak;i1,...,ik |

p
< ∞.

If the sequences ak;i1,...,ik = 0 as i1 < 0 then the process is causal in the sense
that Xt is measurable with respect to σ{ξi, i ≤ t}. In this case t may be seen
as the usual time σ{ξi, i ≤ t} denotes the history at epoch t.

Assume now that p = 2, E ξ0 = 0 and E ξ2i = 1, then the k−th order ho-
mogeneous chaotic processes Vk;t are pairwise orthogonal, and it is thus enough
to prove the existence of such homogeneous processes (3.1.6) in L

2 in order
to obtain the existence of the more general Volterra processes (3.1.5). Normal
convergence of Vk;t follows clearly from the convergence of the series defining its
variance Γ2

k

Γ2
k =

∑

0≤i1<···<ik−1

a2
i1,...,ik−1,ik

< ∞.

For the general infinite order Volterra series (3.1.5), the corresponding variance
is trivially related by orthogonality:

Γ2 =
∞∑

k=1

Γ2
k < ∞.

The formula defining Volterra processes can be generalized to expansions

Xt = v0 +
∞∑

k=1

Vk;t, where Vk;t =
∑

(i1,...,ik)∈Zk

ak;i1,...,ikξt−i1 · · · ξt−k, (3.1.7)

and v0 denotes a constant and (ak;i1,...,ik)(i1,...,ik)∈Zk are real numbers for each
k ≥ 1. The major difference with the preceding definition is the fact that the
indices in the product are not all different. Let p ≥ 1, then the series converges
in L

p provided that the weights satisfy
∞∑

k=1

E|ξ0|pk
∑

i1≤···≤ik
|ak;i1,...,ik |

p
< ∞. (3.1.8)
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The drawback of this generalization is the loss the properties of orthogonality
and moments derived for the models (3.1.5). It is but possible to rewrite the
process as a sum of orthogonal term by relaxing the condition of identical dis-
tribution and independence of the innovation process. Consider more general
Volterra processes defined under the same condition (3.1.8) by

Vk;t =
∑

j1<···<jk
a
(k)
j1,...,jk

ξ
(k,1)
t−j1 · · · ξ(k,k)t−jk (3.1.9)

For a fixed k > 0, the series (ξ(k,l)t )t∈Z are i.i.d. and mutually orthogonal for
l ≤ k. Clearly, models (3.1.5) have this form but it is also interesting to see
that models (3.1.7) may also be written as sums of such models. Consider an
expansion (3.1.7), we may assume without loss of generality that j1 ≤ · · · ≤
jk and that Eξ0 = 0; we replace each power of an innovation variable by its
decomposition on the Appell polynomial of the distribution of ξ0. For example
the squares will be replaced by

ξ2t−i = (ξ2t−i − σ2) + σ2 = A2(ξt−i) + σ2.

For higher order polynomials, recall that Appell polynomials (see e.g. Doukhan,
2002 [62]) are defined as Ak(ξt−i) = ξkt−i+· · · in such a way that EAk(ξt)P (ξt) =
0 if the degree of the polynomial P is less than k. Replacing all the powers with
the help of such Appell polynomial leads to a decomposition (3.1.9) in orthogonal
terms.

Dependence properties. Note that such models may have no weak depen-
dence properties, as in the case of simple moving averages, see Doukhan, Op-
penheim and Taqqu (2003) [72] for a thorough survey of strongly dependent
Volterra processes. No mixing property have been derived in the general case.
The degenerated case of m dependence, when Vt depends only on the ξt−i for
i = 1 to m, so that only a finite number of coefficients in each series are nonzero,
satisfies any of the mixing properties. The mixing properties of causal linear
processes corresponding to the term V1;t with ai1 = 0 when i1 < 0 were derived
under the strong additional assumption that ξ0’s distribution admits a density
which is itself an absolutely continuous function; see Doukhan, 1994 [61] for ref-
erences, in this monograph the proof of mixing for non causal linear processes
is not complete.

3.1.2 Noncausal shifts with independent inputs

Assume here that the shift is well defined and that the sequence of innovations
(ξt) is i.i.d.
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Dependence properties. In order to prove weak dependence properties,
once the existence and measurability of the function H is ensured, it is suf-
ficient to assume the sequence {δr}r∈N defined by:

E
∣∣H (ξt−j , j ∈ Z) −H

(
ξt−j1|j|≤r, j ∈ Z

)∣∣ = δr (3.1.10)

converges to 0 as r tends to infinity. Note that a simple bound for δr is δr ≤∑
i>r ω1,i. The following elementary lemma is easily proved:

Lemma 3.1. Bernoulli shifts are η−weakly dependent with

η(r) ≤ 2δ[r/2].

Proof. Let X(s)
n = H((ξn−i1|i|≤s)). Clearly, the two sequences (X(s)

n )n≤i and
(X(s)

n )n≥i+r are independent if r > 2s; now consider Cov(f ,g) for the functions
f = f(Xi1 , . . . , Xiu), g = g(Xj1 , . . . , Xjv ), where f and g are bounded and
f, g ∈ Λ(1)(| · |1) with | · |1 defined by (2.2.2). Let i1 ≤ · · · ≤ iu and j1 ≤ · · · ≤ jv

such that j1 − iu > 2s. From the previous remark, f (s) = f(X(s)
i1
, . . . , X

(s)
iu

) and
g(s) = g(X(s)

j1
, . . . , X

(s)
jv

) are independent, and consequently

|Cov(f ,g)| ≤
∣
∣
∣Cov(f − f (s),g)

∣
∣
∣+
∣
∣
∣Cov(f (s),g − g(s))

∣
∣
∣

≤ 2‖g‖∞E

∣∣
∣f − f (s)

∣∣
∣+ 2‖f‖∞E

∣∣
∣g − g(s)

∣∣
∣

≤ 2‖g‖∞Lip f
u∑

t=1

E

∣
∣
∣Xit −X

(s)
it

∣
∣
∣+ 2‖f‖∞Lip g

v∑

t=1

E

∣
∣
∣Xjt −X

(s)
jt

∣
∣
∣

≤ 2(u‖g‖∞Lip f + v‖f‖∞Lip g)δs . �

The sequence (δk)k is related to the modulus of uniform continuity of H . Under
the following regularity conditions:

|H(ui, i ∈ Z) −H(vi, i ∈ Z)| ≤
∑

i∈Z

ai|ui − vi|b,

for some non negative constants (ai)i∈Z, 0 < b ≤ 1 and if the sequence (ξi)i∈Z

has finite b-th order moment, then δk ≤
∑

|i|>k
aiE|ξi|b.

Recall here that processes can be η-weakly dependent and nonmixing, see § 1.5.

3.1.3 Noncausal shifts with dependent inputs

The condition of independent inputs ξ may be relaxed. E.g. in eqn. (3.1.4),
instead of independence, assume that the sequence (ξn)n∈Z is ηξ-weak dependent
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then the process (Xn)n∈Z is η-weak dependent with η(r) ≤ ηξ(r/2)+ δr/2. Such
an heredity property of weak dependence is unknown under mixing. A general
statement of this property is provided below in lemma 3.3. Let us now note
by (ξi)i∈Z a weakly dependent innovation process. The coefficient λ is proved
to very useful to study Bernoulli shifts Xn = H(ξn−j , j ∈ Z) with weakly
dependent innovation process (ξi)i from the forthcoming lemma (see Doukhan
and Wintenberger, 2005 [77]).
Let H : R

Z → R be a measurable function and Xn = H(ξn−i, i ∈ Z). In order
to define Xn, we assume that H satisfies: for each s ∈ Z, if x, y ∈ R

Z satisfy
xi = yi for each index i �= s

|H(x) −H(y)| ≤ bs(sup
i	=s

|xi|l ∨ 1)|xs − ys| (3.1.11)

where z is defined by zs = 0 and zi = xi = yi for each i �= s. This assumption
is stronger than in the case of independent innovations (see equation (3.1.10)).
The following lemma proves the existence of such models:

Lemma 3.2. Let Xn = H(ξn−i, i ∈ Z) be a Bernoulli shift such that H : R
Z →

R satisfies the condition (3.1.11) with l ≥ 0 and some sequence bs ≥ 0 such that∑
s |s|bs < ∞. Assume that E|ξ0|m

′
< ∞ with lm + 1 < m′ for some m > 2.

Then Xn = H(ξn−i, i ∈ Z) is a strongly stationary process, well defined in L
m.

The existence of example (3.1.4) was stated without proof, we now precise more
involved examples of Bernoulli shifts with dependent innovations:

Example 3.1 (Volterra models with dependent inputs.). Consider

H(x) =
K∑

k=0

∑

j1,...,jk

a
(k)
j1,...,jk

xj1 · · ·xjk ,

then if x, y are as in eqn. (3.1.11):

H(x)−H(y) =
∑

1 ≤ u ≤ k ≤ K
j1, . . . , ju−1
ju+1, . . . , jk

a
(k)
j1,...,ju−1,s,ju+1,...,jk

xj1 · · ·xju−1 (xs−ys)xju+1 · · ·xjk .

From the triangular inequality we derive that suitable constants in condition
(3.1.11) may be chosen as l = K − 1 and

bs =
K∑

k=1

∑(k,s)
|a(k)
j1,...,jk

|,

where
∑(k,s) stands for the sums over all indices in Z

k and one of the indices
j1, . . . , jk takes the value s.
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Example 3.2 (Uniform Lipschitz Bernoulli shifts). Assume that the condition
(3.1.11) holds with l = 0, then the previous result still holds. An example of
such a situation is the case of LARCH(∞) non-causal processes with bounded
(m′ = +∞) and dependent stationary innovations.

Proof of lemma 3.2. We first prove the existence of Bernoulli shift with de-
pendent innovations in L

1. The same proof leads to the existence in L
m for

all m ≥ 1 such that lm + 1 ≤ m′. Here we set ξ(s) = (ξ−i1|i|<s)i∈Z and
ξ
(s)
+ = (ξ−i1−s<i≤s)i∈Z for i ∈ Z ∪ {∞}. In order to prove the existence of

Bernoulli shift with dependent innovations, we show that H(ξ(∞)) is the sum
of a normally convergent series in L

1. Then formally

X0 = H(ξ(∞)) = H(0) + (H(ξ(1)) −H(0))

+
∞∑

s=1

(
(H(ξ(s+1)) −H(ξ(s)+ )) + (H(ξ(s)+ ) −H(ξ(s)))

)
.

With (3.1.11) we obtain

|H(ξ(1)) −H(0)| ≤ b0|ξ0|,
|H(ξ(s+1)) −H(ξ(s)+ )| ≤ b−s( sup

−s<i≤s
|ξ−i|l ∨ 1)|ξ−s|,

|H(ξ(s)+ ) −H(ξ(s)| ≤ bs( sup
|i|<s

|ξ−i|l ∨ 1)|ξs|.

Hölder inequality yields

E

∣∣
∣H(ξ(1)) −H(0)

∣∣
∣+

∞∑

s=1

E

∣∣
∣H(ξ(s+1)) −H(ξ(s)+ )

∣∣
∣+ E

∣∣
∣H(ξ(s)+ ) −H(ξ(s))

∣∣
∣

≤
∑

i∈Z

2|i|bi(‖ξ0‖1 + ‖ξ0‖l+1
l+1). (3.1.12)

Hence assumption l + 1 ≤ m′ with
∑
i∈Z

|i|bi < ∞ together imply that the
variable H(ξ) is well defined. The same way proves that the process Xn =
H(ξn−i, i ∈ Z) is a well defined process in L

1 and that it is strongly stationary.
We can extend this result in L

m for all m ≥ 1 such that lm+ 1 ≤ m′.

Dependence properties. Such models are proved to exhibit either λ- or
η-weak dependence properties, as described below.

Lemma 3.3. Assume that the conditions of lemma 3.2 are satisfied
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• if the innovation process (ξi)i∈Z is λ-weakly dependent (with coefficients
λξ(r)), then Xn is λ-weakly dependent with

λ(k) = c inf
r≤[k/2]

(∑

i≥r
|i|bi
)

∨
(

(2r + 1)2λξ(k − 2r)
m′−1−l
m′−1+l

)
.

• if the innovation process (ξi)i∈Z is η-weakly dependent (with coefficients
ηξ(r)) then Xn is η-weakly dependent and there exists a constant c > 0
such that

η(k) = c inf
r≤[k/2]

⎛

⎝
∑

i≥r
|i|bi

⎞

⎠ ∨
(

(2r + 1)1+
l

m′−1 ηξ(k − 2r)
m′−2
m′−1

)
.

Because Bernoulli shifts of κ-weak dependent innovations are neither κ- nor η-
weakly dependent, the case of κ dependent innovation is here included in that
of λ dependent inputs.
The proof of lemma 3.2 will be given below. If the weak dependence coeffi-
cients of ξ are regularly decreasing, it is easy to explicit the decay of the weak
dependence coefficients of X :

Proposition 3.1. Here λ > 0 and η > 0 are constants which can differ in each
case.

• If bi = O
(
i−b
)

for some b > 2 and λξ(i) = O
(
i−λ
)
, resp. ηξ(i) =

O (i−η) (as i ↑ ∞) then from a simple calculation, we optimize both

terms in order to prove that λ(k) = O
(
k−λ(1−

2
b )m′−1−l

m′−1+l

)
, resp. η(k) =

O
(
k
−η (b−2)(m′−2)

(b−1)(m′−1)−l

)
. Note that in the case m′ = ∞ this exponent is ar-

bitrarily close to λ for large values of b > 0 and takes all possible values
between 0 and λ.

• If bi = O
(
e−ib

)
for some b > 0 and λξ(i) = O

(
e−iλ

)
, resp. ηξ(i) =

O
(
e−iη

)
(as i ↑ ∞) we have λ(k) = O

(
k2e

−λk b(m′−1−l)
b(m′−1+l)+2η(m′−1−l)

)
, resp.

η(k) = O
(
k

m′−1−l
m′−1 e

−ηk b(m′−2)
b(m′−1)+2η(m′−2)

)
. The geometrical decays for both

(bi)i and coefficients of the innovations ensure the geometric decay of the
weakly dependence coefficient of the Bernoulli shift.

• If the Bernoulli shift coefficients have a geometric decay, say bi = O
(
e−ib

)

and λξ(i) = O
(
i−λ
)
, resp. ηξ(i) = O (i−η) (as i ↑ ∞) we find
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λ(k) = O
(

(log k)2k−λ
m′−1−l
m′−1+l

)
, resp. η(k) = O

(
(log k)1+

l
m′−1 k−η

m′−2
m′−1

)
.

If m′ = ∞ this means that we only lose at most a factor log2 k with respect
to the dependence coefficients of the input dependent series (ξi)i.

Proof of lemma 3.3. We exhibit some Lipschitz function by using a convenient
truncation. Write ξ = ξ ∨ (−T ) ∧ T for a truncation T which will be precisely
stated later. As in the proof of Lemma 3.1, we denote byX(r)

n = H((ξn−i1|i|≤r))

and X
(r)

n = H((ξn−i1|i|≤s)). Furthermore, for any k ≥ 0 and any (u+ v)-tuples
such that s1 < · · · < su ≤ su + k ≤ t1 < · · · < tv, set Xs = (Xs1 , . . . , Xsu),
Xt = (Xt1 , . . . , Xtv ) and X

(r)

s = (X
(r)

s1 , . . . , X
(r)

su
), X

(r)

t = (X
(r)

t1 , . . . , X
(r)

tv ).
Then we have for all f, g satisfying ‖f‖∞, ‖g‖∞ ≤ 1 and Lip f + Lip g < ∞:

|Cov(f(Xs), g(Xt))| ≤ |Cov(f(Xs) − f(X
(r)

s ), g(Xt))| (3.1.13)

+ |Cov(f(X
(r)

s ), g(Xt) − g(X
(r)

t ))| (3.1.14)

+ |Cov(f(X
(r)

s ), g(X
(r)

t ))|. (3.1.15)

Using that ‖g‖∞ ≤ 1, the term (3.1.13) in the sum is bounded by

2Lip f · E

∣
∣
∣
u∑

i=1

(
Xsi −X

(r)

si

)∣∣
∣

≤ 2 uLip f
(

max
1≤i≤u

E
∣
∣Xsi −X(r)

si

∣
∣+ max

1≤i≤u
E
∣
∣X(r)

si
−X

(r)

si

∣
∣
)
.

With the same arguments as in the proof of the existence of H(ξ(∞)) (see equa-
tion (3.1.12)), the first term in the right hand side is bounded by (‖ξ0‖1 +
‖ξ0‖l+1

l+1)
∑
i≥s 2|i|bi. Notice now that if x, y are sequences with xi = yi = 0 if

|i| ≥ r then a repeated application of the previous inequality (3.1.11) yields

|H(x) −H(y)| ≤ L(‖x‖l∞ ∨ ‖y‖l∞ ∨ 1)‖x− y‖ (3.1.16)

where L =
∑
i∈Z

|i|bi < ∞. The second term is bounded by using (3.1.16):

E

∣∣
∣X(r)

si
−X

(r)

si

∣∣
∣ = E

∣∣
∣H
(
ξ(r)
)

−H
(
ξ
(r)
)∣∣
∣

≤ LE

⎛

⎝
(

max
−r≤i≤r

|ξi|
)l ∑

−r≤j≤r
{|ξj |1ξj≥T }

⎞

⎠

≤ L(2r + 1)2E

(
max

−r≤i,j≤r
|ξi|l{|ξj|1|ξj |≥T }

)

≤ L(2r + 1)2‖ξ0‖m
′

m′T l+1−m′
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The term (3.1.14) is analogously bounded. We write (3.1.15) as
∣∣
∣Cov(F

(r)
(ξsi+j , 1 ≤ i ≤ u, |j| ≤ r), G

(r)
(ξti+j , 1 ≤ i ≤ v, |j| ≤ r)

∣∣
∣ ,

where F
(r)

: R
u(2r+1) → R and G

(r)
: R

u(2r+1) → R. If r ≤ [k/2], assume that
ξ is η weakly dependent (resp. λ-weak dependent) to bound this covariance by
ψ(LipF

(r)
,LipG

(r)
, u(2r + 1), v(2r + 1))εk−2r , where ψ(u, v, a, b) = uvab and

εi = ηi (resp. ψ(u, v, a, b) = uvab+ ua+ vb and εi = λi). Let x = (x1, . . . , xu)
and y = (y1, . . . , yu) where xi, yi ∈ R

2r+1; a bound for LipF
(r)

writes as the
supremum over sequences x, y of:

|f(H(xsi+l, 1 ≤ i ≤ u, |l| ≤ r) − f(H(ysi+l, 1 ≤ i ≤ u, |l| ≤ r)|
∑u
j=1 ‖xj − yj‖

.

Using (3.1.16), we have:

|F (r)
(x) − F

(r)
(y)| ≤ Lip fL

u∑

i=1

(
‖xsi‖∞ ∨ ‖ysi

‖∞ ∨ 1
)l ‖xsi − ysi

‖

≤ Lip fLT l
u∑

i=1

∑

−r≤l≤r
|xsi+l − ysi+l|.

Hence LipF (r) ≤ Lip f · L · T l and, similarly, LipG(r) ≤ Lip g · L · T l.
• Under η-weak dependence, we bound the covariance as:

|Cov(f(Xs), g(Xt))| ≤ (uLip f + vLip g)

×
[
4
∑

i≥r
|i|bi(‖ξ0‖1 + ‖ξ0‖l+1

l+1)

+ (2r + 1)L
(
(2r + 1)2‖ξ0‖m

′
m′T l+1−m′

+ T lηξ(k − 2r)
) ]

We then fix the truncation Tm
′−1 = 2(2r + 1)‖ξ0‖m

′
m′
/
ηξ(k − 2r) to obtain the

result of the lemma 3.3 in the η-weak dependent case.
• Under λ-weak dependence, we obtain:

|Cov(f(Xs), g(Xt))| ≤ (uLip f + vLip g + uvLip fLip g)

×
({

4
∑

i≥r
|i|bi(‖ξ0‖1 + ‖ξ0‖l+1

l+1)

+ (2r + 1)L
(
2(2r + 1)T l+1−m′‖ξ0‖m

′
m′ + T lλξ(k − 2r)

)}

∨
{
(2r + 1)2L2T 2lλξ(k − 2r)

})

With the truncation such that T l+m
′−1 = 2‖ξ0‖m

′
m′/(Lλξ(k−2r)), we obtain the

result of the lemma 3.3 in the present η-weak dependent case. �
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3.1.4 Causal shifts with independent inputs

Let (ξi)i∈Z be a stationary sequence of random variables with values in a mea-
surable space X . Assume that there exists a function H defined on a subset of
XN, with values in R and such that H(ξ0, ξ−1, ξ−2, . . .) is defined almost surely.
The stationary sequence (Xn)n∈Z defined by

Xn = H(ξn, ξn−1, ξn−2, . . .) (3.1.17)

is called a causal function of (ξi)i∈Z.
In this section, we assume that (ξi)i∈Z is i.i.d. In this causal case, another way
to define a coupling coefficient is to consider a non increasing sequence (δ̃p,n)n≥0

(p may be infinite) such that

δ̃p,n ≥ ‖Xn − X̃n‖p, (3.1.18)

where X̃t = H(ξ̃t, ξ̃t−1, ξ̃t−2, . . .), ξ̃n = ξn if n > 0 and ξ̃n = ξ′n for n ≤ 0 for an
independent copy (ξ′t)t∈Z of (ξt)t∈Z. Here X̃t has the same distribution as Xt

and is independent of M0 = σ(Xi, i ≤ 0).

Dependence properties. In this section, we shall use the results of chapter
5 to give upper bounds for the coefficients θp,∞(n), τp,∞(n), α̃k(n), β̃k(n) and
φ̃k(n). More precisely, we have that

1. θp,∞(n) ≤ τp,∞(n) ≤ δ̃p,n.

2. Assume that X0 has a continuous distribution function with modulus of
continuity w. Let gp(y) = y(w(y))1/p. For any 1 ≤ p < ∞, we have

α̃k(n) ≤ β̃k(n) ≤ 2k
( δ̃p,n

g−1
p (δ̃p,n)

)
p.

In particular, if X0 has a density bounded by K, we obtain the inequality
β̃k(n) ≤ 2k(Kδ̃p,n)p/(p+1).

3. Assume that X0 has a continuous distribution function, with modulus of
uniform continuity w. Then

α̃k(n) ≤ β̃k(n) ≤ φ̃k(n) ≤ k w(δ̃∞,n).

4. For φ̃k(n) it is sometimes interesting to use the coefficient

δ′p,n = ‖E(|Xn −X∗
n|p|M0)‖1/p

∞ .

With the same notations as in point 2, φ̃k(n) ≤ 2k
( δ′p,n
g−1
p (δ′p,n)

)
p .
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The point 1. can be proved by using Lemma 5.3. The points 2. 3. and 4. can
be proved as the point 3. of Lemma 5.1, by using Proposition 5.1 and Markov
inequality.

Application (causal linear processes). In that case Xn =
∑

j≥0

ajξn−j . One

can take δ′p,n = 2‖ξ0‖p
∑

j≥n
|aj |. For p = 2 and Eξ0 = 0 one may set

δ′2,n =
(
2Eξ20

∑

j≥n
a2
j

) 1
2
.

For instance, if ai = 2−i−1 and ξ0 ∼ B(1/2), then δi,∞ ≤ 2−i. Since X0 is
uniformly distributed over [0, 1], we have φ̃1(i) ≤ 2−i. Recall that this sequence
is not strongly mixing (see section 1.5).

Remark 3.1. By interpreting causal Bernoulli shifts as physical systems, de-
noted Xt = g(. . . , εt−1, εt) Wu (2005) [188] introduces physical dependence coef-
ficients quantifying the dependence of outputs (Xt) on inputs (εt). He considers
the nonlinear system theory’s coefficient

δ̄t = ‖g(. . . , ε0, . . . , εt−1, εt) − g(. . . , ε−1, ε
′
0, . . . , εt−1, εt)‖2

with ε′ an independent copy of ε. This provides a sharp framework for the study
of the question of CLT random processes and shed new light on a variety of prob-
lems including estimation of linear models with dependent errors in Wu (2006)
[191], nonparametric inference of time series in Wu (2005) [192], representa-
tions of sample quantiles (Wu 2005 [189]) and spectral estimation (Wu 2005
[190]) among others. This specific L

2-formulation is rather adapted to CLT and
it is not directly possible to compare it with τ-dependence because coupling is
given here with only one element in the past. Justification of the Bernoulli shift
representation follows from Ornstein (1973) [138].

3.1.5 Causal shifts with dependent inputs

In this section, the innovations are not required to be i.i.d., but the method
introduced in the preceding section still works. More precisely, assume that
there exists a stationary sequence (ξ′i)i∈Z distributed as (ξi)i∈Z and independent
of (ξi)i≤0. Define X̃n = H(ξ′n, ξ

′
n−1, ξ

′
n−2, . . .). Clearly X̃n is independent of

M0 = σ(Xi, i ≤ 0) and distributed as Xn. Hence one can apply the result of
Lemma 5.3: if (δ̃p,n)n≥0 is a non increasing sequence satisfying (3.2.2), then the
upper bounds 1. 2. 3. and 4. of the preceding section hold.
In particular, these results apply to the case where the sequence (ξi)i∈Z is β-
mixing. According to Theorem 4.4.7 in Berbee (1979) [16], if Ω is rich enough,
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there exists (ξ′i)i∈Z distributed as (ξi)i∈Z and independent of (ξi)i≤0 such that
P(ξi �= ξ′i for some i ≥ k) = β(σ(ξi, i ≤ 0), σ(ξi, i ≥ k)).

Application (causal linear processes). In that case Xn =
∑

j≥0 ajξn−j .
For any p ≥ 1, we can take the non increasing sequence (δ̃p,n)n≥0 such that

δ̃p,n ≥ ‖ξ0 − ξ′0‖p
∑

j≥n
|aj | +

n−1∑

j=0

|aj |‖ξi−j − ξ′i−j‖p ≥
∑

j≥0

|aj |‖ξi−j − ξ′i−j‖p .

From Proposition 2.3 in Merlevède and Peligrad (2002) [130], one can take

δ̃p,n ≥ ‖ξ0 − ξ′0‖p
∑

j≥n
|aj | +

n−1∑

j=0

|aj |
(
2p
∫ β(σ(ξk,k≤0),σ(ξk ,k≥i−j))

0

Qpξ0(u)
)1/p

du ,

where Qξ0 is the generalized inverse of the tail function x �→ P(|ξ0| > x) (see
Lemma 5.1 for the precise definition).

3.2 Markov sequences

Let (Xn)n≥1−d be sequence of random variables with values in a Banach space
(B, ‖ · ‖). Assume that Xn satisfies the recurrence equation

Xn = F (Xn−1, . . . , Xn−d; ξn). (3.2.1)

where F is a measurable function with values in B, the sequence (ξn)n>0 is i.i.d.
and (ξn)n>0 is independent of (X0, . . . , Xd−1). Note that if Xn satisfies (3.2.1)
then the random variable Yn = (Xn, . . . , Xn−d+1) defines a Markov chain such
that Yn = M(Yn−1; ξn) with

M(x1, . . . , xd; ξ) = (F (x1, . . . , xd; ξ), x1, . . . , xd−1).

Dependence properties. Assume that (Xn)n≤d−1 is a stationary solution
to (3.2.1). As previously, let Y0 = (X0, . . . , X1−d), and let Ỹ0 = (X̃0, . . . , X̃1−d)
be and independent vectors with the same law as Y0 (that is a distribution
invariant by M). Let then X̃n = F (X̃n−1, . . . , X̃n−d; ξn). Clearly, for n > 0,
X̃n is distributed as Xn and independent of M0 = σ(Xi, 1 − d ≤ i ≤ 0). As
in the preceding sections, let (δ̃p,n)n≥0 (p may be infinite) be a non increasing
sequence such that

δ̃p,n ≥ (E‖Xn − X̃n‖p)1/p . (3.2.2)

Applying Lemma 5.3, we infer that

θp,∞(n) ≤ τp,∞(n) ≤ δ̃p,n .
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For the coefficients α̃k(n), β̃k(n) and φ̃k(n) in the case B = R, the upper bounds
2., 3., and 4. of section 3.1.4 also hold under the same conditions on the distri-
bution function of X0.
Assume that, for some p ≥ 1, the function F satisfies

(E‖F (x; ξ1) − F (y; ξ1)‖p)
1
p ≤

d∑

i=1

ai‖xi − yi‖,
d∑

i=1

ai < 1. (3.2.3)

Then one can prove that the coefficient τp,∞(n) decreases at an exponential
rate. Indeed, we have that

δ̃p,n ≤
d∑

i=1

aiδ̃p,n−i.

For two vectors x, y in R
d, we write x ≤ y if xi ≤ yi for any 1 ≤ i ≤ d. Using

this notation, we have that

(δ̃p,n, . . . , δ̃p,n−d+1)t ≤ A(δ̃p,n−1, . . . , δ̃p,n−d)t ,

with the matrix A equal to
⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

a1 a2 · · · ad−1 ad
1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 · · · 1 0

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

Iterating this inequality, we obtain that

(δ̃p,n, . . . , δ̃p,n−d+1)t ≤ An(δ̃p,0, . . . , δ̃p,1−d)t .

Since
∑d
i=1 ai < 1, the matrix A has a spectral radius strictly smaller than 1.

Hence, we obtain that there exists C > 0 and ρ in [0, 1[ such that δ̃p,n ≤ Cρn.
Consequently

θp,∞(n) ≤ τp,∞(n) ≤ Cρn .

If B = R and the condition (3.2.3) holds for p = 1, and if the distribution
function FX of X0 is such that |FX(x)−FX(y)| ≤ K|x−y|γ for some γ in ]0, 1],
then we have the upper bound

α̃k(n) ≤ β̃k(n) ≤ 2kK1/(γ+1)Cγ/(γ+1)ρnγ/(γ+1) .

If the condition (3.2.3) holds for p = ∞, then

α̃k(n) ≤ β̃k(n) ≤ φ̃k(n) ≤ kKCαργn .

We give below some examples of the general situation described in this section.
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3.2.1 Contracting Markov chain.

For simplicity, let B = R
d, and let ‖ · ‖ be a norm on R

d. Let F be a R
d valued

function and consider the recurrence equation

Xn = F (Xn−1; ξn). (3.2.4)

Assume that

Ap = E‖F (0; ξ1)‖p < ∞ and E‖F (x, ξ1) − F (y, ξ1)‖p ≤ ap‖x− y‖p, (3.2.5)

for some a < 1 and p ≥ 1. Duflo (1996) [81] proves that condition (3.2.5) implies
that the Markov chain (Xi)i∈N has a stationary law μ with finite moment of
order p. In the sequel, we suppose that μ is the distribution of X0 (i.e. the
Markov chain is stationary).
Bougerol (1993) [27] and Diaconis and Friedmann (1999) [60] provide a wide
variety of examples of stable Markov chains, see also Ango-Nzé and Doukhan
(2002) [7].

Dependence properties. Mixing properties may be derived for Markov
chains (see the previous references and Mokkadem (1990) [132]), but this prop-
erty always need an additional regularity assumption on the innovations, namely
the innovations must have some absolutely continuous component. By contrast,
no assumption on the distribution of ξ0 is necessary to obtain a geometrical de-
cay of the coefficient τp,∞(n). More precisely, arguing as in the previous section,
one has the upper bounds: if X̃0 is independent of X0 and distributed as X0,

θp,∞(n) ≤ τp,∞(n) ≤ ‖X̃0 −X0‖p an.

In the same way, if each component of X0 has a distribution function which is
Hölder, then the coefficients αk(n) and βk(n) decrease geometrically (see lemma
5.1).

Let us show now that contractive Markov chains can be represented as
Bernoulli shifts in a general situation when Xt and ζt take values in Euclidean
spaces R

d and R
D, respectively, d,D ≥ 1 with ‖·‖ denoting indifferently a norm

on R
D or on R

d. Any homogeneous Markov chain Xt may also be represented
as solution of a recurrence equation

Xn = F (Xn−1, ξn) (3.2.6)

where F (u, z) is a measurable function and (ξn)n>0 is an i.i.d. sequence inde-
pendent of X0, see e.g. Kallenberg (1997, Proposition 7.6) [111].

Proposition 3.2 (Stable Markov chains as Bernoulli shifts). The stationary
iterative models (3.2.6) are Bernoulli shifts (3.1.17) if condition (3.2.5) holds.
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Proof. We denote by μ the distribution of ζ = (ζn)n∈N on
(
R
D
)N. We de-

fine the space L
p(μ,Rd) of R

d-valued Bernoulli shifts functions H such that
H(ζ0, ζ1, . . .) ∈ L

p. We shall prove as in Doukhan and Truquet (2006) [76] that
the operator of L

p(μ,Rd) Φ : H �→ K with K(ζ0, ζ1, . . .) = M(H(ζ1, ζ2, . . .), ζ0)
satisfies the contraction principle. Then, Picard fixed point theorem will allows
to conclude.
We first mention that the condition (3.2.5) implies ‖M(x, ζ0)‖p ≤ A + a‖x‖
hence with independence of the sequence ζ this yields ‖K‖p ≤ A + a‖H‖p;
thus Φ(Lp(μ,Rd)) ⊂ L

p(μ,Rd). Now for H,H ′ ∈ L
p(μ,Rd) we also derive with

analogous arguments that ‖Φ(H) − Φ(H ′)‖p ≤ a‖H −H ′‖p. �

Remark 3.2. It is also possible to derive the Bernoulli shift representation
through a recursive iteration in the autoregressive formula.

3.2.2 Nonlinear AR(d) models

For simplicity, let B = R. Autoregressive models of order d are models such
that:

Xn = r(Xn−1, . . . , Xn−d) + ξn . (3.2.7)

In such a case, the function F is given by

F (u1, . . . , ud, ξ) = r(u1, . . . , ud) + ξ,

Assume that E|ξ1|p < ∞ and that

|r(u1, . . . , ud) − r(v1, . . . , vd)| ≤
d∑

i=1

ai|ui − vi|

for some a1, . . . , ad ≥ 0 such that a =
d∑

i=1

ai < 1. Then the condition (3.2.3)

holds, and we infer from section 3.2 that the coefficients τp,∞(n) decrease expo-
nentially fast.

3.2.3 ARCH-type processes

For simplicity, let B = R. Let

F (u, z) = A(u) +B(u)z (3.2.8)

for suitable Lipschitz functions A(u), B(u), u ∈ R. The corresponding iterative
model (3.2.6) satisfies (3.2.5) if

a = Lip (A) + ‖ξ1‖p Lip (B) < 1.
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If p = 2 and E(ξn) = 0, it is sufficient to assume that

a =
√

(Lip (A))2 + E(ξ21) (Lip (B))2 < 1.

Some examples of iterative Markov processes given by functions of type (3.2.8)
are:
• nonlinear AR(1) processes (case B ≡ 1);
• stochastic volatility models (case A ≡ 0);
• classical ARCH(1) models (case A(u) = αu, B(u) =

√
β + γu2, α, β, γ ≥ 0).

In the last example, the inequality (3.2.5) holds for p = 2 with a2 = α2 + Eξ20γ.
A general description of these models can be found in Section 3.4.2.

3.2.4 Branching type models

Here B = R and ξn is R
D-valued. Let ξn =

(
ξ
(1)
n , . . . , ξ

(D)
n

)
. Let nowA1, . . . , AD

be Lipschitz functions from R to R, and let

F
(
u,
(
z(1), . . . , z(D)

))
=

D∑

j=1

Aj(u)z(j),

for (z(1), . . . , z(D)) ∈ R
D. For such functions F , if E(ξ(i)1 ξ

(j)
1 ) = 0 for i �= j, the

relation (3.2.5) holds with p = 2 if

a2 =
D∑

j=1

(Lip (Aj))
2

E
((
ξ
(j)
0

)2)
< 1.

Some examples of this situation are

• If D = 2, and ξ(1)1 ∼ b(p̄) is a Bernoulli variable independent of a centered
variable ξ(2)1 ∈ L

2 and A1(u) = u,A2(u) = 1 then the previous relations
hold if p < 1.

• If D = 3, ξ(1)1 = 1 − ξ
(2)
1 ∼ b(p) is independent of a centered variable

ξ
(3)
1 ∈ L

2, then one obtains usual threshold models if A3 ≡ 1.
This only means that Xn = Fn(Xn−1) + ξ

(3)
n where Fn is an i.i.d. se-

quence, independent of the sequence (ξ(3)n )n≥1, and such that Fn = A1

with probability p and Fn = A2, else.
The condition (3.2.5) with p = 2 writes here

a = p (Lip (A1))
2 + (1 − p) (Lip (A2))

2 < 1.
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3.3 Dynamical systems

Let I = [0, 1], T be a map from I to I and define Xi = T i. If μ is invariant by T ,
the sequence (Xi)i≥0 of random variables from (I, μ) to I is strictly stationary.
Denote by ‖g‖1,λ the L

1-norm with respect to the Lebesgue measure λ on I and
by ‖ν‖ = |ν|(I) the total variation of ν.

Covariance inequalities. In many interesting cases, one can prove that, for
any BV function h and any k in L

1(I, μ),

|Cov(h(X0), k(Xn))| ≤ an‖k(Xn)‖1(‖h‖1,λ + ‖dh‖) , (3.3.1)

for some non increasing sequence an tending to zero as n tends to infinity. Note
that if (3.3.1) holds, then

|Cov(h(X0), k(Xn))| = |Cov(h(X0) − h(0), k(Xn))|
≤ an‖k(Xn)‖1(‖h− h(0)‖1,λ + ‖dh‖) .

Since ‖h− h(0)‖1,λ ≤ ‖dh‖, we obtain that

|Cov(h(X0), k(Xn))| ≤ 2an‖k(Xn)‖1‖dh‖ . (3.3.2)

The associated Markov chain. Define the operator L from L
1(I, λ) to

L
1(I, λ) via the equality

∫ 1

0

L(h)(x)k(x)λ(dx) =
∫ 1

0

h(x)(k ◦ T )(x)λ(dx)

where h ∈ L
1(I, λ) and k ∈ L

∞(I, λ). The operator L is called the Perron-
Frobenius operator of T . Assume that μ is absolutely continuous with respect
to the Lebesgue measure, with density fμ. Let I∗ be the support of μ (that is
(I∗)c is the largest open set in I such that μ((I∗)c) = 0) and choose a version
of fμ such that fμ > 0 on I∗ and fμ = 0 on (I∗)c. Note that one can always
choose L such that L(fμh)(x) = L(fμh)(x)1fμ(x)>0. Define a Markov kernel
associated to T by

K(h)(x) =
L(fμh)(x)
fμ(x)

1fμ(x)>0 + μ(h)1fμ(x)=0. (3.3.3)

It is easy to check (see for instance Barbour et al.(2000) [9]) that (X0, X1, . . . , Xn)
has the same distribution as (Yn, Yn−1, . . . , Y0) where (Yi)i≥0 is a stationary
Markov chain with invariant distribution μ and transition kernel K.

Spectral gap. In many interesting cases, the spectral analysis of L in the
Banach space of BV -functions equipped with the norm ‖h‖v = ‖dh‖ + ‖h‖1,λ
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can be done by using the Theorem of Ionescu-Tulcea and Marinescu (see Lasota
and Yorke (1974) [115]): assume that 1 is a simple eigenvalue of L and that the
rest of the spectrum is contained in a closed disk of radius strictly smaller than
one. Then there exists an unique T -invariant absolutely continuous probability
μ whose density fμ is BV , and

Ln(h) = λ(h)fμ + Ψn(h) (3.3.4)

with Ψ(fμ) = 0 and ‖Ψn(h)‖v ≤ Dρn‖h‖v, for some 0 ≤ ρ < 1 and D > 0.
Assume moreover that ∥

∥
∥
∥

1
fμ

1fμ>0

∥
∥
∥
∥
v

= γ < ∞. (3.3.5)

Starting from (3.3.3), we have that

Kn(h) = μ(h) +
Ψn(hfμ)

fμ
1fμ>0.

Let ‖ ·‖∞,λ be the essential sup with respect to λ. Taking C1 = 2Dγ(‖dfμ‖+1),
we obtain ‖Kn(h) − μ(h)‖∞,λ ≤ C1ρ

n‖h‖v.
This estimate implies (3.3.1) with an = C1ρ

n. Indeed,

|Cov(h(X0), k(Xn))| = |Cov(h(Yn), k(Y0))|
≤ ‖k(Y0)(E(h(Yn)|σ(Y0)) − E(h(Yn)))‖1

≤ ‖k(Y0)‖1‖Kn(h) − μ(h)‖∞,λ

≤ C1ρ
n‖k(Y0)‖1(‖dh‖ + ‖h‖1,λ) .

Moreover, we also have that

‖dKn(h)‖ = ‖dKn(h− h(0))‖ ≤ 2γ‖Ψn(fμ(h− h(0)))‖v
≤ 8Dρnγ(1 + ‖dfμ‖)‖dh‖ . (3.3.6)

Dependence properties. If (3.3.2) holds, the upper bound

φ̃(σ(Xn), X0) ≤ 2an

follows from the following lemma.

Lemma 3.4. Let (Ω,A,P) be a probability space, X a real-valued random vari-
able and M a σ-algebra of A. We have the equality

φ̃(M, X)=sup
{
|Cov(Y, h(X))|

/
Y is M-measurable, ‖Y ‖1≤1 and h∈BV1

}
.
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Proof of Lemma 3.4. Write first |Cov(Y, h(X))| = |E(Y (E(h(X)|M)−E(h(X))))|.
For any positive ε, there exists Aε in M such that P(Aε) > 0 and for any ω in
Aε,

|E(h(X)|M)(ω) − E(h(X))| > ‖E(h(X)|M) − E(h(X))‖∞ − ε.

Define the random variable

Yε :=
1Aε

P(Aε)
sign (E(h(X)|M) − E(h(X))) .

Yε is M-measurable, E|Yε| = 1 and

|Cov(Yε, h(X))| ≥ ‖E(h(X)|M) − E(h(X))‖∞ − ε .

This is true for any positive ε, we infer from Definition 2.5 that

φ̃(M, X) ≤ sup{|Cov(Y, h(X))| / Y is M-measurable, ‖Y ‖1 ≤ 1 and h ∈ BV1}.

The converse inequality follows straightforwardly from Definition 2.5. �
Now, if (3.3.4) and (3.3.5) hold, we have that: for any n ≥ il > · · · > i1 ≥ 0,

φ̃(σ(Xk, k ≥ n), Xn−i1 , . . . , Xn−il) ≤ C(l)ρi1 ,

for some positive constant C(l). This is a consequence of the following lemma
by using the upper bound (3.3.6).

Lemma 3.5. Let (Yi)i≥0 be a real-valued Markov chain with transition kernel
K. Assume that there exists a constant C such that

for any BV function f and any n > 0, ‖dKn(f)‖ ≤ C‖df‖ . (3.3.7)

Then, for any il > · · · > i1 ≥ 0,

φ̃(σ(Yk), Yk+i1 , . . . , Yk+il ) ≤ (1 + C + · · · + Cl−1)φ̃(σ(Yk), Yk+i1 ) .

Consequently, if (3.3.4) and (3.3.5) hold, the coefficients φ̃k(i) of the associated
Markov chain (Yi)i≥0 satisfy: for any k > 0,

φ̃k(i) ≤ C(k)ρi.

Proof of Lemma 3.5. We only give the proof for two points i1 = i and i2 = j,
the general case being similar. Let fk(x) = f(x) − E(f(Yk)). We have, almost
surely,

E(fk+i(Yk+i)gk+j(Yk+j)|Yk) − E(fk+i(Yk+i)gk+j(Yk+j)) =

E(fk+i(Yk+i)(Kj−i(g))k+i(Yk+i)|Yk) − E(fk+i(Yk+i)(Kj−i(g))k+i(Yk+i)).
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Let f and g be two functions in BV1. It is easy to see that

‖d((Kj−i(g))k+ifk+i)‖ ≤ ‖dfk+i‖ ‖(Kj−i(g))k+i‖∞
+ ‖d(Kj−i(g))k+i‖ ‖fk+i‖∞

≤ (1 + ‖d(Kj−i(g))k+i‖).

Hence, applying (3.3.7), the function (Kj−i(g))k+ifk+i/(1+C) belongs to BV1.
The result follows from Definition 2.5. �
Application: uniformly expanding maps. A large class of uniformly ex-
panding maps T is given in Broise (1996) [31], Section 2.1, page 11. If Broise’s
conditions are satisfied and if T is mixing in the ergodic-theoretic sense, then
the Perron-Frobenius operator L satisfies the assumption (3.3.4). Let us recall
some well know examples (see Section 2.2 in Broise):

1. T (x) = βx− [βx] for β > 1. These maps are called β-transformations.

2. I is the finite union of disjoints intervals (Ik)1≤k≤n, and T (x) = akx+ bk
on Ik, with |ak| > 1.

3. T (x) = a(x−1 − 1) − [a(x−1 − 1)] for some a > 0. For a = 1, this
transformation is known as the Gauss map.

Remark 3.3. Expanding maps with a neutral fixed point. For some
maps which are non uniformly expanding, in the sense that there exists a point
for which the right (or left) derivative of T is equal to 1, Young (1999) [194]
gives some sharp upper bounds for the covariances of Hölder functions of T n.
For instance, let us consider the maps introduced by Liverani et al. (1999) [123]:

for 0 < γ < 1, T (x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[
2x− 1 if x ∈ [1/2, 1] ,

for which there exists a unique invariant probability μ. Contrary to uniformly
expanding maps, these maps are not φ̃-dependent. For λ ∈]0, 1], let δλ(x, y) =
|x−y|λ and let θ(λ)

1 be the coefficient associated to the distance δλ (see definition
2.3). Starting from the upper bounds given by Young, one can prove that there
exist some positive constants C1(λ, γ) and C2(λ, γ) such that

C1(λ, γ)

n
γ−1

γ

≤ θ
(λ)
1 (σ(T n), T ) ≤ C2(λ, γ)

n
γ−1

γ

.

Approximating the indicator function fx(t) = 1x≤t by λ-Hölder functions for
small enough λ, one can prove that for any ε > 0, there exist some positive
constant C3(ε, γ) such that

C1(1, γ)

n
γ−1

γ

≤ α̃(σ(T n), T ) ≤ C3(ε, γ)

n
γ−1

γ −ε .
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3.4 Vector valued LARCH(∞) processes

A vast literature is devoted to the study of conditionally heteroskedastic models.
One of the best-known model is the GARCH model (Generalized Autoregressive
Conditionally Heteroskedastic) introduced by Engle (1982) [84] and Bollerslev
(1986) [23]. A usual GARCH(p, q) model can be written:

rt = σtξt, σ2
t = α0 +

p∑

i=1

βiσ
2
t−i +

q∑

j=1

αjr
2
t−j

where α0 ≥ 0, βi ≥ 0, αj ≥ 0, p ≥ 0, q ≥ 0 are the model’s parameters and
the ξt are i.i.d.
If the βi are null, we have an ARCH(q) model which can be extended in
LARCH(∞) model (see Robinson, 1991 [165], Giraitis, Kokozska and Leipus,
2000 [92]). These models are often used in finance because their properties
are close to the properties observed on empirical financial data such as volatil-
ity clustering, white noise behaviour or autocorrelation of the squares of those
series. To reproduce other properties of the empirical data, such as leverage ef-
fect, a lot of extensions of the GARCH model have been introduced: EGARCH,
TGARCH. . .
A simple equation in terms of a vector valued process allows simplifications in
the definition of various ARCH type models Let (ξt)t∈Z be an i.i.d. sequence of
random d×m-matrices, (aj)j∈N∗ be a sequence of m× d matrices, and a be a
vector in R

m. A vector valued LARCH(∞) model is a solution of the recurrence
equation

Xt = ξt

⎛

⎝a+
∞∑

j=1

ajXt−j

⎞

⎠ (3.4.1)

Some examples of LARCH(∞) models are now provided. Even if standard
LARCH(∞) models simply correspond to the case of real valued Xt and aj ,
general LARCH(∞) models include a large variety of models, such as

1. Bilinear models, precisely addressed in the forthcoming subsection 3.4.2.
They are solution of the equation:

Xt = ζt

⎛

⎝α+
∞∑

j=1

αjXt−j

⎞

⎠+ β +
∞∑

j=1

βjXt−j

where the variables are real valued and ζt is the innovation. This is easy to
see that such models take the previous form with m = 2 and d = 1: write

for this ξt =
(
ζt 1

)
, a =

(
α
β

)
and aj =

(
αj
βj

)
for j = 1, 2, . . .
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2. GARCH(p, q) models, are defined by
⎧
⎨

⎩

rt = σtεt

σ2
t =

q∑

j=1

βjσ
2
t−j + γ +

q∑

j=1

γjr
2
t−j

where α0 > 0, αj � 0, βi � 0 (and the variables ε are centered at ex-
pectation). They may be written as bilinear models: for this set α0 =
γ0/(1 −

∑
βi) and

∑
αiz

i =
∑
γiz

i/(1 −
∑
βiz

i) (see Giraitis et al.(2006)
[93]).

3. ARCH(∞) processes, given by equations,
⎧
⎨

⎩

rt = σtεt

σ2
t = β0 +

∞∑

j=1

βjε
2
t−j

They may be written as bilinear models: set ξt =
(
εt 1

)
, a=

(
κβ0

λ1β0

)
,

aj=
(
κβj
λ1βj

)
with λ1 = E(ε20), κ

2 = Var (ε20).

4. Models with vector valued innovations
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xt=ζ1
t

(

α1 +
∞∑

j=1

α1
jXt−j

)

+ μ1
t

(

β1 +
∞∑

j=1

β1
jXt−j

)

+ γ1 +
∞∑

j=1

γ1
jXt−j

Yt=ζ2
t

(

α2 +
∞∑

j=1

α2
jYt−j

)

+ μ2
t

(

β2 +
∞∑

j=1

β2
j Yt−j

)

+ γ2 +
∞∑

j=1

γ2
jYt−j

may clearly be written as LARCH(∞) models with now m = d = 2.

3.4.1 Chaotic expansion of LARCH(∞) models

We provide sufficient conditions for the following chaotic expansion

Xt = ξt

⎛

⎝a+
∞∑

k=1

∑

j1,...,jk�1

aj1ξt−j1aj2 . . . ajkξt−j1−···−jka

⎞

⎠ . (3.4.2)

For a k × l matrix M , and ‖ · ‖ a norm on R
k, let as usual

‖M‖ = sup
x∈Rl,‖x‖≤1

‖Mx‖ .

For a random matrix M we set ‖M‖pp = E(‖M‖p).
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Theorem 3.1. Assume that either
∑

j≥1

‖aj‖pE‖ξ0‖p < 1 for some p ≤ 1, or

∑

j≥1

‖aj‖ (E‖ξ0‖p)
1
p < 1 for p > 1. Then one stationary of solution of eqn.

(3.4.1) in L
p is given by (3.4.2).

In this section we set

A(x) =
∑

j≥x
‖aj‖, A = A(1), and λp = A‖ξ0‖p. (3.4.3)

Proof. We first prove that expression (3.4.2) is well defined. Set

S =
∞∑

k=1

∑

j1,...,jk≥1

‖aj1ξt−j1 · · ·ajkξt−j1−···−jk‖

Clearly

S ≤
∞∑

k=1

∑

j1,...,jk�1

‖aj1‖ · · · ‖ajk‖‖ξt−j1‖ · · · ‖ξt−j1−···−jk‖

Using that the sequence (ξn)n∈Z is i.i.d., we obtain for p ≥ 1,

‖S‖p ≤
∞∑

k=1

∑

j1,...,jk�1

‖aj1‖ · · · ‖ajk‖‖ξt−j1‖p · · · ‖ξt−j1−···−jk‖p

≤
∞∑

k=1

(‖ξ0‖pA)k .

If λp < 1, the last series is convergent and S belongs to L
p. If p < 1 we conclude

as for p = 1, using the bound

( ∞∑

k=1

‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖
)p

�
∞∑

k=1

‖aj1ξt−j1 · · · ajkξt−j1−···−jk‖p
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Now we prove that the expression (3.4.2) is a solution of eqn. (3.4.1),

Xt = ξt

(
a +

∑

k ≥ 1,
j1, . . . , jk � 1

aj1ξt−j1 · · · ajkξt−j1−···−jka
)

= ξt

⎛

⎝a +
∑

j1�1

aj1ξt−j1a +
∑

k≥2,j1�1

aj1ξt−j1

∑

j2,...,jk�1

aj2ξt−j1−j2 · · · ajkξt−j1−j2−···−jka

⎞

⎠

= ξt

(
a +

∑

j1�1

aj1ξt−j1

(
a +

∑

k ≥ 2,
j2, . . . , jk � 1

aj2ξ(t−j1)−j2 · · · ajkξ(t−j1)−j2−···−jk
a
))

= ξt

(
a +

∞∑

j=1

ajXt−j

)
. �

Theorem 3.2. Assume that p � 1 in the assumption of theorem 3.1, and
assume that ϕ =

∑
j ‖aj‖‖ξ0‖p < 1. If a stationary solution (Yt)t∈Z to equation

(3.4.1) exists (a.s.), if Yt is independent of the σ-algebra generated by {ξs; s > t},
for each t ∈ Z, then this solution is also in Lp and it is (a.s.) equal to the
previous solution (Xt)t∈Z defined by equation (3.4.2).

Proof. Step 1. We first prove that ‖Y0‖p < ∞. From the equation (3.4.1), from
the stationarity of {Yt}t∈Z and from the independence assumption, we derive
that

‖Y0‖p � ‖ξ0‖p

⎛

⎝‖a‖ +
∞∑

j=1

‖aj‖‖Y0‖p

⎞

⎠ .

Hence, the first point in the theorem follows from ‖Y0‖p � ‖ξ0‖p‖a‖
1 − ϕ

< ∞.

Step 2. As in Giraitis et al. (2000) [92] we write Yt = ξt

(
a+
∑

j�1 ajYt−j
)

=
Xm
t + Smt with

Xm
t = ξt

⎛

⎝a+
m∑

k=1

∑

j1,··· ,jk�1

aj1ξt−j1 · · · ajkξt−j1···−jka

⎞

⎠ ,

Smt = ξt

⎛

⎝
∑

j1,··· ,jm+1�1

aj1ξt−j1 · · · ajmξt−j1···−jmajm+1Yt−j1···−jm

⎞

⎠ .

We have

‖Smt ‖p � ‖ξ‖p
∑

j1,··· ,jm+1�1

‖aj1‖ · · · ‖ajm+1‖‖ξ‖mp ‖Y0‖p = ‖Y0‖pϕm+1.
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We recall the additive decomposition of the chaotic expansion Xt in equation
(3.4.2) as a finite expansion plus a negligible remainder that can be controlled
Xt = Xm

t +Rmt where

Rmt = ξt

⎛

⎝
∑

k>m

∑

j1,··· ,jk�1

aj1ξt−j1 · · ·ajkξt−j1···−jka

⎞

⎠ ,

satisfies

‖Rmt ‖p � ‖a‖‖ξ0‖p
∑

k>m

ϕk � ‖a‖‖ξ0‖p
ϕm

1 − ϕ
→ 0.

Then, the difference between those two solutions is controlled as a function of
m with Xt − Yt = Rmt − Smt , hence

‖Xt − Yt‖p � ‖Rmt ‖p + ‖Smt ‖p

� ϕm

1 − ϕ
‖a‖‖ξ0‖p + ‖Y0‖pϕm

� 2
ϕm

1 − ϕ
‖a‖‖ξ0‖p

thus, Yt = Xt a.s. �

Dependence properties. To our knowledge, there is no study of the weak
dependence properties of ARCH or GARCH type models with an infinite num-
ber of coefficients. Mixing seems difficult to prove for such models excepted in
the Markov case (aj = 0 for large enough j), because this case is included in the
Markov section for which we already mention that additional assumptions are
needed to derive mixing. This section refers to Doukhan, Teyssière and Winant
(2005) [75], who improve on the special case of bilinear models precisely con-
sidered in Doukhan, Madré and Rosenbaum (2006) [69]. We use the notations
given in (3.4.3).

Theorem 3.3. The solution (3.4.2) of eqn. (3.4.1) is θ−weakly dependent with

θ(r) ≤ 2E‖ξ0‖
(

E‖ξ0‖
t−1∑

k=1

kλk−1A

(
t

k

)
+

λt

1 − λ

)

‖a‖ for any t ≤ r.

Proof. Consider f : (Rd)u → R with ‖f‖∞ < ∞ and g : (Rd)v → R with
Lip (g) < ∞, that is |g(x) − g(y)| ≤ Lip(g)(‖x1 − y1‖ + · · · + ‖xu − yu‖). Let
i1 < · · · < iu, j1 < · · · < jv, such that j1 − iu � r. To bound weak dependence
coefficients we use an approximation of the vector v =

(
Xj1 , . . . , Xjv

)
by v̂ in
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such a way that, for each index j ∈ {j1, . . . , jk} and s ≤ r, the random variable
X̂j is independent of Xj−s. More precisely, let

X̂t = ξt

⎛

⎜
⎝a+

∞∑

k=1

∑

j1+···+jk<s
aj1ξt−j1 · · ·ajkξt−j1−···−jka

⎞

⎟
⎠ .

Now, let f(u) = f (Xi1 , . . . , Xiu) and g(v) = g (Xj1 , . . . , Xjv ). We have that

|Cov(f(u), g(v))| � |E (f(u)(g(v) − g(v̂)) − E(f(u))E(g(v) − g(v̂))|
� 2‖f‖∞E |g(v) − g(v̂)|

� 2‖f‖∞Lip (g)
v∑

k=1

E‖Xjk − X̂jk‖

� 2v‖f‖∞Lip (g)E‖X0 − X̂0‖.

Hence θ(r) ≤ 2E‖X0 − X̂0‖ for any s ≤ r, which implies the bound of the
theorem. This bound is made explicit for simple decay rates. More precisely

θ(t) �
{
Kt−b, under Riemanian decay A(x) � Cx−b

K(q ∨ λ)
√
t, under geometric decay A(x) � Cqx

Further approximations. In order to simulate and also to better understand
their behaviour, it is an important feature to see how far those models are from
simple processes. Weak dependence was proved with independent approxima-
tions

X̂t =ξt

⎛

⎝a+
∞∑

k=1

∑

j1+···+jk<s
aj1ξt−j1 · · · ajkξt−j1−···−jka

⎞

⎠

of the LARCH models; we precise this approximation through coupling argu-
ments and we also prove below proximity to the Markov sequence obtained by
truncating the series which defines them.

Coupling. The approximation X̂t of Xt has not the same distribution as Xt.
But we are in the case of causal Bernoulli shifts with independent inputs, so
that the method of Section 3.1.4 applies. Let (ξ′i)i∈Z be an independent copy of
(ξi)i∈Z, and let ξ̃n = ξn if n > 0 and ξ̃n = ξ′n for n ≤ 0. Finally, let

X̃t = ξ̃t

(
a+

∞∑

k=1

∑

j1,...,jk

aj1 ξ̃t−j1 · · ·ajk ξ̃t−j1−···−jka
)
.

Here X̃t has the same distribution as Xt and is independent of the σ-algebra
M0 = σ(Xi, i ≤ 0). Consequently, if δ̃p,n is a non increasing sequence satisfying
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(3.2.2), we obtain the upper bounds τp,∞(n) ≤ δ̃p,n. Since for any s ≤ n, we
have that ‖Xn − X̃n‖p ≤ 2‖X0 − X̂0‖p, we obtain that

τp,∞(n) ≤ inf
t≤r

2E‖ξ0‖p

(

E‖ξ0‖p
t−1∑

k=1

kλk−1
p A

(
t

k

)
+

λtp
1 − λp

)

‖a‖.

For p = 1, we recover the upper bound of Theorem 3.3. If d = 1, we obtain
the same upper bounds for α̃k(n), β̃k(n) and φ̃k(n) as in Section 3.1.4, by
assuming that the distribution function of X0 is continuous (similar bounds me
bay obtained for d > 1 by assuming that each component of X0 has a continuous
distribution function, see Lemma 5.1).

Markov approximation. Consider equation (3.4.1) truncated at rank N ,

XN
t = ξt

⎛

⎝a+
N∑

j=1

ajX
N
t−j

⎞

⎠ .

The previous solution rewrites as

XN
t = ξt

⎛

⎝a+
∞∑

k=1

∑

N�j1,...,jk�1

aj1ξt−j1 · · · ajkξt−j1−···−jka

⎞

⎠ .

The corresponding error is then bounded by

E‖Xt −XN
t ‖ �

∞∑

k=1

A(N)k.

In the Riemanian decay case, the error is
∑∞

k=1N
−bk, and in the geometric

decay case, the error is qN/(1 − qN ).

3.4.2 Bilinear models

Those models are defined through the recurrence relation

Xt = ζt

⎛

⎝α+
∞∑

j=1

αjXt−j

⎞

⎠+ β +
∞∑

j=1

βjXt−j,

the variables here are real valued and ζt now denotes the innovation. To see
that this is still a LARCH(∞) model, we set as before

ξt =
(
ζt 1

)
, a =

(
α
β

)
, and aj =

(
αj ,
βj

)
, for j ≥ 1.
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One usually takes β = 0. ARCH(∞) and GARCH(p, q) models are particular
cases of the bilinear models. Giraitis and Surgailis (2002) [95] prove that under
some restrictions, there is a unique second order stationary solution for these
models. This solution has a chaotic expansion. Assume that the power series

A(z) =
∞∑

j=1

αjz
j and B(z) =

∞∑

j=1

βjz
j exist for |z| ≤ 1, let

G(z) =
1

1 −B(z)
=

∞∑

j=1

gjz
j and H(z) =

A(z)
1 −B(z)

=
∞∑

j=1

hjz
j

we will note ‖h‖pp =
∑∞

j=0 |hj|p. Then:

Proposition 3.3 (Giraitis, Surgailis, 2002 [95]). If (ζt)t is i.i.d., and ‖h‖2 < 1,
then there is a unique second order stationary solution :

Xt = α

∞∑

k=1

∑

sk<...<s1≤t
gt−s1hs1−s2 · · ·hsk−1−sk

ζs1 · · · ζsk
(3.4.4)

Lemma 3.6. Expansion (3.4.2) coincides with the chaotic expansion in propo-
sition 3.3.

Proof. Assuming that β = 0, the expansion (3.4.2) writes as:

Xt = ζtα+
∞∑

k=1
sk<···<s1<t

∑
(ζtαt−s1 + βt−s1)×

× (ζs1αs1−s2 + βs1−s2) · · · (ζsk−1αsk−1−sk
+ βsk−1−sk

)ζsk
α

or Xt = ζtα+ S1 + S2 with

S1 =
∑

k ≥ 1
sk < · · · < s1 < t

ζtαt−s1(ζs1αs1−s2 + βs1−s2) · · · (ζsk−1αsk−1−sk
+ βsk−1−sk

)ζsk
α

S2 =
∑

k ≥ 1
sk < · · · < s1 < t

βt−s1(ζs1αs1−s2 + βs1−s2) · · · (ζsk−1αsk−1−sk
+ βsk−1−sk

)ζsk
α

Under additional assumptions Giraitis and Surgailis prove the expansion:

Xt = α

∞∑

k=1

∑

sk<···<s1�t
gt−s1hs1−s2 · · ·hsk−1−sk

ζs1 · · · ζsk
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rewritten as Xt = ζtα+ T1 + T2 with

T1 =
∞∑

k=1

∑

sk<···<s1<t
ζtht−s1ζs1hs1−s2ζs2 · · ·hsk−1−sk

ζsk
α

T2 =
∞∑

k=1

∑

sk<···<s1<t
gt−s1hs1−s2ζs1 · · ·hsk−1−sk

ζsk
α

The terms in the sum (T1) take a form:

ζt(αt−i(1)1
β
i
(1)
1 −i(1)2

· · ·β
i
(1)
p1 −s1)ζs1(αs1−i(2)1

β
i
(2)
1 −i(2)2

· · ·β
i
(2)
p2 −s2) · · ·

· · · ζsk−1 (αsk−1−i(k)
1
β
i
(k)
1 −i(k)

2
· · ·β

i
(k)
pk

−sk
)ζsk

α

hence between each couple ζsp , ζsp+1 read from the left to the right one founds
a term (αj) followed with several (βj)’s in such a way that the sum of all indices
equals sp+1 − sp.
On the one hand, quote that expanding terms in the (S1) yields a sum of prod-
ucts of such terms proves that (S1)’s is included in (T1)’s.
On the other hand, expand the term k̄ = k + p1 + · · · + pk (s̄k̄, s̄k̄−1, . . . , s̄1) =
(sk, i

(k)
pk , . . . , i

(k)
1 , sk−1, . . . , s1, i

(1)
p1 , . . . , i

(1)
2 , i

(1)
1 , t) in the sum (S1) yields the

generic term in (T1) expansion. Hence (S1) and (T1)’s expansions coincide.
Analogously (T2) = (S2), by quoting that the generic term in (T2) writes:

(β
t−i(1)1

β
i
(1)
1 −i(1)2

· · ·β
i
(1)
p1 −s1)ζs1(αs1−i(2)1

β
i
(2)
1 −i(2)2

· · ·β
i
(2)
p2 −s2) · · ·

· · · ζsk−1(αsk−1−i(k)
1
β
i
(k)
1 −i(k)

2
· · ·β

i
(k)
pk

−sk
)ζsk

α. �

Conditional densities of Bilinear models. Another more specific feature
of those models is the following result on the existence of conditional densities
(see Doukhan et al.1995 [69]). This is relevant for subsampling techniques and
density estimation. We use the fact that the bilinear equation may be written

Xt = Ãtζt + B̃t with Ãt = a+
∞∑

j=1

ajXt−j , B̃t =
∞∑

j=1

bjXt−j

Hence, conditionally to the past σ-algebra (the history of {ζs, s < t}), the
distribution of Xt is as smooth as the one of ζt if Ãt �= 0. Now if we are
interested by higher order marginal distributions we need a bit more work.
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Split Ãt and B̃t into

Ãt =
t−1∑

j=1

ajXt−j + At, At =
∞∑

j=t

ajXt−j

B̃t =
t−1∑

j=1

bjXt−j +Bt, Bt =
∞∑

j=t

bjXt−j

where At and Bt are measurable with respect to the σ algebra of the past
σ{ζs, s ≤ 0}. This entails, for instance:

X1 = Ã1ζ1 + B̃1

X2 = (a1ζ1 +A2)ζ2 + (b1ζ1 +B2).

Thus conditionally to Ã1, B̃1, A2 and B2 the previous system is triangular and it
thus may be solved if Ã1, a1ζ1 +A2 do not vanish. The following result extends
this observation:

Lemma 3.7 (Conditional densities Doukhan et al. [69]). Assume that the
random variables (ζt)t∈Z and the coefficients aj are non negative for j = 1, 2, . . ..
Also suppose that ζi are independent random variables with a density fζi for
all i ∈ {1, . . . , n}. Then, conditionally with respect to the past of the process
σ{ζs, s ≤ 0}, the random vector (X1, . . . , Xn) admits the density fn(x1, . . . , xn)
defined by:

fn(x1, . . . , xn) =
1

|α1α2 · · ·αn|
fζ1

(
β1

α1

)
· · · fζn

(
βn
αn

)

with βj = xj − b1xj−1 − b2xj−2 − · · ·− bj−1x1 −Bj and αj = a1xj−1 + a2xj−2 +
· · · + aj−1x1 +Aj for 1 ≤ j ≤ n (here α1 = A1).

Corollary 3.1 (Density). Under the same assumptions as in lemma 3.7, with
a �= 0 and (ζt)t i.i.d. with a density f bounded by M then

fn(x1, . . . , xn) ≤ (M/a)n for all (x1, . . . , xn).

Corollary 3.2 (Density of a couple). Under the same assumptions as in lemma
3.7, and if ζt are i.i.d. with density f , then gi the density of the couple (X1, Xi)
satisfies ‖gi‖∞ ≤ ‖f‖2/A1 for all i > 1.

Remark 3.4. Asymptotic properties of a standard kernel density estimate relies
on such bounds. Indeed an expression of its variance follows jointly from weak
dependence properties and such assumptions on the two dimensional
distributions.
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Proof of lemma 3.7. We work conditionally to the infinite past from X0. We
write

M

⎛

⎜
⎜
⎜
⎝

Xn

Xn−1

...
X1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Anζn +Bn
An−1ζn−1 +Bn−1

...
A1ζ1 +B1

⎞

⎟
⎟
⎟
⎠
,

where

M =

⎛

⎜
⎜
⎜
⎜
⎝

1 −a1ζn − b1 −a2ζn − b2 . . . −an−1ζn − bn−1

0 1 −a1ζn−1 − b1 . . . −an−2ζn−1 − bn−2

. . . . . . . . . . . . . . .
0 0 0 1 −a1ζ2 − b1
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠
.

This may be rewritten as,

ζ1 =
X1 −B1

A1

ζ2 =
X2 − b1X1 −B2

a1X1 +A2

...

ζn =
Xn − b1Xn−1 − b2Xn−2 − · · · − bn−1X1 −Bn
a1Xn−1 + a2Xn−2 + · · · + an−1X1 +An

where the previous coefficients At and Bt are deterministic in this conditional
setting. Thus,

Eg(X1, X2, . . . , Xn) =
∫
g
(
φ−1(u1, . . . , un)

)
fζ1(u1) · · · fζn(un)du1 · · · dun

with fζi the density of ζi and with (ζ1, . . . , ζn) = φ(X1, . . . , Xn). Here, put
(u1, . . . , un) = φ(x1, . . . , xn). The function φ has a diagonal Jacobian, hence

∂uj
∂xj

=
1
αj

for 1 ≤ j ≤ n and the result follows. �
Proof of the corollaries. The first corollary follows by integration from lemma
3.7. We prove the result for the density of the couple (X1, X4), and we can
prove the general result in the same way. With

f4(x1, x2, x3, x4) =
1

|α1 · · ·α4|
f
(β1

α1

)
· · · f

(β4

α4

)
,
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an integration with respect to x2 and x3 implies that

g4(x1, x4) =
∫
f4(x1, x2, x3, x4)dx2dx3 ≤ ‖f‖2

A1

∫
f

(
β2

α2

)
f

(
β3

α3

)
dx2 dx3

|α2α3|
.

Hence with

u =
x2 − b1x1 −B2

a1x1 +A2
, v =

x3 − b1x2 − b2x1 −B3

a1x2 + a2x1 +A3
,

we write x2 = u × (a1x1 + A2) + b1x1 + B2, x3 = v × (a1(u × (a1x1 + A2) +
b1x1 + B2) + a2x1 + A3) + b1(u × (a1x1 + A2) + b1x1 + B2) + b2x1 + B3. The
Jacobian matrix is diagonal and the absolute value of the Jacobian is equal to
|(a1x1 +A2)(a1x2 + a2x1 +A3)|, and thus

g4(x1, x4) ≤ ‖f‖2

A1

∫
f (u) f (v) dudv ≤ ‖f‖2

A1
. �

3.5 ζ-dependent models

In this section, we give some classes of ζ-dependent models: associated processes,
Gaussian processes and interacting particle systems.

3.5.1 Associated processes

An analogous formula to (1.4.1) proves that associated random variables belong
to the class of ζ-dependent models. Several associated models are obtained from
nondecreasing transformations of independent variables. For Gaussian vector,
Pitt (1982) [146] gave a necessary and sufficient condition to be associated. We
discuss Pitt’s result in the sequel.

Theorem 3.4. Let X = (X1, . . . , Xn) be a Gaussian vector with mean vector
0 and covariance matrix Σ = (σi,j = Cov(Xi, Xj))1≤i,j≤n. The condition

Cov(Xi, Xj) ≥ 0, for all i, j = 1, . . . , n (3.5.1)

is necessary and sufficient for the variables to be associated.

Proof of Theorem 3.4. The method of the proof below is due to Pitt (1982).
Assuming Condition (3.5.1), the task is to prove that

Cov(f(X), g(X)) ≥ 0,

for all nondecreasing functions f and g defined on R
n (the second implication

being trivial).
We suppose, without loss of generality, that Σ is non-singular and that the
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function f and g are continuously differentiable with bounded derivatives ∂f
∂xi

and ∂g
∂xi

, for i = 1, . . . , n. Let Z be an independent copy ofX . For any λ ∈ [0, 1],
let Y (λ) be the random vector defined by

Y (λ) = λX +
√

1 − λ2Z.

Clearly, for each fixed λ, Y (λ) is a Gaussian vector with covariance matrix Σ
and

Cov(Xi, Yj(λ)) = λσi,j .

Set
F (λ) = E (f(X)g(Y (λ))) .

Clearly
Cov(f(X), g(X)) = F (1) − F (0). (3.5.2)

It is sufficient to show that F ′(λ) exists and F ′(λ) ≥ 0 for 0 ≤ λ ≤ 1. To this
end, let φ and p be respectively the density of X and the conditional density of
Y (λ) given X = x. We have :

φ(x) =
1

√
(2π)n|Σ|

exp

⎛

⎝−1
2

n∑

i,j=1

ci,jxixj

⎞

⎠ , with Σ−1 = (ci,j)1≤i,j≤n

and

p(λ;x, y) =
1

(1 − λ2)n/2
φ

(
λx− y√
1 − λ2

)

Hence
F (λ) =

∫

Rn

φ(x)f(x)g(λ;x)dx, (3.5.3)

where g(λ;x) is defined by

g(λ;x) =
∫

Rn

p(λ;x, y)g(y)dy,

which is equal to

g(λ;x) =
∫

Rn

g(λx− y)φλ(y)dy, (3.5.4)

where

φλ(x) =
1

(1 − λ2)n/2
φ

(
x√

1 − λ2

)
.

Now Equation (3.5.4) proves that the partial derivatives ∂g(λ, x)
∂xi

exist and are
bounded. Moreover, since g is increasing and λ is positive, we have

∂g(λ, x)
∂xi

≥ 0. (3.5.5)
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Next an explicit calculation based on the heat equations

∂φ

∂σi,i
=

1
2
∂2φ

∂x2
i

,
∂φ

∂σi,j
=

∂2φ

∂xi∂xj
, for i �= j,

shows that

∂p

∂λ
=

p

1 − λ2

⎛

⎝kλ−
∑

i,j

xicij(λxj − yj) − λ

1 − λ2

∑

i,j

(λxi − yi)(λxj − yj)

⎞

⎠

= − 1
λ

⎛

⎝
∑

i,j

σi,j
∂2p

∂xi∂xj
−
∑

i

xi
∂p

∂xi

⎞

⎠ . (3.5.6)

We obtain, combining (3.5.3), (3.5.4) and (3.5.6)

F ′(λ) = − 1
λ

∫

Rn

φ(x)f(x)

⎛

⎝
∑

i,j

σi,j
∂2g(λ;x)
∂xi∂xj

−
∑

i

xi
∂g(λ;x)
∂xi

⎞

⎠ dx.

An integration by parts gives

F ′(λ) =
1
λ

∫

Rn

φ(x)

⎛

⎝
∑

i,j

σi,j
∂f(x)
∂xi

∂g(λ;x)
∂xj

⎞

⎠ dx. (3.5.7)

We have ∂f(x)
∂xi

≥ 0, since f is increasing. This fact, together with (3.5.5),
(3.5.1) and (3.5.7) proves that F ′(λ) ≥ 0, for any λ ∈ [0, 1]. This conclusion
together with (3.5.2) proves Theorem 3.4. �
Remark 3.5. Stable processes have the same linear structure as normal pro-
cesses since arbitrary linear combinations of stable variables are stable. Lee,
Rachev and Samorodnitsky (1990) [118] gave necessary and sufficient conditions
for a stable random vector to be associated.

3.5.2 Gaussian processes

Gaussian processes belong to the class of ζ-dependent models. This property is
a consequence of the following lemma.

Lemma 3.8. Denote XC = (Xi)i∈C if C ⊂ Z. Let (Xn)n∈Z be a Gaussian
centered process. Then for all real-valued functions h, k with bounded first partial
derivatives, one has

|Cov(h(XA), k(XB))| ≤
∑

i∈A,j∈B

∥
∥∥
∂h

∂xi

∥
∥∥
∞

∥
∥∥
∂k

∂xj

∥
∥∥
∞

|Cov(Xi, Xj)|. (3.5.8)
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Remark 3.6. The proof of Lemma 3.8 is along the paper of Pitt (1982) [146].
For more details, we refer the reader to the proof of Lemma 19 in Doukhan and
Louhichi (1999) [67].

3.5.3 Interacting particle systems

In this subsection, we develop an example of ζ-dependent interacting particle
systems (cf. Proposition 3.4 below). Before stating the main result of this
paragraph, we briefly recall the basic construction of general interacting particle
systems, described in sections I.3 and I.4 of Liggett’s book (1985) [122].

Let S be a countable set of sites, W a finite set of states, and X = WS the set
of configurations, endowed with its product topology, that makes it a compact
set. On each site the state evoluate as a Markov chain. But we are interested
in the case where the evolution of neighbour sites are linked. We define a Feller
process on X by specifying the local transition rates: to a configuration η and a
finite set of sites T is associated a nonnegative measure cT (η, ·) on WT . Loosely
speaking, we want the configuration to change on T after an exponential time
with parameter

cT,η =
∑

ζ∈WT

cT (η, ζ) .

After that time, the configuration becomes equal to ζ on T , with probability
cT (η, ζ)/cT,η. Let ηζ denote the new configuration, which is equal to ζ on T ,
and to η outside T . The infinitesimal generator should be:

Ωf(η) =
∑

T⊂S

∑

ζ∈WT

cT (η, ζ)(f(ηζ) − f(η)) . (3.5.9)

For Ω to generate a Feller semigroup acting on continuous functions from X
into R, some hypotheses have to be imposed on the transition rates cT (η, ·).
The first condition is that the mapping η �→ cT (η, ·) should be continuous (and
thus bounded, since X is compact). Let us denote by cT its supremum norm.

cT = sup
η∈X

cT,η.

It is the maximal rate of change of a configuration on T . One essential hypothesis
is that the maximal rate of change of a configuration at one given site is bounded.

B = sup
x∈S

∑

T� x
cT < ∞. (3.5.10)

If f is a continuous function on X , one defines Δf (x) as the degree of dependence
of f on x:

Δf (x) = sup{ |f(η) − f(ζ)| / η, ζ ∈ X and η(y) = ζ(y) ∀ y �= x } .
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Since f is continuous, Δf (x) tends to 0 as x tends to infinity, and f is said to
be smooth if Δf is summable:

|‖f |‖ =
∑

x∈ S
Δf (x) < ∞.

It can be proved that if f is smooth, then Ωf defined by (3.5.9) is indeed a
continuous function on X and moreover:

‖Ωf‖ ≤ B|‖f |‖.

We also need to control the dependence of the transition rates on the configu-
ration at other sites. If y ∈ S is a site, and T ⊂ S is a finite set of sites, one
defines

cT (y) = sup
{
‖cT (η1, · ) − cT (η2, · )‖tv

/
η1(z) = η2(z) ∀ z �= y

}
,

where ‖ · ‖tv is the total variation norm:

‖cT (η1, · ) − cT (η2, · )‖tv =
1
2

∑

ζ∈WT

|cT (η1, ζ) − cT (η2, ζ)| .

If x and y are two sites such that x �= y, the influence of y on x is defined as:

γ(x, y) =
∑

T �x
cT (y).

We will set γ(x, x) = 0 for all x. The influences γ(x, y) are assumed to be
summable:

M = sup
x∈S

∑

y∈S
γ(x, y) < ∞. (3.5.11)

Under both hypotheses (3.5.10) and (3.5.11), it can be proved that the closure
of Ω generates a Feller semigroup {St , t ≥ 0} (Theorem 3.9 p. 27 of Liggett
(1985)). A generic process with semigroup {St , t ≥ 0} will be denoted by
{ηt , t ≥ 0}. The expectations with respect to its distribution, starting from
η0 = η will be denoted by Eη. For each continuous function f , one has:

Stf(η) = Eη[f(ηt)] = E[f(ηt) | η0 = η].

We have now all the ingredients to control the covariance of f(ηs) and g(ηt) for
a finite range interacting particle system when the underlying graph structure
has bounded degree. Proposition 3.4 shows that if f and g are mainly located on
two finite sets R1 and R2, then the covariance of f and g decays exponentially
in the distance between R1 and R2.
From now on, we assume that the set of sites S is endowed with an undirected
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graph structure, and we denote by d the natural distance on the graph. We will
assume not only that the graph is locally finite, but also that the degree of each
vertex is uniformly bounded.

∀x ∈ S #{y ∈ S / d(x, y) = 1} ≤ r,

where # denotes the cardinality of a finite set. Thus the size of the sphere or
ball with center x and radius n is uniformly bounded in x, and increases at most
geometrically in n.

#{y ∈ S / d(x, y) = n} ≤ r

r − 1
(r−1)n, #{y ∈ S / d(x, y) ≤ n} ≤ r

r − 2
(r−1)n.

Let R be a finite subset of S. We shall use the following upper bounds for the
number of vertices at distance n, or at most n from R.

#{x ∈ S / d(x,R) = n} ≤ #{y ∈ S / d(x,R) ≤ n} ≤ 2enρ#R, (3.5.12)

with ρ = log(r − 1).
In the case of an amenable graph (e.g. a lattice on Z

d), the ball sizes have a
subexponential growth. Therefore, for all ε > 0, there exists c such that:

#{x ∈ S / d(x,R) = n} ≤ #{y ∈ S / d(x,R) ≤ n} ≤ c enε.

What follows is written in the general case, using (3.5.12). It applies to the
amenable case replacing ρ by ε, for any ε > 0.
We are going to deal with smooth functions, depending weakly on coordinates
away from a fixed finite set R. Indeed, it is not sufficient to consider functions
depending only on coordinates in R, because if f is such a function, then for
any t > 0, Stf may depend on all coordinates.

Definition 3.2. Let f be a function from S into R, and R be a finite subset of
S. The function f is said to be mainly located on R if there exists two constants
α and β > ρ such that α > 0, β > ρ and for all x ∈ R:

Δf (x) ≤ αe−βd(x,R). (3.5.13)

Since β > ρ, the sum
∑

xΔf (x) is finite. Therefore a function mainly located
on a finite set is necessarily smooth.
The system we are considering will be supposed to have finite range interactions
in the following sense (cf. Definition 4.17 p. 39 of Liggett (1985)).

Definition 3.3. A particle system defined by the rates cT (η, ·) is said to have
finite range interactions if there exists k > 0 such that if d(x, y) > k:

1. cT = 0 for all T containing both x and y,
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2. γ(x, y) = 0.

The first condition imposes that two coordinates cannot simultaneously change
if their distance is larger than k. The second one says that the influence of a
site on the transition rates of another site cannot be felt beyond distance k.
Under these conditions, the following covariance inequality holds.

Proposition 3.4. Assume (3.5.10) and (3.5.11). Assume moreover that the
process is of finite range. Let R1 and R2 be two finite subsets of S. Let β be a
constant such that β > ρ. Let f and g be two functions mainly located on R1

and R2, in the sense that there exist positive constants κf , κg such that,

Δf (x) ≤ κfe
−βd(x,R1) and Δg(x) ≤ κge

−βd(x,R2).

Then for all positive reals s, t,

sup
η∈X

∣
∣
∣Covη(f(ηs), g(ηt))

∣
∣
∣ ≤ Cκfκg(#R1∧#R2)eD(t+s)e−(β−ρ)d(R1,R2), (3.5.14)

where,

D = 2Me(β+ρ)k and C =
2Beβk

D

(
1 +

eρk

1 − e−β+ρ

)
.

Proof. We refer the reader to the proof of Proposition 3.3 in Doukhan et al.
(2005) [64]. �

Remark 3.7. Shashkin (2005) [176] obtains a similar inequality for random
fields indexed by Z

d. For transitive graphs, the covariance inequality stated in
Proposition 3.4 was studied by Doukhan et al. (2005) [64] in order to derive a
functional central limit theorem for interacting particle systems.

3.6 Other models

3.6.1 Random AR models

Assume here that
Xt = AtXt−1 + ξt,

where the sequence ξt ∈ R
d is still i.i.d. but now At is assumed to be a station-

ary sequence of random d × d matrices. A stationary solution of the previous
equation has the formal expansion

Xt =
∞∑

k=0

At · · ·At−kξt−k
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A first and simple case for convergence of this series is E‖A0‖p < 1 for a suitable
matrix norm, in the case where the sequence (At) is i.i.d. and that At, At−1, . . .
are independent of the inputs (ξt). For this we also assume E‖ξ0‖p < ∞ for
some p ≥ 1. This condition∗ also implies convergence of the previous series in
L
p.

For d = 1, a simple example of this situation is the bilinear model At = a+bξt−1.
If now At = ζt +

∑J
j=1 bjξt−j for a stationary sequence (ζt) independent of (ξt)

the condition

E

∣∣
∣
∣
∣
∣
ζ0 +

J∑

j=1

bjξj

∣∣
∣
∣
∣
∣

Jp

< 1

implies absolute convergence of the previous series in L
p through Hölder’s in-

equality. The previous relation holds if

‖ζ0‖pJ + ‖ξ0‖pJ
J∑

j=1

‖bj‖ < 1.

Those models are also suitable for the previous section related to Markov chains,
but a special case of this situation is provided if the sequence (At) is stationary
and independent of the sequence (ξt). In this case the assumption

∞∑

k=0

E‖AkAk−1 · · ·A0‖p < ∞

implies the convergence of the previous series in L
p if E‖ξ0‖p < ∞.

Extension of such models, solutions of the non Markov equation

Xt =
∑

j∈A
αjtXt−j + ζt, (3.6.1)

are seen in Doukhan and Truquet (2006) [76] as random fields (†) with infinitely
many interactions. If b =

∑
j∈A ‖αj0‖p < 1 the solution of equation (3.6.1)

writes a.s. and in L
p,

Xt = ζt +
∞∑

i=1

∑

j1,...,ji∈A
αj1t α

j2
t−j1 · · ·αjit−j1−···−ji−1

ζt−(j1+···+ji).

∗Existence of the model in this case also relies on the weaker assumption E log ‖A0‖ < 0;
in this case the previous series only converges a.s. and dependence conditions are not easy
to derived; for this a concentration inequality is needed and a log transformation should be
applied to the obtained coefficients.

†Innovations ζt are vectors of R
k and coefficients αj

t are k × k matrices, ‖ · ‖ is a norm of
algebra on this set of matrices and X will be an E valued random field. Let A ⊂ Z

d \ {0}, we

assume that the i.i.d. random field ξ =
(
(αj

t )i∈A, ζt

)

t∈Zd
takes now its values in (Mk×k)A×E;

here Mk×k denotes the set of k × k matrices.
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3.6.2 Integer valued models

The idea of Galton Watson models conducted Alain Latour (see [116], [117],
[65]) to the construction of integer valued extensions of the standard economet-
ric models. As they are discrete valued no mixing condition may usually be
expected from such models (see section 1.5) and this is why they fit nicely in
the weak dependent frame.

Definition 3.4 (Steutel and van Harn Operator). Let (Yj)j∈N be a sequence of
independent and identically distributed (i.i.d.) non-negative integer-valued vari-
ables with mean α and variance λ, independent of X, a non-negative integer-
valued variable. The Steutel and van Harn operator, α◦ is defined by:

α ◦X =
{ ∑X

i=1 Yi, if X �= 0,
0, otherwise.

The sequence (Yi)i∈N is called a counting sequence. Note that, as indicated in
Definition 3.4, the mean of the summands Yi associated with the operator α◦
is denoted by α. Suppose that β◦ is another Steutel and van Harn operator
based on a counting sequence (Ỹi)i∈N. The operator α◦ and β◦ are said to
be independent if, and only if, the counting sequences (Yi)i∈N and (Ỹi)i∈N are
mutually independent. One may first think to Poisson distributed variables Yi
with parameter a. The first example, Galton Watson with immigration

Xt = a ◦Xt−1 + ξt (3.6.2)

was extended in various papers by Alain Latour (see e.g. [116] or [117]) for
bilinear type extensions (see Doukhan, Latour and Oraichi, 2006 [65]).
We would like to extend the integer-valued model class to give a non-negative
integer-valued bilinear process, denoted by INBL(p, q,m, n), similar to the real-
valued bilinear process. A time series (Xt)t∈N is generated by a bilinear model,
if it satisfies the equation:

Xt = α+
p∑

i=1

aiXt−i +
q∑

j=1

cjεt−j +
m∑

k=1

n∑

�=1

b�k (εt−�Xt−k) + εt (3.6.3)

where (εt)t∈N is a sequence of i.i.d. random variables, usually but not always with
zero mean, and where α, ai, i = 1, . . . , p, cj , j = 1, . . . , q, and b�k, k = 1, . . . ,m,
� = 1, . . . , n are real constants. In (3.6.3), we can “formally” substitute Steutel
and van Harn operators to some of the parameters giving an equation of the
form

Xt =
p∑

i=1

ai ◦Xt−i +
q∑

j=1

cj ◦ εt−j +
m∑

k=1

n∑

�=1

b�k ◦ (εt−�Xt−k) + εt (3.6.4)
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where the operators ai◦, i = 1, . . . , p, cj◦, j = 1, . . . , q, and bk�◦, k = 1, . . . ,m,
� = 1, . . . , n, are mutually independent and (εt)t∈N is a sequence of i.i.d. non-
negative integer-valued random variables of finite mean μ and finite variance σ2,
independent of the operators. As in Latour et al., we restrict to the first-order
bilinear model

Xt = a ◦Xt−1 + b ◦ (εt−1Xt−1) + εt (3.6.5)

where the sequence involved in the operator a◦ and b◦ are respectively of mean
a and b and variance α and β. Y and Ỹ denote generic variables used in a◦ and
b◦, respectively. If a+ b · μ < 1 Doukhan, Latour and Oraichi (2006) [65] prove
that this model is strictly stationary in L

1; it is θ−weakly dependent with

θ(r) ≤ 2(a+ b · μ)rE(X0).

If moreover ‖Y ‖p + ‖ε0‖p‖Ỹ ‖p < 1 this solution belongs to L
p. Moment esti-

mators thus yield
√
n−consistent estimators of the parameters in the previously

cited paper. We finally mention that in the case of non negative coefficients
such models are also associated sequences.

3.6.3 Random fields

Analogously, one may define some simple stationary random fields. Let T be
any group (in an additive notation) with some metric d, then Bernoulli shifts
still write

Xt = H((ξs−t)s∈T )

for a function H : R
T → R if (ξt)t∈T is stationary, this is also the case of

(Xt)t∈T . In order to derive dependence properties of such models one better
considers i.i.d. innovations and we assume that

E
∣
∣H((ξs)s∈T ) −H((ξ(r))s∈T )

∣
∣→r→∞ 0

if we set ξ(r)t = ξt for d(s, 0) < r and ξ
(r)
t = z is a fixed point of ξ’s values set.

Another option is to use a i.i.d. sequence ξ′ = (ξ′t)t∈T independent and with
the same distribution as ξ and to set ξ(r)t = ξ′t for d(s, 0) ≥ r.
Here again linear random fields as well as Volterra random fields are simple to
define. Standard sets T are Z

d and (Z/nZ)d. It is less natural to work here with
continuous time processes because i.i.d. white noise are discontinuous processes:
they are thus less natural to define. A nice example of this situation is given in
the next subsection.

LARCH(∞) random fields

Let (ξt)t∈Zd be a stationary sequence of random d × m-matrices, (aj)j∈N∗ be
a sequence of m × d matrices, and a be a vector in R

m. A vector valued
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LARCH(∞) random field model is a solution of the recurrence equation

Xt = ξt

⎛

⎝a+
∑

j 	=0

ajXt−j

⎞

⎠ , t ∈ Z
d (3.6.6)

Such LARCH(∞) models include a large variety of models, as those in § 3.4 but
the main point is here that causality in no more assumed in general. The same
proof as in Section 3.4 entails the

Proposition 3.5 (Doukhan, Teyssière, Winant, 2006 [75]). Assume that

‖ξ0‖∞
∑

j 	=0

‖aj‖ < 1,

then one stationary of solution of eqn. (3.6.6) in L
p is given as

Xt = ξt

⎛

⎝a+
∞∑

k=1

∑

j1,...,jk 	=0

aj1ξt−j1aj2 . . . ajkξt−j1−···−jka

⎞

⎠ (3.6.7)

In the following of this section we set A(x) =
∑

‖j‖≥x ‖aj‖, A = A(1) and
λ = A‖ξ0‖∞ where ‖(j1, . . . , jk)‖ = |j1| + · · · + |jk|.

Approximations. We assume here that the random field (ξt)t∈Zd is i.i.d..
One first approximates here Xt by a random variable independent of X0. Set

X̃t = ξt

⎛

⎜
⎝a+

∞∑

k=1

∑

‖j1‖+···+‖jk‖<t
aj1ξt−j1 · · ·ajkξt−j1−···−jka

⎞

⎟
⎠

Proposition 3.6. One bound for the error is given by:

E‖Xt − X̃t‖ � E‖ξ0‖
(

E‖ξ0‖
t−1∑

k=1

kλk−1A

(
t

k

)
+

λt

1 − λ

)

‖a‖

We now specialize this result. Assume that b, C > 0 are constants, then there
exists some constant K > 0 such that

‖Xt − X̃t‖ �
{ K

tb
, under Riemaniann decay A(x) � Cx−b

K(q ∨ λ)
√
t, under geometric decay A(x) � Cqx
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Markov approximation. Consider equation (3.6.6) truncated at rank N ,
XN
t = ξt

(
a+
∑

0<‖j‖≤N ajX
N
t−j
)
. The previous solution rewrites as

XN
t = ξt

⎛

⎝a+
∞∑

k=1

∑

0<‖j1‖,...,‖jk‖≤N
aj1ξt−j1 · · ·ajkξt−j1−···−jka

⎞

⎠ .

Then E‖Xt −XN
t ‖ ≤

∑∞
k=1A(N)k. This error has rate

∑∞
k=1N

−bk for Riema-
nian decays and qN/(1 − qN ) in the geometric case. Moreover:

Theorem 3.5. The solution (3.6.7) of eqn. (3.6.6) is η−weakly dependent with

η(r) = ‖ξ0‖∞

(

‖ξ0‖∞
t−1∑

k=1

kλk−1A

(
t

k

)
+

λt

1 − λ

)

‖a‖ .

This bound may be made explicit for the decays considered previously.

Models with infinite memory

We also mention rapidly here truly non linear extensions of LARCH(∞) models
which are the chains with infinite memory from Doukhan and Wintenberger
(2006) [78] and the random fields with infinite interactions from Doukhan and
Truquet (2007) [55], those models are respectively solutions of the equations‡

Xt = F (Xt−1, Xt−2, . . . ; ξt), t ∈ Z,

Xt = F
((
Xt−j

)
j 	=0

; ξt), t ∈ Z
d,

those models are usual excited by i.i.d. inputs ξ. Even if no explicit chaotic
solution seems to be available in general, such models are well defined and L

p

stationary if

‖F (x; ξ0) − F (y; ξ0)‖m ≤
∑

j 	=0

αj‖xj − yj‖, a =
∑

j 	=0

αj < 1,

in the previous inequality§ one should take m = p both for causal random
processes and causal random fields (accurately defined in the above mentioned
work) and m = ∞ else. Moreover the weak dependence coefficients are proved
to follow analogous decays with now αi = ‖ai‖ in theorem 3.4.2. More precisely,
the respectively τ or η weak dependence coefficients have rates driven by the
relation

inf
p

(
a

r
p +

∑

|i|≥p
αi

)
.

‡Here the function F (x; u) is perhaps not defined over all R
N × R or R

Z
d × R but it is

enough that it is defined on trajectories of the solution.
§For respectively j ∈ N

∗ and j ∈ Z
d \ {0}.
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With the previous geometric decays, the bound is the same as in the paragraph
related to theorem 3.3 and for Riemanian decays

∑
i≥p ai ≤ C i−b a log loss

appears and τ1,∞(r) ≤ Klogb∨1 r · r−b.

3.6.4 Continuous time

In the continuous time setting one better consider a process with independent in-
crements, (Zt)t∈R, then a simple extension of linear processes is defined through
the Wiener integral

Xt =
∫ ∞

−∞
f(t− s)dZs

It is for example simple to define such integrals for a Brownian motion but other
possibilities are all the classes of Lévy processes. Among them, the SαS-Lévy
motion is described in Samorodnitsky and Taqqu (1994) [172].
Analogues of Volterra processes are now multiple stochastic integrals. A com-
plete theory is developed by Major (1981) [126].
More examples are provided in the monograph by Doukhan, Oppenheim and
Taqqu (2003) [72].



Chapter 4

Tools for non causal cases

Moment inequalities are the main tools when using non causal weak dependence.
A first useful section addresses the weak dependence properties of indicators of
processes, useful both for moment inequalities and for the empirical process. Af-
ter this separate sections address variances of sums, (2 + δ)-order moments and
higher order moments. They yield both Rosenthal type and Marcinkiewicz-
Zygmund inequalities. Finally cumulants sums are also considered as depen-
dence coefficients and they are used in order to derive sharp exponential in-
equalities. A last section is devoted to prove tightness criteria for empirical
processes through suitable moment inequalities.

4.1 Indicators of weakly dependent processes

Define, for positive real number x, the function gx : R → R by

gx(y) = 1x≤y − 1x≤−y.

We are interested along this chapter by (I,Ψ)-dependent sequences, where

I =
{⊗u

i=1
gxi

/
xi > 0, u ∈ N

∗
}
,

and Ψ(f, g) = c(df , dg), for some positive function c defined on N
∗ × N

∗, in this
case we will simply say that the sequence is (I, c)-dependent. Set

Λ0 =
{⊗u

i=1
fi

/
fi ∈ Λ ∩ L

∞, fi : R → R, i = 1, . . . , u, u ∈ N
∗
}
.

The following lemma relates η, κ or θ weak dependence to I weak dependence
under additional concentration assumptions.

67
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Lemma 4.1. Let (Xn)n∈N be a sequence of r.v’s. Suppose that, for some positive
real constants C,α, λ

sup
x∈R

sup
i∈N

P (x ≤ Xi ≤ x+ λ) ≤ Cλα. (4.1.1)

(i) If the sequence (Xn) is (Λ0, η)-dependent, then it is (I, c)-dependent with
ε(r) = η(r)

α
1+α and c(u, v) = 2(8C)

1
1+α (u+ v).

(ii) If the sequence (Xn) is (Λ0, κ)-dependent, then it is (I, c)-dependent with
ε(r) = κ(r)

α
2+α and c(u, v) = 2(8C)

2
2+α (u+ v)

2(1+α)
2+α .

(iii) If the sequence (Xn) is (Λ0, θ)-dependent, then it is (I, c)-dependent with
ε(r) = θ(r)

α
1+α and c(u, v) = 2(8C)

1
1+α (u+ v)

1
1+α .

(iv) If the sequence (Xn) is (Λ0, λ)-dependent (with λ(r) ≤ 1), then it is (I, c)-
dependent with c(u, v) = 2

(
(8C)

1
1+α + (8C)

2
2+α

)
(u+ v)

2(1+α)
2+α and ε(r) =

λ(r)
α

2+α .

Proof of Lemma 4.1. First recall that for all real numbers 0 ≤ xi, yi ≤ 1,
|x1 · · ·xm − y1 · · · ym| ≤

∑m
i=1 |xi − yi|. Let then g, f ∈ I, i.e.

g(y1, . . . , yu) = gx1(y1) · · · gxu(yu), and f(y1, . . . , yv) = gx′
1
(y1) · · · gx′

v
(yv)

for some u, v ∈ N
∗ and xi, x′j ≥ 0.

For fixed x > 0 and a > 0 let

fx(y) = 1y>x − 1y≤−x +
(y
a

− x

a
+ 1
)
1x−a<y<x +

(y
a

+
x

a
− 1
)
1−x<y<−x+a.

Then Lip(fx) = a−1 and ‖fx‖∞ = 1.
Define now h and k respectively by

h(y1, . . . , yu) = fx1(y1) · · · fxu(yu), k(y1, . . . , yv) = fx′
1
(y1) · · · fx′

v
(yv)

then Lip(h) ≤ a−1, Lip(k) ≤ a−1. Consider i1 ≤ · · · ≤ iu ≤ iu + r ≤ j1 ≤ · · · ≤
jv and set Cov(h, k) := Cov(h(Xi1 , . . . , Xiu), k(Xj1 , . . . , Xjv )).

(i) η-weak dependence ⇒ |Cov(h, k)| ≤ (u+ v)η(r)/a.

(ii) κ-weak dependence ⇒ |Cov(h, k)| ≤ ((u + v)/a)2 κ(r).

(iii) θ-weak dependence ⇒ |Cov(h, k)| ≤ vθ(r)/a.

Inequality (4.1.1) yields |Cov(g, f) − Cov(h, k)| ≤ 8Caα(u + v) and

(i) |Cov(g, f)| ≤ 8Caα(u+ v) + (u+ v)η(r)/a,
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(ii) |Cov(g, f)| ≤ 8Caα(u+ v) +
(
u+v
a

)2
κ(r), or

(iii) |Cov(g, f)| ≤ 8Caα(u+ v) + v
aθ(r).

The lemma follows by setting respectively

(i) a=
(
η(r)
8C

)1/(1+α)

(ii) a=
(

(u+v)κ(r)
8C

)1/(2+α)

(iii) a=
(

θ(r)
8C(u+v)

)1/(1+α)

The case of λ dependence is obtained by the summation of both cases (i) and
(ii). �

4.2 Low order moments inequalities

Our proof for central limit theorems is based on a truncation method. For a
truncation level T ≥ 1 we shall denote Xk = fT (Xk) − EfT (Xk) with fT (X) =
X ∨ (−T ) ∧ T . Let us simply remark that Xk has moments of any orders
because it is bounded. Suppose that μ = E|X |m is finite for some m > 0.
Furthermore, for any a ≤ m, we control the difference E|fT (X0) − X0|a with
Markov inequality:

E|fT (X0) −X0|a ≤ E|X0|a1{|X0|≥T} ≤ μT a−m,

thus using Jensen inequality yields

‖X0 −X0‖a ≤ 2μ
1
aT 1−m

a . (4.2.1)

Deriving from this truncation, we are now able to control the limiting variance
as well as the higher order moments.

4.2.1 Variances

Lemma 4.2 (Variances). If one of the following conditions holds then the series∑
k≥0 |Cov(X0, Xk)| is convergent

∞∑

k=0

κ(k) < ∞ (4.2.2)

∞∑

k=0

λ(k)
m−2
m−1 < ∞ (4.2.3)

Proof. Using the fact that X0 = gT (X0) is a function of X0 with Lip gT = 1,
‖gT‖∞ ≤ 2T we derive, for T large enough,

|Cov(X0, Xk)| ≤ κ(k), or ≤ (2T + 1)λ(k) ≤ 4Tλ(k) respectively (4.2.4)
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In the κ-dependent case, truncation can thus be omitted and

|Cov(X0, Xk)| ≤ κ(k) (4.2.5)

we only consider λ dependence below. Now we develop

Cov(X0, Xk) = Cov(X0, Xk) + Cov(X0 −X0, Xk) + Cov(X0, Xk −Xk)

and using a truncation T to be determined we use the two previous bounds

(4.2.1) and (4.2.4) with Hölder inequality with the exponents
1
a

+
1
m

= 1 to
derive

|Cov(X0, Xk)| ≤ 4Tλ(k) + 2‖X0‖m‖X0 −X0‖a
≤ 4Tλ(k) + 4μ1/a+1/mT 1−m/a

≤ 4(Tλ(k) + μT 2−m).

Note that we used the relation 1 −m/a = 2 −m. Thus using the truncation
such that Tm−1 = μ

λ(k) yields the bound

|Cov(X0, Xk)| ≤ 8μ
1

m−1 λ(k)
m−2
m−1 . � (4.2.6)

4.2.2 A (2 + δ)-order moment bound

Lemma 4.3. Assume that the stationary and centered process (Xi)i∈Z satisfies
E|X0|2+ζ < ∞, and it is either κ-weakly dependent with κ(r) = O (r−κ) or λ-
weakly dependent with λ(r) = O

(
r−λ
)
. Then if κ > 2 + 1

ζ , or λ > 4 + 2
ζ , then

for all δ ∈]0, A ∧B ∧ 1[ (where A and B are constants smaller than ζ and only
depending of ζ and respectively κ or λ, see 4.2.10 and 4.2.11), there exist C > 0
such that:

‖Sn‖Δ ≤ C
√
n, where Δ = 2 + δ.

Remarks.

• The constant C satisfies C >

(
5

2δ/2 − 1

)1/Δ∑

k∈Z

|Cov(X0, Xk)|. Under

the conditions of this lemma, Lemma 4.2 entails

c ≡
∑

k∈Z

|Cov(X0, Xk)| < ∞.

• The result is sketched from Bulinski and Sashkin (2005) [33]; notice, how-
ever that their condition of dependence is of a causal nature while our is
not which explains a loss with respect to the exponents λ and κ. In their
ζ−weak dependence setting the best possible value of the exponent is 1
while it is 2 for our non causal dependence.
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Proof of lemma 4.3. Analogously to Bulinski and Sashkin (2005) [33], who
sketch Ibragimov (1962) [110], we proceed by recurrence on k for n ≤ 2k to
prove the property: ∥

∥1 + |Sn|
∥
∥

Δ
≤ C

√
n. (4.2.7)

We then assume (4.2.7) for all n ≤ 2K−1. We note N = 2K and we want to
bound ‖1 + |SN | ‖Δ. We always can share the sum SN in three blocks, the
two first with the same size n ≤ 2K−1 denoted A and B, and the third V
placed between the two first and of size q < n. We then have ‖1 + |SN | ‖Δ ≤
‖1+ |A|+ |B| ‖Δ + ‖V ‖Δ. The term ‖V ‖Δ is directly bounded with ‖1+ |V | ‖Δ

and the property of recurrence, i.e. C
√
q. Writing q = N b with b < 1, then this

term is of order strictly smaller than
√
N . For ‖1 + |A| + |B| ‖Δ, we have:

E(1 + |A| + |B|)Δ ≤ E(1 + |A| + |B|)2(1 + |A| + |B|)δ,
≤ E(1 + 2|A| + 2|B| + (|A| + |B|)2)(1 + |A| + |B|)δ.

An expansion yields the terms:

• E(1 + |A| + |B|)δ ≤ 1 + |A|δ2 + |B|δ2 ≤ 1 + 2cδ(
√
n)δ,

• E|A|(1 + |A|+ |B|)δ ≤ E|A|((1 + |B|)δ + |A|δ) ≤ E|A|(1 + |B|)δ + E|A|1+δ.
The term E|A|1+δ is bounded with ‖A‖1+δ

2 and then c1+δ(
√
n)1+δ. The

term E|A|(1+ |B|)δ is bounded using Hölder ‖A‖1+δ/2‖1+ |B| ‖δΔ and then
is at least of order cCδ(

√
n)1+δ.

• We have the analogous with B instead of A.

• E(|A| + |B|)2(1 + |A| + |B|)δ. For this term, we use an inequality from
Bulinski:

E
(
(|A| + |B|)2(1 + |A| + |B|)δ

)

≤ E|A|Δ + E|B|Δ + 5(EA2(1 + |B|)δ + EB2(1 + |A|)δ).

The term E|A|Δ is bounded using (4.2.7) by CΔ(
√
n)Δ. The second term

is the analogous with B. The third is treated with particular care in the
following.

We now want to control EA2(1 + |B|)δ and the analogous with B. For this, we
introduce the weak dependence. We then have to truncate the variables. We
denote X the variable X ∨ (−T ) ∧ T for a real T that will determined later.
We then note by extension A and B the sums of the truncated variables Xi.
Remarking that |B| − |B| ≥ 0, we have:

E|A|2(1 + |B|)δ ≤ EA2(|B| − |B|)δ + E(A2 −A
2
)(1 + |B|)δ + EA

2
(1 + |B|)δ.
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We begin by control EA2(|B|−|B|)δ. Setm = 2+ζ, then using Hölder inequality
with 2/m+ 1/m′ = 1 yields:

EA2(|B| − |B|)δ ≤ ‖A‖2
m‖(|B| − ‖B|)δ‖m′

‖A‖Δ is bounded using (4.2.7) and we remark that:

(|B|−|B|)δm′ ≤ (|B|−|B|1{∀i,|Xi|≤T})δm
′ ≤ |B|δm′

1{∃i,|Xi|>T} ≤ |B|δm′
1|B|>T .

We then bound 1|B|>T ≤ (|B|/T )α with α = m− δm′. Then

E||B| − |B||δm′ ≤ E|B|mT δm′−m.

Then, by convexity and stationarity, we have E|B|m ≤ nmE|X0|m. Then:

EA2(|B| − |B|)δ � n2+m/m′
T δ−m/m

′
.

Finally, remarking that m/m′ = m− 2, we obtain:

EA2(|B| − |B|)δ � nmTΔ−m.

We obtain the same bound for the second term:

E(A2 − A
2
)(1 + |B|)δ � nmTΔ−m.

For the third term, we introduce a covariance term:

EA
2
(1 + |B|)δ ≤ Cov(A

2
, (1 + |B|)δ) + EA

2
E(1 + |B|)δ.

The last term is bounded with |A|22|B|δ2 ≤ cΔ
√
n

Δ. The covariance is controlled
by the weak-dependence notions:

• in the κ-dependent case: n2Tκ(q),

• in the λ-dependent case: n3T 2λ(q).

We then choose either the truncation Tm−δ−1 = nm−2/κ(q) or Tm−δ =
nm−3/λ(q). Now the three terms of the decomposition have the same order:

E|A|2(1 + |B|)δ �
(
n3m−2Δκ(q)m−Δ

)1/(m−δ−1)
under κ-dependence,

E|A|2(1 + |B|)δ �
(
n5m−3Δλ(q)m−Δ

)1/(m−δ)
under λ-dependence.

Set q = N b, we note that n ≤ N/2 and this term has order N
3m−2Δ+bκ(Δ−m)

m−δ−1

under κ-weak dependence and the order N
5m−3Δ+bλ(Δ−m)

m−δ under λ-weak depen-
dence. Those terms are thus negligible with respect to NΔ/2 if:

κ > 3m−2Δ−Δ/2(m−δ−1)
b(m−Δ) , under κ-dependence, (4.2.8)

λ > 5m−3Δ−Δ/2(m−δ)
b(m−Δ) , under λ-dependence. (4.2.9)
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Finally, using this assumption, b < 1 and n ≤ N/2 we derive the bound for
some suitable constants a1, a2 > 0:

E(1 + |SN |)Δ ≤
(
2−δ/2CΔ + 5 · 2−δ/2cΔ + a1N

−a2

)(√
N
)Δ

.

Using the relation linking C and c, we conclude that (4.2.7) is also true at the
step N if the constant C satisfies 2−δ/2CΔ+5·2−δ/2cΔ+a1N

−a2 ≤ CΔ. Choose

C >

(
5cΔ + a12δ/2

2δ/2 − 1

)1/Δ

with c =
∑

k∈Z

|Cov(X0, Xk)|, then the previous relation

holds.
Finally, we use eqns. (4.2.8) and (4.2.9) to find a condition on δ. In the case of
κ-weak dependence, we rewrite inequality (4.2.8) as:

0 > δ2 + δ(2κ− 3 − ζ) − κζ + 2ζ + 1.

It leads to the following condition on λ:

δ <

√
(2κ− 3 − ζ)2 + 4(κζ − 2ζ − 1) + ζ + 3 − 2κ

2
= A. (4.2.10)

We do the same in the case of the λ-weak dependence:

δ <

√
(2λ− 6 − ζ)2 + 4(λζ − 4ζ − 2) + ζ + 6 − 2λ

2
= B. (4.2.11)

Remark: those bounds are always smaller than ζ. �

4.3 Combinatorial moment inequalities

Let (Xn)n∈N be a sequence of centered r.v.s. Let Sn =
∑n
i=1Xi. In this section,

we obtain bounds for |E(Sqn)|, when q ∈ N and q ≥ 2. Our main references are
here Doukhan and Portal (1983) [73], Doukhan and Louhichi (1999) [67], and
Rio (2000) [161].

We first introduce the following coefficient of weak dependence.

Definition 4.1. Let (Xn) be a sequence of centered r.v.s. For positive inte-
ger r, we define the coefficient of weak dependence as non-decreasing sequences
(Cr,q)q≥2 such that

sup |Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq)| =: Cr,q, (4.3.1)

where the supremum is taken over all {t1, . . . , tq} such that 1 ≤ t1 ≤ · · · ≤ tq
and m, r satisfy tm+1 − tm = r.
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Below, we provide explicit bounds of Cr,q in order to obtain inequalities for mo-
ments of the partial sums Sn. We shall assume, that either there exist constants
C,M > 0 such that for any convenient q-tuple {t1, . . . , tq} as in the definition,

Cr,q ≤ CM qε(r), (4.3.2)

or, denoting by QX the quantile function of |X | (inverse of the tail function
t �→ P(|X | > t), see (2.2.14)),

Cr,q ≤ c(q)
∫ ε(r)

0

QXt1
(x) · · ·QXtq

(x)dx, (4.3.3)

The bound (4.3.2) holds mainly for bounded sequences. E.g. if ‖Xn‖∞ ≤ M
and X is (Λ ∩ L

∞,Ψ)-weak dependent, we have:

Cr,q ≤ max
1≤m<q

Ψ(j⊗m, j⊗(q−m),m, q −m)M qε(r),

where j(x) = x1|x|≤1 + 1x>1 − 1x<−1. If Ψ(h, k, u, v) = c(u, v)Lip (h)Lip (k),
the bound becomes

Cr,q ≤ max
1≤m<q

c(m, q −m)M q−2ε(r).

The bound (4.3.3) holds for more general r.v.s, using moment or tail assump-
tions. With Lemma 4.1, we derive that if the concentration property (4.1.1)
holds then the η (resp. κ) weak dependence implies (I, c)-weak dependence.

Now relation (4.3.3) follows from the following lemma.

Lemma 4.4. If the sequence (Xn)n∈N is (I, c)-weak dependent, then

|Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq)| ≤ Cq

∫ ε(r)

0

Qt1(u) · · ·Qtq(u)du,

where Cq = (maxu+v≤q c(u, v))∨ 2. The quantity Qti denotes the inverse of the
tail function t �→ P(|Xti | > t) (inverse are defined in eqn. 2.2.14)).

Proof of Lemma 4.4. Let Y + = 0 ∨ Y and Y − = 0 ∨ (−Y ),

Y + =
∫ +∞

0

1x≤Y +dx =
∫ +∞

0

1x≤Y dx, and

Y − =
∫ +∞

0

1x≤Y −dx =
∫ +∞

0

1x≤−Y dx.

The inclusion-exclusion formula entails,

Y1 · · ·Yq =
q∏

i=1

(Y +
i − Y −

i ) =
∑

(−1)q−rY +
i1

· · ·Y +
ir
Y −
ir+1

· · ·Y −
iq
,



4.3. COMBINATORIAL MOMENT INEQUALITIES 75

where
∑

denotes a summation over all the permutations {i1, . . . , iq} of
{1, . . . , q}. Using Fubini’s theorem, the preceding integral representation yields

Y1 · · ·Yq =
∑

(−1)q−r

×
∫

R
d
+

1x1≤Yi1
· · ·1xr≤Yir

1xr+1≤−Yr+1 · · ·1xq≤−Yiq
dx1 · · ·dxq

=
∫

R
d
+

q∏

i=1

(1xi≤Yi − 1xi≤−Yi)dx1 · · · dxq.

Again Fubini’s theorem yields

E(Y1 · · ·Yq) =
∫

R
d
+

E

q∏

i=1

(1xi≤Yi − 1xi≤−Yi) dx1 · · ·dxq . (4.3.4)

Now, eqn. (4.3.4) applied with Yi = Xti for i = 1, . . . , q, together with Fubini’s
theorem implies

Cov
(
Xt1 · · ·Xtm , Xtm+1 · · ·Xtq

)
=

∫

R
d
+

Cov

⎛

⎝
m∏

i=1

fi(Xti),

q∏

i=m+1

fi(Xti)

⎞

⎠ dx1 · · · dxq,

where fi(y) = 1xi≤y − 1xi≤−y. Define

B =

∣
∣
∣
∣
∣
Cov

(
m∏

i=1

fi(Xti),
q∏

i=m+1

fi(Xti)

)∣∣
∣
∣
∣
. (4.3.5)

In the sequel, we give two bounds of the quantity B. The first bound does not
use the dependence structure, only that |fi(y)| = 1xi≤|y|. Thus

B ≤ 2 inf(ΦXt1
(x1), . . . ,ΦXtq

(xq)), (4.3.6)

with ΦX(x) = P(|X | ≥ x). The second bound is deduced from the (I, c)-weak
dependence property. In fact, we have (recall that r = tm+1 − tm)

B ≤ c(u, v)ε(r). (4.3.7)

The bound (4.3.7) together with (4.3.6) yields

B ≤ Cq inf(ε(r),ΦXt1
(x1), . . . ,ΦXtq

(xq)).

Hence

|Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq)|

≤ (cq ∨ 2)
∫ +∞

0

. . .

∫ +∞

0

inf(ε(r),ΦXt1
(x1), . . . ,ΦXtq

(xq))dx1 · · · dxq .
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The proof of Theorem 1-1 in Rio (1993) [157] can be completely implemented
here. We give it for completeness. Let U be an uniform-[0,1] r.v, then

ε(r) ∧ min
1≤j≤q

ΦXtj
(xj) = P(U ≤ ε(r), U ≤ ΦXt1

(x1), . . . , U ≤ ΦXtq
(xq))

= P(U ≤ ε(r), x1 ≤ QXt1
(U), . . . , xq ≤ QXtq

(U)).

We obtain, collecting the above results

|Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq)| ≤ CqEQXt1
(U) · · ·QXtq

(U)1U≤ε(r).

The lemma is thus proved. �
In order to make possible to use such bounds it will be convenient to express
bounds of the quantities

sa,b,N =
N∑

r=0

(r + 1)a
∫ ε(r)

0

Qb(s)ds (4.3.8)

under conditions of summability of the series ε, for suitable constants a ≥ 0 and
N, b > 0 and a tail function Q of a random variable X such that E|X |b+δ < ∞
for some δ > 0. Set for convenience Ar =

∑r
i=0(i + 1)a for r ≥ 0 and = 0 for

r < 0, and Br =
∫ ε(r)
0 Qb(s)ds for r ≥ 0 (= 0 for r < 0), then expression sa,b,N

rewrites as follows; Abel transform with Hölder inequality for the conjugate
exponents p = 1 + b/δ and q = 1 + δ/b implies the succession of inequalities

sa,b,N =
N∑

r=0

(Ar −Ar−1)Br

=
N−1∑

r=0

Ar(Br −Br+1) +ANBN

=
∫ 1

0

(
N−1∑

r=0

Ar1]ε(r+1),ε(r)](s) +AN1[0,ε(N)](s)

)

Qb(s)ds

≤
(∫ 1

0

(N−1∑

r=0

Apr1]ε(r+1),ε(r)](s)+A
p
N1[0,ε(N)](s)

)
ds
)1/p(∫ 1

0

Qbq(s)ds
)1/q

≤
(N−1∑

r=0

Apr(ε(r) − ε(r + 1)) +ApN ε(N)
)1/p(

E|X |bq
)1/q

Hence

sa,b,N ≤
(

N∑

r=0

(Apr −Apr−1)ε(r)

)1/p
(
E|X |b+δ

)b/(b+δ)
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Now we note that ra+1/(a+ 1) ≤ Ar ≤ (r + 1)a+1/(a+ 1) so that

Apr−A
p
r−1 ≤ ((r+1)p(a+1)−(r−1)p(a+1))/(a+1)p ≤ 2p(r+1)p(a+1)−1/(a+1)p−1

hence, setting c = (2p)1/p(a+ 1)1/p−1,

sa,b,N ≤ c

(
N∑

r=0

(r + 1)a+(a+1)b/δε(r)

)δ/(b+δ)

‖X‖bb+δ.

We summarize this in the following lemma.

Lemma 4.5. Let a > 0, b ≥ 0 be arbitrary then there exists a constant c = c(a, b)
such that for any real random valued variable X with quantile function QX , we
have for any N > 0

N∑

r=0

(r + 1)a
∫ ε(r)

0

QbX(s)ds ≤ c
( N∑

r=0

(r + 1)a+(a+1)b/δε(r)
)δ/(b+δ)

‖X‖bb+δ.

4.3.1 Marcinkiewicz-Zygmund type inequalities

Our first result is the following Marcinkiewicz-Zygmund inequality.

Theorem 4.1. Let (Xn)n∈N be a sequence of centered r.v.s fulfilling for some
fixed q ∈ N, q ≥ 2

Cr,q = O(r−q/2), as r → ∞. (4.3.9)

Then there exists a positive constant B not depending on n for which

|E(Sqn)| ≤ Bnq/2. (4.3.10)

Proof of Theorem 4.1. For any integer q ≥ 2, let

Aq(n) =
∑

1≤t1≤···≤tq≤n
|E
(
Xt1 · · ·Xtq

)
|. (4.3.11)

Clearly,
|E(Sqn)| ≤ q!Aq(n). (4.3.12)

Hence, in order to bound |E(Sqn)|, it remains to bound Aq(n). For this, we argue
as in Doukhan and Portal (1983) [73]. Clearly

Aq(n) ≤
∑

1≤t1≤···≤tq≤n
|E(Xt1 · · ·Xtm)E(Xtm+1 · · ·Xtq)|

+
∑

1≤t1≤···≤tq≤n
|Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq)|.
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The first term on the right hand of the last inequality is bounded by:

∑

1≤t1≤···≤tq≤n
|E(Xt1 · · ·Xtm)E(Xtm+1 · · ·Xtq)| ≤

q−1∑

m=1

Am(n)Aq−m(n).

Hence

Aq(n) ≤
q−1∑

m=1

Am(n)Aq−m(n) + Vq(n). (4.3.13)

with

Vq(n) =
∑

(t1,··· ,tq)∈Gr

|Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq)|, (4.3.14)

where Gr is the set of {t1, . . . , tq} fulfilling 1 ≤ t1 ≤ · · · ≤ tq ≤ n with r =
tm+1 − tm = max1≤i<q(ti+1 − ti).
Our task now is to bound the expression Vq(n) defined by (4.3.14). Clearly

Vq(n) ≤
n∑

t1=1

∗∑
|Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq)|,

where
∑∗ denotes a sum over such a collection 1 ≤ t1 ≤ · · · ≤ tq ≤ n with fixed

t1, and r = tm+1 − tm = max1≤i≤q−1(ti+1 − ti) ∈ [0, n− 1]. Again

∗∑
|Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq )| ≤

n−1∑

r=0

∗∗∑
|Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq )|.

where
∗∗∑

denotes the (q − 2)-dimensional sums each over

{(t1, . . . , tq) / ti−1 ≤ ti ≤ ti−1 + r, i �= 1,m+ 1 }.

Hence
∗∗∑

1 = (r + 1)q−2, with |Cov(Xt1 · · ·Xtm , Xtm+1 · · ·Xtq)| ≤ Cr,q, we
deduce that

Vq(n) ≤
n∑

t1=1

n−1∑

r=0

(r + 1)q−2Cr,q. (4.3.15)

We obtain, collecting inequalities (4.3.13) and (4.3.15),

Aq(n) ≤
q−1∑

m=1

Am(n)Aq−m(n) + n

n−1∑

r=0

(r + 1)q−2Cr,q. (4.3.16)

By induction on q, and using the last inequality together with condition (4.3.9),
it is easy to check that Aq(n) ≤ Kqn

q/2. Theorem 4.1 follows from (4.3.12). �
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4.3.2 Rosenthal type inequalities

The following lemma, which is a variant of Lemma 1 page 195 in Billingsley
(1968) [20], gives moment inequalities of order q ∈ {2, 4}.

Lemma 4.6. If (Xn)n∈N is a sequence of centered r.v.s, then

E(S2
n) ≤ 2n

n−1∑

r=0

Cr,2, E(S4
n) ≤ 4!

⎧
⎨

⎩

(

n

n−1∑

r=0

Cr,2

)2

+ n

n−1∑

r=0

(r + 1)2Cr,4

⎫
⎬

⎭
.

(4.3.17)

Proof of Lemma 4.6. We take respectively q = 2 and q = 4 in the rela-
tion (4.3.16). The obtained formulas, together with (4.3.12) and the fact that
A1(n) = 0 for any positive integer n, prove Lemma 4.6. �

The following theorem deals with higher order moments.

Theorem 4.2. Let q be some fixed integer not less than 2. Assume that the
dependence coefficients Cr,p associated to the sequence (Xn) satisfy, for every
nonnegative integer p, p ≤ q, and for some positive constants C and M ,

Cr,p ≤ CMpε(r). (4.3.18)

Then, for any integer n ≥ 2

|E(Sqn)| ≤ (2q − 2)!
(q − 1)!

M q

⎧
⎨

⎩

(

Cn

n−1∑

r=0

ε(r)

)q/2

∨
(

Cn

n−1∑

r=0

(r + 1)q−2ε(r)

)⎫⎬

⎭
.

(4.3.19)

Proof of Theorem 4.2. The relation (4.3.16) together with Condition (4.3.18)
gives,

Aq(n) ≤
q−1∑

m=1

Am(n)Aq−m(n) + CM qn

n−1∑

r=0

(r + 1)q−2ε(r). (4.3.20)

In order to solve the above inductive relation, we need the following lemma.

Lemma 4.7. Let (Uq)q>0 and (Vq)q>0 be two sequences of positive real numbers
satisfying for some γ ≥ 0, and for all q ∈ N

∗

Uq ≤
q−1∑

m=1

UmUq−m +M qVq, (4.3.21)
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with U1 = 0 ≤ V1. Suppose that for every integers m, q fulfilling 2 ≤ m ≤ q− 1,
there holds

(V m/22 ∨ Vm)(V (q−m)/2
2 ∨ Vq−m) ≤ (V q/22 ∨ Vq). (4.3.22)

Then, for any integer q ≥ 2

Uq ≤ M q

q

(
2q − 2
q − 1

)
(V q/22 ∨ Vq). (4.3.23)

Remark 4.1. Note that a sufficient condition for (4.3.22) to hold is that for all
p, q such that 2 ≤ p ≤ q − 1

V q−2
p ≤ V p−2

q V q−p2 (4.3.24)

Proof of Lemma 4.7. Let (Uq)q>0 and (Vq)q>0 be two sequences of positive real
numbers as defined by Lemma 4.7. We deduce from (4.3.21) and (4.3.22), that
the sequence (Ũq), defined by Ũq = Uq/M

q(V q/22 ∨ Vq) satisfies the relation,

Ũq ≤
q−1∑

m=1

ŨmŨq−m + 1, Ũ1 = 0.

In order to prove (4.3.23), it suffices to show that, for any integer q ≥ 2,

Ũq ≤ dq :=
1
q

(
2q − 2
q − 1

)
, (4.3.25)

where dq is called the q-th number of Catalan. The proof of the last bound is
done by induction on q. Clearly (4.3.25) is true for q = 2. Suppose now that
(4.3.25) is true for every integer m less than q − 1. The inductive hypothesis
yields with Ũ1 = 0:

Ũq ≤
q−2∑

m=2

dmdq−m + 1. (4.3.26)

The last inequality, together with the identity dq =
∑q−1
m=1 dmdq−m (cf. Comtet

(1970) [39], page 64), implies Ũq ≤ dq, proving (4.3.25) and thus Lemma 4.7. �
We continue the proof of Theorem 4.2. We deduce from (4.3.20) that the se-
quence (Aq(n))q satisfies (4.3.21) with

Vq := Vq(n) = CM q−2n

n−1∑

r=0

(r + 1)q−2ε(r).

Hence, to prove Theorem 4.2, it suffices to check condition (4.3.22).

(V m/22 ∨ Vm)(V (q−m)/2
2 ∨ Vq−m) ≤ V

q/2
2 ∨ Vm/22 Vq−m ∨ VmV (q−m)/2

2 ∨ VmVq−m.
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To control each of these terms, we use three inequalities. Let p be a positive
integer, 2 ≤ p ≤ q − 1. We deduce from,

n−1∑

r=0

(r + 1)p−2ε(r) ≤
(
n−1∑

r=0

ε(r)

) q−p
q−2
(
n−1∑

r=0

(r + 1)q−2ε(r)

) p−2
q−2

,

that, for 2 ≤ p ≤ q − 1,

Vp ≤ V
p−2
q−2
q V

q−p
q−2

2 . (4.3.27)

Define the discrete r.v. Z by P(Z = r + 1) = ε(r)/
∑n−1

i=0 εi. Jensen inequality
implies ‖Z‖p−2 ≤ ‖Z‖q−2 if 1 ≤ p− 2 ≤ q − 2 so that

Vp ≤ V
p−2
q−2
q . (4.3.28)

For 0 < α < 1,
V
α q

2
2 V 1−α

q ≤ V
q/2
2 ∨ Vq . (4.3.29)

Using (4.3.28), we get

VmV
(q−m)/2
2 ≤ V

(q−m)q
2(q−2)

2 V
m−2
q−2
q

V
m/2
2 Vq−m ≤ V

mq
2(q−2)

2 V
q−m−2

q−2
q

From (4.3.27) we obtain

VmVq−m ≤ V
q

q−2
2 V

q−4
q−2
q

Now (4.3.29) implies that these three bounds are less than V q/22 ∨ Vq. �
Theorem 4.3. If (Xn)n∈N is a centered and (I, c)-weak dependent sequence,
then

|E(Sqn)| ≤ (2q − 2)!
(q − 1)!

{

Cq

n∑

i=1

∫ 1

0

(
ε−1(u) ∧ n

)q−1
Qqi (u)du

∨
(

C2

n∑

i=1

∫ 1

0

(
ε−1(u) ∧ n

)
Q2
i (u)du

)q/2⎫⎬

⎭
,

where ε−1(u) is the generalized inverse of ε[u] (see eqn. (2.2.14)).

Proof of Theorem 4.3. We begin from relation (4.3.16), and we try to evaluate
the coefficient of dependence Cr,q for (I, ψ)-weak dependent sequences. For
this, we need the forthcoming lemma.

Lemma 4.8. If the sequence (Xn)n∈N is (I, c)-weak dependent, then

Vq(n) ≤ Cq

n∑

i=1

∫ 1

0

(
ε−1(u) ∧ n

)q−1
Qqi (u)du.
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Proof of Lemma 4.8. We use Lemma 4.4. Arguing exactly as in Rio (1993)
[157], we obtain

Vq(n) ≤ Cq

n−1∑

r=0

∑

(i1,...,iq)∈Gr

∫ ε(r)

0

Qi1(u) · · ·Qiq(u)du

≤ Cq
q

n−1∑

r=0

∑

(i1,...,iq)∈Gr

∫ ε(r)

0

q∑

j=1

Qqij (u)du

≤ Cq
q

n−1∑

r=0

∑

(i1,...,iq)∈⋃k≤r Gk

∫ ε(r)

ε(r+1)

Qqij (u)du

Now fixing ij and noting that the number of completing (i1, . . . , ij−1, ij+1, . . . , iq)
to get an sequence in

⋃
k≤r Gk is less than (r + 1)q−1:

n−1∑

r=0

∑

(i1,...,iq)∈∪k≤rGk

∫ ε(r)

ε(r+1)

Qqij (u)du ≤
n∑

ij=0

n−1∑

r=0

∫ ε(r)

ε(r+1)

(r + 1)q−1Qqij (u)du

≤
n∑

i=0

∫ 1

0

(ε−1(u) ∧ n)q−1Qqi (u)du

Lemma 4.8 is now completely proved. �

We continue the proof of Theorem 4.3. We deduce from Lemma 4.8 and In-
equality (4.3.16), that the sequence (Aq(n))q fulfills relation (4.3.21). So, as in
the proof of Theorem 4.2, Theorem 4.3 is proved, if we prove that the sequence
Ṽp(n) := (cp ∨ 2)

∑n
i=1

∫ 1

0

(
ε−1(u) ∧ n

)p−1
Qpi (u)du satisfies (4.3.22). We have,

∫ 1

0

(
ε−1(u) ∧ n

)p−1
Qpi (u)du

≤
(∫ 1

0

(
ε−1(u) ∧ n

)
Q2
i (u)du

) q−p
q−2
(∫ 1

0

(
ε−1(u) ∧ n

)q−2
Qqi (u)du

) p−2
q−2

.

The last bound proves that the sequence (Ṽp(n))p fulfills the convexity inequality
(4.3.27), which in turns implies (4.3.22). �

4.3.3 A first exponential inequality

For any positive integers n and q ≥ 2, we consider the following assumption,

Mq,n = n
n−1∑

r=0

(r + 1)q−2Cr,q ≤ An
q!
βq

(4.3.30)
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where β is some positive constant and An is a sequence independent of q.
As a consequence of Theorem 4.2, we obtain an exponential inequality.

Corollary 4.1. Suppose that (4.3.18) and (4.3.30) hold for some sequence An ≥
1 for any n ≥ 2. Then for any positive real number x

P

(
|Sn| ≥ x

√
An

)
≤ A exp

(
−B
√
βx
)
, (4.3.31)

for universal positive constants A and B.

Remark 4.2.

• One may choose the explicit values A = e4+1/12
√

8π, and B = e5/2.

• Let us note that condition (4.3.30) holds if Cr,q ≤ CM qe−br for positive
constants C,M, b. In such a case An is of order n. E.g. this holds if
‖Xn‖∞ ≤ M and ‖Xn‖2 ≤ σ under (Λ ∩ L

∞,Ψ)-weak dependence if
ε(r) = O(e−br) and Ψ(h, k, u, v) ≤ eδ(u+v)Lip (h)Lip (k) for some δ ≥ 0.
For this, either compare the series

∑
r(r+1)q−2e−ar with integrals or with

derivatives of the function t �→ 1/(1 − t) =
∑
i t
i at point t = e−a.

• The use of combinatorics in those inequalities makes them relatively weak.
E.g. Bernstein inequality, valid for independent sequences allows to replace
the term

√
x in the previous inequality by x2 under the same assumption

nσ2 ≥ 1; in the mixing cases analogue inequalities are also obtained by
using coupling arguments (not available here), e.g. the case of absolute
regularity is studied in Doukhan (1994) [61].

Proof of Corollary 4.1. Theorem 4.2 written with q = 2p yields

E(S2p
n ) ≤ (2p)!

2p

(
4p− 2
2p− 1

)
(M2p,n ∨Mp

2,n). (4.3.32)

Hence inequality (4.3.32) together with condition (4.3.30) implies

E(S2p
n ) ≤ (4p− 2)!

(2p− 1)!

((
2An
β2

)p
∨An

(2p)!
β2p

)

≤ (4p− 2)!
(2p− 1)!

(An ∨Apn)
(2p)!
β2p

≤ (An ∨Apn)
(4p)!
β2p

.

From Stirling formula and from the fact that An ≥ 1 we obtain

P(|Sn| ≥ x) ≤ E(S2p
n )

x2p
≤ Apn
x2pβ2p

e1/12−4p
√

8πp(4p)4p

≤ e1/12
√

8π
(

16
xβ
e−7/4p2

√
An

)2p

.
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Now setting h(y) = (Cny)4y with C2
n = 16

xβ e
−7/4

√
An, one obtains

P(|Sn| ≥ x) ≤ e1/12
√

8πh(p).

Define the convex function g(y) = log h(y). Clearly

inf
y∈R+

g(y) = g

(
1
eCn

)
.

Suppose that eCn ≤ 1 and let p0 =
[

1
eCn

]
, then

P(|Sn| ≥ x) ≤ e1/12
√

8πh(p0) ≤ e4+1/12
√

8π exp(
−4
eCn

).

Suppose now that eCn ≥ 1, then 1 ≤ e4+1/12
√

8π exp( −4
eCn

).

In both cases, inequality (4.3.31) holds and Corollary 4.1 is proved. �

Remark. More accurate applications of those inequalities are proposed in
Louhichi (2003) [125] and Doukhan & Louhichi (1999) [67]. In particular in
Section 3 of [67] conditions for (4.3.18) are checked, providing several other
bounds for the coefficients Cr,q.

4.4 Cumulants

The main objective of this section is to reinterpret the cumulants which classi-
cally used expressions to measure the dependence properties of a sequence.

4.4.1 General properties of cumulants

Let Y = (Y1, . . . , Yk) ∈ R
k be a random vector, setting φY (t) = Eeit·Y =

E exp
(
i
∑k
j=1 tjYj

)
for t = (t1, . . . , tk) ∈ R

k, we write mp(Y ) = EY p11 · · ·Y pk

k

for p = (p1, . . . , pk) if E(|Y1|s + · · · + |Y1|s) < ∞ and |p| = p1 + · · · + pk = s.
Finally if the previous moment condition holds for some r ∈ N

∗, then the
function logφY (t) has a Taylor expansion

log φY (t) =
∑

|p|≤r

i|p|

p!
κp(Y )tp + o(|t|r), as t → 0

for some coefficients κp(Y ) called the cumulant of Y of order p ∈ R
k if |p| ≤ s

where we set p! = p1! · · · pk!, tp = tp11 · · · tpk

k if t = (t1, . . . , tk) ∈ R
k and p =

(p1, . . . , pk).



4.4. CUMULANTS 85

In the case p = (1, . . . , 1), to which the others may be reduced, we denote
κ(1,...,1)(Y ) = κ(Y ). Moreover, if μ = {i1, . . . , iu} ⊂ {1, . . . , k}

κμ(Y ) = κ(Yi1 , . . . , Yiu), mμ(Y ) = m(Yi1 , . . . , Yiu).

Leonov and Shyraev (1959) [119] (see also Rosenblatt, 1985, pages 33-34 [168])
obtained the following expressions

κ(Y ) =
k∑

u=1

(−1)u−1(u− 1)!
∑

μ1,...,μu

u∏

j=1

mμj (Y ) (4.4.1)

m(Y ) =
k∑

u=1

∑

μ1,...,μu

u∏

j=1

κμj (Y ) (4.4.2)

The previous sums are considered for all partitions μ1, . . . , μu of the set {1, . . . , k}.

We now recall some notions from Saulis and Statulevicius (1991) [173]. For this
we reformulate their notations.

Definition 4.2. Centered moments of a random vector Y = (Y1, . . . , Yk) are
defined by setting

�

E (Y1, . . . , Yl) = EY1c(Y2, . . . , Yl) where the centered random

variables c(Y2, . . . , Yl) are defined recursively, by setting c(ξ1) =
︷︸︸︷
ξ = ξ1−Eξ1,

c(ξj , ξj−1, . . . , ξ1) = ξj
︷ ︸︸ ︷
c(ξj−1, . . . , ξ1) = ξj (c(ξj−1, . . . , ξ1) − Ec(ξj−1, . . . , ξ1))

We also write Yμ = (Yj/j ∈ μ) as a p−tuple if μ ⊂ {1, . . . , k}.

Quote for comprehension that
�

E (ξ) = 0,
�

E (η, ξ) = Cov(η, ξ) and,
�

E (ζ, η, ξ) = E(ζηξ) − E(ζ)E(ηξ) − E(η)E(ζξ) − E(ξ)E(ζη).

A remarkable result from Saulis and Statulevicius (1991) will be informative

Theorem 4.4 (Saulis, Statulevicius, 1991 [173]).

κ(Y1, . . . , Yk) =
k∑

u=1

(−1)u−1
∑

μ1,...,μu

Nu(μ1, . . . , μu)
u∏

j=1

�

E Yμj

where sums are considered for all partitions μ1, . . . , μu of the set {1, . . . , k} and
the integers Nu(μ1, . . . , μu) ∈

[
0, (u− 1)! ∧

[
k
2

]
!
]
, defined for any such partition,

satisfy the relations

• N(k, u) =
∑

μ1,...,μu

Nu(μ1, . . . , μu) =
u−1∑

j=1

Cjk(u− j)k−1,
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•
k∑

u=1

N(k, u) = (k − 1)!

Using this representation the following bound will be useful

Lemma 4.9. Let Y1, . . . , Yk ∈ R be centered random variables. For k ≥ 1, we
set Mk = (k − 1)!2k−1 max1≤i≤k E|Yi|k, then

|κ(Y1, . . . , Yk)| ≤ Mk, (4.4.3)
MkMl ≤ Mk+l, if k, l ≥ 2. (4.4.4)

Mention that a consequence of this lemma will be used in the following:

u∏

i=1

|κp(Y1, . . . , Ypu)| ≤ Mp1+···+pu (4.4.5)

We shall use this inequality for components Yi = X
(ai)
ki

of a stationary sequence

of R
D−valued random variable hence maxi≥1 E|Yi|p ≤ max1≤j≤D E|X(j)

0 |p and
we may set

Mp = (p− 1)!2p−1 max
1≤j≤D

E|X(j)
0 |p. (4.4.6)

Proof of lemma 4.9. The second point in this lemma follows from the elementary
inequality a! b! ≤ (a+ b)! and the first one is a consequence of theorem 4.4 and
of the following lemma

Lemma 4.10. For any j, p ≥ 1 and any real random variables ξ0, ξ1, ξ2, . . . with
identical distribution,

‖c(ξj , ξj−1, . . . , ξ1)‖p ≤ 2j max
1≤i≤j

‖ξi‖jpj , with ‖ξ‖q = E
1/q|ξ|q.

Proof of lemma 4.10. For simplicity we shall omit suprema replacing
maxi≤j ‖ξi‖p by ‖ξ1‖p. First of all, Hölder inequality implies

‖c(ξ1)‖p ≤ ‖ξ1‖p + |Eξ1| ≤ 2‖ξ1‖p,

We now use recursion; setting Zj = c(ξj , ξj−1, . . . , ξ1) yields Zj = ξj(Zj−1 −
EZj−1) hence Minkowski and Hölder inequalities entail

‖Zj‖p ≤ ‖ξjZj−1‖p + ‖ξ0‖p|EZj−1|
≤ ‖ξ0‖pj‖Zj−1‖q + ‖ξ0‖pj‖Zj−1‖p
≤ 2j‖ξ0‖pl‖ξ0‖j−1

q(j−1)
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where
1
q

+
1
p · l = 1; from p ≥ 1 we infer q(j − 1) ≤ pj to conclude. �

Proof of lemma 4.9. Here again, we omit suprema and we replace maxj≤J ‖Yj‖p
by ‖Y0‖p. With lemma 4.10 we deduce that |

�

E Yμ| ≤ 2l−1‖Y0‖ll with l = #μ.
Indeed, write Z = c(Y2, . . . , Yl), then with 1

q + 1
l = 1 we get

∣
∣
∣
�

E (Y1, . . . , Yl)
∣
∣
∣ = |EY1Z| ≤ ‖Y0‖l‖Z‖q ≤ 2l−1‖Y0‖ll

since q(l − 1) = l. Hence theorem 4.4 implies,

|κ(Y )| ≤
k∑

u=1

∑

μ1,...,μu

Nu(μ1, . . . , μu)
u∏

i=1

2#μi−1‖Y0‖#μi

#μi

≤
k∑

u=1

2k−uN(k, u)‖Y0‖kk

≤ 2k−1‖Y0‖kk
k∑

u=1

N(k, u)

= 2k−1(k − 1)!‖Y0‖kk. �

The following lemmas are essentially proved in Doukhan & León (1989) [66] for
real valued sequences (Xn)n∈Z. Let now (Xn)n∈Z denote a vector valued and
stationary sequence (with values in R

D), we define∗, extending Doukhan and
Louhichi (1999)’s coefficients,

cX,q(r) = sup
1 ≤ l < q

1 ≤ a1, . . . , aq ≤ D
t1 ≤ · · · ≤ tq
tl+1 − tl ≥ r

∣
∣∣Cov

(
X

(a1)
t1 · · ·X(al)

tl
, X

(al+1)
tl+1

· · ·X(aq)
tq

)∣∣∣ (4.4.7)

We also define the following decreasing coefficients, for further convenience,

c�X,q(r) = max
1≤l≤q

cX,l(r)μq−l, with μt = max
1≤d≤D

E|X0|t. (4.4.8)

In order to state the following results we set, for 1 ≤ a1, . . . , aq ≤ D,

κ(q)(a1,...,aq)(t2, . . . , tq) = κ(1,...,1)(X
(al)
0 , X

(a2)
t2 , . . . , X

(aq)
tq )

The following decomposition lemma will be very useful. It explain how cu-
mulants behave naturally as covariances. Precisely, it proves that a cumulant

∗For D = 1 this coefficient was already defined in definition 4.1 as Cr,q but the present
notation recalls also the underlying process.
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κQ(Xk1 , . . . , XkQ) is small if kl+1 − kl is large, k1 ≤ · · · ≤ kQ, and the process
is weakly dependent. This is a natural extension of one essential property of
the cumulants which states that such a cumulant vanishes if the index set can
be partitioned into two strict subsets such that the vector random variables
determined this way are independent.

Definition 4.3. Let t = (t1, . . . , tp) be any p−tuple in Z
p such that t1 ≤ · · · ≤

tp, we denote r(t) = max1≤l<p(tl+1 − tl), the maximal lag within the succession
(t1, . . . , tp).
We now introduce another dependence coefficient

κp(r) = max
t1 ≤ · · · ≤ tp

r(t1, . . . , tp) ≥ r

max
1≤a1,...,ap≤D

∣
∣
∣κp
(
X

(a1)
t1 , . . . , X

(ap)
tp

)∣∣
∣ (4.4.9)

Lemma 4.11. Let (Xn)n∈Z be a stationary process, centered at expectation
with finite moments of any order. Then if Q ≥ 2 we have, using the notation
in lemma 4.9,

κX,Q(r) ≤ cX,Q(r) +
Q−2∑

s=2

MQ−s

[
Q

2

]Q−s+1

κX,s(r)

Proof of lemma 4.11. We denoteX(a)
η =

∏
i∈η X

(ai)
i for any p−tuples η ∈ Z

p and
a = (a1, . . . , ap) ∈ {1, . . . , D}p (this way admits repetitions of the succession η).
We assume that k1 ≤ · · · ≤ kQ satisfy kl+1 −kl = r = max1≤s<p(ks+1 −ks) ≥ 0,
then if μ = {μ1, . . . , μu} ranges over all the partitions of {1, . . . , Q} there is some
μi (which we denote νμ) satisfies ν−μ = [1, l]∩νμ �= ∅ and ν+

μ = [l+1, Q]∩νμ �= ∅.
Using formula (4.4.2), we obtain, with η = {1, . . . , l},

κ(X(a1)
k1

, . . . , X
(aQ)
kQ

) = Cov(X(a)
η(k), X

(a)
η(k)) −

∑

u

∑

{μ}
κνμ(k)Kμ,k, (4.4.10)

where Kμ,k =
∏

μi 	=νu

κμi(k) and where the previous sum extends to partitions

μ = {μ1, . . . , μu} of {1, . . . , Q} such that there exists some 1 ≤ i ≤ u with
μi∩ν �= ∅ and μi∩ν �= ∅. For simplicity the previous formulas omit the reference
to indices (a1, . . . , aQ) which is implicit. We use the simple but essential remark
that

r
(
νμ(k)

)
≥ r(k) to derive |κνμ(k)| ≤ κX,#νμ(r).

We now use lemma 4.9 to deduce |Mμ| ≤ MQ−#μν as in eqn. (4.4.5). This
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yields the bound

∣∣
∣κ
(
X

(a1)
k1

, . . . , X
(aQ)
kQ

)∣∣
∣ ≤ CX,Q(r) +

[Q/2]∑

u=2

(u− 1)!
∑

μ1,...,μu

MQ−#νμ |κνμ(k)(X(a))|

≤ CX,Q(r) +
[Q/2]∑

u=2

(u− 1)!
Q−2∑

s=2

MQ−sκX,s(r)
∑

μ1, . . . , μu
#νμ = s

1

≤ CX,Q(r) +
[Q/2]∑

u=2

(u− 1)!
Q−2∑

s=2

(u− 1)Q−sMQ−sκX,s(r)

≤ CX,Q(r) +
Q−2∑

s=2

1
Q− s+ 1

[
Q

2

]Q−s+1

MQ−sκX,s(r)

since the inequality
∑U

u=1(u−1)p ≤ 1
p+1U

p+1 follows from a comparison between
a sum and an integral. �

Rewrite now the lemma 4.11 as

κX,Q(r) ≤ cX,Q(r) +
Q−2∑

s=2

BQ,sκX,s(r)

thus the following formulas follow

κX,2(r) ≤ cX,2(r),
κX,3(r) ≤ cX,3(r),
κX,4(r) ≤ cX,4(r) +B4,2κX,2(r)

≤ cX,4(r) +B4,2cX,2(r),
κX,5(r) ≤ cX,5(r) +B5,3κX,3(r) +B5,2κX,2(r)

≤ cX,5(r) +B5,3cX,3(r) +B5,2cX,2(r),
κX,6(r) ≤ cX,6(r) +B6,4κX,4(r) +B6,3κX,3(r) +B6,2κX,2(r)

≤ cX,6(r) +B6,4 (cX,4(r) +B4,2cX,2(r)) +B6,3cX,3(r) +B6,2cX,2(r)
≤ cX,6(r) +B6,4cX,4(r) +B6,3cX,3(r) + (B6,2 +B6,4B4,2)cX,2(r).

A main corollary of lemma 4.11 is the following, it is proved by induction.

Corollary 4.2. For any Q ≥ 2, there exists a constant AQ ≥ 0 only depending
on Q, such that

κX,Q(r) ≤ AQc
∗
X,Q(r).
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Remark 4.3. This corollary explains an equivalence between the coefficients
cX,Q(r) and the κQ(r) which may also be preferred as a dependence coefficient.
A way to derive sharp bounds for the constants involved is, using theorem 4.4,
to decompose the corresponding sum of centered moments in two terms, the first
of them involving the maximal covariance of a product.

Section 12.3.2 will provide multivariate extensions devoted to spectral analysis.

For completeness sake remark that formula (4.4.10) implies with BQ,Q = 1 that

cX,Q(r) ≤
Q∑

s=2

BQ,sκX,s(r). Hence there exists some constant ÃQ such that

cX,Q(r) ≤ ÃQκ
∗
X,Q(r), κ∗X,Q(r) = max

2≤l≤Q
κ∗X,l(r)μQ−l

Finally, we have proved that constants aQ, AQ > 0 satisfy

aQc
∗
X,Q(r) ≤ κ∗X,Q(r) ≤ AQc

∗
X,Q(r)

Hence, for fixed Q those inequalities are equivalent.

The previous formula (4.4.10) implies that the cumulant

κ(X(a1)
k1

, . . . , X
(aQ)
kQ

) =
∑

α,β

Kα,β,kCov(X(a)
α(k), X

(a)
β(k))

writes as the linear combination of such covariances with α ⊂ {1, . . . , l} and
β ⊂ {l+1, . . . , Q} where the coefficients Kα,β,k are some polynomials of the cu-
mulants. For this one replaces the Q−tuple (X(a1)

k1
, . . . , X

(aQ)
kQ

) by (X(a)
i )i∈νμ(k)

for each partition μ, in formula (4.4.10) and use recursion.
Such representation is useful namely if one precisely knows such covariances;

let us mention the cases of Gaussian and associated processes for which addi-
tional informations are provided.

The main attraction for cumulants with respect to covariance of products is
that if a sample (Xk1 , . . . , Xkq) is provided, the behaviour of the cumulant is
that of cX,q(r(k)) with appears as suprema over a position l of the maximal lag
in the sequence k. This means an automatic search of this maximal lag r(k)
may be performed with the help of cumulants.

Examples. The constants AQ, which are not explicit, may be determined
for some low orders. A careful analysis of the previous proof allows the sharp
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bounds†

κX,2(r) = cX,2(r)
κX,3(r) = cX,3(r)
κX,4(r) ≤ cX,4(r) + 3μ2cX,2(r)
κX,5(r) ≤ cX,5(r) + 10μ2cX,3(r) + 10μ3cX,2(r)
κX,6(r) ≤ cX,6(r) + 15μ2cX,4(r) + 20μ3cX,3(r)) + 150μ4cX,2(r)

Our main application of those inequalities is the

Lemma 4.12. Set

κQ =
∞∑

k2=0

· · ·
∞∑

kQ=0

max
1≤a1,...,aQ≤D

∣∣
∣κ
(
X

(a1)
0 , X

(a2)
k2

, . . . , X
(aQ)
kQ

)∣∣
∣ . (4.4.11)

We use notation (4.4.8). For each Q ≥ 2, there exists a constant BQ such that

κQ ≤ BQ

∞∑

r=0

(r + 1)Q−2C∗
X,Q(r).

Proof of lemma 4.12. For this we only decompose the sums

κQ ≤ (Q− 1)!
∑

k2≤···≤kQ

max
1≤a1,...,aQ≤D

∣
∣∣κ
(
X

(a1)
0 , X

(a2)
k2

, . . . , X
(aQ)
kQ

)∣∣∣

≡ (Q− 1)! κ̃Q

by considering the partition of the indice set

E = {k = (k2, . . . , kQ) ∈ N
Q−1/k2 ≤ · · · ≤ kQ}

into Er = {k ∈ E/ r(k) = r} for r ≥ 0, then

κ̃Q =
∞∑

r=0

∑

k∈Er

max
1≤a1,...,aQ≤D

∣
∣
∣κ
(
X

(a1)
0 , X

(a2)
k2

, . . . , X
(aQ)
kQ

)∣∣
∣

The previous lemma implies that there exists some constant AQ > 0 such that
∑

k∈Er

max
1≤a1,...,aQ≤D

∣
∣∣κ
(
X

(a1)
0 , X

(a2)
k2

, . . . , X
(aQ)
kQ

)∣∣∣ ≤ AQ#ErC∗
X,Q(r)

and the simple bound #Er ≤ (Q− 1)(r + 1)Q−2 concludes the proof. �
†To bound higher order cumulants we shall prefer lemma 4.11 rough bounds to those

involved combinatorics coefficients.
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Lemma 4.13. Let us assume now that D = 1 (the process is real valued and
we omit the super-indices aj). If the series (4.4.11) is finite for each Q ≤ p we
set q = [p/2] (q = p/2 if p is even and q = (p− 1)/2 if p is odd) then

∣
∣∣
∣
∣
∣
E

⎛

⎝
n∑

j=1

Xj

⎞

⎠

p∣∣∣
∣
∣
∣

≤
q∑

u=1

nuγu, where (4.4.12)

γu =
2q∑

v=1

∑

p1+···+pu=p

p!
p1! · · · pu!

κp1 · · ·κpu

Proof. As in Doukhan and Louhichi (1999) [67], we bound

|E(X1 + · · · +Xn)p| =

∣
∣∣
∣
∣
∣

∑

1≤k1,...,kp≤n
EXk1 · · ·Xkp

∣
∣∣
∣
∣
∣

≤ Ap,n ≡
∑

1≤k1,...,kp≤n

∣∣EXk1 · · ·Xkp

∣∣

Let now μ = {i1, . . . , iv} ⊂ {1, . . . , p} and k = (k1, . . . , kp), we set for conve-
nience

μ(k) = (ki1 , . . . , kiv ) ∈ N
v (4.4.13)

In order to count the terms with their order of multiplicity, it is indeed not
suitable to define the previous item as a set and cumulants or moments are
defined equivalently in this case. Hence, as in Doukhan and León (1989) [66],
we compute, using formula (4.4.2) and using all the partitions μ1, . . . , μu of
{1, . . . , p} with exactly 1 ≤ u ≤ p elements

Ap,n =
∑

1≤k1,...,kp≤n

p∑

u=1

∑

μ1,...,μu

u∏

j=1

κμj(k)(X)

=
p∑

u=1

∑

μ1,...,μu

∑

1≤k1,...,kp≤n

u∏

j=1

κμj(k)(X)

=
p∑

r=1

∑

p1+···+pr=p

p!
p1! · · · pr!

×

×
r∏

u=1

∑

1≤k1,...,kpu≤n
κpu(Xk1 , . . . , Xkpu

) (4.4.14)

|Ap,n| ≤
q∑

u=1

nu
∑

p1+···+pu=p

p!
p1! · · · pu!

u∏

j=1

κpj (4.4.15)
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Identity (4.4.14) follows from a simple change of variables and takes in account
that the number of partitions of {1, . . . , p} into u subsets with respective cardi-
nalities p1, . . . , pu is simply the corresponding multinomial coefficient. Remark
that, for λ ∈ N, and taking X ’s stationarity in account, we obtain

∑

1≤k1,...,kλ≤n
|κpu(Xk1 , . . . , Xkλ

)| ≤ nκλ

Using this remark and the fact that cumulants of order 1 vanish and the only
non-zero terms are those for which p1, . . . , pu ≥ 2 and thus 2u ≤ p, hence u ≤ q
we finally deduce inequality (4.4.15). �

Remark 4.4. If κs ≤ Cs for s ≤ p and for a constant C > 0, the bound
(4.4.15) rewrites as Cp

∑q
u=1 u

pnu by using the multinomial identity.

4.4.2 A second exponential inequality

This section is based on Doukhan and Neumann (2005), [71]. In this section we
will be concerned with probability and moment inequalities for

Sn = X1 + · · · +Xn,

whereX1, . . . , Xn are zero mean random variables which fulfill appropriate weak
dependence conditions. We denote by σ2

n the variance of Sn. Result are here
stated without proof and we defer the reader to [71].
The first result is a Bernstein-type inequality which generalizes and improves
previous inequalities of this chapter.

Theorem 4.5. Suppose that X1, . . . , Xn are real-valued random variables de-
fined on a probability space (Ω,A,P) with EXi = 0 and P(|Xi| ≤ M) = 1, for
all i = 1, . . . , n and some M < ∞. Let Ψ : N

2 → N be one of the following
functions: (a) Ψ(u, v) = 2v, (b) Ψ(u, v) = u + v, (c) Ψ(u, v) = uv, or (d)
Ψ(u, v) = α(u + v) + (1 − α)uv, for some α ∈ (0, 1).
We assume that there exist constants K,L1, L2 < ∞, μ ≥ 0, and a nonincreas-
ing sequence of real coefficients (ρ(n))n≥0 such that, for all u-tuples (s1, . . . , su)
and all v-tuples (t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n the
following inequality is fulfilled:

|Cov (Xs1 · · ·Xsu , Xt1 · · ·Xtv )| ≤ K2Mu+v−2Ψ(u, v)ρ(t1 − su), (4.4.16)

where
∞∑

s=0

(s+ 1)kρ(s) ≤ L1L
k
2(k!)

μ, ∀k ≥ 0. (4.4.17)
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Then

P (Sn ≥ t) ≤ exp

(

− t2/2

An + B
1/(μ+2)
n t(2μ+3)/(μ+2)

)

, (4.4.18)

where An can be chosen as any number greater than or equal to σ2
n and

Bn = 2(K ∨M)L2

((24+μnK2L1

An

)
∨ 1
)
.

Remark 4.5. (i) Inequality (4.4.18) resembles the classical Bernstein inequality
for independent random variables. Asymptotically, σ2

n is usually of order O(n)
and An can be chosen equal to σ2

n while Bn is usually O(1) and hence negligible.
In cases where σ2

n is very small or where the knowledge of the value of An is
required for some statistical procedure, it might, however, be better to choose An
larger than σ2

n. It follows from (4.4.16) and (4.4.17) that a rough bound for σ2
n

is given by
σ2
n ≤ 2nK2Ψ(1, 1)L1. (4.4.19)

Hence, taking An = 2nK2Ψ(1, 1)L1 we obtain from (4.4.18) that

P

(
n∑

i=1

Xi ≥ t

)

≤ exp
(
− t2

C1n+ C2t(2μ+3)/(μ+2)

)
, (4.4.20)

where C1 = 4K2Ψ(1, 1)L1 and C2 = 2B1/(μ+2)
n with Bn such that Bn = 2(K ∨

M) L2

(
(23+μ/Ψ(1, 1))∨ 1

)
. Inequality (4.4.20) is then more of Hoeffding-type.

(ii) In the causal case, we obtain in Theorem 5.2 of Chapter 5 a Bennett-type
inequality for τ-dependent random variables. This also implies a Bernstein-type
inequality, however, with different constants. In particular, the leading term in
the denominator of the exponent differs from σ2

n. This is a consequence of the
method of proof which consists of replacing weakly dependent blocks of random
variables by independent ones according to some coupling device (an analogue
argument is used in [61] for the case of absolute regularity).
(iii) Condition (4.4.16) in conjunction with (4.4.17) may be interpreted as a
weak dependence condition in the sense that the covariances on the left-hand side
tend to zero as the time gap between the two blocks of observations increases.
Note that the supremum of expression (4.4.16) for all u-tuples (s1, . . . , su) and
all v-tuples (t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv < ∞ such
that t1 − su = r is denoted by Cu+v,r in (4.3.1). Conditions (4.4.16) and
(4.4.17) are typically fulfilled for truncated versions of random variables from
many time series models; see also Proposition 4.1 below. The constant K in
(4.4.16) is included to possibly take advantage of a sparsity of data as it appears,
for example, in nonparametric curve estimation.
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(iv) For unbounded random variables, the coefficients Cp,r may still be bounded
by an explicit function of the index p under a weak dependence assumption;
see Lemma 4.14 below. For example, assume that E exp(A|Xt|a) ≤ L holds for
some constants A, a > 0, L < ∞. Since the inequality up ≤ p!eu (p ∈ N, u ≥ 0)
implies that

um = (Aa)−m/a(Aaua)m/a ≤ (Aa)−m/a(m!)1/aeAu
a

∀m ∈ N

we obtain that E|Xt|m ≤ L(m!)1/a(Aa)−m/a holds for all m ∈ N. Lemma 4.14
below provides then appropriate estimates for Cp,r.

Note that the variance of the sum does not explicitly show up in the Rosenthal-
type inequality given in Theorem 4.2. Using the formula of Leonov and Shiryaev
(1959) [119], we are able to obtain a more precise inequality which resembles the
Rosenthal inequality in the independent case (see Rosenthal (1970) [170] and
and Theorem 2.12 in Hall and Heyde (1980) [100] in the case of martingales).

Theorem 4.6. Suppose that X1, . . . , Xn are real-valued random variables on a
probability space (Ω,A,P) with zero mean and let p be a positive integer. We
assume that there exist finite constants K, M , and a nonincreasing sequence of
real coefficients (ρ(n))n≥0 such that, for all u-tuples (s1, . . . , su) and all v-tuples
(t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n and u+ v ≤ p, condition
(4.4.16) is fulfilled. Furthermore, we assume that

E|Xi|p−2 ≤ Mp−2.

Then, with Z ∼ N (0, 1),

|ESpn − σpnEZp| ≤ Bp,n
∑

1≤u<p/2
Au,pK

2u(M ∨K)p−2unu,

where Bp,n = (p!)22pmax2≤k≤p{ρp/kk,n}, ρk,n =
∑n−1

s=0 (s+ 1)k−2ρ(s) and

Au,p =
1
u!

∑

k1+···+ku=p,ki≥2,∀i

p!
k1! · · ·ku!

.

Remark 4.6. For even p, the above result implies that

ESpn ≤ (p− 1)(p− 3) · · · 1 σpn +Bp,n
∑

1≤u<p/2
Au,pK

2u(M ∨K)p−2unu,

which resembles the classical Rosenthal inequality from the independent case.
If supnBp,n < ∞ and σ2

n � n, then the first term on the right-hand side is
asymptotically dominating, as n → ∞. This term is equal to the p-th moment
of a Gaussian random variable with mean 0 and variance σ2

n.
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Remark 4.7. The inequality from Theorem 4.6 is well suited for proving a
central limit theorem via the method of moments. Assume first that the random
variables Xi are uniformly bounded, centred and satisfy condition (4.4.16) with
lims→∞ ρ(s)/sp = 0, for all p > 0. Then

lim
n→∞

σ2
n

n
= σ2 =

∞∑

k=−∞
E(X0Xk)

is a convergent series, and thus the method of moments implies a central limit
theorem,

1√
n
Sn

d−→n→∞ σZ.

4.4.3 From weak dependence to the exponential bound

A large class of weak dependent sequences satisfies the assumption (4.4.16) of
Theorem 4.5. If δ(x, y) = |x− y|, we write Λ(1) instead of Λ(1)(δ).

(i) Assume that (Xt)t∈Z is an R
d-valued and stationary process which is

(Λ(1),Ψ)-weakly dependent. Then for any Lipschitz-continuous function
F : R

d → R with ‖F‖∞ = M < ∞ and LipF ≤ 1, the process Yt = F (Xt)
is real valued, stationary, and ‖Yt‖∞ ≤ M . Moreover, it is also (Λ(1),Ψ)-
weakly dependent.

(ii) In the more general case when LipF possibly exceeds 1 (e.g., if the
function F depends on the sample size in a statistical context), then
weak dependence still holds where only Ψ(a, b, u, v) has to be replaced by
ψY (a, b, u, v) = Ψ(aLipF, bLipF, u, v). For the special cases of η, κ and λ
weak dependence conditions, one may re-formulate this as (Yt)t∈Z is still
an η, κ or λ weakly dependent sequence but now we have to respectively
consider the coefficients

ηY (r) = LipF · η(r), κY (r) = Lip 2F · κ(r),
λY (r) = max

{
LipF,Lip 2F

}
λ(r).

Now we relate the conditions of weak dependence to condition (4.4.16). Sup-
pose that (Xt)t∈Z is a stationary sequence of real-valued random variables with
‖Xt‖∞ ≤ M which satisfies a weak dependence condition. To see the con-
nection to (4.4.16), we consider the functions g1 and g2 with g1(x1, . . . , xu) =∏u
i=1 f (xi/M) and g2(x1, . . . , xv) =

∏v
i=1 f (xi/M), where f(u) = u∨ (−1)∧ 1.

These functions satisfy Lip gi ≤ 1/M and ‖gi‖∞ ≤ 1. The covariance in the
definition of weak dependence can be expressed as in equation (4.4.16), up to a
factor Mu+v since g1(Xi1 , . . . , Xiu) = Xi1 · · ·Xiu/M

u and g2(Xi1 , . . . , Xiv ) =
Xi1 · · ·Xiv/M

v.
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Proposition 4.1. Assume that the real valued sequence (Xt)t∈Z is (Λ(1),Ψ)-
weakly dependent and that ‖Xt‖∞ ≤ M . Then
∣
∣Cov(Xs1 · · ·Xsu , Xt1 · · ·Xtv)

∣
∣ ≤ Mu+vΨ(M−1,M−1, u, v)ε(t1 − su)(4.4.21)

Moreover, if ε(r) = e−ar, for some a > 0, then we may choose in inequality
(4.4.17) μ = 1 and L1 = L2 = 1/(1 − e−a). If ε(r) = e−ar

b

, for some a > 0,
b ∈ (0, 1), then we may choose μ = 1/b and L1, L2 appropriately as only
depending on a and b.

Remark 4.8. (i) Notice that Proposition 4.1 implies that (Λ(1),Ψ)-depen-
dence implies (4.4.16) with

(a) Ψ(u, v) = 2v, K2 = M and ε(r) = θ(r)/2, under θ-dependence,
(b) Ψ(u, v) = u+ v, K2 = M and ε(r) = η(r), under η-dependence,
(c) Ψ(u, v) = uv, K = 1 and ε(r) = κ(r), under κ-dependence,
(d) Ψ(u, v) = (u + v + uv)/2, K2 = M ∨ 1 and ε(r) = 2λ(r), under

λ-dependence.

(ii) Now if the vector valued process (Xt)t∈Z is an η, κ or λ-weakly dependent
sequence, for any Lipschitz function F : R

d → R such that ‖F‖∞ = M <
∞, then the process Yt = F (Xt) is real valued and the relation (4.4.16)
holds with

(a) Ψ(u, v) = 2v, K2 = MLipF and ε(r) = θ(r)/2, under θ-dependence,
(b) Ψ(u, v) = u+ v, K2 = MLipF and ε(r) = η(r), under η-dependence,
(c) Ψ(u, v) = uv, K = LipF and ε(r) = κ(r), under κ-dependence,
(d) Ψ(u, v) = (u + v + uv)/2, K2 = (M ∨ 1)(Lip 2F ∨ LipF ) and ε(r) =

2λ(r), under λ-dependence.

Those bounds allow to use the Bernstein-type inequality in Theorem 4.5 for sums
of functions of weakly dependent sequences.

A last problem in this setting is to determine sharp bounds for the coefficients
Cp,r. This is even possible when the variables Xi are unbounded and is stated
in the following lemma.

Lemma 4.14. Assume that the real valued sequence (Xt)t∈Z is η, κ or λ-weakly
dependent and that E|Xi|m ≤ Mm, for any m > p. Then, according to the type
of the weak dependence condition:

Cp,r ≤ 2p+3p2M
p−1
m−1
m η(r)1−

p−1
m−1 , (4.4.22)

≤ 2p+3p4M
p−2
m−2
m κ(r)1−

p−2
m−2 , (4.4.23)

≤ 2p+3p4M
p−1
m−1
m λ(r)1−

p−1
m−1 . (4.4.24)



98 CHAPTER 4. TOOLS FOR NON CAUSAL CASES

Remark 4.9. This lemma is the essential tool to provide a version of Theo-
rem 4.6 which yields both a Rosenthal-type moment inequality and a rate of con-
vergence for moments in the central limit theorem. We also note that this result
does not involve the assumption that the random variables are a.s. bounded. In
fact even the use of Theorem 4.5 does not really require such a boundedness; see
Remark 4.5-(iv).

4.5 Tightness criteria

Following Andrews and Pollard (1994) [5], we give in this section a general
criterion based on Rosenthal type inequalities and on chaining arguments. Let
d ∈ N

∗ and let (Xi)i∈Z be a stationary sequence with values in R
d. Let F be a

class of functions from R
d to R. We define the empirical process {Zn(f) , f ∈ F}

by
Zn(f) :=

√
n(Pn(f) − P (f)) ,

with P the common law of (Xi)i∈Z and, for f ∈ F ,

Pn(f) :=
1
n

n∑

i=1

f(Xi) , P (f) =
∫

Rd

f(x)P (dx) .

We study the process {Zn(f) , f ∈ F} on the space �∞(Rd) of bounded func-
tions from R

d to R equipped with the uniform norm ‖ · ‖∞. For more details
on tightness on the non separable space �∞(Rd), we refer to van der Vaart
and Wellner (1996) [183]. In particular, we shall not discuss any measurabil-
ity problems which can be handled by using the outer probability. The process
{Zn(f) , f ∈ F} is tight on (�∞(Rd), ‖.‖∞) as soon as there exists a semi-metric
ρ such that (F , ρ) is totally bounded for which

lim
δ→0

lim sup
n→∞

P

(

sup
f,g∈F , ρ(f,g)≤δ

|Zn(f) − Zn(g)| > ε

)

= 0, ∀ε > 0.

We recall the following definition of bracketing number.

Definition 4.4. Let Q be a finite measure on a measurable space X . For
any measurable function f from X to R, let ‖f‖Q,r = Q(|f |r)1/r. If ‖f‖Q,r
is finite, one says that f belongs to LrQ. Let F be some subset of LrQ. The
number of brackets NQ,r(ε,F) is the smallest integer N for which there exist
some functions f−

1 ≤ f1, . . . , f
−
N ≤ fN in F such that: for any integer 1 ≤ i ≤ N

we have ‖fi − f−
i ‖Q,r ≤ ε, and for any function f in F there exists an integer

1 ≤ i ≤ N such that f−
i ≤ f ≤ fi.
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Proposition 4.2. Let (Xi)i≥1 be a sequence of identically distributed random
variables with values in a measurable space X , with common distribution P . Let
Pn be the empirical measure Pn = n−1

∑n
i=1 δXi , and let Zn be the normalized

empirical process Zn =
√
n(Pn − P ). Let Q be any finite measure on X such

that Q − P is a positive measure. Let F be a class of functions from X to R

and G = {f − l/(f, l) ∈ F ×F}. Assume that there exist r ≥ 2, p ≥ 1 and q > 2
such that for any function g of G, we have

‖Zn(g)‖p ≤ C(‖g‖1/r
Q,1 + n1/q−1/2) , (4.5.1)

where the constant C does not depend on g nor n. If moreover
∫ 1

0

x(1−r)/r(NQ,1(x,F))1/pdx < ∞ and lim
x→0

xp(q−2)/qNQ,1(x,F) = 0 ,

then
lim
δ→0

lim sup
n→∞

E

(
sup

g∈G,‖g‖Q,1≤δ
|Zn(g)|p

)
= 0 . (4.5.2)

Proof of Proposition 4.2. It follows the line of Andrews and Pollard (1994) [5]
and Louhichi (2000) [124]. It is based on the following inequality: given N
real-valued random variables, we have

‖ max
1≤i≤N

|Zi| ‖p ≤ N1/p max
1≤i≤N

‖Zi‖p . (4.5.3)

For any positive integer k, denote by Nk = NQ,1(2−k,F) and by Fk a family of
functions fk,−1 ≤ fk1 , . . . , f

k,−
Nk

≤ fkNk
in F such that ‖fki − fk,−i ‖Q,1 ≤ 2−k, and

for any f in F , there exists an integer 1 ≤ i ≤ Nk such that fk,−i ≤ f ≤ fki .

First step. We shall construct a sequence hk(n)(f) belonging to Fk(n) such that

lim
n→∞

∥
∥
∥sup
f∈F

|Zn(f) − Zn(hk(n)(f))|
∥
∥
∥
p

= 0 . (4.5.4)

For any f in F , there exist two functions g−k and g+
k in Fk such that g−k ≤ f ≤ g+

k

and ‖g+
k − g−k ‖Q,1 ≤ 2−k. Since Q− P is a positive measure, we have

Zn(f) − Zn(g−k ) ≤ Zn(g+
k ) − Zn(g−k ) +

1√
n

n∑

i=1

E((g+
k − f)(Xi))

≤ |Zn(g+
k ) − Zn(g−k )| +

√
n2−k .

Since g−k ≤ f , we also have that Zn(g−k )−Zn(f) ≤
√
n2−k, which enables us to

conclude that |Zn(f) − Zn(g−k )| ≤ |Zn(g+
k ) − Zn(g−k )| +

√
n2−k. Consequently

sup
f∈F

|Zn(f) − Zn(g−k )| ≤ max
1≤i≤Nk

|Zn(fki ) − Zn(f
k,−
i )| +

√
n2−k . (4.5.5)
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Combining (4.5.3) and (4.5.5), we obtain that
∥
∥
∥sup
f∈F

|Zn(f) − Zn(g−k )|
∥
∥
∥
p
≤ N 1/p

k max
1≤i≤Nk

‖Zn(fki ) − Zn(f
k,−
i )‖p +

√
n2−k .

(4.5.6)
Starting from (4.5.6) and applying the inequality (4.5.1),we obtain
∥
∥
∥sup
f∈F

|Zn(f) − Zn(g−k )|
∥
∥
∥
p
≤ C(N 1/p

k 2−k/r + N 1/p
k n1/q−1/2) +

√
n2−k . (4.5.7)

From the integrability condition on NQ,1(x,F), and since the function x �→
x(1−r)/rN (x,F)1/p is non increasing, we infer that N 1/p

k 2−k/r tends to 0 as k
tends to infinity. Take k(n) such that 2k(n) =

√
n/an for some sequence an

decreasing to zero. Then
√
n2−k(n) tends to 0 as n tends to infinity. Il remains

to control the second term on right hand in (4.5.7). By definition of Nk(n), we
have that

Nk(n)n
p(1/q−1/2) = NQ,1

( an√
n
,F
)( 1√

n

)p(q−2)/q

. (4.5.8)

Since xp(q−2)/pNQ,1(x,F) tends to 0 as x tends to zero, we can find a sequence an
such that the right hand term in (4.5.8) converges to 0. The function hk(n)(f) =
g−k(n) satisfies (4.5.4).

Second step. We shall prove that for any ε > 0 and n large enough, there exists
a function hm(f) in Fm such that

∥
∥
∥sup
f∈F

|Zn(hm(f)) − Zn(hk(n)(f))
∥
∥
∥
p
≤ ε . (4.5.9)

Given h in Fk, choose a function Tk−1(h) in Fk−1 such that ‖h−Tk−1(h)‖Q,1 ≤
2−k+1. Denote by πk,k = Id and for l < k, πl,k(h) = Tl ◦ · · · ◦ Tk−1(h). We
consider the function hm(f) = πm,k(n)(hk(n)(f)). We have that
∥
∥
∥sup
f∈F

|Zn(hm) − Zn(hk(n))|
∥
∥
∥
p
≤

k(n)∑

l=m+1

∥
∥
∥sup
f∈F

|Zn(πl,k(n)(hk(n)) − Zn(πl−1,k(n)(hk(n))|
∥
∥
∥
p
. (4.5.10)

Clearly
∥
∥
∥sup
f∈F

|Zn(πl,k(n)(hk(n))−Zn(πl−1,k(n)(hk(n))|
∥
∥
∥
p
≤
∥
∥
∥max
f∈Fl

|Zn(f)−Zn(Tl−1(f))|
∥
∥
∥
p
.

Applying the inequality (4.5.1) to (4.5.10) we obtain

∥
∥
∥sup
f∈F

|Zn(hm) − Zn(hk(n))|
∥
∥
∥
p
≤ C

k(n)∑

l=m+1

(21/rN 1/p
l 2−l/r + N 1/p

l n1/q−1/2)
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Clearly

∞∑

l=m+1

N 1/p
l 2−l/r ≤ 2

∫ 2−m−1

0

x(1−r)/r(NQ,1(x,F))1/pdx,

which by assumption is as small as we wish. To control the second term, write

n1/q−1/2

k(n)∑

l=m+1

N 1/p
l ≤ n1/q−1/2

k(n)∑

l=0

2lN 1/p
l 2−l

≤ 2n1/q−1/2

∫ 1

2−k(n)

1
x

(NQ,1(x,F))1/pdx.

It is easy to see that if xp(q−2)/qNQ,1(x,F) tends to 0 as x tends to 0, then

lim
x→0

x(q−2)/q

∫ 1

x

1
y
(NQ,1(y,F))1/pdy = 0 .

Consequently, we can choose the decreasing sequence an such that

lim
n→∞

( 1√
n

) q−2
q

∫ 1

ann−1/2

1
x

(NQ,1(x,F))1/pdx = 0.

The function hm(f) = πm,k(n)(hk(n)(f)) satisfies (4.5.9).

Third step. From steps 1 and 2, we infer that for any ε > 0 and n large enough,
there exists hm(f) in Fm such that

∥
∥∥sup
f∈F

|Zn(f) − Zn(hm(f))|
∥
∥∥
p
≤ 2ε .

Using the same argument as in Andrews and Pollard (1994) [5] (see the para-
graph “Comparison of pairs” page 124), we obtain that, for any f and g in
F ,
∥∥
∥ sup
‖f−g‖Q,1≤δ

|Zn(f) − Zn(g)|
∥∥
∥
p
≤ 8ε+ N 2/r

m sup
‖f−g‖Q,1≤δ

‖Zn(f) − Zn(g)‖p .

We conclude the proof by noting that

lim sup
δ→0

lim sup
n→∞

∥
∥∥ sup
g∈G,‖g‖Q,1≤δ

|Zn(g)|
∥
∥∥
p
≤ 8ε . �



Chapter 5

Tools for causal cases

The purpose of this chapter is to give several technical tools useful to derive
limit theorems in the causal cases. The first section gives comparison results
between different causal coefficients. The second section deals with covariance
inequalities for the coefficients γ1, β̃ and φ̃ already defined in Chapter 2. Section
3 discusses a coupling result for τ1-dependent random variables. This coupling
result is generalized to the case of variables with values in any Polish space. Sec-
tion 4 gives various inequalities mainly Bennett, Fuk-Nagaev, Burkholder and
Rosenthal type inequalities for different dependent sequences. Finally Section 5
gives a maximal inequality as an extension of Doob’s inequality for martingales.

5.1 Comparison results

Weak dependence conditions may be compared as in the case of mixing condi-
tions.

Lemma 5.1. Let (Ω,A,P) be a probability space. Let (Xi)i∈Z be a sequence of
real valued random variables. We have the following comparison results:

1. ∀ r ∈ N
∗, ∀ k ≥ 0,

α̃r(k) ≤ β̃r(k) ≤ φ̃r(k).

Assume now that Xi ∈ L
1(P) for all i ∈ Z. If Y is a real valued random variable

QY is the generalized inverse of the tail function, t �→ P(|Y | > t), see (2.2.14).

2. Let QX ≥ supk∈Z
QXk

. Then, ∀ k ≥ 0,

τ1,1(k) ≤ 2
∫ α̃1(k)

0

QX(u)du. (5.1.1)

103
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Assume now that the sequence (Xi)i∈Z is valued in R
d for some d ∈ N

∗ and that
each Xi belongs to L

1(P). On R
d, we put the distance d1(x, y) =

∑d
p=1 |x(p) −

y(p)|, where x(p) (resp. y(p)) denotes the pth coordinate of x (resp. y). Assume
that for all i ∈ Z, each component of Xi has a continuous distribution function,
and let ω be the supremum of the modulus of continuity, that is

ω(x) = sup
i∈Z

max
1≤k≤d

sup
|y−z|≤x

|F
X

(k)
i

(y) − F
X

(k)
i

(z)| ,

where for all i ∈ Z, Xi = (X(1)
i , . . . , X

(d)
i ). Define g(x) = xω(x). Then we have

3. ∀ r ∈ N
∗, ∀ k ≥ 0,

β̃r(k) ≤ 2 r τ1,r(k)

g−1
(
τ1,r(k)
d

) .

φ̃r(k) ≤ 2 r τ∞,r(k)

g−1
(
τ∞,r(k)

d

) ,

where g−1 denotes the generalized inverse of g defined in (2.2.14).

4. Assume now that there exists some positive constant K such that for all
i ∈ Z, each component of Xi has a density bounded by K > 0. Then, for
all r ∈ N

∗ and k ≥ 0,

α̃r(k) ≤ 4 r
√
K dθ1,r(k).

Remark 5.1. If each marginal distribution satisfies a concentration condition
|F
X

(k)
i

(y) − F
X

(k)
i

(z)| ≤ K|y − z|a with a ≤ 1,K > 0 then Item 3. yields

β̃r(k) ≤ 2 r τ1,r(k)
a

1+a (Kd)
1

1+a ,

φ̃r(k) ≤ 2 r τ∞,r(k)
a

1+a (Kd)
1

1+a .

If e.g. for all i ∈ Z, each component of Xi has a density bounded by K > 0 then
those relations write more simply with a = 1 as in Item 4.

In order to prove Lemma 5.1, we introduce some general comments related with
the notation (2.2.14). Let (Ω,A,P) be a probability space, M a σ-algebra of
A and X a real-valued random variable. Let FM(t, ω) = PX|M(] − ∞, t], ω)
be a conditional distribution function of X given M. For any ω, FM(·, ω)
is a distribution function, and for any t, FM(t, ·) is a M-measurable random
variable. Hence for any ω, define the generalized inverse F−1

M (u, ω) as in (2.2.14).
Now, from the equality {ω/t ≥ F−1

M (u, ω)} = {ω/FM(t, ω) ≥ u}, we infer
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that F−1
M (u, ·) is M-measurable. In the same way, {(t, ω)/FM(t, ω) ≥ u} =

{(t, ω)/t ≥ F−1
M (u, ω)}, which implies that the mapping (t, ω) �→ FM(t, ω) is

measurable with respect to B(R) ⊗ M. The same arguments imply that the
mapping (u, ω) �→ F−1

M (u, ω) is measurable with respect to B([0, 1])⊗M. Denote
by FM(t) (resp. F−1

M (u)) the random variable FM(t, ·) (resp. F−1
M (u, ·)), and

let FM(t− 0) = sups<t FM(s).

Proof of Lemma 5.1.
• Item 1. follows from the definition of α̃(M, X), β̃(M, X) and φ̃(M, X).
• Let us now prove Item 2. We first prove that if M is a σ-algebra of A, and if
X is a real valued random variable in L

1(P), then

τ(M, X) ≤ 2
∫ α̃(M,X)

0

QX(u)du . (5.1.2)

The proof follows from arguments in Peligrad (2002) [140]. Denote X+ =
sup(X, 0) and X− = sup(−X, 0). Let F denote the distribution function of X .
Let FM(t, ω) be the conditional distribution of X given M. Assume that there
exists a random variable δ uniformly distributed over [0, 1], independent of the
σ-algebra generated by X and M. As δ is uniformly distributed over [0, 1] and
independent of the σ-algebra generated by X and M,

U = FM(X − 0) + δ(FM(X) − FM(X − 0))

is uniformly distributed over [0, 1] conditionally to M. So U is independent of
M and is uniformly distributed over [0, 1] (see Major (1978) [126] and also Rio
(2000) [161]). Hence,

X∗ = F−1(U) (5.1.3)

is independent of M and distributed as X. Moreover,

F−1
M (U) = X, P-almost surely.

It yields

‖X −X∗‖1 = E

(∫ 1

0

|F−1
M (u) − F−1(u)|du

)
. (5.1.4)

We start with equality (5.1.4).

‖X −X∗‖1 = E

(∫ 1

0
|F−1

M (u) − F−1(u)|du
)

= E

(∫∞
0 |FM(u) − F (u)|du

)

= E

(∫∞
0

|P(X+ > u) − P(X+ > u|M)|du
)

+E

(∫∞
0 |P(X− > u) − P(X− > u|M)|du

)
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Now, by definition of α̃, we have the inequalities

E|P(X+ > u) − P(X+ > u|M)| ≤ α̃(M, X+) ∧ 2P(X+ > u)
E|P(X− > u) − P(X− > u|M)| ≤ α̃(M, X−) ∧ 2P(X− > u)

It is clear that sup (α̃(M, X+), α̃(M, X−)) ≤ α̃(M, X). Define HX(x) =
P(|X | > x). Next, using the inequality a ∧ b + c ∧ d ≤ (a + c) ∧ (b + d),
we obtain that

E|X −X∗| ≤ 2
∫ ∞

0

α̃(M, X) ∧HX(u)du ≤ 2
∫ ∞

0

∫ α̃(M,X)

0

1t<HX (u)dt du .

Then, since P(|X | > u) > t if and only if u < QX(t) and applying Fubini The-
orem, we get Inequality (5.1.2).
Let us now prove (5.1.1). For i ∈ Z, let Mi = σ(Xj , j ≤ i). For i+ k ≤ j, we
infer from Inequality (5.1.2) that

τ1(Mi, Xj) ≤ 2
∫ α̃1(k)

0

QXj (u)du ≤ 2
∫ α̃1(k)

0

QX(u)du,

and the result follows from the definition of τ1,1(k).

• For Item 3. we will write the proof for r = 1, 2, the generalization to r points
being straightforward. We will make use of the following proposition:

Proposition 5.1. Let (Ω,A,P) be a probability space, X = (X1, . . . , Xd) and
Y = (Y1, . . . , Yd) two random variables with values in R

d, and M a σ-algebra of
A. If (X∗, Y ∗) is distributed as (X,Y ) and independent of M then, assuming
that each component Xk and Yk has a continuous distribution function FXk

and
FYk

, we get for any x1, . . . , xd, y1, . . . , yd in [0, 1],

β̃(M, X) ≤
∥
∥
∥

d∑

k=1

xk + P
(
|FXk

(X∗
k) − FXk

(Xk)| > xk
∣
∣M

)∥∥
∥

1
, (5.1.5)

β̃(M, X, Y ) ≤
∥
∥
∥

d∑

k=1

xk + P
(
|FXk

(X∗
k) − FXk

(Xk)| > xk
∣
∣M

)∥∥
∥

1

+
∥
∥∥

d∑

k=1

yk + P
(
|FYk

(Y ∗
k ) − FYk

(Yk)| > yk
∣∣M)

∥
∥∥

1
. (5.1.6)

We prove Proposition 5.1 at the end of this section and we continue the proof of
Item 3. Starting from (5.1.5) with x1 = · · · = xk = ω(x) and applying Markov’s
inequality, we infer that

β̃(M, X) ≤ dω(x) +
1
x

∥
∥
∥E
( d∑

k=1

|Xk −X∗
k |
∣
∣
∣M

)∥∥
∥

1
.
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Now, from Proposition 6 in Rüschendorf (1985) [171] (see also Equality (5.3.5)
of Lemma 5.3), one can choose X∗ such that

∥∥
∥E
( d∑

k=1

|Xk −X∗
k |
∣∣
∣M

)∥∥
∥

1
= τ1(M, X).

Hence

β̃(M, X) ≤ dω(x) +
τ1(M, X)

x
,

and Item 3. follows for r = 1 by noting that d xω(x) = τ1(M, X) for x =
g−1
(
τ1(M,X)

d

)
. Starting now from (5.1.6), Item 3. may be proved in the same

way for r = 2. Proposition 5.1 is still true when replacing β̃ by φ̃ and ‖ · ‖1

by ‖ · ‖∞ (see Proposition 7 in Dedecker & Prieur, 2006 [49]). The proof for φ̃
follows then the same lines and is therefore omitted here.

• It remains now to prove Item 4. We write the proof for r = 1 and d = 1
and then generalize to any dimension d ≥ 1 and any r ≥ 1.

Case r = 1, d = 1. For i ∈ Z, let Mi = σ(Xj , j ≤ i). Let i + k ≤ j1.
We know from Definition 2.5 of Chapter 2 that

α̃(Mi, Xj1) = sup
t∈R

‖LXj1 |Mi
(t) − LXj1

(t)‖1.

Define ϕt(x) = 1x≤t − P(Xj1 ≤ t). We want to smooth the function ϕt which
is not Lipschitz. Let ε > 0. We consider the following Lipschitz function ϕεt
smoothing ϕt:

ϕεt (x) =
{
ϕt(x), x ∈] − ∞, t] ∪ [t+ ε,+∞[,
ϕt(x) + t−x+ε

ε 1t<x<t+ε, t < x < t+ ε.

We then have ||ϕεt ||∞ ≤ 1 and Lip (ϕεt ) ≤ 1
ε . Hence,

‖LXj1 |Mi
(t) − LXj1

(t)‖1 = E |E(ϕt(Xj1) |Mi)|

≤ ‖ϕt − ϕεt‖∞P(Xj1 ∈]t, t+ ε[) + E |E(ϕεt (Xj1) − Eϕεt (Xj1) |Mi)|

+ |E (ϕεt (Xj1) − ϕt(Xj1))|

≤ 2K ε+ 1
ε θ1,1(k) + 2Kε.

Then, if we take ε =

√
θ1,1(k)
4K and if we consider the supremum in t, we get

α̃1(k) ≤ 4
√
K θ1,1(k) .



108 CHAPTER 5. TOOLS FOR CAUSAL CASES

Case r ≥ 1, d ≥ 1. The proof follows essentially the same lines. Let i + k ≤
j1 < · · · < jr. Let X = (Xj1 , . . . , Xjr ) in

(
R
d
)r. We know from Definition 2.5

of Chapter 2 that

α̃(Mi, X) = sup
t∈(Rd)r

‖LX|Mi
(t) − LX(t)‖1.

For t = (t1, . . . , tr) ∈ (Rd)r and x = (x1, . . . , xr) ∈ (Rd)r, define

ϕt(x) =
r∏

i=1

(1xi≤ti − P(Xji ≤ t)) =
r∏

i=1

ϕti(xi).

We want to smooth the function ϕt which is not Lipschitz. Let ε > 0. We
first smooth each of the functions ϕti . In the following, if x is in R

d, x(p) denotes
its pth coordinate. We consider the following Lipschitz function ϕεti smoothing
ϕti :

ϕεti is equal to ϕti on ]−∞, ti]∪ [ti+ε,+∞[, and for xi /∈]−∞, ti]∪ [ti+ε,+∞[,

ϕεti(xi) =
d∏

j=1

(

1
x
(j)
i ≤t(j)i

+
t
(j)
i − x

(j)
i + ε

ε
1
t
(j)
i <x

(j)
i <t

(j)
i +ε

)

− P(Xji ≤ ti).

We then have ||ϕεti ||∞ ≤ 1 and Lip (ϕεti) ≤ 1
ε , where the distance used on R

d is
d1(x, y) =

∑d
j=1 |x(j) − y(j)|. We then smooth ϕt(x) by ϕεt (x) =

∏r
i=1 ϕ

ε
ti(xi).

We have ‖ϕεt ||∞ ≤ 1 and Lip (ϕεt ) ≤ 1
ε . Let X = (Xj1 , Xj2). We get

‖LX|Mi
(t) − LX(t)‖1 = E |E(ϕt(X) − Eϕt(X) |Mi)|

≤ 2rKdε+ 1
εrθ1,r(k) + 2 rKdε.

We conclude by taking the supremum in t ∈ (Rd)r and ε =
√

θ1,r(k)
4K d . �

Proof of Proposition 5.1. Let Z be a random variable with values in R
m and let

f : R
m → R such that

|f(z1, . . . , zi, . . . , zm) − f(z1, . . . , z′i, . . . , zm)| ≤ |1zi≤ai − 1z′i≤ai
|

for some real numbers a1, . . . , am. Let U be a σ-algebra and let Z∗ be a random
variable distributed as Z and independent of U . Then

|f(Z) − f(Z∗)| =
∣∣
∣
m∑

k=1

f(Z1, . . . Zk, Z
∗
k+1, . . . Z

∗
m) − f(Z1, . . . Zk−1, Z

∗
k , . . . Z

∗
m)
∣∣
∣

≤
m∑

k=1

|1Zk≤ak
− 1Z∗

k
≤ak

| .



5.1. COMPARISON RESULTS 109

Hence

|E
(
f(Z)|U) − E(f(Z))| ≤ E(|f(Z) − f(Z∗)|

∣
∣U) ≤

m∑

k=1

E
(
|1Zk≤ak

− 1Z∗
k
≤ak

|
∣
∣ U
)
.

(5.1.7)
Let t ∈ R

d. We first apply (5.1.7) to Z = X , Z∗ = X∗, U = M, and f(z) = 1z≤t
with a1 = t1, . . . , ad = td. Since F−1

Xk
(FXk

(Xk)) = Xk almost surely, we obtain

|E(1X≤t|M) − P(X ≤ t)| ≤
d∑

k=1

E
(
|1Xk≤tk − 1X∗

k
≤tk |
∣
∣M

)
(5.1.8)

≤
d∑

k=1

E
(
|1FXk

(Xk)≤FXk
(tk) − 1FXk

(X∗
k)≤FXk

(tk)|
∣
∣M

)
.

Define Tk = FXk
(Xk), T ∗

k = FXk
(X∗

k ). We have

E
(
|1Tk≤FXk

(tk) − 1T∗
k ≤FXk

(tk)|
∣
∣M

)

≤ max
(
FTk|M(FXk

(tk)) − FXk
(tk), 1 − FTk|M(FXk

(tk)) − (1 − FXk
(tk))

)
.

Now, for any y in [0, 1],

FTk|M(y) =
∫

1v+u−v≤yPTk,T∗
k |M(du, dv)

≤
∫

1v≤y+xk
PT∗

k |M(dv) +
∫

1v−u>xk
PTk,T∗

k |M(du, dv)

≤ y + xk +
∫

1v−u>xk
PTk,T∗

k |M(du, dv) .

In the same way,

1 − FTk|M(y) ≤ 1 − (y − xk) +
∫

1u−v>xk
PTk,T∗

k |M(du, dv) .

Consequently, taking y = FXk
(tk),

E
(
|1Tk≤FXk

(tk) − 1T∗
k ≤FXk

(tk)|
∣
∣M

)
≤ xk +

∫
1|u−v|>xk

PTk,T∗
k |M(du, dv),

(5.1.9)
and Inequality (5.1.5) follows from (5.1.9) and (5.1.8) by taking the supremum
in t and the expectation. Let s, t ∈ R

d. In the same way, applying (5.1.7) to

Z = (Z(1), Z(2)) = (X,Y ), Z∗ = (X∗, Y ∗), U = M and

f(z(1), z(2)) = (1z(1)≤s − FX(s))(1z(2)≤t − FY (t)) ,
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we obtain that

|E((1X≤s −FX(s))(1Y≤t − FY (t))
∣
∣M) − E((1X≤s − FX(s))(1Y≤t − FY (t)))|

≤
d∑

k=1

E
(
|1Xk≤sk

− 1X∗
k≤sk

|
∣
∣M

)
+

d∑

k=1

E
(
|1Yk≤tk − 1Y ∗

k ≤tk |
∣
∣M

)
,

and we conclude the proof of (5.1.6) by using the same arguments as for (5.1.5). �

5.2 Covariance inequalities

In this section we present some covariance inequalities for the coefficients γ1, β̃
and φ̃. We begin with the weakest of those coefficients.

5.2.1 A covariance inequality for γ1

Definition 5.1. Let X,Y be real valued random variables. Denote by
– QX the generalized inverse of the tail function HX : x �→ P(|X | > x).
– GX the inverse of x �→

∫ x
0
QX(u)du.

– HX,Y the generalized inverse of x �→ E(|X |1|Y |>x).

Proposition 5.2. Let (Ω,A,P) be a probability space and M be a σ-algebra of
A. Let X be an integrable random variable and Y be an M-measurable random
variable such that |XY | is integrable. The following inequalities hold

|E(Y X)| ≤
∫ ‖E(X|M)‖1

0

HX,Y (u)du ≤
∫ ‖E(X|M)‖1

0

QY ◦GX(u)du . (5.2.1)

If furthermore Y is integrable, then

|Cov(Y,X)| ≤
∫ γ1(M,X)

0

QY ◦GX−E(X)(u)du ≤ 2
∫ γ1(M,X)/2

0

QY ◦GX(u)du . (5.2.2)

Combining Proposition 5.2 and the comparison results (2.2.13), (2.2.18) and
Item 2. of Lemma 5.1, we easily derive covariance inequalities for θ1, τ1 and α̃.

Proof of Proposition 5.2. We start from the inequality

|E(Y X)| ≤ E(|Y E(X |M)|) =
∫ ∞

0

E
(
|E(X |M)

∣
∣1|Y |>t

)
dt.

Clearly we have that E
(
|E(X

∣
∣M
)
|1|Y |>t) ≤ ‖E(X |M)‖1 ∧E(|X |1|Y |>t). Hence

|E(Y X)|≤
∫ ∞

0

(∫ ‖E(X|M)‖1

0

1u<E(|X|1|Y |>t)
du
)
dt ≤

∫ ‖E(X|M)‖1

0

(∫ ∞

0

1t<HX,Y (u)dt
)
du,
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and the first inequality in (5.2.1) is proved. In order to prove the second one we
use Fréchet’s inequality (1957) [88]:

E(|X |1|Y |>t) ≤
∫

P(|Y |>t)

0

QX(u)du. (5.2.3)

We infer from (5.2.3) that HX,Y (u) ≤ QY ◦ GX(u), which yields the second
inequality in (5.2.1).

We now prove (5.2.2). The first inequality in (5.2.2) follows directly from
(5.2.1). To prove the second one, note that QX−E(X) ≤ QX + ‖X‖1 and conse-
quently ∫ x

0

QX−E(X)(u)du ≤
∫ x

0

QX(u)du + x‖X‖1 . (5.2.4)

Set R(x) =
∫ x
0 QX(u)du − x‖X‖1. Clearly, R′ is non-increasing over ]0, 1],

R′(ε) ≥ 0 for ε small enough and R′(1) ≤ 0.
We infer that R is first non-decreasing and next non-increasing, and that

for any x ∈ [0, 1], R(x) ≥ min(R(0), R(1)). Since
∫ 1

0
QX(u)du = ‖X‖1, we have

that R(1) = R(0) = 0 and we infer from (5.2.4) that

∫ x

0

QX−E(X)(u)du ≤
∫ x

0

QX(u)du + x‖X‖1 ≤ 2
∫ x

0

QX(u)du .

This implies GX−E(X)(u) ≥ GX(u/2) which concludes the proof of (5.2.2). �
Combining Proposition 5.2 and the comparison results (2.2.13), (2.2.18) and
Item 2. of Lemma 5.1, we easily derive covariance inequalities for θ1, τ1 and α̃.

Corollary 5.1. Let (Ω,A,P) be a probability space. Let X be a real valued
integrable random variable, and M be a σ−algebra of A. We have that

|Cov(Y,X)| ≤ 2
∫ α̃(M,X)

0

QY (u)QX(u)du . (5.2.5)

Proof of Corollary 5.1. To prove (5.2.5), put z = GX(u) in the second integral
of (5.2.2), and we use the results of comparison (2.2.13), (2.2.18) and Item 2. of
Lemma 5.1. �

5.2.2 A covariance inequality for β̃ and φ̃

Proposition 5.3. Let X and Y be two real-valued random variables on the
probability space (Ω,A,P). Let FX|Y : t �→ PX|Y (] − ∞, t]) be a distribution
function of X given Y and let FX be the distribution function of X. Define the
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random variable b(σ(Y ), X) = supx∈R
|FX|Y (x) − FX(x)|. For any conjugate

exponents p and q, we have the inequalities

|Cov(Y,X)| ≤ 2{E(|X |pb(σ(X), Y ))} 1
p {E(|Y |qb(σ(Y ), X))} 1

q (5.2.6)

≤ 2φ̃(σ(X), Y )
1
p φ̃(σ(Y ), X)

1
q ‖X‖p‖Y ‖q . (5.2.7)

Remark 5.2. Inequality (5.2.6) is a weak version of that of Delyon (1990)
[57] (see also Viennet (1997) [185], Lemma 4.1) in which appear two random
variables b1(σ(Y ), σ(X)) and b2(σ(X), σ(Y )) each having mean β(σ(Y ), σ(X)).
Inequality (5.2.7) is a weak version of that of Peligrad (1983) [139], where the
dependence coefficients are φ(σ(Y ), σ(X)) and φ(σ(X), σ(Y )).

Proof of Proposition 5.3. We start from the equality

Cov(Y,X) =
∫ ∞

0

∫ ∞

0

Cov(1X>x − 1X<−x,1Y >y − 1Y <−y) dx dy . (5.2.8)

Since ‖b(σ(Y ), X)‖∞ = φ̃(σ(Y ), X), we only need to prove (5.2.6). Here, note
that the value of b(σ(Y ), X) does not change if we replace FX|Y (x) and FX(x)
by PX|Y (] − ∞, x[) and PX(] − ∞, x[) respectively. Consequently, the following
inequalities hold:

∣
∣E(1X>x1Y >y − P(X > x)P(Y > y))

∣
∣

≤ E
(
1Y >yb(σ(Y ), X)

)
∧ E
(
1X>xb(σ(X), Y )

)

∣
∣E(1X<−x1Y >y − P(X < −x)P(Y > y))

∣
∣

≤ E
(
1Y >yb(σ(Y ), X)

)
∧ E
(
1X<−xb(σ(X), Y )

)

∣
∣E(1X>x1Y <−y − P(X > x)P(Y < −y))

∣
∣

≤ E
(
1Y <−yb(σ(Y ), X)

)
∧ E
(
1X>xb(σ(X), Y )

)

∣∣E(1X<−x1Y <−y − P(X < −x)P(Y < −y))
∣∣

≤ E
(
1Y <−yb(σ(Y ), X)

)
∧ E
(
1X<−xb(σ(X), Y )

)
.

Since a1 ∧ b1 + a1 ∧ b2 + a2 ∧ b1 + a2 ∧ b2 ≤ 2(a1 + a2) ∧ (b1 + b2), we infer from
(5.2.8) that

|Cov(Y,X)| ≤ 2
∫ ∞

0

∫ ∞

0

E(1|X|>xb(σ(X), Y )) ∧ E(1|Y |>yb(σ(Y ), X)) dx dy .

(5.2.9)



5.2. COVARIANCE INEQUALITIES 113

Let β1 = β̃(σ(X), Y ) and β2 = β̃(σ(Y ), X). Note β1 (or β2) is 0 if and only if
X is independent of Y , and then (5.2.6) is true in that case. Otherwise, let Pβ1 ,
Pβ2 be the probabilities with density b(σ(X), Y )/β1 and b(σ(Y ), X)/β2 with
respect to P. The inequality (5.2.9) writes

|Cov(Y,X)| ≤ 2
∫ ∞

0

∫ ∞

0

β1Pβ1(|X | > x) ∧ β2Pβ2(|Y | > y) dx dy . (5.2.10)

Let Qβ1,X et Qβ2,Y be the generalized inverse of x �→ Pβ1(|X | > x) and y �→
Pβ2(|Y | > y). Starting from (5.2.10), we have successively

|Cov(Y,X)| ≤ 2
∫ ∞

0

∫ ∞

0

∫ β1∧β2

0

1u<β1Pβ1(|X|>x)1u<β2Pβ2(|Y |>y) du dx dy

≤ 2
∫ ∞

0

∫ ∞

0

∫ β1∧β2

0

1Qβ1,X (u/β1)>x1Qβ2,Y (u/β2)>y du dx dy

≤ 2
∫ β1∧β2

0

Qβ1,X(u/β1)Qβ2,Y (u/β2) du .

Applying Hölder’s inequality, and setting s = u/β1 and t = u/β2, we obtain

|Cov(Y,X)| ≤ 2
(∫ 1

0

β1Q
p
β1,X

(s) ds
)1/p (∫ 1

0

β2Q
q
β2,Y

(t) dt
)1/q

.

To complete the proof of (5.2.6), note that, by definition of Qβ1,X ,
∫ 1

0

β1Q
p
β1,X

(s) ds = E(|X |pb(σ(X), Y )) . �

Corollary 5.2. Let f1, f2, g1, g2 be four increasing functions, and let f = f1−f2
et g = g1 − g2. For any random variable Z, let Δp(Z) = infa∈R ‖Z − a‖p and
Δp,σ(X),Y (Z) = infa∈R(E(|Z−a|pb(σ(X), Y )))1/p. For any conjugate exponents
p and q, we have the inequalities

|Cov(g(Y ), f(X))| ≤ 2
{
Δp,σ(X),Y (f1(X)) + Δp,σ(X),Y (f2(X))

}

×
{
Δq,σ(Y ),X(g1(Y )) + Δq,σ(Y ),X(g2(Y ))

}
,

|Cov(g(Y ), f(X))| ≤ 2φ(σ(X), Y )
1
pφ(σ(Y ), X)

1
q

×
{
Δp(f1(X)) + Δp(f2(X))

}{
Δq(g1(Y )) + Δq(g2(Y ))

}
.

In particular, if μ is a signed measure with total variation ‖μ‖ and f(x) =
μ(] − ∞, x]), we have

|Cov(Y, f(X))| ≤ ‖μ‖E(|Y |b(σ(Y ), X)) ≤ φ̃(σ(Y ), X)‖μ‖ ‖Y ‖1 . (5.2.11)
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Proof of Corollary 5.2. For the two first inequalities, note that, for any a1, a2,
b1, b2,

|Cov(g(Y ), f(X))| ≤ |Cov(g1(Y ) − b1, f1(X) − a1)|
+|Cov(g1(Y ) − b1, f2(X) − a2)|
+|Cov(g2(Y ) − b2, f1(X) − a1)|
+|Cov(g2(Y ) − b2, f2(X) − a2)| .

the functions f1 − a1, f2 − a2, g1 − b1, g2 − b2 being nondecreasing, we infer that
b(σ(fi(X)), gj(Y ) − bj) ≤ E(b(σ(X), Y )|σ(fi(X))) almost surely. Now, apply
(5.2.6) and (5.2.7), and take the infimum over a1, b1, a2, b2.
To show (5.2.11), we take q = 1 and p = ∞. Let μ = μ+ − μ− be the Jordan
decomposition of μ.
We have f(x) = f1(x) − f2(x), with f1(x) = μ+(] − ∞, x]) and f2(x) = μ−(] −
∞, x]). To conclude, apply the preceding inequalities and note that ‖μ‖ =
μ+(R) + μ−(R) and Δ1,σ(Y ),X(Y ) ≤ E(|Y |b(σ(Y ), X)), 2Δ∞(f1(X)) ≤ μ+(R),
and 2Δ∞(g1(X)) ≤ μ−(R). �

5.3 Coupling

There exist several methods to obtain limit theorems for sequences of dependent
random variables. One of the most popular and useful is the coupling of the
initial sequence with an independent one. The main result in Section 5.3.1
is a coupling result (Dedecker and Prieur (2004) [45]) allowing to replace a
sequence of τ1−dependent random variables by an independent one, having the
same marginals. Moreover, a variable in the newly constructed sequence is
independent of the past of the initial one and it is close, for the L1 norm, to the
variable having the same rank. The price to pay to replace the initial sequence
by an independent one depends on the τ1−dependence properties of the initial
sequence.
Various approaches to coupling have been developed by different authors. We
refer to a recent paper by Merlevède and Peligrad (2002) [130] for a survey on
the various coupling methods and their applications. The approach used in this
chapter lies on the quantile transform of Major (1978) [126]. It has been used
for strongly mixing sequences by Rio (1995) [159] and Peligrad (2002) [140] to
obtain a coupling result in L

1.
In Section 5.3.2, the coupling result of Section 5.3.1 is generalized to the case
of variables with values in any Polish space X .
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5.3.1 A coupling result for real valued random variables

The main result of this section is a coupling result for the coefficient τ1, which
appears to be the appropriate coefficient for coupling in L

1.
We first recall the nice coupling properties known for the usual mixing coeffi-
cients. Berbee (1979) [16] and Goldstein (1979) [96] proved: if Ω is rich enough,
there exists a random variable X∗ distributed as X and independent of M
such that P(X �= X∗) = β(M, σ(X)). For the mixing coefficient α(M, σ(X)),
Bradley (1983) [29] proved the following result: if Ω is rich enough, then for
each 1 ≤ p ≤ ∞ and each λ < ‖X‖p, there exists X∗ distributed as X and
independent of M such that

P(|X −X∗| ≥ λ) ≤ 18
(

‖X‖p
λ

)p/(2p+1)

(α(M, σ(X)))2p/(2p+1) .

For the weaker coefficient α̃(M, X), Rio (1995, 2000) [159, 160] obtained the
following upper bound, which is not directly comparable to Bradley’s: if X
belongs to [a, b] and if Ω is rich enough, there exists X∗ independent of M and
distributed as X such that ‖X −X∗‖1 ≤ (b− a)α̃(M, X). This result has then
been extended by Peligrad (2002) [140] to the case of unbounded variables.
Recall that the random variable X∗ appearing in the results by Rio (1995, 2000)
[159, 160] and Peligrad (2002) [140] is based on Major’s quantile transformation
(1978) [126]. X∗ has the following remarkable property: ‖X − X∗‖1 is the
infimum of ‖X − Y ‖1 where Y is independent of M and distributed as X .
Starting from the exact expression ofX∗, Dedecker and Prieur (2004) [45] proved
that τ1(M, X) is the appropriate coefficient for the coupling in L

1 (see Lemma
5.2 below).

Lemma 5.2. Let (Ω,A,P) be a probability space, X an integrable real-valued
random variable, and M a σ-algebra of A. Assume that there exists a random
variable δ uniformly distributed over [0, 1], independent of the σ-algebra gener-
ated by X and M. Then there exists a random variable X∗, measurable with
respect to M ∨ σ(X) ∨ σ(δ), independent of M and distributed as X, such that

‖X −X∗‖1 = τ1(M, X). (5.3.1)

This coupling result is a useful tool to obtain suitable inequalities, to prove
various limit theorems and to obtain upper bounds for β̃(M, X) (see Dedecker
and Prieur (2004) [48]).

Remark 5.3. From Berbee’s lemma and Lemma 5.2 above, we see that both
β(M, σ(X)) and τ1(M, X) have a property of optimality: they are equal to the
infimum of E(d0(X,Y )) where Y is independent of M and distributed as X, for
the distances d0(x, y) = 1x 	=y and d0(x, y) = |x− y| respectively.
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Proof of Lemma 5.2. We first construct X∗ using the conditional quantile
transform of Major (1978), see (5.1.3) in the proof of Lemma 5.1. The choice of
this transform is due to its property to minimize the distance between X and
X∗ in L

1(R).
We recall equality (5.1.4):

‖X −X∗‖1 = E

(∫ 1

0

|F−1
M (u) − F−1(u)|du

)
. (5.3.2)

For two distribution functions F and G, denote by M(F,G) the set of all prob-
ability measures on R × R with marginals F and G. Define

d(F,G) = inf
{∫

|x− y|μ(dx, dy)
/
μ ∈ M(F,G)

}
,

and recall that (see Dudley (1989) [80], Section 11.8, Problems 1 and 2 page
333)

d(F,G) =
∫

R

|F (t) −G(t)|dt =
∫ 1

0

|F−1(u) −G−1(u)|du . (5.3.3)

On the other hand, Kantorovich and Rubinstein (Theorem 11.8.2 in Dudley
(1989) [80]) have proved that

d(F,G) = sup
{∣∣
∣
∫
fdF −

∫
fdG

∣∣
∣
/
f ∈ Λ(1)(R)

}
. (5.3.4)

Combining (5.1.4), (5.3.3) and (5.3.4), we have that

‖X −X∗‖1 = E

(
sup
{∣∣
∣
∫
fdFM −

∫
fdF

∣
∣
∣
/
f ∈ Λ(1)(R)

})
,

and the proof of Lemma 5.2 is complete. �

5.3.2 Coupling in higher dimension

We show that the coupling properties of τ1 described in the previous section
remain valid when X is any Polish space. This is due to a conditional version
of the Kantorovich Rubinstein Theorem (Theorem 5.1).

Lemma 5.3. Let (Ω,A,P) be a probability space, M a σ-algebra of A and X
a random variable with values in a Polish space (X , d). Assume that

∫
d(x, x0)

PX(dx) is finite for some (and therefore any) x0 ∈ X . Assume that there exists a
random variable δ uniformly distributed over [0, 1], independent of the σ-algebra
generated by X and M. Then there exists a random variable X∗, measurable
with respect to M ∨ σ(X) ∨ σ(δ), independent of M and distributed as X, such
that

τp(M, X) = ‖E(d(X,X∗)|M)‖p. (5.3.5)
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We first need some notations. We denote P(Ω) the set of probability measures
on a space Ω and define

Y(Ω,A,P;X ) =
{
μ ∈ P(Ω × X ),A ⊗ BX

/
∀A ∈ A, μ(A× X ) = P(A)

}
.

Recall that every μ ∈ Y(Ω,A,P;X ) is disintegrable, that is, there exists a
(unique, up to P-a.s. equality) A∗

μ-measurable mapping ω �→ μω, Ω → P(X ),
such that

μ(f) =
∫

Ω

∫

X
f(ω, x) dμω(x) dP(ω)

for every measurable f : Ω×X → [0,+∞] (see Valadier (1973) [184]). Moreover,
the mapping ω �→ μω can be chosen A-measurable. If X is endowed with the
distance d, let denote

Y d,1(Ω,A,P;X ) =
{
μ ∈ Y

/ ∫

Ω×X
d(x, x0) dμ(ω, x) < ∞

}
,

where x0 is some fixed element of X (this definition is independent of the choice
of x0). For any μ, ν ∈ Y, let D(μ, ν) be the set of probability laws π on Ω×X×X
such that π(·×·×X ) = μ and π(·×X ×·) = ν. We now define the parametrized
versions of Δ(d)

KR and Δ(d)
L . Set, for μ, ν ∈ Y d,1,

Δ(d)
KR(μ, ν) = inf

π∈D(μ,ν)

∫

Ω×X×X
d(x, y) dπ(ω, x, y).

Let also Λ(1) denote the set of measurable integrands f : Ω ×X → R such that
f(ω, ·) ∈ Λ(1) ∩ L

∞ for every ω ∈ Ω. We denote

Δ(d)
L (μ, ν) = sup

f∈Λ(1)
(μ(f) − ν(f)) .

We now state the parametrized Kantorovich-Rubinstein Theorem of Dedecker,
Prieur and Raynaud De Fitte (2004) [47], which is the main tool to prove the
coupling result of Lemma 5.3. The proof of that theorem mainly relies on ideas
contained in Rüschendorf (1985) [171].

Theorem 5.1. (Parametrized Kantorovich–Rubinstein Theorem) Let
μ, ν ∈ Y d,1(Ω,A,P;X ) and let ω �→ μω and ω �→ νω be disintegrations of μ and
ν respectively.

1. Let G : ω �→ Δ(d)
KR(μω, νω) = Δ(d)

L (μω , νω) and let A∗ be the universal
completion of A. There exists an A∗–measurable mapping ω �→ λω from
Ω to P(X × X ) such that λω belongs to D(μω , νω) and

G(ω) =
∫

X×X
d(x, y) dλω(x, y).
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2. The following equalities hold:

Δ(d)
KR(μ, ν) =

∫

Ω×X×X
d(x, y) dλ(ω, x, y) = Δ(d)

L (μ, ν),

where λ is the element of Y(Ω,A,P;X × X ) defined by λ(A × B × C) =∫
A
λω(B × C) dP(ω) for any A in A, B and C in BX . In particular,

λ belongs to D(μ, ν), and the infimum in the definition of Δ(d)
KR(μ, ν) is

attained for this λ.

Remark 5.4. This theorem is proved in a more general frame in Dedecker,
Prieur and Raynaud De Fitte (2004) [47]. It also allows more general coupling
results when working with more general cost functions than the metric d of X .

Proof of Lemma 5.3. First notice that the assumption that
∫
d(x, x0)PX(dx) <

∞ for some x0 ∈ X means that the unique measure of Y(Ω,A,P;X × X ) with
disintegration PX|M(., ω) belongs to Y d,1(Ω,A,P;X ). We now prove that if Q
is any element of Y d,1(Ω,A,P;X ), there exists a σ(δ) ∨ σ(X) ∨ X−measurable
random variable Y such that Q• is a regular conditional probability of Y given
M, and

E
(
d(X,Y )

∣∣M
)

= sup
f∈Λ(1)∩L∞

∣
∣∣
∫
f(x)PX|M(dx) −

∫
f(x)Q•(dx)

∣
∣∣ P-a.s.

(5.3.6)
Applying (5.3.6) with Q = P ⊗ PX , we get the result of Lemma 5.3. �
Proof of Equation (5.3.6). We apply Theorem 5.1 to the probability space
(Ω,M,P) and to the disintegrated measures μω(·) = PX|M(·, ω) and νω = Qω.
From point 1 of Theorem 5.1 we infer that there exists a mapping ω �→ λω
from Ω to P(X × X ), measurable for M∗ and BP(X×X ), such that λω belongs
to D(PX|M(·, ω), Qω) and G(ω) =

∫
X×X d(x, y)λω(dx, dy). On the measurable

space (M, T ) = (Ω × X × X ,M∗ ⊗ BX ⊗ BX ) we put the probability

π(A×B × C) =
∫

A

λω(B × C)P(dω) .

If I = (I1, I2, I3) is the identity on M, we see that a regular conditional distribu-
tion of (I2, I3) given I1 is P(I2,I3)|I1=ω = λω. Since PX|M(·, ω) is the first margin
of λω , a regular conditional probability of I2 given I1 is PI2|I1=ω(·) = PX|M(·, ω).
Let λω,x = PI3|I1=ω,I2=x be a regular conditional distribution of I3 given (I1, I2),
so that (ω, x) �→ λω,x is measurable for M∗ ⊗ BX and BP(X ). From the unicity
(up to P-a.s. equality) of regular conditional probabilities, it follows that

λω(B × C) =
∫

B

λω,x(C)PX|M(dx, ω) P-a.s. (5.3.7)
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Assume that we can find a random variable Ỹ from Ω to X , measurable for
σ(U) ∨ σ(X) ∨ M∗ and BX , such that PỸ |σ(X)∨M∗(·, ω) = λω,X(ω)(·). Since
ω �→ PX|M(·, ω) is measurable for M∗ and BP(X ), one can check that PX|M is
a regular conditional probability of X given M∗. For A in M∗, B and C inBX ,
we thus have

E
(
1A1X∈B1Ỹ ∈C

)
= E

(
1AE

(
1X∈BE

(
1Ỹ ∈C |σ(X) ∨ M∗) |M∗))

=
∫

A

(∫

B

λω,x(C)PX|M(dx, ω)
)

P(dω)

=
∫

A

λω(B × C)P(dω) .

We infer that λω is a regular conditional probability of (X, Ỹ ) given M∗. By
definition of λω , we obtain that

E
(
d(X, Ỹ )|M∗

)
= sup
f∈Λ(1)∩L∞

∣
∣
∣
∫
f(x)PX|M(dx) −

∫
f(x)Q•(dx)

∣
∣
∣ P-a.s.

(5.3.8)
As X is Polish, there exists a σ(δ) ∨ σ(X) ∨ M-measurable modification Y of
Ỹ , so that (5.3.8) still holds for E(d(X,Y )|M∗). We obtain (5.3.6) by noting
that E (d(X,Y )|M∗) = E (d(X,Y )|M) P-a.s. It remains to build Ỹ . Since X
is Polish, there exists a one to one map f from X to a Borel subset of [0, 1],
such that f and f−1 are measurable for B([0, 1]) and BX . Define F (t, ω) =
λω,X(ω)(f−1([0, t])). The map F (·, ω) is a distribution function with generalized
inverse F−1(·, ω) and the map (u, ω) �→ F−1(u, ω) is B([0, 1]) ⊗ M∗ ∨ σ(X)-
measurable. Let T (ω) = F−1(δ(ω), ω) and Ỹ = f−1(T ). It remains to see that
PỸ |σ(X)∨M∗(·, ω) = λω,X(ω)(·). For any A in M∗, B in BX and t in R, we have

E
(
1A1X∈B1Ỹ ∈f−1([0,t])

)
=
∫

A

1X(ω)∈B1δ(ω)≤F (t,ω)P(dω).

Since δ is independent of σ(X)∨M, it is also independent of σ(X)∨M∗. Hence

E
(
1A1X∈B1Ỹ ∈f−1([0,t])

)
=

∫

A

1X(ω)∈BF (t, ω)P(dω)

=
∫

A

1X(ω)∈Bλω,X(ω)(f−1([0, t]))P(dω).

Since {f−1([0, t])/t ∈ [0, 1]} is a separating class, the result follows. �

5.4 Exponential and Moment inequalities

The first theorem of this section extends Bennett’s inequality for independent
sequences to the case of τ1-dependent sequences. For any positive integer q,
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we obtain an upper bound involving two terms: the first one is the classical
Bennett’s bound at level λ for a sum

∑n
i=1 ξi of independent variables ξi such

that Var (
∑n

i=1 ξi) = vq and ‖ξi‖∞ ≤ qM , and the second one is equal to
nλ−1 τq(q+1). Using Item 2. of Lemma 5.1, we obtain the same inequalities as
those established by Rio (2000) [161] for strongly mixing sequences. This is not
surprising, we follow the proof of Rio and we use Lemma 5.2 instead of Rio’s
coupling lemma. Note that the same approach has been previously used by
Bosq (1993) [26], starting from Bradley’s coupling lemma (1983) [29]. Theorem
5.2 and Theorem 5.3 below are due to Dedecker and Prieur (2004) [45].

5.4.1 Bennett-type inequality

Theorem 5.2. Let (Xi)i>0 be a sequence of real-valued random variables such
that ‖Xi‖∞ ≤ M , and Mi = σ(Xk, 1 ≤ k ≤ i). Let Sk =

∑k
i=1(Xi − E(Xi))

and Sn = max1≤k≤n |Sk|. Let q be some positive integer, vq some nonnegative
number such that

vq ≥ ‖Xq[n/q]+1 + · · · +Xn‖2
2 +

[n/q]∑

i=1

‖X(i−1)q+1 + · · · +Xiq‖2
2 .

and h the function defined by h(x) = (1 + x) log(1 + x) − x.

1. For λ > 0, P(|Sn| ≥ 3λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM

vq

))
+
n

λ
τ1,q(q + 1).

2. For λ ≥ Mq,

P(Sn ≥ (1q>1 + 3)λ) ≤ 4 exp
(
− vq

(qM)2
h
(λqM

vq

))
+
n

λ
τ1,q(q + 1) .

Proof of Theorem 5.2. We proceed as in Rio (2000) [161] page 83. For 1 ≤
i ≤ [n/q], define the variables Ui = Siq − Siq−q and U[n/q]+1 = Sn − Sq[n/q].
Let (δj)1≤j≤[n/q]+1 be independent random variables uniformly distributed over
[0, 1] and independent of (Ui)1≤j≤[n/q]+1. We apply Lemma 5.2: For any
1 ≤ i ≤ [n/q] + 1, there exists a measurable function Fi such that U∗

i =
Fi(U1, . . . , Ui−2, Ui, δi) satisfies the conclusions of Lemma 5.2, with M = σ(Ul,
l ≤ i− 2). The sequence (U∗

i )1≤j≤[n/q]+1 has the following properties:

a. For any 1 ≤ i ≤ [n/q] + 1, the random variable U∗
i is distributed as Ui.

b. The variables (U∗
2i)2≤2i≤[n/q]+1 are independent and so are the variables

(U∗
2i−1)1≤2i−1≤[n/q]+1.

c. Moreover ‖Ui − U∗
i ‖1 ≤ τ1(σ(Ul, l ≤ i− 2), Ui).
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Since for 1 ≤ i ≤ [n/q] we have τ1(σ(Ul, l ≤ i− 2), Ui) ≤ qτ1,q(q + 1), we infer
that

for 1 ≤ i ≤ [n/q], ‖Ui − U∗
i ‖1 ≤ qτ1,q(q + 1) (5.4.1)

and ‖U[n/q]+1 − U∗
[n/q]+1‖1 ≤ (n− q[n/q])τ1,n−q[n/q](q + 1) .

Proof of 1. Clearly

|Sn| ≤
[n/q]+1∑

i=1

|Ui − U∗
i |+
∣
∣
∣
([n/q]+1)/2∑

i=1

U∗
2i

∣
∣
∣+
∣
∣
∣
[n/q]/2+1∑

i=1

U∗
2i−1

∣
∣
∣. (5.4.2)

Combining (5.4.1) with the fact that τ1,n−q[n/q](q + 1) ≤ τ1,q(q + 1), we obtain

P

( [n/q]+1∑

i=1

|Ui − U∗
i | ≥ λ

)
≤ n

λ
τ1,q(q + 1) . (5.4.3)

The result follows by applying Bennett’s inequality to the two other sums in
(5.4.2). The proof of the second item is omitted. It is similar to the proof of
Theorem 6.1 in Rio (2000) [161], page 83, for α-mixing sequences.

Proceeding as in Theorem 5.2, we establish Fuk-Nagaev type inequalities
(see Fuk and Nagaev (1971) [89]) for sums of τ1-dependent sequences. Applying
Item 2. of Lemma 5.1, we obtain the same inequalities (up to some numerical
constant) as those established by Rio (2000) [161] for strongly mixing sequences.

Notations 5.1. For any non-increasing sequence (δi)i≥0 of nonnegative num-
bers, define δ−1(u) =

∑
i≥0 1u<δi = inf{k ∈ N/δk ≤ u}. Note that δ−1 is the

generalized inverse (see (2.2.14)) of the càdlàg function x �→ δ[x], [·] denoting
the integer part.

Theorem 5.3. Let (Xi)i>0 be a sequence of centered and square integrable
random variables, and define (Mi)i>0 and Sn as in Theorem 5.2. Let X be
some positive random variable such that QX ≥ supk≥1Q|Xk| and

s2n =
n∑

i=1

n∑

j=1

|Cov(Xi, Xj)| .

Let R = ((τ/2)−1 ◦G−1
X )QX and S = R−1. For any λ > 0 and r ≥ 1,

P(Sn ≥ 5λ) ≤ 4
(
1 +

λ2

rs2n

)−r/2
+

4n
λ

∫ S(λ/r)

0

QX(u)du. (5.4.4)
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Proof of Theorem 5.3. Let q be any positive integer, and M > 0. As for the
proof of Theorem 5.2 we define Ui = Siq − Siq−q , for 1 ≤ i ≤ [n/q]. We also
define U i = (Ui ∧ qM)∨ (−qM). Let ϕM (x) = (|x| −M)+. Following the proof
of Rio (2000) [161] for strongly mixing sequences, we first prove that

Sn ≤ max
1≤j≤[n/q]

|
j∑

i=1

U i| + qM +
n∑

k=1

ϕM (Xk) . (5.4.5)

To prove (5.4.5), we just have to notice that, if Sn = Sk0 , then for j0 = [k0/q],

Sn ≤ |
j0∑

i=1

U i| +
j0∑

i=1

|Ui − Ui| +
k0∑

k=j0+1

|Xk| , (5.4.6)

and then, as ϕM is convex, that

j0∑

i=1

|Ui − U i| ≤
qj0∑

k=1

ϕM (Xk), (5.4.7)

and, by definition of ϕM , that

k0∑

k=j0+1

|Xk| ≤ (k0 − qj0)M +
k0∑

k=j0+1

ϕM (Xk). (5.4.8)

Now, to be able to apply Theorem 5.2, we need to center the variables U i. Then
as the random variables Ui are centered, we get

max
1≤j≤[n/q]

|
j∑

i=1

U i| ≤ max
1≤j≤[n/q]

|
j∑

i=1

(U i − E(U i))| +
[n/q]∑

i=1

E(|Ui − U i|)

≤ max
1≤j≤[n/q]

|
j∑

i=1

(U i − E(U i))| +
n∑

k=1

E(ϕM (Xk)) ,

using the convexity of ϕM . Hence we have proved that

Sn ≤ max
1≤j≤[n/q]

|
j∑

i=1

(U i − E(U i))| + qM +
n∑

k=1

(E(ϕM (Xk)) + ϕM (Xk)). (5.4.9)

Let us now choose the size q of the blocks and the constant of truncation M .
Let v = S(λ/r), q = (τ/2)−1 ◦G−1

X (v) and M = QX(v). Clearly, we have that
qM = R(v) = R(S(λ/r)) ≤ λ/r. Since M = QX(v),

P

( n∑

k=1

(E(ϕM (Xk)) + ϕM (Xk)) ≥ λ
)
≤ 2n

λ

∫ v

0

QX(u)du . (5.4.10)
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We are now interested in the term P

(
max1≤j≤[n/q] |

∑j
i=1(U i − E(U i))| ≥ 3λ

)
.

We apply Theorem 5.2 to the sequence (U i − E(U i))i∈Z with n′ = [n/q] and
q′ = 1. We have U i = h(Ui) where h : R → R is a Lipschitz function such
that Lip (h) ≤ 1. Hence, we have τ1(σ(U l, l ≤ i− 2), U i) ≤ qτ1,q(q + 1). Since
s2n ≥ ‖U1‖2

2 + · · · + ‖U [n/q]‖2
2 we obtain:

P

(
max

1≤j≤[n/q]

∣
∣
∣
j∑

i=1

(U i−E(U i))
∣
∣
∣ ≥ 3λ

)
≤ 4
(
1+

λ2

rs2n

)−r/2
+
n

λ
τ1,∞(q+1). (5.4.11)

To conclude, let us notice that the choice of q implies that τ1,∞(q + 1) ≤
2
∫ v
0
QX(u)du. Hence, since qM ≤ λ, combining (5.4.11), (5.4.10) and (5.4.9),

we get the result. �

5.4.2 Burkholder’s inequalities

The next result extends Theorem 2.5 of Rio (2000) [161] to non-stationary se-
quences.

Proposition 5.4. Let (Xi)i∈N be a sequence of centered and square integrable
random variables, and Mi = σ(Xj , 0 ≤ j ≤ i). Define Sn = X1 + · · · +Xn and

bi,n = max
i≤l≤n

∥
∥
∥Xi

l∑

k=i

E(Xk|Mi)
∥
∥
∥
p/2

.

For any p ≥ 2, the following inequality holds

‖Sn‖p ≤
(
2p

n∑

i=1

bi,n

)1/2

. (5.4.12)

Proof. We proceed as in Rio (2000) [161] pages 46-47. For any t in [0, 1] and
p ≥ 2, let hn(t) = ‖Sn−1 + tXn‖pp. Our induction hypothesis at step n−1 is the
following: for any k < n

hk(t) ≤ (2p)p/2
(k−1∑

i=1

bi,k + tbk,k

)p/2
.

This assumption is true at step 1. Assuming that it holds for n − 1, we have
to check it at step n. Setting G(i, n, t) = Xi(tE(Xn| Mi) +

∑n−1
k=i E(Xk| Mi))

and applying Theorem (2.3) in Rio (2000) with ψ(x) = |x|p, we get

hn(t)
p2

≤
n−1∑

i=1

∫ 1

0

E
(
|Si−1+sXi|p−2G(i, n, t)

)
ds+

∫ t

0

E(|Sn−1+sXn|p−2X2
n)ds .

(5.4.13)
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Note that the function t → E(|G(i, n, t)|p/2) is convex, so that for any t in
[0, 1], E(|G(i, n, t)|p/2) ≤ E(|G(i, n, 0)|p/2) ∨ E(|G(i, n, 1)|p/2) ≤ b

p/2
i,n . Applying

Hölder’s inequality, we obtain

E
(
|Si−1+sXi|p−2G(i, n, t)

)
≤ (hi(s))(p−2)/p ‖G(i, n, t)‖p/2 ≤ (hi(s))(p−2)/p bi,n .

This bound together with (5.4.13) and the induction hypothesis yields

hn(t) ≤ p2
(n−1∑

i=1

bi,n

∫ 1

0

(hi(s))(p−2)/pds+ bn,n

∫ t

0

(hn(s))(p−2)/pds
)

≤ p2
(n−1∑

i=1

(2p)
p
2−1bi,n

∫ 1

0

( i∑

j=1

bj,n + sbi,n

) p
2−1

ds+ bn,n

∫ t

0

(hn(s))1−
2
p ds
)
.

Integrating with respect to s we find

bi,n

∫ 1

0

( i∑

j=1

bj,n + sbi,n

) p
2−1

ds =
2
p

( i∑

j=1

bj,n

) p
2 − 2

p

(i−1∑

j=1

bj,n

) p
2
,

and summing in j we finally obtain

hn(t) ≤
(
2p

n−1∑

j=1

bj,n

) p
2

+ p2bn,n

∫ t

0

(hn(s))1−
2
p ds . (5.4.14)

Clearly the function u(t) = (2p)p/2(b1,n + · · · + tbn,n)p/2 solves the equation
associated to Inequality (5.4.14). A classical argument ensures that hn(t) ≤ u(t)
which concludes the proof.

Corollary 5.3. Let (Xi)i∈N and (Mi)i∈N be as in Proposition 5.4. Define
γ1,i = sup

k≥0
γ1(Mk, Xi+k), α̃i = sup

k≥0
α̃(Mk, Xi+k) and φ̃i = sup

k≥0
φ̃(Mk, Xi+k).

1. Let X be any random variable such that QX ≥ supk≥1QXk
, and let

γ−1
1,n(u) =

∑n
k=0 1u≤λ1,k

and α̃−1
n (u) =

∑n
k=0 1u≤α̃k

. For p ≥ 2 we have
the inequalities

‖Sn‖p ≤
√

2pn
(∫ ‖X‖1

0

(γ−1
1,n(u))p/2Qp−1

X ◦GX(u)du
)1/p

≤
√

2pn
(∫ 1

0

(α̃−1
n (u))p/2QpXdu

)1/p

.

2. Let Mq = supk≥1 ‖Xi‖q. For q ≥ p ≥ 2 we have the inequality

‖Sn‖p ≤ 2
(
pMqMqp/(2q−p)

n−1∑

k=0

(n− k)φ̃(q−1)/q
k

)1/2

.
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Proof of 1. Let r = p/(p− 2). By duality there exists an Mi-mesurable Y such
that ‖Y ‖r = 1, and

bi,n ≤
n∑

k=i

E(|Y XiE(Xk|Mi)|) .

Let λi = GX(γ1,i). Applying (5.2.1) and Fréchet’s inequality (1957) [88], we
obtain

bi,n ≤
n∑

k=i

∫ γ1,k−i

0

QYXi ◦GX(u)du ≤
n∑

k=i

∫ λk−i

0

QY (u)Q2
X(u)du .

Using the duality once more, we get

b
p/2
i,n ≤

∫ 1

0

( n∑

k=0

1u≤λk

)p/2
QpX(u)du =

∫ ‖X‖1

0

(γ−1
1,n(u))p/2Qp−1

X ◦GX(u)du .

The first inequality follows. To prove the second one, note that λk ≤ α̃k.

Proof of 2. First, note that bi,n ≤
n∑

k=i

‖XiE(Xk| Mi)‖p/2. Let r = p/(p − 2).

By duality, there exist a Mi-measurable variable Y such that ‖Y ‖r = 1 and

‖XiE(Xk| Mi)‖p/2 = |Cov(Y Xi, Xk)| .

Applying inequality (5.2.7), and next Hölder’s inequality, we obtain that

‖XiE(Xk| Mi)‖p/2 ≤ 2φ̃(q−1)/q
k−i ‖Y Xi‖q/(q−1)‖Xk‖q ≤ 2MqMqp/(2q−p)φ̃

(q−1)/q
k−i .

The result follows. �

5.4.3 Rosenthal inequalities using Rio techniques

We suppose that the sequence (Xn)n∈N fulfills the following covariance inequal-
ity,

|Cov(f(X1, . . . , Xn), g(X1, . . . , Xn))| ≤
∑

i∈I

∑

j∈J
‖ ∂f
∂xi

‖∞‖ ∂g
∂xj

‖∞ |Cov(Xi, Xj)| ,

(5.4.15)
for all real valued functions f and g defined on R

n having bounded first differ-
entials and depending respectively on (xi)i∈I and on (xi)i∈J where I and J are

disjoints subsets of N. Sequences fulfilling (5.4.15) with sup
i∈I

‖ ∂f
∂xi

‖∞ < ∞ and

sup
j∈J

‖ ∂g
∂xj

‖∞ are κ-dependent with κ(r) = sup
|i−j|≥r

|Cov(Xi, Xj)| , they are also
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ζ-dependent with ζ(r) = sup
i∈N

∑

{j/ |i−j|≥r}
|Cov(Xi, Xj)| .

Our task in this section, is to extend Doukhan and Portal (1983) [73] method in
order to provide moment bounds of order r, where r is any positive real number
not less than two. The main result of this paragraph is the following theorem.

Theorem 5.4. Let r > 2 be a fixed real number. Let (Xn) be a strictly sta-
tionary sequence of centered r.v’s fulfilling (5.4.15). Suppose moreover that this
sequence is bounded by M . Then there exists a positive constant Cr depending
only on r, such that

E|Sn|r ≤ Cr

(

srn +
n∑

k=1

k−1∑

i=0

M r−2(i+ 1)r−2|Cov(X1, X1+i)|
)

, (5.4.16)

where s2n := n
∑n
i=0 |Cov(X1, X1+i)|.

Theorem 5.4 gives, in particular, a unifying Rosenthal-type inequality for at
least two models: associated or negatively associated processes.
An immediate consequence of Theorem 5.4 is the following Marcinkiewicz-
Zygmund bound.

Corollary 5.4. Let r > 2 be a fixed real number. Let (Xn) be a strictly sta-
tionary sequence of centered r.v’s bounded by M and fulfilling (5.4.15). Suppose
that

|Cov(X1, X1+i)| = O(i−r/2), as i → +∞. (5.4.17)

Then
E|Sn|r = O(nr/2). (5.4.18)

For bounded associated sequences, condition (5.4.17) is shown to be optimal for
the Marcinkiewicz-Zygmund bound (5.4.18) (cf. Birkel (1988) [22]).

Proof of Theorem 5.4. The method is a generalization of the Lindeberg de-
composition to an order r > 2. This method was first developed by Rio (1995)
[158] for mixing sequences and for r ∈]2, 3]. The restriction to sequences ful-
filling the bound (5.4.15) is only for the sake of clarity and the method can be
adapted successfully to other dependent sequences (cf. Proposition 5.5 below).
We give here the great lines of the proof and we refer to Louhichi (2003) [125]
for more details.
Let p ≥ 2 be a fixed integer. Let Φp be the class of functions φ : R

+ → R
+ such

that φ(0) = φ′(0) = · · · = φ(p−1)(0) = 0 and φ(p) is non decreasing and concave.
Let φ be a function of the set Φp. Theorem 5.4 is proved if we suitably control
Eφ(|Sn|) (since the function x �→ xr, for r ∈]p, p + 1] is one of those functions
φ). Such a control will be done into the following steps.
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Step 1. The purpose of Step 1 is to reduce the control of Eφ(|Sn|) to that
of a suitable polynomial function of |Sn|. For this, define gp : R

+ × R → R
+ by,

gp(t, x) :=
1

(p+ 1)!
[
xp+110≤x≤t + (xp+1 − (x− t)p+1)1t<x

]
, (5.4.19)

for any x ≥ 0 and gp(t, x) = gp(t,−x). The following lemma is a generalization
of Equality (4.3) of Rio (1995) [158], which was written for p = 2.

Lemma 5.4. Let p ≥ 2 be a fixed integer. Let φ ∈ Φp. Suppose that φ(p+1)

exists and that limx→∞ φ(p+1)(x) = 0. Then

φ(x) =
∫ +∞

0

gp(t, x)νp(dt),

where νp is the Stieltjes measure of −φ(p+1)
p defined by νp(dt) = −dφ(p+1)(t).

Lemma 5.4 reduces then the estimation of Eφ(|Sn|) to that of Egp(t, Sn).

Step 2. The purpose of Step 2 is then to give bounds of Ef(Sn), for real-valued
functions f belonging to a suitable set containing the functions x → gp(t, x).
For this, we denote by Cp the class of real-valued, p times continuously dif-
ferentiable functions f such that f(0) = · · · = f (p)(0) = 0. Let Fp(b1, b2) be
the subclass of Cp+1 such that ‖f (p)‖∞ ≤ b1 and that ‖f (p+1)‖∞ ≤ b2, where
‖f (i)‖∞ = supx∈R

|f (i)(x)| and f (i) is the differential of order i of f .
In this step, we give an estimation of Ef(Sn), for f ∈ Fp(b1, b2). Let us note
that the function gp as defined by (5.4.19) belongs to the set Fp(t, 1)
We first exhibit the mains terms of our calculations.
Notations. We denote by

∑
(p−2) the sum over i1, . . . , ip−2 such that 0 := i0 ≤

i1 ≤ · · · ≤ ip−2 ≤ k − 1, that is
∑

0≤i1≤···≤ip−2≤k−1. We define

Ep−2,k(Δf) = sup
0≤u≤1

∑

(p−2)

∣∣EXkXk−i1 · · ·Xk−ip−2Δp−2,k(f, u)
∣∣ ,

where

Δp−2,k(f) := Δp−2,k(f, u) =
[
f(Sk−ip−2−1 + uXk−ip−2) − f(Sk−ip−2−1)

]

= uXk−ip−2

∫ 1

0

f
′ (
Sk−ip−2−1 + uvXk−ip−2

)
dv.

We set for p ≥ 2,

Ep−2,k(f) =
∑

(p−2)

|EXkXk−i1 · · ·Xk−ip−2f(Sk−ip−2−1)|.
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Finally, recall that i0 = 0, E0,k(f) = |EXkf(Sk−1)| and that

E0,k(Δf) = sup
0≤u≤1

|EXkΔ0,k(f, u)|.

For any real-valued function f of the set Fp(b1, b2), the quantity |E(f(Sn))| is
evaluated by means of the main terms Ep−2,k(f (p−1)) and Ep−2,k(Δf (p−1)) as
shows the following lemma.

Lemma 5.5. Let p ≥ 2 be a fixed integer. Let (Xn) be a sequence of r.v’s
fulfilling (5.4.15), centered and bounded by M . There exists a positive constant
Cp depending only on p, such that for any f ∈ Fp(b1, b2),

|E(f(Sn))| ≤ Cp

{

spn(b1 ∧ b2sn) + (b1 ∧ b2M)Mp−2
n∑

k=1

k−1∑

i=0

|Cov(Xk, Xk−i)|

+
n∑

k=1

Ep−2,k(f (p−1)) +
n∑

k=1

Ep−2,k(Δf (p−1))

}

.

From now Cp denotes a positive constant depending only on p and that will be
different from line to line.
Evaluation of the main terms Ep−2,k(f) and Ep−2,k(Δf). The object of this
step is to evaluate the main terms Ep−2,k(f) and Ep−2,k(Δf) of Lemma 5.5.
This evaluation involves the following covariance quantities:

Mm,n := Mm−2
n∑

k=1

k−1∑

i=0

(i+ 1)m−2|Cov(X1, Xi+1)|, for 2 ≤ m ≤ p, (5.4.20)

Mm,n(b1, b2) :=
n∑

k=1

k−1∑

r=0

(b1 ∧ b2(r + 1)M)(r + 1)m−2Mm−2|Cov(X1, Xr+1)|.

(5.4.21)
Let us note that M2,n is close to Var Sn and that M2,n = nVarX1 in the i.i.d.
case. Those covariance quantities satisfy the following analogous of Hölder’s
inequality:

Mm,nMr−m,n ≤ s2r/(r−2)
n M (r−4)/(r−2)

r,n ≤ srn +Mr,n, (5.4.22)

for any r > 4, 2 < m < r. We now state the basic technical lemma of the proof
of Theorem 5.4.

Lemma 5.6. Let f be a real valued function of the set F1(b1, b2). Let (Xn) be
a centered sequence of random variables fulfilling (5.4.15). Suppose that (Xn)
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is uniformly bounded by M . Then, for any integer p ≥ 2, there exists a positive
constant Cp depending only on p, for which

n∑

k=1

Ep−2,k(Δf) +
n∑

k=1

Ep−2,k(f) (5.4.23)

≤ Cp

{

spn(b1 ∧ b2sn) +
p−2∑

m=2

Mm,nMp−m,n(b1, b2) +Mp,n(b1, b2)

}

,

where the sum
∑p−2

m=2 equals to 0, whenever p ∈ {2, 3}.

End of the proof of Theorem 5.4. Finally, we combine the three previous steps
in order to finish the proof of Theorem 5.4. Let us explain. We first make use
of Lemma 5.4, together with Fubini’s theorem, to obtain,

Eφ(|Sn|) =
∫ +∞

0

Egp(t, Sn) νp(dt). (5.4.24)

We recall that the functions x �→ gp(t, x) and x �→ g
(p−1)
p (t, x) belong respec-

tively to Fp(t, 1) and to F1(t, 1) (in fact if f ∈ Fp(t, 1), then f (p−1) ∈ F1(t, 1)).
Hence we deduce, applying Lemma 5.5 to the function x �→ gp(t, x) and Lemma
5.6 to the function x �→ g

(p−1)
p (t, x),

Egp(t, Sn) ≤ Cp

{
p−2∑

m=2

Mm,nMp−m,n(t, 1) +Mp,n(t, 1) + spn(t ∧ sn)
}

. (5.4.25)

Taking into account Lemma 5.4 and the fact g(p)(x) = x ∧ t, we deduce that

φ(p)(x) =
∫ +∞

0

(t ∧ x)νp(dt). (5.4.26)

Inequalities (5.4.24), (5.4.25) and (5.4.26) yield:

Eφ(|Sn|) ≤ Cp

{
spnφ

(p)(sn)

+
n∑

k=1

k−1∑

i=0

(M(i+ 1))p−2φ(p)(M(i+ 1))|Cov(X1, X1+i)| (5.4.27)

+
p−2∑

m=2

Mm,n

( n∑

k=1

k−1∑

i=0

(M(i+ 1))p−m−2φ(p)(M(i+ 1))|Cov(X1, X1+i)|
)}
.

Now, we use the concavity property of the function φ(p),

φ(x) =
xp

(p− 1)!

∫ 1

0

(1 − t)p−1φ(p)(tx)dt ≥ xpφ(p)(x)
∫ 1

0

t(1 − t)p−1

(p− 1)!
dt,
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to deduce that
xpφ(p)(x) ≤ Cpφ(x). (5.4.28)

We conclude, combining inequalities (5.4.27) and (5.4.28),

Eφ(|Sn|) ≤ Cp

{
n∑

k=1

k−1∑

i=0

(M(i + 1))−2φ(M(i + 1))|Cov(X1, X1+i)| + φ(sn)

+

p−2∑

m=2

Mm,n

(
n∑

k=1

k−1∑

i=0

(M(i + 1))−m−2φ(M(i + 1))|Cov(X1, X1+i)|
)}

The last inequality applied to φ(x) = xr, for r ∈]p, p+ 1], leads to

E|Sn|r ≤ Cr

{
n∑

k=1

k−1∑

i=0

(M(i + 1))r−2|Cov(X1, X1+i)| + sr
n +

p−2∑

m=2

Mm,nMr−m,n

}

.

The proof of Theorem 5.4 is now complete, using the last inequality together
with (5.4.22) (recall that M2,n ≤ s2n). �

In the case where the sequence (Xn)n∈N∗ is θ−dependent, the proof of the
inequalities of Theorem 5.4 can be adapted. We then get a variation of the
technical proof of Theorem 5.4 written just above. Hence it will be omitted
here. Let us state the inequalities we obtained in the case where (Xn)n∈N∗ is
θ−dependent.

Proposition 5.5. Let r be a fixed real number > 2. Let (Xn) be a stationary
sequence of θ1,∞−dependent centered random variables. Suppose moreover that
this sequence is bounded by 1. Let Sn := X1 + X2 + · · · + Xn, for n ≥ 1 and
S0 = X0 = 0. Then there exists a positive constant Cr depending only on r,
such that

E|Sn|r ≤ Cr (s̃rn +Mr,n) , (5.4.29)

where Mr,n := n
∑n−1

i=0 (i+ 1)r−2θ(i), and s̃2n := M2,n = n
∑n−1

i=0 θ(i).

We refer to Prieur (2002) [155] for a detailed proof of Proposition 5.5.

5.4.4 Rosenthal inequalities for τ1-dependent sequences

We give here a corollary of Theorem 5.3.

Corollary 5.5. Let (Xi)i>0 be a sequence of centered random variables belong-
ing to L

p for some p ≥ 2. Define (Mi)i>0, Sn, QX and sn as in Theorem 5.3.
Recall that τ−1 has been defined in Notations 5.1. We have

‖Sn‖pp ≤ aps
p
n + nbp

∫ ‖X‖1

0

((τ/2)−1(u))p−1Qp−1
X ◦GX(u)du ,
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where ap = 4p5p(p + 1)p/2 and (p − 1)bp = 4p5p(p + 1)p−1. Moreover we have
that

s2n ≤ 4n
∫ ‖X‖1

0

(τ/2)−1(u)QX ◦GX(u)du .

Proof of Corollary 5.5. It suffices to integrate (5.4.4) (as done in Rio (2000)
[161] page 88) and to note that

∫ 1

0

Q(u)(R(u))p−1(u)du =
∫ ‖X‖1

0

((τ/2)−1(u))p−1Qp−1
X ◦GX(u)du .

The bound for s2n holds with θ1,1 instead of τ1,∞ (see Dedecker and Doukhan
(2002) [43]).

5.4.5 Rosenthal inequalities under projective conditions

We recall two moment inequalities given in Dedecker (2001) [42]. We use these
inequalities in Chapter 10 to prove the tightness of the empirical process for α̃,
β̃ and φ̃ dependent sequences.

Proposition 5.6. Let (Xi)i∈Z be a stationary sequence of centered and square
integrable random variables and let Sn = X1 + · · ·+Xn. Let Mi = σ(Xj , j ≤ i).
The following upper bound holds

‖Sn‖p ≤ (pnV∞)1/2 +
(
3p2n

(
‖X3

0‖p/3 +M1(p) +M2(p) +M3(p)
))1/3

,

where VN = E(X2
0 ) + 2

N∑

k=1

|E(X0Xk)| and

M1(p) =
+∞∑

l=1

l−1∑

m=0

‖X0XmE(Xl+m| Mm)‖p/3

M2(p) =
+∞∑

l=1

+∞∑

m=l

‖X0E(XmXl+m − E(XmXl+m)| M0)‖p/3

M3(p) =
1
2

+∞∑

k=1

‖X0E(X2
k − E(X2

k)| M0)‖p/3 .

Proposition 5.7. We keep the same notations as in Proposition 5.6. For any
positive integer N , the following upper bound holds

‖Sn‖p ≤ (pn (VN−1 + 2M0(p)))1/2+
(
3p2n

(
‖X3

0‖p/3+M̃1(p)+M̃2(p)+M3(p)
))1/3

,
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where

M0(p) =
+∞∑

l=N

‖X0E(Xl| M0)‖p/2

M̃1(p) =
N−1∑

l=1

l−1∑

m=0

‖X0XmE(Xl+m| Mm)‖p/3

M̃2(p) =
N−1∑

l=1

+∞∑

m=l

‖X0E(XmXl+m − E(XmXl+m)| M0)‖p/3 .

5.5 Maximal inequalities

Our first result is an extension of Doob’s inequality for martingales. This max-
imal inequality is stated in the nonstationary case.

Proposition 5.8. Let (Xi)i∈Z be a sequence of square-integrable and centered
random variables, adapted to a nondecreasing filtration (Fi)i∈Z. Let λ be any
nonnegative real number and Gk = (S∗

k > λ). We have

E((S∗
n − λ)2+) ≤ 4

n∑

k=1

E(X2
k1Gk

) + 8
n−1∑

k=1

‖Xk1Gk
E(Sn − Sk|Fk)‖1 .

Proof of Proposition 5.8. We proceed as in Garsia (1965) [90]:

(S∗
n − λ)2+ =

n∑

k=1

((S∗
k − λ)2+ − (S∗

k−1 − λ)2+). (5.5.1)

Since the sequence (S∗
k)k≥0 is nondecreasing, the summands in (5.5.1) are non-

negative. Now

((S∗
k − λ)+ − (S∗

k−1 − λ)+)((S∗
k − λ)+ + (S∗

k−1 − λ)+) > 0

if and only if Sk > λ and Sk > S∗
k−1. In that case Sk = S∗

k, whence

(S∗
k − λ)2+ − (S∗

k−1 − λ)2+ ≤ 2(Sk − λ)((S∗
k − λ)+ − (S∗

k−1 − λ)+).

Consequently

(S∗
n − λ)2+ ≤ 2

n∑

k=1

(Sk − λ)(S∗
k − λ)+ − 2

n∑

k=1

((Sk − λ)(S∗
k−1 − λ)+)

≤ 2(Sn − λ)+(S∗
n − λ)+ − 2

n∑

k=1

(S∗
k−1 − λ)+Xk.
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Noting that 2(Sn − λ)+(S∗
n − λ)+ ≤ 1

2
(S∗
n − λ)2+ + 2(Sn − λ)2+, we infer

(S∗
n − λ)2+ ≤ 4(Sn − λ)2+ − 4

n∑

k=1

(S∗
k−1 − λ)+Xk. (5.5.2)

In order to bound (Sn − λ)2+, we adapt the decomposition (5.5.1) and next we
apply Taylor’s formula:

(Sn − λ)2+ =
n∑

k=1

((Sk − λ)2+ − (Sk−1 − λ)2+)

= 2
n∑

k=1

(Sk−1 − λ)+Xk + 2
n∑

k=1

X2
k

∫ 1

0

(1 − t)1Sk−1+tXk>λdt.

Since 1Sk−1+tXk>λ ≤ 1S∗
k>λ

, it follows that

(Sn − λ)2+ ≤ 2
n∑

k=1

(Sk−1 − λ)+Xk +
n∑

k=1

X2
k1S∗

k>λ
. (5.5.3)

Hence, by (5.5.2) and (5.5.3)

(S∗
n − λ)2+ ≤ 4

n∑

k=1

(2(Sk−1 − λ)+ − (S∗
k−1 − λ)+)Xk + 4

n∑

k=1

X2
k1S∗

k>λ
.

Let D0 = 0 and Dk = 2(Sk − λ)+ − (S∗
k − λ)+ for k > 0. Clearly

Dk−1Xk =
k−1∑

i=1

(Di −Di−1)Xk.

Hence

(S∗
n − λ)2+ ≤ 4

n−1∑

i=1

(Di −Di−1)(Sn − Si) + 4
n∑

k=1

X2
k1S∗

k>λ
. (5.5.4)

Since the random variables Di −Di−1 are Fi-measurable, we have:

E((Di −Di−1)(Sn − Si)) = E((Di −Di−1)E(Sn − Si | Fi))
≤ E|(Di −Di−1)E(Sn − Si | Fi)|. (5.5.5)

It remains to bound |Di −Di−1|. If (S∗
i − λ)+ = (S∗

i−1 − λ)+, then

|Di −Di−1| = 2|(Si − λ)+ − (Si−1 − λ)+| ≤ 2|Xi|1S∗
i >λ

,
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because Di −Di−1 = 0 whenever Si ≤ λ and Si−1 ≤ λ. Otherwise Si = S∗
i > λ

and Si−1 ≤ S∗
i−1 < Si, which implies that

Di −Di−1 = (Si − λ)+ + (S∗
i−1 − λ)+ − 2(Si−1 − λ)+.

Hence Di −Di−1 belongs to [0, 2((Si − λ)+ − (Si−1 − λ)+) ]. In any case

|Di −Di−1| ≤ 2|Xi|1S∗
i >λ

,

which together with (5.5.4) and (5.5.5) implies Proposition 5.8. �
Consider the projection operators Pi: for any f in L

2, Pi(f) = E(f | Fi) −
E(f | Fi−1). Combining Proposition 5.8 and a decomposition due to McLeish,
we obtain the following maximal inequality.

Proposition 5.9. Let (Xi)i∈Z be a sequence of square-integrable and centered
random variables, and (Fi)i∈Z be any nondecreasing filtration. Define the σ-
algebras F−∞ =

⋂
i∈Z

Fi and F∞ = σ(
⋂
i∈Z

Fi). Define the random vari-
ables Sn = X1 + · · · + Xn and S∗

n = max{0, S1, . . . , Sn}. For any i in Z, let
(Yi,j)j≥1 be the martingale Yi,j =

∑j
k=1 Pk−i(Xk) and Y ∗

i,n = max{0, Yi,1, . . . ,
Yi,n}. Let λ be any nonnegative real number and G(i, k, λ) = {Y ∗

i,k > λ}. As-
sume that the sequence is regular: for any integer k, E(Xk|F−∞) = 0 and
E(Xk|F∞) = Xk. For any two sequences of nonnegative numbers (ai)i≥0 and
(bi)i≥0 such that K =

∑
a−1
i is finite and

∑
bi = 1 we have

E
(
(S∗
n − λ)2+

)
≤ 4K

∞∑

i=0

ai

( n∑

k=1

E(P 2
k−i(Xk)1G(i,k,biλ))

)
.

Proof of Proposition 5.9. Since the sequence is regular, we decompose

Xk =
+∞∑

i=−∞
Pk−i(Xk).

Consequently Sj =
∑

i∈Z

Yi,j and therefore: (Sj−λ)+ ≤
∑

i∈Z

(Yi,j−biλ)+. Applying

Hölder inequality and taking the maximum on both sides, we get

(S∗
n − λ)2+ ≤ K

∑

i∈Z

ai(Y ∗
i,n − biλ)2+.

Taking the expectation and applying Proposition 5.8 to the martingale
(Yi,n)n≥1, we obtain Proposition 5.9. �



Chapter 6

Applications of strong laws
of large numbers

We consider in this chapter a stochastic algorithm with weakly dependent input
noise (according to Definition 2.2). In particular, the case of γ1-dependence
is considered. The ODE (ordinary differential equation) method is generalized
to such situation. For this, we use tools for causal and non causal sequences
developed in the previous chapters. Illustrations to the linear regression frame
and to the law of large numbers for triangular arrays of weighted dependent
random variables are also given.

6.1 Stochastic algorithms with non causal de-

pendent input

We consider the R
d-valued stochastic algorithm, defined on a probability space

(Ω,A,P) and driven by the recurrence equation

Zn+1 = Zn + γnh(Zn) + ζn+1, (6.1.1)

where
• h is a continuous function from an open set G ⊆ R

d to R
d,

• (γn) a decreasing to zero deterministic real sequence satisfying
∑

n≥0

γn = ∞. (6.1.2)

• (ζn) is a “small” stochastic disturbance.
The ordinary differential equation (ODE) method associates (we refer for in-
stance to Benveniste et al. (1987) [15], Duflo (1996) [82], Kushner and Clark

135
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(1978) [114]) the possible limit sets of (6.1.1) with the properties of the associ-
ated ODE

dz

dt
= h(z). (6.1.3)

These sets are compact connected invariant and “chain-recurrent” in the Benäım
sense for the ODE (cf. Benäım (1996) [14]). These sets are more or less com-
plicated. Various situations may then happen. The most simple case is an
equilibrium : z is a solution of h(z) = 0, but equilibria cycle, or a finite set
of equilibria is linked to the ODE’s trajectories, connected sets of equilibria or,
periodic cycles for the ODE may also happen. . .
In order to use the ODE method, we suppose that (Zn) is a.s. bounded and

ζn+1 = cn(ξn+1 + rn+1), (6.1.4)

where (cn) denotes a nonnegative deterministic sequence such that

γn = O(cn),
∑

c2n < ∞, (6.1.5)

(ξn) and (rn) are R
d-valued sequences, defined on (Ω,A,P), and adapted with

respect to an increasing sequence of σ-fields (Fn)n≥0 and satisfying almost surely
(a.s.) on A ⊂ Ω,

∞∑

n=0

cnξn+1 < ∞ a.s. and (6.1.6)

lim
n→∞ rn = 0 a.s. (6.1.7)

The classical theory of algorithms is related to a noise (ξn) which is a martingale
difference sequence. Our aim is to replace this condition about the noise by
weakly dependence conditions as being introduced in Chapter 2.
In Section 6.1.1, we suppose that the sequence (ξn) is (Λ(1) ∩L

∞,Ψ)-dependent
according to Definition 2.2, where

Ψ(f, g) = C(df , dg)(Lip(f) + Lip(g)),

for some function C : N
∗ × N

∗ → R.
Various examples of this situation may be found in Chapter 3, they include
general Bernoulli shifts, stable Markov chains such as, ξt = G(ξt−1, . . . , ξt−p) +

ζt, ξt =
(
a0 +

∑
j≥1 ajξt−j

)
ζt generated by some i.i.d. sequence (ζt), or

ARCH(∞) models.
In Section 6.1.2 below, we consider a weakly dependent noise in the sense of the
γ1-weak coefficients of Dedecker and Doukhan (2003) [43] defined by (2.2.17).
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Note that (cf. Remark 2.5) a causal version of (F ,G,Ψ)-dependence implies
γ1-dependence, where the left hand side in definition of weak dependence writes
≤ C(v)Lip(g)ε(r). Counter-examples of γ1-dependent sequences which are not
θ-dependent may also be found there.

The notion of γ1-dependence is generalized to R
d valued sequences.

Proposition 6.1. The two following assertions are equivalent:
(i) A R

d-valued sequence (Xn) is γ1-dependent,
(ii) Each component (X�

n) (� = 1, . . . , d) of (Xn) is γ1- dependent.

Proof. Clearly, ‖E(X�
n+r−E(X�

n+r)|Fn)‖1 ≤ ‖E(Xn+r−E(Xn+r)|Fn)‖1, hence
(i) implies (ii). The second implication follows from,

‖E(Xn+r − E(Xn+r)|Fn)‖1 = E

√√√
√

d∑

�=1

(
E(X�

n+r − E(X�
n+r)|Fn)

)2
. �

The two forthcoming sections are devoted to provide moment inequalities of the
Marcinkiewicz-Zygmund type adapted to deduce the relation (6.1.6) in those two
frames. The following sections are devoted to study the examples of Robbins-
Monro and Kiefer-Wolfowitz algorithms and to obtain sufficient conditions for
the complete convergence of triangular arrays, extending on Chow (1966) [37].
Finally, the last section is devoted to the specific of the linear regression algo-
rithm with dependent entries. In [36], Chen (1985) has also studies this topic.
He works in a more general matrix valued framework. Assuming only the sta-
tionarity and the ergodicity of entries, he derives the a.s. convergence of the
algorithm. We get the same result with a γ1-dependence assumption, but this
assumption, more restrictive, allow us to reach, thanks to a moment technic, a
precise n−1/2-convergence rate.

6.1.1 Weakly dependent noise

Let (ξn) be a sequence of centered random variables. Let Sn be the sum
∑n
i=1 ξi

and Cq = maxu+v≤q C(u, v). Suppose that an analogous of the bounds (4.3.2)
and (4.3.3) are satisfied by the process ξ:

sup |Cov(ξt1 · · · ξtm , ξtm+1 · · · ξtq)| ≤ Cqq
γM q−2ε(r), (6.1.8)

where the supremum is taken over all {t1, . . . , tq} such that 1 ≤ t1 ≤ · · · ≤ tq,
and 1 ≤ m < q such that tm+1 − tm = r, or

|Cov(ξt1 · · · ξtm , ξtm+1 · · · ξtq )| ≤ (Cq ∨ 2)
∫ ε(r)∧1

0

Qξt1
(x) · · ·Qξtq

(x)dx. (6.1.9)
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Those bounds respectively imply moment inequalities in Theorems 4.2 and
4.3. Denoting Σn =

∑n
i=1 ci−1ξi, and using similar techniques as in § 4.3 (see

Doukhan and Louhichi (1999) [67]) one has,

Proposition 6.2. Let p ≥ 2 be some fixed integer and let (ξn) be a centered
sequence of real random variables such that (6.1.8) holds for all q ≤ p. Then
for n ≥ 2,

|EΣpn| ≤
(2p− 2)!
(p− 1)!

{(

Cpp
γMp−2

n∑

i=1

cpi−1

n−1∑

r=0

(r + 1)p−2ε(r)

)

∨
(

C22γ
n∑

i=1

c2i−1

n−1∑

r=0

ε(r)

)p/2⎫⎬

⎭
.

This result is mainly adapted to bounded sequences.

Proof of proposition 6.2. The proof is done in Brandière and Doukhan (2004)
[32]. We have, using arguments from Doukhan and Louhichi’s (1999) [67] as
done for the proof of Theorem 4.2,

E

(
n∑

i=1

ciξi

)p

≤ p!
∑

1≤t1≤···≤tp≤n
ct1 · · · ctp |E(ξt1 · · · ξtp)|. (6.1.10)

Denote Ap(n) =
∑

1≤t1≤···≤tp≤n ct1 · · · ctp |E(ξt1 · · · ξtp)|, so for any t2 ≤ tm ≤
tp−1,

Ap(n) ≤
∑

1≤t1≤···≤tp≤n
ct1 · · · ctp |E(ξt1 · · · ξtm)E(ξtm+1 · · · ξtp)|

+
∑

1≤t1≤···≤tp≤n
ct1 · · · ctp |Cov(ξt1 · · · ξtm , ξtm+1 · · · ξtp)|.

Denote

A1
p(n) =

∑

1≤t1≤···≤tp≤n
ct1 · · · ctp |E(ξt1 · · · ξtm)E(ξtm+1 . . . ξtp)|,

A2
p(n) =

∑

1≤t1≤···≤tp≤n
ct1 · · · ctp |cov(ξt1 · · · ξtm , ξtm+1 · · · ξtp)|.

Since the sequence (cn) is decreasing to 0, we deduce, as in Doukhan and
Louhichi (1999) [67],

A1
p(n) ≤ Am(n)Ap−m(n). (6.1.11)
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By (6.1.8) we obtain A2
p(n) ≤

∑n
t1=1 c

p
t1

∑n−1
r=0 Cpp

γMp−2(r + 1)p−2ε(r), and
the expression

∑n
i=1 c

p
i

∑n−1
r=0 Cpp

γMp−2(r + 1)p−2ε(r) = Vp(n), verifies, for

any integer 2 ≤ q ≤ p − 1 : Vq(n) ≤ V
q−2
p−2
p (n)V

p−q
p−2

2 (n). Now, Lemma 4.7
(see also Lemma 12 of Doukhan and Louhichi (1999) [67]) leads to Ap(n) ≤
1
p

(
2p− 2
p− 1

)
(V

p
2

2 (n) ∨ Vp(n)), hence

E

(
n∑

i=1

ciξi

)p

≤ (2p− 2)!
(p− 1)!

(V
p
2

2 (n) ∨ Vp(n)).

This ensures the result. �
The following result is appropriate to more general real-valued random variables
but require a moment assumption and a tail condition.

Proposition 6.3. Let p > 2 be a fixed integer and (ξn) be a centered sequence
of random variables. Assume that for all 2 < q ≤ p, Inequality (6.1.9) holds
with

Mq ≤ M
q−2
p−2
p M

p−q
p−2
2 (6.1.12)

and there exists a constant c > 0 such that

∃k > p, ∀i ≥ 0 : P(|ξi| > t) ≤ c

tk
. (6.1.13)

Then for n ≥ 2,

|EΣpn| ≤ (2p− 2)!
(p− 1)!

c1/k

{(

Mp

n∑

i=1

cpi−1

n−1∑

r=0

(r + 1)p−2ε(r)
k−p

k

)

∨
(

M2

n∑

i=1

c2i−1

n−1∑

r=0

ε(r)
k−2

k

)p/2⎫⎬

⎭
(6.1.14)

Note that (6.1.13) holds as soon as the ξn’s have a k-th order moment such that
supi≥0 E|ξi|k ≤ c.
Now we argue as in Billingsley (1968) [20]: if (6.1.8) holds for some p such that

{(

Cpp
γMp−2

n∑

i=1

cpi−1

n−1∑

r=0

(r + 1)p−2ε(r)

)

∨

⎛

⎝C22γ
n∑

i=1

c2i−1

n−1∑

r=0

ε(r)

)p/2⎫⎬

⎭
< ∞
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then for any t > 0, limn→∞ P(supk≥1 |Σn+k − Σn| > t) = 0. Thus (Σn) is a.s. a
Cauchy sequence, hence it converges. In the same way, if (6.1.9) holds for some
p such that
(

n∑

i=1

cpi−1

∞∑

r=0

(r + 1)p−2ε(r)
k−p

k

)

∨
(

n∑

i=1

c2i−1

n−1∑

r=0

ε(r)
k−2

k

)p/2

< ∞, (6.1.15)

then (Σn) converges with probability 1.

Proof of proposition 6.3. Using the same notations as in the previous proof,
by (6.1.9)

Vp(n) ≤ Mp

n∑

i=1

cpi

∫ 1

0

(ε−1(u) ∧ n)p−1Qpi (u)du,

where ε(u) = ε[u] ([u] denotes the integer part of u). Denote

Wp(n) = Mp

n∑

i=1

cpi

∫ 1

0

(ε−1(u) ∧ n)p−1Qpi (u)du.

If (6.1.12) is verified, then

Wq(n) ≤ W
q−2
p−2
p (n)W

p−q
p−2
2 (n),

which completes the proof. �

6.1.2 γ1−dependent noise

Let (ξn)n≥0 be a sequence of integrable real-valued random variables, and
(γ1(r))r≥0 be the associated mixingale-coefficients defined in (2.2.17). Then
the following moment inequality holds.

Proposition 6.4. Let p > 2 and (ξn)n∈N be a sequence of centered random
variables such that (6.1.13) holds. Then for any n ≥ 2,

|EΣpn| ≤

⎛

⎝2pK1

n∑

i=1

c
2− 2(k−p)

p(k−1)
i

n−1∑

j=0

γ1(j)
2(k−p)
p(k−1)

⎞

⎠

p/2

, (6.1.16)

where K1 depends on r, p and c.

Notice that here p ∈ R, and is not necessarily an integer. If now (6.1.16) holds
for some p such that

∞∑

i=1

c2−mi

∞∑

j=0

γ1(j)m < ∞, (6.1.17)



6.1. STOCHASTIC ALGORITHMS 141

where m = 2(k−p)
p(k−1) < 1, then (Σn) converges with probability 1. The result

extends to R
d. Indeed, if we consider a centered R

d-valued and γ1-dependent
sequence (ξn)n≥0, one has as previously

E‖Σn‖p = E

d∑

�=1

(
n∑

i=1

ciξ
�
i

)p

,

and if each component (ξ�n)n≥0 (� = 1, . . . , d) is γ1-dependent and verifies
(6.1.13) and (6.1.17), E‖Σn‖p < ∞ and we conclude as before that (Σn)n≥0

converges a.s.

Proof of proposition 6.4. Proceeding as in Dedecker and Doukhan (2003) [43],
we deduce

|E(Σpn)| ≤
(

2p
n∑

i=1

bi,n

) p
2

,

where

bi,n = max
i≤�≤n

∥
∥
∥∥
∥
ciξi

�−i∑

k=0

E(ci+kξi+k|Fi)
∥
∥
∥∥
∥

p
2

.

Let q = p/(p− 2), then there exists Y such that ‖Y ‖q = 1.
Applying Proposition 1 of Dedecker and Doukhan (2003) [43], we obtain

bi,n ≤
n−i∑

k=0

∫ γ1(k)

0

Q{Y ciξi} ◦G{ci+kξi+k}(u)du,

where GX is the inverse of x �→
∫ x
0 QX(u)du. Since G{ciξi}(u) = Gξi(

u
ci

) =
G( uci

), we get

bi,n ≤
n−i∑

k=0

∫ γ1(k)

0

Q{Y ciξi} ◦G
(

u

ci+k

)
du ≤

n−i∑

k=0

ci+k

∫ γ1(k)
ci+k

0

Q{Y ciξi} ◦G(u)du,

and the Fréchet inequality (1957) [88] yields

bi,n ≤
n−i∑

k=0

ci+k

∫ G(
γ1(k)
ci+k

)

0

QY (u)Q{ciξi}(u)Q(u)du

≤
n−i∑

k=0

cici+k

∫ 1

0

1{
u≤G(

γ1(k)
ci+k

)
}Q2(u)QY (u)du
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where Q = Qξi . Using Hölder’s inequality, we also obtain

bi,n ≤ ci

n−i∑

k=0

ci+k

(∫ 1

0

1{u≤G(
γ1(k)
ci+k

)}Q
p(u)du

) 2
p

.

By (6.1.13), Q(u) ≤ c
1
r u−

1
r and setting K = r−1

rc
1
r

yields

bi,n ≤ ci

n−i∑

k=0

ci+k

(∫ 1

0

1{
u≤G(

γ1(k)
ci+k

)
}c

p
r u−

p
r du

) 2
p

≤ ci

n−i∑

k=0

ci+k

(
K
γ1(k)
ci+k

) r
r−1 (1− p

r ) 2
p

.

Noting that (cn)n≥0 is decreasing, the result follows with K1 = K
2(r−p)
p(r−1) . �

Equip R
d with its p-norm ‖(x1, . . . , xd)‖pp = xp1 + · · · + xpd. Let (ξn)n≥0 be

an R
d-valued and (F ,Ψ)- dependent sequence. Set ξn = (ξ1n, . . . , ξdn) then

‖
∑n

i=1 ciξi‖
p

p =
∑d

�=1(
∑n

i=1 ciξ
�
i )
p. If each component (ξ�n)n≥0 is (F ,Ψ)-depen-

dent and such that a relation like (6.1.15) holds, then E‖Σn‖pp < ∞. Arguing as
before, we deduce that the sequence (Σn)n≥0 converges with probability 1. �

6.2 Examples of application

6.2.1 Robbins-Monro algorithm

The Robbins-Monro algorithm is used for dosage, to obtain level a of a function
f which is usually unknown. It is also used in mechanics, for adjustments, as
well as in statistics to fit a median (Duflo (1996) [82], page 50). It writes

Zn+1 = Zn − cn(f(Zn) − a) + cnξn+1, (6.2.1)

with
∑
cn = ∞ and

∑
c2n < ∞. It is usually assumed that the prediction error

(ξn) is an identically distributed and independent random variables, but this
does not look natural. Weak dependence seems more reasonable. Hence the
previous results, ensure the convergence a.s. of this algorithm, under the usual
assumptions and the conditions yielding the a.s. convergence of

∑n
0 cnξn+1.

Under the assumptions of Proposition 6.2, if for some integer p > 2

∞∑

r=0

(r + 1)p−2ε(r) < ∞, (6.2.2)
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then the algorithm (6.2.1) converges a.s.
If the assumptions of Proposition 6.3 hold, then the convergence a.s. of the
algorithm (6.2.1) is ensured as soon as, for some p > 2,

( ∞∑

r=0

(r + 1)p−2ε(r)
k−p

k

)

∨
( ∞∑

r=0

ε(r)
k−2

k

)

< ∞.

Under the assumptions of Proposition 6.4, as soon as (6.1.17) is satisfied, the
algorithm (6.2.1) converges with probability 1.

6.2.2 Kiefer-Wolfowitz algorithm

It is also a dosage algorithm. Here we want to reach the minimum z∗ of a real
function V which is C2 on an open set G of R

d. The Kiefer-Wolfowiftz algorithm
(Duflo (1996) [82], page 53) is stated as:

Zn+1 = Zn − 2cn∇V (Zn) − ζn+1 (6.2.3)

where ζn+1 = cn

bn
ξn+1 + cnb

2
nq(n,Zn), ‖q(n,Zn)‖ ≤ K (for some K > 0),

∑
cn = ∞,

∑
n cnb

2
n < ∞ and

∑
n(cn/bn)

2 < ∞ (for instance, cn = 1
n , bn = n−b

with 0 < b < 1
2 ).

Usually, the prediction error (ξn) is assumed to be i.i.d, centered, square inte-
grable and independent of Z0. The previous results improve on this assumption
until weakly dependent innovations. It is now enough to ensure the a.s. conver-
gence of

∑ cn

bn
ξn+1. The weak dependence assumptions are the same as for the

Robbins-Monro algorithm. Concerning the γ1-weak dependence, the condition
(6.1.17) is replaced by

∞∑

i=1

(
ci
bi

)2−m ∞∑

i=1

γ1(i)m < ∞.

6.3 Weighted dependent triangular arrays

In this section, we consider a sequence (ξi)i≥1 of random variables and a trian-
gular array of non-negative constant weights {(cni)1≤i≤n;n ≥ 1}. Let

Un =
n∑

i=1

cniξi.

If the ξi’s are i.i.d., Chow (1966) [37] has established the following complete
convergence result.
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Theorem (Chow (1966) [37]) Let (ξi)i be independent and identically dis-
tributed random variables with Eξi = 0 and E|ξi|q < ∞ for some q ≥ 2. If
for some constant K (non depending on n), n1/q max1≤i≤n |cni| ≤ K, and∑n
i=1 c

2
ni ≤ K then,

∀t > 0,
∞∑

n=1

P(n−1/q|Un| ≥ t) < ∞.

The last inequality is a result of complete convergence of n−1/q|Un| to 0. This
notion was introduced by Hsu and Robbins (1947) [109]. Complete convergence
implies the almost sure convergence from the Borel-Cantelli Lemma.
Li et al.(1995) [120] extend this result to arrays (cni){n≥1 i∈Z} for q = 2. Quote
also Yu (1990) [196], who obtains a result analogue to Chow’s for martingale
differences. Ghosal and Chandra (1998) [91] extend the previous results and
prove some similar results to these of Li et al.(1995) [120] for martingales differ-
ences. As in [120], their main tool is Hoffmann-Jorgensen Inequality (Hoffmann-
Jorgensen (1974) [107]). Peligrad and Utev (1997) [143] propose a central limit
theorem for partial sums of a sequence Un =

∑n
i=1 cniξi where supn c

2
ni < ∞,

max1≤i≤n |cni| → 0 as n → ∞ and ξi’s are in turn, pairwise mixing martingale
difference, mixing sequences or associated sequences. Mcleish (1975) [128], De
Jong (1996) [56], and, more recently Shinxin (1999) [177], extend the previous
results in the case of Lq-mixingale arrays. Those results have various applica-
tions. They are used for the proof of strong convergence of kernel estimators.
Li et al.(1995) [120] results are extended to our weak dependent frame. A
straightforward consequence of Proposition 6.3 is the following.

Corollary 6.1. Under the assumptions of Proposition 6.3, if q is an even in-
teger such that k > q > p, and if for some constant K, non depending on n
we assume that

∑n
i=1 c

2
n,i−1 < K, and if ε(r) = O(r−α), with α > ( q−1

k−q )k, or
ε(r) = O(e−r), then for all positive real number t,

∑

n

P(n−1/p|Un| ≥ t) < ∞.

Proof. Proposition 6.3 implies

E|Un|q ≤ (2q − 2)!
(q − 1)!

c1/k

((

Mq

n∑

i=1

cqn,n−i

n−1∑

r=0

(r + 1)q−2ε(r)(k−q)/k
)

∨
(

M2

(
n∑

i=1

c2n,n−i
n−1∑

r=0

ε(r)(k−2)/k)p/2
)

.

If
∑n

i=1 c
2
n,i−1 < K and ε(r) = O(r−α), with α > ( q−1

k−q )k, then there is some

K1 > 0 with E|Un|q < K1, ¿the result follows from P(n−1/p|Un| > t) ≤ E|Un|q
tqnq/p

.
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If
∑n

i=1 c
2
n,i−1 < K and ε(r) = O(e−θr), then E|Un|q < K2 for a real constant

K2 and
∑

n

P

(
n−1/p|Un| > t

)
< ∞. �

The following corollary is a direct consequence of proposition 6.4.

Corollary 6.2. Suppose that all the assumptions of Proposition 6.4 are satis-
fied. If q > p, k > q > 1, and

∑∞
i=1 c

2−n
ni

∑∞
j=0 γ1(j)m < ∞ where m = 2

q (
k−q
k−1 ),

then for any positive real number t,
∑

n

P(n−1/p|Un| ≥ t) < ∞.

Proof. We have from Proposition 6.4, E|Un|q ≤

⎛

⎝2qK1

n∑

i=1

c2−mni

n−1∑

j=0

γ1(j)m

⎞

⎠

q/2

.

Now the relation
∑∞

i=1 c
2−n
ni

∑∞
j=0 γ1(j)m < ∞ implies

∑

n

P(n−1/p|Un| > t) <

∞. This concludes the proof. �

6.4 Linear regression

We observe a stationary bounded sequence, (yn, xn) ∈ R × R
d, defined on a

probability space (Ω,A,P).
We look for the vector Z∗ which minimizes the linear prediction error of yn

with xn. We identify the R
d-vector xn and its column matrix in the canonical

basis. So
Z∗ = arg min

Z∈Rd
E[(yn − xTnZ)2].

This problem leads to study the gradient algorithm

Zn+1 = Zn + cn(yn+1 − xTn+1Zn)xn+1,

where cn = g
n with g > 0 (so (cn) verifies (6.1.2) and (6.1.5)). Let Cn+1 =

xn+1x
T
n+1, we obtain:

Zn+1 = Zn + cn(yn+1xn+1 − Cn+1Zn). (6.4.1)

Denote U = E(yn+1xn+1), C = E(Cn+1), Yn = Zn − C−1U and h(Y ) = −CY ,
then (6.4.1) becomes :

Yn+1 = Yn + cnh(Yn) + cnζn+1, with (6.4.2)
ζn+1 = (yn+1xn+1 − Cn+1C

−1U) + (C − Cn+1)Yn. (6.4.3)

Note that the solutions of (6.1.3) are the trajectories

z(t) = z0e
−Ct,
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so every trajectory converges to 0, the unique equilibrium point of the differen-
tiable function h (Dh(0) = −C and 0 is an attractive zero of h).
Denoting Fn = (σ(Yi) / i ≤ n), we also define the following assumption A-lr:
C is not singular, (Cn) and (yn, xn) are γ1-dependent sequences with γ1(r) =
O(ar) for a < 1.

Note that if (yn, xn)n∈N is θ1,1-dependent (see Definition 2.3) then A-lr is sat-
isfied. First, note that if a R

d-valued sequence (Xn) is θ1,1-dependent, any
R
j-valued sequence (j = 1, . . . , d − 1) (Yn) = (Xt1

n , . . . , X
tj
n ) is θ1,1-dependent.

So, if (yn, xn) is θ1,1-dependent, then so are (yn) and (xjn) (j = 1, . . . , d). Let f
a bounded 1-Lipschitz function, defined on R and g the function defined on R

2

by g(x, y) = f(xy). It is enough to prove that g is a Lipschitz function defined
on R

2.

|g(x, y) − g(x′, y′)|
|x− x′| + |y − y′| ≤ |xy − x′y′|

|x− x′| + |y − y′|

≤ |x||y − y′| + |y′||x− x′|
|x− x′| + |y − y′|

≤ max(|x|, |y′|),

and g is Lipschitz as soon as x and y are bounded. Thus, since (xn) and (yn)
are bounded, the result follows. �

Denoting M = supn ‖xn‖2, one has,

Proposition 6.5. Under Assumption A-lr (Yn) is a.s. bounded and the per-
turbation (ζn) of algorithm (6.4.2) splits into three terms of which two are γ1-
dependent and one is a rest leading to zero. So the ODE method assures the a.s
convergence of Yn to zero ( hence Z∗ = C−1U). Moreover if g < 1

2M then

√
nYn = O(1), a.s. (6.4.4)

Proof of Proposition 6.5. To start with, we prove that Yn → 0 a.s by assuming
that (Yn) is a.s bounded. Then we justify this assumption and finally we prove
(6.4.4).
The perturbation ζn+1 splits into two terms : (yn+1xn+1 − Cn+1C

−1U) and
(C − Cn+1)Yn. The first term is centered and obvious γ1-dependent with a
dependence coefficient γ1(r). Now γ1(r) = O(ar) thanks to Assumption A-lr.
It remains to study (C − Cn+1)Yn.
Study of (C − Cn+1)Yn: write (C − Cn+1)Yn = ξn+1 + rn+1 with
ξn+1 = (C−Cn+1)Yn−E[(C−Cn+1)Yn] and rn+1 = E[(C −Cn+1)Yn]. We will
prove that the sequence (ξn) is γ1-dependent with an appropriate dependent
coefficient and that limn→∞ rn = 0. Notice that
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rn+1 = E[(C − Cn+1)
n−1∑

j= n
2

(Yj+1 − Yj)] + E[(C − Cn+1)Yn
2
],

and since Yj+1 − Yj = −cjCj+1Yj + cj(yj+1xj+1 − Cj+1C
−1U), we obtain

rn+1 = E(C − Cn+1)Yn
2

−
n−1∑

j= n
2

E(C − Cn+1)cjCj+1Yj

+
n−1∑

j= n
2

E(C − Cn+1)cj(yj+1xj+1 − Cj+1C
−1U).

If n
2 is not an integer, we replace it by n−1

2 . In the same way, in the first sum
we replace Yj by

∑j−1
i=j/2(Yi+1 −Yi)+Yj/2 with the same remark as above if j/2

is not an integer. So

rn+1 =
n−1∑

j= n
2

E(C − Cn+1)cj(yj+1xj+1 − Cn+1C
−1U) + E(C − Cn+1)Yn

2

−
n−1∑

j= n
2

E(C−Cn+1)cjCj+1

⎡

⎣
j−1∑

i=j/2

−ciCi+1Yi + ci(yi+1xi+1 − Ci+1C
−1U) + Yj/2

⎤

⎦

Expectations conditionally with respect to Fj+1 of each term of the second sum
and with respect Fn

2
of the last term give, by assuming that (Yn) is bounded:

‖rn+1‖ ≤ ‖A‖ +K1

n−1∑

j= n
2

cjγ1(n+ 1 − j)γ1(j + 1) +K2γ1(n/2 + 1), (6.4.5)

where A denote the last sum of the previous representation of rn, and Ki (for
i = 1, 2, . . .) non-negative constants. Moreover,

A = −
n−1∑

j= n
2

E(C − Cn+1)cj(Cj+1 − C)[

×
j−1∑

i=j/2

−ciCi+1Yi + ci(yi+1xi+1 − Ci+1C
−1U)]

−
n−1∑

j= n
2

E(C − Cn+1)cj(Cj+1 − C)Yj/2
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+
n−1∑

j= n
2

E(C − Cn+1)cjC[
j−1∑

i=j/2

−ciCi+1Yi + ci(yi+1xi+1 − Ci+1C
−1U)]

+
n−1∑

j= n
2

E(C − Cn+1)cjCYj/2.

Expectations conditionally successively with respect to Fj+1 and Fi+1 of each
term of the first and the third sum and with respect Fj+1 then F j

2
of the second

and the fourth sum give, by assuming that (Yn) is bounded,

‖A‖ ≤ K3

n−1∑

j= n
2

cjγ1(n− j)
j−1∑

i=j/2

ciγ1(j − i) +K4

n−1∑

j= n
2

cjγ1(n− j)γ1(j/2).(6.4.6)

Since cj = g
j , (6.4.5) and (6.4.6) involve that rn is O(n−2), so rn converges to

zero. On the other hand, for r ≥ 6:

E(ξn+r |Fn) = E[(C − Cn+r)Yn+r−1|Fn] − E(ξn+r),

=
n+r−2∑

j=n+ r
2

E[(C − Cn+r)(Yj+1 − Yj)|Fn]

+ E[(C − Cn+r)Yn+ r
2
|Fn] − rn+r .

Note also that if r
2 is not an integer, we replace it by r+1

2 . Using the same
technics as above, we obtain

E‖E(ξn+r|Fn)‖

≤ K5

⎛

⎝
n+r−2∑

j=n+ r
2

cjγ1(n+ r − j − 1)
j−1∑

i=j/2

ciγ1(j − i) + γ1(r/2)

⎞

⎠+ O((n + r)−2)

hence,

E‖E(ξn+r |Fn)‖ ≤ O((n +
r

2
)−2) +K5γ1(

r

2
) + O((n+ r)−2),

and ‖E(ξn+r|Fn)‖1 = γ1(r), with γ1(r) = O(r−2). So (ξn) is γ1-dependent and
since (6.1.17) is satisfied, the ODE method may be used and Yn converges to 0
a.s.
Now we prove that Yn is a.s bounded. Let V (Y ) = Y TCY = ‖

√
CY ‖2. Since

C is not singular, V is a Lyapounov function and ∇V (Y ) = 2CY is a Lipschitz
function, so we have

V (Yn+1) ≤ V (Yn) + (Yn+1 − Yn)T∇V (Yn) +K6‖Yn+1 − Yn‖2.
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Furthermore ‖Yn+1 −Yn‖2 ≤ 2c2n(‖yn+1xn+1 −Cn+1C
−1U‖2 +2c2n‖Cn+1Yn‖2).

Since (yn, xn) is bounded, (Cn) and ‖yn+1xn+1−Cn+1C
−1U‖2 are also bounded.

Moreover
‖Cn+1Yn‖2 ≤ K7‖Yn‖2 ≤ K7

λmin(C)
V (Y )

where λmin(C) is the smallest eigenvalue of C. So

V (Yn+1) ≤ V (Yn)(1 +K8c
2
n) +K9c

2
n + 2(Yn+1 − Yn)TCYn.

The last term becomes

2(Yn+1 − Yn)TCYn = −2cn‖CYn‖2 + 2cn(yn+1xn+1 − Cn+1C
−1U)TCYn

+2cnY Tn (C − Cn+1)CYn,
≤ −2cn‖CYn‖2 + cnK10‖CYn‖ + 2cnY Tn (C − Cn+1)CYn
≤ −2cn‖CYn‖2 + cnK10‖CYn‖ + 2cnun+1V (Yn),

where un = max{XT
i (C −Cn)Xi 1 ≤ i ≤ d} and {X1, . . . , Xd} is an orthogonal

basis of unit eigenvectors of C.
We now obtain

V (Yn+1) ≤ V (Yn)(1 +K8c
2
n + 2cnun+1) (6.4.7)

+ K9c
2
n − cn(2‖CYn‖2 −K10‖CYn‖).

Note that under the assumption A-lr (un) is a γ1-dependent sequence with a
weakly dependent coefficient γ1(r) = O(ar) and

∑∞
n=0 cnun+1 < ∞.

If V (Yn) ≥ K2
10

4λmin(C) , then ‖CYn‖ ≥ K10/2 and −(2‖CYn‖2 −K10‖CYn‖) ≤ 0.

Denote T = inf{n / V (Yn) ≤ K2
10

4λmin(C)}. By the Robbins-Sigmund theorem,
V (Yn) converges a.s. to a finite limit on {T = +∞}, so (Yn) is bounded since
V is a Lyapounov function.
On {lim infn V (Yn) ≤ K2

10
4λmin(C)}, V (Yn) does not converge to ∞ and using

Theorem 2 of Delyon (1996) [58], we deduce that V (Yn) converges to a finite
limit, as soon as :

∀k > 0,
∑

c2n ‖h(Yn) + ζn+1‖2 1{V (Yn)<k} < ∞ (6.4.8)

∀k > 0,
∑

cn〈ζn+1,∇V (Zn)〉 1{V (Yn)<k} < ∞. (6.4.9)

Using relation
∑
c2n < ∞ and the fact that on {V (Yn) < k}, ‖h(Yn)+ ζn+1‖2 is

bounded, we deduce (6.4.8). To prove (6.4.9), it is enough, by Proposition 6.4, to
prove that 〈ζn+1,∇V (Yn)〉 1{V (Yn)<k} = en+1 is a γ1-dependent sequence with
a dependent coefficient satisfying (6.1.17). But to use the result of Proposition
6.4, it is necessary to center en+1. So we are going to prove that

∑
cnEen+1 < ∞
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and that (en+1−Een+1) is a γ1-dependent sequence with a dependent coefficient
γ1(r) equals to O(r−2).
Study of E(en+1). First of all, we must note a few elements. Denoting I the
unit matrix of R

d, Yn = (I − cn−1Cn)Yn−1 + cn−1(xnyn − CnC
−1U). Note

that λmax(Cn) = ‖xn‖2 ≤ M (λmax(Cn) =: the largest eigenvalue of Cn). For
n large enough cn−1M < 1 and (I − cn−1Cn) is not singular. So, if M1 =
supn{xnyn − CnC

−1U}, then we obtain

‖Yn−1‖ ≤ 1
1 − cn−1λ

(‖Yn‖ + cn−1M1) ≤ (1 + bcn−1)(‖Yn‖ ∧M1)

where b ≥ 0 does not depend on n. Moreover

V (Yn) < k =⇒ ‖Yn‖2 <
k

λmin(C)
,

and
‖Yn‖ < k′ =⇒ V (Yn) < λmax(C)k′2.

So that,
1{V (Yn)<k} = 1{‖Yn‖<kn} = 1{‖Yn−j‖<kn−j},

where
kn−j ≤ (1 + cn−1)j

(√
k

λmin(C) ∧M1

)
.

And since cn = g
n , for any 0 ≤ j ≤ n, (1 + acn−1)j is bounded independently

of n, so is kn−j . And E(en+1) = E(xn+1yn+1 − Cn+1C
−1U)TCYn1{V (Yn)<k} +

EY Tn (C − Cn+1)CYn1{V (Yn)<k}. We have,

E(en+1) =
n−1∑

j= n
2

E(yn+1xn+1 − Cn+1C
−1U)TC(Yj+1 − Yj) 1{‖Yj‖<kj}

+ E(yn+1xn+1 − Cn+1C
−1U)TCZn

2

+
n−1∑

j= n
2

E(Yj+1 − Yj)T (C − Cn+1)C(Yj+1 − Yj) 1{‖Yj‖<kj}

+ 2
n−1∑

j= n
2

n−2∑

i=j+1

E(Yj+1 − Yj)T (C − Cn+1)

×C(Yi+1 − Yi) 1{‖Yj‖<kj}∩{‖Yi‖≤ki}

+ 2
n−1∑

j= n
2

EY Tn/2(C − Cn+1)C(Yj+1 − Yj) 1{‖Yj‖<kj}∩{‖Yn/2‖<kn/2}

+ EY Tn/2(C − Cn+1)CYn/2 1{‖Yn/2‖<kn/2}.
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Note that if n
2 is not an integer, we replace it by n−1

2 . Using always the same
technique, we obtain that

Een+1 = O(n−2) + O(a
n
2 ) + O(n−2) + O(n−2) + O(a

n
2 ),

hence
∑
cnEen < ∞.

Study of (en − Een). We now prove that this sequence is γ1-dependent with a
relevant dependent coefficient. Write

E(en+r − Een+r|Fn) = Dn+r +Gn+r − Een+r,

with

Dn+R = E[(yn+rxn+r − Cn+1C
−1U)TCYn+r−1 1{V (Yn+r−1)<k} |Fn],

Gn+r = E(Y Tn+r−1(C − Cn+r)CYn+r−1 1{V (Yn+r−1)<k} |Fn]

Dn+r =
n+r−2∑

j=n+ r
2

E[((yn+rxn+r − Cn+1C
−1U)TC(Yj+1 − Yj) 1{‖Yj‖<kj} |Fn]

+ E[((yn+rxn+r − Cn+1C
−1U)TCYn+ r

2
1{‖Yn+ r

2
‖<kn+ r

2
} |Fn],

Here again, if r2 is not a integer, we replace it by r−1
2 . Again, the same techniques

as for rn give

E‖Dn+r‖ = O((n+ r)−2) + O(an+ r
2 )

We study Gn+r in the same way and E‖Gn+r‖ = O((n + r)−2), and since
Een+r = O((n+ r)−2), (6.1.17) is satisfied and the result is proved.

Proof of (6.4.4) For n > N , denote by ΠN
n = (I − cnCn+1) · · · (I − cNCN+1).

Since g < 1
2M , for N ≥ 1, ΠN

n is no singular and

Yn+1 = ΠN
n YN +

n∑

j=N

cjΠN
n (ΠN

j )−1ξ1j+1,

where ξ1j+1 = yj+1xj+1 − Cj+1C
−1U . We obtain, since Yn → 0,

−YN =
∞∑

j=N

cj(ΠN
j )−1ξ1j+1.

(ΠN
j )−1 = (I − cNCN+1)−1 · · · (I − cjCj+1)−1 and

‖(ΠN
j )−1‖ ≤ 1

∏j
i=N (1 − ciM)

.
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Hence

‖(ΠN
j )−1‖ = O

(

exp

(

M

j∑

i=N

ci

))

= O
((

j

N

)gM)

, (6.4.10)

‖
√
NYN‖ =

∥
∥∥
∥
∥
∥

∞∑

j=N

g√
j

√
N

j
(ΠN

j )−1ξ1j+1

∥
∥∥
∥
∥
∥
.

Since g < 1
2M , (6.4.10) involves that the sum converges. Indeed (6.1.17) is

verified with k = 5 and p = 3 (so m = 1
3 ) and since ξ1j+1 is γ1-dependent with

a mixingale coefficient γ1(r) = O(ar). Hence the result is proved. �



Chapter 7

Central Limit theorem

In this chapter, we give sufficient conditions for the central limit theorem in
the non causal and causal contexts. In Sections 7.1 and 7.2, we give sufficient
conditions for κ and λ dependent sequences, for random variables having mo-
ments of order 2 + ζ. The proof is based on a decomposition which combines
Bernstein blocks with the Lindeberg method. In Section 7.3, we prove a central
limit theorem for random fields, under an exponential decay of the covariance
of Lipshitz functions of the variables. The proof is based on Stein’s method, as
described in Bolthausen (1982) [24]. In Section 7.4, we focus on the causal case:
in Theorem 7.5, we give necessary and sufficient conditions for the conditional
central limit theorem. This notion is more precise than convergence in distri-
bution and implies the stable convergence in the sense of Rényi (1963) [156]. In
the last Section 7.5, we give some applications of Theorem 7.5: in particular, we
give sufficient conditions for the central limit theorem for γ, α̃ and φ̃-dependent
sequences.

7.1 Non causal case: stationary sequences

In all the section, we shall consider a centered and stationary real-valued se-
quence (Xn)n∈Z such that

μ = E|X0|m < ∞, for a real number m = 2 + ζ > 2. (7.1.1)

We also define

σ2 =
∑

k∈Z

Cov(X0, Xk),

whenever it exists. Let Sn = X1 + · · · + Xn. The following results come from
Doukhan and Wintenberger (2005) [77].

153
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Theorem 7.1 (κ-dependence). Assume that the κ-weakly dependent stationary
process satisfies (7.1.1) and that κ(r) = O(r−κ) for κ > 2 + 1

ζ . Then σ2 is well
defined and n−1/2Sn converges in distribution to the normal distribution with
mean 0 and variance σ2.

Remark 7.1. Under the more restrictive ζ-dependence condition, Bulinski and
Shashkin (2005) [33] obtain the central limit theorem with the sharper assump-
tion ζ(r) = O(r−κ) for κ > 1 + 1/(m − 2) (beware notations in this remark).
The difference between the two conditions is natural, since it may be proved
for ζ-weakly dependent sequences that ζ(r) ≥

∑
s≥r κ(s). This simple bound,

checked from the definitions, explains the loss in the rate of convergence of κ(r)
to 0.

The following result relaxes the previous dependence assumptions to the cost of
a faster decay for the dependence coefficients.

Theorem 7.2 (λ-dependence). Assume that the λ-weakly dependent stationary
process satisfies (7.1.1) and that λ(r) = O(r−λ) for λ > 4 + 2

ζ . Then the
conclusion of Theorem 7.1 holds.

As stressed in section 3.1.3 the coefficient λ is very useful to work out the case
of Bernoulli shifts with weakly dependent innovations (ξi)i.

Theorem 7.3. Denote by λξ(r) the λ-dependence coefficients of the sequence
(ξi)i. Assume that H : R

Z → R satisfies the condition (3.1.11) for some m > 2
such that lm ≤ m′ − 1 with E|ξ0|m

′
< ∞, and some sequence bi ≥ 0 such that∑

i |i|bi < ∞. Then Xn = H(ξn−i, i ∈ Z) satisfy the central limit theorem in
the following cases:

• Geometric case: br = O
(
e−rb

)
and λξ(r) = O (e−rc).

• Mixed case: br = O
(
e−rb

)
and λξ(r) = O (r−c) with c > 4 + 2/(m− 2).

• Riemanian case: If br = O
(
r−b
)

for some b > 2 and λξ(r) = O (r−c)
with

c >
(10 − 4m)b(m′ − 1)

(2 −m)(b − 2)(m′ − 1 − l)
.

The constants b > 0 and c > 0 obtained are different for each case.

This theorem is useful to derive the weak invariance principle in many cases
(see again Section 3.1.3). We now look with more detail the following example.



7.2. LINDEBERG METHOD 155

Example. Consider the two sided sequenceXt =
∑∞

−∞ ai ξt−i with ARCH(∞)
innovations:

ξt = ξ̃t

⎛

⎝a′ +
∞∑

j=1

a′jξt−j

⎞

⎠ ,

where the process (ξ̃i)i is i.i.d.. Under Riemanian decays (ar = O(r−a) and
a′r = O(r−a

′
)), we infer from Theorem 7.3 that the central limit theorem holds

as soon as:

a′ >
(10 − 4m)a(m′ − 1)

(2 −m)(a− 2)(m′ − 1 − l)
+ 1.

Remark 7.2. The technique of the proofs is based on Lindeberg method and we
prove in fact that |E (f(Sn/

√
n) − f(σN))| ≤ Cn−c∗ for f(x) = eitx, where the

constants c∗, C > 0 depend only on the parameters ζ and κ or λ respectively,
and where c∗ < 1

2 (see Proposition 2 section 7.2.2 for more details). When κ
or λ tends to infinity, we have c∗ = ζ/(4 + ζ). For ζ ≥ 2 and κ or λ tends to
infinity, we notice that c∗ → 1

3 .
Using a smoothing lemma, this also yields an analogue bound for the uniform

distance in the real case (d = 1):

sup
t∈R

∣
∣
∣∣P
(

1√
n
Sn ≤ t

)
− P (σN ≤ t)

∣
∣
∣∣ ≤ Cn−c′ .

A first and easy way to control c′ is to set c′ = c∗/4 but the corresponding rate
is really a bad one. Petrov (1995) [144] obtains the exponent 1

2 in the i.i.d. case
and Rio (2000) [161] reaches the exponent 1

3 for strongly mixing sequences. In
proposition 3 section 7.2.2, we achieve c′ = c∗/3. Analogous bad convergence
rates have been settled in the case of weakly dependent random fields in [63].

The following subsections are devoted to the proofs. We first describe in detail
the Lindeberg method with Bernstein blocks in Section 7.2 (another version
of the Lindeberg method will be presented is the causal framework in Section
7.4.3). The main tools are the controls of the variance of Sn and of ‖Sn‖2+δ

obtained in Lemma 4.2 and 4.3 of section 4.2. Rates of convergence for the
central limit theorem are obtained in 7.2.2.

7.2 Lindeberg method

Let x1, . . . , xk be random variables with values in R
d (equipped with the Eu-

clidean norm ‖(x1, . . . , xd)‖ =
√
x2

1 + · · · + x2
d), centered at expectation and

such that for some 0 < δ ≤ 1:

k∑

i=1

E‖xi‖2+δ ≤ A < ∞ (7.2.1)
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We consider independent random variables y1, . . . , yk, independent of the vari-
ables x1, . . . , xk and such that yi ∼ Nd(0,Varxi).
Denote by C3

b the set of bounded functions from R
d to R with bounded and

continuous partial derivatives up to order 3. The Lindeberg method relies on
the following lemma

Lemma 7.1 (Bardet et al., 2006 [10]). For any f ∈ C3
b , let:

Δ = |E (f(x1 + · · · + xk) − f(y1 + · · · + yk))| (7.2.2)

and Tj =
k∑

i=1

Cov
(
fi

(j)
i(x1 + · · · + xi−1), x

j
i

)
, j = 1, 2. (7.2.3)

fi(t) = |E f(t+ yi+1 + · · · + yk)

Let

Cov(f ′(x), y) =
d∑

�=1

Cov
(
∂f

∂x�
(x), y�

)
, and

Cov(f ′′(x), y2) =
d∑

k=1

d∑

�=1

Cov
(

∂2f

∂xk∂x�
(x), yky�

)
,

where by convention the empty sums are equal to 0. The following upper bound
holds:

Δ ≤ |T1| +
1
2
|T2| + 4‖f ′′‖1−δ

∞ ‖f ′′′‖δ∞A.

Remark 7.3. If k tends to ∞, we denote the variables by (xi,k)1≤i≤k and we
set A = A(k), Tj = Tj(k). Assume that A(k) and Tj(k) tend to 0 as k tends to
∞, and assume moreover that σ2

k =
∑k

i=1 Ex2
i,k converges to σ2 as k tends to

∞. Then

Sk =
k∑

i=1

xi,k →k→∞ N (0, σ2), in distribution.

Condition A(k) → 0 implies the usual Lindeberg condition, condition σ2
k → σ2

is only the convergence of variances, while the conditions Tj(k) → 0 are the only
one related to dependence.

Examples. Assume that (Xt)t∈Z is a stationary times series the following
examples are widely developed in [10].

• The first example of application of such a situation is the Bernstein block
method used below for proving the central limit theorem.

• Functional estimation also enters this frame. In that case we write xi,k =
fk(Xi) for functions fk which approximate the Dirac distribution, see
chapter 11.
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• A final example is provided by subsampling, in which xi,k = Ximn for
1 ≤ imn ≤ n and 1 
 mn 
 n; this example fits chapter 13 but we defer
the reader to [10] for shortness.

Proof of lemma 7.1. We first notice that:

Δ ≤ Δ1 + · · · + Δk, where (7.2.4)
Δi = |E (fi(wi + xi) − fi(wi + yi)))| , i = 1, . . . , k
wi = x1 + · · · + xi−1

(7.2.5)

Let x,w ∈ R
d. The Taylor formula writes in the two distinct following ways

(for suitable values w1, w2):

f(w + x) = f(w) + xf ′(w) +
1
2
f ′′(w1)(x, x)

= f(w) + xf ′(w) +
1
2
f ′′(w)(x, x) +

1
6
f ′′′(w2)(x, x, x)

here f (j)(x)(y1, . . . , yj) stands for the value of the symmetric j-linear form f (j)

at (y1, . . . , yj). Let ‖f (j)‖∞ = supx ‖f (j)(x)‖ with

‖f (j)(x)‖ = sup
‖y1‖,...,‖yj‖≤1

|f (j)(x)(y1, . . . , yj)| .

Thus for w, x, y ∈ R
d we may write:

f(w + x) − f(w + y) = f ′(w)(x − y) +
1
2
f ′′(w)(x2 − y2)

+
(f ′′(w1) − f ′′(w))(x, x) − (f ′′(w′

1) − f ′′(w))(y, y)
2

= (x − y)f ′(w) +
1
2
f ′′(w)(x2 − y2)

+
f ′′′(w2)(x, x, x) − f ′′′(w′

2)(y, y, y)
6

Thus

T = f(w + x) − f(w + y) − f ′(w)(x − y) − 1
2
f ′′(w)(x2 − y2) satisfies

|T | ≤ 2(‖x‖2 + ‖y‖2)‖f ′′‖∞ ∧ 2
3
(‖x‖3 + ‖y‖3)‖f ′′′‖∞

≤ 2‖f ′′‖∞
{
‖x‖2

(
1 ∧ ‖f ′′′‖∞

3‖f ′′‖∞
‖x‖
)

+ y2

(
1 ∧ ‖f ′′′‖∞

3‖f ′′‖∞
|y|
)}

≤ 2
3δ

‖f ′′‖1−δ
∞ ‖f ′′′‖δ∞

{
‖x‖2+δ + ‖y‖2+δ

}
,
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the last inequality following from the inequality 1 ∧ a ≤ aδ, valid for a ≥ 0
and δ ∈ [0, 1[. Here we set f ′′(w)(x2 − y2) = f ′′(w)(x, x)) − f ′′(w)(y, y) for
notational convenience. This relation together with the decomposition (7.2.4)
and the upper bound ‖f (j)

i ‖∞ ≤ ‖f (j)‖∞ (valid for 1 ≤ i ≤ k, and 0 ≤ j ≤ 3)
entails

Δ ≤ |T1| +
1
2
|T2| +

2
3δ

‖f ′′‖1−δ
∞ ‖f ′′′‖δ∞

k∑

i=1

{
E‖xi‖2+δ + E‖yi‖2+δ

}

≤ |T1| +
1
2
|T2| + 2

1 + 3
δ
4− 1

2

3δ
‖f ′′‖1−δ

∞ ‖f ′′′‖δ∞A

≤ |T1| +
1
2
|T2| + 4‖f ′′‖1−δ

∞ ‖f ′′′‖δ∞A

where we have used the bound E‖yi‖2+δ≤ (E‖yi‖4)(2+δ)/4 ≤ (3(E‖xi‖2)2)
1
2+ δ

4 .�

7.2.1 Proof of the main results

In this section we first prove theorem 7.1 and 7.2, and then we give rates for
this central limit results. Some useful moment inequalities are proved in section
4.1. They are essential in the following proof.

Proof of Theorems 7.1 and 7.2. Let S = 1√
n
Sn and consider p = p(n) and

q = q(n) in such a way that

lim
n→∞

1
q(n)

= lim
n→∞

q(n)
p(n)

= lim
n→∞

p(n)
n

= 0 .

Let k = k(n) =
[

n
p(n)+q(n)

]
and

Z =
1√
n

(U1 + · · · + Uk) , with Uj =
∑

i∈Bj

Xi,

where Bj =](p + q)(j − 1), (p + q)(j − 1) + p] ∩ N is a subset of p successive
integers from {1, . . . , n} such that, for j �= j′, Bj and Bj′ are at least distant of
q = q(n). We note B′

j the block between Bj and Bj+1 and Vj =
∑

i∈B′
j
Xi. Vk

is the last block of Xi between the end of Bk and n. Let σ2
p = Var (U1)/p, and

Y =
V ′

1 + · · · + V ′
k√

n
, V ′

j ∼ N (0, p · σ2
p),

where the Gaussian variables V ′
j are independent and independent of the se-

quence (Xn)n∈Z. We fix t ∈ R
d and we define f : R

d → C with f(x) = eit·x.
Then:

E
(
f(S) − f(σN)

)
= E(f(S) − f(Z)) + E(f(Z) − f(Y )) + E(f(Y ) − f(σN)).



7.2. LINDEBERG METHOD 159

The Lindeberg method consists in proving that this expression converges to 0 as
n → ∞. The first and the last term in this inequality are referred to as auxiliary
terms in this Bernstein-Lindeberg method. They come from the replacement of
the individual initial - non-Gaussian and Gaussian respectively - random vari-
ables. The second term is analogue to that obtained with decoupling and turns
the proof of the central limit theorem to the independent case. The third term
is referred to as the main term and following the proof under independence it
will be bounded above by using a Taylor expansion. Because of the dependence
structure, in the corresponding bounds, some additional covariance terms will
appear.

Auxiliary terms. Using Taylor expansions up to the second order, we bound:

|E(f(S) − f(Z))| ≤ ‖f ′′‖2∞
2

E|S − Z|2 and,

|E(f(Y ) − f(σN))| ≤ ‖f ′′‖2∞
2

E|Y − σN |2

Firstly:

E|Z − S|2 � 1
n

E (V1 + · · · + Vk)
2

Note that the set under the sums of Xi in V1 + · · · + Vk has cardinality smaller
than (k + 1)q + p. Using the bounds (4.2.6) and (4.2.5), we infer that under
conditions (4.2.3) and (4.2.2) respectively,

E|Z − S|2 � (k + 1)q + p

n
.

We notice that Y follows the distribution of

√
kp

n
σpN and then working with

Gaussian random variables:

E|Y − σN |2 ≤
∣∣
∣
∣
kp

n
− 1
∣∣
∣
∣σ

2
p +
∣
∣σ2
p − σ2

∣
∣ .

Since |kp/n− 1| � q/p, we need to bound

|σ2
p − σ2| ≤

∑

|i|<p

|i|
p

|E(X0Xi)| +
∑

|i|>p
|E(X0Xi)|.

Let ai = |E(X0Xi)|. Under conditions (4.2.3) and (4.2.2) respectively, the series∑∞
i=0 ai converge and sj =

∑∞
i=j ai converges to 0 as j converges to infinity.

Consequently

|σ2
p − σ2| ≤ 2

p−1∑

i=0

i

p
· ai + 2sp ≤ 2

p

p−1∑

i=0

si + 2sp.
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Cesaro lemma implies that this term converges to 0. Hence |Ef(S) − f(Z)| +
|Ef(Y ) − f(σN)| tends to 0 as n ↑ ∞.

To precise the rate of convergence, we now assume that ai = O(i−α) with
α > 1 we see that

|σ2
p − σ2| � p1−α.

The convergence rate is then given by q
p + p

n +p1−α if E(X0Xi) = O(i−α). Since
E(X0Xi) = Cov(X0, Xi), we then use equations (4.2.5) and (4.2.6) and we find
α = κ or α = λ(m− 2)/(m− 1) depending of the weak-dependence setting.
With p = na, q = nb, those bounds become:

nb−a + na−1 + na(1−κ), in the κ-weak dependence setting,

nb−a + na−1 + na(1−λ(m−2)/(m−1)), under λ-weak dependence.

Main terms. It remains to control the expression |T1| + 1
2 |T2| and A in lemma

7.2.2 with now, for 1 ≤ j ≤ k:

xj =
1√
n
Uj , yj =

1√
n
Vj

• The terms Tj, are bounded by using the weak-dependence properties. The
expressions of this bound are obtained by rewriting

|Cov(F (Xm,m ∈ Bi, i < j), G(Xm,m ∈ Bj))|.

Note that ‖F‖∞ ≤ 1 and that we can compute a bound for LipF with
F (x1, . . . , xkp) = f

(
1√
n

∑
i<j xi

)
(with possible repetitions in the se-

quence (x1, . . . , xkp)):
∣
∣
∣
∣
∣
∣
f

⎛

⎝ 1√
n

∑

i<j

xi

⎞

⎠− f

⎛

⎝ 1√
n

∑

i<j

yi

⎞

⎠

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
1 − exp it ·

⎛

⎝ 1√
n

∑

i<j

(yi − xi)

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ ‖t‖2√
n

kp∑

i=1

‖yi − xi‖2.

For G(x1, . . . , xp) = f (
∑p

i=1 xi/
√
n), we have ‖G‖∞ ≤ 1 and LipG �

1/
√
n. We then distinguish the two cases, noting that the gap between

blocks is at least q. Since the bounds of the different covariances do not
depend of j, we then obtain the controls:

– In the κ dependence setting:

|T1| +
1
2
|T2| � kp · κ(q)
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– In the λ dependence setting:

|T1| +
1
2
|T2| � kp(1 +

√
k/p) · λ(q).

Reminding that p = na, q = nb, κ(r) = O (r−κ) or λ(r) = O
(
r−λ
)
,

the bounds become n1−κb or n1+(1/2−a)+−λb in respectively κ or λ
context.

• Using the stationarity of the sequence Xn we obtain:

|A| � n−1− δ
2

(
E|Sp|2+δ ∨ p1+ δ

2

)
.

We then use the result of lemma 4.3 to bound the moment E|Sp|2+δ. If
κ > 2 + 1

ζ , or λ > 4 + 2
ζ , where κ(r) = O (r−κ) or λ(r) = O

(
r−λ
)

then
there exists δ ∈]0, ζ ∧ 1[ and C > 0 such that:

E|Sp|2+δ ≤ Cp1+δ/2.

We then obtain:
A � k(p/n)1+δ/2.

Reminding that p = na, the bound is of order n(a−1)δ/2 in both κ or
λ-weak dependence setting.

7.2.2 Rates of convergence

We present two propositions that give rates of convergence in the central limit
theorem.

Proposition 7.1. Assume that the weakly dependent stationary process (Xn)n
satisfies (7.1.1) then the difference between the characteristic functions is
bounded by: ∣∣E

(
f(Sn/

√
n) − f(σN)

)∣∣ ≤ Cn−c∗ ,

where C is some positive constant and c∗ depends of the weakly dependent coef-
ficients as follows:

• in the λ-dependence case with λ(r) = O(r−λ) for λ > 4 + 2
ζ , then

c∗ =
A

2
2λ− 1

(2 +A)(λ + 1)
,

where

A =

√
(2λ− 6 − ζ)2 + 4(λζ − 4ζ − 2) + ζ + 6 − 2λ

2
∧ 1,
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• in the κ-dependence case with κ(r) = O(r−κ) for κ > 2 + 1
ζ , then

c∗ =
(κ− 1)B
κ(2 +B)

where

B =

√
(2κ− 3 − ζ)2 + 4(κζ − 2ζ − 1) + ζ + 3 − 2κ

2
∧ 1.

In the case d = 1, we use Theorem 5.1 of Petrov (1995) [144] to obtain:

Proposition 7.2 (A rate in the Berry Essen bound). Assume that the real
weakly dependent stationary process (Xn)n satisfies the same assumptions than
in Proposition 7.1. We obtain:

sup
x

|Fn(x) − Φ(x)| = O
(
n−c∗/4

)
.

where c∗ is defined in Proposition 7.1.

Proof of proposition 7.1. In the previous section, we have expressed the rates of
the different terms. Let us recall these rates:

• In the λ-dependence case, we finally only have to consider the three largest
rates: (a−1)δ/2, 1+(1/2−a)+−λb and b−a. The previous optimal choice
of a∗ is smaller than 1/2, then we have to consider the rate 3/2 − a− λb
and not 1 − λb. We find:

a∗ =
(1 + λ)δ + 3

(2 + δ)(λ + 1)
∈
]
0,

1
2

[

b∗ = a∗
3

2(λ+ 1)
∈]0, a∗[

Finally, we obtain the rate n−c∗ .

• In the κ-dependence case:

– Auxiliary terms: b− a, a− 1 and a(1 − κ),

– Main terms: 1 − κb and (a− 1)δ/2.

The idea is to choose carefully a∗ and b∗ ∈]0, 1[ such that the main rates
are equal. Because δ < 1, a > b, we directly see that (a − 1)δ/2 > a − 1
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and 1 − κb > a(1 − κ), so that the only rate of the auxiliary term that it
remains to consider is b− a. Finally, we obtain

a∗ = 1 − 2κ− 2
(2 + δ)κ+ δ

∈]0, 1[

b∗ = a∗
2 + 2δ

2 + δ + δκ
∈]0, a∗[

Finally, we obtain the proposed rate. �

Proof of proposition 7.2. We have seen that for t fix, we control the distance
between the characteristic functions of S and σN by a term proportional to
t2n−c∗ . Here, t2 appear because |t| was included in the constants (not depending
of n) of the bound of the Lipschitz coefficients. Let Φ be the distribution function
of σN and Fn be the distribution function S. Theorem 5.1 p. 142 in Petrov
(1995) [144] gives, for every T > 0:

sup
x

|Fn(x) − Φ(x)| � n−c∗T 3 +
1
T
.

We optimize T to obtain a rate of convergence in the central limit theorem. �

7.3 Non causal random fields

Let (Bn)n∈N be an increasing sequence of finite subsets of Z
d fulfilling

Z
d =

∞⋃

n=1

Bn, lim
n→+∞

#∂Bn
#Bn

= 0, (7.3.1)

∂Bn = {i ∈ Bn / ∃ j �∈ Bn, d(i, j) = 1}

and for i = (i(l))1≤l≤d and j = (j(l))1≤l≤d in Z
d, d(i, j) = max1≤l≤d |i(l)−j(l)|.

Let (Yi)i∈Zd be a real valued random fields. Suppose that (Yi)i∈Zd satisfies
the following two assumptions:

A) A covariance inequality. Recall that for a real valued function h defined on
R
n

Lip (h) = sup
x 	=y

|h(x) − h(y)|
∑n
i=1 |xi − yi|

.

Let R1 and R2 be two disjoints and finite subsets of Z
d, and let f and g be

two real valued functions defined respectively on R
#R1 and R

#R2 such that
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Lip (f) < ∞ and Lip (g) < ∞. We suppose that for any positive real number δ,
there exists a constant Cδ (not depending on f g, R1 and R2) such that

|Cov (f(Yi, i ∈ R1), g(Yi, i ∈ R2)|
≤ CδLip (f)Lip (g) (#R1 + #R2) exp (−δd(R1, R2)) , (7.3.2)

where d(R1, R2) = mini∈R1, j∈R2 d(i, j). We refer the reader to the book of
Liggett (1985) [122] for some interacting particle models fulfilling such a covari-
ance inequality.

B) Weak stationarity. Suppose that for any i, j ∈ Z
d

Cov(Yi, Yj) = Cov(Y0, Yj−i). (7.3.3)

Theorem 7.4 gives a central limit theorem for the random fields (Yi)i∈Zd .

Theorem 7.4. Let (Bn)n∈N be an increasing sequence of finite subsets of Z
d

fulfilling (7.3.1). Let (Yi)i∈Zd be a real valued random field, satisfying (7.3.2)
and (7.3.3). Suppose that, for any i ∈ Z

d, EYi = 0 and supi∈Zd ‖Yi‖∞ < M . Let
Sn =

∑
i∈Bn

Yi. Then
∑
k∈Zd |Cov(Y0, Yk)| < ∞ and (#Bn)−1/2Sn converges

in distribution to a centered normal law with variance σ2 =
∑
k∈Zd Cov(Y0, Yk).

Proof of Theorem 7.4. The proof of Theorem 7.4 follows from Proposition 7.3
and Proposition 7.4 below.

Proposition 7.3. Let (Yi)i∈Zd be a real valued random field such that EYi = 0
and EY 2

i < ∞ for any i ∈ Z
d. Suppose that, for any i, j ∈ Z

d, (7.3.3) holds
and that, for any positive real number δ, there exists a positive constant Cδ such
that

|Cov(Yi, Yj)| ≤ Cδe
−δd(i,j). (7.3.4)

Let (Bn)n be a sequence of finite and increasing sets of Z
d fulfilling (7.3.1). Let

Sn =
∑

i∈Bn
Yi. Then

∑

k∈Zd

|Cov(Y0, Yk)| < ∞ and lim
n→+∞

1
#Bn

VarSn =
∑

k∈Zd

Cov(Y0, Yk).

Proof of Proposition 7.3. The first conclusion of Proposition 7.3 follows from
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the bound (7.3.4), together with the following elementary calculations

∑

k∈Zd

|Cov(Y0, Yk)| ≤ C
∑

k∈Zd

exp(−δd(0, k))

≤ C
∑

k∈Zd

∞∑

r=0

exp(−δd(0, k))1r≤d(0,k)<r+1

≤ C

∞∑

r=0

exp(−δr)
∑

k∈Zd

1d(0,k)<r+1

≤ C

∞∑

r=0

exp(−δr)#{k ∈ Z
d / d(0, k) < r + 1}

≤ C
∞∑

r=0

exp(−δr)rd (7.3.5)

where C is a positive constant depending only on δ and d.
We now prove the second part of Proposition 7.3. Thanks to (7.3.1), we can
find a sequence u = (un) of positive real numbers such that

lim
n→∞un = +∞, lim

n→+∞
#∂Bn
#Bn

exp(un) = 0. (7.3.6)

Let (∂uBn)n be the sequence of subsets of Z
d defined by

∂uBn = {s ∈ Bn
/
d(s, ∂Bn) < un}.

The following bound

#∂uBn ≤ Cd(#∂Bn)udn,

together with the suitable choice of the sequence (un) and the limit (7.3.1)
ensures

lim
n→∞

#∂uBn
#Bn

= 0, (7.3.7)

we shall use this fact below without further comments. Let Bun = Bn \ ∂uBn.
We decompose the quantity Var Sn as in Newman (1980) [135]:

1
#Bn

Var Sn =
1

#Bn

∑

i∈Bn

∑

j∈Bn

Cov (Yi, Yj) = T1,n + T2,n + T3,n,
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where

T1,n =
1

#Bn

∑

i∈Bu
n

∑

j∈Bn /d(i,j)≥un

Cov (Yi, Yj) ,

T2,n =
1

#Bn

∑

i∈Bu
n

∑

j∈Bn :d(i,j)<un

Cov (Yi, Yj) ,

T3,n =
1

#Bn

∑

i∈∂uBn

∑

j∈Bn

Cov (Yi, Yj) .

Control of T1,n. We have, since |Bun | ≤ |Bn| and applying (7.3.4)

|T1,n| ≤ sup
i∈Zd

∑

j∈Zd :d(i,j)≥un

|Cov(Yi, Yj)|

≤ Cδ sup
i∈Zd

∑

{j∈Zd/d(i,j)≥un}
e−δd(i,j). (7.3.8)

For any fixed i ∈ Z
d, we argue as for (7.3.5) and we obtain

∑

{j∈Zd/d(i,j)≥un}
e−δd(i,j) ≤ C

∞∑

r=[un]

e−δrrd

≤ Ce−δ[un]udn. (7.3.9)

We obtain, collecting (7.3.8), (7.3.9) together with the first limit in (7.3.6):

lim
n→+∞T1,n = 0. (7.3.10)

Control of T3,n. We obtain using (7.3.3) and (7.3.4) :

|T3,n| ≤ #∂uBn
#Bn

∑

k∈Zd

|Cov(Y0, Yk)| . (7.3.11)

The last bound, together with the limit (7.3.7) and the first conclusion of Propo-
sition 7.3, gives

lim
n→∞ T3,n = 0. (7.3.12)

Control of T2,n. We deduce using the following implication, if i ∈ Bun and j is
not belonging to Bn then d(i, j) ≥ un, that

T2,n =
1

#Bn

∑

i∈Bu
n

∑

{j∈Zd/d(i,j)<un}
Cov(Yi, Yj)
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Equality (7.3.3) ensures
∑

{j∈Zd/d(i,j)<un}
Cov(Yi, Yj) =

∑

{k∈Zd/d(0,k)<un}
Cov (Y0, Yk) .

Hence

T2,n =
#Bun
#Bn

∑

{k∈Zd/d(0,k)<un}
Cov(Y0, Yk).

The last equality together with the first limit in (7.3.6) and (7.3.7), implies that

lim
n→∞ T2,n =

∑

k∈Zd

Cov(Y0, Yk). (7.3.13)

The second conclusion of Proposition 7.3 is proved by collecting the limits
(7.3.10), (7.3.12) and (7.3.13). �
Proposition 7.4. Let (Bn)n∈N be an increasing sequence of finite subsets of
Z
d such that #Bn tends to infinity as n goes to infinity. Let (Yi)i∈Zd be a real

valued random field satisfying (7.3.2). Suppose that EYi = 0 for any i ∈ Z
d,

and that supi∈Zd ‖Yi‖∞ < M . Let Sn =
∑

i∈Bn
Yi. If there exists a finite real

number σ2 such that
lim
n→∞

VarSn
#Bn

= σ2, (7.3.14)

then (#Bn)−1/2Sn converges in distribution to a centered normal law with vari-
ance σ2.

Proof of Proposition 7.4. We need the following notation. Let (mn) be a se-
quence of positive integers to be fixed later. We suppose for the moment that
limn→∞mn = ∞. For any i ∈ Z

d, we define a neighborhood Vi of i in Bn as

Vi = B(i,mn) ∩Bn, (7.3.15)

where B(i,mn) = {j ∈ Z
d / d(i, j) < mn}. Let V ci denote the complementary

of Vi in Bn i.e. V ci = Bn \ Vi. For I a subset of Bn, we denote by

S(I) =
∑

i∈I
Yi, S(Ic) =

∑

i∈Bn\I
Yi.

Hence S(Bn) =
∑

i∈Bn
Yi =: Sn for the sake of brevity.

Finally we denote by F(b2, b3) the set of the real valued function h defined
on R, three times differentiable, such that h(0) = 0, b2 := ‖h′′‖∞ < +∞ and
that b3 := ‖h(3)‖∞ < +∞.

We also need the following proposition.
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Proposition 7.5. Let h be a fixed function of the set F(b2, b3). Let (Bn)n∈N

be a sequence of finite subsets of Z
d. For any i ∈ Bn, let Vi be the set as defined

by (7.3.15). Let (Yi)i∈Zd be a real valued random field. Suppose that EYi = 0
and EY 2

i < +∞ for any i ∈ Z
d. Let Sn =

∑
i∈Bn

Yi. Then

∣
∣
∣
∣E(h(Sn)) − VarSn

∫ 1

0

tE(h′′ (tSn))dt
∣
∣
∣
∣

≤
∫ 1

0

∑

i∈Bn

|Cov (Yi, h′(tSn(V ci )))| dt+ 2
∑

i∈Bn

E|Yi||S(Vi)| (b2 ∧ b3|S(Vi)|)

+b2E

∣∣
∣
∣
∣

∑

i∈Bn

(YiS(Vi) − E(YiS(Vi)))

∣∣
∣
∣
∣
+ b2

∑

i∈Bn

|Cov(Yi, S(V ci ))| . (7.3.16)

Remark 7.4. For a random field (Yi)i∈Zd of independent random variables such
that supi∈Zd EY 4

i < ∞, Proposition 7.5 applied with Vi = {i} implies that

∣
∣
∣
∣E(h(Sn)) − VarSn

∫ 1

0

tE(h′′ (tSn))dt
∣
∣
∣
∣ ≤

2
∑

i∈Bn

E|Yi|2 (b2 ∧ b3|Yi|) + b2
√

|Bn| sup
i∈Zd

‖Y 2
i ‖2.

Proof of Proposition 7.5. We have,

h(Sn) = Sn

∫ 1

0

h′(tSn)dt =
∫ 1

0

(
∑

i∈Bn

Yih
′(tSn)

)

dt

=
∫ 1

0

(
∑

i∈Bn

Yih
′(tS(V ci ))

)

dt

+
∫ 1

0

(
∑

i∈Bn

Yi (h′(tSn) − h′(tS(V ci )) − tS(Vi)h′′(tSn))

)

dt

+
∑

i∈Bn

YiS(Vi)
∫ 1

0

th′′(tSn)dt−
∑

i∈Bn

E (YiS(Vi))
∫ 1

0

th′′(tSn)dt

+
∑

i∈Bn

E (YiS(Vi))
∫ 1

0

th′′(tSn)dt−
∑

i∈Bn

E (YiSn)
∫ 1

0

th′′(tSn)dt

+
∑

i∈Bn

E (YiSn)
∫ 1

0

th′′(tSn)dt. (7.3.17)

We take the expectation in the equality (7.3.17). The obtained formula, together
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with the following estimations, proves Proposition 7.5. �

|h′(tSn) − h′(tS(V ci )) − tS(Vi)h′′(tSn)|
≤ |h′(tSn) − h′(tS(V ci )) − tS(Vi)h′′(tS(V ci ))| + |S(Vi)||h′′(tSn) − h′′(tS(V ci ))|
≤ 2|S(Vi)| (b2 ∧ b3|S(Vi)|) . �

The purpose now is to control the right hand side of the bound (7.3.16) for a
random field (Yi)i∈Zd fulfilling the covariance inequality (7.3.2) and the require-
ments of Proposition 7.4.

Corollary 7.1. Let h be a fixed function of the set F(b2, b3). Let (Bn)n∈N be
a sequence of finite subsets of Z

d. For any i ∈ Bn, let Vi be the set as defined
by (7.3.15). Let (Yi)i∈Zd be a real valued random field, fulfilling the covariance
inequality (7.3.2). Suppose that, for any i ∈ Z

d, EYi = 0 and supi∈Zd ‖Yi‖∞ <
M . Let Sn =

∑
i∈Bn

Yi. Then, for any positive real number δ, there exists a
positive constant C(δ,M, d) independent of n, such that

sup
h∈F(b2,b3)

∣
∣
∣∣E(h(Sn)) − VarSn

∫ 1

0

tE(h′′ (tSn))dt
∣
∣
∣∣

≤ C(δ,M, d)
{
b2(#Bn)2e−δmn + b3m

d
n#Bn

+ b2m
d
n

√
#Bnm

( ∞∑

k=3mn

kde−δ(k−2mn)
)1/2

+ b2
√

#Bnmd
n

( 3mn∑

k=1

e−δkkd
)1/2}

.

Proof of Corollary 7.1. From now, we denote by C a positive constant that may
be different from line to line, independent of n and depending, eventually, on
M , δ and d. We have

V ci = {j ∈ Z
d / d(i, j) ≥ mn} ∩Bn.

Hence
d({i}, V ci ) ≥ mn.

The last bound together with (7.3.2), proves that
∑

i∈Bn

|Cov (Yi, h′(tSn(V ci )))| ≤ Cb2
∑

i∈Bn

(#V ci + 1)e−δd({i},V
c
i )

≤ Cb2(#Bn)2e−δmn . (7.3.18)

In the same way, we prove that

b2
∑

i∈Bn

|Cov(Yi, S(V ci ))| ≤ Cb2(#Bn)2e−δmn . (7.3.19)
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Since #Vi ≤ #B(0,mn) ≤ Cmd
n and supj∈Zd

∑
k∈Zd |Cov(Yj , Yk)| < ∞, we

deduce that
∑

i∈Bn

E|Yi||S(Vi)| (b2 ∧ b3|S(Vi)|) ≤ b3M#Bn sup
i∈Zd

E|S(Vi)|2 (7.3.20)

≤ Cb3#Bnmd
n

∑

k∈Zd

|Cov(Y0, Yk)|.

It remains to control

E

∣∣
∣
∣
∣

∑

i∈Bn

(YiS(Vi) − E(YiS(Vi)))

∣∣
∣
∣
∣
.

For this, we argue as in Bolthausen (1982) [24]. We have

E

∣∣
∣
∣
∣

∑

i∈Bn

(YiS(Vi) − E(YiS(Vi)))

∣∣
∣
∣
∣

2

= Var (
∑

i∈Bn

YiS(Vi))

=
∑

i∈Bn

∑

j∈Bn

Cov(YiS(Vi), YjS(Vj)).

Hence

E

∣∣
∣
∣
∣

∑

i∈Bn

(YiS(Vi) − E(YiS(Vi)))

∣∣
∣
∣
∣

2

≤
∑

i∈Bn

∑

i′∈B(i,mn)

∑

j∈Bn

∑

j′∈B(j,mn)

|Cov(YiYi′ , YjYj′ )| . (7.3.21)

Next, we have

|Cov(YiYi′ , YjYj′ )| (7.3.22)
≤ |Cov(YiYi′ , YjYj′)|1d(i,j)≥3mn

+ |Cov(YiYi′ , YjYj′)|1d(i,j)≤3mn
.

We begin with the first term. The covariance inequality (7.3.2) together with
some elementary estimations, imply that

|Cov(YiYi′ , YjYj′ )|1d(i,j)≥3mn
≤

∞∑

k=3mn

|Cov(YiYi′ , YjYj′)|1k≤d(i,j)≤k+1

≤ C
∞∑

k=3mn

e−δd({i,i
′},{j,j′})1k≤d(i,j)≤k+1

≤ C

∞∑

k=3mn

e−δ(k−2mn)1d(i,j)≤k+1.
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To obtain the last bound, note that for any i′ ∈ B(i,mn) and j′ ∈ B(j,mn), we
have

d({i, i′}, {j, j′}) + 2mn ≥ d({i, i′}, {j, j′}) + d(i, i′) + d(j, j′) ≥ d(i, j).

Hence,

∑

i∈Bn

∑

i′∈B(i,mn)

∑

j∈Bn

∑

j′∈B(j,mn)

|Cov(YiYi′ , YjYj′ )|1d(i,j)≥3mn

≤ Cm2d
n

∞∑

k=3mn

∑

i∈Bn

∑

j∈Bn

e−δ(k−2mn)1j∈B(i,k+1)

≤ C#Bnm2d
n

∞∑

k=3mn

kde−δ(k−2mn). (7.3.23)

We control the second term in (7.3.22). Inequality (7.3.2) and the fact that
d({i}, {i′, j, j′}) ≤ d({i}, {i′}), imply that

|Cov(YiYi′ , YjYj′)|1d(i,j)≤3mn

≤ |Cov(Yi, Yi′YjYj′ )|1d(i,j)≤3mn
+ |Cov(Yi, Yi′)| |Cov(Yj , Yj′)| 1d(i,j)≤3mn

≤ Ce−δd({i},{i
′,j,j′})1d(i,j)≤3mn

.

Using the last bound, we infer that

|Cov(YiYi′ , YjYj′)|1d(i,j)≤3mn

≤
3mn∑

k=1

|Cov(YiYi′ , YjYj′ )|1d(i,j)≤3mn
1k−1≤d({i},{i′,j,j′})≤k

≤ C

3mn∑

k=1

e−δ(k−1)1d(i,j)≤3mn
1d({i},{i′,j,j′})≤k. (7.3.24)

Next, we have

1d({i},{i′,j,j′})≤k ≤ 1d({i},{i′})≤k + 1d({i},{j})≤k + 1d({i},{j′})≤k,

and consequently

∑

i∈Bn

∑

i′∈B(i,mn)

∑

j∈Bn

∑

j′∈B(j,mn)

1d(i,j)≤3mn
1d({i},{i′,j,j′})≤k ≤ C#Bnm2d

n k
d.

(7.3.25)
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Combining (7.3.24) and (7.3.25), we obtain that
∑

i∈Bn

∑

i′∈B(i,mn)

∑

j∈Bn

∑

j′∈B(j,mn)

|Cov(YiYi′ , YjYj′ )|1d(i,j)≤3mn

≤ C#Bnm2d
n

3mn∑

k=1

e−δkkd. (7.3.26)

We collect the bounds (7.3.21), (7.3.23) and (7.3.26) and we obtain,

E

∣∣
∣
∣
∣

∑

i∈Bn

(YiS(Vi) − E(YiS(Vi)))

∣∣
∣
∣
∣

≤ C
√

#Bn

⎧
⎨

⎩
md
n

( ∞∑

k=3mn

kde−δ(k−2mn)

)1/2

+md
n

(
3mn∑

k=1

e−δkkd
)1/2

⎫
⎬

⎭
. (7.3.27)

Finally, the bounds (7.3.18), (7.3.19), (7.3.20), (7.3.27), together with Proposi-
tion 7.5 prove Corollary 7.1. �
End of the proof of Proposition 7.4. We apply Corollary 7.1 to the real and
imaginary parts of the function x → exp(iux/

√
#Bn) − 1. Those functions

belong to the set F(b2, b3), with

b2 =
(

u√
#Bn

)2

and b3 =
(

|u|√
#Bn

)3

.

We obtain, noting by φn the characteristic function of the normalized sum
Sn/

√
#Bn,

∣
∣
∣
∣φn(u) − 1 +

VarSn
|Bn|

u2

∫ 1

0

tφn(tu)dt
∣
∣
∣
∣ ≤ C(δ,M, d, u)

{
#Bn e−δmn +

md
n√

#Bn

+
md
n√

#Bn

( ∞∑

k=3mn

kde−δ(k−2mn)

)1/2

+
md
n√

#Bn

(
3mn∑

k=1

e−δkkd
)1/2

⎫
⎬

⎭

≤ C(δ,M, d, u)

{

#Bn e−δmn +
md
n√

#Bn
+

m
3d/2
n√
#Bn

e−δmn/2

}

.

For a suitable choice of the sequence mn (for example we can take mn =
2
δ log #Bn), the right hand side of the last bound tends to 0 an n goes to
infinity:

lim
n→∞

∣
∣
∣∣φn(u) − 1 +

VarSn
#Bn

u2

∫ 1

0

tφn(tu)dt
∣
∣
∣∣ = 0. (7.3.28)

In order to finish the proof of Proposition 7.4, we need the following lemma.
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Lemma 7.2. Let σ2 be a positive real number. Let (Xn) be a sequence of real
valued random variables such that supn∈N

EX2
n < +∞. Let φn be the character-

istic function of Xn. Suppose that for any u ∈ R,

lim
n→∞

∣
∣
∣
∣φn(u) − 1 + σ2

∫ u

0

tφn(t)dt
∣
∣
∣
∣ = 0. (7.3.29)

Then, for any u ∈ R,
lim
n→∞φn(u) = e−

u2σ2
2 .

Proof. Lemma 7.2 is a variant of Lemma 2 in Bolthausen (1982) [24], which is
an adaptation of Stein’s method. Markov inequality implies that the sequence
(μn)n∈N of the laws of (Xn) is tight with the condition supn∈N

EX2
n < ∞.

Theorem 25.10 in Billingsley (1995) [21] proves the existence of a subsequence
μnk

and a probability measure μ such that μnk
converges weakly to μ as k

tends to infinity. Let φ denote the characteristic function of μ. We deduce from
(7.3.29) that, for any u ∈ R,

φ(u) − 1 + σ2

∫ u

0

tφ(t)dt = 0,

or equivalently, for any u ∈ R,

φ′(u) + σ2uφ(u) = 0.

We obtain integrating the last equation

φ(u) = exp(−σ
2u2

2
),

for any u ∈ R. The proof of Lemma 7.2 is complete by the use of Theorem 25.10
in Billingsley (1995) [21] and its corollary. �

The proof of Proposition 7.4 follows by (7.3.14), (7.3.28) and Lemma 7.2. �

7.4 Conditional central limit theorem (causal)

Let Sn be the partial sums of a triangular array with stationary rows. In
this section, we give necessary and sufficient conditions for Sn to satisfies the
conditional central limit theorem. These conditions imply the weak convergence
of n−1/2Sn to a mixture of normal distribution, but they also imply the stable
convergence in the sense of Rényi (1963) [156] (see section 7.5.1). The main
result of this section (Theorem 7.5) is due to Dedecker and Merlevède (2002)
[44].
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Definition 7.1. Let (Ω,A,P) be a probability space, and T : Ω �→ Ω be a
bijective bimeasurable transformation preserving the probability P. An element
A is said to be invariant if T (A) = A. We denote by I the σ-algebra of all
invariant sets. The probability P is ergodic if each element of I has measure
0 or 1. Finally, let H be the space of continuous real functions ϕ such that
x �→ |(1 + x2)−1ϕ(x)| is bounded.

Theorem 7.5. For each positive integer n, let M0,n be a σ-algebra of A
satisfying M0,n ⊆ T−1(M0,n). Define the nondecreasing filtration (Mi,n)i∈Z

by Mi,n = T−i(M0,n) and Mi,inf = σ (
⋃∞
n=1

⋂∞
k=nMi,k). Let X0,n be a

M0,n-measurable and square integrable random variable and define the sequence
(Xi,n)i∈Z by Xi,n = X0,n ◦ T i. Finally, for any t in [0, 1], write Sn(t) =
X1,n + · · · + X[nt],n. Suppose that n−1/2X0,n converges in probability to zero
as n tends infinity. The following statements are equivalent:

S1 There exists a nonnegative M0,inf-measurable random variable η such that,
for any ϕ in H, any t in [0, 1] and any positive integer k,

S1(ϕ) : lim
n→∞

∥∥
∥
∥E
(
ϕ(n−1/2Sn(t)) −

∫
ϕ(x

√
tη)g(x)dx

∣
∣
∣Mk,n

)∥∥
∥
∥

1

= 0

where g is the distribution of a standard normal.

S2 (a)

lim
t→0

lim sup
n→∞

E

(
S2
n(t)
nt

(
1 ∧ |Sn(t)|√

n

))
= 0 .

(b) lim
t→0

lim sup
n→∞

1
t
√
n
‖E(Sn(t)|M0,n)‖1 = 0.

(c) There exists a nonnegative M0,inf-measurable random variable η such
that,

lim
t→0

lim sup
n→∞

∥
∥∥E
(S2

n(t)
nt

− η
∣
∣∣M0,n

)∥∥∥
1

= 0 .

Moreover the random variable η satisfies η = η ◦ T almost surely.

We now give the proof of this theorem. The fact that S1 implies S2 is obvious.
In the next sections, we focus on the consequences of condition S2. We start
with some preliminary results.

7.4.1 Definitions and preliminary lemmas

Definition 7.2. Let μ be a signed measure on a metric space (S,B(S)). Denote
by |μ| the total variation measure of μ, and by ‖μ‖ = |μ|(S) its norm. We say
that a family Π of signed measures on (S,B(S)) is tight if for every positive ε
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there exists a compact set K such that |μ|(Kc) < ε for any μ in Π. Denote by
C(S) the set of continuous and bounded functions from S to R. We say that a
sequence of signed measures (μn)n>0 converges weakly to a signed measure μ if
for any ϕ in C(S), μn(ϕ) tends to μ(ϕ) as n tends to infinity.

Lemma 7.3. Let (μn)n>0 be a sequence of signed measure on (Rd,B(Rd)), and
set μ̂n(t) = μn(exp(i < t, · >)). Assume that the sequence (μn)n>0 is tight and
that supn>0 ‖μn‖ < ∞. The following statements are equivalent

1. the sequence (μn)n>0 converges weakly to the null measure.

2. for any t in R
d, μ̂n(t) tends to zero as n tends to infinity.

Proof of Lemma 7.3. 1 ⇒ 2 is obvious. It remains to prove that 2 ⇒ 1. We
proceed in 3 steps.

Step 1. Let D(Rd) be the space of functions from R
d to C which are infinitely

derivable with compact support. Let ϕ be any element of D(Rd) and set ϕ̄(t) =
ϕ̂(−t). From Plancherel equality, we have μn(ϕ) = (2π)−dμ̂n(ϕ̄). The function
ϕ̄ being infinitely derivable and fast decreasing, it belongs to L

1(λ). Since |μ̂n|
converges to zero everywhere and is bounded by supn>0 ‖μn‖, the dominated
convergence theorem implies that μ̂n(ϕ̄) tends to zero as n tends to infinity.
Consequently, for any ϕ in D(Rd), μn(ϕ) converges to zero as n tends to infinity.

Step 2. Let ϕ be any function from R
d to R, continuous and with compact

support. For any positive ε, there exists ϕε in D(Rd) such that ‖ϕ− ϕε‖∞ ≤ ε.
Since furthermore supn>0 ‖μn‖ is finite, we infer from Step 1 that μn(ϕ) tends
to zero as n tends to infinity.

Step 3. For any positive integer k, let fk be a positive and continuous function
from R

d to R satisfying: ‖fk‖∞ ≤ 1, f(x) = 1 for any x in [−k, k]d, f(x) = 0
for any x in

(
[−k − 1, k + 1]d

)c.
For any continuous bounded function ϕ, write

|μn(ϕ)| ≤ |μn(ϕfk)| + ‖ϕ‖∞|μn|(([−k, k]d)c) .

From Step 2 the first term on right hand tends to zero as n tends to infinity.
Since the sequence (μn)n>0 is tight, the second term on right hand is as small
as we wish by choosing k large enough. This completes the proof of 1. �

Definition 7.3. Define the set R(Mk,n) of Rademacher Mk,n-measurable ran-
dom variables: R(Mk,n) = {21A − 1 /A ∈ Mk,n}. Recall that g is the N (0, 1)-
distribution. For the random variable η introduced in Theorem 7.5 and any
bounded random variable Z, let

1. νn[Z] be the image measure of Z.P by the variable n−1/2Sn(t).
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2. ν[Z] be the image measure of g.λ ⊗ Z.P by the variable φ from R ⊗ Ω to
R defined by φ(x, ω) = x

√
tη(ω).

Lemma 7.4. Let μn[Zn] = νn[Zn] − ν[Zn]. For any ϕ in H, the statement
S1(ϕ) is equivalent to:

S3(ϕ): for any Zn in R(Mk,n) the sequence μn[Zn](ϕ) tends to zero as n tends
to infinity.

Proof of Lemma 7.4. For Zn in R(Mk,n) and ϕ in H, we have

|μn[Zn](ϕ)| =
∣
∣
∣∣E
(
Zn

(
ϕ(n−1/2Sn(t)) −

∫
ϕ(x

√
tη)g(x)dx

))∣∣
∣∣

≤
∥
∥
∥
∥E
(
ϕ(n−1/2Sn(t)) −

∫
ϕ(x

√
tη)g(x)dx

∣
∣
∣Mk,n

)∥∥
∥
∥

1

.

Consequently S1(ϕ) implies S3(ϕ). Now to prove that S3(ϕ) implies S1(ϕ),
choose

A(n, ϕ) =
{

E

(
ϕ(n−1/2Sn(t)) −

∫
ϕ(x

√
tη)g(x)dx

∣
∣
∣Mk,n

)
≥ 0
}
,

and Zϕn = 21A(n,ϕ) − 1. Obviously

μn[Zϕn ](ϕ) =
∥
∥∥
∥E
(
ϕ(n−1/2Sn(t)) −

∫
ϕ(x

√
tη)g(x)dx

∣∣
∣Mk,n

)∥∥∥
∥

1

,

and S3(ϕ) implies S1(ϕ). �

7.4.2 Invariance of the conditional variance

We first prove that if S2 holds, the random variables η satisfies η = η ◦T almost
surely (or equivalently that η is measurable with respect to the P-completion
of I). From S2(c) and both the facts that (Xi,n)i∈Z is strictly stationary and
M0,n ⊆ M1,n, we have for any t in ]0, 1],

lim
n→∞

∥
∥
∥∥E
(
η ◦ T − S2

n(t) ◦ T
nt

∣
∣∣M0,n

)∥∥
∥∥

1

= 0 . (7.4.1)

On the other hand, defining ψ(x) = x2(1 − (1 ∧ |x|)) and using the fact that T
preserves P, we have
∥
∥
∥
∥
S2
n(t)
nt

− S2
n(t) ◦ T
nt

∥
∥
∥
∥

1

≤ 2
∥
∥
∥
∥
S2
n(t)
nt

(
1 ∧ |Sn(t)|√

n

)∥∥
∥
∥

1

+
1
t

∥
∥∥
∥ψ
(Sn(t)√

n

)
− ψ
(Sn(t) ◦ T√

n

)∥∥∥
∥

1

. (7.4.2)



7.4. CONDITIONAL CENTRAL LIMIT THEOREM (CAUSAL) 177

To control the second term on right hand, note that the function ψ is 3-lipschitz
and bounded by 1. It follows that for each positive ε,

∥
∥∥
∥ψ
(Sn(t)√

n

)
− ψ
(Sn(t) ◦ T√

n

)∥∥∥
∥

1

≤ 3ε+ 2P(|X0,n −X[nt],n| >
√
nε) .

Using that n−1/2X0,n converges in probability to 0, we derive that

lim
n→∞

∥
∥
∥
∥ψ
(Sn(t)√

n

)
− ψ
(Sn(t) ◦ T√

n

)∥∥
∥
∥

1

= 0 ,

and the second term on right hand in (7.4.2) tends to 0 as n tends to infinity.
This fact together with inequality (7.4.2) and Condition S2(a) yield

lim
t→0

lim sup
n→∞

∥∥
∥
∥
S2
n(t)
nt

− S2
n(t) ◦ T
nt

∥∥
∥
∥

1

= 0 ,

which together with S2(c) imply that

lim
t→0

lim sup
n→∞

∥
∥
∥∥E
(
η − S2

n(t) ◦ T
nt

∣
∣
∣M0,n

)∥∥
∥∥

1

= 0 . (7.4.3)

Combining (7.4.1) and (7.4.3), it follows that lim
n→∞ ‖E(η − η ◦ T |M0,n)‖1 = 0,

which implies that

lim
n→∞

∥∥
∥E
(
η − η ◦ T

∣∣
∣
⋂

k≥n
M0,k

)∥∥
∥

1
= 0 .

Applying the martingale convergence theorem, we obtain

lim
n→∞

∥∥
∥E
(
η − η ◦ T

∣∣
∣
⋂

k≥n
M0,k

)∥∥
∥

1
= ‖E(η − η ◦ T |M0,inf)‖1 = 0 . (7.4.4)

According to S2(c), the random variable η is M0,inf -measurable. Therefore,
(7.4.4) implies that E(η ◦ T |M0,inf) = η. The fact that η ◦ T = η almost surely
is a direct consequence of the following elementary result.

Lemma 7.5. Let (Ω,A,P) be a probability space, X an integrable random vari-
able, and M a σ-algebra of A. If the random variable E(X |M) has the same
law as X, then E(X |M) = X almost surely.

Proof of Lemma 7.5. For any real number m, consider A1 = {X ≤ m},
A2 = {E(X |M) ≤ m}, C1 = A1 ∩Ac2 and C2 = A2 ∩ Ac1. Since by assumption
the random variables X and E(X |M) are identically distributed, it follows that
P(A1) = P(A2), P(C1) = P(C2) and E(X1A1) = E(X1A2). This implies in
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particular that E((X −m)1C1) = E((X−m)1C2). These terms having opposite
signs, they are zero. Since X −m is positive on C2, it follows that C2 and con-
sequently A1ΔA2 have probability zero (Δ denoting the symmetric difference).
Now, it is easily seen that

E((E(X |M))21A1) = E((E(X |M))21A2) = E(X21A1) and (7.4.5)
E(XE(X |M)1A1) = E(XE(X |M)1A2) = E((E(X |M))21A2) (7.4.6)

According to (7.4.5) and (7.4.6), we obtain

‖(X − E(X |M))1A1‖2
2 = ‖X1A1‖2

2 + ‖E(X |M)1A1‖2
2 − 2E(XE(X |M)1A1)

= 0 (7.4.7)

Since (7.4.7) is true for any real m, it follows that X = E(X |M) almost surely,
and Lemma 7.5 is proved. �.

7.4.3 End of the proof

First, note that we can restrict ourselves to bounded functions of H: if S2
implies S1(h) for any continuous and bounded function h then we easily infer
from S2(c) that n−1S2

n(t) is uniformly integrable for any t in [0, 1], which implies
that S1 extends to the whole space H.

Definition 7.4. Let B3
1(R) be the class of three-times continuously differentiable

functions from R to R such that max(‖h(i)‖∞, i ∈ {0, 1, 2, 3}) ≤ 1.

Suppose now that S1(h) holds for any h in B3
1(R). Applying Lemma 7.4, this is

equivalent to say that S3(h) holds for any h in B3
1(R), which obviously implies

that S3(h) holds for ht = eit. Using that the probability νn[1] is tight (since it
converges weakly to ν[1]) and that |μn[Zn]| ≤ νn[1] + ν[1], we infer that μn[Zn]
is tight, and Lemma 7.3 implies that S3(h) (and therefore S1(h)) holds for any
continuous bounded function h.
On the other hand, from the asymptotic negligibility of n−1/2X0,n we infer that,
for any positive integer k, n−1/2(Sn(t) − Sn(t) ◦ T k) converges in probability to
zero. Consequently, since any function h belonging to B3

1(R) is 1-Lipschitz and
bounded, we have

lim
n→∞

∥
∥
∥h(n−1/2Sn(t)) − h(n−1/2Sn(t) ◦ T k)

∥
∥
∥

1
= 0 ,

and S1(h) is equivalent to

lim
n→∞

∥
∥
∥
∥E
(
h(n−1/2Sn(t) ◦ T k) −

∫
h(x

√
tη)g(x)dx

∣
∣
∣Mk,n

)∥∥
∥
∥

1

= 0 .

Now, since both η and P are invariant by T , we infer that Theorem 7.5 is a
straightforward consequence of Proposition 7.6 below:
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Proposition 7.6. Let Xi,n and Mi,n be defined as in Theorem 7.5. If S2
holds, then, for any h in B3

1(R) and any t in [0, 1],

lim
n→∞

∥
∥
∥∥E
(
h(n−1/2Sn(t)) −

∫
h(x

√
tη)g(x)dx

∣
∣
∣M0,n

)∥∥
∥∥

1

= 0

where g is the distribution of a standard normal.

Proof of Proposition 7.6. We prove the result for Sn(1), the proof of the general
case being unchanged. Without loss of generality, suppose that there exists
a sequence (εi)i∈Z of N (0, 1)-distributed and independent random variables,
independent of M∞,∞ = σ(

⋃
k,nMk,n).

Definition 7.5. Let i, p and n be three integers such that 1 ≤ i ≤ p ≤ n. Set
q = [n/p] and define

Ui,n = Xiq−q+1,n + · · · +Xiq,n, Vi,n =
1√
n

(U1,n + U2,n + · · · + Ui,n)

Δi = εiq−q+1 + · · · + εiq, Γi =
√
η

n
(Δi + Δi+1 + · · · + Δp) .

Definition 7.6. Let g be any function from R to R. For k and l in [1, p]
and any positive integer n ≥ p, set gk,l;n = g(Vk,n + Γl), with the conventions
gk,p+1;n = g(Vk,n) and g0,l;n = g(Γl). Afterwards, we shall apply this notation
to the successive derivatives of the function h. For brevity we shall omit the
index n.

Let sn =
√
η(ε1 + · · ·+ εn). Since (εi)i∈Z is independent of M∞,∞, we have,

integrating with respect to (εi)i∈Z,

E

(
h(n−1/2Sn(1)) −

∫
h(x

√
η)g(x)dx

∣
∣
∣M0,n

)

= E(h(n−1/2Sn(1)) − h(Vp,n)|M0,n) + E(h(Vp,n) − h(Γ1)|M0,n)

+ E(h(Γ1) − h(n−1/2sn)|M0,n) . (7.4.8)

Here, note that |n−1/2Sn(1)−Vp,n| ≤ n−1/2(|Xn−p+2,n|+· · ·+|Xn,n|). Using the
asymptotic negligibility of n−1/2X0,n, we infer that n−1/2Sn(1)−Vp,n converges
in probability to zero. Since furthermore h is 1-Lipschitz and bounded, we
conclude that

lim
n→∞ ‖h(n−1/2Sn(1)) − h(Vp,n)‖1 = 0 , (7.4.9)

and the same arguments yield

lim
n→∞ ‖h(Γ1) − h(n−1/2sn)‖1 = 0 . (7.4.10)
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In view of (7.4.9) and (7.4.10), it remains to control the second term in the right
hand side of (7.4.8). To this end, we use Lindeberg’s decomposition.

h(Vp,n) − h(Γ1) =
p∑

i=1

(hi,i+1 − hi−1,i+1) +
p∑

i=1

(hi−1,i+1 − hi−1,i) . (7.4.11)

Now, applying Taylor’s integral formula we get that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hi,i+1 − hi−1,i+1 =
1√
n
Ui,nh

′
i−1,i+1 +

1
2n
U2
i,nh

′′
i−1,i+1 + Ri

hi−1,i+1 − hi−1,i = −
√
η

n
Δih

′
i−1,i+1 − η

2n
Δ2
ih

′′
i−1,i+1 + ri

where

|Ri| ≤
U2
i,n

n

(
1 ∧ |Ui,n|√

n

)
and |ri| ≤

ηΔ2
i

n

(
1 ∧

√
η|Δi|√
n

)
. (7.4.12)

Since Δi is centered and independent of σ
(
M∞,∞ ∪ σ(h′i−1,i+1)

)
, we have

E(
√
ηΔih

′
i−1,i+1|M0,n) = E(Δi)E(

√
ηh′i−1,i+1|M0,n) = 0. It follows that

E(h(Vp) − h(Γ1)|M0,n) = D1 +D2 +D3, (7.4.13)

where

D1 =
p∑

i=1

E(n−1/2Ui,nh
′
i−1,i+1|M0,n),

D2 =
1
2

p∑

i=1

E(n−1(U2
i,n − ηΔ2

i )h
′′
i−1,i+1|M0,n),

D3 =
p∑

i=1

E
(
Ri + ri

∣
∣M0,n

)
.

Control of D3. From (7.4.12) and the fact that T preserves P, we get

p∑

i=1

‖Ri‖1 ≤ E

(
S2
n(1/p)
n/p

(
1 ∧ |Sn(1/p)|√

n

))
,

and S2(a) implies that

lim
p→∞ lim sup

n→∞

p∑

i=1

‖Ri‖1 = 0 . (7.4.14)
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Moreover, since for t ∈ [0, 1], the sequence (η/n)−1/2(ε1 + · · · + ε[nt]) obviously
satisfies S2(a), the same argument applies to

∑p
i=1 ‖ri‖1. Finally

lim
p→∞ lim sup

n→∞
‖D3‖1 = 0 . (7.4.15)

Control of D1. Denote by Eε the integration with respect to the sequence
(εi)i∈Z. Set l(i, n) = (i − 1)[n/p]. Bearing in mind the definition of h′i−1,i+1

and integrating with respect to (εi)i∈Z we deduce that the random variable
Eε(h′i−1,i+1) is Ml(i,n),n-measurable and bounded by one. Now, since the σ-
algebra M0,n is included into Ml(i,n),n, we obtain

‖E(n−1/2Ui,nh
′
i−1,i+1|M0,n)‖1 ≤ ‖E(n−1/2Ui,n|Ml(i,n),n)‖1 .

Using that T preserves P, the latter equals ‖E(n−1/2Sn(1/p)|M0,n)‖1. Conse-
quently ‖D1‖1 ≤ pn−1/2‖E(Sn(1/p)|M0,n)‖1 and S2(b) implies that

lim
p→∞ lim sup

n→∞
D1 = 0 . (7.4.16)

Control of D2. Integrating with respect to (εi)i∈Z, we have

‖E((U2
i,n − ηΔ2

i )h
′′
i−1,i+1|M0,n)‖1 = ‖E((U2

i,n − η[np−1])Eε(h′′i−1,i+1)|M0,n)‖1 .

Arguing as for the control of D1, we have

‖E((U2
i,n − η[np−1])Eε(h′′i−1,i+1)|M0,n)‖1≤‖E(n−1U2

i,n − η[np−1]|Ml(i,n),n)‖1 .

Since both η and P are invariant by the transformation T , the latter equals
‖E(S2

n(1/p) − η[np−1]|M0,n)‖1. Consequently

‖D2‖1 ≤
∥
∥
∥∥E
(
S2
n(1/p)
n/p

− η
[n/p]
n/p

∣
∣
∣M0,n

)∥∥
∥∥

1

and S2(c) implies that
lim
p→∞ lim sup

n→∞
‖D2‖1 = 0 . (7.4.17)

End of the proof of Proposition 7.6. From (7.4.15), (7.4.16) and (7.4.17) we
infer that, for any h in B3

1(R),

lim
p→∞ lim sup

n→∞
‖D1 +D2 +D3‖1 = 0 .

This fact together with (7.4.8), (7.4.9), (7.4.10) and (7.4.13) imply Proposition
7.6. �
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7.5 Applications

7.5.1 Stable convergence

Let (Ω,A,P) be a probability space. A sequence (Xn)n>0 of integrable random
variables is said to converge weakly in L

1 to X if for any bounded random
variable Y , we have

lim
n→∞ E(ZXn) = E(ZX) .

Let X be some polish space. A random probability μ on X is a function from
B(X ) × Ω such that μ(., ω) is a probability measure for any ω in Ω and μ(B, .)
is A-measurable for any B in B(X ).

Let μ be random probability on X . We say that a sequence (Xn)n>0 with
values in a Polish space X converges stably with respect to μ if the sequence
(ϕ(Xn))n>0 converges weakly in L

1 to μ(ϕ) for any continuous bounded function
ϕ. The equivalence of this definition with that of Rényi (1963) [156] is proved
in Aldous and Eagleson (1978) [1]. Note that, if (Xn)n>0 converges stably
with respect to μ, then it converges in distribution to the probability ν(A) =∫
μ(A,ω)P(dω). Here is a one consequence of the stablility.

Lemma 7.6. Let (Xn)n>0 and (Yn)n>0 be two sequences of random variables
with values in two polish spaces X and Y. If (Xn)n>0 converges stably with
respect to μ and (Yn)n>0 converges in probability to Y then (Xn, Yn) converges
in distribution to the probability ν(A×B) =

∫
μ(A,ω)1Y (ω)∈BP(dω).

Proof of Lemma 7.6. Let f and g be two bounded Lipschitz functions. We have

|E(f(Xn)g(Yn)) − ν(f ⊗ g))| = |E(f(Xn)g(Yn)) − E(μ(f)g(Y ))| .

Consequently

|E(f(Xn)g(Yn)) − ν(f ⊗ g))| ≤ |E(f(Xn)g(Y )) − E(μ(f)g(Y ))|
+ ‖g(Yn) − g(Y )‖1 .

The first term on right hand tends to zero by the weak-L1 convergence and the
second term tends to zero because Yn converges in probability to Y and g is
bounded Lipschitz. �

The next Corollary shows that if the CCLT holds then (n−1/2Sn(t))n>0 con-
verges stably.

Corollary 7.2. Let Xi,n, Mi,n, Sn(t) be as in Theorem 7.5. Suppose that
the sequence (M0,n)n≥1 is nondecreasing. If Condition S2 is satisfied, then the
sequence (n−1/2Sn(t))n>0 converges stably with respect to the random probability
defined by μ(ϕ) =

∫
ϕ(x

√
tη)g(x)dx.
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Proof of Corollary 7.2. We shall prove that if S2 holds, then, for any bounded
random variable Z, any t in [0, 1] and any ϕ in H,

lim
n→∞ E

(
Zϕ(n−1/2Sn(t))

)
= E

(
Z

∫
ϕ(x

√
tη)g(x)dx

)
. (7.5.1)

Since n−1S2
n(t) is uniformly integrable, we only need to prove (7.5.1) for contin-

uous bounded functions. Recall that M∞,∞ = σ(
⋃
k,nMk,n). Since both Sn(t)

and η are M∞,∞-measurable, we can and do suppose that so is Z.
Set Zk,n = E(Z|Mk,n), and use the decomposition

E

(
Zϕ(n−1/2Sn(t))

)
− E

(
Z

∫
ϕ(x

√
tη)g(x)dx

)
= T1 + T2 + T3 ,

where

T1 = E

(
(Z − Zk,n)ϕ(n−1/2Sn(t))

)

T2 = E

(
Zk,n

(
ϕ(n−1/2Sn(t)) −

∫
ϕ(x

√
tη)g(x)dx

))

T3 = E

(
(Zk,n − Z)

∫
ϕ(x

√
tη)g(x)dx

)
.

By assumption, the array Mk,n is nondecreasing in k and n. Since the random
variable Z is M∞,∞-measurable, the martingale convergence theorem implies
that limk→∞ limn→∞ ‖Zk,n − Z‖1 = 0. Consequently,

lim
k→∞

lim sup
n→∞

|T1| = lim
k→∞

lim sup
n→∞

|T3| = 0 .

On the other hand, Theorem 7.5 implies that T2 tends to zero as n tends to
infinity, which completes the proof of Corollary 7.2. �

We end this section with an application of the stable convergence to random
normalization. The proof is straightforward, using Lemma 7.6 and Corollary
7.2.

Corollary 7.3. Let Xi,n, Mi,n, Sn(t) be as in Theorem 7.5. Suppose that the
sequence (M0,n)n≥1 is nondecreasing and that P(η > 0) = 1. If Condition S2
is satisfied, and if (ηn)n>0 converges in probability to η then, for any t in ]0, 1],

n−1/2Sn(t)√
tηn ∨ n−1

converges in distribution to N (0, 1) .

For more about stable convergence, we refer to the book by Castaing et al.
(2004) [35].
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7.5.2 Sufficient conditions for stationary sequences

For strictly stationary sequences, Theorem 7.5 writes as follows.

Theorem 7.6. Let M0 be a σ-algebra of A satisfying M0 ⊆ T−1(M0) and
define the nondecreasing filtration (Mi)i∈Z by Mi = T−i(M0). Let X0 be a
M0-measurable, square integrable and centered random variable. Define the
sequence (Xi)i∈Z by Xi = X0 ◦ T i, and Sn = X1 + · · · + Xn. The following
statements are equivalent:

S1 There exists a nonnegative M0-measurable random variable η such that,
for any ϕ in H and any positive integer k,

lim
n→∞

∥
∥
∥E
(
ϕ(n−1/2Sn) −

∫
ϕ(x

√
η)g(x)dx

∣
∣
∣Mk

)∥∥
∥

1
= 0

where g is the distribution of a standard normal.

S2 (a) the sequence (n−1S2
n)n>0 is uniformly integrable.

(b) the sequence ‖E(n−1/2Sn|M0)‖1 tends to 0 as n tends to infinity.
(c) there exists a nonnegative M0-measurable random variable η such

that ‖E(n−1S2
n − η|M0)‖1 tends to 0 as n tends to infinity.

Moreover the random variable η satisfies η = η ◦ T almost surely.

In Proposition 7.7 and 7.8, we give two conditions implying S2. For the usual
central limit theorem, Proposition 7.7 is due to Gordin (1969) [97], Corollary
7.4 is due to Heyde (1974) [103] and Proposition 7.8 is due to Dedecker and Rio
(2000) [50].

Proposition 7.7. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 7.6. Let Hi be
the Hilbert space of Mi-measurable, centered and square integrable functions.
For all integer j less than i, denote by Hi !Hj, the orthogonal of Hj into Hi.
Assume that there exists a random variable m in H0 !H−1 such that

lim
n→∞

1√
n

∥∥
∥
n∑

i=1

X0 ◦ T i −m ◦ T i
∥∥
∥

2
= 0 , (7.5.2)

then S2 (hence S1) holds.

Corollary 7.4. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 7.6, and define Hi

as in Proposition 7.7. Let Pi be the projection operator on Hi !Hi−1: for any
function f in L

2, Pi(f) = E(f |Mi) − E(f |Mi−1). If
n∑

i=0

P0(Xi) converges in L
2 to m and lim

n→∞n−1/2‖Sn‖2 = ‖m‖2 , (7.5.3)

then (7.5.2) (hence S1) holds.
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Proof of Proposition 7.7. LetWn = m◦T+· · ·+m◦T n. Since (m◦T i)i∈Z is a sta-
tionary sequence of martingale differences with respect to the filtration (Mi)i∈Z,
it satisfies S2. More precisely, n−1

E(W 2
n |M0) converges to η = E(m2|I) in L

1.
Now, we shall use (7.5.2) to see that the sequence (Xi)i∈Z also satisfies S2.

Proof of S2(b). From (7.5.2) it is clear that n−1/2‖E(Sn|M0)‖2 tends to zero
as n tends to infinity.

Proof of S2(c). To see that n−1
E(S2

n|M0) converges to η in L
1, write

1
n

∥
∥E(S2

n −W 2
n |M0)

∥
∥

1
≤ 1

n

∥
∥S2

n −W 2
n

∥
∥

1

≤ ‖Sn +Wn‖2√
n

‖Sn −Wn‖2√
n

. (7.5.4)

From (7.5.2) the latter tends to zero as n tends to infinity and therefore (Xi)i∈Z

satisfies s2(c) with η = E(m2|I).

Proof of S2(a). Using both that n−1W 2
n is uniformly integrable and that the

function x �→ (1 ∧ |x|) is 1-Lipschitz, we have, for any positive real M ,

lim
n→∞

(
W 2
n

n

∣
∣
∣∣
(
1 ∧ |Sn|

M
√
n

)
−
(
1 ∧ |Wn|

M
√
n

)∣∣
∣∣

)
= 0 . (7.5.5)

Since |x2(1∧ |y|)− z2(1∧ |t|)| ≤ |x2 − z2|+ z2|(1∧ |y|)− (1∧ |t|)|, we infer from
(7.5.4) and (7.5.5) that

lim
n→∞

∥
∥∥
∥
S2
n

n

(
1 ∧ |Sn|

M
√
n

)
−W

2
n

n

(
1 ∧ |Wn|

M
√
n

)∥∥∥
∥

1

= 0 .

Now, the uniform integrability of n−1W 2
n yields

lim
M→∞

lim sup
n→∞

E

(
S2
n

n

(
1 ∧ |Sn|

M
√
n

))
= 0 ,

which means exactly that n−1S2
n is uniformly integrable. �

Proof of Corollary 7.4. By assumption, the random variable m belongs to
H0!H−1. It remains to check (7.5.2). Let mi = m◦T i and Tn = m1+ · · ·+mn.
Clearly E((Sn − Tn)2) = E(S2

n) + E(T 2
n) − 2E(SnTn). By assumption n−1

E(S2
n)

converges to ‖m‖2
2 = n−1

E(T 2
n). To prove (7.5.2), it suffices to prove that

n−1
E(SnTn) converges to ‖m‖2

2. Now, by stationarity

1
n

E(SnTn) =
1
n

n∑

i=1

n∑

j=1

E(Ximj) =
n∑

k=−n

(
1 − |k|

n

)
E(mXk) . (7.5.6)



186 CHAPTER 7. CENTRAL LIMIT THEOREM

By Kronecker’s lemma n−1
E(SnTn) converges to

∑
k∈Z

E(mXk) as soon as the
latter converges. Now since m belongs to H0 ! H−1, it follows that

∑
k∈Z

E(mXk) =
∑

k≥0 E(mP0(Xk)). Since m =
∑
k≥0 P0(Xk) in L

2, the result
follows. �

Proposition 7.8. Let (Mi)i∈Z, (Xi)i∈Z and Sn be as in Theorem 7.6. Consider
the condition:

n∑

k=1

X0E(Xk|M0) converges in L
1 . (7.5.7)

If (7.5.7) is satisfied, then S2 holds and the sequence E(X2
0 |I) + 2E(X0Sn|I)

converges in L
1 to η.

Proof of Proposition 7.8. We first prove that E(X2
0 |I) + 2E(X0Sn|I) converges

in L
1. From assumption (7.5.7), the sequence E(X2

0 |M0) +2E(X0Sn|M0) con-
verges in L

1. The result is then a consequence of part (b) of Lemma 7.7 below:

Lemma 7.7. We have:

(a) Both E(X0Xk|I) and E(E(X0Xk|M0)|I) are almost surely equal to M0-
measurable random variables.

(b) E(X0Xk|I) = E(E(X0Xk|M0)|I) almost surely.

Lemma 7.7(b) is derived from Lemma 7.7(a) via the following elementary fact,
whose proof is omitted.

Lemma 7.8. Let Y be a random variable in L
1(P) and U , V two σ-algebras

of (Ω,A,P). Suppose that E(Y |U) and E(E(Y |V)|U) are V-measurable. Then
E(Y |U) = E(E(Y |V)|U) almost surely.

Proof of Lemma 7.7(a). The fact that E(E(X0Xk|M0)|I) is almost surely equal
to some M0-measurable random variable follows from the L

1-ergodic theorem.
Indeed the variables E(XiXk+i|M0) are M0-measurable and

E(E(X0Xk|M0)|I) = lim
n→∞

1
n

n∑

i=1

E(XiXk+i|M0) in L
1.

Next, from the stationarity of the sequence (Xi)i∈Z, we have

∥
∥
∥E(X0Xk|I) − 1

n

n∑

i=1

XiXi+k

∥
∥
∥

1
=
∥
∥
∥E(X0Xk|I) − 1

n

−k∑

i=1−(n+k)

XiXi+k

∥
∥
∥

1
.

Both this equality and the L
1-ergodic theorem imply that E(X0Xk|I) is the

limit in L
1 of a sequence of M0-measurable random variables. �
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Proof of S2(a). Let Sn = max{|S1|, . . . , |Sn|}. In Chapter 8, we shall prove
that (n−1(Sn)2)n>0 is uniformly integrable as soon as (7.5.7) holds. �
Proof of S2(c). For any positive integer N , we introduce

ΛN = [(k− 1)q+ 1, kq]2 ∩ {(i, j) ∈ Z
2/ |i− j| > N}, and Λ̄N = [1, n]2 − ΛN .

and ηN = E(X2
0 |I) + 2(E(X0X1|I) + · · ·+ E(X0XN |I) ). Since ηN converges in

L
1 to η, it suffices to prove that

lim
N→∞

lim sup
n→∞

∥
∥
∥ηN − E

( 1
n

n∑

i=1

n∑

j=1

XiXj

∣
∣
∣M0

)∥∥
∥

1
= 0 . (7.5.8)

Using the triangle inequality and the fact that ηN = E(ηN |M0) almost surely,
we obtain

∥
∥
∥ηN − E

( 1
n

n∑

i=1

n∑

j=1

XiXj

∣
∣
∣M0

)∥∥
∥

1
≤
∥
∥
∥ηN − 1

n

∑

ΛN

XiXj

∥
∥
∥

1

+
1
n

∥
∥
∥
∑

Λ̄N

E(XiXj |M0)
∥
∥
∥

1
.

Applying the L
1-ergodic theorem the first term on right hand tends to 0 as n

tends to infinity. To control the second term, write

1
n

∥
∥
∥
∑

Λ̄N

E(XiXj |M0)
∥
∥
∥

1
≤ 2

n

n∑

i=1

∥
∥
∥Xi

n∑

j=i+N

E(Xj |Mi)
∥
∥
∥

1

≤ 2
n

n∑

i=1

∥
∥
∥X0

n−i∑

j=N

E(Xj |M0)
∥
∥
∥

1
.

By assumption (7.5.7) limN→∞ maxn−N≤i≤n ‖X0

∑n−i
j=N E(Xj |M0)‖1 = 0 and

consequently

lim
N→∞

lim sup
n→∞

2
n

n∑

i=1

∥
∥
∥X0

n−i∑

j=N

E(Xj |M0)
∥
∥
∥

1
= 0 .

This completes the proof of S2(c). �

Proof of S2(b). Let M−∞ =
⋂

i∈Z

Mi and recall that Pi has been defined in

Corollary 7.4. We have the orthogonal decomposition

Xk = E(Xk|M−∞) +
∞∑

i=0

Pk−i(Xk) . (7.5.9)



188 CHAPTER 7. CENTRAL LIMIT THEOREM

Using the stationarity of (Xi)i∈Z we infer from (7.5.9) that
∞∑

i=0

‖P0(Xi)‖2
2 =

∞∑

i=0

‖P−i(X0)‖2
2 ≤ ‖X0‖2

2 . (7.5.10)

Now, from the decomposition

X−1√
n

E(Sn|M0) =
X−1√
n

E(Sn|M−1) +
X−1√
n

n∑

i=1

P0(Xi) ,

we infer that

1√
n
‖X−1E(Sn|M0)‖1 ≤ 1√

n
‖X0E(Sn ◦ T |M0)‖1 +

‖X0‖2√
n

n∑

i=1

‖P0(Xi)‖2 .

(7.5.11)
By (7.5.7), the first term on right hand tends to zero as n tends to infinity.
On the other hand, we infer from (7.5.10) and Cauchy-Shwarz’s inequality that
n−1/2

∑n
i=1 ‖P0(Xi)‖2 vanishes as n goes to infinity, and so does the left hand

term in (7.5.11). By induction, we can prove that for any positive k,

lim
n→∞

1√
n
‖X−kE(Sn|M0)‖1 = 0 . (7.5.12)

Now

1√
n
‖E(|X0||I)E(Sn|M0)‖1 ≤ 1√

n

∥
∥
∥
∥
∥
E(Sn|M0)

(
E(|X0||I) − 1

k

k∑

i=1

|X−i|
)
∥
∥
∥
∥
∥

1

+
1√
n

∥
∥
∥
∥
∥
E(Sn|M0)

1
k

k∑

i=1

|X−i|
∥
∥
∥
∥
∥

1

. (7.5.13)

From (7.5.12), the second term on right hand tends to zero as n tends to infinity.
Applying first Cauchy-Schwarz’s inequality and next the L

2-ergodic theorem,
we easily deduce that the first term on right hand is as small as we wish by
choosing k large enough. Therefore

lim
n→∞

1√
n
‖E(|X0||I)E(Sn|M0)‖1 = 0 . (7.5.14)

Set A = {1
E

(
|X0|
∣
∣I
)
>0

} and B = Ac = {1
E

(
|X0|
∣
∣I
)
=0

}.
For any positive real m, we have

1√
n
‖1AE(Sn|M0)‖1 ≤ 1

m
√
n
‖E(|X0||I)E(Sn|M0)‖1

+
1√
n
‖10<E(|X0||I)<mE(Sn|M0)‖1 . (7.5.15)
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From (7.5.14), the first term on right hand tends to zero as n tends to infinity.
Letting m tend to zero we infer that the second term on right hand of (6.12) is
as small as we wish. Consequently

lim
n→∞

1√
n
‖1AE(Sn|M0)‖1 = 0 . (7.5.16)

On the other hand, noting that E(|X0|1B) = 0, we infer that X0 is zero on the
set B. Since B is invariant by T , Xk is zero on B for any k in Z. Now arguing
as in Lemma 7.7(b), we obtain E(E(|Sn||M0)|I) = E(|Sn||I). These two facts
lead to

‖1BE(Sn|M0)‖1 ≤ E(1BE(E(|Sn||M0)|I)) ≤ E(|Sn|1B) ≤ 0 (7.5.17)

Collecting (7.5.16) and (7.5.17), we conclude that n−1/2‖E(Sn|M0)‖1 tends to
zero as n tends to infinity. This completes the proof. �

7.5.3 γ-dependent sequences

Applying Corollary 7.4 and Proposition 7.8, we derive sufficient conditions for
the CCLT expressed in terms of the coefficients γ2, and γ1. Here, the coefficients
are defined by

γ1(k) = γ1(M0, Xk), and γ2(k) = γ2(M0, Xk) .

Corollary 7.5. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 7.6 and define
M−∞ = ∩i∈ZMi. Define the operators Pi as in Corollary 7.4.

1. If E(X0|M−∞) = 0 and
∑

i≥0 ‖P0(Xi)‖2 < ∞ then (7.5.3) (hence S1)
holds. Moreover, η is the same as in Proposition 7.8.

2. Assume that ∑

k>0

γ2(k)√
k

< ∞ . (7.5.18)

Then E(X0|M−∞) = 0 and
∑
i≥0 ‖P0(Xi)‖2 < ∞, and S1 holds.

Proof of Corollary 7.5:

Proof of 1. Starting from (7.5.9) with E(Xk|M−∞) = 0, we obtain

E(X0Xk) =
∑

i≥0

E(P−i(X0)P−i(Xk)) =
∑

i≥0

E(P0(Xi)P0(Xi+k)) .

Hence, using Hölder’s inequality,
∞∑

k=1

|E(X0Xk)| ≤
∑

i≥0

‖P0(Xi)‖2

( ∞∑

k=1

‖P0(Xi+k)‖2

)
≤
(∑

i≥0

‖P0(Xi)‖2

)2

,

(7.5.19)
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so that
∑
k∈Z

|E(X0Xk)| is finite. Consequently

lim
n→∞

1
n

E(S2
n) =

∞∑

k=−∞
E(X0Xk) =

∞∑

i=0

∞∑

j=0

E(P0(Xi)P0(Xj)) . (7.5.20)

On the other hand

E(m2) = E

(( ∞∑

i=0

P0(Xi)
)2)

=
∞∑

i=0

∞∑

j=0

E(P0(Xi)P0(Xj)) . (7.5.21)

Combining (7.5.20) and (7.5.21), we see that (7.5.3) holds. To compute η, note
that we can in fact prove a stronger result than (7.5.19), that is

∞∑

k=1

‖E(X0Xk|I)‖1 ≤
(∑

i≥0

‖P0(Xi)‖2

)2

.

It follows that n−1
E(S2

n|I) converges in L
1 to η =

∑
k∈Z

E(X0Xk|I). �
Proof of 2. Note first that (7.5.18) implies that E(Xk|M−∞) = 0. Let (Lk)k>0

be a sequence of positive numbers such that
∑
i>0

(∑i
k=1 Lk

)−1

< ∞. Starting
from (7.5.9) and using the stationarity of (Xi)i∈Z we obtain that

∑

k>0

Lk‖E(Xk|M0)‖2
2 =

∑

k>0

Lk
∑

i≤0

‖Pi(Xk)‖2
2 =

∑

i>0

( i∑

k=1

Lk

)
‖P0(Xi)‖2

2 .

Let ai = L1 + · · · + Li. Applying Hölder’s inequality in �2, we obtain that

∑

i>0

‖P0(Xi)‖2 ≤
(∑

i>0

1
ai

)1/2(∑

i>0

ai‖P0(Xi)‖2
2

)1/2

≤
(∑

i>0

1
ai

)1/2(∑

k>0

Lk‖E(Xk|M0)‖2
2

)1/2

Since (7.5.18) holds, one can take L−1
k =

√
k‖E(Xk|M0)‖2. The result fol-

lows. �
Corollary 7.6. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 7.6. Let GX0 and
QX0 be as in Definition 5.1. If

∞∑

k=0

∫ γ1(k)

0

QX0 ◦GX0(u)du < ∞ (7.5.22)

then (7.5.7) (hence S1) holds. Moreover (7.5.22) holds as soon as
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1. P(|X0| > x) ≤ (c/x)r for r > 2, and
∑

i≥0(γ1(i))(r−2)/(r−1) < ∞.

2. ‖X0‖r < ∞ for r > 2, and
∑

i≥0 i
1/(r−2)γ1(i) < ∞.

3. E(|X0|2 log(1 + |X0|)) < ∞ and γ1(i) = O(ai) for some a < 1.

Proof of Corollary 7.6. Applying Inequality (5.2.1), we obtain that

∑

k≥0

‖X0E(Xk|M0)‖1 ≤
∑

k≥0

∫ γ1(k)

0

Q|X0| ◦G|X0|(u)du ,

so that (7.5.22) implies (7.5.7).

Proof of 1. Since P(|X | > x) ≤ (c/x)r we easily get that
∫ x

0

QX(u)du ≤ c(r − 1)
r

x(r−1)/r and then GX(u) ≥
( ur

c(r − 1)

)r/(r−1)

.

Set Kc,r = c(c− cr−1)1/(r−1). We obtain the bound

∑

i≥0

∫ γ1(i)

0

QX0 ◦GX0 (u)du ≤ Kc,r

∑

i≥0

∫ γ1(i)

0

u−1/(r−1)du

≤ Kc,r(r − 1)
r − 2

∑

i≥0

γ
(r−2)/(r−1)
1,i .

Proof of 2. Note first that

∫ ‖X0‖1

0

Qr−1
X0

◦GX0(u)du =
∫ 1

0

QrX0
(u)du = E(|X0|r) .

Define next

γ−1
1 (u) =

∑

i≥0

1u<γ1(i) = inf{k ∈ N/ γ1(k) ≤ u} .

Applying Hölder’s inequality, we obtain that

(∑

i≥0

∫ γ1(i)

0

QX0 ◦GX0 (u)du
)r−1

≤ ‖X0‖rr
(∫ ‖X0‖1

0

(γ−1
1 (u))(r−1)/(r−2)du

)r−2

.

Here note that

(γ−1
1 (u))q =

∞∑

j=0

((j + 1)q − jq)1u<γ1(j) (7.5.23)
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Now, apply (7.5.23) with q = (r − 1)/(r − 2). Noting that (i + 1)q − iq ≤
q(i+ 1)q−1, we infer that

∫ ‖X‖1

0

(γ−1
1 (u))(r−1)/(r−2)du ≤ q

∑

i≥0

(i+ 1)1/(r−2)γ1(i) .

Proof of 3. Let ρ(i) = γ1(i)/‖X‖1 and U be a random variable uniformly
distributed over [0, 1]. We have

∫ ‖X‖1

0

γ−1
1 (u)QX0 ◦GX0 (u)du =

∫ 1

0

ρ−1(u)QX0 ◦GX0 (u‖X0‖1)du

= E((ρ−1(U))QX0 ◦GX0(U‖X0‖1)) .

Let φ be the function defined on R
+ by φ(x) = x(log(1 + x))p−1. Denote by φ∗

its Young’s transform. Applying Young’s inequality, we have that

E((ρ−1(U))QX0 ◦GX0(U‖X0‖1)) ≤ 2‖(ρ−1(U))‖φ∗‖QX0 ◦GX0(U‖X0‖1)‖φ

Here, note that ‖QX0 ◦GX0(U‖X0‖1)‖φ is finite as soon as

∫ ‖X‖1

0

QX0 ◦GX0(u)(log(1 +QX0 ◦GX0(u)))p−1du < ∞ .

Setting z = GX0(u), we obtain the condition

∫ 1

0

Q2
X0

(u)(log(1 +QX0(u)))du < ∞ . (7.5.24)

Since QX0(U) has the same distribution as |X0|, we infer that (7.5.24) holds as
soon as E(|X0|2(log(1 + |X0|))) is finite. It remains to control ‖(ρ−1(U))‖φ∗ .
Arguing as in Rio (2000) [161] page 17, we see that ‖(ρ−1(U))‖φ∗ is finite as
soon as there exists c > 0 such that

∑

i≥0

ρ(i)φ′−1((i+ 1)/c) < ∞ . (7.5.25)

Since φ′−1 has the same behavior as x �→ ex as x goes to infinity, we can always
find c > 0 such that (7.5.25) holds provided that γ1(i) = O(ai) for some a < 1. �

7.5.4 α̃ and φ̃-dependent sequences

In this section, the coefficients are defined by

φ̃1(k) = φ̃(M0, Xk) and α̃1(k) = φ̃(M0, Xk) .
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Let Xn = X0 ◦ T i and

Sn(f) = f(X0) + · · · + f(Xn) and Sn,0(f) = Sn(f) − nE(f(X0)) .

Let C(p,M,PX) be the closed convex hull of the class of functions g which are
monotonic on an open interval and 0 elsewhere, and such that E(|g(X0)|p) < M .

Corollary 7.7. Let (Mi)i∈Z be as in Theorem 7.6. Assume that, for some
p ≥ 2,

f ∈ C(p,M,PX) and
∑

k≥0

(φ̃1(k))(p−1)/p

√
k

< ∞ . (7.5.26)

Then Sn,0(f) satisfies S1 with

η =
∑

k∈Z

E(f(X0)(f(Xk) − E(f(Xk)))|I) . (7.5.27)

Remark 7.5. We can apply this result to the case of uniformly expanding maps
(see Section 3.3). If T is a uniformly expanding map of [0, 1] preserving a
probability μ, and if f belongs to C(2,M, μ), then n−1/2(f◦T+· · ·+f◦T n−nμ(f))
converges weakly in the space ([0, 1], μ) to a Gaussian distribution with mean 0
and variance

σ2(f) = μ((f − μ(f))2) + 2
∑

k>0

μ((f − μ(f))f ◦ T k) .

Let C(Q) the closed convex hull of the class of functions g which are monotonic
on an open interval and 0 elsewhere, and such that Q|g(X0)| ≤ Q, where Q is a
given quantile function.

Corollary 7.8. Let (Mi)i∈Z be as in Theorem 7.6. Assume that, for some
quantile function Q,

f ∈ C(Q) and
∑

k≥0

∫ α̃(k)

0

Q2(u)du < ∞ . (7.5.28)

Then Sn,0(f) satisfies S1 with η given by (7.5.27).

Proof of Corollaries 7.7 and 7.8. Without loss of generality, it suffices to prove
the results for f =

∑k
i=1 αigi, where

∑k
i=1 αi = 1 and gi is monotonic on an

interval and 0 elsewhere, and E(|gi(X0)|p) < M (resp. Q|gi(X0)| ≤ Q). To prove
Corollary 7.7 it suffices to see that the sequence (f(Xi))i∈Z satisfies (7.5.18),
that is

∑

k≥0

‖E(f(Xk)|M0) − E(f(Xk))‖2√
k

< ∞ . (7.5.29)
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Clearly, it suffices to check (7.5.29) for a single function gi. Note that by mono-
tonicity φ̃(M0, gi(Xk)) ≤ 2φ̃(M0, Xk). Let S1(M0) be the set of all M0-
measurable random variables Z such that E(Z2) = 1. Clearly,

‖E(gi(Xk)|M0) − E(gi(Xk))‖2 = sup
Z∈S1(M0)

|Cov(Z, gi(Xk))| (7.5.30)

Applying (5.2.7), we have, for any conjugate exponents p, q,

|Cov(Z, (f − g)(Yk))| ≤ 4‖gi(X0)‖p‖Z‖q(φ̃1(k))1/q .

and the result easily follows. In the same way, to prove Corollary 7.8, it suffices
to prove that

∑

k≥0

‖gi(X0)(E(gi(Xk)|M0) − E(gi(X0)))‖1 < ∞ ,

which follows (5.2.5). �

7.5.5 Sufficient conditions for triangular arrays

The next condition is the natural extension of Condition (7.5.7).

lim
N→∞

lim sup
n→∞

sup
N≤m≤n

∥
∥
∥X0,n

m∑

k=N

E(Xk,n|M0,n)
∥
∥
∥

1
= 0 . (7.5.31)

If (7.5.31) is satisfied, define R(N,X) and N(X) as follows:

R(N,X) = lim sup
n→∞

sup
N≤m≤n

∥
∥
∥X0,n

m∑

k=N

E(Xk,n|M0,n)
∥
∥
∥

1
,

and N(X) = inf{N > 0 : R(N,X) = 0} (N(X) may be infinite).

Proposition 7.9. Let Xi,n and Mi,n be as in Theorem 7.5. Assume that
(7.5.31) and S2(b) are satisfied. Assume furhtermore that, for each 0 ≤ k <
N(X), there exists an M0,inf-measurable random variable λk such that for any
t in ]0, 1],

1
nt

[nt]∑

i=1

Xi+k,nXi,n converges in L
1 to λk. (7.5.32)

Then Condition S2 holds with η = λ0 + 2
∑N(X)−1
k=1 λk.

Remark 7.6. Let us have a look to a particular case, for which N(X) = 1.
Conditions (7.5.31) and (7.5.32) are satisfied if condition R1. and R2. below
are fulfilled
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R1. lim
n→∞

∑n
k=1 ‖X0,nE(Xk,n|M0,n)‖1 = 0.

R2. For any t in ]0, 1], 1
nt

∑[nt]
i=1X

2
i,n converges in L

1 to λ.

In the stationary case, these results extend on classical results for triangular
arrays of martingale differences (see for instance Hall and Heyde (1980) [100],
Theorem 3.2), for which Condition R1. is satisfied. This particular case is
sufficient to improve on many results in the context of kernel estimators.

We conclude with a simple result for φ̃-mixing arrays. Here, the coefficients
are defined by

φ̃1(k) = sup
n>0

φ̃(M0,n, Xk,n) .

Corollary 7.9. Let Xi,n and Mi,n be as in Theorem 7.5. If there exists two
conjugate exponent p ≤ q such that

sup
n>0

‖X0,n‖p · ‖X0,n‖q < ∞ and
∞∑

k=0

(φ̃1(k))1/p < ∞ , (7.5.33)

then (7.5.31) holds. If furthermore, for any k > 0 the sequence ‖X0,nXk,n‖1

converges to 0 as n tends to infinity, then N(X) = 1. If furthermore Lindeberg’s
condition holds:

for any ε > 0, lim
n→∞ E(X2

0,n1|X0,n|>ε√n) = 0 , (7.5.34)

then S2 holds as soon as E(X2
0,n) converges, and η = limn→∞ E(X2

0,n).

Proof of Proposition 7.9.

Proof of S2(a). Write first

E

(S2
n(t)
nt

(1 ∧ |Sn(t)|√
n

)
)

≤ E

(S2
n(t)
nt

1|Sn(t)|>2
√
nε

)
+

2ε
nt

E(S2
n(t))

≤ 4
nt

E
(
(|Sn(t)| − ε)2+

)
+

2ε
nt

E(S2
n(t)) (7.5.35)

Since (7.5.31) holds, (nt)−1
E(S2

n(t)) is bounded, so that the second term on
right hand is a small as we wish. Consequently, we infer from (7.5.35) that
S2(a) holds as soon as,

for any positive ε, lim
t→0

lim sup
n→∞

1
nt

E
(
(|Sn(t)| − ε)2+

)
= 0 . (7.5.36)

In fact, we shall prove that (7.5.36) holds with Sn(t) = sups∈[0,t] |Sn(s)| in-
stead of |Sn(t)|. Define S∗

n(t) = sups∈[0,t](Sn(s))+ and G(t, ε, n) by G(t, ε, n)
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= {S∗
n(t) > ε}. From Proposition 5.8, we have, for any positive integer N ,

1
nt

E
(
(S∗
n(t) − ε)2+

)
≤ 8E

(
1G(t,ε,n)

1
nt

[nt]∑

k=1

N−1∑

i=0

|Xk,nXk+i,n|
)

+ 8 sup
N≤m≤[nt]

∥
∥
∥X0,n

m∑

k=N

E(Xk,n|M0,n)
∥
∥
∥

1
. (7.5.37)

Since (7.5.31) holds, the second term on right hand is as small as we wish by
choosing N large enough. To control the first term, note that by Proposition
5.8 and Markov’s inequality, limt→0 lim supn→∞ P(G(t, ε, n)) = 0. The result
follows by noting that 2|Xk,nXl,n| ≤ X2

k,n + X2
l,n and by using (7.5.32) for

k = 0. �

Proof of S2(c). For any finite integer 0 ≤ N ≤ N(X), define the variable
ηN = λ0 + 2(λ1 + · · · + λN−1) and the two sets

ΛN = [1, [nt]]2 ∩ {(i, j) ∈ Z
2/ |i− j| < N} and

ΛN = [1, [nt]]2 ∩ {(i, j) ∈ Z
2/ j − i ≥ N}, so that,

∥
∥∥E
(S2

n(t)
nt

− ηN

∣
∣∣M0,n

)∥∥∥
1
≤
∥
∥∥ηN − 1

nt

∑

ΛN

Xi,nXj,n

∥
∥∥

1

+
2
nt

∥∥
∥
∑

ΛN

E(Xi,nXj,n|M0,n)
∥∥
∥

1
. (7.5.38)

Hence, it remains to show that

lim
N→N(X)

lim sup
n→∞

1
nt

∥
∥
∥
∑

ΛN

E(Xi,nXj,n|M0,n)
∥
∥
∥

1
= 0 . (7.5.39)

Using first the inclusion M0,n ⊆ Mi,n for any positive i and second the sta-
tionarity of the sequence, we obtain succesively

1
nt

∥
∥
∥
∑

ΛN

E(Xi,nXj,n|M0,n)
∥
∥
∥

1
≤ 1

nt

∥
∥
∥
∑

ΛN

Xi,nE(Xj,n|Mi,n)
∥
∥
∥

1

≤ sup
N≤m≤n

∥∥
∥X0,n

m∑

k=N

E(Xk,n|M0,n)
∥∥
∥

1
.

and (7.5.39) follows from (7.5.31). This completes the proof. �
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Proof of Corollary 7.9. Using the stationarity and the inequality (5.2.7), we
infer that

‖X0,nE(Xk,n|M0,n)‖1 ≤ 2‖X0,n‖p‖X0,n‖q(φ̃1(k))1/p , (7.5.40)

so that (7.5.31) follows easily from (7.5.33). Moreover, if for each k > 0 the
sequence ‖X0,nXk,n‖1 converges to 0, the fact that N(X) = 1 follows from
(7.5.40) and the dominated convergence theorem.

To prove the last point of this corollary, it suffices, by applying Proposition
(7.9), to prove that for any t in ]0, 1],

lim
n→∞

1
nt

∥
∥
∥

[nt]∑

k=1

(X2
k,n − E(X2

0,n))
∥
∥
∥

1
= 0 . (7.5.41)

According to the condition (7.5.34), it suffices to prove that

lim
ε→0

lim sup
n→∞

Var
( 1
nt

[nt]∑

k=1

X2
k,n1|Xk,n|≤√

nε

)
= 0 . (7.5.42)

Setting Yk,n = X2
k,n1|Xk,n|≤√

nε, we have the elementary inequality

Var
( 1
nt

[nt]∑

k=1

Yk,n

)
≤ 2
nt

n∑

k=0

|Cov(Y0,n, Yk,n)| . (7.5.43)

Now, bearing in mind the definition of Yk,n and applying (5.2.7), we have suc-
cessively

|Cov(Y0,n, Yk,n)| = |Cov(Y0,n, X
2
k,n1|Xk,n|≤√

nK)|
≤ 2(φ̃1(k))1/p‖X2

0,n1|X0,n|≤√
nε‖p‖X2

0,n1|X0,n|≤√
nε‖q

≤ 2nε2(φ̃1(k))1/p‖X0,n‖p‖X0,n‖q ,

and (7.5.42) follows from (7.5.43) and (7.5.33). �



Chapter 8

Donsker Principles

In this chapter we give sufficient conditions for the smoothed partial sum process
of a sequence (resp. field) of real-valued random variables to converge to a
Brownian motion (resp. Brownian sheet). In the non causal case, we show that
the conditions on κ(r) and λ(r) (implied by η dependence) given in Theorems
7.1 and 7.2 respectively, are sufficient to obtain the weak invariance principle.
In Section 8.2 we give a general result for η dependent random fields having
moments of order 4. For the causal case, we present the functional version of
the conditional central limit theorem (CCLT) established in Section 7.4. We
shall see in Section 8.4 that the sufficient conditions for the CCLT for γ, α̃
and φ̃-dependent sequences, are also sufficient for the conditional invariance
principle.

8.1 Non causal stationary sequences

Let (Xi)i∈Z be a stationary sequence of centered and square integrable random
variables, and let Un be the Donsker line

Un(t) =
1√
n

[nt]∑

i=1

Xi +
nt− [nt]√

n
X[nt]+1.

In this short section, we show that under the same assumptions as in Theorem
7.1 or Theorem 7.2, the weak invariance principle holds. This follows easily
from the control of ‖Sn‖2+δ obtained at the end of Section 7.2.1.

Theorem 8.1. Assume that (Xi)i∈Z satisfy the assumptions of Theorem 7.1
or the assumptions of Theorem 7.2. Then the process Un converges weakly in
(C([0, 1]), ‖ · ‖∞) to a Wiener process with variance σ2 =

∑
k∈Z

Cov(X0, Xk).

199
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Proof. The finite dimensional convergence of the process Un can be proved
as in Section 7.2.1. It remains to prove the tightness. Recall that under the
assumptions of Theorem 7.1 or of Theorem 7.2, there exist there exists δ > 0
and C > 0 such that:

E|Sp|2+δ ≤ Cp1+δ/2.

The tightness follows then from standard arguments, which can be found in
many papers. For instance, if λ denotes the Lebesgue measure, we infer from
the moment inequality above that (Un, λ) belongs to the class C(1 + δ/2, 2 + δ)
defined in Bickel and Wichura (1971) [19] (see the inequality (3) of this paper).
The tightness of the process {Un(t), t ∈ [0, 1]} follows by applying Theorem 3
of the above paper. �

Remark. The same result follows the same lines for the Bernoulli shift models
with dependent inputs from theorem 7.3.

8.2 Non causal random fields

Here we establish the Donsker principle for non causal weak dependent sequences
and random fields. A block B in [0, 1]d is a subset of [0, 1]d of the form ]s, t] =∏d
p=1]sp, tp]. Let (Xj)j∈Zd be a random field and B be a block in [0, 1]d. Let

nB = {nx, x ∈ B}, and

Sn(B) =
1

nd/2

∑

j∈nB∩Zd

Xj . (8.2.1)

For any j ∈ Z
d, denote by Cj the unit with upper corner j, and define the

continuous process:

Un(B) =
1

nd/2

∑

j∈Zd

λ(nB ∩Cj)Xj ,

where λ denotes the Lebesgue measure on R
d. For t ∈ [0, 1]d, define Sn(t) =

Sn([0, t]) and Un(t) = Un([0, t]).

Theorem 8.2. Let (Xj)j∈Zd be a η-weak dependent stationary centered random
field. Assume that E|X0|4 = M4 ≤ ∞. If η(r) ≤ cr−a, with a > 3d, then the
process Un converges weakly in (C([0, 1]d), ‖ · ‖∞) to a Brownian sheet with
variance σ2 =

∑
k∈Zd Cov(X0, Xk).
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8.2.1 Moment inequality

First we establish a bound for the fourth moment of a partial sum:

Lemma 8.1. Assume that the assumptions of theorem 8.2 are satisfied, then
for any block B in [0, 1]d, there exists C > 0 such that:

E(Sn(B)4) ≤ Cλ(B)2

Proof. For a finite sequence k = (k1, . . . , kq) of elements of Z
d, define Πk =∏q

i=1Xki . For any integer q ≥ 1, set:

Aq(n) =
∑

k∈(nB∩Zd)q

|E (Πk)| , (8.2.2)

then
|E(Sn(B))4| ≤ n−2dA4(n). (8.2.3)

The gap of k is defined by the max of the integers r such that the sequence
may be split into two non-empty subsequences k1 and k2 ⊂ Z

d whose mutual
distance equals r (d(k1,k2) = min{‖i−j‖1/ i ∈ k1, j ∈ k2} = r). If the sequence
is constant, its gap is 0. Define the set Gr(q, n) = {k ∈ (nB)q and the gap of k
is r}. Sorting the sequences of indices by their gap:

Aq(n) ≤
∑

k∈nB
E|Xk|q +

∞∑

r=1

∑

k∈Gr(q,n)

|Cov (Πk1 ,Πk2)| (8.2.4)

+
∞∑

r=1

∑

k∈Gr(q,n)

|E (Πk1) E (Πk2)| . (8.2.5)

Define Vq(n) as the sum of the right hand side of (8.2.4). We get

A4(n) ≤ V4(n) + V2(n)2.

Denote by N the cardinality of nB ∩ Z
d. To build a sequence k belonging to

Gr(q, n), we first fix one of the N points of nB ∩ Z
d. We choose a second point

on the �1-sphere of radius r centered on the first point. The third point is in a
ball of radius r centered on one of the preceding points, and so on. We get

#Gr(q, 4) ≤ N2d(2r + 1)d−1.2(2r + 1)d.3(2r + 1)d ≤ 12dN33dr3d−1,

#Gr(q, 2) ≤ N2d(2r + 1)d−1 ≤ 2dN3d−1rd−1

and

V4(n) ≤ NM4 + 12dN33d
∞∑

r=1

r3d−1η(r),

V2(n) ≤ NM2 + 2dN3d−1
∞∑

r=1

rd−1η(r),



202 CHAPTER 8. DONSKER PRINCIPLES

so that
A4(n) ≤ C(N +N2).

Because N is an integer and |N − ndλ(B)| ≤ 2dN/n, Lemma 8.1 is proved. �

8.2.2 Finite dimensional convergence

To prove the convergence of the finite dimensional distributions, we note that it
is sufficient to prove it for the finite dimensional distribution of Sn(B), because
Un(B) − Sn(B) tends to zero in probability. Considering B and C two disjoint
blocks of [0, 1]d, we check that the joint distribution of (Sn(B), Sn(C)) satisfies:

lim
n→∞Cov(Sn(B), Sn(C)) = 0.

Denote b− and b+ the lower and upper vertex of block B. If the domains are non
intersecting, for at least one coordinate (say the first), we have (say) b+1 ≤ c−1 .
Then

|Cov(Sn(B), Sn(C))| ≤ n−d ∑

i∈nB

∑

j∈nC
|Cov(Xi, Xj)|

≤ n−d ∑

i∈nB

⎛

⎝
∑

j∈nC,j1≤nβ

|Cov(Xi, Xj)|

+
∑

j∈nC,j1>nβ

|Cov(Xi, Xj)|

⎞

⎠

≤ n−d

⎛

⎝nβ+d−1
∑

r∈N

rd−1η(r) + nd
∑

r>nβ

rd−1η(r)

⎞

⎠

= o(nβ−1, nβ(d−a))

Taking β < 1 gives the result.
Now, let ν and μ be two reals, we show that Sn = νSn(B)+μ(Sn(C)) tends

to a Gaussian distribution. Write

Sn = n−d/2 ∑

i∈{0,...,n}d

αi,nXi

where αi,n = ν + μ if i ∈ nB ∩ nC, αi,n = ν if i ∈ nB \ nC, αi,n = μ if
i ∈ nC \ nB and αi,n = 0 elsewhere. We use the Bernstein blocking technique,
(1939) [13]. Let p(n) and q(n) be sequences of integers such that p(n) = o(n)
and q(n) = o(p(n)). Assume that the Euclidean division of n by (p+ q) gives a
quotient k and a remainder r. Denote j = (j, . . . , j). Define K = {1, . . . , k+1}d
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and order K by the lexicographic order; for i ∈ {1, . . . , k}d, define the blocks
Pi = [(p + q)(i − 1), . . . , (p+ q)i− q1]. If r > 0, for i ∈ {0, . . . , 1}d \ {0} define
the blocks Pi = [(p+ q)(k + i), . . . , (p+ q)(k + i) + (r ∨ p)1]. Denote Q the set
of indices that are not in one of the Pi. Note that the cardinality of Q is less
than d(k + 1)qpd−1. For each block Pi and Q, we define the partial sums:

ui = n−d/2 ∑

j∈Pi

αj,nXj,

v = n−d/2∑

j∈Q
αj,nXj .

Recall lemma 11 in Doukhan and Louhichi (1999) [67].

Lemma 8.2. Let Sn = n−d/2∑
j∈{0,...,n}d αj,nXj be a sum of centered trian-

gular array; set σ2
n = VarSn. Assume that :

lim
n→∞

1
σ2
n

Ev2 = 0. (8.2.6)

∑

j∈K

∣
∣∣
∣
∣
∣
Cov

⎛

⎝g

⎛

⎝ t

σn

∑

i∈K,i<j
ui

⎞

⎠ , h

(
t

σn
uj

)
⎞

⎠

∣
∣∣
∣
∣
∣
→ 0, for all t ∈ R, (8.2.7)

where h and g are either the sine or the cosine function,

lim
n→∞

1
σ2
n

∑

i∈K
E|ui|21{|ui|≥εσn} = 0, for all ε > 0, (8.2.8)

and lim
n→∞

1
σ2
n

k∑

i=1

E|ui|2 = 1. (8.2.9)

Then Sn/σn converges in distribution to a Gaussian N (0, 1)-distribution.

First note that ∑

j∈Nd

Cov(α0,nX0, αj,nXj) < ∞ (8.2.10)

so that σ2
n tends to a constant. If this constant is zero then the limit of Sn is

0. If it is not, we check the conditions of the preceding lemma for the array
αj,nXj . To check (8.2.6), note that

Ev2 ≤ (|ν| + |μ|)2n−d ∑

i,j∈Q
|Cov(Xi, Xj)| ≤ (|ν| + |μ|)2n−d∑

i∈Q

∑

j∈Q
η(|j − i|)

≤ 2(|ν| + |μ|)2 d(k + 1)qpd−1

nd

∞∑

r=0

rd−1η(r) = o(1).
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Consider 8.2.7. Note that g

⎛

⎝ t

σn

∑

i∈K,i	=j
ui

⎞

⎠ is a function of at most ((k+1)p)d

variablesXl and that its Lipschitz modulus is less than t(|ν| + |μ|)/nd/2σn. Sim-
ilarly h(tuj/σn) is a function of at most pd variables and its Lipschitz modulus
is less than t(|ν| + |μ|)/nd/2σn. Using the weak dependence property, we get
∣
∣
∣∣
∣
∣
Cov

⎛

⎝g

⎛

⎝ t

σn

∑

i∈K,i	=j
ui

⎞

⎠ , h

(
t

σn
uj

)
⎞

⎠

∣
∣
∣∣
∣
∣
≤ pd((k + 1)d + 1) · t(|ν| + |μ|)

nd/2σn
η(q).

and

∑

j∈K

∣
∣
∣
∣∣
∣
Cov

⎛

⎝g

⎛

⎝ t

σn

∑

i∈K,i	=j
ui

⎞

⎠ , h

(
t

σn
uj

)
⎞

⎠

∣
∣
∣
∣∣
∣

≤ pd(k + 1)d+1 · t(|ν| + |μ|)
nd/2σn

η(q)

= O(n3d/2p−dq−a).

Taking p = n5/6 and q = n5d/6a gives a bound tending to 0.
To prove (8.2.8), it is sufficient to show that E|ui|4 = O(k−2d). But

E

⎛

⎝ 1
nd/2

∑

j∈Pi

αj,nXj

⎞

⎠

4

≤ (|ν| + |μ|)4
n2d

E

⎛

⎝
∑

j∈Pi

Xj

⎞

⎠

4

≤ p2d

n2d
E (Sp([0, 1̄]))

4
,

and we conclude with the moment inequality

E (Sp([0, 1̄]))
4 = O(1).

In order to prove (8.2.9), note that (8.2.6) implies that

lim
n→∞

1
σ2
n

Var

(
∑

i∈K
ui

)

= 1.

But
∣
∣
∣
∣
∣
Var

(
∑

i∈K
ui

)

−
∑

i∈K
E|ui|2

∣
∣
∣
∣
∣

≤ 2
∑

i∈K;i	=j
|Cov(ui, uj)|

≤ 2(k + 1)d
∞∑

j=q

η(j)

= O(np−dq−a+1).

Taking p = n5/6 and q = n5d/6a gives a bound tending to 0. �
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8.2.3 Tightness

Recall that λ is the Lebesgue measure on R
d. Applying Lemma 8.1, we infer

that (Sn, λ) and (Un, λ) belong to the class C(2, 4) defined in Bickel and Wichura
(1971) [19] (see the inequality (3) of this paper). The tightness or relative
compactness of the process {Un(t), t ∈ [0, 1]d} follows by applying Theorem 3
of [19].

8.3 Conditional (causal) invariance principle

In this section we give the functional version of Theorem 7.5. Denote by H∗

the space of continuous functions ϕ from (C([0, 1]), ‖ · ‖∞) to R such that x �→
|(1 + ‖x‖2

∞)−1ϕ(x)| is bounded.

Theorem 8.3. Let Xi,n, Mi,n and Sn(t) be as in Theorem 7.5. For any t in
[0, 1], let Un(t) = Sn(t)+(nt−[nt])X[nt]+1,n and define Sn(t) = sup0≤s≤t |Sn(s)|.
The following statements are equivalent:

S1∗ There exists a nonnegative M0,inf-measurable random variable η such that,
for any ϕ in H∗ and any positive integer k,

S1∗(ϕ) : lim
n→∞

∥
∥
∥E
(
ϕ(n−1/2Un) −

∫
ϕ(x

√
η)W (dx)

∣
∣
∣Mk,n

)∥∥
∥

1
= 0

where W is the distribution of a standard Wiener process.

S2∗ Properties S2(b) and (c) of Theorem 7.5 hold, and (a) is replaced by:

(a∗) the sequence (n−1(Sn(1))2)n>0 is uniformly integrable, and

lim
t→0

lim sup
n→∞

E

(
(Sn(t))2

nt

(
1 ∧ Sn(t)√

n

))
= 0 .

Moreover the random variable η satisfies η = η ◦ T almost surely.

Remark 8.1. Let Xi,n, Mi,n and Un be as in Theorem 8.3. Suppose that the
sequence (M0,n)n≥1 is nondecreasing. If Condition S1∗ is satisfied, then the
sequence (n−1/2Un)n>0 converges stably with respect to the random probability
defined by μ(ϕ) =

∫
ϕ(x

√
η)W (x)dx. The proof of this result is the same as

that of Corollary 7.2.

We now give the proof of this theorem. Once again, it suffices to prove that S2∗

implies S1∗.
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8.3.1 Preliminaries

Definition 8.1. Recall that R(Mk,n) is the set of Rademacher Mk,n-measurable
random variables: R(Mk,n) = {21A − 1 /A ∈ Mk,n}. For the random variable
η introduced in Theorem 8.3 and any bounded random variable Z, let

1. ν∗n[Z] be the image measure of Z · P by the process n−1/2Un.

2. ν∗[Z] be the image measure of W⊗Z.P by the variable φ from C([0, 1])⊗Ω
to C([0, 1]) defined by φ(x, ω) = x

√
η(ω).

We need the functional analogue of Lemma 7.4 (the proof is unchanged).

Lemma 8.3. Let μ∗
n[Zn] = ν∗n[Zn] − ν∗[Zn]. For any ϕ in H∗ the statement

S1∗(ϕ) is equivalent to:

S3∗(ϕ): for any Zn in R(Mk,n) the sequence μ∗
n[Zn](ϕ) tends to zero as n tends

to infinity.

Suppose that S1∗(ϕ) holds for any bounded function ϕ of H∗. Since the se-
quence (n−1(S∗

n(1))2)n>0 is uniformly integrable, S1∗(ϕ) obviously extends to
the whole space H∗. Consequently, we can restrict ourselves to the space of con-
tinuous bounded functions from C([0, 1]) to R. According to Lemma 8.3, the
proof of Theorem 8.3 will be complete if we show that, for any Zn in R(Mk,n),
the sequence μ∗[Zn] converges weakly to the null measure as n tends to infinity.

Definition 8.2. For 0 ≤ t1 < · · · < td ≤ 1, define the functions πt1...td and
Qt1...td from C([0, 1]) to R

d by the equalities πt1...td(x) = (x(t1), . . . , x(td)) and
Qt1...td(x) = (x(t1), x(t2) − x(t1), . . . , x(td) − x(td−1)). For any signed measure
μ on (C([0, 1]),B(C([0, 1]))) and any function f from C([0, 1]) to R

d, denote by
μf−1 the image measure of μ by f .

Let μ and ν be two signed measures on (C([0, 1]),B(C([0, 1]))). Recall that if
μπ−1

t1...td
= νπ−1

t1...td
for any positive integer d and any d-tuple such that 0 ≤

t1 < · · · < td ≤ 1, then μ = ν. Consequently Theorem 8.3 is a straightforward
consequence of the two following items

1. relative compactness: for any Zn in R(Mk,n), the family (μ∗
n[Zn])n>0 is

relatively compact with respect to the topology of weak convergence.

2. finite dimensional convergence: for any positive integer d, any d-tuple
0 ≤ t1 < · · · < td ≤ 1 and any Zn in R(Mk,n) the sequence μ∗[Zn]π−1

t1...td
converges weakly to the null measure as n tends to infinity.
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8.3.2 Finite dimensional convergence

Clearly it is equivalent to take Qt1...td instead of πt1...td in item 2. The following
lemma shows that finite dimensional convergence is a consequence of Condition
S2 of Theorem 7.5. The stronger condition S2∗ is only required for tightness.

Lemma 8.4. For any a in R
d define fa from R

d to R by fa(x) =< a, x >. If
S2 holds then, for any a in R

d, any d-tuple 0 ≤ t1 < · · · < td ≤ 1 and any Zn
in R(Mk,n), the sequence μ∗

n[Zn](fa ◦ Qt1...td)−1 converges weakly to the null
measure.

Write μ∗
n[Zn](fa ◦Qt1...td)−1(exp(i·)) = μ∗

n[Zn]Q
−1
t1...td(exp(i < a, · >)). Accord-

ing to Lemma 8.4, the latter converges to zero as n tends to infinity. Taking
Zn = 1, we infer that the probability measure ν∗n[1]Q−1

t1...td
converges weakly to

the probability measure ν∗[1]Q−1
t1...td and hence is tight. Since |μ∗[Zn]Q−1

t1...td | ≤
ν∗n[1]Q−1

t1...td
+ ν∗[1]Q−1

t1...td
, the sequence (μ∗[Zn]Q−1

t1...td
)n>0 is tight. Conse-

quently we can apply Lemma 7.3 to conclude that μ∗[Zn]Q−1
t1...td converges

weakly to the null measure. �

Proof of Lemma 8.4. According to Lemma 8.3, we have to prove the property
S1∗(ϕ ◦ fa ◦ Qt1...td) for any continuous bounded function ϕ. Arguing as in
Section 7.4.3, we can restrict ourselves to the class of function B3

1(R). Let h be
any element of B3

1(R) and write

h ◦ fa ◦Qt1...td(n−1/2Un) −
∫
h ◦ fa ◦Qt1...td(x

√
η)W (dx)

=
d∑

�=1

h�

(
a�

(Un(t�) − Un(t�−1)√
n

))
−
∫
h�(a�x

√
(t� − t�−1)η) g(x) dx ,

where the random variable h�(x) is equal to

∫
h
(�−1∑

i=1

ai
(Un(ti) − Un(ti−1)√

n

)
+ x+

d∑

i=�+1

aixi
√

(ti − ti−1)η
) d∏

i=�+1

g(xi)dxi .

Note that for any ω in Ω, the random function h� belongs to B3
1(R). To complete

the proof of Lemma 8.4, it suffices to see that, for any positive integers k and
�, the sequence
∥
∥
∥
∥E
(
h�

(
al

(Un(t�) − Un(t�−1)√
n

))
−
∫
h�

(
a�x
√

(t� − t�−1)η
)
g(x) dx

∣
∣
∣Mk,n

)∥∥
∥
∥

1
(8.3.1)
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tends to zero as n tends to infinity. Since h� is 1-Lipshitz and bounded, we infer
from the asymptotic negligibility of n−1/2X0,n that

lim
n→∞

∥∥
∥
∥h�
(
a�

(Un(t�) − Un(t�−1)√
n

))
− h�

(
a�

(Sn(t� − t�−1) ◦ T [nt�−1]+1

√
n

))∥∥
∥
∥

1

= 0.

(8.3.2)
Denote by g� the random function g� = h� ◦ T−[nt�−1]−1. Combining (8.3.1),
(8.3.2) and the fact that Mk−1−[nt�−1],n ⊆ Mk,n, we infer that it suffices to
prove that

lim
n→∞

∥
∥
∥
∥E
(
g�(a�n−1/2Sn(u)) −

∫
g�(a�x

√
uη) g(x) dx

∣
∣
∣Mk,n

)∥∥
∥
∥

1

= 0 . (8.3.3)

Since the random functions g� is M0,n-measurable (8.3.3) can be proved exactly
as property S1 of Theorem 7.5 (see Section 7.4.3). This completes the proof of
Lemma 8.4. �

8.3.3 Relative compactness

In this section, we shall prove that the sequence (μ∗
n[Zn])n>0 is relatively com-

pact with respect to the topology of weak convergence. That is, for any increas-
ing function f from N to N, there exists an increasing function g with value in
f(N) and a signed mesure μ on (C([0, 1]),B(C([0, 1]))) such that
(μ∗
g(n)[Zg(n)])n>0 converges weakly to μ.

Let Z+
n (resp. Z−

n ) be the positive (resp. negative) part of Zn, and write

μ∗
n[Zn] = μ∗

n[Z
+
n ] − μ∗

n[Z
−
n ] = ν∗n[Z+

n ] − ν∗n[Z
−
n ] − ν∗[Z+

n ] + ν∗[Z−
n ] ,

where ν∗n[Z] and ν∗[Z] are defined in 1. and 2. of Definition 8.1. Obviously, it
is enough to prove that each sequence of finite positive measures (ν∗n[Z+

n ])n>0,
(ν∗n[Z

−
n ])n>0, (ν∗[Z+

n ])n>0 and (ν∗[Z−
n ])n>0 is relatively compact. We prove the

result for the sequence (ν∗n[Z+
n ])n>0, the other cases being similar.

Let f be any increasing function from N to N. Choose an increasing function l
with value in f(N) such that

lim
n→∞ E(Z+

l(n)) = lim inf
n→∞ E(Z+

f(n)) .

We must sort out two cases:

1. If E(Z+
l(n)) converges to zero as n tends to infinity, then, taking g = l, the

sequence (ν∗g(n)[Z
+
g(n)])n>0 converges weakly to the null measure.

2. If E(Z+
l(n)) converges to a positive real number as n tends to infinity,

we introduce, for n large enough, the probability measure pn defined by pn
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= (E(Z+
l(n)))

−1ν∗l(n)[Z
+
l(n)]. Obviously if (pn)n>0 is relatively compact with

respect to the topology of weak convergence, then there exists an increasing
function g with value in l(N) (and hence in f(N)) and a measure ν such that
(ν∗g(n)[Z

+
g(n)])n>0 converges weakly to ν. Since (pn)n>0 is a family of probabil-

ity measures, relative compactness is equivalent to tightness. Here we apply
Theorem 8.2 in Billingsley (1968) [20]: to derive the tightness of the sequence
(pn)n>0 it is enough to show that, for each positive ε,

lim
δ→0

lim sup
n→∞

pn(x/w(x, δ) ≥ ε) = 0 , (8.3.4)

where w(x, δ) is the modulus of continuity of the function x. According to the
definition of pn, we have

pn(x/w(x, δ) ≥ ε) =
1

E(Z+
l(n))

Z+
l(n) · P

(

w
( Ul(n)√

l(n)
, δ
)

≥ ε

)

.

Since both E(Z+
l(n)) converges to a positive number and Z+

l(n) is bounded by one,
we infer that (8.3.4) holds if

lim
δ→0

lim sup
n→∞

P

(

w
( Ul(n)√

l(n)
, δ
)

≥ ε

)

= 0 . (8.3.5)

From Theorem 8.3 and inequality (8.16) in Billingsley (1968) [20], it suffices to
prove that, for any positive ε,

lim
δ→0

lim sup
n→∞

1
δ

P

(
Sl(n)(δ)√
l(n)δ

≥ ε√
δ

)

= 0 . (8.3.6)

We conclude by noting that (8.3.6) follows straightforwardly from S2(a∗) and
Markov’s inequality.

Conclusion. In both cases there exists an increasing function g with value in
f(N) and a measure ν such that (ν∗g(n)[Z

+
g(n)])n>0 converges weakly to ν. Since

this is true for any increasing function f with value in N, we conclude that
the sequence (ν∗n[Z

+
n ])n>0 is relatively compact with respect to the topology

of weak convergence. Of course, the same arguments apply to the sequences
(ν∗n[Z

−
n ])n>0, (ν∗[Z+

n ])n>0 and (ν∗[Z−
n ])n>0, which implies the relative com-

pactness of the sequence (μ∗
n[Zn])n>0. �

8.4 Applications

8.4.1 Sufficient conditions for stationary sequences

For strictly stationary sequences, Theorem 8.3 writes as follows.
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Theorem 8.4. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 7.6. Define Sn =
X1 + · · · +Xn and Un(t) = S[nt] + (nt− [nt])X[nt]+1. The following statements
are equivalent:

S1∗ There exists a nonnegative M0-measurable random variable η such that,
for any ϕ in H∗ and any positive integer k,

lim
n→∞

∥
∥
∥E
(
ϕ(n−1/2Un) −

∫
ϕ(x

√
η)W (dx)

∣
∣
∣Mk

)∥∥
∥

1
= 0

where W is the distribution of a standard Wiener process.

S2∗ Properties S2(b) and (c) of Theorem 7.6 hold, and (a) is replaced by:

(a∗) the sequence (n−1(max1≤i≤n |Si|)2)n>0 is uniformly integrable.

Under the conditions of Proposition 7.8, S1∗ holds:

Proposition 8.1. Let (Mi)i∈Z and (Xi)i∈Z be as in Theorem 7.6 and define
M−∞ = ∩i∈ZMi. Define the operators Pi as in Corollary 7.4.

1. If E(X0|M−∞) = 0 and
∑
i≥0 ‖P0(Xi)‖2 < ∞ then S1∗ holds. Moreover,

η is the same as in Proposition 7.8.

2. If (7.5.7) is satisfied, then S1∗ holds and η is the same as in Proposition
7.8.

Remark 8.2. As in Chapter 7, we deduce from Proposition 8.1 sufficient con-
ditions for the functional CCLT in terms of the coefficients γ1, γ2, α̃1 and φ̃1.
More precisely, S1∗ holds if either (7.5.18), (7.5.22), (7.5.26) or (7.5.28) is
satisfied.

Proof of Proposition 8.1. In view of Corollary 7.5 and Proposition 7.8, it is
enough to prove that S2(a∗) holds.

Proof of item 1. According to Proposition 5.9, for any two sequences of non-
negative numbers (am)m≥0 and (bm)m≥0 such that K =

∑
m≥0 a

−1
m is finite and∑

m≥0 bm = 1, we have

1
n

E
(
(S∗
n −M

√
n)2+
)
≤ 4K

∞∑

m=0

amE

( 1
n

n∑

k=1

P 2
k−m(Xk)1Γ(m,n,bmM

√
n)

)
,

(8.4.1)

where Γ(m,n, λ) =
(
0 ∨ max

1≤k≤n
{ k∑

�=1

P�−m(X�)
}
> λ

)
. Here, we take bm =

2−m−1 and am = (‖P0(Ym,i)‖2 +(m+1)−2)−1. By assumption,
∑
a−1
m is finite.
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Since for all m ≥ 0

amE

( 1
n

n∑

k=1

P 2
k−m(Xk)1Γ(m,n,bmM

√
n)

)
≤ ‖P0(Xm)‖2

2

‖P0(Xm)‖2 + (m+ 1)2
≤ ‖P0(Xm)‖2 ,

we infer from (8.4.1) that for any ε > 0, there exists N(ε) such that

1
n

E
(
(S∗
n −M

√
n)2+
)
≤ ε+ 4K

N(ε)∑

m=0

amE

( 1
n

n∑

k=1

P 2
k−m(Xk)1Γ(m,n,bmM

√
n)

)
.

(8.4.2)
Now by Doob’s maximal inequality

P
(
Γ(m,n, bmM

√
n)
)
≤ 4

∑n
k=1 ‖Pk−m(Xk)‖2

2

b2mM
2n

=
4‖P0(Xm)‖2

2

b2mM
2

,

and consequently

lim
M→∞

sup
n>0

P
(
Γ(m,n, bmM

√
n)
)

= 0 . (8.4.3)

Since n−1
∑n
k=1 P

2
k−m(Xk) converges in L

1 (apply the ergodic theorem), we
infer from (8.4.3) that

lim
M→∞

lim sup
n→∞

E

( 1
n

n∑

k=1

P 2
k−m(Xk)1Γ(m,n,bmM

√
n)

)
= 0 . (8.4.4)

Combining (8.4.2) and (8.4.4), we conclude that

lim
M→∞

lim sup
n→∞

1
n

E
(
(S∗
n −M

√
n)2+
)

= 0 . (8.4.5)

Of course, the same arguments apply to the sequence (−Xk)k∈Z so that (8.4.4)
holds for max1≤k≤n |Sk| instead of S∗

n. This completes the proof. �
Proof of item 2. Let Ak(λ) = {max1≤i≤k |Si| > λ}. From Proposition 5.8
applied to the sequences (Xi)i∈Z and (−Xi)i∈Z we get that

E

((
max

1≤i≤n
|Si| − λ

)2

+

)
≤ 8

n∑

k=1

(
E(X2

k1Ak(λ)) + 2‖1Ak(λ)XkE(Sn − Sk | Fk)‖1

)
.

(8.4.6)
By assumption the sequence (X2

k)k>0 and the array (XkE(Sn − Sk | Fk))1≤k≤n
are uniformly integrable. It follows that the L

1-norms of the above random
variables are each bounded by some positive constant K. Hence, from (8.4.6)
with λ = 0 we get that E((max1≤i≤n |Si|)2) ≤ 24Kn. It follows that

P(Ak(M
√
n )) ≤ (nM2)−1

E

((
max

1≤i≤n
|Si|
)2)

≤ 24KM−2. (8.4.7)
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From the inequality (8.4.7) and the uniform integrability of both (X2
k)k>0 and

(XkE(Sn − Sk | Fk))1≤k≤n we infer that

lim
M→∞

lim sup
n→∞

n−1
E

((
max

1≤i≤n
|Si| −M

√
n
)2

+

)
= 0 .

This completes the proof. �

8.4.2 Sufficient conditions for triangular arrays

Under the conditions of Proposition 7.9, S1∗ holds:

Proposition 8.2. Let Xi,n and Mi,n be as in Proposition 7.9. If (7.5.31) and
(7.5.32) hold, then S1∗ holds with the same η as in Proposition 7.9.

Proof of Proposition 8.2. In view of Proposition 7.9, it is enough to prove that
S2(a∗) holds. In fact, this follows from the inequality (7.5.37). �.



Chapter 9

Law of the iterated
logarithm (LIL)

In this chapter, we derive laws of the iterated logarithm. We first give a bounded
law of the iterated logarithm in a non causal setting. We then focus on τ -
dependent sequences for which we derive a causal strong invariance principle.
The main tool to prove it is the Fuk-Nagaev type inequality given in Theorem
5.3 of Chapter 5.

9.1 Bounded LIL under a non causal condition

In this section, we derive a bounded law of the iterated logarithm under a non
causal condition detailed in the assumptions of Theorem 4.5 of Chapter 4. We
get the following theorem:

Theorem 9.1. Suppose that (Xn)n∈Z is a stationary process satisfying the as-
sumptions of Theorem 4.5 of Chapter 4. If σ2

n = Var (
∑n
i=1Xi), assume that

σ2 = limn→∞ σ2
n/n > 0. Then we have

lim sup
n→∞

1
σ
√

2n log log n
|Sn| ≤ 1 a.s. (9.1.1)

Proof of Theorem 9.1. Let a > 1. We define the subsequence (nk)k∈Z as
nk = [ak]. We obtain from Theorem 4.5 that, for any nk ≤ n < nk+1 and any

213
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fixed c,

P

(
|Sn|√
2nσ2

> c
√

log lognk

)
≤ 2 exp

(
−c2 log lognk

σ2n

σ2
n

(1 + o(1))
)

= 2 exp
(
−c2 log lognk(1 + o(1))

)

= O
(
k−c

2(1+o(1))
)
.

This implies by the maximal inequality given in Theorem 2.2 in Móricz et
al.(1982) [133] that

P

(
max

nk≤n<nk+1

|Sn|√
2nσ2

> c
√

log lognk

)
≤ C k−c

′
, (9.1.2)

where c′ < c2 can be chosen arbitrarily close to c2 and C is an appropriate
finite constant (see the remark following the proof of Theorem 2.2 in Móricz et
al.(1982) [133]). Since limk→∞ maxnk≤n<nk+1

log log n
log log nk

= 1, we conclude from
(9.1.2) by the Borel-Cantelli lemma that for any c > 1,

lim sup
n→∞

1
σ
√

2n log logn
|Sn| ≤ c a.s.

This implies (9.1.1). �

9.2 Causal strong invariance principle

In this section, we present a strong invariance principle for partial sums of
τ1,∞−dependent sequences. Let (Xn)n∈Z be a stationary sequence of zero-mean
square integrable real valued random variables. Let Mi = σ(Xj , j ≤ i). Define

Sn = X1 + · · · +Xn and Sn(t) = S[nt] + (nt− [nt])X[nt]+1.

We assume that σ2
n/n = Var (Sn)/n converges to some constant σ2 as n tends to

infinity (this will always be true for any of the conditions we shall use hereafter).
For σ > 0, we study the almost sure behavior of the partial sum process

{
σ−1 (2n log logn)−1/2 Sn(t)

/
t ∈ [0, 1]

}
. (9.2.1)

Before stating the main result, let us recall existing results in the i.i.d. case or
in other frames of dependence.

Let S be the subset of C([0, 1]) consisting of all absolutely continuous func-
tions with respect to the Lebesgue measure such that

h(0) = 0 and
∫ 1

0

(h′(t))2dt ≤ 1.
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In 1964, Strassen [180] proved that if the sequence (Xn)n∈Z is i.i.d. then the
process defined in (9.2.1) is relatively compact with a.s. limit set S. This result
is known as the functional law of the iterated logarithm (FLIL for short). Heyde
and Scott (1973) [104] extended the FLIL to the case where E(X1|M0) = 0
and the sequence is ergodic. Starting from this result and from a coboundary
decomposition due to Gordin (1969) [97], Heyde (1975) [105] proved that the
FLIL holds if E (Sn|M0) converges in L2 and the sequence is ergodic. Heyde’s
condition holds as soon as

∞∑

k=1

k

∫ γ1(k)/2

0

Q ◦G(u) du < ∞, (9.2.2)

where the functions Q = Q|X0| and G = G|X0| have been defined in Chapter
5 and γ1(k) = ‖E (Xk|M0) ‖1 is the coefficient introduced in Section 2.2.4 of
Chapter 2.
Other types of dependence have been soon considered for the FLIL (see for in-
stance the review paper by Philipp (1986) [150]). For ρ and φ-mixing sequences,
a strong invariance principle is given in Shao (1993) [174]. The case of strongly
(α-)mixing sequences has been considered by Oodaira and Yoshihara (1971)
[137], Dehling and Philipp (1982) [54] , and Bradley (1983) [29] among others.
In 1995, Rio [159] proved a FLIL (and even a strong invariance principle) for
the process defined in (9.2.1) as soon as the DMR (Doukhan, Massart and Rio
(1994) [70]) condition (9.2.3) is satisfied

∞∑

k=1

∫ 2αX (k)

0

Q2(u) du < ∞, (9.2.3)

where αX(k) has been defined in Section 1.2 of Chapter 1.
Considering Corollary 7.6 which gives the central limit theorem for γ-dependent
sequences, we think that a reasonable condition for the FLIL is condition (9.2.2)
without the k in front of the integral. Actually, we can only prove this conjecture
with τ1,∞(k) instead of γ1(k), that is the FLIL holds as soon as

∞∑

k=1

∫ τ1,∞(k)/2

0

Q ◦G(u) du < ∞. (9.2.4)

Theorem 9.2. Let (Xn)n∈Z be a strictly stationary sequence of centered and
square integrable random variables satisfying (9.2.4). Then σ2

n/n converges to
σ2, and there exists a sequence (Yn)n∈N of independent N (0, σ2)-distributed ran-
dom variables (possibly degenerate) such that

n∑

i=1

(Xi − Yi) = o
(√

n log logn
)

a.s.
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Such a result is known as a strong invariance principle. If σ > 0, Theorem 9.2
and Strassen’s FLIL for the Brownian motion yield the FLIL for the process
(9.2.1).
As in Corollary 7.6, we obtain simple sufficient conditions for the FLIL to hold:

Corollary 9.1. Let (Xn)n∈Z be a strictly stationary sequence of centered and
square integrable random variables. Any of the following conditions implies
(9.2.4) and hence the FLIL.

1. P(|X0| > x) ≤ (c/x)r for some r > 2, and
∑

i≥0 (τ1,∞(i))(r−2)/(r−1)
< ∞.

2. ‖X0‖r < ∞ for some r > 2, and
∑

i≥0 i
1/(r−2)τ1,∞(i) < ∞.

3. E(|X0|2 log(1 + |X0|)) < ∞ and τ1,∞(i) = O(ai) for some a < 1.

Condition (9.2.4) is essentially optimal as shown in Corollary 9.2 below, derived
from the examples given in Doukhan, Massart and Rio (1994) [70]:

Corollary 9.2. For any r > 2, there is stationary Markov chain (Xn)n∈Z such
that

1. E(X0) = 0 and, for any nonnegative real x, P(|X0| > x) = min(1, x−r).

2. The sequence (τ1,∞(i))i≥0 satisfies supi≥0 i
(r−1)/(r−2)τ1,∞(i) < ∞.

3. lim sup
n→∞

(n log logn)−1/2|Sn| = +∞ almost surely.

This corollary follows easily from Proposition 3 in Doukhan, Massart and Rio
(1994) [69]. Let us now write the proof of Theorem 9.2.

Proof of Theorem 9.2. We first need to give some precise notations.

Notations 9.1. Define the set

Ψ =
{
ψ
/

N → N, ψ increasing,
ψ(n)
n

→n→∞ ∞, ψ(n) = o(n
√
LLn )

}
.

If ψ is some function of Ψ, let

M1 = 0 and Mn =
n−1∑

k=1

(ψ(k) + k), for n ≥ 2 .

For n ≥ 1, define the random variables

Un =
Mn+ψ(n)∑

i=Mn+1

Xi , Vn =
Mn+1∑

i=Mn+1+1−n
Xi , and



9.2. CAUSAL STRONG INVARIANCE PRINCIPLE 217

U
′
n =

Mn+1∑

i=Mn+1

|Xi| .

If Lx = max(1, log x), define the truncated random variables

Un = max
(

min
(
Un,

n√
LLn

)
,

−n√
LLn

)
.

Theorem 9.2 is a consequence of the following Proposition

Proposition 9.1. Let (Xn)n∈Z be a strictly stationary sequence of centered
and square integrable random variables satisfying condition (9.2.4). Then σ2

n/n
converges to σ2 and there exist a function ψ ∈ Ψ and a sequence (Wn)n∈N

of independent N
(
0, ψ(n)σ2

)
-distributed random variables (possibly degenerate)

such that

(a)
n∑

i=1

(Wi − U i) = o
(√

MnLLn
)

a.s.

(b)
∞∑

n=1

E(|Un − Un|)
n
√
LLn

< ∞

(c) U
′
n = o

(
n
√
LLn

)
a.s.

Proof of Proposition 9.1. It is adapted from the proof of Proposition 2 in Rio
(1995) [159].

Proof of (b). Note first that

E|Un − Un| = E

((
|Un| −

n√
LLn

)

+

)
so that

E|Un − Un| =
∫ +∞

n√
LLn

P(|Un| > t)dt . (9.2.5)

In the following we write Q instead of Q|X0|. Since Un is distributed as Sψ(n),
we infer from Theorem 5.3 that

P(|Un| > t) ≤ 4
(
1 +

t2

25 r s2ψ(n)

)− r
2

+
20ψ(n)

t

∫ S( t
5 r )

0

Q(u)du. (9.2.6)

Consider the two terms

A1,n =
4

n
√
LLn

∫ +∞

n√
LLn

(
1 +

t2

25 r s2ψ(n)

)− r
2
dt ,
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A2,n =
20ψ(n)
n
√
LLn

∫ +∞

n√
LLn

1
t

∫ S( t
5 r )

0

Q(u)du dt .

From (9.2.5) and (9.2.6), we infer that

E|Un − Un|
n
√
LLn

≤ A1,n +A2,n . (9.2.7)

Study of A1,n. Since the sequence (Xn)n∈N satisfies (9.2.4), s2ψ(n)/ψ(n) con-
verges to some positive constant. Let Cr denote some constant depending only
on r which may vary from line to line. We have that

A1,n ≤ 4
n
√
LLn

∫ +∞

n√
LLn

t−r

Cr s
−r
ψ(n)

dt ≤ Cr s
r
ψ(n)

n−r

LLn1− r
2
.

We infer that A1,n = O(ψ(n)r/2n−rLLn(r−2)/2) as n tends to infinity. Since
ψ ∈ Ψ and r > 2, we infer that

∑
n≥1A1,n is finite.

Study of A2,n. We use the elementary result: if (ai)i≥1 is a sequence of positive
numbers, then there exists a sequence of positive numbers (bi)i≥1 such that bi →
∞ and

∑
i≥1 aibi < ∞ if and only if

∑
i≥1 ai < ∞ (note that b2n = (

∑∞
i=n ai)

−1

works). Consequently
∑

n≥1A2,n is finite for some ψ ∈ Ψ if and only if

∑

n≥1

1√
LLn

∫ +∞

n√
LLn

1
t

∫ S( t
5 r )

0

Q(u)du dt < +∞. (9.2.8)

Recall that S = R−1, with the notations of Theorem 5.3. To prove (9.2.8), write

∫ +∞

n√
LLn

1
t

∫ S( t
5 r )

0

Q(u)du dt =
∫ +∞

n√
LLn

1
t

∫ 1

0

1R(u)≥ t
5 r
Q(u)du dt

=
∫ 1

0

Q(u)
∫ 5 r R(u)

n√
LLn

1
t
dtdu

=
∫ 1

0

Q(u) log
5 r R(u)

n√
LLn

1R(u)≥ n
5 r

√
LLn

du.

Consequently (9.2.8) holds if and only if

∫ 1

0

Q(u)
∑

n≥1

1√
LLn

log
5 r R(u)

n√
LLn

1{
R(u)≥ n

5 r
√

LLn

}du < +∞. (9.2.9)
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To see that (9.2.9) holds, we shall prove the following result: if f is any increasing
function such that f(0) = 0 and f(1) = 1, then for any positive R we have that

∑

n≥1

log
(

R

f(n)

)
(f(n) − f(n− 1)) 1f(n)≤R ≤ (R − 1) ∨ 0 ≤ R . (9.2.10)

Applying this result to f(x) = x(LLx)−1/2 and R = 5rR(u), and noting that
(LLn)−1/2 ≤ C (f(n) − f(n− 1)) for some constant C > 1, we infer that
∫ 1

0

Q(u)
∑

n≥1

1√
LLn

log
5 r R(u)

n√
LLn

1(R(u)≥ n

5 r
√

LLn
)du ≤ 5Cr

∫ 1

0

Q(u)R(u)du ,

which is finite as soon as (9.2.4) holds.
It remains to prove (9.2.10). If R ≤ 1 the result is clear. Now, for R > 1, let xR
be the largest integer such that f(xR) ≤ R and write R∗ = f(xR). Note first
that ∑

n≥1

(logR) (f(n) − f(n− 1)) 1f(n)≤R ≤ R∗ logR. (9.2.11)

On the other hand, we have that

∑

n≥1

log (f(n)) (f(n) − f(n− 1)) 1f(n)≤R =
xR∑

n=1

log (f(n)) (f(n) − f(n− 1)) .

It follows that

∑

n≥1

log (f(n)) (f(n) − f(n− 1)) ≥
∫ R∗

1

log xdx = R∗ logR∗ −R∗ +1. (9.2.12)

Using (9.2.11) and (9.2.12) we get that

∑

n≥1

log
(

R

f(n)

)
(f(n) − f(n− 1)) 1f(n)≤R ≤ R∗ − 1 + R∗(logR− logR∗).

(9.2.13)
Using Taylor’s inequality, we have that R∗(logR−logR∗) ≤ R−R∗ and (9.2.10)
follows. The proof of (b) is complete.

Proof of (c). Let Tn =
∑Mn+1

i=Mn+1 (|Xi| − E|Xi|) . We easily see that

U ′
n = (ψ(n) + n) E|X1| + Tn. (9.2.14)

By definition of Ψ, we have ψ(n) = o
(
n
√
LLn

)
. Here note that

Tn ≤ n√
LLn

+ 0 ∨
(
Tn − n√

LLn

)
. (9.2.15)
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Using same arguments as for the proof of (b), we obtain that

∑

n≥1

E

(
0 ∨
(
Tn − n√

LLn

))

n
√
LLn

< +∞ , so that

∑

n≥1

0 ∨
(
Tn − n√

LLn

)

n
√
LLn

< +∞ a.s.

Consequently max(0, Tn − n(LLn)−1/2) = o(n
√
LLn) almost surely, and the

result follows from (9.2.14) and (9.2.15).

Proof of (a). In the following, (δn)n≥1 and (ηn)n≥1 denote independent se-
quences of independent random variables with uniform distribution over [0, 1],
independent of (Xn)n≥1. Since Un is a 1-Lipschitz function of Ui, τ(σ(Ui, i ≤
n− 1), Un) ≤ ψ(n)τ(n). Using Lemma 5.2 and arguing as in the proof of The-
orem 5.2, we get the existence of a sequence (U

∗
n)n≥1 of independent random

variables with the same distribution as the random variables Un such that U
∗
n

is a measurable function of
(
U l, δl

)
l≤n and

E

(
|Un − U

∗
n|
)

≤ ψ(n) τ(n).

Since (9.2.4) holds, we have that

∑

n≥1

E

∣
∣
∣Un − U

∗
n

∣
∣
∣

√
Mn LLn

< ∞ so that
∑

n≥1

|Un − U
∗
n|√

Mn LLn
< +∞ a.s.

Applying Kronecker’s lemma, we obtain that

n∑

i=1

(U i − U
∗
i ) = o

(√
Mn LLn

)
a.s. (9.2.16)

We infer from (9.2.4) and from Dedecker and Doukhan (2003) [43] that

(ψ(n))−1 Var Un →n→∞ σ2 and (ψ(n))−1/2
Un

D−−−−→
n→∞ N

(
0, σ2

)
.

Hence the sequence (U2
n/ψ(n))n≥1 is uniformly integrable (Theorem 5.4. in

Billingsley (1968) [20]). Consequently, since the random variables U
∗
n have the

same distribution as the random variables Un, we deduce from the above limit
results, from Strassen’s representation theorem (see Dudley (1968) [79]), and
from Skorohod’s lemma (1976) [179] that one can construct some sequence
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(Wn)n≥1 of σ(U
∗
n, ηn)-measurable random variables with respective distribution

N
(
0, ψ(n)σ2

)
such that

E

((
U

∗
n −Wn

)2
)

= o (ψ(n)) as n → +∞, (9.2.17)

which is exactly equation (5.17) of the proof of Proposition 2(c) in Rio (1995)
[159]. The end of the proof is the same as that of Rio.

Proof of Theorem 9.2. By Skohorod’s lemma (1976) [179], there exists a se-
quence (Yi)i≥1 of independent N

(
0, σ2

)
-distributed random variables satisfying

Wn =
∑Mn+ψ(n)
i=Mn+1 Yi for all positive n. Define the random variable

V ′
n =

Mn+1∑

i=Mn+1+1−n
Yi.

Let n(k) := sup {n ≥ 0/Mn ≤ k}, and note that by definition of Mn we have
n(k) = o(

√
k). Applying Proposition 9.1(c) we see that

∣
∣
∣
k∑

i=1

Xi −
n(k)∑

i=1

(Ui + Vi)
∣
∣
∣ ≤ U ′

n(k) = o
(√

k LLk
)

a.s. (9.2.18)

From (5.26) in Rio (1995) [159], we infer that

n(k)∑

i=1

Vi = o
(√

k LLk
)

a.s. and
n(k)∑

i=1

V ′
i = o

(√
k LLk

)
a.s. (9.2.19)

Gathering (9.2.18), (9.2.19) and Proposition 9.1(a) and (b), we obtain that

k∑

i=1

Xi −
n(k)∑

i=1

(Wi + V ′
i ) = o

(√
k LLk

)
a.s. (9.2.20)

Clearly
∑k

i=1 Yi−
∑n(k)
i=1 (Wi+V ′

i ) is normally distributed with variance smaller
than ψ(n(k)) + n(k). Since n(k) = o(

√
k) we have that ψ(n(k)) + n(k) =

o(
√
kLLk) by definition of ψ. An elementary calculation on Gaussian random

variables shows that

k∑

i=1

Yi −
n(k)∑

i=1

(Wi + V ′
i ) = o

(√
k LLk

)
a.s. (9.2.21)

Theorem 9.2 follows from (9.2.20) and (9.2.21).



Chapter 10

The Empirical process

In this chapter, we prove central limit theorems for the empirical distribution
function of weakly dependent stationary sequences (or fields). Except in the
last section (Section 10.6), where the oscillations of the empirical distribution
of weakly dependent random fields are studied, all the results are mainly based
on the tightness criterion given in Proposition 4.2. In Section 10.1, we give a
sufficient condition for the tightness, based on the control of the covariances
between indicators of half lines. In Section 10.2 we prove an empirical central
limit theorem for η-dependent sequences by assuming an exponential decay of
the coefficients. In Sections 10.3 and 10.4, we give sufficient conditions in terms
of the coefficients α̃, β̃, φ̃, θ and τ . In Section 10.5 we present the applications
of such results to the empirical copula process.

Definition 10.1 (Empirical process). We recall the definition of the empir-
ical process for the different cases considered:

• Stationary real valued or multivariate sequence: Let (Xn)n∈Z be a
sequence of R

d valued random variables. Define in R
d the partial order by

s ≤ t if and only if si ≤ ti for i = 1, . . . , d. The empirical process of X is
defined by

Fn(t) =
1
n

n∑

i=1

1{Xi≤t}. (10.0.1)

• Stationary real valued random field: For N in N, let BN be the closed
ball of radius N for the �∞-norm on T = Z

d and n = #BN = (2N + 1)d.
Let (Xt)t∈T be a real valued random field. We define the empirical process

Fn(t) =
1
n

∑

k∈BN

1{Xk≤t}. (10.0.2)

223
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In any case, if the variables are identically distributed with common distribution
function F , we define the normalized empirical process by

Un(t) =
√
n (Fn(t) − F (t)) .

We need to define the limit processes in the following central limit theorems.
(B(t))t∈[0,1]d is a zero-mean Gaussian process with covariance function

Γ(t, s) =
∑

k∈T
Cov(1X0≤t,1Xk≤s). (10.0.3)

where T = Z in the case of random sequences and T = Z
d in the case of random

fields.

10.1 A simple condition for the tightness

We consider a stationary real valued sequence (Xn)n∈Z with continuous common
repartition function F . We assume without loss of generality that the marginal
distribution of this sequence is the uniform law on [0, 1].
Assume that the sequence (Xn)n∈Z satisfies the following weak dependence con-
dition:
Let F = {x �→ 1s<x≤t/ for s, t ∈ [0, 1]}. We assume that for any m ∈ {1, 2, 3}
and any 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4,

sup
f∈F

∣
∣∣
∣
∣
Cov

(
m∏

i=1

f(Xti),
4∏

i=m+1

f(Xti)

)∣∣∣
∣
∣
≤ ε(r), (10.1.1)

where r = tm+1 − tm and ε(r) does only depend on r (in this case a weak
dependence condition holds for a class of functions R

u → R working only with
the values u = 1, 2 or 3).

Proposition 10.1. Let (Xn)n∈Z be a real valued stationary sequence fulfilling
(10.1.1) with

ε(r) = O(r−5/2−ν), for some ν > 0. (10.1.2)

Then the process Un is tight in D([0, 1]).

Proof of Proposition 10.1. The moment inequality (4.3.17), together with con-
ditions (10.1.1) and (10.1.2), yields the existence of a positive constant C such
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that for any s, t in [0, 1]

‖Un(t) − Un(s)‖4 ≤ C
{( n−1∑

r=0

r−a ∧ |t− s|
)1/2

+
( 1
n

n−1∑

r=0

(r + 1)2ε(r)
)1/4}

≤ C
{( ∑

r≥|t−s|−1/a

r−a
)1/2

+
( ∑

r<|t−s|−1/a

|t− s|
)1/2

+ n
2−a
4

}

≤ C{|t− s|
a−1
2a + n

2−a
4 }.

The last bound together with the tightness criterion given in Proposition 4.2
proves that the sequence {Un(t), t ∈ [0, 1]} is tight.

Remark 10.1. Stationary associated sequences (see Section 1.4) satisfy the
requirement of Proposition 10.1 if

sup
|k|≥r

sup
x,y∈R

Cov(1X0>x,1Xk>y) = O(r−5/2−ν).

Using the following inequality :

sup
|k|≥r

sup
x,y∈R

Cov(1X0>x,1Xk>y) ≤ C sup
|k|≥r

Cov1/3(X0, Xk),

for an universal constant C, Yu (1993) [195] proves the tightness under the
condition Cov(X0, Xr) = O(r−a), for a > 15/2. However in this case, the paper
by Louhichi (2000) [124] proves the tightness under the condition Cov(X0, Xr) =
O(r−a), for a > 4.

10.2 η-dependent sequences

In this section, Y is a stationary η-dependent sequence in [0, 1]d with uniform
marginal distributions.

Theorem 10.1. Assume that (Yi)i∈Z is a stationary η-dependent zero-mean
process in [0, 1]d with uniform marginal distributions. Assume that there exist
some constants C > 0 and a > 4d+ 2 such that η(r) ≤ Cr−a. Then the process
Un converges in distribution in D([0, 1]d) to the Gaussian process B.

The following lemma is used to prove Theorem 10.1.

Lemma 10.1. Assume that (Yi)i∈Zp is a stationary multivariate random field
with value in [0, 1]d and that the density of marginal distribution of the vectors
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Yi are bounded by CY . For s ≤ t in [0, 1]d, denote gt,s(x) = 1{x ≤ t} − 1{x ≤
s}. Let i = (i1, . . . , iu) in (Zp)u and j = (j1, . . . , jv) in (Zp)v be two sets of
indices that are r-distant in L

1-distance. Let G and H be two bounded Lipschitz
functions on R

u and R
v respectively. Denote Yi = (Yi1 , . . . , Yiu). Then

|Cov (G(gt,s(Yi)), H(gt,s(Yj)))| ≤ ψ(G,H)εr, (10.2.1)

where, setting φ(G,H) = dG‖H‖∞Lip (G), we define

• if Y is η-dependent, εr = η
1/2
r

ψ(G,H) = 4(CY d)1/2(φ(G,H) + φ(H,G)), (10.2.2)

• if Y is κ-dependent, εr = κ
1/3
r

ψ(G,H) = 2(4(CY d))2/3(φ(G,H) + φ(H,G))2/3(φ(G,H)φ(H,G))1/3

(10.2.3)

Proof of lemma 10.1 For δ ≥ 0, define the δ-approximations of 1{x≥t} by:

hδ,t(x) =
d∏

p=1

(
(x(p) − t(p) + δ)

δ
1{t(p)−δ<x(p)<t(p)} + 1{x(p)≥t(p)}

)
.

Define gδ,t,s = hδ,t − hδ,s. Then its Lipschitz modulus is equal to δ−1, where
the distance in R

d is d1(x, y) =
∑d

p=1 |x(p) − y(p)| and E |gs,t(Y0) − gt,s,δ(Y0)| ≤
2dCY δ because the density of the variable Yi is bounded by CY and the two
functions are equal except on 2d blocks of width δ.
Define G0(Yi) = G (gt,s(Yi) and Gδ(Yi) = G (gt,s,δ(Yi)).

|Cov(G0(Yi), H0(Yj)) − Cov(Gδ(Yi), Hδ(Yj))|
≤ |E (G0(Yi)H0(Yj)) − E (Gδ(Yi)Hδ(Yj))|

+ |E (G0(Yi)) E (H0(Yj)) − E (Gδ(Yi)) E (Hδ(Yj))|

After substitution of the variables one by one, the first term of the right hand
side is bounded by:

(u‖H‖∞Lip (G) + v‖G‖∞Lip (H))E |gt,s(Y0) − gt,s,δ(Y0)| .

so that:

|E (G0(Yi)H0(Yj)) − E (Gδ(Yi)Hδ(Yj))| ≤ 2CY dδ(φ(G,H) + φ(H,G)).

The bound of the second term is the same.
Now if Y is η-dependent:

|Cov (Gδ(Yi), Hδ(Yj)) | ≤ (φ(G,H) + φ(H,G))
ηr
δ
.
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Hence

|Cov (G0(Yi), H0(Yj) | ≤ (φ(G,H) + φ(H,G))
(
4CY dδ +

ηr
δ

)

If Y is κ-dependent:

|Cov (Gδ(Yi), Hδ(Yj)) | ≤ (φ(G,H)φ(H,G))
κr
δ2
.

Hence

|Cov (G0(Yi), H0(Yj)) | ≤ 4CY d(φ(G,H) + φ(H,G))δ + φ(G,H)φ(H,G)
κr
δ2

Choosing the optimal δ, relation (10.2.1) is proved. �
We apply this lemma for the case of products of indicator functions, namely for
s ≤ t in R

d, for any k multi-index of Z
u, we define

Πk =
u∏

j=1

gt,s(Ykj ) − F (t) + F (s).

We note that Πk = G(gt,s(Yk)) where the function G is defined by G(x1, . . .
xu) =

∏u
j=1(xj − c) with c = F (t) − F (s). Here ‖G‖∞ = Lip (G) = 1.

Corollary 10.1. Assume that (Yi)i∈Z is a stationary η-dependent zero-mean
process in [0, 1]d with uniform marginal distributions, then for any sequences
i = (i1, . . . , iu) and j = (j1, . . . , jv) such that r ≤ j1 − iu:

∣
∣
∣Cov

(
Πi,Πj

)∣∣
∣ ≤ (u+ v)ε(r) , (10.2.4)

with ε(r) = 4
√
dη(r).

Next we prove a Rosenthal type inequality.

Proposition 10.2. Assume that Y is a stationary η-dependent zero-mean pro-
cess in [0, 1]d with uniform marginal distributions. Assume moreover that con-
dition (10.2.4) is satisfied with ε(r) = Cr−a. Then, for l < (a+ 1)/2 and (s, t)
such that E|x0(s, t)| < C, we have

E(Un(t) − Un(s))2l ≤
(4l − 2)!32l

(2l − 1)!

⎛

⎝

(

kl
2
3

(
E|x0(s, t)|

C

)1−1/a
)l

+ (2l)!
n1−lkl

3

(
E|x0(s, t)|

C

)1+(1−2l)/a
)

, (10.2.5)

where kl =
(
C + C2a

a−2l+1

)
.
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Proof of Proposition 10.2. Let s ≤ t be in R
d. As |xi(s, t)| ≤ 1, we get for any

sequences i ∈ Z
u, j ∈ Z

v,
∣
∣
∣Cov

(
Πi,Πj

)∣∣
∣ ≤ 2 E|x0(s, t)|. (10.2.6)

For any integer q ≥ 1, set

Aq(n) =
∑

k∈{1,...,n}q

∣
∣E
(
Πk
)∣∣ , (10.2.7)

then
E(Un(s) − Un(t))2l ≤ (2l)!n−lA2l(n). (10.2.8)

Let q ≥ 2.
For a finite sequence k = (k1, . . . , kq) of elements of Z, let (k(1), . . . , k(q)) be
the same sequence ordered from the smaller to the larger. The gap r(k) in the
sequence is defined as the maximum of the integers k(i+1) −k(i), i = 1, . . . , q−1.
Choose any index j < q such that k(j+1) − k(j) = r, and define the two non-
empty subsequences k1 = (k(1), . . . , k(j)) and k2 = (k(j+1), . . . , k(q)). Define
Gr(q, n) = {k ∈ {1, . . . , n}q / r(k) = r}. Sorting the sequences of indices by
their gaps, we get

Aq(n) ≤
n∑

k=1

E|x0(s, t)|q

+
n−1∑

r=1

∑

k∈Gr(q,n)

∣∣
∣Cov

(
Πk1 ,Πk2

)∣∣
∣ (10.2.9)

+
n−1∑

r=1

∑

k∈Gr(q,n)

∣
∣
∣E
(
Πk1

)
E

(
Πk2

)∣∣
∣ . (10.2.10)

Define

Bq(n) =
n∑

k=1

E|x0(s, t)|q +
n−1∑

r=1

∑

k∈Gr(q,n)

∣
∣
∣Cov

(
Πk1 ,Πk2

)∣∣
∣ .

In order to prove that the expression (10.2.10) is bounded by the product∑
mAm(n)Aq−m(n) we make a first summation over the k’s with #k1 = m.

Hence

Aq(n) ≤ Bq(n) +
q−1∑

m=1

Am(n)Aq−m(n). (10.2.11)

Now we give a bound of Bq(n). To build a sequence k belonging to Gr(q, n),
we first fix one of the n points of {1, . . . , n}. We choose a second point among
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the two points that are at distance r from the first point. The i-th point lies in
an interval of radius r centered at one of the i − 1 preceding points. Thus for
r ∈ N

∗, we have

#Gr(q, n) ≤ n · 2 · 2(2r + 1) · · · (q − 1)(2r + 1) ≤ 2n(q − 1)!(3r)q−2 .

We use condition (10.2.4) and condition (10.2.6) to deduce:

Bq(n) ≤ nE|x0(s, t)| + 2n(q − 1)!
n−1∑

r=1

(3r)q−2 min(qε(r), 2 E|x0(s, t)|)

≤ nE|x0(s, t)| + n 3q−1 q!

(
n−1∑

r=1

rq−2 min(ε(r),E|x0(s, t)|)
)

.

Denote by R the integer such that R < (E|x0(s, t)|/C)−1/a ≤ R + 1. For any
2 ≤ q ≤ 2l:

Bq(n) ≤ nE|x0(s, t)| + 3q−1nq!

(

E|x0(s, t)|
R−1∑

r=1

rq−2 + C

∞∑

r=R

rq−2−a
)

≤ 3q−1nq!
(

E|x0(s, t)|
q − 1

Rq−1 +
C

a− q + 1
Rq−1−a

)

≤ 3q−1nq!(E|x0(s, t)|/C)−(q−1)/a

(
E|x0(s, t)|
q − 1

+
C

a− q + 1
R−a

)
.

But R ≥ 1, so that (E|x0(s, t)|/C)−1/a ≤ 2R, and

Bq(n) ≤ 3q−1nq!(E|x0(s, t)|/C)1−(q−1)/a

(
C +

C2a

a− 2l+ 1

)
.

We find that:

Bq(n) ≤
(

3
(

E|x0(s, t)|
C

)−1/a
)q

n kl
3

(
E|x0(s, t)|

C

)1+1/a

q! (10.2.12)

so Bq(n) is bounded by a function M qVq that satisfies condition (4.3.24) and
gives

A2l(n) ≤ (4l − 2)!
(2l)!(2l − 1)!

(
3
(
(
E|x0(s, t)|

C

)−1/a)2l

((
n kl

2
3

(
E|x0(s, t)|

C

)1+1/a)l
+ (2l)!

n kl
3

(
E|x0(s, t)|

C

)1+1/a)

≤ (4l − 2)!32l

(2l)!(2l − 1)!

((
2
n kl
3

(
E|x0(s, t)|

C

)1−1/a)l

+(2l)!
n kl
3

(
E|x0(s, t)|

C

)1+(1−2l)/a)
,
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and (10.2.5) is proved. �

Proof of theorem 10.1.

CLT for the finite dimensional distributions of Un. Let (s1, . . . , sm) be a fixed
sequence of elements in [0, 1]d. Denote Bn the vector-valued process

Bn = (Un(s1), . . . , Un(sm)).

To prove a CLT for the vector Bn is equivalent to prove the Gaussian conver-
gence for any linear combination of its coordinates. Let (α1, . . . , αm) be a real
vector such that

∑m
j=1 αj �= 0.

Define Zi =
∑m
j=1 αj(1{Yi ≤ sj} − P (Yi ≤ sj)). Define also

Sn =
1√
n

∑

1≤i≤n
Zi =

∑

1≤j≤m
αjUn(sj).

We use the Bernstein blocking technique, as in chapter 8. Let p(n) and q(n) be
sequences of integers such that p(n) = o(n) and q(n) = o(p(n)). Assume that
the Euclidean division of n by (p+ q) gives a quotient k and a remainder r. For
i = 1, . . . , k, we define the interval Pi = {(p+ q)(i− 1)+1, . . . , (p+ q)i− q} and
if r �= 0, Pk+1 = {(p+ q)k + 1, . . . , (p+ q)k + r ∨ p}. Q the set of indices that
are not in one of the Pi. Note that the cardinal of Q is less than (k + 1)q. For
each block Pi (1 ≤ i ≤ k + 1) and Q, we define the partial sums:

ui =
1√
n

∑

j∈Pi

Zj , v =
1√
n

∑

j∈Q
Zj .

We use lemma 8.2. We check the conditions for the sequence Zj . To check

(8.2.6), note that σ2
n ≤ 1

n

n−1∑

r=0

ε(r) and that Ev2 ≤ (k + 1)q
n

n−1∑

r=0

ε(r).

Let us check (8.2.7). Using (10.2.4) with LipG = LipH = tmaxαj/
√
nσn,

dG = mpk and dH = mp, we get

∣
∣
∣Cov

(
g
( t

σn

j−1∑

i=1

ui

)
, h
( t

σn
uj

))∣∣
∣ ≤ mp (k + 1)

t
∑
j αj

σn
ε(q).

and

k+1∑

j=2

∣∣
∣Cov

(
g
( t

σn

j−1∑

i=1

ui

)
, h
( t

σn
uj

))∣∣
∣ ≤ mp (k+1)2

t
∑
j αj

σn
ε(q) = O(n3/2p−1q−a).



10.3. α̃, β̃ AND φ̃-DEPENDENT SEQUENCES 231

Taking p = n5/6 and q = n5/6a gives a bound tending to 0.
To prove (8.2.8), it is sufficient to show that E|ui|4 = O(k−2). But

⎛

⎝
∑

j∈Pi

Zj

⎞

⎠

4

=
p2

n2

(
m∑

i=1

αiBp(si)

)4

≤ p2

n2
m3

m∑

i=1

α4
i (Bp(si) −Bp(0))4 ,

and we conclude by applying Proposition 10.2 for l = 2 to the couples (0, si).
In order to prove (8.2.9), note that (8.2.6) implies that

lim
n→∞

1
σ2
n

Var

(
k+1∑

i=1

ui

)

= 1.

But
∣∣
∣
∣
∣
Var

(
k+1∑

i=1

ui

)

−
k+1∑

i=1

E|ui|2
∣∣
∣
∣
∣

≤ 2
∑

1≤i	=j≤k
|Cov(ui, uj)|

≤ 4(k + 1)p
n

∞∑

j=q

ε(j) = O(q−a+1) = o(1).

Taking p = n5/6 and q = n5/6a gives a bound tending to 0. �
Tightness of Un. We use the criteria of Proposition 4.2. Define

F = {gs,t/gs,t(x) = 1{x ≤ t} − 1{x ≤ s} − F (t) + F (s); s, t ∈ [0, 1]d} .

By definition Un(t) − Un(s) = Zn(gs,t) and ‖gs,t‖PY ,1 = E|x0(s, t)|. Recalling
that a > 2d+ 1, from the Rosenthal inequality (10.2.5) for l = d+ 1 we get

‖Zn(gs,t)‖p ≤ C(‖gs,t‖1/r
PY ,1

+ n1/q−1/2) ,

with p = q = 2l = 2d+ 2, r = 2a/(a− 1). For the class of functions considered,
the covering number NPY ,1(x,F)) is O(x−d) so that

∫ 1

0

x(1−r)/r(NPY ,1(x,F))1/pdx ≤ C

∫ 1

0

x−
1
2 ( a+1

a + d
d+1 )dx.

Because a > d + 1, the exponent is greater than −1, and the integral is finite.
As p = q = 2d+ 2, the last condition holds directly. �

10.3 α̃, β̃ and φ̃-dependent sequences

Consider the three following conditions:
(C1) There exists ε > 0 such that α̃2(k) = O

(
k−7/3−ε) if d = 1, and α̃2(k)
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= O
(
k−2d−ε) if d > 1.

(C2) There exists ε > 0 such that β̃2(k) = O
(
k−2d−ε).

(C3) There exists ε > 0 such that φ̃2(k) = O
(
k−1−ε).

Theorem 10.2. If one of the conditions (Ci), i = 1, . . . , 3 holds, then the process
Un converges in distribution in D(Rd) to the Gaussian process B.

Remark 10.2. For d = 1, the condition (C1) is better than the condition
αX(k) = O(k−1−√

2−ε) given in Shao and Yu (1996) [175] for strongly mix-
ing sequences (recall that αX(k) has been defined in Section 1.2 of Chapter 1).
In fact, in Theorem 7.3 of his book, Rio (2000) [161] has shown that the rate
αX(k) = O(k−1−ε) is sufficient for the weak convergence of the d-dimensional
distribution function.

Proof of Theorem 10.2. We keep the notations of Chapter 4. The finite dimen-
sional convergence of Un can be proved as before. Let us prove the tightness of
Un. Let F = {x �→ 1x≤t , t ∈ R

d}, and let G = {f − h , f, h ∈ F} . We have
to prove that the process {Zn(f), f ∈ F} is asymptotically tight, that is there
exists a semi metric ρ on F such that (F , ρ) is totally bounded, and, for every
ε > 0,

lim
δ→0

lim sup
n→∞

P

(
sup

ρ(f,g)≤δ, f,g∈F
|Zn(f) − Zn(g)| > ε

)
= 0 . (10.3.1)

Since NQ,1(x,F) = O(x−d) for any finite measure Q on R
d, the set (F , ‖ · ‖Q,1)

is totally bounded. Consequently, the property (10.3.1) follows from (4.5.2) by
applying Markov’s inequality.
Let us prove that condition (C1) implies (4.5.2). For any s, t in R

d, let fs,t(x) =
1x≤t − 1x≤s and f̃s,t(x) = fs,t(x) −

∫
fs,t(x)P (dx). With proposition 5.6 for

(f̃s,t(Xi))i∈Z for any p ≥ 1, the quantity ‖Zn(f̃s,t)‖p is bounded by

√
pV∞ +n1/3−1/2

(
3p2(‖f̃s,t(X0)3‖p/3 +M1(p)+M2(p)+M3(p))

)1/3

, (10.3.2)

where V∞, M1(p), M2(p) and M3(p) are defined in Proposition 5.6. Let P be
the law of X0. Use inequality (5.2.5), then for any r > 2, g ∈ G,

‖Zn(g)‖p ≤ 4(p ‖g‖P,1)1/r
(∑

k≥0

(
α̃1(k)

)(r−2)/r))

+ n1/3−1/2
(
3p2
(
1 + 10

+∞∑

k=1

k
(
α̃2(k)

)3/p))1/3

. (10.3.3)

We then apply Proposition 4.2 with q = 3. Recall that NP,1(x,F) = O(x−d).
If d = 1, we can take r = 7/2 and p > 7/2 such that (4.5.2) holds under C1. If
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d > 1 we can take r = 3 and p > 3d such that (4.5.2) holds under (C1).
Let us prove that condition (C2) implies (4.5.2). Define the measure Q on R

d

by

Q(dx) = B(x)P (dx) =

(

1 + 4
+∞∑

k=1

bk(x)

)

P (dx), (10.3.4)

where bk(x) is the function from R
d to [0, 1] such that b(σ(X0), Xk) = bk(X0)

and P is the law of X0. Note that Q is finite as soon as
∑+∞

k=1 β1(k) is finite.
Applying the inequality (5.2.6), we obtain that for any g in G,

‖Zn(g)‖p ≤ (p ‖g‖Q,1)1/2 + n1/3−1/2

(

3p2

(

1 + 10
+∞∑

k=1

k
(
β̃2(k)

)3/p
))1/3

.

We then apply Proposition 4.2 with r = 2 and q = 3. Since NQ,1(x,F) =
O(x−d), we can take p > 3d such that (4.5.2) holds under (C2).

Let us prove that condition (C3) implies (4.5.2). Applying Proposition 5.7
to the sequence (f̃s,t(Xi))i∈Z, we obtain, for any p ≥ 1,

‖Zn(f̃s,t)‖p ≤ (p(V∞ + 2M0(p)))
1/2

+ n1/3−1/2
(
3p2
(
‖f̃(X0)3‖p/3 + M̃1(p) + M̃2(p) +M3(p)

))1/3

,

where V∞, M0(p), M̃1(p), M̃2(p) and M3(p) are defined in Proposition 5.7.
Applying the inequality (5.2.7), we get that for any g in G,

‖Zn(g)‖p ≤ (p‖g‖Q,1)1/2 +
(
2p

+∞∑

k=N

φ̃2(k)
)1/2

+ n1/3−1/2
(
3p2
(
1 + 2

N∑

k=1

kφ̃2(k) + 4
∞∑

k=1

φ̃2(k)(k ∧N) + 4
+∞∑

k=1

φ̃2(k)
))1/3

.

(10.3.5)

We take now N = nα with α = 1/(2 + ε). If (C3) holds, we infer from (10.3.5)
that there exists some positive constant C such that, for any g in G,

‖Zn(g)‖p ≤ C‖g‖1/2
Q,1 + Cn−ε/(4+2ε) .

To conclude we apply Proposition 4.2 with r = 2 and q = 2 + ε. Since
NQ,1(x,F) = O(x−d), (4.5.2) holds under (C3). �

10.4 θ and τ-dependent sequences

Consider the three following conditions:
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(C4) Each component of X1 has a bounded density and there exists ε > 0 such
that θ1,2(k) = O

(
k−14/3−ε) if d = 1, and θ1,2(k) = O

(
k−4d−ε) if d > 1.

(C5) Each component of X1 has a bounded density and there exists ε > 0 such
that τ1,2(k) = O

(
k−4d−ε).

(C6) Each component of X1 has a bounded density and there exists ε > 0 such
that τ∞,2(k) = O

(
k−2−ε).

Theorem 10.3. If one of the conditions (Ci), i = 4, . . . , 6 holds, then the process
Un converges in distribution in D(Rd) to the Gaussian process B.

Proof of Theorem 10.3. The result is immediate by using Theorem 10.2 and
Lemma 5.1. �

10.5 Empirical copula processes

Copulas describe the dependence structure between some random vectors. They
have been introduced a long time ago by Sklar (1959) [178] and have been re-
discovered recently, especially for their applications in finance and biostatis-
tics. Briefly, a d-dimensional copula is a distribution function on [0, 1]d, whose
marginal distributions are uniform and that summarizes the dependence “struc-
ture” independently of the specification of the marginal distributions.

To be specific, consider a random vector X = (X1, . . . , Xd) in R
d, whose

joint distribution function is F and whose marginal distribution functions are
denoted by Fj , j = 1, . . . , d. Then there exists a unique copula C defined on
the product of the values taken by the r.v. Fj(Xj), such that

C(F1(x1), . . . , Fd(xd)) = F (x1, . . . , xd),

for any x = (x1, . . . , xd) ∈ R
d. C is called the copula associated with X. When

F is continuous, it is defined on [0, 1]d, with an obvious extension to R
d
. When

F is discontinuous, there are several choices to expand C on the whole [0, 1]d

(see Nelsen (1999) [134] for a complete theory).
The natural empirical counterpart of C is the so-called empirical copula, defined
by

Cn(u) = Fn(F−1
n,1(u1), . . . , F−1

n,d(ud)),

for every u1, . . . , ud in [0, 1], where Fn denotes the empirical process as in
Definition 10.0.1 and Fn,i the empirical process of the i-th marginal distribu-
tion. We use the usual “generalized inverse” notations, for every j = 1, . . . , d,
F−1
j (u) = inf{t / Fj(t) ≥ u}.

Empirical copulas have been introduced by Deheuvels (1979, 1981a, 1981b),
[51],[52],[53] in an i.i.d. framework. This author studied the consistency of Cn



10.5. EMPIRICAL COPULA PROCESSES 235

and the limiting behavior of n1/2(Cn−C) under the strong assumption of inde-
pendence between margins. Fermanian et al.(2002) [86] proved some functional
CLT for this empirical copula process in a more general framework and provide
some extensions. Note that the results of [86] are available under the sup-norm
and outer expectations assumptions, as in van der Vaart and Wellner (1996)
[183].
Assume that the process (Yi)i∈Z, Y = (F1(X1), . . . , Fd(Xd)) is weakly depen-
dent. Note that the covariance structure of the limit process B depends not
only on the copula C (via the term associated with i = 0 e.g.), but also on the
joint law between X0 and Xi, for every i. This is different from the i.i.d. case,
where B becomes a Brownian bridge whose covariance structure is a function of
C only. Actually, the covariances of B depend here on every successive copulas
of the random vectors (X0,Xi). We can state:

Theorem 10.4. If (Yi)i∈Z is weakly dependent and if the empirical process
of (Yi)i∈Z converges in distribution in D([0, 1]d) to a Gaussian process B , if
C has some continuous first partial derivatives, then the process n1/2(Cn − C)
tends weakly to a Gaussian process G in D([0, 1]d). Moreover, this process has
continuous sample paths and can be written as

G(u) = B(u) −
d∑

j=1

∂jC(u)B(u1, . . . , uj−1, 0, uj+1, . . . , ud), (10.5.1)

for every u ∈ [0, 1]d.

Note that the covariance structure of n1/2(Cn − C) is involved, because of
both (10.0.3) and (10.5.1).

Proof of theorem 10.4. The proof is directly adapted from Fermanian et al.(2002)
[86]. Briefly, we can assume that the law of X is compactly supported on [0, 1]d,
eventually by working with Y = (F1(X1), . . . , Fd(Xd)). Indeed, it can be proved
that the empirical copulas associated with Y and X are equal on all the points
(i1/n, . . . , id/n), i1, . . . , id in {0, . . . , n} (lemma 3 in [86]), thus on [0, 1]d as a
whole.
Consider the usual norm on l∞([0, 1]) and the Skohorod metric δ on D([0, 1]d.
Define the mappings

φ1 :
{

(D([0, 1]d), δ) → (D([0, 1]d), δ) × (D([0, 1]), δ)⊗d

F �→ (F, F1, . . . , Fd)

φ2 :
{

(D([0, 1]d), δ) × (D([0, 1]), δ)⊗d → (l∞([0, 1]d)) × (l∞([0, 1]))⊗d

(F, F1, . . . , Fd) �→ (F, F−1
1 , . . . , F−1

d )
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φ3 :
{

(l∞([0, 1]d) × l∞([0, 1]))⊗d → (l∞([0, 1]d))
(F,G1, . . . , Gd) �→ F (G1, . . . , Gd) .

Clearly, φ1 is Hadamard-differentiable because it is linear. Moreover, φ2 is
Hadamard-differentiable tangentially to the corresponding product of continu-
ous functions by applying theorem 3.9.23 in van der Vaart and Wellner (1996)
[183]. Note that, for any function h ∈ C([0, 1]), the convergence of a sequence hn
towards h in (D([0, 1]), δ) is equivalent to the convergence in (D([0, 1]), ‖ · ‖∞).
Thus, working with the Skorohod metric is not an hurdle here. At last, φ3

is Hadamard-differentiable by applying theorem 3.9.27 in [183]. Thus, the
chain rule applies : φ = φ3 ◦ φ2 ◦ φ1 is Hadamard-differentiable tangentially
to C([0, 1]d). The result follows by applying the functional Δ-method to the
empirical process of Y and to the function φ (see theorem 3.9.4 in [183]). �

10.6 Random fields

In this section, we give rates of convergence in the central limit theorem for a
η- or κ-weak dependent field ξ. Assume that the density of the variable ξi is
bounded by Cξ. Following lemma 4.1, we get (I, c)-weak dependence with

• for η-weak dependence, ε(r) =
√
η(r) and c(df , dg) = 2

√
8Cξ(df + dg).

• for κ-weak dependence: ε(r) = (κ(r))
1
3 and c(df , dg) = 2(8Cξ)

2
3 (df+dg)

4
3 .

For the sake of simplicity, we shall assume that the process takes its values in
[0, 1]. This may be achieved by using the quantile transform. Let (S, | · |S) be
the space of càdlàg functions D([0, 1]) with the Skorohod metric. Let π denote
the Prohorov distance between distribution functions on (S, | · |S). If X and Y
are two processes on S, we also denote π(X,Y ) the Prohorov distance between
their distributions.

Central limit theorem for the empirical process

Let Un be the normalized version of the empirical process defined by (10.0.2)
with respect to the closed ball BN of radius N and cardinality n = #BN =
(2N+1)d. Denote gs,t(u) = 1s<u≤t−F (t)+F (s) the interval counting functions.
Denote xi(t) = g0,t(ξi).

Theorem 10.5. Assume that (ξn)n∈T is a centered and η- or κ-dependent
process. Assume that the density of the variable ξi is bounded by Cξ. Let X(t)
be the centered normal process with variance Σs,t =

∑
j∈T Cov(x0(s), xj(t)).

Assume that there exist C > 0 and b > 0 such that ε(r) ≤ Ce−br, then
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π(Un, X) = O
(
n−α0 log(n)−β0

)
,

where

α0 =
1

8d+ 24
,

β0 =
10d2 + 39d+ 28

8d+ 24
.

The proof is based on the well known result on the Prohorov distance:

Lemma 10.2. Let δ be a positive real and D be a finite subset {x1, . . . , xm} ⊂
[0, 1], such that every x in [0, 1] is in a δ-neighborhood of some xi. Let X and
Y be two distributions on S. Define the δ-oscillation of X

wX(δ) = sup
‖x−y‖<δ

(‖X(x) −X(y)‖) ,

and εX(δ) = inf{ε ∈ R
/

P(wX(δ) > ε) ≤ ε}. The Prohorov distance between X
and Y is bounded by:

π(X,Y ) ≤ εX(δ) + εY (δ) + π(XD, YD),

where XD is the finite dimensional distribution of X on the subset D.

We need to compute bounds for the δ-oscillations and distance between laws.
These are based on moment inequalities for the process Un.

Proposition 10.3. Assume that ε(r) ≤ Ce−br, with b > 0. For (s, t) such that
|t− s| < Cξe

−4b/C and |t− s| < Ce3b/Cξ:

E(Un(t) − Un(s))2l ≤
(4l − 2)!
(2l − 1)!

(
6(1 ∨ b−2) log (1/|t− s|)

)2dl

×
(
(2(2d)!Cξ|t− s|)l+ (2l)!(2ld)!n1−lCξ|t− s|

)
. (10.6.1)

Note that Un(t)−Un(s) = 1√
n

∑
k∈BN

gs,t(ξk). The proposition is a consequence
of the bound of the covariance of quantities depending on the functions gs,t(ξk).

Proof of proposition 10.3. We adapt the proof of Proposition 10.2 to the series
(gs,t(ξk))k∈BN . For a sequence k = (k1, . . . , kq) of elements of T , define ξk =
(ξk1 , . . . , ξkq) and when s and t are fixed, Πk =

∏q
i=1 gs,t(ξki ). For any integer

q ≥ 1, set:
Aq(N) =

∑

k∈Bq
N

∣
∣E
(
Πk
)∣∣ , (10.6.2)

then,
|E(Un(s) − Un(t))2l| ≤ (2l)!n−lA2l(N). (10.6.3)
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Let q ≥ 2. For a finite sequence k = (k1, . . . , kq) of elements of T , the gap is
defined by the max of the integers r such that the sequence may be split into
two non-empty subsequences k1 and k2 ⊂ Z

d whose mutual distance equals r
(d(k1,k2) = min{‖i− j‖1/i ∈ k1, j ∈ k2} = r). If the sequence is constant, its
gap is 0. Define the set Gr(q,N) = {k ∈ BqN and the gap of k is r}. Sorting
the sequences of indices by their gap:

Aq(N) ≤
∑

k1∈BN

E|gs,t(ξk1)|q +
2N∑

r=1

∑

k∈Gr(q,N)

∣
∣
∣Cov

(
Πk1 ,Πk2

)∣∣
∣

+
2N∑

r=1

∑

k∈Gr(q,N)

∣
∣
∣E
(
Πk1

)
E

(
Πk2

)∣∣
∣ . (10.6.4)

Define

Bq(N) =
∑

k1∈BN

E|gs,t(ξk1)|q +
2N∑

r=1

∑

k∈Gr(q,N)

∣
∣
∣Cov

(
Πk1 ,Πk2

)∣∣
∣ .

We get

Aq(N) ≤ Bq(N) +
q−1∑

m=1

Am(N)Aq−m(N).

To build a sequence k belonging to Gr(q,N), we first fix one of the n points of
BN . We choose a second point on the �1-sphere of radius r centered on the first
point. The third point is in a ball of radius r centered on one of the preceding
points, and so on. . . Thus

#Gr(q,N) ≤ n ·2d(2r+1)d−1 ·2(2r+1)d · · · (q−1)(2r+1)d ≤ ndq!(3r)d(q−1)−1.

We use Lemma 4.1 to deduce:

Bq(N) ≤ n
(
Cξ|t− s| + dq!

2N∑

r=1

(3r)d(q−1)−1 min(ε(r), Cξ |t− s|)
)
.

Let R be an integer to be chosen later.

Bq(N) ≤ nd3d(q−1)q!
(
Cξ|t− s|

R−1∑

r=0

rd(q−1)−1 + C

∞∑

r=R

rd(q−1)−1e−br
)
.

Comparing summations with integrals we get

Bq(N) ≤ n(3(1 ∨ b−1))d(q−1)q!(d(q − 1))! ×

×Rd(q−1)Cξ|t− s|
(

1 +
Ce4b

Cξ|t− s|e
−b(R+1)

)
.
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ChooseR as the integer part of 1
b log

(
Ce4b/Cξ|t− s|

)
and assume that (s, t) ∈ T

are such that |t− s| ≤ e−4bCξ/C and |t− s| ≤ e3bC/Cξ. Then R ≥ 1 and

Bq(N) ≤
(
6(1 ∨ b−2) log (1/|t− s|)

)dq
nCξ|t− s| q! (dq)!, (10.6.5)

so that Bq(N) is bounded by a function M qVq that satisfies condition (4.3.24).
Then

A2l(N) ≤ (4l − 2)!
(2l)!(2l − 1)!

(
6(1 ∨ b−2) log (1/|t− s|)

)2dl

(
(2(2d)!nCξ|t− s|)l + (2l)!(2ld)!nCξ|t− s|

)
,

and (10.6.1) is proved. �

Oscillations of the empirical process

Using Proposition 10.3, we give a bound for the modulus of continuity of Un.

Proposition 10.4. If ε(r) ≤ Ce−br with b > 0, then for δ ≥ 1/n:

εUn(δ) ≤ K1(Cξ, b, d)δ1/2 logd+1(1/δ), (10.6.6)

where K1(Cξ, b, d) = 8
(
6(1 ∨ b−2)

)d (2(2d)!Cξ)
1
2 .

Proof of proposition 10.4. We show that exponential moment of Un(t) − Un(s)
are finite and use Stroock’s method to find the oscillation.

Lemma 10.3. Let f(u) = |u|1/2 logd(1/u). Assume that ε(r) ≤ Ce−br with
b > 0, and that δ ≥ 1/n. Then there exists a constant c0 such that for every
c < c0 and every (s, t) such that |t− s| ≤ δ:

E

(
exp
(
c
|Un(t) − Un(s)|

f(t− s)

))
≤ B(c) < +∞.

Proof of lemma 10.3 Using the moment inequality (10.6.1) and Stirling’s for-
mula:

E

(
|Un(t) − Un(s)|

f(t, s)

)2p

≤ p2p
(
8e2Cξ(2d)!

(
6(1 ∨ b−2)

)2d)p
.

E

(
exp
(
c
|Un(t) − Un(s)|

f(t− s)

))
≤

∞∑

k=0

ck

k!

(

E

(
|Un(t) − Un(s)|

f(t, s)

)2k
) 1

2

≤
∞∑

k=0

ckkk

k!

(
8e2Cξ(2d)!

(
6(1 ∨ b−2)

)2d) k
2
.
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For c0 =
(
6(1 ∨ b−2)

)−d (8e2Cξ(2d)!
)− 1

2 , the lemma is true.
We apply a lemma of Garsia (1965) [90]. Let c = c0/2, B(c) as in lemma 10.3,
ψ(u) = ecu − 1 and 0 < δ < e−2d. The lemma says that if

Y (ω) =
∫ δ

0

∫ δ

0

ψ

(
|Un(t, ω) − Un(s, ω)|

f(|t− s|)

)
dsdt < ∞,

then |Un(t, ω) − Un(s, ω)| ≤ 8ψ−1(4Y (ω)/δ2)f(δ).
Using Markov inequality and the fact that E(Y ) ≤ B(c)δ2:

P(|Un(t) − Un(s)| ≥ λ) ≤ P

(
Y ≥ δ2

4
ψ

(
λ

8f(δ)

))
≤ 4B(c)

ψ
(

λ
8f(δ)

) .

For λ = (4/c)f(δ) log(1/δ), P(|Un(t) −Un(s)| ≥ λ) ≤ 4B(c)δ1/2/(1 − δ1/2) . For
δ sufficiently small, this term is less than λ, so that εUn(δ) ≤ K1δ

1/2 logd(1/δ)
with K1 = 4/c. �

Oscillations of the limit process

Proposition 10.5. If ε(r) ≤ Ce−br with b > 0, then etting K3(Cξ, b, d) =
(Cξd!(2d+ 7))1/2 2d

(
1 ∨ b−1

)d,

εX(δ) ≤ K3(Cξ, b, d)δ1/2 log(d+1)/2(1/δ). (10.6.7)

Proof of proposition 10.5. We use a chaining argument to bound the δ-oscillations
of the non-stationary Gaussian limit process X . Define a semi-metric ρ̄ on [0, 1]
by ρ̄(s, t)2 = Var (X(t) − X(s)). As a Gaussian process, X satisfies the expo-
nential inequality:

P(|X(t) −X(s)| ≥ λρ̄(s, t)) ≤ exp{−λ2/2}.

By definition, ρ̄(s, t)2 =
∑
j∈T Cov (x0(t) − x0(s), xj(t) − xj(s)). Using the

Cauchy-Schwarz inequality:

|Cov (x0(t) − x0(s), xr(t) − xr(s)) | ≤ Var (x0(t) − x0(s)) ≤ Cξ|t− s|,

and by definition of ε(r),

|Cov (x0(t) − x0(s), xr(t) − xr(s)) | ≤ ε(r).

For a metric ν over [0, 1], we denote Nν(ε) the covering number (see Pollard
(1984) [151], p.143). It is the cardinality of the smallest set S of points of [0, 1],
so that for any t, ν(t, S) ≤ ε. The corresponding covering integral is

Jν(ε) =
∫ ε

0

(
2 log

(
Nν(u)2/u

))1/2
du.
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Computing as in (10.6.5), it is easy to show that

ρ̄(s, t)2 =
∞∑

r=0

(2r + 1)d−1ε(r) ∧ Cξ|t− s| ≤ K2|t− s| logd(1/|t− s|).

where K = 2
√
Cξd!(1 ∨ b−1)d. Let ε > 0. The inclusion of the balls of

the two metrics implies that Nρ̄(Kε1/2 logd/2(1/ε)) ≤ N|·|(ε). Thus Nρ̄(u) ≤
2d+1(K/u)2 logd+1(K/u) ≤ 2d(K/u)d+2. The corresponding covering integral
is:

Jρ̄(δ) ≤
∫ δ

0

(
4 log

(
2d+1(K/u)d+3

)
+ 2 log(1/u)

)1/2
du

≤ 2δ log1/2
(
2d+1Kd+3

)
+ (4d+ 14)1/2 log−1/2(1/δ)

∫ δ

0

log(u)du

≤ 2δ log1/2
(
2d+1Kd+3

)
+ (4d+ 14)1/2δ log1/2(1/δ).

Taking ε = Kδ1/2 logd/2(1/δ):

P

(
max

|t−s|≤δ
|X(t) −X(s)| ≥ 26Jρ̄(Kδ1/2 logd/2(1/δ))

)
≤ Kδ1/2 logd/2(1/δ).

For a sufficiently small δ,

εX(δ) ≤ Jρ̄(Kδ1/2 logd/2(1/δ)) ≤ K(2d+ 7)1/2δ1/2 log(d+1)/2(1/δ).

Distance between the finite dimensional laws

Let m ∈ N. Let D = {t1, . . . , tm} ⊂ [0, 1]. We denote zi the m-vector
(xi(t1), . . . , xi(tm)). Define the partial sum sn:

sn =
1√
n

∑

i∈BN

zi.

Let Y be a centered Gaussian m-vector, whose covariance matrix is ΣD =
(Σs,t)s,t∈D. We bound the Prohorov distance between sn and Y . For a real ε
such that 0 ≤ ε ≤ 1, we define the class of functions Fε by

Fε = {f ∈ C3
b (R

m)/ 0 ≤ f ≤ 1, ||f (i)||∞ ≤ 2m−1/2ε−i for i = 1, 2 or 3},
(10.6.8)

where f (i) is the differential of i-th order of f and the norm ||·||∞ is the operator
sup-norm w.r.t to the norm ‖ · ‖1. A bound of the Prohorov distance between
sn and Y is given by:

π(sn, Y ) ≤ 4m1/2ε(1 + log1/2(ε)) + 2 sup
Fε

|E(f(sn) − f(Y )|). (10.6.9)
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Proposition 10.6. Define m, p and q as functions of n which converge to
infinity with n, negligible with respect to n, q negligible with respect to p, and
ε as a function of n which converges to zero as n tends to infinity. For a
sufficiently large n, in the case of η-dependence:

π(sn, Y ) ≤ 4m1/2ε(1 + log1/2(1/ε)) (10.6.10)
+ K1ε

−1m1/2q1/2p−1/2 (10.6.11)
+ 2K5m

1/2ε−2n3/2ε(q) (10.6.12)
+ 2K6m

3/2ε−3nε(q) (10.6.13)
+ 2K7mε

−3pd/2n−1/2 (10.6.14)
+ 2K8m

3/2ε−2p−1q. (10.6.15)

In the case of κ-dependence, the terms involving K5 and K6 are replaced by:

+ 2K5m
1/3pd/3ε−7/3n4/3ε(q)

+ 2K6m
4/3pdε−11/3nε(q).

The values of the constants Ki are given in the proof.
Proof of proposition 10.6. We use the Bernstein blocking technique (Bernstein,
1939, [13]. Assume that the Euclidean division of n by (p+q) gives a quotient a
and a remainder r. Denote j = (j, . . . , j). Define K = {−a− 1, . . . , a+ 1}d; for
i ∈ {−a, . . . , a}d, we define the blocks Pi = [(p+q)(i−1), . . . , (p+q)i−q1]. These
blocks are separated with bands of width q. We complete the construction with
at most 4a+4 incomplete blocks on the boundary, also separated with bands of
width q, and associate each of them with a corresponding index in the boundary
ofK. Denote Q the set of indices that are in the separating bands. Note that the
cardinality of Q is less than d(2a+1)qpd−1. We order the set of blocks P by the
lexicographic order of their index in K. We define the variables (ui)i=1,...,(2a+1)d

and v exactly as in section 8.2.2. Consider an independent sequence of centered
Gaussian vectors (yi)i=1,...,k, such that each yi has the same covariance matrix
as ui. Let ε > 0 and f ∈ Fε defined by (10.6.8). We decompose

f(sn) − f(Y ) = f(sn) − f

(
k∑

i=1

ui

)

(10.6.16)

+ f

(
k∑

i=1

ui

)

− f

(
k∑

i=1

yi

)

(10.6.17)

+ f

(
k∑

i=1

yi

)

− f(Y ). (10.6.18)
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Consider the left hand side of (10.6.16).
∣∣
∣
∣
∣
E

(

f(sn) − f

(
k∑

i=1

ui

))∣∣
∣
∣
∣

≤ E

(∣∣
∣
∣
∣
f

(
k∑

i=1

ui + v

)

− f

(
k∑

i=1

ui

)∣∣
∣
∣
∣

)

≤ 2m−1/2ε−1
m∑

s=1

E(|vs|)

≤ 2m1/2ε−1
E(|v1|2)1/2.

Because ε(r) is decreasing,

E(|v1|2) =
1
n

∑

i,j∈Q
|Cov (xi(t1), xj(t1))| ≤

1
n

∑

i,j∈Q
ε(‖i− j‖)

≤ #Q
n

N∑

r=0

(2r + 1)d−1ε(r) ≤ K1
#Q
n

≤ K1
q

p
,

where K1 is a constant depending on the sequence ε(r). We get
∣∣
∣
∣
∣
E

(

f(sn) − f

(
k∑

i=1

ui

))∣∣
∣
∣
∣
≤ K1(mq/p)1/2ε−1. (10.6.19)

Now, we apply Lemma 7.1 to the difference (10.6.17). We first, give a bound
for T1. Assume that ξ is η-dependent. Define G = ∂f(u1 + · · · + ui−1)/∂xs and
H = uis. We apply lemma 10.1 for dG ≤ pdi, dH = pd, Lip (G) ≤ 2m−1/2ε−2,
Lip (H) ≤ n−1/2, ‖G‖∞ ≤ 2m−1/2ε−1 and ‖H‖∞ ≤ pdn−1/2. Because of the
respective order of the parameters, we simplify (10.2.2):
∣
∣
∣∣Cov

(
∂f(u1 + · · · + uj−1)

∂xs
, ujs

)∣∣
∣∣ ≤ 2φ(G,H)ε(q) ≤ 4m−1/2ε−2p2di n−1/2ε(q).

Summing over j and s:

|T1| ≤
i∑

j=1

|E(f (1)(u1 + · · · + uj−1) · uj)| ≤ 4m1/2ε−2ε(q)n3/2.

Now we give a bound for T2. Define G = ∂2f(u1+···+ui−1)
∂xs

i∂x
t
i

and H = uisu
i
t. We

apply Lemma 10.1 for dG = i2p2d, dH = 2pd, Lip (G) ≤ 2m−1/2ε−3, Lip (H) ≤
pdn−1, ‖G‖∞ ≤ 2m−1/2ε−2 and ‖H‖∞ ≤ p2dn−1. Keeping the larger exponents
in each term:

Cov
(
∂2f(u1 + · · · + uj−1)

∂xs∂xt
, ujsu

j
t

)
≤ 4m−1/2ε−3p2djn−1ε(q).
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Summing over j, s and t:

|T2| ≤
i∑

j=1

∣
∣∣E
(
f (2)(u1 + · · · + uj−1) · (uj , uj)

)∣∣∣ ≤ 2m3/2ε−3ε(q)n.

Assume that ξ is κ-dependent. Using the same bounds for functions G and H
and relation (10.2.3):

|T1| ≤
i∑

j=1

|E
(
f (1)(u1 + · · · + uj−1) · uj

)
| ≤ 4m1/3pd/3ε−7/3n4/3ε(q),

|T2| ≤
i∑

j=1

∣
∣
∣E
(
f (2)(u1 + · · · + uj−1) · (uj , uj)

)∣∣
∣ ≤ 4m4/3pdε−11/3nε(q).

The term of third order is bounded using the third order moment. Using Jensen
inequality:

E|u1|32 ≤ m1/2
m∑

s=1

(
E|u1

s|4
)3/4

.

Substituting 1 to the bound Cξ|t − s| and choosing R = 1 ∨ (4 + b−1 log(C)),
Equation (10.6.5) becomes V4(N) ≤ pd

(
3R(1 ∨ b−2)

)4d 4!(4d)!. Then

(
E|u1

s|4
)3/4 ≤ K7p

3d/2n−3/2,

so that the last term is less than

‖f (3)‖A ≤ K7mε
−3pd/2n−1/2 (10.6.20)

We conclude that, if ξ is η-dependent:

|E(f(
k∑

j=1

uj) − f(
k∑

j=1

yj))| ≤ K5m
1/2ε−2n3/2ε(q) (10.6.21)

+K6m
3/2ε−3nε(q) +K7mε

−3pd/2n−1/2,

where K5 = 4, K6 = 2 and K7 is the constant in (10.6.20). If ξ is κ-dependent:

|E(f(
k∑

j=1

uj) − f(
k∑

j=1

yj))| ≤ K5m
1/3pd/3ε−7/3n4/3ε(q) (10.6.22)

+K6m
4/3pdε−11/3nε(q) +K7mε

−3pd/2n−1/2.

Now we have to bound the difference (10.6.18). We use the following lemma:



10.6. RANDOM FIELDS 245

Lemma 10.4. Let X and Y be two centered Gaussian vector of length m, with
respective covariance matrix M and N . Let 0 < ε < 1, and f ∈ Fε. Then

|E(f(X) − f(Y ))| ≤ m−1/2ε−2‖M −N‖1,

where ‖A‖1 =
∑

i,j |Ai,j |.

Proof of lemma 10.4. Because X and Y are Gaussian

E(f(X) − f(Y )) =
n∑

k=1

f
(
Zk +Xk,n/

√
n
)
− f

(
Zk + Yk,n/

√
n
)
,

where the Xk,n and Yk,n are independent copies of X and Y , and
Zk = (X1,n+· · ·+Xk−1,n+Yk+1,n+· · ·+Yn,n)/

√
n. Using the Taylor expansion:

E(f(X) − f(Y )) =
n∑

k=1

1
2n

E
(
f (2)(0) · (Xk,n, Xk,n) − f (2)(0) · (Yk,n, Yk,n)

)

+
1

6n3/2
E

(
f (3)(Vk,n) · (Xk,n, Xk,n, Xk,n) − f (3)(Wk,n) · (Yk,n, Yk,n, Yk,n)

)
,

Vk,n, Wk,n being random vectors. The term involving f (3) tends to 0, and

E

(
f (2)(0) · (Xk,n, Xk,n) − f (2)(0) · (Yk,n, Yk,n)

)
=

m∑

i,j=1

(
∂2f(0)
∂xi∂xj

(Mi,j −Ni,j)
)
,

so that |E(f(X) − f(Y ))| ≤ m−1/2ε−2‖M −N‖1. �
Apply this lemma to the Gaussian vector Y and

∑
yi. The covariance matrix

of
∑
yi and Y are respectively k p

d

n ΣD,p and ΣD, where

ΣD,p(s, t) =
∑

|j|<p
h(j)Cov(x0(s), xj(t)) and h(j) =

d∏

l=1

(1 − jl/p).

Define the matrix M by M(s, t) =
∑

|j|<pCov(x0(s), xj(t)). We have that

∣
∣
∣∣

∣
∣
∣∣
kpd

n
ΣD,p − ΣD

∣
∣
∣∣

∣
∣
∣∣
1

≤ m2kqpd−1

n
||ΣD,p||∞+m2‖ΣD,p−M‖∞+m2‖M−ΣD‖∞.

Because of the convergence of the series defining Σ, ‖ΣD,p‖∞ is uniformly
bounded in p and gives the main contribution. Because 1 − h(j) ≤ d|j|/p,
and

∑
|j|<p |j|Cov(x0(s), xj(t)) is bounded, the term ‖ΣD,p −M‖∞ = O(1/p) .
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‖M −ΣD‖∞ is the remainder of a geometric series and is smaller. We conclude
that the difference (10.6.18) satisfies:

E

(
f
( k∑

i=1

yi
)

− f(Y )
)

≤ K8m
3/2ε−2qp−1. (10.6.23)

Thus collecting the bounds (10.6.19), (10.6.21) or (10.6.22) and (10.6.23), we
infer that the distance between the finite dimensional distributions of size m
satisfies the inequalities of Proposition 10.6. �
Proof of theorem 10.5. Let D be the set of reals (i/m)i=1,...,m. The corre-
sponding δ is m−1. We collect the results of Proposition 10.4 (oscillation of the
empirical process), Proposition 10.5 (oscillation of the Gaussian limit process)
and Proposition 10.6 (distance between fidi repartitions). We use lemma 10.2
to conclude.
The (1/m)-oscillation of Un is less than K10m

−1/2 log2d+1(m). The (1/m)-
oscillation of X is negligible with respect to m−1/2 log2d+1(m). We choose q =
log(n). The terms (10.6.11), (10.6.12) and (10.6.13) are negligible. The mini-
mum rate is obtained for parameters such thatm−1/2 log2d+1(n),m1/2ε log1/2(n),
m5/2ε−3pd/2n−1/2 and m3/2ε−2p−1 log(n) are of same order with respect to n.
The solution is

m = n
1

4d+12 (log(n))
6d2+17d+5

4d+12 ,

p = n
1

d+3 (log(n))
−2d+2

d+3 ,

ε = n
−1

4d+12 (log(n))−
2d2+9d+1

4d+12 .

For this choice, the rate of convergence is n
1

8d+24 (log(n))
10d2+39d+29

8d+24 . �



Chapter 11

Functional estimation

In this chapter we are going to consider some methods of functional estimation.
We study the estimation of the marginal density of the one weak dependence
sequence (Xt)t∈Z and also the estimation of the regression function in a two di-
mensional model Zt = (Xt, Yt)t∈Z. We will show that the CLT and uniform a.s.
convergence results hold under general non causal weak dependence. We also es-
tablish sharp results about the MISE of these estimators under more restrictive
causal dependence. Our principal goal consists in extending to less restrictive
notions of weak dependence results already known for mixing sequences. We
end the chapter with an overview over the different methods of non parametric
estimation in order to extend the field of application of the previous results.

11.1 Some non-parametric problems

For a stationary two dimensional process (Zt)t∈Z with Zt = (Xt, Yt), an impor-
tant quantity is the regression function

r(x) = E(Y0|X0 = x).

Various methods to fit such a function have been developed. Nadaraya-Watson
kernel estimates are very popular; see Rosenblatt (1991) [169], Prakasa-Rao
(1983) [153], or Robinson (1983) [163], for instance.

Volatility. Among other problems, one may wish to estimate the volatility of
financial times series, v(x) = Var (Xt|Xt−1 = x). The question enters
into the regression framework with both Yi = Xi−1 and Yi = X2

i−1 since
v(x) = v2(x) − v2

1(x), where vj(x) = E(Xj
1 |X0 = x).

Density. Another important problem of econometric interest is to estimate
the marginal density f of a stationary sample. Density kernel estimators

247
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built by using a kernel function K are usually defined. Derivatives of the
density and regression functions can also be estimated by using analogous
procedures. Here we simply set Yi ≡ 1.

Quantiles. Conditional quantiles are linked to the conditional distribution
by the relation F (y | x) = P(X1 ≤ y|X0 = x). More precisely, we de-
note by q(t|x) = inf {y / F (y | x) > t} the generalized (right-continuous,
with left-limits) inverse of the monotone function y �→ F (y | x). Set
Yt(y) = 1{Xt+1≤y}. Consistent estimators of the conditional regression
E(Yt(y)|Xt = x) provides information on the previous conditional quan-
tiles.

Derivatives of a density. An estimator of the derivative f (ν) of f , where ν is a

vector (ν1, . . . , νd) in N
d and f (ν) =

∂ν1+···+νdf

∂xν11 . . . ∂xνd

d

.

The kernel estimator f̂ of f (see below for a precise statement) gives
another estimation f̂ (ν) of f (ν) as:

∂ν1+···+νd f̂

∂xν11 . . . ∂xνd

d

=
m1+ν1+···+νd

n

n∑

i=1

∂ν1+···+νdK

∂xν11 . . . ∂xνd

d

(
mδ(x−Xi)

)

11.2 Kernel regression estimates

We now consider a stationary process (Zt)t∈Z with Zt = (Xt, Yt) where Xt, Yt ∈
R. The quantity of interest is the regression function r(x) = E(Y0|X0 = x).
Let K be some kernel function integrated to 1, Lipschitz and with a compact
support. The kernel estimators are defined by

f̂(x) = f̂n,h(x) =
1
nh

n∑

t=1

K

(
x−Xt

h

)
,

ĝ(x) = ĝn,h(x) =
1
nh

n∑

t=1

YtK

(
x−Xt

h

)
,

r̂(x) = r̂n,h(x) =
ĝn,h(x)

f̂n,h(x)
, if f̂n,h(x) �= 0; r̂(x) = 0, otherwise.

Here h = (hn)n∈N is a sequence of positive real numbers. We always assume
that hn → 0, nhn → ∞ as n → ∞.

Definition 11.1. Let ρ = a+ b with (a, b) ∈ N×]0, 1]. Denote by Ca the set of
a-times continuously differentiable functions. The set of ρ-regular functions Cρ



11.2. KERNEL REGRESSION ESTIMATES 249

is defined as

Cρ =
{
u : R → R

/
u ∈ Ca and ∀K, ∃A ≥ 0,

|x|, |y| ≤ K ⇒ |u(a)(x) − u(a)(y)| ≤ A|x− y|b
}
.

Assuming g ∈ Cρ, one can choose a kernel function K of order ρ (which is not
necessarily nonnegative integer) such that the bias bh satisfies

bh(x) = E(ĝ(x)) − g(x) = O(hρ), uniformly on any compact subset of R,

see e.g. Rosenblatt (1991) [169]∗. If, moreover, ρ is an integer with b = 1,
ρ = a − 1, then with an appropriately chosen kernel K of order ρ, bh(x) ∼
hρ g(ρ)(x)

∫
sρK(s)ds/ρ!, uniformly on any compact interval. In view of the

asymptotic analysis we assume that the marginal density f(·) of X0 exists and
is continuous. Moreover, f(x) > 0 for any point x of interest and the regression
function r(·) = E(Y0|X0 = ·) exists and is continuous. Finally, for some p ≥ 1,
x �→ gp(x) = f(x)E(|Y0|p|X0 = x) exists and is continuous. We set g = fr with
obvious shorthand notation. Moreover, we impose one of the following moment
conditions:

E|Y0|S < ∞, for some S ≥ p, (11.2.1)

Eea|Y0| < ∞, for some a > 0. (11.2.2)

11.2.1 Second order and CLT results

We consider first the properties of ĝ(x). The following conditionally centered
equivalent of g2 appears in the asymptotic variance of the estimator r̂,

G2(x) = f(x)Var (Y0|X0 = x) = g2(x) − f(x)r2(x).

Assume that the densities of the pairs (X0, Xk), k ∈ Z
+, exist, and are uniformly

bounded: sup
k>0

‖f(k)‖∞ < ∞. Moreover, uniformly over all k ∈ Z
+, the functions

r(k)(x, x′) = E

(
|Y0Yk||X0 = x,Xk = x′

)
(11.2.3)

are continuous. Under these assumptions, the functions g(k) = f(k)r(k) are
locally bounded.

∗Such kernels can be constructed as K = pd for some known compactly supported (con-
tinuous) density d(·) and a polynomial p with d◦p < ρ. If d(x) �= 0 on some infinite set then
the system of equations

∫
tjK(t)dt = aj (0 ≤ j ≤ p) admits a unique solution for all choices

of aj ’s because the quadratic form p �→ ∫
p2(x)d(x) dx is positive definite.
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Theorem 11.1. Suppose that the stationary sequence (Zt)t∈Z satisfies the con-
ditions (11.2.1) with p = 2 and (11.2.3). Suppose that nδh → ∞ for some
δ ∈]0, 1[. Then

√
nh (ĝ(x) − Eĝ(x)) D−−−−→

n→∞ N
(

0, g2(x)
∫
K2(u)du

)

and setting g̃(x) = ĝ(x) − r(x)f̂ (x)

√
nh (g̃(x) − Eg̃(x)) D−−−−→

n→∞ N
(

0, G2(x)
∫
K2(u)du

)

under any of the weak dependence condition formulated below.

For clarity sake we do not precise the assumptions here but the result holds if
the decay of the sequence θ(n) = O(n−a) as n → ∞ for each a > 0 is faster
than any Riemanian decay. The same holds too for η(n), κ(n) or λ(n).
In order to consider asymptotics for the ratio estimator r̂ we use a method,
already used by Collomb (1984) [38], which consists of studying higher order
asymptotics. It is the topic of the next subsection.

Theorem 11.2. Suppose that the stationary sequence (Zt)t∈Z satisfies the con-
ditions (11.2.1) with p = 2 and (11.2.3). Consider a positive kernel K. Let
f, g ∈ Cρ for some ρ ∈]0, 2], and nh1+2ρ → 0. Then, if f(x) �= 0,

√
nh
(
r̂(x) − r(x)

) D−−−−→
n→∞ N

(
0,

G2(x)
f2(x)

∫
K2(u)du

)

under any of the weak dependence condition formulated below.

Assuming that the sequence (Zt)t∈Z is θ-weakly dependent with rate O(r−a)
and a > 3 , Ango Nze, Bühlmann and Doukhan (2002) [6] prove that, uniformly
in x belonging to any compact subset of R,

Var (ĝ(x)) =
1
nh

g2(x)
∫
K2(u) du + o

(
1
nh

)
,

and

Var
(
ĝ(x) − r(x)f̂ (x)

)
=

1
nh
G2(x)

∫
K2(u) du+ o

(
1
nh

)
.

The exponential moment assumption can be relaxed. Suppose that the sta-
tionary sequence (Zt)t∈Z satisfies conditions (11.2.1) and (11.2.3) with p = 2,
S > 2. Former results then hold if the sequence (Zt)t∈Z is weak dependent with
η(r) = O(r−a) and a > 3S − 4/(S − 2) + 2

δ /(S − 2), or λ(r) = O(r−a) and
a > 4S − 4/(S − 2) + 2

δ /(S − 2).
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The CLT convergence Theorem 11.1 holds, under the conditions (11.2.1) with
p = 2 and (11.2.3), if the stationary sequence (Zt)t∈Z is η or κ-weak dependent
with rate O(r−a) and

a > αj (δ) = min

(

max (2 + j, 3(2 + j)δ) ,max
(

2 + j +
1
δ
,
2 + 2(2 + j)δ

1 + δ

))

,

where j = 1 or j = 2 according respectively to η or λ dependence assumption.
These results extend Doukhan and Louhichi (2001) [68], valid for the case of the
density function f̂ , to the estimate ĝ under weak dependence. The first right
hand side term is obtained by Bernstein’s blocking technique. The second right
hand side term results from the application of the Lindeberg method (see Rio
(2000) [161]). The CLT convergence Theorem 11.2 relies on the expansion

u−1 =
p∑

i=0

(−1)i
(u− u0)

i

ui+1
0

+ (−1)p+1 (u− u0)
p+1

uup+1
0

, (11.2.4)

where p = 2, u = bn, u0 = Ebn = 1, and r̂(x) = an/bn (if bn �= 0) with

an =
n∑

i=1

YiK

(
x−Xi

hn

)/(
nEK

(
x−X0

hn

))
,

bn =
n∑

i=1

K

(
x−Xi

hn

)/(
nEK

(
x−X0

hn

))
.

Using the Rosenthal inequalities described in § 4.3 and the aforementioned CLT,
we obtain the CLT convergence Theorem 11.2 for the regression function, under
conditions (11.2.1) for p = 2 and (11.2.3), if the stationary sequence (Zt)t∈Z

is either η or κ-weakly dependent with rate O(r−a), with a > αj (δ) and a >

3 ∨ 9(2+j)
7−4δ (j = 1 under η and j = 2 under κ dependence).

The results stated in Theorem 11.1 and Theorem 11.2 also hold for finite dimen-
sional convergence. The components are asymptotically jointly independent,
much in the same way that for i.i.d. sequences.

A rapid sketch of the proof for theorem 11.1. We proceed as in Rio (2000) [161]
and more specifically as in Coulon-Prieur and Doukhan (2000) [40] for density
estimation in a causal case. The case of non causal coefficients is considered
with Bernstein blocks as in Doukhan and Louhichi (2001) [68].
Here for 0 ≤ t ≤ n we consider Lipschitz truncations at level M = M(n):

Tt(x) =
(
Yt 1|Yt|≤M +M(n)1Yt>M −M1Yt<−M

)
K

(
x−Xt

h

)
.

Then for a suitable constant σn, σn
∑n

i=1 Tt(x) approximates the expression√
nh
(
ĝ(x) − r(x)f̂ (x)

)
(after centering).
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Now a CLT may be proved for ξt = σn
√
nh (Tt(x) − ETt(x)). The second as-

sertion is a consequence of the first one, where Yt is replaced by Yt − r(x). See
Ango Nze et al., 2002, [6], Ango Nze & Doukhan, 2004, [7].

Remarks • A more easy and efficient way to get such results may obtained
by using lemma 7.1, see Bardet et al. (2006) [10] for density estimation and a
paper by Nicolas Ragache will clarify the regression estimation case.
• Finite repartitions distributions. Let Ĥ be an estimate of a function H (among
the previously cited). Then a central limit result for

Zn(x) =
√
nh(Ĥ(x) − EĤ(x)) → N (0, s2(x))

extends to a multivariate central limit theorem (Zn(x1), . . . , Zn(xk)) → Nk(0,Σ)
where Σ denotes the diagonal matrix with entries (s2(x1), . . . , s2(xk)). The pre-
vious process is not tight in C[0, 1] at points for which s2(x) �= 0.

11.2.2 Almost sure convergence properties

Theorem 11.3. Let (Zt)t∈Z be a stationary sequence satisfying the conditions
(11.2.1) with p = 2 and (11.2.3). Then under the forthcoming conditions,

(i) There exists a sequence (εn)n∈N with nh/ (εn log(n)) → ∞ as n → ∞ such
that for any M > 0,

sup
|x|≤M

|ĝ(x) − Eĝ(x)| = O
(√

εn log(n)
nh

)

, almost surely.

(ii) Assume now that inf |x|≤M f(x) > 0. If f, g ∈ Cρ for some ρ ∈]0,∞[,
h ∼ (εn log(n)/n)1/(1+2ρ), then

sup
|x|≤M

|r̂(x) − r(x)| = O
{(

εn log(n)
n

)ρ/(1+2ρ)
}

, almost surely.

Remark. Under conditions (ii) of Theorem 11.3, but assuming only the weaker
condition about the bandwidth sequence

nδh → ∞, for some δ ∈]0, 1[,

we obtain

sup
|x|≤M

|r̂(x) − r(x)| = o(1), almost surely.

For the sake of simplicity, we shall only consider the geometrically dependent
case and we defer a reader to Ango Nze, Bühlmann and Doukhan (2002) [6] for
Riemanian decays.
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Theorem 11.4. Let (Zt)t∈Z be a stationary sequence satisfying the conditions
(11.2.1) with p = 2 and (11.2.3), and either η or κ-weak dependent with geo-
metric decay rate.

(i) If nh/ log4(n) → ∞, then for any M > 0, almost surely,

sup
|x|≤M

|ĝ(x) − Eĝ(x)| = O
(

log2(n)√
nh

)
.

(ii) For any M > 0, if f, g ∈ Cρ for some ρ ∈]0,∞[, h ∼
(

log4(n)
n

)1/(1+2ρ)

and
inf |x|≤M f(x) > 0, then, almost surely,

sup
|x|≤M

|r̂(x) − r(x)| = O
{(

log4(n)
n

)ρ/(1+2ρ)
}

.

Proof of Theorem 11.3. We keep usual notations and denote by C a universal
constant (whose value can change from one place to another). Assume that
E(exp(a|Y0|)) < ∞. Then

P

(

sup
|x|≤M

|ĝ(x) − g̃(x)| > 0

)

≤ nP (|Y0| ≥ M0 log(n)) ≤ Cn1−M0 ,

and, by the Cauchy-Schwarz inequality,

sup
|x|≤M

E|ĝ(x) − g̃(x)| ≤ 1
h

E

[

|Y0|1{|Y0|≥M0 log(n)}|K
(
x−X0

h

)
|
]

≤ h1/3

h
n−M0 .

We can now reduce computations to the case of a density estimator, as in
Doukhan and Louhichi (2001) [68]. Assume that the interval [−M,M ] is covered
by Lν intervals with diameter 1/ν (here ν = ν(n) depends on n and we denote
by Ij the j-th interval and xj the center of the interval). Assume that the
relation hν → ∞ holds (for n → ∞). Assume that the compactly supported
kernel K vanishes if t > R0. Liebscher (1996) [121] exhibits another kernel-type
density estimate g̃′ based on an even, continuous, kernel, decreasing on [0,∞[,
constant on [0, 2R0], taking the value 0 at t = 3R0 (with compact support).
Then, he proves that

sup
x∈Ij

|g̃(x) − Eg̃(x)| ≤ |g̃(xj) − Eg̃(xj)| +
C

hν
(|g̃′(xj) − Eg̃′(xj)| + 2|Eg̃′(xj)|) .
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Therefore, for any λ > 0,

P

(

sup
x∈[−M,M ]

|ĝ(x) − Eĝ(x)| ≥ 2λ√
nh

+
1
h
h1/3n−M0 + C

log(n)
hν

)

≤ C′n1−M0 + Lν · sup
x1

P

(
|g̃(x1) − Eg̃(x1)| ≥

λ√
nh

)

+ Lν · sup
x1

P

(
|g̃′(x1) − Eg̃′(x1)| ≥

λ√
nh

)
.

The exponential inequality (4.3.31) completes the proof of assertion (i).
The proof of assertion (ii) is standard and we defer to [6] for a proof . �

11.3 MISE for β̃-dependent sequences

We now consider the problem of estimating the unknown marginal density f
from the observations (X1, . . . , Xn) of a stationary sequence (Xi)i≥0. In this
context, Viennet (1997) [185] obtained optimal results for the MISE under the
condition

∑
k>0 β(σ(X0), σ(Xk)) < ∞ for a β-mixing sequence Xn. We wish to

extend Viennet’s results to sequences satisfying only
∑

k>0

β̃(σ(X0), Xk) < ∞ . (11.3.1)

For kernel density estimators , this can be done by assuming only that the kernel
K is BV and Lebesgue integrable. For projection estimators, it works only if the
basis is well localized, because our variance inequality is less precise than that
of Viennet. Note that Condition (11.3.1) is much less restrictive than Viennet’s,
for it contains many non mixing examples. In particular, since f is supposed
to be square integrable with respect to the Lebesgue measure, the distribution
function F of X0 is 1/2-Hölder. Hence, we infer from lemma 5.1 point 3.i) that
(11.3.1) holds as soon as

∑
k>0(τ(σ(X0), Xk))1/3 < ∞. If f is bounded (11.3.1)

holds as soon as
∑
k>0(τ(σ(X0), Xk))1/2 < ∞.

Variance inequalities

We set β̃(i) = β̃(σ(X0), Xi). The main results of this section are the following
upper bounds (compare to Theorems 1.2 and 1.3(a) in Rio (2000) [161] for the
mixing coefficients α(σ(X0), σ(Xi))).

Proposition 11.1. Let K be any BV function such that
∫

|K(x)|dx is finite.
Let (Xi)i≥0 be a stationary sequence, and define

Yk,n = h−1K(h−1(x−Xk)) and fn(x) =
1
n

n∑

k=1

Yk,n . (11.3.2)
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The following inequality holds

nh

∫
Var (fn(x))dx ≤

∫
K2(x) dx+ 2

n−1∑

k=1

β̃(k) ‖dK‖
∫

|K(x)|dx .

We now come to the case of projection estimators defined with more details in
the next section:

Proposition 11.2. Let (ϕi)1≤i≤n be an orthonormal system of L
2(R, λ) (λ

is the Lebesgue measure) and assume that each ϕi is BV. Let (Xi)i≥0 be a
stationary sequence, and define

Yj,n =
1
n

n∑

k=1

ϕj(Xk) and fn =
m∑

j=1

Yj,nϕj . (11.3.3)

The following inequality holds

n

∫
Var (fn(x))dx ≤ sup

x∈R

{ m∑

j=1

ϕ2
j (x)

}
+ 2

n−1∑

k=1

β̃(k) sup
x∈R

{ m∑

j=1

‖dϕj‖ |ϕj(x)|
}
.

Remark 4. Since β̃(M, X) ≤ φ̃(M, X), Propositions 11.1 and 11.2 apply to
dynamical systems satisfying (3.3.1) with 2

∑n−1
i=1 ak instead of

∑n−1
i=1 β̃(k). For

kernel estimators this can be also deduced from a variance estimate given in
Prieur (2001) [154].

Proof of Proposition 11.1. We start from the elementary inequality

Var (fn(x)) ≤ 1
n
‖Y0,n‖2

2 +
2
n

n−1∑

i=1

|Cov(Y0,n, Yi,n)| .

Now h
∫

‖Y0,n‖2
2(x)dx =

∫
(K(x))2dx. To complete the proof, we apply Propo-

sition 5.3:

h

∫
|Cov(Y0,n, Yi,n)|(x)dx

≤ ‖dK‖E

(
b(σ(X0), Xi)

∫
|Y0,n(x)|dx

)
≤ β̃(i)‖dK‖

∫
|K(x)|dx . �

Proof of Proposition 11.2. Since (ϕi)1≤i≤n is an orthonormal system of L
2(R, λ)

we have that ∫
Var (fn(x))dx =

m∑

j=1

Var (Yj,n) .
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Applying Proposition 5.3, we obtain that

Var (Yj,n) ≤ 1
n
‖ϕj(X0)‖2

2 +
2
n

n−1∑

k=1

|Cov(ϕj(X0), ϕj(Xk))|

≤ 1
n
‖ϕj(X0)‖2

2 +
2
n

n−1∑

k=1

‖dϕj‖E(|ϕj(X0)|b(σ(X0), Xk)) .

To complete the proof we sum in j:

n

∫
Var (fn(x))dx ≤

m∑

j=1

Eϕ2
j (X0) + 2

n−1∑

k=1

E

(
b(σ(X0), Xk)

m∑

j=1

‖dϕj‖ |ϕj(X0)|
)
.

Some function spaces

In this section we recall the definition of the spaces Lip∗(s, 2, I), where I is
either R or some compact interval [a, b] (see DeVore and Lorentz (1993) [59],
Chapter 2). Let Irh = R if I = R and Irh = [a, b−rh] otherwise. For any h ≥ 0,
let Th be the translation operator Th(f, x) = f(x+ h) and Δh = Th−T0 be the
difference operator. By induction, define the operators Δr

h = Δh ◦ Δr−1
h . Let

λ be the Lebesgue measure on I and ‖.‖2,λ the usual norm on L
2(I, λ). The

modulus of smoothness of order r of a function f in L
2(I, λ) is defined by

ωr(f, t)2 = sup
0≤h≤t

‖Δr
h(f, ·)1Irh

‖2,λ,

For s > 0, Lip∗(s, 2, I) is the space of functions f in L
2(I, λ) such that

‖f‖s,2,I = ‖f‖2,λ + sup
t>0

ω[s]+1(f, t)2
ts

< ∞.

These spaces are Banach spaces with respect to the norm ‖.‖s,2,I . Recall
that Lip∗(s, 2, I) is a particular case of Besov spaces (precisely Lip∗(s, 2, I) =
Bs,2,∞(I)) and that it contains Sobolev spaces Ws(I) = Bs,2,2(I).

Application to Kernel estimators

If fn is defined by (11.3.2), set fh = E(fn). Let r be some positive integer, and
assume that the kernel K is such that: for any f belonging to the Sobolev space
Wr(R) we have ∫

(f(x) − fh(x))2dx ≤ M1h
2r‖f (r)‖2

2 , (11.3.4)
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for some constant M1 depending only on r. From (11.3.4) and Theorem 5.2 page
217 in DeVore and Lorentz (1993) [59], we infer that, for any f in L

2(R, λ),
∫

(f(x) − fh(x))2dx ≤ M2(wr(f, h)2)2 ,

for some constant M2 depending only on r. This last inequality implies that, if
f belongs to Lip∗(s, 2,R) for r − 1 ≤ s < r, then

∫
(f(x) − fh(x))2dx ≤ M2h

2s‖f‖2
s,2,R .

This evaluation of the bias together with Proposition 11.1 leads to the following
Corollary.

Corollary 11.1. Let r be some positive integer. Let (Xi)i≥1 be a stationary
sequence with common marginal density f belonging to Lip∗(s, 2,R) with r−1 ≤
s < r, or to Ws(R) with s = r. Let K be a BV function satisfying (11.3.4) and
such that

∫
|K(x)|dx is finite. Let fn be defined by (11.3.2) with h = n−1/(2s+1).

If (11.3.1) holds, then there exists a constant C such that

E

∫
(fn(x) − f(x))2 dx ≤ Cn−2s/(2s+1).

Here are two well known classes of kernel satisfying (11.3.4).

Example 1. One says that K is a kernel of order k, if

1.
∫
K(x)dx = 1,

∫
K2(x)dx < ∞ and

∫
|x|k+1|K(x)|dx < ∞ .

2.
∫
xjK(x)dx = 0 for 1 ≤ j ≤ k.

If K is a Kernel of order k, then it satisfies (11.3.4) for any r ≤ k + 1. For
instance, the naive kernel K = (1/2)1]−1,1] is BV and of order 1. Consequently
Corollary 11.1 applies to functions belonging to Lip∗(s, 2,R) for s < 2, or to
W2(R). A footnote on page 249 proves the existence of such kernels.

Example 2. Assume that the fourier transform K∗ of K satisfies |1−K∗(x)| ≤
M |x|r for some positive constant M . Then K satisfies (11.3.4) for this r. For
instance, K(x) = sin(x)/(πx) satisfies (11.3.4) for any positive integer r. Un-
fortunately, it is neither BV nor integrable. Another function satisfying (11.3.4)
for any positive integer r is the analogue of the de la Vallée-Poussin kernel
V (x) = (cos(x) − cos(2x))/πx2 . This function is BV and integrable, so that
Corollary 11.1 applies to any function belonging to Lip∗(s, 2, I) for s > 0.
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Application to unconditional systems.

Proposition 11.2 is of special interest for orthonormal systems (ϕi)i≥1 satisfying
the two conditions:

P1. There exists C1 independent of m such that max
1≤i≤m

‖dϕi‖ ≤ C1

√
m.

P2. There exists C2 independent of m such that sup
x∈R

m∑

j=1

|ϕj(x)| ≤ C2

√
m.

An orthonormal system satisfying P2 is called unconditional. For such systems,
we obtain from Proposition 11.2 that

n

∫
Var (fn(x))dx ≤ m

(
C2

2 + 2C1C2

n−1∑

k=1

β̃(k)
)
. (11.3.5)

Example 1 (piecewise polynomials). Let (Qi)1≤i≤r+1 be an orthonormal
basis of the space of polynomials of order r on [0, 1] and define the function Ri
on R by: Ri(x) = Qi(x) if x belongs to ]0, 1] and 0 otherwise. We consider
the regular partition of ]0, 1] into k intervals

(
](j − 1)/k, j/k]

)
1≤j≤k. Define

the functions Ri,j(x) =
√
kRi(kx − (j − 1)). Clearly the family (Ri,k)1≤i≤r+1

is an orthonormal basis of the space of polynomials of order r on the interval
[(j − 1)/k, j/k]. Let m = k(r + 1) and (ϕi)i≥1 be any family such that

{
ϕi
/

1 ≤ i ≤ m
}

=
{
Ri,j

/
1 ≤ j ≤ k, 1 ≤ i ≤ r + 1

}
. (11.3.6)

The orthonormal system (ϕi)i≥1 satisfies P1 and P2 with

C1 = (r + 1)−1/2 max
1≤i≤r+1

‖dRi‖ and C2 = (r + 1)−1/2 sup
x∈[0,1]

r+1∑

i=1

|Ri(x)|.

The case of histograms corresponds to r = 0. In that case ϕj =
√
k1](j−1)/k,j/k] .

Clearly C2 = 1 and ‖dϕj‖ = 2
√
k, so that C1 = 2.

Assume now that X0 has a density f such that f1[0,1] belongs to Lip∗(s, 2, [0, 1]).
Suppose that r > s− 1, and denote by f̄ the orthogonal projection of f on the
subspace generated by (ϕi)1≤1≤m. From Lemma 12 in Barron et al. (1999) [12]
we know that there exists a constant K depending only on s such that

∫ 1

0

(f(x) − f̄(x))2dx ≤ Km−2s. (11.3.7)

Since f̄ = E(fn), we obtain from (11.3.5) and (11.3.7) the following corollary.
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Corollary 11.2. Let (Xi)i≥1 be a stationary sequence with common marginal
density f such that f1[0,1] belongs to Lip∗(s, 2, [0, 1]). Let r be any nonnegative
integer such that r > s − 1 and k = [n1/(2s+1)]. Let (ϕi)1≤i≤m be defined by
(11.3.6) and fn be defined by (11.3.3). If (11.3.1) holds, then there exists a
constant C such that

E

∫ 1

0

(fn(x) − f(x))2dx ≤ Cn−2s/(2s+1) .

Example 2 (wavelet basis). Let {ej,k, j ≥ 0, k ∈ Z} be an orthonormal
wavelet basis with the following convention: e0,k are translate of the father
wavelet and for j ≥ 1, ej,k = 2j/2ψ(2jx−k), where ψ is the mother wavelet. As-
sume that these wavelets are compactly supported and have continuous deriva-
tives up to order r (if r = 0, the wavelets are supposed to be BV). Let g be some
function with support in [−A,A]. Changing the indexation of the basis if neces-
sary, we can write g =

∑
j≥0

∑2jM
k=1 aj,kej,k, where M ≥ 1 is some finite integer

depending on A and on the size of the wavelets supports. Let m =
∑J

j=0 2jM
and (ϕi)i≥1 be any family such that

{
ϕi
/

1 ≤ i ≤ m
}

=
{
ej,k
/

0 ≤ j ≤ J, 1 ≤ k ≤ 2jM
}
. (11.3.8)

The orthonormal system (ϕi)i≥1 satisfies P1 and P2.
Assume now that X0 has a density f belonging to Lip∗(s, 2,R) with compact
support in [−A,A]. Denote by f̄ the orthogonal projection of f on the subspace
generated by (ϕi)1≤i≤m. From Lemma 12 in Barron et al.(1999) [12] we know
that there exist a constant K depending only on s such that

∫ 1

0

(f(x) − f̄(x))2dx ≤ K2−2Js. (11.3.9)

Since f̄ = E(fn), we obtain the following corollary from (11.3.5) and (11.3.9).

Corollary 11.3. Let (Xi)i≥1 be a stationary sequence with common marginal
density f belonging to Lip∗(s, 2,R) and with compact support in [−A,A]. Let
r be any nonnegative integer such that r > s − 1 and J be such that J =
[log2(n

1/(2s+1))]. Let (ϕi)1≤i≤m be defined by (11.3.8) and fn be defined by
(11.3.3). If (11.3.1) holds, then there exists a constant C such that

E

∫
(fn(x) − f(x))2dx ≤ Cn−2s/(2s+1).

Remark 5. More generally, if
∑n

i=1 β̃(σ(X0), Xi) = O(na) for some a in [0, 1[,
we obtain the rate n−2s(1−a)/(2s+1) for the MISE in Corollaries 11.1, 11.2 and
11.3. Note that if (11.3.1) holds the rate n−2s/(2s+1) is known to be optimal for
i.i.d. observations.
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11.4 General Kernels

We are aimed to describe other (linear) estimation procedures obtained by re-
placement of the kernel Kn(x, y) = h−1

n K (y − x/hn) by another one.
As a meta-theorem we claim that theorems 11.1 and 11.3 remain valid if the
convolution kernels are replaced by any of the forthcoming one; moreover those
results extend to the estimation questions formulated in § 11.1; the needed
assumptions are still a fast enough Riemanian decay of the weak dependence
coefficient sequence. The more precise theorem 11.4 requires geometric decay
rates.
Even if we do not write definitive convergence results, we provide below all the
bounds needed to extend results in § 11.2 to other types of estimators.
Projections. Our discussion will be made of three steps: we consider suc-
cessively finite order polynomial functions (Tchebichev), infinite order kernels
(Dirichlet) and summation methods (Cesaro, developed in the case of De la
Vallée-Poussin and Fejer on the one hand and Abel-Poisson on the other hand
with Melher), and finally generating functions. For the sake of completeness
several classical results are here reminded and we are most of the time working
on R rather than R

d, the generalization being straightforward.
Orthogonal polynomials. Consider an interval I of R and a real Hilbert
space L

2(I, μ) with μ dominated by the Lebesgue measure. The Schmidt or-
thogonalization of the family of monomial functions {1, x, x2, . . . } according to
the scalar product of L

2(I, μ) leads to the Tchebichev polynomials Pj . Such
polynomials verify for all j, deg(Pj) = j. Denoting κn the highest coefficient of
Pn(x), orthogonality of the families implies, for constant Bn+2, a three terms
recurrence relation

Pn+2(x) =
(
κn+2

κn+1
x+Bn+2

)
Pn+1(x) − κn+2κn

κ2
n+1

Pn(x).

Examples. If I = (−1, 1) and μ(dt) = dt then this gives the Legendre polyno-
mials, if I = (−∞,∞) and μ(dt) = e−t

2
dt we obtain the Hermite polynomials

and if I = (0,∞) and μ(dt) = e−tdt this leads to Laguerre polynomials.
If f is in L

2(I, μ), a natural way to estimate f is by mean of projection on an
orthonormal polynomial basis through the estimation f̂n that naturally arises :

f̂n(x) =
1
n

n∑

i=1

m(n)∑

j=1

Pj(Xi)Pj(x)

The kernel we have to consider is thus given by

Km(n)(Xi, x) =
m(n)∑

j=1

Pj(Xi)Pj(x).
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Application to functional results with um(Xi, x) =
√
mKm(Xi, x) as usual.

Indeed, the Christoffel-Darboux formula (three terms recurrence relation: see
e.g. Szegö [182], p. 43), implies that the polynomial functions yield the kernel:

Km(x, y) =
κm
κm+1

Pm+1(x)Pm(y) − Pm(x)Pm+1(y)
x− y

where κm is the highest coefficient of Pm(x). One remarks that the division by
x−y does not change the polynomial character of Km because x = y is a root of
Km(x, y). Then Km(x, y) ∼∞ κmt

m. Thereby we can straightforwardly check
that

√
m‖Km(Xi, ·)‖∞ � m1/2 and that

∫ √
m|Km(Xi, t)|dt � m−1/2 on every

compact subdomain of I.
An example on L

2 ([−1, 1], dt) is given by Legendre polynomials also known by
the formula:

Lk(x) =
(−1)k

2nn!
dn

dxn
(1 − x2)n.

Dirichlet kernel. Consider now the family of trigonometric polynomials func-
tions {cos(nx), sin(nx)}n∈N. This family is well-known to be a dense subset of
the set of 2π-periodical continuous functions, denoted C� ([0, 2π], dt) by Weier-
strass density theorem. If we consider the projection Sn on the trigonometric
subspace

span
{
cos kx, sinnx

/
k ≤ n

}
= Tn

then the natural associated kernel is Dirichlet kernel:

Dm(x, y) =
m∑

k=−m
eik(x−y) = 1 + 2

m∑

k=1

cos k(x− y) =
sin (2m+1)

2 (x− y)
sin 1

2 (x − y)

The Dirichlet kernel is also of infinite order but is not positive. Thereby one
cannot use the previous monotone convergence argument.
Consider a function f in Cα,�([0, 2π]), the space of r times differentiable, 2π
periodical functions on [0, 2π]. A theorem of Jackson (cf. Doukhan and Sifre
[74] p. 217) asserts that

‖Rm(f)‖ = sup
x

∣
∣
∣
∣

∫
Dm(y − x)(f(y) − f(x))dy

∣
∣
∣
∣ = O(m−α logm)

This implies that the optimal bandwidth condition for Fourier approximation in
our case is not defined as a power of n. This furthermore implies that whenever
f is in Cα,�([0, 2π], R) we cannot use an optimal window to control the bias
and the covariance of the estimate. Then in that case we need to erase the
bias by taking a suboptimal window, i.e. a window whose order is such that
Rm(f) = o

(
n− 1

α

)
.

Summation methods. The purpose of summation methods is to transform
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natural kernel into non-negatives, more regular kernels, thereby turning over
the above problems. We first define summation methods by the way of a weight
sequence {am,j/m ∈ N, 0 ≤ j ≤ m}. Then for all j ≤ m: am,j →m→∞ 0, and∑m
j=1 am,j = 1. The weighed kernel is defined as a generalized Cesaro’s mean

Ka
m(x, y) =

m∑

j=0

am,jKj(x, y) =
m∑

j=0

am,j

j∑

i=0

Pi(x)Pi(y)

In the sequel we will omit the superscript a. The summations method when well
chosen lead to improving result on the bias. Consider now the main classical
examples. The de la Vallée-Pousin kernel is obtain by considering the means
of the Fourier truncated series:

Sm,n =
1

m− n
(Sn + · · · + Sm+1)

The kernel associated to this summation of projection is given by:

Dm,n(t) =
1

m− n

sin (m+n)t
2 sin (m−n)t

2

sin2 t
2

When m takes the value 0, the kernel specializes into the Fejer’s kernel Fm of
order m, wich is also the result of a Cesaro mean of the Dirichlet Kernel
Dm, setting in that case am,j = m−11{1≤j≤m},

F̃m(Xk, x) = mD2
m(Xk − x) = Fm(Xk − x) ∼ m−1

The Fejer kernel is nonnegative then for all f ∈ C1,�([0, 2π]) an equivalent of
the bias is easily found with a > 0

Rn,m(f)(x) =
1
n

∫

[0,2π]

n∑

i=1

m1/2Fm(y − x)f(y)dy − f(x)

= m1/2

∫

[0,2π]

Fm(u)f(x+ u)dy −
∫

[0,2π]

Fm(u)f(x)du

= m1/2

∫

[0,2π]

Fm(u) (f(x+ u) − f(x)) du

Now let t = mu and expand f to order one according to Taylor’s formula;
the positivity of the kernel implies Rn,m(f)(x) = O

(
m−3/2

)
, thus the optimal

bandwidth condition is m = O(n
1
6 ) and we may again adapt the CLT.

For f ∈ Cβ,�([0, 2π]) with β > 1 use Jackson kernel Jp,m = q−1
p,mD

2p
m−1 where

qp,m normalizes Jp,m.
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Generating function and Abel summation. Another way of adding regularity to
kernels is with analytic extension of the generating functions. Note that this
is close to the principles of Abel summations. e.g. the example of Hermite
polynomial functions leads to a kernel known as Melher kernel, see [182].
The Hermite polynomial functions Hn(x) are defined by:

Hk(x) =
1√

2kk!π1/2
(−1)k

dk

dνk
(e−ν

2
)(x)

The double generating function of this family is of the form:

Kt(Xi, x) =
∞∑

k=0

tkHk(Xi)Hk(x) =
1

√
π(1 − t2)

e
− 1

2(1−t2) ((X
2
k+x2)(t2+1)−4tXkx)

And admits an analytic continuation in t = 1. The Mehler kernel Mm(x) is
defined by setting t = 1 − 1/m(n) and studying the behavior when m(n) → ∞.
Then we once more have a result.
Wavelets basis. Another important class of projection estimates is given by
wavelets. Consider a wavelet basis derived from a scaling function φ(x). Then
the projection f̃ of order m of a density f over span{φm,k = md/2φ(mdx −
k) / k ∈ Z} is

f̃(x) =
∞∑

k=0

αm,kφm,k(x) where αm,k =
∫
f(t)φm,k(t)dt

Empirical coefficients are: α̂n,m,k = n−1
∑n
i=1 φm,k(Xi). Thus the projection

estimate f̂ writes as:

f̂n,m(x) =
∞∑

k=−∞
α̂n,m,kφm,k(x) = n−1

∞∑

k=−∞

n∑

i=1

φm,k(Xi)φm,k(x)

We define the wavelet kernel KM as

KM (Xi, x) =
∞∑

k=−∞
φM,k(Xi)φM,k(x)

The number of terms in the summation is finite for finite M whenever the func-
tion φ is assumed to have a compact support. This hypothesis is not necessary
and we only assume here that wavelets are regular enough (cf. Daubechies
(1988) [41]): ∃C > 0, ∃α > 1, ∀x ∈ R: |φ(x)| ≤ C/(1 + |x|)α. This yields a fast
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decay of the kernel:
∫

|φ(Mdx)|dx � M−d

(1 +Md|x|)α−1
= O(M−d+d(α−1)) = O(Md(α−2)),

∫
|KM (Xi, x)|dx ≤ O(M−dM−2dα)

= O(Md(1−2α)), a.s. if x �= 0, P(Xi = 0) = 0.

We now set m = M2d(2α−2). It is remarkable that for x = 0 (and only for this
point if we assume regularity conditions) one must set m = M2d(α−2) hence
the speed of convergence is lower. δ = 1/2d(1 − 2α) holds in our theorem. We
now note Km instead of KM . Then Km(x, y) = mdK(mx,my) for K(x, y) =∑∞
k=−∞ φ(y − k)φ(x − k) and bias writes,

Em(f)(x) =
∣∣
∣E(f̂n,m(x) − f(x))

∣∣
∣

≤
∣
∣
∣
∣

∫
Km(y, x)f(y)dy − f(x)

∣
∣
∣
∣

=
∣∣
∣
∣

∫
mdK(mdy,mdx)(f(y) − f(x))dy

∣∣
∣
∣

=
∣
∣
∣
∣

∫
mdK(mdx+ t,mdx)

(
f

(
x+

t

m

)
− f(x)

)
dt

∣
∣
∣
∣

Let now the kernel K have regularity r i.e.
∫
K(u, u− t)tvdt = 0 if 0 < v < r

and
∫
K(u, u− t)trdt �= 0. If now f ∈ Cr([a, b],R), then by the Taylor formula,

f

(
x+

t

m

)
=

n−1∑

j=0

tj

mjj!
f (j)(x) +

∫ x+t/m

x

ur−1

mr−1(r − 1)!
f (r)du, we obtain

Em(f)(x) =
1

mr−1(r − 1)!

∫
K

(
x, x+

t

m

)∫ x+t/m

x

ur−1f (r−1)(u)dudt

If f (r−1) is bounded, the second integral is O((t/m)r) as Em(f)(x).

Remarks. • Em(f)(x) ∼ h(mx)m−r where h is a bounded function when
m goes to infinity. The precise characteristics of h depends on the wavelet
considered. h in general is a pseudo-periodic function.
• Now consider the quadratic deviation. By positivity of the summed functions,
the second moment Vm(f)(x) answers

Vm(f)(x) = m2d

∫
K2(mdx+ t,mdx)

(
f

(
x+

t

m

)
− f(x)

)
dt

∼ m

∫
K2(u, u+ t)dt.



Chapter 12

Spectral estimation

Parametric estimation from a sample of a stationary time series is an important
statistic problem both for theoretical research and for its practical applications
to real data. Whittle’s approximate likelihood estimate is particularly attractive
for numerous models like ARMA, linear processes, etc. mainly for two reasons:
first, Whittle’s contrast does not depend on the marginal law of the time series
but only on its spectral density, and second, its computation time is smaller
than other parametric estimation methods such as exact likelihood. Numerous
papers have been written on this estimation method after Whittle’s seminal pa-
per and in particular Hannan (1973) [102], Rosenblatt (1985) [167] and Giraitis
and Robinson (2001) [94] established the asymptotic normality respectively for
Gaussian, causal linear, strong mixing processes as well as for ARCH(∞) pro-
cesses.
This chapter is organized as follows. A first section details the expression of
the spectral densities of some standard models. A second section addresses the
asymptotic behavior of the empirical periodogram. This is a non consistent
estimator of the spectral density but it yields a consistent parametric procedure
called Whittle estimation. A last section is aimed to derive the properties of a
bandwidth estimate of the spectral density. This estimate is obtained by con-
voluting the periodogram with an approximate Dirac measure. Its second order
properties are easily derived through a simple diagram formula but higher order
asymptotic needed to conclude to a.s. convergence properties need a dependence
tool introduced in § 12.3.2.

12.1 Spectral densities

The following models are already described and their weak dependence prop-
erties are checked in chapter 3. Nevertheless, this is an important feature to

265
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provide precise expressions of their spectral properties.

Non-causal (two-sided) linear processes. Let X be a zero mean station-
ary non causal (two-sided) linear time series satisfying:

Xk =
∞∑

j=−∞
ajξk−j for k ∈ Z, (12.1.1)

with (ak)k∈Z ∈ R
Z and (ξk)k∈Z a sequence of zero mean i.i.d. random variables

such that E(ξ20) = σ2 < ∞ and E(|ξ0|2) < ∞. We set ãk = a−k and ã = (ãk)k∈Z.
Therefore the spectral density of X exists and satisfies:

f(λ) =
σ2

2π

∣
∣
∣
∣∣

∞∑

k=−∞
ake

−ikλ
∣
∣
∣
∣∣

2

=
σ2

2π

∞∑

k=−∞

⎛

⎝
∞∑

j=−∞
ak−jaje−ikλ

⎞

⎠

=
σ2

2π

∞∑

k=−∞
(a ∗ ã)ke−ikλ. (12.1.2)

There exist very few explicit results in the case of two-sided linear processes.

Causal GARCH and ARCH(∞) processes. The famous and from now
on classical GARCH(q′, q) model, introduced by Engle (1982) [84] and Bollerslev
(1986) [23], is given by relations

Xk = ρkξk with ρ2
k = a0 +

q∑

j=1

ajX
2
k−j +

q′∑

j=1

cjρ
2
k−j , (12.1.3)

where (q′, q) ∈ N
2, a0 > 0, aj ≥ 0 and cj ≥ 0 for j ∈ N and (ξk)k∈Z are

i.i.d. random variables with zero mean (for an excellent survey about ARCH
modelling, see Giraitis et al. (2005) [93]). Under some additional conditions,
the GARCH model can be written as a particular case of ARCH(∞) model,
introduced in Robinson (1991) [165], that satisfies

Xk = ρkξk with ρ2
k = b0 +

∞∑

j=1

bjX
2
k−j , (12.1.4)

with a sequence (bj)j depending on the family (aj) and (cj). Different sufficient
conditions can be given for obtaining a m-order stationary solution to (12.1.3)
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or (12.1.4). Notice that for both models (12.1.3) or (12.1.4), the spectral density
is a constant. As a consequence, the periodogram is that of the squared pro-
cesses; in the GARCH case (see Bollerslev (1986) [23]) is based on the ARMA
representation satisfied by (X2

k)k∈Z. Indeed, if (Xk) is a solution of (12.1.3)
or (12.1.4), then (X2

k) can be written as a solution of a particular case of the
bilinear equation (see § 3.4.2):

X2
k = εk

(
γb0 + γ

∞∑

j=1

bjX
2
k−j
)

+ λ1b0 + λ1

∞∑

j=1

bjX
2
k−j for k ∈ Z,

with εk = (ξ2k−λ1)/γ for k ∈ Z, λ1 = Eξ20 and γ2 = Var (ξ20). Moreover, the time

series (Yk)k∈Z defined by Yk = X2
k − λ1b0

(
1 − λ1

∞∑

j=1

bj
)−1 for k ∈ Z, satisfies

the bilinear equation with parameter c0 = 0. Hence, a sufficient condition for
the stationarity of (X2

k)k∈Z with ‖X2
0‖m < ∞ is

(‖ε0‖m + 1) ·
∞∑

j=1

|bj | < 1 ⇐⇒
(‖ξ20 − λ1‖m

γ
+ 1
)

·
∞∑

j=1

|bj | < 1.

Set σ2 = E(X2
0 − ρ2

0), the spectral density of (X2
k)k∈Z is

f(λ) =
σ2

2π

∣
∣
∣1 −

∞∑

j=1

bj · eijλ
∣
∣
∣
−2

.

The method developed in Giraitis and Robinson (2001) [94] for establishing
the central limit theorem satisfied by the periodogram is essentially ad hoc and
can not be used for non causal or non linear time series. The recent book of
Straumann (2005) [181] also provides an up-to-date and complete overview to
this question. Chapter 8 of this book is devoted to the results in Mikosch and
Straumann (2002) [131] that studied the case of intermediate moment conditions
of order > 4 and < 8 for the special case of GARCH(1,1) processes.

Causal Bilinear processes. Now, assume that X = (Xk)k∈Z is a bilinear
process (see the seminal paper of Giraitis and Surgailis (2002) [95]) satisfying
the equation

Xk = ξk

(
a0 +

∞∑

j=1

ajXk−j
)

+ c0 +
∞∑

j=1

cjXk−j for k ∈ Z, (12.1.5)

where (ξk)k∈Z are i.i.d. random variables with zero mean and such that ‖ξ0‖p <
∞ with p ≥ 1, and aj , cj , j ∈ N are real coefficients. Assume c0 = 0 and define
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the generating functions

A(z) =
∑∞

j=1 ajz
j C(z) =

∑∞
j=1 cjz

j

G(z) = (1 − C(z))−1 =
∑∞
j=0 gjz

j H(z) = A(z)G(z) =
∑∞
j=1 hjz

j.

If ‖ξ0‖p
∑∞

j=1 |hj | < ∞, for instance when ‖ξ0‖p ·
(∑∞

j=1 |aj | +
∑∞
j=1 |cj |

)
< 1,

there exists a unique zero mean stationary and ergodic solution X in L
p(Ω,A,P)

of equation (12.1.5). For p ≥ 2, the covariogram of X is

R(k) = a2
0‖ξ0‖2

(
1 −

∞∑

j=1

h2
j

)−1 ∞∑

j=0

gj gj+k

and
∑

k |R(k)| < ∞. The spectral density of X exists and satisfies:

f(λ) =
a2
0σ

2

2π
(
1 −
∑∞
j=1 h

2
j

)
∞∑

k=−∞

∞∑

j=0

gjgj+k e
−ikλ,

with σ2 = ‖ξ0‖2
2.

Non-causal (two-sided) bilinear and LARCH(∞) processes. The bi-
linear process X = (Xk)k∈Z satisfies the equation

Xk = ξk

(
a0 +

∑

j∈Z∗
ajXk−j

)
, for k ∈ Z, (12.1.6)

where (ξk)k∈Z are i.i.d. random bounded variables and (ak)k∈Z is a sequence of
real numbers such that λ = ‖ξ0‖∞ ·

∑
j 	=0 |aj | < 1. Then the spectral density of

X exists and is defined by

f(λ) =
σ2

2π

∣
∣
∣∣
∣
∣
1 −

∞∑

j=1

bje
ijλ

∣
∣
∣∣
∣
∣

−2

.

In the previous expression, the coefficients bj are not written explicitly as func-
tions of the initial parameters (ai)i∈Z and a. By the same way as in the causal
case, assume now that Y = (Yk)k∈Z satisfies the relation

Yk = ξk

√
a0 +

∑

j 	=0

ajY 2
k−j , for k ∈ Z, (12.1.7)

with the same assumptions on (ξk)k∈Z and (ak)k∈Z. Then, the time series
(Y 2
k )k∈Z satisfies the relation (12.1.6) and is a stationary process. Then, Y is a

stationary process, so-called a two-sided LARCH(∞) process.
The condition on the sequence (ξk)k∈Z, i.e. i.i.d. random bounded variables,
is restricting. However, if it is only a sufficient condition for the existence of a
non causal LARCH(∞) process; it seems to be very close to be also a necessary
condition, see Doukhan and Wintenberger (2005) [77].
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Non-causal linear processes with dependent innovations. Let X be a
zero mean stationary non causal (two-sided) linear time series satisfying eqn.
(12.1.1) with now a dependent and centered stationary innovation process:

Eξ0 = 0, Eξ20 = σ2.

Then denoting by fξ the spectral of the process (ξt) we have fξ(0) = σ2/(2π),
moreover the spectral density of X exists and satisfies:

f(λ) =

∣
∣∣
∣
∣

∞∑

k=−∞
ake

−ikλ
∣
∣∣
∣
∣

2

fξ(λ)

= fξ(λ)
∞∑

k=−∞
(a ∗ ã)ke−ikλ. (12.1.8)

Examples of interest are orthogonal series like mean zero LARCH(∞) processes.
In this case no additional information about ξ may be obtained from the ex-
pression of this spectral density.
Another important case is thus that of a process ξ with a non constant spectral
density; we previously recalled the precise expression of this spectral density for
the case of Bilinear processes introduced by Giraitis and Surgailis (2002) [95].

12.2 Periodogram

Let X = (Xk)k∈Z be a zero mean fourth-order stationary time series with real
values. Denote (R(i))i the covariogram of X , and (κ4(i, j, k))i,j,k the fourth
cumulants of X :

R(i) = Cov(X0, Xi) = E (X0Xi),
κ4(i, j, k) = EX0XiXjXk − EX0XiEXjXk

−EX0XjEXiXk − EX0XkEXiXj ,

for (i, j, k) ∈ Z
3.

We will use the following assumption on X :
Assumption M. X is such that:

γ =
∑

�∈Z

R(�)2 < ∞ and κ4 =
∑

i,j,k∈Z

|κ4(i, j, k)| < ∞. (12.2.1)

This assumption is closely linked to weak dependence in the comments following
definition 4.1 and by using the notation (4.4.9) with lemma 4.11 and propositions
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2.1 and 2.2.
Assumption M ensures the existence of X ’s spectral density f ∈ L

2([−π, π[):

f(λ) =
1
2π

∑

k∈Z

R(k) eikλ for λ ∈ [−π, π[.

The periodogram of X is defined as:

In(λ) =
1

2πn

∣
∣
∣
∣∣

n∑

k=1

Xke
−ikλ

∣
∣
∣
∣∣

2

, for λ ∈ [−π, π[.

We now rewrite

In(λ) =
1
2π

∑

|k|<n
R̂n(k)e−ikλ

R̂n(k) =
1
n

(n−k)∧n∑

j=1∨(1−k)
XjXj+k

Here R̂n(k) is a biased estimate of R(k).
Thus, the periodogram In(λ) is a natural estimator of the spectral density;
unfortunately it is not a consistent estimator, as its variance does not tend to
zero as n tends to infinity. However, once integrated with respect to some L

2

function, its behavior becomes quite smoother and can provide an estimation of
the spectral density. Now, let g : [−π, π[→ R a 2π-periodic function such that
g ∈ L

2([−π, π[) and define:

Jn(g) =
∫ π

−π
g(λ)In(λ) dλ, the integrated periodogram of X

and J(g) =
∫ π

−π
g(λ)f(λ) dλ.

Theorem 12.1 (SLLN). Let c > 0. Assume that the function g(λ)=
∑

�∈Z
g�e

i�λ

satisfies
∑

�∈Z
(1 + |�|)sg2

� ≤ c for some s > 1. If X satisfies Assumption M,
then uniformly with respect to such functions g,

Jn(g) → J(g) a.s.

This theorem will be proved after two lemmas of independent interest.

Lemma 12.1. If X satisfies Assumption M, then:

nmax
�≥0

(
Var
(
R̂n(�)

))
≤ κ4 + 2γ.
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Proof of Lemma 12.1. To prove this result, we denote Yj,� = XjXj+� − R(�),
use the identity

Cov(Y0,�, Yj,�) = κ4(�, j, j + �) +R(j)2 +R(j + �)R(j − �)

and deduce from the stationarity of (Yj,�)j∈Z when � is a fixed integer:

nVar
(
R̂n(�)

)
≤ 1

n

(n−�)∧n∑

j=1∨(1−�)

(n−�)∧n∑

j′=1∨(1−�)
|Cov(Yj,�, Yj′,�)|

≤
∑

j∈Z

|Cov(Y0,�, Yj,�)|

≤
∑

j∈Z

(
|κ4(�, j, j + �)| + 2R(j)2

)

≤ κ4 + 2γ,

by using Cauchy-Schwarz inequality for �2-sequences. �
Lemma 12.2. Denote cs =

∑
�∈Z

(1 + |�|)−s. If X satisfies assumption of The-
orem 12.1, then:

E|Jn(g) − J(g)|2 ≤ 3c
n

(
γ + cs(κ4 + 2γ)

)
.

Proof of Lemma 12.2. As in Doukhan and León (1989) [66], we use the decom-
position:

Jn(g) − J(g) = −T1(g) − T2(g) + T3(g) with

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

T1(g) =
∑

|�|≥n
R(�) g�,

T2(g) =
1
n

∑

|�|<n
|�|R(�) g�,

T3(g) =
∑

|�|<n
(R̂n(�)−ER̂n(�))g�

(12.2.2)

Remark that T3(g) = Jn(g) − EJn(g). Thus, we obtain the inequality:

E|Jn(g) − J(g)|2 ≤ 3(|T1(g)|2 + |T2(g)|2 + E|T3(g)|2).

Cauchy-Schwarz inequality yields:

|T1(g)|2 ≤ c
∑

|�|≥n
(1 + |�|)−sR(�)2 ≤ c

n

∑

|�|≥n
R(�)2,

|T2(g)|2 ≤ c

n2

∑

|�|<n
|�|2(1 + |�|)−sR(�)2 ≤ c

n

∑

|�|<n
R(�)2.
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Hence, |T1(g)|2 + |T2(g)|2 ≤ γ

n
. Lemma 12.1 entails

|T3(g)|2 ≤ c
∑

|�|<n
(1 + |�|)−s(R̂n(�) − ER̂n(�))2,

E|T3(g)|2 ≤ c
∑

|�|<n
(1 + |�|)−sVar (R̂n(�))

≤ 1
n

∑

|�|<n
(1 + |�|)−s(κ4 + 2γ)

≤ c cs · κ4 + 2γ
n

,

We combine those results to deduce Lemma 12.2. �
Proof of Theorem 12.1. We derive the strong law of large numbers from a weak
L

2-LLN and from Lemma 12.2. The proof follows the scheme of the proof of the
standard strong LLN. Set t > 0. First, we know that for all random variables
X and Y , we have P (|X + Y | ≥ 2t) ≤ P (|X | ≥ t) + P (|Y | ≥ t). Thus:

P

(
max

k2≤n<(k+1)2
|Jn(g) − J(g)| ≥ 2t

)
≤ P(|Jk2 (g) − J(g)| ≥ t)

+ P

(
max

k2≤n<(k+1)2
|Jn(g) − Jk2(g)| ≥ t

)

and

P

(
max
n≥N

|Jn(g) − J(g)| ≥ 2t
)

≤
∞∑

k=[
√
N ]

P(|Jk2 (g) − J(g)| ≥ t)

+
∞∑

k=[
√
N ]

P

(
max

k2≤n<(k+1)2
|Jn(g) − Jk2(g)| ≥ t

)

≤ AN + BN . (12.2.3)

From Bienaymé-Tchebychev (or Markov) inequality, Lemma 12.2 implies:

AN ≤ C1

t2
·
∑

k≥√
N

1
k2
, (12.2.4)

with C1 ∈ R+. Now set R̃n(�) = R̂n(�) − ER̂n(�). The fluctuation term BN
is more involved and its bound is based on the same type of decomposition as
(12.2.2), because for k2 < n:

Jn(g) − Jk2(g) = −T ′
1(g) + T ′

2(g) − T ′
3(g),
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with now,

T ′
1(g) =

∑

k2≤|�|<n
R(�) g�,

T ′
2(g) =

1
n

∑

k2≤|�|<n
|�|R(�) g�,

and T ′
3(g) =

∑

|�|<k2

R̃k2(�) g� −
∑

|�|<n
R̃n(�) g�.

As previously,
|T ′

1(g)|2 + |T ′
2(g)|2 ≤ c · γ

k2
.

Set Lk = max
k2≤n<(k+1)2

|Jn(g) − Jk2 (g)| and T ∗
k (g) = max

k2≤n<(k+1)2
|T ′

3(g)|, then,

BN ≤
∑

k≥√
N

bk, with bk = P (Lk ≥ t) ≤ E(L2
k)

t2
.

Now

E(L2
k) ≤ 3(|T ′

1(g)|2 + |T ′
2(g)|2 + E|T ∗

k (g)|2) ≤ 3cγ
k2

+ 3E|T ∗
k (g)|2.

Then, for k2 ≤ n < (k + 1)2 and � ∈ Z,

R̃n(�) =
k2

n
R̃k2 (�) + Δ�,n,k

Δ�,n,k =
1
n

n∧(n−�)∑

h=(k2∧(k2−�))+1

Yh,�.

Remark that R̃k2 (�) = 0 if k2 ≤ |�| ≤ n and thus R̃n(�) = Δ�,n,k in such a case.
Also note that

Δ∗
�,k = max

k2≤n<(k+1)2
|Δ�,n,k| ≤

1
k2

(k2+2k)∧((k2+2k)−�)∑

h=(k2∧(k2−�))+1

|Yh,�|,

and thus,

E(Δ∗
�,k)

2 ≤ 1
k4

(2k)2 max
(h,�)∈Z2

(
E(|Yh,�|2)

)

≤ 4
k2

E(|X0|4).
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Write

T ′
3(g) =

∑

|�|<k2

R̃k2(�)
(

1 − k2

n

)
g� −

∑

|�|<n
Δ�,n,k g�

|T ∗
k (g)| ≤ 2

k

∑

|�|<k2

|R̃k2 (�) g�| +
∑

|�|<(k+1)2

Δ∗
�,k |g�|,

and we thus deduce for a constant C1 > 0,

E|T ∗
k (g)|2 ≤ 2C1

(
4
k2

sup
�∈Z

(
Var (R̂k2 (�))

)
+ sup

�∈Z

(
E(Δ∗

�,k)
2
)
)

≤ C1cA

k2

for a constant A > 0 depending on E|X0|4, κ4, and γ only.
Hence bk ≤ 3(γ +AC1)/(k2t2) is a summable series and, with C2 > 0,

BN ≤ C2

t2
·
∑

k≥√
N

1
k2
. (12.2.5)

Then, (12.2.3), (12.2.4) and (12.2.5) imply sup
n≥N

|Jn(g) − J(g)| → 0 in probabil-

ity, so that Jn(g) → J(g) a.s. �
Two frames of weak dependence are considered here, the θ-weak dependence
property and the non causal η-weak dependence.

12.2.1 Whittle estimation

The previous examples are essentially explicit representations of the spectral
density of some commonly used times series. In the case when the coefficients
are functions of an unknown finite dimensional parameter β, a way to estimate
this parameter is to use the contrast J(g−1

β ) where f(λ) = σ2gβ(λ) denotes
the spectral density of the model according to the value β of the parameter
and moreover gβ(0) = 1. We thus exhibit two parameters, σ2 and β. Let
(X1, . . . , Xn) be a sample from X . Define the Whittle maximum likelihood
estimators of β∗ and σ∗2, that are

β̂n = Argminβ∈K
{
Jn(g−1

β )
}

= Argminβ∈K

{∫ π

−π

In(λ)
gβ(λ)

dλ

}
and

σ̂2
n =

1
2π
Jn(g−1

β̂n
).

In Bardet, Doukhan and León (2005) [11] it is shown that strong consistency
of the estimators β̂n and σ̂2

n may be proved by using extensions of the previous
tools. First a SLLN can be deduced of the one of the previous section and
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secondly the CLT is derived by using the previous representation of the peri-
odogram and the results in § 7.1. To our knowledge, the known results about
asymptotic behavior of Whittle parametric estimation for non-Gaussian linear
processes are essentially devoted to one-sided (causal) linear processes (see for
instance, Hannan (1973) [102], Hall and Heyde (1980) [100], Rosenblatt (1985)
[168], Brockwell and Davis (1988) [28]). There exist very few results in the case
of two-sided linear processes. In Rosenblatt ((1985), p. 52 [168]) a condition for
strong mixing property for two-sided linear processes was given, but some re-
strictive conditions on the process were also required for obtaining a central limit
theorem for Whittle estimators: the distribution of random variables ξk has to
be absolutely continuous with respect to the Lebesgue measure with a bounded
variation density, m > 4 + 2δ with δ > 0 and a central limit theorem obtained
with a tapered periodogram (under assumption also

∑∞
m=1 α4,∞(m)δ/(2+δ) < ∞

where α4,∞(m) ≥ αm denote a strong mixing coefficient defined now with four
points in the future instead of 2 for α′

m). The case of strongly dependent two-
sided linear processes was also treated by Giraitis and Surgailis (1990) [95] or
Horvath and Shao (1999) [108].
In the case of causal linear processes, it is well known that:

√
n(β̂n − β∗) → Np

(
0 , 2π(W ∗)−1

)
,

σ̂2
n is a consistent estimate of σ4 and therefore

√
n(σ̂2

n − σ∗) → N
(
0 , σ∗4γ4

)
,

with γ4 the fourth cumulant of the (ξk)k∈Z, and
√
n(β̂n − β∗) and

√
n(σ̂2

n − σ∗)
are asymptotically normal and independent.

12.3 Spectral density estimation

In this section, X = (Xn)n∈Z denotes a vector valued stationary sequence (with
values in R

D). The spectral matrix density of X writes

fX(λ) =
∑

t∈Z

Cov(X0, Xt)eitλ
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here, Rt = Cov(X0, Xt) = EXT
0 Xt − EXT

0 EXt is a D ×D−matrix.
This D ×D−matrix valued function is estimated by

f̂X(λ) = Fm � In(λ) ≡
∫ π

−π
Fm(μ)In(λ− μ)

dμ

2π
(12.3.1)

=
1
n

n∑

k,l=1

(
1 − |k − l|

m

)+

XT
k Xle

i(k−l)λ (12.3.2)

=
1
2π

∑

|s|≤m

(
1 − |s|

m

)
R̂n(s)e−isλ, (12.3.3)

R̂n(s) =
1
n

(n−s)∧n∑

j=1∨(1−s)
XT
j Xj+s (12.3.4)

where Fm(λ) =
∑

|s|<m
(
1 − |s|

m

)
eisλ = 1

n

(
sin(m+ 1

2 )λ

sin λ
2

)2

is the Féjer Kernel and
the matrix periodogram is defined as

In(λ) =
1
n

n∑

k,l=1

XT
k Xle

i(l−k)λ

if the sequence Xt is centered at expectation.
Note that in equation (12.3.4), the summation contains n− |s| terms hence this
estimate of Rs is biased.
The following relation links the spectral density to the limit variance Σ in the
CLT for X = (Xn)n∈Z

fX(0) =
∑

s∈Z

Cov(X0, Xs).

Assume
∑

s |s|ρ‖Rs‖ < ∞ where ‖ · ‖ is any matrix norm, then

bias(λ) = f̂X(λ) − fX(λ)

‖bias(λ)‖ =

∥
∥
∥
∥∥
∥

∑

|s|<m

(
1 − |s|

m

)((
1 − |s|

n

)
− 1
)
Rse

isλ −
∑

|s|≥m
Rse

isλ

∥
∥
∥
∥∥
∥

≤ 1
n

∑

s

|s|‖Rs‖ +
1
mρ

∑

s

|s|ρ‖Rs‖

= O
(

1
n

+
1
mρ

)
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12.3.1 Second order estimate

First recall the 4-th order cumulant of a centered random vector (x, y, z, t) ∈ R
4D

writes, for 1 ≤ a, b, c, d ≤ D,

κ
(a,b,c,d)
4 (x, y, z, t) = Ex(a)y(b)z(c)t(d)

− Ex(a)y(b)
Ez(c)t(d)

− Ex(a)z(c)
Ey(b)t(d)

− Ex(a)t(d)Ey(b)z(c)

Ex(a)y(b)z(c)t(d) − Ex(a)y(b)
Ez(c)t(d) = κ

(a,b,c,d)
4 (x, y, z, t)

− Ex(a)z(c)
Ey(b)t(d)

− Ex(a)t(d)Ey(b)z(c).

Set now

κ(a,b,c,d)(i, j, k) = κ4(X
(a)
0 , X

(b)
i , X

(c)
j , X

(d)
k ), r(a,b)(i) = EX

(a)
0 X

(b)
i . (12.3.5)

Assume that for 1 ≤ a, b, c, d ≤ D,

∑

j∈Z

|j|ρ
∣
∣
∣r(a,b)(j)

∣
∣
∣ = r(a,b)ρ < ∞, (12.3.6)

∑

i,j,k∈Z

∣
∣
∣κ(a,b,c,d)(i, j, k)

∣
∣
∣ = κ(a,b,c,d) < ∞. (12.3.7)

Then we may rewrite

f̂(λ) − Ef̂(λ) =
n∑

k=1

Zk,n(λ), (12.3.8)

Zk,n(λ) =
∑

|s|<m
δn,k,s(λ)Yk,s, with (12.3.9)

Yk,s = XT
k Xk+s −R(s) (12.3.10)

δn,k,s(λ) =
(

1 − |s|
m

)
e−isλ 1{1≤k+s≤n} (12.3.11)
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hence setting f̂(λ) =
(
f̂ (a,b)(λ)

)
1≤a,b≤D, each coordinate writes for 1 ≤ a, b, c, d ≤

D as:
(
Var f̂(λ)

)(a,b,c,d)

= Cov
(
f̂ (a,b)(λ), f̂ (c,d)(λ)

)

=
1
n

n∑

|j|<n

(
1 − |j|

n

)
C

(a,b,c,d)
j,n (λ),

C
(a,b,c,d)
j,n (λ) =

∑

|s|<m

∑

|t|<m
δn,0,s(λ)δn,j,t(λ)

(
1 − |s|

m

)(
1 − |t|

m

)

×
(

EX
(a)
0 X(b)

s X
(c)
j X

(d)
j+t − EX

(a)
0 X(b)

s EX
(c)
j X

(d)
j+t

)

Denote by ⊗ the tensor product of two D ×D matrices:

(ua,b)1≤c,d≤D ⊗ (ua,b)1≤a,b≤D = (ua,buc,d)1≤a,b,c,d≤D.

If the set of such tensors, α = (αa,b,c,d)1≤i,j,k,l≤D , is equipped with a norm
derived from the matrix norm

‖(ua,b)1≤a,b≤D‖ = max
1≤a,b≤D

|ua,b|, (12.3.12)

then

‖|α|‖ = max
1≤a,b≤D

∑

1≤c,d≤D
|αa,b,c,d| ≤ D2 max

1≤a,b,c,d≤D
|αa,b,c,d|. (12.3.13)

The variance of this estimate is a 4−th order tensor which writes (using notation
(12.3.13))

∣
∣
∣
∣
(
Var f̂(λ)

)(a,b,c,d)
∣
∣
∣
∣ ≤ 1

n

∑

|j|<n

∑

|s|,|t|<m
|κ(a,b,c,d)(s, j, j + t)|

+
1
n

∑

|j|<n

∑

|s|,|t|<m
|r(a,c)(j)||r(b,d)(j + t− s)|

+
1
n

∑

|j|<n

∑

|s|,|t|<m
|r(a,d)(j + t)||r(b,c)(j − s)|,

Assumptions (12.3.7) implies that 2m+1
n κ(a,b,c,d) bounds the first sum and after

an interversion of summations w.r.t. t and s, assumption (12.3.6), both other
terms are bounded above by 2m+1

n r
(a,c)
0 r

(b,d)
1 and 2m+1

n r
(a,d)
0 r

(b,c)
1 , respectively.

This entails

∥
∥
∥
∣
∣
∣Var f̂(λ)

∣
∣
∣
∥
∥
∥≤ 2m+ 1

n

⎛

⎝ max
1≤a,b≤D

D∑

c,d=1

κ(a,b,c,d) + 2 max
1≤a,b≤D

D∑

c=1

r
(a,c)
0

D∑

d=1

r
(b,d)
1

⎞

⎠ ,
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we thus obtain

Lemma 12.3. Assume that the vector valued stationary sequence (Xn)n∈Z sat-
isfies conditions (12.3.7) and (12.3.6) for some ρ ≥ 1, then (using notation
(12.3.12))

E

∥
∥∥f̂(λ) − f(λ)

∥
∥∥

2

≤ C

(
1
n2

+
1
m2ρ

+
m

n

)

This expression is optimized as O
(
n−2ρ/(2ρ+1)

)
by setting m = n1/(2ρ+1).

12.3.2 Dependence coefficients

This section is aimed to prove that bounds of higher order moments needed for
deriving a.s. convergence of spectral density estimates are analogue to those
computed for densities estimates in chapter 11, see § 11.2.2.
Spectral estimates are written as second order polynomials of the initial process.
We thus need a translation table to compute the properties of the initial process
in order to derive asymptotics.
In connection with § 4.3 and § 4.4.1 we now make use of the decorrelation
coefficients (2.2.1), the following lemma is a first rough bound which relates
those coefficients to those built upon the sequence Z = (Zk)k∈Z defined in an
analogous way to (12.3.9), for some fixed complex valued sequence δk,s ∈ C

such that supk,s |δk,s| ≤ 1 (here the dependence with respect to λ is omitted).
In order to obtain a suitable bound of this coefficient, it seems unavoidable to
make use of the previous diagram formula.

cZ,q(r) = max
k1 ≤ · · · ≤ kq
kl+1 − kl = r

1 ≤ a1, . . . , aq ≤ D
1 ≤ b1, . . . , bq ≤ D

∣
∣∣Cov

(
Z

(a1,b1)
k1

· · ·Z(al,bl)
kl

, Z
(al+1,bl+1)
kl+1

· · ·Z(aq,bq)
kq

)∣∣∣

Those coefficients are already defined for vector valued sequences in (4.4.7). Set,

C =
∣
∣
∣Cov

(
Z

(a1,b1)
k1

· · ·Z(al,bl)
kl

, Z
(al+1,bl+1)
kl+1

· · ·Z(aq,bq)
kq

)∣∣
∣

if kl+1 − kl = r, then (in a condensed notation)

C =
∑

|s1|,...,|sq|≤m

∣
∣
∣Cov

(
Y

(a1,b1)
k1,s1

· · ·Y (al,bl)
kl,sl

, Y
(al+1,bl+1)
kl+1,sl+1

· · ·Y (aq,bq)
kq,sq

)∣∣
∣

≤
q∑

u=1

∑

μ1,...μu

∑

|s1|,...,|sq|≤m

u∏

i=1

|κμi(k,s)(X
(a,b))|

where the previous sum extends on such undecomposable diagrams such that
some μi is not entirely contained neither in the past nor in the future of the
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table

Past

⎧
⎪⎪⎨

⎪⎪⎩

(1, 1), (1, 2)
(2, 1), (2, 2)
. . . . . .
(l, 1), (l, 2)

Future

⎧
⎨

⎩

(l + 1, 1), (l + 1, 2)
. . . . . .
(q, 1), (q, 2)

The number of such regular diagrams is thus q! (each one is defined by one term
in the past and one term in the future). In the general case, set λi = #μi for
1 ≤ i ≤ u, then if μi contains vi terms

(
(ji,1, 2), . . . , (ji,vi , 2)

)
from the second

column of the table

Cμ1,...,μu =
∑

|s1|,...,|sq|≤m

u∏

i=1

κμi(k,s)(X
(a,b))

|Cμ1,...,μu | ≤
u∏

i=1

∑

|sji,1 |,...,|sji,vi
|≤m

|κμi(k,s)(X
(a,b))|

For the general case we need to consider sums of cumulants indexed by ν(s) =
(h1 + s1, . . . , hi + si, h

′
1, . . . , h

′
j)
∑

|s1|,...,|si|≤m

∣
∣κμ(s)(X)

∣
∣

Using stationarity, it is easy to check that this sum is bounded by (2m+1)wκi+j
(i+ j = #μ) where w = 0 or 1 according to the fact that j �= 0 or j = 0. Hence
|Cμ1,...,μu | ≤ (2m + 1)w

∏u
i=1 κ#μi where w is the number of those μi entirely

in the second column of the table, hence w ≤ q
2 . In fact, the non Gaussian

partitions (those with μi > 2 for some i) have a contribution of a lower order
O(m[q/2]−1). Taking in account that in each partition one term has factors both
in the Past and in the Future and lemma 4.11 we thus obtain

Theorem 12.2. If the sums of cumulants of X, κp < ∞ are finite for each
p ≤ 4q (which holds if

∑
r(r + 1)p−2c∗X,p(r) < ∞ from lemma 4.12) then there

is a constant Kq > 0 such that

cZ,q(r) ≤ Kq(2m+ 1)[q/2]c∗X,2q(r − 2m).

Using inequality (4.4.12) we thus derive the main result of this section.

Corollary 12.1. Let 2p ≥ 2 be an even integer such that κq < ∞ for q ≤ 4p,
then

E‖f̂(λ) − Ef̂(λ)‖2p = O
((m

n

)p)
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• Note that lemma 4.12 prove that the previous conditions may also be expressed
in terms of weak dependence coefficients (4.4.8).
• Moreover the condition

∑

n

(
m(n)
n

)q
< ∞

implies a.s. convergence of such spectral density estimates as this was done in
§ 11.2.2 for regression estimates.



Chapter 13

Econometric applications
and resampling

Essentially few rigorous results are stated in this chapter. We are aimed here
to check how weak dependence may be applied in standard applications. This
last chapter is more aimed at providing reasonable directions for further in-
vestigations of times series. The chapter is organized as follows. In order to
provide deep econometric motivations, Section 13.1 includes several situations
where various weak dependence conditions arise. After some generic exam-
ples including bootstrapping, we consider specific problems including unit root
problems and parametric or semiparametric problems in § 13.1.1, 13.1.2 and
13.1.3. A following section 13.2 reviews the question of bootstrap; some models
based bootstraps are first considered (see also § 13.2.4). We consider the block
bootstrap in § 13.2.1 and § 13.2.2 addresses GMM estimation for which weak
dependence provides a complete proof of the results in Hall and Horowitz (1996)
[101]. We also mention conditional bootstrap in § 13.2.3 and sieve bootstrap
in § 13.2.4. Finally in Section 13.3 we study more completely the problem of
limiting variance (in the central limit theorem) estimation under η-weak depen-
dence.

13.1 Econometrics

Time series analysis is a major part of econometrics. Here we provide several
examples of interest in which it is essential to consider dependent structures
instead of simple independence. In some situations like bootstrap mixing notions
seem useless (see § 13.2.2). An application concerns linearity tests in time
series analysis. Rios (1996) [162] considers a stationary functional autoregressive
model (13.2.1) where r = L + C is the decomposition of the autoregression

283
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function into a sum of linear (L) and nonlinear (C) components. Local linearity
of r is then tested via the null hypothesis

H0 :
∫

(r′′(x))2 w(x) dx = 0

where the weight function w has compact support. Rios (1996) [162] proves that
a local linearity test can be handled in the strong mixing case. The function r
is assumed to be ρ continuous. Then the plug-in estimator T̂ =

∫
r̂2(x)w(x)dx

converges to T =
∫
r2(x)w(x)dx if αn = O(n−a) and a > 2 + 3/ρ and the

bandwidth condition hn ∈ [n− 1
10 , n− 1

2ρ−4 ]. This result may be extended to weak
dependence as in Ango Nze et al. (2002) [6].
Still another problem of interest is to test the independence of the innovations
(ξn)n∈Z in a regression model

Xn = aYn + ξn.

This can be performed using the Durbin-Watson statistic which is a non corre-
lation test. The latter can be written as a continuous functional of the Donsker
line of the sequence (ξn)n∈Z.
Some other applications are detailed in the forthcoming subsections.

13.1.1 Unit root tests

Consider a stationary autoregressive sequence (Xn)n∈Z generated by an i.i.d.
sequence (ξn)n∈Z,

Xn = aXn−1 + ξn.

A classical problem is to test whether there is a unit root (that is a = 1).
In the specific context of aggregated time series, the assumption of white noise
innovations seems to be rather strong. Phillips (1987) [145] develops unit root
tests for mixing and heterogeneously distributed innovations. The ordinary least
square estimate â is shown to be a continuous functional of the Donsker line of
the sequence (ξn)n∈Z. As an application of the functional central limit theorem,
Phillips shows that a unit root test can be based on the fact that under the null
hypothesis H0 : a = 1,

n (â− 1) D−−−−→
n→∞

1

2
∫ 1

0
W 2
t dt

(

W 2
1 −

σ2
ξ

σ2

)

where W denotes the standard Brownian motion and σ2 =
∑∞

−∞ Cov(ξ0, ξk);
in the initial i.i.d. frame σ2

ξ/σ
2 = 1 but this is no more the case for dependent

innovations. The author works with stationary strong mixing sequences, and
conditions under which the functional CLT result holds are given before. This
example, as the author suggests, can be generalized to error sequences (ξn)n∈Z

that allow for heteroskedasticity.
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13.1.2 Parametric problems

Generalized method of moments (GMM) estimation procedures involve an es-
timate θ̂n, which is a solution of the arg-min problem Jn(θ̂n) = minθ∈Θ Jn(θ),
where

Jn(θ) =

(
1
n

n∑

i=1

g(Xi, θ)

)′
Ω

(
1
n

n∑

i=1

g(Xi, θ)

)

. (13.1.1)

Here Θ ⊂ R
d is a finite dimensional parameter set, and g(·, ·) is a given function

such that Eθ0g(X1, θ0) = 0, where θ0 is the true parameter point. In the time
series context, the positive semi-definite matrix Ω is often replaced (see Hall
and Horowitz, 1996, equation (3.2) [101]) by an asymptotically optimal weight
matrix estimate

Ωn(θ) =
1
n

n∑

i=1

g(Xi, θ)g(Xi, θ)′ +
κ∑

j=1

H(Xi, Xi+j , θ),

H(x, y, θ) = g(x, θ)g(y, θ)′ + g(y, θ)g(x, θ)′,

and κ is such that Eg(Xi, θ)g(Xj , θ)′ = 0 if |i−j| > κ. The statistic to test H0 :
θ = θ0 is Jn(θ) = Kn(θ̂n)′Kn(θ̂n), where Kn(θ) = 1√

n
Ωn(θ)

1
2
∑n

i=1 g(Xi, θ) (the
square root of a symmetric positive matrix is uniquely defined). The following
CLT holds under standard mixing assumptions:

Tn(θ) =
√
n Σ−1

n

(
θ̂n − θ

) D−−−−→
n→∞ Nd(0, Id), (13.1.2)

where the diagonal matrix Σn has d entries. GMM techniques naturally involve
an unknown covariance matrix. In order to estimate such limiting distributions
it will be natural to use the bootstrap techniques described in § 13.2.1.

13.1.3 A Semi-parametric estimation problem

We follow the presentation in Robinson (1989) [164]. He considers an economic
variable observable at time n which is an R × 1 vector of r.v.’s (Wn)n∈Z. We
observe Wn at time n = 1−P, 2−P, . . . , T where P is nonnegative and T large.
Hypotheses of economic interest often involve a subset Xn = B(W ′

n, . . . ,W
′
n−P )

of the array
(
W ′
n, . . . ,W

′
n−P

)′; for this B is a J × (PR) matrix formed from
the PR−rowed identity matrix IPR by omitting PR − J rows (which means
that in B, PR − J elements of Wn, . . . ,Wn−P are deleted). Thus, in B,
elements of Wn,Wn−1, . . . ,Wn−P which are not in Xn are deleted, and Xn

can have elements in common with Xn+P−1, . . . , Xn+1, Xn−1, . . . , Xn−P . Let
Xn = (Y ′

n, Z
′
n)

′, where Yn and Zn are K × 1 and L × 1 vectors (K + L = J).
The problem of interest is to test the hypothesis E(Yn|Zn) = 0 against the
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alternative E(Yn|Zn) �= 0. This null hypothesis is written in the form τ =∫
RL H(z, z)f2(z)dz = 0 for M = 0 and

τ =
∫

RL

H(z, z)
(
f(z), f (1)(z)′, . . . , f (M)(z)′

)′
f(z)dz = 0

for some M > 0 and some function H(z, z) defined as

H(z1, z2) =
∫

RK×RK

G(x1, x2)dF (y1|z1)dF (y2|z2)

for some convenient function G and where F (A|z) = P(Yn ∈ A|Zn = z) for any
Borel set A of R

K and z ∈ R
L and x1 = (y′1, z

′
1)

′ and x2 = (y′2, z
′
2)

′. Here f (j)(z)
denotes the vector of j−partial derivatives of f .
An example of this framework is given by Xn = (Y ′

n, Z
′
n)

′, where Yn = (tn, s′n)
′

and Zn = vn. The regression model

tn = β′(sn − Ensn) + γ′Ensn + un (13.1.3)

is of common use in econometrics. Here sn, tn, vn are respectively scalars, p× 1
and q × 1; they are observable random sequences while the innovation pro-
cess (un) is centered and unobservable, so that E(un|sn, tn) = 0; we denote
En( · ) = E(·|vn). In the case of a weakly dependent and stationary innova-
tion process, Robinson (1989) [164] considers the hypothesis H0 : β = 0.
In this case, the hypothesis can be written as before and Robinson calculates
β = τ where K = p + 1, L = 1, M = 0 and G(x1, x2) = (t1 − t2)s1φ(v1)
for some function φ : R

q → R (usually φ ≡ 1). Robinson considers the
statistics λ̂ = nτ̂ ′Ω̂−1τ̂ constructed from the n−sample (X1, . . . , Xn). Here,

τ̂ =
1

n2hL

n∑

i,j=1

G(Xi, Xj)k(Zi−Zj/h) is a U−statistics and Ω̂ is the natural es-

timator of the covariance matrix of τ̂ . One such estimate is Ω̂ =
1
n

n∑

i=1

cic
′
i.

Tapered versions might be preferred (see formula (2.21) of Robinson, 1989

[164]), here ci =
n∑

j=1

di,j + dj,i with di,j = G(Xi, Xj)k(Zi − Zj)/h, where

k(z) = h−L
(
k(z), h−1k(1)(z)′, . . . , h−Mk(M)(z)′

)
. Under β−mixing assump-

tions, Robinson proves that the above estimates are
√
n−consistent and satisfy

a CLT. Under a natural β−mixing condition, Robinson proves in fact that
the statistic λ̂ has asymptotically a χ2−distribution if βj = O(j−b) where
b > μ/(μ− 2) under the moment assumption supi,j E|G(Xi, Xj)|μ < ∞.
The β−mixing assumption allows to compare the joint distribution of the ini-
tial sequence with respect to a sequence of r.v.’s with independent blocks. This
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reconstruction is due to Berbee’s coupling lemma, no matter how big the size of
the blocks may be. Yoshihara (1976) [193] derives a covariance inequality that
fits to U−statistics. A way to get rid of β−mixing conditions is to consider an
independent realization X̃1, . . . , X̃n of the trajectoryX1, . . . , Xn. Now a simpler
estimator of τ is given by

τ̃ =
1

n2hL

n∑

i,j=1

G(Xi, X̃j)k

(
Zi − Z̃j

h

)

.

The asymptotic behavior of this expression is easy to derive under alternative
weak dependence conditions by using our results because τ̃ = 1

hL

∑n
i=1Wn,h(Xj)

is the numerator of a Nadaraya-Watson kernel for the regression estimation
problem E(s1(t1 − t)|v1 = z) in the special case of the previous example. In fact
this trick avoids the corresponding coupling construction for U−statistics.

13.2 Bootstrap

Consider the following example concerning bootstrap: let a stationary autore-
gressive sequence be generated by an independent and identically distributed
(i.i.d.) and centered sequence (ξn)n∈Z:

Xn = r(Xn−1) + ξn. (13.2.1)

Standard nonparametric estimation techniques provide an estimate of the au-
toregression function r. Let r̂ be a convenient estimator of r. Given data
(X1, . . . , Xn) from the sequence 13.2.1, another autoregressive process can be
defined by

X̂n = r̂(X̂n−1) + ξ∗n. (13.2.2)

The innovations (ξ∗n) are i.i.d. drawn according to the centered empirical mea-
sure of the estimated centered residuals,

ξ̂i = ξ̃i −
1
n

n∑

j=1

ξ̃j , ξ̃i = Xi − r̂(Xi−1), 1 ≤ i ≤ n.

From the first example § 1.5 this is clear that no mixing assumption can be ex-
pected for the model (13.2.2). However, our concept of fading memory can still
be applied. Bickel and Bühlmann (1999) [18] set up such a new weak depen-
dence condition in order to build critical bootstrap values for a linearity test in
linear models. Doukhan and Louhichi (1999) [67] have extended it in order to fit
models such as positively dependent sequences, Markov chains (with or without
topological assumptions), and Bernoulli shifts. The Bernoulli shifts are defined
in Assumption 1 of Hall and Horowitz (1996) [101] and are used throughout
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that paper. The above mentioned weak dependence conditions yield standard
results concerning convergence in distribution with a

√
n-normalization.

If now the process Xk = H(ξk, ξk−1, . . .) is defined as a Bernoulli shift a suitable
form of the resampled version X∗

k of Xk is Ĥ
(
ξ∗k, ξ

∗
k−1, . . . , ξ

∗
k−l+1, 0, . . .

)
. Here

Ĥ and ξ∗k are i.i.d. random variables drawn uniformly with the distribution F̃n,
the centered version of residuals distribution obtained through filtering. In the
simple case of a linear process (H(z0, z1, . . .) =

∑
k akzk, see Section 13.2.2); in

the general setting, one needs to develop additional estimation procedures. In
order to describe the asymptotic properties of such processes one needs to know
the limiting asymptotic behaviour of Bernoulli shifts.
Unfortunately such representations are not always known and additional boot-
strap procedures have been considered.

13.2.1 Block bootstrap

We describe here the block-bootstrap procedure which is adapted to the times
series (Xi)i∈N. Let b = b (n) and l = l (n) denote the number and the length
of the blocks. Assume b · l = n and consider l blocks (X(j−1)l+1, . . . , Xjl) for
1 ≤ j ≤ b. Blocks (X̃(j−1)l+1, . . . , X̃jl) are now randomly drawn (uniformly)
among those l blocks. A trajectory of the resampled process is obtained by
concatenation of those block; however a problem clearly appears to connect
those (see Künsch, 1989 [113]).

13.2.2 Bootstrapping GMM estimators

Using the notations in § 13.1.2, let (X̃∗
i )1≤i≤n denote a block-bootstrap sample

and let g∗ (x, θ) = g (x, θ) − E
∗g
(
x, θ̂n

)
. The expectation is taken with respect

to the bootstrap distribution. The GMM estimate θ̂∗n solves the arg-min problem

J∗
n(θ) =

(
1
n

n∑

i=1

g∗(X∗
i , θ)

)′
Ω

(
1
n

n∑

i=1

g∗(X∗
i , θ)

)

(13.2.3)

when the matrix Ω is known.
In order to prove the consistency of this bootstrap procedure Hall and Horowitz
(1996) [101] propose an uncomplete proof. However, weak dependence will
allows us to prove rigorously this consistency. More precisely, if Xn = h(εn,
εn−1, . . .) for some i.i.d. sequence (εi)i∈Z, their Assumption 1 is∗

E ‖h(εn, εn−1, . . .) − h(εn, εn−1, . . . , εn−m, 0, 0, . . .)‖ ≤ e−dm

d
.

∗The function h : R
N
∗ → B with B a Banach space with norm ‖ · ‖.
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This condition holds for linear processes and it is claimed to imply geometric
strong mixing in [101]. Andrews’s simple example (1984) [2] proves that this
does not hold in general. It implies however θ−weak dependence with geometric
decay yielding the following useful tail inequality for sums of functions of the
sequence ξn = f(Xn, θ)†. This is the main tool to prove the validity of the
bootstrap in this dependent setting. A rigorous version of Lemma 1 in Hall and
Horowitz (1996) [101] thus follows

Lemma 13.1 (Ango Nze & Doukhan, 2004 [7]). Let (ξn) be a stationary
η−weakly dependent sequence with Eξn = 0 such that η(r) = O (e−ar) as
r ↑ ∞ for some a > 0, and P(|ξ1| ≥ z) = O

(
|z|−33

)
, as |z| → ∞. Then

Rn = n−1
∑n

i=1 ξi satisfies

lim
n→∞nP

(
|Rn| > n− 2+ε

5

)
= 0.

Proof. Set ξi,n = ξi1{|ξi|≤n1/16} − Eξi1{|ξi|≤n1/16} and let R̃n = 1
n

∑n
i=1 ξi,n.

Then

P

(
|Rn| > 2n− 2+ε

5

)
≤ P

(
|R̃n| > n− 2+ε

5

)
+ 2n1+ 2+ε

5 E
∣
∣ξi1{|ξi|>n1/16}

∣
∣

≤ n− 32(2+ε)
5 E|Rn|32 + 2n1+ 2+ε

5 ‖ξ1‖4P
3
4

(
|ξ1| > n

1
16

)

= n−1O
(
n

−11+32ε
5 + n

ε
5− 47

320

)

= o(n−1).

Following precisely the same steps as in Hall and Horowitz (1996) [101], we thus
prove, by only replacing their Lemma 1 by our lemma 13.1, that bootstrapping
critical values for GMM estimators is an asymptotically valid procedure.

Remark 13.1. Theorems 1, 2 and 3 in Hall and Horowitz (1996) [101] seem
now to be rigorously proved. Analogous comments fit to a more recent paper by
Andrews (2002) [4]. The exponent 33 in the previous lemma is unnatural and
it will be improved in a forthcoming paper.

The above procedure can be used for testing the null hypothesis H0 : θ =
θ0 against the bilateral alternative. Under H0 the studentized statistic Tn (θ)
described in (13.1.2) satisfies with the critical value Qα,

P (|Tn (θ)| > Qα) = α+ O (1/n) .

†In this equation, θ is really the parameter to be estimated and in order too avoid fur-
ther confusion with the dependence we shall prove below a result under the weaker η weak
dependence.
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As in Götze & Hipp (1978) [99], Hall and Horowitz seem to prove that Tn (θ)
and the bootstrap studentized statistic

T ∗
n(θ) =

√
n Σ∗

n
−1
(
θ̂∗n − θ̂n

)
,

have close distributions in the sense that

P

(
sup
z∈R

|P∗ (T ∗
n(θ) ≤ z) − P (Tn(θ) ≤ z)| > n−a

)
= o
(
n−a) , (13.2.4)

for a relevant integer 2a, with a ≥ 1+ξ, and the range of ξ ∈ [0, 1] is formulated
according to the dependence assumptions prescribed. This relation comes from
an Edgeworth development. It yields an improved acceptation rule for the test
of H0:

P (|T ∗
n (θ)| > Q∗

α) = α+ O
(
n−1−ξ) .

13.2.3 Conditional bootstrap

A simple local conditional bootstrap is investigated by Ango Nze et al. (2002)
[6]. Consider a stationary process (Xt, Yt)t∈Z. The local bootstrap for nonpara-
metric regression is defined as follows: the empirical distribution for Yt given
Xt = x writes

F̂ (y|x) =
1
nb

n∑

t=1

1{Yt≤y}K
(
x−Xt

b

)/
f̂n,b(x),

for a kernel density estimator with bandwidth b = b(n). The bootstrap sam-
ple is now defined as (Xt, Y

∗
t )1≤t≤n where Y ∗

t ∼ F̂ ( · |Xt) is independent of
(Y ∗
s )s	=t conditionally to the data for 1 ≤ t ≤ n. In this article, it is shown that

the asymptotic properties of the local regression bootstrap estimator r̂∗n,h with
bandwidth h = h(n) constructed from this sample are analogue to those of the
regression estimator r̂n,h contructed from the data (Xt, Yt)1≤t≤n:

sup
u∈R

∣
∣
∣P∗
(√

nh
{
r̂∗n,h(x) − E

∗r̂∗n,h(x)
}

≤ u
)

−P

({√
nhr̂n,h(x) − Er̂n,h(x)

}
≤ u
)∣∣
∣

P→n→∞ 0,

under suitable weak dependence assumptions (see theorem 4 in [6]).

13.2.4 Sieve bootstrap

Bickel and Bühlmann (1999) [18] tackle the problem of the ‘sieve bootstrap’ for
a one sided linear process

Xn − μ = ξ0 +
∞∑

t=1

atξn−t (13.2.5)
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where (ξn) is a sequence of i.i.d. random variables (r.v.’s) with Eξ0 = 0 and the

density function fξ, and where
∞∑

t=1

|at| < ∞ and μ = EXn.

Under the assumption that the function Ψ(z) = 1 +
∞∑

t=1

atz
t has no root in the

closed unit circle, the process (13.2.5) admits an AR(∞) representation

(Xn − μ) +
∞∑

t=1

bt(Xn−t − μ) = ξn, with
∞∑

t=1

|bt| < ∞. (13.2.6)

The latter process (13.2.6) is fitted with an autoregressive process of finite order
p(n) (p(n)/n → 0, p(n) → ∞). Using estimated residuals, the resampling (i.i.d.)
innovation process (ξ∗n)n∈Z is constructed by smoothing the empirical process
based on those residuals by a kernel density estimate of the density fξ. Finally,
the smoothed sieve bootstrap sample (X∗

n)n∈Z is defined by resampling the
AR(p(n)) process from innovations (ξ∗n)n∈Z:

(X∗
n − X̄) +

p(n)∑

t=1

b̂t(X∗
n−t − X̄) = ξ∗n (13.2.7)

The purpose of [18] was to carry over a weak dependence property (here strong
mixing) of the initial sequence (Xn)n∈Z to the sieve processes (X∗

n)n∈Z (a classic
and a smoothed version were examined in the paper). The goal is unrealistic for
the classic bootstrap sample, since the distribution of the bootstrapped innova-
tions is discrete. Proving a mixing property for the smoothed sieve bootstrap
sample eludes the efforts of the authors. In the latter case, it nevertheless ap-
pears that limit theorems can be proven by another method. It consists in using
the following property:

|Cov (g1 (X−d1+1, . . . , X0) , g2 (Xk, . . . , Xk+d2−1)) |
≤ 4 ‖g1‖∞ ‖g2‖∞ ν

(
k; Cd1, Cd2

)
, (13.2.8)

with d1, d2 ∈ N and for smooth functions g1, g2 belonging to the classes Cd1 and
Cd2 (see equation (3.1) for the definition of the class Cd and some examples). The
new dependence coefficient ν is less than the strongly mixing coefficient. Bickel
and Bühlmann (1999) [18] cannot prove that the sieve sequence (X∗

n) is strongly
mixing. A weak dependence condition is now defined by the ν coefficient. The
authors prove that it is satisfied by both this sequence and a smooth version
of the resampled innovations. For instance, Bickel and Bühlmann prove that if
the sequence (Xn)n∈Z satisfies some regularity conditions ensuring that αk =
O (k−γ) (recall that νk ≤ αk), then the sieve bootstrap process (X∗

n)n∈Z satisfies
a ν mixing condition with a polynomial rate ν∗(k; Cd1,Dd2) = O

(
k−Lγ

)
for

relevant classes Cd1 ,Dd2 and a positive constant L. See Theorem 3.2 on page 422
in Bickel and Bühlmann (1999) [18] for more details.
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13.3 Limit variance estimates

The end of this chapter is aimed at providing a very important resampling tool
for weakly dependent time series. In this monograph (and elsewhere) extensions
of the central limit theorem have been proved for times series. The limiting
variance takes a complicated form; the results write as

1√
n

n∑

k=1

Xk
d→n→∞ N (0, σ2), where σ2 =

∞∑

k=−∞
EX0Xk.

Functional vector valued versions of such results also arise,

1√
n

∑

ns<j≤nt
Xj → Z(t) − Z(s), (13.3.1)

with Z(t) ∈ R
D, the D-dimensional centered Gaussian random process such

that

Cov(Z(s), Z(t)) = (t ∧ s) · Σ, Σ =
∞∑

k=−∞
Cov(X0, Xk).

For statistical use, one needs to provide self-normalized versions of such results.
The expression reduces to σ2 = EX2

0 for iid sequences and it may be directly
estimated by 1

n

∑n
k=1X

2
k using the method of moments. The first and natural

way to achieve this for dependent sequences is to replace σ2 by some convergent
estimator. We shall assume η−weak dependence; several ways of estimating this
quantity are reasonable.
• Recalling that σ2 is only the value at origin ofXt’s spectral density gives a first
approach; spectral density estimates from chapter 12 yield as in § 12.3 estimators
of σ2, we defer a reader to Bardet et al. (2005) [11] for this approach.
• Another way to estimate this quantity is considered here: we mimick an
argument by Carlstein (1986) [34], see also Peligrad and Shao (1994) [141].
This estimation is based on the Donsker invariance principle and a subsampling
argument described in section 13.3.2.

We provide below a.s. convergence properties of those estimates as well as a
CLT; modifications of the previous CLT will make it suitable for applications.
To this aim, subsection 13.3.1 relates moments of sums with the cumulants
of stationary sequences; this is a tool of an independent interest for several
applications, like extensions to multispectra of the results in chapter 12.

We are involved here in a vector valued version of the estimation of σ2. The
main motivation for this is to derive a dependent version of Kolmogorov-Smirnov
test. Empirical CLT (for the empirical cdf) are derived in chapter 10:

1√
n

n∑

k=1

(
1(Xk≤x) − F (x)

) d→n→∞ B(x),
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where B(x) denotes the centered Gaussian process such that

EB(x)B(y) =
∞∑

k=−∞
Cov

(
1(X0≤x), 1(Xk≤y)

)
,

A direct extension of the Kolmogorov-Smirnov test is not possible for such de-
pendent sequences because limits are not distribution free. After a convenient
discretization, Doukhan & Lang (2002) [63] prove that confidence bounds for
such statistics, which are not anymore distribution-free, may however be es-
timated with the present sharp estimates of the multivariate extension of σ2.

The following subsection is aimed to derive useful tools in order to precise asymp-
totics for the previous estimation procedure.

13.3.1 Moments, cumulants and weak dependence

We thus consider a stationary vector valued sequence (Xn)n∈Z with values in
R
D; we equip R

D with the norm defined as ‖x‖ = |x(1)| + · · · + |x(D)| for
x = (x(1), . . . , x(D)) ∈ R

D. We assume below that there exists some b > 2 such

that ‖X0‖b =
(
E‖X0‖b

) 1
b < ∞. For each u ≥ 1 we identify the sets

(
R
D
)u

and R
D·u. We use the coefficients cX,q(r) from (4.4.7). We define nonincreasing

coefficients, for further convenience,

c�X,q(r) = max
1≤l≤q

cX,l(r)μq−l, with μt = max
1≤d≤D

E

∣
∣
∣X(d)

0

∣
∣
∣
t

. (13.3.2)

Those coefficients (4.4.7) are now linked to the weak dependence coefficients:

Proposition 13.1. Assume that the stationary and vector valued sequence
(Xn)n∈Z is η-dependent and satisfies μ = max1≤a≤D ‖X(a)

0 ‖b < ∞ for some
b > q then the coefficients defined in eqn. (4.4.7) satisfy

cX,q(r) ≤ q4
b

b−1μ
(q−1)b

b−1 η(r)
b−q
b−1 .

Proof of proposition 13.1. Consider integers 1 ≤ � < q, 1 ≤ a1, . . . , aq ≤ D
and t1 ≤ · · · ≤ tq such that t�+1 − t� ≥ r, we need to bound (uniformly wrt �,
1 ≤ a1, . . . , aq ≤ D and t1 ≤ · · · ≤ tq) the expression

c =
∣
∣
∣Cov

(
X

(a1)
t1 · · ·X(a�)

t� , X
(a�+1)
t�+1

· · ·X(aq)
tq

)∣∣
∣ = |Cov(A,B)| (13.3.3)

In order to bound (13.3.3), for some M > 0 depending on r [to be defined later]
we now set Xj = (X

(1)

j , . . . , X
(D)

j ) with X
(a)

j = X
(a)
j ∨ (−M) ∧ M for each
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1 ≤ a ≤ D if Xj = (X(1)
j , . . . , X

(D)
j ). Then we also have,

c ≤ |Cov(A,B)| + |Cov(A−A,B)| + |Cov(A,B −B)|,

A = X
(a1)

t1 · · ·X(a�)

t� , B = X
(a�+1)

t�+1
· · ·X(aq)

tq .

Now we note that

|(A−A)B| ≤
�∑

i=1

Yi|X(ai)
ti −X

(ai)

ti |,

|A(B −B)| ≤
q∑

i=�+1

Yi|X(ai)
ti −X

(ai)

ti |

where Yi writes as the product of q − 1 factors Zi,j = |X(aj)
tj | or |X(aj)

tj | for
1 ≤ j ≤ q and j �= i. It is thus clear that for q−1

b + 1
p = 1 an analogue

representation of the centering terms yields

|Cov(A−A,B)|+|Cov(A,B−B)| ≤ 2
q∑

i=1

max
1≤a≤D

‖X(a)
0 ‖q−1

b max
1≤a≤D

‖X(a)
0 −X(a)

0 ‖p.

Set h(x) = x∨ (−M) ∧M then Liph = 1 and ‖h‖∞ = M thus f�(x1, . . . , x�) =
h(x1)···h(x�) is such thatA =f�

(
X

(a1)
t1 , . . . , X

(a�)
t�

)
,B=fq−�

(
X

(a�+1)
t�+1

, . . . , X
(aq)
tq

)

and ‖f�‖∞ ≤ M �, Lip f� ≤ M �−1; from η-dependence we derive,

|Cov(A,B)| ≤ (�Lip f�‖fq−�‖∞ + (q − �)Lip fq−�‖f�‖∞) η(r) ≤ qM q−1η(r).

Now for each real valued random variable X(a)
1 and 1 ≤ a ≤ D,

E|X(a)
0 −X

(a)

0 |p = E|X(a)
0 −X

(a)

0 |p 1|X(a)
0 |≥M

≤ 2pE|X(a)
0 |p 1|X(a)

0 |≥M

≤ 2pE|X(a)
0 |bMp−b.

Hence,

‖X(a)
0 −X

(a)

0 ‖p ≤ 2‖X(a)
0 ‖

b
p

b M
1− b

p ,

thus setting μ = max1≤a≤D ‖X(a)
0 ‖b, we obtain with the previous inequalities,

|Cov(A−A,B)| + |Cov(A,B −B)| ≤ 4qμq−1+ b
pM1− b

p ,

|Cov(A,B)| ≤ q
(
4μq−1+ b

pM1− b
p +M q−1η(r)

)

≤ q
(
4μbM q−b +M q−1η(r)

)
.
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The previous expression has an order optimized with 4μbM1−b = η(r) yielding
c = |Cov(A,B)| ≤ q4

b
b−1μ

(q−1)b
b−1 η(r)

b−q
b−1 . �

As a first application of this relation, it seems useful to state the following
moment inequality, they also entail laws of large numbers.

Corollary 13.1 (D = 1). Let (Xt)t∈Z be a real valued and stationary η-weakly
dependent times series. Assume that E|X0|b < ∞ for some b > q, EX0 = 0,
and

∞∑

r=0

(r + 1)q−2η(r)
b−q
b−1 < ∞,

then there exists a constant C > 0 only depending on q and on the previous
series such that

E

⎛

⎝
n∑

j=1

Xj

⎞

⎠

q

≤ Cn[q/2].

Proof. We note, that
∑

r≥0

(r+1)q−2cX,q(r) < ∞ and we use theorem 4.2 together

with proposition 13.1 to conclude. �

13.3.2 Estimation of the limit variance

Now let N be some fixed integer and n = Nm̃, we rewrite the previous limit
(13.3.1) as Δ̃i,m̃ → Δ̃i (which have the same distribution) where we set

Δ̃i,m̃ =
1√
m̃

i+m̃∑

j=i+1

Xj , Δi =
√
N

(
Z

(
i

m
+ 1
)

− Z

(
i

m

))
D= Δ ∼ ND (0,Σ) .

The heuristic in Peligrad and Shao (1995) [142]’s variance estimator consists to
substitute Δi by Δ̃i,m̃ in this last relation. For different values of i the random
variables Δi are independent only for values with a difference ≥ m̃. On another
hand if i = i(n), j = j(n) are such that limn→∞ |i(n)− j(n)|/m̃(n) = α then the
couple (Δi(n),Δj(n)) is Gaussian with Cov(Δi(n),Δj(n)) = 1 − α, if 0 ≤ α ≤ 1.
This implies

lim
n→∞ Var

⎛

⎝ 1
√
n− m̃(n)

n−m̃(n)∑

i=1

F (Δ̃i,m̃(n))

⎞

⎠

=
∫ 1

0

Cov
(
F
(
Z(1
)
, F
(
Z(1 + α) − Z(α)

))
dα.
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This integral may be explicitly computed with the help of an Hermite expansion
but it is however somewhat complicates. We thus subsample this sums setting
Δi,m̃ = Δ̃im̃,m̃, then,

1
N

N∑

i=1

F (Δi) →N→∞ EF (Δ) (13.3.4)

1√
N

N∑

i=1

(F (Δi) − EF (Δi))
D→N→∞ ND (0,VarF (Δ)) . (13.3.5)

Examples

• F (x) = x′x yields the estimation of the covariance matrix Σ.

• Let F (x) = |x′a| for a fixed vector a ∈ R
D, then EF (Δ) =

√
a′Σa ·

E|N (0, 1)|.

• Setting more generally F (x1, . . . , xD) = (|xi + xj |2)1≤i≤j≤D ∈ R
D(D+1)/2

provides estimates for all the coefficients of the matrix Σ: for this, use the
polarity argument

σi,j =
1
2

(
Var (Δ(i) + Δ(j)) − 1

4
Var 2Δ(i) − 1

4
Var 2Δ(j)

)
.

In order to make the heuristic (13.3.5) work, we better consider sequences � =
�(n), m = m(n), m̃ = m+ � and N = N(n) converging to infinity and such that
n ≥ N(m+ �) − �. Now we set

Δi,m =
1√
m

(i−1)(m+�)+m∑

j=(i−1)(m+�)+1

Xj , (13.3.6)

and EF (Δ) is estimated by

F̂n =
1

N(n)

N(n)∑

i=1

F (Δi,m(n)). (13.3.7)

Peligrad and Shao (1995) [142] consider instead that EF (Δ) is estimated by

F̃n =
1

n− m̃

n−m̃∑

i=1

F (Δ̃i,m̃(n)).

We need to quote that in this case the sum runs on 1 ≤ i ≤ n − m̃ which is
a number of much larger order than N . In this case, the Gaussian limiting
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variables are not independent. This makes the limiting distribution a bit more
complicated and we thus avoid this estimation by working analogously to Carl-
stein (1986) [34]. More precisely, this author proves that if i = i(n), j = j(n)
vary in such a way that lim infn→∞ |i(n) − j(n)|/m̃(n) ≥ 1 then

Cov
(
Δ̃i(n),m̃(n), Δ̃j(n),m̃(n)

)
→n→∞ 0

This is exactly our situation and the variables Δi,m are here asymptotically
independent as n ↑ ∞ for any choice of �. The setting in Carlstein is that of a
strong mixing sequence and other type of increment are also investigated.
The forthcoming section is aimed to derive the asymptotic behaviour for this
estimation.

13.3.3 Law of the large numbers

Lemma 13.2. Let now F : R
D → R be a Lipschitz function. Assume that the

sequence (Xn)n∈Z is stationary and η−weakly dependent then

1
N

N∑

i=1

F (Δi,m) L
2

→N→∞ EF (Δ) , (13.3.8)

if μ = max1≤a≤D
(
E|X(a)

0 |b
) 1

b < ∞,
∞∑

r=0

(r + 1)2η(r)
b−4
b−1 < ∞ for some b > 4.

Proof of lemma 13.2. The proof follows from two steps.

Step 1. Var

(
1
N

N∑

i=1

F (Δi,m)

)

≤ 1
N

N∑

i=1

|Cov(F (Δ1,m), F (Δi,m))| →N→∞ 0.

For this we first write

Fi,m = F (Δi,m) = f(X(i−1)(m+�)+1, . . . , X(i−1)(m+�)+m), with

f(x1, . . . , xm) = F

(
x1 + · · · + xm√

m

)
, xi ∈ R

D,

thus Lip f ≤ LipF/
√
m; this means that covariances will not be directly con-

trolled with weak dependence. We thus have to control

|Cov(F (Δ1,m), F (Δi,m))| , 1 ≤ i ≤ N (13.3.9)

We first consider the variance term obtained with i = 1. If we replace F by
F −F (0) the expression (13.3.9) is unchanged so that we assume that F (0) = 0

thus |F1,m| ≤ LipF
∥
∥
∥

m∑

j=1

Xj

∥
∥
∥
/√

m and

E

∥∥
∥

m∑

j=1

Xj

∥∥
∥

2

≤ E

( D∑

k=1

∣∣
∣
m∑

j=1

X
(k)
j

∣∣
∣
)2

≤ D

D∑

k=1

E

( m∑

j=1

X
(k)
j

)2

.
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With this relation and
∣
∣
∣Cov(X(k)

0 , X
(k)
r )
∣
∣
∣ ≤ 23+ 2

b−1μ
b

b−1 η(r)1−
1

b−1 obtained from
proposition 13.1, we derive:

E|F1,m|2 ≤ 2D(LipF )2
D∑

k=1

m−1∑

r=0

∣∣
∣Cov(X(k)

0 , X(k)
r )
∣∣
∣

≤ 24+ 2
b−1μ

b
b−1D2

m−1∑

r=0

η(r)1−
1

b−1

< ∞, from our assumption.

Now consider F (x) = F (x) ∨ (−M) ∧ M for some M > 0 to be defined later,
we set F i,m = F (Δi,m), then F i,m = f(X(i−1)(m+�)+1, . . . , X(i−1)(m+�)+m),
where f(x1, . . . , xm) = F (x1 + · · · + xm/

√
m) ; thus Lip f ≤ LipF/

√
m and

‖f‖∞ ≤ M and we derive,

|Cov (F1,m, Fi,m)| ≤
∣∣Cov

(
F 1,m, F i,m

)∣∣

+
∣
∣Cov

(
F1,m, Fi,m − F i,m

)∣∣

+
∣
∣Cov

(
F1,m − F 1,m, F i,m

)∣∣

≤
∣
∣Cov

(
F 1,m, F i,m

)∣∣

+ (‖F1,m‖2 + ‖F i,m‖2)‖Fi,m − F i,m‖2

≤
∣∣Cov

(
F 1,m, F i,m

)∣∣+ 2‖F1,m‖2‖Fi,m − F i,m‖2.

Then
∣
∣Cov

(
F 1,m, F i,m

)∣∣ ≤ 2LipFM√
m

η((i− 2)(�+m) + �).

On the other hand we already obtained ‖F1,m‖2 ≤ CD for some constant C > 0
and the following lemma 13.3 with p = 2 and q = 4 implies with corollary 13.1,
‖Δ(k)

i,m‖4
4 ≤ cμ4 for some constant if

∞∑

r=0

(r + 1)2η(r)
b−4
b−1 < ∞, and ‖Fi,m − F i,m‖2 ≤ CD2M−1.

Lemma 13.3. Let q > p ≥ 1 and 1 ≤ i ≤ N then if Δi,m = (Δ(1)
i,m, . . . ,Δ

(D)
i,m ),

‖Fi,m − F i,m‖p ≤ 2Dq/pLip q/pF ·M1−q/p max
1≤k≤D

‖Δ(k)
i,m‖q/pq .

If now q is an even integer, then if
∞∑

r=0

(r + 1)q−2η(r)
b−q
b−1 < ∞ the last moment

is bounded uniformly wrt i and m. Useful cases are given for q = 2 and q = 4.
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Proof of lemma 13.3. We first quote that ‖Fi,m−F i,m‖p ≤ 2‖Fi,m 1|Fi,m|≥M‖p,
then

E|Fi,m|p 1|Fi,m|≥M ≤ Mp−q
E|Fi,m|q

≤ Lip qF ·Mp−q
E|Δi,m|q

≤ DqLip qF ·Mp−q max
1≤k≤D

‖Δ(k)
i,m‖qq

‖Fi,m − F i,m‖p ≤ 2Dq/pLip q/pF ·M1−q/p max
1≤k≤D

‖Δ(k)
i,m‖q/pq .

Now corollary 13.1 implies that max1≤k≤D ‖Δ(k)
i,m‖qq is uniformly bounded. �

End of the proof of lemma 13.2. We thus have proved that there is some constant
C > 0 such that

Var

(
1
N

N∑

i=1

F (Δi,m)

)

≤ C

(
D3M−1 +

M√
m
η(�) +

D2

N

)
,

≤ C′
(
D3/2m−1/4√η(�) +

D2

N

)
.

The last inequality holds for some C′ > 0 with the choiceM=D3/2m1/4η(�)−1/2.

Step 2. We now need to prove that EF (Δ1,m) →m→∞ EF (Δ). We first note
that the condition η(r) = O(r−α) for α > 2 + 1/(b− 2) from Bardet, León and
Doukhan (2005) [11] for CLT to hold is implied by the assumptions in our result.
Consider again the truncated function F but for some M which may vary with
m, |EF (Δ1,m) − EF (Δ)| ≤ A + B + C, where A = E|F (Δ1,m) − F (Δ1,m)|,
B = E|F (Δ1,m) − F (Δ)|, C = E|F (Δ) − F (Δ)|. Now as M → ∞, A ≤
‖F (Δ1,m) − F (Δ1,m)‖2 = O(D2/M) converges to 0 (uniformly wrt m), and
C →M→∞ 0, because E|F (Δ)| < ∞. Now, from the central limit theorem,
B → 0 as m → ∞. Thus we may choose a sequence M = M(m) ↑ ∞ such that
EF (Δ1,m) → EF (Δ).

13.3.4 Central limit theorem

Theorem 13.1. Set Zn =
∑N

i=1 xi,n with xi,n = 1√
N

(F (Δi,m) − EF (Δi,m)).
Assume that the centered and stationary sequence (Xt) satisfies E|X0|b < ∞
for some b > 4 and this is η−weakly dependent with η(r) = O (r−α) for some
α > 2 + 1/(b− 2). Then,

Zn
D→n→∞ N (0,VarF (Δ)),

where N = N(n) is the largest number such that n ≥ N(m+ �) − �, and where
m = m(n) = [mγ ], � = �(n) = [mδ] satisfy α > 1

2/δ + 4
3 (1 − γ)/δ.
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Remark. For α > 2 + 1/(b− 2) one may choose such rates with γ > δ > 0.

Proof. Consider Z ∼ N (0,VarF (Δ)). For f ∈ C3(R,R), we want to control

|Ef(Zn) − f(Z)| ≤ |Ef(Z(n)) − f(Z)| +
N∑

i=1

|Ui|,

with Ui = E (fi(wi,n + xi,n) − fi(wi,n + yi,n)), wi,n =
∑i−1
j=1 xi,n and fi(t) =

f
(
t+
∑n

j=i+1 yi,n

)
, where, as usual, empty sums are set equal to 0 and where

Z(n) =
N∑

i=1

yi,n, yi,n ∼ N (0,Varxi,n), and the Gaussian random variables yi,n

are set as jointly independent and independent of the process (Xt)t∈Z.

Step 1. Lindeberg technique. Notice that ‖f (j)
i ‖∞ ≤ ‖f (j)‖∞ for j = 0, 1, 2, 3

and for each i ≤ N . From a Taylor expansion and from the bound E|yi,n|3 ≤
E|N (0, 1)|3

(
Ex2

i,n

)3/2 ≤ E|N (0, 1)|3E|xi,n|3, there exists a constant c > 0 such
that

N∑

i=1

|Ui| ≤
c√
N

E|Δ1,m|3 +
N∑

i=1

|Cov(f ′
i(wi,n, xi,n)| + 1

2

∣
∣Cov(f ′′

i (wi,n, x2
i,n)
∣
∣ .

As mentioned in the previous section the first term is bounded as O(1/
√
N) if

the moment of order 4 of a sum is suitably controlled. In order to make use
of the weak dependence condition, we have to truncate the random variables
xi,n. Set F (t) = F (t) ∨ (−M) ∧ M for a truncation level M > 0 precisely
set later, then xi,n = 1√

N

(
F (Δi,m) − EF (Δi,m)

)
writes as a function xi,n =

g(X(i−1)(m+�)+1, . . . , X(i−1)(m+�)+n) where

g(t1, . . . , tm) =
1√
N

(
F

(
t1 + · · · + tm√

m

)
− EF (Δi,m)

)
,

thus ‖g‖∞ ≤ 2M/
√
N and Lip g ≤ LipF/

√
Nm. By another hand, we may

write f (j)
i (wi,n) = G

(
(Xs)s≤(i−1)(m+�)−�

)
where G : (RD)(i−1)(m+�) → R satis-

fies ‖G‖∞ ≤ ‖f (j)‖∞, LipG ≤ ‖f (j+1)‖∞LipF/
√
mN and is a function of less

than n variables in R
D.

|Cov(f ′
i(wi,n), xi,n)| ≤ |Cov(f ′

i(wi,n), xi,n)| + 2‖f ′‖∞√
N

‖F (Δ1,m) − F (Δ1,m)‖1

|Cov(f ′
i(wi,n), xi,n)| ≤ c

√
mMη(i−1)(m+�)+� ≤ c

√
mMη�, with η dependence,

‖Fi,m − F i,m‖1 ≤ cD2M−3, from lemma 13.3.
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With M = η(�)−1/4m−1/8N−1/8D1/4 we thus arrive with some constant c > 0
to |Cov(f ′

i(wi,n), xi,n)| ≤ cD1/4m3/8N3/8η(�)3/4 ≤ cD1/4n3/8η(�)3/4. Analo-
gously
∣∣Cov(f ′′

i (wi,n), x2
i,n)
∣∣ ≤

∣∣Cov(f ′′
i (wi,n), x2

i,n)
∣∣+ 2‖f ′′‖∞E|x2

i,n − x2
i,n|

∣
∣Cov(f ′′

i (wi,n), x2
i,n)
∣
∣ ≤ c

(
n

1√
mN

M2

N
+m

M√
mN

√
N

)
η(�),

≤ c
M2√n
N

η(�), with η dependence.

E|x2
i,n − x2

i,n| ≤ 2
N

‖F (Δi,m)‖2‖F (Δi,m) − F (Δi,m)‖2

≤ c
D3

MN
, from lemma 13.3.

Here we choose M = η(�)−1/3n−1/6D to obtain, for some constant c > 0,

∣
∣Cov(f ′′

i (wi,n), x2
i,n)
∣
∣ ≤ c

D2n1/6

N
η(�)1/3.

We thus have proved that

N∑

i=1

|Ui| ≤ c

(
ND1/4n3/8η(�)3/4 +D2n1/6η(�)1/3 +

1√
N

)
.

Now consider m(n) = [nγ ] and �(n) = [nδ]. Then N(n) ∼ cnβ where β = 1 − γ.
In order that the previous expression converges to 0, we only need

β > 0, α >
1
2δ
, α >

1
2δ

+
4(1 − γ)

3δ
, δ < γ.

To conclude, this is enough to choose δ < γ, such that those relations hold. If δ
and γ are both close enough to 1, α > 2 + 1/(b− 2) implies those inequalities.

Step 2. Gaussian approximation. To conclude we still need to bound the ex-
pression |E(f(Z(n)) − f((Z))|. For this set Z = σN and Z(n) = σmN for some
standard Gaussian random variable N and σ2

m = VarF (Δ1,m), σ2 = VarF (Δ).
Then

|E(f(Z(n)) − f((Z))| ≤ ‖f ′′‖∞|σ − σm|2 ≤ ‖f ′′‖∞
σ

|σ2 − σ2
m|.

We need to prove that EF 2(Δ1,m) →m→∞ EF 2(Δ) and we use step 2 in the
proof of lemma 13.2. We first note that the condition η(r) = O(r−α) with
α > 2 + 1/(b− 2) from Bardet, León and Doukhan (2005) [11] implies the CLT.
We consider the truncated function F for some M which may vary with m,

|EF 2(Δ1,m) − EF 2(Δ)| ≤ A+B + C,
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where we set A = E|F 2(Δ1,m)−F 2
(Δ1,m)|, B = E|F 2

(Δ1,m)−F 2
(Δ)|, and C =

E|F 2
(Δ)−F 2(Δ)|. Now A ≤ 2‖F 2(Δ1,m)‖2‖F (Δ1,m)−F (Δ1,m)‖2 = O(D2/M)

(as M → ∞) converges to 0 (uniformly wrt m), and C →M→∞ 0 because
E|F 2(Δ)| < ∞. From the central limit theorem, B → 0 as m → ∞. Thus we
may choose a sequence M = M(m) ↑ ∞ such that EF 2(Δ1,m) → EF 2(Δ).

13.3.5 A non centered variant

An alternative more attractive result involves

Tn =
N∑

i=1

ti,n, where ti,n =
1√
N

(F (Δi,m) − EF (Δ)) .

A central limit theorem for this non centered quantity looks much more conve-
nient to consider the estimation of the parameter EF (Δ). Such results are not
considered by Peligrad & Shao (1995) [142]. In order to derive them one still
uses the Lindeberg technique with blocks. Hence, for some bounded and C3

function f we bound again:

|E(f(Tn) − f(Z))| ≤ |E(f(Tn) − f(Zn))| + |E(f(Zn) − f(Z))|
≤

√
N‖f ′‖∞ |EF (Δ1,m) − EF (Δ)| + |E(f(Zn) − f(Z))|

with Z ∼ N (0,VarF (Δ)). This means that the previous convergence relies
on the decay rate of the expression |EF (Δ1,m) − EF (Δ)|; as stressed in the
forthcoming remark, this is O

(
1
m

)
if F (x) = (x′a)2 and the previous quantity

tends to zero under the assumption: limn→∞N/m2 = 0.

Examples of functions F

• Case D = 1. In this case for F such that
∫

|F ′(x)|/(1 + x2) dx < ∞,
Petrov (1996) lemma 5.4 page 152 [144] implies

|EF (Δ1,m) − EF (Δ)| ≤ c(vn + δ)
∫ |F ′(x)|

1 + x2
dx

with vm = supx∈R
|P(Δ1,m ≤ x) − P(Δ ≤ x)| = O

(
m−λ) for some λ < 1

8

given in Bardet, Doukhan and León (2005) [11] and δ =
∣∣EΔ2

1,m − EΔ2
∣∣ =

O
(

1
m

)
. This implies that the cases F (x) = |x|β for some β ≤ 2 is also

obtained if, now, limn→∞N/m2λ = 0; Peligrad and Shao (1995) [142]
consider the special case β = 1. Here λ → 1

8 as a, b → ∞ if η(r) = O(r−a)
and E|X0|b < ∞.

• Case D = 1. If now F (x) = xp then theorem 4.6 provides a bound
O(1/m) for each integer p which resembles the Rosenthal inequality in
the independent case (see Hall & Heyde, 1980 [100]).
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• Case D > 1. The special case F (x) = (x′a)2, for some a ∈ R
D is the

simplest multi-dimensional one. In this case, indeed setting ξt = X ′
ta, we

still assume Eξt = 0 and one may write

EF (Δ1,m) =
∑

|s|<m

(
1 − |s|

m

)
Eξ0ξs, EF (Δ) =

∞∑

s=−∞
Eξ0ξs,

so that EF (Δ) − EF (Δ1,m) =
1
m

∑

|s|<m
|s|Eξ0ξs +

∑

|s|≥m
Eξ0ξs

=
1
m

∞∑

s=−∞
|s|Eξ0ξs +

∑

|s|≥m

(
1 − |s|

m

)
Eξ0ξs,

thus
∣
∣
∣
∣
∣
EF (Δ) − EF (Δ1,m) − 1

m

∞∑

s=−∞
|s|Eξ0ξs

∣
∣
∣
∣
∣

≤
∑

|s|≥m
|Eξ0ξs| . (13.3.10)

Using proposition 13.1 now yields if a = (a(1), . . . , a(D)),

|Eξ0ξs| ≤ D‖a‖2cX,2(s) ≤ 2
3b−1
b−1 D‖a‖2μ

b
b−1 η(s)1−

1
b−1 .

This previous bound (13.3.10) is thus O
(
D‖a‖2

∑

s≥m
η(s)1−

1
b−1

)
.

For fixed D this bound has order o(m−1) if
∞∑

s=1

sη(s)1−
1

b−1 < ∞, and thus

EF (Δ) = EF (Δ1,m) +
1
m

∞∑

s=−∞
|s|Eξ0ξs + o

(
1
m

)
.

Remark. The previous results given under η weak dependence will be ex-
tended in forthcoming papers under κ and λ-weak dependence.
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[108] Horváth, L., Shao, Q.M. (1999)Limit theorems for quadratic forms with applica-
tions to Whittle’s estimate. Ann. Appl. Probab. 9, No.1, 146-187.

[109] Hsu, P. L., Robbins, H. (1947) Complete convergence and the strong law of large
numbers. Proc. Nat. Acad. Sci. 33, 25-31.

[110] Ibragimov, I. A. (1962) Some limit theorems for stationary processes. Theory
Probab. Appl. 7, 349-382.



BIBLIOGRAPHY 311

[111] Kallenberg, O. (1997) Foundations of Modern Probability. Springer-Verlag, New
York.

[112] Kolmogorov, A. N., Rozanov, Y. A. (1960) On the strong mixing conditions for
stationary Gaussian sequences. Th. Probab. Appl. 5, 204-207.
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moment, 201

(2 + δ)-order, 70
Rosenthal, 79, 95, 126, 130, 131, 138,

139, 227, 237, 251
variance, 254

interacting particle systems, 56
configuration, 56
Feller semigroup, 56, 57
infinitesimal generator, 56
smooth function, 57

invariance principle
conditional, 205
Donsker, 200
strong, 215
weak, 199

iterated random function, 33

kernel
function, 249
de la Vallée-Poussin, 257, 262
Dirichlet, 261, 262
Fejer, 262, 276
wavelet, 263

law of the iterated logarithm, 213
functional, 215

linear process
dependent innovations, 269
non-causal, 266

martingale difference, 6
measure (signed), 11

mixing, 4, 8
absolute regularity, 4
maximal correlation, 4
strong, 4, 215
uniform, 4, 215

mixingale, 6, 140
model

ARCH process, 36, 43
ARCH(∞), 43
autoregressive process, 36
bilinear, 48
GARCH(p, q), 43
infinite memory, 64
integer valued, 61
LARCH(∞) process, 42

bilinear, 42
random field, 62

Markov chain, 33
autoregressive, 36
branching, 37

moment
centered, 85
cumulant, 85, 92

sum, 91

ODE method, 135
orthogonality, 2, 3, 7

periodogram, 267, 269, 270
integrated, 270
matrix, 276

random field, 11, 62, 200, 236
relative compactness, 205, 208

spectral density, 265, 268, 270, 274
matrix, 275

Steutel-van Harn operator, 61

tail function, 103
tightness, 98, 200, 205, 209, 224, 231, 232
total variation, 11

unconditional system, 258


