


Drug Resistance in Cancer
Mechanisms and Models

Drug resistance in cancer, whereby a proportion of cancer cells evades
chemotherapy, poses a profound and continuing challenge for its effec-
tive treatment. The principles underlying the biological mechanisms
behind this phenomenon are clearly explained in this volume.
However, a deeper understanding of drug resistance requires a quanti-
tative appreciation of the dynamic forces which shape tumour growth,
including spontaneous mutation and selection processes. The authors
seek to explain and to simplify these complex mechanisms, and to place
them in a clinical context.

Clearly explained mathematical models are used to illustrate the bio-
logical principles and provide an insight into tumour development and
the effectiveness and limitations of drug treatment. The book is suitable
for those with a non-mathematical background and aims to enhance the
effectiveness of cancer therapy. This is the firrt book to provide such an
integrated account in a form accessible to the average doctor and scien-
tist.
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Preface

Drug resistance — the phenomenon whereby malignant tumours lose
their responsiveness to therapeutic agents — is recognized as being the
major obstacle to be overcome during the systemic therapy of cancer. In
the 1980s and early 1990s an enormous amount of information was
developed concerning the molecular mechanisms in the cell that can
lead to resistance. In addition, these studies have provided insights into
why resistance development is such a common property of cancer cells
compared with normal cells.

We have been particularly interested in the processes that underlie
the evolution of drug resistance within malignant cell populations and in
the mathematical and biological models that have been developed to
describe these processes. These models provide a greater intuitive
understanding of drug resistance as well as providing insights into the
more effective use of our available therapeutic agents.

Mathematical relationships in models may tell us little about specific
mechanisms involved in various processes but they are often highly
generalizable in terms of their inferences and usually lead to testable
hypotheses.

Since we are concerned in this book with quantitative and mathema-
tical models, any review of our own and related studies has to include
some of the mathematics involved. The authors are aware of the reaction
that is likely to engender in many readers (clinicians and biologists in
particular) and the advice that was given to Professor Hawking (‘Each
equation in a book decreases its sales by half)' as well as the assess-
ment of the schoolboy diarist and commentator, Nigel Molesworth (All
maths is friteful and mean 0, unless you are a grate brane’)*. We have

THawking, S.W. (1988). A Brief History of Time, p. vi. Bantam, Toronto.
Willans, G. and Searle, R. (1958). The Compleet Molesworth. Parrish, London.

vii



viii Preface

accordingly attempted to keep the mathematical portions of the text as
straightforward as possible, with largely algebraic relationshps discussed
and only minimal amounts of calculus. We have avoided making refer-
ence to more rigorous developments utilizing techniques such as prob-
ability-generating functions and probability vectors, which will probably
be inaccessible to most readers.

The mathematical relationships are accompanied by textual descrip-
tions of the concepts being studied and we hope that this will aid in the
development of an intuitive understanding of material.

JHG/AJC



The biological basis of cancer and the
problem of drug resistance

I.I Introduction

The phenomenon of resistance to environmental toxins has probably
been present ever since life first evolved on earth. Any early living
organism that happened to produce chemicals that were toxic to its
competitors would have had a significant survival advantage in the
struggle for existence. Competing species that failed to evolve a satisfac-
tory protective mechanism against these toxins would have become
extinct, but those that were able to circumvent successfully the toxins
produced by other organisms would have been able to survive. Over the
billions of years that life has evolved, organisms have developed an
immense variety of chemical weapons against competitors and preda-
tors, who have in turn evolved mechanisms to permit their own survival.

The development of antibiotics and other chemical compounds for
the treatment of infectious disease has been one of the triumphs of 20th
century medicine. However, it is not clear at this point whether the gains
made against many pathogenic organisms can be maintained. Strains of
disease-producing bacteria that are resistant to most or even all of the
available therapeutic agents are being increasingly encountered. The lay
press is filled with stories about ‘super bugs’ that have ‘learned’ to over-
come antibjotics. These popular accounts somehow manage to convey
the picture of bacteria sitting down around a conference table and con-
sciously planning their battle strategy against human beings. As if deal-
ing with pathogenic microorganisms was not enough, the human race
also has to contend with the evolution of its own aberrant cells, in the
form of cancer, becoming resistant to the agents that are available for
systemic treatment.

The underlying theme of this book is that there is a common thread to
all of these problems. Namely, the capacity of all living organisms to
produce genetically diverse individuals that differ in their ability to deal
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2 Drug resistance in cancer

with various environmental insults. Increased capacity to deal with one
type of insult may be associated with a diminished capacity to deal with
others. Whether the net result is advantageous to the individual will
depend on the nature of the environment that is imposing the selection
pressure. In the case of pathogenic bacteria, the so-called ‘super bugs’
are probably not super at all but may well be less able to compete with
their antibiotic-sensitive counterparts in the normal (i.e. relatively
antibiotic-free) environment.

The development of chemical agents to treat cancer in the period
since the Second World War has demonstrated that, firstly, only a pro-
portion of types and individual cases of cancer can be considered highly
sensitive to chemotherapeutic intervention and, secondly, virtually all
types of cancer can evolve into a drug-resistant state.

It might be said that there are two broad viewpoints as to which are
the most important determining factors in whether a malignant tumour
will respond satisfactorily to drug treatment. The first viewpoint is basic-
ally that the sensitivity to drug treatment of a tumour results from a
complex set of interacting phenomena. These include factors such as
the pharmacology of the administered drugs and various attributes of the
tumour itself and of the host organism. These factors would include the
size and location of the tumour as well as its blood supply and growth
rate. Other considerations would include the immune status of the host
and the tolerance of the normal cells to the toxicity of the chemotherapy.
This rather all-encompassing theory, which we might call ‘epigenetic’, is
probably held by the majority of clinical oncologists and, in so far as it is
based on valid measurements and reasonable assumptions, cannot be
considered ‘wrong’ in any strict operational sense. We are using the term
‘epigenetic’ here in its rather older meaning of heritable adaptive
changes in an organism that do not involve any actual alterations in
DNA sequence or chromosomal configuration. Modern usage also
tends to use epigenetic when describing alterations in DNA expression
associated with changes with DNA methylation (see Chapter 8). The
pragmatic question, however, is whether consideration of so many com-
plex and interacting factors can readily yield practical therapeutic solu-
tions.

A second viewpoint, to which the authors adhere, is that the primary
basis for treatment resistance in cancer relates to the genetic diversity of
the cancer cell population, which is, in turn, driven by a continuous
series of mutations in a genetically unstable population. This so-called
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‘genetic’ viewpoint is not really inconsistent with the epigenetic one, and
the converse is also true. The question again comes down to certain
pragmatic issues. Which of the myriad processes that appear to be oper-
ating within a cancer cell population are most likely to be responsible for
therapeutic resistance and which of these are most likely to be vulner-
able to effective intervention?

.2 The beginnings of cancer chemotherapy

The first drugs that were found to have a consistent therapeutic effect
against disseminated cancer were introduced into clinical practice in the
1940s. The studies by Gilman and colleagues in the USA utilizing a war
gas derivative called nitrogen mustard represented the first time that an
organic chemical was shown to have an unambiguous therapeutic effect
against at least one type of cancer.

The patient treated in these studies had an advanced malignant lym-
phoma and experienced significant regression of disease after the first
treatment. Because of the toxicity associated with the treatment, the
second course of therapy was given at a reduced dose with an associated
lesser therapeutic effect. By the time the third treatment was given, the
tumour no longer responded to the chemotherapeutic agent. This first
systematic effort to utilize chemical anticancer compounds not only
demonstrated the capacity of the agents to produce a major effect against
the tumour but also was associated with the first demonstration of clinical
resistance occurring during treatment. About the same time as these
studies, Haddow in England reported on the antitumour properties of
the drug urethane, which was shown to have some beneficial effects in
chronic myelogenous leukaemia and myeloma.

Shortly after the above studies were reported, Farber in Boston
utilized the folic acid antagonist aminopterin to treat acute childhood
leukaemia. The decision to use this drug was based in part on the
observation that the use of the vitamin folic acid appeared actually to
aggravate the course of the disease, suggesting that blocking folic acid
metabolism might be beneficial. In a number of these patients treated
with aminopterin, significant clinical and haematological improvement
was noted. Unfortunately, within a short time of discontinuance of the
treatment the bone marrow again reverted to a leukaemic state. Repeat
applications of the chemotherapy tended to produce only short-lived
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responses followed ultimately by complete refractoriness to further
therapy.

Reading the literature of the time, it is apparent that clinicians did not
have a clear picture of what was actually occurring to the patients’
disease under the impact of chemotherapy. Although there was aware-
ness that cancer cells were being killed off or dying, there was also the
impression that the antitumour agent was in some way correcting 2
metabolic abnormality in the cancer cells and temporarily restoring the
marrow to normal function. The analogy with megaloblastic anaemia
being treated with vitamin B, was thought to be relevant. It would
take a number of years of experimental study to delineate better the
processes that occurred when malignancies were being treated by anti-
cancer compounds. As will be described below, it was not until the early
1960s that a really useful model of cancer chemotherapy came to be
developed.

These early examples that it was possible to produce significant regres-
sions of certain types of cancer with a vanety of pharmacological agents
served to generate great optimism that successful treatment of metastatic
cancer was a realistic goal. It is apparent now, however, that despite more
than half a century of determined effort many obstacles remain to achiev-
ing therapeutic results comparable to those accomplished in the treatment
of bacterial infection. There have been some gratifying advances made in
the therapy of 2 number of specific types of malignancy, particularly those
of the paediatric age group as well as germ cell tumours and malignant
lymphomas, but the sober fact remains that many of the malignancies of
middle and older life remain incurable once they have extended beyond
the point where local forms of therapy can be applied.

In this text, we will explore some of the general processes that appear
to underlie the cancer cell’s capacity to display resistance to virtually all
of the therapeutic agents that may be directed against it. We will review
a number of the theories that have been put forward to explain this
phenomenon and will, in particular, give emphasis to the role that heri-
table genetic changes (mutations) in the individual cells may have in
contributing to resistance.

.3 The genetic origins of cancer

Since the 1980s, an enormous amount of information has been gener-
ated regarding the molecular changes that occur when a normal cell is
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transformed into a malignant one. A comprehensive biological model for
the origin of cancer is emerging and it is becoming clearer why the
development of drug resistance is such a fundamental component of
the behaviour of malignant cell populations.

Cancer can be defined as a disease arising when a single cell, through
changes in the expression of its genetic material, acquires the property of
excess proliferation over that which is required for maintenance of phys-
iological cell numbers. Associated with this change are progressive losses
of normal function and the acquisition of properties such as invasiveness,
whereby the cancer cells infiltrate into the surrounding normal tissues,
and metastasis, where the cancer cell is able to enter the systemic circu-
lation and set up sites of secondary growth in distant regions of the body.
Although small numbers of cancer cells will have no ill effects on the
patient, the relentless increase in the size of the malignant population will
cause progressive dysfunction until death results. With the exception of
the very rare instances when cancer spontaneously regresses, a malig-
nancy is invariably fatal in the absence of effective treatment .

Many of the genetic changes that result in the development and
progression of cancer appear to result from mutations, which may be
defined as heritable alterations in the cell’s genetic information. The
heritable nature of mutations is a key factor in the production of cancer,
and mutations are to be distinguished from changes in cell function that
are not heritable and hence are not passed on from one cell generation
to the next.

14 Mutations
Mutations may be considered as falling into two main broad categories:

1. Genetic mutations. This term refers to changes in the sequence of
base pairs in the DNA molecule itself. This can affect the structural
gene, resulting in an abnormal protein, or can affect the DNA
sequences that control gene expression. Examples would include
point, frameshift and missense mutations.

2. Chromosomal mutations. These can be defined as ‘any structural
change involving the gain, loss or relocation of chromosome seg-
ments’ (German, 1983) and may be microscopic or submicroscopic.
They may include deletions, duplications and inversions of short
segments of chromosomes. Whole chromosomes may be involved,
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which will result in gain or loss in the total number of chromosomes
in the cell.

A type of chromosomal mutation common in cancer is gene amplifi-
cation whereby the number of copies of a gene are increased, often in
an expanded region of the chromosome that is called a homogeneously
staining region (HSR). Related to HSRs are small chromosomal frag-
ments called double minutes (DMs), which may contain amplified
gene segments. Translocation of one part of a chromosome to another
entirely different chromosome is frequently seen in various cancers,
particularly those of the lymphatic or haematopoietic systems. This
may result in continuous overproduction of a growth-controlling pro-
tein. Genetic mutations are seen in both neoplastic and nonneoplastic
cells, but chromosomal mutations are rare in nonneoplastic cells.

Germ-line mutations refer to mutations occurring within the sexual
cells (gametes) of a multicellular organism and which, therefore, can be
passed on to the cells of that organism’s progeny. Somatic mutations are
those that occur in the nonsexual cells of the body and since they do not
affect the germ-line they cannot be inherited by offspring. Although
some cancers are associated with germ-line mutations, the great majority
appear to arise through mutations in somatic cells.

Spontaneous mutations are those that occur with a certain low fre-
quency in the germ and somatic cells and for which there are no obvious
initiating factors. Induced mutations are associated with a higher fre-
quency than spontaneous mutations and can be brought about through
the effect of a variety of mutagenic agents (chemicals, ionizing radiation).
A key element with respect to describing mutations is that whatever their
inherent frequency they are random in nature; that is, whether the muta-
tion occurs or not is inherently unpredictable even if the probability of it
occurring can be estimated. (Spontaneous mutations are to be distin-
guished from directed mutations, which imply that an environmental
agent induces a mutation that is specific to itself in a Lamarckian sense
as opposed to a Darwinian one. This topic will be discussed in detail in
Chapters 4 and 8.) It should be remembered that the rarity of an event
occurring is not evidence that it is random. Lunar eclipses, triple conjunc-
tions of the planets, etc. are infrequent events, but their occurrence can
be predicted with great accuracy. Predictable phenomena are referred to
as deterministic. If we had a die with six dots on five of its sides and one
dot on the remaining side then the number six would come up with a
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high frequency (five out of six tosses), but it would still not be possible to
predict what number would arise at the next toss. We can only estimate
the probability of it being six or one. Random outcomes are called sto-
chastic events, and a series of stochastic events is called a stochastic
process. Mutations are examples of stochastic events and the number
of mutations in a growing population is a stochastic process.

We have mentioned that spontaneous mutations are rare events.
Typically we find the probability of the change in any one gene occur-
ring is in the order of 1 in 10° to 1 in 10®. That is, we would say that the
mutation rate or probability is 10°t0 1078 per cell generation. Mutation
Jrequency is usually meant in the sense of the frequency of occurrence
of mutants in a population.

An interesting question is why do the mutation rates in human cells
(and mammalian systems generally) assume the value that they do. A
possible explanation for this has been suggested by the studies of
Manfred Eigen (Eigen, 1992), who has examined the processes that
may have been involved in the formation of life on earth. Eigen has
looked at the mutation rates that occur within viruses and has noted a
relationship between the observed rate and the information content of
the viruses’ genetic material. This requires determining just how much
information is present within the genetic code of an organism.

In 1948, Claude Shannon working at the Bell laboratories in the USA
developed a mathematical theory for describing the information content
of a message and for how the message could be coded and decoded
during transmission. Although Shannon was initially looking at the pro-
blem of electronic transmission of language messages, it was apparent
that the mathematical formulation, known as information theory, could
be applied to a great range of phenomena in which a coded message of
any kind undergoes transmission. In Shannon’s approach, the informa-
tion content of a message was determined by the number of yes/no
answers that would be required to specify exactly the sequence of
designated symbols in a message of any arbitrary length. It is convenient
to express the number of yes/no answers in logarithms to the base 2.

We start with a number of symbols (letters in the case of a human
language, nucleotide bases in the case of DNA) and a message of N
symbols in length. In the case of human DNA we have four symbols
(adenine, guanine, cytosine and thymidine) and a message that contains
approximately 3 x 10° base pairs. The information content is
4331019 = p2x3x100%. o this the log, = 6 x 10°, which is defined as
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the information content in binary digits (bits) (this assumes that there is
little redundancy in the code, i.e. that a single base-pair change can alter
the meaning of the message). Eigen found that the mutation rate in
viruses was inversly proportional to the information content of the viral
nucleic acid, i.e. 1/N. He hypothesized that the tolerable rate for making
mistakes per transmission of a message of N length must be no more than
1/Nwhere Nis the information content in bits. Eigen refers to the value of
1/N as the error threshold. The term error threshold as used here is
different in meaning from the term usually employed in classical informa-
tion theory. It might be better described as the ‘biological error threshold’
above which the error probability will produce excessive numbers of
genetic mistakes. If the error rate for duplicating the message is equal
to or greater than 1/N then there would be at least one mistake per
duplication, which would result in progressive degradation of the mes-
sage content. Error rates higher than 1/Nwould result in what Eigen calls
an ‘error catastrophe’, which would soon render the organism nonviable.

It has been estimated that the frequency of single base-pair changes
in human DNA is in the order of 107" per cell generation. Since the
message for a typical protein contains between 10> and 10* base pairs,
we can see that the error threshold for a typical protein turns out to be
one mistake per 10° to 107 duplications. This value is approximately
equal to the average mutation rate observed in human systems. It sug-
gests, therefore, that nature normally operates the mutation rate at just
below the error threshold for the system. This permits just enough
genetic variation to give the species adaptability without allowing the
genetic message to become seriously degraded.

.5 Oncogenes and tumour suppressor genes

There are two main types of gene that have critical importance in the
control of cell division and in the development of cancer. The first

A mutation of 107> or 107 represents the average for the system. There are a few places in
the genome where mutation rates significantly higher than this occur. One such location is
where the variable region of the immunoglobulin molecule is coded. Mutation rates in the
order of 107 are observed here. As the generation of antibody diversity has a powerful
survival value, evolution has favoured high mutation rates in this discrete area.

Certain types of chromosomal mutation (gene amplification), which are seen in tumour
cells but not normal cells, have mutation rates as high as 1072 per cell generation. Not all
genes appear to be susceptible to being amplified in this manner as the effect is seen only
at certain points in the chromosomes (areas of higher instability?). Certain oncogenes and
some of the genes that mediate drug resistance are frequently amplified in cancer cells.
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group of genes, oncogenes, appear to be primarily involved in provid-
ing positive growth signals to the cell in response to a variety of
internal and external cellular stimuli. Many of the oncogenes are key
components of the pathways from the cell surface to the nucleus.
Many growth factors and certain hormones utilize these pathways for
providing stimuli to the cell nucleus, a process described as signal
transduction. The normally functioning oncogene (‘cancer gene’) is
usually referred to as a proto-oncogene, suggesting that it has the
capacity, after mutation, of functioning as a cancer-inducing gene.
These names are embedded in the literature now, but they are rather
misleading, suggesting that a malign providence placed the genes there
for the express purpose of producing cancer. The oncogenes are, in
fact, vitally important growth regulatory genes whose significance is
attested by the fact that they have been conserved through the process
of evolution from protozoa to humans. We do not refer to the kidneys
as ‘the uraemia-producing organs’ and the term ‘oncogene’ does carry
a sinister connotation.

The other major group of genes involved in the control of cell
division is usually called anti-oncogenes or tumour suppressor
genes. These genes basically function antagonistically to the onco-
genes, producing a brake to the proliferative impetus they provide.
There may be as many as 50-100 oncogenes and anti-oncogenes
acting in concert to regulate the movement of cells through the cell
cycle (q.v.). Some genes are more important in particular tissues than
others, and some appear to be more frequently involved in neoplastic
transformation.

In addition to regulating events in the cell cycle, some of the tumour
suppressor genes play a key role in causing cells to undergo differentia-
tion or actual dissolution. Increasingly, the view is being expressed by
many authors that in multicell organisms cells are programmed to die off
unless they receive a positive signal to continue dividing. Loss of the
ability to undergo cell death under the appropriate conditions, com-
bined with an abnormal growth signal, may constitute the fundamental
basis of the cancerous state.

.6 Genetic instability and cancer

In 1976 Nowell postulated that cancers were ‘genetically unstable’ com-
pared with normal cells and over time would accumulate mutations that
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would result in cells with progressively more abnormal properties. This
would include the capacity to invade surrounding tissues and to estab-
lish distant secondary colonies. Any mutation that conferred a slight
growth advantage would be favoured and retention of normal function
would not necessarily be advantageous.

Abundant evidence has tended to confirm this model of cancer devel-
opment, with many of the molecular events associated with neoplastic
transformation being identified. As suggested by Loeb (1991) it would
appear that the first step in carcinogenesis may be a mutation that results
in a so-called mutator phenotype. This phenotype is characterized by a
mutation in one of the genes that is responsible for the fidelity of genetic
replication. This will render the cell prone to further mutations, which
can result in progressive loss of constraints on cell proliferation and
sensitivity to normal growth-regulating signals. The result will be a
rapidly expanding population of cells in which progressively more
malignant phenotypes will be produced. This mutation cascade will
typically occur as a series of somatic mutations in cells that still have
some stem cell capacity (see Chapter 2). If the initial mutation occurs in
the individual’s germ cells, then the progeny of that individual will have
the mutation present in all of their somatic cells and will be at great risk
for subsequent development of cancer.

One of the important genetic elements that influences the probability
of cancer developing is the p53 gene, one of the tumour suppressor
genes. The protein produced by this gene regulates the movement of
cells through the cell cycle and initiates a type of check programme for
abnormalities in DNA structure. Errors in the genetic code are identified
and corrected through activation of one of the DNA repair systems.

If there has been more damage to the integrity of the DNA than can
be readily repaired, the p53 gene signals a cell self-destruction pro-
gramme to commence. This is known as programmed cell death or
apoptosis (Chapter 3). The gene p53 functions either to repair mutated
DNA or, if the damage is too severe, to destroy the cell rather than have
it retained within the system. Mutated cells are thus culled from the
population so that the stability of the genetic message in the normal
cells is maintained. A mutation affecting p53 will thus greatly increase
the cell’s propensity for undergoing further mutations. Although there
are two gene copies (alleles) for p53 normally present, mutation in one
of the alleles can result in loss of p53 function (a so-called dominant-
negative mutation) through the mutant p53 protein binding to the
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normal p53 and preventing it from functioning. It has been estimated
that more than 50% of all instances of human cancer are associated with
mutations in p53, suggesting its vital role in normal growth and differ-
entiation. Inheritance of a defective p5S3 gene results in a genetic dis-
order (Li-Fraumeni syndrome) in which there is a greatly increased
incidence of a variety of cancers, particularly breast cancer. Although
defective p53 on its own will not necessarily result in malignancy, when
combined with mutations altering the function of one of the positive
growth signalling genes (cellular oncogene), the cell will have gone a
long distance towards acquiring a malignant phenotype. There are other
genes that may function somewhat similarly to that for p53, but p53
appears to be particularly important with respect to neoplastic transfor-
mation.

Although spontaneous or induced mutations appear to be involved
with most forms of human cancer, certain viruses are strongly suggested
as playing a role in the aetiology of certain types of malignancy. In many
animal species, viruses are a common contributing element in cancer
causation (in some species perhaps the most common). In these cases,
the virus may actually insert a mutated oncogene into the cell’s DNA or
insert an abnormal controlling gene adjacent to a normal cellular onco-
gene. The effect is very much as if the cellular gene itself had undergone
a mutation. At least three common human viruses are thought to be
important in cancer causation. These are the human papilloma virus
(HPV) in cervical cancer, Epstein—Barr virus (EBV) in nasopharyngeal
cancer and in Burkitt’s lymphoma and the hepatitis B virus (HBV) in
hepatocellular carcinoma. These three viruses are all DNA viruses and it
has been found that they all are capable of producing a protein that
binds to and inactivates the p53 protein or opposes p53 function indir-
ectly. This clearly could play a significant role in generating malignancy.
However, viruses have not been implicated in the majority of types of
human cancer.

It is worthwhile pointing out that while cancer is considered a com-
mon disease in our society, it is in fact the result of an extremely rare
event. As it is, about 3/4 of our population do not develop clinical
malignancy in their lifetime. It has been estimated that the cells in a
human being will, over the course of a lifetime, produce an aggregate
total one quintillion (10*%) divisions. As we will see, it only takes one of
these progressing to become malignant to produce the clinical condition
of cancer. In contrast, all organs of the body can tolerate the deaths of
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millions (even billions) of cells and still maintain vital function. It is
apparent that complex multicellular organisms are constructed in such
a way as to control cell proliferation rigorously, and, as has been said,
‘the default mode of the cell is to die out’.

How many different types of cancer are there likely to be? Traditional
histopathological classifications generally yield about 200—400 varieties.
The information being gained regarding the molecular genotypes that
may exist suggests a far greater number. We can calculate a very rough
estimate (which may be out by many orders of magnitude) by simply
calculating the permutations that may exist with the known or estimated
genetic possibilities. We begin by taking the lower estimate of the num-
ber of oncogenes and anti-oncogenes (50) and assume that they all have
the capacity to contribute to the neoplastic state. Depending on the type
of cancer it seems that between two and ten mutant genes are required
for transformation. If we assume the average is six, then we can estimate
the number of permutations of six that will be present for any six of
these genes. The number of permutations of the oncogenes drawn from
a population of 50 is equal to 50!//40! + 6!. Which is approximately
11 x 10°. However, there appear to be many mutant forms that can
exist for many of the cancer-associated genes. If we assume a low
number (say ten) mutant forms for each gene, then the potential number
of cancer genotypes becomes 1011x10° , a number so staggeringly large as
to defy comprehension. Of course, in reality many genotypes may be
‘forbidden’ in the sense that they are nonviable, and some genetic muta-
tions will occur with much greater frequency than others. Even so, the
potential genetic variety of cancers must be forbiddingly large.

1.7 The relationship between drug resistance and the
neoplastic state

One of the puzzling things about drug resistance is that it almost invari-
ably occurs when dealing with neoplastic cells but it is virtually never
seen with normal cell systems. If anything, the tolerance to chemother-
apy of the normal cell systems often declines with time, possibly owing
to stem cell depletion. About the only circumstance where something
resembling drug resistance in normal cells occurs is with regard to hair
follicle cells in patients. Many antineoplastic agents cause varying
degrees of baldness; this is produced by temporary interruptions in
the hair follicle growth that results in a hair shaft that is thinner and
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weaker than normal. When the hair shaft grows above the surface of the
scalp it readily breaks off leaving the patient ‘bald’. Once treatment is
stopped normal hair growth resumes.

Occasionally hair growth will resume in a patient who is still on
chemotherapy, suggesting that the follicles have become resistant to
the drug. Although it is not certain why hair growth commences in
these patients, the phenomenon lacks some of the features that are
seen with drug resistance. For one thing, the renewed hair growth
tends to be uniform over the whole scalp (and not patchy, which
would suggest genetic variance in individual follicle cells) and the bald-
ness will recur if chemotherapy is restarted after a time off therapy. Since
this appears to be a type of variable response that is characterized by
individual patients, it may simply suggest that some people are consti-
tutively less sensitive to the hair follicle toxicity produced by chemother-
apy.

Immunosuppressive drugs (some of which are antineoplastic agents
as well) can be given to suppress the growth of normal immune cells for,
in some instances, many years without resistance appearing. Certain
immunological diseases (such as Wegener’s granulomatosis and peri-
arteritis nodosa) that appear to be in the borderland between the normal
state and malignancy will display resistance to treatment but generally
only after extended periods of treatment. It is apparent, therefore, that
the acquisition of drug resistance can be considered to be one of the
properties of cancer along with the more usually recognized properties
of unrestrained growth, invasion and metastasis.

The relationship between drug resistance and malignancy is partly
owing to the fact that permitting mutations to accumulate in dividing
cells will increase the probability that there will be mutations directly
affecting the proteins involved with mediating drug action. Both cancer
(unrestrained growth) and drug resistance (tolerance of genetic damage,
molecular heterogeneity) are seen to be consequences of a primary
genetic instability.

1.8 Methods for measuring drug response in
experimental systems

There are two usual methods of estimating drug sensitivity. The first of
these involves counting the total number of intact cells in a standard
volume of fluid and comparing this with the number of cells present in
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the same volume of fluid after exposure to a drug. The untreated cells
will increase in number at their own specific growth rate and we can
estimate the drug concentration required to inhibit the treated cells to
50% of the number reached by the unexposed cells after a fixed period
of time (e.g. 24 hours, 48 hours). This concentration is called the ICsq
(concentration of drug required to inhibit cell growth by 50%). As the
cell line becomes more resistant, the ICsy, value will progressively
increase.

The ICso method is technically easy to perform and is reproducible,
but it does not provide direct information as to how many cells are
killed by a particular drug exposure. This type of information is better
obtained from a second technique called dose response curve, in
which a cell population is exposed to a specific concentration x
time factor of drug (¢ x t) (Fig. 1.1). Following drug exposure, the
cells are grown in a semisolid medium in a dispersed state. A known
number of cells are cultured in the dispersed form and the growth of
each viable individual cell can be detected as a discrete colony of
cells. Cells that have survived the drug exposure will continue to
proliferate and if they undergo sufficient sequential divisions to pro-
duce 64 cells or more the cell will be counted as viable. The number
of cells capable of giving rise to colonies is counted for each con-
centration of drug so that a graph of number of colonies versus
increasing dose is constructed.

100
10

0.1
0.01
0.001

0.0001 L1 11 1
0 1 2 3 45 6 7 8
Dose (in arbitrary units)

Percentage surviving fraction

Fig. 1.1. Hypothetical dose-response curve with percentage surviving
colonies plotted against increasing dose. Each measured point on the curve
shows the mean and standard duration of multiple replicate assays. There is
often a small ‘shoulder’ in the early part of the curve indicating a subtoxic
dose of drug at the lowest dose used.
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Not all of the intact and apparently viable cells present in the tumour
or cell culture will have the capacity to undergo several sequential divi-
sions. Therefore, it is necessary to estimate the colony-forming efficiency
of the untreated cells to compare with the colony-forming efficiency of
the treated population. A known number of untreated cells are plated
out into culture and the numbers of colonies counted. The ratio of
number of colonies over total number of cells plated times 100% gives
the colony-forming efficiency of the cell population. The value for the
colony-forming efficiency of the untreated cells can be set as equal to
100% and the values for the cells treated at increasing drug concentra-
tion are then plotted on a graph to produce the dose response curve. It is
convenient to represent values for colony-forming efficiency on a loga-
rithmic scale and dose on either a logarithmic or an arithmetic scale.
There are some important advantages to colony-forming assays. If there
are relatively few cells in the target population that are capable of divi-
sion, then it is important to determine this fact to ensure that the treated
populations are scaled against the colony-forming efficiency of the
untreated cells. As well, the test of whether a cell can undergo several
rounds of division is a very stringent one for viability that has special
relevance to cancer chemotherapy.

The problem with colony assays is that they are labour intensive,
require special culture conditions that will permit dispersed cells to
grow and they take usually 7 to 10 days to complete. However, if a
particular tumour cell line is known to have a very high colony-forming
efficiency (50-100%) and if it is found that treated cells undergo rapid
physical dissolution, then simply counting cells directly after drug expo-
sure may vield information similar to that produced by a colony-forming
assay.

19 The log kill law

If the colony-forming efficiency of the untreated cells is (for example)
100% and the total cell population we are examining consists of 10°
cells, we can count the number of colony-forming cells present after a
given dose of drug. We might find that only 1% of the treated cells
survived (10%), which means that 99% of the cells were killed. If a
second dose of drug, the same as the first, is given to the population
of cells when it is at the level of 10% then we would find that again 99%
of the cells are killed resulting in 10* viable cells being left. If the same
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dose of drug is given over a range of numbers of tumour cells, we would
find that the same dose always kills the same fraction of cells but the
absolute number of cells killed will depend on the number of cells
present at the time the treatment was given. In this sense, it does not
become any ‘easier’ to kill smaller numbers of cells.

A 1% survival is equivalent to saying that there was a 0.01 probability
of any individual cell surviving. The negative logarithm of 0.01 is 2, and
this is referred to as the log kill of the drug against the cells and indicates
that the number of viable cells was reduced by two logarithmic decades.
If a larger dose of drug is used and this reduces the probability of cell
survival to 0.0001 then this is described as a four log kill, etc. This is
convenient terminology to use in chemotherapy experiments where it is
usual to observe the killing of a large proportion of the treated malignant
cells.

This relationship between administered dose (D) and cell survival
probability (P is referred to as the log kill law. It can be stated as the
log probability of survival varies with dose or in symbols:

log(P,) = —BD,

where B is the constant of cell killing, a number which will vary for
different drugs and different cell lines; it is the slope of the cell killing
curve.

If the dose of drug is doubled (2D) then the probability of cell survival
is now equal to the square of the probability of survival at dose D, i.e.
PSZ:

—B2D = 2log(P,) = log(P}).

This relationship can be easily understood by simply imagining an
experiment where the initial dose, D, produces a cell survival probability
of 0.01. If a second dose is given immediately after the first (before any
cell regrowth occurs) then the residual population will be reduced by
another two logs (since it is known that the same dose always kills the
same fraction of cells). The final cell survival probability will, therefore,
be 0.01 x 0.01 = 0.0001. = 0.01%

The physical basis for the log kill law was outlined by Wilcox in 1963
(see discussion by Skipper (1980)). The killing of a cell by a drug is
essentially a chemical reaction and, therefore, would be expected to
follow the laws of solution thermodynamics. In any solution of drug
molecules, a small fraction of the molecules will have a much greater
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than average kinetic energy associated with them. It will be these mole-
cules that will be sufficiently energetic to interact with key molecular
targets within a cell. In addition to having sufficient energy, the drug
molecule will also have to be oriented the the right way at the time of
drug—target interaction and there will be varying degrees of chemical
affinity between the drug and target. Therefore, the critical cell killing
interaction is a stochastic event and can be described by probability
theory. We can increase the cell killing effect either by increasing the
concentration of drug molecules (giving a larger dose) or by increasing
the number of molecules that have a greater kinetic energy (by heating
the system). Where there is a direct linear relationship between the
probability of cell killing and the concentration of drug, this is described
as a first-order kinetic reaction.

Virtually all of the standard chemotherapeutic agents start to exert
significant cell killing effects on sensitive tumour cells at concentrations
ranging from 107° to 107 M. It has been estimated that it generally
requires from 10° to 10° drug molecules to gain entry to the cell to
produce lethal damage. This can be contrasted with the properties of
the extraordinarily toxic plant glycoprotein ricin, for which only one to
two molecules per cell is sufficient to produce lethal injury.

.10 Definitions of drug resistance

The terms drug resistance and sensitivity are relative conditions that, to
be meaningful, must be defined with respect to some standard reference
frame. In addition, the drug-resistant state needs to refer to a specific
drug and a particular concentration and duration of exposure to that
drug. Where the resistant cells have been produced by drug exposure
of a wild or sensitive cell line then the degree of resistance of the derived
cells will be referred back to that of the initial sensitive cell population.
The ‘wild’ or parent cell line refers to the dominant phenotype observed
prior to selection by a toxic substance. This will be the cell type best
suited for survival under the initial conditions. It should be borne in
mind that all conditions are selecting, including the initial environment
in which the cancer cell formed. Exposure to a toxic agent changes the
environment and now selects for a different phenotype.

It is relatively easy to define the conditions for resistance in experi-
mental systems. Typically, if we wish to produce a drug-resistant cell line
in a tissue culture system, the initial sensitive cells can be exposed to
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increasing concentrations of drug. Over time, the behaviour of the trea-
ted cell population will begin to change and after initial signs of growth
retardation the tumour cells will become capable of proliferating con-
tinuously in drug concentrations that were initially effective in producing
cell death (Fig. 1.2). When such a cell line is cultured in the absence of
the cytotoxic agent that was used to produce the resistance, it will gen-
erally retain its degree of resistance for an extended period of time. In
some circumstances, however, the cell line will progressively reduce its
degree of resistance and revert back to its initial drug-sensitive state. The
first circumstance where the resistance is maintained for an extended
period is described as a condition of stable resistance; where resistance
is progressively lost, it is unstable resistance. Further it is common to
observe that cells which are resistant to one concentration of a drug may
be sensitive to higher concentrations of the same drug. If a cell is com-
pletely resistant to inhibition by a particular drug concentration we can
then say in mathematical terms that the probability of the cell surviving
exposure to the drug equals 1. This would define a state of complete
resistance. However, if the probability of the cell surviving is less than
one, but greater than that for the wild type then we refer to these states
as being ones of partial resistance.

Log cell number

Time ——M 3

Fig. 1.2. Plots of growth curves of tumour cells in tissue culture. A. Untreated
control cells. B. Cells exposed to continuous concentrations of a cytotoxic
drug. Growth curve initially slows then recovers, becoming parallel to that of
control cells. At this point a drug-resistant line has manifested itself. The
process can then be repeated any arbitrary number of times to produce a
progressively more resistant line.
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To simplify many of the mathematical developments describing drug
resistance it is often convenient to consider a cell’s probability of survival
as being either 1 (complete resistance) or 0 (complete sensitivity). This is
obviously an oversimplification and we can assume that in real cellular
systems there is a tremendous range of cell survival probabilities lying
between the two extremes. It is the average, or mean, cell survival
probability that will tend to define the degree of drug resistance of the
population as a whole.

LIl Estimations of relative drug resistance by dose
response curves

Figure 1.3 shows three theoretical survival curves expressed on a log—
log scale. Curve A represents the curve for the wild-type cells, which are
the most sensitive. Curve B represents a survival curve of an intermedi-
ate-level resistant line and curve C that of a highly resistant population. If
we were only to consider the dose needed to generate the same log kill
in each cell line, we can see that it takes three times the dose to produce
the same five log kill in B compared with A. Using this comparison, line
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Fig. 1.3. Three hypothetical dose response curves (log surviving function
plotted against log dose). A is the mild or sensitive cell line, B is moderately
resistant and C highly resistant. Depending on whether we use as our
measure of resistance the dose required to produce an equivalent log kill in
each cell line or whether we use the dose required to produce (for example)
a five log kill in A and measure that dose in B and C, we will see different
quantitative estimates of the relative resistance of each line (see text).
(Reproduced, from Goldie, JH. and Ling, V. (1992), with the kind permission
of Rodar Publication, Montreal, Canada.)
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B is three times more resistant than A. If instead, we look at the dose
required to produce a five log kill in A and then assess that dose against
B, we observe that only one log kill has been produced. We can, there-
fore, state that by this measure line B is 10000 times more resistant than
A. This degree of difference would translate into a marked effect at the
clinical level and yet might be associated with only small differences in
the biochemical constitution of the two cell types. The difference might,
in fact, be too small to be readily detected by the usual analytic means.
Cell line C is very highly resistant to drug by any standard of measure. It
will require hundreds of times the dose of drug to produce an equivalent
five log kill in line C compared with A. Likewise, the dose that will
produce a five log kill in line A has virtually no effect on C.

Cell lines such as C can be readily produced in in vitro experimental
systems and will probably display marked molecular changes compared
with sensitive cells. However, less-resistant cells such as B may be more
likely to be the type seen clinically.

LI2 Definitions of clinical sensitivity and resistance

When we come to define what constitutes clinical resistance to cancer
chemotherapy, the circumstances are more complex. We generally have
to use gross measurements and markers of tumour presence within the
patient. These include physical and radiological assessments of tumour
size. It may also be possible to include biochemical measurements of
some tumour index substance that is present in the serum and can be
assayed quantitatively.

In principle, a tumour can be considered sensitive to chemotherapy if
the number of tumour cells killed per course of treatment is greater than
the amount of tumour regrowth that occurs prior to the next course of
therapy. We refer to this as the net log kill of the treatment (initial log kill
minus amount of tumour regrowth). In practical terms, however, this net
decrease must be sufficiently great to translate into significant overall
reduction in tumour mass and, therefore, be associated with clinical
benefit.

The usual lowest category of tumour response is designated a partial
response and is defined as a 50% reduction in tumour mass (with no
associated increase in any known site of disease) for at least 1 month’s
duration. A complete response represents the disappearance of all detect-
able signs of malignancy for at least 1 month. Lesser categories of
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response may be noted, such as <50% reduction in tumour mass or
cessation of measurable tumour growth. Although those effects are
usually not considered of sufficient magnitude to constitute useful clin-
ical sensitivity, if they are sustained for a substantial period of time (i.e.
several months) they can represent clinical benefit to the patients. Such
effects are categorized as minor responses or disease stabilization.
These descriptions are obviously phenomenological terms that give
only the crudest impression of what is actually happening within the
tumour. Changes in tumour volume obviously represent the net balance
between cell killing, rate of cell dissolution and cell regrowth and will
tend to underestimate significantly the actual numbers of tumour cells
that are being killed by each application of treatment.

If a complete remission lasts indefinitely with no evidence of tumour
recurrence and with the patient (or animal) living a normal life expec-
tancy, then this can be considered to constitute a clinical cure. The
presumption is that all of the tumour cells have been killed by the
treatment or at least reduced to a low number and are incapable of
growing back to reconstitute the clinical disease.

Clinical resistance is a term that tends to be used somewhat loosely bu.
is usually taken to refer to a progressive increase in tumour mass despite
continued treatment. If a malignancy displays resistance to chemotherapy
right from the outset of treatment, this is usually termed intrinsic resis-
tance, implying an innate resistance property of the cells. If the tumour is
initially sensitive to chemotherapy and then commences regrowth despite
ongoing treatment, then this is referred to as acquired resistance, suggest-
ing the acquisition of new properties by the tumour. Since clinical
response will be dictated, in part, by the initial proportion of resistant
cells, a clear-cut distinction between these two states may not be possible.

I3 Summary and conclusions

We have briefly reviewed the development of cancer chemotherapy,
discussed some of the methods used for measuring anticancer drug
effects in experimental systems and have introduced the concept of
drug resistance. A cancer cell population may display progressive
diminution in drug sensitivity (acquired drug resistance) or may at the
outset exhibit insufficient sensitivity to treatment that tolerated doses of
chemotherapy will be ineffectual in producing clinical benefit (intrinsic
resistance). Following the early pioneering efforts in cancer chemother-
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apy, a major effort was undertaken during the 1960s to understand the
reasons for success or failure in cancer chemotherapy better. The meth-
odologies that were developed to study this problem will be discussed
in the next chapter.
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2

Tumour growth, stem cells and
experimental chemotherapy

2.1 Introduction

Much of what has been learned concerning the properties of cancer cells
has been developed from studies of a variety of cell lines that have been
adapted for growth in tissue culture or in appropriate experimental
animals. A variety of mammalian (chiefly rodent) and human cancer
cell lines have been developed for this purpose. It has to be kept in
mind that the properties of these highly selected experimental systems
may differ from those that one might expect to find occurring in primary
tumours in patients. Despite this caveat, it is apparent that many princi-
ples that have been learned from the experimental systems have been
valuable in the understanding of human malignancy.

Any line of tumour cells that has adapted to growing in tissue culture
or through serial transplantation in animals will have been subject to an
extremely rigorous selection process. Normal (i.e. nonmalignant) fibro-
blasts in tissue culture will die out after they have undergone a number
of sequential cell divisions (approximately 50). This appears to be the
case no matter how carefully the culture conditions are established. This
also appears to be true for many cancer cells in that there appears to be
an upper limit to the number of sequential divisions they will undergo
before becoming senescent and dying. Some tumour cells, however,
become ‘immortalized’ and they will replicate indefinitely in the right
type of environment. Recently, it has been suggested that an important
step in the process whereby cells become immortal is related to the
expression of the enzyme telomerase. Telomeres are repetitive
sequences of DNA that occur at the ends of the chromosome. In normal
somatic cells (but not germ cells or haematopoietic stem cells) the tel-
omeres are progressively shortened after each cell division and this in
some way signals the cell eventually to stop dividing. Telomerase pre-
vents this progressive shortening of the telomere and this confers on the

24



Tumour growth, stem cells and experimental chemotherapy 25

cell the capacity for continuous replication. Telomerase expression may
occur at a late stage in the evolution of a tumour population either iz
vivo or in vitro and it may be these particular cellular phenotypes that
are especially suitable for long-term culture. To date virtually every cell
line that grows continuously in culture has been found positive when
tested for telomerase activity. As telomerase could present a potential
target for anticancer drugs it is currently a field of intensive investigation.

2.2 Growth of tumour cell populations

If cells growing in tissue culture or tumour cells that are inoculated into a
host animal are regularly counted over time, one sees a progressive
increase in cell number. If this increase is measured during the time
before the tissue culture medium becomes exhausted, or before the
transplanted tumour reaches some limiting size, it is noted that the
tumour population will often grow at some nearly constant rate of dou-
bling; that is, it grows at a rate proportional to its size at any instant of
time. This steady proportional growth can be described as the circum-
stance when the logarithm of the increase in cell number per unit time is
constant. Such growth can be described by the formula:

N(t) = N(0)e 2.1)

where N(?) is the number of tumour cells present after an interval of
time, ¢ which can be measured in any arbitrary unit of time (days,
weeks, etc.). N(0) is the number of tumour cells at the start of counting,
e is the base of natural logarithms (2.71828 . . .)! and A is the logarithm
of growth. When plotted on a semilogarithmic graph, the increase in cell
number follows a positive straight line, which results from a constant
growth rate. This is described as logarithmic or exponential growth (Fig.
2.1). The actual slope of the exponential growth curve will be deter-
mined by the proportion of cells in the tumour that are dividing, their
rate of division and the extent to which any spontaneous cell loss or
death is occurring. In the simplest case where 100% of the cells are
proliferating and there is no cell loss, the doubling time of the popula-

1 e can be calculated from the term y,, = 3 (1 + 1/1)" where 3, is the original value and y,

the value after 7 determinations. It represents the value by which an entity will increase ata
compound interest rate when the interest is compounded, not yearly or daily, but at every
instant of time.
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Fig. 2.1. Cell growth with time. A. Exponential or logarithmic growth. The
tumour doubling time is constant (Equation 2.1). B. Gompertzian growth,
showing progressive retardation in growth rate as tumour size increases. The
tumour doubling time, which initially is nearly identical to that of the
exponentially growing tumour, becomes progressively longer (Equation 2.2).

tion will be equal to the generation time of the component cells.
Reductions in cell number can likewise be represented as a negative
exponential with a cell population contracting at a constant rate of
proportionality.

In practice, there are always deviations from a pure exponential
growth function, with most clinical cancers deviating from their max-
imum potential growth by a considerable factor. The ‘doubling time’ of a
tumour cell population is simply the time required for the population to
increase its size by a factor of two. In clinical assessments of tumour
growth it is usual to refer to the volume doubling time of the tumour as
measured by sequential determinations of the volume of detectable
clinical masses. Tumour volume and cell number can be related by
the fact that a cubic centimetre of tumour tissue contains between 10°
and 10° cells. A cubic centimetre of cells weighs approximately 1 gram,
reflecting the fact that cells are composed mainly of water.

Many clinical tumours and some experimental ‘solid’ tumours can
sometimes be described by growth functions in which the rate of growth
declines with size. One popular function is the so called Gompertz
Sfunction where the volume of the tumour instead of growing as a
straight exponential undergoes progressive retardation as it approaches
a limiting size. Mathematically it is described by
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N(t) = N(0) exp{%(l - e-ﬂ')} (2.2)

where A and B are constants. (exp x denotes e raised to the power x, in
this case the whole term {A/8(1 — e #)}.) The log growth rate at time
t =0 is the same as the exponential (i.e. A), but this declines as the
tumour grows, eventually approaching zero. The Gompertz function
was found to describe the growth of normal tissue systems that reach
some naturally regulated size. Its ability to describe malignant systems,
which by definition are not well regulated, is less convincing, though it is
frequently used to describe malignant growth.

Basically the Gompertz function can simply be described as expo-
nential growth that undergoes exponential retardation. The larger the
size reached, the greater the degree of deceleration in the growth of the
tumour. The growth of the tumour approaches but never reaches a
plateau. Biologically, the Gompertzian shape of the growth function is
possibly related to the fact that the growing tumour may exhaust its
supply of nutrients as it increases in size or that there may be within
the tumour cell population some negative feedback control process
(Fig. 2.1).

In some models of tumour behaviour, critical importance is given to
the Gompertzian nature of the growth function; however, from the per-
spective of somatic mutations, the precise form of the growth function
does not change the final conclusions (Chapter 4). (This is because the
number of mutations in a tumour is ultimately related to N, the tumour
size, and total elapsed time rather than to any particular growth func-
tion.) Moreover, not infrequently clinical tumours appear to grow nearly
exponentially during the time of clinical observation.

We referred to certain experimental tumours as being ‘solid’; the term
solid tumour is often used with respect to many types of clinical cancer.
This is 2 somewhat misleading description as most neoplasms feel very
solid to the touch, except those that grow in a widely dispersed form
(e.g. leukaemia). In practical terms, solid tumour refers to those malig-
nancies that as they grow generate their own blood supply (neovascu-
larization or angiogenesis) on the periphery of the growing tumour
mass. This is seen typically in epithelial malignancies (carcinomas)
and mesenchymal tumours (sarcomas). Malignancies of the lymphoid
and haematopoietic systems appear to generate less in the way of neo-
vascularization than so-called solid tumours even when the lymphoid
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tumour has aggregated into a large mass. However, newer techniques
are identifying what appear to be areas of neovascularization within
lymphomatous and leukaemic masses, suggesting that the presence or
absence of angiogenesis will not be sufficient to distinguish between
lymphomas and solid tumours. Haematological malignancies are gener-
ally described as simply lymphomas/leukaemias or, sometimes, liquid
tumours.

2.3 Cell renewal systems

In a typical fransplantable mouse leukaemia, nearly all of the cells
constituting the leukaemic tissue appear as morphologically undifferen-
tiated malignant cells and virtually all of them are capable of indefinite
cell replication. That is, each single cell constituting the leukaemia will
divide to form two daughter cells, each of which will divide to form two
more daughter cells, etc. In this respect, the experimental leukaemia
resembles a population of bacteria where each bacterium divides to
form two virtually identical bacteria, and these undergo further divisions.
In these systems, a single leukaemic cell or single bacterium can, in
theory, reproduce itself indefinitely.

This property is in contrast to what is observed for the vast majority of
normally functioning cells in an organism. Most of the cells that make up
an animal are highly differentiated cells that have developed specialized
biochemical and morphological features and that display little or no
capacity for cell division. Moreover the life span of many of these
cells appears limited and they are replaced by newer cells that are
produced as a consequence of division of less differentiated cells.
These differentiated cells, even if they can carry out a few rounds of
cell replication, would fail to produce a countable colony in a viability
assay and would be considered in an operational sense as ‘dead’. That
is, they are effectively sterile and cannot contribute to the continued
growth of the population.

With some tissues, virtually no cell turnover takes place once embryo-
nic and early childhood growth is complete (e.g. the neurons of the
central nervous system). However, there are a number of cell systems
in the body, such as the digestive tract and the haematopoietic system,
where there is continuous production of new cells. The new cells
acquire progressively more specialized function and finally become
senescent and undergo dissolution. Tissues with such a continuous



Tumour growth, stem cells and experimental chemotherapy 29

rate of cell turnover are generally described as cell renewal systems;
among the best studied of these, and perhaps of particular relevance
to many types of malignancy, is the haematopoietic system.

24 The spleen colony assay and the concept of renewal
probability

It had long been suspected that in a tissue such as the bone marrow the

vast majority of the morphologically distinguishable cells must have
been derived from more primitive cells with a greater replicative poten-
tial. These cells were felt to be analogous to the cells present in the
developing embryo in so far as they had a capacity to undergo cell
division and to give rise to a lineage of differentiated cells. They were
referred to as stem cells because of their progenitor function within the
tissue system.

In the early 1960s, James Till and Ernest McCulloch in Toronto devel-
oped a quantitative in vivo assay system for measuring the stem cell
component of mouse bone marrow (Till, McCulloch and Simonovitch,
1964). The method described is known as the mouse spleen colony
assay. In this assay, bone marrow cells are removed from one of the
long bones of a normal mouse and then a known number of these cells
are injected into a second mouse that has received a high dose of total
body irradiation. The radiation is used to suppress all endogenous
haematopoiesis (Fig. 2.2). After 7 days the mice are killed and their
spleens removed. A large number of visible nodules are detected in
the spleen and it has been shown that each nodule represents a colony
of normal haematopoietic cells derived from a single progenitor cell.
This assay thus permits the investigator to estimate the frequency of
colony-forming cells (or stem cells) per total number of nucleated mar-
row cells. The results suggested that there is one colony-forming cell per
5000 or more nucleated cells.

The individual colonies in the spleen can then be removed and
injected into a second recipient mouse. The number of secondary colo-
nies seen can then be used to measure the capacity of the original bone
marrow cells to undergo the production of new stem cells (self-~renewal).
From these studies, Till and McCulloch were able to build up a mathe-
matical model of the behaviour of the marrow cells with respect to their
capacity to undergo replication. The investigators concluded that
whether or not an individual stem cell divided to form two new stem
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Fig. 2.2. Technique for assaying the number of bone marrow stem cells. A
normal mouse is killed and a cell suspension is made from the marrow of the
mouse’s thigh bone. A known number of nucleated marrow cells are injected
intravenously into a second mouse that is of the same strain as the first. The
second mouse has been heavily irradiated to suppress all endogenous
haematopoietic growth, permitting the injected marrow cells to proliferate.
After 7 days the spleen is removed from the recipient mouse and a number of
discrete nodules can be observed in the spleen. These are counted and the
results from a large number of individual mice can be pooled. The
relationship between the number of spleen nodules and the number of
injected marrow cells can be established. By using techniques such as
chromosome marking, each nodule can be shown to be a clonal colony of
haematopoietic cells. In separate experiments, the fraction of injected marrow
cells that land in the spleen can be estimated. Individual colonies can be
removed from the spleen, made into a suspension and then injected into a
third mouse. This will measure the capacity of the colony-forming cells to
form new colonies (self-renewal).

cells was a random event that would occur with a certain probability, P
(the renewal probability). The reverse probability of the stem cell divi-
sion giving rise to two differentiated cells was therefore 1 — P (Fig. 2.3).

For any cell system that is increasing its numbers over time, it is
apparent that cell birth (P) must be greater than cell deaths or differ-
entiation (1 — P). In regenerating bone marrow, the renewal probability
was found to be approximately 0.53, but when the marrow had regen-
erated to its original physiological level the renewal probability appears
to fall to close to 0.5. If the renewal probability is less than 0.5, then the
population will progressively diminish until it is extinguished.

Since the renewal probability of the normal haematopoietic system
lies close to 0.5 and the choice of renewal is random, there is always the
probability of more deaths than births and, hence, the whole population
becoming extinct. It is possible to calculate the probability, P.y,, that a
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Renewal probability = P Differentiation probability =1 - P

Fig. 2.3. Schematic representations of the renewal probability concept for
haematopoietic stem cells. At each division the cell has a certain probability,
P, to give rise to two new stem cells, or to give rise to two differentiated cells
(which by definition lose stem cell capacity) with probability 1 — P. The
overall probability of self-renewal for the entire population of stem cells can
be estimated, but whether any individual cell undergoes self-renewal is
random.

single stem cell line will die out. The probability that two cells will
become extinct, assuming cells to behave independently, is (Pug)’.
Therefore, P., is equal to the probability that no stem cells are produced
at the first division, 1 — P, plus the probability that two stem cells are
produced, P, multiplied by the probability that both cells will go extinct
Pex)®:

Pop=1—P+(Py)’ x P.

Solving this equation yields
P =—5— (2.3)

for P> 0.5; for P < 0.5, P, = 1. The probability of extinction of N
independent stem cells is:

(Pa) = (L}E)N

The closer P lies to 0.5 and the smaller the value for N, then the greater
the likelihood of extinction. If P =0.5 the system will eventually
become extinct with 100% probability, no matter how large the popula-
tion Gi.e. [(1 — 0.5)/0.5] = 1). If N is large, however, the probability of
extinction occurring rapidly will be very small (Fig. 2.4).

This relationship holds true for a broad range of phenomena and is
not simply confined to dividing cells. It is also applied to populations of
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Log cell number

Fig. 2.4. Four computer-generated growth curves of a tumour population in
which the renewal probability P is varied. Curve A represents a renewal of
probability 1, in which there is no cell loss and the system grows as a pure
exponential with its doubling time equal to its generation time. B displays a
renewal probability of 0.8. The system grows slightly slower than A, and there
is slight irregularity of growth when the population is small. C has a renewal
probability of 0.58. Growth shows further slowing and there is a longer period
of irregularity at low cell numbers. D, D; and D, show renewal probabilities
of 0.52. The three simulations shown all become extinct within a relatively
short time of growth commencement. It would take a large number of trials
(10 or more) before a population, by chance, would reach a size sufficient to
make extinction highly unlikely.

animals and also for chain reactions involving subatomic particles. The
renewal probability theorem is part of a general field of mathematics
called branching processes or, more specifically, birth/death processes.

The concept of renewal probability has proved to be very useful in
describing the behaviour of the normal haematopoietic system and, as it
turns out, for studying the behaviour of cancer cell populations as well.
The Till and McCulloch model of a cell renewal system postulates that
the component cells are divided into three main compartments (Fig. 2.5)
The first compartment is made up of the stem cells which have the
properties of both extensive proliferation and self-renewal. The opera-
tive word here is extensive because, as mentioned above, normal cells
probably lack the capacity to replicate indefinitely. In experiments
where bone marrow colony-forming cells were serially transplanted
from one mouse to another, the colony-forming efficiency eventually
starts to decline. However, the proliferation potential of the marrow
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A B C

Fig. 2.5. Three-compartment model for a cell-renewal system such as the
haematopoietic system or a malignant neoplasm. A. The stem cell
compartment where cells can either undergo self-renewal or commence
differentiation. B. The differentiation or transitional cell compartment. These
cells undergo morphological and functional changes (which will generally be
highly abnormal in tumours) and a variable number of divisions until they
finally lose proliferative capacity. The number of divisions is sometimes
referred to as the clonal expansion number. C. A compartment composed of
fully differentiated terminal or end cells. In a normal cell system, they carry
out the physiological function of the tissue from which they are derived. They
will have a variable life span, which, depending on the tissue of origin, can
range from a few days to many years. The larger the clonal expansion
number and the longer the half life of the end cells, then the smaller the
proportion of actual stem cells that will be present.

stem cells is still very great and is sufficient to maintain it over a normal
lifetime. In the mouse, a single colony-forming cell can reconstitute the
marrow of a recipient mouse in which there is a congenital deficiency of
marrow stem cell function.

The second compartment of the renewal system is made up of cells
that have retained a limited capacity for proliferation and that also at the
same time undergo progressive differentiation, acquiring the properties
of a fully mature cell. Under the influence of a series of specific growth
factors, the differentiating cell begins producing new proteins and alter-
ing its morphological appearance. At the end of six to ten sequential
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divisions, there will be terminally differentiated cells such as erythro-
cytes or granulocytes, which have ceased division permanently. The
number of divisions carried out by these differentiating cells is usually
referred to as the clonal expansion number. During the process of clonal
expansion, the progeny of a single stem cell may give rise to a thousand
or more fully differentiated cells depending on the actual value for the
clonal expansion number.

The third compartment is made up of terminally differentiated or end
cells, which no longer have the capacity to undergo cell division. They
have a finite life span ranging from a few days to 3 to 4 months, but they
eventually become senescent, undergo apoptosis and are removed. The
maintenance of the end-cell compartment requires a continuous input
from the less-differentiated cells. If the stem cell compartment is sud-
denly depleted (by exposure to radiation or a cytotoxic agent), the
effects will be first observed in the cells with the shortest life span and
quickest turnover (granulocytes, platelets) and will be much less appar-
ent with the long-lived cells such as erythrocytes.

We can summarize by saying a stem cell has several properties: (a), it
has a capacity for extensive proliferation and self-renewal, (b) it is able
to give rise to an expanding clone of differentiating cells and (©) it
responds to a series of physiological growth signals for both commen-
cing and ceasing cell division.

2.5 A stem cell model for cancer

A number of different lines of evidence suggests that the cellular make-
up of tumours, particularly primary tumours in animals and humans, has
many similarities to the cellular organization of cell renewal systems
such as the bone marrow. In many clinical tumours there is often very
significant morphological evidence of cellular differentiation occurring
with abnormal but still recognizable, differentiated cells present. These
partially differentiated cells may make up the great bulk of cells in the
tumour and provide one of the important clues as to the tissue and cell
of origin of the malignant cells. In certain malignant disorders of the
haematopoietic system, such as polycythemia vera and chronic myelo-
genous leukaemia, the terminally differentiated cells are still able to
carry out important physiological functions. In polycythemia for exam-
ple, virtually all of the erythrocytes present in the patient will be derived
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from a malignant clone but nonetheless are capable of oxygen and
carbon dioxide transport.

In many malignancies, morphological differentiation may not be
readily apparent but tests of cell viability will reveal that only a small
proportion of the cancer cells are capable of division and that an even
smaller number actually undergoing self-renewal. (See review by
MacKillop et al., 1983). As was pointed out by Bush and Hill (1975),
most clinical cancers would not be curable by the usual doses of radia-
tion employed therapeutically if it were the case that all of the compo-
nent cells of the tumour had stem cell function. Their conclusion was
based in part on the observation that experimental tumours, which are
nearly 100% stem cells, require a much larger dose of radiation to cure
than a clinical tumour of equivalent volume. (Animal and human cancer
cells are roughly equivalent in their radiosensitivity.) A 1 gram (10” cells)
clinical tumour might contain a thousand times fewer stem cells than an
experimental tumour and, therefore, effectively be one thousand times
‘smaller’. It could be inferred that with some malignancies as few as 1
cell per 10° morphologically abnormal cells might actually be a true self-
renewing stem cell. This implies that the effective biological size of the
tumour may be only approximately related to its volume and the num-
ber of countable cells present in that volume.

The stem cell model of clinical cancer has a number of important
implications for cancer biology as well as for devising therapeutic stra-
tegies. Firstly, the number of actual tumour stem cells (often referred to
as clonogenic cells) that need to be killed or sterilized will generally only
be a small fraction of the total number of cells present in the tumour.
This makes the job of the radiation therapist easier but, as will be seen
below, not necessarily that of the chemotherapist.

Another important implication of the stem cell model of cancer relates
to the fact that there will be a considerable difference between the
potential doubling time of the tumour (7, and the actual doubling
time of the entire neoplastic population.

Since a proportion, P, of divisions produce 2 stem cells (2 x P) while
a proportion (1 — P) produces none (1— P x0), the relationship
between the generation time of the component tumour stem cells and
the overall doubling time of the tumour can be derived from the renewal
probability. In a stable renewal system, the proportional increase in the
overall size of the population is (2P) at every division. Thus after »n
divisions the proportional increase is (2P)", so that the value of # for
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which this increase is twofold represents the doubling time, measured in
multiples of the generation time. Therefore, we have (2P)” = 2, so that

log2
=1 -1
" [ + log ZP]

and the doubling time of the tumour is given by

-1
Téioub =nX TDiv = [1 + 1(1)(;g22f):| X TDiv (24)
where Tp,, is the generation time of the stem cells. For example, if the
generation time is 24 hours (1 day) and the renewal probability is 0.52,
then the overall doubling time will be 17.7 days. If the renewal prob-
ability is 0.51 and the generation time is 48 hours then the doubling time
will be 70 days for the system.

Over the long term, the doubling time of the tumour will be deter-
mined by the generation time and renewal probability of the stem cells.
This will be true even if the differentiated cells have very short genera-
tion times. They will contribute to the growth rate of the tumour during
the earliest phase of growth only. Once the differentiated cells cease
dividing, the system will come to an equilibrium with only the growth of
the stem cells determining the overall growth rate. (This will be dis-
cussed again in Chapter 6. A rigorous proof of this theorem would
require a detailed discussion of branching process theory.)

Note that it is possible to have a very long doubling time for a tumour
system and still have the generation times of the component stem cells
very short. Many human tumours have doubling times in the range 50—
100 days. As we have seen, however, this does not mean that the gen-
eration times of the tumour stem cells need be anything like as long.

Most human cancer cells that can be grown in tissue culture have
generation times in the order of 24-48 hours. In human tumour stem cell
assays, detectable colonies can be seen in less than 14 days. If the
generation times of the stem cells were the same as the clinical doubling
time of the tumour, it would take many weeks to produce a countable
colony.

If the renewal probability is exactly 0.5, then the doubling time of the
system is infinite. However, when the renewal probability lies close to 1
then the doubling time is almost equal to the generation time, a circum-
stance seen in transplantable leukaemias. Very rapidly growing human
tumours, say with a generation time of 24 hours and a renewal prob-
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ability of 0.65, would display a doubling time of about 2.5 days. This is
close to the maximum growth rate that is observed in human malignancy
and suggests some upper bound on the renewal probability that primary
human tumour stem cells are likely to display.

Depending on the average half life of the nondividing end cells in the
tumour, measurable fluctuations in tumour size following therapy may
appear to be very fast or slow. Tumours with a rapid turnover of cells,
such as certain lymphomas and acute leukaemias, may show a sudden
and steep drop in cell numbers even if the log kill value is relatively
small. In these circumstances, it will be the time elapsed before the
tumour again reaches its pretreatment size that will be the true measure
of therapeutic effect.

If a tumour is already undergoing a significant degree of differentia-
tion, this provides an important rationale for increasing the likelihood of
differentiation by treating the tumour with pharmacological doses of
some type of differentiation inducer. This will have the effect of reducing
the value of the renewal probability and, concomitantly, increase the
value of 1 — P, the differentiation probability. This strategy is employed
in certain malignancies, and sometimes with considerable effect.
Promyelocytic leukaemia responds to high doses of analogues of reti-
noic acid, and useful responses can be obtained in prostate and breast
cancer by employing the appropriate hormonal agent, which basically
operates to increase the degree of cellular differentiation and apoptosis
in these hormonally responsive tumours.

2.6 Chemotherapy of experimental leukaemia

Many of our present concepts of cancer chemotherapy have been
derived from a series of papers written in the 1960s by Howard
Skipper, Frank Schabel and colleagues at the Southern Research
Institute in Alabama (Skipper, Schabel and Wilcox, 1964). These work-
ers sought to put the chemotherapy of cancer on a firm quantitative
basis. Their work has become such an accepted background to the
field of cancer chemotherapy that it is somewhat difficult to convey
the sense of profound enlightenment that accompanied the initial
appearance of their studies.

One of the major experimental models that Skipper and Schabel
relied upon was the transplantable L1210 leukaemia in mice. This sys-
tem consists of a line of mouse lymphatic leukaemia (or lymphoma)
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cells that are maintained by transplantation from one highly inbred
mouse to another. These mice are virtually genetically identical and a
spontaneous malignancy developing in one of them can be transplanted
to another mouse of the same strain without the tumour cells under-
going immunological rejection. If this process is carried on through a
large number of transplant generations, then the tumour cells become
very homogeneous and quite predictable in terms of their behaviour.
This makes it possible to inoculate large numbers of mice of the same
age with the same number of leukaemia cells and observe a very similar
clinical course in each individual animal. The experimental conditions
are thus highly reproducible and sufficient numbers of individual ani-
mals can be obtained for a particular experimental endpoint. There are
obviously biological differences between these experimental tumour
systems and the spontaneous malignancies that arise in human beings,
but there appear to be sufficient similarities to the clinical disease that
many of the lessons learned from studying the transplanted leukaemias
can be applied clinically.

From Skipper’s studies, a number of very important principles relating
to cancer chemotherapy and cancer biology were established.

Principle | Animals will die when their total body burden of
malignant cells reaches some critical number, which is very similar for
animals of similar size

If a small number of leukaemic cells (say between 100 and 1000) are
inoculated into a recipient animal then these will, after a short delay,
grow exponentially with time until they reach a value of approximately
one billion (10%) cells. At this point, the host animal becomes ill and will
generally die within a few hours. The larger the size of the initial inocu-
lum then, generally, the shorter the lag period before the tumour popu-
lation begins to grow; in addition, there is less variation in time between
the inoculation and the animal’s death.

This is the so-called lethal number of cancer cells that is required to
kill a host animal. The population of malignant cells has to reach a
certain general range of numbers before it can have a sufficient impact
on the homeostatic processes going on within the host to result in the
organism’s death. This concept of a lethal number can also be applied to
the circumstances involving microbial infection, but it is less commonly
used when discussing the chemotherapy of infectious diseases.
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However, the concept of lethal number has proved to be a very valuable
one in experimental and clinical oncology (Fig. 2.6). The lethal number
of cancer cells for an organism bears a direct relationship to the size of
the animal. For a mouse, the lethal number is approximately 10° cells,
for a rat 10'° and for a human being 10*2. This is only approximate, of
course, and the actual number will depend on the location of the tumour
and whether it is widespread (as in leukaemia). For a disseminated
malignancy like leukaemia, the lethal number in a patient is close to
10'2, whereas for a brain tumour it would be closer to 10'!.

Principle 2 A single viable leukaemic cell is sufficient to produce
the clinical disease and kill the animal

By using special techniques to inject a single viable cell into the recipient
animal, Skipper concluded that a single surviving leukaemic cell is suffi-
cient to reconstitute the disease. Therefore, curative chemotherapy has
to be capable of destroying all of the viable leukaemic cells in the animal
and within tolerable limits of toxicity.

Single malignant cells can be injected into an animal by using a
micromanipulator, which is basically a tiny pipette that under micro-
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Fig. 2.6. Exponential growth of mouse leukaemia following injection of
approximately one cell. The number of malignant cells grow with a constant
doubling time (8-10 hours) until they reach approximately 10” cells. This
constitutes a lethal burden of malignant cells for the animal, which will die
within a short time of the lethal number being reached.
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scopic control can be used to withdraw a single cell from a cell suspen-
sion. The single cell is then injected into a recipient animal; while a
proportion of the cells acquired in this way may be damaged and non-
viable, some will survive the procedure and the technique can allow the
influence of a single cell when injected to be assessed.

As this method is technically difficult, another approach is to employ
the principle of limiting dilution. In this technique, the number of leu-
kaemic cells in a known volume of fluid is counted. The volume of fluid
is then serially diluted until it is estimated that there is, on average, one
cell per culture tube. Obviously, identical replicate samples processed in
the same way will not all have one remaining cell per culture, or what-
ever the average is, but will display a distribution with some counts
greater than the mean and some less. The appropriate distribution in
such situations is the Poisson distribution. (The Poisson distribution is a
good approximation of the binomial distribution where the probability
of a particular event occurring is very low but the number of opportu-
nities for the events to happen is large.) The derivation of this distribu-
tion is not an appropriate topic here but we will give its mathematical
description as we will use it considerably later.

If X is the number of cells actually present in the culture and w is the
average number expected, then the probability that X will be equal to
some integer value, x say, is P{X = x} and is given by
pre™

x!

P{X =x} = (2.5)
The most important property of the distribution for our purposes is that
the probability of no cells, P{X = 0}, is equal to e™* (since 0! = 1).

It transpires that when the dilution has been carried to the point
where there is an average of one cell per tube the actual distribution
will show approximately 1/3 of the tubes having zero cells, 1/3 will have
1 and 1/3 will have 2 or more.

Principle 3 The increase in survival time seen in treated animals is
directly related to the magnitude of the log kill produced by treatment

If the leukaemic animals are treated at a point well before the number of
cancer cells approaches the lethal number, then measurements can be
made of the average prolongation of life that is obtained with a parti-
cular dose of drug. It is assumed that the killing of the cells by the drug
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happens nearly instantaneously, and the surviving leukaemic cell popu-
lation then begins to grow back at its previous rate. From these experi-
ments it is possible to extrapolate the growth of the tumour back in time
to calculate the proportion of malignant cells that were killed at the time
of drug exposure (Fig. 2.7).

Principle 4 A given dose of a chemotherapeutic agent would
always kill about the same proportion or fraction of the leukaemic
cells present in the animal

The absolute number of leukaemic cells killed by a course of therapy
will vary depending upon whether there was a lz ger or lesser number
of malignant cells present when the treatment was appli_d. If the dose of
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Fig. 2.7. Log kill effect on exponentially growing mouse leukaemia.
Treatment is given at point A when there is a known burden of leukaemic
cells present. This reduces the tumour burden to the level at point B. There
are two groups of animals: those treated and the control group, which are
untreated. The untreated animals reach the lethal burden of tumour cells at
point C. The treated animals survive longer to point D. A line parallel to AC is
drawn from D. A line parallel to the y axis is dropped from A. This intersects
the line from C at point B. Point B represents the nadir of the fall in
leukaemic cell numbers after treatment. The log kill of the treatment can be
read off the y axis. The average extension of life in the treated animals is
represented by CD, which can be seen to be directly related to AB (the log
kilD). With bigger or more doses of drug the nadir reached will be lower and
survival longer. If the entire leukaemic population is destroyed then the
animals will be cured (‘indefinite’ survival).



42 Drug resistance in cancer

the particular drug was increased then it would be observed that a
greater fraction of the leukaemic cells were killed and, likewise, if the
dose was decreased there would be a smaller fraction. In other words,
the log kill of the chemotherapeutic agent is related to the dose of drug
and not to the absolute number of leukaemic cells present.

We can note in passing that the question of log kill or mean cell
survival probability can be expressed mathematically in the same way
as was used to describe the cell renewal probability for the birth/death
process. In the cell renewal systems where the term P referred to the
renewal probability and 1 — P to the probability of differentiation, we
can consider processes such as differentiation as being functionally
equivalent to being killed. That is, the cell permanently loses the capa-
city for proliferation. Moreover, it can be stated more generally that, in
the renewal probability equation, the term 1 — P simply refers to the
probability of cell loss, death or differentiation, or indeed to any process
that renders the cell permanently sterile or no longer a functional part of
the cellular system.

If under the impact of treatment, the average renewal probability of
an L1210 leukaemia falls from 0.8 to 0.008 then this would mean that the
total leukaemic stem cell population would diminish in terms of its
viability by three logs. Concomitantly, the process of cell loss, or
death, is increased by the same amount. This apparent coincidence in
terms of the mathematical relationships between self-renewal and che-
motherapy killing effects may be more than coincidental, as will be
discussed in a later chapter when some of the molecular processes
that are initiated during chemotherapeutic action are described.

It used to be sometimes said (erroneously) that since numbers
expressed as a logarithm never assume the value of O then the log
kill effect of chemotherapy could never actually cure an animal. That
is, a three log kill directed against a tumour population of 10? would
result in 1/10th of a cell surviving per animal, obviously an impossi-
bility. The logic is flawed here because when we use the term log kill
we are referring to the average probability of cell survival. The three
log kill effect would mean that there would be, on average, 90% of a
group of animals cured and 10% with at least one surviving cell. A
dose of drug sufficient to produce a four log kill against a burden of
10 cells would mean that animal had a 99% chance of cure (but
there would be the one animal per 100 treated that would survive
by chance alone).
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Principle 5 As a single surviving leukaemic cell might be sufficient
to cause disease relapse, treatment has to be extended well past the
point of clinical remission

The potential for a single cell to initiate relapse means carrying on with
the treatment for several courses past the time where all clinical signs
have disappeared. In these transplanted leukaemias, there appears to be
little or no immune response directed against the malignant cells and
providing the surviving cell is capable of stem cell function then one cell
will be sufficient (in theory) to regrow and cause clinical leukaemia. This
is a problem with transplanted leukaemias in particular, because it
would appear that with these cell lines most of the component cells
function as stem cells with a high renewal probability. The renewal
probability is almost certainly not 1, but probably lies between 0.6
and 0.8. With renewal probabilities that high, then the doubling time
of the tumour will only be slightly greater than that of the generation
time of the component cells, and a single surviving cell would have a
significant probability of reconstituting the disease. For example, if the
renewal probability P is 0.8 then the extinction probability of a popula-
tion of 10 stem cells P.,, is 1 X 10’6; for P0.6, P,y is 0.02. In contrast, if
we were dealing with populations of malignant stem cells whose
renewal probabilities are 0.51 then the extinction probability remains
high with P.,, = 0.67. In these instances, it may only be necessary to
reduce the surviving stem cell population to a relatively small number
(for example between 1 and 25) for there still to be a significant prob-
ability of the residual tumour dying out.

Principle 6 There is a relationship between tumour burden at the
time of therapy initiation and the likelihood of cure

It was recognized that a large number of tumour cells would require
more courses of treatment to achieve cure than a smaller number, but it
was repeatedly noted in the L1210 leukaemia that if the tumour burden
was about 10° at the time treatment was commenced a few animals
would be cured. If the tumour burden was <10°, then nearly 100%
cures were observed. If the tumour burden was very large, 10° or
greater, then the cure rate was virtually zero. This was true no matter
how many courses of treatment were applied. It was observed during
the course of treatment that after initial very substantial regression of the
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leukaemic cell population regrowth could occur and might be unaf-
fected by applications of treatment that had been initially successful in
causing tumour response.

When the leukaemic cells from animals that died of recurrent disease
were harvested and inoculated in small numbers into new recipient
animals, it was found that these selected leukaemic populations were
essentially invulnerable to the doses of chemotherapy that had pre-
viously been effective in curing the leukaemia in the initial animals.
This suggested that whatever was responsible for the resistance of the
leukaemia was something that resided primarily at the level of the indi-
vidual cell.

It was not a general resistance phenomenon because the use of a
different type of chemotherapeutic agent would result in very substantial
tumour regression and would cure the animals if the tumour population
was relatively low at the time therapy was commenced. Moreover, there
were no obvious gross differences in the behaviour of the resistant
tumour cells compared with the original sensitive cell population.
Morphologically, the tumour cells appeared identical, and their growth
rate was virtually the same. This appeared to represent a classical exam-
ple of acquired chemotherapeutic resistance that bore many similarities
to the phenomenon that was regularly being encountered in the clinical
chemotherapy of leukaemia and other malignancies.

Principle 7 The size and frequency of drug dose are critical
variables in determining cure

It is perhaps self-evident that the dose level, frequency of dosing and
total number of doses would clearly influence whether or not the ani-
mals would be cured, even if their tumours were inherently very sensi-
tive to the chemotherapy. If the size of dose was too small and the
interval was too long between doses, then there would be, in effect, a
negative net log kill with the tumour population ‘gaining’ on the therapy.
Likewise, if the treatment was stopped before eradication of all viable
cells, then treatment failure would result. In a very rapidly growing
neoplasm such as the L1210 leukaemia, such timing factors were of
critical importance. In treating tumours % vivo (experimental or clinical)
the upper limits of dose are set by the toxicity effects in normal tissues.
In in vitro experiments, concentrations of drugs can be increased to any
arbitrary level, but in clinical chemotherapy a 5% treatment-associated
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mortality ordinarily would be considered as close to the limit of accep-
table toxicity. (This is for circumstances where a significant cure rate is
possible. It would be unacceptable in palliative situations.)

Subsequently, in 1984, Hryniuk and Bush developed the concept of
dose intensity in which the ratio of drug dose and drug timing was
introduced. (Chapter 7).

Principle 8 Two or more agents given concurrently or sequentially
will produce cures when single agents have failed

The amount of drug given to an animal is limited by the toxicity of the
agent to the whole animal. In a petri dish, there is no problem to the
dish. Skipper and Schabel were able to demonstrate consistently the
greatly enhanced curative potential of combination chemotherapy com-
pared with single agents (Skipper et al., 1964). This could be seen if the
multiple agents were given concurrently or if one agent was given first to
the point of maximal net log kill and then treatment was switched to the
second (the ‘treat to nadir and switch’ strategy).

The principle of combination chemotherapy has emerged as perhaps
the single most important stratagem that can be brought to bear in
cancer chemotherapy. Clinical tests of combination chemotherapy
were being started at this time, but the experimental work provided a
powerful rationale for this approach and suggested that cellular drug
resistance was the problem that the multiple drug therapy was over-
coming.

The ability to monitor the tumour burden in the treated animals made
it possible to fine tune the treatments according to these principles. It is
very much harder (or often impossible) to do these kinds of estimate in
clinical situations.

2.7 Thecell cycle

We have already made a brief reference to the cell cycle, which is
associated with cell division. The cell cycle (generation cycle, division
cycle) refers to the series of events that occur in every somatic cell each
time it divides. An analogous process occurs in the germ cells as they
divide, but in this case there is a step that involves halving of the chro-
mosome number in each cell (meiosis), which is in contrast to the
doubling of the number of chromosomes that occurs in the somatic cells.
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The cell cycle represents a sequence of morphological and molecular
events that occurs from one cellular mitosis to the next (Fig. 2.8). Early
studies in the 1950s established the main subdivisions of the events of
the cell cycle. The most easily distinguishable event is the formation of
the mitotic apparatus in the cell immediately prior to the actual fission of
the cell into two progeny. At this point, each pair of chromosomes
separates with a set of 23 pairs of chromosomes moving to the opposite
poles of the cell prior to actual cell division.

The early cytologists described the stages in the movement of the
chromosomes as prophase, anaphase, metaphase and telophase. After
cell division, there was a long period of time when there did not appear
to be much occurring within the cell (except that cell volume steadily
increased; otherwise, of course, the cell would halve its size each time it
divided) and then the mitotic apparatus would become visible again and
once more division would occur. The long ‘quiet’ period between
mitoses was designated as interphase. In the 1950s Howard and Pelc
utilizing radiolabelled thymidine were able to demonstrate that DNA
synthesis commenced several hours after mitosis and then ceased a
few hours prior to the next mitosis (Howard and Pelc, 1953). This period
was called the DNA synthetic phase or S. The two intervals between M
and S and S and M were known, respectively, as the first and second
postmitotic gaps, shortened to G, and G,. The ‘gap’ referred to the fact

Go

WM

Fig. 2.8. The major phases of the cell cycle. At mitosis (M) the cell divides to
form daughter cells. The cell may pass on through the next phase (Gy) to
commence duplication of the DNA content at S, it may enter a physiological
quiescent stage (Go) or it may commence both differentiation and DNA
synthesis. In normal cell systems a very complex and finely balanced control
system operates to regulate the movement through each point in the cell
cycle. (See text.)
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that almost nothing was known about what was occurring during these
intervals. In a typical cell in culture, the time elapsed from mitosis to
mitosis was some 24 to 48 hours in human cells and 8 to 12 hours in
mouse cells. DNA synthesis occupied about 25 to 50% of the total cell
cycle time and M mitosis approximately 1 hour. (DNA synthesis occurs
at many points simultaneously along the DNA molecule. If this did not
happen it has been estimated that it would take several months for the
DNA in a chromosome to replicate itself.)

Since the early 1960s, much information has been acquired concern-
ing the events of the cell cycle and their relation to the malignant state. It
is now known that the G, phase involves a number of crucial steps in
which the cell makes decisions regarding whether it stops dividing,
enters a differentiation pathway, repairs damage to its DNA, initiates
apoptosis or proceeds to the next round of DNA synthesis. A number
of investigators have long suspected that the control processes in the cell
cycle were fundamental to the nature of malignancy. Recent studies
have abundantly confirmed this, indicating that many of the key signal
pathways regulated by both the oncogenes and tumour suppressor
genes operate by controlling the sequence of events in the cell cycle.

2.8 The kinetic classification of chemotherapeutic agents

Shortly after Skipper and colleagues published their seminal work on
experimental leukaemia, Bruce and co-workers in Toronto reported
studies on the differential effects of chemotherapy on normal versus
malignant cells (Bruce, Meaker and Valeriote, 1966). These workers
utilized the bone marrow colony-forming assay of Till and McCulloch
to quantify the effect of chemotherapy on a normal cell system, while
employing a similar type of assay for mouse lymphoma cells.

In their technique, a transplanted mouse lymphoma line (AKR) was
used (similar in many respects to the mouse L1210 leukaemia). A known
number of lymphoma cells was injected intravenously into mice and the
number of lymphoma nodules that developed in the spleen was
counted after 7 days (Fig. 2.9). It was not necessary to radiate the ani-
mals to suppress normal haematopoiesis under these conditions. Exactly
as in the bone marrow assay, the number of cells capable of producing
colonies could be enumerated. With the transplanted lymphoma cells, a
very high proportion of the cells was capable of producing colonies,
which were in turn found to contain a further high proportion of sec-
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Fig. 2.9. The lymphoma colony-forming cell assay. A mouse that has been
injected with lymphoma cells is killed when the lymphoma is far advanced.
The spleen, which is now heavily infiltrated with lymphoma cells, is made
into a suspension and a known number of spleen cells (which will be mainly
lymphoma) is injected into a normal mouse. After 7 days the injected animals
are killed and lymphoma colonies in the spleen can be counted in the same
way as bone marrow spleen colonies. It is not necessary to irradiate the mice
as the lymphoma cells will grow in normal splenic tissue.

ondary colony-forming cells. That is, the renewal probability of the
transplanted lymphoma cells was very high, and similar to that which
had been observed for the L1210 leukaemia.

This high proportion of colony-forming cells in the tumour popula-
tion was in marked contrast to what was observed (Bruce and van der
Gaag, 1963) when the colony-forming efficiency of the spontaneous
mouse AKR lymphoma was evaluated. Mice of the AKR strain will
come down with a spontaneous lymphoma at approximately 6 months
of age. The biology of this tumour is probably closer to the biology of
spontaneous malignancies in humans than to a transplanted tumour cell
population. In the spontaneous AKR lymphoma, it was noted that there
was a considerable variation from animal to animal in the proportion of
colony-forming cells per total number of malignant cells. Individual
animals with what appeared to be tumours at an identical stage showed
very significant variability in the capacity of their tumour cells to gen-
erate spleen colonies. The numbers ranged from 1 colony-forming cell
per 10* morphologically malignant cells to as low as 1 colony-forming
cell per 10° malignant cells. The colony-forming efficiency of this very
homogeneous-appearing spontaneous tumour varied over a range of
three orders of magnitude. However, after sublines of this tumour had
been transplanted over many generations, the variability from animal to
animal disappeared, resulting in a tumour cell population with a very
high colony-forming efficiency.
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In Bruce’s experiments (Bruce et al., 1966), normal animals and ani-
mals with advanced transplanted AKR lymphoma were given graded
doses of a number of antineoplastic agents. For each dose level the
number of surviving haematopoietic colony-forming cells and of surviv-
ing lymphoma colony-forming cells were estimated and the dose
response curves for both types of cell were then plotted. Utilizing a
variety of antineoplastic agents, Bruce found that there appeared to be
three types of dose response curve obtained. In each instance, the dose
response curves of the normal and malignant cells were of similar shape,
but in two categories a significant quantitative difference between the
effect on the normal versus the malignant cell population was noted.
The categories of dose response were designated as classes I, Il and III
(Fig. 2.10).

Class I agents included ionizing radiation and the drug nitrogen mus-
tard, which produced a linear dose response relationship. In this circum-
stance the decline in cell viability of the normal versus malignant cells
was identical. The class I group of agents produced a sigmoid dose
response curve with an initial rapid falling off in viability followed by a
plateau with increasing dose. There was, however, a significant quanti-
tative difference in the effect of the drugs on the malignant versus the
normal cell population, with the latter being much less sensitive to the
cytotoxic effect. The drugs in this category included agents such as
methotrexate, cytosine arabinoside (ara-C), vincristine and high-dose
tritiated thymidine.

The last category of dose response effect (class III) was seen with
drugs such as cyclophosphamide, actinomycin D and 5-fluorouracil (5-
FU). There was a straight line log kill effect seen on both the normal and
the malignant cells but with the cell killing effect being much greater in
the malignant cell population.

At first inspection there did not appear to be any obvious correlation
between the chemical structure and the mechanism of action of a drug
and the type of dose response curve it produced. Two of the drugs in the
class 1I grouping were antimetabolites, but one of the drugs, 5-FU, in the
class III grouping was also an antimetabolite. A clue as to a possible
basis for the different shaped survival curves was given by the fact that
the tritiated thymidine used as one of the drugs yielded a class II-type
dose response curve.

At the doses of the thymidine employed, the radioactive tritium in the
compound was potent enough to kill any cell that commenced DNA
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Fig. 2.10. The three classes of dose response curves seen for cancer
chemotherapeutic agents. Each dose level of drug was given in divided doses
every 6 hours for four doses. Surviving fractions for both normal and
malignant cells were measured using spleen colony assays (see text for
details): —, lymphoma stem cells; - - -, normal haematopoietic stem cells.
(Adapted from Bruce, Meaker and Valeriote, 1966.)

synthesis and incorporated the thymidine into its DNA. Only cells in S
phase would incorporate thymidine, which meant that those cells that
commenced DNA synthesis during the ‘24 hour window’ when the
thymidine was being administered would undergo lethal injury.
Likewise it was known that methotrexate acted primarily on cells enter-
ing S phase, as did ara-C. The drug vincristine was known to act pri-
marily on the formation of the mitotic apparatus and would, therefore,
exert its effects on cells passing through M. It appeared, therefore, that
the plateau in the dose response curve in class II responses was caused
by the presence of a subpopulation of cells that did not enter a vulner-



Tumour growth, stem cells and experimental chemotherapy 51

able phase of the cell cycle during the duration of drug exposure.
Further evidence supporting this hypothesis was obtained when the
duration of exposure to the cytotoxic agents was increased to 48
hours. This produced a significantly greater fractional cell kill of both
normal and malignant cells (Fig. 2.11).

Most of the class III agents were known to bind or damage DNA
directly and were believed to exert their effects more or less uniformly
throughout the cell cycle. The production of DNA lesions would then be
proportional to the dose of drug, generating a log linear dose response
curve. The inclusion of 5-FU in the class III category was initially puz-
zling as this drug was known to inhibit one of the key enzymes involved
in DNA synthesis. However, at the high pulse doses employed in the
experiments, 5-FU also inhibits RNA and protein synthesis, giving it a
toxicity spectrum that would act throughout the entire cell cycle (Fig.
2.12).

The studies of Bruce and coworkers (1966) demonstrated for the first
time that there was a significant differential toxic effect against malignant
as opposed to normal cells. The basis for this differential effect was
suggested by earlier studies of Till and McCulloch (1961), who had
shown that in the normal ‘steady state’ condition of the bone marrow
a high proportion of the colony-forming cells were not passing through
the cell cycle but were in a special quiescent stage known as Gy, a so-
called resting state which cells enter from G;. If a toxic insult was given
to the marrow (for example by radiation) then the Gq cells would be
stimulated to enter the cell cycle in order to replenish the diminished
stem cell pool. As the newly recruited stems cells were now actively
cycling, they would be vulnerable to further cytotoxic effect. When
Bruce repeated his experiments on regenerating marrow he found the
differential toxicity observed earlier had largely disappeared, with the
normal cells now as sensitive as the lymphoma cells.

Bruce referred to the class Il agents as phase specific because their site
of action was primarily on one phase or stage of the cell cycle. The class
III agents were designated as cycle specific, indicating their preferential
toxicity for cells in the active stages of the cell cycle (but not Gy). Skipper
subsequently modified this terminology, describing the class II agents as
‘cell cycle stage specific’ and the class III agents as ‘cell cycle stage non-
specific’. A term ‘cycle active’ has been used to describe those agents
that primarily act on cells in cycle, but it really has no provenance with
respect to the original experiments.
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Fig. 2.11. Schematic representation for basis of class II (phase-specific) drug
effect. The active form of ara-C interrupts DNA synthesis. The amount of DNA
damage exceeds the repair capacity of the cell and apoptosis is initiated.
During the duration of drug exposure (24 hours) the cohort of cells
commencing DNA synthesis undergoes lethal damage. Cells that do not
commence DNA synthesis during this time are not affected: - - -, normal
haematopoietic stem cells; —, lymphoma stem cells. A indicates the
proportion of cells that sustain lethal damage and B the proportion of cells
that do not enter S phase during the period of drug exposure (noncycling or
slowing cycling cells).

Subsequently, van Putten in the Netherlands demonstrated that nitro-
gen mustard was actually a class III agent (van Putten, Lelieveld and
Kram-Idsenga, 1972). The superimposition of the dose response curve
for normal and malignant cells and the similarity to the effect of ionizing
radiation was largely a coincidence relating to the relative resistance of
the AKR lymphoma cells to nitrogen mustard. Thus the chemotherapeu-
tic agents could be conveniently divided into two classes.
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Fig. 2.12. Schematic representation for the class III (cycle-specific) drug
effect. DNA molecules are damaged throughout the cell cycle. There is less
damage with easier repair carried out in G, normal cells: - - -, normal cells; —,
malignant cells. The number of DNA lesions produced will be proportional to
dose. As the dose is increased more cells will sustain lethal injury (first-order
kinetic log kill effect). The difference in log kill between normal and
malignant cells reflects the fact that a greater amount of nonrepairable DNA
damage is inflicted on the malignant cells than on the normal cells for a given
dose of drug.

The Bruce experiments provided valuable insight into some of the
processes involved in cancer chemotherapy, especially regarding the
strategies that might be adopted to modify toxicity. Class II agents
would provide a plateau in normal cell killing provided that the duration
of exposure was kept to a short time interval. This suggested that it
would be possible to escalate greatly the doses of those class II agents
that did not have significant toxicity independent of their effect on divid-
ing cells. Methotrexate being an analogue of a water-soluble vitamin
(folic acid) was such a drug and it was found that it could be given in
doses as much as 1000-fold greater than the standard doses employed.
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For example, Price and colleagues (Price and Hill, 1983) were able to
administer a dose of 20000 milligram methotrexate in a 24 hour period
compared with a standard 10 to 50 milligram dose. The availability of a
specific antidote to methotrexate (folinic acid) allowed the duration of
cytotoxic exposure to be limited to a specific time period. Escalating the
dose of drug to this level might seem pointless as there would be no
associated increase in killing of malignant cells. However, this would
only be the case if the malignant cells were highly drug sensitive, like the
AKR lymphoma. Many clinical tumours are quite resistant to methotrex-
ate and, therefore, require a much higher threshold dose to start to
produce cell killing. As this threshold dose can be reached without
increasing normal cell toxicity, it was hoped that ‘high-dose methotrex-
ate’ might significantly improve therapeutic results in relatively refrac-
tory tumours. Although some definite responses have been noted with
high-dose methotrexate, it is apparent that cancer cells can become
resistant to even the very highest concentration of methotrexate that
can be employed.

There has been a further interpretation placed on the Bruce studies.
Because the experiments showed that Gy normal cells were very resis-
tant to cytotoxic drug action, it was inferred that G, tumour cells likewise
would be at least temporarily resistant to chemotherapy. However, it is
noted that the Bruce experiments themselves provide little evidence for
G malignant stem cells. Virtually all of the lymphoma cells appeared to
be in the active cell cycle mode. Whether or not this is a particular
property of the AKR lymphoma and similar experimental tumours and
not applicable to the behaviour of clinical malignancies is still uncertain.

Clinical tumours indeed contain many nondividing cells, but the great
majority of these appear to be terminally differentiated cells or cells that
have simply arrested in one part of the cell cycle but are not necessarily
in Go. Whether there are analogous states to the physiological G, con-
dition that can be occupied by tumour cells is still not clearly established.
One of the fundamental lesions that appears to be present in cancer is
the relative inability of the cells to stop in G, and instead they continue
on through the cell cycle. However, some tumour cells may have the
capacity to enter some type of dormant or vegetative state, perhaps
different from physiological Gy. Any tumour cells occupying this type
of state would be ‘kinetically resistant’ and could present a barrier to
drug-induced cure. However, this would be true primarily if treatment
were confined to one or two applications of therapy; unless a period of
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dormancy were to persist for a very extended period of time, one would
anticipate that as cells re-entered the division cycle they would again
become vulnerable to chemotherapeutic effects. This is assuming that
the cells were in other respects fundamentally sensitive to chemother-
apy. The question of dormant states in tumours is an intriguing one. In
tissue culture, cancer cells cease dividing when they have reached a
concentration at which metabolites and growth factors become
depleted. At this point, the cells begin dying at random points through-
out the cell cycle. There is also some evidence that iz vivo tumours that
are ‘dormant’ may actually be in a state where proliferation is balanced
by apoptosis so there is no net growth. If this has relevance to clinical
malignancies then it has some important implications for the biology of
the tumour when it resumes growth. We could expect that mutations
and overall heterogeneity of the tumours would increase even if cell
numbers were static (see also Chapter 6).

Summary and conclusions

The studies of Skipper, Schabel, Bruce and their colleagues provided
clinicians with a much clearer model of the processes involved in cancer
chemotherapy. Bruce’s studies demonstrated that at least one type of
resistance to anticancer drugs was related to the position in the division
cycle that the cell occupied. This type of resistance appeared to be
temporary in nature and contributed to the differential toxic effects of
chemotherapy on normal versus malignant cells.

Skipper’s work demonstrated that giving insufficient courses or doses
of treatment could cause therapeutic failure, as would giving the treat-
ments at too widely spaced intervals. Both these approaches resulted in
the outgrowth of what was essentially a drug-sensitive neoplasm. This
circumstance might be described as ‘kinetic’ escape, in which the net log
kill was insufficient to control the malignancy. Solutions to these types of
kinetic problem immediately suggested themselves. This required opti-
mizing both the number and frequency of treatment courses without, at
the same time, losing the therapeutic index provided by the differences
in kinetic states between normal and malignant tissues.

Skipper also found evidence of a potentially more ominous problem.
Cure of large tumour burdens was frequently prevented by the out-
growth of what appeared to be specific and permanently drug-resistant
cells. The presence of these cells provided an additional rationale for the
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use of multiagent therapy, which, by this time, was being used at the
clinical level. The logical question to be asked was ‘what was the origin
of these resistant cells and how could their impact be minimized?".

In fact, the problem of drug-resistant cells in cancer had been recog-
nized some years earlier and investigations had been done to determine
the biological origin of these cells. As well, during the 1950s, the first
studies of biochemical differences between drug-sensitive and drug-
resistant cells were carried out.

However, it is to the question of the origin of resistant cells that we
will next turn. A means of answering this question had been provided by
Luria and Delbriick in 1943, in their studies of resistance in bacteria. This
was followed in 1952 by the work of Law, who applied the Luria—
Delbriick method to studying drug-resistant leukaemia cells in mice.
Because of the importance of these studies, they will be explored in
detail in Chapter 4.
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Molecular aspects of drug resistance

3.1 Introduction

There are approximately 60 different chemical compounds generally
available for the treatment of cancer (not including hormones or
biological response modifiers). They are of diverse structure and
from a variety of sources. They do not readily fit into a single classi-
fication system and are usually described partly on the basis of their
chemical structure, partly on their primary source (fungi, plant, etc.)
and partly on what is thought to be their general mechanism of
action (antimetabolite, alkylating agent, etc.) (Table 3.1). We can gen-
eralize by stating that all of the drugs appear to exert their therapeutic
effect by interfering with the processes involved in cell division. This
interference results in the cell being physically disrupted or rendered
permanently sterile. We can further say that cancer cells have the
potential to become resistant to any of the drugs in our inventory
and the cell can, moreover, express resistance to a great many agents
simultaneously. Although we are not aware of the experiment actually
having been done, it seems more than probable that an individual
cancer cell could display resistance to all 60 available drugs concur-
rently. As we will see, this capacity to express resistance to many
agents is, in part, related to the fact that there are a large number of
mechanisms that once expressed by the cell will generate broad
degrees of cellular resistance.

It would be well beyond the scope of this book to discuss in any
detail the molecular changes that have been described for all of the
various cytotoxic agents. However, we will mention the general pro-
cesses involved in drug action and how these may be modified in the
drug-resistant state.

59
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Table 3.1 The main groupings of common anticancer drugs with some
representative agents in each class”

Classes

Examples

Alkylating agents

Antimetabolites

Natural products

Synthetic agents
Hormonal agents

Vitamin analogues

Mustard derivatives: nitrogen mustard, cyclophos-
phamide, melphelan, iphosphamide, etc.
Nitrosourea derivatives: bischloroethylnitrosourea
(BCNO), ciscyclohexylnitrosourea (CCNU)
Platinum compounds: cisplatinum, carboplatin
Imidazole carboxamide compounds (DTIC)
Miscellaneous compounds:

Thio tepa

Procarbazine

Trietixylene melamine
Folic acid antagonists: aminopterin, methotrexate,
trimetrexate
Purine antagonists: 6-mercaptopurine, 6-thioguanine,
chlorodeoxyadenosine
Pyrimidine antagonists: 5-fluorouracil (5-FU), 5-
fluorodeoxyuridine (5-FUDR), cytosine arabinoside
(ara-C), gemcytabine, fludarabine
Antibiotics: doxorubicin, daunorubicin, mitomycin C,
actinomycin D, bleomycin
Plant alkaloids: vincristine, vinblastine, paclitaxel
(taxol), camptothecin
Hydroxyurea, lonidamine, mitoxantrone
Androgens, oestrogens, antioestrogens (tamoxifen),
antiandrogens (cyproterone)
Vitamin A anlogues (retinoids), vitamin D analogues

4Many of the compounds could fit in more than one category (e.g. mitomycin C
is an antibiotic that functions as an alkylating agent). The full list of anticancer
drugs that have had at least preliminary testing in patients could be considerably

larger than this.

3.2 Genetic alterations associated with drug resistance

It is readily apparent how a mutation that results in a loss of function in a
protein could mediate drug resistance. The mutated protein may be
smaller than the normal one because the mutant gene results in termina-
tion of RNA transcription before the complete code for the protein is
read out. The truncated protein may have greatly diminished function or
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may be nonfunctional. As there are two alleles for each gene, loss of 50%
function may not be a lethal mutation for the cell but may be sufficient to
reduce significantly the rate of transport of a drug (if the protein
involved is a receptor) or reduce the rate of metabolic conversion of a
drug to its active form. A point mutation occurring at the binding site of a
transport protein or an enzyme involved in drug metabolism may greatly
diminish the affinity between the drug and the protein. The loss of
affinity may be much less for the normal substrate so that the mutant
cell is at only a small disadvantage with respect to normal metabolism
and has acquired a huge selective advantage in any environment where
the particular toxic drug is present.

If mutations affect both alleles causing loss of function, the viability of
the cell will depend on whether or not this constitutes a lethal impair-
ment. Because many tumour cells have chromosomal abnormalities
(rearrangements, translocations, deletions or actual loss of entire chro-
mosome) the cell may be hemizygous (one copy) for a particular allele.
A single mutation would then suffice to delete completely the function
of certain genes. The enzymes that are involved in converting many
antimetabolites to their active nucleotide form are part of the so-called
nucleic acid salvage pathway, which allows cells to scavenge nucleic
acid precursors from both the internal and external environment effi-
ciently. These enzymes are not essential for viability, however, as
nucleic acids can be built up from much simpler molecules. A cell
with a deficient scavenging system would be at a slight disadvantage
compared with the wild type and, therefore, could be expected to occur
only infrequently in the unselected population. Exposure to drugs such
as ara-C or 5-FU would provide a powerful selection pressure on the
cells and now the ‘disadvantaged’ salvage-deficient cells would be
favoured as they would not convert the drugs into their lethal active
form.

Many types of drug resistance are associated with an actual gain of
function of a particular protein. This will be apparent with the various
systems that are involved with detoxification of a drug, with proteins that
are involved in moving the drug out of the cell or with proteins involved
in actually repairing the damage that the drug inflicts on the cell macro-
molecules. Although these gain-of-function mutations may involve the
structural gene itself, producing a mutant protein with enhanced func-
tional capacity, it more often involves mutations that regulate transcrip-
tion of the structural gene. A common genetic lesion involves a structural
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gene being translocated by a chromosomal mutation that moves
the gene to an abnormal site. Here it may be adjacent to a different
promoter gene than normally functions to regulate the structural gene.
Under these circumstances, the gene may be continuously stimulated to
function.

Increased function of a gene can also be mediated through an
increase in gene copy number to greater than the normal complement
of two. This arises through abnormal duplication of the gene sequence
such that several copies of the gene may now be present in an expanded
region of the chromosome. This process of gene amplification is com-
monly associated with certain types of drug resistance; the genetic
instability that underlies it appears to be essentially unique to the malig-
nant state. Amplified genes are virtually never observed in normal cells.

The neoplastic cell population will be continuously generating a large
range of genotypes. This will include both gain-of-function and loss-of-
function mutations. A large number of the cell’s genes will be affected,
and not simply those associated with drug resistance. Many genotypes
will yield phenotypes that are litle different from the wild type and,
therefore, will be co-selected along with the wild type, producing a
group of genotypes around the common or consensus type. Figen
(1992) refers to this population of closely related genotypes as a
‘quasi-species’. It is the quasi-species that is acted upon by the environ-
ment. As it may consist of many closely related individuals, the ‘pool’ of
phenotypes that the environment acts upon is large. This will ensure that
the rate of evolution of new better adapted forms will be quite rapid. A
neutral mutation may persist as part of the quasi-species until exposed to
a cytotoxic agent that now selects for it and renders it the dominant
phenotype. The evolutionary process will continue with a new quasi-
species ‘condensing’ around the new wild phenotype. In time, a better
adapted mutant will displace the first and so on. Phenomenologically
this will present itself as a very rapid emergence and selection for drug-
resistant forms under the impact of chemotherapeutic exposure.

The simple diagrams usually used to illustrate the mutational process,
in which there is one distinctly marked mutant cell against a background
of homogeneous normal cells represents a considerable oversimplifica-
tion of the actual circumstance that occurs in real systems. The genetic
processes generate an enormous amount of diversity, with many geno-
types probably making up what constitutes a single phenotype. The
process is dynamic and continuously changing; when a strong selection
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pressure is applied, there are many closely related variant forms that
undergo selection. In reviewing the molecular changes that are asso-
ciated with various drug-resistant states, it is convenient to discuss these
changes as though they occurred in isolation from a great many other
concurrent changes that must be happening within the cell. However, a
single class of phenotype, which might be defined operationally as the
ability to survive a 24 hour exposure to doxorubicin at a concentration of
107°M, would almost certainly be made up of a number of separate
genotypes with differing mechanisms of resistance but all having the
common property of being able to survive selection by the drug
under defined conditions of stringency.

3.3 Cancer chemotherapy: methods of administration

Anticancer agents are most commonly administered by the intravenous
or oral route. For special circumstances, some agents may be given by
direct injection into a body cavity (intrapleural, intra-abdominal, intra-
vesicle or into the cerebrospinal fluid). Much less commonly, agents can
be given intra-arterially or even intralymphatically. Some agents can be
applied topically and some can be given intramuscularly or by direct
injection into the tumour mass.

Once the drug enters the systemic circulation, it becomes distributed
throughout the entire body (less efficiently into tissues such as the cen-
tral nervous system, eyes and the testes). Some drugs may require meta-
bolic conversion in the liver, but most agents are taken up by the cells in
the same molecular form as they were administered. There is no pre-
ferential localization of drug in the area of the tumour although methods
to alter this are being investigated (i.e. antibody labelling, liposomal
encapsulation). Given the complexity of the pharmacology of these
agents, it is remarkable that it has been possible to extrapolate from
in vitro experiments to the degree that this has been done. This
would reinforce the assumption that it is the drug—cancer cell interaction
that predominates in clinical chemotherapy.

3.4 Drug uptake

Anticancer drugs gain access to the interior of the cell by either an active
or a passive transport process. In passive transport, drug molecules
diffuse across the cell membrane and this generally requires a high
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extracellular drug concentration and the absence of a strong electrical
charge on the drug molecule. Compounds that are fairly soluble in lipid
can more easily move across the cell membrane, which has a high lipid
content.

Compounds that are ionized and relatively soluble in water have a
more difficult time crossing the cell membrane (less at extremely high
concentrations), as they have to move across a thermodynamic barrier
that exists in the form of the hydrophobic hydrocarbon region of cell
membranes, the first of which encountered is the plasma membrane.
Movement of such molecules is facilitated by the drug binding to a
special transport molecule on the cell surface, which then translocates
the drug molecule to the cell’s interior. This translocation may require
an expenditure of energy by the cell. There is a large variety of such
transport proteins (or receptors) on the cell surface that have evolved for
the purposes of transporting essential nutrients and growth factors into
the cell. The cytotoxic drug may be sufficiently similar to a normal
substrate that it can latch onto the receptor and be transported into
the cell. These active transport systems are designed to move molecules
against both concentration and electrical gradients and will transport
substrates even when the substance is present in a very low extracellular
concentration. Even if the drug has relatively low affinity for the receptor
it will generally be present in much greater concentration than the sub-
strate and thus effectively utilize the transport system.

Resistance to a drug may be associated with mutant forms of the
receptor such that affinity for the normal substrate is retained but
there is a greatly reduced affinity for the drug. There may be reductions
in the number of receptor molecules on the cell surface, which will also
impede the rate of influx of drug. Both types of change in receptors can
occur concurrently, having the effect of significantly reducing the net
intracellular concentration of drug. This will, in turn, reduce the prob-
ability of interaction between the drug and its intracellular targets.

3.5 Drug efflux

In addition to the above processes for mediating drug entry into the cell,
there are some extremely important mechanisms for drug efflux out of
the cell interior. The net intracellular drug concentration will, accord-
ingly, be reduced. These mechanisms are present in many normal cells
but may have increased expression in a number of types of tumour cell.
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They clearly will have a protective effect against drug-induced injury and
they are responsible for mediating resistance to a wide variety of anti-
neoplastic agents. The condition where a cell expresses resistance to a
variety of types of anticancer drug through a single discrete mechanism
is known as multidrug resistance (MDR) (see p. 68).

3.6 Drug-target interaction

Once a drug has achieved a critical threshold level of intracellular con-
centration, it will interact with a great range of cellular macromolecules.
These include enzymes that are involved in the synthesis of nucleic acid
precursors, proteins involved in the structure of the mitotic apparatus,
enzymes involved in the synthesis and structural integrity of DNA,
enzymes involved in repairing damaged DNA and, finally, direct binding
to DNA itself, impairing its function. There are other targets as well,
including enzymes involved in energy transfer and proteins that partici-
pate in the very complex signal pathways for both stimulating and sup-
pressing cell division. Many of the experimental data in the literature
deal with the great variety of potential drug targets and the changes in
these targets that can generate drug resistance. We can say generally that
a cell may become resistant to a particular drug if the amount of the
target molecule is altered (both increases and decreases may mediate
resistance) or if a change in the protein structure itself results in reduced
affinity between drug and target.

3.7 Intracellular drug activation

Some drugs require further biochemical modification before they are
able to function. Typically, one sees this with the group of antimetabolite
drugs that are analogues of DNA precursors (e.g. 5-FU, ara-C, etc.).
These molecules are virtually inert until they undergo a series of steps
to convert them into the nucleotide form (e.g. 5-FU to 5-fluorodeoxyur-
idine monophosphate (5-FAUMP)). Their close chemical similarity to the
normal nucleotide allows them to inhibit one or other of the enzymes
involved in DNA synthesis. In the case of 5-FAUMP, this involves inhibi-
tion of the enzyme thymidylate synthase (TS), which catalyzes the final
step in the synthesis of thymidine from precursor molecules. Resistance
to 5-FU could arise from mutations altering the affinity site in the TS
molecule or increased expression of TS, which would, in turn, require a
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greater intracellular concentration of drug to achieve inhibition.
Resistance to 5-FU will also occur if there is loss of cellular capacity to
synthesize the active form of the drug. If there is complete loss of func-
tion in this synthetic pathway then the loss of sensitivity to 5-FU will be
virtually complete. Similar gain- or loss-of-function mutations will affect
the other pyrimidine and purine analogue antimetabolites (e.g. ara-C, 6-
mercaptopurine, fludarabine, etc.).

Mutations affecting the function of these types of compound are
common, but unlike the MDR phenotypes, the resistance profile pro-
duced tends to be confined to the specific drug or at least to the defined
class to which it belongs. This potentially makes the concurrent use of
antimetabolites with alkylating agents or natural product compounds
attractive combination protocols.

3.8 Intracellular detoxification

There are a number of enzyme systems within the cell that have the
capacity to detoxify drugs that contain very reactive chemical groups
(such as alkylating agents) or to break down the active oxidizing com-
pounds (such as hydrogen peroxide) which are produced by the action
of a variety of cytotoxic agents. One of the most important of theses
detoxification processes is the glutathione (GSH) system, which includes
at least two enzymes: GSH S-transferase and GSH peroxidase. GSH S-
transferase binds GSH to the reactive alkylating groups in drugs such as
nitrogen mustard and cyclophosphamide preventing them from reacting
with or cross-linking DNA. Increased activity of the GSH system is felt to
constitute another mechanism of MDR. Along with the drug-effluxing
proteins, the GSH system appears to have evolved as a cellular protec-
tion mechanism against a wide variety of cell poisons.

39 DNA-binding drugs

A substantial number of antineoplastic agents produce their cytotoxic
effects by directly binding to DNA or by interacting with enzymes that
are involved with maintaining the structural integrity of DNA. The drugs
involved include all of the alkylating-type agents (mustard derivatives,
nitrosoureas, platinum compounds, etc.) plus a number of natural pro-
duct substances such as actinomycin D and bleomycin. Collectively,
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these compounds constitute by far the most widely used clinical agents
at the present time.

A great deal is known about these drugs in terms of their specific
mechanisms of action as well as many of the molecular changes that are
associated with drug resistance. In the case of drugs that directly bind
chemically to DNA there exists a complex biochemical machinery for
recognizing that DNA has been damaged and then repairing the lesion.
The repair process consists of identifying the region that has been
damaged, excising the abnormal segment then replacing the segment
with newly synthesized DNA elements. These excision—repair systems
are remarkable for their sensitivity and accuracy. The fidelity of the
repair process has been estimated to be accurate to 1 part in 10
One class of alkylating agents, the nitrosoureas, link to a specific atom
(0% ) in the guanine base of DNA. A specific enzyme system, of-
guanylmethyl transferase efficiently removes the nitrosourea adduct
from the DNA, thus preventing cytotoxicity. Cells that have a significant
methyl transferase activity are known as the Mer” phenotype and those
lacking it as Mer™. Unfortunately it appears that most human cancer cells
are Mer”, whereas many mouse tumours appear to be Mer™. This could
partly explain the fact that the nitrosourea compounds that were drama-
tically effective in treating mouse tumours in the preclinical screening
tests have been moderately disappointing in human chemotherapy, with
their use confined to only a few tumour types.

Tumour cells that display reduced sensitivity to alkylating agent
damage have frequently been found to have an enhanced capacity for
carrying out DNA repair. Although the capacity of the tumour cells to
repair damage is substantial, the accuracy of the repair may be dimin-
ished. Thus the chemotherapeutic agents may aggravate the process of
mutations occurring in nonlethally damaged cells.

3.10 The topoisomerase system

Two enzyme systems that are vitally involved with maintaining the
three-dimensional structure of DNA during RNA synthesis and DNA
replication are topoisomerase I and topoisomerase II. Topoisomerase I
produces single-strand breaks in DNA to allow the DNA molecule to
unwind itself and then the ends of the cut strands are ligated.
Topoisomerase 1II carries out single- and double-strand breaks, which
permit more complex uncoiling of the loops of DNA. This permits RNA
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to be synthesized on the coding strand of DNA as well as allowing
orderly separation of the DNA strands during replication. A variety of
drugs bind to the topoisomerase-DNA complex, stabilizing it and pre-
venting the broken strands from being joined. Inhibitors of topoisome-
rase Il include doxorubicin, etoposide and teniposide. Inhibitors of
topoisomerase I include analogues of the plant alkaloid camptothecin.
Resistance to agents of this category have been associated with mutant
forms of the enzyme that are still able to carry out their biochemical
functions but have reduced affinity for the cytotoxic drug.

3.1l The multidrug-resistant phenotype

In the early 1970s investigators noted that cell lines that had been
selected for resistance to one class of natural product anticancer agents
(e.g. vincristine) would also display resistance to a number of other
drugs (e.g. doxorubicin, actinomycin D, etoposide) even though the
cell had never been previously exposed to these agents. This phenom-
enon was called ‘pleiotropic’ resistance and it was found to be com-
monly present in cells that had been selected by exposure to a large
number of certain types of antineoplastic agents.

The resistance was not universal, however, and the cell lines
retained sensitivity to alkylating agents, antimetabolites and a few
types of natural product compound (e.g. bleomycin). The drugs that
were associated with pleiotropic resistance did tend to have a few
features in common. They had large molecular weights and had com-
plex organic ring structures. They were either directly derived from
some natural product (fungi, plants) or semisynthetic analogues of a
natural product compound. Aside from that they had little in common
They were chemically very dissimilar and had different loci of action
inside the cell.

The term pleiotropic resistance has started to be dropped in favour of
the term multidrug resistance (MDR). The MDR phenotype refers to any
cell that can express resistance simultaneously to many different agents
as a consequence of a single biochemical change. Multilevel resistance
(MLR) should be reserved for cells that express a number of different
drug resistance mechanisms concurrently. This latter phenomenon
implies a sequence of discrete mutations rather than one mutation
producing a broad degree of resistance.
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MDR associated with P-gp

In 1976 Juliano and Ling identified a cell surface protein, of 170000
molecular weight, that was associated with the pleiotropic resistance
phenomenon. Designated P-glycoprotein (P-gp), this molecule was
shown to function as a transporter for a variety of molecular structures
from the interior of the cell. P-gp turns out to be a member of a family of
structurally related proteins that has been strongly conserved across
many species. Known collectively as ABC proteins (ABC: ATP-binding
cassette), these molecules have an affinity site that will accept a wide
variety of large-molecular-weight compounds. ATP also binds to the
protein and provides energy that permits the translocation of the
bound molecule to the outside of the cell. P-gp is coded for by a gene
designated mdr-1. P-gp is found to be expressed at low levels in a
number of normal cell types (colon, adrenal cortex, renal tubule) but
much higher levels of expression are seen in a variety of tumours,
especially those which have regrown after previous treatment by
drugs that are known to be substrates for P-gp. Direct measurement of
drug efflux in P-gp-positive cells can readily demonstrate the capacity of
the P-gp to lower significantly the intracellular concentration of the
cytotoxic drug. Transfection of mdr-1 to P-gp-negative drug-sensitive
cells will convert the cell into a P-gp-positive drug-resistant one. The
cells will display a pattern of resistance typical of the MDR state.
Preliminary analysis in tumours such as neuroblastoma and large cell
lymphoma indicate that patients whose tumour cells stain strongly posi-
tive for P-gp have a significantly worse outcome than those who are
negative at the outset of treatment. In lymphoma, P-gp positivity pre-
sumably predicts for an increased probability of other drug-resistance
mechanisms but does not completely preclude a favourable response to
chemotherapy as some of these P-gp-positive patients are cured. Since
lymphoma protocols contain some drugs that are not affected by P-gp,
the presumption is that this may be sufficient to cure a few patients.
Interestingly, while P-gp-positive cells in experimental systems dis-
play resistance to the broad range of P-gp substrates, the highest order of
resistance is seen with the drug that was used to select for the resistance
in the first place. That is, if doxorubicin was used as a selecting agent
then the cells will display greater resistance towards doxorubicin than
vincristine or etoposide. If vincristine is the selecting agent then the cells
will display more resistance to it and so on. This is probably explained
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by the fact that the drug-resistant cells have a complex phenotype, with
increased P-gp being only one of the mechanisms present.

The MDR state associated with P-gp is often referred to as ‘classical’
MDR in recognition that it was the first type of broad-range resistance
characterized. There have been a number of other mechanisms discov-
ered that can also generate MDR and these are known collectively as
‘nonclassical’ or ‘atypical’ MDR.

MRP-associated MDR

Recently an ABC protein belonging to the same family as P-gp has been

discovered in human cancer cells that display MDR but which are nega-
tive for P-gp. This new protein has been designated MRP (multiresis-
tance protein), has a molecular weight of 190000 and appears to
function similarly to P-gp. However, cells can express MRP without
expressing P-gp and vice versa. Likewise, cells may express both pro-
teins concurrently. MRP-positive cells display resistance to many of the
same compounds as P-gp-positive cells. However, this MDR phenotype
appears to correlate more with altered intracellular drug distribution
rather than the reduced drug uptake in resistant tumours that is observed
for tumour cells overexpressing P-gp. Nonetheless, the underlying
mechanism of MRP-related drug resistance is comparable to that arising
from P-gp in as much as it reduces the level of drug at the site of
antitumour action.

Glutathione-associated MDR

The glutathione transferase and glutathione peroxidase systems have
been associated with resistance to many of the alkylating agent class
of drug as well as to certain natural product compounds such as doxo-
rubicin and bleomycin. In some instances, it has been shown to be
possible to restore sensitivity to these drugs by prior treatment of the
cells with some drugs, such as buthionine sulphoxamine, which deplete
the cells of their intracellular glutathione content. Some investigators
have suggested that the glutathione system may be coordinately
expressed with P-gp as part of a general protective cell system against
foreign toxins. Interestingly, MRP appears to function in normal cells as a
transporter of glutathione conjugates, suggesting a more general corre-
lation between detoxifying and transport-based resistance mechanisms.
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Topoisomerase ll-associated MDR

Mutations resulting in reduced activity of topoisomerase II or altera-
tions in the drug-binding site in the enzyme have been described.
These changes can produce resistance to the drugs that bind to the
topoisomerase II-DNA complex, (doxorubicin, etoposide, teniposide).
The binding of the drug to the enzyme basically stabilizes the enzyme-
DNA complex so that the DNA, which has then been cleaved by the
enzyme, can now no longer be joined together. As with other types of
MDR, changes in the topoisomerase-II system may occur indepen-
dently or concurrently with other types of MDR. Most of the com-
pounds that are topoisomerase-II inhibitors are also affected by P-gp
expression. Research is actively being pursued to establish which
mechanisms may predominate in which particular type of tumour.
Breast cancer, for example, only infrequently seems to express P-gp
strongly but more often displays alterations in topoisomerase-II.

DNA repair-associated MDR

The complex system of DNA excision and repair enzymes may display
enhanced activity, which will significantly increase resistance to many of
the alkylating agent type of drug. Enhanced capacity to repair various
types of DNA lesion may allow the cell to remain viable even though
considerable DNA damage has been inflicted through drug action.

3.12 The relationship between apoptosis and drug
resistance

The discovery of so many categories of MDR has been a somewhat
disconcerting finding. A single mutational event could result in resis-
tance to a significant number of potent therapeutic agents at one step.
It does help explain, however, how tumour cells are able to display
resistance to so many drugs so rapidly. The occurrence of 5 or 10
mutations in the right place could neutralize most of our useful agents.
It means that as far as the tumour cell is concerned we are dealing with
many fewer discrete drugs than the simple number in our inventory
would suggest. However, it does also suggest that if one or two of the
resistance mechanisms can be modulated, or disabled, sensitivity to a
large number of drugs will be restored.
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If the problems of MDR were not enough, recent studies point to
another whole level at which broad categories of drug resistance may
occur. This new evidence is of great significance because it not only
explains a number of questions about the fundamental nature of drug
resistance and its relationship to neoplastic state but it also provides a
unifying theory as to how anticancer agents actually kill the tumour cell.

The work that has been carried out on programmed cell death (apop-
tosis) has provided a link between chemotherapy effect and the cancer-
ous state. The gene for p53 plays a key role in regulating the movement
of cells through the division cycle. At a point in G; p53 initiates a check
program that, in effect, assesses the integrity of the cellular DNA. If any
damage is detected then repair processes are commenced and further
movement through the cell cycle is stopped until the repair is com-
pleted. If, however, the amount of genetic damage is above a threshold
value where it cannot be repaired effectively, then the p53 protein
signals the apoptosis sequence to begin (Fig. 3.1).

A series of chemical and morphological changes then begins that is
characteristic of the apoptosis process. The chromatin in the cell nucleus
becomes condensed and ‘clumps’ in a characteristic manner. Blebs form
in the cell cytoplasm and begin fragmenting off. Molecular studies car-
ried out at this time reveal that the DNA has become split up into frag-
ments of a characteristic size, which are then encapsulated by cell
nuclear material. The final destructive events in the cell are associated
with an influx of calcium ions and the generation of highly reactive
oxygen species. Internal cell membranes are disrupted and cell dissolu-
tion proceeds. The cytoplasmic and nuclear fragments are then phago-
cytosed by tissue macrophages. The whole sequence typically occurs
rapidly (in less than an hour) and is not associated with any inflamma-
tory response in the surrounding tissues. This helps to distinguish apop-
tosis from other types of cell injury and death reaction such as necrosis,
which typically causes surrounding inflammation as well as usually
affecting a large number of contiguous cells.

There appear to be a number of routes whereby apoptosis can be
accessed and some of these occur independently of p53 function.
However, the importance of p53-dependent apoptosis appears to lie
with the fact that the p53 pathway is initiated at relatively low levels
of DNA damage.

A cellular oncogene designated bcl-2 (so named because it was initi-
ally found in a B cell lymphoma) appears to function not by providing
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Fig. 3.1. The events of the cell cycle are shown in association with the
function of p53 in evaluating DNA integrity and in signalling apoptosis. This is
a greatly simplified diagram as there are many other factors and gene
products that regulate passage through the cell cycle or initiate apoptosis.
Interference with the bcl-2 product favours stem cell self-renewal over
differentiation. In normal cells bci-2 function is finely regulated; however, in a
variety of malignancies bcl-2 is continuously and inappropriately expressed.

positive growth signals but by inhibiting apoptosis. bcl-2 is part of a
complex system that coordinately acts to regulate apoptosis. The bax
family of genes functions to oppose bcl-2, and it appears to be the bcl-2/
bax ratio that is important in determining whether or not a cell under-
goes apoptosis. Although bcl-2 overexpression is a common alteration
associated with malignancy, it should not be assumed that somehow bcl-
2is a ‘bad thing’. It is the inappropriate expresson of bcl-2 that causes
problems. The normally functioning protein product is essential for nor-
mal growth and development. So-called bcl-2 knock-out mice, homo-
zygous bcl-2 (—/—) although viable at birth are prone to a number of
serious congenital defects and early death owing to excessive apoptosis
in a number of tissues and organs. It has been suggested that the bcl-2
protein product functions as an antioxidant preventing the damage asso-
ciated with oxygen species release. There appears to be homologues of
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the bcl-2 protein in certain species of primitive bacteria, suggesting to
some authors that the bcl-2 family evolved very early in the history of life
as a protectant against the developing oxygen atmosphere on the earth.
(Interestingly, p53 does not appear to have a homologue in bacteria and
protozoa, suggesting that it may have evolved much later when complex
multicellular organisms appeared.) In normal cells, bcl-2 is part of a
complex pathway that coordinately opposes or promotes the apoptosis
sequence. When apoptosis is suppressed, cells are in effect moved con-
tinuously through the cell cycle. This drives cell proliferation and self-
renewal. When bcl-2 is downregulated, differentiation and/or apoptosis
is favoured. We can see, therefore that the p53—bcl-2 system is part of
the process of self-renewal and cell differentiation. It becomes easier to
see how dysfunction of this system can contribute to the development of
malignancy. Further, there appear to be complex interactions among the
various oncogenes, tumour suppressor genes and other genes that med-
iate drug resistance. It has been found, for instance, that mutant p53 can
interact with the promoter gene for MDR-1, producing increased expres-
sion of the gene and increased intracellular P-gp.

Members of the ras oncogene family, which do provide positive
growth signals, also may produce increased resistance to certain anti-
neoplastic agents. Transfection of ras into cisplatin-sensitive cells con-
fers cisplatin resistance, although the precise mechanism is uncertain at
this time.

In addition to the role played by tumour suppressor genes such as
p53 and oncogenes that block apoptosis such as bcl-2, a number of the
oncogenes provide positive growth signals and also influence drug sen-
sitivity. The c-myc oncogene, which provides growth signals to the cell,
will at the same time sensitize cells to apoptosis induction if certain
essential growth factors are reduced. c-myc is constitutively over-
expressed in certain lymphomas owing to a chromosomal mutation
that sees the gene being translocated to a different chromosome where
it comes under the influence of a promoter gene. On its own this change
might produce an overproliferating clone of lymphoid cells that would be
very sensitive to chemotherapy. However, the fully developed lym-
phoma tends also to be associated with bcl-2 overexpression, which
prevents apoptosis and at the same time favours stem cell proliferation.

Because chemotherapeutic agents often produce direct genotoxic
damage they are potent initiators of p53-dependent apoptosis. Other
types of cellular damage (e.g. damage to the mitotic spindle) can also
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initiate apoptosis, and these may, or may not, be mediated by the p53
gene. The G,/M boundary in the cell cycle appears to be another critical
point where DNA or chromosomal damage is repaired or an apoptosis-
like sequence is commenced (sometimes referred to as ‘mitotic cata-
strophe”). Certain drugs and radiation may produce this effect, which
appears to be independent of p53-associated apoptosis. A general
sequence of chemotherapy effect may be: (a) transport into the cell,
(b) direct or indirect damage to DNA or the mitotic apparatus, (c) apop-
tosis triggered if the drug-induced damage cannot be repaired. Since it
appears that chemotherapeutic drugs generate cell killing by inducing
apoptosis, this may constitute the final common pathway for many anti-
cancer agents.

Supporting evidence for believing that p53-dependent apoptosis is an
important determinant of drug sensitivity has been obtained by studying
tumour cell lines that express different levels of p53 (Lowe er al., 1993).
Cells that had two functional alleles for p53 (i.e. p53 +/+) displayed
marked sensitivity to a variety of antineoplastic agents plus radiation,
whereas the p53—/—cells were both drug and radiation resistant. Cells
heterozygous for p53 displayed an intermediate level of resistance
between the two types. Transfection of normal p53 into p53 null cells
restored drug and radiation sensitivity.

Other studies have suggested that p53 status on its own could influ-
ence drug resistance without there being any other (apparent) molecular
changes producing drug resistance. It is shown that cells would express
resistance to 5-FU if they were p53 negative even if the rest of the 5-FU
pathway was intact (as measured by inhibition of thymidylate synthesis).

The gene for p53 is only one part of a complex signalling pathway
that controls movement through the cell cycle and provides signals for
apoptosis. Presumably alteration in any of the genes that participate in
this pathway could influence drug sensitivity. There are, as well, the
p53-independent pathways that can also signal apoptosis and could
potentially influence drug sensitivity.

Given the frequency with which p53 is mutated in human cancer, it is
not surprising that many malignancies are characterized by relative resis-
tance to chemotherapy. However, it would be a mistake to assume that
because these mutations are widespread most human malignancies are
fundamentally untreatable by cytotoxic agents. Most types of cancer are
at least moderately sensitive to chemotherapy even if they cannot be
cured. Even sensitive (and curable) tumours could be expected to have
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at least small subpopulations of p53-negative cells. The p53 status can
be viewed as one of the important functions influencing drug resistance
but, on its own, it will not generate the levels of resistance seen in highly
selected human cells. This issue will be revisited when we come to
consider the question of intrinsic resistance in Chapters 6 and 9.

It is interesting to note that we can see a relationship between apop-
tosis and the birth/death mathematical processes that will be described
later. The molecular equivalents to the birth/death process can be seen
in the positive growth signals provided by cellular oncogenes (birth) and
the differentiation or death signals provided by the tumour suppressor
genes such as p53. Just as the mathematical equations suggest that
cancer must arise from an imbalance between cell birth and cell
death, laboratory studies indicate that tumours develop through muta-
tions that negatively affect the function of the cell death/differentiation
genes or through inappropriate overexpression of the cell birth genes
(oncogenes). Many cancers appear to have mutations in both compo-
nents of the growth system, leading to a general genetic instability and
ultimately all of the phenomena that we associate with cancer: excessive
growth, loss of normal differentiated function and the acquisition of such
properties as invasiveness and capacity to metastasize.

3.13 Drug-resistance modulation

The discovery of P-gp-mediated MDR provided impetus to attempt to
develop drugs that would specifically disable the resistance mechanism,
thereby restoring at one step sensitivity to many different therapeutic
agents. Tsuro in Japan (1983) found that calcium channel-blocking
agents such as verapamil could interfere with the binding of the anti-
tumour agent to the drug affinity site on the P-gp molecule. It was
possible to demonstrate in i vitro systems that this would significantly
impair drug efflux, resulting in the maintenance of a cytotoxic intra-
cellular concentration of the drug. These finding have stimulated an
extensive search for drugs that would be more effective than verapamil
and less toxic. A number of different classes of compound have been
found including such diverse agents as chlorpromazine, tamoxifen,
medroxyprogesterone and quinidine. The most potent agents discov-
ered so far are analogues of the naturally occurring immunosuppressive
agent cyclosporine. Some moderate degrees of restoration of drug sen-
sitivity have been seen in preliminary clinical trials, but so far dramatic
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responses have not been observed. This may not be surprising given the
probable multifactorial basis for drug resistance, in advanced tumours at
least. For example, there are at least two independent mechanisms for
resistance to doxorubicin (probably more). Even if P-gp-positive cells
are effectively modulated, alterations in topoisomerase 1I could still gen-
erate drug resistance and the effect of the modulator would be signifi-
cantly diminished. An unanswered question at this time is whether the
earlier use of the modulator together with P-gp class cytotoxic agents
would retard the development of resistance. In any case, it is probable
that successful drug-resistance modulation will require the simultaneous
use of at least two or three agents to deal with the common forms of
MDR. There will be a need for more potent and less toxic modulators,
especially if they are to be used in combination. Interestingly, antineo-
plastic agents such as doxorubicin, etoposide, vincristine, etc., which are
good P-gp substrates, do not appear to modulate resistance to one
another. This suggests that the antineoplastic drug-binding site on the
P-gp molecule is not readily saturated. The most effective modulators
(such as verapamil and cyclosporine) evidently bind the P-gp molecule
at sites different from the effluxing binding site.

3.14 Chemotherapy strategies directed at specific
oncogenes

The identification of the central role played by the various oncogenes in
specific neoplasms is opening up a whole new field of anticancer drug
pharmacology. The search is on for novel compounds that will bind and
inactivate mutant or overexpressed oncogenes. Mutant p53 is also a
potential target as it is known that only one allele in cells need be
abnormal for the cell to be functionally p53 negative. Some mutant
forms of the p53 protein appear to bind to the normal p53 protein
preventing it from functioning.

There is increasing interest in classes of compound that are known
collectively as signal transduction inhibitors. Oncogenes such as ras and
raf are components of a complex signalling system that responds to
such stimuli as interaction between a receptor on the cell membrance
and some growth factor. For the oncogene to ‘pass on’ its growth-signal-
ling message it may have to undergo some type of chemical change,
such as phosphorylation or linking with compounds such as farnesyl
alcohol. A number of drugs have been found that appear specifically to
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inhibit one or other transduction steps, thus potentially stopping cell
proliferation.

Another approach that shows considerable promise in experimental
systems is the use of antisense oligonucleotides. These are short seg-
ments of DNA nucleotides (8 to 20 bases in length) that are coded
opposite to a key sequence in the messenger RNA. The antisense
DNA will have the same sequence as a key region in the coding strand
of the cellular DNA and, therefore, will be complementary to the ‘sense’
strand of messenger RNA. The antisense nucleotide molecule will bind
to the RNA, thus inhibiting protein synthesis. The longer the nucleic acid
segment the more specific will be the binding to the desired region in
the messenger RNA. If the oligonucleotide is too small then the binding
will be largely nonspecific and the ability to shut down protein synthesis
selectively will be lost. Conversely, an oligonucleotide of excessive
length will present great problems in terms of delivery to the cell and
intracellular transport. Antisense RNA can be utilized but may present
problems with respect to synthesis and stability. Ribozymes are a type of
RNA with enzymatic activity that will cleave specific messenger RNA,
thus halting protein synthesis; they have potential as antisense therapeu-
tic agents. If the antisense inhibition is sustained for a sufficient period of
time, the cells may cease proliferating or spontaneously undergo apop-
tosis. As well, they may become very sensitive to chemotherapeutic
action. Antisense bcl-2 has been shown to be very effective in producing
these effects in vitro with cells that are overexpressing the bcl-2 protein.
A technical problem yet to be overcome satisfactorily is getting the
nucleotides to the tumour in vivo. The free antisense compound is
quickly degraded by nucleases in the serum. The antisense nucleic
acid must be protected by some type of encapsulation or chemical
modification, or possibly introduced into the tumour cells by a virus
vector. There are more and more reports in the literature indicating
that antisense treatments directed at a large varety of oncogenes are
capable of inhibiting a great many types of cancer cell in vitro. There
have been demonstrations in some animal studies that antisense therapy
is capable of eradicating certain transplanted tumours, and clinical trials
utilizing anti-»as and anti-bcl-2 are being undertaken.

It seems that the problem of tumour heterogeneity will still be present
even with therapeutic agents as highly specific as antisense nucleotides.
Antisense-resistant cells have been seen that have increased intracellular
nuclease activity, thus breaking down the oligonucleotides before they
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can inhibit DNA transcription. Nonetheless, it seems very probable that
the availability of such types of drug should significantly augment our
capacity to treat malignancy. In theory, they could represent the ideal
treatment strategy, inhibiting the fundamental molecular processes in the
cancer cell. It is not clear at this point whether antisense RNA or DNA
would be therapeutically superior. It is even conceivable that combina-
tions of both with multiple oligonucleotide species of each type, direc-
ted at the commonest mutation sites, might be required.

3.I15 Androgens and oestrogens

Two of the commonest types of human malignancy (breast carcinoma
and prostate carcinoma) have been recognized since the 1940s as being
sensitive to alterations in the level of oestrogenic and androgenic ster-
oids. Dramatic regression of advanced tumours can be seen when sur-
gical castration is performed or when the hormone effect is blocked at
the cellular level. Just as these tumours can respond to exogenously
administered sex steroids by increasing their growth rate, withdrawal
or blockade of the growth-stimulating hormone can result in very
rapid and extensive tumour cell destruction.

Although many of the steps in the process of hormone-associated
tumour regression remain to be elucidated, it is now recognized that
the basic cell destruction phenomenon is produced through activation
of the apoptosis system within the cell. The main function of the
growth-stimulating steroids is to stop apoptosis from occurring and
to facilitate continuous passage of the cells through the division
cycle. This amounts to favouring cell self-renewal over differentiation.
In normal cells, regulatory feedback systems operate to maintain the
stem cell compartment within defined boundaries and to ensure that a
requisite number of cells enter the differentiation pathway. With nor-
mal prostate during hormone withdrawal, most of the differentiated
cells undergo apoptosis and most of the tissue stem cells enter a
quiescent state. In malignancy, however, the balance between renewal
and differentiation/apoptosis is altered and there is a progressive
expansion in the number of tumour stem cells.

At the time of first presentation, a great majority (>90%) of prostate
cancers and a considerable proportion of breast cancer (approximately
50%) retain sufficient of the normal signal pathways that they will
undergo apoptosis when the hormonal stimulus is withdrawn or
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blocked by antihormones. The nature of the response differs from the
usual chemotherapy-induced response in that it is said to follow zero-
order kinetics. That is, there is not a linear dose response effect but
rather once the functional level of stimulatory hormone falls below a
threshold then the process of cell lysis proceeds to completion.

In the case of surgical castration, the effect is clinically often very
dramatic and may persist for many months or longer. In a sense this
type of apoptosis-induced therapy represents a paradigm of what really
effective cancer treatment should be. Nearly all signs of disease may
disappear and the cost in toxicity (compared with chemotherapy) is
minimal. The problem of course is that not all patients respond and
the effect is not permanent. Sooner or later the cancer recurs (even
when the patient is maintained on antihormonal therapy). Resistance
to all types of hormone manipulation eventually develops, though the
tumour may still respond to cytotoxic chemotherapy. The question is
whether the hormone refractory state is analogous in any way to the
selection of drug-resistant mutants by chemotherapy.

Studies carried out on a number of cell lines that have been derived
from hormone-sensitive cells demonstrate a variety of molecular
changes associated with the hormone-resistant state. These include
mutations in genes coding for hormone receptors and upregulation of
certain oncogenes that are known to block apoptosis (bcl-2) as well as
mutations in p53. That there are a number of genetic changes that lead
to hormone resistance is beyond question; the issue is whether they
have occurred spontaneously or whether they have been specifically
induced by the state of hormone deprivation.

Fluctuation tests to determine whether the hormone-resistant pheno-
type is spontaneous or induced have rarely been done. In 1982 Isaacs
found the appearance of hormone-resistant prostate carcinoma in rats
consistent with a spontaneous origin, but the sample size used in the
experiments was small and the results appear not to have been
repeated.

Whether the hormone resistance is induced or not, it appears that it is
associated with specific genetic changes and that the hormonal milieu
favours selection of phenotypes that are capable of autonomous growth.
That the environment may operate to influence the rate of appearance
of the mutants is suggested by the studies of Noble (1982) and
Bruchovsky (1992) which demonstrated that intermittent hormone
blockade delays the ultimate development of hormone resistance.
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(Hormone-dependent tumours that lose their sensitivity to hormone
withdrawal are described as autonomous.)

An important question is whether the appropriate use of drugs and
hormones together can produce a greater effect then either modality
alone or given sequentially. One manoeuvre that has been tried is to
stimulate the tumour to growth intentionally by providing the appropri-
ate stimulatory sex hormone and then to utilize chemotherapy. The
assumption here is that it is the kinetic state of the tumour cells that
will be most important in dictating response. By driving the proliferative
state maximally, the growth fraction® of the tumour will increase and the
generation time of component cells will be reduced. The thinking has
been that this will render the tumour population more drug sensitive,
reasoning by analogy with the studies of Bruce and coworkers with
respect to the sensitivity of resting versus proliferating bone marrow
cells (Chapter 2).

Clinical trials of this strategy have been attempted in both breast and
prostate cancer, but with basically negative results. In a few cases, ser-
ious clinical problems developed because of tumour stimulation without
any associated chemotherapy benefit. In hindsight it is perhaps apparent
as to why the strategy has not been successful. If the tumour cells were
genetically resistant to chemotherapy (for example by expressing P-gp)
then increased growth rate would not render them susceptible to che-
motherapy. In addition, the nature of the growth stimulation provided
by the hormones is probably the wrong kind for generating drug sensi-
tivity. Stimulation by sexual steroids appears to act primarily by blocking
apoptosis rather then providing an independent growth signal. This
would actually work against a chemotherapy effect even if the tumour
cells were potentially more sensitive by virtue of rapid growth kinetics.

Hormonal suppressive therapy could act indirectly to reduce the pro-
blem of drug resistance simply on the basis of general reduction in
tumour mass. If there are any drug-resistant mutants that are still sus-
ceptible to hormone-associated apoptosis then this would be expected
to contribute to cytotoxic therapy effectiveness.

T Growth fraction is the proportion of tumour cells that are proliferating Gi.e. synthesizing
DNA) relative to the entire tumour population. Experimental mouse leukaemias have
growth fractions of nearly 100% whereas many clinical solid tumours have estimated
growth fraction <10%. The percentage of proliferating cells is not equivalent to the per-
centage of stem cells within the tumour, which will typically be much smaller than the
growth fractions.
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3.16 Glucocorticoids

Another very important class of antitumour steroid hormones is the
family of glucocorticoid compounds (hydrocortisone plus a large num-
ber of potent synthetic analogues). The glucocorticoids mediate a wide
range of physiological functions including salt, water, glucose and pro-
tein metabolism as well as modulating a variety of immune responses.
Glucocorticoids play a key role in the development of normal lymphoid
cells by initiating apoptosis in those lymphoid cells that are surplus to
physiological requirements. It is this property that makes the glucocorti-
coids useful in the treatment of immunological disorders or as immune
suppressants in organ transplantation.

A number of malignancies of the lymphoid system retain their sensi-
tivity to glucocortcoid-induced apoptosis. The glucocorticoids are useful
therapeutic agents in treating a variety of lymphoid-derived tumours
(Iymphoblastic leukaemia, various categories of non-Hodgkin’s lym-
phoma, Hodgkin’s disease, multiple myeloma, etc.). The apoptosis
induced by glucocorticoids in lymphoid tissues is not dependent on
normal p53 function, a circumstance which probably contributes signif-
icantly to the broad antilymphoma effect seen with glucocorticoids.

Acquired resistance to glucocorticoids appears to conform closely to
the pattern seen with classical drug resistance mechanisms. A common
molecular alteration seen in glucocorticoid resistance involves mutations
in the glucocorticoid receptors on the cell surface. Studies have sug-
gested that the mutation rate to glucocorticoid resistance in a variety
of lymphoid cell lines is in the order of 10> to 107°.

The mechanism of cell lysis induced by the glucocorticoids appears to
be different from that seen with the androgenic and oestrogenic steroids
and to be confined to tumours of lymphoid origin. However, their ability
to induce rapid tumour lysis without any associated haematological
suppression makes the glucocorticoids invaluable antitumour agents.

3.17 Radiation effects and drug resistance

At a fundamental level there appears to be a number of similarities
between cytotoxic chemotherapy and ionizing radiation. Radiation,
like chemotherapy, produces a log-linear dose response effect on all
the cells that are capable of undergoing proliferation. It is now recog-
nized that a major component of radiation-induced cell killing involves
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the induction of apoptosis through both the p53-dependent and p53-
independent pathways. Tumour cells that are homozygous negative for
p53 function exhibit increased radiation resistance compared with simi-
lar tumours that are p53 positive.

An important early event in radiation effect is activation of a group of
coordinately acting genes collectively designated as ‘early response’
genes. These genes are induced in the early stages of repair of radia-
tion-induced damage. If the amount of damage exceeds the capacity of
the repair system then apoptosis is induced. This would certainly sug-
gest that there is a major genetic element in radiation sensitivity and
resistance in addition to the influence of local tissue environmental
factors (oxygen tension, pH, vascularity) that have been emphasized.
It is surprising, therefore, that it has proved difficult to demonstrate any
selection effect for radiation resistance by means of repeat radiation
exposure. There have been a few experiments that suggest that a selec-
tion phenomenon can occur (Courtney, 1965), but some of these have
involved radiation environments (chronic exposure to deuterated water)
quite different from those involved in clinical and experimental radio-
therapy. Simplistically, one might have expected courses of radiation to
select for p53 null cells from within a heterogeneous population, but this
has not been reported. Different types of tumour, as well as different
individual patients, show wide ranges in intrinsic radiation sensitivity,
but it has been difficult to demonstrate selection for radioresistant sub-
types. Likewise, chemotherapy does not appear to select for radioresis-
tant mutants even while selecting for cells that have enhanced DNA
repair capacity.

In the late 1980s, some experimenters reported finding what appear
to be true radioresistant variants that were selected for radiation resis-
tance out of a radiosensitive population. The process to produce these
variants was basically similar to that which has been employed in clas-
sical chemotherapy experiments. A critical factor in these radiation stu-
dies was the use by the experimenters of radiation dosages and
schedules that were similar to those employed clinically. That is, they
utilized exposures of 2 Gy (gray) per radiation fraction. Both stable and
unstable variants were cloned from the initial cell population and their
relative radioresistance confirmed by the appropriate colony-forming
assays. The degree of radioresistance by these criteria tended to be
considerably less than that produced by selection for drug-resistant var-
iants but, nevertheless, it would appear to be sufficient to cause major
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problems with respect to treatment outcome. The molecular basis for
this radioresistance is uncertain but it was associated with a diminished
ability of the cells to undergo apoptosis following radiation exposure.
Identification of the molecular changes associated with this type of
radioresistance could be a very significant finding leading as it might
to improved approaches for producing clinical radiosensitization.

Hill has demonstrated that radiation doses in the range used thera-
peutically generate a broad range of drug-resistant mutants and at rela-
tively high rates. This phenomenon is consistent with what has been
commonly observed clinically, namely that cancers that recur in a
radiated field are much less chemosensitive than similar tumours that
have not received prior radiation.

That radiation may result in many drug-resistant mutations is not
surprising given the known mutagenic effect of high-energy X-rays. In
radiobiology the ‘G’ value is the number of events (e.g. damaged mole-
cules) per 100 eV (electron volts) of absorbed energy. One rad (0.01 Gy)
of radiation delivers an amount of energy equal to 100 erg/g tissue,
which equals 6.2 x 10" eV/g. Typical G values are 0.01 to 1 for each
type of DNA damage (and there are a large number of different types,
including single-strand breaks, double-strand breaks, cross-linking, base
denaturation, etc). A typical radiotherapeutic regimen of 60Gy
(6000 rad) will deliver 3.7 x 10" eV to each gram of tissue. A 100g
tumour will have 10" cells and will contain approximately 100 mg
DNA. This means there will be 10'? to 10** instances of any type of
DNA damage in a 100 g tumour. Many of the cells in the tumour will be
killed, but any surviving cell will have sustained a heavy load of
damaged DNA. Moreover, the damage will not be distributed evenly
per cell but will follow a Poisson distribution with some cells receiving
considerably more than the average number of DNA lesions.

It is apparent that any residual cell population in radiation-treated
tumours will contain a large reservoir of potentially mutated cells. In
this sense, radiation is decidedly nonneutral in its effect. Any cells that
are not killed will be a great risk for undergoing further mutations, at
least some of which might be expected to confer drug resistance. This
effect would argue for the use of chemotherapy prior to or during
radiation in circumstances where this is feasible. This may be the optimal
time for maximum chemotherapeutic effect and, as well, would ‘down
size’ the tumour mass, rendering it more likely to be eradicated by the
radiation.
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3.18 Summary and conclusions

We have reviewed briefly some of the general types of molecular
change that are associated with resistance of the antitumour drugs.
The enormous capacity for cancer cells to express resistance to large
numbers of cytotoxic agents is related to the fact that cells have evolved
very efficient mechanisms for protecting themselves from various types
of cellular damage. As well, many anticancer agents utilize normal meta-
bolic pathways for part of their action and efficient alternative pathways
may exist that can be expressed by drug-resistant cells.

It appears that many, perhaps all, anticancer drugs exert their effect
through a final common mechanism, that of programmed cell death or
apoptosis. It may be because the anticancer drugs access this pathway
that they are useful as antitumour agents with a good therapeutic
index. Nonspecific cell poisons such as cyanide or azide do not appear
to have an exploitable therapeutic index for malignant versus normal
cells.

The loss of function such as that seen with p53 mutation, while on the
one hand contributing to drug resistance, may be, or the other, a source
of exploitable weakness in the cancer cell. By continuously going
through the cell cycle and not, as it were, stopping to repair damage,
the cancer cell may be rendered vulnerable to certain types of che-
motherapy strategy, such as protracted exposure to low levels of certain
antineoplastic agents (e.g. 5-FU, ara-C, etoposide). It will be recalled that
in the Bruce experiments described in Chapter 2 it was because the
lymphoma cells were continuously in cycle that they were especially
vulnerable to chemotherapeutic effects.
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4

Quantitative descriptions of the
origins of drug resistance

4.1 Introduction

In this chapter we will begin to discuss resistance in quantitative
terms. Chapter 3 contained a discussion of the molecular and cellular
processes by which resistance arises; this will not be addressed here.
The purpose here is to describe the development of resistance using
formulae so that predictions regarding the distribution and onset of
resistance can be made. The beautiful thing about formulae is that
they tell you everything and nothing about the nature of a system.
Everything, in that a correct complete formulae tells you exactly how
the process will evolve and what affects it. Nothing, in that identical
formulae may apply to quite different mechanisms of effect so that it
is not possible, in general, to discern the ‘how’ from the structure of
an equation. Quite different mechanisms of resistance may (or may
not) have formulae describing their development that are functionally
the same. Formulae describing a system may be derived, in general,
in two ways.

One method is to build a model for the system of interest using
known characteristics of the system. As an example consider building
a model to describe the length of a steel spring. Hook’s law indicates that
the extension of a steel spring is proportional to the force applied to it.
Also, steel expands upon heating so that we would expect the length to
depend upon the ambient temperature. Other physical mechanisms with
known modes of action may be postulated and piece by piece a model
for the system constructed. Using known mathematical equations that
describe each of these processes a composite set of equations for the
whole system may be developed and then solved to provide formulae
that relate the outcome of interest (the length of the spring) to the factors
which influence it (force, temperature, etc.). We will term this a theore-
tical model-building approach.

90
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The second approach is to utilize directly observations on the system
of interest and on factors thought to affect it. In cases where the factors
thought to affect the outcome can be directly manipulated, this repre-
sents the classical experimental approach. A series of experiments
would be carried out to measure the length of the spring at different
forces, temperatures, etc. In many situations, direct manipulation of
factors is not possible (e.g. astronomy) and one makes measurement
of the outcome at times or places where the factors are different. Having
gained these data, graphical or statistical techniques are used to deter-
mine the nature of the formula that relates the factors to the outcome.
One may term this an empirical model-building approach.

In the development which follows, we will use a theoretical model
building approach, using processes identified in experimental systems,
to build a model for the effect of chemotherapy on clinical cancer.

Before continuing it is necessary to define some terms so that there is
no confusion later. A mathematical or statistical model represents a
description, using formulae, of the behaviour of a process. A parameter
in a model represents a constant that relates the dependence of the
outcome of interest (development or resistance, say) to some factors
which influence it. Therefore, in the example of Hook’s law, the exten-
sion, E, of the spring is related to the stretching force, F, by

E = kF. (4.1)

The constant of proportionality, 4, is a parameter and Equation 4.1 is a
model for the extension, E, of a spring subject to a stretching force, F.
What we now wish to develop is a model that relates the development
of resistance to factors likely to affect it. In order to do so we will spend a
section discussing the development of mathematical and probabilistic
models, and how they may be manipulated to provide different formu-
lations of the same process.

4.2 Development of mathematical models of biological
systems

As described above, models of systems may be built from a synthesis of
statements about the way individual factors influence outcome or from
an empirical fit of relationships via graphical or statistical methods.
Having derived a model it may be mathematically manipulated to alter
its appearance. Such alterations may be from an aesthetic viewpoint or
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from a desire to conform to some standard mode of presentation. More
seriously though, one expression may provide more insight into the
behaviour of the system or permit simpler generalization to more com-
plex systems. Consider Hook’s law. We can rewrite this by finding the
change in extension brought about by an increase in the stretching force.
If £ is the extension when force F, is applied and E, is the (increased)
extension when (a greater) force F, is applied then

El = kFl
E, = kF,
By subtracting the second equation from the first we obtain,
E, — E = KE - F).

Now it is common mathematic notation to designate a change in some-
thing by the Greek letter A. Therefore, we can rewrite Hook’s model for
the extension of a spring as

AE = kAF,

the increase in extension, AE, is proportional to the increase in stretch-
ing force, AF. Again manipulating this a little further we have

AE
— =k
AF

The ratio of increased extension to increased force is a constant. Finally,
if we refer to calculus we may take the limiting process, where we
consider smaller and smaller increases in the applied force F so that
we obtain the differential equation

dE

dF
This equation says that the rate of change of Eas Fchanges is a constant.
In what follows in the discussion of resistance, we will wish to manip-
ulate relationships to have a different mathematical form so that they
may be more easily incorporated into a comprehensive model of drug
resistance.

We wish to utilize some measure of resistance in a population of cells
and relate it to factors thought to influence it. As was suggested in
Chapter 1, the most obvious measure of resistance in a population of
cells is the number of cells that are resistant. When resistance is thought
of as relative this reduces to the number of cells that are ‘more’ resistant.

=k
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Depending on the biochemical mechanism that confers resistance, the
relative scale may be a continuum (e.g. gene amplification) or may only
contain two states (presence or absence of a specific enzyme). Measures
other than the number of resistant cells can be used to characterize a cell
population. For example, we could use the presence or absence or cells
resistant to a particular drug concentration, or the maximum concentra-
tion to which one or more cells are resistant. Having chosen the number
of resistant cells we will now give it a symbolic representation, R. Thus
we wish to model the way in which R depends on factors thought to
influence it. The same problem was faced in the 1930s by researchers
exploring the phenomenon of resistance in bacterial populations to
antibiotics or viral infection. We will discuss the questions that these
researchers posed and present the analyses they developed to answer
those questions.

4.3 Quantitative theories for the development of
resistance by bacteria to viral infection

As the number of active antibiotics increased the importance of the
phenomenon of resistance grew correspondingly. Attempts to study
the phenomenon were plagued with apparent technical problems of
wildly fluctuating results leading to inconsistency of interpretation.
However, there was a common pattern, exposure of bacterial cells to
an antibiotic resulted in the rapid death of the vast majority of cells. If the
total population exposed was below some critical number, the whole
population was eliminated. If the population size exceeded this thresh-
old then a subpopulation would survive. If the population was at, or
close to, the threshold, then a surviving population sometimes existed
and sometimes did not. Further exposure of the surviving cells to repeat
application of the drug did not result in extinction of the population and
indeed, in some cases, the surviving cells appeared to replicate as well
in the drug-containing environment as the parent cells had functioned in
the drug-free environment.

The consistency of the above pattem in different bacteria and for
resistance to different agents convinced investigators at that time that
they were witnessing phenomena that had a similar process of causa-
tion. However, there was considerable uncertainty as to its origin. The
sustained nature of the change in sensitivity suggested that this was a
characteristic which could be transmitted to cellular progeny. Its perma-
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nence, after removal of the challenge, suggested that this characteristic
was now part of the cell line. These observations taken together implied
a relationship to the genetic structure of the cell. Hence it became widely
believed that the resistance of some cells was a result of genetic differ-
ences between them and these other cells which succumbed to the
agent. Accepting that genetic differences were the determinants of resis-
tance, how did these differences arise? It did not take long for a number
of theories to be proposed as to how such events occurred. These soon
became focused on two main concepts.

One concept, frequently referred to as Lamarkian in the literature of
the time, hypothesized an interaction between drug (or virus) and the
cell whereby the cell gained the ability to resist the action of the agent.
The exact mechanism for this ‘transfer or acquisition of information’ was
not specified. However, several mechanisms may exist for different
drugs so that a unique specification was not possible, especially given
the limits of the technology of the time. The information acquired some-
how altered the genetic structure of the cell and was passed along to
future generations. In order that not all cells become resistant it was
further hypothesized that the process was imperfect, with only a fraction
of cells acquiring resistance. The reason for this ‘partial acquisition’ was
hypothesized to competition between this process and the killing effect
of the drug or virus. We will refer to this as the directed mutation
(induction) model. (The term ‘directed mutation’ is now more often
used to denote this process; it implies that the environmental substance
specifically induces or directs the mutational change in the cell.) The
second hypothesis, which could be termed Darwinian, was that genetic
alterations were randomly occurring all the time. A small fraction of
these alterations confer resistance in a cell to a particular agent. The
effect of subsequent drug application is to select out the resistant cells
and destroy those which are sensitive. This leaves the small fraction that
are resistant, which then repopulate the tumour. We will refer to the
second model as a random mutation (selection) model. Figure 4.1 sche-
matically illustrates these two hypotheses in a growing cell population.

Of course there is nothing about either the Lamarkian or the
Darwinian process which excludes the presence of the other. Both pro-
cesses may take place. In different cases one or the other may dominate.
Any ‘proof’ of the existence of one of these processes in a particular
example does not imply the nonexistence of the other or indicate what
happens in general. However, the proven existence of one process,
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Fig. 4.1. Schemes A and B indicate the growth of a hypothetical system from
a single cell through four synchronized divisions to a population of 16 cells.
In A, resistance (indicated by solid circles) is assumed to arise via a random
mutation process whereas in B it is assumed to arise via a directed process. In
both A and B the number of resistant cells after four divisions is the same and
occur in the same pedigree. The frequency of resistance is made artificially
high to permit simple depiction. In A, the resistant cells exist prior to the
application of the selecting agent (drug) whereas in B the application causes
the conversion of some existing sensitive cells to a state of resistance.

without contrary examples, will tend to make us believe that this process
holds exclusively. In any situation where both processes exist they may
occur at different frequencies so that only the more common one is
demonstrable.

The first investigator to present evidence for pre-existing variation in
bacterial populations was Bumett in 1929. Individual colonies of
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salmonellae may show either a ‘rough’ or ‘smooth’ appearance. This in
turn is related to the composition of the bacterial capsule. Burnett was
able to show that there were differences in sensitivity to lysis by bac-
teriophage depending on whether the colonies were smooth or rough,
suggesting that some inherent genetic property of the bacteria was
what was determining their resistance to bacteriophage infection.
These observations led Burnett to postulate a Darwinian origin for
resistant microbes.

In principle it is very easy to distinguish whether a random muta-
tion process is present. The random mutation hypothesis implies that
drug-naive cells grown from a single cell will, if grown to a large
enough size, contain a subpopulation of cells that are resistant. The
directed mutation model implies that the same population will contain
no resistant cells. We assume in both cases that the possibility of
starting with a resistant cell is excluded. We can, therefore, decide
between these two hypotheses by determining whether resistant cells
are present in drug-naive populations grown from single sensitive
cells. In order to do this we must first overcome two experimental
difficulties.

Firstly, it is necessary to characterize resistance in a way that does not
depend on drug administration. The most obvious method is to have a
marker, obtained from studies in drug-resistant cells, that is known to be
present in such cells but not in sensitive cells. We can refer to this first
requirement as specificity. Secondly, it must be possible to measure this
marker with great accuracy in large populations of cells, so that if it is
present in 1 cell in 10*? (say) it can be detected. We may term this quality
sensitivity. Practically, the requirements of both sensitivity and specificity
represent a formidable challenge even today and were insurmountable
in the 1930s.

Therefore, indirect means to address the question of the origin of
resistant subtypes were sought. It was not until 1943, with the publica-
tion of a paper by Luria and Delbriick, that a solution was forthcoming.
Their experimental method, known as the fluctuation test, provided a
method for discriminating between these two hypotheses. The essence
of their approach is a recognition that the two models imply different
things about the development of resistance in a growing cell population
over time. In order to discuss this experiment we will now review the
quantitative implications of the two mutation models and present an
introduction to probabilistic modelling.
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44 Probabilistic descriptions of the models for the
development of resistance

Directed mutation model

First consider the directed mutation model. In its simplest form it implies
that at administration of the drug a proportion of cells will become
resistant. We will refer to this proportion as p. Therefore, if N is the
number of cells present at the time of drug administration, then the
induction model says that the number of resistant cells created, R, will be

R =pN. (4.2)

If, as is often useful, we think of these quantities as being a function of
time, then prior to drug administration at time ¢* there are no resistant
cells. At t*, pN resistant cells are created, which then continue to grow
according to their kinetics and the environmental conditions. Although
useful for describing what will happen on average, Equation 4.2 requires
some refinement to be used for predicting the outcome of an individual
experiment.

We know that if the number of sensitive cells, N, is small, frequently
none will become resistant upon drug application although Equation 4.2
predicts that some number will. Similarly, the number of resistant cells is
a whole number, fractions do not exist and Equation 4.2 will only yield
integral values for R for certain values of N. This problem arises because
a discrete process is being modelled by a continuous mathematical
function. A common approach to remedy this is to continue to use the
equation and round to the nearest whole number, so that if pN < 0.5 set
R=0,if0.5 < pN < 1.5set R = 1, etc. This is unlikely to cause much of
a problem when pN =2 1000; however, when pN = 0.5, the difference
between R =1 and R=0 is quite considerable. A population with
R =1 will survive administration of the drug, a population with R = 0
will not. A more suitable approach is to use probability models and to
consider the number of resistant cells to follow a probability distribution.

The probability distribution of a process is a formula that assigns a
number between 0 and 1, the probability, for each state a system may
occupy. A state of a system represents any possible condition the system
could be in. When trying to describe the number of resistant cells in a
population of N cells there are N + 1 possible states representing 0
resistant cells, 1 resistant cell, . . ., N resistant cells. The question is
then, how do we specify what is the probability distribution of these
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states? As above we could select the state which is closest to pN and set
the probability of that state equal to 1. This essentially duplicates the
nearest whole number approach described in the preceding paragraph.
Another way is to make some further observations (or assumptions)
about the behaviour of each cell when exposed to the drug under the
induction model. Drawing on our discussion of Hook’s law in Section
4.2, we may reformulate Equation 4.2 as the change in the number of
resistant cells, AR, when extra cells, AN, are exposed to the drug, i.e.

AR = pAN. (4.3)

For the particular case when only one extra cell is exposed to the drug
(AN = 1), we obtain from Equation 4.3 that the number of resistant cells
should increase by p(AR = p x 1 = p). Unfortunately this does not
solve the problem as we shall still have some ‘pieces’ of resistant cells.
However, we may use this formulation to develop a probability model.
Instead we may think of p as the probability that the extra cell exposed
to the drug is converted to resistance. In symbols we would write this as

P{AR=1AN=1}=p:

in words, this is the probability that the number of resistant cells
increases by unity when one sensitive cell is exposed to the drug.
Similarity between the probabilistic and nonprobabilistic approaches
can be seen by examining the average increase in the number of resis-
tant cells in the probabilistic model. In general, the average increase is
equal to the sum of all possible values of (the increase in the number of
resistant cells x the probability that increase will occur). In this case we
have only two possibilities: an increase of 1 with a probability of p and
an increase of 0 with a probability of 1 — p. Therefore, we have:

average increase =1 X p+0 x (1 — p) = p.

If we assume that each cell has the same probability, upon exposure, of
developing resistance, p, then the average number of cells which
develop resistance will be this probability multiplied by the number of
cells, N, i.e. pN. Under these assumptions we reproduce Equation 4.2 as
the average number of resistant cells. In order for this formula to hold
we must assume that each cell has the same value of p, i.e. cells are all
equally likely to develop resistance. If we make the further assumption
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that resistance developing in one cell does not influence the likelihood
that resistance will develop in another cell, then the number of resistant
cells has a probability distribution known as the binomial distribution.
This is the same distribution used for determining the number of heads
observed in several coin tosses. In this case p is the probability of heads
and N is the number of tosses. When p is small and N is large the
binomial distribution is well approximated by a Poisson distribution
with parameter pN. The formula for the distribution (see also Chapter
2) is given by

PR=1} = (plr\")re-f’”. (4.4)

The mean and variance of the distribution is given by

mean = it = pN,
. ) 4.5)
variance = 0~ = pN,
where u and o” are standard symbols for the mean and variance. The
standard deviation o = ./(pN) and is the square root of the variance; it
measures the likely degree of variability of Rabout its mean, p. Since the
standard deviation is proportional to +/N, the absolute variability of the
number of resistant cells increases as the number of sensitive cells
exposed to the drug increases. The relative variation, as measured by
the ratio of the standard deviation to the mean,

o 1

1 PN’
decreases as the mean increases so that fluctuations around the mean
become proportionately smaller. We can summarize our analysis to this
point by saying that when the expected number of resistant cells is large
consideration of the actual distribution will provide little extra informa-
tion. When the expected number is small consideration of the distribu-
tion is essential.

The probability that there are no resistant cells, R =0, is given by

substituting » = 0 into Equation 4.4 to give

T This concept is referred to as independence. In fact it is because in the random mutation
model the probability of a cell being resistant is altered by the observation that another cell
is resistant (nonindependence) that Luria and Delbriick were able to develop the fluctua-
tion test.
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PR=r}=e"V, (4.6)

This relationship will be used later.

Now if the Poisson distribution gives the number of resistant cells
after application of the drug, what is the number at some later point?
Obviously this will depend on the number present after drug adminis-
tration and the kinetics of resistant cell growth. For bacterial populations
growing in the conditions of these experiments, exponential growth is a
reasonable assumption. If we assume that the exponential growth is
perfectly regular and the cells have common division time t, then
each cell grows to size 2/7 in an interval of time of length ¢ If we
then carry through the calculations involved we find that the mean
number of resistant cells at time ¢, after exposure to the drug is

mean = pN2'/%,

with 4.7
variance = pN(2"/%)?.
Therefore, the standard deviation of the population at time ¢ becomes
o =/pN2'"",
so that the ratio of the standard deviation to the mean becomes
g JoN2!* 1
w o pN2'T T \/pN’
This is the same value for (o/pt) that was found for the time immediate
post-treatment: the relative variation in the number of resistant cells is
unaffected by subsequent exponential growth. Subsequent growth to
large numbers, after initial creation of a few resistant cells, will not
reduce the variability between replicate experiments. Large numbers

do not, per se, guarantee low relative variability. To illustrate these
results we will consider a theoretical example.

Example 4.1

Consider a cell population in which drug-resistant and drug-sensitive
cells grow at the same rate. Assume that drug resistance arises as a
result of directed mutations and that a probe exists which can mea-
sure the number of resistant cells without affecting the system.



Quantitative descriptions of the origins of resistance 101

Consider one series of experiments in this population where the
parent sensitive cells are exposed to drug at size N, and then the
resulting resistant cells are allowed to grow for interval ¢ At the end,
the mean and the standard deviation of the number of resistant cells is
given by Equation 4.7 with N = M,:

n = (pN)2'*

and
o p]\}izt/t
so that
o 1
—-—= . 4.8
K /PN, (48)

In a second series of experiments, no drug is given at size M, but the
parent population is permitted to grow for an interval ¢ so that there
are N2"" cells. The drug is then applied and the mean and standard
deviation of the number of resistant cells produced is Equation 4.5
with N = N;2'/"

w = p(N;2"7)

and

o =VpN2'T",

o [ p
;: W. (4.9)

Comparing these two series of equations we see that giving the
drug earlier (Equation 4.8) versus giving it later (Equation 4.9) does
not affect the mean number of resistant cells and the mean is the same
for any time of administration prior to evaluation. Conversely the
standard deviation is influenced by the time of administration and
increases for earlier times (/oM 2"/* > /pN;2!77). This effect is max-
imized when the drug is given when the parent population is suffi-
ciently small that there are usually no resistant cells produced except
rarely, when a single cell is produced which subsequently grows to
form a very large population at the time of evaluation. I

so that
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Random mutation model

Having developed some basic relationships for the behaviour of the
directed mutation model we now wish to undertake a similar analysis
of the random mutation model. Analogously to our consideration of the
directed mutation model we would assume that at any time drug-sensi-
tive cells have a common rate of acquiring resistance. It is necessary to
be rather delicate in the way in which we interpret the preceding state-
ment. For the directed mutation model, resistance develops only at times
when the cells are exposed to the drug. Therefore, the probability that a
cell develops resistance, at the time of drug application, and the prob-
ability that a cell is resistant soon after application of the drug, are the
same. The rate at which drug resistance occurs under the directed muta-
tion model, p, is defined in terms of the number of cells present when
the drug is applied. There is no single point like this for the random
mutation model. However, the random mutation model must behave,
conceptually, like a directed mutation model in which drug is continu-
ously applied but no sensitive cells are killed. If we use the symbol « to
represent the ‘rate’ at which cells are ‘converted’ to drug resistance in the
random mutational model (to distinguish it from the rate under the
directed model), then we can use a differential form of the directed
mutation model Equation 4.3 as a prototype for the random mutation
model. We can write

drR

7=
where dN now represents an increase in the number of sensitive cells
rather than the number exposed to the drug.

It is implicit from Equation 4.10 that population growth is necessary
before resistance can occur. This is not the only way to formulate the
random mutational model. An alternative approach to defining the equa-
tions governing the acquisition of resistance in the random mutation
model is to consider the rate a as a time-specific rate, which may be
written as

o, (4.10)

dr
dr
where R and N (the number of sensitive cells) are dependent upon ¢.

This particular formulation has been used extensively in other applica-
tions where it is necessary to model random creation and growth (e.g.

=aN, 4.11)
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cosmic rays entering the earth’s atmosphere). For exponentially growing
cell populations, the two formulations are essentially equivalent since
the rate of growth of the parent population is proportional to its size.
Where the growth of the parent population is not exponential this is no
longer true; however, for the purposes of this chapter we will consider
the two formulations as equivalent, and will use them interchangeably. If
sensitive cells did not replicate, N would not change over time and
Equation 4.10 would predict that no new resistant cells would be cre-
ated. However, if resistance acquisition is time dependent (Equation
4.11) then more resistant cells would be continuously produced despite
the lack of growth of the sensitive cells (see also Chapter 5).

The mathematical formulation of the random selection model con-
tained in Equation 4.11 is incomplete in two ways: (a) it only models the
conversion of sensitive cells to resistance and does not include the
intrinsic growth of the resistant cells and (b) it is still only formulated
as a deterministic model and not a probabilistic model. The first concern
is easy to address and comes by adding a term representing the intrinsic
growth of already existing resistant cells, as follows

dR
— =aN+AR 412
3 = AN T AR (4.12)

where A represents the intrinsic growth rate of the resistant cells
(A = In(2)/t where t is the doubling time). Placing this model into a
rigorous probabilistic framework is complex, and we will return to this
below. However, it turns out that the formulation developed to this point
can be used to distinguish between the random and the directed models,
as will be seen below.

Earlier we postulated that the random mutation model should behave
like a directed mutation model where we continuously apply drug to the
parent population and cause conversion to resistance but do not cause
death of sensitive cells. We found, in our discussion of the directed
mutation model, that the mean number of resistant cells present at a
particular point did not depend on the (earlier) time of application of the
drug but that the standard deviation did. In particular, we found that the
standard deviation increased if the drug was applied earlier. Combining
these observations we would deduce that the standard deviation of the
number of resistant cells under the random mutation model will be
greater than that under the directed mutation model in the case where
they both predict the same mean number.
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To illustrate this, imagine that we separate the growth of the cell
population into a series of nonoverlapping adjoining time intervals of
equal length At. Any resistant cell present at the end can trace its origin
back to a progenitor resistant cell that first arose in one of these intervals.
If growth is well synchronized cells will divide at the same time and it is
convenient to choose the intervals to represent a single doubling (Fig.
4.2). In each interval the development of resistant cells can be expected
to behave as a directed mutation process with parameter « so that (see
Equation 4.4) the number of resistant cells created from previously sen-
sitive cells using a Poisson distribution with a mean, y, is given by

u=aAN, (4.13)

where AN is the increase in cell number associated with the doubling in
the interval. The increase in cell number AN is given by

AN = %eA(H-At) _ %ekt — %ekt(ekAt _ 1)’ (4.14)

Interval 1

Interval 2

Time

Interval 3

Interval 4

QO OO
12 34 56 7 8 916 1112 13 14 15 16

Fig. 4.2. The growth of a hypothetical cell population originating from a
single cell is depicted through four consecutive synchronous divisions causing
it to increase to 16 cells. The history of the cell division and growth is divided
into four time intervals separating different generational divisions. Resistant
cells (indicated by solid circles) are assumed to arise via random mutations
that occur with certain probability at each division of a sensitive cell. Of the
16 cells present after four divisions, eight are resistant. For each of the
resistant cells (cells numbered 1, 5, 7, 8, 13, 14, 15, 16) it is possible to trace
back its lineage until the progenitor resistant cell is identified. Each progenitor
cell will have arisen in one of the disjoint intervals defined by the divisions of
each of the cells. Thus resistant cells 1 and 5 have first resistant progenitors in
interval 4 (themselves); 7 and 8 have a common resistant progenitor in
interval 3 and 13, 14, 15 and 16 have a common resistant progenitor in
interval 2.
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that is the difference in the number of cells at the beginning (Ne’) and
the number of cells at the end (]\ﬁeA(HN)) of the interval. Combining
Equations 4.13 and 4.14, the mean number of resistant cells that arise
from pre-existing sensitive cells in this interval is

p=ax et —1). (4.15)

Now we may use Equation 4.15 to calculate the expected number of
resistant cells, u*, present at a later time #*, which are derived from new
resistant cells created in this interval. This is obtained by multiplying
Equation 4.15 by the mean increase in growth over the subsequent
interval of length (#* — ¢t — At), which is M8 5o that

M* - ot]\{,e)‘t(e)‘At —1) x eA(t*—t—At) - a]\{,e“‘(l _ e_)‘At). (4.16)

But it can be seen from Equation 4.16 that u* depends only on the
length of the interval, At, and the final time ¢* and not the time of the
beginning of the interval, ¢, since ¢ does not appear in the equation.
Hence the formula applies to any of the intervals, showing that two
intervals, of the same length, make an identical ‘contribution’ to the
overall mean number of resistant cells. However, earlier intervals have
greater variability in the number of cells they contribute at time ¢* as we
will now show.

Using the same approach as before, in which we cut the history of the
tumour into a series of disjoint time intervals, we can calculate the over-
all variance. Since resistance occurring in one cell in an earlier interval
implies that its progeny in a later interval are already resistant, each
interval is not statistically independent of another. However, this depen-
dence is slight and we will assume that the resistance arising in each
interval is independent of others. Under the assumption of indepen-
dence, the overall variance at time ¢* is just the sum of the variances
that each preceding interval contributes. Let (6*)* be the contribution to
the variance at time ¢* for one interval of length At commencing at time
t (u* was the contribution to the mean). If the interval length is suffi-
ciently short, then the number of resistant cells in the interval is just
equal to the number that have spontaneously converted from sensitivity,
since they will have had no time for further growth. The variance of the
number of new resistant cells converting in an interval is given by the
variance of the Poisson distribution, which is equal to its mean and is
given in Equation 4.15. In order to calculate its contribution to the over-
all variance at time t* we multiply this by the square of the mean
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regrowth subsequent to the interval: [e“'*_’_m)]2 (see Equation 4.7).
Accordingly

(0,*)2 = alvoekt(eAAt _ 1) % [el(t*—t—At)]Z
— otNoe“(e}‘At —1)x eZA(t*—t—At)

— otNo(l _ e—AAt)eAt x eA(t*—t—At)
— M* x eA(t*—t—At)'

We can see that the above formula multiplies the contribution to the
mean, u* by a factor that increases for intervals earlier in the period
(smaller H. When we sum over the (¢*)° terms for each interval to form
the total variance we find that it is greater than the overall mean because
of multiplication by these factors, X"~ We obtain the result that
under the random mutation model the variance of the number of resis-
tant cells exceeds its mean at the time of drug application.

Implications of the analysis

The directed mutation model predicts that, immediately after drug appli-
cation, the number of resistant cells follows a Poisson distribution with
the variance equal to the mean, u; whereas the random mutation model
predicts that the distribution of resistant cells has a variance that is
greater than the mean w.

This is an extremely important point. It is a mathematical property of
the Poisson distribution that its mean is equal to its variance. In the case
of a directed mutation process there is a single event (and hence a
single Poisson distribution) that results in the generation of resistant
cells. In a random mutational process there are a series of what we
might call mini-Poisson events, each with its own mean and variance.
These random events are then propagated by the growth of the resistant
cells and continue to occur until the drug is applied and the selection of
the resistant cells occurs.

Having identified this distinction between the two models, Luria and
Delbriick proceeded to develop an experimental method in which the
results are sensitive to the relationship between the mean and the var-
iance. They called their method the fluctuation test.
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4.5 The fluctuation test

Since its introduction in 1943, the fluctuation test has been modified in a
number of ways to suit individual experimental conditions. Its essential
nature is unchanged and will be outlined here. A schematic description
is given in Fig. 4.3. First a parental line of wild-type cells is obtained and
divided into two equal samples A and B. Sample B is then divided to
provide a large number, # say, of equally sized portions, or aliquots. The
size of the aliquot is selected so that the likelihood of resistant cells being
present is small and, where possible, the size is sufficient for regular
growth to be expected. Sample A and Sample B are then grown under
identical conditions until they have reached a size where approximately
one resistant cell can be expected to be present in each aliquot of
sample B (if the random mutation hypothesis is true) or one resistant
cell would be induced by application of the drug if the directed mutation
model is true. At this point, sample A is mixed to minimize any inho-
mogeneities and divided into # aliquots, so that Sample A and Sample B
both consist of # equal sized portions. If the growth process is not
perfectly regular then the initial aliquots in sample B may vary in size
substantially at the time of drug exposure. If this is the case then Sample
A should be divided to have the same distribution of sizes as Sample B.
Throughout this process each sample has been maintained in as iden-
tical a condition as possible. For simplicity we will refer to the portions
drawn from each sample as Sample A and Sample B. Drug is now added
to each of the samples to produce resistance (directed model) or select
for resistance (random model). Drug-sensitive cells are eliminated and
only the resistant ones remain. At this point each sample is homogenized
and plated individually onto an appropriate medium. Cells are allowed
to grow and the number of clones formed is counted. Each clone is
assumed to originate from a single drug-resistant cell and the number
of clones grown from each sample equals the number of drug-resistant
cells present after exposure to the drug. The mean number of drug-
resistant cells in the aliquots of Sample A and Sample B are calculated
and the variance between aliquots within each sample computed.

The two samples experience identical experimental conditions
except that Sample A is divided after growth and shortly prior to drug
administration whereas Sample B is grown after division into aliquots.
How does this provide a method for distinguishing between the induc-
tion and selection models? The approach taken by Luria and Delbrtick in
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Fig. 4.3. The overall pattern of the fluctuation test is depicted in this figure.
First two equal sized populations are drawn from a homogenized parent
population. One is placed in a single flask (Sample A) whilst the second is
divided into » subsamples (Sample B). Both samples are then allowed to
grow in identical conditions until the average size of the population in each
subsample in B reaches a critical size (where there would be approximately
one resistant cell present). At this point, Sample A is mixed and then divided
into 7 separate subsamples, which should be of the same average size as
those in Sample B. Each subsample (in both A and B) is then exposed to the
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their fluctuation test was to demonstrate that the standard deviation was
inflated by a selection mechanism in Sample B by incorporating an
internal control which would provide a separate estimate of the variance
under a Poisson model. This control was provided by the portions from
Sample A. The cells in Sample A aliquots were exposed to the same
conditions as those from B except that they were divided into portions
immediately prior to drug exposure. Consider the effect of this process
under the two models.

Under the directed mutation model, prior to drug exposure, each
aliquot (whether from Sample A or Sample B) consists of a uniform
sample of sensitive cells. After drug is applied, each contains a random
number of resistant cells. The distribution of that number of resistant
cells is given by Equation 4.4 and has a mean and standard deviation
given by Equation 4.5. This distribution is the same for aliquots from
both samples and only depends upon the size of the aliquot at drug
exposure, N.

Under the random mutation model prior to division, Sample A con-
sists of an inhomogeneous mixture of sensitive and resistant cells.
Homogenizing and division into aliquots results in each aliquot having
a random number of resistant cells. The expected (mean) number of
resistant cells in each aliquot is the same (call it ©”) and is equal to the
total number of resistant cells (R,) in Sample A divided by the number of
aliquots, 7, thatis 4’ = Ry/n. The process of mixing and random sam-
pling implies that the resulting distribution will have a Poisson form with
parameter R,/7. The variance of the number of resistant cells per aliquot
from Sample A is thus also R,/7 (since it has a Poisson distribution). The
variance between aliquots in Sample A is equal (on average) to the
within aliquot variance, so that the variance in the number of surviving
resistant cells after drug administration will be Ry/#n for Sample A.

Caption for Fig. 4.3 (cont.)

drug. Sensitive cells are killed and only resistant cells survive. Surviving
resistant cells are counted, either by plating or by some other method. The
count of the number of surviving resistant cells per subsample is noted and
the variation in counts for each sample calculated. Under the directed
mutation model, similar variation in counts is expected in each sample
whereas the variation for Sample B is expected to exceed that for Sample A
under the random mutation model.
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Sample B represents # independent aliquots, each of which has devel-
oped a random number of resistant cells. Defining Ry to represent the
sum of the numbers of resistant cells in all the # aliquots from Sample B,
then each aliquot has the same expected number of resistant cells, Rp/#.
However, as described on p. 105, each aliquot from sample B has a
variance that exceeds its mean, Rg/#. Since the two samples contain the
same numbers of cells and all conditions have been kept as similar as
possible, the two samples should contain the same average aggregate
number of resistant cells, i.e. the mean of R, is the same as the mean of
Rg. Finally, we deduce that under the random mutation model the var-
iance between the aliquots (which is, on average, the same as the var-
iance of each aliquot) is greater for Sample B than for Sample A, whereas
they are the same under the directed mutation model.

In summary, under the directed mutation model the aliquots from
Samples A and B both have the same (Poisson) distribution of resistant
cells. Under the random mutation model, the aliquots from Sample A
and Sample B have different distributions of resistant cells; in particular
the variance in Sample B exceeds that of Sample A.

4.6 Analysis of data from the fluctuation test

The beauty of the fluctuation test is that it reduces a complex problem to
a simple test. The statistical procedure used to analyse data from these
experiments is known as ANOVA (analysis of variance). This test com-
pares groups of means from various samples to determine whether
some means are more widely separated than others. In this case, the
means are the individual aliquot counts and we wish to determine
whether the counts in aliquots from Sample A are less widely separated
than the counts from sample B. This technique is widely used in statistics
and a large number of statistical software packages exist that contain it.
This method does not rely on the Poisson distribution but only compares
the variance between aliquots of the two samples.

4.7 Experiment of Lederberg and Lederberg

In 1952 Joshua and Ethel Lederberg described an ingenious method for
evaluating whether resistance arose through random or directed adapta-
tion. Their experiment was basically to utilize a bacterial culture plate
that was covered with colonies of Escherichia coli and then employ a
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sterilized tube covered with velvet nap, which was brought into contact
with the plate. Some of the cells adhered to the nap and when this was
brought into contact with a second plate a portion of cells were trans-
ferred in such a way as to preserve their original spacing and spatial
orientation. The second culture plate could then be treated with
bacteria-lysing phage or with antibiotics.

As cells are not mobile on the culture plate, adjacent cells are much
more likely to share common ancestors than cells distant from one
another. If that common ancestor was resistant then cells at the same
location on each plate will be resistant. If the total population has not
been previously exposed to the drug then the directed mutation model
would imply that there were no pre-existing resistant cells. If the two
plates are now exposed to drug then this model would imply that there
would be no systematic correlation between the spatial patterns of sur-
viving cells on the two plates other than that which could be attributed
to chance. The random mutation model implies that pre-existing resis-
tant cells will be present prior to transference so that there will exist
some correlation in the patterns of surviving clones on the two plates.

It will be remembered that in the fluctuation test any possibility of
spatial relationships among evolving populations of bacteria will be
disrupted by both the circumstances of growing the bacteria in a liquid
medium and the process of careful mixing. Conceptually, the
Lederbergs’ ‘blue velvet’ experiment is probably easier to understand
than the fluctuation test and it is an elegant method for demonstrating
the prior existence of mutant forms.

Lederberg and Lederberg presented no mathematical analysis so that
it would be possible to analyse the data from such an experiment to
distinguish between directed and random mutation models. Despite the
method’s conceptual simplicity, the analysis is complicated by the sam-
pling variation present in cell transference between the plates. However
it is straightforward to see how a variation of this method could be
analysed using currently available technology. Instead of using a plate,
the cells are individually transferred to microwells, with one cell in each.
The cells then double once and one cell from each well is transferred to
a second plate of microwells, with each cell going to the same well
position on the new plate that it occupied previously. Each microwell
on both plates is then exposed to the same level of drug and the loca-
tions of surviving clones on each plate is recorded (Fig. 4.4). Let there be
M microwells on each plate and let 7, and 7 resistant cells be observed
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on plates 1 and 2, respectively. Under the directed mutation model, the
distribution of resistant cells on each plate will be random and the like-
lihood that the same well location on both plates will have a resistant
cell is

nor
Lx2.
M M

Therefore, there will, on average, be

Mx—=x= (4.17)

wells that have resistant cells at the same location on both plates under
the directed mutation model. The number of wells that have resistant
cells on both plates is approximately Poisson distributed so that the
variance of this random variable is also given by Equation 4.17.

Under the random mutation model, prior to division there will be »’,
say, pre-existing resistant cells, which each divide to form resistant cells
in the same location on each plate. In addition, there will be more
resistant cells created at division, Ar’, which will be randomly divided
between the two plates. Now by definition each of the sites where one
of the ' pre-existing resistant cells existed will have a resistant cell at the
same location on the other plate and none of the Ar’ sites, where

Fig. 4.4. In this idealized version of the Lederberg and Lederberg (1952)
experiment, an array of cells is created by placing individual cells in wells.
Each microwell contains the same number of cells (one cell in the
illustration). The location of each cell can be identified by the coordinates of
the well. In the illustration, the centre well has location (3,3). Each cell is
allowed to double so that there are now two cells in each well. One cell from
each well is then drawn at random and placed in the same coordinate
location that it previously occupied on a second plate, thus creating two
identical plates each with one cell per microwell in the same location. These
cells are then exposed to drug and the surviving cells (open circles) are
identified and their coordinates noted. Under the directed mutation model
there will be few surviving cells (resistant) at the same coordinates on each
plate. Under the random mutation model the possibility that resistance may
have been pre-existing increases the probability that there will be resistant
cells at the same locations.
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resistant cells were created, will have resistant cells at the same well on
both plates. Thus there will be 7’ wells that have resistant cells on both
plates under the random mutation model, in contrast to that predicted
for the directed mutation model in Equation 4.17. Since the total number
of resistant cells on both plates must equal the observed number, we
must have,

n+n=2r+Ar, (4.18)

with both 7, and 7, greater than r'. We expect the number of wells
containing resistant cells on both plates to be much greater under the
random mutation model than under the directed mutation model, i.e.

' n_n

r>MX—XxX-—=,
M M

as the following example illustrates.

Example 4.2

Consider a case where there are 10000 wells and 1 in 1000 wells
contains a resistant cell. Then under the directed model we would
expect

Mx T 2210000 x — X —— = 0,01
M M 1000~ 1000
wells per experiment to contain resistant cells on both plates.
Therefore, only about 1 in 100 such experiments would have resistant
cells at the same site on both plates. Under the random mutation
model there will be 7’ such wells; but what magnitude is »’ expected
to be? Now since equal intervals contribute equal numbers of resistant
cells (Equation 4.16 and preceding discussion) we know that
2r' > Ar. Substituting this inequality into Equation 4.18 gives

n+n < 2r +2r,

so that we have r’ > (7, + r;)/4. Now with 10000 wells and 1 in 1000
resistant cells, each plate will have approximately 10 resistant cells;
we would expect 7’ to exceed 5((10 + 10)/4). Therefore, under the
random mutation model one would expect to find wells on both
plates with resistant cells while under the directed model this
would be rare.
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Although this technique provides a quite powerful way to distin-
guish between the random and the directed mutational models, it can
be seen that the magnitude of the experiments involved may make
them impractical. Spatial inhomogeneity in the distribution of resistant
cells is one of the principal predictions of a random mutation model.

4.8 Applications of the fluctuation test to cancer
chemotherapy

The preceding discussion may be termed ‘classical’ in that it represents
the use of the tests in determining resistance in bacterial populations to
either drugs or viral infection. Its application to iz vitro tumour systems
is little different in that such cells may be manipulated in ways similar to
that of bacterial populations. Therefore, many examples of the fluctua-
tion test are available from the literature for in vitro tumour systems. The
results of such experiments almost all support a random mutation model
for the origin of drug-resistant mutants in iz vitro tumour systems.
Although such observations do not prove that resistant phenotypes
arise only via random mutation, such cells do seem to be the predomi-
nant type. In many cases where the creation of resistant cells does not
seem to be via random mutations, selection takes place at high drug
doses and the cells do not maintain their resistance. This suggests such
resistance is related to some epigenetic phenomenon that permits the
stochastic survival of a few cells. It must be emphasized that a positive
fluctuation test does not exclude the existence of directed mutations but
it does indicate that random mutations are more common.

Clearly the experimental nature of the fluctuation test makes it impos-
sible to use it to determine the origins of cellular resistance to che-
motherapy in dinical cancer. However, its application to experimental
tumour systems in animals is possible. The complexity and cost of such
an undertaking has resulted in comparatively few studies being made.
One published study has reported results compatible with a random
mutation hypothesis (Law, 1952), while a second unpublished one has
reported equivocal results (H. Lloyd and H.E. Skipper, unpublished,
1972). The design of these two studies is similar but they contained
one major modification of the fluctuation test used by Luria and
Delbriick (1943).
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Fig. 4.5 An initial parent tumour is removed from a host, homogenized and
re-implanted, at a smaller inoculum size, into a number of new hosts. The
tumour is then allowed to grow until it reaches a critical size (usually
determined by the growth curve of the tumour and the capacity of the animal
to carry the tumour) when it is harvested, homogenized and a subsample
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49 Invivo fluctuation tests

The first study was reported by Law in 1952, while H. Lloyd and H.E.
Skipper carried out a similar study (personal communication) in 1972.

In both studies the L1210 leukaemia line was used in DBA mice. The
experiment by Law examined resistance to amethopterin (methotrexate)
and the experiments performed by Lloyd and Skipper analysed resis-
tance to O-palmityl ara-C. In each case multiple sublines were cultured
from a single line and repeatedly passaged through animal hosts (seven
times in Law’s experiments and 11 times in Skipper and Lloyd’s) sepa-
rately maintaining each subline. Passaging involved implanting a con-
stant sized inoculum and all >wing this to grow to a fixed size, sacrificing
the host, harvesting the tumour and extracting a new inoculum for re-
implantation to a new host. After this had been done the number of
times required by the experiment, multiple inocula from the tumour
were created and implanted separately into animals. The host animals
were then treated with the prescribed chemotherapy and the results
noted. The structure of these experiments is given schematically in
Fig. 4.5. In the experiments by Law, tumour weight was the primary
outcome, based on sacrifice data obtained at a fixed time postche-
motherapy. Skipper and Lloyd’s experiments utilized median survival
time and surviving fraction as outcomes. In both series of experiments
one subline was considered to be a control.

In terms of our previous description of the fluctuation test, the control
subline represented sample A whereas the remaining test sublines repre-
sent sample B. In order that the final measurements be carried out on
similar numbers of animals in A and B, the control subline had a larger

Caption to Fig. 4.5 (cont)

re-implanted in a single new host. This cycle of growth, harvesting and
implantation is then repeated several times. At the completion of this the
tumour is harvested and each subline is re-implanted into an equal number of
animals except for the ‘control’ subline where the tumour is implanted into a
larger number of animals. Subsequent to re-implantation, the tumour is
allowed to grow a common time and then each animal receives
chemotherapy. Depending on the study design, various endpoints are
measured: survival of the animal, time to death, tumour weight at some fixed
later time. These endpoints are then compared between the control subline
and other sublines.
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number of inocula prepared from it for implanting into the animals
receiving chemotherapy than the test sublines. In all cases the inoculum
size was the same. The above description, not considering quantitative
specifications of doses, inoculum sizes, etc., summarizes the plan of
these studies. Other ancillary studies were conducted to verify that the
original tumour line did not contain ‘too many’ resistant cells and that the
sublines maintained their malignant potential after passaging.

Before considering the differences between these two experiments,
first consider the difference between them and the ‘classic fluctuation
test’. The most obvious difference is the serial transplantation of (each)
sublines through the hosts. This is required by the host-dependent nat-
ure of tumour growth, but why was repeat serial transplantation done?
Neither of the reports explains why such repeat passaging was done.
The report by Law was published first and, since this did provide unam-
biguous indication for the random mutation model for methotrexate
resistance in L1210, the same design may have just been replicated by
Skipper and Lloyd. The main mechanism by which the random mutation
model leads to a greater variance than the directed model is the influ-
ence of the early transformations to resistance. An early transformation
may be defined in terms of the probability of no transformations having
occurred. This probability declines from unity to zero as the tumour
grows. If, at the stage of growth of the tumour, this probability exceeds
0.95 then an existing resistant cell may be termed an ‘early’ transforma-
tion. Similarly if the first transformation occurs after the probability has
declined below 0.05 it may be termed late. As has already been shown,
early events disproportionately influence the variance.

Repeat passaging will influence the effect of early transformations
under the random mutation model in two potential ways. Firstly, if the
inoculum size for re-implantation is too small then it will not contain any
resistant cells and only sensitive cells will be implanted. Secondly, if the
inocula size is too large then it will always contain resistant cells so that a
resistant tumour will always be re-implanted. Therefore, unless the
inocula are in the correct size range, the procedure of serial passaging
in this way will tend to produce a homogeneous result. It seems more
likely to err on the side of drawing too small samples than too large
samples because one requires some variability at final analysis and it is
always possible to obtain resistance in a sensitive subline but not the
converse. Serial passaging outside the optimum range of sizes may
actually tend to remove the effect of the all-important early transforma-
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tions or provide too much opportunity for them to occur. Both influ-
ences will tend to diminish differences between the sublines. From this
analysis, it is certainly clear that the effect of serial passaging will depend
on the inoculum size, tumour size at animal sacrifice and the value of a.

A further factor to consider in understanding these experiments is the
different measures of outcome that were used. Law measured tumour
weight in animals at a fixed time postchemotherapy. Skipper and Lloyd
measured median survival time and surviving proportion. We would
expect tumour weight to be a sensitive measure to use in the fluctuation
test since it is directly propottional to the number of cells present, which
will be directly proportional to the number of resistant cells present at
the completion of chemotherapy. For this reason, if there were a 100-
fold range in the number of resistant cells after chemotherapy, there
would be an approximate 100-fold range in tumour weights at a fixed
time later. Since animals die from this tumour at about the same body
burden, the time to death will also be related to the number of resistant
cells after chemotherapy. However the relationship between the number
of resistant cells and tumour weight is stronger than that with survival
time. Similarly, the variation in survival rates may also be small, since a
tumour will prove fatal ultimately if it contains 1 or 100 resistant cells.

A further difference between the ‘classical’ fluctuation test and the
two animal experiments is the control sample. In the animal experiments
a single subline was selected as the control. This differs from the classi-
cal test in that although sample A consisted of a single sample it was
equal in size to the aliquots that constituted sample B. Therefore, the two
samples should have the same underlying distribution of total number of
resistant cells. In the animal experiments the overall proportion of resis-
tant cells is expected to be the same in each sample but because one
sample is composed of multiple sublines and the other of a single sub-
line, the overall combined proportion will be more variable in the single
subline sample than in the combined.

It would seem that these published experiments designed to mimic
the fluctuation test in vivo possess various problems that will limit their
capacity to distinguish efficiently between the two models. The fact that
one of these experiments, that by Law, did show evidence of a random
mutation effect must be counted as strong evidence for the existence of
this as a mechanism for the production of resistance in vivo.
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4.10 Summary and conclusions

Two models, selection and directed mutation, have been proposed for
the origin of resistant cells. The selection model predicts that resistant
cells are spontaneously created in the absence of a drug while the
directed mutation model indicates that it is the interaction between
drug and cell which creates resistant cells. In the absence of specific
markers of resistance that may be accurately measured in mixed popu-
lations of cells, it is not possible to distinguish directly between these
two hypotheses. An indirect method, known as the fluctuation test,
makes such a separation possible. This experimental approach relies
on the deduction that the selection model predicts, under uniform con-
ditions, much greater variability in the observed number of resistant cells
than the induction model does. This test has been used to show that
resistance is acquired by a selection process to a large variety of drugs in
in vitro tumour systems. Evidence from iz vivo tumour systems is very
limited but appears to be compatible with the same mechanism.

In his autobiography Salvador Luria (1983) recounted how he got the
idea for the fluctuation analysis experiment. He had observed someone
playing a slot machine, noticing that the player frequently got no return,
occasionally a small amount and then, rarely, would ‘hit the jackpot’
with a large pay out. The average earnings from the machine would
be quite low, but every so often by chance there would be a large sum
discharged from the machine. Luria realized that the average payoff in
the game would not tell the whole story, but the gambler would be
interested in the rare big win that would occur. A random process like
mutations would, likewise, occasionally produce a ‘jackpot’ owing to the
mutant arising very early in the expansion of a clonal population.
Intuitively recognizing that this would be the case was one thing, but
rigorously proving it scientifically was something else. At that juncture,
Luria called upon his colleague Max Delbriick, a physicist, to help with
the statistical analysis of the data that would allow a distinction to be
made between an induced or a spontaneous event.

The fluctuation test is one of the most ingenious biological experi-
ments ever devised. The assumptions that go into it are very subtle and a
full mathematical discussion of the theory would go well beyond the
algebra and basic calculus used in this chapter.

We can say that whatever other processes may be operative to pro-
duce drug resistance, clearly spontaneous mutations are one of them.
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Although a number of the therapeutic implications are the same for both
an induction and a mutation model, there are important areas of differ-
ence. A ‘naive’ induction model would argue that the tumour cells exist
in some kind of indeterminate state with respect to drug-resistance mar-
kers prior to drug exposure. Looking for them prior to treatment would
be pointless (presumably no one would suggest that the act of histolo-
gical staining can induce these markers in dead cells). However, if prior
information about the resistance profile of the tumour can be obtained
without in vivo destructive testing then clearly this will be important.
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5

Development and exploration of the
random mutation model for drug
resistance

5.1 Introduction

In this chapter, we further develop the description of resistance in quan-
titative terms. Chapter 4 detailed how the quantitative analysis of the
directed and random mutation models for the development of drug
resistance provided a method, the fluctuation test, to distinguish
between them. Evidence was cited that favoured the random mutation
model, implying that the onset of resistance would be a variable process
and would occur prior to application of the drug. However, it is worth
noting that many of the deductions that we will make will be equally
true under a directed mutation model.

In the development that follows, we will assume that resistance arises
via a random mutation process. The purpose of this chapter is to
develop equations which describe the evolution of the resistant cell
compartment as the tumour grows when resistance is caused by random
mutations.

In order to discuss resistance in tumour systems one must first have
some basic model for the functioning of the tumour system. A basic
model for functioning will mean widely different things to different
people, but here we will be concerned about the way in which the
tumour system grows. We will be concentrating on a quantitative
description of the growth of resistant and sensitive cell populations with-
out detailed description of what regulates or stimulates such growth. We
believe this approach is justified in that it permits concentration on the
dynamics of the resistance process; however, as with any other model,
such simplification is justified only if it does not lead to erroneous con-
clusions. We use the term model to imply some construct intended to
describe reality. The models we will discuss are mainly conceptual and
mathematical although we will frequently make reference to physical
models.

122
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5.2 Exponential model of tumour growth and the
expected number of resistant cells

Consider first the overall growth of the malignant cell population with-
out worrying whether such cells are sensitive or resistant. Cell growth
proceeds by a process of binary fission. The time from creation of a cell
to the time it divides to form two new cells is called the division time. If
the division time is perfectly stable and cells continue dividing then the
resultant growth is known mathematically as geometric. Fortunately, cell
growth in real populations is not totally synchronous so that after a few
divisions cells are sufficiently out of step that the population is increasing
steadily rather than in large jumps. In this case, it becomes reasonable to
think of the growth process as proceeding smoothly and regularly over
time. Not only does this make for good looking graphs but it permits
much easier mathematical analysis. Smoothly changing functions may
be analysed using calculus; the methods for analysing processes which
change by variable integer increments are not nearly so elegant. The
smooth equivalent of geometric growth is exponential growth (see also
Chapter 2). The mathematical description of exponential growth may be
written in a number of different ways, with mathematicians favouring a
form like

N(2) = Nye 5.1

where f represents time and N, is the number of cells at £ = 0. An alter-
native, and in this context more suggestive, way to put this equation is

N() =27,

where 7 is the division time of the cells (synonymous with generation
time, cell cycle time, intermitotic time, the time required to move from
one mitosis (M phase) to the next; see p. 45). The above equations imply
that fractions of cells are present most of the time since N(#) will be a
whole number for few values of ¢ However this inconvenience is
ignored because the number of cells is usually large.

A defining characteristic of exponential growth is that the rate of
growth is proportional to the population size. Using calculus, the rate
of growth is denoted by dN/dt and we have the usual defining equation
for the exponential

dn
55 = MV, (5.2)
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i.e. the rate of growth of each cell is the same so that the overall rate of
growth is proportional to the tumour size.

In order to continue further and incorporate the existence of resistant
cells, we need to develop linked equations that describe the growth of
the sensitive and resistant cells. Denote the number of sensitive cells at
time ¢ by S(¢) and the number of resistant cells by R(%), then

N =S+ R(®)

since each cell must be either sensitive or resistant by assumption. If
resistant and sensitive cells grow and divide in the same way, the same
type of equation (as Equation 5.2) will hold for both types of cell to
describe their intrinsic growth, ie. dS/dt = AS5(¢) etc. If the two types
grow exponentially but at different rates, then we would use a different
A value for each cell type (or in the equivalent growth equation a dif-
ferent 7). An exponential growth model provides the most basic math-
ematical model for describing the growth of pre-existing sensitive and
resistant cells.

In order to describe fully the growth of the sensitive and resistant cell
compartments, we must not only describe their own intrinsic growth but
also the transformation of sensitive cells to resistant cells. In Section 4.4
we considered two formulations for the random mutation model
(Equations 4.10 and 4.11) in which « was viewed as either a division-
or time-dependent rate. If divisions occur regularly in time then it is
possible to use either formulation so that, under such circumstances,
the two formulations are mathematically equivalent. However, it must
be noted that they do not necessarily say the same thing. A time-depen-
dent rate may imply that elapsed time has some direct effect on the
development of resistance whereas a division-dependent rate implies
that it is movement through the cell cycle which drives the development
of resistance. We favour the latter model and use it throughout this
book. When growth is regular it is often convenient to convert the
division-specific rate into a per unit time rate since

rate of resistance per unit time =
rate of resistance per unit division x division rate

In our case we have

rate of resistance per unit time = rate of resistance per unit division X A.



The random mutation model for drug resistance 125

Consider now the expected growth of the resistant cells. If, as before,
« is the rate of resistance acquisition per cell division and there are S(¢)
sensitive cells present, then new resistant cells are arising via transfor-
mation at rate

aAS(2).

If the resistant cells have the same intrinsic growth rate as the sensitive
cells then existing resistant cells are growing at rate

AR(E).

The overall growth rate of the number of resistant cells, dR/d¢, is given
by the sum of the intrinsic growth rate plus that resulting from new
transformations, i.e.

dR

Fri AR(t) + aAS(2). (5.3)
We cannot solve this equation for R(#) since we do not know what S(f)
is, so we must first find it. We have exactly the same equation for the
growth of the sensitive cells except we now subtract the cells, aAS(?),
that are transferring from sensitivity to resistance, i.e.

ds

T AS() — adS(1) = A1 — o] S(8). (5.4)
Equation 5.4 may be solved since it only includes terms in S(¢) and is
nothing but the defining equation for an exponential, with a rate con-
stant A[1 — a]. Since @ <« 1 (much less than 1), the term [1 — ¢] is fre-

quently approximated by 1 so that we have
ds
i AS(2),

which has the solution:

S(t) = SeM, (5.5)
where §, is the number of sensitive ceils at time ¢ = 0. If we now sub-
stitute the solution in Equation 5.5 into Equation 5.3 for R(¢) then we
have

(3—1: = AR(t) + arS,e™,
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which has as its solution
R(?) = RyeM + artsye, (5.6)

where R, is the number of resistant cells present at time ¢ = 0. It can be
seen that the formula for the number of sensitive cells is contained in the
expression for the number of resistant cells, indicating the relationship
between the size of each ‘compartment’. (Compartment will be used to
refer to groups of cells within the tumour that are homogeneous with
respect to some characteristic; thus the sensitive compartment consists
of all cells that are sensitive to the drug in question.)

Figure 5.1 plots N(f) as given by Equation 5.1 and R(f) as given in
Equation 5.6 for several values of a. A log-linear scale is used so that the
exponential growth of the total population appears as a straight line. In
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Fig. 5.1. Plot of mean number of resistant cells, R, as a function of the overall
number of tumour cells, N, and the transition rate a. Both axes use
logarithmic scales. The overall tumour size N is also plotted for reference. It
can be seen that the values of Nand o strongly influence the number of
resistant cells. The proportion of resistant cells, for specific values of a,
increases as the tumour grows (N increases) although this only changes
slowly. As a result, it is the value of the product aN that primarily determines
the expected number of resistant cells.
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these illustrations, it is assumed that N, =1 and R, =0 so that the
tumour starts from a single sensitive cell. Therefore, the resistant popu-
lation starts at zero (not depicted since log(0) = —o0) and increases
smoothly as time elapses (and the tumour grows). The rate of increase
of the resistant population is slightly greater than that of the total popu-
lation, as demonstrated by the slightly stronger gradient. If extended
indefinitely the tumour would become totally resistant (for all values
of o).

We now consider a short example utilizing the formulae presented.

Example 5.1

Consider an experiment in which we wish to calculate the number of

resistant cells at the time of first treatment. A mouse is inoculated with
8 x 10° tumour cells from a tumour with a doubling time of 8 hours.
The animal is to be exposed to a drug 72 hours later, for which the
random mutation rate is @ = 1 x 10~ per cell division. To proceed,
first we calculate the value of A. We have stated before that

elt = 2t/t,

since these are two alternative formulations of the same equation.
Taking logarithms to the base e on both sides of this equation gives

t
A= ;_ln(Z),

1
== In(2),
where In represents logarithms to the base e. Since T = 8 hours and
In(2) = 0.6931 we have

A= Ozﬂ — 0.0866.

If the inoculum consists of sensitive cells only (a common assump-
tion), then

S =8x10°,

Ry, =0.
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The number of sensitive cells present after 3 days is, therefore, given
by Equation 5.5:
S(t) - Soekt —_ 8 X 105 X 60.0866X72 — 4.08 X 108

Assuming resistant cells to grow at the same rate as sensitive cells, the
number of resistant cells is given by Equation 5.6:

R(72) = Rye? + ar725¢*™
=0+1x 1077 x 0.0866 x 72 x 4.08 x 10® = 2.54 x 10°.

That is, there are expected to be approximately 250 resistant cells at
the time of treatment.

We may use the two Equations 5.5 and 5.6 to obtain an expression for
the overall number of tumour cells, N(#).

N(®) = S(t) + R(t) = Se™ + [Rye™ + artSye]

5.7
= [Se™ + RoeM] + artse* = Npet! + anret. 6.7

Equations 5.1 and 5.7 seem to be contradictory when compared in that
they provide different expressions for N(#). The reason for this differ-
ence is the simplifying assumption made in deriving Equation 5.5
where [1 — «] was replaced by 1. If we do not make this simplification,
we obtain slightly different formulae, which when added give Equation
5.1.

In many applications R; = 0 and the value of « is sufficiently small so
that the value of @At is much less than unity, then

N(t) = S(t) = Se*. (5.8)
Under these circumstances, the proportion of resistant cells, R(2)/N(2), is
approximately equal to Equation 5.6 divided by Equation 5.8:
R() artSs,e
N@) ~—  Set

This final equation demonstrates that the proportion of resistant cells
increases linearly as the tumour ages (and grows) so that we would
expect older (larger) tumours to be proportionately more resistant.

= @Al (5.9)
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5.3 General model of tumour growth

An alternative approach is to ignore the time course of growth of the
tumour and just use the growth of the tumour as an index (much in the
way time is used in the exponential modeD) of development of the
system. This can then be combined with the model of resistance
where it is assumed that the likelihood of transitions to resistance are
related to tumour growth. In a tumour system where cells neither die nor
escape the system, the amount of tumour growth is equal to the number
of passages through the cell cycle. We hypothesize that every time a cell
moves through the cycle there is a constant probability, &, that the celt
becomes resistant and we may then relate this to tumour growth in order
to develop formulae for the evolution of resistance. We may formulate
these hypotheses mathematically in a way similar to that used in Section
5.2; however, it is not possible to develop differential equations with
respect to time since events are not dependent upon time. In this case,
we assume that cell divisions are required before transitions to resistance
can occur. How do we formulate this? If we are prepared to consider
approximating the cell division process, where integer numbers (0, 1, 2,
etc.) of cells are added to the overall population, with a smooth process
where arbitrarily small fractions of a cell can be added then we may
again utilize differential calculus. Let S, R and N represent the sensitive,
resistant and total cell compartments of the tumour. We wish to write
equations of what happens to the §and R compartments as the overall
size Nincreases; N now replaces # as an index of the overall process, so
that we write S(&V) and R(N). In this situation we wish to develop
equations that will describe the sizes of § and R for any particular
value of N. The resulting equations will not describe the growth of the
overall population but indicate for a given N what the relative numbers
of sensitive and resistant cells are. We assume, as before, that at some
particular point (i.e. some size N) we know the number of sensitive ()
and resistant (R) cells. Then we consider what happens when the total
number of cells, N, increases to N + AN. If we refer to the associated
changes in Sand Ras AS and AR, respectively, then we have

AN = AS + AR, (5.10)

i.e. the increase in the total number is the sum of the increases in the
number of sensitive cells and resistant cells. Now AR, the increase in the
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number of resistant cells, consists of the sum of two components, the
increase via division of previously existing resistant cells (call this AR")
and the influx of new resistant cells converted from sensitivity (call this
AR"™). Therefore, we also have

AR= AR’ + AR". (5.11)
If resistant and sensitive cells are dividing at the same rate then the

rate of increase through division in the resistant cell compartment will
equal that in the overall tumour so that

AR' AN
R N’
from which we obtain
AN
AR =R=—. 12
. 512

If there is no cell death then the change in the number of cells AN
equals the number of divisions in the total population. The sensitive
cells divide and add both sensitive cells, AS, and newly converted
resistant cells, AR”. The sum AS+ AR” is thus equal to the number
of sensitive cell divisions. By substituting Equation 5.11 into Equation
5.10 we have,

AN = AS+ AR+ AR",
so that
AS+ AR" = AN — AR’ (5.13)

Substituting Equation 5.12 into Equation 5.13 gives an expression for the
number of sensitive cell divisions as a function of changes in the overall
size of the tumour (AN), ie.

A
AS+ AR" = AN — AR’ = AN — RTN = AN —R/N). (5.14)

A more intuitive explanation of this expression is obtained by noting that
(1 - R/N) = S/N equals the proportion of sensitive cells; the formula
just says that the number of sensitive cell divisions is equal to the overall
number of divisions multiplied by the proportion of sensitive cells in the
tumour.

As discussed earlier, we hypothesize that a proportion, «, of sensitive
cell divisions convert to resistance at every division. The number of
resistant cells created by sensitive cell divisions, AR”, is given by «
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multiplied by the number of divisions in the sensitive cells, so from
Equation 5.14 we obtain

AR" = a(AS+ AR") = aAN(1 — R/N). (5.15)

The increase in the number of resistant cells, AR, is obtained by sub-
stituting Equations 5.12 and 5.15 into Equation 5.11 to give

AR = AR’ + AR" = AN(R/N) + aAN(1 — R/N)

=aAN + AN(1 — a)(R/N). (5.16)

If we now divide Equation 5.16 through by AN and replace the ratio of
changes in cell numbers, (AR/AN), by the instantaneous rate of change,
dR/dN, then we obtain a differential equation for the number of resis-
tant cells R in terms of the overall number of cells N, i.e.

dR AR
Solving this equation is quite straightforward so that we obtain the
resulting formula for the number of resistant cells in terms of the total

number of cells
R = N[1—(1-Ry/N)N/Np)™"),

where R, and N, are the sizes of the tamour at some earlier point. If we
make the usual assumption that the tumour originated from a single cell
that was sensitive then R, = 0 and N, = 1. The formula then becomes

R=N[1-N" (5.17)

Accordingly, the proportion of resistant cells, R/N, is given by
(1 - N7%), from which it is apparent that the proportion of resistant
cells increases as the tumour grows. That the proportion is increasing
may be seen more readily if we use the approximation
(1 - N =aln(N), which is valid for small values of « and large
values of N, so that we get

R = aN In(N). (5.18)

and the proportion of resistant cells is a In(NV)

We may compare the proportion of resistant cells in the general
model to that obtained for the exponential model. If we refer back to
Equation 5.9 the formula for the proportion of resistant cells in the
exponential growth model, the proportion of resistant cells was aAt.
If, as usual, the sensitive cells are assumed to form the majority of the
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tumour, then the total number of cells under the exponential model is
given by N(f) = " (Equation 5.1) assuming N, = 1. Substituting this
expression into the general expression for the proportion of resistant
cells aIn(N) gives aln(e*) = aA#: the same expression as Equation 5.9.
The exponential and general models give the same result for the pro-
portion of resistant cells but the exponential model also indicates the
size of the tumour as a function of time.

The important difference in the two models is that in the second we
make no assumption regarding the exponential growth of the tumour
cells. The essential element of both formulae is that they indicate (a) that
the number of resistant cells increases as the overall tumour size
increases and (b) that the proportion of resistant cells slowly increases
as the tumour grows. The preceding calculations are based on the ran-
dom mutation model and it is of some interest to consider what, if any,
difference there would be if the directed mutation model was used. The
directed mutation model would also predict an increase in the number of
resistant cells produced as the tumour size at drug exposure increases.
However, the rate of change in the number of resistant cells as tumour
size increases is different in the two models so that the directed mutant
model would predict that the proportion of resistant cells would remain
constantas the tumour size increases. Unfortunately, the difference in the
evolution of the proportion of resistant cells is not a characteristic of the
models that may be easily exploited to distinguish between them.

The preceding formulae do not acknowledge the stochastic nature of
the resistance process. These formulae provide a way to calculate the
average number of resistant cells, but as we have already seen in Chapter
4, the actual values in any particular tumour may vary considerably from
the average. Also real systems experience alterations in growth condi-
tions that will add to the variation in the numbers of resistant cells in
identical tumours. The question, therefore, arises as to whether there is
some other quality of resistance, which is more stably measured between
tumours, that has some useful interpretation. Such a quantity is the prob-
ability of no resistant cells, which we will now discuss.

5.4 Probability of no resistance

When dealing with spontaneous human tumours we deal with a unique
occurrence every time. The tumour is composed of cells that inherit an
altered form of a person’s DNA. Tumours show similarity in behaviour
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so that it is possible to develop classes within which individual tumours
will tend to behave similarly; however, it is important to keep in mind
the potential uniqueness of each clinical cancer. The same property
exists for passaged animal cancers and in vitro tumour systems: different
lines display considerable variation in properties and behaviour. The
difference is that experimental cancers are also passaged and main-
tained many times so that it is possible to explore and enumerate the
properties of these systems with considerable accuracy providing suffi-
cient resources are available. In this way it is possible to select systems
for further study that have interesting or appropriate characteristics.
Stability is an important property of an experimental system but one
that cannot be assumed in human cancer. An experimenter selecting a
system for the study of factors that influence chemotherapy effectiveness
would not wish to select one in which chemotherapy was either always
or never effective, since such a system would provide little scope for
exploration. Therefore, the tendency is to select systems that in their
wild state display sensitivity to one or more drugs. The relevance of this
is that we assume that the wild state in which the experimental tumour is
passaged is primarily a drug-sensitive state and it can be eradicated by
one or more drugs in some circumstances. Notice there is no require-
ment that human cancers have this property and a major problem may
be that a great number of them do not.

We may characterize a tumour as being in a drug-sensitive state if
there are no drug-resistant cells. Conversely it is in a drug-resistant state
if there are one or more drug-resistant cells. A tumour converts from a
drug-sensitive to a drug-resistant state when one or more drug-resistant
cells come into being. Calculating the average number of resistant cells,
using the formulae of the previous section, does not give much insight
into the transition between sensitivity and resistance since the average is
almost always greater than zero and increases continuously without any
jumps marking the creation of individual cells. However, a quantity that
can be calculated is the probability, By, that there are no resistant cells
present to the drug under consideration. The probability will be viewed
as a function of time or tumour size and will be written as P,(¢) or Py(N),
respectively. Initially, we will derive an expression for P, based on the
general model of growth that will apply to the exponential model as a
special case.

Derivation of a formula for Py(N) is based upon the simple observa-
tion that there will be no resistant cells if, and only if, there are none
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created. The distribution of the number of resistant cells created from
sensitive cells has a Poisson distribution with parameter equal to the
mean number created (see Equation 2.5, p. 40). The mean number
created is equal to the mean number of transitions from sensitivity to
resistance and not to the number of resistant cells, which also includes
cells deriving from the division of pre-existing resistant cells. Here we
will assume, as before, that & represents the proportion of divisions of
sensitive cells that produces a new resistant cell. The mean number of
new resistant cells created from sensitive cells is ¢ multiplied by the
number of sensitive cell divisions. If at the beginning, the tumour con-
sists of N, cells and at some later time it consists of Ncells then there will
have been N — N, total divisions since each division adds one cell
(assuming no cell loss or death). The mean number, u, of new resistant
cells created is given by

g =a(N - N).

The probability of a zero count in a Poisson distribution with mean 1
is given by e™ (see Equation 4.6), so the probability of no resistant cells
at size N (Py(N)), is given by

Py(N) = e ®WV=1) (5.19)

When this formula is applied to human cancer, which is assumed to
grow from a single cell origin, it is common to set N; = 1 so that

Py(t) = e, (5.20)

In 2 number of contexts Py(N) has been referred to as the probability
of cure, since it represents the maximum proportion of cures that can be
achieved by the application of the drug under consideration. The idea
being that, at least in principle, all drug-sensitive cells can be destroyed
by the drug and that one or more pre-existing resistant cells will lead to
eventual regrowth of the tumour in a drug-resistant state. The actual
proportion of cures depends upon the way in which the drug is admin-
istered and the rate of growth of the tumour. The formula would be
accurate if all drug-sensitive cells were eliminated at the time of first drug
application. For all but the smallest tumours this will not be true and
some sensitive cells will survive and grow. This growth has the potential
to produce resistance so that Equation 5.20 is only an approximation.
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The more rapid the reduction in size of the tumour and the less oppor-
tunity for regrowth the better will be the agreement between Py(V) and
the observed proportion of cures.

Plots of Py(NN), as a function of the tumour size, N, (Equation 5.20) are
given in Fig. 5.2 for different values of . We see immediately the char-
acteristic sigmoid shape of each plot of Py(N), which has the same
‘shape’ for all values of a. Each plot appears to be the same except
that they are translated horizontally for different values of @. We antici-
pate this from Equation 5.20 for Py(N), since if N 3> 1then N -1 = N,
and

P(N)=e™V, (5.21)
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Fig. 5.2. Plot of the probability of no resistant cells, Py(N), as a function of
the tumour size, N, and the transition rate, a. The tumour size, N, is displayed
on a logarithmic scale. It can be seen that the probability starts at unity, by
assumption, and declines to 0, following a profile that is determined by the
value of the product aN, as is evident from the approximate formula

Py(n) = exp(—aN). It can be seen that the value of Py(N), for each value of
a, changes from a high to low value over a region representing the same
sized shift in the abscissa. This implies that the probability changes in the
same way for the same proportionate increase in growth for each value of a.
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In Equation 5.21 it is only the product aN that influences Py(N), so that
decreasing the value of & 10-fold has exactly the same effect as a 10-fold
decrease in the tumour size N. Other things being equal, selection of a
drug with a lower value of o will provide an equivalent therapeutic
outcome in a larger tumour. Of course it must be kept in mind that
when comparing real drugs ‘other things are seldom equal'.

We may express the similarity of the plots of Py(N) for different
values of « in another way. Consider what happens in a growing tumour
as Nincreases. At first Py(N) is close to unity and remains this way until
the tumour size, N, is sufficiently large that Fy(N) starts to decline rapidly
(this happens when N is large enough that N > 0.1). The plot subse-
quently reaches a plateau at zero when N is sufficiently large. What
change in N is required to take Py(N) from a high value to a low
value? If we let Py represent the high value and P represent the low
value and My and M represent the respective tumour sizes, then from
Equation 5.21 we have

PH = e_o{M-l
A L= e—aM'.
If we then take logarithms (to the base e) of these equations we obtain

In(By) = —aMy
Finally taking the ratio of these last two equations gives
In(Py) My
In(A) M

Note that Equation 5.22 does not depend on the value of «, so that the
change in probability will occur during the same fractional increase in
the tumour size My/M. This is not to say that Mg and M, do not depend
upon « but that their ratio is the same for any value of «. We may
characterize this as saying that every tumour type moves from a high
probability to a low probability of resistance during the same propor-
tionate increase in size, no matter what the value of «, as long as the
tumour starts in a drug-sensitive state. What o does is to determine
when, in the history of the tumour, this change is likely to occur.
When we refer in this discussion to a tumour type, we are referring to
the process of resistance development in a class of homogeneous
tumours. In any single tumour where the model is valid, it actually

(5.22)
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undergoes a virtually instantaneous transformation from sensitivity to
resistance with the appearance of the first resistant cell.

The preceding relationship has an even easier interpretation when
the tumour grows exponentially. Under exponential growth the size at
time ¢ is given by,

N(t) = Nye'.

Now if we designate #; as the time at which the tumour is size My and
the time at which it is size M, then the above equation indicates

Neg = Ny
N, = Nyt
If we take the ratio of Ny to M, then we obtain

Ay

M — Me™ _ eM—a
o

M NyeMt

Now if we now use Equation 5.22 with the above equation we have

In(P) _ Nt _ atain)
In(R) ~ M,

This equation says that the transition from a low probability of resis-
tance to a high probability of resistance occurs over an interval of time,
t; — 4, which does not depend on the value of @ and does depend on
the growth rate A of the tumour. This rather simple relationship provides
a powerful tool for examining experimental assessments of resistance
and implies the existence of invariants, such as the length of the interval
% — 4 in a single tumour system treated with different drugs. Of course
this deduction is only true in tumour systems that have the same char-
acteristics as assumed in the development of this mathematical model.

It is worthwhile considering what effects one would expect under the
directed model compared with the random model, which has been
employed up to now. The short answer is that there is very little differ-
ence in the predictions for Py(¢) which would be obtained using either
model: it is more a matter of expressing what the results say. Under the
directed mutation model, tumours do not continuously convert from
sensitivity to resistance but remain sensitive until exposure to the
drug. At exposure the probability that none are converted to resistance
is given by Equation 5.21 with « replaced by p. For the directed model
this formula is again an approximation but the nature of the approxima-
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tion is somewhat different. For the directed model, it is the remaining
number of sensitive cells at any subsequent drug treatment and not the
regrowth between drug treatments, as for the random mutation model.
Again (Section 5.3) the random and directed models result in similar
predictions for measurable characteristics of a tumour system (the prob-
ability of cure).

5.5 Experimental evidence

The extreme variability between individual tumours in clinical cancer
prevent simple testing of the relationships developed in this chapter.
Experimental tumour systems provide a far greater opportunity for ver-
ification, since many factors that affect outcome have been studied and
characterized. As discussed in Chapter 2, Skipper and his colleagues
have made major strides in characterizing determinants of outcome
and produced a vast amount of valuable data. In the discussion of in
vivo fluctuation tests in Chapter 4, it was noted that different measures of
therapeutic outcome are not all equally useful in providing sensitive
measures of resistance endpoints. Obviously, median survival time
(the time until 50% of the animals have died) is only useful when
more than 50% will die. Even when evaluable, the median survival
time may be only modestly affected by differences as large as 10-fold
in the value of @, so that measurement of this statistic may not be ideal
for exploring the resistance process.” The residual tumour burden after
treatment is very dependent upon the value of ¢, as may be seen from
Equation 5.17. However, it can be difficult to measure since the number
of tumour cells may be below the level of clinical measurement. It is
possible to allow the tumour to grow to a fixed measurable size and then

T This arises because most treatments undergoing evaluation in such systems are at least
moderately effective against sensitive cells. Such treatment results in substantial tumour
reduction, which will eventually reach its limiting effect when only resistant cells remain.
The size of the remainder is determined by «, and the remainder will tend to be small since
the treatment is effective. A ten-fold decrease or increase in the remainder will not make a
great difference to the survival time since this time consists mostly of the regrowth period
required for the tumour to clinically re-emerge and subsequently cause the animal’s death.
For example, if death occurs at 108 cells, it will take approximately 20 doubling times to
death if 100 cells remain postchemotherapy. If 1000 cells remain it will require approxi-
mately 17 doubling periods. A 10-fold change in the post-treatment tumour burden (which
would result if @ were 10 times as large) results in only 2 15% reduction in the median
survival time.
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use knowledge of the tumour growth characteristics to estimate the post-
treatment disease burden. The main problem with this measurement is
the great variability between tumours treated in an identical fashion. Of
course this is a major consequence of the random mutation theory and is
the basis of the fluctuation test.

A convenient and easily measured quantity is the fraction of surviving
animals (for in vivo experiments) or the proportion of colonies which
regrow (for in vitro experiments). These quantities are exactly those
given by the probability of cure function, Py(N). It is not the purpose
of this chapter to examine exhaustively the wealth of experimental data
available; however, an example is reproduced in Table 5.1.

Table 5.1 represents data on the treatment of almost 600 mice using a
single drug, ara-C. The information has been compiled from a number of
clinical trials carried out by Skipper and colleagues using intraperitone-
ally (i.p.) and intravenously (i.v.) implanted 11210 leukaemia cells. The
data were collected from experiments in which a fixed number (usually
between 100 and 1000) of leukaemia cells were directly implanted into
an animal. The growth of the tumour is known to be regular, for inocula
in this range, and the size at any later time can be accurately estimated
from the initial innoculum size and the elapsed time. Previous experi-
mentation had demonstrated that the implantation of a single leukaemia
cell was sufficient to lead to death of the animal within 45 days; similarly,
animals with the leukaemia surviving 45 days post-treatment were free
of residual disease. The data presented in Table 5.1 give the number of
45-day survivors.

The drug ara-C is especially active against cells in the S phase of the
cell cycle and hence its effect is limited by the proportion of cells in this
phase during treatment. This drug is administered at doses far below the
LDy, (the dose at which 10% of the treated animals would die of toxicity)
since larger doses have no greater tumoricidal effect (as expected for a
phase-specific drug (Chapter 2)). The data reported consist of the
observed outcome in relation to the number of courses of treatment
(Table 5.1). Where multiple courses were given there was a period of
3 days of no treatment between each consecutive course.

A number of patterns can be identified in the data. Firstly, within each
group of experiments where the same number of courses were given we
notice an inverse relationship between the size of the tumour when
treatment began and the proportion of animals cured. Secondly, for
tumours having the same size at initial treatment the proportion of
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Table 5.1. Results of treatment with ara-C of DBA mice implanted with
the experimental L1210 mouse leukaemia

Schedule:* Size at Number of
number of treatment animals Number of Proportion
courses N@®) treated survivors® cured
1 8 x 10° 10 0 0.00
8 x 10° 60 2 0.03
8 x 10* 20 11 0.55
2 8x 107 20 0 0.00
8 x 10° 40 3 0.08
8 x 10° 19 11 0.58
3 8 x 10° 9 3 0.33
8 x 10° 30 25 0.83
4 8x 107 59 0 0.00
8 x 10° 80 25 0.31
8 x 10° 215 187 0.87
8 x 10* 30 30 1.00

“Each course consisted of a dose of 15mg/kg body weight every 3 hours for
eight doses.
b Animals surviving 45 days post-treatment were free of residual disease.

cures increases with number of courses given, although this relationship
is not so regular as the first. How do these observations accord with the
random mutation model? Before presenting the results of a formal ana-
lysis we can consider what factors should influence the observed out-
comes.

1.

If we do not give sufficient drug, that is enough courses, the sensi-
tive cells will not be eliminated and the leukaemia will regrow and
kill the animal irrespective of whether there are resistant cells pre-
sent.

We are less likely to give sufficient drug when the tumour load at
first treatment is greater because we have more cells to eliminate.
Smaller tumours are less likely to have resistant cells present so that
when sufficient drug is given to eliminate the sensitive cells they are
more likely to be eradicated than larger tumours.

Larger tumours are more likely to have resistant cells; as a result they
are less likely to show any relationship between the number of
courses and the cure rate.
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Table 5.1 displays exactly the anticipated relationships. One course
eradicates 55% of tumours consisting of 8 x 10* cells at first treatment,
whereas four courses eradicates 100%, suggesting that there are unlikely
to be resistant cells present but that one course is insufficient to eliminate
the sensitive cells. Four courses eradicate 87% of tumours of initial size
8 x 10° where three courses cures a similar proportion, suggesting that the
sensitive cells have been eliminated after three courses and further treat-
ment is ineffective. However, the observation that neither of these
observed cure rates are 100% suggests that resistant cells are present.
We would, therefore, anticipate that further increases in the initial size at
first treatment would produce a rapid change in the proportion of cures
since we know that Py(N) is in a portion of the sigmoid curve where it
changes rapidly (Fig. 5.2). We would also predict that since it took three
courses to eliminate all the sensitive cells in a tumour of size 8 x 10° it
would take at least three courses to eliminate the sensitive cells in a tumour
of 8 x 10%; tumours not cured with two or less courses would represent
resistance plus a failure to eliminate sensitive cells. We see exactly the
anticipated pattern in Table 5.1. The proportion of cures for three and four
courses are the same (33% and 31%, respectively) and lower than the cure
rate achieved by the same number of courses when the tumour size was
smaller. Also the proportion cured at 8 x 10% is less for two courses (8%)
and even less for one course (0%), indicating that sensitive cells are also
causing treatment failure. Finally, treatment of tumours of size 8 x 10’
produces no cures even for four courses, indicating that resistance is
almost certainly present and treatment can only delay death not prevent it.

The preceding ‘explanation’ of the data provides a persuasive case for
drug resistance-mediated treatment failure along the lines proposed ear-
lier in the chapter. A more rigorous analysis can made by statistically
fitting the equations derived to the observed data. Since the drug is only
given at a single dosage level it is not necessary to model the dose
response function of the sensitive cells. We assumed that each cycle
in a course caused the same log kill amongst sensitive cells and esti-
mated the magnitude of that log kill from the data. The tumour was
assumed to grow exponentially with an 8 hour doubling time, as had
been previously reported. A more general formulation of the random
mutation model was fitted to the data, which permitted the parameter «
to vary between experiments. This was done to provide a test of validity
of the model used. The theory required to carry out such an analysis is
described elsewhere (Coldman and Goldie, 1988).
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Table 5.2. Observed and predicted cure proportions for the L1210
leukaemia treated with ara-C

Schedule:® Size at Observed 95% Predicted
number of treatment proportion confidence proportion
courses N(t) cured interval cured
1 8 x 10° 0.00 0.00, 0.31 0.00
8 x 10° 0.03 0.00, 0.12 0.02
8 x 10* 0.55 0.32,0.77 0.68
2 8 x 107 0.00 0.00, 0.17 0.00
8 x 10° 0.08 0.02, 0.21 0.22
8 x 10° 0.58 0.33, 0.80 0.86
3 8 x 10° 0.33 0.07, 0.70 0.22
8 x 10° 0.83 0.65, 0.94 0.86
4 8 x 107 0.00 0.00, 0.06 0.00
8 x 10° 0.31 0.21, 0.43 0.22
8 x 10° 0.87 0.82, 0.91 0.86
8 x 10* 1.00 0.88, 1.00 0.99

“Each course consisted of a dose of 15 mg/kg body weight every 3 hours for
eight doses.

The process of fitting these models is somewhat complicated and
only the results of the analysis are presented in Table 5.2. Agreement
between the theory and experimental results is not perfect but is cer-
tainly reasonable, and all but one cure rate predicted by using the ran-
dom mutation model lies within the 95% confidence interval of the data.
Each cycle of therapy was found to kill 81% of sensitive cells and it was
the rapid repopulation rate of the tumour that required the use of mul-
tiple courses. The random mutation parameter o was estimated as
1.8 x 107. The model fitted the data well and there was no evidence
of any variation in the parameter. It must be kept in mind that animals
may die from causes other than leukaemia so that the proportion surviv-
ing is likely to underestimate the proportion in which the disease was
eradicated.

Table 5.3 gives the results of another series of experiments, in which
the L1210 leukaemia was treated with the drug cyclophosphamide. Data
on the action of cyclophosphamide suggest that it is active in all phases
of the cell cycle. In these experiments, varying doses were administered
in a single treatment and the resulting cures observed in the same way as
for the ara-C data. This table also contains separate data on two modes
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Table 5.3. Results of treatment with cyclophosphamide of DBA mice implanted either intravenously or intraperitoneally
with the experimental L1210 mouse leukaemia

Intraperitoneal implantation Intravenous implantation
Dose Size at No. animals No. Proportion No. animals No. Proportion
(mg/kg) treatment (N(®) treated Survivors cured treated survivors cured
300 8 x 10/ 94 7 0.07 80 4 0.05
8 x 10° 148 60 0.41 30 10 0.33
8 x 10° 39 30 0.77 20 14 0.70
250 8 x 10/ - - - 66 1 0.02
8 x 10° - - - 30 3 0.10
8 x 10° - - - 30 17 0.57
230 8 x 10° 50 7 0.14 - - -
8 x 10° 40 10 0.25 - - -
8 x 10* 50 41 0.82 - - -
200 8 x 10/ 109 3 0.03 60 0 0.00
8 x 10° 160 11 0.07 40 3 0.08
8 x 10° 60 11 0.18 10 0 0.00
8 x 10* 10 8 0.80 - - -
8 x 10° 10 10 1.00 - - -
150 8 x 10/ 30 0 0.00 245 0 0.00
8 x 10° 19 0 0.00 60 0 0.00
8 x 10° 20 1 0.05 50 3 0.06
100 8 x 10/ 10 0 0.00 130 0 0.00
8 x 10° 20 0 0.00 30 0 0.00
8 x 10° 144 0 0.00 20 0 0.00
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of implantation of the tumour: intraperitoneally and intravenously. Very
similar patterns are observed in these data to that seen in the response of
the same tumour to ara-C. If the tumour is too large then resistance
seems certain and cure is not achieved with any of the doses. If the
dose is too small when the tumour is small, then again cure will not be
achieved because the sensitive cells were not eliminated.

As in the case with ara-C, we may undertake a more rigorous analysis
of statistically fitting the formulae for the probability of cure to the data.
Since varying doses are given in a single injection, rather than a constant
dose repeatedly administered as for the ara-C data, it is necessary to fit a
dose response function to the cell kill achieved by drug on the sensitive
cells. In this case we have used the log kill law as described in Section
1.9. Again a more general random mutation resistance model was used,
which permitted the parameter « to vary between experiments and by
route of implantation of the tumour. If the random mutation model is
correct than we would not expect & to vary by route of implantation.

The fitted probabilities are given in Table 5.4. The fit of the model to
these data is not as good as for the ara-C experiments. Examination of
the pattern of fit suggests that this may be owing to inaccuracy in the
assumed kill function for the sensitive cells. It appears that the log kill
law is not accurate over the full range of doses, with lesser effects than
predicted at higher doses. This phenomenon was noted by Bruce and
co-workers who observed a plateauing of cyclophosphamide effect at
very high log kills (six logs) (Valeriote, Bruce and Meeker, 1968). The
estimated values implied that the log kill associated with 200 mg/kg was
approximately seven logs. Because of the statistical process of fitting,
this manifests itself as overestimation of the efficacy at high doses and
underestimation at low doses. Since resistance is the major reason for
incurability at the higher doses, we tend to see this overestimation more
in the middle range of doses. The mutation parameter was estimated to
be 1.0 x 1077, The estimated mutation rate did not vary with the route of
administration, supporting the notion that the reason for the patterns of
response to treatment in these data is a resistance phenomenon of the
type postulated. Using a curvilinear dose response model improves the
fit but does not substantially affect the preceding results.

The kind of analysis presented here has been done fairly infrequently
so there is not a large body of analytical evidence that can be examined.
However, the pattern which emerges from examination of many of the
experimental data available is similar to that given in the two examples
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Table 5.4. Results of treatment with cyclophosphamide of DBA mice implanted either intravenously or intraperitoneally
with the experimental L1210 mouse leukaemia

Intraperitoneal implantation Intravenous implantation
Observed 95% Predicted Observed 95% Predicted
Dose Size at proportion confidence  proportion proportion confidence  proportion
(mg/kg) treatment (N(£)) cured interval cured cured interval cured
300 8 x 107 0.07 0.03, 0.15 0.00 0.05 0.00, 0.12 0.00
8 x 10° 0.41 0.33, 0.49 0.44 0.33 0.17, 053 0.43
8 x 10° 0.77 0.61, 0.89 0.92 0.70 0.46, 0.88 0.92
250 8 x 107 - - - 0.02 0.00, 0.08 0.00
8 x 10° - - - 0.10 0.02, 0.27 0.42
8 x 10° - - - 0.57 037, 0.75 0.92
230 8 x 10° 0.14 0.06, 0.27 0.39 - - -
8 x 10° 0.25 0.13, 0.41 0.91 - - -
8 x 10* 0.82 0.68, 0.91 0.99 - - -
200 8 x 10’ 0.03 0.00, 0.08 0.00 0.00 0.00, 0.06 0.00
8 x 10° 0.07 0.00, 0.12 0.15 0.08 0.02, 0.21 0.18
8 x 10° 0.18 0.10, 0.30 0.82 0.00 0.00, 0.31 0.84
8 x 10* 0.80 0.44, 0.97 0.98 - - -
8 x 10° 1.00 0.69, 1.00 1.00 - - -
150 8 x 10’ 0.00 0.00, 0.12 0.00 0.00 0.00, 0.01 0.00
8 x 10° 0.00 0.00, 0.18 0.00 0.00 0.00, 0.06 0.00
8 x 10° 0.05 0.00, 0.25 0.00 0.06 0.00, 0.17 0.01
100 8 x 107 0.00 0.00, 0.31 0.00 0.00 0.00, 0.03 0.00
8 x 10° 0.00 0.00, 0.17 0.00 0.00 0.00, 0.12 0.00

8 x 10° 0.00 0.00, 0.04 0.00 0.00 0.00, 0.17 0.00
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above. It would appear that resistance, of the form developed here,
seems a major contributor to the failure of cancer chemotherapy in
experimental systems.

5.6 Summary and conclusions

In this chapter a mathematical formulation of the random mutation
model has been developed and built around simple models for tumour
growth. It was shown that the form of the growth curve was not critical
as long as there was no cell loss or death. It was demonstrated that both
the number and the proportion of resistant cells increase as the tumour
grows. The random mutation rate parameter, a, was shown to control
the overall number of resistant cells. A quantity, the probability of no
resistant cells (P,) was identified as a critical measure of the behaviour of
the tumour in that it described the conversion of the tumour from a
curable to an incurable state by the drug. The value of Py was shown
to depend on ¢ but it was found that all types of tumour originating in a
drug-sensitive state would pass through a region of growth, of constant
relative size, where they went from a low to a high probability of con-
taining drug-resistant cells. Finally it was shown how predictions using
this model yielded reasonable explanations of the patterns seen in some
experimental data.
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Extensions of the random mutation
model for drug resistance

6.1 Introduction

We are coming to what some readers may find to be the most difficult
section of the book because we will attempt to synthesize a number of
the mathematical developments we have described previously into a
more complex model that is intended to conform more closely to the
behaviour of clinical malignancies. The most important elements in this
synthesis will be the basic random mutation model of resistance
(Chapters 4 and 5) and the stem cell model of tumour growth
(Chapter 2). We will describe in more detail the birth/death processes
that were introduced in Chapter 2 and indicate how they impact on the
issue of drug resistance and the more general question of tumour het-
erogeneity.

It should be kept in mind that birth/death events are more than just
convenient mathematical abstractions for they can provide a mathe-
matical description of the effects of molecular processes that regulate
movement through the cell cycle or signal differentiation and apop-
tosis.

In Chapter 5 we introduced and discussed the random mutation
model for resistance to an anticancer drug. This model predicted that
tumours which start sensitive would, as they grow, convert to drug
resistance by the spontaneous evolution of drug-resistant cells whose
population expands at a rate that exceeds that of the tumour as a whole.
This model was developed within a framework in which cells divide
with unlimited potential (stem cells) forming new stem cells at each
expansion, Comparison with data from in vivo tumour systems showed
that this model accurately simulated and explained the pattern of animal
survival seen in some experiments. We also discussed how the directed
mutation model makes many similar predictions regarding the pattern of
resistance which would be seen in most experiments.

148
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In this chapter, we propose to extend the somatic mutation model for
resistance and the stem cell model of growth in a number of fundamen-
tal ways. We will do this by relaxing some of the assumptions we pre-
viously used in these models and expanding the states which a cell can
occupy. To do this rigorously would involve considerable mathematical
development. Rather than present this theory we will try to provide
motivation for the results of such a mathematical development.

One of the great benefits of mathematical development is that it often
causes the explicit statement of assumptions that can otherwise be over-
looked, especially by those most familiar with the problem. At this point
it is instructive to review the assumptions we have made in the mathe-
matical development presented in Chapters 4 and 5. (Undoubtedly the
reader will discover some we have made but not included in the list.)

1. Tumour cells divide continuously producing further cells with
unlimited growth potential.
2. We only consider resistance to a single drug.
3. Cells may be classified into one of two states, sensitive or resistant,
with respect to a single drug,
4. Sensitive cells have a fixed probability of survival after administra-
tion of a drug that does not vary with their location within the
tumour.
All sensitive cells behave in the same way.
6. Resistant cells survive administration of the drug with probability
one.
Resistant and sensitive cells divide at the same rate.
8. A new resistant cell is created with constant probability, «, at each
division of a sensitive cell.
9. Resistant cells remain resistant forever and do not revert to sensi-
tivity.
10 The progenitor tumour cell is in a drug-sensitive state (probably
true for some drugs but may not (and almost certainly will not)
be true for all drugs).

b

~

One could attempt to relax all of these assumptions, in specific ways,
and determine the resulting effect on the growth of the tumour and the
distribution of resistant cells. Although this may be of some mathema-
tical interest we will only be interested in examining those which may
influence the manifestation and distribution of drug resistance. As has
been discussed in other chapters, although some experimental tumours
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may appear to consist of homogeneous collections of cells with unlim-
ited growth potential, many do not, and there is considerable evidence
that most clinical cancer does not. The first ‘assumption’ we will examine
and modify is number (1).

6.2 Compartment model for tumour growth

The compartment model for tumour growth was first developed by Bush
and colleagues at the Ontario Cancer Institute (Bush and Hill, 1975;
Chapter 2) and postulates that cells may be classified into one of three
categories based upon their growth behaviour: (a) stem cells, (b) transi-
tional cells and (c) end cells. Stem cells are capable of potentially unlim-
ited growth and divide to form either two new stem cells or two
transitional cells. Newly created transitional cells are capable of a
fixed number of divisions and upon division form further transitional
cells, which have less capacity to divide than their ancestor. The terminal
divisional stage of the transitional cells is referred to as end cells and
comprises cells that have no further capacity to divide. Although end
cells may theoretically persist indefinitely, it is likely that they have a
limited life span and soon undergo apoptosis. The compartment model
is patterned after the growth of the haematopoietic system. In a perfectly
regulated system the only mechanism of cell death may be from end cell
decay; however, in rapidly growing tumour systems, stem and transi-
tional cells may be eliminated in a variety of ways along the pathway of
differentiation.

The compartment model of tumour growth predicts different patterns
of tumour behaviour from pure stem cell models. Most importantly, and
obviously, it implies that not all cells are capable of new tumour creation
so that, for in vivo experimental tumours, serial maintenance will involve
re-implantation of large numbers of cells in order to guarantee the inclu-
sion of stem cells unless they can be morphologically identified. It also
implies that treatment need not eliminate all cells to be successful but
only that proportion which have stem cell capacity. In Chapter 2 the
probability that a stem cell would divide to form two new stem cells was
termed the renewal probability, P, and it was shown how, if this prob-
ability was constant, the growth rate of the stem cell compartment was
slowed. Also the probability that the line originating from a single stem
cell would disappear, the extinction probability, was also calculated and
shown to depend on P. An interesting property of the compartment
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model is that if all its parameters are constant (they do not vary with the
age or size of the tumour) as the tumour grows the three cell types reach
a dynamic equilibrium where they maintain a constant proportion of
cells within the tumour. As a consequence of this, all compartments
grow at the same relative rate in this equilibrium stage and this rate of
growth is equal to the overall growth rate of the tumour. Because the
stem cell compartment is the only compartment not requiring the input
of cells from another compartment, it behaves as the engine of growth of
the tumours; it is the growth of the stem cell compartment that regulates
the overall growth of the tumour.

Even though the stem cells behave as the tumour engine they do not
necessarily form a large bulk of the overall tumour size. Obviously the
‘mix’ of cells changes as the tumour ages. The first cell must be a stem
cell, so that the original tumour is 100% stem cell. Subsequently some
stem cell divisions result in the creation of transitional cells, which con-
tinue dividing. In the initial stages the proportion of various types of cell
will be constantly changing since the random result of each single divi-
sion will be influential. Eventually an equilibrium will be reached' in
which the law of large numbers' becomes applicable and the various
compartments settle down to a fixed relationship with respect to one
another. The formulae governing the behaviour of the tumour in the
equilibrium situation is complex and can only be summarized here.

1. The growth of the stem cell compartment and the total tumour is
exponential.

2. The growth rate is [In 2 + In P] (A in Equation 5.1, p. 123), on a scale
where unity is the interdivision time of the stem cells.

3. The proportion of stem cells in the tumour declines as the renewal
probability decreases.

! There are actually two equilibria: one in which the tumour continues to grow and one in
which it dies and disappears. Now, as pointed out, the stem cells maintain tumour growth
so the tumour will die if, and only if, the stem cell line dies. The stem cell line started from a
single stem cell so that this probability is equal to what we have previously called the
extinction probability. Therefore, a proportion, given by the extinction probability, of
newly created tumours will die and we will only ‘see’ the remaining proportion that go
on to form viable tumours.

Laws of large numbers are theorems in probability that relate to the behaviour of the
average of observations on many objects (in this case cells) which have identical charac-
teristics. When there are sufficient stem cells, the observed proportion of divisions that
result in new stem cells is very close to that which is expected, i.e. P. Then since the overall
tumour growth is governed by that of the stem cells everything else follows.

-
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4. 'The proportion of stem cells decreases as the number of divisions
that can be made by the transitional cells increases. (Actually the
proportion of stem cells is proportional to P” where Pis the renewal
probability and 7 is the number of potential divisions of each newly
created transitional cell.)

What happens when we try to integrate the random mutation model
of resistance with this growth model? Firstly, since nonstem cells have
only limited growth potential they are unlikely to influence the long-
term outcome of treatment. This result does not follow mathematically
from the nature of the process but from the likely values of the para-
meters involved. If transitional cells can only divide a fixed number of
times, and this number is not too large, then a single or a few transi-
tional cells will not be able to divide sufficiently to form a large
enough tumour to cause clinical disease or death. If, however, a tran-
sitional cell was able to divide sufficiently to do this, then we may care
to think of it as an ‘honorary’ stem cell and not a transitional cell.
Whether resistance is rare or widespread amongst transitional cells
will not influence long-term outcome of treatment. Of course this is
not to say that the presence of widespread resistance among such cells
will not be a potent determinant of the short-term outcome of treat-
ment, as transitional cells may well constitute the bulk of the tumour.
Therefore, in considering long-term treatment outcomes, ‘cures’, we
need only consider what is going on in the stem cell compartment.
Secondly, the appearance of a resistant cell in the stem cell compart-
ment does not necessarily imply that the tumour cannot be cured. The
resistant cells may spontaneously become extinct in the way any single
stem cell lineage may become extinct, by having progeny that lose
stem cell capacity.

It would, therefore, seem that using a compartment model for tumour
growth rather than a pure stem cell model would imply, other things
being equal, that the likelihood of resistance was reduced, since (a) the
overall number of stem cells is reduced and only resistant stem cells will
influence long-term outcome and (b) stem cells lines are no longer
immortal with certainty so that spontaneously arising resistance may
spontaneously disappear. However these two effects are not the only
ones that influence events and more subtle aspects of the process act to
counterbalance them. One such effect will be illustrated in the following
example.
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Example 6.1

Consider a selection model in which drug resistance spontaneously
arises at a common rate in two different tumour systems. The first
system is a pure stem cell system (renewal probability P = 1.0) and
the second is a compartment model with renewal probability 0.55.
Each tumour system is grown until there are 1000 stem cells. In the
pure stem cell model this will take about 10 interdivision times since
219 = 1024 =~ 1000. In the compartment model, each division of a
stem cell produces, on average, 2P stem cells. Two stem cells are
produced with probability P and two transitional cells with proba-
bility (1 — P). To create 1000 stem cells from a single stem cell
will require, on average, just over 72 divisions, since
(2 X 0.55)"% = (1.1)> = 955.6 2 1000. If we consider the age of
each stem cell to be measured by the number of divisions to trace
back until there was a single stem cell, then each stem cell in the
compartment model has a much greater age than a corresponding cell
in the pure stem cell system (72 versus 10).

We recall from Chapter 5 that the probability of resistance arising,
«, is formulated as a rate of creation per division. The stem cells
present in the system where P = 0.55 are much ‘older than for the
P =1 system. The likelihood that resistance has arisen is much
higher, about seven fold (72/10), in each stem cell among the 1000
in the compartment model than in the pure stem cell system. Notice
that we are still considering that the acquisition of resistance by a
stem cell is completely random and the same in the tumour systems
with different values of P. The seemingly ‘intuitive’ notion that since
resistant and sensitive cells are equally likely to go extinct there will
be no effect of the overall number of resistant cells is incorrect. I

It is the total number of divisions the system has undergone that
influences the likelihood of resistance and not the number of cells per
se. In the pure stem cell it just happens that the total number of divisions
and the number of cells are generally equal. Although Example 6.1
provides an intuitive explanation as to why the proportion of resistant
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cells would be elevated amongst stem cells in a compartment model
compared with a pure stem cell model it does not indicate by how
much. This problem proves to be not too complex mathematically
since one has to modify the equations of Chapter 5 only slightly.

In Chapter 5 we wrote that for the exponential growth model new
resistant cells are arising via transformation at rate

aAS(?).

(See discussion leading to Equation 5.2, p. 123.) In that case $(#) and
R(?) represented the number of sensitive and resistant cells in the whole
tumour. Now we will use them to represent the number of sensitive and
resistant stem cells. In Section 5.2, o was viewed as a rate per cell
division and it was shown that, when growth is exponential, you can
convert between the rate per division and the rate per unit time by
multiplying the former by the growth rate (1) of the tumour cell popula-
tion. When stem cells undergo differentiation, not every division results
in an increase in the stem cell population and this simple relationship no
longer holds. An appropriate relationship can be derived as follows.

As noted above, in the equilibrium stage of the compartment model
the net growth rate of the stem cells equals the growth rate of the
overall tumour. Let us call a division of a stem cell to form two stem
cells a birth (since it adds a new stem cell) and designate that it
happens at rate (per unit time) b. Similarly, a division of a stem cell
to form two transitional cells will be called a death (since a stem cell is
lost) and the rate of this event can be designated d. The overall growth
rate of the stem cells, and, therefore, the whole tumour, is given by the
difference in these rates, i.e. A = b— d. In Chapter 2 we considered
the possibility of stem cell divisions resulting in nonstem cells by the
specification of the renewal probability P. What is the relationship of P
to b and d? The overall rate of stem cell division is given by #+ 4 and
the rate resulting in stem cell additions is & Thus a proportion
b/(b+ d) results in stem cell births, which is nothing else than the
renewal probability P = b/(b+ d). As b is the rate at which new stem
cells are being created, ab is the rate at which new resistant stem cells
are being created and the overall rate of resistant cell creation by the
division of sensitive stem cell is given by abS(#). As before, the already
existing resistant cells are growing at rate AR(#). As in Equation 5.2, the
overall growth rate of the number of resistant cells is given by the sum
of the two terms,
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dR

i AR(t) + abS(2). (6.1)
Coupled with this equation, we have the same equation as before for the
growth of the sensitive cells,

ds

where (as in the derivation of Equation 5.4, p. 125), we assume that the
value of « is sufficiently small that transitions to resistance do not mate-
rially affect the growth of the sensitive stem cells, mathematically
b—d-—ab= b—d=\ Otherwise we would replace A by A — ab.

The solution of the equation for S(#) is unchanged from that of
Equation 5.4 and we obtain almost the same solution to Equation 6.1
for R(t) as was obtained before (Equation 5.5, p. 125), i.e.

R(?) = Rye* + abtSye’. (6.2)

Comparing Equations 6.2 and 5.5 it would seem that not much has
changed; we have just replaced A by b in part of the equation. To
understand what influence having stem cell divisions that result in non-
stem cell progeny has on resistance we must look at Equation 6.2 in a
different way. To do this consider the proportion of resistant cells:

At
%g%ii’;;—=abt. (6.3)

If the tumour is a pure stem cell tumour, d = 0,and A = b— d = b;#
where dis not zero, it implies that A < b and that the renewal probability
P < 1. Equation 6.3 states that the fraction of resistant stem cells will be
the same in two tumours systems which have identical values of @ and b,
at the same elapsed time. At the same elapsed time from the start of
growth, however, the stem cell compartment size will be greatly differ-
ent for tumours with different renewal probabilities. We will now return
to Example 6.1 to illustrate the effect of random cell loss.

Example 6.1 (cont.)

Consider the compartment model which has P = 0.55 and 1000 stem
cells. As calculated, this will occur after about 72 intermitotic periods.
The proportion of resistant cells would be the same as observed in a
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pure stem cell tumour that had undergone 72 intermitotic periods. At
this time the pure stem cell tumour would consist of 4.7 x 10*! stem
cells, such a tumour would weigh approximately 4.7 billion kilo-
grams.

Given the frequently observed inverse relationship between size and
curability it is easy to see that the result of making a small stem cell
compartment take on some of the characteristics of a tumour weighing
4.7 billion kilograms is not going to have a good effectt However, a
higher theoretical proportion of resistant stem cells in a small stem cell
compartment may still not be many cells, if any. How do these effects
balance those already discussed (see discussion prior to Example 6.1),
which will tend to reduce the likelihood of resistance in tumour systems
that are not totally composed of stem cells?

There is no simple mathematical answer to this since one can con-
struct compartment models of tumour systems that have reduced or
elevated levels of resistance compared with pure stem cell systems at
the same overall tumour size. This is because the proportion of stem
cells in a tumour is dependent on the behaviour of the transitional and
end cells and not just on the stem cells. However, we can place reason-
able limits on what can be expected to occur in clinical systems. Analysis
of epidemiological data for the effect of known carcinogens such as
ionizing radiation shows that after exposure to a point source excess
cancer is not seen before a latent period has passed. A lower bound for
this latent period, assuming the carcinogen immediately produces a
single malignant stem cell, is the time needed for a tumour cell to
grow to a detectable size, assumed to be about 10° cells. Observed latent
periods vary with age at exposure and tumour type but are rarely less
than 2-3 years in humans. The maximum time to death from cancer after
treatment of disease should also provide an estimate of the time required
for a very small tumour to grow to a diagnosable size. This maximum
shows considerable variability for different tumours; however, the sur-
vival curve for many tumour types shows a breakpoint at about 3 years.
The breakpoint is a point at which the slope of the survival curves
changes considerably. Observation in experimental systems has
shown that this seems to occur when the number of surviving cells is
small allowing for stochastic variability in growth rates and subsequent
time to recurrence. Hence we may reasonably estimate a period of about
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3 years for many types of cancer to grow from a single cell to one of 10°
cells, with the caveat that many take considerably longer. Estimates of
the cell division time of human tumours has typically yielded mean
values in the range 1-3 days. If we assume an average of about 2
days then that would imply that prior to diagnosis the average tumour
has undergone approximately 550 divisions (3 x 365 <+ 2). A pure stem
cell tumour with P = 1 undergoing 550 divisions would contain about
4 x 10" cells. This number of cells would be sufficient to fill the galaxy
with tumour. If the tumour consists of 10° cells at diagnosis then each
cell in a pure stem cell model would have a ‘history’ of about 30 divi-
sions. Therefore, each stem cell in a clinical tumour will have about 20
(550/30) times as many divisions in its history as a pure stem cell tumour
and ¢ in Equation 6.2 would be 20 times its value for a pure stem cell
tumour and thus there would be 20 times the population of resistant
stem cells. Under these circumstances, a clinical tumour in which more
than 1 in 20 cells were stem cells would have more resistant stem cells
than a pure stem cell tumour of the same total size, while one with a
lower proportion of stem cells would have less.

Now showing that there are more or less resistant cells in a compart-
ment model of growth does not tell the whole story. As discussed
before, resistant stem cells have individually the capacity to become
extinct. Therefore, merely having more of them around does not neces-
sarily imply that the likelihood of resistance causing treatment failure has
increased. For example, a single resistant cell is sufficient to lead to
relapse with certainty in a pure stem cell model whereas 10 resistant
stem cells will have a less than 50% probability of causing relapse if the
renewal probability is less than 0.517. It is possible to calculate the
‘probability of cure’ using a compartment model of growth. The ‘prob-
ability of cure’ is now not simply the probability that there are any
resistant stem cells but rather the probability that any resistant stem
cells present will lead to a viable tumour. The theory required to analyse
this problem is a branch of probability known as branching processes
and has been applied to diverse problems such as the extinction of
family surnames. Unfortunately, the derivation of the appropriate results
require a level of mathematical analysis that is inappropriate here; so
that we will only quote the relevant result.

If we assume that the kinetic and resistance parameters remain fixed
throughout the growth of the tumour, then the calculation leads to a very
simple result: the probability of cure, P, is given by
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P =e WD) (6.4)

where « is as before. It is assumed that the tumour begins from a single
sensitive stem cell and N is now the number of stem cells and not, as
before, the total number of cells. Comparison with Equation 5.20 (p.
134) shows that the compartment model of growth leads to the same
equation for the probability of cure as that derived for the pure stem cell
model except that we replace the total tumour size by the size of the
stem cell compartment.

It is important to note that the amplification of the number of resistant
cells is caused by only one characteristic of the compartment model of
growth. That characteristic is that cells are ‘lost’ from the stem cell com-
partment by their conversion into transitional cells. Any nonselective
process of cell loss from the stem cell compartment will result in the
same effect when we examine the number of resistant stem cells as a
function of the overall number of stem cells in the primary tumour.
Therefore, stem cells that die because of insufficient nutrition or are
shed into the blood stream will have the same effect as differentiation
when we analyse the number of resistant cells in the stem cell compart-
ment of the primary tumour.

The formulae presented were derived using the assumption that the
growth characteristics of the tumour remains fixed in time. Observation
from clinical cancers in the observable range suggests that their growth
rate declines with increasing size, a factor that is often attributed to
physical or nutritional constraints on the tumour. Since tumour cells, in
particular, have limited capacity to alter their mitotic interval, it seems
reasonable to conclude that the reduction in growth rate is associated
with increased ‘loss’ from the stem cell compartment. Treating such
tumours has the effect of reducing the size and overall nutritional need
of the remaining tumour cells so that remaining resistant cells are
presumably left in an environment in which cell loss is less than that
in the environment in which they previously existed. This, of course,
would have a negative effect on the calculated probability of cure,
since under the worst possible case the slowing down of the growth
rate may be the result of increased cell loss, which is then associated
with a greater number of resistant cells; these then persist after treat-
ment since they are now in an environment where cell loss is
much less. In this situation Equation 6.4 will overestimate the
probability of cure.
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The effect of cell loss on the acquisition of resistance is one of the few
quantitative phenomena that is not shared by the random mutation and
directed mutation models. The directed model of resistance just depends
on the number of cells present and not upon their history of divisions, so
that under this model the number of resistant cells will be independent
of the number of divisions prior to drug exposure. However, this differ-
ence is not easily exploited to distinguish between the models for two
reasons. Firstly, one would require an experimental model in which it
was possible to produce significant amounts of cell loss without chan-
ging a. Secondly, most measurements of resistance utilize the survival of
clones, which is dependent on (what we have called) the cure prob-
ability, a quantity that is unaffected by constant levels of random cell
loss.

6.3 Absolute resistance

In the preceding chapter we discussed resistance as if it were an abso-
lute phenomenon, whereas as noted in other chapters resistance to most
drugs is a relative phenomenon. For most drugs, ‘sensitive’ or wild-type
celis appear to obey the log Kkill law. Fach cell has a probability of
surviving administration of the drug and that probability is inversely
related to dose. In most cases ‘resistant’ cells seem to obey the same
law except that a higher dose of drug is required to produce the same
probability of cell kill. Indeed in most experimentally studied cases there
are no single sensitive and resistant states but a spectrum exists in which
cells display ranging sensitivity to drug therapy. The application of drug
divides this spectrum into two parts labelled sensitive and resistant,
which are determined by the cell type, drug and concentration of use.
By the stepwise exposure of surviving cells to increasing doses of drug,
cell lines can frequently be created that are resistant to almost any level
of drug. In clinical cancer, resistance does not need to be of high order
but must be of sufficient magnitude that cells are able to maintain their
numbsers in the presence of therapy. Since therapy must be scheduled to
permit other normal tissue systems to continue to maintain themselves, it
is only necessary that resistance among tumour cells be of the same
magnitude as the most sensitive of the host’s normal tissue systems.
Therefore, resistant cells are only required to ‘regress’ to the normal
level of resistance displayed by host tissue to such drugs in order to
survive.
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Mathematically it is possible to model the effect of less than absolute
resistance in the same way as for sensitive cells in terms of the effect of
drug therapy on pre-existing cells. The mathematics is beyond the scope
of this book but has been explored by several authors. A more tricky
problem is how you model the development of the resistance spectrum.
This has been undertaken by relatively few authors and has been done
in cases where it is possible to identify some discrete change (e.g. gene
amplification) that can be associated with the inherent degree of resis-
tance. Essentially it is assumed that the cell may exist in one of a larger
number of discrete states that may be ordered in terms of their inherent
level of resistance. Then cells are assumed to move between these states
in the same way as we have described for the two-state (sensitive—
resistant) model, i.e. with a finite probability at each division. Analysis
of experimental data has indicated that the values of « associated with
transitions between adjacent levels of resistance seem to increase as the
degree of resistance increases. Thus high levels of resistance may be
achieved at a much higher rate than might otherwise be expected.
However, because of mathematical parallels between this phenomenon
and that of MDR we will defer further discussion of this topic to that
section.

64 Uniform growth of cells

We have assumed that resistant and sensitive cells grow uniformly and
identically so that their only difference is their susceptibility to drug-
induced death. However, alterations that confer drug resistance may
be expected to affect other parameters of cell behaviour. Cell growth
rate is one such easily measured parameter and doubling times of resis-
tant cells to different drugs have been measured and found to differ from
the parental line: usually they are greater but occasionally less. Other
things being equal, one would expect, a priors, that parental cells would
have faster growth rates than variant cells (where we are interested in
variants that are resistant) since the population would eventually be
dominated by cells that divide fastest. Such ecological considerations
are likely to apply to tumour lines that are repeatedly passaged or
otherwise maintained since cells with even a small growth advantage
then have time to become the dominant type. Therefore, it is no surprise
that observation in experimental tumours has more often found that
resistant (especially very resistant) cells grow slower than a parental



The random mutation model for drug resistance 161

sensitive tumour line. Since faster growth can also be an effective form
of resistance to low levels of drug, we may expect some resistant cells to
display increased rates of growth. When dealing with clinical cancer,
each patient has a unique tumour, and wide variation in the growth rates
of individual cancers is observed. We, therefore, cannot a priori con-
clude that resistant cells will necessarily grow faster, slower or even the
same as the parent line.

What is the effect of differential growth rates? They can have a num-
ber of effects. Under the random mutation model, early creation of
resistant cells leads to much greater total numbers of resistant cells
than would be the case if they occurred later. The ‘magnification’ pro-
duced by subsequent growth was shown to be the factor that made the
random and direct cell models distinguishable by the fluctuation test.
Obviously slower growth rates for resistant cells reduces the level of
magnification and make the two models more difficult to distinguish
by the test. Conversely, more rapid growth rates of resistant cells will
cause greater magnification. Increased variability between identical
experiments is a consequence of the random mutation model, and
such variability will be increased by more rapid growth of resistant
variants. An obvious consequence of altered growth kinetics of resistant
cells is that tumours which recur after treatment will be kinetically dif-
ferent from the tumour prior to treatment (Section 8.5).

6.5 Variability between tumours

Two of the main qualities sought in an experimental tumour system are
stability and consistency of its properties. Clearly such a system must
mimic the behaviour of human cancer to a large degree, but an unstable
system does not represent a suitable experimental platform from which
to explore phenomena. Human cancer goes through no such selection
process. Each cancer must have some minimal properties in order to
make it ‘cancer like’ but there is no requirement that the group of human
lung cancer should be as consistent in its properties as, for example, the
Lewis lung carcinoma animal model. What does this inhomogeneity
imply? At a very naive level it could be used to explain every property
of clinical cancer: Mr X’s tumour is resistant and has metastasized to the
liver because Mr X’s tumour is just like that. This explanation has no
scientific merit and does not assist us in understanding what are the
causes of heterogeneity of response.
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A first step can be taken by considering how we might generalize the
resistance selection model to accommodate heterogeneity. The most
obvious way is to require the process to be as before but to permit
the parameters involved to differ among tumours. The two central para-
meters we have recognized so far, which determine the level of resis-
tance, are the size of the tumour N (or more precisely the number of
stem cells) and the likelihood of spontaneous resistance «.

When a patient presents with cancer it is frequently difficult to
determine precisely their total burden of cancer cells. Although the
influence of total tumour burden on the likelihood of resistance is
strong, it operates more on a logarithmic than a linear scale so that
an estimate that is within £ 20% provides an acceptable estimate even
though this may represent uncertainty of the order of billions of cells.
In some cancers, such as those of the lung, it is feasible to measure the
tumour burden within this tolerance so it is possible to standardize
these tumous by size. Even in such cases it is not possible, with any
accuracy, to identify what proportion of a tumour’s size is composed of
stem cells so the stem cell burden can be estimated with little accuracy.
In many treatment situations, indeed many of those in which che-
motherapy results in significant numbers of cures, the tumour burden
can only be guessed. A significant example of this is the adjuvant
therapy of breast cancer, where chemotherapy is given to treat micro-
metastatic tumour deposits that cannot be detected but which are
suspected to be present because of the experience of other patients
with the same cancer. In such cases, treatment is applied to a hetero-
geneous group. Some will have no cancer cells and, therefore, not
benefit from this extra adjuvant therapy. Some will have large numbers
of cancer cells, many of which are resistant, and, therefore, they will
receive no permanent benefit from chemotherapy. The therapy will
benefit those persons with tumours containing no resistant cells that
can be eliminated before growing sufficiently to develop resistance
and become unamenable to treatment. The preceding gives a flavour
of how heterogeneity in tumour size may influence curability, but are
such effects quantitatively important? Experimental evidence (Section
5.5) unambiguously indicates the importance of tumour size; however,
few detailed calculations have been performed. The following example
gives one of them and shows how strong the effect of heterogeneity
can be.
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6.6 An example from breast cancer

Breast cancer is a tumour in which chemotherapy has been shown to
offer significant long-term survival advantages. Individuals presenting
with disease that has spread to the lymph nodes, but with no evidence
of spread to more distant sites, benefit from the application of chemo-
therapy after the primary tumour is removed. Experience with breast
cancer, prior to the routine use of chemotherapy, showed that some
women had recurrent disease soon after surgical removal of the primary
tumour in the breast whereas others were disease free for several years
before they too recurred. Although some of this variation may be attrib-
uted to differing growth rates of residual tumour between individuals,
much must be attributed to varying levels of postsurgical tumour bur-
den. Those with more disease recur first, and those with little disease
after surgery recur last, if at all. The origins of this variation represent an
interesting area of cancer biology and will not be pursued here; what
will be developed is the influence of such variation on the affect of
treatment. Such variation in size will obviously affect the potential that
any woman will have resistant cells present and that their tumour can be
cured by chemotherapy. Now we undertake a quantitative estimate of
this problem using published data.

Table 6.1 provides estimates of postsurgical tumour burden by meno-
pausal status and number of positive lymph nodes for a group of women
treated for breast cancer by surgery alone. These estimates were calcu-
lated by Howard Skipper using data on the time to recurrence of these
women (Skipper, 1979). He assumed that within each menopausal
group the rate of regrowth was uniform. Since this is unlikely to be
true, the estimates probably indicate greater variability in postsurgical
tumour burden than there actually is, because all variability in time to
recurrence is ascribed to differences in tumour burden. However, it is
obvious that the variation in postsurgical tumour burden is huge. The
prognostic groups (number of nodes, menopausal status) do have differ-
ing estimates of postsurgical tumour burden indicating their potential
value in separating breast cancer patients into more homogeneous sub-
groups. However, the prognostic factors used in the table do not suc-
ceed in grouping subjects into homogenous groups in terms of residual
tumour burden. For example, equal numbers of postmenopausal
women in this series with four or more positive nodes are estimated



164 Drug resistance in cancer

Table 6.1. Estimated distribution of postsurgical tumour burden for 716
women diagnosed and undergoing mastectomy for breast cancer, by
menopausal status and number of positive lymph nodes

Premenopausal No. positive Postmenopausal No. positive

T nodes nodes

umour

burden 0 1-3 >4 0 1-3 >4
0 0.69 0.31 0.12 0.74 0.35 0.15
1-10* 0.07 0.22 0.11 0.05 0.10 0.08
10'-102 0.00 0.07 0.03 0.01 0.03 0.04
102-10% 0.04 0.02 0.03 0.02 0.00 0.03
10%-10* 0.03 0.04 0.09 0.02 0.08 0.04
10%-10° 0.01 0.07 0.14 0.02 0.06 0.05
10°-10° 0.04 0.07 0.13 0.03 0.08 0.08
10%-107 0.08 0.09 0.07 0.04 0.09 0.20
107-108 0.03 0.11 0.18 0.03 0.11 0.20
> 108 0.00 0.01 0.11 0.04 0.08 0.14
Total 1.00 1.00 1.00 1.00 1.00 1.00

to have no residual tumour cells and to have more than 10® residual
tumour cells.

Referring to our basic relationship, the probability of cure (Equation
6.4) is given by

P e—a(N—l) o e—aN

’

assuming that all sensitive cells can be eliminated. Using this formula
directly is not strictly valid, and we should calculate the probability that a
randomly chosen piece of residual tumour containing N (stem) cells will
not contain any resistant cells. The formula used is the probability that
any de novo tumour of N (stem) cells will contain no resistant cells. The
difference is small and so we will ignore it. The equation suggests that
most (stem cell) tumour burdens of NV less than 0.1 + o« will be cured by
chemotherapy (since P =e %% =791 ~0.90) and that most
greater than 3 = o will not (since P, =e /% =3 ~0.05).
Substituting 0.1 + « into the formula for P and substituting 3 +~ o
yields P. = 0.90 and P. = 0.05, respectively. If we make the oversimpli-
fication that if N > &' the tumour is incurable and if N <a™' the
tumour is curable, then we would predict that women with a postsurgi-
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cal tumour burden < ™! would have their disease cured by a combined

regimen of surgery and adjuvant chemotherapy. Here &~ " is the average
size of the tumour at which it becomes incurable. This is equivalent to
assuming that a tumour is always curable prior to the average and
always incurable after. All those with no postsurgical tumour burden
are cured by surgery alone regardless of the use of chemotherapy.

As an example, if we have a drug that has a value of @ of 1 x 107 for
tumours of women with breast cancer then reference to Table 6.1 would
suggest that somewhere around a further 15% of premenopausal women
with no nodes involved can be cured by use of the drug (since it is
estimated that 15% of such breast cancers have a tumour burden less
than 10°(= (1 x 107°)! = &™) but greater than zero) whereas that fig-
ure would be about 40% for premenopausal women with four or more
positive nodes. The pattern of these estimates are in agreement with what
is seen in the treatment of breast cancer; that is, individuals with more
positive nodes benefit more from adjuvant therapy. This pattern exists
because the distribution of the amount of residual disease is similar
amongst the groups for people who do have residual disease.
However the likelihood of having postsurgical disease present varies
greatly between the groups. Therefore, the different pattern, or variation,
in the disease distribution between these groups predicts quite different
magnitudes of clinical effect, in accord with a pattern that is observed.

The preceding analysis is not very surprising. It emphasizes the cri-
tical role played by the magnitude of disease. Heterogeneity in residual
tumour is expected to create heterogeneity in outcome. However, het-
erogeneity can have more subtle effects, as will now be explored using a
calculation based upon the data presented. This will consider the effect
of advancing the time of initiation of chemotherapy.

Since the size of the tumour is a critical determinant of chemotherapy
success and the tumour grows, we can infer that giving chemotherapy
earlier, other things being equal, should improve the outcome. This
relationship is clear when resistance is the primary reason for
chemotherapy failure, since from Equation 6.4 we have

PC — e—ot(N—l) o e—otN

’

so earlier administration reduces Nand increases Fc. If we ignore temp-
orarily heterogeneity in Nand assume that all systemic treatment failures
arise because of drug resistance then we may estimate the quantity a N
by inverting Equation 6.4 and substituting observed cure rates, i.e.
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aN = —In (observed cure rate). (6.5)

Having an estimate of «N we could use this to estimate either « or Nif
we knew the other quantity. This is more than we need at present and
we will content ourselves with an estimate of aN.

In subsequent studies of premenopausal node-negative breast cancer
in the same population it was found that the addition of chemotherapy
increased the 5-year survival rate to 84%. If we make the simplifying
assumption that the 5-year disease-free rate equals the cure rate (the
same assumption that was made in the analysis of residual tumour
burdens) then we may estimate the cure rate associated with the addi-
tion of chemotherapy. We know that 69% are cured by surgery alone
(since they have no residual disease, see Table 6.1) so we estimate that
chemotherapy cures 48% (= [84 — 69] =+ [100 — 69] of the remainder.
Utilizing Equation 6.5 we have

aN = —In(0.48) = 0.73.

Table 6.1 indicates that there is a wide variation in the postsurgical
tumour burden; however, for the moment let us consider it to be the
same for everyone not cured by surgery alone, i.e. the 69% not cured by
surgery have uniform postsurgical tumour burden, N. Now, N in the
above equation is not quite the postsurgical tumour burden but the
burden present at the time of the initiation of chemotherapy, which is
some time after the surgery. By advancing the time of treatment we have
a method for effectively shrinking the size N in this formula. Of course
this is not real shrinkage; we are just treating the tumour earlier when it
is smaller. We can even apply the chemotherapy before surgery, and
even though the total tumour is bigger then, the portion of it that will not
subsequently be removed by surgery is smaller. Implicit in this reasoning
is that the tumour cells which the chemotherapy is required to eliminate
are those widely disseminated cells that will not be affected by the
primary surgery. At this juncture, the tumour doubling time is not
known, but we estimate that we may be able to advance the time of
chemotherapy by 30 days, which should result in one less tumour doub-
ling and perhaps as many as three. Accordingly, the size at earlier treat-
ment, N* will be in the range N - 8 to N + 2. Therefore, the product
aN* will be in the range

0.09 £ 0.73/8 < aN* < 0.73/2 = 0.37.
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We can substitute these values into the probability of cure equation to
obtain estimates of the range of potential cure rates if the chemotherapy
is given 30 days earlier. Performing this substitution yields

091 =e"® > P. =™ > &% = 0.69.

These cures only occur among the group (31%) not cured by surgery
alone, and the overall rate of cure for surgery plus chemotherapy is
given by 0.69 + 0.31 x P-. We predict that the overall cure rate would
be in this range

0.97 = 0.69 4 0.31 x 0.91 > overall rate of cure
> 0.69 4 0.31 x 0.69 = 0.90.

Therefore, by giving the chemotherapy earlier we anticipate an
increase in the long-term survival rates of at least 6% (90 — 84%) and
perhaps as much as 13% (97 — 84%). These are very significant
improvements for modest alterations in the way treatment is given!
However, these estimates assumed that the postsurgical tumour burden
was uniform in those not cured by surgery. If variability in tumour
burden is small, then one would anticipate that the results of the analysis
based upon a fixed tumour size will still hold. Conversely, if variability is
great then the individual postsurgical burden will be the prime determi-
nant of chemotherapy outcome. A precise estimate of the effect of the
estimated heterogeneity in tumour burden requires a fair amount of
mathematics; however, we may get an approximate answer using the
following reasoning.

As earlier in our discussion, we assume that for N < ! the tumour is
curable; this is equivalent to saying that for @ N < 1 the tumour is curable.
Similarly, assume the tumour is incurable for ¢N > 1. Observing a cure
rate of 84% one would then infer that the 84% of individuals with the
lowest tumour burdens would be those cured while the remaining 16%
with greater burdens would not. Using the appropriate column of Table
6.1 we find that women with tumour burdens less than or equal to 10°
constitute 84% of the women with premenopausal node-negative breast
cancer. If we now advance the time of first chemotherapy by 30 days to
premenopausal women with node-negative breast cancer then this
change does not alter the outcome in the 84% of women with tumour
sizes less than 10° cells. Similarly it does not alter the outcome in the 11%
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with tumour sizes of more than 10° cells since even at the most an eight-
fold reduction (achieved by earlier treatment) will not reduce a tumour
of 10° cells below the threshold of 10 cells that will make it curable. If
we further assume that the distribution of the sizes of the individual
tumours in the 10°-10° range are uniform on a logarithmic scale (i.e.
there are as many in the range 1 x 10° to 2 x 10°, as 2 x 10 to 4 x 10°,
as 4 x 10° to 8 x 10°, etc.) then about 3% of the total (80% of the 4%)
would be reduced below the 10° threshold by an eightfold reduction
and 1% (20% of the 4%) by a twofold reduction. We would, therefore,
predict that there would be an increase in the long-term survival rate of
1-3% in the total group achieved by advancing the time of chemother-
apy. We can see that these estimates are much below the 13% and 6%
predicted when heterogeneity in tumour burden is ignored. Perhaps
most importantly, an increase of 13% is in the range where current
clinical trials can be expected to detect it, and 3% (maximum!) is not.
Trials that have attempted to assess the effect of the early application of
chemotherapy in breast cancer (so-called neo-adjuvant chemotherapy)
have generally not shown any positive benefit. The preceding analysis
seems to indicate that, from the viewpoint of drug resistance, these
results are to be expected.

The above calculation is essentially confirmed by more complex
models that attempt to use a more complete description of the post-
surgical tumour volume and use the true dependence of P upon N
rather than a simple cut-off. These calculations emphasize the critical
role of the distribution of tumour burden in the group of patients
under consideration. For example, consider a theoretical distribution
of tumour burden as illustrated in Fig. 6.1. Improving treatment from
one that will cure tumours of less than 10* cells to one that will cure
tumours with less than 10° cells will result in a large increase in the
observed cure rate because there are many tumours in this size range.
Conversely, a further improvement to cure tumours of less than 10°
cells will result in a modest additional increment in the observed cure
rate because of the relative paucity of tumours in the size range that
would be affected. The actual improvement in cures is dictated by the
‘peaks and valleys’ of the size distribution rather than the improve-
ments in drug efficacy as measured by the log kill or resistance ()
parameters.

The preceding extended example has shown how including variabil-
ity in factors known to determine outcome of treatment in experimental
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Frequency of tumours in size range

=)
0o 10" 10® 10® 10* 105 10° 107 10® 10° 10"
Size N

Fig. 6.1 Schematic depicting a hypothetical tumour burden distribution for a
solid malignancy after surgical removal of the primary. In a substantial
proportion of subjects, all tumour cells are removed at surgery and this
proportion is represented by the solid bar at N = 0 cells. The rest of the
subjects have residual burden indicated by the continuous plot, with a
substantial proportion of them having burdens clustered around 10° cells. The
use of adjuvant chemotherapy is of no value in those with 0 residual burden.
The potential value of the chemotherapy to eliminate disease is approximately
equal to the proportion of persons who have disease that lies in the range

[1, @], where « is the transition rate to resistance for the chemotherapy
used.

cancers can influence the predicted benefit of changes in therapy. The
clinical observation that there is considerable variability in the response
to neo-adjuvant treatment of breast cancer does not require invoking a
variety of host or tumour factors to explain it. Correct application of the
laws derived from experimental cancers are sufficient. Of course this is
not to say that all phenomena can be explained but rather to emphasize
that naive application of the relationships derived from experimental
cancers may be misleading.
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6.7 Variability in mutation rates’

The other parameter in the probability of cure relationship is &. We have
assumed that « is fixed, so that all tumours of the same type have the
same value. One could argue that all tissues should have very similar
values of « if the property which confers resistance relates to some
strongly regulated genetic characteristic. If the characteristic is not bio-
logically important it may vary greatly, both between and within indivi-
duals. However, as has been extensively discussed elsewhere in this
book, cancer appears to be a disease of genomic instability. The amount
of instability is a variable quantity and seems to change for different
tissue types. The instability appears to accrue progressively and stochas-
tically so that the level of the instability cannot be definitely predicted
from the site, extent or histopathological grade of the tumour. What does
this mean in terms of the random mutation?

1. It would seem to imply that the average value of a will increase as
the tumour ages, reflecting the cumulative effect of multiple changes
in the genome of the tumour cells. Mathematically we would write
that & = a(#), the parameter varies with time, and we would expect
that if 4 > & then a(#) > a(): the rate increases as the tumour
grows.

2. It would seem to imply that individual cell lines will develop within
the tumour, some with considerable instability while others have
less. Accordingly, postulating a single @ or «(t), may not be appro-
priate; it may be more meaningful to consider a family of a(t) para-
meters, each possessed by one or more cells in the tumour.
Although this may be a more realistic model for the development
of drug resistance, it can only tell us something if either we specify
what this family will be or we can empirically measure it. Neither
appears to be possible at this time.

3. It does seem reasonable to assume that different tumours will have
different values of « (or families etc.).

We can examine these ideas in a mathematical way as follows.

Consider Equation 6.1 for the mean number of resistant cells

t This section presents some exploratory mathematical material and can be omitted on a first
reading.
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‘;—’: = AR(Y) + abS(?).

This equation holds even when « varies with time, i.e. @ = a(¢), so that

dR

Fri AR(t) + a(2)bS(2).
If () becomes too large it will begin to interfere with the growth of the
sensitive cells (i.e. so many sensitive cells will be spontaneously acquir-
ing resistance that the net growth rate of the sensitive cells will dimin-

ish). However, if we ignore this then we may continue to write

ds
— = AS().
ds ®
As before this yields
S(¢) = SOCM.
Substituting this into Equation 6.1 we obtain
‘;—’: = AR(?) + a(2)bSye™’. (6.6)

We are fortunate in that this equation may be generally solved. The
solution is

R(?) = Rye* + bSye™ /t a(uw)du. 6.7)
0

The mathematically sophisticated reader will be able to see that the
relationships we found previously are a special case of the solution
above when a(?) is constant. The integral (du) in Equation 6.7 is
equal to the area under the graph of a(¢) versus . The integral has
been termed antidifferentiation and provides an alternative way of
expressing relationships could also be written in terms of the differential
calculus. Integrals also provide estimates of the area under curves that
provides a more intuitive idea of their meaning. When « is constant the
area under the graph is given by at, which is the solution found in
Equation 6.2. Clearly the behaviour of the solution will depend on
what a(?) looks like. The whole point of our development was that
a(?) would tend to increase as the tumour grows and contains cell sub-
lines with increasing genetic instability. The most obvious way, at least
mathematically, to model this would be to assume that the rate would
increase linearly with time, i.e.
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a() = oy + ayt. 6.8)

where a, represents the ‘original’ rate and e, its rate of increase (; > 0)
with time. Now ‘reasonable’ values for a; would seem to be ones for
which the effective rate a(#) is not too high at modest tumour burdens;
that is, values of ¢ for which the tumour size is in the mid-range.
Obviously the actual value of &; will depend on the scale of measure-
ment of ¢ (i.e. hours, days, months, etc.). However if we adopt a con-
vention that we will measure the time scale for tumour growth on a scale
of 0 to 1, where 0 represents initiation and 1 lethal burden, then a ‘small
tumour’ would represent about ¢t = 0.5 on this scale. This would corre-
spond in human cancer to assuming the lethal burden to be 10'2-10"
cells and that a small tumour would be around 10°~10 cells. This idea of
the size of a small tumour was selected by the range at which resistance
seems to begin in experimental cancers, indicating that, in such cases, o
is in the range 1077-107%. Now if we assume that in the small tumour
range the value of & is 107’ then we have

@(0.5) = @y + 0.50; = 1077,

sothat 0 < g < 107 and 0 < o <2X 107’. The most extreme pairs of
values are ap = 1077, a; = 0 and &y = 0, 3 = 2 x 107" The first case
represents a stable value for o while the second gives its maximum rate
of increase under this model. Now we can examine these different
scenarios using the general solution of Equation 6.7. If we substitute
Equation 6.8 into Equation 6.7 we obtain

R(t) = Ry + bSye (gt + oy £2/2).

If we assume, as usual, that there were no resistant cells at the start (i.e.
Ry = 0) then we have

R(?) = bSye (apt = oy 12/2). 6.9)

If we examine the two extreme values mentioned above, we get from
Equation 6.9 for ¢y =1x 1077, @y =0

R(?) = bSe*(1 x 107,
and for @y =0, &y =2 x 1077
R(?) = bSe™[(2 x 1077)#2/2] = bSe'(1 x 1077) .

Therefore, for ¢t = 1 (remembering this is the value of ¢ which corre-
sponds to a large tumour) both these extreme values give the same
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answer! Rather than make the values of « equal for the two extreme
models at time ¢ = 0.5, we could make R(0.5) equal for the two models.
This would change the comparisons at t = 1 but would not change the
qualitative conclusions provided by the comparison. Further examina-
tion of this equation also shows that for earlier times in the history of the
tumour there will be more resistant cells in the tumour with a constant
rate of development of resistance («). This arises because of the con-
straint placed, i.e. that at intermediate sizes the rate must be the same.
Unstable systems in this framework have lower rates early in the history
of the tumour, and this results in fewer resistant cells overall.

Examining the mean number of resistant cells is one approach to
determine the effect of changes in @ on the evolution of the tumour.
An alternative way is to examine the probability of cure function, Pc(?).
When there is no cell loss the probability of cure is still given by the
probability that no transitions to resistance have occurred. As before
(see discussion leading to Equation 5.19, p. 134) this probability is
given by e ™" where u is the mean number of transitions to resistance.
Now the mean value has a more complex form when a depends upon
% it is given by

= fo (1) bSyedu,

where & is the number of sensitive cells at time ¢ = 0. Finally the prob-
ability of cure is given by

t
Po(t) = e ™ = exp[— f (1) bSye™du] (6.10)
0
Now once again we can substitute in our two extreme cases that we
derived from Equation 6.9: for ag =1 x 1077, a; = 0
P(t) = exp[-(1 x 107)e”],

and for oy =0, a; =2 x 1077
1
P(t) = exp[—-l;(z x 1077)(bt — l)e"'].

Although the formulae for the two extreme cases appear quite different
they tend to give quite similar answers For example for a tumour size of
107 (ie. e” = 107) we obtain for apg=1x 1077, a; =0,

P(t) = exp[—(1 x 107)107] = e,
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and fOI' Oy = 0, o = 2 x 10_7;

P(H) = exp[—%@ x 1077)(bt — 1)e"’]

1 _ -
= exp[m@ x 1077)(In(107) — 1)107] =e 0%

As before, for the mean number of resistant cells, the probability of cure
function shows little variation with the two extreme cases. Hence, we
would speculate that a linear increase in the parameter o would have
little effect on the development of resistance in the tumour.

Can we, therefore, conclude that genetic instability, per se, is unlikely
to lead to tumour properties that are substantially different from those of
a tumour system with fixed o? The linear assumption may be too con-
servative as it seems to imply a regular and orderly increase in the rate at
which resistance is acquired. A seemingly equally plausible approach
would be one in which genetic instability increases geometrically at each
division, so that it may be proportional to the overall tumour size. A
geometric, or exponential, model for & could be written as

a(t) =0y + QIS(t). (611)

As before we may run through the two extreme cases: the first where
the mutation rate consists of a fixed component only and the second
where it consists of a varying component only. This gives the extreme
pairs of values as og = 1077, &y =0 and oy = 0, @y = 107", where we
have assumed that &(0.5) = 1 x 107, that is the measured rate of random
mutation would be 1077 in a tumour of 10 cells. If we assume that the
growth function S(¢) is exponential, i.e. S(¢) = Se?, then from Equation
6.7 we have

k) = bse” [ ' a(u)du = be” [ (o + e ™)
0 0
= bS,e” [aot + ﬁbl_ Soeb’] = o brSye? + oy [Se” P

Now for ag = 1077, ar; = 0 we have the usual relationship

R(t) =1 x 1077 btsye”,
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and for oy = 0, @; = 10~ we have
R(?) =1 x 10" H[5,e?]%.

We can calculate R(1) (the number of resistant cells in a large tumour),
where we assume that a large tumour contains 1012 cells (.
N(1) = 10" = §,e¥). Using the above two expressions we obtain for
oy = 1077, a; = 0 (since b = 12In(10) = 27.6)

R(H=1x10" x 12In(10) x 1 x 10'2 = 2.76 x 10,
and for ap = 0, @; = 107 we have
R(H)=1x 107" x [10'%)? = 10".

Comparing this with earlier calculations using the linear model shows
that the assumption of geometric growth (proportional to population
size) leads to a massive increase in the number of resistant cells; as a
result, any variation in « as the tumour grows can have dramatic effects
on the number of resistant cells seen in tumours of clinical dimensions.
The final calculation represents a virtual explosion of resistant cells in
clinically sized tumours, resulting in a tumour that would be, for practical
purposes, totally resistant.

The model that has been presented for variation in mutation rates is
not a convincing one since it fails to capture heterogeneity in @ among
cells, but rather looks at changes over time. Dependence between muta-
tions rates and other characteristics that influence systemic therapy out-
come (e.g. metastatic potential) may serve to exacerbate the effect of the
development of resistance. For example, if resistance occurs solely in
cells destined to metastasize then the overall value of « will provide little
indication of the determinants of the success of systemic therapy.

The reader is wise to be cautious about the value of the calculations
presented in this section since they represent ‘what if extrapolations.
They also represent bounds on what seems reasonable so that the truth
is likely to lie somewhere inbetween even if the assumed forms are
correct. They do illustrate that simulation of processes known to occur
within growing tumours, (instability etc.) can plausibly explain late-stage
magnification of the resistance process without having to postulate
unreasonably high values of « in the kinds of situation where they
have been measured. We will revisit the problem of high levels of
primary resistance in Chapter 8.
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6.8 Resistance to multiple agents

Cross-resistance is unfortunately not uncommon because single
mechanisms for blocking the effect of a drug can often work to impede
the effect of others. The various mechanisms have been discussed in
Chapter 3. More rarely, drug resistance is produced by pathways that are
independent for different drugs. Even more rarely we may get collateral
sensitivity where cells resistant to one drug seem to show more sensi-
tivity to the effect of a second drug than is displayed by the wild cells.
The question arises as to how we would model multiple levels of resis-
tance. This issue is of importance as most clinical regimens consist of
multiple drugs used in ways so that their individual toxicity patterns to
normal tissue do not significanty overlap. We will discuss MDR and
multilevel (MLR) resistance separately.

69 Stepwise resistance to one or more drugs

Initial experimentation with tumour lines showed that it was possible, in
many cases, to select lines which displayed resistance to increasing
levels of drug. This was achieved in a series of steps, whereby cells
were first exposed at a low drug concentration and those which survived
were grown and then exposed to a higher level of drug. Similarly it was
possible, once cells with a desired level of resistance to a particular drug
were created, to expose them to a second drug and repeat this process.
In this way cell lines could be created displaying arbitrarily high levels of
resistance to multiple drugs. Note that whether we attempt to create
resistance to higher levels of one drug or resistance to multiple drugs
the experiments are fundamentally the same. In the following discussion
we will use terminology relating to MLR but the same development will
also apply to selection of higher levels of resistance to a single drug.
A simple way to model this process would be to ignore its multistep
nature and treat resistance to several drugs like resistance to one drug.
For example, if we have three drugs, Ty, T, and Tj say, with mutation
parameters &, &, and a5 then we may consider resistance to all of them
simultaneously to have parameter a; X a, X a3. Ignoring the multistep
nature of the process would be valid if each cell represented a static
target for such transformation. The fact that the compartment consisting
of singly resistant cells grows at a faster rate than the overall population
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makes the preceding approach invalid and we will now describe how
the process can be modelled mathematically.

To continue this discussion we will restrict our attention to the case of
double resistance where there are two drugs to which resistance evolves
by separate pathways, that is, resistance to one does not imply resistance
to the second. If double resistance arises as a result of two distinct steps
(resistance to each drug) then one of them must precede the other
(although not always in the same order). We require that one must
come first because if two occur simultaneously with appreciable prob-
ability then we have the multidrug phenotype, which is the subject of
the next section. Once the cell is resistant to one drug then we imagine it
spontaneously acquiring resistance to the second in the same way it
acquired resistance to the first. Four states can be defined as follows
with respect to two drugs (at fixed doses), which we will label drugs 1
and 2:

Ry: resistant to neither drug

Ry: resistant to drug 1 and not to drug 2
R;: resistant to drug 2 and not to drug 1
Ry,: resistant to drug 1 and drug 2.

We assume here and throughout that the order in which resistance
occurs does not influence the growth state, i.e. R, = Ry;.

Now by our assumptions a cell may only be in the state Ry, if it was
earlier in state Ry or R,. If we let — represent transitions between states
and we have a cell which is in Ry, then it, or one or more of its
ancestors, made the transitions

RO —> Rl and Rl d RIZ

or

RO —> Rz and RZ d RIZ‘
If we denote the rate at which drug resistance spontaneously occurs in
wild cells to drug 1 as «; and to drug 2 as «, then we may indicate the
rate at which these two events occur as

o o
RO —> Rl andRO —> Rz.

If we assume that acquisition of resistance to drug 1 always occurs at the
same rate, regardless of the original state of the cell, then it would also
be true that
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R =5 Rjand R, —> R,

However, this need not necessarily be true. If we write these rates more
generally as @; ;; and a; ;, we have
R =3 R,and R, =3 Ry,.

By considering the problem in this way we may break the case of mul-
tiple resistance down into a number of distinct steps for which we have a
simple model.

The case for two drugs looks fairly straightforward; however, the
number of pathways grows geometrically with the number of drugs so
that for three drugs we have

Ry—> R — Ry = Ry
Ry — Ry = Rz — Ry
Ry — Ry — Ry — Ry
Ry — Ry = Ry3 > Rip
Ry — Ry — Ryj3 — Ry
Ry = R — Ry — Ryp3

Each arrow in the above schematic has its own rate parameter (&). Such
multistate problems are not simple to solve mathematically but it is clear
that whatever the mathematical problems associated with the solution of
a general multidrug process, it is soon minor in comparison with the
problem of having to determine what the parameter values are.

Unfortunately, a full mathematical analysis of even the double resis-
tance process turns out to be a much harder proposition than might at
first be thought. We can calculate the expected number of doubly resis-
tant cells, R,(9, at time ¢ for a tumour with an exponentially growing
sensitive cell population. The mathematical formula for this takes on
quite a simple form when there are no single or double resistant cells
present at the beginning (¢ = 0):

a0 12 + 000 12

Ra(t) = [ . ](bt)zSoeb'. (6.12)

Now the term in [ ] in Equation 6.12 can be interpreted as the average
of the effective o for each pathway (given by multiplying each separate
@ in that pathway: for Ry — R, — R;; we have the product a; X a2



The random mutation model for drug resistance 179

and for Ry & R, = Ry, it is a; X oy yp); the term Se” is the number of
sensitive cells and the remaining term is a power in b4, i.e. (bD?. Contrast
this with the formula for a single level of resistance, where we have from
Equation 5.5 (p. 125)

R(t) = abts,e”. (6.13)

For the single resistance case we have a very similar structure: the
average pathway (which is just a since the pathway consists of a single
step), the number of sensitive cells e and a power in bz, Equations
6.12 and 6.13 have a very similar structure, where the power of the bt
term is given by the number of steps in the pathway. Using this apparent
structure we might predict that for three drugs the bt term would be
(bhH?, which is actually the case. Such formulae (which are simply an
approximation) are only valid if each o value is small. It is easy to see
why the formula for double resistance contains pathway o parameters
that are formed by the multiplication of the individual parameters in the
pathway since these represent the net effective rates for double resis-
tance; however, one cannot simply use these net rates in the formula for
single resistance since the term in bt is incorrect. Each extra step in the
pathway raises this power by one: sensitive cells have a term in bt of
(b)° (= 1), the first level of resistance has a term of power (b, the
second level a term of power (b#)?, etc. This causes an acceleration of
the development of resistance over what might be assumed from the
pathway parameter o. The origin of this effect is easy to understand: the
doubly resistant cells are derived, initially, from singly resistant cells. The
singly resistant populations is growing faster than the sensitive popula-
tion by a factor proportional to (b9). Similarly the doubly resistant popu-
lation will grow by a factor proportional to (b9 faster than the singly
resistant population so that they will grow by a factor proportional to
(bd)? faster than the sensitive population etc.

We have previously seen that processes, such as cell loss, can mag-
nify the development of resistance to a single drug and these can be
expected to have a commensurate effect on double resistance. Based on
our previous analysis of the double resistance process as a sequential
pair of single resistance processes, we would expect a compounding
effect on double resistance. This is exactly what happens, since the
enhancing effect of cell loss on resistance is manifest in the linear
term in ¢ The fact that this is a quadratic term in the double resistance
formula indicates that this magnification is squared.
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Example 6.2

Consider a tumour system in which there are 10 stem cells
and interest is in doubly resistant cells for which
o =0 =013 =0, = 107 and b=1. If there is no cell loss
(pure stem cell tumour), the age of the umour, #* is given by the
solution of 10" = e =¢" so that * = 10In(10). The expected
number of doubly resistant cells is

Q10 12 + 00 1o

Rig(t") = [PRREZ 208 (Y syt
B [10‘5 x 107 +107° x 107

2
= (101n(10))* = (23.02)* = 530.2.

] x (101n10)* x 10™°

In the same way as for single resistance, the introduction of cell loss
d > 0 causes an enrichment of the doubly resistant cells compared
with the no cell loss situation d = 0. By analogy with the single drug
case (Equation 6.2), we would predict that Equation 6.12 would be
essentially unchanged except that the size of the sensitive cell com-
partment would now be given by S,e*’ rather than Se” so that

a0y 12 + 00 1)

Ry(f) = [ - ](bt)zSoe“. (6.14)

Consider the case of significant cell loss, where the renewal prob-
ability P = 0.51. The overall rate of division is b + d and we wish this
to remain unchanged when we consider the effect of loss, so we set
b+d=1 (since b=1 when there was no loss). A proportion
of these, b/(b+d), result in stem cell additions so
P=b/(b+d)=b/1=b and we have b=0.51. From this we
have d = 0.49 (since b+ d = 1). We may now calculate the age of
the tumour, #*, when there are 10'° stem cells present, i.e.

1010 — S(t*) = Soe)‘t* =1x e(0.5—0.49)t* — eo.oz:".
Solving this equation yields
* =50 x 101n(10) = 1151.3.
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Comparison with the value for t* when there was no cell loss shows
that it takes about 50 times as long to accrue the same number of stem
cells. If we now substitute these values into Equation 6.14 we obtain

107° x 107 +107° x 107>
R(f") = [ x : x ] x (0.51 x 1151.3)* x 10™°

= 344756.

Comparison of this number with that for the no cell loss case shows
that there is a proportional increase of about 650-fold in the expected
number of doubly resistant cells (344756/530).

We can contrast this with the number we may expect if we naively
consider resistance to two drugs to follow the same distribution as
resistance to a single drug, except with an « value that is the product
of the individual values of each drug, i.e. oy x a,, and ignore the
presence of cell loss. In that case we would calculate a mere

10, (br)Spe? =107 x 1075 x 23.02 x 100 = 23

cells. Conversely there would be 2.3 x 10° singly resistant cells of
each type when there is no cell loss. The presence of cell loss at
the same rate as before would multiply both these numbers by 25.5.

|

Example 6.2 shows that naively considering resistance to several
drugs to be similar to a single drug will lead to a large underestimation
of the number of doubly resistant cells if we just multiply the « values.
The calculation of the expected number of doubly resistant cells when
there is cell loss shows that there can be unexpectedly large numbers of
doubly resistant cells, which can even approach the number of singly
resistant cells in a pure stem ~ell umour with the same « values. "We
would conclude from this development that even a model in which the
development of resistance to one drug is totally independent of that to
another can have large numbers of multiply resistant cells. Fairly modest
propensities for cells resistant to one drug to acquire resistance to a
second will increase this further and lead to much greater numbers of
multiply resistant cell types.

We saw in Chapter 5 that knowing the mean number of resistant cells
does not tell us everything about the process. Useful information is also
provided by the probability that there are no resistant cells present, a
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quantity that was termed the probability of cure. We may now expand
this idea to consider the likelihood that there are no doubly resistant
cells present as the probability of cure when two drugs are in use. (This
concept should be distinguished from the probability that a tumour is
cured since cure requires that all cells are eliminated not just the doubly
resistant ones.) When there is no cell loss, the probability of cure, Pc(?),
is
Pc(2) = P{Ry(2) = 0}.

Unfortunately this quantity is not simple to calculate and requires some
mathematical development. Most authors have concentrated on obtain-
ing relatively simple expressions for this quantity. One, which is similar
to the e™" expression found for a cure from a single drug, is given by

Pe(t) = P(Rp(8) = 0} = e~V 6.15)
where
o = 0!10!1,12[“ ln(al,lz) -1]+ 0!20!2,12[— In(ay,;,) - 1].

(This formula is an approximation only, for a more accurate formula the
reader is referred to Thompson (1989).) The above formula contains the
sum of the products of the individual & values in each pathway multi-
plied by the natural logarithm of the rate of the second step of that
pathway. For our previous example where all the rates were assumed
to be 10™>, this would correspond to multiplying the pathway rates by
the absolute value of [—In(107°) — 1] or 10.5. Thus &* from Equation
6.15 is 1.05 x 10°. Therefore, as far as the probability of cure is con-
cerned, the effect of this being a two-step procedure is to increase about
10-fold the pathway rates obtained by multiplying the & values for each
step. We may also include the effect of cell loss, whereupon we can
obtain a similar expression to Equation 6.15 with

o = b ~In|«a b—d —-1|+ b
=0ty L2\~ 22y
b—d
- -1
[in{een((5)) 1]

Note that probability of cure is no longer P{R;,(#) = 0} since we must
include the probability that doubly resistant cells can spontaneously die
out.

(6.16)
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Working out a few examples quickly demonstrates that ¢* increases
as the rate of cell loss does; as a result the effective overall rate for the
development of resistance increases. This will be illustrated using
Example 6.2.

Example 6.2 (cont.)

Suppose we had P = 0.51 so that

b 051
b—d 0.51-0.49

and @; = &, = @, 1, = &, 1; = 10™°. From Equation 6.16 the pathway
rates oy, and oz, will be multiplied by 25.5x
[~ In(1073(25.5)) — 1] = 368 giving a value for a* in Equation 6.15
of 7.36 x 107%. This can be compared with the naive calculation of
the product of the two rates as 10'°. Furthermore, and perhaps more
importantly, it can be compared with the value of &* when cell loss is
absent, i.e. a* = 1.05 x 10°. Unlike the single step case where cell
loss had no effect on the probability of cure (Equation 6.15), for
double, and more steps, it has a marked effect in the direction of
making multiple levels of resistance more likely. |

=255

At this point we will summarize what we have found:

1. When we consider multiple resistance as a series of stepwise acqui-
sitions of single resistance then the development of resistance to
multiple drugs occurs earlier in the life of the wumour than would
be indicated by simply multiplying the rates.

2. The compartment of multiply resistant cells increases at a faster rate
than the compartment of singly resistant cells, which in turn will
increase at faster rate than the sensitive compartment when all the
cells divide at the same rate. The phenomenon of random cell loss
will enhance this process so that multiple resistance will occur at
smaller tumour sizes than in a pure stem cell tumour with the same
single drug o« values.
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3. Itis also apparent that if cells already resistant to one drug are more
likely to acquire resistance to a second drug (dependence) then the
creation of multiply resistant cells will be further accelerated.

It is important to note that the most common method for measuring
resistance and estimating ¢ experimentally is based on clonal survival,
which is equivalent, in our analysis, to using the cure function, P-(#); that
is, by observing survival fractions and then using Equation 6.6 (N is
known) to estimate a. Cell loss does not influence this function for a
single-step resistance process and so it will not influence the estimation
of @ based on such an experiment (after suitable adjustment for the
‘plating efficiency”). The acceleration of the development of multidrug
resistant cells will, therefore, not be amenable to direct measurement by
experiments that measure the acquisition of single drug resistance. It is
not inconceivable that combinations of the above circumstances will
lead to situations where the number of doubly resistant cell types
approaches levels more associated with single resistance. Given the
rates postulated in the example, in the subpopulation resistant to one
drug in a tumour with no cell loss grown to 10'° cells, approximately 1 in
4300 cells (2.3 x 106/5.3 x 10%) will be doubly resistant whereas in a
tumour with high cell loss (P = 0.51) the proportion increases to 1 in
170.

As commented earlier in this chapter, the evolution of single drug
resistance that involves not one but a number of distinct steps is akin to
the situation of MLR. That is, if the cell must go through a series of
distinct steps before acquiring resistance to a drug then the process
has a similar mathematical structure to that for the acquisition of MLR.
Then the conclusions we have made about MLR would apply to the
development of multistep single drug resistance, that is, that it would
be accelerated by cell loss and this would affect the cure or survival
probabilities. This is not the case for single-step resistance. Also if we
were considering resistance to two drugs, both requiring multiple steps,
then double resistance would be further accelerated. Should each resis-
tance pathway share steps in common then cells resistant to one drug
would have a ‘headstart’ and the corresponding rate, ¢, would be greater
than in sensitive cells.

One of the principal difficulties in the clinical use of the preceding
MLR models is the need to specify many parameters, which are rarely
known for groups and, given intersubject variability, are never known in
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the case of the individual patient. There has, accordingly, been an
attempt to develop rules of thumb that may be used to guide clinical
practice. The principles these rules contain are valuable; however, their
utility is limited since they only indicate generalities rather than specifics.

6.10 Rules for the clinical use of multiple drugs

Optimization and control theory are methodologies used to determine
the optimal way to manipulate inputs to obtain the best possible result.
This is achieved by quantifying inputs and indicating within what limits
they may be manipulated and by specifying a quantified outcome mea-
sure that is to be maximized (in many cases the outcome is to be mini-
mized but this makes no difference). Our natural quantification for
outcome is the probability of cure (which must include a penalty reflect-
ing toxicity) and our inputs are dose levels, drugs selected and the
timing of their administration. However, this is too large a problem to
solve properly, with the main encumbrance being the large amount of
information that would be necessary to set up the model.

In the absence of a complete model, various authors have attacked
aspects of the problem by modelling part of the process and finding the
‘optimum control’ (the term given to the combination of inputs that will
result in the best outcome) for that part. Here we will focus attention on
what has been done in relation to resistance to two drugs. The prob-
ability that the tumour is cured has been used as the single outcome that
it is desired to maximize. What investigators have done is to assume that
drug doses are primarily determined by toxicity to normal tissue and
drugs can only be given safely up to a certain level. They have assumed
that the log kill (or similar) law applies so that doses less than the
maximum dictated by toxicity will be less effective and we can consider
the dose level to be fixed at this maximum. They further assume that the
minimum patient recovery interval specified in the protocol is deter-
mined by the dose. Since intervals between treatments longer than the
minimum will allow more time for tumour regrowth and the develop-
ment of resistant cells, any protocol that gives drugs at greater than the
minimum intervals will be inferior to one that does not. Accordingly,
drugs are given at fixed times determined by the timing and dose of the
preceding treatment. It is assumed that both drugs may not be given
simultaneously, for if they can it will always be better to give them
together (given the other limitations imposed). Although these models
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do not explicitly require that a specific number of drugs be available,
they are illustrated using two drugs and so we will continue that here.
The final limitation placed on them is that they assume that one must
apply a fixed number of treatments. This is not really a limitation but is
incorporated because within this structure the best protocol which gives
N + 1 cycles of treatment will always be better than the best which gives
Netc. This is because we have no penalty for adding excessive treatment
so we decide in advance that we will not consider excessive amounts of
therapy.

This rather long list of assumptions may be summarized mathemati-
cally.

1. We have two drugs, 1 and 2, which are given at fixed doses.
Drugs 1 and 2 may not be given together.

3. After each drug treatment is given we must wait a fixed time
(depending on treatment given) after which we give another treat-
ment: at that time we may choose to give either 1 or 2.

4. The total number of times treatment is given is fixed.

5. We wish to pick the sequence of treatments (e.g. 122122 etc.) that
maximizes the probability that the tumour is eradicated.

This is a limited and circumscribed problem and indeed it is not
difficult to find its solution if the relevant parameters are known.
However, knowledge of all parameters is seldom known so that one
is interested in determining the pattern and underlying structure of the
sequence that maximizes the probability of cure, if one exists. Initially,
we must ask what is the mathematical expression for the probability that
the tumour is cured. As we have said each cell is in one of four mutually
exclusive categories with respect to the two drugs: sensitive to both
drugs, resistant to drug 1 and sensitive to 2, sensitive to 1 and resistant
to 2 and resistant to both. If, as before, we let K, R, R, and R,
represent these states, respectively, then cure is equivalent to elimina-
tion of all cells in each state, i.e. for some time, ¢’, after treatment
is complete we require that Ry(t')=0,R(t)=0,R(t")=0 and
R;;(t") = 0. Of course as usual we think of these counts as stochastic
quantities so that the probability of cure, Po(t'), is

P(t') = P{Ry(t) = 0, R(¢') = 0, Ry(t') = 0, Ry, (¢)) = 0}.

The question becomes how can we mix and balance our treatments 1
and 2, subject to the constraint that we will only give so much of them
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altogether, to maximize the probability that the tumour is cured? A
detailed discussion of how we can perform these calculations and
how parameters influence P.(t") requires a considerable amount of
mathematical development. Rather than pursue this we will discuss
what conditions must be met for there to exist a sequence of treatments
to eliminate the tumour and what the structure of the optimal sequence
looks like when these conditions are satisfied.

Firstly, the drugs 1 and 2 must be able to be given so that eventually
Ry(t") = 0 (i.e. the sensitive cells can be eliminated); if not the drugs can
never cure this tumour so the best sequence will still be a failing pro-
position. Secondly, if some combination of the drugs can kill cells in R;,
at a sufficient rate to make their net growth rate negative then continua-
tion of this protocol will eventually eliminate all such cells (and presum-
ably all other cells which are, by definition, more sensitive to either drug
1 or drug 2 or both). Under these circumstances, it is not necessary to
develop effective first-line treatment since even recurrences can be suc-
cessfully treated. However, we may still be interested in such cases since
the objective then would be to minimize the amount of treatment
required to effect the cure. We are interested in the intermediate situa-
tion where cure is possible but not inevitable. This, of course, is the case
with many situations of clinical interest. The preceding limitations placed
on the effectiveness of the drugs against the tumour correspond to the
following requirements.

1. Our protocols must be able to eliminate the sensitive cells and thus
‘drive’ Ry(f) = 0 (the number of sensitive cells become zero as
treatment continues).

2. Our protocols must 7ot cause the doubly resistant cells to be elimi-
nated and thus Rj,(f) to increase (the number of doubly resistant
cells can only increase as treatment continues; we are specifically
excluding from consideration a drug sequence capable of destroy-
ing doubly resistant cells).

The second of these assumptions may seem paradoxical for if these
cells only increase and we cannot eliminate them how can we cure the
tumour? By their very nature and our assumption about the drugs avail-
able, doubly resistant cells can only increase because we have no effec-
tive therapy to eliminate them. We can only cure the tumour if there is a
significant probability of there being no doubly resistant cells at the
beginning of treatment and we can schedule treatments so that this
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probability does not decrease to zero. By our multistep assumption,
doubly resistant cells originate from singly resistant cells so that we
can prevent them from arising by controlling the singly resistant cells
and we can minimize the likelihood that new doubly resistant cells will
arise if we quickly eliminate the singly resistant cells. We must be able to
control cells resistant to drug 1 with drug 2 and vice versa. As a result,
we have a third requirement.

3. Each of the two drugs must be sufficiently effective against cells
resistant to the other drug, to eliminate all such cells after sufficient
drug is applied.

Again situations that do not accord with this requirement will inevitably
lead to a tumour which is resistant to any protocol that uses drugs 1 and
2 alone.

These three requirements illustrate what the ‘best’ use of drugs 1 and
2 will involve as the protocol proceeds: (a) reducing the number of
sensitive cells, Ry(#) and (b) reducing the number of singly resistant
cells, Ry(¢) and R,(), in such a way that the development of new doubly
resistant cells is minimized. The best way to do this depends on the
individual parameter values (for & and the log kills of drugs 1 and 2 in
the different cell types); however, it is generally true that better strategies
tend to ‘interleave’ the two drugs so that there is not prolonged repeti-
tion of one or the other.

In most clinical applications, the parameter values needed to use this
model are, at best, imperfectly known. There has, therefore, been inter-
est in developing rules that give general guidance as to what approaches
are more likely to be successful. We will discuss two of these rules here:
the ‘worst drug rule’ and the ‘alternation rule’.

6.1l Worst drug rule

One of the best known of these rules is the so-called worst drug rule,
which basically says that when you have available multiple ‘effective’
drugs to treat a cancer then you use the most effective one the least
(Day, 1987). This counter-intuitive statement deserves further explana-
tion. Consider a situation where two drugs are available for the treatment
of a tumour, drug 1 and drug 2. Assume that drug 1 has a higher log kill
than drug 2 (in their usually administered doses) and that they both have
similar values of a. Let the log kill of drugs 1 and 2 be 3 and 2, respec-
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tively, on sensitive cells and the rate « be 107° for each drug. Assume
that the recovery interval after each drug is the same and regrowth
between repeat applications of each drug is 0.25 logs. If the tumour is
of size 10" cells then four applications of drug 1 (total log kill of 12) will
kill all sensitive cells. However, it will require six applications of drug 2
to achieve the same result (12 log kilD. Therefore, if we had chosen to
give drug 1 six times, the last two applications of it would have been
useless because although many cells would exist after the fourth appli-
cation they would all be resistant. Conversely, if drug 2 were used, there
would still have been sensitive cells during the last two applications of it
so that its continued use would have been justified. In this way, we
achieve all the effect we can achieve with less of the better drug so
that we do not need to give as much of it. This is the idea behind the
worse drug rule.

It may be countered that the preceding example argues for none of
drug 2 because we do not need to give any of it if we have already
given four cycles of drug 1. This is correct when we only consider its
effect on the sensitive cells, but there are other reasons for using the
second drug. One of the main ones is that a second drug may elim-
inate cells that are resistant to the first drug. If drug 1 is the better drug
and can eliminate all the cells resistant to drug 2 in two to three cycles
then no more of it need be given if sufficient quantity of drug 1 is
given to eliminate cells resistant to drug 1 and the remaining cells
sensitive to both drugs. Because drug 2 has less Kkill on cells, generally
more of it must be given to eliminate the cells resistant to drug 1 than
must be given of drug 1 to eliminate cells resistant to drug 2.
Obviously the optimum balance will depend upon the actual log
kills and rate parameters.

Empirical tests of the worst drug rule are essentially not possible,
since it is more of a guide than a prediction. In order to test it one
would want to know all the relevant parameter values (log kills, o
values, etc) to make sure that you had a worse drug. But having
done this one would logically not use the rule but go through a detailed
calculation and derive a predicted optimum strategy. This strategy would
then indicate the best way to use the drugs and the worst drug rule
would not be required. The predictions would then be tested to see if
they were borne out experimentally. However, this rule is very useful for
supporting empirical findings that repeated use of useful drugs will not
continue to provide gains in therapeutic value.
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6.12 The alternating strategy rule

In contrast to the worst drug rule, which provides an outline of the
answer to a general situation, the ‘alternating strategy rule’ provides a
very precise answer to a narrow question.

Very occasionally situations may exist where one has available two
drugs that seem absolutely equal in their effectiveness. The question
then arises as to how one may optimally use them. This turns out to
be a problem to which there is a mathematical solution that does not
depend on the actual parameter values. As long as the two drugs have
exactly the same values for o and log kill and require the same spacing
between consecutive treatments then the optimal approach is to alter-
nate their use (i.e. 121212, etc.). The rationale for this approach is easily
understood since we effectively reduce the number of singly resistant
cells at equal rates and eliminate them jointly as fast as possible. Also
since the two drugs are equally effective giving drug 1 or 2 reduces the
sensitive cells by the same proportion so that this compartment is
reduced as fast as possible.

Simulations indicate that interleaving early in the protocol has a
greater effect than interleaving later in the protocol, so it is more impor-
tant how a protocol ‘starts’ than how it ends. The reasons for this is easy
to understand. The singly resistant subpopulations are most likely to
create doubly resistant cells when these populations reach their max-
imum size. By interleaving early the singly resistant subpopulations are
both controlled and begin to decline. As long as the remaining part of
the protocol does not allow either of them to equal or exceed their
former size there will be small likelihood that the potential for successful
treatment will be considerably diminished.

6.13 Experimental rules

The interleaving strategies contained in the worst drug rule and the
alternating rule represent a departure from what has been inferred
from studies of experimental tumour systems. Analysis by Skipper and
colleagues had suggested the so-called ‘treatment to nadir’ approach,
whereby drug 1 was continually administered until the net-growth rate
of the tumour was no longer negative and then drug 2 was repeatedly
applied (Skipper, Schabel and Wilcox, 1975). From the viewpoint of the
mathematical model, this strategy makes sense: use one drug to elim-
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inate all cells resistant to the other and then switch. However, because
the likelihood that double resistance will develop depends on the num-
ber of singly resistant cells, it is disadvantageous to eliminate one type
while the others continue to grow and it is better to reduce them in
tandem using both drugs.

Most experiments that led to the ‘treatment to nadir’ rule did not
include the optimum interleaved strategy so that one cannot really say
that there is any disagreement between theory and experimental evi-
dence on this point. Both the worst drug and the alternating strategies
indicate that, when resistance is present, considerations based on the
behaviour of sensitive cells can be very misleading. The rules indicate
that it is the behaviour of the underlying resistant populations which will
influence the likelihood of cure.

6.14 Some comments on optimum rules

Mathematicians like optima. And why not, if you can get the best why
settle for anything less? However the fact that one strategy, within this
context, is optimal and another suboptimal does not imply that there is
any practical difference between them. It must be remembered that
clinical trials typically only detect differences in cure or survival rates
of the order of 0.05 or more. Many strategies may have predicted cure
rates within 0.05 of the optimum and therefore be statistically indistin-
guishable in effect. Also interleaving strategies, per se, are not superior
to noninterleaved ones since some interleaved strategies can be very
bad indeed. The earlier rules indicate that good strategies will usually
involve some amount of interleaving but not the converse.

In clinical situations, patients are unlikely to be homogeneous on
those parameters (log kills, a values, etc.) that influence the nature of
the optimum therapeutic strategy. It is quite likely that there is no single
optimal therapy for the entire population of patients. In such cases, it is
possible that the best common treatment strategy, that which produces
the best overall result, is not optimal for any of the individuals in the
patient population. The obvious approach is to customize treatment to
individual patients so that each patient receives the best possible treat-
ment with those drugs available. Unfortunately, there are not any clinical
tools that facilitate the measurement of the relevant parameters in a
timely fashion. As we have seen, it is treatment given early in the ther-
apeutic regimen that has the greatest influence on outcome in situations
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where there is a reasonable probability of long-term success. The prob-
ability that patients will benefit differentially from the effect of therapy
raises the concern that the best overall therapy may not be a suitable
rationale for designing clinical protocols. The decision-analysis literature
contains several other possible criteria for selecting the best protocols.

In the preceding discussion we have indicated that we wished to
maximize the probability of cure and that we would only address com-
binations of tumour system and treatment where our ‘three limitations’
held. What happens if we now apply our optimal treatment to systems
where cure is unlikely and that the measure of effect will be extension in
the survival time? We would hope that the optimal strategies would also
perform well in these circumstances too, since the object of both is
‘roughly’ to reduce the tumour size as much as possible so that either
cure is achieved or relapse delayed. The reassuring answer is that opti-
mal strategies for maximizing cure, when it is possible, also maximize
the disease-free interval when cure is impossible. Again within the con-
text of this model, the differences in disease-free survival among many
strategies in individuals in which cure is impossible is rather small. In
fact almost any strategy that utilizes enough of each drug will have about
the same effect on the disease-free interval. This observation has two
direct implications.

1. In experimental systems disease-free interval is one of the major
measures of effect; therefore in evaluating this outcome-measure
various strategies will have similar effects (i.e. treatment to nadir
and mathematical optima).

2. In clinical studies of patient groups that are mixtures of incurable
and potentially curable subjects the differences in effect between
optimal and other strategies will be less than in the potentially cur-
able group alone. Potentially curable subjects are those in which the
probability of no doubly resistant cells is relatively high at the com-
mencement of therapy (see also Chapter 7).

6.15 Multidrug resistance

The origins of MDR are discussed in Chapter 3 but suffice it to say here
that single changes in cell metabolism may confer resistance to the
actions of diverse drugs. To the extent that information is known
about the origins of such resistance it appears to arise in ways similar
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to that of single drug resistance. There seems no particular reason to
amend the model we presented in Chapter 5 for single drug resistance to
cover the case of MDR. All the characteristics developed there merely
carry over. As detailed elsewhere in this book, single-step multiagent
resistance appears a more common mechanism for resistance in clinical
cancer than that which arises in a sequence of steps.

6.16 Summary and conclusions

This chapter has discussed various extensions to the basic random muta-
tion model for drug resistance presented in Chapter 5. By embedding
the random mutation model in a compartment model of tumour growth,
we have seen how random cell loss acts to age a tumour and make it
take on the resistance properties of a tumour of much greater size. This
effect is much exaggerated when cell loss is not random and resistance
types have growth advantages over parental cells. In extending the
random mutation model to multiple drugs we showed that, in cases
where such resistance is acquired over a series of steps, multiply resis-
tant types proliferate at an accelerated pace, especially where cell loss
occurs, so that even for small values of &, multiply resistant types will be
present in tumours of clinical dimensions. The role of genetic instability
in furthering the development of resistance was explored and shown to
be potent. Inhomogeneity, both between and within individual clinical
cancers, was shown to be a primary determinant of outcome.
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Clinical predictions of the random
mutation model

71 Introduction

The random mutation model of drug resistance explored in Chapters 5
and 6 can be used to derive a number of unambiguous predictions about
the behaviour of clinical tumours in response to chemotherapy. These
are basically the same as the ones that were developed from the con-
sideration of the experimental tumours described in Chapter 5 but with
the necessary qualifications. The clinical malignancies are much more
heterogeneous and complex than the experimental systems. One impor-
tant distinction is that it is not possible to stage clinical tumours with
anything like the accuracy that can be achieved in the laboratory. The
number of actual clonogenic cells in a transplanted tumour can be mea-
sured with precision whereas only a very rough approximation can be
made for clinical malignancies. The strongest predictions made by the
model include:

e there will be an unpredictable variation in response to treatment in
what appears to be identical cases of malignancy

e there will be an inverse relationship between tumour mass and
likelihood of cure

e combination chemotherapy will be superior to single-agent treat-
ment with respect to the production of cures

e the sequence of drug administration influences outcome.

There are a number of other inferences that can be made from the
model. The above predictions, however, can be considered to be strong
predictions which easily lead from the model and which can be sub-
jected to experimental and clinical tests.

195
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Prediction | There is an unpredictable variation in response to
chemotherapy in patients with the same histological type and stage of
tumour

The unpredictability of response to chemotherapy is commonly
observed in virtually all types of malignancy that are undergoing treat-
ment with chemotherapy. Depending on whether the initial mutations
that confer resistance occur early or later in the growth of the tumour, or
not at all, a variety of response scenarios are possible. Early mutations
will generate a large resistant population and will limit substantially the
effect of the treatment. Late mutations leading to a small resistant popu-
lation will still result in incurability but will probably be associated with
complete clinical remission of sustained duration. If no mutations have
occurred prior to or during therapy then the tumour population poten-
tially can be destroyed, vielding a clinical cure. All of these scenarios
would be consistent with the same average mutation rate to resistance.

Of course, this would not be the only source of variability of
response. Constitutional differences among patients in their metabolism
of drugs, in normal tissue tolerance to chemotherapy and with regard to
any co-existing medical problems may be some of the additional factors
that will influence response. Moreover, patients can be said to have
identical tumours of histological type and stage only to a degree.
Cytological and molecular characterization of tumour types continues
at an expanded pace with more and more subtypes being identified.
Some subtypes are known to carry a better or worse prognosis than
average, and response categories have to be continually subdivided.
At the extreme end of reductionism, it is likely that no two cases of
human cancer are truly identical. However, with carefully defined
groups, the clinical behaviour of tumours is sufficiently similar to
make comparisons among individuals feasible and to apply standard
treatment protocols to these groups.

Prediction 2 There is an inverse relationship between tumour mass
and curability

The function P(N) = e ¥~ describes the theoretical change in expec-
tation for cure, P(N), as the tumour population, N, expands. Advanced
tumours are less likely to be cured than similar tumours that have mini-
mal clinically detectable tumour burdens. Patients with micrometastatic
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disease have higher expectations for cure. One sees this relationship
across degrees of tumour burden even in very sensitive types of malig-
nancy such as germ cell tumours of the testes. Cancers with large disease
burdens of this type (poor prognosis category) have cure rates with
standard chemotherapy in the order of 30 to 50%. Medium burden
patients have cure rates in excess of 70%, while minimal burden patients
(serum marker positive only) are nearly 100% curable. Although it is not
possible directly to relate clinical stage of disease to the number of
tumour stem cells, in these cases the change from a very high to a
low probability of cure in germ cell tumours does seem to occur over
an approximately two to three log change in tumour size.

It is apparent that the curability of clinical tumours by chemotherapy
quickly falls off as tumour burden increases, even when observation is
limited to the clinically detectable range. Change in potential curability
with increasing tumour mass does not seem to be a gradually diminish-
ing phenomenon but appears to involve a fairly narrow range of tumour
sizes. The most striking examples of this are seen in those tumours
where apparent cure is possible in the adjuvant setting (where we are
treating a microscopic tumour burden) and where the same tumour is
virtually incurable at the time of minimal clinical detection (osteosar-
coma, early-stage colorectal cancer, early- versus late-stage breast can-
cer, neuroblastoma, etc.).

Clinical, radiological and biochemical marker measurements can pro-
vide only an approximate estimate of actual tumour burden. It is appar-
ent that even by histological examination the number of tumour cells per
cubic centimetre of tissue can vary widely with different types of malig-
nancy. Hodgkin’s disease commonly has few identifiable malignant cells
(Reed-Sternberg) per histological section, with much of the tumour
appearing to consist of reactive and inflammatory cells. In contrast,
small non-cleaved cell lymphoma (Burkitt's type) displays sections
that are densely packed with small malignant lymphocytes. Compared
with Hodgkin’s disease, an equivalent volume of Burkitt’s tumour might
contain one to two logs more actual tumour cells. Even if there were no
other differences in the constituent cells, this on its own could account
for some of the difference in curability between the two diseases. A
further confounding issue with respect to assessing acurately tumour
burden in patients is the question of actual number of tumour stem
cells present as opposed to simply the number of morphologically
abnormal cells.



198 Drug resistance in cancer

It will be recalled that in the spontaneous AKR mouse lymphoma
there was a great variation in the number of lymphoma colony-forming
cells per total malignant cells present (Chapter 2). The range was
approximately over three orders of magnitude in different individual
mice. Similar ranges in in vitro colony-forming efficiency have been
seen in human tumour stem cells assays. The relationship between in
vitro colony-forming efficiency and that iz vivo is not understood with
certainty but a conservative interpretation would be that human tumours
must show some variation from patient to patient in the numbers of
tumour stem cells per standard volume of tumour.

Despite the difficulties in accurately measuring true tumour burdens
clinically, the main lesson seems clear. Potential curability by che-
motherapy declines rapidly with tumour size increase and chemother-
apy should be initiated at the earliest time feasible and against
micrometastatic disease if possible. No other process operating within
the cancer cell population appears to mitigate so heavily against success-
ful drug treatment as the progressive increase in cell number with con-
comitant increase in cellular heterogeneity.

There is a final point that needs to be made regarding tumour size
and curability. Small tumour burdens in the sense used here imply a
young tumour and not one that has been shrunk down from a larger
size. Although the two tumour masses may be the same in these
circumstances, the biological age of the two tumours will be quite
different. Whatever means have been used to shrink a large tumour
will not turn the clock back on its biological age (Chapter 6). If it has
been reduced in size by chemotherapy, it can probably be expected to
contain a high proportion of resistant cells by virtue of the selection
process.

Some kinetic models of chemotherapy would not distinguish
between these two states since both tumours would be at the same
point in the growth curve function as measured by volume. However,
the elapsed biological and chronological time to reach these points
would be different, with more cellular divisions involved in the ‘shrun-
ken’ tumour (the mathematical basis for this is discussed in Chapter 6).
The behaviour of the two equally sized tumours would not be expected
to be the same and this is abundantly confirmed by experience.
(Compare the drug sensitivity of minimal stage Hodgkin’s disease with
relapsed Hodgkin’s that has undergone ‘conditioning’ chemotherapy
prior to bone marrow transplantation.)
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Surgical debulking will only change the heterogeneity of the tumour
population if most of the tumour cells are present in a few large discrete
masses. These masses will presumably be the ‘oldest’ part of the tumour
and probably the most heterogeneous. If these masses are removed by
surgery then the residual microscopic disease may contain both a lower
proportion and quantitatively fewer drug-resistant cells than were pre-
sent in the original disease. However, this residual disease will still be
potentially more drug-resistant than a ‘young’ tumour of the same size.

Prediction 3 Combination chemotherapy will be superior to single
agent treatment

If we take the function P(N) = e ™~V and replot it with N fixed and
varying the value for «, we find that this yields a sigmoid-shaped ‘limit-
ing dilution’ curve similar to the original function (Fig. 7.1).

For any value of N (the number of tumour cells) the probability of
cure diminishes as the mutation rate increases. This is intuitively obvious
but what can we infer from this regarding the utilization of chemother-

10—

Probability of zero resistant cells

Mutation rate increasing ————

Fig. 7.1. Plot of the function P(N) = ™™D (this equation should be more
propetly written as P(c) since P varies with « not N) with N fixed and varying
values for o (mutation rate to resistance). As « increases, the probability of
zero resistant cells diminishes. Likewise as « is reduced the probability of zero
resistant cells (cure) increases. In the limit when o = 0, the probability of
nonresistance equals 100%. Reducing the value of o can be achieved, in
effect, by utilizing combinations of non-cross-resistant drugs, so that the
likelihood of any tumour cells expressing resistance to at least one of the
drugs is minimized.



200 Drug resistance in cancer

apy? There is no apparent way to reduce the spontaneous mutation rate
in a biological system other than by applying substances that oppose the
action of known mutagens. Unfortunately several of the modalities used
in treating cancer are known to increase the general mutation rate in the
tumour. The question is to some degree moot, however, as by the time
the neoplasm is diagnosed the mutational events of concemn will have
either occurred or not.

It is possible to deal with this problem without actually changing the
spontaneous mutation rate within the cancer. We can, in effect, reduce
the probability of there being any drug-resistant cells present by utilizing
two or more agents concurrently. The random mutation model provides
a strong rationale for the use of combination chemotherapy.

The earliest clinical uses of combination chemotherapy were based
on a number of considerations, with the issue of drug resistance not
necessarily being foremost. It was felt important to combine together as
many drugs that were known to be individually active against the dis-
ease as was feasible. Even relatively minor degrees of activity were
sometimes felt to be adequate reasons for inclusion in a protocol.
Some of the first combination protocols that were found to be useful
in certain types of tumour included the so-called ‘triple therapy’ for
testicular cancer (actinomycin D, chlorambucil and methotrexate),
VAMP (vincristine, amethopterin (methotrexate) 6-mercaptopurine and
prednisone) for acute lymphoblastic leukaemia in children and MOPP
(mechlorethamine (nitrogen mustard), oncovin (vincristine), procarba-
zine and prednisone) for Hodgkin’s disease. Early experience with these
protocols indicated significant improvement over single agent therapy,
with a higher proportion of patients achieving complete remission and a
significant proportion, 10 to 40% depending on the disease type, being
cured.

Combination chemotherapy is intense and its introduction was not
without controversy. A number of clinicians regarded this as mindless,
shotgun therapy that was ‘an assault against the patient’. There were two
common criticisms: if we used a number of drugs simultaneously and
there was therapeutic benefit then, ‘you wouldn’t know which drug had
worked’. Another concern expressed was the reluctance to use all
known active drugs at the beginning. The treating physician would
wish to hold back an agent in reserve to be used as palliation when
the initial protocol failed. Of course, withholding a potent agent at the
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beginning simply increased the likelihood of the initial treatment being
unsuccessful.

Considerations that dictated the structure of multiagent protocols
included different patterns of toxicity and differing modes of action,
including whether drugs acted at different points in the cell cycle. As
more came to be appreciated about the presence of drug resistance it
was recognized that the use of agents that were not cross-resistant was
of great importance. Related to the issue of non-cross-resistance was that
of collateral sensitivity, whereby a cell that was resistant to drug A might
display increased sensitivity to drug B and vice versa. This is obviously a
desirable state of affairs but, unfortunately, seems quite uncommon.
Finally, probably in part related to the issue of collateral sensitivity,
there is the principle of exploiting drug synergy when it can be identi-
fied. True synergistic drug combinations are infrequent but some potent
examples have been identified (e.g. cisplatin plus etoposide).

In hindsight, it is apparent that some of the early useful multiagent
protocols such as VAMP, MOPP and CMF (cyclophosphamide, metho-
trexate, 5-FU), incorporated many of these basic principles. Since the
time that these first combination protocols were introduced virtually all
of the curative programmes of chemotherapy have required multiple
agents to achieve their goal. Only a very few types of human cancer
appear curable by single agents when treated at an advanced stage (e.g.
seminoma, trophoblastic choriocarcinoma and hairy cell leukaemia).
Even seminoma and choriocarcinoma vield better results when treated
with multiple agents, and the very rare B-cell malignancy hairy cell
leukaemia may be a special case with part of the therapeutic effect
being mediated by suppression of endogenous B-cell growth factors.

Prediction 4 Certain sequences of drug administration may be
superior to others

From the previous considerations, it is apparent that the most effective
method of employing cancer chemotherapy is to utilize all of the most
active individual agents simultaneously. An alternative approach might
be to employ each active agent individually for a set number of courses
and then switch to the second, third and fourth agents in order. This
would have the advantage of resulting in each drug being given close to
its optimum dose. We might then envisage a sequence of 111, 222, 333,
444, etc.



202 Drug resistance in cancer

This approach was frequently tried in the early days of chemotherapy
and virtually always resulted in treatment failure, even though clinical
improvement and some survival prolongation was achieved. From the
perspective of drug resistance it is easy to see why this is generally a
failing strategy. If we assume that all four drugs are required for cure
then we can infer that the tumour at outset will contain at least some
cells that are resistant to each of the four drugs individually, e.g. we will
have subsets of cells designated Ry, R,, B; and R;. There could also be
cells present that are concurrently resistant to two or three of the drugs,
but we will assume that at the outset there are none of these multiple-
level resistant cells. A course of therapy with drug 1 will reduce the
sensitive cell population significantly and will greatly reduce (or even
extinguish) some of the resistant subclones. However, during the period
of therapy with drug 1 the subpopulation &, will grow unimpeded. It
may evolve some doubly resistance cells (e.g. Ry, R3) that were not
present initially and that will have an extended opportunity to evolve to
a higher multiple-level resistant state (Ry,34) and render the tumour
incurable.

If, however, the treatment is applied in ‘packages’ of all four drugs
‘1234’ then the likelihood of multiple-level resistance will be reduced
and this will more than offset the possible reduced log kill produced
against the sensitive cells (because of necessary dose reductions when
four drugs are used together). Now suppose all four drugs are highly
toxic and can be given simultaneously only with very significant dose
reductions, to the point where some of the drugs may be being delivered
in nontherapeutic doses. It may then transpire that the most agents that
can be given together at what is considered to be a therapeutic dose is
two, that is 12 and 34. Under the following conditions what is the opti-
mal sequence to employ with the two drug combinations?

1. Drugs 12 and 34 have nearly equivalent log kills on the sensitive
cells and on the resistant subpopulations that are sensitive to them
2. The net mutation rate to resistance to produce Ry, is approximately
the same as that for R34 and likewise for the sequence Ry, to Ry,3 etc.
3. There exists a degree of non-cross-resistance between 12 and 34.
Ideally this should be complete but in practice moderate cross-resis-
tance would still yield an advantage. If 12 was totally cross-resistant
with 34 then the effect of alternating them would be equivalent to
giving one combination alone (this may be a more common situa-
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tion than was originally appreciated owing in part to phenomena
such as MDR).

The mathematical considerations given in Chapter 6 show that on aver-
age the best strategy will be to alternate courses of 12 and 34 (12, 34, 12,
34, etc.). This will be inferior to giving drugs 1234 simultaneously but if
that is not feasible then the one-to-one alternation emerges as the next
best solution.

Given these rather stringent requirements it is perhaps not surprising
that it has been difficult to demonstrate convincingly that one-to-one
alternation constitutes a superior strategy when applied in clinical situa-
tions. Of the requirements for the full impact of the strategy to be man-
ifest, quantitative equivalence of therapeutic effect may be the most
difficult to achieve. This would basically require testing the two proto-
cols to be alternated against two groups of patients with the same stage
and type of tumour. Not only response rates and duration would need to
be assessed but also cure. This relates to the fact that the random muta-
tion model makes no strong predictions about the behaviour of the
noncured groups, though some inferences can be drawn from the aver-
age duration of remission in those patients who ultimately relapse.

Since the protocols have to be assessed for the capacity of cure
individually, this implies the desirability of evaluating the strategy in
tumour types in which cures with one protocol are possible.
Assessment of non-cross-resistance is easier to establish as this simply
requires a crossover trial with those patients who display resistance at
the commencement of therapy. The very large number of forms of
pleiotropic or multidrug resistance, however, make it unlikely that two
protocols each containing two to four drugs would ever be found to be
completely non-cross-resistant.

It has proved difficult to evaluate rigorously one-to-one alternation
strategies at the clinical level. One of the studies that has come closest
has been that of Fukuoka et al. (1991) in Japan, who assessed the
effectiveness of two sequences of CAV (cyclophosphamide, doxorubicin
and vincristine) and EP (etoposide, cisplatin). The study was not ideal as
CAV and EP were not separately assessed for their curative potential,
though a degree of non-cross-resistance was established. In addition,
patients were crossed over to the other arm of the study at the first sign
of clinical resistance (an ethical necessity). Despite these problems, the
authors were able to demonstrate a small but statistically significant
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superiority for the one-to-one alternation of CAV and EP compared with
a sequence of three courses of CAV followed by three courses of EP.

There have been many tests of so-called alternating chemotherapy,
with a few showing moderate beneficial effects but most showing no
difference in the treatment arms. Some of the most likely reasons for this
have been mentioned. Given the problems of rigorously testing the issue
of alternation, it is probable that this particular strategy will remain more
of a theoretical approach than a practical solution.

72 Optimal design of multiagent protocols

The discovery of a large number of different multidrug-resistant mechan-
isms poses many difficulties for the design of effective combination
chemotherapy regimens. In addition to evaluating agents for their indi-
vidual activity against a specific type of tumour and for minimizing over-
lapping patterns of normal tissue toxicity, protocols will need to avoid
the use of agents that are likely to be rendered ineffective by the same
biochemical alteration in the cell. Previously, it was assumed that if two
drugs were different chemically and had differing mechanisms of action
cross-resistance would probably not be a problem. The existence of
many different multidrug-resistant phenotypes makes optimal drug
selection considerably more difficult and also more crucial. If we assume
that we have only so much toxicity ‘space’, then to fill this space with
drugs that could in principle be negated by a single genetic change
would be highly inefficient. For example, the potent agents vincristine,
etoposide, doxorubicin and paclitaxel could all be nullified by a muta-
tion resulting in increased expression of P-glycoprotein (P-gp). It seems
likely that increased expression of the multiresistance protein MRP
would have a similar effect. It will be important to make use of the
available knowledge about the typical mechanisms and patterns of
cross-resistance that are seen in specific tumour types. For example,
the most common mechanism of resistance to doxorubicin in breast
cancer appears to be alterations in topoisomerase II rather than
increased expression of P-gp. Under these circumstances, it would be
rational to employ paclitaxel in the treatment of doxorubicin-resistant
breast cancer or in combination with doxorubicin as primary treatment.
Paclitaxel resistance can arise through changes in one of the proteins
that make up the mitotic spindle, but this would not affect doxorubicin.
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Some of the problems associated with optimal drug selection are illu-
strated by the results of a large, multicentre study that compared four
different combination chemotherapy protocols in the treatment of large
cell lymphoma. The standard protocol for the treatment of this malig-
nancy has been the multiagent programme designated CHOP (Table 7.1).
In an attempt to improve on the results that were seen with the CHOP
protocol (30 to 40% long-term survival) a number of new programmes
that combined more intensive dosing with additional numbers of agents
were evaluated at single institutions. Three of the most successful of these
are indicated in Table 7.1 and, on the basis of the results that were seen in
the single institution trials, the decision was made to compare all four
protocols in a large, prospectively randomized study.

The preliminary results from the single institutions suggested that it
might be possible to improve the long-term survival rate to better than
60% in large cell lymphoma if these more aggressive programmes were
employed. However, when the trial was completed and the results ana-
lysed, it was found that the new protocols did not yield results that were
statistically superior to those obtained with the basic CHOP programme
when the latter was used in a consistent standardized manner.

This proved to be a considerable disappointment to many investiga-
tors who had felt that the combination of greater dose intensity com-
bined with greater diversity of agents ought to have yielded superior
results in what is considered to be a fairly sensitive class of malignancy.
Although at this point we cannot be sure of all of the factors that resulted
in there being a negative outcome to the study, at least two things
immediately spring to mind. It can be noted that all four of the protocols
contain at their core the four basic drugs that make up the CHOP pro-
gram. Two of the protocols, MACOP-B and SC-BACOD in addition con-
tain methotrexate and bleomycin and the most complex protocol, the
ProMACE-CytaBOM, contains a further three agents (procarbazine, ara-C
and etoposide) that are not contained in any of the other protocols.
Leaving aside the issue of peak dose and dose frequency, one might
have imagined that the results with the different programmes should
have progressively improved as the number of active agents was
increased. In theory, the ProMACE-CytaBOM protocol should have
yielded the best results with the MACOP-B and SC-BACOD intermediate
in activity compared with CHOP.

At the time these protocols were under development, less was known
about the problem of MDR and its general ubiquity in many types of
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Table 7.1. Combination chemotherapy for treatment of large cell lym-
phoma: comparison of the standard CHOP protocol with third-generation
protocols®

CHOP M-BACOD MACOP-B Pro-MACE-CytaBOM
Vincristine Vincristine Vincristine Vincristine
Cyclophosphamide Cyclophosphamide Cyclophosphamide Cyclophosphamide
Doxorubicin Doxorubicin Doxorubicin Doxorubicin
Prednisone Dexamethasone Prednisone Prednisone
Methotrexate Methotrexate Methotrexate
Bleomycin Bleomycin Bleomycin
Procarbazine
Cytosine arabinoside
Etoposide

“The (considerable) differences in dosage and schedule even for the same drugs are ignored
for this comparison. The first four drugs in each protocol are identical (dexamethasone is
equivalent to prednisone).

human malignancy. For example, it is now known that etoposide can be
blocked by the same mutation that can impede the effectiveness of
vincristine and doxorubicin (increased expression of P-gp). Likewise,
a mutation in topoisomerase II could neutralize the effect of both etopo-
side and doxorubicin.

In addition, there have been reports that some multidrug-resistant
cells also show a collateral resistance to methotrexate and bleomycin,
although this is uncommon. And it is also possible that there is at least a
degree of partial cross-resistance between procarbazine and cyclopho-
sphamide. Finally, the drug ara-C probably does not have a great level of
clinical activity in the dose schedule that was utilized in the ProMACE-
CytaBOM programme.

Therefore, there is a possibility that overlapping patterns of cross-
resistance may have largely nullified the impact of the additional
drugs contained in the more intensive protocols. The most potent
drugs were probably the four components that made up the CHOP
program, and these were common to each of the protocols. If the con-
tribution of the other drugs was relatively minor, then the trial may have
come down to simply comparing four different versions of CHOP.

Another possibility is that from the point of view of the chemother-
apy employed, large cell lymphoma is actually made up of several
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fairly distinct subgroups. Recent observations suggest that large cell
lymphoma, as characterized by molecular studies, is made up of at
least two subgroups with one group of T-cell lineage having a very
poor response to chemotherapy and another subgroup (B-cell lineage
and P-gp negative) being virtually 100% curable. These two subgroups
could be considered as being virtually two separate diseases. If one
subgroup is highly sensitive to chemotherapy and the other quite
resistant, then the proportion of long-term survivors will be dictated
by the proportion of patients who fall into the sensitive subgroup. The
group that is quite resistant may not be susceptible to chemotherapy of
the type and dose that was employed in the more intensive protocols.
Under these circumstances, the result would be essentially the same
outcome across all four protocols, even though the three third-genera-
tion protocols were in a sense ‘better’. However, their superiority
would only be manifested against a tumour type that showed a spec-
trum of sensitivity and resistance and did not readily divide into two
main subcategories.

There could well be other reasons for the failure of the multiagent
protocols to show improved benefit, but the lesson to be learned from
this important study is that it is going to be insufficient simply to com-
bine drugs that have individual activity and expect that the consequence
will be a superior treatment outcome. More information is going to be
needed about the common modes of resistance that are expressed in the
tumour population to be treated and, in particular, to identify if there are
subgroups that are significantly more or less sensitive to drug treatment
than the average.

73 The concept of dose intensity

Mention has been made previously of the issue of dose intensity (with
respect to the treatment of experimental leukaemia, Chapter 2). In 1984,
Hryniuk and Bush published a simple method of calculating the so-
called dose intensity of multiagent protocols that would allow compar-
isons to be made with different protocols and assessments of whether
the intensity of applied dosage influenced treatment outcome.

The Hryniuk-Bush algorithm involved taking one of the standard
protocols for treating a particular category of malignancy, i.e. CMF for
breast cancer, CHOP for large cell lymphoma, etc., and utilizing it as the
‘gold standard’. The dosage of each drug in these protocols was arbi-
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trarily given the value of 1 so that the total dose intensity of each would
be equal to 3 for CMF and equal to 4 for CHOP, etc. Then the actual
doses of the protocol were calculated and normalized to a dosage per
body surface area (m”) per week. The doses were all described on a per
week basis even if in the actual clinical protocol the doses were given at
two-, three- or four-week intervals. For example, if the dose of cyclophos-
phamide is given at a level of 1200mg/m” every 4 weeks, then this
would be described as equivalent to 300 mg/m” weekly. If this particular
dose corresponded to the protocol that was the ‘gold standard’ then a
protocol that gave cyclophosphamide at a dose of 600 mg/m” every 2
weeks, would be considered to have the same dose intensity (i.e. 1). If
the protocol that was being compared gave cyclophosphamide at a dose
of 1000mg/m® every 4 weeks then the dose would be considered
equivalent to 250 mg/m?® per week, and the dose intensity of the cyclo-
phosphamide would be 250/300 or 0.83; a protocol that gave cyclopho-
sphamide at a dose of 1600 mg/m* every 4 weeks would have a dose
intensity of 400/300 or 1.33 (in other words a higher dose intensity than
the standard protocol). The relative dose intensity for a multidrug regi-
men is obtained by adding the dose intensities for each drug in the
regimen and dividing this by the same quantity for the gold standard.

Using this approach, it was possible to develop dose-intensity scores
for a number of multiagent protocols used in clinical treatment. In terms
of protocol comparison, it is of most use in comparing protocols that are
made up either completely or largely of the same drugs. It would be
impossible to do cross-comparisons with protocols that contained dif-
ferent drugs.

In the dose-intensity calculations, we are simply looking to see
whether there is an optimal degree of dosing for producing favourable
patient outcomes and in particular whether exceeding the standard pro-
tocol by still-tolerable increases in dosage is associated with a concomi-
tant improved therapeutic response.

There are, of course, a number of broad assumptions that have to
be made in order to carry out the calculation of the relative dose
intensity. Firstly, each drug at the dose given in the gold standard is
considered to have equivalent effect since proportionate increases in
any dose (with reference to the doses in the gold standard) is postu-
lated to have the same effect. Secondly, the dose response curve is
linear (e.g. a dose of 2g once every 4 weeks is equivalent to a dose of
500 mg administered weekly). Both these assumptions seem unlikely to
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be true in practice, especially when used for different outcomes (e.g.
response rates and survival, which are nonlinearly related to one
another) so that relative dose intensity is unlikely to be mathematically
accurate.

Using this approach, Hryniuk and Levin (1987) were able to demon-
strate that there was a good correlation between outcome and adminis-
tered dose intensity of CMF-type protocols in breast cancer as well as in
platinum-containing protocols in ovarian cancer. It was also shown by
DeVita and Hubbard (DeVita, Hubbard and Longo, 1987) that there
appeared to be a similar correlation between outcome and dose inten-
sity with respect to the treatment of Hodgkin’s disease and non-
Hodgkin’s lymphoma. Other studies that have looked for correlations
between dose intensity and outcome in diseases such as small cell lung
cancer have not found any.

It must be remembered that virtually all of the protocols that were
used in dose-intensity analyses were operating in what was felt to be the
therapeutic range for the drugs in the combination. In one study, inten-
tional reduction in dose intensity by a factor of two compared with
standard CMF did result in less favourable outcome (Tannock et al.,
1988).

At this juncture it appears that dose intensity is a variable that needs
to be kept in mind and that intentionally reducing doses to well below
the usual standard clinical dosage level will almost certainly have
deleterious effects. However, moderate escalations of dose greater
than the usual clinical ranges have not been consistently shown to
be beneficial.

An analysis by Coppin (1987) indicated that, in addition to dose
intensity, there were at least two other variables that probably needed
to be controlled in any comparison of protocols. These were the average
level of dose given at each treatment interval and, as well, the total
amount of drug given as part of the protocol. In other words, the dura-
tion of the protocol had to be at least some minimum period of time. In
the reductio ad absurdum case, a single course of treatment even if it
were given with optimal dose intensity would probably fail for the rea-
sons that were noted in the experimental chemotherapy studies of
Skipper (1990).

From the point of view of drug resistance, we can also develop the
‘concept of dose intensity but in this case there is one important differ-
ence in the conclusions. If preventing the emergence of drug-resistant
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cells is considered an important objective in treatment (and these have
not already emerged at the time therapy has commenced) then it will be
the intensity of the first dose and its corresponding log kill on sensitive
cells that will be a major determinant of the likelihood of achieving this
goal. The dose intensity of later dosages can be reduced or compro-
mised in various ways with much less effect on eventual outcome, but
the first dose, which by definition will kill the largest absolute number of
sensitive cells, will have the biggest impact on whether the tumour will
subsequently develop drug resistance. A formal model for describing the
impact of dose intensity on drug resistance is given in Coldman, Coppin
and Goldie (1988). In every other respect, though, the dose-intensity
equation derived from drug resistance mutations leads to similar conclu-
sions to those found by Hryniuk and Bush (1984) and by Coppin et al.
(1988).

The importance of dose intensity was initially identified by Skipper,
who found that if individual doses were too small or spaced too far apart
or if there was an insufficient number of them the result would be
treatment failure (Skipper, 1990).

74 High-dose chemotherapy

The Hryniuk dose-intensity relationship can be most readily applied
when the chemotherapy protocol under consideration consists of a
number of treatments given at various time intervals and in which
there will be expected periods of tumour regrowth. The special circum-
stance of a single high-dose chemotherapy treatment followed by mar-
row stem cell reconstitution does not lend itself to a simple dose-
intensity calculation. These high-dose treatments are better regarded
simply as dose response effects in which antitumour activity follows
the log kill law described in Chapter 1.

It will be recalled that the amount of log kill achieved will depend on
the dose of chemotherapy and the value of a parameter which was
designated B. This parameter is determined by the killing efficiency of
the particular drug (or drug combination) against those cells.

It is apparent from the log kill law that, depending on the degree of
relative resistance of the most resistant subpopulation plus the absolute
size of that population, massive dose escalation will generate a range of
effects from complete cure to negligible cytoreduction. For example, if
the standard dose produces a 0.5 log kill then escalation to five times
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that dose will produce at most a reduction to 0.003 of the initial popula-
tion (a 2.5 log kill), which might well be insufficient to eradicate the
resistant subpopulation.

If the relative sensitivity of the resistant cells was such that the stan-
dard dose produced a 1.0 log kill then the fivefold dose escalation would
produce a kill more than two orders of magnitude greater than the first
instance (surviving fraction equal to 0.00001). In other words, small
changes in relative resistance will translate into large differences in
cell killing. This underscores the likely futility of attempting to batter a
small highly resistant population ‘into submission’; however, high-dose
chemotherapy may be very useful for the treatment of moderately resis-
tant populations that are at a low tumour burden level.

A further corollary with respect to the log kill law is that drug resis-
tance modulation may be disproportionately effective when combined
with high-dose chemotherapy. That is, modest changes in the value of 8,
which would translate into only minor benefits when utilized with stan-
dard-dose chemotherapy, may generate substantial therapeutic effects
when employed with dose escalation. This is somewhat contrary to the
general impression that drug-resistance modulation techniques will
remove the necessity for high-dose treatments. Since drug-resistance
modulation is unlikely to restore complete drug sensitivity (or induced
hypersensitivity) then enhancement of high-dose effects may be a more
realistic objective.

15 Incompatibilities between the behaviour of clinical
cancer and the random mutation model

There is certainly divided opinion as to how accurate the random muta-
tion theory, which we have been emphasizing, is as a model for clinical
drug resistance. As discussed in a recent review (O’'Brien and Cordon-
Cardo, 1991), there are at least two clinical phenomena that at first
examination do not appear to be easily reconciled with a basic ‘mutation
to resistance’ explanation for drug resistance. The first point that has
been made relates to the innate or constitutive patterns of drug sensi-
tivity and resistance that are seen in various normal tissues. The most
sensitive tissue to most types of chemotherapy is clearly the normal
haematopoietic system. Next would appear to be the rapidly turning
over cells of the aerodigestive tract, with the upper gastrointestinal
tract (oral cavity, pharynx) being rather more sensitive to chemotherapy
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effect than the colon. Other tissues that are characterized by regular cell
turmover (skin, liver, pulmonary alveolar cells and renal tubular cells)
tend to be sensitive to a few types of chemotherapeutic agent, but they
are much less likely to constitute the dose-limiting tissue with most
standard dose chemotherapy protocols.

Certain chemotherapeutic agents, such as doxorubicin, bleomycin
and mitomycin C, produce organ-specific patterns of cumulative toxicity
that appear to be only partly related to the capacity of these drugs to kill
rapidly proliferating cells. Thus the nonproliferating muscle cells of the
heart are subject to cumulative damage by agents such as doxorubicin;
as a result, strict limits on the total dose of the drug have to be employed.
This cardiac damage may manifest itself well before the problem of a
tendency towards cumulative bone marrow damage begins to manifest
itself.

Clearly, how a normal tissue responds to the toxic insult delivered
by the various chemotherapeutic agents is partly a function of its
cellular kinetic properties (its growth fraction, mean generation time,
proportion of cells out of cycle, etc.) together with the constitutive
expression of the various genes that are present in that particular tissue
and the cell type. Cells of the gastrointestinal tract, the bone marrow
and the lymphoid system seem to be particularly susceptible to apop-
tosis induction generated by genotoxic insult. Why this should be so is
not entirely clear, although it is known that extensive apoptosis is a
common physiological process in lymphoid tissue, presumably related
to the elimination of cells that would cause immunological problems
for the host. The haematopoietic cells share 2 common stem ancestor
with lymphoid tissue and this may be one factor contributing to their
relative propensity to undergo apoptosis under the influence of certain
types of stress.

There does not appear to be a satisfactory understanding of the
determinants of normal tissue response at this time. However, normal
tissue resistance may not be directly relevant to the question of muta-
tions to drug resistance in tumours. Whatever their initial relative sensi-
tivity and resistance to anticancer agents, normal tissues do not tend to
change this sensitivity despite repeated exposure to cytotoxic drugs.
This issue was addressed in both Chapters 2 and 3, in which it was
suggested that the normal cells appear to have little capacity to generate
drug-resistant mutants, presumably because of their greater degree of
fidelity of genetic replication.
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The second phenomenon seemingly at variance with the random
mutation model of drug resistance is sensitive relapse during clinical
chemotherapy. What is meant by this term is the phenomenon that is
seen with a few types of malignancy where, after a complete remission
has been produced, the cancer recurs many months or even a few years
later and still responds with almost the same degree of sensitivity as it
displayed the first time (the operative word here is ‘almost). We observe
this type of phenomenon usually in certain malignancies of lymphoid
origin including Hodgkin’s disease, so-called nodular lymphoma and,
occasionally, in lymphoblastic leukaemia. In the case of Hodgkin’s dis-
ease, the sensitive relapse is observed in approximately one half of
patients whose cancer recurs more than a year following cessation of
therapy. Those patients with recurrence in under a year have cancers
that are nearly always quite resistant. The patients whose disease recurs
at longer periods of time can, in 50% of instances, be put back into
complete remission and, on occasion, be cured. The circumstance of
repeated recurrence in what appears to be a predominantly drug-sensi-
tive state is not uncommon with so-called nodular lymphoma, which is a
less aggressive form of non-Hodgkin’s lymphoma. One of the authors
can recall from personal experience a patient who relapsed six times
over a period of many years with disease that could still be put into
remission with the same agents. Ultimately though, the patient devel-
oped complete refractoriness to therapy and this is generally what
occurs with the other patients who display sensitive relapse.

It is important to remember that relapse in a drug-sensitive state is not
the typical course that one sees with the vast majority of types of malig-
nancy. Moreover, we are referring to the specific circumstance where a
remission is induced by therapy and then treatment is discontinued.
Disease that ‘grows through’ continuous treatment is, by definition,
drug resistant.

Even though uncommon, the phenomenon of sensitive relapse is
intriguing and does appear to be inconsistent with a simple model of
selection for a drug-resistant population. The fact that a complete remis-
sion is initially produced with chemotherapy argues for an initial very
high sensitive cell to resistant cell ratio. At this point, there are a number
of scenarios that might occur. In the simplest case, we will have elimi-
nated all of the drug-sensitive population and the drug-resistant clones
will grow back, reconstitute the disease and be refractory to further
treatment.
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The second scenario would see an initial drug-sensitive population
rather less sensitive than the average for the cohort of patients with this
particular type of tumour but, nonetheless, sufficiently sensitive to allow
a complete remission to be produced. In this case, however, there
would still be a significant residual drug-sensitive population persisting
after treatment is stopped. If the drug-sensitive cells have even a modest
growth advantage in terms of shorter generation time or slightly higher
probabilities of self-renewal, they will outgrow the resistant cells and
regenerate a tumour that will still have a high sensitive-to-resistant cell
ratio. After a further one or two courses of therapy generating further
remissions, the resistant cell population will now dominate the recurrent
disease so that further responses will not be seen.

The third possibility has to do with the production of so-called
unstable resistance. This was mentioned briefly in Chapter 1 and
again in Chapter 4, where we indicated that in most circumstances the
effect of any sensitivity reversion rate can be ignored. However, this may
well not be true for all situations. Some lines of tumour cells have the
capacity, in vitro at least, to give rise at a low frequency to mutant cells
that, in the absence of continuous selection, will rapidly revert to a drug-
sensitive state.

The explanation of the molecular processes involved in this high
reversion phenomenon is uncertain, but it has been suggested that it
may be associated with drug-resistant states characterized by amplified
gene segments present in extrachromosomal fragments. These frag-
ments tend to segregate unequally at mitosis and may also become
nonfunctional by other means. If the cells containing these chromoso-
mal fragments are also characterized by slower growth rates than the
sensitive cells (or other types of resistant cell) then they may paradoxi-
cally constitute a barrier to cure but at the same time not be sufficiently
stable to grow out as a totally resistant population.

Indirect evidence suggesting that some type of unstable mutation may
be playing a role in some of these sensitive relapse cases is illustrated by
the unusual properties of the group of well-differentiated nodular lym-
phomas. These neoplasms tend to be very sensitive to chemotherapy,
with nearly 100% complete remission rates being possible with multi-
agent therapy. However, the tumour appears to be resistant to cure no
matter how aggressively the chemotherapy is applied. Although some
improvements in median survival have been noted with combination
chemotherapy, long-term indefinite survivors are extremely rare and
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have probably not been significantly improved since the days of single
agent treatment. These patients are also difficult to treat even using very
high-dose chemotherapy and bone marrow transplantation.

One hypothetical model for this neoplasm would be that multidrug-
resistant mutations are common in this tumour but tend to be unstable,
at least in the earlier phases of the disease. Eventually a stable and highly
resistant clone emerges, causing treatment failure.

There may be other explanations for the behaviour of these tumours
but, at the present state of our knowledge, it would seem that mutations
to resistance of an unstable nature provide one possibility. This would
also suggest that the appropriate treatment strategy for these tumours
would be either very-high-dose chemotherapy with marrow support or
more intensive therapy with additional agents that do not share drug
resistance pathways with the standard agents currently used. The avail-
ability in recent years of a number of new antilymphoma compounds
that potentially are not cross-resistant with many of our standard agents
should make it possible to test whether combinations of the appropriate
number and type of drugs will finally be able to produce cures in these
perplexing tumours.

76 Summary and conclusions

The issues raised in this chapter relate to whether the theoretical analysis
of the process of drug-resistance evolution through mutations leads to
any useful insights into clinical chemotherapy effects and if this, in turn,
lends to new treatment strategies. Obviously the behaviour of malignan-
cies is extremely complex and it is very unlikely that any relatively
simple model will be able to explain every aspect of this behaviour.
Nonetheless, the authors feel that there are a number of aspects of the
response of clinical cancers to drugs that are consistent with the random
mutation model of drug resistance and, indeed, are not easily explained
by any other single set of assumptions.

Of these inferences, two in particular seem to emerge as being very
generalizible. The first of these is the relationship between tumour bur-
den (or age) and curability, and the second is the greatly increased
potential for cure that is seen with multiagent therapy. It is true, as
has been discussed earlier, that a model based on induced specific
mutations would lead to some of the same conclusions. However,
such a model would not distinguish between tumours of differing
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ages but of same size. Nor would an induction model provide any
compelling rationale for molecular characterization of a tumour prior
to commencement of therapy. If, for example, P-gp-negative B-cell lym-
phomas are 100% curable then there is no need to utilize an additional
agent to modulate P-gp action. However, if it is known in advance that
the tumour is P-gp positive then this will indicate a different strategy. It
seems highly likely that as more is learned about the status of a tumour
with respect to a whole range of drug resistance markers (e.g. MRP, p53,
mutual bcl-2 overexpression, etc.) this information will be utilized to
construct more effective protocols. This is self-evident but it should be
re-emphasized that a naive induction or kinetic model would provide no
inherent rationale for measuring these particular parameters prior to
treatment.

With respect to optimal sequencing of drugs it is conceded that the
practical problems of utilizing true non-cross-resistant equivalent com-
binations may make this approach of very limited utility. Day’s worst
drug rule (1986) (see Chapter 6) would probably be easier to implement
and evaluate but this would require a general willingness to undertake
the appropriate clinical trials.

The approach of using very-high-dose chemotherapy with appropri-
ate specialized support techniques (haemopoietic stem cell replacement
etc.) can be justified by a variety of assumptions. However, the log kill
law and the presumption of a spectrum of degrees of resistance in the
target population do provide a sound theoretical basis for this practice.

As new classes of drug are developed that are designed to modulate
oncogene and anti-oncogene effects, it is likely that new forms of sche-
duling and sequencing of drugs will be required. However, it is difficult
not to believe that these new-generation compounds will, like current
therapies, also be most effective against small tumour burdens.
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8

Directed versus random mutation
and the problem of intrinsic
resistance

8.1 Introduction

Much of this book has supported the notion that cancer cells resistant
to anti-cancer drugs arise via random undirected mechanisms. The
basis of this conclusion is not an exhaustive study of in vivo and in
vitro tumour systems treated with all available drugs but a matter of
generalization from a large body of evidence including the results of
experiments of the fluctuation test type. As our review in Chapter 4
showed, a positive result in a fluctuation test implies that there exists a
source of variation that cannot be attributed to the sampling variation
expected under the directed mutation model. In terms of two possible
processes that may result in resistance, directed mutation and random
mutation, the fluctuation test can point to the existence of random
mutation but not to the absence of directed mutation. Furthermore,
since the essence of the fluctuation test is quantitative rather than
qualitative, results from such experiments apply to the most common
mechanism for the development of resistance under the experimental
conditions. It is well known in cancer that many distinct genetic altera-
tions can lead to resistance; as a result, the fluctuation test will provide
information about the one that occurs most frequently (unless two
or more mechanisms give rise to resistant cells with a similar fre-
quency, in which case results will relate to the combination of these
mechanisms).

8.2 The question of possible directed mutation in E. coli

Many investigators have considered the origin of resistant subtypes in
different systems. In a paper in Nature, Cairns, Overbaugh and Miller
(1988) discuss evidence for the existence of directed mutations in the

219



220 Drug resistance in cancer

E. coli system. They present three lines of evidence that directed muta-
tion exists: (a) several elements of a pathway for the influence of the
external environment on the incorporation of information into the DNA
are known to exist; (b) specific experiments show evidence, for some
systems, of the influence of the external environment upon the acquisi-
tion of altered phenotype; and (c) analysis of the frequency distributions
of the numbers of resistant cells displays variations from what would be
expected under the random mutation model. The experiments cited by
Cairns relate to lactose utilization by E. coli and are perhaps not directly
relevant to human cancer; however, the observation that directed muta-
tions exist in one system raises the possibility that they exist in others.
Some of the techniques used by Cairns are of interest, in particular the
utilization of the frequency distribution of resistant cells, and potentially
provide methodologies that can be directly utilized in the analysis of
cancer data.

As discussed in Chapter 4, the distribution of the number of resistant
cells differs for the two hypotheses: directed mutation and random
mutation. The distribution is Poisson (at the time of exposure) for the
directed mutation model while the random time of creation of the pro-
genitor resistant cells under the random mutation model lead to a dif-
ferent distribution (a branching process distribution). The nature of the
random mutation model is such that occasional ‘jackpots’ (large num-
bers which greatly exceed the average) of resistant cells are more likely
than under the directed mutation model. Indeed it is this phenomenon
that contributes to the larger variance between replicates in the random
mutation process than in the directed mutation process. Under the ran-
dom mutation model, jackpots arise when a chance early transformation
to resistance produces large numbers of progeny by the time of expo-
sure to the drug (Example 8.1 below). For a given average number of
resistant cells at the time of exposure to the drug, the random mutation
model predicts a much higher probability of substantially more than
average numbers of resistant cells in a single experiment than does
the directed mutation model. Using simple reasoning, it is possible to
derive formulae for the number of ‘jackpots’ under each model and we
will now show how this can be done.

For the directed mutation model, the number of resistant types, R(N),
has a Poisson distribution so that the probability of obtaining 7 resistant
cells, P{R(N) = r}, when u is the average number is given by (Equation
2.5), ie.
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P{R(N) = 7} (8.1)

(This formula holds for jackpots and nonjackpots alike.) The average
number of induced resistant cells, i is equal to pN, where p is the
directed mutation rate per unit cell (see Section 4.4) and Nis the number
of cells at drug exposure. In order to compare with an equivalent for-
mula for the random mutation model, it is convenient to calculate the
probability of a jackpot of at least »cells, i.e. P{R(N) > r}. A formula for
this quantity may be obtained from Equation 8.1 by summing over all the
possible states where there are »or more resistant cells. Numerically this
is most simply done by summing all the probabilities of states with less
than 7 resistant cells and subtracting this from unity, i.e.

r—1 r—1 uke—u
Pr(N)2r}21-) PRN)=r}=1- - (8.2)
k=0 k=0 .

A precise formula for the number of jackpots under the random
mutation model is not easily obtained but an approximation can be
obtained by observing that a jackpot is more likely to arise from a single
early transition to resistance than by multiple, later transitions to resis-
tance. This deduction is intuitively obvious to many writers and is fre-
quently presented without further explanation; however, the authors do
not find it that apparent and we will present an example which illustrates
its justification.

Example 8.1

Consider a hypothetical tumour consisting of N’ sensitive cells, which
then undergoes five successive doublings (to 2N', 4N', 8N', 16N’,
32N"). Assume that the mean number of transitions is 0.0125 on the
first doubling (i.e. @D’ = 0.0125) so that there are 0.025, 0.05, 0.1 and
0.2 transitions expected on each subsequent doubling. Now the
expected number of resistant cells at the end from these transitions
is given by the sum over the doublings of the expected number of
transitions multiplied by their expected growth. For the first doubling
this product is 0.2, being the expected number of transitions (0.0125)
multiplied by the expected growth over the next four doublings
(x16). Table 8.1 gives the calculations for subsequent doublings.
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Table 8.1. Numbers of transitions required and their probability to form a jackpot

Average No.
resistant cells  No. transitions
No. cell Mean No. present at end required for Probability of
divisions transitions arising from jackpot (E) Normalized No. transitions E
Tumour growth (D) (aD) transitions (= 16 x excess) variate? or greater
N’ - 2N’ N’ 0.0125 0.2 1 8.8 1.2 x 107%
2N’ - 4N’ 2N’ 0.025 0.2 2 125 3.1x107*
4N’ — 8N’ 4N’ 0.05 0.2 4 17.7 2.4 x 1077
8N’ — 16N’ 8N’ 0.1 0.2 8 25.0 1.7x 107"
16N’ — 32N’ 16N’ 0.2 0.2 16 35.3 3.1x107%
Overall: N’ —» 32N’ 31N’ 0.3875 1.0 N/A N/A N/A

N/A, not applicable.
“(E — n)/o where pu = aD.
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We see the expected pattern in that each doubling contributes the
same expected number of resistant cells to the final total (i.e. 0.2).
Overall we have that there are an expected 1.0 resistant cells present
at the end of the experiment.

We will declare a jackpot when we observe many more resistant
cells than the 1.0 expected. Let us define a jackpot in such an experi-
ment to be an observation of 16 or more resistant cells. How can such
jackpots arise? Qualitatively we might say that they can arise in the
following ways:

e by an excess of transitions to resistance early in the experiment
e by an excess of transitions to resistance late in the experiment
e by some combination of early and late transitions.

The fifth column in Table 8.1 gives the number of transitions in
each tumour doubling that would be sufficient, on their own, to
produce a jackpot. Although the required number of transitions to
produce a jackpot doubles with each tumour doubling so does the
average number of transitions (column 3 in Table 8.1); as a result the
ratio of these is constant. It is not immediately obvious whether
excess early transitions are more likely to produce a jackpot than a
corresponding number late in the growth of the tumour. In order to
see whether excess early transitions are more likely than late transi-
tions to yield jackpots we need to consider not just the mean but also
the standard deviation of the number of transitions at each doubling.
The standard deviation measures the variability about the mean so
that the probability of obtaining a result, E, is dependent upon its
distance from the mean, u, measured in units of the standard devia-
tion, o, i.e.

E—p

o ‘
The smaller this quantity the ‘more likely’ such a result, and conver-
sely. The distribution of the number of transitions is Poisson so that
o = /i In statistics (E — u)/o is frequently referred to as a normal-
ized variate, since it has mean 0 and variance 1. The normalized
values for the various extreme results at each doubling is given in
column 6 of Table 8.1. As can be seen, this value increases as the
tumour grows, indicating that jackpots are more likely to arise from a
few early transitions. The final column of Table 8.1 shows the actual
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probability that a jackpot would arise from an excess of transitions at
each doubling. This probability is only appreciable for the first
doubling so that most jackpots will result from a single early transition.

We now return to the problem of finding an approximate formula for
the probability of a jackpot under the random mutation model. The total
number of resistant cells constituting a jackpot will consist of two broad
lineages: those deriving from the first transition and those deriving from
subsequent transformations. If we ignore those subsequently trans-
formed (and their progeny) and consider the jackpot to consist solely
of the ones resulting from the first transformation then we may infer the
time at which the original clone came into existence as follows.

Let the (random) number of resistant cells be denoted by R(N) when
the tumour is of size N. Consider the case of a jackpot of R(N) = r cells,
which, we hypothesize, develops from a single early transition. If resis-
tant and nonresistant cells grow at the same rate, then each cell present
(both resistant and sensitive) at the time of the first transition must grow
to form 7 progeny when the total tumour size is N (because the resistant
cells do). Therefore, when the originating cell of the §ackpot’ trans-
formed there were N + r cells in the total tumour. The probability
that there is a jackpot of r resistant cells (among the total N cells) is
equal to the probability that a single cell was transformed when the
tumour was of size N/r. Here we must be a little careful since the
likelihood that there will be a transformation at exactly that point is
very small in a real tumour, which is continuously growing. However,
if there is a transformation to resistance before this point (when the
tumour is of size N/r) then there will be at least r resistant cells present
at size N. This can be summarized in symbols by

P{R(N) > r} >
P{a first transformation occurs before tumour is of size N/r}. (8.3)

The probability that there is a jackpot of 7 or more resistant cells is
greater than or equal to the probability that a first transition to resistance
occurs before the tumour is of size N/r.

The probability that a first transition occurs prior to N/r is equal to
one minus the probability that no transition occurs prior to tumour size
N/r. The distribution of the number of transitions occurring during the
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growth of a tumour from a single cell to N/r is Poisson with parameter
@ =a(N/r —1). The required probability of no transitions is obtained
from Equation 8.1 by substituting 0 for the value of »in this equation.
This yields

P{no transformation occurs prior to N/r} = e oWN/r=D), (8.4)
From Equations 8.3 and 8.4 we obtain
P{R(N)> r} > 1 — e*®/m=D, (8.5)

If we now compare this to the earlier formula for the directed muta-
tion model we are able to write this formula in terms of the average
number of resistant cells u (Equation 8.2). This was convenient since p
is observed whereas p must be inferred. It would be nice to use u since
it is observed in an experiment no matter which of the two models is
operative. Now, as discussed in Chapter 5 under the random mutation
model, the mean number of resistant cells is given by p = aNIn(N)
(Equation 5.18, p. 131). (In their development Cairns et al. assumed
m = a’N, so that their formula for P{R(f) = r} under the random muta-
tion model does not include the In(N) term.) Note the In(N) term is
different from the directed mutation model so that we have

_ K
*= N’
and we can replace « in Equation 8.5 by u[N In(N)] to give
I
PR > 1} > 1 exp(—N E v/ 1]). (8.6)

In words, Equation 8.6 indicates that the probability of there being at
least r resistant cells under the random mutation model exceeds the
given formula.

Figure 8.1 gives some plotted values of the jackpot probabilities
under the two models: Equation 8.5 for the random mutation model
and Equation 8.6 for the directed mutation model. It can be seen that
as the jackpot size increases the probability under the directed mutation
model rapidly decreases whereas this decline is more gentle for the
random mutation model, re-enforcing the point that jackpots are more
likely under this scenario.

Caims et al. (1988) examined observed jackpot yields of E.coli in
lactose-containing environments and showed that they displayed func-
tional forms which appeared midway between those predicted by the
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Fig. 8.1. Plots of P{R(N) > r} versus r for the two models: directed mutation
(Equation 8.2) and random mutation (Equations 8.6 and 8.7) for the case
where a single resistant cell is expected, u = 1. For the directed mutation
model (solid line 1), the probability of jackpots falls rapidly with increasing
jackpot size. For the random model, the probability of a jackpot declines
slowly with increasing size of jackpot. The shape of the relationship is not
greatly affected by the resistant cell growth rate so that the shape is similar for
equal growth rates (line 2), when the growth rate of resistant cells is slightly
less (line 3: Ag/As = 0.9) and whehn substantially less (line 4: Ag/Ag = 0.6).
As the relative growth rate of the resistant cells declines further, the formula
(Equation 8.7) becomes less accurate, so that its shape for Ag/As < 0.5 is not
obtainable from this equation. However we know that as the growth rate
vanishes it must equal that for the directed model.

random mutation and directed mutation models. They hypothesized that
this may have arisen because random mutation and directed mutation
mechanisms were both operative, giving a hybrid relationship. The
effect of having both mechanisms present is to take a weighted sum
of the curves (in Fig. 8.1) for the directed and random mutation pro-
cesses with the appropriate parameter values p and o. The net effect is
that most jackpots will derive from the random mutational process since
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it has a much greater probability of leading to a jackpot for values of p
and « that are of the same magnitude.

However, it is also pertinent to ask whether there are other potential
explanations of a distribution with a form midway between the form for
the directed mutation model and the form for the random mutation
model. In fact, there is one simple assumption we made in deriving
the distribution of the number of jackpots under the random mutation
model that if not true must give a form which is between the directed
mutation and the random mutation forms. This assumption was that the
resistant cells grow at the same rate as the drug-sensitive cells. If this
assumption is not true then the distribution of jackpots under the ran-
dom mutation model is altered, although unchanged under the directed
mutation model.

A simple thought experiment will illustrate the dependence of jackpot
probabilities upon growth rate. Consider a random mutation model in
which the newly created resistant cells possess no capacity to divide. If
each resistant cell, once created, persists to the conclusion of the experi-
ment then the number of resistant cells at termination is equal to the
number of cells that transform from sensitivity to resistance. The distri-
bution of resistant cells at the conclusion of the experiment is equal to
the distribution of total number of transformations from sensitivity to
resistance prior to drug exposure. This distribution has a Poisson form
where the mean number of transformations is given by aN. (This can be
contrasted with the mean number of resistant cells when growth is the
same as that of the drug-sensitive cells of u = N In(N); this higher
value reflects the effect of growth of transformed resistant cells.)
When there is no resistant cell replication, the jackpot distribution will
follow a Poisson distribution whereas when growth is the same as sen-
sitive cells it will be of the form previously given. If resistant cells do
grow at a rate that is less than that of sensitive cells then their resulting
distribution will look more like a mix between a Poisson and random
mutation distribution. A formula for probability of a jackpot of size r
under the random mutation model in the case where sensitive and
resistant cells grow at different rates can be developed using the same
steps as were used to derive Equation 8.6. (Unfortunately the approx-
imation used in deriving the formulae, that jackpots principally result
from early transitions, becomes less accurate as the growth rate of the
resistant cells slows.) Since no further insight is provided by the deriva-
tion of this formula we merely state it here:
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PRIN) = r} =1 - exp(— *[‘ZS__ ;f//is’]) [ rfjh - 1]) (8.7)

where Ag and Ay are the growth parameters of the sensitive and resistant
cells, respectively. When the growth rates are equal, Equation 8.7
reduces to the formula in Equation 8.6. Previously we have indicated
(see Example 8.1) that jackpots, when observed, are more likely to result
from the effect of a single eatly transition. In this case the > sign in
Equation 8.6 can be replaced by = since other sources of jackpot are
negligible. As resistant cell growth slows, early transitions will contribute
proportionately less to the total of resistant cells and early transitions are
less likely to be the source of observed jackpots. In the mathematical
limit where resistant cells do not grow at all, the distribution of resistant
cells is equal to the distribution of transitions (which is Poisson). In cases
of slow resistant cell growth (A < Ag) multiple late transitions are more
likely to be a cause of a jackpot than single early transitions. In these
circumstances the > sign in Equation 8.7 is more like > and the equation
is not very helpful. Equation 8.7 is plotted in Fig. 8.1 for values of the
ratio Ag/Ag for which it is likely to be accurate (Ag/As > 0.5). It can be
seen that for the range of values of Ag/Ag between 1.0 and 0.5 there is
not much difference in predicting probabilities of a jackpot.
Nevertheless, we know that as the growth rate of the resistant cells
slows in comparison with that of the sensitive cells the distribution of
jackpots must approach that of a Poisson distribution.

The assertion of the existence of directed mutation has been chal-
lenged by others (Lenski and Mittler, 1993). They discuss alternative
origins for excess numbers of appropriate E. coli when grown in a select-
ing environment and indicate how departures from various assumptions
can result in findings seemingly at variance with a random mutation
hypothesis. Much of their discussion is specific to experiments con-
ducted in E.coli and will not be presented here, although it does
serve to illustrate that detailed knowledge of the behaviour of cells in
different milieu is necessary in order to draw conclusions about the
mechanisms of resistance development.

Clearly whether adaptation can occur in a directed fashion is a funda-
mental question for biology, but what bearing does it have on cancer
chemotherapy? Although each model postulates different underlying
mechanisms, do they make distinct predictions for the effects of cancer
chemotherapy? Many of the predicted relationships for each model are
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the same. An area where they differ is in the influence of the ‘history’ of
the tumour on the observed distribution of resistant cells. Because resis-
tant cells can arise at any point during the lifetime of the tumour, the
growth history influences the final distribution of resistant cells for the
random model. This would not happen under the directed mutation
model unless events in the history affected the susceptibility of succeed-
ing generations of cells to have resistance ‘induced’. A further difference
is that large numbers of resistant cells are more likely under the random
mutation model (although still rare) than under the directed mutation
model. The random mutation model predicts that completely resistant
tumours will be more common than they would be for the directed
mutation model (given identical overall average results).

8.3 Resistance associated with the three-dimensional
configuration of experimental tumours

Teicher et al. (1990) and Kobayashi et al. (1993) have described experi-
ments with mouse EMT-6 cells in which exposure to antineoplastic
agents resulted in a measurable change in the three-dimensional struc-
ture of the tumour mass, which was associated with an alteration in
sensitivity to cytotoxic drugs.

The EMT-6 cells can be grown as solid tumours either in the whole
animal or in tissue culture. In the latter they form multicellular spheroids,
aggregates of tumour cells numbering from a few thoussnd to many
millions of cells that grow in a semisolid culture medium as nearly
spherical discrete masses Studies on these spheroids indicate that, super-
ficially at least, they resemble the structure of in vivo tumours, which
also frequently grow as near spherical masses. The exterior shell of the
spheroid is made up of rapidly dividing cells and on penetrating deeper
into the spheroid the proportion of dividing cells diminishes; the central
part of the larger spheroids is made up of necrotic cell debris.

When exposed to cytotoxic drug in vitro, the rapidly proliferating
cells on the rim of the spheroid are killed off, exposing the deeper
layer cells, which now begin to proliferate more quickly. Repeated
exposure to sublethal concentrations of a variety of cytotoxic agents
results in a distinct change in the physical shape of the cells constituting
the spheroid. Whereas prior to chemotherapeutic exposure the cells in
the spheroid tend to be relatively loosely aggregated, when the spher-
oids start to display resistance to cytotoxic agents they appear to be
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much more densely packed together and there is some evidence that
there are now more actual cell-to-cell connections in these resistant
tumour cells. If these resistant spheroids are then disaggregated into
two-dimensional monolayers of cells and treated with cytotoxic agents,
they display little or no drug resistance. In these experimental systems,
therefore, there is no doubt that drug resistance is strongly associated
with the three-dimensional configuration that the tumour cells display
and that this resistance is lost when cells are dispersed and are no longer
in close contact with each other.

There are a number of interesting questions that arise from these
studies. The first is whether this is a laboratory artefact confined to a
few atypical cell lines or whether this is 2 more general phenomenon.

The second question is whether this constitutes an ‘induced’ phenom-
enon or is it caused by random mutation of an unusual phenotype that is
only able to express its resistance under certain conditions. In other
words, the cell lines that show resistance in the spheroid form and
sensitivity in a monolayer may be a genetic variant that has been
selected for by the conditions of the experiment.

Part of the mechanism of resistance in this system appears to be the
capacity of the resistant cells to produce intercellular bridges, which
enable significant direct communication among the cells making up
the spheroid. This could, in theory, allow the transmission of resis-
tance-mediating elements from one cell to another. This still leaves
open the question raised in the preceding paragraph, namely, is this
property an epigenetic induced phenomenon or is it the expression of
a complex phenotype that has arisen through spontaneous mutation?

8.4 Induction of drug-resistant gene expression by
chemotherapeutic stress

Chaudhary and Roninson (1993), have described apparent directed
mutation phenomena in a number of lines of human malignant cells
exposed to a variety of cytotoxic agents. In these experiments, different
human cell lines were exposed in vitro to cytotoxic concentrations of
drugs such as ara-C and hydroxyurea. In a number of the lines tested
(but not all) a proportion of the cells in the treated population showed
increased expression of mdr-1, as demonstrated by increased messen-
ger RNA for P-gp and for increased P-gp expression in the cell itself. This
occurred in approximately 5% of the treated cells and was manifested
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only after the individual cells began to show gross morphological evi-
dence of cytotoxic damage.

What was of unusual interest in these experiments was that the
increased expression of mdr-1 persisted for a sustained period of time
after withdrawal of the cytotoxic agent. In other words, the increased P-
gp persisted through several rounds of cell division and appeared to
represent the directed mutation of a heritable property in the malignant
cells. This was not a specific directed mutation of resistance mechanisms
related to the toxic drug itself but appeared to be more consistent with a
general response phenomenon by the cells to an environmental stress.
This would be easily understood if this was an upregulated response
confined to the cells that had been directly exposed to the cytotoxic
agent. However, the apparent persistence of the phenomenon after drug
withdrawal and after cell division indicates that in some cells the stress
‘imprinted’ itself and persisted for an extended period of time. As the
authors pointed out, this is does not necessarily imply a change in
expression at the level of the gene but could represent some type of
persisting change in the processing of the messenger RNA resulting in an
extended half life and greater amounts of P-gp being synthesized.

Clearly this provocative result needs to be explored further, including
the performance of experiments that would rigorously exclude random
mutation processes which might underlie it. For instance, the authors did
report that a very small proportion of the untreated cells appeared to
overexpress mdr-1 constitutively and one ‘would need to exclude
experimental conditions that could result in an enrichment of this
basal population to form the progenitors of the cells that were observed
after drug withdrawal. In this context both ara-C and hydroxyurea inter-
fere directly with DNA synthesis and could function as mutagenic
agents. Such effects could make it difficult, even within the context of
a fluctuation test, to distinguish readily between induced and sponta-
neous events.

8.5 Drug resistance resulting from epigenetic
phenomena

It has been suggested (see review by Nyce, 1997) that instances of
acquired drug resistance may be associated with toxic stress-induced
methylation or demethylation of a variety of genes that can mediate
drug resistance. Methylation of genes is a crucially important process
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that regulates the selective expression or silencing of gene function. It is
a key component of embryonic development (and cellular differentia-
tion generally) where genes are switched on or off in a complex and
specific order.

Alterations in gene methylation can be observed in cells that survive
cytotoxic drug exposure, suggesting a mechanism for rapidly inducing
phenotypic changes in cells. Nyce postulates an epigenetically unstable
state in which nonlethally damaged cells respond by randomly methy-
lating (or demethylating) regions of their genome. As these epigenetic
changes may persist for at least five rounds of cell division, altered (and
presumably drug-resistant) cells will be observed on tumour regrowth.

There are some problems with this hypothesis (at least in its current
state of development), but clearly further investigation needs to be done
to clarify the role that methylation plays in acquired drug resistance.

If the methylation process is truly random then it is difficult to see
why the cells produced are necessarily more drug resistant than their
ancestors. Resistance-mediating genes may be just as likely to be sup-
pressed as activated by a random methylation process. This would be
true for sensitivity-mediating genes as well. For that matter, oncogenes
that are critically required for maintenance of the malignant phenotype
might be silenced, resulting in spontaneous apoptosis or reversion to a
more normal phenotype.

If only changes in one direction (more resistance) are produced then
the theory starts to resemble directed mutation. It should be recalled that
a single exposure to a cytotoxic drug acting in a directed fashion would
not necessarily be selective, as no preadaptation is assumed.

Likewise, the mechanism of epigenetic instability in cancer needs to
be explained as well as why drug resistance through methylation—
demethylation apparently does not occur in normal cells, where we
might simplistically assume that it would be highly probable. That is,
such a fine-tuned adaptation technique would appear to have great
survival advantage.

The whole question of the role of epigenetic processes such as
methylation needs further study. Random gene changes induced by
this method would behave like directed mutations in experiments of
the fluctuation test type; that is, unless one postulated that there was a
pre-existing genetic disposition for certain DNA sites to become methy-
lated during times of cytotoxic drug exposure. That would in a sense,
however, reduce the argument to a variation of genetic preadaptation.
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8.6 The development of high levels of resistance

It is a common, but not universal, observation that resistant cells may
divide at the same or slightly lower rates than their parental lines in a
‘normal’ environment. Such a phenomenon is understandable from an
evolutionary perspective since this is precisely how the parental line
achieved dominance. Parental lines also have to be resistant to toxins
commonly found in their normal environment; however we (in our
discussion on resistance) are concerned with the spontaneous introduc-
tion of uncommon toxins in order to achieve a therapeutic result.
Tumours, and in particular spontaneous human tumours, have generally
not gone through such a selection mechanism and so the cells which
make up these tumours have not been selected for their fitness. It is,
therefore, not impossible to conceive that nonlethal mutations occurring
in these cells have a greater de novo likelihood to provide competitive
advantage than would be the case in more established systems. For
example, gene amplification can provide resistance by offering an
expanded target for any drugs attempting to block protein synthesis.
In the nonselective medium it provides a potential for enhanced protein
synthesis and possible growth advantage. Observations from repeatedly
passaged tumour cell lines will not provide definitive information on the
growth rates of resistant variants in spontaneous tumours since the
repeat passaging of such lines will tend to select for fast-growing parent
populations. Indeed several experimental systems are extremely resis-
tant to some forms of chemotherapy, implying that some resistant cells
can grow faster than sensitive variants. We will explore here what the
effect of modest growth advantages to resistant cells can be on the
development of resistance in the random mutation model.

We may use the approach presented in Section 6.2 to develop equa-
tions that give the mean number of resistant cells as a function of the
overall tumour size. However, because we are now assuming that sen-
sitive and resistant cells grow at different rates, it is necessary to have
different growth parameters for each compartment. For simplicity, we
will only consider the case where cells grow exponentially. Assuming
that sensitive and resistant cells divide at rates & and bz and sponta-
neously die at rates ds and dg then the net growth rate of each compart-
ment is given by As = (& — d) and Ap = (bg — dg), respectively. New
transitions from sensitivity to resistance will occur at rates ab per cell as
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before (Equation 6.1). Assuming that the tumour starts from a single
sensitive cell then the number of sensitive cells, S(#), at time ¢is given by

5(2) = exp{(As — abys)t}. (88)

which is the same equation as before. We have used the more accurate
formula Ag — ab rather than Ag (as suggested in the discussion following
Equation 6.1) since we may consider situations where abg is not much
smaller than XAg. Substituting Equation 8.8 into Equation 6.1 and re-
placing the term AR(?) in this equation with Az R(#) provides a new
equation for R(#). Solving this equation yields:

[1 — exp{(rs — abs — Ag)?}]
[As — abs — Ag] '
Because R(#) has a somewhat more complex form than before,
N(#) = S(¢) + R(?) is no longer a single exponential and it is not so
easy to express the number of resistant cells as a function of the overall
tumour size, i.e. R(N). Therefore, it is necessary to make calculations at
various values of ¢and then sum S(2) and R(?) to yield N(¢). In this way
R may be calculated as a function of N. Some example calculations are
presented in Table 8.2. In this case the parameters have been chosen so
that the resistant cells grow 20% faster than the sensitive cells and the
doubling time of the tumour is 20 times that of the interdivision times of
the cells. There are two distinct ways in which stem cells may grow at
different rates in the compartment model: the birth (division) rates may
differ or the death (apoptosis) rates may differ (or some combination of
the two). Measured division rates seem to show less variation than
apoptosis rates so we have assumed that & = by but ds and 4 differ.
The scale of measurement of ¢ (i.e. hours, days, weeks, etc.) affects the
absolute values of the birth and death parameters; their relative size
(b/d) reflects the balance between division and apoptosis. For simpli-
city, it is assumed that ¢ is measured on a scale in which & = 1. These
assumptions resulted in the following parameter values: & = by = 1.0,
ds = 0.95 and dp = 0.94. For this calculation @ = 10~. Examination of
Table 8.2 shows that the effect of the modest increase in the growth rate
of the resistant cells compared with the sensitive cells becomes quickly
apparent so that at 10° cells 1 in 100 is resistant. By the time that there
are 10 cells 1 in 10 is resistant. The final column of the table provides
the same proportion for a tumour in which there is no growth advantage
and no loss. It can be seen that by the time a tumour reaches 10'° cells,

(8.9)

R() = abgexp{ipt}
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Table 8.2. Expected number of resistant cells when the growth rate of
resistant cells is 20% greater than that of the sensitive cells and for which
a=10""

Proportion when

No. resistant Proportion of growth is same as
Size of tumour cells cells resistant sensitive cells
10° 3 3x 1073 6.9 x 107°
10* 53 53x 1073 9.2x 107°
10° 890 8.9 x 1073 1.2x 1074
10° 1.4 x 10* 1.4 x 1072 1.4 x 107*
10’ 2.4 x 10° 2.4 x 1072 1.6 x 107*
10 3.7 x 10° 3.7 x 1072 1.8 x 107*
10° 5.8 x 10’ 5.8 x 1072 2.1x 1074
10%° 9.0 x 10 9.0 x 1072 23%x 1074

the effect of spontaneous cell death coupled with a modest growth
advantage of the resistant cells can combine to provide an approximate
400-fold increase in the expected number of resistant cells.

The above phenomenon is also reflected in the probability of jackpot
probabilities. One way to see this is to compare the sizes of jackpots
with the same probability for the same value of & but different growth
rates. This can be done using a variant of Equation 8.9 where we replace
u by its expected value given @ and M.

8.7 Summary and conclusions

We have briefly reviewed some of the experimental data that might be
interpreted as suggesting an induced or directed mutation process as
being one mechanism of forming drug-resistant cells. Although the issue
is clearly complex the authors feel that no compelling evidence has been
presented to date that would suggest that spontaneous mutations are not
the dominant process involved in generating drug-resistant phenotypes.

Demonstrations of specific resistant mutations could have enormous
scientific and philosophical complications, well beyond that of the issue
of cancer treatment. However, the neo-Darwinist view still appears to be
the correct one. Although the transmission of cultural information from
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one human generation to the next appears to be directed, Nature seems
to prefer the random transmission of information at the genetic level.

The discussion in Section 8.6 illustrates how the rather large increases
in the proportions of resistant cells can be achieved by modest altera-
tions in parameter values for the growth of resistant cells and a general
process of cell birth and nonselective cell loss. Extremely high propor-
tions of resistant cells can be generated (~1 in 10) in tumours of clinical
dimensions by having resistant cells grow somewhat faster (20%) in a
tumour experiencing cell loss in the ranges that seem consistent with
observation. Such an expansion of resistance is provided by the magni-
fying lens of growth after transition and would not occur in a directed
model.
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9

Some final thoughts on the problem
of drug resistance

9.1 Introduction

Analysis of the process of drug resistance indicates that it appears to be
only too easy for malignancies to generate many varieties of drug-
resistance mechanisms. Once a tumour has reached a certain critical
size a combination of large numbers of candidate cells together with
genetic instability will ensure that the collective molecular heterogene-
ity of the neoplasm will be immense. In retrospect, the surprising thing
is not that cancers are difficult to treat with drugs but that some are
highly sensitive to drug therapy and indeed are potentially curable.
Although the addition of new cytotoxic agents provides a reasonably
steady incremental improvement in cancer therapy outcome, these
increments are small and are for the most part confined to the classes
of tumour that are known already to be drug responsive. Malignancies
such as pancreatic carcinoma, renal cell cancer, melanoma and non-
small cell lung cancer are only minimally responsive to cytotoxic
agents and it seems unlikely that random drug searches will yield
single agents that are going to be much more effective than the
drugs we currently possess. A major problem with these types of
cancer seems to be the large number of different multidrug resistant
mechanisms that they express. Modulation of one or two of these
mechanisms is unlikely to be sufficient to render the advanced forms
of the tumour curable. The greater the number of discreet mechanisms
that need to be disabled then, of course, the more logistically cumber-
some the treatment protocol becomes. Moreover, resistance-modulat-
ing drugs will be subject to the same problems associated with tumour
heterogeneity as are the standard cytotoxic agents: variant cells that
express proteins which are less susceptible to modulation or have
altered transport of the modulating drugs across cell membranes will
be selected for by the treatment process.

238
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The cellular and molecular heterogeneity displayed by malignant
tumours would suggest that there will always be a risk that treatment
failure will occur because of the presence of a malignant subclone that
possesses properties which allow it to survive therapy. This risk can be
reduced by applying treatment when the tumour is still early in its
growth history and when the total number of cells to be eliminated is
small. A critical additional factor will be the requirement to utilize ther-
apeutic programmes that are directed against molecular abnormalities
which are specific to the individual cancer that is being treated. This
approach will require the full range of molecular probes that are cur-
rently being employed in research programmes being utilized for clinical
diagnostic purposes.

Precise molecular diagnosis on its own will not yield superior treat-
ment outcomes; it needs to be integrated with a drug development
programme that concentrates on producing specific inhibitors or ago-
nists for the disregulated gene products that are associated with the
malignant state.

Up till now, the pattern seen in identifying new drugs for oncology
has been for preclinical scientists to develop a novel cytotoxic com-
pound and then for clinical investigators to search for a class of
tumour that is sensitive to the new agent. This is an expensive,
time-consuming process in which disappointing results far outnumber
successes. The availability of ever more drugs and at least some
moderately effective protocols makes progress more rather than less
difficult. Ethical considerations operate to restrict new drug evalua-
tions to patients with known drug-resistant disease, making it corre-
spondingly harder to assess new approaches for previously untreated
patients.

It seems to the authors that the sequence of ‘find a drug, then look
for a disease’ will need to be reversed. A more rational strategy is
surely to exploit our increasing ability to make precise molecular
diagnoses and then to utilize drug combinations where the composi-
tion is dictated by the properties of the individual patient’s malig-
nancy itself. This will require examining the whole process
whereby new treatments are assessed and then licensed. The present
sytem is predicated largely on the assumption that single agents,
‘magic bullets’, will be found for whole classes of tumour. Our experi-
ence to-date with cytotoxic agents suggests that this is unlikely to be
the case.
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9.2 Therole of oncogenes in mediating drug resistance

The realization (based on observations made in the period 1986-96) that
a number of the genes which are directly involved with the production
of the neoplastic state in the cell are at the same time significant med-
iators of anticancer drug resistance must rank as one of the most impor-
tant discoveries in cancer biology in recent years. This fact, together with
the known genetic instability of malignant cells, goes some distance
towards explaining the virtual invariable association of malignancy
with the capacity to develop drug resistance.

There are many types of genetic change that can mediate drug resis-
tance and a number of these have been mentioned in this text. However,
it appears that some of the most important ones may be the same
mutations that lead to malignancy in the first place. Dysfunction of
oncogenes or anti-oncogenes commonly appears to result in diminished
sensitivity to standard cytotoxic drugs. However, it is not clear whether
this is true for all of the family of cancer-inducing genes. Overexpression
of the c-myc oncogene can on its own actually sensitize the tumour cell
to apoptosis induction. Other examples no doubt exist, though the
behaviour of most clinical cancers suggests that configurations of onco-
genes and tumour suppressor genes which lead to drug hypersensitivity
are uncommon.

One of the intriguing questions relating to drug resistance is the
relative contribution made by the ‘cancer-inducing genes’ compared
with that made by the large number of genes that affect individual
drug action (the ‘traditional’ drug-resistance genes, as it were). Since
the subset of drug-curable malignancies must also have cancer gene
abnormalities, it is apparent that these need not be sufficient to pro-
duce high levels of drug resistance. Presumably the least favourable
circumstances will be those in which there is both considerable onco-
gene dysregulation and many types of multidrug-resistant mutation.
We can speculate that one reason why cancers arising in later life
tend to be more drug-resistant than paediatric cancers may be related
to the number of mutations that occur prior to the ‘creation’ of the
malignant clone. The differences in elapsed time betwen the first
cancer mutation and the final step providing clonal expansion
would suggest that many more mutations are involved in the genera-
tion of cancer arising in the elderly. Undoubtedly other factors will
also be contributory.
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We have been emphasizing in this book how certain mathematical
approaches can provide insights into the nature of the drug-resistance
process. Fluctuation type tests for drug resistance are predicated on the
assumption that the drug-resistant mutations arise after the malignant
transformation has occurred. However, these fluctuations will not be
apparent with respect to any drug-resistant mechanisms that are part
of the transformation process itself. These mechanisms will be present
in all (or nearly all) of the cells making up the malignant clone and
hence will provide the ‘background’ level of resistance of the tumour
upon which further drug-resistant mutations will arise. The mutations
leading to the malignant state will, in effect, provide the true basal level
of intrinsic resistance of the cancer, which will then be further modified
by subsequent mutations.

The fact that cancer-inducing genes can in themselves lead to drug
resistance would appear to make the job of the therapist even more
difficult than it is. However, we might suggest that it is not unrealistic to
expect that exploitation of this knowledge has great potential for signifi-
cantly improving the results of systemic cancer therapy. In fact, we are
tempted to say that if efficient abrogation of the function of the dysregu-
lated cancer-inducing genes does not provide more effective therapy then
it becomes very difficult to imagine what effective therapy will require.

The outline of what may comprise systemic cancer therapy at the turn
of the century is beginning to take shape. It seems very likely that these
treatment programs will consist of various modulators or inhibitors of
dysregulated gene function combined with a variety of standard older
cytotoxic agents. In addition, antihormones and antigrowth factor com-
pounds of various types will almost certainly be utilized.

It remains, at present, only an optimistic hope that such specialized
forms of combination chemotherapy will truly constitute an advance
over existing approaches. There are, however, tantalizing hints from
preliminary experimental studies that suggest that this may indeed be
possible. This field will open up a whole new area of anticancer agent
pharmacology and no doubt new principles of treatment optimization
will need to be developed.

9.3 Cancer therapy in the 2Ist century

It seems more than likely that lessons that have been learned from
cytotoxic agent treatment of cancer will still apply to more exotic and
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sophisticated therapies: small and/or early tumour burdens will be much
more readily curable than will advanced disease and an initial unsuc-
cessful strategy will make things significantly more difficult when a re-
treatment manoeuvre is carried out.

There are a number of questions that will need to be addressed as we
move into the next era of systemic therapy of cancer. To begin with, we
will need to know which of the dysregulated genes in a particular
tumour represent the most vulnerable therapeutic targets. Many cancers
by the time they are clinically apparent appear to have several genetic
lesions in their growth-signalling pathways, their cell cycle-promoting
genes and in the genes that directly regulate apoptosis. Will there be any
preferential group of genes that need to be targeted when developing
therapy? Will it matter, for instance, if a particular mutation appears to be
one that has evolved very early in the generation of the neoplastic clone
(e.g. p53 mutation in Li-Fraumeni syndrome tumours) or is it genetic
changes that have evolved later in the evolution of the fully malignant
clone (e.g. telomerase activation) that will prove to be the sensitive
‘choke points’ for inhibiting tumour growth?

Will it be more effective to abrogate simultaneously more than one
dysregulated gene function or will some complex sequencing of the
deleted functions be more effective in terminating tumour growth?
Will it be more effective to inhibit the function of two genes that are
acting on similar pathways (e.g. bcl-2 overexpression and mutatated Rb
gene function) or will it prove more useful to block a growth signal
transduction gene (mutated ras) together with inhibiting overexpression
of bcl-2? Will particular treatment strategies be highly tumour specific or
even individual patient specific?

Most of the studies reported to date have simply examined the con-
sequences of inhibition of one oncogene in a tumour cell line together
with some other type of therapeutic agent, e.g. corticosteroids or alkyl-
ating agents. It is of great interest to note that iz vitro, and at least to
some degree in vivo as well, inhibiting one of the important oncogenes
in a tumour cell line may be sufficient on its own to cause reversion to a
normal or at least nonmalignant phenotype and to increase cytotoxic
drug sensitivity dramatically. We should, however, remember that we
already have many effective forms of therapy for in vitro cell lines and
for transplanted tumours. It may be overly optimistic to expect that an
advanced dlinical tumour can be effectively dealt with by a single gene
function abrogation. This might be the case, but it seems more probable



Some final thoughts on drug resistance 243

that multiple pathways will need to be inhibited to ensure eradication of
a malignant clone. Determining these strategic approaches will be a
challenging and fascinating area of cancer research.

If, as it seems likely, standard cytotoxic agents and radiation will be
needed to enhance cell-killing effects, it will be important to determine if
combinations of cytotoxic agents will be more effective than a single
agent given at maximum tolerated dose. We would suspect that the
combination will probably prove to be the more effective but the
rules of the game may turn out to be different under circumstances
where major channels leading to apoptosis are opened up and the
goal becomes one of maximizing the log kill effect by dose escalation.

Will antisense nucleic acids prove to be the optimal agents for gene
inhibition or will small-molecular-weight compounds (i.e. standard
drugs) turn out to be the more useful if they can be made specific in
their binding to the active sites of oncoproteins? On the one hand, anti-
sense compounds have the advantage that they can be made to almost
any desired degree of specificity. Moreover, a series of such compounds
can be produced so that they will probably affect all of the common
mutant forms of the messenger RNA that they are required to bind with.
On the other hand, small-molecular-weight compounds have the advan-
tage of ease of administration and the feasibility of being given in satura-
tion doses. Whether they can be made specific enough to have
appropriate therapeutic indices is an unanswered question at this time.

9.3 New forms of drug resistance

A final question that comes to mind returns to the central issue that we
have been dealing with in this text. This is the enormous capacity of
neoplastic cell populations to generate diverse forms, some of which
will be expected to have an enhanced capacity for survival under var-
ious selecting environments.

We have seen how readily cancer cells evolve multiple pathways of
resistance to standard cytotoxic agents with the result that it becomes
impossible to cure most advanced tumours with any realistic number of
cytotoxic drugs. When actual clinical tumours are being treated with
compounds for deleting gene growth functions or suppressing anti-
apoptosis gene effects, we will need to know whether the cell can
evolve new and exotic growth pathways that will allow them to evade
specific antigene therapy. To put the question in Darwinian terms, is
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there present within any advanced neoplastic cell population a very
small number of tumour cells that by chance have become equipped
with very unusual signal transduction and cell cycle control elements
that will allow them to escape efficient shutting down of bcl-2 produc-
tion combined with massive drug-induced DNA damage?

We suspect that the answer to this last question will be both yes and
no. Some malignancies that hitherto have proved very difficult to treat
with conventional cytotoxic agents and radiation will probably prove
vulnerable to more sophisticated forms of therapy. There will probably
also be other types of malignancy that will show evidence of novel
means for maintaining their growth advantage despite the loss of several
critical functioning genetic components. The challenge then will be to
identify what these more exotic and obscure pathways are and to begin
to chart the strategies for dealing with them. In the meantime, though,
the ‘yardsticks” will have been moved forward and we can with cau-
tious optimism expect that both the number and the proportion of treat-
ment-resistant neoplasms will have been substantially reduced.

¥ A North American football term that determines the minimum amount of ground that must
be gained in the next series of plays. The object is to move the yardsticks ever closer to the
opponents’ goal line.
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