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Preface 

In the period February 57, 2007 we organized in the historic building of 
the Dutch Royal Academy of Sciences (KN A W) in Amsterdam the Academy 
Colloquium titled "New Perspectives on Games and Interaction". The pro
gram consisted of 14 invited lectures, each followed by a commentary, and 8 
contributed talks. 

Traditionally, logic and linguistics have been studied from a static and 
non-interactive point of view emphasizing the structure of proofs and mean
ings. In computer science, dynamic processing of information has always 
played a major role, but from a non-interactive machine perspective. More 
recently, the dynamic and interactive aspects of logical reasoning, commu
nication, and information processing have been much more central in the 
three above-rnentioned disciplines. 

Interaction is also of crucial importance in economics. Mathernatical 
game theory, as launched by Von Neumann and Morgenstern in 1944 in 
their seminal book, followed by the contributions of Nash, has become a 
standard tool in economics for the study and description of various economic 
processes, including competition, cooperation, collusion, strategic behaviour 
and bargaining. 

These different uses of games in logic, computer science, linguistics and 
economics have largely developed in isolation. The purpose of the workshop 
was to bring together the researchers in these areas to encourage interactions 
between these disciplines, to clarify their uses of the concepts of game theory 
and to identify promising new directions. 

Cl'his volume consists of the contributions written by the speakers. It 
testifies to the growing irnportance of game theory as a tool to capture the 
concepts of strategy, interaction, argumentation, communication, cooper
ation and competition. We hope that the reader will find in the papers 
presented in this volume useful evidence for the richness of game theory 
and for its impressive and growing scope of use. 

We take this opportunity to thank Benedikt Lowe and .1ohan van Ben
them for their cooperation in the preparations of the scientific programme 
of the Colloquium. 

Amsterdam KR.A. R.A.i\lf.v.R. 
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Abstract 

We present a logic of conditional doxastic actions, obtained by in
corporating ideas from belief revision theory into the usual dynamic 
logic of epistemic actions. We do this by reformulating the setting 
of Action-Priority Update (see BaJtag and Smets, 2(08) in terms of 
conditional doxastic models, and using this to derive general reduction 
laws for' conditional belief~ after arbitrary actions. 

1 Introduction 
This work is part of the on-going trend (see Audler, 2003; van Benthem, 
2004; van Ditrnarsch, 2005; Baltag and Sadrzadeh, 2006; Baltag and Smets, 
2006a,b,c, 2007a,b, 2008) towards incorporating belief revision mechanisms 
within the Dynamic-Epistemic Logic (DEL) approach to information up
date. As such, this paper can be considered a sequel to our recent work 
(Baltag and Smets, 2008), and it is based on a revised and improved ver
sion of our older unpublished paper (Baltag and Smets, 2006c), presented 
at the 2006 ESSLLI Workshop on "Rationality and Knowledge". 

We assume the general distinction, made by van Ditmarsch (2005), Bal
tag and Smets (2006a) and van Benthem (2004), between "dynamic" and 
"static') belief r-ev'l.sion. In this sense, classical AGM theory in (Alchourron 
et aI., 1985) and (Giirdenfors, 1988) (and embodied in our setting by the con
ditional belief operators B:: Q) is "static", capturing the agent's changing 
bchcfs abo'ut an 'unchanging VJoTld. As such, "static" belief revision cannot 
be self-referential: statically-revised beliefs cannot refer to themselves, but 

Krzysztof R. Apt, Robert van Perspecti'ues on Garnes and Interaction. 
'Texts in Logic and Gan1es 4) An1st"rdam Press 2008, pp. 9-31. 



10 A. Baltag, S. Smets 

only to the original, unrevised beliefs. In contrast, "dynamic" belief revision 
deals with the agent's revised beliefs about the world as it is after revis-ion 
(inc! uding the revised beliefs themselves). 

In (Baltag and Smets, 2006a), we proposed two eq-uivalent semantic set
tings for "static" belief revision (conditional doxastic models and epistemic 
plausibil-ity models), and proved them to be equivalent wit h each other and 
with a multi-agent epistemic version of the AGM belief revision theory. We 
argued that these settings provided the "right" qualitative semantics for 
multi-agent belief revision, forming the basis of a conditional do:wstic logic 
(CDL, for short), that captured the rnain "laws" of static belief revision us
ing conditional-belief operators B!:Q and knowledge operators KaP. The 
later correspond to the standard S5-notion of "knowledge" (partition-based 
and fully introspective), that is commonly used in Computer Science and 
C:arne 'fheory. In the same paper, we went beyond static revision, using 
CDL to explore a restricted notion of "dynamic" belief revision, by mod
eling and axiomatizing multi-agent belief updates induced by public and 
pTivate ann01tnCernents. 

In subsequent papers, culminating in (Baltag and Smets, 2008), we ex
tended this logic with a "safe belief" modality OaP, capturing a form of 
"weak (non-introspective) knowledge", first introduced by Stalnaker in his 
modal formalization (Stalnaker, 1996, 2006) of Lehrer's defeas-ibUity anal
ysis of knowledge (Lehrer, 1990; Lehrer and Paxson, 1969). We went on 
to deal with "dynamic" multi-agent belief revision, by developing a no
tion of doxastic actions 1, general enough to cover most examples of multi
agent communication actions encountered in the literature, but also flexible 
enough Lo implernent 1Jari01ts in a 1tnified setting. 
F'ollowing A ucher (2003) and van Di tmarsch (2005), we represented dox
astic actions using (epistemic) action plausibility models. The underlying 
idea, originating in (Baltag and Moss, 2004) and (Baltag et al., 1998), was 
to use the same type of formalism that -was 1tsed to -model "static" beliefs: 
ep·istemic/do:wst·ic actions should be -modeled 'in essentially the same 'way as 
epistemic/doxastic states. The main difference between our proposal and 
the proposals of Aucher (2003), van Ditmarsch (2005) and Baltag et al. 
(1998) lies in our diJJeTent not-ion of "update prod'act" of a state model with 
an action model: our "Action-Priority Update" was based on taking the 
anti-lex-icogmphic ordeT on the Cartesian product of the state model with 
the action model. This is a natuml genemlization of the AGlvI-type belief 
rev-ision to complex multi-agent belief-changing actions: following the AGM 
tradition, it gives pTiority to incoming information (i.e., to "actions" in our 
sense). In the same paper (Baltag and Smets, 2008), we completely axiom
atized the general logic of dynamic belief revision, using Reduction Axioms 

1 Or "doxastic events", in the terminology of van Benthem (2004). 



The Logic of Conditional Doxastic Actions 11 

for knowledge and safe belief after arbitrary doxastic actions. 
In this paper, we go furt her to look at representations of doxastic ac

tions in terms of our other (equivalent) semantic setting for belief revision 
mentioned above (conditional doxastic models). We look in detail at an 
equivalent statement for the (same) notion of Action-Priority Update in 
terms of conditional doxastic actions. This is in itself a non-trivial, rather 
intricate exercise, which as a side benefit gives us Reduction Axioms for 
conditional belief after arbitrary actions. Though more complex than the 
Reduction Axioms for knowledge and safe belief in (Baltag and Smets, 2008) 
(and in principle derivable from those2 ), the axiorns of the resulting Logic of 
Conditional Doxastic Actions are of more direct relevance to belief revision 
and belief update, and are immediately applicable to deriving reduction laws 
for interesting special cases, such as the ones considered by van Benthem 
(2004) . 

In its spirit, our approach is closer to the one taken by J. van Benthem 
and his collaborators (van Benthem, 2004; van Benthem and Roy, 2005; 
van Benthem and Li u, 2004) (based on q1wlitati1Jc logics of conditional bc-

"prcfcrcn.ce Jl modalities and various forms of "bel-ief ·upgTade J1
), rather 

than to the approaches of a more "quantitative" flavor due to Aucher (2003) 
and van Ditmarsch (2005) (based on formalizing Spohn's ordinal degrees of 
beliefs (1988) as "graded belief' operators, and proposing various quantita
tive arithmetic formulas for updates). As a result, the "reduction axioms" 
by van Benthem (2004) (for "hard" public announcements, lexicographic 
upgrades and conservative upgrades) can be recovered as special cases of 
our main reduction axiom for conditional beliefs after an arbitrary action. 

Our conditional belief modalities and our conditiollal doxasLic models 
can also be seen in the context of the wide logical-philosophical literature 
on notions of conditional (see, e.g., Adams, 1965; Stalnaker, 1968; Ram
sey, 1931; Lewis, 1973; Bennett, 2003). One can of course look at condi
tiona.l belief operators as non-classical (and non-monotonic!) implications. 
Our approach can thus be compared with other attempts of using doxastic 
conditionals to deal with belief revision, (see, e.g., Gardenfors, 1986; Ram
sey, 1931; Grove, 1988; Rott, 1989; Fuhrmann and Levi, 1994; Ryan and 
Schobbens, 1997; Halpern, 2003; Friedmann and Halpern, 1994). As shown 
in (Baltag and Smets, 2006a), our operators avoid the known paradoxes3 

arising from such mixtures of conditional and belief revision, by failing to 
satisfy the so-called Ramsey test. 

2 Together with the axioms of the logic of knowledge and safe belief, and with the 
definition in (Baltag and Smets, 2008) of conditional belief in terms of knowledge and 
safe belief. 

3 See e.g., (Stalnaker, 1968), (GaTdenfors, 1988) and (Rott, 1989). 
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2 Preliminaries: Epistemic plausibility models and 
conditional doxastic models 

In this section, we review some basic notions and results from (Baltag and 
Smets,2006a). 

Plausibility frames. An epistemic plausibility frame is a structure S 
(S, ~a, :::;a)aEA, consisting of a set S, endowed with a family of equivalence 
relations ~a, called indisting1tishabUdy r-eiations, and a family of 
"well-preorders" :::;a, called plwusibilify Telat·ions. Here, a "well-preorder" is 
just a preorder4 such that every non-empty subset has minimal elements.s 

Using the notation Min<::: T: {t E T : t :::; tl for all tl E T} for the set 
of minimal elernents of T, the last condition says that: for every T <;;; S, if 
T # 0 then Min<::: T # 0. 

Plausibility frames for only one agent and without the epistemic relations 
have been used as models for conditionals and belief revision by Grove 
(1988), Giirdenfors (1986, 1988), Segerberg (1998), etc. Observe that the 
conditions on the preorder :::;a are (equivalent to) Grove's conditions for the 
(relational version of) his models (Grove, 1988). The standard formulation 
of Grove models (in terms of a "system of spheres") weakening the similar 
notion in (Lewis, 1973)) was proved by Grove (1988) to be equivalent to the 
above relational formulation. 6 

Given a plausibility frame S, an S-proposition is any subset P <;;; S. We 
say that the state s satisfies the proposition P if s E P. Observe that a 
plausibility frame is just a special case of a Kripke frarne. So, as is standard 
for Kripke frames, we can define an plausibility model to be an 
epistemic plausibility frame S together with a valuation map II • II : <p ----> 

P(S), mapping every element of a given set <P of "atomic sentences" into 
S-propositions. 

Notation: strict plausibility, doxa.stic indistinguishability. As with 
any preorder, the ("non-strict") plausibility relation :::;a above has a "strict" 
(i.e., asymmetric) version <a, as well as a corresponding equivalence relation 
::::::a, called "doxastic indistinguishability": 

S <a t iff s :::;a t and t l.a s 

s ::::::a tiffs :::;a t and t :::;a s 

4 Le., a reflexive and transitive relation. 
5 Observe that the existence of minimal elements implies, by itself, that the relation :Sa 

is both reflexive (Le., S :Sa S for all s E S) and connected (Le., either s :Sa tort :Sa S, 

for all s, t E S), Le., elements that are below all the others. Note also that, when the 
set S is fin.ite, a well-preorder is nothing but a connected preorder. 

Ei A more concrete exam.ple of plausibility frames was given by Spohn (1988), in terms of 
ordinal plausibility maps assigning ordinals dIs) ("the degree of plausibility" of s) to 
each state s E S. In our epistemic multi-agent context, this would endow each agent 
a with an ordinal plausibility map da : S --* Ord. 
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Interpretation. 'fhe elernents of S will be interpreted as the possible states 
of a system (or "possible worlds"). The atomic sentences p E <P represent 
"ontic" (non-doxastic) facts about the world, that might hold or not in a 
given state, while the valuation tells us which facts hold at which worlds. 
The equivalence relations~a capture the agent's knowledge abO'lLt the adaal 
state of the system (intuitively based on the agent's (par-tiat) obser-vat'ions of 
this state): two states s, t are indistinguishable fOT agent a if s ~a t. In other 
words, when the actual state of the system is s, then agent a knows only the 
state's equivalence class s(a) := {t E 8 : s ~at}. Finally, the plausibility 
relations :Sa capture the agent's condit'lonal beliefs abO'ltt (1Jir-tual) states of 
the system: given the information that some possible state of the system is 
either 8 or t, agent a will believe the state to be 8 iff [; <a t; will believe the 
state to be tiff t <a 8; otherwise (if 8 ::::::." t), the agent will consider the two 
alternatives as equally plausible. 

Example 1. The father informs the two children (Alice and Bob) that he 
has put a coin lying face up on the table in front of them. At first, the face 
is covered (so the children cannot see it). Based on previous experience, 
is comrnon knowledge that) the children believe that the upper face is (very 
likely to be) Heads: say, they know that the father has a strong preference 
for Heads. And in fact, they're right: the coin lies Heads up. Next, the 
father shows the face of the coin to Alice, in the presence of Bob but in such 
a way that Bob cannot see the face (though of course he can see that Alice 
sees the face). The plausibility model S for this situation is: 

I ~ : 
L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ 

Here, we left the father out of the picture (since he only plays the role of 
Cod or Nature, not the role of an uncertain agent). The node on the left, 
labeled with II, represents the actual state of the system (in which the coin 
lies Heads up), while the node on the right represents the other possible state 
(in which the coin is 'fails up). \lVe use continuous arrows to encode Alice's 
beliefs and use continuous squares to encode her knowledge, while using 
dashed arrows and dashed squares for Bob. More precisely: the squares 
represent the agents' information cells, i.e., the equivalence classes 8(a) := 
{t E 8: 8 ~a t} of indistinguishable states (for each agent a). Observe that 
Alice's information cells (the continuous squares) are singletons: in every 
case, she knows the state of the system; Bob's information cell is one big 
dashed square comprising both states: he doesn't know which state is the 
real one, so he cannot distinguish between them. The arrows represent the 
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plaus·ib·ility r-clations for the two agents; since these are always reflexive, we 
choose to skip all the loops for convenience. Both arrows point to the node 
on the left: a priori (i.e., before making any observation of the real state), 
both agents believe that it is likely that the coin lies Heads up. 

Conditional doxastic frames. A plausibility frame is in fact nothing 
but a way to encode all the agents' possible conditional beliefs. To see 
this, consider the following equivalent notion, introduced in (Baltag and 
Smets, 2006a): A conditional do:wstic frame (CD-fmme, fOT short) S = 

(S, {.~)} aCA, l' consists of a set of states S, together with a farnily of 
conditional (doxastic) appeamnce maps, one for each agent a and each pos
sible condition P <:;;; S. Cl'hese are required to satisfy the following conditions: 

l. if s E P then #0; 

2. if P n s~ # 0 then s~ # 0; 

3. if t E then tQ· 
'a' 

4. s1' C F-a - , 

5. s~r'Q s~ nQ, if s~ n Q/ 0. 

A conditional do:rastic model (CDM, for short) is a Kripke model whose 
underlying frame is a CD-frame. The conditional appearance s~ captures 
the way a state s appears to an agent a, given some additional (plausible, 
b'at not necessarily tr'athfal) 'infoTmation P. More precisely: whenever s is 
the current state of the world, then after receiving new information P, agent 
a will corne to believe that any of the states s' E might have been the 
current state of the world (as it was before receiving information P). 

Using conditional doxastic appearance, the knowledge s( a) possessed by 
agent a about state .5 (i.e., the episternic appeamnce of 8) can be defined as 
the 'anion of all conditional doxastic appeamnces. In other words, sornething 
is known iff it is believed in any conditions: s (a): UQC; 5' . Using this, 
we can see that the first condition above in the definition of conditional 
doxastic frames captures the truthfulness of knowledge. Condition 2 states 
the success of belief rEvision, when consistent with knowledge: if something 
is not kno'wn to be false, then 'it can be consistently enteTtained as a hypoth
esis. Condition 3 expresses full introspection of (conditional) beliefs: agents 
know their own conditional beliefs, so they cannot revise their beliefs about 
them. Condition 11 says hypotheses are hypothetically believed: when mak
ing a hypothesis, that hypothesis is taken to be true. Condition 5 describes 
minimality of revision: when faced with new information Q, agents keep as 
much as possible of their previous (conditional) beliefs 8~. 
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To recover the usual, unconditional beliefs, we put 8 a := . In other 
words: uncondit'ional ("default") bel'iefs are beliefs cond-ilionahzed by triv
ially true conditions. 

For any agent a and any S-proposition P, we can define a conditional 
belief operator BI : P(8) ---+ P(8) 8-propositions, as the Galois dual of 
conditional doxastic appearance: 

p . p 
Ba Q := {s E 8 : 8 a ~ Q} 

We read this as saying that agent a bclievcs Q P. More precisely, this 
says that: if thc agcnt would lcarn P, thcn (aftcr lcarning) he would comc 
to bef.ic1Je that Q was the case ,in the C11Trent state (before the learning). The 
us'aal (anconddional) bclief operator can be obtained as a special case, by 
conditionalizing with the trivially true proposition 8: BaQ := B!iQ. 'fhe 
knowlcdgc opcrator can similarly be defined as the Galois dual of epistemic 
appearance: 

KIlP : = {s E 8 : s ( a) ~ P}. 

As a consequence of the above postulates, we have the following: 

J(a P n 
Equivalence between plausibility model.., and conditional doxastic 
models. Any pia'usibility 'model rise to a CDM, in a canonicaiway, 
by putting 

s; := Min"a {t E P : t ~a s} 

where r·/lin< T: {t E T : t :::;a t' for all t' E T} is the set of :::;a-minimal 
elernents in T. We call this thc canonical CDiVf associated to the plausibility 
model. 1'he converse is given by a: 

Theorem 2.1 (Representation 'fheorem). Every CDM is the canonical 
CDM of some plausibility mode!.7 

The advantage of the CDIVI formulation is that it leads naturally to 
a complete axiomatization of a logic of cond-itional beliefs, which was in
troduced in (Baltag and Srnets, 2006a) under the name of "Conditional 
Doxastic Logic" (CDL)8: the semantical postulates that define CDM's can 
be immediately converted into modal axioms governing conditional belief. 

7 This result can be seen as an analogue in our semantic context of Gii.rdenfors' rep-
resentation theorem (Gii.rdenfors, 1 representing the ACivI revision operator in 
terms of the minimal valuations for some total preorder on valuations. 

8 CDL is an extension of the well-known logic KL of "knowledge and belief'; see e.g., 
(Meyer and van der Hoek, 1995, p. for a complete proof system for KL. 



16 A. Baltag, S. Smets 

Conditional Doxa ... <;tic Logic (eDL). The syntax of eDL (without com
mon knowledge and common belief operators)9 is: 

while the semantics is given by the obvious compositional clauses for the 
interpretation map 11.lls : eDt ----+ P(S) in a GDM (and so, in particular, 
in a plausibility model) S. Tn this logic, the kn01JJlcdgc modality can be 
defined as an abbreviation, putting IC'P := B~''P -.L (where -.L = p /\ 'p 

is an inconsistent sentence), or equivalently IC'P: B(~'P'P. This way of 
defining knowledge in terms of doxastic conditionals can be traced back to 
Stalnaker (1968). It is easy to see that this agrees semantically with the 
previous definition of the semantic knowledge operator (as the Galois dual 
of epistemic appearance): IIKa'Plls = Kall'Plls. 
Doxastic propositions. A doxastic pmposition is a rnap P assigning to 
each plausibility model (or conditional doxastic model) S some S-proposi
tion, i.e., a set of states P s C;;; S. The interpretation map for the logic eDL 
can thus be thought of as associating to each sentence 'P of eDL a doxastic 
proposition II'PII. We denote by Prop the farnily of all doxastic propositions. 
All the above operators (Boolean operators as well as doxastic and epistemic 
modalities) on S-propositions induce corresponding operators on doxastic 
propositions, defined pointwise: e.g., for any doxastic proposition P, one can 
define the proposition KaP, by putting (KaP)s := [,,'aPS, for all models S. 

Theorem 2.2 (Baltag and Smets 2006a). A complete proof system for 
eDL can be obtained from any complete axiomatization of propositional 
logic by adding the following: 

Necessitation Rule: 
Norma.lity: 
Truthfulness of Knowledge: 
Persistence of Knowledge: 
Full Introspection: 

Hypotheses are (hypothetically) 
accepted: 
Minima.lity of revision: 

From f- 'P infer f- Bt 'P 
f- B~ ('P ->'If;) -+ (B~ 'P -+ B~ 1/') 
f-Ka'P-+'P 

f- K a 'P ---> Bt 'P 
f- B%'P -+ KaBt'P 
f- ,Bt'P -+ Ka,B%'P 

f- B't:. 'P 
f- ,B'f ,1jJ -+ (B'f" >j; 19 <-+ B'f (1jJ -+ 19)) 

Pmoj. '['he proof is essentially the same as of (Board, 2002). It is easy to 
see that the proof system above is equivalent to Board's strongest logic of 
(Board, 2002) (the one that includes axiom for full introspection), and that 
our models are equivalent to the "full introspective" version of the semantics 
of (Board, 2002). Q.e.D. 

9 In (Baltag and Smets, 2006a), we present and axiomatize a logic that includes condi
tional common knowledge and conditional common true belief. 
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3 Action plausibility models and product update 
1'he belief revision encoded in the models above is of a static, purely hypo
thctical, nature. Indeed, the revision operators cannot alter the models in 
any way: all the possibilities are already there, so both the unconditional 
and the revised, conditional beliefs TefeT to the same 'WoTld and the same 
moment in time. In contrast, a belief 'update in our sense is a dynamic form 
of belief revision, meant to capture the actual change of beliefs induced by 
learning (or by other forms of epistemicj doxastic actions).10 As already no
ticed before, by e.g., Gerbrandy (1999) and Baltag et al. (1998), the original 
model does not usually include enough states to capture all the epistemic 
possibilities that arise in this way. So we now introduce "revisions" that 
change the original plausibility model. 

1'0 do this, we adapt an idea coming from (Baltag et al., \998) and 
developed in full formal detail in (Baltag and Moss, 2004). There, the 
idea was that ep-istemic act'ions sh01tld be modeled in essentially the same 
'Way as epistemic states, and this common setting was taken to be given by 

KTipke models. Since we now enriched our models for states to 
deal with conditional beliefs, it is natural to follow (Baltag and Moss, 2004) 
into extending the similarity between actions and states to this conditional 
setting, thus obtaining action plausibility models. 

An action plaw,ibility model is just an epistemic plausibility frame :E 
(~, ~a, ::;a)aEA, together with a pTecondition map pre : ~ ---> Prop associ
ating to each element of ~ some doxastic proposition pre( o} As in (Baltag 
and Moss, 2004), we call the elements of ~ (basic) epistem'ic actions, and 
we call pre( cr) the pTecondition of action cr. 

Interpretation: Beliefs about changes encode changes of beliefs. 
The name "doxastic actions" might be a bit misleading; the elements of a 
plausibility model are not intended to represent "real" actions in all their 
complexity, but only the doxastic changes induced by these actions: each 
of the nodes of the graph represents a kind of change of beliefs (of 
all the agents). As in (Baltag and Moss, 2004), we only deal here with 
pure "belief changes", i.e., actions that do not change the "ontic" facts of 
the world, but only the agents' beliefs.ll Moreover, we think of these as 
deteTministic changes: there is at most one output of applying an action to 
a state. 12 Intuitively, the precondition defines the domain of applicability of 

HI But observe the difference between our notion of belief update (originating in dynamic
epistemic logic) and the similar (and vaguer) notion in (Katsuno and Mendelzon, 1992). 

11 \Ve stress this is a minor restriction, and it is very easy to extend this setting to 
"ontic" actions. The only reason we stick with this restriction is that it simplifies the 
definitions, and that it is general enough to apply to all the actions we are interested 
here, and in particular to all communication a.ctions. 

12 As in (Baltag and Moss, we will be able to represent non-deterministic actions 
as sums (unions) of deterministic ones. 
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0-: this action can be executed on a state 8 iff 8 satisfies its precondition. 'I'he 
plausibility pre-orderings :Sa give the agent's beliefs about which actions are 
more plausible than others. But this should be interpreted as beliefs about 
changes, that encode changes of beliefs. In this sense, we use such "beliefs 
about actions" as a way to represent doxastic changes: the information 
about how the agent changes her beliefs is captured by our action plausibility 
relations. So we read 0- <a 0-' as saying that: if agent a is given the 
information that some (virtual) action is either 0- or 0-

1 (without being able 
to know which), then she believes that 0- is the one actually happening. 

Example 2: Successful lying. The action of "public successful lying" 
can be described as follows: given a doxastic proposition P, the model con
sists of two actions Liea P and Truea P, the first being the action in which 
agent a publicly lies that (she knows) P (while in fact she doesn't know 
it), and the second being the action in which a rnakes a truthful public 
announcement that (she knows) P. The preconditions are pre(Liea P) = 

,1(,P and pre(Truea P) KaP. Agent a's equivalence relation is simply 
the identit'!J: she knows whether she's lying or not. l'he other agents' equiv
alence relation is the total relation: they cannot know if a is lying or not. 
Let us assume that a's plausibility preorder is also the total relation: this 
would express the fact that agent a is not decided to always a pnoTZ, 
she considers equally plausible that, in any arbitrarily given situation, she 
will lie or not. But the plausibility relations should reflect the fact that we 
are modeling a "typically successful lying": by default, in such an action, 
the hearer trusts the speaker, so he is inclined to believe the lie. Hence, the 
relation for any hearer b # a should make it mOTe plausible to him that a is 
telling the tntlh rather than lying: n'uea P <b Liea P. 

As a specific example, consider the scenario in Example 1, and assurne 
now that Alice tells Bob (after seeing that the coin was lying Heads up): "I 
saw the face, so now 1 know: The coin is lying Tails up". Assume that Bob 
trusts Alice completely, so he believes that she is telling the truth. We can 
model this action using the following action model :E: 

1-- - -

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ 

This model has two actions: the one on the left is the real action that is 
taking place (in which Alice's sentence is a lie: in fact, she doesn't know the 
coin is Tails up), while the one on the right is the other possible action (in 
which Alice is telling the truth: she docs know the coin is Tails up). We 
labeled this node with their preconditions, ,KaT for the lying action and 
KaT for the truth-telling action. In each case, Alice knows what action she 
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is doing, so her information cells (the continuous squares) are singletons; 
while Bob is uncertain, so the dashed square includes both actions. As 
before, we use arrows for plausibility relations, skipping all the loops. As 
assumed above, Alice is not decided to always lie about this; so, a pTioTi, 
she finds her lying in any such given case to be equally plausible as her 
telling the truth: this is reflected by the fact that the continuous arrow is 
bidirectional. In contrast, (Bob's) dashed arrow points only to the node on 
the right: he really believes Alice! 

The product update of two plausibility models. We are ready now 
to define the updated (state) plausibility model, representing the way some 
action, from an action plausibility model:E (1:, ~a, :Sa, pre)aEA, will act 
on an input-state, from an initially given (state) plausibility model S 

~a, :Sa, 11.11 . We denote this updated model by S ®:E, and we call 
it the update pTodact of the two models. Its states are elements (J) of the 
Cartesian product S x 1:. More specifically, the set of states of S ® :E is 

S ®)~ := {(s, (J) : S E pre((J)s} 

The valuation is given by the original input-state model: for all (J) ESC?) 

we put (s, (J) F p iff s F p. As epistemic uncertainty relations, we take 
the product of the two epistemic uncertainty relations13 : for (s, (J), (s', (J') E 

S ® )~, 
) (

' ') . IT , , cr / t"",...J a 8, (J III (J r-v (l cr , 8 rv a 8 

Finally, we define the plausibility relation as the ant·i-lexicograph·ic pTeoTdeT 
r-elation on pairs (s,(J), i.e.: 

(s, (J) :Sa (/, (JI) iff either (J <a (JI or (J :::::a (J1,.5 :Sa S/. 

In (Baltag and Smets, 2008), we called this type of product operation 
the Action-PTioTity Update, with a term due to .J. van Benthem (personal 
communication) . 

Interpretation. T{) explain this definition, recall first that we only deal 
with pUTe "belief changes", not affecting the "facts": this explains our "con
servative" valuation. Second, the product construction on the epistemic in
distinguishability relation ~a is the same as in (Baltag and Moss, 2004): if 
two indistinguishable actions are successfully applied to two indistinguish
able input-states, then their output-states are indistinguishable. Third, 
the anti-lexicographic preorder gives "priority" to the action plausibility 
relation; this is not an arbitrary choice, but is rnotivated by our above
mentioned interpretation of "actions" as specific types of belief changes. 

13 Observe that this is precisely the uncertainty relation of the epistemic update product, 
as defined in (Baltag and Moss, 2004). 
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'fhe action plausibility relation captures what agents rcally bclic1JC 'is going 
on at the moment; while the input-state plausibility relations only capture 
past beliefs. The doxastic action is the one that "changes" the initial doxas
tic state, and not vice-versa. If the "believed action" 0 requires the agent 
to revise some past beliefs, then so be it: this is the whole point of believing 
0, namely to use it to revise or update one's past beliefs. For example, in 
a successful lying, the action plausibility relation makes the hearer believe 
that the speaker is telling the truth; so she'll accept this message (unless 
contradicted by her knowledge), and change her past beliefs appropriately: 
this is what makes the lying "successful". (jiving priority to action plausibil
ity does not in any way mean that the agent's belief in actions is "stronger" 
than her belief in states; it just captures the fact that, at the time of updat
ing with a given action, thc belicf abo'ut the action is what is act1wl, 1JJhat is 
prcscnt, is thc C1tTTent belief abo'at what is going on, whilc the belicfs abo'at 
thc input-statcs aTC in thc past. 14 The belief update induced by a 
act'ion is nothing but an 'update 'with the (pTesently) belie1Jed action. 

In other words, the anti-lexicographic product update reflects our Motto 
above: beliefs ab01tt changcs (as formalized in the action plausibility rela
tions) aTe nothing but ways to encode changes of belief (i.e., ways to change 
the original plausibility order on states). This simply expresses our partic
ular 'interpretation of the (strong) plausibility ordering on actions, and is 
thus a matter of convention: we decided to introduce the order on actions 
to encode corresponding changes of ordeT on states. The pmduct ·update 
is a consequence of this convention: it just says that a strong plausibility 
order 0 <a ,6 on actions corresponds indeed to a change of ordering, (from 
whaLever Lhe ordering \Vati) beLween Lhe original illpUL-tiLaLeti s, t, 1,0 Lhe 

order 0) <a (t, (3) between output-states; while equally plausible actions 
o ::::::a {3 will leave the initial ordering unchanged: (s,o) (t, {3) iff s :Sa t. 
So the product update is just a formalization of OUT interpr-etation of action 
plausibility models, and thus it doesn't impose any further limitation to our 
setting. 

Example 3: By computing the update product of the plausibility model S 
in Example 1 with the action model :E in Example 2, we obtain the following 
plausibility model: 

I 
L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ 

14 Of course, at a lateT moment, the above-mentioned belief about action (now belonging 
to the past) might be itself revised. But this is another, jUtUTf:' ·update. 
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'I'his cOlTectiy describes the effect of an action of "successful lying": Bob's 
plausible ordering is reversed, since he believes Alice, and so now he believes 
that the coin is lying face up. In contrast, Alice's initial plausibility relation 
is unaffected (since the two actions were equally plausible, i.e., doxastically 
equivalent, for her); so, she should keep her a priori belief that the coin is 
Heads up; of course, in this case the last point is not so relevant, since Alice 
knows the state of the coin (as witnessed by the fact that the continuous 
squares consist of single states). 

Example 4: "Hard" public announcements. A tmthful p1tblic an
nouncement !P o.f some "hard fact" P is not really about belief revision, 
but about the learning of ceTtified tme information: it establishes common 
knovJledge that P was the case. This is the action described by van Ben
thern (2004) as (public) "belief change under hard facts". As an operation 
on models, this is described by van Benthem (2004) as taking any state 
model S and deleting all the non-P states, vJhile keep-ing the same indis
ting1t'ishabdity and pla·u,sibility relations betvJeen the states. Tn our 
setting, the corresponding action rnodel consists of only one node, labeled 
with P. It is easy to see that the above operation on models can be ex
actly "simulated" by taking the anti-lexicographic product update with this 
one-node action model. 

Example 5: "Lexicographic upgrade" as a "soft" public announce
ment. To allow for "soft" belief revision, an operation ilP was introduced 
by van Benthem (2004), essentially adapting to public announcements the 
'lexicographic' policy for belief revision described by Rott (1989). This 
operation, called "lexicogTaphic update" consists of changing the current 
plausibility order on any given state model as follows: all P-woTlds become 
rnOTe pla1tsible than all ,P-'worlds, and within the tvJO zones, the old order
ing remains. In our setting, this action corresponds to the following local 
plausibility action model: 

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ 

'faking the anti-lexicographic update product with this action will give an 
exact "simulation" of the lexicographic upgrade operation. 

Proposition 3.1. The update product of a state plausibility rnodel and an 
action plausibility model is a state plausibility model. 
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4 Product update in CDM form 
As for the "static" conditional doxastic logic, the axiorns of "dynamic" belief 
revision logic can be easily derived if we first work out the CDM version of 
the above update product. We do this from scratch, by first introducing a 
"dynamic" version of the notion of CDM, equivalent to the above concept 
of action plausibility model: 

A conditional doxastic action model (CDAM, for short) E is just a con
ditional doxastic frame (Y:, {.~} aEA,nCCCI;), together with a pTecondit'ion map 
pre : ); ---> Prop as above. A set of actions TI <;;; ); can be interpreted as 
part'ial information about some real (basic) action 0- E TI, or equivalently, as 
a non-deterministic action (in which one of the actions 0- E n happens, but 
we are not told which). The conditional appearance 0-'; captures the way 
action 0- appears to agent a, given addit'ional (pla·usible, b'at not necessar
ily truthful) information II abO'lLt this action. This means that, in normal 
circumstances, if after 0- happens the agent is told that (one of the actions 
in) n has happened, then the agent will believe that in fact (one of the 
basic actions in) o-~ has happened. As before, any action plausibility model 
induces in a canonical way a CDAM, and conversely any CD AM can be 
represented as the canonical CDAM of some action plausibility model. 

Example: Lying, revisited. In the successful lying example, if we con
vert the plausibility model into its canonical CDM, we obtain, e.g., that 
(Liea P)~ = {Truea P} for b # a and Q g; {Liea P}. So this lying is in
deed genemlly "successful": no matter what other information is given to 
b, if it is consistent with a telling the truth, then b believes that a tells the 
truth. The only case in which the appearance of this action to b is different 
is when Q <;;; {Liea P}, in which case (Liea P)~ = Q, and in particular, 

'I' pdLiea
} {I·' P} I h d' I I' I 'f' . \,lea h,lea : so t 1e earer can lscover t 1e ymg on y I gIven 

information that excludes all other possible actions. 

Independence of action's appearance from prior beliefs. The above 
description assumes that the agent)s beliefs about the action are independent 
of his beliefs about the state: indeed, 0-'; contains no information about, 
or reference to, the current state's doxastic appearance Sa to the agent, 
so it is assumed that this does not influence in any way the appearance 
of the action. This assumption embodies a certain interpretation of our 
"appearance" maps: we take an action's appearance to simply denote the 
action itself, as it appears to the agent. In other words: for the agent, the 
appearance is the action, pure and sirnple. 'When the action 0- happens 
(say, in an unconditional context), it really appears to the agent as if (the 
apparent, un-conditionalized action) 0-a o-~ happens. If the agent makes 
the additional hypothesis that one of the actions in n happens, then it 
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appears to him that 0";; is happening. The action's appearance is simply 
taken here as a brute, new fact: the agent really believes this apparent action 
is happening (otherwise this would not really be the appearance of this 
action). This belief cannot be revised at the same t-ime that it is being held: 
any revision of the action's appeamnce can only happen in the fut-ure. But for 
the moment, this appearance correctly reflects what the agent thinks to be 
happening. In contrast, his prior beliefs about the state are just that: prior 
beliefs. They may be subject to revision at this very moment, due to current 
action (or, more precisely, due to its appearance): indeed, the (apparent) 
action is the one that ·induces the revision (or update) of the static belief. In 
a certain sense, the action, as it appears, is the belief update: the apparent 
action simply encodes the way the agent is compelled to update his prior 
beliefs. Hence, the action's appearance cannot, by definition, be dependent, 
or be influenced, by these prior beliefs: the action's appearance is a given, 
it is what it is, and the prior beliefs are the ones that may be changed by 
the apparent action, not vice-versa. 

Taking the action's appearance as a correct description of the action 
as seen by the agent, the above independence (of this appearance frorn 
prior beliefs) can be understood as a mt-tonality postulate: agents should be 
prepared to revise their prior beliefs when faced with (what appears to them 
as) tntlhful new informution. Rational agents are not fundamentalists: if 
given compelling evidence to the contrary (as encoded in the "apparent 
action"), they will not refuse it due to prior beliefs, but will change these 
prior beliefs to fit the new evidence. And it does not matter in the least 
that, at some later point, this "compelling evidence" might turn out to have 
been a belief (an "apparent acLion"), not a realiLy: when this will happen, 
rational agents might change their minds again. But for the moment, they 
have to accept the current action as it appeaTS to them, and adjust their 
previous beliefs appropriately. 

An action's contextual appearance. In the context of belief revision, 
there is a subtle point to be made here: the above independence only refers 
to the agent's prior beliefs, but not to the agent's knowledge. No action's 
appeamnce can be ass'amed to be independent of prior knowledge: it might 
happen that the current state s is such that agent a knows that the believed 
action O"r cannot happen at this state. This is perfectly possible, even in 
states in which 0" does happen, and even if the information II is correct (i.e., 
0" E II). In such a state, the agent cannot accept the default appearance 
O"r. Prior knowledge may thus influence the action's appearance. 

Example 2, revisited: "Successful)) lying cannot always be s'uccessful! 
Indeed, if the original input-state 8 is such that an outsider b already knovis 
that P is false, then lying cannot succeed. Tn this context, the appearance 
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of the action Liea P to b is not its default appearance 'I'ruea. P: b cannot 
believe t hat a is telling the truth. Instead, the context'ual appeamnce of this 
action at sis itself: (Liea Ph = Liea P. The hearer knows the speaker is 
lying. 

So o-~ should only be thought of as the action's default appeamnce (con
ditional on II) to the agent: in the absence of any other- additional infoT
mation (except for II), or whene'ver the agent)s prior knowledge allows this, 
the agent a will believe that has happened. 

So how will this action appear in a context in which the default appear
ance is known to be impCAssible? \lVe can answer this question by defin
ing a contextual appeamnce o-~,n of action 0- to agent a at state s, 
TI. We can do this by strengthening our conditionalization: at a given 
state 09 E S, an agent has already some infoTmation ab01tt the next ac
tion, namely that it cannot be inconsistent with his knowledge s(a) of the 
state. In other words, agent a knows that the action must belong to the 
set );8(a) {p E Y; : s(a) n pre(p)s/ 0} {p E ); : 8 Vs Ka,pre(p)}. 
Putting this inforrnation together with the new information TI, we obtain 
the contextual appearance conditionalizing the agentJs belief abo'at the 
action with );8(0.) nIl: 

~s,n._ I;o(a)r:n __ ~{pEn:s(a)r:pre(p)!0} 
Va .-an Va 

This contextual appearance is the one that fully captures the agent's act'aal 
belief about the act'ion 0- in state oS, whenever he is given inforrnation TI. 

An action's effect: Deterministic change of state. As announced, we 
take the basic actions 0- E ); to represent deterministic changes of states. 
In the following, we will always represent the O1dpat-state 0-( s) of applying 
bas'ic action 0- to state s E S by an ordered pair o-(s) := (8,0-). So, for 
a given CDM S of possible input-states and a given CD AM of possible 
actions, the set of all possible output-states will be a subset of the Cartesian 
product S x);. Thus, we could represent post-conditions, i.e., conditions 
restricting the possible output-states of some (unspecified) action acting 
on some (unspecified) input-state as subsets P ~ S x ); of the Cartesian 
p TOd-U ct. Given a basic action 0- E ); and a post-condition P ~ SX);, we may 
denote the set of possible inp1tt-states of action 0- ensuTing post-condition 
P by: 

{SES:(8,0-)EP} 

Post-conditional contextual appearance. Sometimes, the additional 
information the agent may be given (or the hypot hesis t hat he may enter
tain) refers, not directly to the range II ~ ); of possible actions currently 
happening, but to some post-condition P; i.e., the agent might be told that 
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the current action will result in a state 0-( 8) = (8,0-) satisfying some post
condition P ~ .'3 x ~. He should be able to conditionalize his belief about 
the current action with this information, in a given context. For this, we de
fine the contextual appearance o-~.P of action 0- at state 8, ·in the hypothesis 
(that the action 'Will ensme postcondition) P, by putting: 

o-s.P '= 0-{PEI;:s(a)r:p'(p)!0} 
a. . a 

Example: lying, again. Let again Lien. P be the action of successful lying 
by agent a, and suppose that P denotes a factual ("ontic") statement (which 
happens to be false, and thus will remain false after lying). Even if in the 
original state, the hearer b did not kno'/J} that P was false that lying 
was successful, and its appearance to b was the default one 'l'ruea P), he 
may be given later that information, as a post-condition ,P. Then, the 
hearer discovers the lying: the post-conditional contextual appearance of 
lying (given ,P) is ... lying! 

Belief revision induced by an action and a postcondition. We want 
to calculate now the revision of an agent)s beliefs (abo·ut an inp-ut-state 
8) ind-uced by an action 0- 'When gi'ven some post-condition P ~ .'3 x ~. 
We denote this by s~,p. This captures the appearance of the in.p'ut-state 
s to agent a, after- action 0- and after- being given the ·infor-rnation that P 
holds at the output-state. As explained already, the agent revises his prior 
beliefs not in accordance with the actual action, but in accordance to how 
this action appears to hirn. As we have seen, the appearance of action 0-

at state s when given post-condition P is o-~,p. So the new information 
obtained post-factum about the original input-state s is that this state was 
capable of supporting (one of the actions in) o-~'P, and moreover that it 
yielded an output-state satisfying post-condition P. In other words, the 
agents learns that the original state was in (o-~.P)-L(P). So he has to revise 
(conditionalize) his prior belief.s about s with this information, obtaining: 

scr,P 
a 

Product update, in CDM form. We now give a CDM equivalent of the 
above notion of product update: the pr-oduct update of a conditional doxastic 
model S with a conditional doxastic action model E is a new conditional 
doxastic model S @ E, whose states are elements 0-( s): (s, 0-) of a subset 
5'@)~ of the Cartesian product 5'x I:. Note that we prefer here the functional 
notation 0-( s), instead of (s, 0-). As before, preconditions select the surviving 
states: 

5' ® ~ := {o-(s) : S E pre(o-)s} 
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F'or any hypothesis P ~ S ® Y: about the output-state, the conditional 
appearance (conditioned by P) of an output-state CT( s) to an agent a is 
given by 

P. p(s~,p)np 

In words: Agent a)s 1tpdated bel-ief (about the output-state of a basic ac
tion CT applied to an input-state s, when given condition P) CT( s)f can be 
obtained by applying the action that is believed to happen (i.e., the appear
ance CT~,1' of CT to a at 8, given post-condition P) to the agent's Te1Jised belief 
ab01d the input-state s~,p (belief revised with the information provided by 
the apparent action CT~'P), then TestT'iciing to the post-condition P. 
Finally (as for plausibility models), the valuation on output-states comes 
from the original states: 

Ilplls®E := {CT(S) E S ® Y:: s E Ilplls} 

Proposition 4.1. I'he two "product update" operations defined above 
agree: the canonical CDM associated to the (anti-lexicographic) product 
update of two plausibility models is the product update of their canonical 
CDM's. 

5 The dynamic logic 
As in (Baltag and Moss, 2004), we consider a doxastic s'ignatuTe, i.e., a fi
nite (fixed) plausibility frame (or, equivalently, a finite conditional doxastic 
frame) :E, together with an ordered list 1IJithmif repetitions (CT1,"" CTn ) of 
some of the elements of :E. Each signature gives rise to a dynamic-doxastic 
logic CDL(:E), as in (Baltag and Moss, 2004): one defines by double recur
sion a set of sentences 'P and a set of pmgmm terms 7r; the basic pmgmms 
are of the form 7r = CTrp = CT'Pl ... 'Pn, where CT E y: and 'Pi are sentences 
in our logic; program termc; are generated from basic programc; using non
deter-rninistic sum (choice) 7rU7r1 and sequential composition 7r; 7r1

. Sentences 
are built using the operators of CDL, and in addition a dynamic modal
ity (7r)'P, taking program terms and sentences into other sentences. As in 
(Baltag and Moss, 2004), the conditional doxastic maps on the signature 
:E induce in a natural way conditional doxastic maps on basic programs 
in CDL(:E): we put (CTrp)ll«5 := {CTlrp : CT I E CT;I}. '['he given listing can 
be used to assign syntactic preconditions for basic programs, by putting: 
pre (CTirp) 'Pi, and pre(CTrp): T (the trivially true sentence) if CT is not 
in the listing. Thus, the basic programs of the form form a (finite) syn
tact'ic CDAM 15 :Erp. Every given interpretation 11.11 : CDL(:E) ---+ Prop of 

15 A syntactic CDANI is just a conditional doxastic frame endowed with a syntactic 
precondition map, associating sentences to basic action. For justification and examples, 
in the context of episternic action models, see (Baltag and Moss, 2004). 
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sentences as doxastic propositions will convert this syntactic model into a 

"real" (semantic) CDAM, called ~II~II. 
To give the semantics, we define by induction two interpretation maps, 

one taking any sentence cp to a doxastic proposition Ilcpll E Prop, the sec
ond taking any progTam term a to a (possibly non-deterministic) doxastic 
"program", a set of basic actions in smne CDAM. The definition is 
completely similar to the one in (Baltag and Moss, 2004), so we skip the 
details here. Suffke to say that the semantics of basic dynamic modalities 
is given by the inverse map: 

Notation. To state our proof system, we encode the notion of post-con,d·i
tional contextual appeamnce of an action in our syntax. For sentences {i, 1j; 
and basic program 0; (YIP, we put: 

(O.~)VJ : V ((a~hIJ /\ A ,Ka,(l3)19/\ A [-(a ' (,(3') 8 ) 
IlC:Ecp ,'jEll .WE'1l 

This notation can be justified by observing that it semantically matches the 
modality corresponding to post-conditional contextual appearance: 

Theorem 5.1. A complete proof system for the logic CDL(~) is obtained 
by adding to the above axioms and rules of CDL the following Reduction 
Axioms: 

(x U x')cp +--* (x)cp V (x') cp 

(x;x')cp +--* (x) \X')cp 

(u)p +--* pre(a)/\p 

(a) 'cp +--* pre(a) /\ '\(~)CP 

(a)(cpV1j;) +--* (a)cp V (a)VJ 

la)Bv.n 
\ aY +--* pre(a) /\ la~1 (19 -t cp) 

where p is any atomic sentence, x, x' are programs and a is a basic program 
in L(~). 

The soundness of the last reduction axiom is obvious, once we see that its 
holding at a state s follows irnmediately from the definition of the product 
update in CDM form 

() p SP(.CTP) P 
(5 sa: (5,,' 8 a' n., 

by taking (5: a, P: 111911 and using the semantics of dynamic modalities. 
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Special cases. If we put the last reduction axiorn in its dual (universal 
modality) form, we obtain 

As special cases of the Action-Conditional-Belief Law, we can derive the 
reduction laws from (van Benthem, 2004) for (conditional) belief after the 
events !1fJ and .~1fJ: 

1!1fJ]B~cp f-+ 1/) -> 1!1fJ]cp, 

11I1fJIB~cp f-+ (ktI1l1fJ18/\ 11I1fJlcp) V (,ktI1l1fJ119 II, 
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Abstract 

I first summarize Baltag and Smets' contribution to this volume, and 
pra.ise their work. Then I compare the anti-lexicographic plausibility 
update that they propose to a proposal by Aucher, as an illustration 
of the difference between a qualitative and a quantitive formulation of 
updates. I quote Spohn's original work that is at the root of research 
in plalL'3ibility updates and of the notion of anti-lexicographic update. 
Some technical notes on different partial orders used in belief revision 
serve as a prelude to an observed relation between the qualitative and 
quantitative representation of structures. Finally I address Baltag 
and Srnets' analysis of the action of lying. 

In this commentary on 'The Logic of Conditional Doxastic Actions' I am in 
the delightful position of having the last word in an argument with Alexan
dru Baltag. 'fhis position is very hard to obtain. But because in this volume 
my commentary follows the chapter by Alexandru Baltag and Sonja Smets, 
any further elaborations and involutions will be out of reach to the readers 
of the volurne. T aIn going to use this rare advantage to the limit. 

Having said that, I sent a preliminary version of these cornments to 
Alexandru and Sonja for comments, and immediately received in response 
an email of about the same length as this submission. 1 am very grateful 
for Alexandru's last words. Well, nearly last words. I made some further 
changes. Now, the work is done. 

1 The logic of conditional doxastic actions 
In AGM belief revision a distinction is made between belief expansion and 
(proper) belief revision. Given a set of consistent belief.s, in belief ex pan-

Krzysztof R. Apt. Robert van 
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Perspecti'ues on Garnes and lrderaction. 
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sion new information can typically be added as such, without conflict with 
existing beliefs. But in belief revision, the incoming information is typi
cally inconsistent with the prior beliefs. A long line of work in dynamic 
episternic logic, prominently including the well-known framework of action 
models, also by Baltag but with different collaborators, can be seen as a 
generalization of belief expansion. Unlike AGM belief revision in its origi
nal formulation, this dynamic epistemic logic also models belief expansion 
for more than one agent, and what is known as higher-order belief change: 
given explicit operators for 'the agent believes that', self-reference to one's 
own belief or to the beliefs of others can also be formalized. A problem 
in that line of research remained that the typical belief r"Cvision, i.e., how 
to process inconsistent new beliefs, cannot be modelled. Belief in factual 
information, for exarnple, cannot be given up when confronted with new 
belief that is considered as acceptable evidence to the contrary. And this 
is not just impossible within the setting of knowledge, where one does not 
expect proper revision to be possible, because knowledge is truthful. It is 
also irnpossible for weaker episternic notions. 

In this contribution to the volume, Alexandru Baltag and Sonja Smets 
introduce a dynamic epistemic framework in which belief revision in the 
proper sense is, after all, possible. Given a structure (an plausi
bility frame) wherein one does not merely have epistemic indistinguishability 
between states but also plausibility relations between states, one can define 
both knowledge and conditional belief operators. Unconditional belief is 
defined as belief that is conditional to the trivial state of information. (The 
trivial state of information is the epistemic equivalence class occupied by 
the agent, which is described by the formula T.) In Lhis seLLillg belief re
vision is possible where the agent (unconditionally) believed some factual 
information p but after having been presented with convincing evidence to 
the contrary, changes his mind, and then believes the exact opposite. OJ ust 
as for the relation between classic AGiVf expansion and dynamic epistemic 
logic, we now have again that this approach also rnodels multi-agent and 
higher-order belief revision. 

The authors go much further, beyond that. In a multi-agent setting 
there are more complex forms of belief revision than revision with a publicly 
announced formula cpo That is merely an example of a doxastic action. 
More complex doxastic actions, where the action appears differently to each 
agent, are also conceivable. They present a very good example, namely the 
action where agent a is lying that cpo To a credulous agent b, this action 
will appear as a truthful announcement that cpo But not to a of course, 
who knows that she is lying. 1'he general form of doxastic actions is like 
an epistemic plausibility model and is called an action plausibility model; 
the difference is that instead of a valuation of atoms in each state of an 
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epistemic plausibility model we now have a pr-econdit'ion for the execution 
of each action (i.e., element of the domain) of an action plausibility model. 
The execution of such a doxastic action in a epistemic plausibility state 
is a restricted modal product, where I am tempted to say 'as usual', to 
avoid the obligation of having to explain this in detail. The only unusual 
aspect of this procedure is the very well-chosen mechanism to compute 
new plausibilities from given plausibities, called anti-lexicographic preorder 
Telalion. This says that plausibility among actions takes precedence over 
plausibility among states. It is the natural generalization of the implicit 
AGM principle that the revision formula takes precedence over the already 
believed formulas. Anti-lexicographic preorder prescribes that: a new state 
of affairs is more plausible than another new state of affairs, if it results 
from an action that is strictly more plausible than the action from which 
the other state results, or if the states result from equally plausible actions 
but the former state already was more plausible than the latter state before 
action execution. 

So far, this overview also describes the authors' other publication (Bal
tag and Smets, 2006). A main focus of their underlying contribution is the 
interpretation of these results in terms of conditional reasoning and con
ditional doxastic action models. The conditional appearance maps of these 
conditional doxastic action models take the place of the plausibility rela
tions among the actions in an action plausibility model. They motivate 
and justify in great detail various notions for conditional belief, and their 
interdependencies. A fabulous finale is a complete axiomatization with a 
reduction axiom that relates conditional belief after an action to conditional 
belief before LhaL actioll. The technicalities of Lhis logic with dynamic op
erators for conditional action execution may be hard to follow unless the 
reader is intimately familiar with the BMS action model framework, as these 
technical details are only somewhat summarily presented. In that case, fast 
focus on this reduction axiom, the action-conditional-belief lavJ, and the 
well-chosen exarnples given of its application. I can assure you, it's all true. 

2 Quality is better than quantity 
The authors claim that their approach is 'in its spirit closer to qualitative 
logics than to approaches of a more quantitative flavour.' 'fhis is a very 
well-considered phrasing. Let us see why they are right. 

One such approach of a more quantitative flavour is the proposal by 
Guillaume Aucher (2003). In terms of action plausibility models his pro
posal is a version of van Benthem's soft update referred to in Example 5, but 
with a different recipe to compute new plausibilities. Aucher also employs 
structures with epistemic equivalence classes and plausibility relations, but 
the plausibility relations are derived from a finite total order of degrees of 
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plausibility. If 8 is rnore plausible than 8', its degree of plausibility is lower. 
The lowest degree of plausibility is o. To each degree of plausibility corre
sponds a degree of belief, expressing that the believed proposition is at least 
as pla'us'ible as that. Unconditional belief is belief of degree o. 

Given some model with domain 8, Aucher's 'belief revision with a for
mula now amounts to the following. \Vhenever cp is true, subtract the 
minimum degree of the cp-states from the current degree. Otherwise, sub
tract the minimum degree of the -'cp-states from the current degree and add 
one. This ensures that at least one cp-state will get degree 0, and thus factual 
information cp will be unconditionally believed after revision, as required. 

For an example, consider one agent a only and a domain consisting of 
four states 0, 1,2,3 comprising a single equivalence class (all four states are 
considered possible by the agent) and such that 0 Sa I Sa 2 Sa :3. Tn this 
initial epistemic plausibility structure, the degree of each state is its name. 

First, suppose that factual information p is true in state 3 only (the 
valuation of p is {3}). According to the recipe above, the result is the 
order 3 Sa 0 Sa I Sa 2. How come? Write for the old degree of 
state 8 and dg'(s) for its new degree, after revision. Then dg'(3) = dg(3) -
Min{dg(s) Is F p} = 3-3 = o. Whereas dg!(l) = dg(l) -Min{dg(s) Is F 
p} + 1 = 1 - 0 + 1 = 2. Etcetera. So far so good. 

Now for some other examples, demonstrating issues with such quantita
tively formulated proposals for belief revision. Suppose that, instead, p is 
true in states 1 and 2. We now obtain that 1 Sa 2 :':::::a 0 S 3. As a result of 
this revision, states 2 and 0 have become equally plausible. As a side effect 
of the revision, such 'loss of plausibility information' may be considered less 
desirablc. 

Finally, suppose that p was already believed: suppose that p is true in 
states 0 and l. We then get 0 Sa 1 :':::::a 2 S 3. This is also strange: instead 
of reinforcing belief in p, the -'p-states have become more plausible instead! 

This example demonstrates smne issues with a quantified formulation of 
belief revision. Of course Aucher is aware of all these issues. See Aucher's 
PhD thesis (2008) for a quite novel way to perform higher-order and multi
agent belief revision, based on plausibility relations among sets of formulas 
describing the structure in which the revision is executed. 

3 Belief revision known as maximal-Spohn 
When T first heard from Baltag and Smets' work on plausibility reasoning my 
first response was: "But this has all been done already! It's maximal-Spohn 
belief revision!" After some heavy internal combustion, I told Alexandru, 
who has his own response cycle, and this is all a long time ago. At the time 
I thought to remember specific phrasing in Spohn's well-known 'Ordinal 
Conditional Functions' (1988). But I never got down to be precise about 
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this source of their work. Now I am. This section of rny comrnents can be 
seen as another footnote to the extensive references and motivation of 
the authors' contribution. In their Example 5 they explain that for revision 
with single formulas all the following amount to more or less the same: anti
lexicographic update, lexicographic update, soft public update. To this list 
we can add yet another term: what Hans Rott (in his presentations and in 
Rott, 2006) and I call 'maximal-Spohn belief revision'. 

Spohn introduces the 'simple conditional functions' (SCF) and the equiv
alent notion of 'well-ordered partitions' (WOP) to represent the extent of 
disbelief in propositions. In terms of Baltag and Smets, a WOP defines 
a totally ordered plausibility relation on the domain. Spohn then observes 
that such WOPs (plausibility relations) need to be updated when confronted 
with incoming new information in the form of a proposition A. Tn our terms 
A is the denotation of some revision formula cp. He then proceeds to discuss 
some specific plausibility updates. His presentation is based on ordinals 
0:, (3", ... that label sets Eo:, E{3, E"y, ... of equally plausible states (all the 
En-states are more plausible than all the E,,,-states, etc.). For a simplifying 
example, consider a partition of a dornain Hi into a well-ordered partition 
Eo, E 1 , ... , E 6 . The set Eo are the most believed states, etc. Assume that 
a proposition A has non-empty intersection with E4 and E5 . Thus, the 
most plausible A-states are found in R j . If we now also read 'state :c is less 
plausible than state y' for 'world :c is more disbelieved than world y' we 
are ready for an original quote from (Spohn, 1988), explaining two different 
ways to adjust E 1 , . .. , E6 relative to A. A clear sign of a great writer is 
that one can take his work out of context but that it remains immediately 
inLelligible. 

A first proposal might be this: It seems plausible to assume that, 
after information A is accepted, all the possible worlds in A are less 
disbelieved than the worlds in A (where A is the relative comple
ment IV \ A of Further, it seems reasonable to assume that, 
by getting information only about A, the ordering of disbelief of the 
worlds within A remains unchanged, and likewise for the worlds in A. 
(Spohn, 1988, pp. 112-113) 

( ... ) the assumption that, after getting informed about A, all worlds 
in A are more disbelieved than all worlds in A seems too strong. Cer
tainly, the first member, i.e. the net content of the new WOP, must 
be a subset of A; thus at lea.st some worlds in A must get less disbe
lieved than the worlds in A. But it is utterly questionable whether 
even the most disbelieved world in A should get less disbelieved than 
even the least disbelieved world in A; this could be effected at best 
by the most certain information. 

This last consideration suggests a second proposal. Perhaps one 
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should put only the lea.st disbelieved and not all worlds in A at the 
top of the new WOP ( ... ). (Spohn, 1988, pp. 11:3114) 

The first proposal has become known as maximal-Spohn. The second pro
posal has become known as minimal-Spohn. Applied to the example par
tition the results are as follows; on purpose I use a formatting that is very 
similar to the displayed formulas on pages 113 and 114 in (Spohn, 1988). 
Further down in the sequence means less plausible. 

E4 II A, Es n A, Eo, E[, E2 , E3 , E4 n A,85 n A 
E4 n A, Eo, El, E2 , E3 , E4 n A, Es 

maximal-Spohn 
minimal-Spohn 

In maximal-Spohn, as in antilexicographic update, the A-states now come 
first, respecting the already existing plausibility distinctions among A-states, 
so that we start with E4 n A, Es n A. The order among the non-A-states 
also remains the same (whether intersecting with A or not), thus we end 
with Eo, El; E 2 , E3 , E4 n A, Es n A. In minimal-Spohn, the states in Es are 
not affected by proposition A; only the equivalence class containing most 
plausible A-states is split in two, and only those most plausible A-states, 
namely E4 r1 A, are shifted to the front of the line. These are now the most 
plausible states in the domain, such that A is now (in tenns of Baltag and 
Smets again) unconditionally believed. 

Aucher's plausibility update (Aucher, 2003), that we discussed in the 
previous section, implements a particular kind of 'minimal-Spohn' that also 
employs Spohn's ordinal conditional functions. We do not wish to discuss 
those here-things are quantitative enough as it already. Aucher's is 
not as minimal as it can be, e.g., 1 demonstrated the side-effect of merging 
plausibilities. It would be interesting to see a truly qualitative form of 
plausibility update that amounts to minimality in the Spohn-sense, or at 
least to something less maximal than anti-lexicographic update but equally 
intuitively convincing; but I do not know of one. 

4 Well-preorders 
Tn epistemic plausibility frames (8, ~a, the episternic indistinguisha
bility relations are equivalence relations and the plausibility relations are 
required to be well-preorders, i.e., reflexive and transitive relations where 
every non-empty subset has minimal elements. l'he non-empty-subset re
quirernent ensures that sornething non-trivial is always conditionally be
lieved. I will clarify sorne technical points concerning these prirnitives, to 
illustrate their richness for modelling purposes. 

On the meaning of minimal. A well-order is a total order where every 
non-empty subset has a least element, so by analogy a well-preorder should 
indeed be, as Baltag and Smets propose, a pre-order where every non-empty 
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subset has minimal elements. So far so good. Right? 'Wrong! Because we 
haven't seen the definition of minimal yet. 1 thought I did not need one. 
For me, an element is minimal in an ordered set -if nothing is smaller: 

Min(::;a,5) := {s I t E 5 and t ::;a s implies t c:::'a s}. 

Also, their first occurrence of 'minimal' before that definition was in a fa
miliar setting, 'something like a well-order', so that T did not bother about 
the precise meaning. And accidentally the definition of minimal was not 
just after that first textual occurrence but even on the next page. So Thad 
skipped that. 

This was unwise. For Baltag and Srnets, an element is minimal in an 
ordered set if everything is bigger: 

This is a powerful device, particularly as for partial orders some elements 
may not be related. The constraint that all non-empty sets have minima in 
their sense applies to two-element sets and thus enforces that such relations 
are connected orders (as explained in Footnote 4 of Baltag and Smets' text). 
So every well-preorder is a connected order. On connected orders the two 
definitions of minimal (i\lfinbs and Min) coincide. 'vVe can further observe 
that the quotient relation ::;,,/c:::'a is a total order, and that it is also a well
order. Given a non-empty subset 5' of ::;,,/c:::'a, there is a non-empty subset 
5" of ::;a such that 5" \ c:::'a 5'. '['he c:::'a-equivalence class of the minimal 
elernents of 5" is the least element of 51. The well-preorders of the authors 
are sometimes known as templated orders (Meyer et 2000). All this 
corresponds to Grove systems of spheres, as the authors rightly state. 

Partial orders in belief revision. Partial orders that are not connected 
or not well-ordered according to the authors' definition do occur in belief 
revision settings. F)'orn now on I will only use 'minimal' in the standard 
sense. 

Given one agent a, consider the frame consisting of five states {O, 1,2,3, 
4}, all episternically indistinguishable, and such that the relation ::;" is 
the transitive and reflexive closure of 0 ::;a 1 ::; 4 and 0 ::;0 2 ::;0 3 ::;0 
4. It is a partial order, and every non-empty subset has minima. The 
reader can easily check this, for example, Min(::;a, {O, 1,2, 3,4}) = {O}, 
Min(::;a, {1, 2, 3}) {1,2} = Min(::;a, {1, 2}), and so on. If neither s ::;a t 
nor t ::;a s, states sand t are called incompamble. States 1 and 2 are 
incomparable, as are 1 and :3. 

Consider the symmetric closure SY(::;a) of a plausibility relation ::;a that 
is a partial order and where every non-empty subset has minima. Given a 
state s, we call a state t ~a s plausible iff (s, t) E SY(::;o). Conditionalization 
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to irnplausible but epistemically possible states is clearly problernatic. So 
as long as all states in an equivalence class are plausible regardless of the 
actual state in that class, we are out of trouble. This requirement states 
that the epistemic indistinguishability relation ~a must be a refinement of 
Sy(Sa), or, differently said, that ~a 11 Sy(Sa) = ~a. 

Incomparable states in a partial order can be 'compared in a way' after 
all. Define S =a t iff for allt! E S, 1! Sa S iff II Sa t. Let's say that the agent 
is 'indifferent between sand t in that case. Clearly, equally plausible states 
are indifferent: ::::::a ~ =a. But the agent is also indifferent between the 
incomparable states 1 and 2 in the above example. The quotient relation 
Sa/=a is a total order. In belief contraction this identification of incom
parable objects in a preorder typically occurs between sets of formulas, not 
between semantic objects. See work on epistemic entrenchment involving 
templated orders, e.g., (Meyer et aI., 2000). 

Qualitative to quantitative. As already quoted by rne above, the au
thors consider their approach 'in its closer to qualitative logics than to 
approaches of a more quantitative flavour.' \-Vell-chosen wording, because
as the authors know-in its nature their approach is fairly quantitative after 
all. Let us see why. 

From a preorder where all non-empty subsets have minimal elements we 
can create degrees of plausibility as follows. Given that all sets have minimal 
elements, we give the Sa-minimal states of the entire domain S degree of 
plausibility o. This set is non-empty. Now the entire domain minus the 
set of states with degree 0 also has a non-empty set of minimal elements. 
Again, this set exists. These are the states of degree l. And so on. Write 
Degreei(Sa) for the set of states of degree i. We now have: 

Min(Sa, S) 
Min(Sa, S \ Uj=O.k Degreek(Sa)) 

Note the relation with the total order S,,/=a introduced above. 
Of course, I entirely agree that a qualitative presentation of an episternic 

plausibility framework is to be preferred over a quantitative representation. 
And-this is once again Alexandru Baltag providing an essential comment 
to the preliminary version of this cornmentary-although this comparison 
can be made on the structural level, the language of conditional doxastic 
logic is apparently not expressive enough to define degrees of belief, that 
use the above order. This matter is explained in their related publication 
(Baltag and Smets, 2006). But with that result one can wonder if a weaker 
structural framework, more qualitative in nature, would already have suf
ficed to obtain the same logical result. 

It seems to me that the quest for the nature and the spirit of qualitative 
belief revision has not yet been ended. Other frameworks for belief revision, 
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such as the referenced work Fenrong Liu, her PhD thesis (2008), and my 
own work (van Ditmarsch, 2005) (where the non-empty minima requirement 
is only for the entire domain, thus allowing the real number interval [0,1]), 
sometimes employ other partial orders and basic assumptions and may also 
contribute to this quest. 

5 This is a lie 
The authors' analysis of "lying about involves an action plausibility 
model consisting of two actions Liea (rp) and Truea (rp) with preconditions 
,Karp and Karp respectively. These actions can be distinguished by the 
lying agent, the speaker a, but are indistinguishable for the target, the 
listener b. Further, b considers it more plausible that a speaks the truth, 
than not: Truea(rp) Sb Liea(rp). So 'agent a lies about means that a 
announces that rp is true, thus suggesting that she knows that rp is true, 
although a does in fact not know that. For convenience I am presenting 
this action as a dynamic operator that is part of the language (which can 
be justified as the authors do in Section 5). 

In the authors' subsequent analysis it is explained how the contextual 
appearance of an action may also determines its meaning, both the context 
of states wherein the action may be executed and the context of states 
resulting frorn the action's execution. Again, 'lying about rp' makes for a 
fine example. If the listener b already knows that rp is false, the act of lying 
does not appear to b as the truth that rp, but as a lie that rp. 

I have two observations to this analysis. 

Lying and bluffing. T think that the precondition of a 'lying that is 
not ignomnce of the truth, but knowledge to the contrary: the precondition 
of the action Liea (rp) should not be ,re arp but K a 'rp. If the precondition is 
,JCrp instead, I call this bluffing, not lying. As I am not a native speaker 
of English, and neither are the authors, this seems to be as good a moment 
as any to consult a dictionary (Merriam-Webster). To brulI is "to cause to 
believe what is untrue." Whereas to he is "to make a statement one knows 
to be untrue." It is further informative to read that the etymology for 
'bluff' gives "probably from the Dutch bluffen, for 'to boast', 'to playa kind 
of card game." It is of course typical Anglo-Saxon prejudice that all bad 
things concerning short-changing, scrooging, boasting, diseases, and unfair 
play (,Dutch book') are called Dutch. But let's not pursue that matter 
further. Given the action Truea(rp), that expresses the for b more plausible 
alternative, I think that its precondition Karp properly expresses the part 
'to cause to believe what is untrue'. On the other hand, given that the 
action Liea(rp) that is considered less plausible by b, the precondition Ku'rp 
seems to express accurately 'to make a statement one knows to be untrue,' 
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and this condition is stronger than the precondition ,KaCP suggested by 
Baltag and Smets. 

When I proposed this commentary to the authors, Alexandru Baltag 
came with an interesting response: the precondition ,KaCP of action Liea ( cp) 
also involves 'to make a statement one knows to be untrue', namely the 
statement 'I know cp'. In fact, a knows that she does not know cp. This is 
true. But a bit further-fetched, if I may. For me, the prototypical example 
of a lie remains the situation where, way back in time, my mother asks 
me if I washed my hands before dinner and I say: "Yes." yVhereas when 
my grandfather held up his arm, with a closed fist obscuring a rubber (for 
Americans: eraser) and asked me: "vVhat have 1 got in my hand?" and 1 
then respond "A marble!" he never accused me of being a liar. Or did he? 
I'd like to investigate these matters further. I aln unaware of much work 
on lying in dynamic episternics. For a setting involving only belief and not 
knowledge, and public but not truthful announcements, see (van Ditmarsch 
et aL, 2008). 

Is contextual appearance relevant? I question the need for contextual 
appearances of actions. I make my point by resorting to lying, again. The 
authors say that the precondition of a lie is ,KaCP but that, if the listener b 
already knows that cP is false, the act of lying no longer appears to b as the 
truth that cP, but as a lie that cp. I would be more inclined to strengthen 
the precondition for lying about cP from ,KaCP to ,Kacp/\ ,Kb,cp. In which 
case there is no need for this contextual precondition. 

Cornbining this with the previous I therefore think that the precondition 
of Liea(cp) should be I-("cp /\ ,j{/J'Cp rather than ,Kacp. And this is only 
the beginning of a more and more fine-grained analysis of lying, not the 
end. For example, it is reasonable to expect that the speaker is aware of the 
listener's ignorance about cp. 'T'hat makes yet another precondition, namely 
l("j{u'cp. A distinction between knowledge and belief may also be impor
tant to model lying. The typical convention is to assume common belief 
that the speaker is knowledgeable about cp but the listener not, although in 
fact the speaker knows (or at least believes) the opposite of cp; so we get 

where CB is the common belief operator. vVe cannot replace common be
lief by common knowledge in this expression. Then it would be inconsis
tent. (We can also replace all other K-operators in this expression by B
operators.) There are also truly multi-agent scenarios involving lying, where 
only the addressee is unaware of the truth about cp but other listeners in 
the audience may have a different communicative stance. 

If this is only the beginning and not the end, why should there be an 
end at all'? It is in fact unclear (as Alexandru Baltag also mentioned in 
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response to reading a version of these comments) if by incorporating rnore 
and more 'context' we finally have taken all possible contexts into account. 
Maybe there will always turn up yet another scenario that we might also 
want to incorporate in the precondition of lying. On the other hand-me 
again trying to have to last word it seems that by employing infinitary 
operators in preconditions such as common knowledge and common belief, 
as above, we can already pretty well take any kind of envisaged variation 
into account. So my current bet is that the preconditions of contextual 
appearances (not the postconditional aspect) can be eliminated altogether. 

I am detracting myself, and the reader. So let me stop here. Does this 
show that the authors' analysis of lying is flawed? Not at all! In fact it is 
very well chosen, as it is a very rich speech act with many hidden aspects 
that are crying aloud for analysis, and the authors' frarnework of doxastic 
actions is the obvious and very suitable forrnalization for such an analysis. 
Also, different arguments than the above can be put forward, in support 
of ,Kay as precondition of Liea(y) instead of my preferred [<CU'Y' Let 
rne therefore conclude by complimenting the authors again on their rich 
contribution, and hope for rnore from this productive duo. 
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Abstract 

'vVe study a branching-time temporal logic of belief revision where the 
interaction of belief and information is modeled explicitly. The logic 
is based on three modal operators: a belief operator, an informa
tion operator and a next-time operator. We consider three logics of 
increasing strength. The first captures the most basic notion of min
imal belief revision. The second characterizes the qualitative content 
of Bayes' rule. The third is the logic proposed in (Bonanno, 2007a), 
where some aspects of its relationship with the AGM theory of be
lief revision were investigated. We further explore the relationship to 
AGM with the help of semantic structures that have been used in the 
rational choice literature. Further strengthenings of the logic are also 
investigated. 

1 Introduction 
Since the foundational work of Alchourr6n, G~irdenfors and Makinson 
(1985), the theory of belief revision has been a very active area of research. 
Recently several authors have been attempting to re-cast belief revision 
within a modal frarnework. Pioneering work in this new area was done 

Seger berg (1995, 1999) in the context of dynarnic doxastic logic, Board 
(2002) in the context of multi-agent doxastic logic and van Benthem (2004) 
in the context of dynamic epistemic logic. Much progress has been made 
both in dynamic episternic logic for example, Baltag and Smets, 2006; 
van Ditmarsch, 2005; van Ditmarsch and Labuschagne, 2007 and the recent 
survey in van Ditmarsch et al., 2007) as well as in dynamic doxastic logic 
(see Leitgeb and Seger berg, 2007). Another very active area of research has 
been iterated belief revision (see, for example, Boutilier, 1996; Darwiche and 
Pearl, 1997; Nayak et aI., 2003; Rott, 2006). 

This paper joins the recent attempts to establish a qualitative view of be
lief revision in a modal framework, by continuing the study of belief revision 
within a temporal framework that was first proposed in (Bonanno, 2007a). 
Since belief revision deals with the interaction of belief and information over 

Krzysztof R. Apt, Robert van Perspecti'ues on Garnes and Interaction. 
'Texts in Logic and Gan1es 4) An1st"rdam Press 2008, pp. 45-79. 
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time, branching-time temporal logic seenh"; a natural setting for a theory of 
belief change. On the semantic side we consider branching-time frames with 
the addition of a belief relation and an information relation for every in
stant t. We thus extend to a temporal setting the standard (Kripke, 1963) 
semantics used in the theory of static belief pioneered by Hintikka (1962). 
On the syntactic side we consider a propositional language with a next-time 
operator, a belief operator and an information operator. Three logics of 
increasing strength are studied. The first is a logic that expresses the most 
basic notion of minimal belief revision. The second captures the qualitative 
content of Bayes' rule, thus generalizing the two-date result of (Bonanno, 
2005) to a branching-time framework. The third logic is the logic proposed 
in (Bonanno, 2007a), where some aspects of the relationship between that 
logic and the AGM theory of belief revision were investigated. Tn this paper 
we provide frarne characterization results for all three logics and we further 
investigate the relationship between the strongest of the three logics and 
the notion of AGr.,1[ belief revision functions. We do so with the help of 
sernantic structures that have been used in the rational choice literature. 
\lVe call these structures one-stage revision frames and show that there is a 
correspondence between the set of one-stage revision frames and the set of 
AGM belief revision functions. Further strengthening of the logic are also 
investigated. 

While the structures that we consider accommodate iterated belief revi
sion in a natural way, we do not attempt to axiomatize iterated revision in 
this paper. First steps in this direction have been taken in (Zvesper, 2007). 

We provide frame characterization results and do not address the issue 
of completeness of Oil!" logics. Completeness of the basic logic with respect 
to a rnore general class of ternporal belief revision frames (where the set of 
states is allowed to change over time) is proved in (Bonanno, 2008); that 
result has been extended in (Zvesper, 2007) to the set of frames considered 
in this paper. 

2 Temporal belief revision frames 
We consider the semantic frames introduced in (Bonanno, 2007a), which 
are branching-tinle structures with the addition of a belief relation and an 
information relation for every instant t. 

A next-time branching frame is a pair (1', >---» where l' is a non-empty, 
countable set of instants and >---> is a binary relation on T satisfying the 
following properties: Vt], t 2, t3 E 1', 

(1) 

(2) 

backward uniqueness 

acyclicity 

if t[ >---> t3 and t2 >---> t3 then t] t2 

if (t1' ... ,tn ) is a sequence with ti >---> 

for every i 1, ... ,Tl - 1, then tn / t 1 . 
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The interpretation of tt r--t t2 is that t2 is an immediate S1tCCeSSOT of tl 
or tl is the immediate pr-edecessoT oft2 : every instant has at most a unique 
immediate predecessor but can have several immediate successors. 

Definition 2.1. A temporal belief Tevision frame is a quadruple (1', r--t, 0, 
{Bt,IdtE'T) where (T, r--t) is a next-time branching frame, 0 is a non-empty 
set of states (or possible worlds) and, for every t E T, Bt and It are binary 
relations on n. 

The interpretation of wBtw l is that at state wand time t the individual 
considers state Wi possible (an alternative expression is "Wi is a doxastic 
alternative to w at tirne t"), while the interpretation of wItw l is that at 
state wand time t, according to the information received, it is possible that 
the true state is Wi. We shall use the following notation: 

Bt(w) = {Wi EO: wBtw/} and, similarly, It(w) = {Wi EO: wItw/}. 

Figure 1 illustrates a temporal belief revision frame. For simplicity, in 
all the figures we assume that the information relations It are equivalence 
relations (whose equivalence classes are denoted by rectangles) and the belief 
relations B t are serial, transitive and euclidean 1 (we represent this fact by 
enclosing states in ovals and, within an equivalence class for It, we have 
that-for every two states wand Wl--W

l E Bt(w) if and only if Wi belongs 
to an oval).2For example, in Figure 1 we have that Itl h) {a, ,} and 
Btlh) {a,i'}, 

Temporal belief revision frames can be used to describe either a situation 
where the objective facts describing the world do not change - so that only 
the beliefs of the agent change over time - or a situation where both the 
facts and the doxastic state of the agent change. In the literature the first 
situation is called belief revision, while the latter is called belief update 
Katsuno and Mendelzon, 1991). We shall focus on belief revision. 

On the syntactic side we consider a propositional language with five 
modal operators: the next-time operator 0 and its inverse 0 1

, the belief 
operator B, the information operator J and the "all state" operator A. The 
intended interpretation is as follows: 

O¢: 
O-l¢ : 
B¢: 
J¢ : 
A¢: 

"at every next instant it will be the case that ¢" 
"at every previous instant it was the case that ¢" 
"the agent believes that ¢" 
"the agent is informed that ¢" 
"it is true at every state that ¢" . 

I Bt is serial if, Vw E II, Bt(w) f 0; it is transitive if WI E Bt(w) implies that Bt <;;; 
Bt(w); it is euclidean if WI E Bt(w) implies that Bt(w) <;;; Bt(w/). 

2 Note, however, that our results do not require It to be an equivalence relation, nor do 
they require Bt to be serial, transitive and euclidean. 
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FIGURE 1. 

The "all state" operator A is needed in order to capture the non-normality 
of the information operator I (see below). For a thorough discussion of the 
"all state" operator see (Goranko and Passy, 1992). 

Note that, while the other operators apply to arbitrary formulas, we 
restrict the information operator to apply to Boolean formulas only, that 
is, to formulas that do not contain modal operators. Boolean formulas 
are defined recursively as follows: (1) every atornic proposition is a Boolean 
formula, and (2) if ¢ and 1/) are Boolean formulas then so are '(P and (¢ V 1/)). 
The set of Boolean formulas is denoted by <pB. Boolean formulas represent 
facts and, therefore, we restrict information to be about facts.3 

Given a temporal belief revision frame (T, >---+,0, {Bt, IdtEr) one obtains 
a model based on it by adding a function 1/ : S ---> 211 (where S is the set of 
atomic propositions and 211 denotes the set of subsets of S1) that associates 
with every atomic proposition p the set of states at which p is true. Note 
that defining a valuation this way is what frames the problem as one of belief 
revision, since the truth value of an atomic proposition p depends only on 
the state and not on the time 4 Given a model, a state w, an instant t and 
a formula ¢, we write (w, t) ¢ to denote that ¢ is true at state wand 
time t. Let II ¢II denote the truth set of ¢, that is, II ¢II {( w, t) E S1 x T : 
(w, t) I (p} and let r ¢ l t ~ 0 denote the set of states at which (P is true at 
time t, that r¢lt = {w En: t) F ¢}. '['ruth of an arbitrary formula 
at a pair (w, t) is defined recursively as follows: 

3 Zvesper (2007) has recently proposed a version of our logic where the restriction to 
Boole.an formulas is dropped. 

4 Belief update would require a valuation to be defined as a function \/ : S' -> 2rlxT. 
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if PES, 
(w, t) F ---,4Y 
(w,t) I ¢V1jJ 

(w, t) I 04Y 
(w,t) I 0 l4Y 
(w, t) I 134Y 

(w,t)FI¢ 

(w, t) I Ael> 

t) F p if and only if wE V(p); 
if and only if (w, t) Jz' 4Y; 
if and only if either (w, t) I ¢ or (w, t) I 1jJ (or both); 
if and only if (w, il) I 4Y for every tl such that i >----+ il; 

if and only if (w, til) I 4Y for every t" such that til >----+ t; 

if and only ifBt(w) ~ i4Ylt' that is, 
if (Wi, t) 14Y for all Wi E Bt(w); 
if and only if Tt(w) = i4YltJ that if (1) (Wi, t) F el> 
for all Wi E Tt(w), and (2) if (Wi, t) I 4Y then Wi E Tt(w); 
if and only if i4Y l t n, that is, 
if (Wi, t) 14Y for all Wi E n. 

Note that, while the truth condition for the operator 13 is the standard 
one, the truth condition for the operator I is non-standard: instead of 
simply requiring that Tt(w) ~ i4Yl t we require equality: Tt(w) = i4Yl t . Thus 
our information operator is formally similar to the "all and only" operator 
introduced in (Humberstone, 1987) and the "only knowing" operator studied 
in (Levesque, 1990), al though the interpretation is different. It is also similar 
to the "assumption" operator used by Brandenburger and Keisler (2006). 

Remark 2.2. The truth value of a Boolean formula does not change over 
time: it is only a function of the state. That is, fix an arbitrary model and 
suppose that (w, t) F 4Y where 4Y E q,B; then, for everye E T, (w, tf) F 4Y 
(for a proof see Bonanno, 2007a, p. 148). 

A formula 4Y is 1Jalid in a rnodel if II ¢II n x T, that is, if 4Y is true at 
every state-instant pair (w, t). A forrnula 4Y is valid in a frame if it is valid 
in every model based on it. 

3 The basic logic 
1'he formal language is built in the usual way Blackburn et al., 2001) 
from a countable set of atomic propositions, the connectives ---, and V (from 
which the connectives /\, ----+ and +--+ are defined as usual) and the modal 
operators 0, 0- 1

, B, I and A, with the restriction that is a well-
formed formula if and only if 4Y is a Boolean formula. Let 04Y ---, 0 ---'4Y, 
and 0 l4Y clef ---'0 1 ---,4Y. Thus the interpretation of 04Y is "at some next 
instant it will be the case that 4Y" while the interpretation of 0 leI> is "at 
some irnmediately preceding instant it was the case that 

iNe denote !La the basic logic defined by the following axiom,s and 
rules of inference. 
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Axioms: 

l. All propositional tautologies. 

2. Axiom K for 0,0 1, Band A:5 for D E {O, 0 1,13, A}: 

3. Temporal axioms relating 0 and 0-1
: 

4. Backward Uniqueness axiom: 

5. 85 axioms for A: 

A4> ----+ (p 
,A4> ----+ A,A4> 

(K) 

(BU) 

6. Incl usion axiom for 13 (note the absence of an analogous axiom for 1): 

A4> ----+ 134> 

7. Axioms to capture the non-standard semantics for I: for 4>,1/J E <I>}] 
(recall that <I>}] denotes the set of Boolean formulas), 

Rules of Inference: 

1. Modus Ponens: 

(I4>!\ I1/I) ----+ A(4) <-+ 1/1) 

A(4) <-+ 1/J) ----+ (I4> <-+ I1/I) 

2. Necessitation for A, 0 and 0-1
: 

For everJ' D E {A ,0 'O-I} ~ " , D4>· 

(MP) 

(Nee) 

5 Axiom K for I is superfluous, since it can be derived from axioms hand 12 below (see 
Bonanno, 2005, p. 204). 
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Note that frorn 111 P, Inei R and Necessitation for A one can derive ne
cessitation for B. On the other hand, necessitation for I is not a rule of 
inference of this logic (indeed it is not validity preserving). 

Remark 3.1. By MP, axiom K and Necessitation, the following is a derived 
rule of inference for the operators 0 0- L B and A: J;---->,!fJ, for D E 

" [Jq)---->cc'1) 

{O, 0- L, B, A}. We call this rule RI<. On the other hand, rule RK is not 
a valid rule of inference for the operator I. 

4 The weakest logic of belief revision 
Our purpose is to model how the beliefs of an individual change over time in 
response to factual information. Thus the axioms we 'tntTOd,ltce are restricted 
to Boolean formulas, which are formulas that do not contain any modal 
operators. 

We shall consider axioms of increasing strength that capture the notion 
of minimal change of beliefs. 

The first axiom says that if ¢ and 1/) are facts (Boolean formulas) and 
currently the agent believes that ¢ and also believes that 1jJ and his belief 
that ¢ is non-trivial (in the sense that he considers ¢ possible) then at 
every next instant-if he is informed that ¢ it will still be the case that he 
believes that 1/). That is, if at a next instant he is informed of smne fact that 
he currently believes non trivially, then he cannot dTOp any of his current 
factual beliefs ('W' stands for 'Weak' and 'ND' for 'No Drop'):6 if ¢ and 1jJ 
are Boolean, 

(WND) 

1'he second axiom says that if (jJ and 1jJ are facts (Boolean formulas) 
and-currently-the agent believes that ¢ and does not believe that 1j), 
then-at every next instant-if he is informed that cP it will still be the case 
that he does not believe that That is, at any next instant at which he 
is informed of some fact that he currently believes he cannot add a factual 
belief that he does not currently have ('vV' stands for 'Weak' and 'NA' 
stands for 'No Add'):7 cP and 1/J are Boolean, 

(B(jJ.A. -,B1jJ) -4 O(IcP -4 -,B1jJ). (WNA) 

6 It is shown in the appendix that the following axiom (which says that if the individual 
is informed of some fact that he believed non-trivially at a previous instant then he 
must continue to believe every fact that he believed at that time) is equivalent to 
WND: if <f; and 'IjJ are Boolean, 

0- 1 
/\ B4) /\ ~B~<f;) /\ f<f; --> B'IjJ. 

This, in turn, is propositionally equivalent to 0- 1 (B<f; /\ B'IjJ /\ ~B~1» --> (I <f; --> B'IjJ). 
7 It is shown in the appendix that the following is an equivalent formulation of WNA: 

if <f; and 1/) are Boole.an, 
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Thus, by WND, no belief can be dropped and, by WNA, no belief can 
be added, at any next instant at which the individual is informed of a fact 
that he currently believes. 

An axiom is characterized by (or chamcter·izes) a property of frames if 
it is valid in a frame if and only if the frame satisfies that property. 

All the propositions are proved in the appendix. 

Proposition 4.1. 

(1) The axiom WND is characterized by the following property: Vw E fl, 
VtI, t2 E T, 

if tl >----+ t 2, Btl (W) # 0 and Btl (W) ~ 1.t2 (w) then Bt2(w) ~ Btl (w). 
(PWND ) 

(2) The axiom WN A is characterized by the following property: Vw E [2, 

\It 1 , t2 E T, 

Let Lw (where 'W' stands for 'Weak') be the logic obtained by adding WND 
and WNA to Lo. We denote this by writing Lw = Lo + WNA+ WND. The 
following is a corollary of Proposition 4.l. 

Corollary 4.2. The logic Lw is characterized by the class of temporal 
belief revision frames that satisfy the following property: Vw E [2, Vt l , t2 E 

T, 

if t[ >----+ t2, Btl (w) / 0 and Btl (w) ~ 1.t2 (w) then Btl (w) Bt2(w). 

The frame of Figure 1 violates the property of Corollary 4.2, sincet2 ---+ t3, 
Bt2 (a) = {a} ~ 1.t3 (a) = {a,(3} and Bt3 (a) = {(?} # Bt2 (a). 

The logic Lw captures a weak notion of minimal change of beliefs in 
that it requires the agent not to change his beliefs if he is informed of some 
fact that he already believes. This requirement is stated explicitly in the 
following axiom (,WNC' stands for 'Weak No Change'): if 1> and 1/) are 
Boolean formulas, 

(WNC) 

WNC says that if the agent is informed of something that he believed non
trivially in the immediately preceding past, then he now believes a fact if 
and only if he believed it then. 

Proposition 4.3. WNC is a theorem of Lw. 

We now turn to a strengthening of Lw. 
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5 The logic of the Qualitative Bayes Rule 
1'he logic L IV impCAses no restrictions on belief revision whenever the indi
vidual is informed of some fact that he did not previously believe. We now 
consider a stronger logic than Lw. The following axiom strengthens WND 
by requiring the individual not to drop any of his current factual beliefs 
at any next instant at which he is informed of some fact that he currently 
consideTs possible (without necessarily believing it: the condition Bcp in the 
antecedent of WND is dropped): if cp and 'IjJ are Boolean, 

(ND) 

The corresponding strengthening of WN A requires that if the individual 
considers it possible that ((p /\ then at any next instant at which he is 
inforrned that (p he does not believe that 'IjJ:8 if cp and 'IjJ are Boolean, 

(NA) 

One of the axioms of the AGM theory of belief revision (see Giirdenfors, 
1988) is that information is believed. Such axiom is often referred to as 
"Success" or "Acceptance". 'fhe following axiorn is a weaker form of it: 
information is believed when it is not surprising. If the agent considers a 
fact (p possible, then he will believe cp at any next instant at which he is 
inforrned that cp. We call this axiorn Q1tahfied Acceptance (QA): if (p is 
Boolean, 

,B-,cp -4 O(Icp -4 Bcp). (QA) 

Proposition 5.1. 

(1) 1'he axiom ND is characterized 
\ft l , t2 E T, 

the following property: \fv.; E 0, 

(2) The axiom N A is characterized by the following property: \fv.; E 0, 
\ft l ) t2 E T, 

8 Axiom NA can alternatively be written as 0(11) /\ B'IjJ) ---* B(1) ---* 'IjJ), which says 
that if there is a next instant at which the individual is informed that 1> and believes 
that '<jJ, then he must now believe that whenever ¢ is the case then ?/J is the case. 
Another, propositionally equivalent, formulation of N A is the following: ,B(¢---* 
'IjJ) ---* OU 1> ---* ,B'IjJ), which says that if the individual does not believe that whenever 
1> is the case then 'IjJ is the case, then at any next instant if he is informed that 1> 
then he cannot believe that "P. 
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(:3) 'fhe axiom QA is characterized by the following property: \lw E 0, 
Vt],t 2 E T, 

We call the following property of temporal belief revision frames "Qual
itative Bayes Rule" (QBR): \It I, t2 E T, \lw E 0, 

The expression "Qualitative Bayes Rule" is motivated by the following ob
servation (see Bonanno, 2005). In a probabilistic setting, let PWJl be the 
probability measure over a set of states 0 representing the individual's be
liefs at state wand time t L; let F S;; 0 be an event representing the in
formation received by the individual at a later date t2 and let Pw ,t2 be 
the posterior probability measure representing the revised beliefs at state 
wand date t2. Bayes' rule requires that, if Pw,tl (F) > 0, then, for every 

event E S;; 0, PW,t2 (E) P~;tl (~~:;') . Bayes' rule thus implies the following 
w,t!, ! 

(where supp(P) denotes the support of the probability measure P): 

if sUPP(Pw,tl) II F / 0, then sUPP(Pw,t2) sUPP(PW,t,) II F. 

If we set Btl (w) = supp(Pw,t l ), F It2(w) (with t1 >---7 t2) and Bt2(W) 
sUPP(Pw,t2) then we get the Qualitative Bayes Rule as stated above. Thus 
in a probabilistic setting the proposition "at date t the individual believes 
cP" would be interpreted as "the individual assigns probability 1 to the event 
I cP l t S;; 0". 

The following is a corollary of Proposition 5.l. 

Corollary 5.2. The conjunction of axioms N D, N A and QA characterizes 
the Qualitative Bayes Rule. 

The frame of Figure 1 violates QBR, since t2 -+ Bt2 (5) = {p, /} and 
It3 (5) = b,5, so that Bt2 (5) n It3 (5) = b} c/ 0; however, Bt3 (5) = 

{/,5} c/ Bt2 (5) n It3 (5). On the other hand, the frame of Figure 2 does 
satisfy QBR. 

Definition 5.3. Let ILQBR = ILo+ ND + NAt QA. 

Remark 5.4. The logic ILQBR contains (is a strengthening of) ILw. In 
fact, WND is a theorem of the logic ILa + iV D, since (BcP;\ -,B-,cP i\ B-I/J) -+ 

(-,B-,cP i\ BI/J) is a tautology, and WN A is a theorem of the logic: ILa + iVA 
(see the appendix). 
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FIGURE 2. 

6 The logic of AG M 
We now strengthen logic ILQBR by adding four rnore axioms. 

The first axiom is the Acceptance axiom, which is a strengthening of 
Qualified Acceptance: if (p is Boolean, 

J¢ ---+ B¢. (A) 

The second axiom says that if there is a next instant where the individual 
is informed that (pA.1j) and believes that X, then at every next instant it must 
be the case that if the individual is informed that (p then he rnust believe 
that (¢ /\ 1jJ) ---+ X (we call this axiom K7 because it corresponds to AC;M 
postulate (007): see the next section): if ¢, '1/; and X are Boolean formulas, 

The third axiom says that if there is a next instant where the individual 
is informed that ¢, considers ¢/\ 1jJ possible and believes that 1jJ ---+ X, then at 
every next instant it must be the case that if the individual is informed that 
¢ /\ 1jJ then he believes that X (we call this axiorn K8 because it corresponds 
to AGM postulate (008): see the next section): if ¢, .1/; and X are Boolean 
formulas, 

O(J¢ /\ ,B-.(¢ /\ 1jJ) /\ B(1jJ ---+ X)) ---+ O(I(¢ /\ 1/J ) ---+ BX). (K8) 

'fhe fourth axiom says that if the individual receives consistent infor
mation then his beliefs are consistent, in the sense that he does not si
multaneously believe a formula and its negation ('WC' stands for 'Weak 
Consistency'): if ¢ is a Boolean formula, 
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(WC) 

Proposition 6.1. 

(1) 'fhe axiom (A) is characterized by the following property: \lw E 0, 
\It E T, 

(2) The axiom (K7) is characterized by the following property: \lw E 0, 
\/t1, t2, t3 E T, 

ift1 >-+ t2, t1 >-+ t3 and It3(W) ~ It2(W) 

then It3 (w) n Bt2(W) ~ Bt3 (w). (PK7) 

(3) The axiom (K8) is characterized by the following property: \lw E 0, 
\ltl, t 2, t3 E T, 

It:; (w) ~ It2 (w) and It:; (w) n Bt2 (w) # 0 

then Ht3 (w) ~ It3 (w) n Ht2 (w). (PK8 ) 

(4) 'fhe axiom (WC) is characterized by the following property: \lw E 0, 
\It E T, 

if It(w) / 0 then Bt(w) / 0. (Pwc ) 

Let lLAGM = lLa + A + ND + NA + K7 + K8 + We. Since qA can be 
derived from 11, logic lLACM contains a strengthening of) logic lLQBR . 

Definition 6.2. An lLAGIVr-jmme is a temporal belief revision frame that 
satisfies the following properties: 

(1) the qualitative Bayes Rule, 

(2) \lw E 0, \It E T', Bt(w) ~ It(w), 

(3) \lw E 0, \It E T, if It(w) # 0 then Bt(w) # 0, 

if t] >-+ t2, tl >-+ t3, It3 (w) ~ It2 (w) and It3 (w) II Ht2 (w) / 0 

then Ht3 (w) = It3 (w) II Ht2 (w). 

An lLAcM-model is a model based on an lLAGM-frame. 
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The frame of Figure 2 is not an AGNI frame, although it satisfies QBR. 
In fact, we have that t] >---+ t 2 , tt >---+ t3 , I t3 h) = b,c5}, I t2 h) = {p",c5} 
and B t2 h) = {p, /}, so that It3 h) S;; It2 h) and It3 h) nBt2 h) = b} # 0 

but Bt3h) = b,c5} # It3(w) nBt2(w) = b}· 

Corollary 6.3. It follows from Proposition 6.1 that logic L ACM is charac
terized by the class of LAcM-frames. 

Some aspects of the relationship between logic LACl'v! and the AGNI 
theory of belief revision were investigated in (Bonanno, 2007a). In the 
next section we explore this relationship in rnore detail, with the help of 
structures borrowed from the rational choice literature. 

7 Relationship to the AGJ\t1 theory 
We begin by recalling the theory of belief revision due to Alchourr6n, 
Giirdenfors and Makinson (1985), known as the AGNI theory also 
G~irdenfors, 1988). In their approach beliefs are modeled as sets of formulas 
in a given syntactic language and belief revision is construed as an operation 
that associates with every deductively closed set of formulas K (thought of 
as the initial beliefs) and formula ¢ (thought of as new information) a new 
set of formulas K; representing t he revised beliefs. 

7.1 AGlM belief revision functions 

Let S be a countable set of atomic propositions and Lo the propositional 
language built on S. l'hus the set CPo of formulas of Lo is defined recursively 
as follows: if pES then p E CPo and if cp, V) E CPo then -,¢ E CPo and 
cp V 1jJ E CPo. 

Given a subset K S;; CPo, its PL-deductive closure [KjPL (where 'PL' 
stands for Propositional Logic) is defined as follows: 1jJ E [KjPL if and only 
if there exist ¢1, ... , ¢n E K such that (¢1 /\ ... /\ Tn) -'> VJ is a tautology 
(that a theorem of Propositional Logic). A set K S;; CPo is consistent if 
[KjPL # CPo (equivalently, if there is no formula ¢ such that both ¢ and -,¢ 
belong to [/"yL). A set f{ S;; CPo is deductively closed if K = [K(L A belief 
set is a set K S;; CPo which is deductively closed. The set of belief sets will 
be denoted by OC and the set of consistent belief sets by oceon

. 

Let K E oceon be a consistent belief set representing the agent's initial 
beliefs. A belief r-c-vision function for K is a function 

that associates with every formula ¢ E CPo (thought of as new information) 
a set K® (¢) S;; CPo (thought of as the new belief). It is common in the 
literature to use the notation K; instead of K8(cp), but we prefer the latter. 
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A belief revision function is called an ACM revision function if it satisfies 
the following properties, known as the AGM postulates: 1/; E <Po, 

[,,"'f! ( ¢) E IK. 

¢ E K®(¢) 

K®(¢) ~ [K U {(,b}tL 

) 

(@2) 

(@3) 

if ,(,0 t/:- K, then [J( U {¢}tL ~ [{(f!(¢) 

if ¢ is a contradiction then ((,b) = <Po 

if ¢ is not a contradiction then K0 (¢) # <Po 

if (,0 +-+ 1/; is a tautology then J(®(¢) [{(f!(1/)) 

(@4) 

(@5a) 

(@5b) 

(@6) 

K'f!(¢ ;\.1/;) ~ [1<0(¢) U }(L 

if t/:-K®(¢),then [K®(¢)U{1jJ}lPL~K(f!(¢I\·I/J). 

I) requires the revised belief set to be deductively closed. 

(@2) requires that the information be believed. 

says that beliefs should be revised minimally, in the sense that no 
new formula should be added unless it can be deduced from the information 
received and the initial beliefs. 

says that if the information received is compatible with the initial 
beliefs, then any formula that can be deduced from the information and the 
initial beliefs should be part of the revised beliefs. 

(@5ab) require the revised beliefs to be consistent, unless the information 
(,0 is contradictory (that is, ,(,0 is a tautology). 

(@6) requires that if ¢ is propositionally equivalent to 1/) then the result 
of revising by ¢ be identical to the result of revising by 1/;. 

and (G)8) are a generalization of (@3) and that 

"applies to iterated changes of belief. The idea is that if K's ((/» is a 
revision of K [prompted by 4>] and K® (4)) is to be changed by adding 
further sentences, such a change should be made by using expansions 
of K® (4)) whenever possible. More generally, the minimal change of 
K to include both 4> and I/; (that is, K®(¢;\1/J)) ought to be the same 
as the expansion of K'Y! ((/» by 1/J, so long as .1jJ does not contradict the 
beliefs in K'iD(cb)" (Gardenfors, 1988, p. 55).9 

We now turn to a semantic counterpart to the AGM belief revision 
functions, which is in the spirit of Grove's (1988) system of spheres. The 
structures we will consider are known in rational choice theory as choice 
fanct'ions (see, for example, Rott, 2001; Suzumura, 198:3). 

9 The expansion of K(i) (¢) by 1/) is [K(~ (¢) u {1,b} tL . 
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7.2 Choice structures and one-stage revision frames 

Definition 7.1. A choice stmcture is a quadruple (0, E, ([JJ, R) where 

• 0 is a non-empty set of states; su bsets of n are called events. 

• E ~ 2" is a collection of events (2" denotes the set of subsets of 0). 

• R : E -> 2n is a function that associates with every event E E E an 
event RE ~ 0 use the notation RE rather than R( E)). 

• ([JJ EE is a distinguished element of E with ([JJ # 0. 

Tn rational choice theory a set E E E is interpreted as a set of available 
alternatives and RE is interpreted as the subset ofE which consists oftlmse 
alternatives that could be rationally chosen. In our case, we interpret the 
elements of E as possible items of information that the agent might receive 
and the interpretation of RE is that, if inforrned that event E has occurred, 
the agent considers as possible all and only the states in R E . For the 
distinguished element ([JJ, we interpret Ro as the original or initial beliefs 
of the agent. 10 

Note that we do not impose the requirement that 0 E E. 

Definition 7.2. A one-stage TEv'ision fmme is a choice structure 
(0, E, ([JJ, R) that satisfies the following properties: If E, FEE, 

RE ~E, 

if E/ 0 then RE/ 0, 

if E ~ F and RF II E / 0 then RE RF n E, 11 

if Ro n E # 0 then RE Ro n E. 

(BRl) 

(BR2) 

(BID) 

(BR4) 

Tn the rational choice literature, (BID) and (BR2) are taken to be part of 
the definition of a choice function, while (BR.3) is known as Arrow's axiom 

Suzumura, 1983, p. 25). Property (BR4), which corresponds to our 
Qualitative Bayes Rule, has not been investigated in that literature. 

The following is an example of a belief revision frame: 0 = {(~, ,6, i, 5}, 
E {{ Q, /J}, {r, 5}, {Q, j', i}}, ([JJ R{a,/3} {/J}, Rh,b} {r}, 
R{cx"B,I'} = L6,i}' 

10 In the rational choice literature there i~ no counterpart to the distingui~hed set O. 
11 It is proved in the appendix that, in the presence of (BRI), (BR:!) is equivalent to: 

VE, FEE, 

if Rp n E i 0 and En FEE then REnF = Rp n E. (BR:!') 
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A one-stage revision model is a quintuple (0, E, i[J), R, V) where (0, E, i[J), 

R) is a one-stage revision frame and V : 8 ---+ 2" is a function (called a 
valuation) that associates with every atomic proposition P the set of states 
at which p is true. n·uth of an arbitrary formula in a model is defined 
recursively as follows (w F ¢ means that formula ¢ is true at state w): (1) 
for p E 8, w F p if and only if w E V(p), (2) w F -.¢ if and only if w Fe ¢ 
and (3) w F ¢ V 'I/J if and only if either w F ¢ or w F 'I/J (or both). The 
truth set of a formula ¢ is denoted by II¢II. Thus II¢II {w EO: w F ¢}. 

Given a one-stage revision model, we say that 

(1) the agent initially bdiC'ves that ¢ if and only if ~ II¢II, 
(2) the agent believes that ¢ upon learning that 1/) if and only if 11'l/J11 E E 

and RII1J; ~ II¢II· 
Definition 7.3. A one-stage revision model is comprehensive if for every 
formula ¢, II¢II E E. It is rich if, for every finite set of atomic propositions 
P = {Pl) ... ,Pn,ql,··· ,qm}, there is a state Wp EO such that WI' F Pi for 
every 1, ... ,n and WI' F -.qj for every j = 1, ... ,rn . 

l'hus in a comprehensive one-stage revision model every formula is a 
possible item of inforrnation. For exarnple, a model based on a one-stage 
revision frame where E = 2" is comprehensive. In a rich model every 
formula consisting of a conjunction of atomic proposition or the negation of 
atomic propositions is true at some state. 

7.3 Correspondence 

We now show that the set of AGM belief revision functions corresponds to 
the set of comprehensive and rich one-stage revision models, in the sense 
that 

(1) given a comprehensive and rich one-stage revision model, we can as
sociate with it a consistent belief set J{ and a corresponding AGM 
belief revision function J{®, and 

(2) given a consistent belief set J{ and an AGr</l belief revision function 
J-(® there exists a comprehensive and rich one-stage revision model 
whose associated belief set and AGM belief revision function coincide 
with K and K''0, respectively. 

Proposition 7.4. Let (0, E, i[J), R, V) be a comprehensive one-stage revi
sion model. Define J{ N E <Po : Ro <:;;;: II 'I/J II }. Then J{ is a consistent 
belief set. For every ¢ E <Po define (¢) {.1jJ E <Po : RI<I>II ~ II 'I/J II}. Then 
the function J{® : <Po ---+ 2iJ?o so defined satisfies AGM postulates 

and (06)(08). If the model is rich then also (05b) is satisfied. 
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Proposition 7.5. Let 1<." E lK be a consistent belief set and [{'J) : <Po -+ 

2<1>0 be an AGM belief revision function (that is, [{® satisfies the AGM 
postulates (@1)(@8)). Then there exists a comprehensive and rich one
stage revision model (O,E,(]]l,R, V) such that [{ = {'0 E <Po S;; 11?,b11} 
and, for every (p E <Po, [{®(¢) = {0 E <Po : Ri1>11 S;; 11?,b11}· 

7.4 Back to lLAGlvl frames 

Given an lLAGlvl frame (T, >---+,0, {Bt, IdtET) (see Definition 6.2) we can 
associate with every state-instant pair (wo, to) a one-stage revision frame 

(see Definition 7.2) , EO, (]]lo, RO) as follows. Let t~ = {t E T : to >---+ t}, 
then 

• 0° 0, 

• EO = {E S;; ° : E = It (wo) for some t E to , 

• for every E E E, if E It(wo) (for some t E to then R~ Bt(wo), 

By Property (2) of lLAGlvl-frames the frame (0°, EO, (]]l0, R O) so defined 
satisfies property BRI of the definition of one-stage revision frame, while 
Property (3) ensures that BR2 is satisfied, Property (4) ensures that BR.'3 
is satisfied and Property (1) ensures that BRA is satisfied. 

Consider now the subset of the set of lLAGlvl frames consisting of those 
frames satisfying the following properties: 

\It E T, \lw EO, \IE E 2"\{0}, ::lt l 
E T: t >---+ t f and Itl(w) = E. (PClvlP) 

\It E T, \lw E 0, It(w) # 0. (seriality of Id 

Let lLcomp ("comp" stands for "comprehensive") be lLAGlvl + eMP + Icon 

where eMP and Icon are the following axiorns: for every Boolean ¢ 

,A,¢ -+ OI¢, 

,1(¢ fl. '9). 

(eMP) 

(Icon) 

Axiom eMP says that, for every Boolean formula 9, if there is a state 
where ¢ is true, then there is a next instant where the agent is informed 
that ¢, while axiom Icon rules out contradictory or inconsistent information. 
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Proposition 7.6. 1'he logic Lcomp is characterized by the class of L AGlVl -

frames that satisfy P Cl'vlP and seriality of It .12 

We can view logic Lcomp as an axiomatization of the AGM belief revision 
functions. In fact, if we take any model based on a Lcomp frarne and any 
state-instant pair, the one-stage revision frarne associated with it is such 
that E 2°\ {0}. Thus the corresponding one-stage revision model is 
comprehensive (see Definition 7.3) and therefore, by Proposition 7.4, the 
associated AG i\!r belief revision function [(® : <Po ---+ 2<l'o satisfies AG i\!r 
postulates (@1)-(@5a) and (('1)6)-(@8). Conversely, by Proposition 7.5, for 
every consistent belief set [( and AGIVI belief revision function 1(,'0 : <Po ---+ 

2<1>0 there is a model based on an Lcornp frame whose associated AGM belief 
revision function coincides with [(® .13 

Models of L comp , however, are large" in that, for every state-
instant pair and for every Boolean formula cP whose truth set is non-empty, 
there is a next instant where the agent is informed that cPo T'his requirement 
corresponds to assurning a complete belief revision policy for the agent, 
whereby the agent contemplates his potential reaction to every conceivable 
(and consistent) item of information. In a typical L AGM frame, on the 
other hand, the items of information that the individual might receive at 
the next instant rnight be few, so that the agent's belief revision policy is 
limited to a few (perhaps the most likely) pieces of information. How does 
this limited belief revision policy associated with LAGl'vl frames relate to the 
AGM postulates for belief revision? The answer is given in the following 
proposition, which was proved in (Bonanno, 2007<1) (we have reworded it 
to fit the set-up of this section). We can no longer recover an entire AGM 
belief revision function from a model based on an arbitrary L AGM frame. 
However, we can recover, for every pair of Boolean formulas cP and 1jJ, the 
val ues [('iD (cP) and [{('0 (cP /\ 1/)) of an AG M belief revision function whenever 
there is a next instant at which the agent is informed that (p and there is 
another next instant where he is informed that (cP /\ 1jJ). 

Proposition 7.7. 
(A) Let [( ~ <pB be a consistent and deductively closed set and let [(® : 

<Po ---> 2<1>0 be an AGM belief revision function. Fix arbitrary (P,1/) E <pB. 

12 Note that, given the non-standard validation rule for I<f;, the equivalence of axiom D 
(r<f; ---> ~I~<f;) and seriality of It breaks down. It is still true that if It is serial then the 
axiom I<f; ---> ~I~<f; is valid, but the converse is not true (see Bonanno, 2005, p. 226, 
Footnote 25). 

13 All we need to do in this respect is to elimina.te the empty set from E in the proof of 
Proposition 7.5, that is, discard the pc"-,,sibility that <f; is a contradiction. 
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'I'hen there is an lLAGlVl-model, t L, t2, t3 E T and 0: E n such that: 

t L >---+ t2 

J{ = {X E <pB: (o:,td ~ BX} 

/2) Jcp 

J{G\cp) {X E <pB : (0" t2) I EX} 

if cp is consistent then Vj, t) I cp for some (3 En and t E T 

tl >---+ t3 

(U,t3) ~J(cpl\1/)) 

J{®(cp/\1jJ)={XE<p B : t3)~BX} 

if (cp /\ 1jJ) is consistent 

then (,' tl) I (cp /\ 1jJ) for smne ~(E nand t l E T. 
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(A. 1 ) 

(A.2) 

(A.3) 

(AA) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(B) Fix an lLAGlVl-model such that (1) for some t L, t3 E T, 0: E nand 
cp,0 E <p E, tL >---+ t] >---+ t3, (0:,12 ) ~ Jcp and (0:,13) ~ J(cpl\0), (2) 
if cp is not a contradiction then (j3, t) ~ cp, for some j3 E nand t E T 
and (3) if (cp /\ 1jJ) is not a contradiction then (J, tf) (cp /\ 1jJ), for some 
, E [2 and tl E T. Define J{ {X E <pE : (0:, /1) ~ BX}. Then there ex
ists an AGM belief revision function J.(,2; : <Po -+ 2<Po such that J{®(cp) = 
{X E <pB : (u, t2) ~ BX} and J{®(cp /\ 1jJ) = {X E <pB : (0:, t:-3) ~ BX}. Fur
thermore, for every cp,1jJ E <p B, there exists an lLAGlvl-model such that, for 
some 0: E nand t 2, t3 E T, (1) (0:, t 2) I Icp and (0;, t3) I l(cp /\.1/)), (2) if 
9 is not a contradiction then (/3, t) I 9, for smne /3 E nand t E T and (:3) 
if ((p /\ 1/)) is not a contradiction then (J, tf) ~ ((p /\ 1/)), for sorne , E nand 
tl E T. 

8 Conclusion 
We proposed a temporal logic where information and beliefs are modeled 
by means of two modal operators I and B, respectively. A third modal 
operator, the next-time operator 0, enables one to express the dynarnic 
interaction of information and beliefs over tirne. 'fhe proposed logic can be 
viewed as a temporal generalization of the theory of static belief pioneered 
by Hintikka (1962). 

The combined syntactic-semantic approach of rnodal logic allows one to 
state properties of beliefs in a clear and transparent way by rneans of axioms 
and to show the correspondence between axioms and semantic properties. 
Natural extensions of our lLAGlvl logic would impose, besides consistency of 
information (axiom Icon) L4, the standard KD45 axioms for belief (axiom 4: 

14 As pointed out by Friedman and Halpern (1999), it is not clear how one could be 
informed of a contradiction. 
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B4Y ---+ BB(p and axiom 5: ---.B1> ---+ B---.B4Y, while the D axiom: B4Y ---+ ---.B---.1> 
would follow from axioms Icon and WC). Furthermore, one might want to 
investigate axioms that capture the notion of memory or recall, for instance 
B4Y ---+ OBO- 1 B4Y and ---.B4Y ---+ OBO- 1---.B4Y (the agent always remembers 
what he believed and what he did not believe in the immediately preceding 
past). Further strengthenings might add the requirement that information 
be correct (I4Y ---+ 4Y) or the weaker requirement that the agent trusts the 
information source (B 0 (I 4Y ---+ 4Y)). Another nat ural direction to explore is 
the axiomatization of itemted a topic that has recei ved considerable 
attention in recent years (see, for example, Boutilier, 1996; Darwiche and 
Pearl, 1997; Nayak et aI., 2003; Rott, 2006). Extensions of the logic lLAGlvl 

that incorporate axioms for iterated revision have been recently investigated 
in (Zvesper, 2007). Finally, another line of research, which is pursued in 
(Bonanno, 2007b), deals with the conditions under which belief revision can 
be rationalized by a plausibility ordering on the set of states, in the sense 
that the set of states that are considered possible after being informed that 
(P coincides with the most plausible states that are compatible with 4Y. 
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Appendix 

Pmof of the claim 'in Footnote 6, namely that axiom WND is equivalent to 
the following axiom: if 4Y and 1jJ are Boolean, 

Derivation of WND from the above axiom CPL' stands for 'Propositional 
Logic'): 

1. 0- 1 (B1> A B1jJ A ---.B---.1» ---+ (I1> ---+ B1jJ) 
2. 001(B4Y /\ B1jJ /\ ---.B---.1» ---+ 

o (I4Y ---+ B 1/) ) 
3. (B1> /\ B1/) /\ ---.B---.1» ---+ 

00-1(B4Y A B1jJ A ---.B---.4Y) 
4. (B4Y A B1jJ A ---.B---.4Y) ---+ 0(14Y ---+ B1jJ) 

Derivation of the above axiom from WND: 

above axiorn, PI, 

1, rule RK for 0 

'fernporal axiom 0 1 

2,3, PL. 
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1. 

2. 

3. 

4. 

5. 

(B ¢ /\ B1j! /\ ,B--.¢) ---* 

0(1 ¢ ---* Blji) 
,0 (J¢ ---* B1j!) 

---* ,(B¢ /\ B0 /\ ,B,¢) 
0- 1,0 (I¢ ---* Blji) 

---* 0 1,(B¢ /\ Blji ,/\ ,B,¢) 
o I(B¢ /\ B1j) /\ ,B,¢) 

---* 0 1 0 (1 ¢ ---* B1j)) 
,(I¢ ---* B lji) ---* 

010,(1¢ ---* Blji) 
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Axiom WND 

I, PL 

2, rule RK for 0 1 

3, PL, definition of 0 1 

Temporal axiom O2 

6. 

7. 
o 10 (I¢ ---* 13lji) ---* (1¢ ---* IN) 5, PL, definition of 1 and 0 
o I(B¢ /\ B1j) /\ ,B,¢) ---* 

(I¢ ---* B0) 4,6, PL. 

Q.E.D. 

Proof of the claim in Footnote 7, narnely that axiom WN A is equi valent to 
the following axiom: if ¢ and lji are Boolean, 

Derivation of WNA from the above axiom: 

1. 0- I (Brp /\ ,Blji) /\ J ¢ ---* ,B1j! 
2. 0-I(B¢ /\ ,B1j!) ---* (I¢ ---* ,Blji) 
3. OO-I(B¢/\ ,Blji) ---* O(J¢ ---* ,Blji) 
4. (B¢;\ ,Blji) ---* 00-1 (B¢ /\ ,B'0) 
5. (B¢;\ ,Blji) -> O(J¢ ---* ,B1j!) 

above axiom 
1, PL 
2, rule RK for 0 
Temporal axiom 0 1 

3,4, PL. 

Derivation of the above axiom from WNA: 

1. (B¢ /\ ,B0) -> O(I¢ -> ,B0) Axiom WNA 
2. ,0 (I ¢ ---* ,B1j!) -> 

,(B¢ /\ ,Blji) I, PL 
3. 0-1,0 (I¢ -> ,B1j!) 

-> O-I,(B¢;\ ,Blji) 2, rule RK for 0- 1 

4. 0-I(B¢;\ ,Blji) -> 

0-1 0 (J¢ -> ,Blji) 3, PL and definition of 0-1 
5. ,(J¢ -> ,Blji) -> 

010,(J¢ ---* ,Blji) Temporal axiom O2 

6. 0-10 (I(P -> ,131j)) -> 

(I¢ -> ,Blji) 5, PL, definition of 0 1 and 0 
7. 0 1 (B¢ /\ ,B?j)) -> (1 ¢ -> ,Blji) 4,6, PL 
8. 0 1 (B¢ /\ ,B?j)) /\ 1 ¢ -> ,B1j) 7, PL. 

Q.E.D. 
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Proof of Proposition 4.1. (1) Fix a frame that satisfies PWI'W, an arbitrary 
model based on it and arbitrary (~ E n, t[ E T and Boolean formulas cp and 
'IjJ and suppose that (a, t 1) F (Bcp I\. B'IjJ I\. ·B-,CP). Since (a, td F .B.cp, 
there exists an w E Btl (a) such that (w, td F cp. Thus Btl ((~) # 0. Fix an 
arbitrary t2 E T such that t1 ---+ t2 and suppose that (0',12) F J cp. Then 
It2(U) = icplt

2
• Fix an arbitrary j3 E Btl((~)· Since (u,td F Bcp, (j3,ld F 

cp. Since cp is Boolean, by Remark 2.2 (j3,t2) F cp. Hence j3 E It2(a). 
Thus Btl((~) ~ It2((~). Hence, by P WND , Bt2(a) ~ Bda). Fix an arbitrary 
w E Bt2((~). Then w E Btl (a) and, since (a, td F B1jJ, (w, td F 'IjJ. Since 1jJ 
is Boolean, by Remark 2.2 (w, t 2 ) F Thus (a, t 2 ) F B'IjJ. 

Conversely, suppose that P WND is violated. Then there exist a E nand 
i 1, i2 E T such that i1 >----+ t2, Btl (a) / 0, Btl (a) ~ Ito (0'.) and Bto (0:) ~ 
Btl ((~). Let p and q be atomic propositions and constr~lct a model- whe{-e 
Ilpll = It2((~) x T and llefll = Btl (a) x T. Then (a, tt) F (Bp/\ Bq.1\ .B.p). 
By hypothesis, there exists a j3 E Bt2(a) such that j3 f- Btl (a), so that 
(ii, i2) ¥ q. Hence (a, i2) ¥ Bq while (0:, t2) IIp, so that (a, i2) ¥ Ip ---+ Bq. 
Thus, since t[ >----+ t2, WND is falsified at (a, t]). 

(2) Fix a frame that satisfies P WNA , an arbitrary model based on it and 
arbitrary (~ E n, t] E T and Boolean formulas cp and ·0 and suppose that 

t]) F Bcp;\ .B1jJ. Then there exists a j3 E Btl (a) such that (j3,ld F .1jJ. 
Fix an arbitrary t2 E T such that t1 >----+ t2 and suppose that t2) F Jcp. 
Then It2(a) = icplt2. Fix an arbitrary w E Bt,(a). Since (a,td F Bcp, 
(w, / 1) F cp. Since cp is Boolean, by Remark 2.2 (w, t2) F cp and therefore 
wE It2(a). Thus Btl(a) ~ It2((~) and, by P WNA , Btl(a) ~ Bt2((~). Since 
(j3,ld F ,1jJ and is Boolean (because·0 is), by Remark 2.2 (;3, t2) F 
Since j3 E Btl (a) and Btl (a) ~ Bt2 (a), j3 E Bt2 (a) and therefore t2) I 
,B'IjJ. 

Conversely, suppose that P'vVNA is violated. Then there exist a E n 
and t[, t2 E T such that t[ >----+ t2 and Btl (a) ~ It2(a) and Btl (a) % 
Bt2(a). Let p and q be atomic propositions and construct a model where 
Ilpll It2(a) x T' and Ilqll Bt2(a) x T. Then (a, id I Bp /\ ,Bq and 
(a, t2) I [pI\. Bq, so that, since t] >----+ t2, (a, tt) I ,0 (Ip ---+ ,Bq). Q.E.D. 

Proof of Proposition 4.8. First of ali, note that, since 0- 1 is a nonnal op
erator, the following is a theorem of lLa (hence of lLw): 

(1) 

It follows from (1) and axiom BU that the following is a theorem of lLa: 

(2) 

Figure 3 below is a syntactic derivation of WNC. Q.E.D. 
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1. 0-1 (B1)1\ -.B-.¢) 1\ 0-lB1/;---> 
0- 1 (B¢ A -.B-.¢ A B1/;) Theorem of Lo 

(2) above) 

3. 01(B¢/\-.B-.¢).1\01B1/;AJ¢--->B1/; 
4. I ¢ /\ 0 1 (13¢ f\. -.13-.¢) ---> (0 1131/) ---> B1/;) 
5. 0 1(13¢ A -.13-.¢) A 01-.B1/; ---> 

O-l(13cp.1\ -.B-.cp.1\ -.B1/;) 

6. -.( 13¢ /\ -.131/)) ---> -.(Bcp.1\ -.B-.cp.1\ -.B1/;) 
7. 0 l-.(B¢ /\ -.B1/;) ---> 

O-l-.(B¢ A -.B-.¢ A -.B0) 
8. 0-1(B¢ 1\ -.B-.¢ 1\ -.B1/)) ---> 0-1(B¢ 1\ -.B1/)) 
9. 0- 1 (B¢ A -.B-.¢) A O-l-.B1/; ---> 

0- I(B¢ A -.B-0) 
10. 0- I (B¢ A -.B0) A 1 ¢ ---> -.B1/; 

Equivalent to WND 
(see Footnote 6) 
1,2, PL 
3, PI, 

Theorem of Lo 
(see (1) above) 
T~mtol()gy 

6, rule RK for 0- 1 

7, PL, def. of 0- 1 

5,8, PL 
equivalent to WNA 

Footnote 7) 
11. 0- 1 (B¢ A -.B-.¢) A O-l-.B1/; A 1¢ ---> -.B1/; 9,10, PL 
12. 1 ¢ /\ 0 - I (B¢ A -.B-.¢) ---> (O-l-.B1/) ---> -.B-0) 11, PL 

13. (0 l-.B1j! ---> -.B0) ---> (B1/; ---> 0 1 B1j)) tautology and 

14. 1¢ /\ 0 1 (B¢.I\ -.B-.¢) ---> (B1/; ---> 0 1 BljJ) 
15. I ¢ /\ 0 1 (13¢ f\ -.13-.¢) ---> (131/) +--* 0 l[]ljJ) 

FIGURE 3. 

del1nition of 0- 1 

12,13, PL 
4, 14, PL. 

67 

Proof of Proposition 5.1. (1) Fix a frame that satisfies P ND , an arbitrary 
model based on it and arbitrary a E 0, t1 E T and Boolean formulas ¢ and 
1j! and suppose that (a, Id F -.B-,(pAB1/;. Fix an arbitrary t2 E T such that 
t1 >---+ t2 and 12) F 1 ¢. Then It2 (a) = I ¢l t2' Since (a, tJ) F -.B-.¢, there 
exists a ;3 E Btl (a) such that (;3, tJ) ¢. Since ¢ is Boolean, by Remark 
2.2 (;3,t2) F ¢ and, therefore,;3 E It2(a). Thus Btl(a) I1It2((~) # 0 and, 
by PND , Bt2(a) <;;; Btl (a). Fix an arbitrary W E Bt2(a). Then W E Btl ((~) 
and, since (a, td F 131/), (w, t 1) F Since 1/; is Boolean, by Rernark 
(w, t 2 ) f 1/;. Hence (a, t 2 ) I B1/;. 

Conversely, fix a frame that does not satisfy PND . 'l'hen there exist 
a E 0 and t l , t2 E T such that tl >---+ t2, Btl (ClC) rl It2(a)/ 0 and Bt2(a) r:t 
Btl (a). Let p and q be atomic propositions and construct a model where 
Ilpll Btl (a) x T and Ilqll It2 (a) x T. Then (a, tJ) I -.B-.q.1\ Bp and 
(a, t2) f Jq. By hypothesis there exists a (3 E Bt2 (0;) such that /3 t/c Btl (a). 
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'rhus ({3, t2) Jz' p and therefore (0;, t2) F -,Bp. Hence (a, t tJ F -, 0 (Iq ---+ 

Bp). 

(2) Fix a frame that satisfies P NA , an arbitrary rnodel based on it and 
arbitrary a E n, tiE T and Boolean formulas cjJ and 1jJ and suppose that 
(a, td I -,13-,(cjJ A. -,1/)). Fix an arbitrary t2 E T such that t1 >----+ t2 and 
suppose that t2) F IcjJ. Then It2(a) = IcjJlt2· Since (a,td F -,B-,(cjJ/\ 
-'V)) , there exists a ,6 E Btl (a) such thatt]) F rf;;\ -,V). Since cjJ and 1/J 
are Boolean, by Remark 2.2 (,6,t2) F cjJ /\ Thus /3 E It2(a) and, by 
P NA ,,6 E Bt2(a). Thus, since (,6,t2) F -,1jJ, (a,t2) F -,B1jJ. 

Conversely, fix a frame that does not satisfy P NA . Then there exist 
(~E nand t1 ,t2 E T such thatt 1 >----+ t2 and Btl((~) nIt2(a) c;;. Bt2(a). 
Let p and q be atomic propositions and construct a model where Ilpll = 

It2(a) x T and Ilqll = Bt2(a) x T. Then (a, t2) F Ip /\ Bq and, therefore, 
td F -, 0 (Ip ---+ -,Bq). Since Bd(~) nIt2(a) c;;. Bt2((~) there exists a 

,B E Btl (a) II It2(a) such that (3 ¢::. Bt2(a). Thus (,B, t 1 ) I p /\ -'q. Hence 
(o;,td F -,B-,(pA. -,q), so that axiorn NA is falsified at (a,td. 

(3) Fix a frame that satisfies P QA ) an arbitrary model based on it and 
arbitrary U E n, t1 E T and Boolean formula cjJ and suppose that (u, tJ) F 
-,B-,rf;. Then there exists a ,6 E Btl (u) such that (,6, td cjJ. Fix an 
arbi trary t2 such that t1 >----+ t2 and suppose that (u, t 2) f ](p. Then It2 (u) 
IcjJlt2. Since cjJ is Boolean and (("ttJ f cjJ, by Remark 2.2 (,B,t2) I cjJ. Thus 
,B E It2(U) and, therefore, Btl(U) nIt2(u) # 0. By P QA , Bt2 c,;; It2(a). 
Thus (U,t2) I BcjJ. Hence (u,td I O(1rf;---+BcjJ). 

Conversely, suppose that P QA is violated. 'l'hen there exist 0; E nand 
t l , t2 E T such that t] >----+ t2, Btl (u) n It2(ex) / 0 and Bt2 ((x) g; It2 (u). Let 
p be an atomic proposition and construct a model where Ilpll = It2(a) x T. 
Then td F -,B-,p and t2) F Ip. By hypothesis, there exists a ,6 E 

Bt2 (u) such that ,6 ¢::. It2 (u). Thus (,6, t2) Jz' p and therefore (u, t2) -,Bp. 
Hence tJ) Jz' O(Ip ---+ Bp). Q.E.D. 

Proof of the cla-irn, in Remark 5.4, namely that WN A is a theorem of the 
logic lLa! N A: 

l. -,B( cjJ ---+ 1jJ) ---+ 0(1 cjJ ---+ -,B1jJ) 
2. B( cjJ ---+ 1/)) ---+ (BcjJ ---+ B1/)) 
:3. (BcjJ /\ -,B1j)) ---+ -,B(cjJ ---+ 1/)) 
4. (B(p/\ -,B1jJ) ---+ 0(Irf; ---+ -,B1jJ) 

Axiom N A (see Footnote 81 • J 

Axiom K for 13 
2, PL 
1,3, PL. 

Q.E.D. 

Proof of Proposition 6.1. (1) The proof of this part is straightforward and 
is omitted. 

(2) Fix a frame that satisfies property P K7 . Let a and t] be such that 
(a, tJ) f O(I(rf; /\ 1jJ) /\ BX), where cjJ, 1jJ and X are Boolean formulas. Then 
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there exists a t3 such that t] >---> t3 and (0:, F I (¢ /\ 1/;) /\ Bx. 'rhus 
It3 (u) = I ¢ /\ 'I/;l t3' Fix an arbitrary t2 such that t] >---> t2 and suppose that 
(u, t 2) F J ¢. Then It2 (u) = I ¢ l t2' Since ¢ and 1jJ are Boolean, by Remark 
2.2, I¢/\ 1/)lt

3 
= I¢/\ 1/)lt2' Thus, since I¢/\ 1/l l t2 S;; l¢lt2' It3((~) S;; It2(U). 

Hence by P K7 , It3(U) n Bt2(U) S;; Bt3((~)' Fix an arbitrary j3 E Bt2((~)' If 
(j3,t2) F -'(¢/\1/)) then (j3,t2) F (¢/\'I/;) -4X· If (j3,t2) F ¢/\1/), then, by 
Remark 2.2, (j3, t3) ¢ /\ 1jJ and, therefore, j3 E It3 ( u). Hence j3 E Bt3 (u). 
Since (u, t3) F BX, (,6, t3) F X and, therefore, (j3, t3) F (¢ /\ 1/1) -4 X· 
Since (¢ /\ -I/;) -4 X is Boolean (because ¢, 1/) and X are), by Remark 2.2, 
({3,t2) F (¢ /\ 1/)) -4 X· 'rhus, since (3 E Bt2(U) was chosen arbitrarily, 
(u, t 2) f B((¢ /\ 1jJ) -4 X). 

Conversely, suppose that P K7 is violated. 'fhen there exist t 1, i2, t3 and 
u such that t] >---> i2, t] >---> i3, It3(U) S;; It2(U) and It3(0:) (iBt2(U) r:t Bt3(U). 
Let p, q and T be atomic propositions and construct a model where Ilpll = 

It2(U) xl', Ilqll It3(U) xl' and IITII Bt3(U) xl'. Then, (u, t3) I BT and, 
since It3(U) S;; It2(U), It3(U) IP/\qlt3 so that (U,i3) I I(p/\q). Thus, 
since i] -4 i3, (0:, tt) I O(I(p /\ q) /\ Br). By construction, (u, t2) f Jp. 
Since It3 (0:) n Bt2 (0:) cL Bt3 (0:), there exists a r, E It3 (u) ("I Bt2 (u) such that 
j3 1- Bt3 ((~). Thus (j3, [2) F -'T; furthermore, since j3 E It3 (u), (j3, t3) F p/\q 
and, by Remark 2.2, (j3, t 2) F p /\ q. Thus, (j3, t 2) l" (p /\ q) -4 T. Since 
j3 E Bt2 ((~) it follows that ((~, t2) l" B ((p /\ q) -4 r} Hence, since t1 >---> t2, 

tt) l" O(Jp -4 B((p /\ q) -4 r)) so that axiom K7 is falsified att1)' 

(3) Fix a frame that satisfies property P KS . Let ¢, '1/; and X be Boolean 
formulas and let a and t] be such that (u, tt) F O(I¢/\-,B-'(¢/\1jJ)/\B(I/;-4 
X)). Then t here exists a t2 such that t1 >---> t2 and (u, t2) F J ¢ /\ -,B-,( ¢ /\ 
1jJ) /\ B(1jJ -4 X). Thus It2(U) = l¢lt2 and there exists a j3 E Bt2(U) such 
that (j3, t2) F ¢ 1\ 1jJ. Fix an arbitrary t3 such that t1 >---> t3 and suppose 
that (U,t3) f J(¢ /\ 1jJ). Then It3 (u) I ¢ /\ 1jJlt3' Since ¢ /\ 1/) is a Boolean 
forrnula and ({3, t 2) F ¢ /\ by Rernark 2.2, (r" t:1) F cp /\ 1jJ and therefore 
j3 E It3 ( u). Hence It3 (u) rl Bt2 (u) / 0. Furthermore, since ¢ is Boolean, 
by Remark 2.2, Icplt3 Icplt2' Thus, since Icpi\ 1/)lt3 S;; l¢lt3 it follows that 
It3(U) S;; It2(U). Hence, by property P KS , Bt,Ju) S;; It,Ju) n Bt2(U). Fix an 
arbitrary I E Bt3(O:). Then I E It3(U) nBt2(o:) and, since t2) F B(1/)-4 
X), (J, t2) f 1jJ -4 X· Since 1jJ -4 X is a Boolean formula, by Remark 2.2 
(J,t3) 11/) -4 X. Since IE It3(O:) and It3(U) 1¢/\1jJlt3' (J,t3) 11/)· 
Thus (J, t3) f X· Hence (u, t3) I BX· 

Conversely, fix a frame that does not satisfy property P KS . Then there 
exist t],t2,t3 and (~ such that t] >---> t 2, t] >---> te3, It3(U) n Bt2(U) / 
It3(a) S;; It2(U) and Bt3(a) r:t It3(U) n Bt2(U). Let p, q and T be atomic 
propositions and construct a model where Ilpll = It2((~) xl', Ilqll = It3((~) x 
I' and 11,.11 = (It3(U) n Bt2 (u)) x 1'. Then (u, t2) F Jp and, since It3 ((~) S;; 
It2(U), if w E It3((~) then (w,t) p /\ q for every t E 1'. Thus, since 



70 G. Bonanno 

It3 (a) n Bt2 (a) # 0, t2) F ---.B---.(p /\ q). Fix an arbitrary w E Bt2 (a); if 
wE It3(a) then (w,t 2 ) F r; ifw rJ- It3(a) then (w,t 2 ) F ---'q; in either case 
(w, t 2 ) F q ----+ T. Thus (a, t 2 ) F B(q ----+ T). Hence (a, t 2 ) F Ip!\ ---.B---.(p!\ 
q) /\ B(q ---> T) and thus ((~, [1) F 0 (Ip /\ ---.B---.(p!\ q) /\ B(q ----+ r)). Since 
It3(a) = Iqlt3 and It2(a) = IPlt2 and, by Remark 2.2, IPl = IPlt3 and 
It3(U) ~ It2(U), if follows that It3(a) = IP!\ qlt

3
, so that (u, F I(p/\q). 

Since Bt3(a) ct It3(a) n Bt2(a), there exists a j3 E Bt3(a) such that j3 rJ

It3(a) n Bt2((~). Then (,6, t3) F ---.r and therefore t3) F ---.Br. Thus 
t3) jz': I(p /\ q) ----+ Br and hence,t 1) jz': O(I(p /\ q) ----+ Br), so that 

axiom K8 is falsified at (a, td. 
(4) Let ¢ be a Boolean formula, a E n,t E T and suppose that t) F 

I¢!\ ---.A---.¢. Then It(a) = I¢lt and there exist j3 E n that (j3,t) F ¢. 
Thus It(a) # 0 and, by the above property, Bt(a) # 0. Fix an arbitrary 
formula 1/) and suppose that (a, t) I Bz/;. Then, vw E Bt(a), (w, t) I z/;. 
Since Bt (a)/ 0 , there exists a I E Bt (a). Thus t) I 1/) and hence 
(0;, t) F ---.B---.1/). 

Conversely, fix a frame that does not satisfy property P wc . Then there 
exist a E nand t E T' such that It(eY.) / 0 while Bt(a) 0. Let P be an 
atomic proposition and construct a model where Ilpll It(a) x T. Then 
(0;, t) F 1p. Furthermore, since It(a) # 0, there exists a ,6 E It(a). Thus 
(j3, t) I p and hence (a, t) I ---.A---.p. Since Bt(a) 0, (a, t) I Bz/; for every 
formula 1/), so that (a, t) I Bp/\ B---.p. 'l'hus WC is falsified at (0;, t). Q.E.D. 

Proof of the claim in Footnote 11. (BR3' ==} BR:3). Fix arbitrary E, F E 

[. such that E ~ F and RpnE # 0. Then EnF = E, so that (EnF) E [. 

and RW1P R E. Thus, by (BU3'), RE Rp n E. 
(BIl3 + Bill =} BR3'). Let E, F E [. be such that (E n F) E [. and 

Rp II E / 0. By (BRl), Rp ~ F so that Rp rl F Rp . Hence 

Rp n (E n F) = Rp n E. (t) 

Thus Rp n (EnF) # 0. Hence, since EnF ~ F, it follows from (BR3) 
that RE1,p = Rp n (E n F). Thus, by RErw = Rp n E . Q.E.D. 

In order to prove Proposition 7.4 we need the following lemma. We shall 
throughout denote the complement of a set E by 'E. 

Lemma A.I. Let [., «Jl, R, V) be a Tich belief revision model. Then, for 
every formula ¢ E <Po, 111>11 = 0 if and only if ¢ is a contradiction (that is, 

is a tautology). 

Proof. If ¢ is a tautology then II¢II n. If ¢ is a contradiction then ---.¢ 

is a tautology and thus II---.¢II = 'II¢II = n, so that II¢II = 0. If (p is nei
ther a tautology nor a contradiction then it is equivalent to a formula of 
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the form (V~~[ (I\;~] Qij)) where each Qij is either an atomic proposition 
or the negation of a atomic proposition (see Hamilton, 1987, p. 17, Corol
lary 1.20). By definition of rich model, for every formula 1\;'] Qij, there 

is a state Wi such that Wi I\;~l Qij. Thus 11<;b11 = IIV:'=l(I\~~l Qij)11 = 
U:'=llll\;~l Qijll :2 {Wl, ... ,wn } # 0. Q.E.D. 

Proof of Pmposition 7 .. 1. Let (0, E, 0, R, V) be a comprehensive belief re
vision model and define [{ {?,b E CPo : R.() <:;;; 111/)II}. First we show that K 
is deductively closed, that is, [{ [[{I PL . If?,b E K then ?,b E IK(L, be
cause ?,b ----+ ?,b is a tautology; thus K <:;;; [KtL. To show that [KtL <:;;; K, let 

?,b E [KI PL , that is, there exist <;b[, ... , E K such that (<;b[ /\ ... /\ <;brJ ----+ ?,b 
is a tautology. Since 11<;b[ /\ ... /\. (Pnll II(p]II n··· n II (p,oIl , and <;bi E K (that 
is, ~ <:;;; II<;bill) for all i l, ... ,n, it follows that <:;;; II(p[ /\ ... /\ II. 
Since (<;bl/\····/\<;b,J ----+?,b is a tautology, 11(¢l/\···/\·¢,J ----+ 1/)11 = 0, that 
is, 11<;b] /\ ... /\ II <:;;; 11?,b11· Thus Ro(a) <:;;; 11?,b11, that is, ?,b E K. Next we show 
that IK(L / CPo (consistency). By definition of one-stage revision frame 
(see Definition 7.2), 0 / 0; thus, by property BR2, Rn / 0. Choose an 
arbitrary atomic proposition pES. Then II (p /\ ,p) II 0 and therefore 
&0 g; II(pI\,p)ll, so that (pl\'p) ¢:. K. Since K [KtL, (p/\,p) ¢:. [KtL. 
Next we show that AGM postulates 1)(@5a) and (@6)(@8) are satis
fied. For every formula <;b E CPo, define K®(<;b) = {1/! E CPo : Rialll <:;;; 11?,b11} 
(note that, since the model is comprehensive, for every <;b E CPo, 11<;b11 E E). 

(@1) Fix an arbitrary <;b E CPo. We need to show that {.1jJ E CPo : Rialll <:;;; 11?,b11} 
is deductively closed. We omit this proof since it is a repetition of the 
argument given above for K. 

(@2) Fix an arbitrary <;b E <1)0. We need to show that <;b E ((p), that is, 
that Rialll <:;;; 11<;b11· This is an immediate consequence of property BRI of 
Definition 7.2. 

(@3) Fix an arbitrary <;b E CPo. We need to show that K®(<;b) <:;;; IKU {<;b}]PL. 
Let ?,b E K(1J(<;b), that is, R11¢i <:;;; 11?,b11. First we show that ((p ----+ 1/)) E K, 
that is, Rn <:;;; II <;b ----+ 1/) II 'II ¢II U 11?,b11· If Rn <:;;; 'II <;bll there is nothing to 
prove. Suppose therefore that R.() n II(pll # 0. Then, by property BR4 of 
Definition 7.2, 

(3) 

Fix an arbitrary W ERn. If W ¢:. II (pil then wEll ,<;bll and thus wEll <;b ----+ 1/) II; 
if wE II¢II, then, by (:3), w E R1¢11 and thus, since RI¢II <:;;; 111/)11, w E 111/)11, so 
that w E 11<;b ----+ ?,bll. Hence (¢ ----+?,b) E K It follows that ?,b E IX U {<;b}]PL. 

Fix an arbitrary <;b E CPo. We need to show that if ¢:. K then 
[K U {<;b}]PL <:;;; J{'J)(<;b). Suppose that ,<;b ¢:. K, that is, ~ g; II,¢II = '11<;b11, 
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that is, Rc IIII¢II cI 0. Then property BR4 of Definition 7.2, 

(4) 

Let X E [J{ U {¢}tL, that is, there exist ¢1,"" E J{ U {¢} such that 
((P1 /\ ... /\ (Pn ) ----+ X is a tautology. We want to show that X E J{0D(¢), that 
is, RII¢i ~ Ilxll. Since (¢1 /\ ... /\ ¢n) ----+ X is a tautology, II(¢, /\ ... /\ ¢'I/) ----+ 

xii = el, that 11(¢1 /\ ... 1\ ¢.,JII ~ Ilxll· If ¢i E K for every i = 1, ... , n, 
then Ro ~ 11(¢1 /\ ... /\ ¢n)11 and thus Ro ~ Ilxll. Hence, by (4), RI¢II ~ 
Ilxll. If, for some j I, ... , n, (Pj tJ. K, then we can assume (renumbering 
the formulas, if necessary) that (Pi E J<, for every ii, ... ,n - 1, and 
¢n tJ. J{, which irnplies (since (Pi E 1<," U {¢} for all i = 1, ... ,n) that 
¢n ¢. Since, by hypothesis, (¢, /\ ... /\ , /\. ¢) ----+ X is a tautology and, 
furthermore, it is propositionally equivalent to (¢, /\ ... /\ ¢n-1) ----+ (¢ ----+ X), 
11(¢1 /\ .. '/\¢n-1) ----+ (¢ ----+ x)11 = 0, that is, 11¢1 /\ .. '/\¢n-111 ~ II¢ ----+ xii, so 
that, since ~ 11¢1 /\ ... /\ II (because ¢1, ... , ¢n-1 E J{), ~ II¢ ----+ 

xii· Thus Ro n II¢II ~ II¢II n II¢ ----+ xii ~ Ilxll· Hence, by (4), RII¢I ~ Ilxll· 
If ¢ is a contradiction, II¢II = 0. By property BRl, Ri¢11 ~ II¢II. 

Hence = 0 and, therefore, J{®(¢) = {1/) E 1>0 : RII¢i ~ 11'011} = 1>0. 

If ¢ +---+ 1/! is a tautology then II¢ +---+ ?jill = 0, that is, II¢II = 111/!II. Hence 
RII¢I = RIIIf!II and thus J{®(¢) = {X E 1>0 : RI¢II ~ Ilxll} = {X E 1>0 : 
RIIIf!II ~ Ilxll} = J{®(?ji). 

(@7) Fix arbitrary ¢,'0 E 1>0. We need to show that J{®(¢/\1/)) ~ [J{®(¢)U 
{0}tL . Let X E J{'J)(¢/\1/!), that is, 

~ Ilxll· (5) 

First we show that Rlebll ~ II(¢ /\?ji) ----+ xii = 'II¢ 1\ 1/)11 U Ilxll· If Rlebll ~ 
'1lqu\ ?jill there is nothing to prove. Suppose therefore that Riebll n II¢/\ ?jill cI 
0. Then, by property (BR.'3) (with E = II¢ /\ 1/)11 and F = II¢II), 

(6) 

Fix an arbitrary W E R1¢11' If w rf- II¢ /\ 1/)11 then W E 11·((p /\ 1/))11 and 
thus W E II(¢ /\.?ji) ----+ xii; if w E II¢ /\.011, then by (5) and (6), w E Ilxll 
so that w E II(¢ /\ 0) ----+ xii· Hence RII¢i ~ 11((p /\ 1/)) ----+ xii, that is, 
((p /\ 1/) ----+ E ICf!(¢). Since ((p /\ 1/) ----+ X) is tautologically equivalent 
to (1/) ----+ (¢ ----+ X)), and, by (@1) (proved above), J{1i)(¢) is deductively 
closed, (?ji ----+ (¢ ----+ X)) E j{®(¢). Furthermore, by ¢ E ]Cf!(¢). Thus 
{ (?ji ----+ (¢ ----+ X)),¢} ~ !{(f!(¢) U {0} and therefore X E IJ{®(¢) U {1/)}I PL . 

(@8) Fix arbitrary 

then [J{0(¢) U {11;}] 
1/) E 1>0. We need to show that if .1/) rf- J<®(¢) 

~ J{®(¢ /\ 1/!). Suppose that .0 rf- J{0(¢), that is, 
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Ri¢11 g; '111/;11 = 11,1/;11, 
Footnote 11), 

RII¢i 11111,&11 cI 0. Then by property (BR3!) 
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(7) 

Let X E [I<,-C'0(cP) U {1/;}]PL, that is, there exist cPl, ... ,cPn E I<,-(t)(cP) U {1,&} 
such that (cP] /\ ... /\ cPn ) -4 X is a tautology. We want to show that 
X E (ep /\ 1,&), that is, RII¢A<J;i S;; Ilxll· Since (cP[ /\ ... /\ cPn ) -4 X is a 
tautology, II(rp[ /\ ... /\ cPr,) -4 xii 0, that is, 11(9[ /\ ... /\ 9'1,)11 S;; Ilxll· 
If cPi E f{G)(cP) for every i = l, ... ,n, then RII¢i S;; 11(91/\"'/\91')11 
and thus RII¢i S;; Ilxll· Hence, by (7), RII¢A1)i S;; Ilxll. If, for some 
j I, ... ,n, cPj tI f{''i)(cP), then we can assllme (renumbering the for
mulas, if necessary) that cPi E J{®(cP), for every ·i = 1, ... , n - 1, and 
cPn tI J{'J)(cP), which implies (since cPi E J{0(cP) U {1/!} for all i = 1, ... ,n) 
that cPn = 1/). Since, by hypothesis, (cPl /\ ... /\ 1 /\ 1/)) -4 X is a tau-
tology and it is proposition ally equivalent to (cPl /\ ... /\ cPn-l) -4 (1/) -4 X), 
II (cPl /\ ... 1\ 1) -4 (00 -4 X) II = 0, that is, II (cPl /\ ... /\ cPn 1) II S;; 111/) -4 

xii, so that, since R11¢i S;; II(cPl/\"'/\ 1)11 (because cPl,·'" 1 E 

J{®(cP)) R11¢i S;; 111/) -4 xii· Thus R11¢i n 11'011 S;; 111/)11 n 111,& -4 xii S;; Ilxll· 
Hence, by (7), R 11 ¢A1! S;; Ilxll. 

Next we show that, if the model is rich, then (@5b) is satisfied. 
(@5b) If the model is rich and cP is not a contradiction, then by Lemma 

A.l IlcPll cI 0. Thus, by property BR2, RII¢i cI 0. Fix an arbitrary pES. 
Since IIp/\,pli = it follows that Ri¢11 c;;. IlpI\,pll and therefore (p/\,p) 1-
[(G) (cP). Since, by I) (proved above), J{('i)(cP) (ep)I PL , it follows that 

[J{®(cP)(L cI <Po. Q.E.D. 

Before proving Proposition 7.5 we note the following. 

Definition A.2. A set £ S;; 2° of events is called an algebra if it satisfies 
the following properties: (1) n E £, (2) if E E £ then 'E E £ and (3) if 
B,F E £ then (EUF) E £.15 

Remark A.3. In a belief revision frame where £ is an algebra, property 
(BR?/) (see Footnote 11) is equivalent to: VE, FE £, 

if Rp liB cI 0 then REI-cp = Rp n E. 

PToof of Pmposition 1. 5. Let M be the set of maximally consistent sets 
(iVIeS) of formulas for a propositional logic whose set of formulas is <Po. 
For any F S;; <Po let Mp = {w EM: F S;; w}. By Lindenbaum's lemma, 

15 Note that from (1) and (2) it follows that 0 E E and from (2) and (;3) it follows that 
if E, FEE then (E n F) E E. In fact, from E, FEE we get, by (2), 'E, 'F E E and 
thus, by (3), ('EU'F) E E; using (2) again we get that '('EU'F) = (E n F) E E. 
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MF # 0 if and only if F is a consistent set, that is, [FtL # <Po. To sirnplify 
the notation, for ¢ E <Po we write M¢ rat her than M{ d>}' 

Define the following belief revision frame: n = M , E = {M¢ : ¢ E <Po}, 
I[D = n, Rn = MK and, for every ¢ E <Po, 

if ¢ is a contradiction 

if ¢ is consistent and M¢ n MK # 0 

if ¢ is consistent and M¢ n MK = 0. 

First of all, note that E is an algebra. (I) M E E since M M(pv~p) 

where p is any atomic proposition. (2) Let (p E <Po. Then M¢ E E and 
'1IfYIT¢11 = {w EM: ¢ 1'- w}. By definition of IVIeS, for every w E M, ¢ 1'- w 
if and only if E w. Thus 'IIM¢II = M~¢ E E. (3) Let ¢,1/) E <Po. Then 
M¢, M.p E E and, by definition of IVIeS, Md> U fY1L1! = Md>v.p E E. 

Next we show that the frame so defined is indeed a one-stage revision 
frame, that is, it satisfies properties (BRl) (BR4) of Definition 7.2. 

(BRl) We need to show that, for every ¢ E <Po, R M1¢ ~ M¢. If ¢ is a 
contradiction, then M¢ 0 and, by construction, R M ¢ 0. If ¢ is 
consistent and M¢ n MK # 0 then RM,p Md> r1 MK ~ M¢. If ¢ is 
consistent and Md> n MK 0 then RM,p MK®(¢)' Now, if Wi E MK®(¢) 

then KIi)(¢) ~ Wi and, since ACNI postulate (@2), (p E !<.'('0(¢), it follows 
that ¢ E Wi, that is, Wi E M¢. Hence MJ(®(¢) ~ M¢. 

(BR2) We need to show that, for every ¢ E <Po, if M¢ # 0 then RM,p # 0. 

Now, M¢ # 0 if and only if ¢ is a consistent formula, in which case either 
RM,p M¢ n MK if M¢ n MJ(/ 0 or RM,p MK®(¢) if M¢ n MK 0. 

In the latter case, by ACNI postulate (G)5b), (¢) is a consistent set and 
therefore, by Lindenbaum's lemma, Mwo[J(¢) / 0. 

(BR3) Instead of proving (BR3) we prove the equivalent (BR3 /I
) (see Re

mark A.3 and footnote ll), that is, we show that, for every ¢,1/) E <Po, if 
R M¢ nM.p # 0 then = RM¢ nM.p. First note that, by definition of 
IVIeS, M¢ n M¢! = M¢/\.p. # 0, ¢ is a consistent formula and ei-
ther = M¢nMJ(, ifM¢nMJ( 0, or = MJ(®(d», ifM¢nMJ( = 0. 

Suppose first that M¢ n MJ( # 0. Then RM4, n M.p = M¢ n MJ( n M.p = 

M¢N.p n MJ( # 0, and, thus, by construction, RM,p/\V, = M¢N¢! n MJ(. Thus 
= RM,p",p = RM,p n . Suppose now that M¢ II MJ( = 0. Then, 

by construction, R1VJ,p MJ«o)(¢) and, sinceM¢/\.pIIMJ( M¢r1M . .pIIMJ( ~ 
M¢ r1 MJ( 0 we also have that RM,p",p MJ(0)(¢i'1!)' Thus we need to 
show that MJ(®(¢N.p) MK®(¢) nM1). By hypothesis, RM,p nM1! / 0, that 
is, MJ(0)(¢) n M1! # 0. This implies that -.1jJ 1'- (¢)16 Hence, by ACNI 

16 Suppose that ~1j; E K(~(rJ». Then, for every w E (¢), w;2 K®(rJ» and, therefore, 
~"P E w. But this implies that MK®(¢) n l\!ll,.b = 0. 
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postulates and (@8), 

(8) 

Let w E MJ(8(¢/\1))' Then K®(¢ 1\ .1jJ) <;;; wand, since K®(¢) U {1,b} <;;; 

[K®(¢) U {¢}(L, it follows from (8) that [{®(¢) U {1,b} <;;; w. 'rhus w E 
MJ(8l(¢) nM1)· Conversely, let w E MJ(8(¢) nM1). Then K®(¢) U {11!} <;;; w. 

lIenee, by definition of MCS, [K0D(¢)U{1/)}]PL <;;; W. It follows from (8) that 
[{®(¢ 1\ ¢) <;;; w, that is, wE MJ(8(¢/\<j;)' Thus MJ(8(¢/\1)) MJ(8(¢) rl M 1), 
that is, = R M ¢ II M 1). 

(BR4) Since ((J) n and, by construction, Ro 
for every formula ¢, if M¢ rl MJ(/ 0 then 
true by construction. 

Mf(, we need to show that, 
M¢ n Mf(. But this is 

Consider now the rnodel based on this frame given the following 
valuation: for every atomic proposition p and for every wE 0, w f p if and 
only if pEw. It is well-known that in this model, for every formula ¢,17 

Note also the following 
<Po, \f¢ E <Po, 

(9) 

Chellas, 1984, Theorem 2.20, p. 57): \fF <;;; 

¢ E [FtL if and only if ¢ E w, \fw E Mp. (10) 

We want to show that (1) K 
¢ E <Po, KIi)(¢) = {1/) E <Po : 

hi) E <Po : Ro <;;; II¢II} and, (2) for every 
<;;; II¢II}· 

(l) By construction, ((J) 0 and Ro Mf( and, by (9), for every forrnula 1j), 
111/)11 = M 4)· 'rhus we need to show that, for every formula ¢, 1/) E 1<,' if and 
only if Mf( <;;; M 1). Let ¢ E K and fix an arbitrary w E MJ(. Then K <;;; w 

and thus 1/) E W, so that W E Md;. Conversely, suppose that MJ( <;;; Md;. 

Then ¢ E w, for every W E MJ(. Thus, by (10), ¢ E IXjI'L. By AGM 
postulate (@1), K = [KjPL Hence ¢ E K. 

(2) Fix an arbitrary fonnula ¢. First we show that J-(® (¢) <;;; {V) E <Po : 
R M ¢ <;;; II¢II}. Let 1/) E K®(¢). If ¢ is a contradiction, = 0 and 
there is nothing to prove. If ¢ is consistent then two cases are possible: 

17 The proof is by induction on the complexity of 1>. If 1> = p, for some sentence letter p, 
then the statement is true by construction. Now suppose that the statement is true of 
<P1,1>2 E (Po; we want to show that it is true for ~1>1 and for (1)1 V By definition, 
w F ~1>1 if and only if W F <P1 if and only if (by the induction hypothesis) <P1 "/: W if 
and only if, by definition of NICS, ~1>1 E W. By definition, w F (1)1 V 1>2) if and only 
if either w F 1>1' in which case, by the induction hypothesis, 1>1 E W, or w F 1>2' in 
which case, by the induction hypothesis, <P2 E w. By definition of iVICS, (1)1 V <P2) E w 
if and only if either 1>1 E w or 1>2 E w. 
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(i) M¢ n MK = 0 and M¢ II MK # 0. In case (i) R M", = MKG)(¢). 

Since, by hypothesis, '1/; E J{®(¢), (¢) ~ M 1) and, by (9), M,p = 111,b11. 

Thus RM,p ~ 111,b11. In case (ii), = M¢ n M K . First of all, note that 
M¢nMK= MKU{d>}' Secondly, it must be that '¢ tf- J{. 18 Hence, by AGM 
postulates (@3) and (@4), J{®(¢) = [J{ U {¢}]PL Since, by hypothesis, 
'1/; E J{®(¢), V) E [J{U{¢}jPL. Hence, by (10),1/) E w, for every wE MKU {¢}' 

Thus MKU{¢} ~ M,p. Hence, since RI\.1,p M¢ n MK = M KL {¢}, RM,p ~ 

M,p. Next we show that N E <Po : Rrvi", ~ IIV)II} ~ J{rJJ(¢). Suppose that 
~ 111,b11 = M.,p. If ¢ is a contradiction, then, by AGM postulate (@5a), 

= <Po and, therefore, 1,b E ((p). If ¢ is not a contradiction, then 
either (i) M¢ n MK 0 or (ii) M¢ rl MK / 0. In case (i) MK<i)(¢). 

Thus, since, by hypothesis, ~ M,p, we have that MK<i)(¢) ~ M w, 
that is, for every W E MKG)(¢), 1,b E w. By (10) 1,b E [J{®(¢)jPL and, by 
AGM postulate [J{®(¢)jPL = J{®(¢). Thus 1/) E J{®(¢). In case 
(ii), = M¢ n M K . Thus, since, by hypothesis, RF,p ~ M 1), we have 
that M¢ n MK ~ M<j;, from which it follows (since M¢ n MK = Mn{¢}) 

that MKU{¢} ~ M<j;. This means that, for every W E M KU (¢}, 1,b E w. 
Hence, by (10),'1/; E [J{U{¢}jPL. Since M¢nMK # 0, '¢ tf- J{ and, 
therefore, by AGM postulates (@3) and (@4), J{®(¢) [J{U{¢}]PL. Thus 
V) E J{®(¢). Q.E.D. 

Proof of Proposition 7.6. In view of Corollary 6.:3 it is suf/kient to show 
that (1) axiom CIVIP is characterized by property P ClvIP and (2) Icon is 
characterized by seriality of It. 

(1) Fix an arbitrary model based on a frame that satisfies property 
P CMP . Fix arbitrary a E O,to E T and Boolean formula ¢ and suppose 
that to) F ,A,¢. Let E = I¢lto' Then E # 0. We want to show that 
(a,to) F OJ¢. By property P CMP , there exists atE T such that to >----+ t 
and It(w) = E. Since ¢ is Boolean, I¢lto = i¢lt. Thus (a,t) F J¢ and 
hence (a, to) I OJ(p. 

Conversely, fix a frame that violates property P CMI'. Then there exist 
a E 0, to E T and E E 2n \{0} such that, 1ft E T, if to >----+ t then It(w) / E. 
Construct a model where, for some atomic proposition p, Ilpll ExT. 
Then, 1ft E T with to >----+ t, (a, t) ~ Jp. Thus (oc, to) ~ OJp. 

(2) Fix an arbitrary model based on a frame where It is serial and 
suppose that ,J( (P /\ '¢) is not valid, that is, for some ()C E 0, t E T and 
formula¢, (a,t) Fl(¢/\ocp). Then It (()C) = I¢/\,cplt. But I¢/\,cplt = 0, 

while by seriality It(a) / 0, yielding a contradiction. 
Conversely, fix a frame where It is not serial, that is, there exist t E T 

and a E n such that I t ( a) 0. Since, for every forrnula (P, I(P /\ ,cpl t 0, 

it follows that (()C, t) F [((P /\ '¢) so that '[((P /\ '¢) is not valid. Q.E.D. 

18 If ~<P E K then ~<P E w for every w E MK and therefore Mi¢ n MiK = 0. 
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Abstract 

We contrast Bonanno's 'Belief Revision in a Temporal Framework' 
(Bonanno, 200S) with preference change and belief revision from the 
perspective of dynamic epistemic logic (DEL). For that, we extend the 
logic of communication and change of van Benthem et a!. (2006b) with 
relational substitutions (van Benthem, 20(4) for preference change, 
and show that this does not alter its properties. Next we move to a 
more constrained context where belief and knowledge can be defined 
fi'om preferences (Grove, 19S5; Board, 2002; Ba.ltag and Smets, 2006, 
200Sb), prove completeness of a very expressive logic of belief revision, 
and define a mechanism for updating belief revision models using a 
combination of action priority update (Baltag and Smets, 200Sb) and 
preference substitution (van Benthem, 20(4). 

1 Reconstructing AG~1 style belief revision 
Bonanno's paper offers a rational reconstruction of Alchourron Giirdenfors 
Makinson style belief revision (AGr.,i[ belief revision) (Alchourron et aI., 
1985; see also G~irdenfors, 1988 and G~irdenfors and Rott, 1995), in a frame
work where modalities B for single agent belief and I for being informed 
are mixed with a next time operator 0 and its inverse 0 1. 

Both the AGM framework and Bonanno's reconstruction of it do not 
explicitly represent the triggers that cause belief change in the first place. 
I<p expresses that the agent is inforrned that <p, but the communicative 
action that causes this change in information state is not represented. Also, 
<p is restricted to purely propositional formulas. Another limitation that 
Bonanno's reconstruction shares with AGM is that it restricts attention to 
a single agent: changes of the beliefs of agents about the belief.s of other 
agents are not analyzed. In these respects (Bonanno, 2008) is close to 
Dynamic Doxastic Logic (DDL), as developed by Seger berg (1995, 1999). 

AGM style belief revision was proposed more than twenty years ago, and 
has grown into a paradigm in its own right in artificial intelligence. In the 

Krzysztof R. Apt, Robert van 
'Texts in Logic and Gan1es 4) 
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meanwhile rich frarneworks of dynamic epistemic logic have emerged that 
are quite a bit more ambitious in their goals than AGM was when it was 
first proposed. AGM analyzes operations +p for expanding with cp, -cp 
for retracting cp and *cp for revising with cpo It is formulated in a purely 
syntactic: way, it hardly addresses issues of semantics, it does not propose 
sound and complete axiomatisations. It did shine in 1985, and it still shines 
now, but perhaps in a more modest way. 

Bonanno's paper creates a nice link between this style of belief revision 
and episternic/doxastic: logic:. While similar in spirit to Segerberg's work, 
it addresses the question of the rational reconstruction of AGM style belief 
revision more explicitly. This does add quite a lot to that framework: clear 
semantics, and a sound and complete axiomatisation. Still, it is fair to say 
that this rational reconstruction, nice as it is, also inherits the limitations 
of the original design. 

2 A broader perspective 
Meanwhile, epistemic logic has entered a different phase, with a new focus 
on the episternic and doxastic effects of inforrnation updates such as public 
announcements (Plaza, 1989; Get'brandy, 1999). Public announcements are 
interesting because they create common knowledge, so the new focus on 
information updating fostered an interest in the evolution of multi-agent 
knowledge and belief under acts of comrnunication. 

Public announcement was generalized to updates with 'action models' 
that can express a wide range of communications (private announcements, 
group announcements, secret sharing, lies, and so on) in (Baltag et aI., 1998) 
and (Baltag and Moss, 2004). A further generalization to a complete logic 
of comrnunication and change, with enriched actions that allow changing 
the facts of the world, was provided by van Benthem et al. (2006b). The 
textbook treatment of dynamic epistemic logic in (van Ditmarsch et al., 
2007) bears witness to the fact that this approach is by now well established. 

The above systems of dynamic episternic logic do provide an account of 
knowledge or belief update, but they do not analyse belief revision in the 
sense of AGM. Information updating in dynamic epistemic logic is mono
tonic: facts that are announced to an audience of agents cannot be un learnt. 
Van Benthern (2004) calls this 'belief change under hard information) or 
'eliminative belief revision'. See also (van Ditmarsch, 2005) for reflection 
on the distinction between this and belief change under soft information. 

Assume a state of the world where p actually is the case, and where you 
know it, but I do not. Then public announcement of p will have the effect 
that I get to know it, but also that you know that I know it, that I know 
that you know that I know it, in short, that p becomes common knowledge. 
But if this announcement is followed by an announcement of -'p, the effect 
will be inconsistent knowledge states for both of us. 
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It is clear that ACNI deals with belief revision of a different kind: 'be
lief change under soft information' or 'non-eliminative belief revision'. In 
(van Benthem, 2004) it is sketched how this can be incorporated into dy
namic epistemic logic, and in the closely related (Baltag and Smets, 2008b) 
a theory of 'doxastic actions' is developed that can be seen as a further step 
in this direction. 

Belief revision under soft information can, as Van Benthem observes, be 
modelled as change in the belief accessibilities of a model. This is different 
from public announcement, which can be viewed as elimination of worlds 
while leaving the accessibilities untouched. 

Agent i believes that cp in a given world tv if it is the case that cp is 
true in all worlds t that are reachable from tv and that are minimal for a 
suitable plausibility ordering relation :::;i' Tn the dynamic logic of belief revi
sion these accessibilities can get updated in various ways. An example frorn 
(Rott, 2006) that is discussed by van Benthem (2004) is 11 A for so-called 
'lexicographic upgrade': all A worlds get promoted past all non-A worlds, 
while within the A worlds and within the non-A worlds the preference re
lation stays as before. Clearly this relation upgrade has as effect that it 
creates belief in A. And the belief upgrade can be undone: a next update 
with 1I,A does not result in inconsistency. 

Van Benthem (2004) gives a complete dynamic logic of belief upgrade 
for the belief upgrade operation 1IA, and another one for a variation on 
it, l' A, or 'elite change', that updates a plausibility ordering to a new one 
where the best A worlds get promoted past all other worlds, and for the 
rest the old ordering remains unchanged. 

This is Laken one sLep further in a general logic for changing prefer
ences, in (van Benthem and Liu, 2004), where upgrade as relation change 
is handled for (reflexive and transitive) preference relations :::;." by means 
of a variation on product update called product upgrade. 1'he idea is to 
keep the domain, the valuation and the epistemic relations the same, but 
to reset the preferences means of a substitution of new preorders for the 
preference relations. 

Treating knowledge as an equivalence and preference as a preorder, with
out constraining the way in which they relate, as is done by van Benthem 
and Liu (2004), has the advantage of generality (one does not have to spec
ify what 'having a preference' means), but it makes it harder to use the 
preference relation for modelling belief change. If one models 'regret' as 
preferring a situation that one knows to be false to the current situation, 
then it follows that one can regret things one cannot even conceive. And us
ing the same preference relation for belief looks strange, for this would allow 
beliefs that are known to be false. Van Benthem (private communication) 
advised me not to lose sleep over such philosophical issues. If we follow that 
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advice, and call 'belief' what is true in all most preferred worlds, we can still 
take comfort from the fact that this view entails that one can never believe 
one is in a bad situation: the belief-accessible situations are by definition 
the best conceivable worlds. Anyhow, proceeding from the assumption that 
knowledge and preference are independent basic relations and then study
ing possible relations between them has turned out very fruitful: the recent 
theses by Girard (2008) and Liu (2008) are rich sources of insight in what 
a logical study of the interaction of knowledge and preference may reveal. 

Here we will explore two avenues, different from the above but related to 
it. First, we assume nothing at all about the relation between knowledge on 
one hand and preference on the other. We show that the dynamic logic of 
this (including updating with suitable finite update models) is complete and 
decidable: Theorem 3.1 gives an extension of the reducibility result for Lee, 
the general logic of comrnunication and change proposed and investigated 
in (van Benthem et aI., 2006b). 

Next, we move closer to the AGM perspective, by postulating a close 
connection between knowledge, belief and preference. One takes prefer
ences as primary, and imposes minimal conditions to allow a definition of 
knowledge from preferences. The key to this is the simple observation in 
Theorem 4.1 that a preorder can be turned into an equivalence by taking 
its symmetric closure if and only if it is weakly connected and conversely 
weakly connected. This means that by starting from weakly and converse 
weakly connected preorders one can interpret their symmetric closures as 
knowledge relations, and use the preferences themselves to define conditional 
beliefs, in the well known way that was first proposed in (Boutilier, 1994) 
and (Halpem, 1997). The mulLi-agellL version of this kind of conditional 
belief was further explored in (van Benthem et aI., 2006a) and in (Baltag 
and Smets, 2006, 2008b). We extend this to a complete logic of regular dox
astic programs for belief revision models (T'heorem 4.3), useful for reasoning 
about cormnon knowledge, cornmon conditional belief and their interaction. 
Finally, we make a formal proposal for a belief change mechanisrn means 
of a combination of action model update in the style of (Baltag and Smets, 
2008b) and plausibility substitution in the style of (van Benthem and Li u, 
2004). 

3 Preference change III LCC 
An epistemic preference model 1\1 for set of agents I is a tuple (lV, 1l , R, P) 
where Hl is a non-empty set of worlds, V is a propositional valuation, R is 
a function that maps each agent i to a relation Ri (the episternic relation 
for i), and P is a function t hat maps each agent i to a preference relation 
Pi. There are no conditions at all on the ~ and the Pi (just as there are 
no constraints on the ~ relations in Lee (van Benthem et aI., 2006b)). 
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We fix a PDL style language for talking about epistemic preference mod
els (assume p ranges over a set of basic proposi tions Pmp andi over a set 
of agents I): 

cp Tip 1 'cp 1 CP1 /\ CP2 1 [1I]CP 

11 ~i 1 ?i I?cp 1111; 112 1111 U 112 111* 

This is to be interpreted in the usual PDL manner, with 1I11I11IM giving the 
relation that interprets relational expression 11 in M = (lV, yT, R, P), where 
~'i is interpreted as the relation R'i and as the relation Pi, and where 
the complex modalities are handled by the regular operations on relations. 
We employ the usual abbreviations: .-l is shorthand for, T, CP1 V CP2 is 
shorthand for ,( 'CP1 ;\ 'C(2), CPI ---+ CP2 is shorthand for ,( CP1 1\ C(2), CP1 +---+ CP2 
is shorthand for (CP1 ---+ C(2) 1\ (CP2 ---+ C(1), and (r.)cp is shorthand for '[1I]'CP' 

The formula [1I]CP is true in world w of M if for all v with (w, v) E ~1I]IIM 
it holds that cP is true in v. This is completely axiomatised by the usual 
PDL rules and axioms (Segerberg, 1982; Kozen and Parikh, 1981): 

Modus ponens 
IVlodal generalisation 

and axioms for propositional logic 
From f- cP infer f- 11IIcp 

Normality 
Test 
Sequence 
Choice 
Mix 
Induction 

f- [11]( cP ---+ '1/;) ---+ ([11] cP ---+ [11] V) ) 
f- [?cp]l,b +---+ (cp ---+ l,b) 
f- 1111; 1I2]cp +---+ [1I1I1r.2Icp 
f- [111 U 1I21cp +---+ (11Illcp 1\ [1I2Icp) 
f- [1I*]CP +---+ (cp /\ [111 [r.*]cp) 
f- (cp 1\ [r.*](cp ---+ [r.]cp)) ---+ [r.*]cp 

In (van Benthem et aI., 2006b) it is proved that extending the PDL language 
with an extra modality [A, elcp does not change the expressive power of the 
language. Interpretation of the new rnodality: [A, e]cp is true in 10 in M if 
success of the update of M with action model A to M Q<) A implies that cP 
is true in (w, e) in M Q<) A. To see what that means one has to grasp the 
definition of update models A and the update product operation which 
we will now give for the epistemic preference case. 

An action model (for agent set I) is like an epistemic preference model 
for I, with the difference that the worlds are now called events, and that 
the valuation has been replaced by a precondition map pro that assigns to 
each event e a formula of the language called the precondition of e. From 
now on we call the epistemic preference models static models. 

Updating a static model M (W, V, R, P) with an action model A 
(E, pro, R, P) succeeds if the set 

{ e) 1 10 E W, e E E, M, w F prot e)} 
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FIGURE 1. Static model and update. 

is non-empty. T'he result of this update is a new static model M ® A 
(HTI, VI, RI, Pi) with 

• WI = {(w,e) I 'W E W,e E E,M,'w F prole)}, 

• l/l(w,e) V(w), 

• Rj is given by { e),(v,f)) I E~}) 

• Pf is given by { e), (v, f)) I (w, v) E Pi, (e, f) E Pd· 

If the static model has a set of distinguished states Wa and the action rnodel 
a set of distinguished events Eo, then the distinguished worlds of M ® A 
are the (w, e) with W E Wo and e E Eo. 

Figure 1 gives an example pair of a static model with an update action. 
The distinguished worlds of the model and the distinguished event of the 
action model are shaded grey. Only the R relations are drawn, for three 
agents a, b, c. The result of the update is shown in Figure 2, on the left. 
This result can be reduced to the bisimilar model on the right in the same 
figure, with the bisimulation linking the distinguished worlds. The result of 
the update is that the distinguished "wine" world has disappeared, without 
any of a, b, c being aware of the change. 

In LCC, action update is extended with factual change, which is handled 
by propositional substitution. Here we will consider another extension, with 
preference change, handled by preference substitution (first proposed by 
van Benthem and Liu, 2004). A preference substitution is a rnap from 
agents to PDL program expressions 'If represented by a finite set of bindings 

where the i j are agents, all different, and where the 'lfi are program ex
pressions from our PDL language. It is assumed that eachi that does 



Yet More Nlodal Logics of Preference Change and Belief Revision 87 

abc 

abc abc 

n abc 
abc abc wlllllr 

abc 

abc 

abc 

n 

~
abC ",mef-=BabC 

an " a 

wine __ ~__ beer 

FIGURE 2. Update result, before and after reduction under bisimulation. 

not occur in the lefthand side of a binding is mapped to Call the set 
{i E I I p( i) # :?:d the domain of p. If M = (lV, V, R, P) is a preference 
model and p is a preference substitution, then l\1P is the result of changing 
the preference map P of M to pP given by: 

PP(i) 

PP(i) 

Pi for i not in the domain of p, 

Ilip( i)l!M for i i j in the domain of p. 

Now extend the PDL language with a modality [p]cp for preference change, 
with the following interpretation: 

M, wi Ipicp : -¢=} MP, w I cpo 

Then we get a complete logic for preference change: 

Theorem 3.1. The logic of episternic preference PDL with preference change 
modalities is complete. 

Proof. The preference change effects of Ipi can be captured by a set of re
duction axiom.s for [p] that commute with all sentential language constructs, 
and that handle formulas of the form Ipl [1Iicp by means of reduction axioms 
of the form 
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FIGURE 3. Preorder with a non-transitive symmetric closure. 

with Fp given by: 

Fp( ~i) 

Fp ("2.i) 

Fp(?cp) 
FpCrrl; 1f2) 
Fp(1fl U 1f2) 
Fp( 1f*) 

if i in the domain of p, 
otherwise, 

It is easily checked that these reduction axiom.s are sound, and that for each 
formula of the extended language the axioms yield an equivalent formula 
in which [pi occurs with lower complexity, which means that the reduction 
axiorns can be used to translate fonnulas of the extended language to PDL 
formulas. Completeness then follows from the completeness of PDL. Q.E.D. 

4 Yet another logic ... 
In this section we look at a more constrained case, by replacing the epis
temic preference models by 'belief revision models' in the style of Grove 
(1988), Board (2002), and Baltag and Smets (2006, 2008b) (who call them 
'multi-agent plausibility frames'). There is almost complete agreement that 
preference relations should be transitive and reflexive (preorders). But tran
sitivity plus reflexivity of a binary relation R do not together imply that 
R U R' is an equivalence. Figure 3 gives a counterexample. 'fhe two extra 
conditions of weak connectedness for R and for Ie remedy this. A binary 
relation R is weakly connected (terminology of Goldblatt, 1987) if the fol
lowing holds: 

y, z((:cRy 1\ :cRz) -> (yRz V y z V zRy)). 

Theorem 4.1. Assume R is a preorder. Then R U R' is an equivalence iff 
both Rand R- are weakly connected. 
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FIGURE 4. Locally connected preorder that is not connected. 

Pmoj. =}: immediate. 
-{=: Let R be a preorder such that both R and Ie are weakly connected. 

We have to show that Ru R' is an equivalence. Symmetry and reflexivity are 
immediate. For the check of transitivity, assume xR U R'y and yR U R' z. 
There are four cases. (i) :cRyRz. Then :cRz by transitivity of R, hence 
xR U R'z. (ii) xRyR'z. Then yR':c and yR'z, and by weak connectedness 
of R', either (xR'z or zR'x), hence xR U R'z, or x = z, hence xRz by 
reflexivity of R. Therefore xR U Kz in all cases. (iii) xKyRz. Similar. 
(iv) xR'yR'z. Then zRyR:c, and zRa: by transitivity of R. Therefore 
xR U R' Z. Q.E.D. 

Call a preorder that is weakly connected and conversely weakly con
nected locally connected. The exarnple in Figure 4 shows that locally con
nected preorders need not be connected. Taking the symmetric closure of 
this example generates an equivalence with two equivalence classes. More 
generally, taking the symmetric closure of a locally connected preorder cre
ates an equivalence that can play the role of a knowledge relation defined 
from the preference order. T\) interpret the preference order as conditional 
belief, it is convenient to assume that it is also well-founded: this makes for 
a smooth definition of the notion of a 'best possible world'. 

A belief revision model 1\11 (again, for a set of agents 1) is a tuple 
(W, V, P) where W is a non-empty set of worlds, V is a propositional valua
tion and P is a function that maps each agent i to a preference relation ~i 
that is a locally connected well-preorder. That is, is a preorder (reflexive 
and transitive) that is well-founded (in tennf; of <i for the strict part of 
~i' this is the requirement that there is no infinite sequence of Wi, 'W2, ... 

with ... <i 'W2 <i Wi)' and such that both ~i and its converse are weakly 
connected. 
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In what follows we will use <i with the meaning explained above, for 
the converse of >i for the converse of <i, and ~i for U 

The locally connected well-preorders :Si can be used to induce accessibil
ity relations -,;t: for each subset P of the domain, by means of the following 
standard definition: 

y) I:/: ~i y 1\ Y E MIN"i P }, 

where MIN "i P, the set of rninimal elements of P under is defined as 

{s E P: E P(s' :S s =? s :S Sl)}. 

This picks out the minimal worlds linked to the current world, accord
ing to within the set of worlds satisfying [[cpIIM. The requirement of 
wellfoundedness ensures that MIN <P will be non-empty for non-empty P. 
Investigating these -,;P relations, ,;e see that they have plausible properties 
for belief: 

Proposition 4.2. Let :S be a locally connected well-preorder on 8 and let 
P be a non-empty subset of 8. Then -,;P is transitive, euclidean and serial. 

Proof. Transitivity: if x -,;P y then y .~ x and y E MIN <Po If y -,;P z then 
z ~ y and z E MIN <Po It follows by local connectedness of :S that z ~ :/: 
and by the definitio~ of -,;P that x -,;P z. 

Euclideanness: let x -,;P y and x -,;P z. We have to show y -,;P z. From 
:1: -,;P y, Y·~:I: and y E MIN<P. From x -,;P Z, Z ~:I: and z E MIN<P. 
From local connectedness, y ~ z. Hence y -,;1' z. 

Seriality: Let:1: E P. Since:S is a preorder there are yEP with 
y :S x. The wellfoundedness of :S guarantees that there are :S minimal 
such y. Q.E.D. 

Transitivity, euclideanness and seriality are the frarne properties correspond
ing to positively and negatively introspective consistent belief (KD45 belief, 
Chellas, 1984). 

Figure 5 gives an example with both the :S relation (shown as solid 
arrows in the direction of more preferred worlds, i.e., with an arrow from :1: 

to y for :1: 2:: y) and the induced -'; relation on the whole domain (shown as 
dotted arrows). The above gives us in fact knowledge relations ~i together 
with for each knowledge cell a Lewis-style (1973) counter factual relation: a 
connected well-preorder, which can be viewed as a set of nested spheres, with 
the minimal elements as the innermost sphere. Compare also the conditional 
models of Burgess (1981) and Veltman (1985) (linked to Dynamic Doxastic 
Logic in Girard, 2007). 

Baltag and Smets (2008b,a) present logics of individual multi-agent be
lief and knowledge for belief revision models, and define belief update for 
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FICURE 5. Preference (solid arrows) and belief (dotted arrows). 

this as a particular kind of action update in the style of (Baltag et ai., 1998), 
called action priority update. Here we sketch the extension to a system that 
also handles common knowledge and common conditional belief, and where 
t he action update has belief change incorporated in it by means of relational 
substitution. 

Cl'he set-up will be less general than in the logic LCC: in LCC no assump
tions are made about the update actions, and so the accessibility relations 
could easily deteriorate, e.g., as a result of updating with a lie. Since in 
the present set-up we make assumptions about the accessibilities (to wit, 
that they are locally connected well-preorders), we have to ensure that our 
update actions pwserve these rPiational properties. 

Consider the following slight modification of the PDL language (again 
assume p ranges over a set of basic propositions Fmp and i over a set of 
agents 1): 

cP Tip I ---'CP I CPl /\ CP2 I [1T]cp 

1T ~i I ::;i I 2':i I I +-[ I G I?cp l 1T l; 1T2 l 1T l U 1T2 11T* 

Call this language Lprer. 'fhis we treat ~i as a derived notion, 
putting in an axiom that defines ~~i as U 2':i' The intention is to let ~i be 
interpreted as the knowledge relation for agenti, ::;i as the preference rela
tion fori, as the converse preference relation for i, -+[ as the conditional 
belief relation defined from ::;i as explained above, as its converse, and 
G as global accessibility. We use -+i as shorthand for 

We have added a global modality G, and we will set up things in such way 
that [G]cp expresses that everywhere in the model cP holds, and that (G)cp 
expresses that cp holds sornewhere. It is well-known that adding a global 
modality and converses to PDL does not change its properties: the logic re-
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mains decidable, and satisfiability rernainsEXP'fIME-cornplete (Blackburn 
et aI., 2001). 

The semantics of [Pref is given relative to belief revision models as indi
cated above. Formula meaning [y]IM and relational meaning ~1T]IIM are han
dled in the usual way. The interpretation of the knowledge relation of agent 
i is given by ~~dIIM := ::::fI u ?::fI, that for the preference relation of agent 
i by ~::::imM := ::::fI, that for the converse preference relation of agent i by 

its converse, that for the conditional belief of agenti by ~--+nlM : --+t'P~M, 
that for +--f by its converse. 'rhe global modality is interpreted as the uni
versal relation, and test, sequential cornposition, choice and Kleene star are 
interpreted as usual. 

The interplay between the modalities [~.d (knowledge) and [?::i] (safe 
belief) is analysed by Baltag and Smets (2008b), where they remark that 
the converse preference modality [?::i] in belief revision models behaves like 
an S4.3 modality (reflexive, transitive and not forward branching), and lives 
happily together with the S5 modality for [~i]. 

To see how this all works out, let us have a look at the truth conditions 
for [--+fj1/!. This is true in a world w in model M if in all worlds v with 
v ~i wand v rninimal in Illy]IIM under ::::i it holds that V) is true. This is 
indeed conditional belief, relative to y. Compare this with [?::i]1,b. 'I'his is 
true in a world w if in all worlds that are at least as preferred, 1,b is true. 
Finally, [~i]V) is true in w if 1/) is true in all worlds, preferred or not, that i 
can access from w. 

As a further example, consider a situation where Alexandru is drinking 
wine, while Jan does not know whether he is drinking wine or beer, and 
Sonja thinks that he is drinking tea. The actual situation is shaded grey, 
.lan's preference relation has solid lines, that of Sonja dotted lines. Reflexive 
arrows are not drawn, so Alexandru's preferences are not visible in the 
picture. 

wine ~ ... 

., beer ...... 8 
. . . tea 

................ 

In the actual world it is true that Jan knows that Alexandru knows what 
Alexandru is drinking: [~j]([~a]wV [~a]b), and that Sonja believes Alexan
dru is drinking tea and that Alexandru knows it: [sH~a]t. Under concli
tion ,t, however, Sonja has the belief in the actual world that Alexandru 
is drinking beer: [--+;t]b. Moreover, Jan and Sonja have a common be
lief under condition ,t that Alexandru is drinking wine or beer: [--+jt U 

,( -+jt u --+;t)*](w V b). As a final illustration, note that [+--.s].-l is true 
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in a world if this is not among Sonja's most preferred worlds. Notice that 
if Sonja conditionalizes her belief to these worlds, she would believe that 
Alexandru is drinking beer: is true in the actual world. 

It should be clear from the example that this language is very expressive. 
To get at a complete logic for it, we need axioms and rules for propositional 
logic, S5 axioms for the global modality (Goranko and Passy, 1992), axioms 
for forward connectedness of :?: and of ::; (see Goldblatt, 1987), axiorns for 
converse, relating::; to :?: and ----'> to +--, as in temporal logic (Prior, 1967), 
and the general axioms and rules for PDL (Segerberg, 1982). Finally, add 
the following definition of conditional belief in terrns of knowledge and safe 
belief that can already be found in (Boutilier, 1994) as an axiom: 

This definition (also used in Baltag and Smets, 2008b) states that condi
tional to cp, i believes in 1jJ if either there are no accessible cp worlds, or 
there is an accessible cp world in which the belief in cp ----'> 1jJ is safe. The full 
calculus for [Prcf is given in Figure 6. 

Theorem 4.3. 1'he axiorn system for [Peef is complete for belief revision 
models: [Pre! has the finite model property and is decidable. 

Pmof. Modify the canonical model construction for modal logic for the case 
of PDL, by means of Fischer-Ladner closures (Fischer and Ladner, 1979) 
(also see Blackburn et aI., 2001). This gives a finite canonical model with 
the properties for ::;., and corresponding to the axioms (since the axioms 
for ::;i and :?:i are canonical). In particular, each :?:i relation will be reflexive, 
transitive and weakly connected, each relation will be weakly connected, 
and the ::;i and :?:i relations will be converses of each other. 'l'ogether this 
gives (Theorem 4.1) that the U are equivalences. Since the canonical 
model has a finite set of nodes, each ::;i relation is also well-founded. 'rhus, 
the canonical model is in fact a belief revision model. Also, the ----'>i and 
f-i relations are converses of each other, and related to the :?:i relations 
in the correct way. The canonical model construction gives us for each 
consistent formula cp a belief revision model satisfying cp with a finite set 
of nodes. Only finitely many of the relations in that model are relevant 
to the satisfiability of cp, so this gives a finite model (see Blackburn et al., 
2001, for further details). Since the logic has the finite model property it is 
decidable. Q.E.D. 

Since the axiomatisation is complete, the S5 properties of ~'i are deriv
able, as well as the principle that knowledge implies safe belief: 
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Modus ponens 

Modal generalisation 

Normality 

Inclusion of everything in G 

Reflexivity of G 

Transitivity of G 

Symmetry of G 

Knowledge definition 

Truthfulness of safe belief 

Transitivity of safe belief 

:2': included in :::;' 

:::; included in :2':' 

Weak connectedness of :::; 

Weak connectedness of :2': 
Conditional belief definition 

---> included in +-' 

+- included in --->' 

Test 

Sequence 

Choice 

Mix 

Induction 

J. van Eijck 

and axioms for propositional logic 

From f- cP infer f- [7f[CP 

f- [7f](CP ---> z/;) ---> ([7f]cp ---> [7f[1/)) 

f- [G[ cP ---> [7f [cp 

f- [G] cP ---> cP 

f- [G] cP ---> [G][ G] cP 

f- cP ---> [GJ( G) cP 

f- [~·dcp +- [:::;.i U :2':i]cp 

f- [:2':.dcp ---> cP 

f- [:2':i]CP ---> [:2':;] [:2':·;]cP 
f- cP ---> [:2':i[(:::;i)CP 

f- cP ---> [:::;i](:2':i)CP 
f- [:::;i]((CP /\ [:::;i]CP) ---> z/;) V [:::;i]((z/; /\ [:::;i]z/;) ---> cp) 

f- [:2':·d((cp /\ [:2':i]CP) ---> z/;) V [:2':i]((z/; /\ [:2':·dZ/;) ---> cp) 
f- [--->fhb +- ((~i)cp -> (~i)(cp/\ [:2':.;](cp -> 1/,))) 

f- cP ---> [--->:t [ cP 

f- cP ---> [+-1'] (->1') cP 

f- [?cp]z/; +- (cp ---> z/;) 

f- [7f1; +- [7f1] [7f2]cp 

f- [7f1 U +- ([7f1]cp /\ [7f2]cp) 

f- [7f*]CP +- (cp /\ [7f][7f*]y) 

f- (cp /\ [7f*](y ---> [7f]y)) ---> [7f*]y 

FIGURE 6. Axiom system for Lpref. 
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1'he sarne holds for the following principles for conditional belief gi ven in 
(Board, 2002): 

f- I;:::i]cp -* 
f- [-*t]cp -* [~il [-*1jii]Cp 

f- ·[-*tlcp -* l~iH-*1'lcp 
f- I-*f]cp 

Safe belief implies belief 

Positive introspection 
Negative introspection 
Successful revision 
Minimality of revision f- (-*n1j; -* ([i'PA1']X <-+ [-*f](1j; -* X)) 

\Ve end with an open question: is definable from ;:::i and using only 
test, sequence, choice and Kleene star? 

5 Combining update and upgrade 
The way we composed knowledge and belief by means of regular operations 
may have a dynamic flavour, but appearance is deceptive. The resulting 
doxastic and epistemic 'programs' still describe what goes on in a static 
model. Real communicative action is changing old belief revision models 
into new ones. These actions should represent new hard information that 
cannot be undone, but also soft information like belief changes that can 
be reversed again later OIl. For this we can use update action by means 
of action models, with soft information update handled by means of action 
priority update (Baltag and Smets, 2008b,a), or preference substitution as 
in (van Benthem and Li u, 2004). Here we will propose a cornbination of 
these two. 

Action models for belief revision are like belief revision models, but 
with tllP valuation replaced by a precondition map. \Ve add two extra 
ingredients. First, we add to each event a propositional substitution, to be 
used, as in LCC, for making factual changes to static models. Propositional 
substitutions are maps represented as sets of bindings 

{Pl f----+ CPl; ... ,Pn f----+ CPn} 

where all the Pi are different. It is assumed that each P that does not occur in 
the lefthand side of a binding is mapped to p. The domain of a propositional 
substitution J is the set {p E Prop I J(p) # p}. If M = (tv, V, P) is a belief 
revision rnodel and J is an [Prer propositional substitution, then VM is the 
valuation given by AWAp· wE [P<TIIM. In other words, VM assigns to W the 
set of basic propositions p such that p(J is true in world W in model lVl. M(J 
is the model with its valuation changed by J as indicated. Next, we add 
relational substitutions, as defined in Section 3, one to each event. Thus, 
an action model for belief revision is a tuple A = (E,pre,P,psub,rsub) 
with E a non-empty finite set of events, psub and rsub maps from E to 
propositional substitutions and relational substitutions, respectively, and 
with rsub subject to the following constraint: 
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:=<= 

n 

II' 

4: true 
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FIGURE 7. Unconstrained relational substitution creates havoc. 

If e ~'i f in the a.ction model, then rsub(e) and rsubU) have the 
same binding for i. 

'fhis ensures a coherent definition of the effect of relational substitution on 
a belief structure. The example in Figure 7 illustrates this. But note that 
the substitutions are subject to further constraints. In the action model in 
the example, a single agent has a preference for -'p over p. In the update 
model, a substitution reverses the agent's preferences, but the agent cannot 
distinguish this from an action where nothing happens. What should the 
result of the update look like? E.g., is there a preference arrow from (2,3) 
to (1,4)? This is impossible to answer, as action 3 asks us to reverse the 
preference and action -'1 demands that we keep the initial preference. The 
constraint on substitutions rules out such dilernmas. 

The relational substitution p rsub( e) at event e in action model A is 
meant to to be interpreted 'locally' at each world w in input model M. If 
P is the preference map of M, then let PI: be given 

PI: (i) 

P/;;(i) 

for i not in the dornain of p, 

for i = i j in the domain of p. 

Thus, PI/; is the result of making a change only to the local knowledge cell 
at world w of agent i (which is given by the equivalence class Iwlffi~'imM). 
Lcl - -

U P/;;(i) 
wEW 

Then pP (i) gives the result of the substitution p on P( i), for each knowledge 
cell for i, and pP gives the result of the substitution p on P, for 
each agent i. 
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Now the result of updating belief revision model M = (W, V, P) with ac
tion model A (E,pre,P,psub,rsub) is given by M@A (W', V',P'), 
where 

• HI' {(w,e) I W E W,e E E,lM,w I pre(e)}, 

• VI('w,e) vallO), 

• PI(i) is given by the anti-lexicographical order defined from Pfi('i) and 
P(i) (see Baltag and Smets, 2008b,a). 

With these definitions in place, what are reasonable substitutions? A pos
sible general form for a preference change could be a binding like this: 

This is to be interpreted as an instruction to replace the belief preferences 
of i in the local knowledge cells by the new preference relation that prefers 
the 'PI states above everything else, the -''Pl 1\ 'P2 above the -''PI 1\ -''P2 
states, and so on, and the -''Pl /\ -''P2 /\ ... /\ -''Pn- I /\ 'Pn states above the 
-''PI /\ -''P2 1\ . ... 1\ -''Pn states. Such relations are indeed connected well
preorders. 

mQst ....... . ........ 

Note that we can take ['PI, 'P2, ... , 'Pnl as an abbreviation for the following 
doxastic program: 

;'?'Pd U ('?-''Pl;~i;'?-''Pl;'?'P2) 

U (?-''P I: '?-''P2; ~i: ? -''P I; ? -''P2; ?'P3) 

U 

In general we have to be careful is also observed in (van Benthem and 
Liu, 2004)). If we have a connected well-preorder then adding arrows to 
it in the same knowledge cell may spoil its properties. Also, the union of 
two connected well-preorders need not be connected. So here is a question: 
what is the maximal sublanguage of doxastic programs that still guarantees 
that the defined relations are suitable preference relations'? Or should belief 
revision models be further constrained to guarantee felicitous preference 
change'? And if so: how? 
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6 Examples 
Global amnesia: the event of agent a (Jason Bourne) forgetting all his 
beliefs, with everyone (including himself) being aware of this, is represented 
by the following action model (for the case of three agents a, b, c): 

a:=G )abC 
Alzheimer: the event of agent a forgetting everything, with the others 
being aware of this, while a wrongly believes that nothing has happened. It 
is tempting to model this with the following update model: 

abc abc 
(f 

a a. := true 

Note however that this does not satisfy the constraint on relation update 
(the two actions are connected, but the substitution for a is not the same), 
so it may result in incoherent models. 

Lacular amnesia (specific forgetting): forgetting everything about p. 
One way to model this is by means of an action model with a single action, 
accessible to all, with the relational substitution 

This will effectively add best-world arrows from everywhere in the knowl
edge cell to all ---'p worlds. 

Confession of faith in p, or publicly accepting p: an action model 
with a single action, accessible to all, with the relational substitution 

This will make the p worlds better than the ---'p worlds everywhere. 

Submission to a guru: the act of adopting the belief of someone else, 
visible to all. A problem here is that the guru may know more than I do, so 
that the guru's preferences within my knowledge cell may not be connected. 
This means that the substitution ~i f----'> ~j the binding that expresses 
thati takes over j's beliefs-may involve growth or loss of knowledge for i. 
Consider the example of the wine-drinking Alexandru again: if Jan were to 
take over Sonja's beliefs, he would lose the information that Alexandru is 
drinking an alcoholic beverage. 
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Conformism: adopting the cornmon beliefs of a certain group, visible to 
all: an action model with a single action accessible to ail, with the following 
substitution for conformist agent i: 

Belief coarsening: the most preferred worlds remain the most preferred, 
the next preferred remain the next preferred, and all further distinctions 
are erased. An action model with a single action accessible to all, and the 
following substitution for agent i: 

The union with the relation ?T has the effect of adding all reflexive arrows, 
to ensure that the result is reflexive again. 

Van Benthem's i)'cp is handled by a substitution consisting of bindings 
like this: 

( ?{n' ~. ?-,{r; I U 
°r1 "{,. YJ 

This is an alternative for an update with an action model that has -''P <B cpo 
The example shows that conservative upgrade is handled equally well by 
action priority updating and by belief change via substitution. But belief 
change by substitution seems more appropriate for 'elite change'. For this 
we need a test for being in the best cp world that i can conceive, by means 
of the Panglossian formula (f-n T. The negation of this allows us to define 
eiiLe challge like chis: 

. ?] .. f- 'PI JJ 
1 • 1, J' 

This promotes the best cp worlds past all other worlds, while leaving the 
rest of the ordering unchanged. Admittedly, such an operation could also 
be performed using action priority updating, but it would be much more 
cumbersome. 

7 Further connections 
To connect up to the work of Bonanno again, what about time? Note 
that perceiving the ticking of a clock can be viewed as information update. 
A clock tick constitutes a change in the world, and agents can be aware 
or unaware of the change. This can be modelled within the framework 
introduced above. Let t], ... , tn be the clock bits for counting ticks in 
binary, and let C: C+ 1 be shorthand for the propositional substitution 
that is needed to increment the binary number t 1 , ... ,tn by 1. Then public 
awareness of the clock tick is modelled by: 
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C C+l )abC 
'rhus, perception of the ticking of a clock can be rnodelled as 'being in 
tune wit h change in the world'. Still, this is not quite the same as the 'next 
instance' operator 0, for the DEL framework is specific about what happens 
during the clock tick, while 0 existentially quantifies over the change that 
takes place, rather in the spirit of (Balbiani et al., 2007). 

In belief revision there is the AGM tradition, and its rational reconstruc
tion in dynamic doxastic logic a la Segerberg. Now there also is a modal 
version in Bonanno style using temporal logic. It is shown in (van Benthem 
and Pacuit, 2006) that temporal logic has greater expressive power than 
DEL, which could be put to use in a temporal logic of belief revision (al
though Bonanno's present version does not seem to harness this power). As 
an independent development there is dynamic epistemic logic in the Amster
dam/Oxford tradition, which was inspired by the logic of public announce
ment, and by the epistemic turn in game theory, it la Aumann. Next to this, 
and not quite integrated with it, there is an abundance of dynamic logics 
for belief change based on preference relations (Spohn, Shoham, Lewis), and 
again the Amsterdam and Oxford traditions. I hope this contribution has 
made clear that an elegant fusion of dynamic episternic logic and dynamic 
logics for belief change is possible, and that this fusion allows to analyze 
AGM style belief revision in a multi-agent setting, and integrated within a 
powerful logic of communication and change. 
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Abstract 

Recent developments in the interface of Economics and Logic yield 
the promise of capturing phenomena in strategic interaction that was 
previously beyond theoretical economic modeling. We consider one 
such application in the case of strategic situations that players may 
perceive differently. We show that the content of messages sent in 
this setting carries strategic implications without resorting to prior 
conventions and beyond the observations made in the literature deal
ing with cheap talk communications. The content of the message 
becomes strategically meaningful since it reveals perceptions. Vari
ous forms of interaction between meaningful statements and strategic 
behavior are discussed. 

1 Introduction 
The modeling of information in strategic settings has been the centerpiece 
of economic theory for alrnost four decades now. Models of signaling, bar
gaining, auctions, contracts, mechanism design and more, are grounded in 
the premise that the decision makers posses private information relevant for 
outcomes, that their behavior is conditioned on their information, that they 
form beliefs about the information held by others and that they revise these 
beliefs based on observed actions. In addition, these fields of research add 
the possibility of communication between decision makers. However, formal 
theoretical economics modeling tends to overlook the content, or meaning 
of the messages that the decision makers may exchange, and, in particular, 
how this meaning may influence strategic behavior. 

In his seminal work, Spence (1973) introduced the job market signaling 
model. In this model an employer wishes to hire qualified employees, how
ever only the potential candidates know their private degree of qualification. 
Spence shows that if the employees are able to signal their abilities then an 
equilibrium of the game may be able to separate the high quality candi
dates from the lower quality ones. Cl'his signal is a potentially costly action 

Krzysztof R. Apt, Robert van 
'Texts in Logic and Gan1es 4) 

Perspecti'ues on Garnes and lrderaction. 
Press 2008, pp. 105-119. 
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taken the candidates, for exarnple obtaining a college degree. 'fhe im
portant feature for separation by a signaling action is that it is more costly 
to a candidate that is less qualified for the job. The signaling action itself 
may have no impact on the employee's underlined qualities as they pertain 
to the job offered, it only serves as a way for the more qualified workers 
to separate themselves from the others. The information the employee's 
qualification is being deduced indirectly from his action in equilibrium. 
Such inferred information from an observed action is what economists usu
ally refer to as informational content. L The content is the indirect deduction 
about private information derived from the information dependent strategic 
incentives associated with various actions. 

l'his "(costly) action speaks louder than words" approach resonates well 
with the economic perspective that a message that can be sent without 
incurring costs,2 has to be stripped of all meaning other than its strategic 
intention when analyzed by the receiver. With that in mind, the ingenious 
work by Crawford and Sobel (1982) demonstrated that cheap talk, as it 
became to be known, can have profound strategic impact. By reacting 
to different messages differently, the receiver can create an incentive for 
the sender to send different messages depending on the sender's private 
information which also makes the receiver's choices best responses and all 
this without incurring any cost of signaling. The strategic reaction in such 
cheap talk games distinguishes between various messages, but it need not, 
and does not, depend in any way on the content of a message there is no 
relevance to what is being said only to saying one arbitrary thing rather 
than the other. 

While cheap Lalk influences straLegic outcomes, it was recogllized in Lhe 
refinement literature3 that the content of the rnessages plays no role in the 
solution (see Cho and Kreps, 1987, for an illuminating explanation). One 
of the few direct efforts to confront the issue of meaningful messages in 
Economics is due to Farrell (1993). He suggests a delicate solution con
cept termed Neologism-proof eq1tilibTinm where an equilibriurn defines the 
expected messages (that must agree with equilibrium behavior of the var
ious sender types) and has to be robust to messages that are new that 
will surprise the receiver given the expected equilibrium play. In this sense 
the language is endogenously dictated by some equilibrium behavior that 
forces the meaning of the message to coincide with that behavior. The work 
of Matthews et al. (1991) confronts the problem by introducing announce-

1 See Spence's (2001) Nobel Prize lecture for an insightful description of this type of 
informational content. 

2 [n particular no indirect costs in the form of a contractual or reputational commitment. 
3 The literature dea.ling with providing alternative solution concepts to Nash equilibrium 

that will confront the multiplicity of equilibria and remove seemingly "unwanted" 
behavior. 
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ment proof equilibria as well as additional weak and strong versions. In 
these solutions the sender can make more delicate announcements of de
viation from the given equilibrium and they ask for behavior with various 
levels of robustness against the deviating announcements when it is assumed 
that deviations are interpreted correctly by the receiver. In the background 
there is a notion of convention that not only assumes a sender will do what 
he says as long as there is no incentive to deviate, but that the receiver 
interprets the messages in the manner intended by the sender. 

On the other hand, philosophers and, in particular, logicians studied 
both language, communication and interpretation long before it entered 
economic discourse. Moreover, there have been studies relating these to 
actions and mounting interest in the incorporation of strategic reasoning, 
as well as the use of logic games (see van Benthem, 2007) which in turn 
is advancing game theoretical results. Tn relation to pre-play communi
cation in games the work of Lewis (1969) sets the stage. With Gricean 
maxims (cf. Grice, 1957) shedding light on methodical principles for for
rnulating foundations for refinement conditions as described above. As in 
similar cases of intersecting disciplines, the interaction works both ways 
with game theoretical principles utilized on the linguistic side of communi
cation as seen in (Parikh, 2001), (van Rooij, 2003, 2004) and (Jager, 2006), 
with dynamics-evolutionary and learning--fmtering the scene and bridging 
semantics and pragmatics. 

Here we take a different approach to the strategic impact of content. 
yVe consider communication that may alter how decision makers perceive 
the strategic situation, or how they view its perception by others. It is the 
game form that may change ati a retiult of communicatioll. {bing a recently 
developed framework for games with unawareness in (Feinberg, 2004, 2005b) 
we consider games where players may initially model the game differently, or 
view others as modeling it differently. Tn this paper we consider the impact 
of adding a communication stage to such garnes. The players can now reveal 
their perception. It turns out that sorne statements are inherently credible, 
without resorting to prior conventions or to credibility derived from the 
definition of the solution. As such, we find that the content of the message 
can infl uence the strategic behavior of the decision makers without resorting 
to a refinement or an arbitrary assignment of interpretations to statements. 

Our aim is to link the modeling of strategic communication in economics 
with an almost pragmatic interpretation of what constitutes a game which 
allows us to insert meaning to messages. yVe find this to be a continu
ation of previous explorations along the interface between economics and 
language4 with emphasis on applicability to economic settings. 1'he next 

4 'vVe see the model here as putting pragmatism much closer to mainstream economics 
when initially Rubinstein saw it as "the topic furthest from the traditional economic 
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section provides a garne theoretical analysis of senne games with unaware
ness to which we add a pre-play communication stage. \Ne then discuss 
the aspects of strategic choice of messages in a specific example of car sales 
where a dialogue sets the bargaining game. 

2 Meaningful message 
Our starting point is a game with unawareness a game where the players 
may have a partial description of the strategic situation, or where they 
attribute such limited perception to others, view others as perceiving them 
to be restricted and so on. As a leading example consider the strategic 
situation modeled in the game depicted in Figure 1 and Figure 2 below 
taken from (Feinberg, 2005a). The game in Figure 1 represents all the 
actions available to the two players and the payoffs associated with each 
action profile. Assurne that Alice and Bob are both aware of all the actions 
available in the game. However, Alice's perception is that Bob is not taking 
into account all her actions. In particular she is confident that Bob models 
the game as depicted in Figure 2. Alice's perception can be due to her 
observing that action a3 was never taken in similar situations in the past, 
which would be supported by the observation that a3 is not part of a Nash 
equilibrium in the standard normal form game in Figure 1, or she may 
assume that Bob is relatively a novice in this strategic situation, or that this 
is her "secret" action, whichever the reason, Alice views Bob as unaware of 
this action. Hence, Alice's view is that Bob's view of the game includes only 
the actions {al' a2, bl , b2, b3} and that the strategic situation he models is 
the game depicted in Figure 2. We further assume, as in (Feinberg, 2005a), 
that Bob actually views the game as Figure l. He correctly recognizes that 
Alice considers all the actions. Furthermore, we assume that he recognizes 
that Alice is unaware that he is considering a3, i.e., Bob views Alice's view 
of his view of the game to coincide with Figure 2. Similarly, all other higher 
order iterations correspond to the game in Figure 2-Alice's view of Bob's 
view of Alice's view, Bob's view of Alice's view of Bob's Alice's and 
Bob's view of these views, and so on. 

l'he game depicted in Figure I has a unique Nash equilibrium (a2, bl ) 

obtained by iteratively eliminating strictly dominated strategies, hence a 
unique rationalizable outcomes. However, since Alice perceives Bob's view 
of the situation to be as depicted in Figure 2 she may believe that Bob is 
considering playing according to the Nash equilibrium (al' b2 ) of the game 
in Figure 2-the pareto optimal equilibrium. 

issues" in his book (Rubinstein, 2000). 
5 As noted above this may justify Alice's perception that 0,3 may be overlooked by 

others. 
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Bob 
bl b2 b:3 

Alice 
al 0,2 3,3 0,2 
a2 2,2 2,1 2,1 
a3 1,0 4,0 0,1 

FIGURE l. 

Bob 
bl b2 b3 

Alice al 0,2 3,3 0,2 
a2 2 ') 

)~ 2,1 2,1 

FIGURE 2. 

Alice will be inclined to choose her best response to b2 which is a3 

her "secret" action. Bob can make the exact same deduction as we, the 
modelers, just did, since he is aware of all the actions and correctly perceives 
that Alice is unaware that he is considering that she may take the action a3. 

Hence, Bob can deduce that Alice assurnes he plays b2 and she chooses a3. 

Bob's best response is to play h. The outcome will be a best response based 
on a Nash equilibrium of the restricted game where Alice plays a3 and Bob 
plays b3 . The decision makers' reasoning (incorporating Nash equilibria 
reasoning) may lead them to actions that are not part of an equilibriurn 
neither in the game Figure 1 nor in Figure 2. We end up with the worst 
possible payoff for Alice and a low payoff for Bob, although both are aware 
of all possible actions in the game, both are commonly aware of the action 
profile of the unique Nash equilibrium ,bJ) and both act rationally given 
their perceived view of the game. 

We wish to add pre-play communication to this game and consider the 
impact of messages on the strategic behavior. r.,1!ore precisely, assume that 
Bob can send a message to Alice. If Alice does not consider the possibility 
that Bob is actually aware of a3 there is no impact of sending rnessages 
that have no meaning as in cheap-talk communications since there are no 
differing types that Alice is considering and for which updated beliefs could 
result from rnessages sent by Bob. However, Bob can send the message "do 
not use action or "I know about action a,I" or even "don't think that 
I am not taking a3 into account". The specific reference to this action's 
name6 TequiTes Alice to reconsider her view of Bob's view of the game. The 

6 The rea.der can replace the names of actions with an appropriate description for a 
specific strategic interaction. It is here that Cricean pragmatics are invoked, see (Crice, 
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interpretation is that Bob has just related the action a3 to the strategic 
interaction. She has modeled the situation with Bob being unable, or, 
practically unable, or even unwilling, to reason about her "secret" action, 
and here Bob is explicitly mentioning this action in the context of this game. 
Can Alice ignore this statement? We believe the answer is negative. What 
forces Alice to revise her view is not t he fact that a message was sent, nor is 
it some preconceived interpretation of the statement, it is that the content 
of the message indicates that Bob can reason about a specific action a3 that 
she initially deemed relevant to the specific strategic interaction. 

A formal framework for Alice's revision due to such a message follows 
from the representation of a game as a formal language as in (Feinberg, 
2005b) when extended to restricted languages as in (Feinberg, 2004). llence, 
the interpretation of a message can be a dernonstration of the cognitive abil
ity of the sender, in the sense of the extent of his ability (or his modeling 
choice) when reasoning about the situation at hand. With this interpre
tation, Bob can send a statement that includes the term a3 only if a3 is 
part of the language he employs in reasoning about the strategic situation 
at han(L Hence, Alice who already possesses a3 in her description of the 
situation, must deduce that a3 is part of Bob's language for the game which 
is a revision of her initial perception. 

What follows after Bob mentions a3 and Alice revises her perception of 
Bob is the play of the unique Nash equilibrium of the game in Figure l. In 
this specific example, Alice is motivated to choose a2 even if she believes that 
Bob would not believe that she will revise her perception of his perception, 
i.e., even if Bob would still choose b3 expecting her to choose a3 she now 
reali:!:es that this is possible, making a2 a best response. Whatever Lhe 
update of perception is, our rnain c1airn is that the content of a message can 
change the scope of reasoning that decision makers attribute to each other 
and hence dramatically influence strategic behavior and outcomes. 

In this example we assurned that a3 is not sorne generic statement. \Vhen 
Bob rnentions a3 Alice rnust find it is highly unlikely that he was able to 
guess it. Moreover, even if Alice suspects that Bob is lucky she would realize 
that he might consider such actions possible, leading her to the (a2' b1) 

solution once more. Our observation relies on the message containing a3 

and not on any promised action, or intention Bob expresses. If anything, 
when Alice hears Bob warning her not to take action a3 she might even 
deduce something about Bob's reasoning about high order perceptions in 
this situation. She might realize that Bob is able to deduce that she is 
contemplating a3 hence he might actually realize that she initially did not 
realize he is reasoning about a3.Even without any warning attached, Bob's 
incentive for mentioning a:3 may lead Alice to deduce that Bob is not only 

1957) and in the context of game see (van Rooij, 2003). 
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aware of a3 but that he realizes that she perceived hirn to be unaware of it. 
Since, otherwise, why would he choose to mention a3 of all things? While 
this transmission of higher order perception will not impact the outcome in 
this case, assuming Alice realizes that Bob considers a3 to begin with, it 
could be of strategic impact in other settings. It also sheds some light on 
the various notions of credibility associated with a message and the derived 
high order perceptions. 

There are two different notions of credibility that can be attributed to 
a statement made by Bob. The first is the one that Farrell (1993) 
also Myerson, 1989) suggested which corresponds to a well developed body 
of work in logic-see (Grice, 1957), (Lewis, 1969) and more recent results 
in (van Rooij, 2003). It corresponds to the case where Bob makes the 
staternent "I am going to play b]". Alice is assumed to interpret it according 
to the convention that Bob is indeed intending to play the action with 
the same name and credibility is generated when it survives the economic 
incentive criteria for Bob once Alice acts rationally and assumes that he 
speaks truthfully-robustness to deviation. The second notion of credibility 
of a statement we introduced here corresponds to a statement whose content 
reveals perception, or ability, that may not have been assumed to begin with. 
yVhen Bob mentions action a3 he expressed awareness that was beyond 
Alice's perception of Bob. This may lead her to assume that he is modeling 
the game with action a3 and the exact manner in which a3 is stated, e.g., 
as a promise or a threat, matters less. To distinguish from the first notion 
of credibility we call a statement meaningful if it conveys an aspect of the 
perception of a strategic situation. 

Intermediate lIOtiOllS between credible and meanillgful talk also arise. 
For example, a player may want to describe their own action when they 
perceive that others do not incorporate it into their view of the game. But 
here, there must be some evidence convincing the other side. Such evidence 
rnaybe exogenous dernonstrating a proof of the existence of the action), 
as in a convention, or be supported from intrinsic strategic motivation. 
In the example above, when Bob mentioned Wl the statement was more 
meaningful due to its credibility, i.e., Alice had a good reason to believe 
that Bob was not just guessing, because strategically it is beneficial for Bob 
to make such a statement if he is aware of a3, while if he thinks the game 
is as in Figure 2 then even if he convinces Alice to believe in a fictitious 
a3 he would, from the limited point of view, lose by leading to the lower 
payoff equilibrium in Figure 2. Alice should correctly retrieve its meaning
update her view of Bob's perception of the game since this deduction is 
also supported when considering Bob's incentives. 

In general, the interaction of credibility and meaning may be more in
tricate and sometimes conflicting. For example, consider the game depicted 
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Bob 
b1 b2 b3 

Alice a] 0,0 3,5 1,1 

a2 5,2 2,1 O,x 

FIGURE 3. 

in Figure 3. Assume that in this game Alice is unaware of b3 and perceives 
the game as in Figure 4 where two pure strategy Nash equilibria compete 
for coordination. The strategy profile (a2' bJ) is much more attractive to 
Alice in Figure 4. Assume that 5 > :r > 2 then if Bob says "do not play 
a2 because I will never play b] since I have a strategy b3 that dominates 
it" (or simply says "I have b3") then Alice may consider a revision of the 
perception of the game. The description of b3 mayor may not convince 
her. But the situation becomes puzzling if :r > 5. In this case Bob has no 
incentive telling Alice about this action-he would rather have her choose 
a2. 1'he problem is what should Alice deduce if he does describe action b3. 
Should she revise her perception, or should she just assurne that he is trying 
to lead her to the solution of Figure 4 which benefits him'? How should she 
weigh any evidence of the existence of b3 that Bob may produce? Her prob
lem is that if she accepts his statement as meaningful it would be irrational 
for him to make it, if she doesn't, then stating it is no longer irrational. 
Hence, the level of verifiability of the content may mix with the notion of 
credibility of statements and with the meaningfulness of a statement which 
in turn determines its credibility. 

1'0 complicate things even further, we point out that credibility and 
meaning can interact with the incentives for making any statement at all. 
If one assumes credibility to begin with7 it rnight influence deduction about 
the perception of others. Bob would rather not reveal b3 when x > 5, but 
the strategic situation might force him to make a statement about actions. 
If he believes that Alice will interpret his statements as truthful unless they 
are not credible, then he has to choose between saying "I will play b]" and 
"I will play . If he says the second then Alice will find it credible since 
she views the game as Figure 4, but Bob would lose the opportunity of 
gaining rnore than 5. However, if he says he will play bL she would find it to 
be non-credible since having the opportunity to determine the focal point 
according to the convention, Bob should be strictly better off declaring b2 

in Figure 4. In this case Bob would like to have the right to be silent, 
but only if Alice does not realize that Bob had the opportunity to make a 

7 In the tra.ditiona.J sense tha,t, a. stated a.ction is played if there is a,n incentive to follow 
through if it is believed. 
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Bob 
b1 b2 

Alice a] 0,0 3,5 

a2 5,2 2,1 

FIGURE 4. 

statement. In this case, the perception of whether- statements can be made 
may influence the strategic behavior. 

This example leads to an additional twist which concerns with how cred
ibility may trigger reasoning. If Alice reasons by assuming credibility then 
when Bob announces "1 will play b] he might trigger her to wonder if she 
is missing something in the strategic environment. 'J'his in turn may lead 
her to discover the missing action or develop beliefs about the consequences 
of its existence. She might very well conclude that she is better off playing 
a] (maybe even declaring it). But if this is the case, we may ask whether 
we could have a game with no unawareness at all where Bob would delib
erately make an announcement that rnay cause Alice to believe that she is 
missing some aspect of the garne, leading her to behavior that Bob could 
not induce otherwise. The conceptual answer seemc; negative since if the 
announcement eventually leads Alice to behave in a way that benefits Bob 
beyond any believed announcement, then it is actually a credible declara
tion by Bob and Alice's reasoning should unravel it. However, we lack the 
formal machinery for discovery in this setting. 

We note that in a dynamic setting meaningful indirect deductions can be 
made not only from statements but also from observing actions. Consider 
the first example where Alice assumes that Bob views the game as Figure 2. 
Assume the garne is repeated twice but that only Alice can observe the 
choices made in the first round before playing the second round, i.e. even if 
Alice chooses a3 in the first round, Bob will not become aware of a3 in the 
second round if he was previously unaware of it. Tn this case, even without 
comrnunication, if Alice observes Bob choosing bs in the first round she can 
either assume that Bob is irrational since b3 is dominated in Figure 2, or she 
can deduce that Bob 'is aware of a3 and followed the reasoning described in 
the beginning of this section. 

'rVe reiterate that the use of a variety of messages types in these examples 
such as "do not choose , "I know about a3", "I realize you are considering 
a3" and "I am going to do ... because of a3" all have the same impact in 
the sense of meaningful talk. It is the mentioning of a3 in any form which 
conveys an ability to reason about it in the specific context and impacts 
the perception of the game leading to strategic deductions. The messages 
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become reliable indications of the extent of the language that the decision 
maker employs in the situation. In general, both messages and actions can 
influence perceptions, deductions about others perceptions and so on. The 
phrases in the language which describe the situation from an economic view 
point the game that is being played convey meaning because they reveal 
the perception of the game which may not be commonly known. 

3 Negotiating a bargain 
The interaction of meaningful talk and strategic behavior is not limited to 
pre-play communication. As indicated above the strategic choice of state
ments takes into account the derived meaning by the receiver. Furthermore, 
since meaningful statements change the perception of the strategic situation, 
they could be highly sensitive to the choices made in a dynamic setting a 
dialogue. 

To illustrate some of the strategic features of a dialogue consider the 
case of a new car purchase. Alice is an inexperienced buyer who is facing 
the experienced car salesperson Bob. Before explicit bargaining over the 
price begins (or while price discussions are held), there is a dialogue in 
which statements are made, questions are asked and answers are given. 
'['he strategic decision making involved in this process is far from trivial. 
\Ve focus only on a partial number of dimensions of the car purchasing case 
with emphasis on the iterrhs that set the beliefs over reservation prices, most 
notably the dealer's reservation prices. Throughout this story we assume 
that Bob is fully aware of all possible dimensions of the interaction, he will 
not be informed of Alice's private information and may possess uncertainty 
as to Alice's perception of the situation, but he has full command of what 
Alice 'might be reasoning about. 

We simplify the situation further by assuming that Alice made her choice 
of vehicle she wishes to purchase8 , the car is available at the dealership and 
Alice has no trade-in. Alice may be unaware of the following dimensions of 
the transaction: 

1. The sticker price on the car (the MSRP) has no immediate relation 
to the dealer's cost or relationship with the manufacturer. 

2. There is an "invoice price" which is the basis for the cost of the car 
to the dealer. 

3. There are adjustments to the dealer's invoice, such as quota incentives, 
year end bonuses, opportunity costs (new models, lot space). 

8 This is a strong assumption as in many cases salespeople have an extensive range of 
influence on how the buyer perceives and compares potential substitutes. 
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4. 1'he actual cost of various additional options (such as fabric/paint 
protection treatments, extended warranties). 

5. The existence of a nearby competing dealership selling an identical 
car. 

6. The possibility of purchasing the car over the Internet. 

7. The possibility of financing a car purchase in favorable terms com
pared to unsecured consumer credit such as credit card purchases. 

8. The information the salesperson has regarding the dealership's costs. 

We use this partial list of concrete attributes of the specific strategic sit
uation to highlight some aspects of a strategic dialogue that incorporates 
meaningful content being revealed via statements. 

Being the more experienced party, the salesperson's problem is to dis
cover not only as much as possible about Alice's reservation prices (assuming 
her taste was completely revealed by the choice of car and model), but also 
to influence her perception of the strategic situation in a rnanner that puts 
her at a disadvantage in the bargaining stage and eventually leads to the 
highest profits to the dealership9. This may amount to things as obvious 
as trying to sell options as in 4 after the price has been agreed upon, but it 
also relates to influencing how Alice rnodels the bargaining game itself, in 
particular, what bounds she sets on the dealership costs. Alice, on the other 
hand, must realize she is in a situation where there are potential aspects 
she might be missing, after all she does not buy cars very often and should 
assume that Bob is experienced. 1o 

vVe list various aspects which are relevant to a strategic dialogue with
out formulating a detailed decision tree, in which the choice of statements 
and questions are presented and the two parties perception of the game 
(including higher order perceptions) evolves according to these statements. 
Instead, we focus on various considerations that influence the optimal choice 
of statements, this allows us to capture a variety of scenarios without de
tailing the full scope of the game for each one. We refer to (Feinberg, 2004) 
for an illustration of how these dynamic games with unawareness can be 
cons tru cted. 

The first aspect is the timing of bargaining and the importance of having 
the dialogue at all. As we will see, Bob can strictly benefit from obtaining 
information from Alice and hence has an incentive to engage in a dialogue 

9 The salesperson commission is increasing in the dealership profit from the sale. 
10 This is a very particular notion of experience, as it relates to the magnitude of the set 

of attributes of the situation that a decision maker is aware of, as well as the ability 
to consider the limited perception of the buyers. 
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before discussion of prices occurs. For example, if Alice asks what the price 
is, Bob would refer her to the sticker price, or may even delay the answer 
by stating it depends on other factors, such as financing, options etc. We 
conclude that the ability to lead the other party into the dialogue has value 
on its own. In particular, there will be use of statements that might try and 
convince Alice as to why a lengthier discussion is required. 

Much of the information on Alice's perception can be gained by Bob 
from indirect questions. Indirect questions are preferable for Bob since they 
are less likely to reveal the very same aspect of which Alice may be unaware. 
For example, to adjust his beliefs on whether Alice is aware of 5 Bob may 
prefer to ask "have you driven this car before?" or "have you seen feature 
X in this car?" rather than "have you been at another dealership'?". On the 
other hand, to find out whether she considered 6 Bob may need to ask Alice 
if she has seen the car rnanufacturer web site demonstration of some feature, 
or offer to e-mail her the link, and by doing that she might be moved to 
consider Internet pricing. lIenee, the statements/questions that Bob uses to 
elicit information about awareness may require a trade-off since they could 
provide Alice with valuable aspects of the situation and sometimes the exact 
aspect that Bob was hoping to exploit. 

A third aspect of the strategic dialogue is the order of statements made. 
We can illustrate this with Alice's strategic choices. If she is aware of both 
6 and 7 she would prefer to reveal 6 before the price negotiations begin 
since she could provide a price quote which sets the upper bound to her 
reservation price. But in doing so she would indicate that she is likely to 
have obtained, or be aware of, various financing opportunities. She may 
want to hide this information ulILil afLer the price is seL alld before the 
financing arrangement is made, the reason being that the salesperson may 
be willing to lower the price if he believes there is a high probability he can 
have a substantial gain from the financing agreement. Alice would like to 
make both statements, however their relative place along the dialogue may 
influence the final outcorne. 

The next aspect involves perception of attributes for which there is lit
tle information. Alice might be aware that the dealership may have some 
incentive from the manufacturer, i.e., of 3. However, she may not know 
the size of this incentive. Bob would probably not be willing to supply this 
information, or may not have access to it (see the discussion below). If Alice 
claims that she is aware of such incentives for the dealership yet is unable to 
provide any description of their magnitude, or some supporting argument, 
her statement is less credible and Bob may rightly deduce that she is only 
aware of the possibility but has no reason to assign high probability to a 
substantial impact on the dealership's costs. If credibility of one statement 
affects that of another, there is a cost associated with statements that are 
meaningful but not specific enough. 
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iNe note that Bob may not be informed of the dealership's actual costs 
if there is a concern that he might reveal it to potential buyers. In many 
cases car salespeople need the authorization of supervisors to make any sig
nificant price reductions along the bargaining process, this procedure allows 
managers to supervise the bargaining, but also to make pricing decisions 
based on information t hat may not be readily available to the salesperson. 
Moreover, Alice's awareness of 8 would lead her to treat the game differ
ently, as the solutions to bargaining with an intermediary could differ from 
direct negotiations. This also applies to Alice's perception of the incentives 
of the salesperson and could explain why firms tend to prominently state 
when their salespeople are not working for commissions. 

As we noted in the previous section, an action can also yield a change of 
perception frmn both operational reasons and by deduction. For example, 
Bob may ask for Alice's driver license before a test drive, this might allow 
him to retrieve information about Alice that she is not aware he might 
be able to obtain. On the other hand, it could also alert Alice that her 
financial background could have irnpact on the financing offered and lead 
her to consider other lenders-7. 

Finally, a combination of higher order reasoning about perception may 
interact with strategic meaningful talk. For example, Alice may consider 3 
and even assume that stating it could be reliable, for example, she might 
have read that dealers are about to obtain delivery of a new model and have 
an incentive to clear lot space. She may also be aware of 2 the existence of 
a formal invoice price, but she may not know its exact value. Bob may not 
realize that Alice is aware of 3. As such, Bob might be inclined to reveal the 
in voice price Lo Alice i r he percei velO that IOhe w ill model Lhe relOervaLioll price 

of the dealership as no less than this invoice price. If Alice perceives that 
Bob is modeling her as unaware of 3 then Alice may decide to mention that 
she knows about invoice and try to induce Bob to show her documentation 
of this price, obviously rnaking no rnention of 3. Hence, Alice can obtain 
valuable information by reasoning about how Bob models her awareness 
and choosing her statements in the corresponding manner. Once she has 
the invoice price, Alice can more accurately estimate the dealership's true 
costs. 

4 Summary 
We have set out to present communication in games where the content 
of messages impacts strategic behavior without resorting to ex-ante as
sumed conventions. Our main observation is that in the case of games 
with unawareness the content of a message can change the perception of 
the game being played leading to changes in strategic behavior. Potentially 
the strongest form of meaningful talk we identified was when Bob told Alice 



118 Y. Feinberg 

sornething about the situation that she already thought about, but that she 
did not realize Bob is also able to consider. This had led us to various new 
strategic considerations when the interpretation of the message is not only 
driven from a convention, or an arbitrary assignment of interpretation as in 
cheap talk, but is also derived from the expected change in perception of 
what game is being played. 

We used an illustrative example to show how aspects such as the tim
ing and order of statements, indirect questions, deliberate withholding of 
information from agents, trade-offs between revelation and discovery of per
ceptions, and the discovery of high order perceptions, influence strategic 
choices of meaningful statements in a dialogue which determines the bar
gaining game perceptions and eventually its outcome. 

We conclude that in a strategic setting a statement becornes meaningful 
as it describes the extent of the speaker's reasoning. In addition, staternents 
become tools for molding perceptions and questions become tools for discov
ery of perceptions by generating answers. The implication is that dialogues 
are strategically intricate exchanges, since, to adopt a pragmatic approach, 
a staternent does not only depend on the context but defines the context 
and determines the relevant strategic situation. 
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Abstract 

A speaker wishes to persuade a listener to take a certain action. The 
conditions under which the request is justified, from the listener's 
point of view, depend on the state of the world, which is known only 
to the speaker. Each state is characterized by a set of statements 
from which the speaker chooses. A persuasion rule specifies which 
statements the listener finds persuasive. We study persuasion rules 
that maximize the probability that the listener accepts the request if 
and only if it is justified, given that the speaker maximizes the proba
bility that his request is accepted. We prove that there always exists 
a persuasion rule involving no randomization and that all optimal 
persuasion rules are ex-post optimal. We relate our analysis to the 
field of pragmatics. 

1 Introduction 
A persuasion situation involves an agent (the speakeT) who attempts to 
persuade another agent (the listener) to take a certain action. Whether 
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or not the listener should accept the speaker's suggestion depends on in
formation possessed by the speaker. In such a situation, the speaker often 
presents hard evidence to support his position, but is restricted as to how 
many pieces of evidence he can present. This restriction may be due either 
to time constraints or to limitations on the listener's capability to process 
information. Our purpose in this paper is to shed light on the rules that 
determine which of the facts, presented by the speaker, the listener will find 
persuasive. 

The topic of this paper is related to a field in linguistics called pragmat
ics, which explores the rules that determine how people interpret an utter
ance, made in the course of a conversation, beyond its literal content (see 
Grice, 1989). Grice suggested that the leading principle in the interpreta
tion of utterances is what he termed the "cooperative principle", according 
to which the interpretation of utterances in a regular conversation can be 
made on the assumption that the speaker and the listener have common 
interests. However, the cooperative principle does not appear to be relevant 
in a persuasion situation in which the agents rnay have conflicting interests. 

The following exarnple clarifies the distinction between the pragmatics 
of conversation and the pragmatics of persuasion: You are discussing the 
chances of each of two candidates in an upcoming election. The electorate 
consists of ten voters. Assume that the other person has access to the views 
of these ten voters. Imagine that he has just informed you that a, d, and 
9 support candidate A. If it is a friendly conversation, then you are most 
likely to think that he has selected three people who represent the views of 
the majority of the voters. Thus, you are likely to be persuaded that A is 
likely to will Lhe electioll. If, on the oLher hand, independently of the LruLh, 
the other person is trying to persuade you that A will win, you will find this 
very same statement to be a weak argument since you will suspect that he 
has intentionally selected three supporters of A. 

What governs the pragmatic rules of persuasion? We propose an ap
proach analogous to Grice's cooperative principle in which the pragmatic 
rules of persuasion are determined by a fictitious designer before the dis
course begins. These rules govern the speaker's choice of facts to present 
in the knowledge that the listener will interpret his statements according 
to these rules. The rules are structured by the designer to maximize the 
probability that the listener will make t he "right" decision (from his point 
of view and given the "true" situation) on the basis of the information pro
vided to him by a self-interested speaker and subject to constraints on the 
amount of information that can be submitted to him by the speaker. 

We conduct our investigation within the narrow boundaries of a par
ticular model in which several assumptions admittedly playa critical role. 
Our analysis is faithful to economic tradition rather than to the method-
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ology of Pragmatics. Nevertheless, we believe that the study conducted 
here demonstrates the potential of research to find a uniform principle that 
guides individuals in interpreting statements in persuasion situations. 

This paper belongs to a research program in which we apply a game 
theoretical approach to issues in Pragmatics. In (Glazer and Rubinstein, 
2001) we study an example of a debate situation involving two parties each 
of whom tries to persuade a third party to accept his position. Even closer 
to this paper is (Glazer and Rubinstein, 2004), which analyzes a persuasion 
situation in which after the speaker makes his case the listener can obtain 
partial information about the state of the world. After specifying our current 
model, we will compare it to the one in (Glazer and Rubinstein, 2004). 

2 The model 
A speaker wishes to persuade a listener to take a certain action. '['he lis
tener can either accept or reject the speaker's suggestion (there is no partial 
acceptance). vVhether or not the listener should be persuaded depends on 
the state, which is an element in a set X. A set A c X consists of all the 
states in which the listener would wish to be persuaded to accept the 
speaker's suggestion) if he knew the state, and the set if X \ A consists 
of all the states in which the listener would wish to reject the speaker's re
quest. The listener's initial beliefs about the state are given by a probability 
measure p over X. Denote Px the probability of state x. 

We assume that for every state x, there is a set of statements O"(x) 
that the speaker can make. Let 8 UxExO"(x). l'he meaning of "making 
statement s" is to present proof that the event O"-l(s) = {:e Is E O"(x)} has 
occurred. 

In state x the speaker can make one and only one of the statements 
in O"(x). Thus, for example, if the speaker can choose between remaining 
silent, making the statement (~, making the statement j3, or making both 
staternents, the set 0"( x) consists of the four elements silence, a, and a/\/3. 

To surnmarize, we model a peTS1tas·ion pTOblcm as a four-tuple 
(X, A, p, 0"). We say that the persuasion problem is finite if X is finite. 
We refer to the pair (X,O") as a signal stT11ct11Te. 

Comment. We say that a signal structure (Y, e) is vectoric if Y is a product 
set, i.e. Y = XkEKYk for some set K and some sets Y k , k E K, and the 
speaker in state x can make a statement concerning the value of one of the 
components of :e, that is, e(:r:) = {(k, v) IkE K and v = xd. 

One might think that we could make do by analyzing only vectoric signal 
structures. 'T'o see that this is not the case, let (X,O") be a signal structure. 
Let (Y, e) be the vectoric signal structure with Y {O,l}s. Every state 
:e E X can be represented by the vector cp(:e) E Y, which indicates the 
staternents available at x, that is, cp(:r:)(s) I if s E O"(:r:) and 0 otherwise. 
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However, the two structures are not equivalent. First, we allow for the 
possibility that two states have the same set of feasible statements. Second, 
and more importantly, in the corresponding vectoric structure the speaker 
in any state is able to show the value of the component that corresponds 
to any statement s. In other words, he is always able to prove whether s 
is available or not. In contrast, in our framework the fact that the speaker 
can make the statement s does not necessarily mean that he can make a 
statement that proves that s is not available. 

We have in mind a situation in which the speaker makes a statement and 
the listener must then either take the action a, thus accepting the speaker's 
position, or the action /', thus rejecting it. A persuasion rule determines 
how the listener responds to each of the speaker's possible statements. We 
define a persuasion rule f as a function f : S ----+ [0, 1]. The function 
f specifies the speaker's beliefs about how the listener will interpret each 
of his possible statements. The meaning of f( s) = q is that following a 
statement s, with probability q the listener is "persuaded" and chooses a, 
the speaker's favored action. We call a persuasion rule f deterministic if 
f(s) E {O, 1} for all s E S. 

We assume that the speaker wishes to maximize the probability that 
the listener is persuaded. Thus, given a state :c, the speaker solves the 
problem maxsEcr(x) f(s). The value of the solution, denoted by a(f, x), is 
the maximal probability of acceptance that the speaker can induce in state 
x. For the case in which (J(:c) is infinite, the solution can be approached 
but is not attainable and therefore we define a(f, x) = SUPSEO"(X) f(8). 

Given the assumption that the speaker maximizes the probability of 
acceptance, we define the (listener's) error probability /hx (f) in state x as 
follows: If:c E A, then fLx(J) = 1 - (~(J, :c), and if :c E R, then fLx(J) = 

(~(J, . The error probability induced by the persuasion rule f is m(f) = 

LxE'x Pxf'x (J). Given a problem (X, A, p, (J), an optimal persuasion rule is 
one that minimizes m(f). 

Note that persuasion rules are evaluated according to the listener's in
terests while those of the speaker are ignored. In addition, we assume that 
all errors are treated syrnmetrically. Our analysis rernains the same if we 
add a variable Cx for the (listener's) "costs" of an error in state x and define 
the objective function to minimize LXEX PxCx/hx(f). 

Example 2.1 ("The majority of the facts supports my position"). There 
are five independent random variables, each of which takes the values 1 
and 0 each with probability 0.5. A realization of 1 means that the random 
variable supports the speaker's position. The listener would like to accept 
the speaker's position if and only if at least three random variables take the 
val ue l. In the process of persuasion, the speaker can present the realization 
of at most m random variables that support his position. 
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Formally, X = {(Xj, ... ,:rs) I XI;; E {0,1} for all k}, A = {:r I n(x):2: :3} 
where n(x) I::k Xk, Po; 3

1
2 for all X E X, and O"(x) {n: I n: <;;; {k I XI;; 

I} and 1n:1 :S m}. 
If m = 3, the optimal persuasion rule states that the listener is per

suaded if the speaker presents any three random variables that take the 
value 1. The more interesting case is m 2. If the listener is persuaded 
by the presentation of any two random variables that support the speaker's 
position, then the error probability is ~~. The persuasion rule according to 
which the listener is persuaded only by the speaker presenting a set of two 
"neighboring" random variables ({ 1, 2}, {2,:3}, {:3, 4}, or {4, 5}) with the 
value 1 reduces the error probability to ;2 (an error in favor of the speaker 
occurs in the four states in which exactly two neighboring random variables 
support the speaker's position and in the state (1,0,1,0,1) in which the 
speaker is not able to persuade the listener to support him even though he 
should). 

Cl'he two mechanisms above do not use lotteries. Can the listener do 
better by applying a random mechanism? 'vVhat is the optirnal rnechanism 
in that case? We return to this example after presenting some additional 
results. 

Comment. At this point, we wish to compare the current model with 
the one studied in (Glazer and Rubinstein, 2004). Both models deal with 
a persuasion situation in which (a) the speaker attempts to persuade the 
listener to take a particular action and (b) only the speaker knows the state 
of the world and therefore whether or not the listener should accept the 
speaker's request. 

Unlike the current model, the speaker in the previous model could first 
send an arbitrary message (cheap talk) to the listener. After receiving the 
message, the listener could ask the speaker to present some hard evidence 
to support his request. The state of the world in that model is a realization 
of two random variables and the listener is able to ask the speaker to reveal 
at most one of them. Thus, unlike the current model, in which the speaker 
simply decides which hard evidence to present, in the previous model the 
speaker has to "follow the listener's instructions" and the listener can apply 
a random device to determine which hard evidence he asks the speaker to 
present. That randomization was shown to often be a critical element in the 
listener's optimal persuasion rule (a point further discussed below). On the 
other hand, in the previous model we do not allow randomization during 
the stage in which the listener finally decides whether or not to accept the 
speaker's request, which we do allow in the current model. Allowing for 
such randomization in the previous model, however, is not beneficial to the 
listener, as we show to be the case in the current paper as well. 
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The randomization in the previous paper is employed during the stage 
in which the listener has to decide which hard evidence to request from the 
speaker. Note that if in that model we restrict attention to deterministic 
persuasion rules, then it is a special case of the current model. Eliminating 
randomization on the part of the listener in order to verify the information 
presented by the speaker, allows us to think about the persuasion situation 
in the previous model as one in which the speaker chooses which hard evi
dence to present rather than one in which the listener chooses which hard 
evidence to request. 

Randomization plays such an important role in the previous model be
cause it is, in fact, employed as a verification device. ·Without randomiza
tion, there is no value to the speaker's message since he could be lying. 1'he 
listener uses randomization to induce the speaker to transfer more inforrna
tion than the information that is eventually verified. 

Although the current model draws some inspiration from the previous 
one, the two papers relate to different persuasion situations and the results 
of the current paper cannot be derived from those of the previous one. 

3 Two lemmas 
We now present two lemmas that are useful in deriving an optimal persua
sion rule. 

3.1 A finite number of persuasive statements is sufficient 

Our first observation is rather technical though simple. We show that if the 
set of states X is finite then even if the set of statements 8 is infinite there is 
an optimal persuasion rule in which at most IX I statements are persuasive 
with positive probability. 

Lemma 3.1. Let (X, A, p, a) be a finite persuasion problern. 

1. An optimal persuasion rule exists. 

2. There is an optimal persuasion rule in which {s I f(8) > O} does not 
contain more than I X I elements. 

Proof. Consider a partition of 8 such that 8 and 8
1 are in the same cell of 

the partition if (J-l (8) = (J- L (8 1). This partition is finite. Let T be a set of 
statements consisting of one statement from each cell of the partition. We 
now show that for every persuasion rule f, there is a persuasion rule g that 
takes a positive value only on T, such that a(g,x) a(f,x) for all x and 
thus rn(g) rn(f). 

For every 8 E T let 8 8 be the cell in the partition of S that contains 8. 

Define g(s) = SUPs/ESs f(8'). For every s 1:. T' define g(s) = o. 
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For every state x, 

a(g, 

Thus, we can confine ourselves to persuasion rules that take the value 0 
for any statement besides those in the finite set T. Any such persuasion rule 
is characterized by a vector in the compact set [0, 1 f. The error probability 
is a continuous function on this space and thus there is an optimal persuasion 
rule f* with f* 0 for all s tf T. 

For every:/: E S let s(x) E o-(:c) be a solution of (s). Let g* 
be a persuasion rule such that 

*f \ {f*(S) 
9 \S) = 0 

if s = s(x) for some x 

otherwise. 

The persuasion rule g* is optimal as well since a(g*, :r:) = u(J*, x) for all 
x and thus m(g*) = m(f*). Thus, we can confine ourselves to persuasion 
rules for which the number of statements that persuade the listener with 
positive probability is no larger than the size of the state space. Q.E.D. 

3.2 The "L-principle" 

The following result is based on an idea discussed in (Glazer and R.ubinstein, 
2004). 

Let (X, A,p, 0-) be a persuasion problem such that for all x E X, o-(x) 
is finite. We say that a pair T), where x E A and T ~ R, is an L if for 
any s E o-(x) there is t E T such that s E o-(t). That is, an L consists of an 
element :c in A and a set T of elements in R such that every statement that 
can be made by :c can also be made by some member of T. An L, (:c, T) is 
minimal if there is no T c T such that T/) is an L. 

Lemma 3.2 (The L-Principle). Let (:c, T) be an L in the persuasion prob
lern (X, 11, p, 0-) and let f be a persuasion rule. 'I'hen L,tE{x }lJT Iht (f) 2:: l. 

Proof. R.ecall that Ihx(f) = 1 - a(f, and for every t E '1', Iht(f) = a(f, t). 
Therefore, 

L /ht(f) 2:: /hx(f) + ~¥ /ht(f) 
tc{x}UT 

2:: ~x(f) f(s) 

~x(f) a(J, x) 1. 

Q.E.D. 
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The following exarnple demonstrates how the L-principle can be used 
to verify that a certain persuasion rule is optimal. For any persuasion 
problem, the L-principle provides a lower bound on the probability of error 
that can be induced by a persuasion rule. Thus, if a particular persuasion 
rule induces a probability of error equal to a lower bound derived from the 
L-principle, then one can conclude that this persuasion rule is optimal. 

Example 3.3 ("I have outperformed the population average"). Consider 
a situation in which a speaker wishes to persuade a listener that his average 
perforrnance in two previous tasks was above the average performance of 
the population. Denote by Xl the proportion of the population that per
formed worse than the speaker in the first task and by X2 the proportion of 
the population that performed worse than the speaker in the second task. 
The speaker wishes to persuade the listener that :el + :e2 :?: l. The speaker 
knows his relative performance in the two tasks (that is, he knows Xl and 
X2) but can present details of his performance in only one of the tasks. 
We assume that the speaker's performances in the two tasks are uncorre
lated. Formally, the signal structure is vectoric with X = [0, 1] x [0, 1]; the 
probability measure p is uniform on X; and A = {( :el, :e2) I :el + X2 :?: I}. 

Note that if a statement is interpreted by the listener based only on its 
content, i.e. by stating that his performance was above ~ in one of the tasks, 
the speaker persuades the listener and the probability ~f error is ±. 

The following argument (borrowed from Glazer and Rubinstein, 2004) 
shows that there exists an optimal persuasion rule according to which the 
listener is persuaded by the speaker if and only if the speaker can show that 
his perfonnance in one of the two tasks was above~. Furthermore, the 
rninimal probability of error is i. 

A minimal L in this case is any pair (x, {y, z}) where x E A, y, Z E R, 
Xl = Yl, and X2 = Z2· 

The set Tl = {(:el, :e2) E A I :el :::; ~ and :e2 :::; n is one of the three 
triangles denoted in 1 by the number l. Any three points:/: = ,:/:2) E Tl , 

Y - ~,X2) E Rand z (Xl, :C2 - ~) E R establish an L. By the 
L-principle, for any persuasion rule f we have f.h'l(f) + f.hy(f) + f.hz(f) :?: l. 
The collection of all these L's is a set of disjoint sets whose union is the three 
triangles denoted in the figure by the number l. Therefore, the integral of 
f.hx(f) over these three triangles must be at least the size of Tl , namely 1

1
8. 

Similar considerations regarding the three triangles denoted by the number 
2 and the three triangles denoted by the number 3 imply that the minimal 
error probability is at least i. This error probability is attained by the 
persuasion rule according to which the listener is persuaded if and only if 
the speaker shows that either x 1 or X2 take a val ue of at least ~. 
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FIGURE l. An optimal persuasion rule for 3.3. 

4 Randomization is not needed 
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The next question to be addressed is whether randomization has any role in 
the design of the optimal persuasion rule. Tn other words, can the listener 
ever do better by making the speaker uncertain about the consequences 
of his statement? Glazer and Rubinstein (2004) show that in persuasion 
situations in which the listener can acquire partial information about the 
state of the world, uncertainty regarding what information he will acquire 
can be a useful device to the listener. However, as stated in 4.1 below, 
uncertainty is not useful to the listener in the present context. 

Proposition 4.1. 

1. For every finite persuasion problem (X, A, p, 0-), there exists an opti
mal persuasion rule f that is deterministic. 

2. For every persuasion problem (X, A, p, 0-) and every c > 0, there exists 
a deterministic persuasion rule 1* such that rn(J*) < inf f m(f) + . 

Proof. (1) By 3.1, there exists an optimal persuasion rule with a finite 
number of statements that induces acceptance with positive probability. 
Consider an optimal persuasion rule f with the fewest non-integer values. 
Let 0 < Ul < ... < UK < 1 be the values of f that are not 0 or l. We show 
that K = o. If not, consider the set T = {s I f(s) = ud. Let Y be the set 
of all states in which it is optimal for the speaker to make a statement from 
T, that is, Y = {:r: I x) = ud. 
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If the probability of Y n A is at least that of Y n R, then consider f+ 
which is a revision of f : 

f+(8) a2 for all 8 E T and f+(s) f(8) for s tJ. T. 

Thus, = a2 for x E Y and a(J+, x) = for x tJ. Y. It 
follows that ) ::; m(J). 

If the probability of Y n A is at most that of Y n R, then consider f 
which is a revision of f: 

f-(s) = 0 for all sET and f-(s) = f(s) for s tJ. T. 

Thus, a(f, x) 0 for x E Y and a(f ,x) a(f, x) for x tJ. Y. It 
follows that m(f-) ::; m(f). 

The number of non-integer values used by either f+ or I- is reduced by 
I, which contradicts the assumption that f uses the the minirnal number of 
non-integer values. 

(2) Let F be a persuasion rule such that m(fl) < infJ m(f) + c/2. Let 
n be an integer such that l/n < Let FI be the persuasion rule defined 
by f"(s) = max{m/n I m/n ::; F(s)}. Obviously m(J") < m(JI) + 
The persuasion rule III involves a finite number of values. By the proof of 
4.1 there is a deterministic persuasion rule f* with m(f*) ::; m(f"). Thus, 
m(f*) < m(F) + < inf J m(f) + t~. Q.E.D. 

Example 4.2 (Example 2.1 revisited: a Solution). We return now to ex
ample 2.1 and show that no persuasion rule induces a probability of er
ror less than 3~. Consider an optimal persuasion rule that is determin
istic. Thus, /kx is either 0 or 1 for any state :1:. By the L-principle, 
fLU, 1,1,0,0) + f~( 1,1 ,0,0,0) + f~( 1,0, 1 ,0,0) + /k(o, 1,1,0,0) :?: 1 and similar inequalities 
hold for any of the other 9 states in which exactly three aspects support the 
speaker. Summing up over these 10 inequalities yields 

n(x)=3 n(x)=2 

Using the fact that /kx is either 0 or 1 implies that .2:::n (x)=3 fL x + .2:::n (x)=2 /kx :?: 
4 and thus .2::: x PxfLx :?: ;~. 

Let us now describe an optimal persuasion rule for this case. Partition 
the set of random variables into the two sets {I, 2, 3} and {il, 5}. The listener 
is persuaded only if the speaker can show that two random variables from 
the same cell of the partition support him. In states in which there are at 
least three random variables in favor of the speaker, at least two of them 
must belong to the same cell and, thus, the speaker is justifiably able to 
persuade the listener. However, in the four states in which exactly two 
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random variables belonging to the same cell support the speaker's position, 
the speaker is able to persuade the listener even though he should not be 
able to. Thus, the probability of error under this persuasion rule is 3~' 

This persuasion rule seems to be attractive when the partition of the 
random variables is prominent. For example, if the random variables are 
associated with Alice, Beth, Christina, Dan, and Edward, they can natu
rally be divided into two groups by gender. Given the constraint that the 
speaker cannot refer to more than two individuals, we have found an opti
mal persuasion rule whereby referring to two individuals of the same gender 
is more persuasive than referring to two individuals of different genders. 

Example 4.3 (Persuading someone that the median is above the expected 
value). A speaker wishes to persuade the listener that the median of the 
values of three independent random variables uniformly distributed over 
the interval [0,1] is above 0.5. 'fhe speaker can reveal the value of only one 
of the three random variables. Is it more persuasive to present a random 
variable with a realization of 0.9 or one with a realization of 0.67 

Formally, let X = [0,1] x [0,1] x [0,1] with a uniform distribution and 
A = { ,:1:2, :1:3) I two of the values are above 0.5}. Let :I:i = ti denote the 
statement "the realization of the variable :ei is and S(t1, i3) = {:e1 = 

t l , X2 t2, Xc3 t3}. In other words (X, is vectoric. 
The persuasion rule according to which the listener is persuaded only by 

the statement :e1 = t1 where 11 > ~ yields a probability of error of t. We 
will employ the L-principle to show that this persuasion rule is optimal. 

Note that the space X is isomorphic to the probabilistic space Y x Z with 
a uniform distribution, where Y 10, ~ I x 10, i I x [0, i] and Z { -\, I} x 
{-I, I} x {-I, I}, by identifying a pair (y, z) with :e (~ + 

As a result, every (1, 1, -1)) E A is part of an L with (y, (-\, \, -\)) E 
Rand (y, (1, -1, -1)) E R. 

Thus we obtain the following inequalities: 

Hence 

I-«y,(l,l,-l) + I-«y,(-l,l,-L)) + ih(y,(l,-l,-l)) 2: I 

ih(y,(l,-l,l) + ih(y,( -1.-1,1))+ !L(y,(l,-l,-l)) 2: 1 

It(y,(-l,L,L) + It(y,(-l,L,-I)) + ih(y,(-I,-I,L)) 2: 1. 

1"(y,(l,l, 1)) + 1,1,1))+ 

1)) 1 2jL(y,(1, 1, 1))1 2: 3. 

For deterministic persuasion rules it rnust be that at least two of the 
variables ih(y,z) take the value 1 and, thus, for all y, we have ~z P(y,z)lt(y,z) 2: 
~ = t. If there exists a persuasion rule that yields an error probability 
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strictly less than t, then 4.1 there is also a deterministic persuasion 
rule that yields an error probability less than t. Thus, the persuasion rule 
described above (which yields an error probability of exactly t) is optimal. 

5 A procedure for finding an optimal persuasion rule 
We are now able to prove a proposition that reduces the task of finding an 
optimal persuasion rule to a simple optimization problem. 

Proposition 5.1. Let A, p, be a finite persuasion problem. Let 
be a solution to the optimization problem 

min L Px/hx s.t. Ihx E {O, I} for all x E X, and 
{1'x}xEX xEX 

L I'/'t 2:: I for any minirnal L, (x,T). 
tE{x}UT 

Then there is an optimal persuasion rule that induces the probabilities of 
errors (1'/';)xEx. 

Pmoj. By 4.1 we can restrict ourselves to deterministic mechanisms. By 
3.2 any persuasion rule satisfies the constraints (regarding the L's), so it 
is sufficient to construct a persuasion rule f that induces the optimal error 
probabilities vector 

Define I (s) = 1 for any signal .5 such that there exist :c E A with s E 0-(:/:) 
so that f': 0 and /h; 1 for all y E R with s E o-(y). Define f(s) = 0 for 
any other signal .5. 

It is sufficient to show that for all x, the induced probability /hx(f) :::; Ih;. 

Let x E A and JL;; o. There is a statement 8x E o-(x) so that JL; I for 
all y E R such that Sx E o-(y). Otherwise, there is an L, '1') such that 
LtE{x}UT/h? o. Thus f(s";) 1 and /hx(f) 0 

Let x E Rand /h: = o. Then there is no s E o-(:c) such that I(s) = 1 
and thus a(f, x) = 0 and ft'l(f) = /h:. Q.E.D. 

6 Ex-post optimality 
So far we have assumed that the listener is committed to a persuasion rule. 
In what follows, we address the question of whether the listener's optimal 
persuasion rule is one that he would indeed follow were he able to reconsider 
his cormnitment after the speaker has rnade his staternent. 

To motivate this analysis consider the following example. 

Example 6.1. The listener wishes to choose a guest for a TV news pro
gram. He is looking for a person with strong views about the issues of the 
day. There is a potential candidate who the listener knows is one of four 
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types: "hawk" (H), "dove" (D), a "pretender" who can pretend to be 
either a hawk or a dove, or "ignorant" (1). The listener is not interested in 
the candidate's political views, but only in whether he has clear views one 
way or the other, i.e., if he is type H or D. The probabilities of the types 
are p(H) = p(D) = 0.2 and p(M) = p(I) = 0.3. 

The listener can interview the candidate, after which he must decide 
whether or not to invite him onto the show. During the interview the 
listener plans to ask the speaker to make a statement regarding his views 
on current issues. Assume that apart from remaining silent (action 0), type 
H can make only the statement h; D can make only the statement d; and 
NI can make either statement hoI' d. Type 1 can only remain silent. Thus, 
o-(H) {h,O},o-(D) {d,O},o-(NJ) {h,d,O}, and o-(I) {O}. 

A "na'ive" approach to this problem is the following: Given the state
ment 8, the listener excludes the types that cannot make the staternent 8 

and makes the optimal decision given the probabilities. For example, the 
message d excludes types I and H and therefore implies that the conditional 
probability that the speaker is of type D is 0.4. The listener thus rejects 
the speaker. 'fhis approach yields a probability of error of 0.4. 

Suppose that the listener can commit to how he will respond to the 
speaker's statement. It is easy to see that, in this example, the listener can 
reduce the probability of error to 0.3. The best persuasion rule is to invite 
the speaker to the show if and only if he makes the statement dol' h. (This 
avoids the possibility that 1 is invited to the show but leaves the possibility 
that, in addition to Hand D, M might be invited.) 

Assume now that the listener is released from his commitment once a 
staLemenL has been made. If he believes LhaL Nf"s sLraLegy is Lo uLLer d, 
then the listener, upon hearing the staternent d, should attribute a higher 
probability to the possibility that he is facing M than to the possibility 
that he is facing D. 'fherefore, in this case he should not follow the optimal 
persuasion rule and should reject the speaker if he rnakes the statement d. 
If, however, the listener believes that i\![ randornizes with equal probability 
between uttering d and h, then the listener, upon hearing the message d 
(h), should attribute the probability t to the possibility that he is facing 
type D (H) and, thus, should not deviate from the optimal persuasion rule. 

Note that the ex-post optimality of the optimal persuasion rule in this 
example hinges on the knife-edge condition that the speaker of type M ran
domizes with equal probability between hand d. This observation hints at 
the possibility that a persuasion problem rnight exist in which the listener's 
optimal persuasion rule is not ex-post optimal. However, as the analysis 
below demonstrates, this is never the case for finite persuasion problems. 

For a given persuasion problem (X, A, p, 0-), consider the corresponding 
extensive persuasion game f(X, A,p,o-). First, nature chooses the state 
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according to p; the speaker is then inforrned of the state :); and makes a 
statement from the set 0"( x): and finally, after hearing the speaker's state
ment, the listener chooses between a and T. The payoff for the speaker is 
1 if the listener takes the action a and 0 otherwise. The payoff for the lis
tener is 1 if :c E A and the action a is taken or if :/: E R and the action T is 
taken, and 0 otherwise. vVe say that a certain persuasion rule f is CTedible if 
there exists a sequential equilibrium of r(X, A,p, 0"), such that the listener's 
strategy is f. 

Example 6.2 (Example 3.:3 revisited). 'T'he optimal persuasion rule de
scribed above is credible. The speaker's strategy of arguing in state (tl' t2) 
that Xl t1 if t1 2:: t2 and that :);2 t2 if t2 > t1 is optimal. 'J'he set of 
types that use the argument :C1 = t1 is {(t 1,:C2) I X2 ::; td. Conditional on 
this set, the probability that (t1, :C2) is in A is greater than ~ if and only if 
t] > ~ and is less than ~ if and only if tl < ~. 

Proposition 6.3. If the persuasion problem is finite, then any optimal 
persuasion rule is credible. 

This proposition follows from solving the auxiliary problem presented in 
the next section. 

Comment. The problem studied here can be viewed as a special case of 
a leader-follower problem in which the leader can commit to his future 
moves. As is well known, it is generally not true that the solution to such 
an optimization problem is credible. We are not aware, however, of any 
general theorem or principle that addresses this issue and that can explain 
why it is the case that in our model the listener's optimal strategy is credible. 
This question remains for future research. 

We should emphasize, however, that 6.3 does not hold in case the listener 
has three actions, the speaker holds a fixed ordering over the actions, and 
the listener's preferences depend on the state. Consider, for example, the 
case in which the set of states is X = {1, 2}, the probability measure over 
X is P1 = 0.'1 and P2 = 0.6, the signal function is 0"(1) {1}, 0"(2) = {I, 2}, 
and the listener's set of actions is {1, 2, 3}. The speaker always prefers 1 
over 2 and 2 over 3 and the listener's utility from the state x and action a 
is tt(l, 1) = t£(2, 2) = 1, ti(l, 2) = 1) = -1, and v(l, 3) = ti(2, 3) = o. 
The optimal persuasion rule for the listener is to respond to signal 2 with 
action 2 and to signal] with action 3. However, once he observes signal I 
it is better for the listener to take action 1. 

7 The bridges problem 
A group of individuals is partitioned into a finite number of types, which 
are members of a set X. The rnass of type ;c is Px. Let 51 be a set of bridges 
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spanning a river. 1'he individuals are located on one side of the river and 
would like to cross to the other side. Individuals of type x E X can use only 
the bridges in the set o-(x) # 0. The set X is partitioned into two subsets, 
A whose members are welcome on the other side and R whose members are 
not. A decision maker has to decide, for each bridge, the probability that 
that bridge will be open. The decision maker cannot discriminate between 
the individuals in A and R. Each individual of type x chooses a bridge in 
o-(:r:) with the highest probability of being open from among the ones he can 
use. The decision maker's objective is to maximize the "net flow", i.e., the 
difference in size between the group of type A's and the group of type R's 
crossing the river. 

A bridge policy determines the probability with which each bridge is 
open. A bridge policy is credible if there exists an assigmnent of types to 
bridges whereby: (i) each type is assigned only to a bridge he can use, 
(ii) within the set of bridges he can use, each type is assigned only to 
bridges with the highest probability of being open, and the mass of 
types in A who are assigned to a bridge that is open (closed) with strictly 
positive probability is at least as high (low) as the mass of types in R who 
are assigned to that bridge. We show that any optimal bridge policy is 
credible. 

Formally, a bridge is a function 0 : S ----* [0, 1] with the interpre-
tation that O( s) is the probability that bridge s is open. Let a( 0,:/:) = 

max{O(s) I s E o-(x)} , that is the maximal probability of crossing the 
bridges that type x can achieve given the bridge policy O. Let N(O) = 
I::xEA - I::xEnPX(~(O,:r:) be called the net flow. A bridge policy 
it; optirnal if iL maximizeD N(O). Givell a bridge policy 0, a rational feasible 
bridge assignrnent (, is a function that assigns to each type :r a probability 
measure on o-(x), such that ;3(x)(s) > 0 only for values of s that maximize 
0(8) in o-(x). Given an assignment (', the net assignment to bridge oS is 

/3) 'EXEAP"fJ(x)(s) - 'E"ERP"j3(x) . A bridge policy 0 is credible 
if there is a rational feasible assignment ,8 such that for every s, O(s) > 0 
implies n(8,;3) 2: 0 and 0(8) < 1 implies n(8,;3) ::; O. 

Claim 7.1. All optimal bridge policies are credible. 

Proof. Let 0* be an optimal bridge policy. For any assignment (', let 

5(;3) = In(s,;3)IO*(s) + ;3)( 1 - 0* ( s ) ) . 

sE {sln(.s"iJ)<O} .se {sln(s,,6»O} 

Let be a minimizer of 5(;3) over all rational feasible assignments. We show 
that 5(;3*) = 0 and thus for all s such that 0* (s) > 0 we have ;3) 2: 0 
and for all such s that O*(s) < 1 we have ;3) ::; o. 
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Assurne, for the purpose of contradiction, that 5(,8*) > O. Assume that 
there is a bridge s for which 0* (s) > 0 and n( s,,8*) < 0 (an analogous 
argument applies to the case in which there is a bridge s for which 0* (s) < 1 
and n(s, ) > 0). 

Let a be the minimum of 0*(8) over {s 1 O*(s) > 0 and n(s, ) < O}. 
Let S(a) = {s 1 O*(s) = u}. Let X(u) = {:c 1 ,8*(:c)(s) > 0 for a bridge s 
such that 8 E S(a)}, that is, X(a) is the set of types who are assigned by,8* 
to the bridges whose probability of being open is C~. Note that types in X (a) 
cannot do better than trying to cross a bridge in S(a) and are indifferent 
between all bridges in S(u). Let So = {s E S(u) 1 ,8*) < O}. The set 

is not empty and contains all bridges that are open with probability u 

and for which the net assignment is negative. 
Let Yl, ... , YT be the longest sequence of distinct bridges in S(a) - So 

such that for every Yt, 

(i) n(Yt, ,8*) = 0 

(ii) there exist x E R and Yo E So U {Yl, ... ,Yt- d such that (x )(yo) > 0 
and Yt E O"(:r). 

In other words, under ,8* each Yt is a bridge with a zero net transfer such 
that there is a positive mass of types in R that can cross Yt and is assigned 
by ,8* either to cross a bridge that precedes Yt in the sequence or to cross a 
bridge in So. 

Denote Z = So U {Y1, . .. , y'r}. There are two possibilities: 

There is no 8 E S(a) - Z, :r E R, and z E Z such that 8 E O"(:r) and 
,8* (:/:)( z) > O. That is, there is no bridge s outside Z that is opened 
with probability a and that can be crossed by a type in R who can 
cross the river with probability a. The net transfer in Z is negative. 
Reducing the probability of transfer to all bridges in Z will increase 
the total net flow, thus violating the optimally of 0*. 

(ii) There is s E S(a) - Z, x E R, and z E Z such that s E O"(x) 
and f:i*(x)(z) > O. By the definition of (Y1,"" YT) it must be that 
n(s, ) > O. It follows that there are sequences of distinct bridges 
So, S], ... , Sf( = s and types i o, ... , if(_] E R such that So E So, 
,8*(ik)(Sk) > 0, and Sk+] E O"(ik) (for k 0, ... , j{ - 1). This allows 
us to construct a new rational assignment ;3 by shifting a positive 
mass of types in R from So to S1, from S1 to S2, and so on, such 
that 5(,8) < 5(,8*). Formally, let t~ be a positive number such that 
for k = O, ... ,K -1 we have < ,8*(ik)(Sk), c < ,,8*), and 
c < In( So, ,8*) I. Define,8 as an assignment that is obtained from ,8* by 
successively shifting to Ski 1 a mass of individuals of type i k assigned 
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('* to cross 8k. For all bridges with the exception of So and 8K we 
have {3) n( 8, {3*). Furthermore, n( 8 K, {3) n( 8 K, {3*) - E > 0 
and n(8o, {3) = n(so, {3*) + E < O. Thus, 5({3) = 5({3*) - aE - (1 - a)E, 
contradicting the choice of {3*. 

'rhus, it follows that there exists a rational feasible assignment with 
nonnegative net flow on all open bridges and non positive net flow on all 
closed bridges. Q.E.D. 

8 Concluding remarks 
This paper has attempted to make a modest contribution to the growing 
literature linking economic theory to linguistics. Our purpose is not to 
suggest a general theory for the pragrnatics of persuasion but rather to 
demonstrate a rationale for inferences in persuasion situations. 

One of our main findings is that any optimal persuasion rule is also ex
post optimal. It is quite rare that in a principal-agent problem the optimal 
incentive scherne is one that the principal would wish to obey even after the 
agent has rnade his move. The bridge problem described in 7 provides an 
example of a principal-agent problem that in fact does have this property. 
The problem discussed in (Glazer and Rubinstein, 2004) is shown there to 
have this property as well. The generalizability of this result is still an open 
question. 

Our work is related to several areas of research in linguistics and eco
nomics. In the linguistics literature, our paper belongs to the emerging 
field that tries to explain pragmatic rules by employing game theoretical 
methods. Tn our approach, pragmatic rules determine a game between the 
participants in the discourse. 'Whatever the process that created these rules, 
it is of interest to compare them with the rules that would have been chosen 
by a rational designer seeking to maximize the functionality of the discourse. 
Such an approach is suggested in (Glazer and Rubinstein, 2001, 2004) and 
discussed in (Rubinstein, 2000). A recent collection of articles in (Benz 
et al., 2006) presents various ideas that explain pragmatics phenomena us
ing game theoretical tools. 

\Vithin the economic literature our paper relates to two areas of research. 
The first investigates sender-receiver games (see Crawford and Sobel, 

1982) in which one agent (the sender) sends a cost less message to the other 
(the receiver). The receiver cannot verify any of the information sent by the 
sender and the interests of the sender and the receiver do not necessarily 
coincide. The typical question in this literature is whether an informative 
sequential equilibriurn exists. 

The second (and closer) area of research studies models where a principal 
tries to elicit verifiable information from the agent(s). The agent however 
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can choose which pieces of information to convey. Among the early pa
pers on this topic are (Townsend, 1979), (Green and Lafront, 1986), and 
(Milgrom and Roberts, 1986), and among the more recent are (Bull and 
Watson, 2004), (Deneckere and Severinov, 2003), (Fishman and Hagerty, 
1990), (Forges and Koessler, 2005), (Lipman and Seppi, 1995), and (Shin, 
1994). 
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These were her internal persuasions: "Old fashioned notions; country 
hospitality; we do not profess to give dinners; few people in Bath 
do; Lady Alicia never does; did not even ask her own sister's family, 
though they were here a month: and I dare say it would be very 
inconvenient to Mrs Musgrove; put her quite out of her way. I am 
sure she would rather not come; she cannot feel easy with us. I will 
ask them all for an evening; that will be much better; that will be 
a novelty and a treat. They have not seen two such drawing rooms 
before. They will be delighted to corne to-morrow evening. It shall 
be a regular party, small, but most elegant." 

Jane Austen, Per.masion 

Jacob Glazer and Ariel Rubinstein proffer an exciting new approach to an
alyze persuasion. Perhaps even without being aware of it, and at least not 
acknowledged in the bibliography, their paper addresses questions that ar
gurnentation theorists, logicians, and cognitive and social psychologists have 
been interested in since Aristotle's Rhetor-ic. Traditionally, argumentation 
was thought of as an activity involving knowledge, beliefs, opinions, and it 
was contrasted with bargaining, negotiation and other strategic activities 
involving coercion, threats, deception, and what have you. rvfore recently, 
however, several theorists have argued that strict boundaries are concep
tually indefensible and undesirable methodologically, separating as they do 
researchers who would more fruitfully combine efforts. Katia Sycara, for 
instance, writes that "persuasive argurnentation lies at the heart of nego
tiation" (Sycara, 1990), identifying various argurnentation and negotiation 
techniques on the basis of careful empirical research on labor organizations. 
Simon Parsons, Carles Sierra, and Nick Jennings, by contrast, develop mod
els of argumentation-based negotiation (Parsons et al., 1998) with a high 
level of logical formality. Chris Provis, to mention a third, perhaps more 
skeptical representative, gives a systematic account of the distinction be
tween argumentation and negotiation suggesting to locate persuasion right 

Krzysztof R. Apt, Robert van 
'Texts in Logic and Gan1es 4) 

Perspecti'ues on Garnes and lrderaction. 
Press 2008, pp. 141-150. 
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in the middle (Provis, 2004).1 C:lazer and Rubinstein's work enriches this 
literature with an analysis of persuasion. Using machinery from a formal 
theory of negotiation paT excellence, economic theory, they develop a model 
of persuasion problems in which a speaker desires a listener to perform a 
certain action. Informing the listener about the state of the world is the only 
thing the speaker can do, but he can do it in many ways. By strategically 
making a statement that maximizes the likelihood that the listener decides 
to perform the action, the speaker exploits a peculiar feature of the model, 
namely, that the speaker does not need to tell the listener the whole truth; 
the truth alone suffices. Persuasion, for Glazer and Rubinstein, is telling the 
truth strategically, and phrased in the framework of a novel methodology 
this new approach merits close attention. 

A speaker, a listener, and a tuple (X, A, p, 0-) with X a set of worlds (not 
necessarily finite), A c X, p a probability measure over X, and 0-: X -> S 
a function mapping worlds to sets of proposition (symbols?) in S, that is 
all there is to a "persuasion problem." l'here is a certain action that the 
speaker wants the listener to perform. The listener wants to perform it just 
in case the actual world is an element of A. 1'he speaker, by contrast, wants 
the listener to perform the action even if the actual world is a member of the 
complement R of A. Since the listener does not have full information about 
the world but only "initial beliefs ... given by a probability measure p over 
X" (Glazer and Rubenstein, 2008, p. 123), he is partly dependent on the 
speaker who has full knowledge of the world. Yet the speaker is under no 
obligation to report his full knowledge to the listener. The rules fixed by 0-

allow the speaker to make all of the statements contained in 0-(:1:), if:1: is the 
actual world. Gla/,er and RubinsLeill wriLe LhaL "the meaning of 'making 
statement s' is to present proof that the event o--l(s) {:rls E o-(:c)} has 
occurred" (page 5). Strategically picking such an s characterizes persuasion: 
an [; with a large 0- 1 (8) will generally do better than a small one. 1'he 
"persuasion function" f: S -> 10, 1 J, moreover, is intended to capture "the 
speaker's beliefs about how the listener will interpret each of his possible 
statements" (p. 124). The statement f(8) = q means that "following a 
statement 8, there is a probability of q that the listener will be 'persuaded' 
and choose ... the speaker's favored action" (p. 124). The speaker solves the 
maximization problem 

f( 8), 

where :c is the actual world 2 From the perspective of the listener, if the 
speaker makes a statement t such that f(t) maXSE<T(x) f(s) there is a 
probability Ilx(J) that by using f he makes an error at x to perform an 

1 lowe much to Chris Provis' exposition in (Provis, 2004). 
2 If a(x) is infinite, the supremum of the expression can be approached. 
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action while :r tf- A, or not to perform an action at :c while x E A. These 
probabilities are given by 

(J) {l-maXsco-(x)f(S) 
{Lx = maxsco-(x) f(s) 

if;c E A 
otherwise. 

The listener chooses a persuasion rule that solves the minimization problem 

given his beliefs p.3 
If this is a model, what does it model? Glazer and Rubinstein give sev

eral examples of persuasion problems. They bear names suggesting rather 
concrete applications ("The Majority of the Facts Support My Position," "1 
Have Outperformed the Population Average,") as well as technical, perhaps 
contrived, ones ("Persuading Someone that the Median is Above the Ex
pected Value"). In the first example, the speaker tosses a coin five times in 
a row, and wants the listener to perform a certain action the listener wants 
to perform just in case the coin landed heads at least three times. If the 
persuasion problem is such that the speaker can show how the coin landed 
in three of the five cases, he will of course succeed in persuading the listener, 
provided the coin landed heads at least three times. More interestingly, the 
speaker may only be able to reveal the outcomes of two coin tosses. Given 
that the listener only wants to perform the action in case the coin landed 
heads at least three times, there is always a risk involved in acting on the 
basis of the information the speaker provides to him. The listener may con
sider the persuasion rule according to which he performs the action just in 
case the speaker demonstrates that the coin landed heads twice. Among the 
total of 32 possible outcomes of the experiment (HHHHH, THHHH, and so 
on), there are 10 in which the coin landed heads twice, not thrice, and this 
makes the error probability of this rule 1~. The listener can improve if he 
adopts the persuasion rule to accept only if the coin landed heads twice in 
a row. l'his persuasion rules has error probability 3~: 

An error in favor of the speaker will occur in the four states in which 
exactly two neighboring random variables [two successive coin tosses] 
support the speaker's position and in the state IHTHTIIJ in which 
the speaker will not be able to persuade the listener to support him 
even though he should. (p. 125) 

The example reveals a number of episternic presuppositions behind the 
model Clazer and Rubinstein propose. Speaker and listener, for instance, 

:3 Lemma 1 says that whatever the cardinality of 5, there is always a solution to this 
minimization problem if the persuasion problem is finite. 
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have to know exactly what the rules of the game are. If the speaker does 
not know that he can reveal the outcomes of at most two successive coin 
tosses he will not consider the sequence in which the coin landed HTHTH 
as a problematic situation for him, and if the listener believes that the 
speaker may so be misinformed about the structure of the game he will also 
evaluate differently what is the optimal persuasion rule. One might even 
conjecture that as long as there is no common knowledge of the structure of 
the persuasion problem, game play is impossible. In addition, for the listener 
to calculate the error probabilities of the various persuasion rules he has to 
agree on the probability distribution of the relevant random variables. In 
the description of the formal model, Rubinstein and Glazer to that end 
insert a probability measure p over possible worlds with the initial beliefs of 
the listener as intended interpretation. The exarnple, however, suggests that 
this probability is rather derived from the objective characteristics of set of 
possible worlds X, available to listener and speaker alike. Not only does 
the speaker, then, know what the actual world is in a situation in which the 
listener only has probabilistic beliefs concerning that issue, he also knows 
exactly what the listener believes about the world. 

Nor is this all. While strictly speaking no condition of possibility for an 
application of the model, Glazer and Rubinstein suggest that the speaker not 
only knows the listener's beliefs, but also the listener's prospective choice of 
strategy. Given the fact that the speaker has access to the listener's beliefs 
p, it is routine for him to calculate an optimal persuasion rule, and assuming 
that the listener is in some sense rational, the speaker is quite justified in 
believing that the listener will choose that rule. There is an interesting 
proviso, Lhough, for Lhe meanillgfulness of Lhe defillition of error probabiliLY 
depends not only on the fact that p expresses the listener's probabilistic 
beliefs concerning possible worlds, but also on the fact that the listener 
assumes that the speaker wants to maximize the likelihood that the listener 
perform the action. If the speaker did not want so to maxirnize, the listener 
would be unwise to build his risk estimation on the basis of the value of the 
solution to maxsEu(x) f(8). The speaker, for his derivation of the persuasion 
rule, needs to believe that the listener believes the speaker to be rational. 

For the speaker, it is quite clear how to motivate the rule of rationality 
embodied in his maximizing the probability of acceptance. If the speaker 
has non-probabilistic beliefs concerning the persuasion rule f adopted by 
the listener, the only thing he needs to do is to pick a statement 8, and 
it makes much sense to choose one that maximizes expected acceptance. 
Conceptions of rationality such as maximin or minimax regret are out of 
place here. F'or the listener this may be a bi t different. 1'he listener wants 
to pick a persuasion rule f: S ---> [0, 1[, and the most direct constraint is 
that f favors assigning high probability in cases in which the actual world is 
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an A-world, and low probability in cases in which it is an R-world. Without 
indication about how the elements from S relate to the A-ing or R-ing of the 
actual world, there is only one thing the listener could use to determine his 
strategy: his beliefs. If he believes with probability one that the world is in 
R, a reasonable persuasion rule assigns the value of zero (non-performance) 
to any statement made by the speaker. But the speaker knows what the 
actual world is, and the listener knows that the speaker knows it, so if the 
speaker makes a statement s with (J-l (s) c A to the effect that the world 
is definitely an A-world, then what should the listener do? This is a clear 
case of belief revision the model may not fully capture by assuming that the 
probabilities are objectively induced by the random variables determining 
X . For a rational choice of a persuasion rule the listener may not have 
enough information about the relation between the state of the world and 
the statement the speaker makes. 

A conditional statement can be made, though. If the listener believes 
that the speaker knows what persuasion rule f the listener chooses, and 
the listener believes that the speaker is rational, then the listener believes 
that in his calculation of the optimal persuasion rule he can use the I),x(f) 
to assess the risk of making errors and solve minI 5--->10,11 LXEX p(:c)fJ,xU'). 
Such a conditional statement, however, may delineate the applicability of 
the model in ways analogous to what we learn from the epistemic charac
terization of the Nash equilibrium (Aumann and Brandenburger, 1995). To 
constitute a Nash equilibrium, knowledge of strategies is presupposed. If 
I know what you are playing, and I am rational, and if you know what I 
am playing, and you are rational, then we will end up in a Nash equilib
rium. Such atitiumpLiolli:i are noL alwayti problerrmLic, for tiure, buL 1,0 jutiLify 

making thern requires in any case additional argumentation about, for in
stance, evolutionary (learning) mechanisms or repeated game play. As the 
turn to iterative solution concepts constitutes to some extent an answer to 
the episternic problerm; with the Nash equilibrium, it may be interesting 
to investigate whether the rnodel C:lazer and Rubinstein put forward can 
similarly turn into the direction of common knowledge of game structure 
and rationality, especially if this can be accomplished in an extensive game 
framework. For consider the following dialog (election time in Italy): 

POLITICIAN: Vote for me. 

CITIZEN: Why? 

POLITICIAN: If you vote for me, I'll create one million new jobs. 

CITIZEN: That's unpersuasive. 

POLITICIAN: If you vote for me, I'll fight for your freedom. 

CITIZEN: Persuaded. 
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'fhis dialog, due to Isabella Poggi, illustrates a theory of persuasion in 
terms of framing developed by Frederic Schick, among others (Poggi, 2005; 
Schick, 1988). While argumentation is about beliefs, and negotiation and 
bargaining are about desires and interests, persuasion, for Schick, involves 
the framing of options. A persuader persuades a persuadee by describing 
in novel and attractive terms an action the persuadee found unattractive 
under previous description: 

We [may] want something under one description and ... not want it 
under another. We may even want a proposition true and want a 
coreportive proposition false ... 

Persuasion is the attempt to change a person's understanding of some
thing, to get him to see it in some way that prompts him to act as 
he would not have done. (Schick, 1988, p. 368) 

At first sight it may be too much to ask Rubinstein and Glazer to incorporate 
this insight, if an insight it is, in their formalism. Yet once we closely 
consider the way they set up the rules of the game, and in particular, the 
function they assign to function (J", there are in fact two ways to recommend. 

The set (J"(x) contains exactly the statements that the speaker can make 
if the actual world happens to be x, and making a statement s amounts 
to demonstrating that the event (J"-l(s) = {xis E (J"(:c)} has occurred. As 
a result, there is no room for the speaker to provide false information, 
but there is quite some room to provide true information tactically and 
strategically. A bit informally put, if (J"-l(s) = {xis E (J"(x)} contains many 
A-states and few R-states, then the speaker has good reasons to make the 
statement 8, rather than another statement with less fortunate division 
between A and R. 4 From an extensional point of view, it suffkes if (J" rnaps 
worlds to sets of worlds. Propositions, under this extensional perspective, 
are nothing more than sets of worlds. Extensionally speaking, modeling 
framing seerns pretty hopeless, though: a glass half full is the same as a 
glass half empty. From an intensional point of view, however, distinctions 
can be made between coextensive statements, and it is here that there is 
room for Glazer and Rubinstein to incorporate framing in their framework. 
The recipe is this. On the basis of a formal language, a set of statements 
S is defined from which the speaker may choose, and to make this set truly 
interesting, it has to be larger than 9(X), the set of all statements possible 
with respect to X in purely extensional terms. To the description of the 
persuasion problem a relation of extensionality is added over the statements 
such that 8 =t iff (J"-l(s) = (J"-l(t). Define a preference relation inside the 
resulting equivalence classes to express the listener's preferences for differing 

4 This is rough since it ignores the probabilistic judgments p the listener will invoke to 
calculate his error probability. 
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descriptions, and make the persuasion rule dependent on the statements in 
a systematic way described in terms of the extensionality relation and the 
preferences of the speaker. 

A rather different approach to framing is possible, too, one that is much 
closer to the actual model Glazer and Rubinstein put forward. The speaker, 
in the persuasion problem as the authors define it, has a lot of freedom to 
choose a statement s to give the listener information about the actual world. 
The only restriction is that the actual world be part of the set of worlds 
(/-1 (s). Instead of locating framing in intensionally different but extension
ally equivalent such sets, framing can also be modeled fully extensionally. 
Different statements sand t, each with the actual world in their (/ inverse 
image, frame the actual world differently, and one could very well maintain 
that when the speaker selects what statement to make in Glazer and Ru
binstein's model, he is already engaged in framing decisions. 'While in the 
intensional solution to framing the speaker would choose between making 
a statement in terms of the morning star and one in terms of the evening 
star, and opt for the latter because he knows that the listener is a night 
owl, in the alternative solution the speaker would describe the weather in 
terms of one of two extensionally different statements such as "the weather 
is good for sailing" and "the weather is good for kite surfing," depending 
on whether the listener likes sailing or kite surfing. 

The simple substitution of freedom for jobs in the dialog, and of drawing 
rooms for country hospitality in the quotation from Persaasion, is an exam
ple of persuasion by framing, however simple or simplistic such a switch may 
be. The dialog, and Austen's stream of consciousness avant la leUre, point 
aL anoLher importanL aspecL of persuasion, Loo: iLs Lemporal and seq uenLial 

character. Argumentation theorists and logicians alike have noticed that 
the persuasive force one can exercise on others often depends on the order 
in which one presents one's arguments, offers, opinions, and threats. Tn 
dialogical logic, for instance, a proponent defends a proposition against an 
opponent who may attack according to clearly described rules. Tn its early 
days, dialogical logic was used to promote intuitionist logic a la Heyting, or 
even to give it firm conceptual grounds. Contemporary dialogical logicians, 
however, see themselves engaged in building a "Third \,yay" alternative to 
syntactic: and semantic investigations of logical consequence; or in one word, 
pragmatics. 

To get some feel for the kind of models used here, this is a dialog argu
ment to the effect that (cp -'> VJ) /\ cp) -'> 1jJ is a tautology, due to Ruckert 
(2001): 

PROPONENT: (( <p -'> 1jJ) II <p) -'> 1jJ 

OPPONENT: Well, what if (<p -'> 1jJ) /\ <p? 

PROPONENT: I'l! show you 1/.; in a minute. But wait, if you grant 
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(<p ---> ·if') /\ <p, then I ask you to grant the left conjunct. 

OPPONENT: No problem, you get your <p ---> 1jJ 

PROPONENT: And what about the right conjunct? 

OPPONENT: That one you get, too, <po 

B. de Bruin 

PROPONENT: \Vell, if you say <p, 1 may say <p to question you assuming 
the implication <p ---> 1jJ. 

OPPONENT: Right, 1 see what you're aiming at: you want me to say 
·0, and I'll admit that 1jJ. 

PROPONENT: Perfect, that means 1 have shown you 1/) in response to 
your initial query: 'ipse dixist'i! 

Glazer and Rubinstein's approach to persuasion is decidedly static as it 
stands, but 1 believe that it can be turned dynamic at relatively low costs. A 
first step to consider is to take the probability distribution p as an expression 
of the truly subjective beliefs of the listener. This has the advantage that 
belief revision policies can be described to deal with cases in which the 
speaker comes up with new information, contradicting the listener's beliefs. 
In general, the listener may stubbornly stick to his p, but in more interesting 
persuasion problems the listener will revise his beliefs because, as it may be 
assumed, he knows that, however tactically and strategically the speaker will 
speak, he will at least speak the truth. In a dynamic setting, furthermore, 
there may be more room for less heavy epistemic assumptions. T\) put it 
bluntly, my guess is that once persuasion games are represented as extensive 
games, common knowledge of game structure and rationality suffices to 
derive optimal persuasion rules. To my mind, this would constitute an 
increase in realism. 

An additional advantage is that extensive rnodels can also take care of 
Aristotelian analyses of persuasion. In the RhetoTic Aristotle distinguished 
three ways in which speakers can persuade their listeners. The rational 
structure of what the speaker says, the logos, first of all contributes to the 
persuasive force. Then the character of the speaker, his ethos, determines 
how credible and trustworthy the listener will judge the speaker, while, fi
nally, the emotional state of the listener, the pathos, plays a role in how a 
certain speech is received. Compare: a well-organized defense by a lawyer 
of established reputation in a law court with a serious and objective judge, 
with: a messy argument by a shabby lawyer directed at a judge involved 
in the case itself. And Aristotle is still highly popular, even among em
pirically oriented researchers. Isabella Poggi, for instance, agreeing with 
Schick about the role of framing in persuasion, sees expressions of ratio
nality, credibility, and emotionality as the modern analogs of Aristotle's 
tripartite division, and gives them all the force in her theory of persuasion 
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as hooking the speaker's goals to (higher) goals of the listener. In the Ital
ian dialog, for instance, the speaker's goal that the listener votes for him 
was, first, hooked to diminishing unemployment. The goal of having a job, 
however, turned out not to be very important to the listener, and there
fore another goal was used, the more general one of freedom, of which the 
speaker had reason to believe that it would arouse the listener's emotions. 
At the end, the speaker in fact succeeded persuading (or so the story goes). 

Using the suggested extensional way of modeling framing, pathos can 
be captured by the preference relations the listener has over various de
scriptions of the actual world. Speaker's beliefs about such preferences can 
be included to describe specific persuasion strategies the speaker may wish 
to follow. The speaker is expected to try to describe the world in a way 
that makes it rnost attractive for the listener to perfonn the action but in 
order to be able to do that, the speaker needs to have sorne inforrnation 
concerning the listener's preferences.5 Assumptions about general human 
preferences (concerning freedom, recognition, or what have you) make it 
possible for the speaker to do that without information about the specific 
listener. Ethos is captured by the belief revision policies of the listener. If 
t he listener readily revises his beliefs upon hearing statements that contra
dict his own opinions, he reveals to trust the speaker showing the character 
of the speaker as a dependable person are at work. More skeptical belief 
revision policies, in all kinds of gradations, reveal the speaker's ethos to 
be functioning less than optimally. Extensive games can also model ways 
in which the speaker iteratively tries out reframing the description of the 
actual world. He may find out that the listener does not like sailing, so it 
doeti noL help him Lo deticribe the world ati one that iti opLimal for tiailillg. III 
several models of persuasion, the listener's preferences playa crucial role. 
Logos, finally, gets modeled once speakers may take clever and less clever 
steps in iterative persuasion garnes, and it is especially here that cooper
ation with game theoretic approaches to logic (of which dialogical logic is 
only one among many) can be very fruitful (van Benthem, 2007). 
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Abstract 

We survey and discuss several solution concepts for infinite turn-based 
multiplayer games with qualitative , win-lose) objectives of the 
players. These games generalise in a natural way the common model 
of games in verification which are two-player, zero-sum games with 
w-regular winning conditions. The generalisation is in two directions: 
our games may have more than two players, and the objectives of the 
players need not be completely antagonistic. 

The notion of a Nash equilibrium is the classical solution concept 
in game theory. However, for games that extend over time, in par
ticular for games of infinite duration, Nash equilibria are not always 
satisfactory as a notion of rational behaviour. 'vVe therefore discuss 
variants of Nash equilibria such as subgame perfect equilibria and se
cure equilibria. We present criteria for the existence of Nash equilibria 
and subgame perfect equilibria in the case of arbitrarily many players 
and for the existence of secure equilibria in the two-player case. In 
the second part of this paper, we turn to algorithmic questions: For 
each of the solution concepts that we discuss, we present algorithms 
that decide the existence of a solution with certain requirements in a 
game with parity winning conditions. Since arbitrary w-regular win
ning conditions can be reduced to parity conditions, our algorithms 
are also applicable to games with arbitrary w-regular winning condi
tions. 

1 Introduction 
Infinite games in which two or more players take turns to move a token 
through a directed graph, tracing out an infinite path, have nurnerous ap
plications in computer science. The fundamental mathematical questions 
on such games concern the existence of optimal strategies for the players, 
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the complexity and structural properties of such strategies, and their real
isation by effkient algorithms. Which games are determined, in the sense 
that from each position, one of the players has a winning strategy? How to 
compute winning positions and optimal strategies? How much knowledge 
on the past of a play is necessary to determine an optimal next action? 
Which games are determined by memoryless strategies? And so on. 

The case of two-player, zero-sum games with perfect information and w
regular winning conditions has been extensively studied, since it is the basis 
of a rich methodology for the synthesis and verification of reactive systems. 
On the other side, other models of games, and in particular the case of 
infinite multiplayer games, are less understood and much more complicated 
than the two-player case. 

In this paper we discuss the advantages and disadvantages of several 
solution concepts for infinite multiplayer games. T'hese are Nash equilibria, 
subgame perfect equilibria, and secure equilibria. We focus on turn-based 
games with perfect information and qualitative winning conditions, i.e., for 
each player, the outcorne of a play is either win or lose. The games are not 
necessarily cornpletely antagonistic, which means that a play rnay be won 
by several players or by none of them. 

Of course, the world of infinite multiplayer games is much richer than this 
class of games, and includes also concurrent games, stochastic games, games 
with various forms of imperfect or incomplete information, and games with 
quantitative objectives of the players. However, many of the phenomena 
that we wish to illustrate appear already in the setting studied here. To 
which extent our ideas and solutions can be carried over to other scenarios 
of illfiniLe mulLipluyer gameD iD an inLereDLillg Lopic of current reDearch. 

'['he outline of this paper is as follows. After fixing our notation in 
Section 2, we proceed with the presentation of several solution concepts 
for infinite multiplayer games in Section 3. For each of the three solution 
concepts (N ash equilibria, subgame perfect equilibria, and secure equilibria) 
we discuss, we devise criteria for their existence. In particular, we will relate 
the existence of a solution to the determinacy of certain two-player zero-sum 
games. 

In Section 4, we turn to algorithmic questions, where we focus on games 
with parity winning conditions. We are interested in deciding the existence 
of a solution with certain requirements on the payoff. For Nash equilibria, it 
turns out that the problem is NP-complete, in general. However, there exists 
a natural restriction of the problem where the complexity goes down to 
UPnco-UP (or even P for less complex winning conditions). Unfortunately, 
for subgarne perfect equilibria we can only give an ExpTIiVIE upper bound 
for the complexity of the problem. For secure equilibria, we focus on two
player games. Depending on which requirement we impose on the payoff, we 
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show that the problem falls into one of the complexity classes UP n co- U P, 
NP, or co-NP. 

2 Infinite multi player games 
We consider here infinite turn-based multiplayer games on graphs with per
fect information and qualitative objectives for the players. The definition 
of such games readily generalises from the two-player case. A game is de
fined by an arena and by the winning conditions for the players. We usually 
assume that the winning condition for each player is given by a set of infi
nite sequences of colours (from a finite set of colours) and that the winning 
conditions of the players are, a priori, independent. 

Definition 2.1. An infindc (bun-bascd, Q1wlitativc) rmiltiplaycr gamc is a 
tuple 9 = (il, yT, ,8, X, (Wini)iEf1) where il is a finite set of playcrs, 
(V, E) is a (finite or infinite) directed graph, (Vi)iEf1 is a partition of V into 
the position sets for each player, X : V ----+ C is a colouring of the position 
by some set C, which is usually assurned to be finite, and 'vVini <;;; CW is the 
winning condition for player i. 

The structure G (yT, (Y~)iEn, E, X) is called the arcna of 9. For the 
sake of simplicity, we assume that HE : E yT : (tt, v) E E} / 0 for all 
tt E V, i.e., each vertex of G has at least one outgoing edge. \Ve call 9 a 
zcm-S1Im gamc if the sets 'vVini define a partition of C0.). 

A play of 9 is an infinite path through the graph (V, E), and a history is 
a finite initial segment of a play. We say that a play 71 is 'won by player i E il 
if X(7I) E Wini. The payof{ of a play 71 of 9 is the vector paY(7I) E {O, nIl 
defined by paY(7I)i = 1 if71 is won by player i. A (purc) stratcgy aiplaycr i 
in Q is a function (J : V* Vi ----+ V assigning to each sequence xv of position 
ending in a position v of player i a next position (J(xv) such that (v, (J(xv)) E 

E. We say that a play 71 71(0)71(1) ... of Q is consistcnt with a strategy 
(J of player i if 7I(k + 1) = (J(7I(0) ... 7I(k)) for all k < w with 7I(k) E Vi. A 
strategy pmfile of9 is a tuple ((Ji)iEIl where (Ji is a strategy of player i. 

A strategy (J of player i is called positional if (J depends only on the 
current vertex, i.e., if (J(xv) (J(v) for all x E V* and v E yTi. More 
generally, (J is called a finite-memoTY strategy if the equivalence relation~J 
on V* defined by or: ~J Xl if (J(:r:z) (J(J:fz) for all z E V*Y~ has finite 
index. In other words, a finite-memory strategy is a strategy that can be 
implemented by a finite automaton with output. A strategy profile ((JdiEf1 
is called positional or a finite-memoTY stratcgy pmfilc if each (J.t is positional 
or a finite-memory strategy, respectively. 

It is sometimes convenient to designate an initial vertex Va E V of the 
game. We call the tuple (G, vo) an initialiscd ·infinitc m1tltipiaycT gamc. A 
play (history) of (G, vo) is a play (history) of Q starting with Va. A strategy 
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(strategy profile) of (9, va) is just a strategy (strategy profile) of g. A strat
egy IJ of some player i in (9, va) is winning if every play of (9, va) consistent 
with IJ is won by player i. A strategy profile (lJ'i).iEn of (9, va) determines a 
unique play of (9, va) consistent with each lJi, called the o'utcome of (lJi).iOI 
and denoted by ((lJi)iE::n) or, in the case that the initial vertex is not under
stood from the context, (( lJi )iE::n )vo' In the following, we will often use the 
term game to denote an (initialised) infinite multiplayer game according to 
Definition 2.1. 

We have introduced winning conditions as abstract sets of infinite se
quences over the set of colours. In verification the winning conditions usually 
are w-regular sets specified by formulae of the logic SIS (monadic second
order logic on infinite words) or 1:1'1, (linear-time temporal logic) referring 
to unary predicates Pc indexed by the set C of colours. Special cases are 
the following well-studied winning conditions: 

Biichi (given by F ~ C): defines the set of all 0: E C0.J such that 
C~( k) E F for infinitely many k < w. 

CO-B1tchi (given by F ~ : defines the set of all 0; E C'u such that 
o:(k) E F for all but finitely many k < w. 

Parity (given by a priority function r2 : C ---> w): defines the set of all 
C~ E C0J such that the least number occurring infinitely often in r2( 0:) 

is even. 

Rabin (given by a set n of pairs (Gi,Fl i ) where G i , Hi ~ C): defines 
the set of all (:l: E CW such that there exists an indexi with o:(k) E Gi 

for infinitely many k < w but o:(k) E Rt only for finitely many k < w. 

Streett (given by a set r2 of pairs ,Hi) where G i , Rt ~ C): defines 
the set of all 0: E CW such that for all indices i with o:(k) E Ri for 
infinitely many k < w also (:l:(k) E G i for infinitely many k < w. 

lvlulleT (given by a family F of accept'ing sets Fi ~ C): defines the set 
of all 0: E C0.J such that there exists an index i with the set of colours 
seen infinitely often in 0: being precisely the set Fi . 

Note that (co- )Blichi conditions are a special case of parity conditions 
with two priorities, and parity conditions are a special case of Rabin and 
Streett conditions, which are special cases of Muller conditions. r.,1[oreover, 
the complement of a Biichi or Rabin condition is a co-Bilchi or Streett 
condition, respectively, and vice versa, whereas the class of parity conditions 
and the class of Muller conditions are closed under complement. Finally, 
any of these conditions is pTefi:r: independent, i.e., for every 0: E CU.) and 
x E C* it is the case that 0: satisfies the condition if and only if :co: does. 
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iNe call a game 9 a rT/iultiplaycr w-rcgulaT, (co-) B1tchi, parity, Rabin, 
Strcctt, aT Mulicr gamc if the winning condition of cach player is of the 
specified type. This differs somewhat from the usual convention for two
player zero-sum games where a Blichi or Rabin game is a game where the 
winning condition of the first player is a Bilchi or Rabin condition, respec
tively. 

Note that we do distinguish between colours and priorities. For two
player zero-sum parity games, one can identify them by choosing a finite 
subset of w as the set C of colours and defining the parity condition directly 
on the set C, i.e., the priority function of the first player is the identity 
function, and the priority function of the second player is the successor 
function k f---+ k + I. 1'his gives parity gamcs as considered in the literature 
(Zielonka, 1998). 

The importance of the parity condition sterR"; from three facts: First, 
the condition is expressive enough to express any w-regular objective. More 
precisely, for every w-regular language of infinite words, there exists a deter
rninistic word autornaton with a parity acceptance condition that recognises 
this language. As demonstrated by Thomas (1995), this allows to reduce 
a two-player zero-sum game with an arbitrary w-regular winning condi
tion to a parity game. (See also Wolfgang Thomas' contribution to this 
volume.) Second, two-player zero-sum parity games arise as the model
checking games for fixed-point logics, in particular the modal ,,~-calculus 
(G6idel, 2007). Third, the condition is simple enough to allow for pos'i
tional winning strategies (see above) (Emerson and Jutla, 1991; Mostowski, 
1991), i.e., if one player has a winning strategy in a parity game she also 
h,u,; a positional one. TIl (U rrnllcls, 2(06) iL was shown that the first prop
erty extends to the rnultiplayer case: Any rnultiplayer game with w-regular 
winning conditions can be reduced to a game with parity winning condi
tions. Hence, in the algorithmic part of this paper, we will concentrate on 
rnultiplayer parity garnes. 

3 Solution concepts 
So far, the infinite games used in verification mostly are two-player games 
with win-lose conditions, i.e., each play is won by one player and lost by the 
other. 1'he key concept for such games is detcTrninacy: a game is deterrnined 
if, from each initial position, one of the players has a winning strategy. 

While it is well-known that, on the basis of (a weak form of) the Axiom 
of Choice, non-determined games exist, the two-player win-lose games usu
ally encountered in computer science, in particular all w-regular games, are 
determined. Indeed, this is true for much more general games where the 
winning conditions are arbitrary (quasi- )Borel sets (Martin, 1975, 1990). 

In the case of a determined game, solving the game means to compute 
the winning regions and winning strategies for the two players. A famous 



156 E. Gradel, M. Ummels 

result due to Bi.ichi and Landweber (1969) says that in the case of games 
on finite graphs and with w-regular winning conditions, we can effectively 
compute winning strategies that are realisable by finite automata. 

When we move to multiplayer games and/or non-zero sum games, other 
solution concepts are needed. We will explain some of these concepts, in 
particular Nash equilibria, subgame perfect equilibria, and secure equilibria, 
and relate the existence of these equilibria (for the kind of infinite games 
studied here) to the determinacy of certain associated two-player games. 

3.1 Nash equilibria 

The most popular solution concept in classical game theory is the concept 
of a Nash cQ'ailibri1tm. Informally, a Nash equilibrium is a strategy profile 
from which no player has an incentive to deviate, if the other players stick 
to their strategies. A celebrated theorem by John Nash (1950) says that in 
any garne where each player only has a finite collection of strategies there is 
at least one Nash equilibriurn provided that the players can randomise over 
their strategies, i.e., choose mixcd stmtcgics rather than only pure ones. 
For turn-based (non-stochastic) games with qualitative winning conditions, 
mixed strategies play no relevant role. We define Nash equilibria just in the 
form needed here. 

Definition 3.1. A strategy profile (o-d.zEf1 of a game (9, va) is called a 
Nash eq1til-ibri1tm if for every player i E n and all her possible strategies 
0-' in (9, va) the play (0-', (o-j)jEf1\{Q) is won by player i only if the play 
(( o-j ) is also won by her. 

It has been shown by Chatterjee et al. (2004b) that every multiplayer 
game with Borel winning conditions has a Nash equilibrium. We will prove 
a more general result below. 

Despite the importance and popularity of Nash equilibria, there are sev
eral problems with this solution concept, in particular for games that extend 
over time. Cl'his is due to the fact that Nash equilibria do not take into ac
count the sequential nature of these games and its consequences. After any 
initial segrnent of a play, the players face a new situation and rnay change 
their strategies. Choices made because of a threat by the other players 
may no longer be rational, because the opponents have lost their power of 
retaliation in the remaining play. 

Example 3.2. Consider a two-player Biichi game with its arena depicted 
in Figure 1; round vertices are controlled by player 1; boxed vertices are 
controlled by player 2; each of the two players wins if and only if vertex 3 is 
visited (infinitely often); the initial vertex is 1. Intuitively, the only rational 
outcome of this game should be the play 12:3',). However, the game has two 
Nash equilibria: 
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FIGURE 1. A two-player Bilchi game. 

1. Player 1 moves frorn vertex 1 to vertex 2, and player 2 moves frorn 
vertex 2 to vertex 3. Hence, both players win. 

2. Player I moves from vertex 1 to vertex 4, and player 2 moves from 
vertex 2 to vertex 5. Hence, both players lose. 

The second equilibrium certainly does not describe rational behaviour. 
Indeed both players move according to a strategy that is always losing 
(w hatever the other player does), and once player 1 has moved frmn vertex 1 
to vertex 2, then the rational behaviour of player 2 would be to change her 
strategy and move to vertex 3 instead of vertex 5 as this is then the only 
way for her to win. 

This example can be modified in many ways. Indeed we can construct 
garnes with Nash equilibria in which every player moves infinitely often 
according to a losing strategy, and only has a chance to win if she deviates 
from the equilibrium strategy. l'he following is an instructive example with 
quantitative objectives. 

Example 3.3. Let Qn be an n-player game with positions 0, ... ,n. Position 
n is the initial position, and position 0 is the terminal position. Player i 
moves at position i and has two options. Either she loops at position ·i (and 
stays in control) or moves to position i - 1 (handing control to the next 
player). For each player, the value of a play 7r is (n + 1)/17r1. Hence, for all 
players, the shortest possible play has value 1, and all infinite plays have 
value O. Obviously, the rational behaviour for each player i is to move from 
i toi - 1. This strategy profile, which is of course a Nash equilibrium, gives 
value I to all players. However, the 'most stupid' strategy profile, where 
each player loops forever at his position, i.e., moves forever according to a 
losing strategy, is also a Nash equilibrium. 
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3.2 Subgame perfect equilibria 

An equilibrium concept that respects the possibility of a player to change her 
strategy during a play is the notion of a subgame perfect equilibrium (Selten, 
1965). For being a subgame perfect equilibriurn, a choice of strategies is not 
only required to be optimal for the initial vertex but for every possible initial 
history of the game (including histories not reachable in the equilibrium 
play). 

To define subgame perfect equilibria forrnally, we need the notion of a 
subgame: For a game Q (II, V, ,E, X, (Wini)iETI) and a history h 
of Q, let the game Qlh = (II, V, (i/i)'iEn, E, X, (Wini Ih).iErJ) be defined by 
Wini Ih {(~ E CW : X(h)· (~E Wind. For an initialised game (Q,vo) and 
a history Iw of (Q,vo), we call the initialised game (Qlh,V) the subgame of 
(Q, vo) 'Wdh h'istory hv. For a strategya- of player i E n in Q, let a-Ih : 
V*1;i ----+ 1;' be defined by a-lh(XV) = a-(hxv). Obviously, a-Ih is a strategy of 
player i in Qlh. 

Definition 3.4. A strategy profile (a-diETI of a game (Q, va) is called a 
subgamc pcrfcct cquilibrium (SPE) if (a-ilh)iETI is a Nash equilibrium of 
(Qlh,V) for every history hv of (Q,vo). 

Example 3.5. Consider again the game described in Example 3.2. The 
Nash equilibrium where player 1 moves from vertex 1 to vertex 4 and player 2 
moves from vertex 2 to vertex 5 is not a subgame perfect equilibrium since 
moving from vertex 2 to vertex 5 is not optimal for player 2 after the play has 
reached vertex 2. On the other hand, the Nash equilibrium where player I 
moves from vertex 1 to vertex 2 and player 2 moves from vertex 2 to vertex 3 
is also a subgame perfect equilibrium. 

It is a classical result due to Kuhn (1953) that every game 
every game played on a finite tree with payoffs attached to leaves) has a 
subgame perfect equilibrium. The first step in the analysis of subgame per
fect equilibria for infinitc duration games is the notion of subgame-perfect 
determinacy. While the notion of subgame perfect equilibrium makes sense 
for more general classes of infinite games, the notion of subgame-perfect de
terminacy applies only to games with qualitative winning conditions (which 
is tacitly assumed from now on). 

Definition 3.6. A game (Q, vo) is subgame-perfect determined if there ex
ists a strategy profile (a-i)iCTI such that for each history hv of the game one 
of the strategies a-ilh is a winning strategy in (Qlh, v). 

Proposition 3.7. Let (Q, vo) be a qualitative zero-sum game such that 
every subgame is determined. Then (Q, vo) is subgame-perfect determined. 
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Pmoj. Let W, va) be a multiplayer garne such that for every history hv there 
exists a strategy O"t, for some playeri that is winning in Wlh, v). (Note that 
we can assume that 0";' is independent of v.) \Ve have to combine these 
strategies in an appropriate way to strategies O"i. (Let us point out that the 
trivial combination, namely O"i(hv):= (v), does not work in genera!.) We 
say that a decomposition hv = h1 . h2 is good for player .j w.r.t. vertex v if 
O"i'l lh 2 is winning in Wlh, v). If the strategy d' is winning in Wlh, v), then 
the decomposition 11, = h· c is good w.r.t. v, so a good decomposition exists. 

For each history hv, if 0":' is winning in Wlh, v), we choose the good 
(w.r.t. vertex v) decomposition 11, = h1h2 with minimal hI, and put 

Otherwise, we set 

It remains to show that for each history hv of W, vo) the strategy O"ilh is 
winning in Wlh) v) whenever the strategy O"~ is. Hence, assume that O"t, is 
winning in Wlh,v), and let 1f = 1f(0)1f(1) ... be a play starting in1f(O) = v 
and consistent with O".t Ih. vVe need to show that 1f is won by playeri in 

Wlh'v). 
First, we claim that for each k < w there exists a decomposition of the 

fOnT] h1f(O) ... 1f(k - 1) = hi . (h21f(0) ... 1f(k - 1)) that is good for player i 
w.r.t. 1f(k). This is obviously true for k = O. Now, for k > 0, assume that 
there exists a decomposition h1f(O) ... 1f(k - 2) = h1 · (h21f(0) ... 1f(k - 2)) 
that is good for player i w.r.t. 1f(k - 1) and with 11,1 being minima!. Then 
1f( k) O"i (!m(U) ... 1f( k - 1)) O"hl (h21f(U) ... 1f( k - 1), and h:rr(O) ... 1f( k -
1) = h1(h21f(0) ... 1f(k - I)) is a decornposition that is good w.r.t. 1f(k). 

Now consider the sequence h~, ht, ... of prefixes of the good decompo-
sitions Im(O) ... 1f(k - 1) h~h~1f(O) ... 1f(k - I) (w.r.t. 1f(k)) with each 
h~ being minimal. Then we have h? t ht t ... , since for each k > 0 the 
decomposition Im(O) .. . 1f(k - 1) = h~-l h~-l1f(O) .. . 1f(k - 1) is also good 
for player i w.r.t. 1f(k). As -< is well-founded, there must exist k < w such 
that h1 : h} h/i and h2 : h~ h~ for each k :::; I < w. Hence, we have 
that the play 1f(k)1f(k+1) ... is consistent with Ih 2 71"(0) .. 71"(k 1), which is a 
winning strategy in Wltl7r(o) .. 71"(k1), 1f(k)). So the play 1m is won by player i 
in W, va), which implies that the play 1f is won by player i in Wlh) v). Q.E.D. 

\Ve say that a class of winning conditions is closed under taking sub
games, if for every condition X <;;; G'u in the class, and every h E G*, also 
Xlh := {:c E C'u : 11,:1: E X} belongs to the class. Since Borel winning 
conditions are closed under taking subgames, it follows that any two-player 
zero-sum game with Borel winning condition is subgame-perfect determined. 
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Corollary 3.8. Let (9, vo) be a two-player zero-surn Borel game. Then 
(9, vo) is subgame-perfect determined. 

Multiplayer games are usually not zero-sum games. Indeed when we have 
many players the assurnption that the winning conditions of the players form 
a partition of the set of plays is very restrictive and unnatural. We now drop 
this assumption and establish general conditions under which a multiplayer 
game adrnits a subgame perfect equilibriurn. Tn fact we will relate the 
existence of subgame perfect equilibria to the deterrninacy of associated 
two-player games. In particular, it will follow that every multi player game 
with Borel winning conditions has a subgame perfect equilibrium. 

In the rest of this subsection, we are only concerned with the existence 
of equilibria, not with their complexity. Thus, without loss of generality, 
we assume that the arena of the game under consideration is a tree or a 
forest with the initial vertex as one of its roots. The justification for this 
assumption is that we can always replace the arena of an arbitrary game by 
its unravelling from the initial vertex, ending up in an equivalent game. 

Definition 3.9. Let 9 (TI, t T
, (Vi)iETI, E, X, (Wini)iETI) be a multiplayer 

game (played on a forest), with winning conditions "Vini <;;; CW. The associ
ated class ZeroSum(9) of two-player zero-sum games is obtained as follows: 

1. For each player i, ZeroSum(9) contains the game gi where player ·i 
plays g, with his winning condition Wini, against the coalition of all 
other players, with winning condition CCJ \ Wini. 

2. Close the class under taking subgames 
histories) . 

consider plays after initial 

3. Close the class under taking subgraphs (i.e., admit deletion of posi
tions and moves). 

Note that the order in which the operations (1), (2), and (:3) are applied 
has no effect on the class ZeroSum(9). 

Theorem 3.10. Let (9, vo) be a multiplayer game such that every garne in 
ZeroSum(9) is determined. Then (9, va) has a subgame perfect equilibrium. 

Proof. Let 9 = (II, 1/, (Y~)iETI, E, X, (Wini)iE::TI) be a multiplayer game such 
that every game in ZeroSum(9) is determined. For each ordinal a we define 
a set Ecx <;;; E beginning with EO = E and 

BA n E a 

O'<A 

for limit ordinals >.. To define EO'-'c- 1 from EO', we consider for each player i E 

II the two-player zero-sum game g.f' = (1/, Y~, Ee>, X, Wini) where player i 
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plays with his winning condition Wini against the coalition of all other 
players (with winning condition CW\ Win,). Every subgame of g.i belongs to 
ZeroSum(iJ) and is therefore determined. Hence we can use Proposition 3.7 
to fix a subgame perfect equilibrium ,(/=J of (iJ{', va) where (/.i is a 
strategy of player i and (/=i is a strategy of the coalition. Moreover, as the 
arena of go< is a forest, these strategies can be assumed to be positional. 
Let Xix be the set of all v E V such that (/ix is winning in (iJ.?'ih' v) for the 
unique maximal history h of g leading to v. For vertices v E Vi n Xi" we 
delete all outgoing edges except the one taken by the strategy ,i.e., we 
define 

gx+ 1 = E0: \ U {( 1/, v) E E :u E Vi n Xf and v ic 
iEIl 

(le)} . 

Obviously, the sequence is nonincreasing. Thus we can fix the 
least ordinal t: with EE. = EE.+ I and define (/i = (/; and (/i = (/~i' More
over, for each player j ic i let (/j,i be the positional strategy of player j in 
g that is induced by (/-i. 

Intuitively, Playeri's equilibrium strategy Ti is as follows: Player i plays 
(/i as long as no other player deviates. Whenever some player j / i deviates 
frorn her equilibrium strategy (/j, player i switches to (/i,j' Formally, define 
for each vertex v E V the player p( v) who has to be "punished" at vertex v 
wherep(v) -.l if nobody has to be punished. Tfthe game has just started, 
no player should be punished. Thus we let 

p(v) = -.l if v is a root. 

At vertex v with predecessor lt, the same player has to be punished as at 
vertex It as long as the player whose turn it was at vertex u did not deviate 
from her prescribed strategy. Thus for le E Vi and v E leE we let 

p(v) 
if p(lt) -.l and v (/i(U), 
if p( It) i, p( It) / -.l and v 

otherwise. 

(It) , 

Now, for each player i E n we can define the equilibrium strategy Ti by 
setting 

Ti(V) = {(/.i(V) 
(/i,p(v) (v) 

if p(v) = -.l or p(v) = i, 

otherwise 

for each v E V. 
It remains to show that (T;}iEIl is a subgame 

(iJ,va). First note that (/i is winning in (iJ;ih,V) if 
for some ordinal (~ because if (/Y is winning in 

perfect equilibriurn of 

is winning in Wiih, v) 
ih, v) every play of 



162 E. Gradel, M. Ummels 

Wf+ L Ih' v) is consistent with (Jf and therefore won player i. As EE. S;;; 

E'''+ 1, t his also holds for every play of W; I h, v). Now let v be any vertex of 9 
with h the unique maximal history of 9 leading to v. We claim that )jCll 

is a Nash equilibrium of Wlh, v). Towards this, let 'II be any strategy of 
any player i E II in g; let 1f = ((Tj )V, and let 1f1 = ,(Tj)jCll\{i})v, 
We need to show that h1f is won by player i or that h1f1 is not won by 
player i. The claim is trivial if 1f = 1f/ Thus assume that 1f # 1f1 and fix 
the least k < w such that 1f(k + 1) # 1f/(k + 1). Clearly, 1f(k) E Vi and 
TI(1f(k)) # Ti(1f(k)). Without loss of generality, let k = O. We distinguish 
the following two cases: 

- (Ji is winning in W;lh, v). By the definition of each Tj, 1f is a play of 

W;lh, v). We claim that 1f is consistent with (Ji, which implies that h1f 
is won by playeri. Otherwise fix the least I < w such that 1f(I) E Vi and 

(J.i(1f(/)) # 1f(1 + 1). As (Ji is winning in W?lh, v), (Ji is also winning 

in W.tlh7r(o)7r(Il),1f(/)). But then (1f(l),1f(1 + 1)) E £E. \ EE.+l, a 
contradiction to EE. = EE,+l . 

. ... (Ct: I ) I--J .... ICE I \ A - (J'i IS not wmmng m Y.i h,v,.ence (J-i IS wlDl1Ing ID \Yi h,V). S 

'II (v) # 'Ii (v), player i has deviated, and it is the case that 1f1 = 

\'11, )v. We claim that 1f1 is a play of W.;lh' v). As (J-i 

is winning in W; Ih' v), this implies that 1m! is not won player i. 
Otherwise fix the least l < w such that (1f/(l), 1f/(l + 1)) rt EE, to
gether with the ordinal 0: such that (1f1 (I), 1f1 (l + 1)) E En \ £CH L. 

Clearly, 1f/(l) E Vi, Thus is winning in Wflh7r/(O) 7r / (1 1), 1f1(l)), 

which implies that (Ji is winning in W;lh"/(0)"""/(11), 1f1(l)). As 1f1 is 

consistent with (J-i, this means that (J-i is not winning in W;lh,v), a 
contradiction. 

It follows that (Tj)jCll 

history hv of W, va). 
W,vo). 

(Tjlh)jCll is a Nash equilibrium of Wlh, v) for every 
Hence, (Tj)jCll is a subgame perfect equilibrium of 

Q.E.D. 

Corollary 3.11 (Ummels, 2006). Every multiplayer garne with Borel win
ning conditions has a subgame perfect equilibrium. 

'['his generalises the result in (Chatterjee et aI., 2004b) that every multi
player game with Borel winning conditions has a Nash equilibrium. Indeed, 
for the existence of Nash equilibria, a slightly weaker condition than the one 
in Theorem 3.10 suffices. Let ZeroSumW}Nash be defined in the same way 
as ZeroSumW) but without closure under subgraphs. 

Corollary 3.12. If every game in ZeroSumW}Nash is determined, then 9 
has a Nash equilibrium. 
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3.3 Secure equilibria 

The notion of a secure eq11ilibri1tm introduced by Chatterjee et al. (2004a) 
tries to overcorne another deficiency of Nash equilibria: one game may have 
many Nash equilibria with diff"erent payoffs and even several maximal ones 
w.r.t. to the component wise partial ordering on payoffs. Hence, for the 
players it is not obvious which equilibrium to play. The idea of a secure 
equilibrium is that any rational deviation a deviation that does not 
decrease the payoff of the player who deviates) wiilnot only not increase the 
payoff of the player who deviates but it will also not decrease the payoff of 
any other player. Secure equilibria model rational behaviour if players not 
only attempt to maximise their own payoff" but, as a secondary objective, 
also attempt to minimise their opponents' payoff"s. 

Definition 3.13. A strategy profile (cri)iETI of a game (9, va) is called secure 
if for all players i / j and for each strategy cr' of player j it is the case that 

A strategy profile (cri)iETI is a secure equ·il-ibrium if it is both a Nash equi
librium and secure. 

Example 3.14 (Chatterjee et al., 2004a). Consider another Biichi game 
played on the game graph depicted in Figure 1 by the two players 1 and 2 
where, again, round vertices are controlled by player 1 and square vertices 
are controlled by player 2. This time player 1 wins if vertex 3 is visited 
(infinitely often), and player 2 wins if vertex 3 or vertex 5 is visited (infinitely 
often). Again, the initial vertex is l. 

Up to equivalence, there are two diff"erent strategies for each player: 
Player 1 can choose to go from 1 to either 2 or 4 while player 2 can choose 
to go from 2 to either 3 or 5. Except for the strategy profile where player 1 
moves to 4 and player 2 moves to 3, ail of the resulting profiles are Nash 
equilibria. However, the strategy profile where player 1 moves to 2 and 
player 2 moves to :3 is not secure: Player 2 can decrease player 1 's payoff by 
moving to 5 instead while her payoff remains the same (namely 1). Similarly, 
the strategy profile where player 1 moves to 2 and player 2 moves to 5 is not 
secure: Player 1 can decrease player 2's payoff" by moving to 4 instead while 
her payoff" remains the same (namely 0). Hence, the strategy profile where 
player 1 moves to 4 and player 2 moves to 5 is the only secure equilibriurn 
of the game. 

It is an open question whether secure equilibria exist in arbitrary mul
tiplayer games with well-behaved winning conditions. However, for the 
case of only two players, it is not only known that there always exists a 
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secure equilibrium for games with well-behaved winning conditions, but a 
unique maximal secure equilibrium payoff w.r.t. the componentwise order
ing ::; on payoffs, i.e., there exists a secure equilibrium (0", T) such that 
pay( ,T'))::; pay((O",T)) for every secure equilibrium (O"I,TI) of (9,vo). 
Clearly, such an equilibrium is preferable for both players. 

For two winning conditions Winl, Win2 ~ VW, we say that the pair 
(Winl, Win2) is determined if any Boolean combination of Winl and Win2 
is determined, i.e., any two-player zero-sum game that has a Boolean com
bination of Winl and Win2 as its winning condition is determined. 

Definition 3.15. A strategy 0" of player 1 (player 2) in a 2-player game 
(9, va) is strongl-y if it ensures a pi ay wi th payoff ( 1 , 0) (payoff (0, I)) 
against any strategy T of player 2 (player 1). 

The strategy 0" is retaliating if it ensures a play with payoff (0, 0), (1,0), 
or (1,1) against any strategy T of player 2 (player 1). 

Note that if (9, va) is a game with a determined pair (Winl, Win2) of 
winning conditions, then player 1 or 2 has a strongly winning strategy if 
and only if the other player does not have a retaliating strategy. 

Proposition 3.16. Let (9, va) be a two-player game with a determined pair 
(Winl, Win2) of winning conditions. Then precisely one of the following four 
cases holds: 

l. Player 1 has a strongly winning strategy; 

2. Player 2 has a strongly winning strategy; 

:3. 'I'here is a pair of retaliating strategies with payoff (1, I); 

4. There is a pair of retaliating strategies, and all pairs of retaliating 
strategies have payoff (0,0). 

Pmof. Note that if one player has a strongly winning strategy, then the 
other player neither has a strongly winning strategy nor a retaliating strat
egy. Vice versa, if one player has a retaliating strategy, then the other player 
cannot have a strongly winning strategy. Moreover, cases 3 and 4 exclude 
each other by definition. Hence, at most one of the four cases holds. 

Now, assume that neither of the cases 1-3 holds. In particular, no 
player has a strongly winning strategy. By determinacy, this implies that 
both players have retaliating strategies. Let (0", T) be any pair of retaliating 
strategies. As case 3 does not hold, at least one of the two players receives 
payoff o. But as both players play retaliating strategies, this implies that 
both players receive payoff 0, so we are in case 4. Q.E.D. 
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Theorem 3.17. Let (9, va) be a two-player game with a determined pair 
(Winl' Win2) of winning conditions. Then there exists a unique maximal 
secure equilibrium payoff for (9, va). 

Proof. 'vVe show that the claim holds in any of the four cases stated in 
Proposition 3.16: 

l. In the first case, player 1 has a strongly winning strategy IJ. Then, 
for any strategy T of player 2, the strategy profile T) is a secure 
equilibriurn with payoff (1,0). We claim that (1,0) is the unique max
imal secure equilibriurn payoff. Otherwise, there would exist a secure 
equilibrium with payoff 1 for player 2. But player 1 could decrease 
player 2's payoff while not decreasing her own payoff by playing IJ, a 
contradiction. 

2. 1'he case that player 2 has a strongly winning strategy is analogous 
to the first case. 

3. In the third case, there is a pair (IJ, T) of retaliating strategies with 
payoff 1). But then (IJ, T) is a secure equilibrium, and (1,1) is the 
unique maximal secure equilibrium payoff. 

4. In the fourth case, there is a pair of retaliating strategies, and any 
of retaliating strategies has payoff (0,0). Then there exists a 

strategy IJ of player 1 that guarantees payoff 0 for player 2, since 
otherwise by determinacy there would exists a strategy for player 2 
that guarantees payoff I for player 2. 'J'his would be a retaliating 
strategy that guarantees payoff 1 for player 2, a contradiction to the 
assumption that all pairs of retaliating strategies have payoff (0,0). 
Symmetrically, there exists a strategy T of player 2 that guarantees 
payoff 0 for player l. By the definition of IJ and T, the strategy profile 
(IJ,T) is a Nash equilibrium. But it is also secure, since it gives each 
player the least possible payoff. Hence, T) is a secure equilibrium. 
Now assume there exists a secure equilibri urn (IJ', T') with payoff (1,0). 
Then also (IJ', T) would give payoff 1 to player 1, a contradiction to 
the fact that (IJ, T) is a Nash equilibrium. Symmetrically, there cannot 
exists a secure equilibrium (IJ',T') with payoff (0,1). Hence, either 
(0,0) or (1,1) is the unique maximal secure equilibrium payoff. Q.E.D. 

Since Borel winning conditions are closed under Boolean combinations, as 
a corollary we get the result by Chatterjee et al. that any two-player game 
with Borel winning conditions has a unique maxirnal secure equilibrium 
payoff. 

Corollary 3.18 (Chatterjee et aI., 2004a). Let (9, vo) be two-player game 
with Borel winning conditions. Then there exists a unique maximal secure 
equilibrium payoff for (9, va). 
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4 Algorithmic problems 
Previous research on algorithm,s for rnultiplayer games has focused on com
puting some solution of the game, e.g., some Nash equilibrium (Chatterjee 
et aI., 2004b).However, as we have seen, a game may not have a unique 
solution, so one might be interested not in any solution, but in a solution 
that fulfils certain requirements. For example, one might look for a solution 
where certain players win while certain other players lose. Or one might 
look for a maTimal solution, i.e., a solution such that there does not exist 
another solution with a higher payoff. In the context of games with par
ity winning conditions, this motivation leads us to the following decision 
problem, which can be defined for any solution concept S: 

Given a rnultiplayer parity game (Q,vo) played on a finite arena 
and thresholds x, y E {O, l}k, decide whether (Q, va) has a solution 
(ai)iEn E S(Q,va) such that x::: pay(((ai)iEn)) ::: y. 

Tn particular, the solution concepts of Nash equilibria, subgame perfect equi
libria, and secure equilibria give rise to the decision problems NE, SPE and 
SE, respectively. In the following three sections, we analyse the complexity 
of these three problems. 

4.1 Na ... <;h equilibria 

Let (9, vo) be a garne with prefix-independent, determined winning condi
tions. Assume we have found a Nash equilibrium (ai)iETI of (9, "00) with 
payoff x. Clearly, the play ((ai)iEn) never hits the winning region Wi of 
some player i with X'i = 0 because otherwise player i can improve her payoff 
by waiting until the token hits l;Vi and then apply her winning strategy. 
The crucial observation is that this condition is also sufficient for a play to 
be induced by a Nash equilibrium, i.e., (9, vo) has a Nash equilibrium with 
payoff x if and only if there exists a play in (9, vo) with payoff x that never 
hits the winning region of some player i with Xi O. 

Lemma 4.1. Let (9, vo) be a k-player game with prefix-independent, de
termined winning conditions, and let Wi be the winning region of player i 
in Q. There exists a Nash equilibrium of (9, vo) with payoff x E {O,l}k 
if and only if there exists a play 7f of (9, vo) with payoff x such that 
{7f(k): k < w} n Wi = 0 for each player i with :Ci = O. 

Pmoj. (=}) This direction follows from the argumentation above. 
(-¢=) Let 7f be a play with payoff x such that {7f(I;;) : I;; < w}nWi 0 for 

each player i with :Ci = O. Moreover, let Tj be an optimal strategy of the 
coalition n \ {j} in the two-player zero-sum game Qj where player j plays 
against all other players in Q, and let Ti,j be the corresponding strategy of 
player i in Q (where T'i,i is an arbitrary strategy). For each player i E II, we 
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define a strategy O"i in g as follows: 

if hv = 11(0) .. . 1I(k) -< 11, 
otherwise, 
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where, in the latter case, h hlh2 such that hI is the longest prefix of h 
still being a prefix of 11, and :i is the player whose turn it was after that 
prefix (i.e., h1 ends in ), where:i = i if h1 = E. 

Let us show that is a Nash equilibrium of (9, va) with payoff x. 
First observe that ((O"i).iEn) = 11, which has payoff x, thus it remains to show 
that (O".diEn is a Nash equilibrium. So let us assume that some player i E n 
with :Ci = 0 can improve her payoff by playing according to some strategy 0"1 
instead of O"i. Then there exists k < w such that 0"/(1I(k)) # O"i(r.(k)), and 
consequently from this point onwards (( O"j )jETI\ {i}, O"!) is consistent with T -.i, 

the optimal strategy of the coalition n\ {i} in g'i. Hence, Ti is not winning 
from 1I(k). By determinacy, this implies that 1I(k) E leT/i , a contradiction. 

Q.E.D. 

As an immediate consequence, we get that the problem NE is in NP. 
However, in many cases, we can do better: For two payoff vectors x, y E 

{O, l}k, let dist(x, y) be the Harnming distance of x and y, i.e., the man-

bel' .2:::7=1 IYi - xii of nomnatching bits . .lurdzirlski (1998) showed that the 
problern of deciding whether a vertex is in the winning region for player 0 
in a two-player zero-sum parity game is in UP II co-UP. Recall that UP is 
the class of all problems decidable by a nondeterministic 'TIl ring machine 
that runs in polynomial time and has at most nne accepting run nn every 
input. We show that the complexity of NE goes down to UP n co-UP if the 
Hamming distance of the thresholds is bounded. If additionally the number 
of priorities is bounded, the complexity reduces further to P. 

Theorem 4.2 (Ummels, 2008). NE is in NP. If dist(x, y) is bounded, NE 
is in UP n co-UP. If additionally the number of priorities is bounded for 
each player, the problem is in P. 

Proof. An NP algorithm for NE works as follows: On input (9, va), the 
algorithrn starts by guessing a payoff x :s; z :s; y and the winning region 
Wi of each player. Then, for each vertex 11 and each player i, the guess 
whether 11 E W.i or 11 r¢ Wi is verified by running the UP algorithm for the 
respective problem. If one guess was incorrect, the algorithm rejects im
mediately. Otherwise, the algorithm checks whether there exists a winning 
play from Va in the one-player game arising from g by merging the two play
ers, restricting the arena to G I nZi ..... o(V \ lV"i), and imposing the winning 
condition !\zi=10i /\ !\Zi=O ,Oi, a Streett condition. If so, the algorithm 
accepts. Otherwise, the algorithm rejects. 
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The correctness of the algorithm follows from Lemrna 4.1. F'or the com
plexity, note that deciding whether there exists a winning play in a one
player Streett game can be done in polynomial time (Emerson and Lei, 
1985). 

If dist(x, y) is bounded, there is no need to guess the payoff z. Instead, 
one can enumerate all of the constantly many payoffs x ::; z ::; y and check 
for each of them whether there exists a winning play in the respective one
player Streett game. If this is the case for some z, the algorithm may 
accept. Otherwise it has to reject. This gives a UP algorithm for NE in 
the case that dist(x, y) is bounded. Analogously, a UP algorithm for the 
complementary problem would accept if for each z there exists no winning 
play in the respective one-player Streett game. 

For parity garnes with a bounded number of priorities, winning regions 
can actually be cornputed in polynomial time e.g., Zielonka, 1998). 
Thus, if additionally the number of priorities for each player is bounded, 
the guessing of the winning regions can be avoided as well, so we end up 
with a deterministic polynomial-time algorithm. Q.E.D. 

It is a major open problem whether winning regions of parity games 
can be computed in polynomial time, in general. This would allow us to 
decide the problem N E in polynomial time for bounded dist(x, y) even if 
the number of priorities is unbounded. Recently, J urdzinski et al. (2006) 
gave a deterministic subexponential algorithm for the problem. It follows 
that there is a deterministic subexponential algorithm for NE if dist(x, y) 
is bounded. 

Another line of research is to identify structural properties of graphs 
that allow for a polynomial-time algorithm for the parity game problem. 
It was shown that winning regions can be computed in polynomial time 
for parity games played on graphs of bounded DAG-width (Berwanger 
et al., 2006; Obdrzcilek, 2006) (and thus also for graphs of bounded tree 
width (ObdrzaJek, 2003) or bounded entanglement (Berwanger and Gradel, 
2005)), and also for graphs of bounded clique width (ObdrzaJek, 2007) or 
bounded Kelly width (Hunter and Kreutzer, 2007). It follows that NE can 
be decided in polynomial time for games on these graphs if also dist(x, y) 
is bounded. 

Having shown that NE is in NP, the natural question that arises is 
whether NE is NP-complete. We answer this question aff'lrmatively. Note 
that it is an open question whether the parity game problem is NP-complete. 
Tn fact, this is rather unlikely, since it would irnply that NP UP 
co- U P = co-NP, and hence the polynomial hierarchy would collapse to its 
first level. As a matter of fact, we show NP-completeness even for the 
case of games with co- Biichi winning conditions, a class of games known 
to be solvable in polynomial time in the classical two-player zero-sun] case. 
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Also, it suffi.ces to require that only one distinguished player, say the first 
one, should win in the equilibrium. In essence, this shows that NE is a 
substantially harder problem than the problem of deciding the existence of 
a winning strategy for a certain player. 

Theorem 4.3 (Ummels, 2008). NE is NP-complete for co-Biichi games, 
even with the thresholds x = (1,0, ... ,0) and y = (1, ... ,1). 

Proof. By Theorem 4.2, the problem is in NP. To show that the problem is 
NP-hard, we give a polynomial-time reduction from SAT. Given a Boolean 
formula 'P C] 1\ ... 1\ Crn in CNF over variables Xl, ... ,Xn, we build a 
garne 940 played by players 0, 1, ... , n as follows. 940 has vertices , ... , Cm. 
controlled by player 0, and for each clause C and each literal Xi or 'J'(i, a 
vertex (C, Xd or ,Xi)' respectively, controlled by player i. Additionally, 
there is a sink vertex -.l. There are edges from a clause Cj to each vertex 
(Cj ' L) such that L occurs as a literal in Cj and frorn there to mod m),]. 

Additionally, there is an edge from each vertex (C, ,Xi) to the sink vertex 
L As -.l is a sink vertex, the only edge leaving -.l leads to -.l itself. For 
example, Figure 2 shows the essential part of the arena of 940 for the formula 
'P = (X] V X3 V ,X2 );\ (X3 V ,Xd 1\ ,X3. The co-Biichi winning conditions 
are as follows: 

Player 0 wins if the sink vertex is visited only finitely often (or, equiv
alently, if it is not visited at all). 

Player i E {I ... ,n} wins if each vertex (C, 
often. 

is visited only finitely 

Clearly, 940 can be constructed frorn 'P in polynomial time. \lVe clairn 
that 'P is satisfiable if and only if W'P' Cd has a Nash equilibrium where at 
least player 0 wins. 

(=}) Assume that 'P is satisfiable. We show that the positional strategy 
profile where at any time player 0 plays from a clause C to a (fixed) literal 
that satisfies this clause and each player j / 0 plays from ,Xj to the sink 
if and only if the satisfying interpretation maps Xj to true is a Nash equi
librium where player 0 wins. First note that the induced play never reaches 
the sink and is therefore won by player o. Now consider any player i that 
loses the induced play, which can only happen if a vertex (C, Xi) is visited 
infinitely often. But, as player 0 plays according to the satisfying assign
ment, this means that no vertex (C', ,Xd is ever visited, hence player i has 
no chance to improve her payoff by playing to the sink vertex. 

(-¢=) Assume that W'P' Cd has a Nash equilibrium where player 0 wins, 
hence the sink vertex is not reached in the induced play. Consider the 
variable assignment that maps Xi to true if some vertex (C, Xd is visited 
infinitely often. We claim that this assignment satisfies the formula. T\) see 
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this, consider any clause Gj . By the construction of Q<p, there exists a literal 
Xi or ,Xi in Gj such that the vertex (Gj , Xi) or (Gj , ,X;), respectively, is 
visited infinitely often. Now assume that both a vertex (G, Xi) and a vertex 
(G I

, ,Xi) are visited infinitely often. 'I'hen player i would lose, but could 
improve her payoff by playing from (GI

, ,X.,) to the sink vertex. Hence, in 
any case the defined interpretation maps the literal to true thus satisfying 
the clause. Q.E.D. 

4.2 Subgame perfect equilibria 

For subgame perfect equilibria, we are not aware of a characterisation like 
the one in Lemma 4.1 for Nash equilibria. Therefore, our approach to 
solve SPE is entirely different from our approach to solve NE. Namely, we 
reduce SPE to the nonemptiness problem for tree automata (on infinite 
trees). However, this only gives an ExpTIiVIE upper bound for the problem 
as opposed to NP for the case of Nash equilibria. For the full proof of the 
following theorern, see (Umrnels, 2006). 



Infinite M ultiplayer Games 171 

Theorem 4.4. 1'he problern SPE is in EXP'l'IIvlE. If the number of players 
and priorities is bounded, the problem is in P. 

Proof sketch. Without loss of generality, let us assume that the input game 
9 is binaTY, every vertex of 9 has at most two successors. Then we can 
arrange all plays of (9, va) in an infinite binary tree with labels from the 
vertex set V. Given a strategy profile (o-·;)iE TI of (9, vo), we enrich this tree 
with a second label component that takes the value 0 or 1 if the strategy 
profile prescribes going to the left or right successor, respectively. 

'fhe algorithm works as follows: iNe construct two alteTnating paTity tTee 
automata. The first one checks whether some arbitrary tree with labels from 
the alphabet 1/ x {O, I} is indeed a tree originating from a strategy profile 
of (9, va), and the second one checks for a tree originating from a strategy 
profile (o-i)iETI of (9, va) whether is a subgame perfect equilibrium 
with a payoff in between the given thresholds. The first automaton is actu
ally a nondeterministic tree automaton with trivial acceptance (every run of 
the automaton is accepting) and has O(IVI) states. The second automaton 
has O(kd) states and 0(1) priorities where k is the number of players and 
d is the maximum number of priorities in a player's parity condition. An 
equivalent nondeterministic parity tree automaton has 20(kd log kll) states 
and O(kd) priorities (Muller and Schupp, 1995). Finally, we construct the 
product automaton of the first nondeterministic parity tree automaton with 
the one constructed from the alternating one. As the former automaton 
works with trivial acceptance, the construction is straightforward and leads 
to a nondeterministic parity tree automaton with O( IV I) . 20(kd log kd) states 
and O(kd) priorities. Obviously, the tree language defined by this automa
ton is nonempty if and only if (9, vo) has a subgame perfect equilibrium 
with a payoff in between the given thresholds. By (Emerson et aI., 1993) 
nonemptiness for nondeterministic parity tree automata can be decided in 
time polynomial in the number of states and exponential in the number of 
priorities. Q.E.D. 

The exact complexity of SPE remains an open problem. However, NP
hardness can be transferred from NE to SPE. Hence, it is unlikely that there 
exists a polynornial-tirne algorithm for SPE, in general. 

Theorem 4.5. SPE is NP-hard for co-Blichi games, even with the thresh
olds x = (1,0, ... ,0) and y = (1, ... ,1). 

Proof. The proof is analogous to the proof of Theorem 4.3. Just note that 
the Nash equilibrium of (9<p, ) constructed in the case that 'P is satisfiable 
is also a subgame perfect equilibrium. Q.E.D. 
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4.3 Secure equilibria 

For secure equilibria we concentrate on two-player games as it is done in 
(Chatterjee et al., 2004a), where secure equilibria were introduced. If there 
are only two players, then there are only four possible payoffs for a secure 
equilibrium: (0,0), (1,0), (0,1), and (1,1). For each of these payoffs, we aim 
to characterise the existence of a secure equilibrium that has this payoff and 
analyse the complexity of deciding whether there exists such an equilibrium. 

Lemma 4.6. Let (9, va) be a two-player game with determined winning 
conditions. Then (9, va) has a secure equilibrium with payoff (0,0) if and 
only if no player has a winning strategy. 

Proof. Clearly, if 7) is a secure equilibrium with payoff (0,0), then no 
player can have a winning strategy, since otherwise (0-,7) would not even 
be a Nash equilibrium. On the other hand, assume that no player has a 
winning strategy. By determinacy, there exist a strategy 0- of player 1 that 
guarantees payoff 0 for player 2 and a strategy 7 of player 2 that guarantees 
payoff 1 for player 1. Hence, (0-,7) is a Nash equilibrium. But it is also 
secure since every player receives the lowest possible payoff. Q.E.D. 

Theorem 4.7. The problem of deciding whether in a two-player parity 
game there exists a secure equilibri urn with payoff (0,0) is in UP nco-UP. If 
the number of priorities is bounded, the problem is decidable in polynomial 
time. 

Proof. By Lemma 4.6, to decide whether there exists a secure equilibrium 
with payoff (0,0), one has to decide whether neither player 1 nor player 2 
has a winning strategy. For each of the two players, existence (and hence 
also non-existence) of a winning strategy can be decided in UP n co-UP 
(Jurdziriski, 1998). By first checking whether player 1 does not have a 
winning strategy and then checking whether player 2 does not have one, we 
get a UP algorithm for the problem. Analogously, one can deduce that the 
problem is in co-UP. 

If the number of priorities is bounded, deciding the existence of a win
ning strategy can be done in polynomial time, so we get a polynomial-time 
algorithm for the problem. Q.E.D. 

Lemma 4.8. Let (9, va) be a two-player game. Then (9, va) has a se
cure equilibrium with payoff (1,0) or payoff (0, I) if and only if player I or 
player 2, respectively, has a strongly winning strategy. 

Proof. We only show the claim for payoff (1,0); the proof for payoff (0,1) 
is completely analogous. Clearly, if 0- is a strongly winning strategy for 
player 1, then 7) is a secure equilibrium for any strategy 7 of player 2. 
On the other hand, if (0-,7) is a secure equilibrium with payoff (1,0), then 
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for any strategy T! of player 2 the strategy profile (0-, T') has payoff (1,0), 
hence 0- is strongly winning. Q.E.D. 

Theorem 4.9 (Chatterjee et al., 2004a). The problem of deciding whether 
in a two-player parity garne there exists a secure equilibrium with payoff 
(1,0), or payoff (0, I), is co-NP-complete. If the nurnber of priorities is 
bounded, the problem is in P. 

Proof. By Lermna 4.8, deciding whether a two-player parity game has a 
secure equilibrium with payoff (1,0) or (0,1) amounts to deciding whether 
player 1 respectively player 2 has a strongly winning strategy. Assume that 
the game has parity winning conditions r21 and r22. Then player 1 or player 2 
has a strongly winning strategy if and only if she has a winning strategy 
for the condition [h 1\ ,r22 respectively r22 1\ ,[h, a Streett condition. The 
existence of such a strategy can be decided in co-NP (Emerson and Jutia, 
1988). Hence, the problem of deciding whether the game has a secure 
equilibrium with payoff (1,0), or (0,1), is also in co-NP. 

Tn (Chatterjee et al., 2007) the authors showed that deciding the exis
tence of a winning strategy in a two-player zero-sum game with the conjunc
tion of two parity conditions as its winning condition is already co-NP-hard. 
It follows that the problem of deciding whether a player has a strongly win
ning strategy in a two-player parity game is co-NP-hard. 

If the number of priorities is bounded, we arrive at a Streett condition 
with a bounded number of pairs, for which one can decide the existence of a 
winning strategy in polynomial time (Emerson and Jutla, 1988), so we get 
a polynomial-time algorithm. Q.E.D. 

Lemma 4.10. Let (9, vo) be a two-player game with a determined pair 
(Winl' Win2) of prefix-independent winning conditions. Then (9, va) has 
a secure equilibrium with payoff (1,1) if and only if there exists a play -rr 
with payoff (I, I) such that for all k < w no player has a strongly winning 
strategy in (9, -rr(k)). 

Proof. Clearly, if (o-,T) is a secure equilibrium with payoff (1, 1), then -rr:= 
(0-, T) is a play with payoff (1,1) such that for all k < w no player has 
a strongly winning strategy in (9, -rr( k)), since otherwise one player could 
decrease the other players payoff while keeping her payoff at 1 by switching 
to her strongly winning strategy at vertex -rr( k). 

Assume that there is a play -rr with payoff (I, I) sllch that for all k < w 

no player has a strongly winning strategy in (9, -rr(k)). By determinacy, 
there exists a strategy 0- I of player 1 and a strategy TI of player 2 such that 
0-] and TI are retaliating strategies in (9, -rr(k)) for each k < w. Similarly to 
the proof of Lemma 4.1, we define a new strategy 0- of player 1 for (9, va) 
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if hv = 7T(0) .. . 7T(k) --< 7T, 
otherwise. 

hJ . h2, and hJ is the longest prefix of h still 
being a prefix of 7T. Analogously, one can define a corresponding strategy T 

of player 2 for (9, va). It follows that the strategy profile T) has payoff 
(1,1), and for each strategy (J"' of player 1 and each strategy T' of player 2 the 
strategy profiles ((J"', T) and ((J", T') still give payoff 1 to player 2 respectively 
player 1. lIenee, ((J", T) is a secure equili bri urn. Q.E.D. 

Theorem 4.11 (Chatterjee et ai., 2004a). The problem of deciding whether 
in a two-player parity game there exists a secure equilibrium with payoff 
(1,1) is in NP. If the number of priorities is bounded, the problem is in P. 

Pmof. By Lernma 4.10, to decide whether there exists a secure equilibrium 
with payoff (1,1), one has to decide whether there exists a play that has 
payoff (1, 1) and remains inside the set U of vertices where no player has 
a strongly winning strategy. By determinacy, the set U equals the set of 
vertices where both players have retaliating strategies. Assume that the 
game has parity winning conditions [21 and [22. Then a retaliating strategy 
of player 1 or player 2 corresponds to a winning strategy for the condi
tion [21 V ,[22 respectively [22 V ,[21, a Rabin condition. Since positional 
strategies suffice to win a two-player zero-sum game with a Rabin winning 
condition (Klarlund, 1992), this implies that the set U also equals the set 
of vertices where bot h players have posit,tonal retaliating strategies. 

An NP algorithm for deciding whether there exists a secure equilibrium 
with payoff (I, I) works as follows: First, the algorithm guesses a set X 
together with a positional strategy (J" of player 1 and a positional strategy 
T of player 2. Then, the algorithm checks whether (J" and T are retaliating 
strategies from each vertex v EX. If this is the case, the algorithm checks 
whether there exists a play with payoff (1,1) remaining inside X. If so, the 
algorithm accepts, otherwise it rejects. 

The correctness of the algorithm is immediate. For the complexity, note 
that checking whether a positional strategy of player 1 or 2 is a retaliat
ing strategy amounts to deciding whether the other player has a winning 
strategy for the condition [22 ;\ ,[21 respectively [21 ;\ ,[22, again a Streett 
condition, in the one-player game where the transitions of player 1 respec
tively player 2 have been fixed according to her positional strategy. Also, 
checking whether there exists a play with payoff (1, 1) remaining inside X 
amounts to deciding whether there exists a winning play in a one-player 
Streett game, namely the one derived from 9 by removing all vertices in 
X, merging the two players into one, and imposing the winning condition 
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OJ /\ O2 . As the problem of deciding the existence of a winning play in a 
one-player Streett game is decidable in polynomial time, our algorithm runs 
in (nondeterministic) polynomial time. 

If the number of priorities is bounded, we can actually compute the 
set U of vertices from where both players have a retaliating strategy in 
polynomial time, so the algorithm can be made deterministic while retaining 
a polynomial running time. Q.E.D. 
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Abstract 

The paper deals with one but widespread natural language pheno
menon: discourse anaphora. I make a bridge between three game
theoretical approaches to this phenomenon: (a) Hintikka's game
theoretical semantics (GTS); (b) Dekker and van Rooij's applica
tion of strategic games to the underspecification of anaphora; and 
(c) Abramsky's Dynamic Game Semantics. I see (b) as leading to 
a 'gamification' of a phenomenon which GTS (and other approaches 
such as Government and Binding Theory) saw as belonging to se
mantics or syntax. 1 see (c) as solving some problems left open by 
the 'subgame interpretation' of GTS. The present paper draws some 
comparisons and methodological reflections prompted by the remarks 
of my commentator, Paul Dekker. 

1 Rules and language games 
One traditional view in philosophy and linguistics is that without rules 
of usage common to the speaker and the listener, communication would 
be impossible. According to every linguistic expression has a meaning 
which is determined by the rules for its correct use. This obviously brings 
language and games together, for it is in the latter that rules are explicitly 
given. Here are two examples of language games which illustrate in a very 
sirnple and ideal way how a communication language could emerge out of 
language games. They are due to the Finnish logician Erik Stenius who 
thought that they are typical examples of the view of language advocated 
by Ludwig Wittgenstein in his later period. 

The Garden Game is played by a gardener A and his assistant B. There 
are pieces in the game, the letters 'a', 'b', 'c' , 'P' and 'Q', and a flower bed 
divided into squares as in the figure below. In every square there is a plant. 

Krzysztof R. Apt, Robert van 
'Texts in Logic and Gan1es 4) 

Perspecti'ues on Garnes and lrderaction. 
Press 2008, pp. 179-196. 
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The game amounts to this: Every day B writes on a piece of paper the 
letters 'a', 'b', 'e', and to the left of any of these letters he writes either the 
letter 'P' or the letter 'Q', according to whether the plant in the square 
corresponding for that day to the lower-case letter is in flower or not. For 
instance, if in the rectangle for that day, the plant next to the path is in 
flower, whereas the two others are not, B will write: 

Pa Qb Qe 

l'he teaching of the game is done by simple gestures of approval and 
disapproval depending on whether B writes the correct tokens on the piece 
of paper or not. 

Once the assistant masters the Garden Game, A and B move to play the 
RepoTt Game. A does not need to accompany B any longer to the flower
bed. A now partakes in the game only by receiving the written tokens from 
B. If B really follows the rules of the game, A can read off certain facts 
from what B has written. 

It is obvious that by means of the report game, A and B have created 
a small language for communication: 'a', 'b', and 'e' are used to denote 
certain squares, 'P' and 'Q' express certain properties, etc. These symbols 
have acquired a meaning. 

Stenius' language games had more of a philosophical purpose, namely to 
give concrete examples of Wittgensteinian language-games. T'hey inspired 
David Lewis who fonnulated them in a more precise way, using notions in 
classical game theory. In doing so, Lewis thought to respond to a chal
lenge launched by Quine. The latter regarded with distrust conventional 
views of language and doubted that one can give a coherent account of how 
communication takes place without presupposing already some degree of 
linguistic competence. In response to Quine's challenge, Lewis formulated 
signalling games, that is, communication games played by two players, the 
Sender and the Receiver, the former sending messages or signals about the 
situation he or she is in, and the latter undertaking a certain action after 
receiving it. The point to be emphasized is that the messages do not have 
a prior meaning: whatever meaning they are going to acquire, it will be the 
result of the interactive situation in the signalling game, or in other terms, 
they will be optimal solutions in the game. Let us have a closer look at the 
game-theoretical setting. 
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2 Strategic games and Nash equilibria 
Let us shortly recall some basic notions in classical game theory. \lVe shall 
use as an example PTisoncT's dilcmma: Two criminals, 1 and 2, are interro
gated in separate cells. If they both confess, each of them will be punished 
to stay 3 years prison. If only one of them confesses, he will be free while 
the other will be punished with 11 years in prison. If none of them confesses, 
each will stay 1 year in prison. The picture below depicts the choices and 
payoffs of the players: 

D 
C 

Prisoner's dilemma 

'D' stands for "don't confess" and 'C' stands for "confess." 
As we see, a complete description of a strategic game with two players, 

requires a list of the players' action repertoires A 1 and A2 , and a specifica
tion of their utility functions ttl and l!2. The function lei specifies, for each 
possible sequence of choices (a, b) (action profile) i's payoff. In our example 
we have: ttl (D, D) -1, ul(D, -4, u2(D, 0, etc. 

Given a strategic game, we are interested in optimal plays of the game, 
that is, in every player's action being the best response to the actions of his 
opponents. Consider a simple arbitrary action profile (a, b). It is a Nash 
equilibrium in the strategic game if none of the players would have been 
better off by making a different choice: 

l!1(a,b):::: l!1(C,b), for any c in A1 

t!2(a, b) :::: t!2(a, d), for any d in 

1'hus in the Prisonner's dilemma game, C) is a Nash equilibrium, 
but there is no Nash equilibrium in the iVIatching pennies game. There are 
garnes which have two Nash equilibria, like the one below where both (L, L) 
and (R, R) are Nash equilibria. 

L 
R 

3 Signalling games 
3.1 Lewis' signalling games 

Stenius' games are games of complete information in the nontechnical sense 
that when the gardener teaches his assistant the Garden game, both the 
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Cjardener and the assistant know the situation each of the letters 'a', '6' or 
'c' is supposed to be associated with. They both see whether, for a particular 
day, a plant is in the corresponding square or not. Lewis's signalling games 
abandon this assumption. Their aim is to model the kind of conventions that 
associate meanings to linguistic forms. This is achieved by Lewis's signalling 
systems, that is, ideal communicative situations in which the communicator 
or Sender (S) sends a message or a signal in a particular situation, in order 
to get a Receiver (R) to undertake a course of action. 

One of Lewis's examples is that of a truck driver A trying to reverse. His 
assistant B, who is behind the truck, helps him to do that by making two 
kinds of gestures: If there is room to reverse, she is making the beckoning 
gesture; otherwise she is showing hands with palms outwards. l'he driver 
is taking a course of action conditional on his observations: if B makes the 
beckoning gestures, then he reverses; otherwise he stops. 

It is straightforward to put this game in the above format of strategic 
games. 1'he Sender's (13's) choices are functions S : T' ----+ F, where T is a 
set of situations ("there is place" and "there is no place") and F a set of 
messages ("beckoning" message and "palrns outwards" message), and the 
Receiver's (A's) choices are functions R : F ----+ Act, where Act is a set of 
actions ("reverse" and "stop"). There are 4 strategies for the Sender and 4 
strategies for the Receiver. 

Each simultaneous choice by the two players gives rise to an action profile 
R). Utility functions tts and tLR calculate the payoffs tts(S, R) and 

ttfiJS, R) for each action profile (S, R). Each of them will sum up, in a 
certain way, the payoffs of each state t 

tts(t, S, R), ~Lfi(t, S, R). 

Given that the signalling games are cooperative games, in that both 
players try to achieve a common goal, communication, we take tts(t, S, R) 
and ttR(t, S, R) to be equal in such a way that their value is 1 when com
munication is achieved, and 0, otherwise: 

tts(t, S, R) = ~Lfi(t, S, R) = { ~ if R(S(t)) = t 

otherwise. 

Finally, the expected utilities R) and ~Lfi(S, R) are certain sunkS of 
tt(t, S, R) for all situations t. For the Sender, lts R) is simply L:tET P(t) x 
t!s(t, S, R), where P is the prior probability distribution over the states in 
T' (which is cormnon knowledge). But for the Receiver things are a bit 
more complicated. He knows only the message but not the situation the 
Sender is in when sending it. For this reason, his expected utilities will be 
conditional on equivalence classes of states. We let St be the information 
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state the Receiver is in after the Sender chooses strategy lV: 

{tf : W(t)}. 

Finally we define 

l!R(S, R) L P(t' fWd x UR(t, S, R). 
t!EMf, 

A strategy profile (S,R) forms a (Bayesian) Nash equilibrium if none of the 
two players would be (strictly) better off by making another decision. 

It is games of this kind which are called by Lewis signalling systems and 
which can be associated, as pointed out earlier, with linguistic meanings. 
As these games have several appropriate Nash equilibria, the choice between 
them is conventional. 'fhe interesting question is of course which one of them 
is to be chosen as the conventional one. Lewis's well known answer is that it 
is the more salient one which is to be selected, but the question is of course 
what makes one separating Nash equilibrium more salient than another. It 
seems that Quine's challenge to give an explanatory account of conventional 
meanings without presupposing some kind of linguistic competence has not 
yet been completely met. 

Now when such a signalling system occurs recurrently in a population, 
a convention for such a problern leads to a sirnple language. '['he signals 
used acquire meaning in virtue of the fact of being associated with partic
ular states in the world and actions, and this association being common 
knowledge. If in the truck game, the selected equilibrium is the pair (8, R), 
where 

• 8 is the strategy: make the beckoning gesture, if place to reverse, and 
show the palms outwards, otherwise, 

• R is the strategy: reverse, if shown the beckoning gesture, and stop 
otherwise 

then Lewis would say that the beckoning gesture means 'Place to reverse' 
and the showing palms outwards gestures means 'No place to reverse' and 
this meaning has been settled by convention. Tn other words, 8(t) means t. 

(Notice however, that for this to work, the game has to have separated 
equilibria: S sends different messages in different states.) 

3.2 Parikh's interpretation games 

Parikh's games share the same format as their Lewisian relatives, with some 
variations. They are interpretation games: A Sender is sending messages 
that the Receiver tries to interpret. It is thus more appropriate to see the 
Sender's choices as functions S : T -+ F from a set of states to a set of 
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linguistic forrns, and the Receiver's choices as functions 8 : F ---+ T. There 
are two other features which distinguish Parikh's games more essentially 
from their Lewisian relatives. For one thing, messages have costs which 
enter into the determination of payoffs. For another thing, some of the 
messages possess already a meaning. The typical situation is one in which 
the Sender has three messages, f, F and ,with F and FI possessing 
already a meaning: F can be used only in e ("F means t l

))) and FI means 
til. f on the other side can be used in two distinct situations: the Sender 
may send it when she is in t to communicate that she is in I; and she 
may send it when she finds herself in II, to communicate that she is in [I. 

Otherwise the setting is very much like in Lewis's signalling games. The 
Sender knows also the situation she is in, unlike the Receiver who associates 
with the state t a probability of 0.8 and with the state tl a probability of 0.2. 

To give an idea of what is going on, here are two tables with the possible 
strategies of the two players 

t tl 

8 1 f F f F f" 
Sender: 8 2 f f Receiver: HJ t tl t 

8:'3 FI f H2 e e t 
84 FI F 

The fact that messages have costs leads to a different calculation of 
the payoffs of the two players than in the previous case. The expected 
utilities tts R) and ttR(8, R) are calculated as above, but for tts(t, 8, R) = 

tiR(t, 8, R), the cornplexity of the messages matters. Let us assume that f' 
and fl! are more complex than f. Let Compl(f) 1, and Compl(fl) 
Compl(f") 2. Under the assumption that the Sender prefers to send 
cheaper messages to expensive ones, ?is(t,8, R) and ?iR(t,8, R) are now 
redefined as: 

8, R) = 8, R) = { ~omp~(s(t)) if R(8(t)) t 

otherwise. 

The strategic game is now depicted in the table below: 

H1 H2 
8 1 (0.9,0.9) (0.1,0.1) 
8 2 (0.8,0.8) (0.2,0.2) 
8:'3 (0.4,0.4) (0.6,0.6) 
84 (0.5,0.5) (0.5,0.5) 

It can be checked that the game has only two Nash equilibria, (81, Hd 
and H 2 ), but unlike Lewis, Parikh would not say that the choice be-



Games in Language 185 

tween them is conventional, but uses the notion of Pareto optimality to 
choose between the two: 

• An action profile 
and R> R'. 

R) is Pareto more optimal than (8', R') if 8> .')1 

The optimal solution of the game is thus (5\, Hl). (Cf. also van Rooij, 2002.) 

4 Signalling games and Gricean pragmatics 
Tn the Parikhian game we considered above, t is more likely than t' and in 
each state there are at least two forms that could express it. But because 
f is the less "complex" of the two forms, then Parikh's theory predicts 
that [ will be expressed by f and [I by the more complex expression. The 
introduction of costs leads to an ordering of messages. The game theoretical 
setting forces the Sender to consider alternative expressions he or she could 
have used together with their costs. 

Van Rooij (2002) observes that a similar conclusion is reached by Blut
ner's bidimensional optimality theory (OT). We do not have the space here 
to enter into details. Suffice it to say that in t his theory, for the hearer to 
determine the optimal interpretation of a given form, he must also consider 
alternative expressions the speaker could have used to express that meaning 
(interpretation). And the Speaker is forced to consider the optimal form to 
express a particular meaning. 

Biutner's bidemensional 01' has been given a game-theoretical interpre
tation in (Dekker and van Rooij, 2000). According to it, communication 
(information exchange) is represented as a strategic game between speaker 
and hearer in the manner described above. For a detailed comparison be
tween Parikhian, Lewisian and the games introduced in (Dekker and van 
Rooij, 2000), the reader is referred to (van Rooij, 2002). 

One of the interesting things in the game-theoretical setting of (Dekker 
and van Rooij, 2000) is its connection to Gricean Pragmatics, where the fo
cus is not so much on the question of how expressions acquire their meanings, 
but rather on the distinction between what is said and what is conveyed or 
implied. 1'he former is more or less conventional, semantic meaning, while 
the latter, although not explicitly stated, is something the speaker wants 
the Hearer to understand from what is said. In a seminal paper, Paul 
Grice tried to account for such pragmatic inferences in terms of maxims 
of conversations: He thought that the Hearer is able to associate the right 
interpretation with a particular assertion on the basis of an algorithm which 
computes it out of the relevant maxirns. In optirnality theory, the maxims 
lead to a ranked set of constraints which allow one to select the optimal syn
tactic form-interpretation pair. Dekker and van Rooij (2000) observe that 
the ranking of constraints in optimality theory has the saIne effect as the 
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ranking of action profiles in strategic games of the sort considered above: 
The Speaker wants to communicate a certain meaning and she has to choose 
a suitable formulation for it, while the Hearer wants to associate a correct 
interpretation with that form by considering all the other alternatives the 
speaker might have used. 

Here are a couple of examples which have a bearing on the interpretation 
of anaphora. 

Example 4.1 (Dekker and van Rooij, 2000). 

John is happy. He smiles. 

A girl carne in. She smiles. 

Bill tickled John. He squirmed. 

There are two principles at work here: 

(1) 

(3) 

(a) The principle of salience: pronouns refer back to the (denotation of 
the) salient expression (subject expression) of the previous sentence, 
i.e., 'John', 'a girl' and 'Bill'. 

(b) '['he naturalness principle: because of semantical facts associated with 
'tickled', it is natural that in (3) the pronoun refers back to John. 

In (3), principle (a) is overruled by principle (b) explaining thus why the 
correct interpretation to be associated with (3) is the one in which the head 
of the anaphorical pronoun is 'John' and not 'Bill'. 

Example 4.2 (Hendriks & de Hoop, Dekker & Van Rooij). 

Often w hen I talk to a doctori, the doctor {i,j} disagrees with him{i,j}' 

(4) 
There are two general principles at work here: 

(i) If two arguments of the same semantic relation are not marked as 
being identical, interpret them as being distinct. 

(ii) Don't Overlook Anaphoric Possibilities. 

Here (ii) is overruled by (i), explaining why the head of the anaphoric pro
noun cannot be 'the doctor'. 

I will take up in the next section an analysis of these examples in Game
theoretical sernantics (G'rS). 'rhe comparison is instructive, for GTS tries to 
account for the same phenomena in semantical terms. 1 will then sketch yet 
another approach to these examples in Go'vernment and Bind-ing Theory. 
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5 Game-theoretical semantics (GTS) 
5.1 Semantical games for quantifiers 
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Unlike communication games whose task is to model how expressions of 
the language acquire an interpretation, in seman tical games associated with 
natural or forrnallanguages, it is presupposed that certain basic expressions 
and sentences of a language already have an interpretation. 'What is wanted, 
instead, is a way to give the truth-conditions of more complex sentences of 
the language by reducing them to the truth-conditions of the known ones. 
Here is a typical example from the mathematical vernacular. 

/\. function y f(x) is continuous at Xo if given a number O! however 
small, we can find c such that If(x) - f(xo)1 < O!, given any x such that 
I:c - xol < c. 

The game-theoretical analysis is supposed to throw light on the inter
pretation of the expressions "we can find" and "given any" assuming that 
the interpretation of the other expressions (II, f, <) is already fixed (by a 
background model). This is done by a semantical game played by two play
ers, the existential :=J and respectively the universal player \/, both choosing 
individuals from the relevant universe of discourse. The choices of the first 
correspond to "we can find" and those of the second to "given any". Unlike 
strategic games, which are one shot games, semantical games have a sequen
tial element with later choices depending on earlier ones. Thus a play of 
the present garne consists of a sequence of three choices of individuals in the 
universe: first \/ chooses an in O!, then :=J chooses c, and finally \/ chooses x. 

Given the sequential nature of semantical games, it is more appropriate 
to exhibit thern, not in strategic, but in extensive form 

where N is a collection of players, II is a set of histories, P is a function 
attaching to each non-maxirnal history the player whose turn is to move, 
and lLi is the utility function for player i, i.e., a function which associates 
with each maximal history in 11 a payoff for playeri. Each maximal history 
represents a play of the game, at the end of which each of the players is 
given a payoff. The games are strictly competitive O-sum games: for each 
maximal play, one of the player is winning and the other is loosing. 'fhe 
play is a win for the existential player if the terminal formula is true (in the 
background model). Otherwise it is a win for the universal player. 

The crucial notion is that of a strategy for a player, a method which 
gives him or her the appropriate choice depending on the elements chosen 
earlier in the game. Such a strategy is codified by a mathematical function 
9 which takes as arguments the partial histories (ao, ... ,an-d in H where 
the player is to move, and gives her an appropriate choice g( ao, ... , an 1)' 
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9 is a winning strategy if it guarantees him a win in every maximal play in 
which she uses it. 

In our particular example, a maximal play of the game is any sequence 
:c) chosen be the players in the order specified above. If the chosen 

elements stand in the appropriate relations, i.e., 

if (Ix - xal < c:) then (If(x) - f(xo)1 < a), (5) 

then we declare the play to be a win for j and a loss for V. Otherwise, it 
is a win for V and a loss for j. A strategy for j is any function 9 whose 
arguments are all the individuals a chosen by V earlier in the game. 9 is a 
winning strategy if, 

if (Ix - xal < g(o,)) then (If(:r) - f(:ro)1 < a). (6) 

Thus the continuity of a function has been characterized by the truth of the 
second-order sentence: 

jgVaVx[(lx - :rol < g(a)) -> (If(:c) - f(:co)1 < (lC)] (7) 

5.2 Anaphora and the subgame interpretation 

GTS has been extensively applied to the analysis of anaphoric descriptions 
and anaphoric pronouns. For a simple illustration, consider our earlier sen
tence (2), reproduced here as (8): 

A girl came in. She is happy. (8) 

The semantical game associated with (8) is completely analoguous to the 
quantifier garnes (in fact the game involves quantifiers), except that 

• Games are divided into subgames, one for each subsentence of (8). 

• The rules of the game are extended to cover also anaphoric pronouns. 

In our example, 'She' prompts a move by the existential player who must 
now choose the unique individual available from the earlier subgames. 

l'he only such individual is the one introduced for "A girl", and thus 
the game-theoretical analysis correctly predicts that (8) may receive an 
interpretation in which "A girl" is the head of "She". 

There are two main problems here. 
l'he first one has to do with semantical games being undetermined by 

the game rules. Here are a couple of examples. 
A problern of underdeterrnination arises when there is rnore than one 

individual available from earlier subgames. This is the case with our earlier 
example (3) reproduced here as (9): 

Bill tickled John. He squirmed. (9) 
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In order to obtain the right interpretation of this sentence, Hintikka and 
Sandu (1991) make use of lexical rules which encode the semantic properties 
of lexical words like "tickled" and "squirmed". Disregarding some of the 
details, such rules have the effect that only the individual denoted by "John" 
remains available for later choices. The mechanism by which Bill is excluded 
has to do with the fact that in virtue of the semantic properties of "tickled", 
Bill is assigned an agentive and John a patient role. The semantic properties 
of 'squirmed', on the other side, require an argument which has the patient 
role, that is, John. 

The second example concerns the correct interpretation of (4) repro
duced here as (10): 

Often when I talk to a doctori, the doctor{i,j} disagrees with him{i,j}' 
(10) 

Here we need additional principles which limit the sets which choices corre
sponding to anaphoric pronouns can be made from: the individual chosen 
as the value of an anaphoric pronoun cannot be the same individual which 
has been chosen earlier as the value of an expression in the same clause as 
the anaphoric pronoun. In the case of him{i,j} the rule has the effect that 
the chosen individual must be disjoint from the individual chosen earlier for 
"the doctor." 

'rVe postpone the discussion of the second problem for later on. For the 
moment let us take stock. 

6 Three kinds of explanations 
There iti a phenomenon of ulIdeLerrninaLion in tiellLellCeti U~)-(4). In GTS 
it is manifest at the level of the application of the game rules to anaphoric 
pronouns: the rules do not determine completely which individual is to be 
chosen in the play of the games. For the choice to be settled, we need to 
supplernent them with additional principles. But one must be clear of what 
is going on here: the additional principles do not, properly speaking, have 
any game-theoretical content. In the play of the relevant semantical game, 
it is enough for the players to lay back and wait for syntactical principles 
or thematical roles associated with lexical items to do their job. 

In Dekker and van Rooij's analysis, there is an undetermination of 
the truth-conditions of sentences (3)(4): their semantic content ("what is 
said") must be supplemented by additional principles motivated by Grice's 
principles of rational communication (Grice's maxims of conversation). 
These principles lead to an appropriate ranking of the form-interpretation 
pairs which lend themselves to a game-theoretical interpretation in terms of 
strategic games of communication. The correct intepretation is eventually 
obtained as the solution of such a game. 
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If one looks at the two additional sets of principles in CTS and in Dekker 
and van Rooij's analysis, one notices that they are very much variations of 
each others. For instance, the principle which says that 

• the choice of (the value of) an anaphoric pronoun cannot come from 
the same set as that from which an individual chosen as the value of 
an expression being in the same clause comes from, 

is clearly the counterpart in CTS of the rnaxim (i) relativized to anaphoric 
pronouns distinguished from reflexives). 

The main difference between these two approaches lies, as I see it, in 
what is taken to belong to semantics as opposed to pragmatics. l'his is an 
ongoing debate. The motivation behind the GTS treatment of (3)-(4) has 
to do with a familiar conception according to which, if a semantic category 
(indexicals, reflexives, etc) have a syntactical counterpart, then, it should 
be treated semantically, even if underspecitied. By relegating underspeci
tied anaphoric pronouns to the realm of pragmatic phenomena pertaining 
to strategic communication, Dekker and van Rooij brought this kind of un
determination under the incidence of strategic communication games, a la 
Parikh. The gain in game-theoretical content seems to be obvious. The 
only quallR'i 1 have is about this kind of undetermination belonging to the 
pragmatics of comnvanication. I won't settle this matter here. I will shortly 
describe, instead, a third approach to the very same phenomena: GoveT7/.
ment and Binding (CB) Theory. Initially CB tries to explain the mechanism 
underlying the behaviour of pronouns in natural language in purely syntac
tical tenns, using notions like C-command, governing category, etc. Again, 
I will be very sketchy. 

CB theory contains a class of binding principles like: 

• A reflexive pronoun must be bound in its local domain 

• A pronominal must be free in its local dornain 

(Chomsky, 1986, p. 66) where the notion of "free", "bound", "local domain" 
are syntactical notions matching familiar notions in logic: free variable, 
binding, scope, etc. 

Applied to our earlier examples, these principles predict that in (4) 'him' 
and 'the doctor' cannot be coindexed. Interesting enough, these principles 
are not sufficient to yield the correct interpretation for (3). 1'hey must be 
supplernented by "thematic relations" of the sarne sort we used in the game
theoretical analysis above which, in the end, had the effect of allowing "he" 
in (3) to be coindexed with "John". (A detailed explanation is contained in 
Hintikka and Sandu, 1991.) 
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7 Semantics for dynamic game languages 
One can interpret the two preceding sections in the following way: discourse 
anaphora brought along a phenomena of underdetermination in GTS. The 
solution proposed inside the GTS community was to enrich that frame
work with more syntactical or lexical principles, which lacked, however, a 
game-theoretical motivation. I regard Dekker and van Rooij's analysis as 
an alternative to that move. It certainly has the merit of making a bridge 
between phenomena which traditionally were regarded as syntactical or se
manti cal at most, and issues in strategic games of communication. 

In this section I intend to show how certain contemporary developments 
in dynamic game semantics can be seen as solving another problem (the 
second problem I mentioned above) in the GTS treatment of anaphoric 
pronouns. 

The problem I have in mind appears in any of our earlier examples, 
say (1). In the (Carlson and Hintikka, 1979) and (Hintikka and Kulas, 1985) 
subgame interpretation of this sentence, a subgame is played first with the 
first subsentence of (1). If the existential player has a winning strategy in 
it, then the players rnove to play the second subgarne, remernbering the 
winning substrategy in the first subgarne. For (I) this substrategy reduces 
to the choice of an individual, who is then available for being picked up as 
the val ue of the anaphoric pronoun in the second subgame (cf. above). 

This interpretation is problematic in at least one respect: the anaphoric 
resolution is dependent on truth, while things should go the other way 
around. The anaphoric link between the pronoun and 'John' or 'A girl' is 
established only after the truth of the first subsentence has been established. 
This is manifest in the fact that what is "transmitted" from one subgame 
to another are winning strategies, and not strategies simpliciteT. There is a 
general agreement, however, that the dependence between the anaphor and 
its head in all these sentences is prior and independent of truth. This brings 
me to the purpose of this section: to present a Dynamic Game Language 
and a compositional intepretation of due to Abrarnsky (2006) in which 
the strategies of a given game are deterrnined compositionally from the 
strategies of subgames. 

I restrict my presentation only to a subfagment of Abra~'iky's language 
which is given by the clauses: 

cp:= I! At ! 

where I is a propositional constant, At stands for atomic first-order formu
las, and and cp!!1,b represent the operations of sequential and parallel 
composition, respectively. 
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Following insights from Dynamic Carne Logic (van Benthem, 2003), 
Abramsky represents quantifiers by 

QcxX := 1 

This syntax is very powerful, it turns out that it can represent parallel 
sequences of quantifiers, like Henkin's branching quantifier 

(~: ~!) A(:c, y, z, w) {=} V:r:.::JyIIVz.::Jw.A(:r, y, z, w). 

Two interpretations are given for this language: 

(i) Static Semantics assigns a game to each formula in such a way that 
every logical operator is interpreted by an operation on games. 

(ii) Dynamic semantics assigns to each game and each player associated 
with a formula, a strategy in such a way that the strategies for complex 
formulas are obtained compositionally from the strategies of subfor
mulas. 

7.1 Static semantics (game-semantics) 

The games in the static semantics are actually comparable with games in 
extensive form. They have a sequential nature, but their structure is more 
fine grained so that games associated with complex formulas are formed 
compositionally from simpler ones. A game has the form 

where Ai is a Concrete Data Str'uctme (CDS), that is, a quadruple 

M = (CM, V:~I,DM,f-lVI) 

such that: 

and 

• C M is a set of cells 

• 1!;\IJ is a set of values 

• D M is a set of decisions, D M <;;; CM X 1!;\IJ 

• f- M is the enabling relation which determines the possible flow of 
events (decisions) 

)..AI : CM -* {::J, V} 

As pointed out, complex games are build up compositionally from sim
pler ones according to the following rules (again, we restrict ourselves to 
few cases relevant for later examples). 
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Rules for atomic games: 

• G 1 = ((0,0,0,0),0) 

• GAt ((0,0,0,0),0) 

The formulation of these two games indicate the fact that there are no 
moves associated with them. 

• The rule for . FirstletGrp ((CM,VM,DivI,I-Ad,AAI) and 
((CN, ~v,DN,I-N),AN)' 'I'hen Grpv1) = ((CJ1;IUCN U{Co}, VJ1;IUVN U 
{ 1, 2}, D Ai U D N U { ( Co, 1), (co, 2)}, ) , ) 

In other words, the combined game has a new position (cell), Co which 
can be filled in by the existential player with either I or 2. 

From now on I restrict myself to the graphical representation of the 
games. 

• 

The complex game has a new position Co which can be filled in by 
Eloise with any element in the domain. 

That is, Grp is played first followed by a play of . This fact is 
encoded in the enabling relation which is now defined by 

which says that when a maximal play of Grp is reached, then the play 
is continued as in G'0' 

Once the games have been defined, strategies may be built up composi
tionally from substrategies: 
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• 'rhe strategy set in c: Cjx'P: 

\lVe fix 0-, a strategy of ::J in C:'P. and a an individual in the domain. 
We may think of 0- as a set which is a (partial) function. We define 
(roughly) the notion of a strategy for the existential player: 

up a (0-) = {( Co, a)} U 0-. 

That is, uPa (0-) is formed by adding to the strategy 0- in the game cp 
the new position Co filled in with the individual a. 

Finally a strategy set for the existential player is the collection of all 
strategies 

• The strategy set in 

We fix 0-, a strategy of::J in C:'P. and a family (Ts )sE]Vlax(G<p) of strategies 
of::J in C:'P. indexed by maximal histories of C:'P' (We recall that 
consists of plays of C:'P followed by plays of .) A strategy for the 
existential player in the garne is 

t is a nomnaximal state in C:'P. 

o-(t i is a maximal state in c: 
J 'P. 

t 8 U tt, 8 E Max(C:'P)' t! is a 
state in 

In other words, ::J plays according to 0- in C:'P. and when a maximal 
state t has been reached, she plays according to To-(t). 

Finally the strategy set for the existential player is the collection of 
all strategies: 

StrCj (C:'P;<jJ) 

{(o-. (Ts ),,) : 0- E Sk3(G'P) /\ V8 E Max(G,p)(Ts E StrCj(G,p))} 

7.2 Dynamic semantics: Solution concepts 

Once the garnes are fixed together with the strategies of the players in a 
compositional way, we can now go one step further than in G'rS (extensive 
form), and bring the semantics to life, that is, define solution concepts in 
terms of the strategic interaction of the players. For this purpose, let us fix 
a concrete CDS with a strategy set for each agent a E A. A strategy 
profile is defined in the usual way as a member of the product of all strategy 
sets: 

(o-a)aEA E IT Se, 
c>cA 
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The idea is that each state ansmg from is a maxirnal one 
reached by starting in the initial state 0 and repeatedly playing the strate
gies in the profile until no further moves can be made. We still need a 
way to evaluate maximal states (payoffs, utilities, truth-valuation). In the 
present case, one uses Boolean val uations functions, from the formula of the 
state into the set {O, I}. For instance, if the formula of the maximal state 
is Qa . Pa, then we let its value (in the background model) be 1 if both Qa 
and Pa hold. 

Finally, let us give an example which illustrates the treatrnent of anaphora. 

Example 7.1. We consider the game associated with the formula :JxQx·Px 
which can be thought of as the logical form of our earlier example (2). 

The corresponding CDS has only one cell (Recall that the garnes for Qx 
and P:r have the form (0,0,0,0),0)): 

Jx 

In a maximal play, the cell is filled with an element of the domain: 

Jx 

a 

The maximal play gets payoff 1 for Eloise if 

Qa·Pa 

holds in the relevant model: 

Qa and Pa 

Then we can define notions like Nash equilibria, etc. The important 
thing to notice is that whatever Nash equilibria gets selected as the solution 
of the game, the situation is going to be such that the syntactically free 
variable ":c" is going to be semantically bound by the existential quantifier. 
The dynamic game semantics has thus led to an extension of GTS in the 
direction of dynamic logic. 
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Abstract 

Gabriel Sandu tells an appealing story of natural language viewed in 
terms of games and game theory, bringing together several strands 
from the philosophical, logical, and even computational literature. In 
this short invited note, I will take the cruising altitude a few levels 
up from his, and show you a panoramic picture where the clamour 
of the raw facts on the ground has become just soothing, but wholly 
negligible background noise. 

1 lVleaning is a many-mind notion 
What do games have to do with natural language? On the traditional view 
of linguists and logicians, syntax is about grammatical code, semantics is 
about mathematical relationships between syntactic code and structures 
in reality, while the rest of language use is the bustling but unsystematic 
world of pmgmatics. In particular, on this view, meaning does not involve 
agency of any kind: it is a 'O-agent notion'. But starting from the 1970s, 
another view emerged placing actions of language users at centre stage, 
making meaning the 'information change', or more general 'context change 
potential' of linguistic expressions. Speakers or writers change the informa
tion states of their hearers or readers, and semantics should describe these 
changes. This action and update-oriented' I-agent view' of meaning is the 
basis of the well-known Amsterdam paradigrn of 'dynarnic semantics' devel
oped by Groenendijk, Stokhof and Veltman and their students, and it also 
underlies the well-known 'discourse representation theory' of Hans Kamp 
and Irene Heim. 1 Of course, this move also involves shifting the agenda. Tn 

1 See the Ha.ndbook of Logic a.nd Language (van Benthem and ter Meulen, 1997) for 
a survey of paradigms and sources in dynamic semantics broadly conceived since the 

Krzysztof R. Apt, Robert van Perspecti'ues on Garnes and Interaction. 
'Texts in Logic and Gan1es 4) An1st"rdam Press 2008, pp. 197-209. 
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particular, it relocates the traditional boundary line between sernantics and 
pragmatics in the st udy of language, and entire philosophical conferences 
have been devoted to that tectonic movement. 2 

But once on this road, it seems strange to stop here. Psychologists of lan
guage like Herb Clark (1996) have shown convincingly that much of language 
use is directed toward the hearer's rather than the speaker's perspective, it 
is the hearer's uptake which determines the success of communication. And 
once you start thinking all this through, you wind up in a 'hermeneutical 
circle' of speakers taking into account how their hearers will interpret what 
they are saying, and hearers taking into account how speakers will phrase 
what they are saying, and level after level of stacked mutual information 
unfolds, leading to the iterative 'theory of mind' and mutual expectations 
that keep human behaviour stable according to philosophers and psycholo
gists. It also leads naturally to garne theoTY, since that is where these circles 
find their resting place in reflective and action equilibria. 

2 Games have a history with natural language 
Indeed, the idea that natural language has an intirnate relationship with 
games has recurred through the 20th century. In the 1950s, the later 
Wittgenstein famously moved away from the crystalline logical structure 
of the Tractat·u,s to a paradigm of rule-generating 'language games', and as 
C:abriel Sandu shows, authors like Stenius tried to put rnore substance into 
the game metaphor. Also in the 1950s, maybe under the influence of the 
then nascent game theory,3 various proposals were made for analyzing logic 
in termc; of 'logic games', casting basic logical activities like argumenta
tion (Lorenzen, 1955) or model comparison (Ehrenfeucht-Fra'isse; cf. Ehren
feucht, 1957) as two-player games, with winning strategies encoding proofs, 
models, or invariance relations, as the case might be. 4 In particular, Gabriel 
Sandu discusses one of these, Hintikka's evaluation games for first-order 
logic (Hintikka, 1973), which later rnade its way into the study of natu
ral language under the narne of 'Game-'l'heoretical Semantics' (GTS). We 
will return to these games later, which mainly analyze the 'logical skeleton' 
of sentence constntction: connectives, quantifiers, and anaphoric referen
tial relationships. Thus, logic is the driver of the analysis here--and the 
expression 'game-theoretic' does not suggest any deep contacts with game 
theory.s 

1970s, which also run over into computer science. 
2 Viewed in this way, natural language is no longer a descriptive medium, but rather a 

progmrnrning language for bringing about cognitive changes. 
:1 Much of the modern history of logic and its interfaces remains to be written, since 

authors usually stay with the aftermath of the foundational era in the 1930s. 
4 (Van Benthem, 2007a) is an extensive survey and discussion of logic games today. 
5 But see below for some mathematical contacts between logic games and game theory. 
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Also in the same 1960s, another, logic-free, style of game-theoretic anal
ysis for natural language came up in Lewis' work (cf. Lewis, 1969), going 
back to (Schelling, 1960) on signaling games. In this way of looking at 
language, Nash equilibria establish stable meanings for lex'teal items, the 
smallest atolls of sentence construction. \Vhile this new view long remained 
largely a small undercurrent,6 it has now become a major contender, with 
the authors discussed by Gabriel Sandu: (Parikh, 1991), (Dekker and van 
Rooij, 2000), (van Rooij, 2002), (Jager and van Rooij, 2007). While logic 
games are largely about winning and losing only, these modern signaling 
garnes involve real preferences that communicating linguistic agents have 
about matching up intended and perceived meaning, grammatical struc
ture,7 as well as computational costs in doing so. 1'hus, they involve more 
serious connections with game theory, and at the same tirne, with the topc)
logical and metric structure of hurnan perceptual and conceptual spaces 
(cf. Gardenfors and Warglien (2006)). This may well be the most serious 
encounter between linguistics and game theory today,8 and there are many 
interesting questions about its connection to the earlier logic-garne based 
approaches like (:;'rs. Sandu is quite right in putting this link on the rnap 
in his piece, though much still remains to be clarified. 

3 Evaluation games, language, and interactive logic 
1'he basic idea of Hintikka-style evaluation games is that two players, Ver
ifier and Falsifier, disagree about whether a given first-order formula cp is 
true in a given model A1, under some assignment s of objects to variables. 9 

The rules of the game reflect this scenario-and they may be seen as de
scribing dynamic mechanisms of evaluation or investigation of facts about 
the world. With disjunctions cp V 1/;, Verifier must choose a disjunct to 
defend (Falsifier is opposed to both), with conjunctions cp!\1/;, the choice is 
Falsifier's. A negation ---'Cp triggers a TOle switch, where players change roles 
in the game for cpo Moreover, quantifiers let players choose an object from 
the dornain: ::J:ccp lets Verifier choose a 'witness', \f;r;cp lets Falsifier choose 
a 'challenge', after which play continues with the game for the formula cpo 
These moves change assignments of objects to variables, because the new 

6 Lewis himself did add interesting thoughts on 'Score-Keeping in a Language Game'. 
Also, the stream of work on common knowledge in epistemic logic relates to Lewis' 
study of conventions, though there are even some earlier sources in the social sciences. 

7 'ThLs scena.rio cornes partly froIn linguistic ()ptirna.lity 'Theory and its 'rule-free' 
paradigm which casts language users as optimizing syntactic and semantic analysis 
of assertions along a set of constraint-based preferences. 

8 Economics and cognitive science are other natural partners in this mix, as in the newly 
established interdisciplinary Bielefeld Heisenberg Center in 'Games and Cognition'. 

9 It has often been fruitful--e.g., in situation theory and in dynamic semantics-to use 
first-order logic, not as a literal translation medium for natural language, but as a 
methodological 'test lab' for investigating basic features of actual usage. 
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value of :r now becomes the chCAsen object d. When the game reaches an 
atomic formula, it is checked against the current assignment, and Verifier 
wins if it is true, and loses otherwise. In all, this produces a two-agent 
scenario of changing assignments which has the following basic property. 
A formula cp is true at (ivl, s) iff Verifier has a winning strategy in the 
evaluation game Game( cp, A1, s). 

Much can be said about this simple game. For instance, the dynamic 
view of logical constants as moves in a game is intriguing, and so is the multi
agent 'pulling apart' of basic logical notions into different roles for different 
players. In this setting, players' strategies becorne logical objects in their 
own right now, expressing 'dependencies' in interactive behaviour. This 
powerful and appealing viewpoint also underlies other logic games, and its 
many repercussions are still not fully developed today, where we seem to be 
witnessing the birth pangs of an 'interactive logic' .10 Van Benthem (2007b) 
also points out surprising connections with the early foundations of game 
theory. In particular, the law of Excluded Middle for first-order logic says 
that Verifier can always win games of the fonn cp V 'cp. Unpacking this by 
the above rules, the law says that either Verifier or Fal.,ifier has a winning 
strategy in the evaluation game for any formula cpo This 'determinacy' 
can be proven via Zermelo's Theorem about zero-sum two-player games of 
finite depth, which in its turn also follows from Excluded Middle plus some 
logically valid game transformations. 11 Thus, semantical evaluation, and 
hence also linguistic meaning in a procedural sense, meets with classical 
game theory a connection elaborated in (van Benthem, 2007b). 

In particular, viewed in this way, major issues in natural language se
nlallLiclO meet ill illLerelOLing waylO wiLh !JulOie quclOLionlO abouL gamelO. Here ilO 

one. As we said, applying logical operations in formal languages serves as a 
model for sentence construction in natural language. And the most famous 
semantic issue arising then is F'rege's Principle of cornposdionaldy: which 
says that the meaning of any linguistic expression can be deterrnined step
wise, in tandern with its construction out of grarnmatical parts. Here, too, 
games offer a fresh perspective. As we saw, logical operations correspond 
to moves in an evaluation game but we can also state the above scenario 
differently, since it has nothing to do with the specific games involved. Dis
junction and conjunction are really quite general game opemtions, taking 
two games G, H to a choice game G V H or G 1\ H starting with a choice by 
one of the players. Likewise, negation forms the obvious dual game to any 
given game. Thus, issues of linguistic compositionality become questions 

10 'fhe recent strategic EuroCoR.es Project 'LogiCCC: i'vIodeling Intelligent Interaction in 
the humanities, computational and social sciences' is an effort to put this development 
on the map in a much more general setting. 

11 Evaluation games for other logical languages can be much more complex, involving 
infinite histories e.g., with the modal/i-calculus: cf. (Bradfield and Stirling, 2006). 
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about garne algebra, and the laws satisfied by natural game operations. For 
instance, van Benthem (200:3) shows how the complete game algebra un
derlying first-order logic is a decidable mixture of principles from Boolean 
Algebra plus laws for a left-, though not right-distributive operation G; H of 
sequential composition of games. Thus, if we take the evaluation game per
spective on natural language seriously as a view of multi-agent processes, we 
must understand the algebraic structure of the natural operations creating 
complex games for compound linguistic expressions out of simple ones. 

4 Imperfect information and dependence 
But logical evaluation games in GTS have further interesting features from 
realistic game theory, viz. imperfect in/oT/nation. Standard logic games, 
with the above evaluation games as a prime example, assume perfect in
formation: players can observe each move t hat is played, and their only 
uncertainties are about future moves yet to be played. Gabriel Sandu has 
been one of the prime movers in a generalization, however, where the perfect 
inforrnation is abandoned in the process of semantic evaluation. Quantifier 
sequences in natural language sometimes show patterns of dependence and 
independence where it seems very natural to assume that access is blocked 
to objects chosen earlier. In the 'slash notation' of 'independence-friendly 
logic' ('IF logic'), a sequence like 

'v'x:3y'v' zJti/ x RXYZti 

represents a 'branching quantifier' that can be written two-dimensionally as 

'v'x:3y 

~ 
R:r:YZti 

'v' Z:3ti 

This is true iff Verifier has a winning strategy consisting of responses to 
objects chosen by Falsifier, where the choice for ti only depends on the 
object chosen for z. In this scenario, evaluation games are no longer deter
mined, and they may even have only mixed equilibria in random strategies, 
letting probability into the inner sanctum of logic. There is a large technical 
literature on this generalization of classical evaluation games, but its game 
content is under debate, and Hintikka has been down playing the original 
game motivation. Indeed, IF logic has inspired a mathematical analysis as 
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generalized predicate logic by Hodges (1997), while V~i~in~inen (2007) ex
tracts the abstract logic of dependence at stake here without game models. 

But the jury is still out. For instance, van Benthem (2003) analyzes 
branching quantifiers in terms of a new game operation of the parallel pTOd
uct G x H of two games being played simultaneously without intermediate 
communication. 12 One reason why this is of interest to natural language is 
as follows. It has been claimed that IF logic is deeply non-compositional, 
a difficulty related to the absence of natural 'sub-games' in games with im
perfect information (Osborne and Rubinstein, 1994). But introducing par
allel product operations makes the underlying game algebra cornpositional 
again. Sandu's article actually discusses another recent game-theoretic take 
on IF, stemming more from the game semantics of programming languages. 
Abrarnsky (2006) rnakes connections between IF logic and fragments of lin
ear logic, whose parallel products do allow for intermediate communication, 
copying moves from one sub-game to another. In all then, the question of 
the complete multi-agent game algebra behind evaluation processes for nat
ural language seerns open, although by this stage, we have a much deeper 
mathernatical take on 'language garnes' than that of the 1950s. 

5 Which games 'make sense' for natural language? 
Our story so far does not exhaust the varieties of games that have been, or 
can be, brought to bear on natural language. '['here is a throng of further 
candidates, reflecting the many levels at which language can be studied. 

5.1 Logic games 

For a start, there are many logic games, and some fit natural language just 
as well as evaluation games for sentences cp against models At. In much or
dinary communication, there is no model at all of the described situation to 
evaluate against. What seems much more realistic then is 'consistency man
agement'. \Ve take in what the speaker says, and try to integrate this into 
consistent 'discourse representation structures' or more abstract semantic 
information states, unless the pressures on the successive updates becorne 
too high, and a conversational collapse takes place. But for this consis
tency management, a much more appropriate scenario might be logic games 
of model construction, which build models for sets of formulas (Hodges, 
1997; van Benthem, 2003). In the semantics of natural language, the rele
vant distinction is 'dynamics of evaluation' (as in systems like DPL) versus 
'dynam·ics of 'inierpr-eiat'ion', viewed as constructing a model or 'discourse 
representation' that makes sense of the current linguistic utterances. 13 

12 Van Benthem, Chosh & Liu (2007) provide its complete game logic and algebra. 
13 Indeed, van Benthem & van Eijck (1982) already proposed that the proper take on 

Hintikka's view of natural language would be model building games associated with 
the method of sema.ntic tablea.ux rather than with semantic model checking. 
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Interestingly, from a logical point of view, rnodel building games are 
closely related to dialogue games JOT PTOOf. As we said earlier, these were 
already introduced by Lorenzen (1955), who wanted to explain logical va
lidity of inferences P =? C as the existence of a winning strategy in argu
mentation or debate for the Proponent of the conclusion C against any 
Opponent granting the premises P. This raises the issue of ·injercnt·ial 
views of language and communication, which we will not pursue here. His
torically, through the intermediate stage of (Blass, 1992), Lorenzen dialogue 
games eventually led to game semantics for linear logic and programming 
languages in Abramsky's style. 'rhus, the games that Sandu tries to connect 
with IF logic seem quite different in spirit-but a link may be made through 
'proof-theoretic' or category-theoretic semantics (Abrarnsky, 2007b).14 

5.2 Signaling games 

Now add the signaling games from the recent work by Parikh, van Rooij, and 
others, mentioned above. Sandu makes a sirnple and prirna facie seamless 
connection, but I wonder about the consistency of scenarios. Signaling 
games really represent a very different scenario of language use, prior to the 
level of logic games. A logical evaluation game can only work when two 
things have already been settled: (a) the meaning of the logical operations, 
and (b) the denotations of the basic lexical items such as predicates and 
object names. But signaling games are about establishing the latter, and 
maybe even the former, connections in the first place! 

Now in standard communication scenarios, we may assume that this 
initial phase has been achieved already, so that a global or at least a local, 
'linguistic convention' has arisen. In that case, we can focus on the higher 
tasks of making claims, and convincing others. But there can be cases where 
the two tasks meet, as in the creation of the right anaphoric links, which do 
not have fixed conventional meanings. It is here where Sandu focuses his 
discussion, and I have nothing to add to that15 Even so, it seems fair to 
say that we have no integrated technical theory of logic games and signaling 
games, and I wonder what would be a good way of combining them. Do we 
need a game algebra for natural language which allows for composition of 
heterogeneous games of quite different sorts? 

Finally, from the viewpoint of natural language, we have not even reached 
the complete picture of what goes on in ordinary conversation. There may 
be games that fix meanings for lexical items and for truth or falsity of ex
pressions whose meaning is understood. But having achieved all that, the 
'game of conversation' only starts, since we must now convey information, 

14 ThLs take on natural language interpretation seems closer to Categorial Grammar and 
its semantics in the lambda calculus, cf. (van Benthem, 1991; Moortgat, 1997). 

15 Other natural examples arise in the semantic scenarios of 'bi-directional Optimality 
Theory', many of which go beyond anaphora. 
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try to persuade others, and generally, further our goals-and maybe those of 
the others as well. In this area, Dutch-style logicians have developed a broad 
family of 'dynamic-epistemic logics' for analyzing information update and 
belief revision (cf. Baltag et al. (1998); Gerbrandy (1999); van Ditmarsch 
et al. (2007); van Benthem et al. (2006)). These systems have already been 
given game-theoretic interpretations (van Benthem, 2001, 2007c), and re
cent twists toward rational agency include dynamic logics for preference 
change (cf. the dissertations of Liu (2008), Girard (2008) and Roy (2008)). 

But conversation and communication is also an arena where game theo
rists have entered independently, witness the earlier references in (van Rooij, 
2002), and the recent signaling games for conversation proposed in (Fein
berg, 2008). Again, there is an interface between logic and game theory to 
be developed here, and it has not happened yet. 

5.3 The long term: language communities 

Finally, there is one rnore level where garnes meet with natural language. 
We have talked about lexical meaning assignment, compositional semantics 
for single expressions, about checking for truth, argumentation, or infor
mation flow. But these are all short-term processes that run against the 
backdrop of a much larger, and potentially infinite process, viz. natural 
language use in communities with its conventions over- time. In terms of 
computer science, the former are terminating special-purpose processes for 
concrete tasks, while the latter are about the never-ending 'operating sys
tem' of natural language. Here, again, sigTlaling games are relevant, and 
they have been applied to such diverse issues as the emergence of Gricean 
norms in praumatics (van RooiJ' 2006) or of warnir!" siunals or aruumen-b , b b , b 

tative strategies (Rubinstein, 2000). 
In these scenarios, a significant move takes place, from single garnes 

to iterated games with 'infinite nm.s. Scenarios often involve thought ex
periments in termc; of biological fitness and evolutionary stability against 
'invaders' deviating from equilibrium. This is still about games and natu
ral language, but with a very different agenda of explaining global, rather 
than local features of linguistic behaviour. And it is a far cry from logic 
games, involving rather dynamical systems theory for computing equilibria. 
Even so, it makes sense to ask for contacts after all. Infinite games like 
repeated Prisoner's Dilemma are iterated game constructions out of simple 
base garnes, so a discrete algebra of game constructions still makes sense 
in this extended setting. Moreover, logic games are often infinite, most 
clearly in the game semantics for linear logic and associated programming 
languages. And even from a narrowly logical point of view, questions about 
stability of long-term natural reasoning practices make just as rnuch sense 
as they do for linguistic conventions in natural language. 
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Thus, despite some conceptual and technical differences of emphasis and 
style in the literature right now, the encounter between logic and game 
theory in the arena of natural language seems far from concluded. 

5.4 Natural language as a circus: a carroussel of gaInes 

I started by saying that natural language has three main aspects of syntax, 
semantics and pragmatics. By now it will be clear that 'linguistics' can 
ask questions about many levels of language use, asking for explanations of 
simple word meanings to successful discourse, and eventually the existence 
of broad norms and conventions that hold linguistic communities together. 
It also seems clear that games, whether from inside logic or directly from 
garne theory, have an attractive role to play here, as an explicit way of 
bringing out the interactive multi-agent character of language use. 

But what is the total picture? I have described natural language as a 
carroussel of games, where you can walk frorn one activity to another, and 
line up for the associated garne. Is there a unifying principle, perhaps, one 
'super-game'? Should we find clues in mathematics, at some level of 'deep 
game algebra', or rather in the communicative character of homo sapiens? 
I do not know, but I think that these questions are worth asking, if 'games 
and language' is to be more than a bunch of separate clever techniques. 

6 Coda: but what about 'logic of games'? 
Many people have heard of fruitful, and even Nobel-prize winning connec
tions between logic and game theory but the above story would probably 
leave them bewildered. vVhat we have discussed in this note are game
theoretic models for basic linguistic and logical activities. But there is a 
quite different interface, too, where logic and language play their traditional 
role, viz. the description and analysis of game forms, strategies, information 
and reasoning of agents. '['his involves epistemic, doxastic and dynamic log
ics, providing analyses of notions such as rationality and its associated game 
solution procedures. In this descriptive guise, logic plays the same role to
ward game theory as it does toward multi-agent systerns or process theories 
in computer science. Indeed, this rnore traditional use of logical techniques 
constitutes the main thrust of work in my own ILLC environment in Am
sterdam, where games serve as one rich and intuitively appealing model of 
intelligent interaction that we want to capture by logical means. 16 This is 
also the sense in which computer scientists have embraced game theory as 
a richer model for computation (G6idel, 2004), and philosophical logicians 
as a concrete model for rationality (Stalnaker, 1997). All these contacts 
can take place while logic keeps its standard semantic and proof-theoretic 

16 Cf. (va.n Benthem, 1991,2006); as well a.s the bundle of European projects constituting 
the recent LoglCCC team 'Logics for Interaction'. 
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face. Of course, game-theoretic ideas can reach logic in this way, and they 
do but there is no need for logic to 'let' game theory 'under its skin', and 
recast itself as a family of games, as we have suggested in the above. 

Nevertheless, the latter more radical view, too, has its basis in the history 
of logic, and it constitutes what Abrarnsky (2007b) calls logic as embodying 
pmcess rather than logic as external process description. 17 Indeed, the two 
directions are related. We can use standard logical languages to describe 
games, and then go on to use games to reinterpret what these logical lan
guages are. The result is a wonderful circle carrousseI? where the two 
fields spin happily together on each other's backs. I find that interactive 
view well in line with the spirit of the present book. 
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Abstract 

Church's Problem (1957) asks for the construction of a finite-state 
procedure that transforms any input sequence ex letter by letter into 
an output sequence ,(3 such that the pair ((X, (3) satisfies a given spec
ification. Even after the solution by Biichi and Landweber in 1969 
(for specifications in monadic second-order logic over the structure 

,+ 1)), the problem has stimulated research in automata theory 
for decades, in recent years mainly in the algorithmic study of infi
nite games. 'vVe present a modern solution which proceeds in several 
stages (each of them of moderate difficulty) and provides additional 
insight into the structure of the synthesized finite-state transducers. 

1 Introduction 
Fifty years ago, during the "Summer Institute of Symbolic Logic" at Cornell 
University in 19.')7, Alonzo Church (1957) considered a problem which is 
both simply stated and fundamental. 

Imagine a scenario in which an infinite bit stream ex is to be transformed, 
bit by bit, into an infinite stream as indicated in the following figure. 

output I input 
j3 = 11010 ... 

The task is to construct a finite-state proced me for this transformation 
when we are given a "specification" of the relation between ex and This 
specification is usually presented as a formula of a logical system. In short 
words: We have to fill the box, given a description of the desired relation 
f? between input ex and output /3. l'he problem is a question on automatic 
program synthesis which surprisingly can be answered positively when the 
specification language is not too expressive. 

This setting for program synthesis is fundamentally different from the 
classical framework in which terminating programs for data transformations 

Krzysztof R. Apt, Robert van 
'Texts in Logic and Gan1es 4) 

Perspecti'ues on Garnes and lrderaction. 
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are considered. For correctness of a terminating program one relates the 
data given to the program before the start of the computation to those 
produced by the program at the end of the computation. Usually the data 
are from an infinite domain like the natural numbers. In Church's Problem, 
we deal with non-terminating computations in which inputs and outputs are 
interleaved, and the aspect of infinity enters in the dimension of time. On 
the other hand, the data processed in a single step are from a finite domain 
(in our example just {O, I}). It is this shift of infinity from data to time 
that allows to avoid undecidability results as known from the verification 
(or even synthesis) of terminating programc; over infinite data spaces. 

Let us look at an example. The relation R is defined by the conjunc
tion of three conditions on the input-output stream (a, (3). We use self
explanatory notation: a(t) is the tth bit of a (t 0,1, ... ), and j"! is the 
quantifier "there exist infinitely many" . 

1. Vt(cy.(t) I ----t (3(t) 1) 

2. ,jt {3(t) ,EJ(tl 1) 0 

:3. jCJt aCt) = 0 ----t j"!t j3(t) = 0 

The first two conditions are satisfied easily by producing output 1 at each 
mornent. But the last condition, which has the fonn of a fairness constraint, 
excludes this simple solution; we cannot ignore the zero bits in a. A natural 
idea is to alternate between outputs 0 and 1 if the inputs are only o. We 
arrive at the following procedure: 

• for illpUL 1 produce ouLpuL 

• for input 0 produce 

output 1 if last output was 0 

output 0 if last output was I 

This procedure is executable by the finite-state transducer displayed below. 
It is presented as an automaton in which each transition is labelled with 
an input bit and the corresponding output bit. As initial state we take, for 
example, the left-hand state. 

1/1 
0/1 

0/0 

1/1 
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For a rnore precise statement of Church's Problem, it is necessary to fix 
the format of the specifications and that of the "solutions". Let us first 
address the solutions. Among the many concepts of transformations of se
quences, only a very special form is admitted for Church's Problem. Two 
aspects are relevant, the requirement of a computation "bit by bit", and the 
restriction to "finite-state" solutions. The first requirement means that the 
output bit j3(t) has to be produced without delay after receipt of the input 
bit (~(t). Thus j3(t) can depend only on the input bits up to time t, i.e., on 
the input prefix (~(O) ... aCt). This is a sharper restriction than that of "con
tinuity" (in the Cantor topology over {O, l}W), which would mean that j3(t) 
depends on some finite prefix of a-possibly a(O) ... a( s) with s > t. As an 
illustration, consider the transformation 7'1 with 7'l(a) a(0)a(2)a(4) .... 
It is continuous but excluded as a solution for Church's Problem (since 
T\(a)(t) depends on a(2t)). A fortiori, non-continuous transformations are 
excluded, such as 12 defined by T2(a) 111 ... if a has infinitely many let
ters I, otherwise T2(a) 000 ... (note that no finite prefix of 0; determines 
even the first bit of 7'2(0:)). 

The restriction to "finite-state" solutions means, in Church's words, that 
the desired sequence transformation should be realizable by a "circuit". This 
is a much stronger assumption on the admissible transformations than the 
dependency of the tth output bit on the inputs bits up to time t only: 
One requires that the computation is realizable with a fixed finite memory 
(independent of t), as with the two states of memory in our example. It 
is remarkable that this restricted type of procedure actually suffices for 
solutions of Church's Problem. In this paper we work with finite-state 
transducen; in Lhe format of Mealy auLomata. Formally, a i'vIcaly a1domaton 
is a structure A1 = (8, r, So, 5, T) where 8 is the finite set of states, Y; 
and r are the input alphabet and output alphabet, respectively, So the 
initial state, 5 : 8 x Y; ----> 8 the transition function and T : 8 x Y: ----> r 
the output function. In a graphical presentation we label a transition from 
P to 5(p, a) by a/T(p, a). Later we shall also allow that certain transitions 
may not produce an output letter (but the empty word t~ instead). The 
function 5 is extended to 5* : 8 x );* ----> 8 by setting 5* (s, c) = sand 
5*(s,wa) = 6(6*(s,w),a) for wE );*,a E);. For the input sequence a = 
a(O)a(l) ... ) the output sequence j3 computed by At is given by j3(t) = 

T(5*(so, (~(O) ... aCt - 1)), uCt)). 
Let us now make precise the specification language. We consider the 

system of monadic second-order logic (MSO) over the successor structure 
(N, + 1), also called SIS (for "second-order theory of one successor") or "se
quential calculus". 'fhis case was emphasized by Church (1963) as an open 
problem, and today it is understood that "Church's Problem" refers to SIS. 
In the logical context, one identifies a bit sequence a with a set Pa of nat-
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ural nurnbers that contains the nurnbers t with a(t) = 1. We use 8, t, ... 
as first-order variables (ranging over natural numbers, or time instances) 
and X, Y, ... as second-order variables (ranging over sets of natural num
bers, or bit sequences). We view the latter as predicate variables and write 
X (I) rather thant EX. In SIS, one has quantifiers j, V for both kinds of 
variables. One can define 8 < t by saying that t belongs to each set which 
contains 8 + 1 and is closed under successor. Now our example specifica
tion takes the form of the following SIS-formula cpo(X, Y) (where we write 
jWt ... for Vdt(8 < t /\ ... )): 

Vt(X(t) -4 Y(t)) /\ ,jt(,Y(t) /\ ,Y(tt 1)) /\ (jwt-,X(t) -4 jwt-,Y(t)) 

In general, we have SIS-specifications that speak about sequences (~ E 

({O, 1 }7Tll)W and 13 E ({O, 1 y"2)W. Then we consider bit vectors rather than 
single bits, and use ml-tuples X and m2-tuples Y of second-order vari
ables in place of X, Y in the specifications. Similarly we write Pa for the 
predicate tuple associated with (~. Church's Problem now asks: Oi'ven an 
SlS-specification cp(X, Y), construct a Nlealy automaton A1 'With inpat al
phabet I: = {O,I}Tn! and output alphabet r = {0,I}Tn2 such that for each 
input sequence a E ({O, lY"!)W, an output sequence 13 E ({O, ly"2)Wis PTO
d11ced by A111Jith (N,+l) f cp[P""P,6[, OT pro-vide the anS'weT that 811ch an 
a'atomaton does not exist. 

An alternative view to study Church's Problem is to consider a relation 
R. <;;; {O, l}W x {O, I}W as the definition of an infinite two-person game be
tween players A and 13 who contribute the input-, respectively the output
bits in turn. A play of this garne is the sequence of pairs (o,(t), r3(t)) of 
bits supplied for t 0,1, ... by A and 13 in alternation, and the play 
(a(O),j3(O)) (a(l), 13(1)) ... is won by player 13 iff the pair (a,j3) belongs 
to R. A Mealy automaton as presented above defines a winning strategy 
for player 13 in this game; so we speak of a "finite-state winning strategy" . 

In 1969, 13lichi and Landweber (1969) solved Church's Problem. The 
original proof involved a complicated construction. It took some time un
til more accessible proofs were available. The purpose of this tutorial is 
to present a construction which is made easy by a decomposition of the 
task into simpler modules (following Thomas, 1995; see also Thomas, 1997; 
Gradel et aI., 2002). The construction also gives extra information on the 
structure of the finite-state machines that serve as solutions. 

We will show the Bi.ichi-Landweber Theorem in four stages: In a prelim
inary step, the SIS-specifications are converted into automata over infinite 
words ("w-autornata"). Here we use, without going into details, classical re
sults of 13lichi and McNaughton that provide such a conversion (13lichi, 1962; 
f.,1lcNaughton, 1966). We will illustrate this step by an example. l'hen we 
transfonn the obtained automaton into a game between the input player A 
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and the output player B (played essentially on the transition graph of the 
automaton). The task is then to decide whether B has a winning strategy 
and if so to construct a finite-state machine executing a winning strat
egy. The last two stages serve to obtain such a machine. First, we define its 
state space and transition function, and secondly we fix the output function. 
Only in this last step the decision about solvability of the specification will 
be obtained. 

There is also an alternative approach to Church's Problem, developed 
by Rabin (1972) in the framework of tree automata theory. Let us briefly 
sketch the idea. In the situation where both players A and B select bits, 
Rabin codes a strategy of player B by a labelling of the nodes of the infinite 
binary tree: The root has no label, the directions left and right represent 
the bits chosen by A, and the labels on the nodes different from the root are 
the bits chosen B according to the considered strategy. 'When player A 
chooses the bits bo, ... ,b", he defines a path to a certain node; the label b 
of this node is then the next choice of player B. Note that a node labelling 
by bits corresponds to a subset X of the tree (containing the nodes with 
label I). Now the paths through the (X -labelled) tree capture all plays 
that are compatible with B's strategy coded by X. One can write down 
a formula X(X) in MSO-logic over the binary tree which states that the 
winning condition is satisfied by each path; thus X(X) says that "X is a 
winning strategy". By Rabin's Tree Theorem (Rabin, 19(9) one can convert 
X(X) into a Rabin tree automaton Ax (for definitions see e.g., Thomas, 
1997), check whether this automaton accepts some tree, and if this is the 
case--construct a "regular" tree accepted by Ax. This regular tree can then 
be illLerpreLed ati a finiLe-tiLaLe winning tiLraLegy for player B. 

In the present notes we pursue the "linear" approach in which single 
plays are the main objects of study; so we avoid here the infinite tree struc
ture that captures all plays for a given strategy. 

2 From logic to automata and games 
2.1 From logic to automata 

Our first step for solving Church's Problem consists of a transformation 
of a specification cp(X, Y) into a semantically equivalent but "operational" 
form, namely into a deterministic automaton A..p working over w-sequences. 
This puts Church's Problem into the framework of automata theory. It 
is remarkable that we do not have any solution of Church's Problem that 
avoids this transformation at the start-e.g., by a compositional approach 
of synthesis that is guided by the structure of the formula cpo 

For an ml-tuple X and an m2-tuple Y, the input alphabet of A" is 
{O, i}rr'1+ m

2. The automaton is said to be equivalent to cp(X, Y) if it ac
cepts precisely those w-words which define tuples (P, Q) of sets such that 
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(N, + 1) F cp[P, Q]. In the game theoretic view explained above, one may 
consider the automaton as a referee who watches the play evolving between 
players A and B that consists of the two sequences a: and j3 (logically speak
ing: of the set tuple (P a, Qa) built up by A and B), and who decides at 
infinity the acceptance condition) whether B has won or not. 

An appropriate acceptance condition is the so-called Muller condition. It 
is specified by a collection :F = {Fl, ... , Fk } of state sets, and the automaton 
accepts an w-word f if the set of the states visited infinitely often in the 
unique infinite run on f is one of the Fi . (The sets Fi are called accepting 
loops; indeed, if the states in Fi are visited again and again they form a 
strongly connected set ("loop") in the transition graph of the automaton.) 

\lVe use here two core results of the theory of w-automata due to Biichi 
(1962) and McNaughton (1966) (see e.g., (Thomas, 1997) or (G6idel et al., 
2002) for more recent expositions). 'fhey allow to translate an S1 S- formula 
into an equivalent (non-deterministic) Biichi automaton, which is then 
transformed into a deterministic r.,1luller automaton: For each S1S-form'ala 
cp(X, Y) one can construct an cq1ti1Jalcnt lvI1tllcT a'utornaton A{'. As a draw
back in this result we mention that the size of .4p cannot be bounded by an 
elementary function in the length n of cp (see, e.g., Gradel et aI., 2002); in 
other words, for no k, the k-fold iteration of the function n f---+ 2T1. can serve 
as an upper bound for the size of A{'. 

Let us illustrate the theorem for our example specification above. The 
formula Vt(a:(t) = 1 ---+ j3(t) = 1) is equivalent to the Muller automaton 

with accepting loop {I} only (and where * stands for an arbitrary bit). 
The formula ,::Jtj3(t) = j3(t + 1) 0 is expressed by the following Muller 
automaton with accepting loops {I} and {I, 2}: 

(~) G) 

2 (~) 
~® 

(~) Q 
(~) 

The automaton for ::JWt(~( t) = 0 ---+ ::Jw tj3( t) = 0 is best explained as follows: 
There are four states, denoted by the four possible bit-pairs, with say (0,0) 
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as initial state. From each state we have, for each bit pair (b], b2 ), a transi
tion labelled (b[, b2 ) to the state (b], b2 ). A set F is accepting if it satisfies 
the following condition: If the first component is ° in some state of F, then 
the second component is ° for some (possibly different) state of F. 

It is known how to combine Muller automata for several conditions to 
a single Muller automaton for their conjunction. We do not present it 
explicitly here for our example. Rather we turn to a variant, called "finite
state game with Muller winning condition". This approach, introduced by 
McNaughton (1993), is motivated by the view that the two components of 
an input letter of the Muller automaton are contributed by two players A 
and B who pursue antagonistic objectives: A aims at violating the condition 
cp and 13 at satisfying it. 

2.2 From automata to games 

We distinguish the contribution of bits (in the general case: bit vectors) 
two players A and 13 by introducing two kinds of states, called A- and 

13-states. In an A-state, the next bit is to be picked by player A, in a B-state 
by player 13. We indicate A-states by boxes and 13-states by circles. The 
figure below indicates how we dissolve transitions from a state in the given 
Muller automaton by introducing intermediate states and corresponding 
transitions. 

• • • • 

Note that we keep every state of the Muller automaton as an A-state. For 
each A-state q and bit b, we introduce a b-labelled transition to a new state 
called (q, b), and from (q, b) for each bit cae-labelled transition to the state p 
which was reached from q by (~) in the original automaton. For such a state 
p we call c the corresponding "output bit", denoted out( q, b, p). (If both c
transitions from b) lead to the same state p we agree that out(q, b,p) = 0.) 
If the input alphabet is {O,l}7nl and the output alphabet {O,l ,we 
introduce 13-states (q, b) with bE {O, 1 }'nl, and define out( q, b, p) as a vector 
in {O, l}m2 • 

The result is a "game graph". For our example specification above, we 
can obtain the following garne graph from a corresponding Muller automa
ton (the reader should ignore for the moment the boldface notation of some 
arrows). 
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The three conditions of our example formula are indeed captured by 
this graph. The first condition requires that a bit 1 chosen by A has to 
be answered by the bit 1 chosen by B. If this is violated (starting from the 
initial state 1), state 6 (and hence the loop consisting of states 6 and 7) is 
entered. The second condition says that player B should not pick two zeroes 
in succession. If this is violated, we would reach 6 and 7 again. 'vVe thus 
exclude states 6 and 7 from the accepting loops. The third condition (on 
fairness) means that if A chooses 0 infinitely often (which happens by going 
to 4 or 5), then 13 has to choose 0 infinitely often (which is only possible by 
going from 4 to 3). Altogether we declare a loop F as accepting if it does 
not contain 6 or 7 and satisfies (4 E F V 5 E F ---> :3 EF). 

How should player 13 pick his bits to ensure that the play visits precisely 
the states of one of these loops F infinitely often? We have to fix how to 
move from states 2, 4, 5, 7. From 7 player 13 has to move to 6 since there 
is no other choice. The other choices can be fixed as follows: From 2 to 1, 
from 4 to 3, and from 5 to 1 (see boldface arrows). Then, depending on 
what Player A does, a play starting in 1 will visit infinitely often the states 
1 and 2, or the states 1 to 4, or the states 1, 3, 4, 5, or the states 1 to 5. 
Each of these loops is accepting. 

We see that the acceptance condition of a Muller autornaton is thus 
turned into a winning condition in the associated game (Muller winning 
condition). Furthermore, we see that player 13 has a winning strategy by 
fixing his rnoves as stated above. This winning strategy can be converted 
into a Mealy automaton when we cornbine again each pair of two successive 
moves (by player A and then B) into a single transition. We an automa
ton with the states 1 and 3 and the following transitions: F'rom I via (~) 
back to 1, from 1 via @ to 3, and from 3 via (i) and via (~) back to l. 
Up to names of states (and the irrelevant initial state), this is precisely the 
Mealy automaton mentioned in the Introduction. 

In the remainder of the paper, we shall give a general construction that 
starts with a finite game graph equipped with a Muller winning condition, 
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provides the decision whether player B wins, and in this case yields a finite
state winning strategy. 

\Ve add some remarks on the step from automata to game graphs. First 
let us note that there is more behind this reshaping of the model than intro
ducing the attractive idea of a game. The game theoretic view is most useful 
for introducing a symmetry between inputs and outputs in Church's Prob
lem. The two players A and B represent the antagonistic aims of falsifying 
the specification (player A, supplying input) and satisfying it (player B, sup
plying output). It will turn out that either A or B has a winning strategy, 
an aspect which is hidden in the original formulation of Church's Problem. 

Secondly, in studying plays over a given game graph, it is useful to ignore 
the special role occupied by the initial state. Rather we shall be interested 
in plays wherever they start, and we shall determine for each state which 
player has a winning strategy for plays starting frorn there. 

On the other hand, we shall simplify the model in a different detail: We 
cancel the labels on the transitions. l'his is motivated by the fact that the 
winning condition is formulated in terms of visits of states only, regardless 
of the labels that are seen while traversing edges. When a winning strategy 
over the unlabelled game graph is constructed, it will be easy to re-introduce 
the labels and use them for a Mealy automaton as required in the original 
formulation of Church's Problem. 

In our example, a Mealy automaton with two states was sufficient to 
solve Church's Problem for the specification CPO. These two states were 
already present in the game graph G<po corresponding to the Muller au
tomaton Apo. (We took the states 1 and 3.) Given the game graph G<po, 
we were able Lo fix the moveD of pla'yer B from 1 and :3 independent of the 
"play history", i.e., independent of the path on which either of these states 
was reached. In general we shall need additional memor'y to define the right 
choice. We shall see that a finite memory suffices; so we can work with 
winning strategies that are irnplernentable by finite-state rnachines. Such a 
finite-state machine S works on the game graph G. 1'he states of S and of 
G should not be confused. For the solution of Church's Problem (given a 
logical formula cp) we have to combine the states of S with the states of G. 
We describe this in detail at the end of the next section. 

3 Infinite games and the Biichi-Landweber Theorem 
A game graph (or arena) has the form G (Q, QA, E) where QA C;;; Q and 
E C;;; Q x Q is the transition relation, satisfying Vq E Q : qE # 0 (i.e., 
Vq3q' : (q, ql) E E). This condition ensures that plays cannot end in a 
deadlock. (So a subset Qo of Q induces again a game graph if from each 
q E Qo there is an edge back to Qo.) We set QB := Q \ QA. In this paper 
edges will always lead from Q A -states to Q B-states or conversely; however 
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the results do not depend on this assumption. We restrict to finde game 
graphs thTOughout the paper. 

A play over G from q is an infinite sequence p = qOqlq2 ... with qo = q 

and (qi, qild E E for i 2': o. We assume that player A chooses the next 
state from a state in Q A) and player B from a state in Q B. Note that the 
game graph is finite whereas the plays on it are infinite; thus one speaks of 
"finite-state infinite games" . 

Formally, a game is a pair (G, W) where G (Q, QA, E) is a game 
graph and Hl S;; a "winning condition" for player B. Player B wins 
the play p = qOqlq2 ... if PEW, otherwise player A wins p. The use of 
such "abstract" winning conditions Hl is pursued in descriptive set theory, 
see (rdoschovakis, 1980). In our algorithmic context we have to work with 
finitely presentable sets HT. For our considerations below, we work with two 
finite presentations of winning conditions, either a collection F S;; of 
sets R. S;; Q, or by a coloring c : Q ---* {O, ... , k} for some natural number k. 
In the special case c : Q ---* {O, 1} we also consider the subset F {q E Q I 
c( q) I} instead. 

First we introduce two winning conditions connected with a collection 
F S;; . The first is the lvIuller 'Winning condition; it refers to the set Inf(p) 
of states visited infinitely often in a play p: 

Inf(p) := {q E Q I jWi p(i) = q} 

Player B wins the play p if Inf(p) E F. With these conventions we speak of 
a lvluller game (G, F). 

There is also a "weak" version of this winning condition, called 'weak 
A1uller condition (or Staiger- Wagner condition), which refers to the visited 
states in a play ("occurrence set"): 

Occ(p) := {q E Q I ji p(i) = q} 

Player B wins a play p according to the weak !VI uller condition if Occ(p) E F. 
We speak of the 'Weak Muller game (G, F). 

An important special case of weak !VI uller games is the reachabilit·y garne, 
given a set F S;; Q of states of the game graph (Q, QA, E). The winning 
condition for player B is satisfied for a play p if some state of p belongs to 
F. We obtain an equivalent weak Muller condition if we set F {R. S;; Q I 
Un F / 0}. 

The next step is to introduce the concepts of strategy, winning strategy, 
and winning region. Let us look at examples first, using the following game 
graph G 1 . 
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The reachability game (G1 , {3}) with "goal set" F = P} is won by 
player B if the play starts in state 3. Otherwise player A can avoid this 
state by going from 2 to 5 and from 6 to 4. We shall say that the ·lln:.fI:u:.':11.If 

region of player A in this game is the set {I, 2,4,5,6, 7} and that of player 
B the set {3}. As a second example, consider the condition that states 2 
and 7 both have to be visited again and again. Formally, this is the IVlulier 
game (G 1 , F) where F consists of all sets R. :2 {2,7}. Obviously, player 13 
can win from any state: From I he proceeds to 2 and to 7 in alternation, 
frorn 5 he moves to 6, and from 3 to 4. So the winning region of A is ernpty 
in this case, and that of 13 the set of all states. Note that switching between 
the moves from 1 to 2 and from 1 to 7 means to use memory (here only one 
bit) when executing the strategy. 

Formally, a strategy for player B from q is a function f : q+ ---> q, 
specifying for any play prefix qo ... qk with qo q and qk E q B some vertex 
r E q with (qk,r) E E (otherwise the value of f is chosen arbitrarily). 
A play p qOql ... from qo q is played according to strategy f if for 
each qi E qB we have qi+l = f(qo ... qi). A strategy f for player 13 from 
q is called winning strategy for player B fTOm q if any play from q which 
is played according to f is won by player 13. In the analogous way, one 
introduces strategies and winning strategies for player A. We say that A 
(resp. B) 'wins fTOm q if A (resp. B) has a winning strategy frorn q. 

For a game (G, W) with c: = (q, qAl E), the 'winn'ing rcg·ions of playcrs 

A and B are the sets W A : {q E q I A wins from q} and VIlB {q E 

q I 13 wins from q}. It is obvious that a state cannot belong to both WA 

and ~Il B; so the winning regions W A , W B are disjoint. But whether these 
sets exhaust the whole garne graph is a more delicate question. One calls 
a game determined if W AU W B = q, i.e., from each vertex one of the two 
players has a winning strategy. Determinacy of infinite games is a central 
topic in descriptive set theory; with the axiom of choice one can construct 
games that are not determined. For the games considered in this paper 
(i.e., games defined in terms of the operators Occ and Inf), determinacy 



222 w. Thomas 

is well-known. Nevertheless we state (and prove) this claim in the results 
below, since determinacy is the natural way to show that envisaged winning 
strategies are complete: In order to show that the domain D of a strategy 
covers the entire winning region of one player, one verifies that from each 
state outside D the other player has a winning strategy. 

By the solution of a game W), with game graph G = E) 
and a finitely presented winning condition t-V, we mean two tasks: 

1. to decide for each q E Q whether q E W B or q E Hi A 

2. and depending on q to construct a suitable winning strategy from q 

(for player 13, respectively A). 

Item 2 asks for a winning strategy that has a finite presentation. Two kinds 
of strategies will be central in the sequel, the positional and the finite-state 
strategies. A strategy f : Q+ ----> Q is posdional if the value of f(ql ... ql;;) 
only depends on the "current state" qk. So a positional strategy for B 
can also be presented as a function f : Q B ----> Q, or-in graph theoretical 
terms-by a subset of the edge set where from QA-states all edges are kept 
but from each QB-state precisely one edge is chosen. For the definition 
of finite-state strategies, we first observe that over a finite state set Q, a 
strategy f : Q+ ----> Q can be considered as a word function. \lVe say that 
f is a finite-state stmtegy if it is computed by a Mealy automaton. In the 
present context a Mealy automaton is of the form S (8, Q, Q, So, 0, T) with 
state set 8, input alphabet Q, output alphabet Q, initial state 80, transition 
function 0 : 8 x Q ----> 8, and output function T : 8 x Q A ----> Q for player A 
(respecti vely T : 8 x Q B ----> Q for player B). The stmtegy f S computed by S 
is now defined by fs(qo ... qk) = T(O*(SO, qo ... qk-l), qk) (where o*(s, w) is 
the state reached by S from S via input word w, as defined as above in the 
Introduction, and T is chosen for the player under consideration). 

Now we can state the main theorem on weak Muller games and on 
IVluller games. We include part (a) for reasons of exposition; part (b) is the 
Biichi-Landweber Theorem. 

Theorem 3.1. (a) Weak Muller games are determined, and for a weak 
Muller game F), where G has n states, one can effectively determine 
the winning regions of the two players and construct, for each state q of 
G, a finite-state winning strategy from q for the respective winning player, 
using 2n memory states. 
(b) Muller "ames are determined and for a Muller "arne (G Fi where G b , b, n 

has n states, one can effectively determine the winning regions of the two 
players and construct, for each state q of G, a finite-state winning strategy 
from q for the respective winning player, using n! . n memory states. 

Before entering the proof, we remark that part (b) gives the desired so
lution of Church's Problem. For this, we proceed as in the previous section, 
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we transforrn a given SIS-formula cp to a Muller automaton A1 which 
is then converted to a game graph G with Muller winning condition 
Section 2). Note that the game graph G inherits an initial state from At. 
Using the Blichi-Landweber Theorem, one checks whether this initial state 
belongs to the winning region of player B, and in this case one obtains a 
Mealy automaton S that realizes a winning strategy from the initial state. 
The desired finite-state strategy for the original formula cp is now easily 
constructed as a product automaton from At and S. 

'rVe give the complete definitions for the reader who wants to see the 
details. For simplicity we consider the case cp(X, Y) where each player picks 
single bits only. Let A1 be the Muller automaton obtained from cp(X, Y), 
say with state set Q. The game graph G derived from A'! has Q as the set of 
A-states and Q x {O, I} as the set of B-states. Denote QU (Q x {O, I}) by Qo. 
Let S = (8, Qo, Qo, 80, 5, be the Mealy automaton that realizes a finite
state winning strategy for player B in the IVluller game over G from qo (the 
initial state of the Muller automaton). We construct the Mealy automaton 
A solving the considered instance cp of Church's Problem as follows: A has 
the state set Q x 8 and the initial state (qO, . We have to specify a 
transition for each state (q,8) and input bit b, i.e., an output bit b' and a 
new state (q', 8'). For this we compute the state q* = b) of the game 
graph and the associated S-state 8* = 5(8, q*). The output function of S 
yields the state q' = q*) of G and the new memory state 8' = 6"( 8* , q'). 

The output bit b! is the value out(q, b, q') associated to the transition from 
q* = b) to q' (cf. Section 2.2). 

The memory of the automaton A combines the state space of the Muller 
autorrmLon M alld that of the strategy autorrmLon S. TL is noL yet well 
understood how these two aspects play together in general. Our example 
in Sections 1 and 2 illustrates the case that in addition to the states of Jvt 
no additional memory is necessary. 

4 Reachability games and weak Muller games 
In this section we outline the proof of Theorem 3.1 (a). As a preparatory 
step we solve reachability games. The fundamental construction involved in 
this solution (computation of "attractor") later enters also in the sol ution 
of weak Muller games and Muller games. For this purpose, we introduce a 
second technique, called "game simulation". It allows to transform a given 
game into another one with an "easier" winning condition, namely such that 
the method as known from reachability games applies. We shall illustrate 
this approach first for weak Muller games (in this section) and then for 
Muller games (in the next section). 
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4.1 Reachability games 

Recall that a reachability game (G, F) involves the winning condition (for 
player B) that the play should reach somewhere a state from the set F. 

Theorem 4.1. A reachability game (G, F) with G (Q, QA, E) and F <;;; 
Q is determined, and the winning regions lV A, W B of players A and B, 
respectively, are computable, as well as corresponding positional winning 
strategies. 

Pmoj. l'he proof follows a natural idea, namely to compute, for i 0, 1, ... , 
the vertices from which player B can force a visit in F within i moves. We 
call this set the ith "attractor" (for B). Its computation for increasing i is 
known from the theory of finite games (and corresponds to the well-known 
analysis of AND-OR-trees). 

Attr'f3(F) := 

{q E Q I from q player B can force a visit of F in Si moves} 

The inductive computation is obvious: 

Attr~(F) F, 

Attr'at 1 (F) Attr'B (F) U {q E Q B I 3( q, r) E E : T E Attr'f3 (F)} 

U {q E QA I v(q, r) E E:.,. E Attr'B(F)} 

So for step it 1 we include a state of Q B if frorn it smne edge can be chosen 
into Attr'f3(F'). \lVe can fix such a choice for each QB-state in Attr~l(F) 
('i 0,1, ... ) in order to build up a positional strategy. We include a state 
in QA in Attr"'B+ 1 (F) if all edges from it lead to Attrk(F). The sequence 
Attr~ (F) <;;; Attr1 (F) <;;; Attr1 (F) <;;; ... becomes stationary for some index 

k S IQI· We define AttrB(F) ul~6 Attrb(F). 
Later we shall also use the set AttrA(F), defined in the analogous way 

for player A. 
With the inductive construction it was explained that AttrB (F) <;;; W B; 

furthermore we have defined a uniform positional winning strategy which 
can be applied to any state in W B regardless of the start of the play. (For 
states in Q B n F the choice of the next state is arbitrary.) 

For the converse inclusion W B <;;; AttrB(F) we show that AttrB(F) 
exhausts the winning region lV B. For this, we show that from each state 
in the complement of AttrB(F), player A has a winning strategy (which is 
again positional). It suffices to verify that from any state q in Q \ AttrB(F) 
player A can force to stay outside AttrB (F) also in the next step. This is 
checked by a case distinction: If q E QA, there must be an edge back into 
Q \ AttrB(F), otherwise all edges from q would go to AttrB(F) whence q 
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would belong to AttrB(F). If q E QB, all edges from q rnust lead to Q \ 
AttrB (F), because otherwise there would be an edge to AttrB (F) and q 

would again belong to AttrB(F). Q.E.D. 

4.2 Weak lMuller games 

In a weak Muller game (G, F), player B wins the play p iff Occ(p) E F, i.e., 
the states visited during p form a set in F. It is a useful exercise to verify 
that weak Muller games are precisely those where the winning condition 
can be expressed as a Boolean combination of reachability conditions. 

Positional strategies do not suffice in general to win weak Muller games. 
As an example, consider the following game graph and the weak Muller 
condition given by F {{ 1,2, :3}} (requiring that player B should visit all 
states in order to win). 

From vertex 2 there is no positional winning strategy: Neither the choice 
to move to I nor the choice to move to 3 will enable us to reach each vertex. 
On the other hand, a one-bit memory will do: 'vVhen coming back to 2 we 
should know whether 1 or 3 was visited before, and then we should move 
to 3, respectively l. A general principle derivable from this solution is to 
"remember where we have been already". l'his principle corresponds to a 
simple experience of every-day life: When there is a task ahead consisting 
of several items, keep a list of what was done already (and thus of what still 
has to be done). 

We shall see that this idea suffices completely for setting up the transition 
structure of a finite-state winning strategy. Given a weak Muller game 
(G, F) with G = (Q, Q;l, E) and F = {Fl, ... , Fd, Fi ~ Q, we define 
the transition structure of a Mealy automaton S with the power set of Q 
as its set of states and Q as its input alphabet. Having read the input 
word ql ... qk, its state will be {ql, ... , qd. So the initial state is 0 and 
the transition function 15 : 20 x Q ---+ 20 is defined by 15( R, p) R U {p}. 
'I'his rnemory of subsets of Q with the rnentioned update rule is called 
appeamnce record. 'vVe shall see that this memory structure suffices for 
winning strategies in arbitrary weak Muller games over G. What remains 
is to fix the output function. For this purpose we study an expanded garne 
into which the memory contents from 20 are incorporated. It will turn 
out that based on this extra information the winning condition can be 
reformulated for the expanded game. We call this transformation of the 
game a "game simulation". For the new game we shall provide positional 
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winning strategies, which will supply the desired output function for the 
strategy automaton S. 

4.3 Game simulation 

During a play p, the set of visited states increases weakly monotonically 
and finally reaches the value Occ(p) on which it stays fixed. Similarly the 
cardinality of the set of visited states increases until it reaches the value 
IOcc(p)l. This observation enables us to reformulate the weak Muller win
ning condition "Occ(p) E P'. We associate a number c(R) with each subset 
R of Q, also called its color, which conveys two pieces of information: the 
size of R, and whether R belongs to F or not. Tn the first case, we take the 
even color 2· I RI, otherwise the odd color 2· I RI - 1. Let 

c(R) := {2 ·IRI 
2 ·IRI-l 

if REF 

for R rt F 

for R. / 0 and set c(0): o. Then the following claim is obvious: 

R.emark 4.2. Let p be a play and Ra, R.1, R.2, ... be the value sequence of 
the associated appearance records. Then Occ(p) E F iff the maximal color 
in the sequence c(Ro)c(RJ)c(R2) ... is even. 

l'his remark motivates a new winning condition over game graphs G 
(Q, QA, E) that are equipped with a coloring c: Q ---> {O, ... , k}. The 'weak 
parity condition with respect to coloring c says: Player B wins the play 
p = TOT1T2 ... iff the maximum color in the sequence C(TO)C(Tdc(T2) ... is 
even. Given a game graph G and a coloring c with the weak parity winning 
condition, we speak of the 'Weak parity game c). 

Using the idea above, one transforms a weak Muller game (G, F) into 
a weak parity game ,c): Given G = (Q, QA, E) let G 1 = (2Q x x 

£f) where ((P,p), (R.,T)) EE' iff (p,T) E E and R. Pu {p}, and for 
non empty R define c(R,r) 2 ·IRI if REF, otherwise 2 ·IRI- I (and let 
c(0, r) 0). 

Each play p = TOr] ... in G induces the play pi = (0, TO)( {TO}, TJ) ... 
in G' , which is built up according to the definition of EI. We have by 
construction that p satisfies the weak Muller condition w.r.t. F iff pi satisfies 
the weak parity condition w.r.t. c. 

This transformation of (G, F) into (G', c) (with a change of the winning 
condition) is a "game simulation". In general, we say that the game (G, W) 
with G = (Q, QA, E) is simulated by , l-Vl) with G1 = (QI, Q~, EI) if 
there is a finite automaton S = (8, Q, So, 5) without final states such that 

• QI 8 x Q, Q~ = 8 x Q A, 
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• ((F,p), (S, q)) E~g iff (p, q) E E and ()(r,p) = s (which means that a 
play p qOql ... in G induces the play pi (so, qo)(5(so, qo), qr) ... 
over 

• a play p over G belongs to }l/ iff the corresponding play pi over G I 

belongs to WI. 

If these conditions hold we write (G, W):Ss (GI, WI). 
This relation has an interesting consequence when the latter game al

lows positional winning strategies. Namely, positional strategies over GI 

are easily translated into finite-state strategies over G: The automaton S 
used for the simulation realizes such a strategy when equipped with an 
output function that is obtained from the positional strategy over G I 

x Q,Sx QA,E'). 

Remark 4.3. Let S (S, Q, so, 0) and assume (G, W) :Ss . If 
there is a positional winning strategy for player B in (GI , WI) from (so) q), 
then player B has a finite-state winning strategy from q in (G, W). The 
analogous claim holds for player A. 

Proof. Consider the case of player B. We extend the automaton S by an 
output function that is extracted from the winning strategy (J : Q~ ----t QI. 
It suffices to define T : S x Q B ----t Q by q) second component of 

q). Then any play p according to the strategy S belongs to Hi iff the 
corresponding play pi (obtained as defined via S) belongs to WI. Since (J 

was assumed to be a winning strategy, so is the strategy executed by S. 
The case of player A is handled analogously. Q.E.D. 

iNe apply this rernark for the concrete sirnulation of weak Muller games 
by weak parity games mentioned above. \Ne show "positional determinacy" 
for weak parity games and thus-by the preceding remark-finish the proof 
of part (a) of Theorem :3.1, concerning weak Muller games. 

Theorem 4.4. A weak parity game c) is determined, and one can com
pute the winning regions lV"A, IF B and also construct corresponding posi
tional winning strategies for the players A and B. 

It may be noted that we suppressed the initial states q when speaking 
about positional winning strategies. In the proof we shall see that-as for 
reachability games-the strategies can be defined independently of the start 
state (as long as it belongs to the winning region of the respective player). 

Proof. Let G = (Q, QA,E) be a game graph (we do not refer to the special 
graph G I above), c: Q ----t {O, ... ,k} a coloring (w.l.o.g. k even). Set 

{qEQ! =i}. 
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We first compute the attractor for B of the states with rnaximal color, 
which is even. 'When player B reaches such a state the play is won whatever 
happens later. So Ak := AttrB ) is a part of the winning region of 
player B. 

The remaining nodes form the set Cd \ A k ; this is again a game graph. 
Note that from each state q in Cd \ Ak there is at least one edge back to 
Cd \ A k , otherwise (as seen by case distinction whether q E CdA or q E CdB) 
q would belong to Ak AttrB(C",), 

In the subgame induced by Cd \ A k , we compute Akl := AttrA(Ck1 \ 

A k ); from these vertices player A can reach the highest odd color k - 1 and 
guarantee to stay away from Ak, in the same way as explained above for 
reachability games (see Section 4.1). 

In both sets we can single out positional winning strategies, over Ak 

for B, and over Ak - L for A. In this way we continue to adjoin "slices" of 
the game graph to the winning regions of B and A in alternation. The 
next set A k - 2 is the set of all states q E Cd \ (A k - 1 U A k ) from which 
player B can force the play to Ck - 2 \ (A k - L U Ak)' We denote this set by 
Att]'~\(AI'-lUAI') \ (A k - L U . '['he exponent indicates the set of 
states that induces the subgame in which the attractor computation takes 
place. In order to facilitate the notation for the general case, set CJi : 
Cd\ lu ... uJh). 

So we cornpute the sets A k , A k - l , ... , Ao inductively as follows: 

1 \ Ad 

and for i = k - 2, ... , 0: 

A '= {Attr~i \ (AHI U ... U A k )) if i even 
I . Attr~i(Ci \ U ... U A k )) if i odd 

The positional strategies for A and B are chosen as explained for the 
initial cases A k , Ak1 . Now we have 

i even i odd 

For the correctness, one verifies by induction on j = 0, ... , k: 

i=}~-j 

i even 

k 

U Ai <;;; W A 

i=}~-j 

·i odd 
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iNe do not give this proof in detail; it is done in analogy to the case of 
reachability games (Section 4.1). Q.E.D. 

Returning to the solution of weak Muller games, we first note that the 
claim of Theorern :3.1(a) on the mernory size of a finite-state winning strat
egy memory states over a game graph with n states) is clear from the 
game simulation using the structure of appearance record. It is remarkable 
that this method yields a finite-state winning strategy (for either player) 
where the transition structure depends solely on the underlying game graph; 
the winning condition given by the family F enters only later in the defini
tion of the output function. 

5 lVI uller games and parity games 
5.1 An example 

As a preparation of the proof of the Buchi-Landweber Theorem 3.1(b), we 
consider a game that was introduced by Dziembowski et a1. (1997). The 
garne is parametrized a natural nurnber n; we consider here the case 
n 4. 

1'he game graph consists of A-states 1,2,3,4 (called number-states) and 
B-states A, B, D (called letter-states). There is an edge from each A-state 
to each B-state and conversely. 

The winning condition for B is the following, for a play p: The number 
of letter-states occurring infinitely often 'in p has to coincide with the highest 
n'umber that occurs infinitely often among the n'umber-states in p. More for
mally we can write IInf(p)n{A, B, C, D}I = max(Inf(p)n{l, 2, 3,4}). Note 
that t his defines a Muller game; the family F of accepting loops contains 
each set R such that IR n {A, B, C, D}I max(R n {I, 2, 3,4}). 

It is the job of player A to choose letter-states. If, for instance, player A 
decides after some time to stick just to the letters A and D (in some order) 
and not to visit Band C anymore, then player B should infinitely often 
pick state 2 and only finitely often the larger states 3 and 4. 

1')'om a naive point of view it is hard to imagine how player 13 can win this 
game. After a finite play prefix, nothing about the set lnf(p) rl {A, B, D} 
is decided (in fact, player A has complete freedorn to go for any nonernpty 
subset of {A B D}) However a strate"v has to select one number vertex " . , b~ 

on the basis of the current finite play prefix alone. 
Nevertheless, player B wins this game from each of the states, and the 

winning strategy illustrates again that for appropriate decisions on the fu
ture it may be sufficient to remember relevant facts from the past. We shall 
use a refined version of the appearance record, in which not only the visited 
states, but also their order of last 'vis'its is taken into account. In the present 
example, it suffices to record the list of previously visited letter-states in 



230 w. Thomas 

the order of their last visits-most recently visited states noted first. If the 
current (Ietter-) state was already visited before, then it is shifted from its 
previous position, say at place h in the list, to the front. The position h from 
which it was taken is underlined; we call it the "hit". This structure was 
introduced by McNaughton (1965) under the name "order-vector". Later 
Gurevich and Harrington suggested in their fundamental paper (Gurevich 
and Harrington, 1982) the name "latest appearance record" (LAR) under 
which the structure is known today. 

Let us study an example. Suppose player A picks successively the letter-
states A, C, D, B, D, D, D, . ... We note this sequence on the left, and 
the associated sequence of latest appearance records on the right: 

Visited letter 
A 
C 
C 
D 
B 
D 
C 
D 
D 

Reached LAR 
(A) 

(CA) 
(CA) 

(DCA) 
(BDCA) 
(DBCA) 
(CDBA) 
(DCBA) 
(DCBA) 

Now assume that player A indeed sticks to the states C and D and 
repeats these two infinitely often. Then the states A and B will finally stay 
on the last two LAR-positions and not be touched anymore. Thus the hit 
value will be only 1 or 2 from some point onwards, and the maximal hit 
value visited infinitely often will be 2. In fact, if only position 1 is underlined 
from some point onwards, t hen only the same letter would be chosen from 
that point onwards (and not two states C and D as assumed). 

We conclude that player 13 should always move to the number state 
named by the current hit value. Tn the scenario mentioned, this would 
mean to rnove finally only to states I or 2, and to 2 infinitely often. If at 
some point player A would decide to go to one state only, this state would 
be repeated at the head of the tAR and underlined; so the maximal hit 
value visited infinitely often would be I (and correct again). 

We leave it to the reader to show that "to rnove to the number given 
by the current hit value" is a winning strategy of player 13 in the game (see 
also Remark 5.1 below). Since the required memory is finite and the update 
rule is defined in terms of the previous LAR and the current state, this is a 
finite-state winning strategy. 

The example suggests a solution of Muller games in very close analogy to 
the case of weak Muller games, using the latest appearance record in place 
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of the appearance record. We shall introduce the LAR-structure in general 
(i.e., we take it to cover all states of the game graph under consideration 
and not only a subset, such as the letter-states in our example). From each 
LAR we extract an "index". Whereas in an appearance record we referred 
to its cardinality, we use the hit value for a LAR. Then we introduce the 
"parity condition" (a variant of the weak parity condition) as new winning 
condition and apply it in a game simulation. The solution of the parity 
game that arises in this way gives a solution of the original Muller game. 

5.2 Parity games 

Given a Muller game (G,F) with G (Q,QA,E) and Q {l, ... ,n}, we 
define the transition structure of a finite-state machine S = (8, Q, 80,5). Its 
state set is the set of LAR's over Q, and its purpose is to realize, given a play 
prefix i1 ... i k E Q*, the computation of the corresponding tAR. Formally, 
an LAR is a pair ((j 1 ... j, ), h) where the Ii are pairwise distinct states from 
Q and 0 ::; h ::; T. 'fhe initial state is 80 = (( ),0) (empty list and hit 0). 
The transition function 5 : 8 x Q -4 8 realizes the update of the LAR as 
indicated in the example above: We set 5(((i1 ... h), i) = ((ii1 ... ir), 0) if 
i does not occur in (i 1 ... . Otherwise, if·i = i k we cancel i from (i 1 ... 

to obtain .. . jT 1) and set 6(((i1 ... iT), h), i) = ((ij1 ... jTd, k). 
An essential ingredient of aLAR ((i1 .. . i,), h) is the hit set {i1, ... , 

of states listed up to and inc! uding the hit position h. Consider a play p over 
Q and the associated sequence of LAR's, denoted pl. If h is the maximal hit 
assumed infinitely often in /, we may pick a position in pi where no unlisted 
state enters any more later in the play and where only hit values::; h occur 
afterwards. From that point onwards the states listed after position h stay 
fixed, and thus also the hit set for the hit value h stays fixed. We call this 
set the hd set for the maxirnal hit occurring infinitely often in pl. 

Remark 5.1. Let p be a sequence over Q and / be the associated sequence 
of LAR's. The set Inf(p) coincides with the hit set H for the maximal hit 
h occurring infinitely often in pl. 

Pmoj. Consider the point in p from where no new states will occur and 
where all visits of states that are visited only finitely often are completed. 
After a further visit of each state in Inf(p), these states will stay at the head 
of the LAWs (in various orders), and the hit values will be ::; k: Ilnf(p)l. 
It remains to show that the hit value in pi reaches k again and again (so 
that k is the maximal hit occurring infinitely often in /). If the hit was 
< k from some point onwards, the state q listed on position k would not be 
visited later and thus not be in Inf(p). Q.E.D. 

Using the rernark, we can reformulate the Muller winning condition for 
the play p: The hit sct for thc highest hit occurring infinitely often in pi 



232 W. Thomas 

belongs to F. 'fhis allows us to extract two data from the LA R's which are 
suffkient to decide whether the play p satisfies the Muller condition: the 
hit value and the information whether the corresponding hit set belongs to 
F. We combine these two data in the definition of a coloring of the LAR's. 
Define, for h > 0, 

.. {2h C(((Zl ... 1.,), h)) := 
2h -1 

if {iI, ... , id E F 

if {iI, ... , id rt F 

and let c(((i l ... 0)) = 0. 
Then the Muller condition Inf(p) E F is satisfied iff the rnaximal color 

occurring infinitely often in C(p' (0) )C(p' (1)) ... is even. This is a "parity con
dition" (as introduced by Mostowski (1984) and Emerson and Jutla (1991)). 
The only difference to the weak parity condition is the reference to colors 
occurring infinitely often rather than those which occur at all. 

In general, the parity condition refers to a coloring c : Q ---> {O, ... ,k} 
of a game graph G; it is the following requirement on a play p: 

V (::Jwi: c(p( i)) = j 1\ -,::Jw i : c(p(i)) > j) 
j even 

The pair (G, c) with this convention for the winning condition for player B 
is called a parity game. 

Similar to the case of weak Muller games, one can set up a game simula
tion of a Muller game F) by a parity game (c;t, c): We use the finite-state 
machine S introduced before that transforms a given play p over G into the 
corresponding sequence pi of LAWs (realized in the states visited by S), 
and we use the coloring c defined above. 'T'he game graph G ' is fixed as in 
Section 4.3 above, using the new machine S. vVe obtain the game simulation 
(G, F) :::;5 (G' , c) where (G' , c) is a parity game. 

R.emark 5.2. There is a variant of S in which some of the states are spared. 
We cancel the initial LAR's (corresponding to hit value 0), starting (over 
states 1, ... ,n) with the LAR ((l... 1) rather than (( ),0), and keeping 
the update rule as before. With this change, one cannot distinguish between 
first and repeated visits of states, but clearly this loss of information is 
inessential for the satisfaction of the winning condition. 'fhe number of 
states of the reduced machine is then n! . n over a graph with n states. 

One can use S as the transition structure of automata realizing winning 
strategies in the Muller game (G, F). In order to provide also the out
put function, we have to solve parity games, again by positional winning 
strategies. 
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Theorem 5.3. A parity game (G, c) is determined, and one can compute 
the winning regions ~VA, H'B and also construct corresponding positional 
winning strategies for the players A and B. 

Proof. Given G (Q,QA,E) with coloring c: Q ----> {O, ... ,k} we proceed 
by induction on IQI, the number of states of G. 

The induction start (Q is a singleton) is trivial. In the induction step 
assume that the maximal color k is even (otherwise switch the roles of 
players A and B). Let q be a state of the highest (even) color k and define 
Ao AttrB ({ q}). As the complement of an attractor, the set Q \ ,10 induces 
a subgame. The induction hypothesis ensures a partition of Q \ Ao into the 
winning regions U A, U B of the two players (with corresponding positional 
winning strategies) in this subgame. 

\Ve now distinguish two cases: 

1. From q, player B can ensure to be in U B U in the next step, 

2.f)·om q, player A can ensure to be in U A in the next step. 

Let us first verify that one of the two cases applies (which gives a kind of 
local determinacy). Assume Case 1 fails. If q E QB, then all transitions 
from q have to go to u'4, otherwise we would be in Case l. By the same 
reason, if q E Q A, then some transition from q goes to U A; so Case 2 applies. 

In Case 1, one shows W B = U B UAttrB ({ q}) and W A = UA , applying the 
positional strategies of the induction hypothesis over U A, U B, the attractor 
strategy over AttrB ({ q}), and (if q E Q B) the choice of the next state from q 
according to Case 1. For the first claim, note that a play in U B U Attr B ( {q} ) 
either remains in U B from some point onwards, whence Player B wins 
induction hypothesis, or it visits (by choice of player A) the attractor Ao and 
hence q again and again, so that player 13 wins by seeing the highest color 
(even!) repeatedly. The second c1airn WA UA is now clear by induction 
hypothesis. 

We turn to Case 2. In this case we know that q E AttrA (U,.t) and 
consider the set Al = AttrA(UA U {q}), clearly of cardinality?: l. So we 
can apply the induction hypothesis to the subgame induced by Q \ A 1 . We 
obtain a partition of this domain into winning regions VA, VB for A and B, 
with corresponding positional winning strategies. Now it is easy to verify 
W B VB and WA VA U A 1 , with positional winning strategies again 
provided by the induction hypothesis and the attractor strategy over A 1 . 

Finally we note that the inductive construction can be turned to a re
cursive procedure which produces, given G and the coloring c, the desired 
winning regions and positional strategies. Q.E.D. 

The recursive procedure appearing in this proof involves a nested call 
of the inductive hypothesis, which means that for each induction step the 
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computational effort doubles, resulting in an overall exponential runtime. It 
is known that the problem "Given a parity game (G, c) and a state q, does q 
belong to the winning region of B?" is in the complexity class NP n co-NP. 
Whether this problem is decidable in polynomial time is one of the major 
open problems in the algorithmic theory of infinite games. 

As mentioned above, Theorem 5.3 on positional determinacy of parity 
games completes the solution of Church's Problem. The claim on the num
ber of states of a finite-state winning strategy (n! . n memory states over 
a graph with n states) is clear from Remark 5.2. As shown in (Dziem
bowski et al., 1997), the factorial function also supplies a lower bound on 
the memory size of winning strategies in Muller games. 

It is worth noting that the claim on positional determinacy of parity 
games also holds for infinite garne graphs (however, without a statement on 
computability of winning strategies). This "infinite version" of the theorem 
can be applied for the complementation of automata over infinite trees (see 
Thomas, 1997). 

6 Conclusion 
Let us recall the three major steps for a solution of Church's Problem: 
First we relied on a translation from the logic SIS to Muller automata, 
which were then changed into game graphs with Muller winning condition. 
F)'orn Muller garnes we constructed parity games via the LAR structure; 
and finally we presented a solution of parity games. All three steps are 
nontrivial. As mentioned, the first step involves a non-elementary blow-up 
(from length of formula to size of automaton). For each of the other two 
steps, an exponential time procedure was presented; a direct construction is 
possible, however, resulting in a single exponential altogether Zielonka, 
1998). On the other hand, our two-step approach showed that finite-state 
winning strategies for a Muller game over a graph G can be constructed 
with a transition structure that depends on G alone, and that only for the 
output function the winning condition has to be invoked. 

Church's Problem and its solution were the starting point for a highly 
active area of research in computer science, first restricted to pure automata 
theory, but in the last 20 years with a great influence in algorithmic ver
ification and prograrn synthesis. A problem in current research is to find 
classes of infinite game graphs over which games with !VISO-definable win
ning conditions can still be solved algorithmically. Some results (on so-called 
pushdown graphs) are mentioned in (Gradel et al., 2002). Another direction 
is to modify or to generalize the specification language in Church's Problem 
(see, e.g., Rabinovich and Thomas, 2007). In a wider context, more general 
models of games are studied, for instance "concurrent games" (where the 
two players move simultaneously), "timed games" (generalizing the model 
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of timed automata), stochastic games (in which random moves enter), and 
multiplayer games. 
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Abstract 

We introduce a modal language which involves the concept of depen
dence. We give two game-theoretic definitions for the semantics of the 
language, and one inductive, and prove the equivalence of all three. 

1 Introduction 
Ts it possible that in the future currency exchange rates depend only on gov
ernment decisions? It is perhaps possible, but it is certainly not necessary. 
In (Viiiiniinen, 2007) we outlined the basics of the logic of dependence. Tn 
this paper we take it upon ourselves to start a study of the logic of "possible 
dependence" . 

By dependence we mean dependence as it occurs in the following con
texts: Dependence of 

• a move of a player in a game on previous moves 

• an attribute of a database on other attributes 

• an event in history on other events 

• a variable of an expression on other variables 

• a choice of an agent on choices by other agents. 

'vVe claim that there is a coherent theory of such dependence with appli
cations to garnes, logic, computer science, linguistics, economics, etc. 

There is an earlier study of the closely related concept of independence in 
the form of the independence friendly logic, by Jaakko Hintikka (1996). Tn 
that approach independence is tied up with quantifiers. We find dependence 
a more basic and a more tractable concept than independence. Also, we 
find that dependence (or independence) is not really a concept limited to 
quantifiers but a more fundamental property of individuals. Likewise, we do 

Krzysztof R. Apt, Robert van 
'Texts in Logic and Gan1es 4) 

Perspecti'ues on Garnes and lrderaction. 
Press 2008, pp. 237-254. 
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not study here dependence or independence of modal operators from each 
other. 

The basic concept of our approach to the logic of dependence is the 
dependence atom: 

=(PL'" ,Pn, q). (l.l) 

with the intuitive meaning that q depends only on Pl .. . Pn. The quantities 
Pl .. ·Pn and q can be propositions or individuals, in this paper they are 
propositions. 

Definition 1.1. The modal language of dependence has formulas of the 
form: 

l. p, q, ... proposition symbols 

2. =(Pl, ... ,Pn, q) meaning "q depends only on Pl·· ·Pn" 

3. Av B 

4. -,A 

5.0A 

The logical operations DA -,O-,A) and A /\ B -,A V -,B), 
A ----+ 13 (i.e., -,A V B), A +--+ 13 (i.e., (A ----+ B) /\ (13 ----+ A)), are treated as 
abbreviations. 

The intuition is that a set of nodes of a Kripke structure satisfies the 
formula (Pl,' .. ,Pn, q) if in these nodes the truth value of q depends only 
on the truth values of Pl ... Pn. Note that this criterion really assumes, 
as emphasized in a similar context in (Hodges, 1997), a set of nodes, for 
one cannot meaningfully claim that the propositional symbols true or false 
in one single node manifest any kind of dependence. Figures 1 and 2 give 
examples of dependence and lack of it. 

We think of the sentence 

(p, q) .1\ A) 

as being true in a Kripke structure if every node accessible from the root 
has access to a node with A in such a way that in these nodes q depends 
only on p. A practical example of such a statement could be: 

Whatever decisions the governments make in the next 10 year'S, it is 
possible that by the yeaT 2050 the sea levels rise and whether the rise 
is over 50 cm depends only on how many comdries have red1Lced their 
gr'eenho'itse gas emissions. 

We define now the game-theoretical semantics of our modal dependence 
language: 
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FIG URE 1. q depends only on p in X. 

FIGURE 2. q does not depend only on pin Y. 

Definition 1.2. The semantic game G 1 (A) is defined as follows: Positions 
are of the form (s, B, d), where s is a node of the Kripke structure, B is 
a modal formula and d is a player (lor II). In the beginning of Gsem(A), 
played at So, the position is A, II). The rules of the game are: 

l. Position is (s,p, d): Player d wins if p is true in s, otherwise the 
opponent wins. 

2. Position is (s, =(p1, ... ,Pn, q), d): Player d wins. 

3. Position is (s, ,A, d): The next position is 
opponent of d. 

A, d*), where d* is the 

4. Position is (s, A V B, d): Player d chooses C from {A, B}. The next 
position is (s, d). 

5. Position is (8, OA, d): Player d chooses a node s', accessible from 8. 
The next position is (s', A, d). 
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• Vl : p, q 

s 

FIGURE ~i. A Kripke model M. 

A strategy 0- of d is uniform if in any two plays where d uses 0- and 
the game reaches a position (s,=(Pl, ... ,Pn,q),d) in the first play and 
(s', ... ,Pn, d) in the second play, with the same subformula 

... ,Pn, q) of A and the same truth values of Pl, ... ,Pn, the truth 
value of q is also the same. (By the "same subformula" we mean the same 
formula occurring in the same position in A.) In the extreme case of =(p), 
the truth value of P has to be the same every time the game ends in position 
(s, d) with the same (p). 

Note that the game Gsem (A) is determined and a perfect information 
game. Thus one of the players has always a winning strategy. However, 
there is no guarantee that this winning strategy is uniform Section 2). 
Thus the requirement of uniformity changes the nature of the game from 
determined to non-determined. In a sense the game loses the perfect in
formation characteristic as the player who counts on a dependence atom 
=(Pl, ... ,Pn, q) being true has to choose the possible worlds without look
ing at ot her parameters than Pl, ... ,Pn, as far as the trut h of q is con
cerned. Rather than putting explicit information related restrictions on the 
moves of the players, we simply follow how they play and check whether the 
moves seem to depend on parameters not allowed by the winning positions 
(s, =(Pl, ... ,Pn, q), d). In a sense, a player is allowed to know everything all 
the time, but is not allowed to use the knowledge. 

Definition 1.3. A is true at a node s if player II has a uniform winning 
strategy in the game aem (A) at s. 
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1'he sentences 

ODq 

O[J=(p, q) 

DD(p V -,p) 

241 

are all true at the root of the Kripke model of Figure 3. By the definition of 
the meaning of the negation, -,A is true in a node 8 if and only if player I has 
a uniform winning strategy in position (8, A, II). By a logical consequence 
A=} B in this context we mean that the formula B is true in every Kripke 
model at every node where A is true. Respectively, A {c} B means that 
both A =} Band B =} A hold. Finally, A is called valid if it is true in every 
Kripke structure at every node. 

Example 1.4. 

1. A /\ (A -> B) =} B 

2. A =} (B -> A) 

3. (A -> (B -> C)) /\ (A -> B) =} A -> C 

5. A V B {c} B V A 

6. A /\ B {c} B /\ A 

7. A/\A{c}A 

8. A /\ (B /\ C) {c} (A /\ B) /\ C 

9. A V (B V C) {c} V B) vC 

10. =(p, q,T) {c} =(q,p,r) 

11. (p, q) /\ (q, r)) =} r) 

12. =(p, T) =} =(p, q, r) 

13. If A is valid, then so is DA 

14. D(A ---> B) /\ DA =} DB 

15. DA /\ DB {c} D /\ B) 

16. OA V 013 {c} O(A V B) 
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2 An example of non-determinacy 
Consider the Kripke rnodel N[ of Figure :3. The sentence 

OO(p +--+ q) 

is clearly true at the root s of the model, as both extensions of 8 have an 
extension in which p and q have the same truth value. On the other hand, 
the sentence 

A: DOC (p) A. (p +--+ q)) 

is not true at the root for the following reason. After the move of player 
I, the node is t or It. Suppose it is t. Now player II, in order not to lose 
right away, has to commit herself to =(p) and the node with p /\ q. Suppose 
the game is played again but Player I decides to move to node li. Now 
player II has to commit hersel f to (p) and the node with 'p /\ 'q. At this 
point we see that the strategy that Player II is using is not uniform, for two 
plays have reached the same dependence atom =(p) with a different truth 
value for p. Cl'his contradicts the very definition of uniformity. However, the 
sentence 

,A: ,OO( =(p) /\ (p +--+ q)) 

is not true either, that is, neither does Player I have a uniform winning 
strategy in position (8, A, II). To see why this is so, let us assume I has a 
winning strategy (uniform or non-uniform) in position (s, A, II) and derive 
a contradiction. The position 

(8, (p) /\ (p +--+ q)), II) 

is actually the position 

(8, ,0,0(=(p) /\ (p +--+ q)), II), 

from which the garne moves automatically to position 

(8, O,O(=(p) /\ (p +--+ q)), I). 

So in this position, according to the rules, Player I makes a move and chooses 
according to his strategy, say, t. 'rVe are in position 

(t, ,O( (p) A. (p +--+ q)), I) 

from which the garne moves automatically to position 

(t, O(=(p) /\ (p +--+ q)), II). 
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Now it is Player II's turn to make a choice. \lVe let her choose the node with 
p /\ q. So we are in position 

(V1,=(p) /\ (p f--'> q),II) 

which leads to the position 

(V1" (p) V ,(p f--'> q), I). 

Player I is to move. He does not want to play ,(p f--'> q) for that would lead 
to position 

that is, 
(V1,p f--'> q, II), 

which is a winning position for Player ll. So Player 1 is forced to play, (p), 
leading to position 

(Vi, ,(p), I), 

that is, 
(VJ, (p), II). 

But this is a winning position for Player II, too. So again I has lost. If Player 
I moved ti instead of t, the argument would be essentially the saIne. So we 
may conclude that T simply does not have a winning strategy in position 
(s,A,II). The game G,,,'m(A) is in this case non-dctcrmincd. 

We may conclude that the sentence A V ,A is not true at the root of 
M. Thus the Law of Exchtdcd Middlc is not valid in this logic. Also, 
the implication A ---+ A is not valid. How can this be understood? The 
explanation lies in our game-theoretic concept of truth. For Player II to 
have a uniform winning strategy in position (s, A ---+ A, II), she has to 
count on herself or Player I having a uniform winning strategy in position 
(8, A, II). As we have seen, the game asm (A) has no Gale-Stewart Theorem 
to guarantee it being determined. \Ve have to give up in the context of 
dependence logic the idea that the meaning of A ---+ B is that if A is true 
then B is true. Rather, we should think of A ---+ B meaning that if Player T 
does not have a uniform winning strategy in Gsem(A), then Player II has a 
uniform winning strategy in Gsem(B). 

3 A non-idempotency phenomenon 
Consider the Kripke model N of Figure 4 and the sentence 

B: D=(p). 

It is clear that although Player II trivially wins every round of the game 
Gsem (B) at s, she does not have a uniform winning strategy at 8, because 
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FIGURE 4. A Kripke rnodel N. 

depending on which extension of 8 Player I chooses, the value of p is true 
or false. On the other hand, Player I does have a uniform winning strategy, 
namely he simply plays the node with p during every round of the game. 

Let us then look at 
c:O (p)V (p)). 

Now Player II has a uniform winning strategy: If I plays the node with 
p, she plays the left disjunct, and otherwise the right disfanct. So we have 
shown that 

O(D V D) 'I'} OD. 

4 Inductive truth definition 
'fhere is an alternative but equivalent truth definition, sirnilar to the in
ductive truth definition of Hodges (1997) for Hintikka's IF logic. The basic 
concept here is a set X of nodes satisfying a formula, rather than a single 
node. We define: 

.. p is true in X if p is true in every node in X . 

.. p is true in X if p is false in every node in X. 

.. (Pl, ... ,Pn, q) is true in X if any two nodes in X that agree about 
p], ... ,Pn also agree about q . 

.. • (P],···,Pn,q) is true in X if X 0 . 

.. A V B is true in X if X is the union of a set where A is true and a set 
where B is true (see Figure 5) . 

.. A /\ B is true in X if both A and Bare. 

.. 0 A is true in X if A is true in some set Y such that every node in X 
has an extension in Y (see Figure 5) . 

.. oA is true in X if A is true in the set consisting of all extensions of 
all nodes in X (see Figure 5). 
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AvB 

FIGURE 5. T'ruth definition. 

More formally: 

Definition 4.1. A is true in X if and only if (X, A, II) E T, where the set 
T is defined as follows: 

(Tl) (X,p, II) E T iff p is true in every node in X. 

(T2) (X,p,l) E Tiff 'p is true in every node in X. 

(T3) (X, =(Pl, ... , Pn, q), II) E T iff any two nodes in X that agree about 
Pl, ... ,Pn also agree about q. 

(T4) (X, (PI, ... , Pn, q), T) E T iff X 0. 

(T5) (X, ,A, d) E T iff (X, A, d*) E T 

(T6) (X, A V B, IT) E T iff X is contained in the union of a set Y and a set 
Z such that (Y, A, II) E T and (Z, B, II) E T. 

(T7) (X, A V B, 1) E T iff X is contained in the intersection of a set Y and 
a set Z such that (Y, A, I) E T and (Z, B, I) E T. 

(T8) (X, 0A, II) E Tiff (Y, A, II) E T for some set Y such that every node 
in X has an extension in Y. 

(T9) (X, 0A, J) E T iff A, I) E T for the set Y consisting of all exten-
sions of all nodes in X. 

An easy induction shows that, as shown in (Hodges, 1997): 

Lemma 4.2. 

1. (X, A, d) E T implies (Y, A, d) E T for all Y <;;; X. The Downward 
elos'ure PTOperty. 
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2. A /\ -,A, II) E T' implies X = 0. The Consistency Property. 

From the Downward Closure Property it follows that (T6) can be re
placed by 

(T6)' (X, A V B, II) E T iff X is the union of a set Y and a set Z such that 
(Y, A, II) E T and (Z, B, II) E T. 

and (T7) can be replaced by 

(T7)' (X, A V B, I) E T iff (X, A, I) E T and (X, 13, I) E T. 

The way we defined the game (A) there was always an initial node 
from which the game started. We can generalize the setup up a little by 
allowing a set X of initial nodes. A strategy of a player d in C;,mn (A) 
is a winning strategy ·in X if the player wins every game started from a 
position (s, A, II), where sEX. The strategy is uniform in X if in any 
two plays P1 and P2, started from positions (Xl, A, II) and (:);2, A, IT), with 
X], :C2 EX, where d uses the strategy and the game reaches a position 

=(p1, . .. , Pn, q), d), with the same =(p1, . .. , Pn, q) and the same truth 
values of P1, ... ,Pn, the truth value of q is also the same. Thus a player has 
a uniform winning strategy (in the original sense) at s iff he or she has a 
uniform winning strategy in {s}. 

Theorem 4.3. If in the game Gsem(A) Player II has a uniform winning 
strategy in the set X, then (X, A, II) E T, i.e., A is true in the set X. 

Proof. Suppose II has a uniform winning strategy (J in Gsem (Ao) in the set 
Xu. We prove by induction on subformulas A of Ao that if r(A, d) denotes 
the set of nodes s such that position (s,A,d) is reached while Gsem(Ao) is 
being played, II following (J, then (r(A, d), A, d) E T. This will suffice, for 
the initial position (s, Ao, II) can be reached for any s E Xo and so it will 
follow that Ao is true in Xo. When dealing with r(A, d) we have consider 
different occurrences of the same subformula of Ao as separate. So, e.g., 
=(p) may occur in in two different places and r( =(p), d) is computed 
separately for each of them. 

Case i: X 
sEX. Thus 

r(p, II). Since (J is a winning strategy, P is true at every 
p, II) E T by (T1). 

Case ii: X r(p, I). Since (J is a winning strategy, -,p is true at every 
sEX. 1'hus (X,p, T) E T by ('1'2). 
Ca.se iii: X r((p], ... ,Pn,q),II). Let us consider 8,t E X that agree 
about Pl, ... ,Pn. Since (J is a uniform strategy, sand t agree about q. By 
(T3), (X, ], ... , P.n, q), II) E T. 
Case iv: X = r(=(PL ... ,Pn, q), I). Since (J is a winning strategy of II, 
X = 0. By (T4), (X, =(PL ... , Pn, q), I) E T. 
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Case v: X = 1'( -,A, d). Note that X = 1'(A, d*). By induction hypothesis, 
(X, A, d*) E T, and hence (X, -,A, d) E T. 
Case vi: X 1'(Av B, II). Note that XC;;; YUZ, where Y 1'(A, II) and 
Z 1'(B, II). By induction hypothesis, (Y, A, ll) E T and (Z, B, ll) E T. 
1'hus A V B, II) E T by C1'6). 
Case vii: X 1'(A V B, 1). Note that X C;;; Y II Z, where Y 1'(A, 1) 
and Z 1'(13, I). By induction hypothesis, (Y, A, I) E T and (Z, B, I) E T. 
Thus (X, A V B, I) E T by (T7). 

Case viii: X = 1'( v A, II). For each sEX there is some Sf reachable from 
s that II chooses according to her winning strategy IY in position (s, vA, II). 
Let Y be the set of all such Sf. Note that then Y C;;; 1'(A, II). By induction 
hypothesis, (1'(A, II), A, II) E T. By (T8), (X, vA, II) E T. 
Case ix: X = r( v A, I). For each sEX there may be some Sl reachable 
from s that I could choose in position (8, vA, I). Let Y be the set of all 
such possible Sl (i.e., Y is the set of all possible extensions of all SEX). 

By induction hypothesis (Y, A, I) E T. By (T9), (X, v A, I) E T. Q.E.D. 

Corollary 4.4. If II has a uniform winning strategy in Gsem(A) at s, then 
A is true in {s}. 

5 Truth strategy 
We define a new game G2 (A), which we call the set game as follows: Po
sitions are of the form (X, B, d), where X is a set of nodes, B is a modal 
dependence formula, and d is either I or II. T'he rules of the game are as 
follows: 

(Sl) (X,p,II): Player II wins ifp is true at every node in X, otherwise I 
wins. 

(S2) (X,p,I): Player II wins ifp is false at every node in X, otherwise I 
wins. 

(S3) (X, =(po, ... ,Pn, q), II): Player II wins if any two nodes in X that 
agree about Pl, ... ,Pn also agree about q. Otherwise Twins. 

(S4) (X, (po, ... ,Pn, q), I): Player II wins if X 0, otherwise I wins. 

(S5) (X, -,A, d): The game continues from (X, A, d*). 

(S6) (X, A V B, IT): Player IT chooses Y and Z such that X C;;; Y U Z. 
Then Player I chooses whether the game continues from (Y, A, ll) or 
(Z, B, II). 

(S7) (X, A V B, I): Player II chooses Y and Z such that X C;;; Y n Z. Then 
Player I chooses whether the game continues from (Y, A, I) or (Z, B, I). 
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(S8) II): Player TJ chooses a set Y such that every node in X has 
an extension in Y. The next position is (Y, A, II). 

(S9) (X, <) A, I): The next position is (Y, A, I), where Y consists of every 
extension of every node in X. 

An easy induction shows that if Player II has a winning strategy in 
position (X, A, d), and Y S;; X, then she has in position (Y, A, d), too. From 
this fact it follows that (S6) can be replaced by 

(S6)' (X, A V B, II): Player II chooses Y and Z such that X = Y u Z. 
Then Player 1 chooses whether the game continues from (Y, A, ll) or 
(Z,B, TJ). 

and (S7) can be replaced by 

(S7)' (X, A V B, I): Player I chooses whether the game continues from 
(X, A, I) or (X, B, I). 

Theorem 5.1. If (X, A, TJ) ETA is true in X), then Player II has a 
winning strategy in Gset(A) in position (X, A, II). 

Proof. Suppose that (Xo, Ao, TJ) E T. The strategy of II in (A o) is to 
play in such a way that if the play is in (Ao) in position P = (X, A, d), 
then T(P) (X, A, d) E T. In the beginning the position is (Xo, AD, II) and 
indeed Ao is true at Xo. After this we have different cases before the game 
ends: 

Case 1: P = (X, --./1, d). By assumption, T(P) = --.;1, d) E T. By ('1'5) 
A, d*) E T. Now the game continues from position pi = (t, A, d*) and 

T(P I
) = (X, A, d*) E T. 

Case 2: P = (X, Av B, II). By assumption, T(P) = (X, Av B, II) E T. By 
(T6) there are Y and Z such that X S;; YUZ, (Y, A, II) E T and (Z, B, II) E 

T. So II plays Y and Z in Gset(Ao). Now I decides whether the game 
continues from position (Y, A, II) or from position (Z, B, II). Whichever the 
decision is, we have (Y, A, II) E T and (Z, B, II) E T. 

Ca ... "e 3: P = (t, A V B, I). By assurnption, T(P) = (X, A V B, I) E T. By 
(T7)', (X, A, I) E T and (X, B, 1) E T. Now the set game continues from 
position (X, A, I) or from position (Y, B, I, according to the decision of I. 
Whichever the decision is, we have (X, A, I) E T and (X, B, I) E T. 
Case 4: P = (t, II). By assurnption, T(P) = (X, TJ) E T. By 
(T8), (Y, A, II) E T for some set Y of nodes accessible from nodes in X. 
This set Y is the choice of I I in Gsct(Ao). Now the game continues from 
position pi (Y, A, ll) and T(PI

) (Y, A, ll) E T. 
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Case 5: P = (t, OA, T). By assumption, T(P) = (X, I) E T. By ('1'9), 
(Y, A, 1) E T for the set Y of all nodes accessible from nodes in X. Now the 
game continues from position pi = (Y, A, I) and T(pi) = (Y, A, I) E T. 

At the end of the game Gset(Ao) we have to check that II indeed has 
won. There are again several cases: 

Case 6: P = (X,p,II). Since T(P) = (X,p,IT) E T, p is true at every 
t E X by (1'1). So 11 has won. 

Case 7: P = (X, p, I). Since T(P) = (X, p, I) E T, -,p is true at every 
t E X by (T2). So IT has won. 

Case 8: P = (X, =(P1, ... ,Pn, II). Let s, t E X agree about P1,··· ,Pn' 
Since (X, =(p1, ... ,Pn, q), II) E T, we can conclude from (T3) that sand t 
agree about q. Player II has won. 

Case 9: P = (X, =(P1, . .. , Pn, q), I). So T(P) = (X, =(P1, ... , Pn , q), I) E 

T. By (T4), X 0. Player 11 has won. Q.E.D. 

6 Power strategy 
We shall describe a strategy in (A) which is based on playing CL,,(A) 
in the power set of the Kripke model, hence the name power strategy. 'fhe 
advantage of playing in the power set is that we can in a sense play many 
games in parallel and use this to get a uniform strategy in Gscm(A) (see 
Figure 6). 

Theorem 6.1. If Player II has a winning strategy in Gset(A) in position 
(X,A,II), then in Gsem(A), she has a uniform winning strategy in X. 

Proof. Suppose IJ is a winning strategy of II in (Ao) in position 
(Xo, Ao, II). 'J'he strategy of IT in Gsem(Ao) is to play so that if the play 
is in position P (t, A, d), then IT is in the game ae,(Ao), playing IJ, in 
position T(P) = A, d) with t E X. Tn the beginning the position in 
C;,,'m(Ao) can be any (s,Ao,l1), where s E Xo. In (Ao) the initial posi
tion is (Xo, Ao, II). So whichever P (8, Ao, II) the game Gscm(Ao) starts 
with, we can let T(P) (Xo, IT). After this we have different cases 
before the game ends: 

Case 1: P = ,A, d). By assumption, T(P) = (X, ,A, d) with t E X. 
Now the game continues from position pi = (t, A, d*) in Gsem (Ao) and from 
position T(P!) = A, d*) in (~e,(Ao). 

Case 2: P = (t, A V E, II). By assumption, T(P) (X, A V E, II) such that 
t EX. By (S6) the strategy IJ gives two sets Y and Z such that X ~ Y u Z, 
the game Gset(Ao) continues from (Y, A, II) or (Z, E, II). Since t E Y u Z, 
we have either t E Y or t E Z. In the first case II lets C = A, U = Y and 
in the second case C = E, U = Z. Now the game Gsem(Ao) continues from 
position pi = (t, C, II) and T(PI ) = (U, C, II). 
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FIGURE 6. Power strategy. 

Case 3: P = (t, A V B, I). By assumption, T(P) = (X, A V B, I). By (S7)', 
the game Gset(Ao) can continue from either (X, A, I) or (X, B, I). Now the 
game Gsem(Ao) continues from position (t, I), where C = A or C = B, 
according to the choice of 1. In either case we let T(PI

) = (X, I). 

Case 4: P = (t, OA, II). By assumption, T(P) = (X, OA, II). By (S8), 
the strategy (7 gives a set Y of nodes accessible from nodes in X and the 
game (Ao) continues from (Y, A, IT). Since t EX, there is an extension 
tt of tin Y. This is the choice of II in aem(Ao). Now the game continues 
from position pi (tt, A, II) and we define T(Pf) = (Y, A, II). 

Case 5: P = OA,I). By assumption, T(P) = (X,OA,I). By (S9), the 
game Gset(Ao) continues from position (Y, A, I) for the set Y of all nodes 
accessible frorn nodes in X. Since t EX, the extension It of t chosen by I 
is bound to be in Y. Now the game continues frorn position pi = (tt, A, I) 
and we let T(PI

) (Y, A, I). 
At the end of the game Gsem(Ao) we have to check that IT indeed has 

won. There are again several cases: 
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Case 6: P = (t,p, IT). Since T(P) = (X,p, II) and 0- is a winning strategy, 
p is true at t. So 11 has won C;,,>m(Ao). 

Case 7: P (t,p, J). Since T(P) (X,p,l) and 0- is a winning strategy, 
'p is true at t. So II has won (~"m(Ao). 

Case 8: P = (t, =(Pl, ... ,Pn, q), II). Player II has won Gsem(Ao). 

Case 9: P = (t,=(Pl, ... ,Pn,q),I). Now T(P) (X,=(Pl, ... ,Pn,q),I). 
Since 0- is a winning strategy, X 0. On the other hand, by assumption, 
t EX. So this case sirnply cannot occur. 

Now that we know that this strategy is a winning strategy, we have to 
show that it is a uniform strategy. Suppose therefore that two plays 

P6, ... , P:nl, where PI = (t~, dD 
end in the same formula Am = A~nl which is of the form =(Pl, ... ,Pn, q) 
and that the nodes tm. and t~n/ give P L, ... ,Pn the same val ue. Let 

T(Pd 

T(P{) = 

1, ... ,'m 

, A~, d~), i = 0, ... , rn/ 

be the corresponding positions in Gset(Ao). We show now by induction on 
i that Tn = rn/, Xi = Xi, Ai = Ai and di = dj. The case i = 0 is 
clear: Ao = AS, XO = X6 and do = dS = II. The inductive proof is 
trivial, apart from the case Pi = (ti, A V B, di = II. By assumption, 
T(Pi ) = (Xi, A V B, II). The strategy 0- has given the two sets Y and Z 
such that X <;;; Y U Z, and the game C:",(Ao) continues from (Y, A, II) or 
(Z, B, IT). Since t E Yu we have either t E YOI' t E Z. In the first case II 
lets C A, U Y and in the second case C B, U Z. Now the game 
Gsem(Ao) continues from position P i+1 (t, C, II) and T(Pi+d (U, C, IT). 
R.espectively, Pf A V B, IT) and T(Pf) (Xi, A V B, IT). The strategy 
0- (which does not depend on the elernents ti and t~) has given the same two 
sets Y and Z, as above, and the game (Ao) continues after T(Pd T(?[) 
from (Y, A, II) or (Z, B, II), according to whether t E Y or t E Z. So 

X[+l = Xi+l, Ai+l = Ai+ Land di+l = di+l. 
Thus tm. and t~n are in Xrn and give the same value to PL, ... , Pn. Because 

0- is a winning strategy of II, the nodes tm and t~n must give the same value 
also to q. We have demonstrated the uniformity of the strategy. Q.E.D. 

7 The main result 
Putting 'fheorenhs 4.3, 5.1 and 6.1 together, we obtain: 

Theorem 7.1. Suppose A is a sentence of the modal dependence language, 
and X is a set of nodes of a Kripke structure. The following are equivalent: 
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1. A, II) E T (i.e., A is true in the set X). 

2. Player II has a uniform winning strategy in Gsem (A) in the set X. 

3. Player IT has a winning strategy in (A) in X. 

Corollary 7.2. Suppose A is a sentence of the modal dependence language, 
and s is a node of a Kripke structure. The following are equivalent: 

l. ({s}, A, II) E T (i.e., A is true in the set {s}). 

2. Player II has a uniform winning strategy in C~em (A) at 8. 

3. Player IT has a winning strategy in Gset(,1) in {s}. 

The proved equivalence leads to easy proofs of the logical consequences 
and equivalences of Example 1.4. Let us consider, as an example 

[l(A ---> B) /\ DA =} DB. 

Let X be a set of nodes of a Kripke model. Suppose D(A ---> B) and DA 
are true in X. Let XI be the set of nodes accessible from nodes in X. Thus 
A ---> 13 and A are true in XI. Then by (1'6)', XI Y U Z such that ,A 
is true in Y and 13 is true in Z. By Lemma 4.2 and ('1'7), A /\ ,A is true 
in Y. By Lemma 4.2, Y = 0. So XI = Z and 13 is true in Xl We have 
demonstrated that DB is true in X. 

l'he point of Theorem 7.1 is that the first game G 1 with positions of 
the form (s, A, d) is non-determined and of imperfect information. The set 
game G 2 is determined and of perfect information. In an obvious sense 
the two games are eq·uivaleni. So we have been able to replace a 
non-determined game of imperfect information with a determined 
game of perfect information. The cost of this operation is that the de
tennined game of perfect information is played on sets rather than elements. 
So in a sense there is an exponential cost. 

8 Further developments 
We can define =(Pl, ... ,Pn, q) in terms of =(q) if we allow exponential 
growth of the formula size: =(Pl) ... ,Pn, q) is true in a set X if and only if 
the following formula is: 

( Pl/\···/\ Pn/\=(q))V 
('Pl/\···;\ Pn/\=(q))V 

V 

('Pl/\·· .;\ 'Pn /\=(q)) 
} 

')n d· . ~ ISJuncts. 
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iNe can define =(p) if we add to our modal dependence language a 
Boolean disjunction A VB B with the obvious meaning that A VB B is true 
in a set iff A is true in the set or B is, (and -{4 VB B) is true onlyl 
if X = 0). In terms of the game Gsem(Ao) this means that in position 
(8, A VB B, II) Player II chooses A or B, and in position (8, A VB B, I) Player 
I wins. A uniform winning strategy of II is required to satisfy the extra 
condition that player II has to make the same move every time the position 
(8, A VB B, II) is encountered, however many times the game is played. With 
these conventions =(p) is logically equivalent to p VB 'p. 

Merlijn Sevenster (2008) has proved a normal form for modal dependence 
language and used it to show that the modal dependence language has in 
fact a translation into basic modal language, but again at exponential cost. 
He also shows that the satisfaction problem of modal dependence language 
is N EXP cornplete. 

The finite information logic (Parikh and Vaananen, 2005) is based on de
pendence formulas of the type (A 1 , ... , An, x), with the meaning that the 
value of the variable x is chosen on the basis of the truth values of the formu
las A1, ... , An only. 'fhe formulas A L, ... , An are assumed to be quantifier 
free first order formulas (in fact they can be 2..2 formulas). Quantifiers are 
allowed only in a "guarded" situation such as ::Jx( =(A1 , ... ,An, i\ B) and 
V:c(=(A1, ... , An, ---> B). This is equivalent to the existential-universal 
fragment of first order logic, but at exponential cost in the length of the 
formula. The point of this logic is that it captures the concept of social 
software in the sense that people in social situations often make decisions 
on the basis of finite information about the parameters, indeed on the ba
sis of Lhe truth-values of some predicates, like "has a valid visa", "speaks 
Dutch," etc. 

In full dependence logic (Vaananen, 2007) first order logic is extended 
by dependence formulas ... ,Yn, with the meaning that the value of 
x depends only on the values of YL, ... , Yn. This logic is equivalent to the 
existential second order logic, and is thus quite powerful. 

If dependence formulas are added to second order logic, again no proper 
extension results. We may thus conclude that adding dependence to a logic 
increases the expressive power in the "middle range" of first order logic, but 
not in the case of the relatively weak modal logic and the relatively strong 
second order logics. 
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I This follows by symmetry from (T6) and 
Z is empty". 

if we add the condition "one of Y and 
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"Science is the knowledge of consequences, and 
dependence of one fact upon another." 

- Thoma .. s Hobbes 

1 It all depends, doesn't it? 
Dependence is one of these subtle concepts with so rnany connotations and 
usages, that any analysis of its meaning is predestined to fall short of some of 
its aspects. In the first paragraph of the book Dependence Logic, Vaananen 
(2007), states: 

'Dependence is a common phenomenon, wherever one looks: ecolog
ical systems, astronomy, human history, stock markets. With global 
warming, the dependence of life on earth on the actions of mankind 
has become a burning issue. But what is the logic of dependence?' 

The book promises a systematic study of the concept, and to show that 
there is a mathematical theory of dependence. 

The paper in this volume (Vaananen, 2008) goes even further. It presents 
a logic of 'possible dependence', where the intended sense of 'dependence' 
is specified a bit further as follows: 

By dependence we mean dependence as it occurs in the following 
contexts: Dependence of 

• a move of a player in a game on previous moves 

• an attribute of a database on other attributes 

• an event in history on other events 

• a variable of an expression on other variables 

• a choice of an agent on choices by other agents. 

In this short comment, we will not discuss the technical properties of 
Dependence Modal Logic. An excellent analysis of the proposed logic is 

Krzysztof R. Apt, Robert van 
'Texts in Logic and Gan1es 4) 

Perspecti'ues on Garnes and lrderaction. 
Press 2008, pp. 255-26:3. 
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made by Merlijn Sevenster (2008). Sevenster proves that the expressive 
power of dependence modal logic does not exceed standard modal logic, but 
that dependence modal logic can express certain properties more succinctly 
(witnessed by the fact that adding the dependence atoms to the language in
creases the complexity from PSPACE to NEXP). Sevenster also proposes an 
attractive alternative notation for the dependence atoms: dep(:l:l, ... , :I:n ; y) 
instead of =(Xl, ... , X n , y). 

Rather than going into technicalities, we will try to discuss more gen
erally what the dependence atoms, which one can see as declamtions of 
dependence between variables (,attributes') or propositions ('facts'), do and 
do not express. 

Actually, it was the request to comment on this work at the KN A W
workshop Ne1JJ pen;pecti1JeS on Games and Intemction that made rne realize 
that the notion of dependence as defined in these atoms does not always 
coincide with common uses of the notion of dependence. Before the KN A \V 
workshop, 1 wanted to prepare my oral comment to Professor Viiiiniinen's 
presentation. I was convinced that what I was going to say, should depend 
on what he would talk about, how could it otherwise count as a comment? 
So, I prepared my comment only after carefully reading t he material sent 
to me, and left openings for things that would come up during the actual 
talk. 

But in the break before the talk, a more experienced speaker confided me 
that "if you are asked to comment on somebody's work, just talk about your 
own work." At first, I was confused by this advice, because it conflicted with 
the dependence I sensed in the concept of 'comment'. But then I realized 
that this was ill fad LoLally cOllsistent with the rrmthemaLical Lheory of 
dependence presented by Viiiiniinen: I could just have prepared a fixed 
talk about my own work, even without reading the paper. According to 
Dependence Logic my comment would depend only on Jouko's talk: the 
cornrnent would not depend on anything (would be constant), therefore it 
would depend on anything! 

Fact 1. For any propositions p, q, ql, ... , qn: if =(p) is satisfied in a set of 
nodes, then so is =(q,p), and more generally: =(ql, ... , qn,p). 

'T'he conclusion could be that the dependence implicit in the notion of 
'to comment', is not just a functional dependence, but maybe a stronger 
sense of dependence. If you want to express that a different talk should 
amount to a different comment, one should add an injectivity condition on 
the function that establishes the dependence: With the usual dependence 
atoms (on variables) we have: =(:1:1, ... , X n , y) is true for a set of val uations 
(a team) if y = f(Xl, ... , for some f. But it is not necessarily the 
case that (:1:1; ... , xn) # (:I:~, ... , :I:~J implies f(Xl, ... , # f(:I:~, ... , 
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Adding injectivity condition would express a stronger property: that the 
talk determines the comment (which may be too strong actually for this 
application) . 

This discussion shows that the "common phenomenon" that dependence 
is (quoting V~iananen), is not so easy to capture mathematically. In this 
comment we explore the kind of dependence expressed in the dependence 
atoms as proposed for Dependence (Modal) Logic a bit further. 

2 What is dependence? 
In order to clarify a bit what it could possibly mean, we simply retrieve 
the 'common' meaning(s) of the word dependence from Merriam-Webster's 
dictionary: 

dependence 
1: the quality or state of being dependent; especially: the qua.lity or 
state of being influenced or determined by or subject to another 2: 
reliance, trust 3: one that is relied on 4 a: drug addiction (developed 
a dependence on painkillers) b: habituation 

If one proposes a rnathematical theory of dependence, it is good to spec
ify which sense of dependence one intends to formalize. It is clear frorn 
the contexts mentioned in the quote above from (V~iananen, 2008), that 
for example ontological dependence, as in "a child is dependent on his par
ents" (sense 2 and 3) falls outside the scope of Dependence Logic. (For an 
overview of theories of ontological dependence, see Lowe, 2005.) Obviously, 
also dependence in the sense of addiction (4) is not within the intended 
scope of Dependence Logic. The dependence atoms (q L, ... , qn, p) are 
declarations of dependence in the sense of 1: one fact is being deter
mined by other facts, or for variables: the value of one variable is somehow 
determined or at least correlated with the values of other variables. But 
still one can wonder what we mean exactly by that. 

3 A few interesting propositions 
Tn Dependence Modal logic, the dependence atorns will be evaluated in a set 
of nodes. The modal aspect of the logic is that this set of nodes evolves along 
the accessibility relations in the Kripke model, by taking the modalities 
as operating on sets of nodes, starting from the set containing the actual 
node (or nodes). For the evaluation of the dependence atom, it is only the 
corresponding set of valuations for the propositional variables that matters. 
In fact, the dependence in Dependence Modal Logic is a propositional rather 
than a modal dependence (this in contrast to the independence in IF-modal 
logics as discussed in 'T\llenheirno and Sevenster, 2006). 

We discuss some (propositional) facts in Dependence IVlodal Logic. 



258 F. Dechesne 

3.1 Non-idempotency and bivalence 

Let's look at the non-idempotency phenomenon pointed out in section 3 of 
(V~i~in~inen, 2008): the fonnula C D (p)) is shown to be true in 
the given model iV (ibid. Figure while B := Dp is not. 

Note that this does not depend on the chosen model iV, nor on the 
D-modality. In fact, for any propositional variable p in any set of nodes 
(valuations) W: Hi F (=(p)V =(p)), while W F =(p) only holds if all 
valuations in lV agree on p. It is easy to see that this fact 'expresses' the 
two-valuedness of the underlying propositional logic. 

Compare this with (first order) Dependence Logic, where (x) is true 
for sets of valuations that give :c a constant value, =(x)) for sets 
that give :/: at most 2 values, (=(:c)V =(x)V =(:/:)) at most 3, and so forth. 
T{) count the number of elements in a model, we need to put a universal 
quantifier in front (e.g., lix[=(x)V =(x)] is true only in models containing 
at most two elements). This is a difference with the two-valuedness of the 
propositional part of modal logic: this does not depend on a specific Kripke 
model, making the D-modality in a sense irrelevant. 

3.2 Does a consequence depend on its cause? 

VVhat could be the formal relation between causation and dependence: if 
one fact causes the other, does the one then also depend on the other? 
Tn the absence of a causation-connective, despite the fact that causation 
and (material) implication are notoriously different, we do a first test by 
investigating the following implicational formula. Does for each set of nodes 
Hi 

The answer can be seen to be 'no': take 

(where we identify the three nodes with their valuations for Po and pd. If 
we write out the implications, the question boils down to 

We split W at the disjunction. Only the subset {(po; 'Pl)} satisfies the 
first disjunct, so {(,po; Pl), (,po; ,pd} should satisfy the second. But it 
doesn't, because Pl gets a different truth value despite po's truth value 
being the same. 

However, note that both: 
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F (pO +--+ Pl) ---+ =(pl' po) 

If two atomic propositions are equivalent, then the truth value of the one 
is a boolean function of the truth value of the other: it is the same. So, 
equivalent fonnulas are always mutually dependent! 

3.3 Axioms for functional dependence 

One thing a mathematical theory of dependence could be able to bring, is 
an axiomatization of the notion of dependence. Armstrong's axioms from 
database theory, are known to be sound and complete for functional depen
dence. They are actually not formulated in terms of a s-tngle attribute that 
may depend on a sequence of attributes, but in terms of sets of attributes. 
If we write =(X, Y) for 'two database records that agree in the attributes 
in X, also agree in the attributes of Y', they are: 

Al If Y ~ X then =(X, Y) (trivial dependence or Reflexivity) 

A2 If =( X, Y) then =( X u Z, Y u Z) (A ugrnentation) 

A3 if =(X, Y) and =(Y, Z) then =(X, Z) (n'ansitivity) 

They are reflected in the following rules for the dependence atoms in DL 
(cf. also V~iananen, 2008, Example 1 1012): 

l. x) (trivial dependence or reflexivity) 

2. If =( :e, z) then y, z) (augmentation) 

:3. if y) and =(y, z) then =(x, z) (transitivity) 

4. If =(x, y, z) then =(y, x, z) (dependence is order irrelevant) 

5. If =( :e, x, y) then y) (dependence is resource insensitive) 

Of course, these are axiom schemes in the sense that they should be general
ized to arbitrary numbers of variables (e.g., also y, t, z) =} t, y, z)). 
Rules 4 and 5 now appear because of the switch from sets to sequences. 

These axioms are really for fund-tonal dependence, and their soundness 
can be easily checked by writing thern out in terms of the existence of 
functions. However, if we informally read the dependence atoms as 'depends 
(only) on', not all of them sound completely natural. For example, is it true 
that every attribute depends only on itself? And also, the augmentation rule 
2 amounts to the paradox of Fact 1: a constant (an attribute for which =(:e)) 
depends on not hing else, but at the same time it depends on anything else (= 
(Yl, ... , Yn, x)). These considerations make us a ware that Dependence Logic 
in fact remains a mathematical theory of the already quite mathematical 
functional sense of dependence. 
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4 Dependence versus independence 
\lVe make some remarks on the relationship between dependence and in
dependence, which is the central concept in Independence Friendly Logic 
(Hintikka, 1996). Instead of declaring dependence in an atomic proposition, 
the independence in IF-logic is declared at the quantifier: one lists the at
tributes on which some attribute is not supposed to depend, leaving the 
attributes on which it may depend to be determined by the context. This 
context is formed by both the other quantifiers within the formula, but also 
by the domain of the set of valuations (the 'team') for which the formula is 
evaluated. A detailed study of the effects of this latter part of the context 
can be found in (Caicedo et al., 2007), where it is shown how equivalence for 
open formulas can only be soundly defined by fixing a context of variables. 
We note that the translation procedure from IF-logic to Dependence Logic 
for sentences, given in (Vii~in~inen, 2007, p. 46), does not work for open 
formulas for this reason, as the following example shows. 

Example 2. Consider the IF-formula cp Ix y]. l'he translation 
into DL would be := 3y[=(y) 1\ x y]. This formula is only true with 
respect to sets of valuations in which the value assigned to :/; is constant 
(then we can extend every val uation with t he same constant assignment to 
y, thereby both satisfying =(y) and x = y). However, this is different for 
the original IF-formula cpo Consider the set of valuations V consisting of 
VI = f---+ O,Z f---+ 0) and V2 = f---+ 1,z f---+ 1). This is a set in which x is 
assigned two different values, hence it does not satisfy cp*. It does however 
satisfy the IF-formula cp, because we can let the value we assign to y depend 
on (by making it equal to) the value of z. 

To go from saying 'y must be independent of :/;' to 'y may depend on 
the variables other than :e', one needs to be able to determine the set X of 
all variables that y could possibly depend on. For open formulas, this set 
consists not only of variables occurring in the formula, but also on variables 
in the domain of the valuations that may not occur in the formula itself 
(like z in the exarnple). 

In connection to the example, it is interesting to note that rule 3 from 
the previous section formalizes the issue that makes the validity of Hodges' 
(1997) formula vx3z 3y/x[x yi frorn IF-logic counterintuitive. On the 
one hand, y is declared independent only from x, not excluding that it may 
depend on z. But z may depend on x, and then for y to depend on z implies 
to depend on x by transitivity. This apparently violates the declaration of 
independence frorn x. Dependence Logic makes this nicely explicit: 

v:dz3y[=(:e, z)/\ =(z, y) /\:e = y]. 

Indeed, it follows from the transitivity rule that y also depends on x in this 
formula. Note that adding an extra conjunction to this translation, trying 
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to enforce the independence requirement explicitly, does make the formula 
false, by contradiction: 

\ixjzjy[=(x, y) /\ (. =(:c,y)) /\:r: = y]. 

But not always do we get such clean-cut contradiction from a negated de
pendence atom. As noted in section 5.2 of (Sevenster, 2008), it is not really 
the case that negations of dependence ato~'i declare independence. Tn fact, 
a negated dependence atorn is only true in the empty set of nodes or valu
ations, hence will not in itself express independence in non-empty sets. In 
order to express independence, one needs to jump to the meta-level of second 
order logic (to express that there is no function witnessing the dependence). 

Dependence and independence are duals, but not really opposites in the 
contradictory sense. Therefore, it is not straightforward to make the switch 
from declaring dependence to declaring independence. 

5 Conclusion 
'I'here are several reasons why the topic of Dependence Logic is at horne 
within the theme New peTspect'ives on Games and Intemct·ion. There is a 
new peTspective in the focus on dependence rather than independence, as in 
IF-logic. 

Like IF-logic, the mathematical theory of dependence comes with a game 
theoretical semantics. Where IF-logic enlarged the field of logical games 
with games of imperfect information, Dependence Logic adds a uniformity 
condition on the winning strategies. This is a less standard generalization, 
in the sense that it is not part of standard game terminology. The cor
respondence with database theory, and correlations between attributes is 
more convincing in our taste. vVith respect to the interaction part: de
pendence can be seen as a form of interaction between facts. Note that the 
concept of (in)dependence does not arise in isolation (cf. Hodges, 2007). 

The main conclusion after considering several Dependence modal forrnu
las, is that the notion of dependence expressed in the dependence atoms, 
is strictly functional dependence. It allows to talk about functional depen
dence while keeping the function implicit (compare, for example = (y,:r:) 
with x = g(y) and =(q,p) with p +--+ (.q)). 

One can wonder what kind of dependence functional dependence actu
ally captures. It is a bit counterintuitive for a notion of dependence to have 
things that are both dependent and independent on anything (viz. con
stants). It seems that functional dependence expresses some kind of 'corre
lation', which we sense to be a weaker notion than dependence. 

But in the end, we think the historical (technical) evolution of logic 
provides the clearest view on the motivations for studying dependence and 
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independence between variables and propositions. Dependence of one vari
able upon another is already a natural feature in logical languages, by the 
structure (nesting of quantifiers). The original spark to study dependence 
and independence was the generalizations of the specific syntactic pattern 
built in in first order logic ('Frege's fallacy' Hintikka, 1996), and to see how 
they would behave and extend the expressive power of the language. A 
great motivational insight was Hintikka's idea to link the dependence of 
variables to availability of information in semantic games, and thereby in
dependence to imperfect information. But as many examples have shown 
(Janssen, 2002; Hodges, 1997), interpretation of the IF-formulas naturally 
in terms of what one generally understands as 'independence', is not so 
straightforward. 

Syntactic subtleties in the end turn out to be important spoilers for 
smooth and elegant results. 'I'his is shown in (Caicedo et aI., 2007) by the 
amount of work we need there in order to restore the Prenex Form Theorem 
for IF-logic. But using this syntactic result, we are able to make a syntactic 
gain for first order logic: by translating a first order sentence into it's IF
prenex form, and then skolemizing it, we avoid unneccesary arguments in 
the Skolem functions. With these final remarks, I have managed to follow 
the advice on commenting: to speak about my own work. 
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Abstract 

'vVe provide a syntactic framework for analyzing extensive-form games. 
Specifically, we correlate to every such game a "language" and axiom
atization. The language and the axiomatization, are presented as a 
class of sound and complete models, through which we explore the 
epistemic conditions for the reduction process introduced by Pearce 
(1984) and Battigalli (1997). 

1 Introduction 
Economists and game theorists use concepts of knowledge, belief, and ra
tionality to characterize solution concepts. In this work we present an epis
temic characterization of the red uction process introd uced by Pearce (1984). 
To do this, we use a syntactic environment in a way that correlates a lan
guage to every extensive-fonn game. 

A natural starting point is Aumann's work on backward induction (Au
mann, 1995). This work uses the usual knowledge partition setup for ana
lyzing interactive rationality in generic perfect information (PI) games. 

1.1 Aumann's model 

Let r be a PI game and let [2 be a set of states of the world such that every 
player i E I is equipped with an equivalence relation that forms a partition 
of [2. Knowledge is derived from this partition in the usual way. Aumann 
correlates a strategy to every player i in each state w E [2 Si (w) such that 
every player knows his own strategy in w. 

Given 1 hE IIi, playeri is defined to be h-rational in state w E [2 if it is 
not the case that he knows he has a better strategy in the sub-game that 
starts in h than s.;(w). Player i is rational if he is h-rational at each and 

1 Hi is the set of nOll-terminal histories in which player i is required to perform an 
action. 

Krzysztof R. Apt, Robert van 
'Texts in Logic and Gan1es 4) 

Perspecti'ues on Garnes and lrderaction. 
Press 2008, pp. 265-281. 
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FIGURE 1. 

every history h E lh Rationality is obtained if all players are rational. The 
mai n resul t of A urnann 's work states the following: 

Theorem 1.1. In generic PI games, common knowledge of rationality is 
consistent with and entails the backward induction strategy for every player. 

That is, if in a state of the world wEn all players are rational, all 
players know that they are all rational, and so on ad infinitum, then all 
players play according to their backward induction strategy. 

Aumann's seminal paper provided a formal logical characterization for 
the solution concept of backward induction and also gave rise to a fruitful 
debate on the nature of this solution concept in PI games. 

l'he main critiques of the paper, as well as of backward induction analysis 
in general, can be explained using the following example: Tn the game 
depicted in Figure I, Ann's dominating action is to exit on her first move. 
If for some reason Ann stays, then she should be interpreted by Bob as 
irrational. The event "Bob is called to play" contradicts Ann's rationality 
and, in particular, there is no reason to assume that he will stick to his 
backward induction strategy. That is, the demand for common knowledge 
of rationality in eveTY subgame seems awkward since it does not take into 
consideration the moves that lead to the history. 

l'he problem, as we see it, stems from the fact that the assumption of 
interactive rationality in the model ignores past history. A player does not 
update his knowledge (or beliefs) in the course of the game with respect 
to a possible deviation. The reason for that is that the model does not 
take into account the interactive nature of the game and does not allow for 
counterfactual reasoning. 

To circurnvent this inconsistency we are going to weaken some restrictive 
assumptions in Aumann's model. First, the language to be constructed 
includes a belief with probability one operator (rather than knowledge) for 
every player i E I in everyone of his histories h E Hi, and the belief revision 
is carried out using Bayes rule. 

Second, we replace the interactive knowledge operator by a stmng behef 
operator. Player i strongly believes in formula 9 if he believes in 9 at each 
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and everyone of his histories that are logically consistent with g. Using this 
forward-induction reasoning eliminates the consistency problem. 

This work has some similarities with (Battigalli and Siniscalchi, 2002). 
Battigalli and Siniscalchi assign to every game in extensive form a mathe
matical object called a belielcomplete type space. This object includes all 
possible Bayesian updating belief hierarchies that satisfy some coherence 
conditions. As they show in their paper, the use of belief-complete type 
space is crucial in conducting a comprehensive analysis independently of a 
specific belief type space. 

By using a belief with probability one operator rather than probabil
ity measures we avoid the complication involved in constructing a belief
complete type space (see Battigalli and Siniscalchi, 1999). Moreover, the 
use of syntax and logical consistency replace the completeness dernand in 
the type space construction and makes the analysis much more transparent. 

2 Framework 
Start with a generic PI game2 G. The game consists of: playeri's histories 
Hi, i.e, histories in which player i is active and the empty history, for each 
player i; tenninal histories Z; and a payoff to each player at each terminal 
history. A strategy for i is a function that assigns to each of i's histories 
h E Hi an action at h. Each strategy Si of i determines a set H( s.d of 
histories of i, namely, those that Si allo'ws (does not preclude by an action 
at a previous history). A plan of i is the restriction'! to H (Si) of a strategy Si. 

vVe now construct a formal language whose building blocks are the fol
lowing: 

Atornic sentences. 
These have the form "playeri uses plan p"," denoted simply Pi. 

Left parentheses and right parentheses. 

Connectives and operators of the propositional calculus. 
As is known, it is sufficient to take just "or" (V) and "not" (,) as 
primitives and in terms of them to define "and" (/\) and "implies" (---+). 

Belief operator. 
For each player i and history h E Hi) there is a conditional proba
bility one belief operator, denoted bh . Informally, bhg means that if 
player i were to observe history h, he would ascribe probability one to 
g. Players are not permitted to condition on their own actions. We 
will return to this demand when we represent the axiomatization. 

2 For simplicity we introduce the framework for PI games, but in fad our results hold 
for a more general case to be discussed in Sf'£tion 7. 

:3 Plans are sometimes called "strategies". Here we do not want a strategy to be defined 
at the histories that it excludes. 



268 I. Arieli 

A formula is a finite string obtained applying the following two rules in 
some order finitely often: 

• Every atomic sentence is a formula . 

• If f and 9 are formulas, so are (f) V (g), ,(f) and bh(f) for every 
non-terminal history h. 

The set of all formulas, called syntax, is denoted by X (for the game under 
consideration) . 

Let h and hi be histories, where h >-- hi means that h follows hi in 
the game tree (or that hi is a prefix of h). Let a be an action at history 
h E Hi and "i plays a" (or a for short) is a formula, namely w here the 
disjunction ranges over all plans of .j that either preclude h or call for him 
to playa at h. Also, "h is reached" (or simply h) is a formula, namely 
where the conjunction ranges over all players j with histories on the path 
to h, and at those histories, over all those actions d leading to h. If L is a 
set of histories, then "L is reached" (or simply L) is the formula Vh, where 
the disjunction ranges over all hE L. 

Let hE Hi be an h-plan ofi that allows h, and denote by Pi(h) the set 
of i's h plans. An opposition h-plan is a conjunction of plans that allow h, 
one for each player other than i. An h-plan Pi together with an opposition 
h-plan Pi determine a terminal history of the game tree z, where z >-- h 

and a payoff for i. The set of all opposition h-plans is denoted 
by P_.i(h) and the formula corresponds to "all players other thani play 
according to h" is: 

v P i· 

2.1 Inference 

To make our language meaningful we provide an axiomatization that will 
describe the game at hand. We start by introducing the axioms and rules. 
Here j, 9 represent formulas and h, h histories of the same player: 

T (1) 

V Pi where the disjunction is over all plans of player i. (2.1) 

'(Pi /\ qi) where Pi and qi are different plans of the same player i. (2.2) 

bh(f ---> g) ---> bh j ---> bh 9 (K). (3.1) 

bh j ---> ,bh ,j (lJ). (3.2) 

bh j ---> bF, bh j, where h, hE Hi. (3.3) 

,bh j ---> bh , bh j. (3.4) 

Pi <--* b h Pi for every hE Hi. (3.5) 
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(t/' f 1\ -, bh -,h,O) ---+ l/' f, where h -< h,. 

F'rom f ---+ 9 and f infer 9 (modus ponens). 

From f infer bh f (genemlization). 
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(:3.6) 

(:3.1) 

(4.1 ) 

(4.2) 

Axiom (I) includes all the tautologies, that formulas that assess the val ue 
true in every possible truth valuation. Axiorns 1) and correspond 
to the obvious demand that every player execute exactly one plan. Axioms 
(3.1) and (3.2) represent classical modal belief axioms. Axioms schema (3.3) 
through (3.5) combine versions of the "truth" and "introspection" axioms. 
Briefly, they say that players are sure of their own plans and beliefs. 

bh is interpreted as the belief of i at history h regarding the plans and 
beliefs of players other than himself. Therefore it makes sense to require that 
player i in h believes that players other than himself played in accordance 
with h, that is, bh hO. 

Axiom (:3.7), which deals with the belief revision policy, states that if 
i believed f at h, and also believed that fl.') "could" occur at h, then he 
believes I at fL It reflects the fact that players update their beliefs in a 
Bayesian way. 

(4.1) and are the two inference rules of the axiom system AX. A 
proof in AX is a finite sequence of formulas each of which is either an axiom 
or follows from those preceding it through the application of one of the two 
inference rules. A proof of a formula f is a proof whose last formula is f. 
f is provable in AX if there exists a proof of f written I-AX f. 

f is inconsistent if its negation is provable; otherwise it is consistent. 
Formulas It, ... are inconsistent if the conjunction of some finite subset 
of them is inconsistent; otherwise they are consistent. They entail 9 if the 
conjunction of some finite subset of them entails g. 

3 The theorem 
3.1 Rationality 

Instead of defining the rationality of a player in a particular history as 
in (Aurnann, 1995), we define rationality in ternh"; of the plan that a player 
uses and his beliefs. We replace the utility maximization demand by a 
weaker one; namely, we require that in every optional active history dictated 
by the player's plan, it not be the case that he believes that he has a better 
plan. 

Formally, we say that i uses mt'ional plan Pi if in every history h E 

H i (Pi)4 it is not the case that he believes that he has a better h-plan. A 

4 We denote by JJi(Pi) the set of player i's histories that are not precluded by the plan Pi. 
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formula that represents the rationality of a player of course needs to take 
into account playeri's payoff function in the game. 

For each pair of different plans of player i namely, Pi and qi, we denote 
by Q;i (qd the disjunction of opposition h-plans in Pith), where qi yields a 
higher payoftf) than Pi. The formula that represents that plan Pi is rational 
for i is the following: 

r(p'i) Pi---+ 1\ 1\ -,bhQ;Jqd· 
{hhEH(pi)} {qiEPi(h)lqdp,} 

Define player i to be rational if he uses a rational plan. That is, 

Pi 

In brief, a player is rational if it is not the case that he believes that he has 
a better plan in one of the histories that is consistent with his plan. This 
is in fact a much weaker demand than in (Aurnann, 1995), where a player 
is required not to know that he has a better strategy in eveTY one of his 
histories. 

Remark. We do not claim that the above formal definition of "rational
ity" is the only possible one. We do however claim that any reasonable 
definition entails the following: if i is "rational" in any commonly accepted 
sense (such as utility maximization), then certainly Ti obtains. The formula 
corresponding to all players being rational is 

3.2 Strong belief 

The strong belief operator is a substitutional concept for interactive common 
knowledge. The operator is external to the language and it is defined in such 
a way as to resolve the consistency problem discussed in the Introduction. 

We say that i stnmgly believes a formula 9 if, for each of i's histories 
h E Hi, either 

(i) i believes 9 at h, or 

(ii) 9 precludes h being reached, or, equivalently, 9 is inconsistent with h. 

5 I.e., q~i(qi) = V{P-i E P_i(h) I'ni(qi,p-i) > 1Li(Pi, 

we set Q~i (qi) = L 

if there are no slich P-i 
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Tn words, i continues to believe 9 no matter what happens, unless he reaches 
a history that is logically impossible under g. We can write it as a formula 
in the following way:6 

bh(g ). 

We say that 9 is strongly believed (or that there is strong belief of g, 

written sb(g)) if each player strongly believes g. M1tt1tal strong belief of 9 
of order n (written sbn(g)) is defined as sb(sbn1 (g)); that is, each iteration 
provides for strong belief of the foregoing iteration (note that the strong 
belief operator does not commute with conjunction). Common strong belief 
of 9 comprises all the formulas sbn (g) for all n. 

The main result of this paper states the following: 

Main Theorem. Common strong belief of rationality is consistent and 
entails the backward induction outcome in every PI game. 

4 Soundness and completeness 
Before proving the main theorem, we would like to present a class of simple 
models for our axiomatization that links the syntax to the semantics. The 
most preferable way would be to link the syntax to a class of models that 
characterize it by soundness and completeness relation. The way to do that 
would be by looking at the canonical model of the language with respect to 
the logic that our axiomatization defines. 

We would first like to introduce some more terminology: 
An axiom system Ax is said to be smInd for a language ~5 with respect to 
a class of models C if every provable formula f is valid with respect to C. 
An axiom Ax is said to be complete for a language ~5 with respect 
to a class of models C if every valid formula f with respect to C is provable 
in Ax. 

4.1 The canonical model 

Definition 4.1. A set of formulas r is max'imal cons'islenl with respect to 
Ax if it satisfies the following two conditions: 

a. r is consistent with respect to Ax. 

b. r is maximal with respect to that property. 

It can be seen that maximal sets do exist 7 and satisfy the following 
properties: 

6 If there are no h E Hi that are consistent with g, put sb" (g) =-.l. 
7 See (Chellas, 1984). 
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1. f is closed under modus ponens (4.1). 

2. f contains all the theorems of Ax. 

3. For every formula cP, cP E I' or 'CP E I'. 

4. For every formula cp, Z/;, cp V z/; E f iff cp E f or 1/) E f. 

5. For every formula cp, Z/;, cp /\ z/; E f ifl' cp E f and z/; E f. 

6. Every consistent set of formulas can be extended to a maximal con
sistent set. 

Now let n be the set of all maximal consistent sets; we call the elements of 
o states of the world. For each f E 0 and non-terminal history hE Hi, we 
define f j h to be the set of all formulas that player i h-beheves in f. That 
IS, 

rj h = {cp I bh cp E r}. 

For every player i and a non-terminal history h E Hi, define the usual 
accessibility binary relation Rh over 0 as follows: let f, A E 0, fRhA iff 
f j h ~ A. Let B0 be the set of all states of the world that player i considers 
possible at h E Hi) that is, 

Bf: = {A E 0 I fRhA}. 

Observation 4.2. rj h satisfies the following conditions: 

1. f j h is consistent (therefore B0/ 0). 

2. f j h is closed under 1) and (4.2) (if cp E r, then bh cP E f). 

:3. cp E rj h for every cp such that I-AX cpo 

Pmof. Part 2 follows from positive introspection, while part :3 is straight
forward from generalization. For part 1, assume by way of contradiction 
that rj h is not consistent. Then we have CPI, ... CPk E rj h such that 
AX I- ,( CPI /\ ... /\ CPk). By definition, bh CPI, ... bh CPI;, E f and so from 
K we get bh(cpI /\ .. . /\ CPI;.) E r but from part 3 bh '(CPI /\ .. . /\ CPk) E r, a 
contradiction to D. Q.E.D. 

Let rEO; we would now like inductively to define a truth assessment 
over the set n, where Ilcpll is the set of states in which cP holds: 

.. for atomic sentences, r ~ Pi ifl' P'i E r; 

.. for formula cP, f ~ -'CP ifl' r ~ cP; 

.. for formulas cP and -0, f ~ cP V 1/) f ~ cP or r ~ 
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Proposition 4.3. For every r E n and every formula cp, r ~ cp if}' cp E r. 

Proof. 'vVe will prove the proposition using induction on the depth of the 
forrnula. 

For formulas of depth zero the proof is immediate from the properties 
of maximal consistent sets and the truth assessment policy. We prove the 
proposition first for formulas of the form cp bh V), where 1/) is frorn depth 
n-1 ? o. The general case follows from the properties of maximal consistent 
sets and the truth assessment policy. 

{=: If cp E r then by definition of r I h, V) E 1'1 h; therefore V) E I\. for every 
I\. E Bi; by the induction hypothesis Bi; ~ 111/)11; therefore 1'1 cpo 

o=}: If I' ~ cp then Bp ~ 111,b11 so V; E I\. for every I\. such that I'lh ~ I'; 
therefore rl h I-AX 1,b for otherwise we could have constructed a maximal 
consistent set N such that 1'1 h U {,·0} ~ N. But because I'l h contains all 
the theorems of AX and is closed under 4.1 and 4.2 we get that 1,b E I'l h 
and therefore cp E I'. Q.E.D. 

Thus Proposition 4.3 leads to the following theorem: 

Theorem 4.4. n is a sound and complete model with respect to AX. 

We would like to state a few properties of the set Bp. 
Lemma 4.5. For every I' E n player i, and history h E Hi, BP satisfies 
the following propertieD: 

1. BP / 0. 

Proof. Part 1 is a consequence of part I in the previous observation. For 
part 2, assume Bp II II II / 0; then from the truth assessment policy we 
get I' I ' bh ,lzo, but by Lemma (4.1) that means that ,bh ,ho E r. If 
for some formula j, bh j E 1', then, because r is a maximal consistent set, 

t/' j /\ ,t/'· ,1,,0 E I'; therefore from (3.6) and (4.2) ti' j E I'. 

We show the following: if bh j E I' then btl j E r. Therefore 1'1 h ~ rl h 
and in particular B~ ~ Bp. This follows from the fact that if r I h ~ I\. then 

obviously I'll, ~ 1\.. From B{~ ~ II II (3.4) we get the desired result. Q.E.D. 

We would like to consider a class of models with the following properties 
for our game G. Let n be a set of states of the world. Each player i is 
equipped with an equivalence relation ~i over n and a plan Pi = Pi(W), for 
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each wE O. For every equivalence class TIi(W) and history h E H~, consider 
a nonempty set BtI(e')) C O. Let Ilpill be the event in which player i executes 
the plan Pi. We w~uld like the following properties to hold in the model: 

l. II W ~i Wi then pi(W) P·i(W' ). 

3. For I" h E Hi such that fl. >- h, if B~i(W) n II 
Bh .. n IlfLoll. ni(c~ ) 

i- 0 then Enh ( \ C 
'i W) 

We can think of the equivalence relation ~i over n as a relation that defines 
knowledge. l'hat is, W ~i Wi if player i cannot distinguish between these 
two states. The first requirement represents the demand that each player 
knows his own strategy. 

The second requirement entails that each player know his beliefs and 
that if the game gets to history h E Hi playeri will assign probability one 
to the set in which players other than himself played in accordance with h. 
'fhe third requirement relates to the belief revision policy. 

We call the above class of models for the game G, Al(G). The truth 
assessment in those models is as in the canonical case. \Ve are now in a 
position to state the main result of this chapter: 

Theorem 4.6. The class of models Al(G) is sound and complete with 
respect to Ax. 

Proof. The soundness part is omitted. Completeness is a straightforward 
consequence of Lemma 3.1 and Proposition 1. It suffices to note that the 
canonical model satisfies all the above requirements. The only thing left 
to define is the equivalence relation for every player i. Let 1',1'1 E n. We 
define l' ~i 1'1 if, for some history h E Hi 1'/ h = 1'1/ h, we have to show 
that B~ depends only in the equivalence class of r. But it turns out to be 
pretty clear, assurne that 1'/ h = 1"/ h for sorne h E H~ and let hi E Hi. 

If f E r/ hi then bh
' fEr and from the positive introspection property 

(3.3) bh billiE l' it follows that bh billiE 1'1. Therefore billiE 1'1 and 
1 E 1"/ hi, and vice versa. Therefore 1'/ hi = 1'1/ hi for every history hi E Hi, 
and so B~' = BF' for every history hi E Hi. Q.E.D. 

The set Bh is the set of states that plaver i considers possible in h lli(W) j , 

or, equivalently, the support of player i's measure in h. F'rom property 3 
we can see that the belief update is not strictly Bayesian; that is, we have 

8 IlhO II is t.he event. in rl where players other t.han i play in accordance wit.h history h. 
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B{\rw) ~ B~\rw) n II II rather than equality. If we want strict Bayesian 
upd~tlng we ~ust add the following axiom: 

(3.8) 

Denote by Ax' the axiom system Ax with the addition of (3.8) and by 
NIt (G) the class of models with equality in property 3. We then get the 
following theorem: 

Theorem 4.7. M+(G) is sound and complete with respect to Ax'. 

Proof. It suffices to note that in the canonical model axiom (3.8) entails 

that B~ ;;2 Bp rl II h,o II for every rEO. Assume by way of contradiction 

t hat B~ i2 BP n II II; then we have A E 0 such that A E B~ n II II but 

A rf- Bt~· By definition of Bt~, rj II g; A and so there exists f such that 

bh 
fEr and f rf- A and so from maximality of A 'f E A. Then, from (3.8), 

bh(f V ,h,o) E r and so f V ,h,o E A but E A, a contradiction to the 
consistency of A. Q.E.D. 

5 Proof of the Main Theorem 
Consider the following inductively defined series of plans: F'or every player 
i, let p i

O Pi, pOi llj/iPY and pO lljP?' Let n > 0 and assume 

p';n-l to be defined for every player i, and let Hn-l be those non-terminal 
histories that are reachable by profiles of plans from pn-l. Now Pi E Pt if 
it satisfies the following requirement: 

1. Pi E Pin 1 

2. For every history h E H(Pi) n Hn-I there exists PiE PTl.i 1 (h) such 
that Vi Pi) :?: lei for every qi E Pi(h). 

In words, a plan Pi E p!,-l is in Pt if and only if, for every non-terminal 
history h that is consistent with pn and Pi, there exists some opposition 
h-plan Pi E ~nl such that Pi is a best reply to all plans qi E Pi(h). 

Lemma 5.1. For every generic PI game there exists m such that, for every 
player i, Pt = ~m for every n > m. And, every profile P E pm leads to the 
unique backward induction outcome. 

Proof. See (Battigalli, 1996). Q.E.D. 

Lemma 5.2. A plan Pi of player i is consistent with the set of formulas 
{r, sbCr), ... , sbn(r)} iff P'i E P'!'+1. 
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Pmof. We prove the lemma using induction on n. 

Case n = O. 

=}: Let Pi E PP such that Pi tf- Pl. By the definition of P/ we have a history 
h E Hi such that, for every opposition h-plan Pi, there exists qi E Pi(h) 
with < tti(qi, . Let a Pi(h), the action prescribed by Pi in 
h. We argue that there exists an action b / a in h such that the maximal 
payoff in TUI'Il) 9 is smaller than the minimal payoff in TUI,u). Otherwise 
we could find an appropriate opposition h-plan Pi such that Pi would be 
a best reply to P-i. Let qi E Pi(h) such that qi(h) = b. Then, for every 
opposition h-plan P-i E P- i we have tti(Pi,P-J < . Therefore by 
the definition of Q;i(qi) (the set of all the opposition h-plans such that, for 
player i, qi yields a higher payoff than p.i), we have Q;J qi) = hO. From the 
definition of rationality T we have I-Ax T ;\ Pi --> T(Pi) ;\ Pi. But from the 
definition of T(Pi), I-Ax (r(Pi);\ Pi) --> ---, bh(Q~Jqi))' which together with 
axiom (:3.6) contradicts (3.2). 

<=: Let P E pl; we have to show that P is consistent with T. For every i, 
Pi E Pl, therefore, by definition, for every history II. E H(p.;) we can find 
an opposition h-plan, E Pi(h) such that P~i) 2 t!i(qi,P~J for 
every h-plan qi. Let n = TliE J Pi, where P ~i pi iff Pi = pi. Therefore the 
equivalence class ni(w) is determined by player i's plan. 

Start with hE H(Pi) and then put B;'i = (pi,P~J. Now for the other 

h, if h E H(Pi) n H(P~i)' put B;~ (P'i, or else choose phi and put 

B;i = (pi, P~i) and so forth until all the histories H(pd are covered. For 
II. tf- H(pd we can let B;~i be arbitrary. We repeat the procedure for all the 
players. One can see that our model belongs to the class M (G). 

To show that piT, it would be sufficient to show that P for 
every player i 10 This follows from the fact that for every history II. E H(pd 
and qi E Pi(h), tf- Q;,(qi). 

Case n > O. 
At this point we have the basis for the induction. Now assurne that the 

theorern is obtained for every 0 :s; k < n. iNe prove it for n as follows. 

=}: Let Pi be a plan of player i such that Pi tf- PI/H. If there exists a 
k :s; n - 1 such that Pi tf- ~kt 1, then by the induction hypothesis we are 
done. Assume that Pi E Pt. Then for some history h E H(Pi) n HTI and 
for every Pi E P""i n Pi (h) there exists a strategy qi E Pi (h) such that 

p-'i) < tt.t\% P-i ). Denote (a = p.i(h)); as in the n = 0 case there 
exists an action b in h such that the maximal payoff for player i in is 

9 The subtree Th corresponds to the subgame starting at history i, .. 
10 Obviously for qi Ie Pi, P f= 
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smaller than the minimal payoff" in TC1,b)Y Set Tn = sbk 
T (where 

sbo T T); by the induction hypothesis the only plans of players other than 
i that are consistent with /,11-1 are those in P~'i and therefore f- AX Tn - 1 -+ 

V p_iEpn
i 
P+ hE Hn, so by the definition of sbn

,. = sb(sbn 1 T) we have: 

Therefore f- AX Tn -+ bh [V PiC?"i Pi] denote by Pt(h) the set of plans of 

playeri in Pi that are consistent with the history h. By axioms (3.4) and 
(3.5) we have f-AX"'II -+ bh[V P~i(h)]. Let qi be a strategy of player i that 
allows hand qi(h) = b. So from both the assumption and the definition 
we get P~i(h) S;; Q;Jq,,) and f- AX Pi /\ r(p.d -+ -, bh[V Q;Jqd]. Therefore 

f- AX Pi /\ r(p.z) -+ -, bh[V P~,,(h)l· Thus, Pi is not consistent with T. 

<=: Let P E pn+1. We have to show that P is consistent with {r, ... , sbn(r)}. 
From the fact that Pi E P;'+\ as in the n = 0 case, for every history 
h E Hi 11 Hn there exists an opposition h-plan P"-i such that the following 
properties obtain: 

l. P"-i E P'2i · 

2. 'U'i(Pi,p"-i) 2: tli(qi,P"-J for every qi E Pi(h). 

Let n = TI· Pi; inductively we can construct B": such that the following 
~ ~ Pi 

property will be satisfied: 

fOT k :S n P E pk+ L =} P F Tk . 

Now we can change B;i' so that B;i = (pi,pt') and obviously (*) would still 
be satisfied. By the induction hypothesis, for every playeri and h E Ir(iHi , 

for the appropriate phi we get (Pi, f Tn 1. Ftom the modification 

of B;i we have P F bh(rn
-

1
). But again using the induction hypothesis 

sb(rn-1) = /\hCH
n 

t/'(rn-1) and therefore P F sbn T and therefore P F 
~. Q.E.D. 

6 Battigalli and Siniscalchi 
Tn this section we present the model of Battigalli and Siniscalchi, and dis
cuss the connection between our model and theirs. vVe start with a few 
definitions related to their work. 

For a given measure space (X, X) and a nonempty collection of events 
B such that 0 ¢:. B: 

11 The subtree TTl is the subtree of the original game that is compatible with pn. 



278 I. Arieli 

Definition 6.1. A conditional probability system (CPS) on (X, X, B) is a 
mapping /he I .) : X x B ---> 10,11 such that, for all B, C E B and A E X, (1) 
/h(B I B) = 1, (2) /hC I B) is a probability measure on (X, X, B), and (3) 
A <;;; B <;;; C implies that /h(A I B)/h(B I C) = fL(A I C). 

'['he set of the conditional probability system on (X, X, B) can be re
garded as a (closed) subset of 1t,,(X)IB , denoted by t"B(X). 

Definition 6.2 (Ben-Porath). Given a (PI) game G, a type space on 
(H, SC), I) is a tuple ;)" = (H, SC), I, (nil Til such that for every 
.j E I, Ti is a compact topological space and 

2. gi = : Ti ---> t,,?{(n_i) is a continuous mapping. 

For any i E I, gi,h(t.d denotes the beliefs of epistemic type t.i conditional 
on h. 

Definition 6.3. A belief-complete type space on (H, SC), 1) is a type space 
Z (H, SC), 1, (ni , T i , gi)iEr) such that for every i E 1, ni Si x Ti and 
the function gi maps Ti onto t,,?{(TIjfiSj x Tj). 

Battigalli and Siniscalchi (1999) showed that for finite garnes, a belief
complete type space can always be constructed. 

6.1 Semantical conditional belief operators 

Let Ai denote the sigma-algebra of events E c n such that E ~Li x 
proj"i E. A-i is similarly defined. The conditional bel-ief operator for 
playeri given history h E H is a map Hi,h : A-'i ---> Ai defined as follows: 

VEEAi Bi,h(E) = {(s, t) E n I (proj''-i E) = I}. 

Like the syntactical operator bhC), the semantical operator Bi,h(E) has the 
meaning of "player i ascribes probability one that his opponents' strategies 
and epistemic types are consistent with E, when he observes history h." 

We say that player .j strongly beheves that an event E # 0 is true if and 
only if he is certain of E at all histories consistent with E. Formally, for any 
type space ;y, define the operator SBi : A i ---> Ai as follows: SBi (0) = 0 
and 

n Hi,h(E) 
hE?!: Erl[h]/,0 

for all events E E A-i \ {0} and [h] is the event "history h occurs." 
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Along the lines of their syntactic approach, B&S define what they call 
"the mutual strong belief" operator. For any Borel subset E ~ 0 such that 
E = n'tEI Projlli E, let 

SB(E) = n SBi(Oi x projlli E). 
iEI 

1'0 adjust this model to inclusion in the class 111+ (G), we have to specify a 
plan an equivalence relation and a set Bh. for every plaveri and history , 'l1i l(;)) ~ ~ 

hE Hi in each state of the world w. 
Obviously, for w t), pi(W) would be the plan induced by the strategy 

8i. Define w ~i Wi iff ti(w) =ti(WI) and 8i(W) = 8i(W I
). For every h E Hi 

let B~\(w) = (w), ti(w)) x 8ltpp{g.i,h(ti (W))}, where 8i(W) and t.i(w) are 
the str~tegy and the type of player i respectively in the state of the world 
wand 8Vpp{gi,h(ti(W))} is the support of the measure gi,h(ti(W)) in fL i . 

It remains to show that the sets B~i(W) satisfy the requirement stated 
for the i\I[ + (G) models. 

Lemma 6.4. Let h, h E Hi such that h >- h; if 

B~i(W) = B2i i (w) n Ilholl . 

Proof. 1jh')11 = S'i x S'i(h) x T and, in particular, projn Jholl = S'i(h) x 

T'-i' is an open set.F)·om the fact that BAi(W) II Ilholl = (ti (W),8i(W)) x 

8UPP{gi.h(ti(W))} 1IIIhoil # 0 we get (w))(llhOIIIIO_ i ) > 0 and 
property 3 in definition 6.2 we get the result. Q.E.D. 

Theorem 6.5. '['he model obtained from the complete belief type space for 
a garne is a canonical model with respect toAx+. 

Proof. The soundness part follows from the lemma; as for the complete
ness part, the proof is a bit more complicated and it relies heavily on the 
completeness of the type space. Q.E.D. 

7 Discussion 
One more important aspect in extensive-form games yet to be discllssed 
cOllnterfactual reasoning. T\) test the stability of an equilibrium concept, 
one must consider questions like "what would be the case if ... )) That is, to 
provide an epistemic foundation for a solution concept one must determine 
whether a player thinks that he could gain by deviating from the strategy 
prescribed by the equilibrium. 

Consider the following version of the centipede game (Figure 2). Back
ward induction reasoning leads to the profile of strategies in which Ann and 
Bob exit at each and everyone of their decision points. But what if Ann 
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FIGURE 2. 

stays on her first move? Bob might interpret this move as irrational, in 
which case he would expect Ann to be irrational also at her second decision 
point, and so he expects to gain by staying. Ann, by the above reasoning, 
thinks that by staying she might be interpreted as irrational by Bob who, as 
a rational player, will stay and so when reaching her second decision point 
she will exit and get 3 instead of l. 

This paradox can be resolved using Battigalli's best rationalization prin
ciple (Battigalli, 1996) which states that "players, beliefs conditional upon 
observing history h are consistent with the highest degree of strategic so
phistication of their opponents." That is, when a player observes deviation 
from an equilibrium path another player, he assigns to that deviation 
the maximal degree of belief with rationality. 

l'he main theorem in fact states that the plans that are consistent with 
cornrnon strong belief of rationality are consistent with the principle that 
we have just described. 'T'hat if Pi is a plan of i in a generic PI game that 
is consistent with common strong belief of rationality, then in every history 
hE H(p'i), Pi maximizes his payoff function according to the highest ratio
nality degree assumption. Formally, let h E H(pi). Assume that h is consis
tent with {r, ... , sbmer)} but not with {r, ... , sbm(T), sbm

+ Ler)}. Then the 
reduction of the strategy Pi to the subgame starting at h maximizes player 
i's payoff function with respect to the assumption {bh(T), ... , bh(sbm(T))}. 

l'hus, if players stick to the best rationalization principle, and that is 
cornrnon strong belief, then no player will believe that he can gain by devi
ating from his plan. 

7.1 General extensive games 

We reduced the analysis to PI extensive-form games but in fact it is equally 
valid for general finite extensive games with perfect recall. The way to 
adjust the framework for this case is fairly obvious. Again we use plans 
rather than strategies, except that now Hi is the collection of information 
sets of i; indeed, in the PI case it is identical to the set of histories of player i. 

The axiomatization stays the same but here we have a belief with a 
probability one operator for every player's information set rather than for 
every history. The rationality definition and the strong belief operator re-
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main unchanged. 1'he sound and complete models are the same once we 
replace histories with information sets. 

The way in which interactive rationality prunes strategies remains un
changed. That is, let p? = Pi and Pt· is inductively defined as before. Let 
Hn-l be those information sets that are reachable by profiles of plans from 
pn-l Pi E PT' iff Pi E prl and for every information set h E H(Pi) nHn-l 
there exists P-'i E p~il such that p-i) 2: p-i) for every qi E 

Pi(h). Now we get the following version of (5.2): 

Lemma 7.1. A plan Pi of player i is consistent with the set of formulas 
{ "b(') 'bn"\}'f'f, pn+l r, s r, ... , s l r) I p., E i . 

In this case, unlike the generic PI case, there could be many optional 
outcomes in P=. 
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Abstract 

Boolean games are a logical setting for representing strategic games 
in a succinct way, taking advantage of the expressive power and con
ciseness of propositional logic. A Boolean game consists of a set of 
players, each of whom controls a set of propositional variables and 
has a specific goal expressed by a propositional formula. 'vVe show 
here that Boolean games are a very simple setting, yet sophisticated 
enough, for studying coalitions. Due to the fact that players have 
dichotomou,'3 preferences, the following notion emerges naturally: a 
coalition in a Boolean game is efficient if it guarantees that the goal 
of each member of the coalition is satisfied. We study the proper
ties of efficient coalitions, and we give a characterization of efficient 
coalitions. 

1 Introduction 
Boolean games (Harrenstein et al., 2001; Harrenstein, 2004; Dunne and 
van del' Hoek, 2004; Bonzon et al., 2006b) are a logical setting for repre
senting strategic games in a succinct way, taking advantage of the expressive 
power and conciseness of propositional logic. Informally, a Boolean game 
consists of a set of players, each of whom controls a set of propositional 
variables and has a specific goal expressed by a propositional formula L. 

Thus, a player in a Boolean game has a dichotomous preference relation: 
either her goal is satisfied or it is not. This restriction may appear at first 
glance unreasonable. However, many concrete situations can be modelled as 
"ames where a"ents have dichotomous preferences (we uive such an exam-b b b 

pie in the paper). Moreover, due to the fact that players have dichotomous 
preferences, the following simple sophisticated enough) notion emerges 

I We refer here to the version of Boolean games defined in (Bonzon et aI., 2006b), that 
generalizes the initial proposa.l by Hauenstein et al. (2001). 

Krzysztof R. Apt, Robert van 
'Texts in Logic and Gan1es 4) 

Perspecti'ues on Garnes and lrderaction. 
Press 2008, pp. 283-297. 
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naturally: a coalition in a Boolean garne is ef/kient if it guarantees that all 
goals of the members of the coalition are satisfied. Our aim in the following 
is to define and characterize efficient coalitions, and see how they are related 
to the well-known concept of core. 

After recalling some background of Boolean games in Section 2, we study 
in Section :3 the properties of effectivity functions associated with Boolean 
games. In Section 11 we study in detail the notion of efficient coalitions. We 
give an exact characterization of sets of coalitions that can be obtained as 
the set of efficient coalitions associated with a Boolean game, and we relate 
coalition efficiency to the notion of core. Related work and further issues 
are discussed in Section 5. 

2 'n-player Boolean games 
F'or any finite set 1/ = {a, b, ... } of propositional variables, Lv denotes the 
propositional language built up from v', the Boolean constants T and .1, 
and the usual connectives. Formulas of Lv are denoted by 'P,1/) etc. A 
liteml is a variable :c of V or the negation of a literal. A teTm is a consistent 
conjunction of literals. A clause is a disjunction of literals. If 'P E Lv, 
then V ar( 'P) (resp. Lit( a)) denotes the set of propositional variables (resp. 
literals) appearing in 'P. 

2\/ is the set of the interpretations for V, with the usual convention that 
for M E 2\1 and x E V, N[ gives the value tT'ue to :r if x E M and false 
otherwise. f denotes the consequence relation of classical propositional 
logic. Let VI S;; V. A yO-interpretation is a truth assignment to each 
variable of VI, that is, an element of 2\1/. VI-interpretations are denoted 
by listing all variables of VI, with a symbol when the variable is set to 
false: for instance, let VI = {a, b, d}, then the VI-interpretation M = {a, d} 
assigning a and d to true and b to false is denoted by abd. If V aT( 'P) S;; X, 
then Nlodx ('P) represents the set of X -interpretations satisfying 'P. 

H {V], ... , ~)} is a partition of V and {Mil"" Mp} are partial in
terpretations, where i\![i E 2'\ (Mil"" i\![p) denotes the interpretation 
MIU ... UMp. 

Given a set of propositional variables V, a Boolean game on V is an r/.

player ganle2 , where the actions available to each player consist in assigning 
a truth value to each variable in a given subset of V. The preferences of 
each player i are represented by a propositional formula 'Pi formed using 
the variables in YT. 

Definition 2.1. An n ... player Boolean game is a 5-tuple (JV, V, 1T, r, <[», 

where 

2 In the original proposal (Harrenstein et aI., 2001), Boolean games are two-players 
zero-sum games. However the model can easily be generalized to n players and non 
necessarily zero-sum games (Bonzon et al., 2006b). 



Efficient Coalitions in Boolean Games 285 

• iV = {I, 2, ... , n} is a set of players (also called agents); 

• V is a set of propositional variables; 

• 1f : V ---+ iV is a control assigmnent function; 

• i' = {11, ... , In} is a set of constraints, where each Ii is a satisfiable 
propositional formula of L 1f (i); 

• <P {'Pl, ... , 'Pn} is a set of goals, where each 'Pi is a satisfiable fonnula 
of Lv. 

A 4-tuple (iV, V, 1f, 1'), with iV, V, 1f, i' defined as above, is called a pre
Boolean game. 

The control assignment function 1f rnaps each variable to the player who 
controls it. For ease of notation, the set of all the variables controlled by 
a playeri is written 1fi such as 1fi {:r E V 11f(:C) i}. Each variable is 
controlled by one and only one agent, that is, {1ft, ... , 1fn } forms a partition 
of 1/. 

For each i, Ii is a constraint restricting the possible strategy profiles for 
player i. 

Definition 2.2. Let G = (iV, V, 1f, i', <1» be a Boolean game. A strategy::l 
for player i in G is a 1fi-interpretation satisfying Ii. The set of strategies 
for playeri in G is Si {Si E 21fi I Si I It}. A strategy profile S for Gis 
an-tuple 8 (Sl' 82, ... , where for alii, Si E Si. 8 8 1 X ... X 8 n is 
the set of all strategy profiles. 

Note that since {1f1, ... , 1fn } forms a partition of V, a strategy profile S 
is an interpretation for V, i.e., S E 2\/. The following notations are usual in 
game theory. Let S = (Sl, ... , sn) be a strategy profile. For any nonempty 
set of players J ~ iV, the projection of 8 on I is defined by 8 [ and 
LJ = sJV\I' If 1 = {i}, we denote the projection of oS on {i} Si instead 
of 8{i}: similarly, we note 8-., instead of s-{i}' 1f[ denotes the set of the 
variables controlled by I, and 1f -J 1fJV\]. '['he set of strategies for 1 ~ iV 
is 8[ x',El8i , and the set of goals for I ~ iV is <1>J AiEl 'Pi. 

If oS and s' are two strategy profiles, (L[, sj) denotes the strategy profile 
obtained from S by replacing 8i with s~ for all i E I. 

1'he goal 'Pi of player i is a compact representation of a dichotomous 
preference relation, or equivalently, of a binary utility function tii : 8 ---+ 

{O, I} defined by t!i(S) = 0 if S F ''Pi andui(s) = 1 if S F 'Pi. S is at least 
as good as Sf for i, denoted by s Sl, if t!i(S) ?:: ·a.i(sl), or equivalently, 

3 In this paper, only pure strategies are considered. 
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if 8 F ''Pi implies s' F ".pi; 8 is strictly better than 8' for i, denoted by 
s >-i s', if lti(S) > l!i(S'), or, equivalently, S I 'Pi and s' I ''Pi· 

Note that this choice of binary utilities clearly implies a loss of generality. 
However, some interesting problems, as in Example 4.3, have preferences 
that are naturally dichotomous, and Boolean games allow to represent these 
problems in a compact way. Furthermore, Boolean games can easily be 
extended so as to allow for non-dichotomous preferences, represented in 
some compact language for preference representation (see Bonzon et al., 
2006a). 

3 Coalitions and effectivity functions III Boolean 
games 

Effectivity functions have been developed in social choice to model the abil
ity of coalitions (Moulin, 1983; Abdou and Keiding, 1991; Pauly, 2001). As 
usual, a coalition C is any subset of N. N is called the grand coalition. 
Given a set of alternatives S from which a set of agents N have to choose, 
an effectivity function Efr: 2N ---> associates a set of subsets of S with 
each coalition. X E Eff( C) is interpreted as "coalition C is effective for X" . 

Definition 3.1. A coalitional effectivity function is a function 
Eff: 2N ---> 22° which is monotonic: for every coalition C ~ N, X E Eff( C) 
irnplies Y E Eff(C) whenever X ~ Y ~ S. 

The function Efr associates to every group of players the set of outcomes 
for which the group is effective. We usually interpret X E Eff( C) as "the 
players in C have a joint strategy for bringing about an outcome in X" . 

In (Pauly, 2001), the meaning of "effective" is precised in the framework 
of strategic games by defining "a-effectivity": a coalition C ~ N is u
effective for X ~ S if and only if players in C have a joint strategy to 
achieve an outcome in X no malleT what strategies the other players choose. 

As Boolean games are a specific case of strategic games, we would like 
to define a-effectivity functions in this framework. One of the features of 
Boolean games is the definition of individual strategies as truth assignments 
of a given set of propositional variables. \Ve might wonder how restrictive 
this specificity is. In this section we study Boolean games from the point 
of view of effectivity functions. Clearly, the definition of Eli as M od7ri (Ii) 
induces some constraints on the power of players. Our aim is to give an 
exact characterization of ();-effectivity functions induced by Boolean games. 
Since in Boolean games the power of an agenti is her goal 'Pi, it suffices to 
consider pre-Boolean games only when dealing with effectivity functions. A 
pre-Boolean game G induces an a-effectivity function Erfc as follows: 

Definition 3.2. Let G (N, V,1f,r) be a pre-Boolean game. The coali

tional a-effectivity function induced by G is the function Effc : 2N ---> 



Efficient Coalitions in Boolean Games 287 

defined by: for any X ~ S and any C ~ N, X EEffc(C) if there exists 
Se ESe such that for any s-c E S-e, (se, E X.4 

'I'his definition is a particular case of the ();-effectivity function induced 
by a strategic game (see Pauly, 2001, Chapter 2). Therefore, these functions 
satisfy the following properties (c:f. Pauly, 2001, Theorem 2.27): (i) \lC ~ 
o rt Eff(C); (ii) \lC ~ S E Eff(C); (iii) for all X ~ S, if X rt Eff(0) 
then X E Eff(N); (iv) Efr is superadditive, that is, if for all C, C 1 ~ N 
and X, Y ~ S, X E Eff(C) and Y E Eff(C1

), then X 11 Y E Eff(C U ( 1
). 

An effectivity function satisfying these four properties is called strongly 
playable. Note that strong playability implies regularity and coalition
monotonicity (Pauly, 2001, Lemma 2.26). 

However, pre- Boolean games are a specific case of strategic game forms, 
therefore we would like to have an exact characterization of those effectivity 
functions that correspond to a pre-Boolean game. vVe first have to define 
two additional properties. Define At( C) as the rninimal sets in Efr( C), that 
is, At(C) {X E Eff(C) I there is no Y E Eff(C) such thatY ~ X}. 

Atomicity: Eff satisfies atomicity if for every C ~ N, At( C) forms a par
tition of S. 

Decomposability: Eff satisfies decomposability if for every I, J ~ Nand 
for every X ~ S, X E Eff(I U J) if and only if there exist Y E Eff(I) 
and Z E Eff(J) such that X = Y 11 Z. 

Note that decomposability is a strong property that implies superadditivity. 

Proposition 3.3. A coalitional effectivity function Efr satisfies (1) strong 
playability, (2) atomicity, (3) decomposability and (4) Eff(N) = 28 \ 0 if 
and only if there exists a pre-Boolean game G = (N, V, 'if, 1') and an injective 
function /1, : S ---+ 2\/ such that for every C ~ N: Efr c;( C) = {IL( X) I X E 
Efr(C)} . 

Sketch of pmop '['he (<=) direction does not present any difficulty: we can 
easily prove than Effc satisfies strong playability (from Pauly, 2001, The
orem 2.27), atomicity, decomposability and Efrc(N) = \ 0. As /1, is a 
bijection between Sand IL(S), these properties transfer to Efr. 

For the (=}) direction, we first show that for every oS E S, there exists a 
unique (Zl' ... , Zn) such that for every i, Zi E At( i) and Zl iL .. ilZn {o9}. 
'I'hen, we build G fromEff as follows: 

4 Note that elfectivity functions induced by pre-Boolean games may be equivalently 
expressed as mappings Elf : 2N ---; 2L v from coalitions to sets of logical formulas: 'P E 
Elf (I) if !VI ad" I ('P) E Elf (I) . This definition obviously implies syntax-independence, 
that is, if 'P == 7p then 'P E Elf (I) ilf 1/) E Elf (I). 

5 A complete version of this proof can be found in (Bonzon et aI., 2007). 
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• for every i, number : let Ti be a bijective rnapping from At( i) to 
{O, 1, ... , IAt(i)1 - 1}. Then create Pi pog2IAt(i)ll propositional 
variables , ... , . Finally, let V = liE iV,l :s; j :s; pd; 

• for each i: 7ri = {:c.}, ... , }; 

• for each i and each j :s; Pi, let Ei,j be the jth digit in the binary 
representation of Pi. Note that E:i,Pi = 1 by definition of Pi. If x is a 
propositional variable then we use the following notation: O.x ,x 
and l.x x. l'hen define 

• finally, for each S E S, let f-L( s) E 2 v defined by: E 1-'( s) if and only 
if the jth digit of the binary representation of Ti(Zi(S» is 1. 

For every i E iV and every Z E At(i), let k = Ti(Z) and Si(Z) the strategy 
of player in i in G corresponding to the binary representation of k using 
{:Ci1, ... , }, :l:i1 being the most significant bit. For instance, if Pi = :3 
and Ti 6 then Si(Z) 1, Xi2, ,xi 3). Q.E.D. 

Note. To follow the proof, it may be helpful to see how this construction 
works on an example. Let iV = {1, 2, 3}, S = {1, 2, 3, 4, 5, 6,7,8,9, A, B, C}, 
At(l) = {1234, 5678, 9ABC}, At(2) = {13579B,2468AC}, At(:3) = 

{12569C,3478AB} (parentheses for subsets of S are omitted 1234 means 
{l, 2, 3,4} and so on). By decomposability, we have At(12) {13, 24, 57, 68, 
9B, AC}, At(l3) {12, 34, 56, 78, 9C, AB}, and At(23) {l59, 37 B, 
26C, 48A}. IAt(I)1 = :3, therefore PJ = 2. IAt(2)1 = IAt(3)1 = 2, there-
forep2 P3 l. Thus, V {xd,xJ2,X21,X31}. Let At(l) {ZO,Zt,Z2}, 
that is, 1'1(1234) 0, 7'1(5678) I and 7'1(9ABC) 2. Likewise, 
T2(l3579B) = 0, T2(2468AC) = 1, T3(12569C) = 0 and T3(3478AB) = l. 
Consider S = 6. We have S = 567811 2468AC 11 12569C, therefore Sc = 

f-L(s) = 1, :1:12, :C21, ,:c::d). The constraints are /1 = (:cd ---+ ,:C12), 
/2 = /3 = T. 

Then, we show that for every Eff c( C) = f-L(Eff( C)). The proof, 
though rather long, does not present any particular difficulty. See (Bonzon 
et ai., 2007). 

4 Efficient coalitions 
4.1 Definitions and characterization 

We now consider full Boolean games and define efficient coalitions. Infor
mally, a coalition is efficient in a Boolean game if and only if it has the 
ability to jointly satisfy the goals of all members of the coalition: 
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Definition 4.1. Let G = (N, "',7T, f,<I» be a Boolean garne. A coalition 
C <;;; N is efficient if and only if ]se E Se such that Se f AiEC CPi. 
The set of all efficient coalitions of a game G is denoted by EC( G). 

Example 4.2. Let G (N, V,f,7T,CI» where V {a,b,c}, N {l,2,3}, 
Ii = T for every i, 7TJ = {a}, 7T2 = {b}, 7T3 = Ie}, CPt = (,a 1\ CP2 = 

(,a V ,e) and CP3 ( ,b /\ ,e). 
Observe first that CPl /\ CP3 is inconsistent, therefore no coalition con

taining {l, 3} can be efficient. {l} is not efficient, because CPt cannot be 
made true only by fixing the value of a; similarly, {2} and {3} are not ef/1-
dent either. {I, 2} is eff1cient, because the joint strategy S{1,2} lib is such 

that S{1,2} I CPt /\ CP2· {2,3} is eff1cient, because S{2,3} be f CP2 /\ CP3· 
Obviously, 0 is eff1cient6

, because CP0 l\iE0 CPi == T is always satisfied. 
Therefore, EC(G) = {0, {I, 2}, {2, 3}}. 

From this simple example we see already that EC is neither downward 
closed nor upward closed, that is, if C is eff1cient, then a subset or a superset 
of C may not be eff1cient. We also see that EC is not closed under union 
or intersection: {l, 2} and {2, :3} are efficient, but neither {I, 2} n {2, :3} nor 
{i,2} U {2,3} is. 

Example 4.3 (Kidney exchange, after Abraham et aI., 2007). Consider n 
pairs of individuals, each consisting of a recipient R in urgent need of a kid
ney transplant, and a donor Di who is ready to give one of her kidneys to 
save R i . As Di 's donor kidney is not necessarily compatible with R i , a strat
egy for saving more people consists in considering the graph ({ 1, ... , n}, E) 
containing a node i E I, ... , n for each pair (Vi, RJ and containing the edge 
(i,j) whenever D/s kidney is compatible with Rj . A solution is any set of 
nodes that can be partitioned into disjoint cycles in the graph: in a solution, 
a donor Di gives a kidney if and only if Ri is given one. An optimal solution 
(saving a maximum number of lives) is a solution with a maximum number 
of nodes. The problem can be seen as the following Boolean game G: 

• N={l, ... ,n}; 

• V {gij li,j E {l, ... ,n}}; gij being true means that Di gives a 
kidney to Rj . 

• 7Ti = {gij; 1 ::; j ::; n}; 

• for every i, Ii I\jcfk ,(gij /\ expresses that a donor cannot give 
rnore than one kidney. 

6 One may argue this makes little sense to say that the empty coalition is efficient. 
Anyway, the definition of an efficient coalition could be changed so as to exclude 0, 
further notions and results would be unchanged. 



290 E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang 

• for every i, 'Pi = V (j,i)EE gji expresses that the goal of i is to be given 
a kidney that is compatible with R i . 

For example, take n = 5 and E = {(I, 1), (1, 2), (2,3), (2,4), (2,5), (3, 1), 
(4,2), 4)}. Then G (iV, V, f, 7r, CI», with 

7\T - {I ') 3' 4 "} • 1'1 - , ..... ,)) d 

• V = {gij 11 :::; i,j :::; 5}; 

The corresponding graph is depicted below. 

Clearly enough, efficient coalitions correspond to solutions. In our ex
ample, the efficient coalitions are 0, {I}, {2,4}, {I, 2, il}, {I, 2, 3}, {2, 4, 5} 
and {I, 2, 4, 5}. 

We have seen that the set of efficient coalitions associated with a Boolean 
game may not be downward closed nor upward closed, nor closed under 
union or non-empty intersection. We find that it is possible to characterize 
the efficient coalitions of a Boolean game. 

Proposition 4.4. Let iV = {I, ... , n} be a set of agents and SC E 22N a 
set of coalitions. There exists a Boolean game Gover iV such that the set of 
efficient coalitions for G is SC (i.e., EC( G) SC) if and only if SC satisfies 
these two properties: 

(1) 0 ESC. 

(2) for all I, J E SC such that In} 0, I u J ESC. 

Thus, a set of coalitions corresponds to the set of efficient coalitions for 
some Boolean game if and only if (a) it contains the empty set and (b) it is 
closed by union of disjoint coalitions. 
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Skctch of proor 'fhe (=}) direction is proven easily; intuitively, when two 
disjoint coalitions 1 and J are effkient, each one has a strategy guaranteeing 
its goals to be satisfied, and the joint strategies of I and J guarantee that 
the goals of all agents in I U J are satisfied. As seen in Example 4.2, this 
is no longer true when I and J intersect. The ({=) direction of the proof is 
more involved and needs the following Boolean game G to be constructed 
for each set of coalitions SC satisfying (1) and (2): 

• V = {connect(i,j) I i,j E N} (all possible connections between play
ers ); 

• T , 

j) I j E N} (all connections from player i); 

• cp., = VIESC,iCI F1 , where 

F[ = ( 1\ k)) /\ ( 1\ ---,connecl(j, k)) 
j,kEl jEI,kr/cl 

(player i wants all the players of her coalition to be connected with 
each other and disconnected from the players outside the coalition). 

We want to show that ECc = SC (whereECc is the set of efficient 
coalitions for G). We first show that SC ~ ECc . Let I ESC. If every agent 
i E I plays (A jE ] j)) /\ (Akr/cI ---,connect(i, k)), then CPi is satisfied 
for everyi E J. Hence, J is an efficient coalition for G and SC is included 
inEC(G). 

Tn order to prove that ECc ~ SC, we define a c01Jcring of a coahtion I 
by disjoint S1tbscts of SC as a tuple C; = (Ci liE 1) of coalitions such that: 
(a) for every k E I, Ck ESC; (b) for all Cj, Ck E either Cj = Ck or 
Cj n Ck = 0; (c) for every i E I, i E Ci . Let Cov(SC,1) be the set of all 
covering of 1 by disjoint subsets of SC. 

For instance, if SC {0, 1,24,123, 124} then C::ov(SC, 12) 
{(1, 24), (12:3,123), (124,124) }8, Cov(SC, 124) {(I, 1,24), (\,24,24), 
(124, 124, 124)}, Cov(SC, 123) = {(123, 123,123)} and Cov(SC, 234) = 

Cov(SC, 1234) 0. 

1'he proof goes along the following steps: 

L1 
N 

For any collection Cot = {Ci , i = 1, ... , q} ~ 22 , Al<-i<-q F C i is sat-
isfiable if and only if for any i, j E {I, ... , q}, either Ci = Cj or 

1~ICj 0. 

7 A complete version of this proof can be found in (Bonzon et aI., 2007). 

8 There are two players in 1= {1, 2}, therefore each C in Cov(SC, 12) contains 2 coali
tions, one for each player, satisfying (a), (b) and (c). 
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L2 From Ll, we deduce that vI # 0, CPT is equivalent to 

L3 I')'om property (2) (assumption of Proposition 4.4) and 1,2, we can prove 
that if J ~ 2N , then cP I is satisfiable if and only if there exists J E SC 
such that I ~ J. 

Let I be an efficient coalition such that I rt SC (which implies I # 0, 

because by assumption 0 ESC) . 

• If 1 = N then there is no J E SC such that I ~ J (because I rt SC), 
and then 1,3 implies that <PI is unsatisfiable, therefore 1 cannot be 
efficient for G . 

• Assume now that I # N and define the following I-strategy Sf (I = 

N\I): for every i E 1, Si = {,connect(i,j) l:i E I} (plus whatever 
on the variables connect(i,j) such that j rt I). Let d = (Ci,i E 1) E 

Cov(SC, I). 

We first claim that there is a i* E 1 such that is not contained in 
J. Indeed, suppose that for every i E I, ~ I. Then, because i E 

holds for every i, we have UiE'I C i = I. Now, E SC for all i, and 
any two distinct Cj are disjoint, therefore, by property (2) we get 
I ESC, which by assumption is false. 

Nuw, let !..: E \ I (sueil a !..: exists hecause is llut contailled 
in I). Now, the satisfaction of FCi requires conned(!..:, i*) to be true, 
because both i and!..: are in . Therefore Sk f , and a fortiori 
Sf ~ ,Fc" which entails Sf ~ '!\.iE'IFCi· 

This being true for any C E Cov(SC, I), it follows that we have 

Sf ~ Ac:E'Cov(SC,l) ,AiU FC i that is, Sf ~ ,V C;U::ov(SC,I) AiU Fci · 
T{)get her with 1,2, this entails Sf ,cP 1. Hence, I does not control 
cP 1 and I cannot be efficient for G. 

Q.E.D. 

The notion of efficient coalition is the same as the notion of successful 
coalition in qualitative coalitional games (QCG) introduced in (Wooldridge 
and Dunne, 2004), even if, as we discuss in Section 5, QCG and Boolean 
games are quite different. 
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4.2 Efficient coalitions and the core 

We now relate the notion of efficient coalition to the usual notion of core of 
a coalitional garne. Tn coalitional garnes with ordinal preferences, the core 
is usually defined as follows e.g., Aumann, 1967; Owen, 1982; Myerson, 
1991): a strategy profile s is in the core of a coalitional game if and only if 
there exists no coalition C with a joint strategy Be that guarantees that all 
members of C are better off than with s. Here we consider also a stronger 
notion of core: a strategy profile 8 is in the strong core of a coalitional 
game if and only if there exists no coalition C with a joint strategy Se that 
guarantees that all members of C are at least as satisfied as with s, and at 
least one member of C is strictly better off than with s. 

Definition 4.5. Let e be a Boolean game. The (weak) core of e, denoted 
by WCore( e), is the set of strategy profiles s = (81, ... , sn) such that there 
exists no C c iV and no Se E Se such that for every i E C and every 
Le E S-e, (se,8-d h s. 

The strong core of a Boolean game e, denoted by SCore(e), is the set of 
strategy profiles 8 = (S1, ... ,8n ) such that there exists no C c iV and no 
Be E Se such that for every i E C and every .Le E S-e, ti oS 

and there is an i E C such that for every 8-C E S-c, (sc, 8-d >-i B. 

This concept of weak core is equivalent9 to the notion of strong Nash 
equilibrium introduced by Aumann (1959), where coalitions form in order 
to correlate the strategies of their members. This notion involves, at least 
implicitly, the assurnption that cooperation necessarily requires that players 
be able to sign "binding agreements": players have to follow the strategies 
they have agreed upon, even if some of them, in turn, might profit by 
deviating. However, if players of a coalition C agreed for a strategy Se, at 
least one player i E C is satisfied this strategy: we have ji E C such 
that B I 'Pi· 

The relationship between the (weak) core of a Boolean game and its set 
of efficient coalitions is expressed by the following simple result. The proofs 
of following results can be found in (Bonzon et 2007): 

Proposition 4.6. Let e = (iV, V, I', 1T, <1» be a Boolean game. Then S E 

WCore( e) if and only if oS satisfies at least one member of every efficient 
coalition, that is, for every C E EC(e), s ~ Vice 'Pi. 

In particular, when no coalition of a Boolean game e is efficient, then 
all strategy profiles are in WCore( e). Moreover, the weak core of a Boolean 
game cannot be empty: 

9 This equivalence is easily shown: it is just a rewriting of the definition given in (Au
mann, 1959). 
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Proposition 4.7. For any Boolean garne G, WCore(G) # 0. 

The strong core of a Boolean game is harder to characterize in terms of 
efficient coalitions. We only have the following implication. 

Proposition 4.8. Let G = , yT, f, 7T, cf» be a Boolean game, and s be a 
strategy profile. If s E SCore( G) then for every C E EC( G) and every i E C, 
s ~ CP.i. 

Thus, a strategy in the strong core of G satisfies the goal of every member 
of every efficient coalition. The following counterexample shows that the 
converse does not hold. 

Example 4.9. Let G = (N, V, f, 7T, <1» be a Boolean game. We have: 

V = {a, b, e, d, c, f}, N = {1,2,3,4,5,6}, Ii = T for every i, 7T] { a}, 
7T2 {b}, 7T3 {e},7T4 {d},7TS {C},7Tf) {J},CPI bVd,CP2 a V e, 

CP3 -,b V d, CP4 c, CPs -,a /\ -,b /\ -,c and CP6 -,a A. -,e /\ -,d. 

This game has two efficient coalitions: {1,2} and {2,3}. 

Let s abedef. We have s I cp] A. CP2 A. CP3 A. -'CP4 A. -'CPs A. -'CP6. So, 
\/C E EC(G), \/i E C, [; I CPi. 

However, .5 if- SCore(G): :=JCI 
= {I, 2, 3, 4, 5} C N such that :=Jsc = abedc ~ 

CP1 /\ CP2 /\ CP3 /\ CP4 /\ -'CPs· So, \/s c, (sc, sc) 2:::1 S, (sc, S c) 2:::2 8, 
(sc, Lc) b3 8, (sc, LC) 2:::5 s, and Lc) >--4 s. [; if- SCore(G). 

Note that the strong core of a Boolean game can be empty: in Exam
ple 4.2, the set of efficient coalitions is {0, {I, 2}, {2, 3}}, therefore there 
is no s E S such that for all C E EC(G), for all i E C, 8 ~ CPi, therefore, 
SCore(G) = 0. However, we can show than the non-emptiness of the strong 
core is equivalent to the following simple condition on efficient coalitions. 

Proposition 4.10. Let G = , V, f, 7T, <1» be a Boolean game. \lVe have 
the following: 

Seorc(G) # 0 if and only if U{C ~ N ICE EC(G)} E EC(G), that is, 
if and only if the union of all efficient coalitions is efficient. 

5 Conclusion 
We have shown that Boolean games can be Ilsed as a compact representation 
setting for coalitional games where players have dichotomous preferences. 
This specificity led us to define an interesting notion of efficient coalitions. 
We have given an exact characterization of sets of coalitions that correspond 
to the set of efficient coalitions for a Boolean game, and we have given several 
results concerning the computation of efficient coalitions. 
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Note that some of our notions and results do not explicitly rely on the 
use of propositional logic. For instance, efficient coalitions can be defined 
in a more general setting where goals are simply expressed as nonempty 
sets of states. However, many notions (in particular, the control assignment 
function 1f) become much less clear when abstracting from the propositional 
representation. 

Clearly, a limitation of our results is that they apply to dichotomous 
preferences only. However, as illustrated on Example 4.3, some problemc; 
are naturally expressed with dichotomous goals. Moreover, it is always 
worth starting by studying simple cases, especially when they already raise 
complex notions lO . 

As Boolean games, qualitative coalitional games (QCG), introduced in 
(Wooldridge and Dunne, 2004), are games in which agents are not assigned 
utility values over outcomes, but are satisfied if their goals are achieved. A 
first difference between QCG and Boolean games is that there is no control 
assignment function in QCG. A second one is that each agent in QCG can 
have a set of goals, and is satisfied if at least one of her goals is satisfied, 
whereas each agent in Boolean games has a unique goal. However, QC(j's 
characteristic function, which associates to each coalition C the sets of goals 
that members of C can achieve, corresponds in Boolean games to the set 
W(C) = {X <;;; {cpl, ... ,CPn} such that ::Jse ESe: 8e F cpd ll . 

Coalition logic (Pauly, 2001) allows to express, for any coalition C and 
any formula cP, the ability of C to ensure that cP hold (which is written [Clcp). 
In Boolean games, the power of agents, expressed by the control assignment 
function 1f, is still in the metalanguage. Expressing 1f within coalition logic 
would however be possible, probably using ideas from (van der Hoek and 
Wooldridge, 2005). '['he next step would then consist in introducing goals 
into coalition logic. This is something we plan to do in the near future. 
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Abstract 

According to the optimal assertions approach of Benz and van Rooij 
(2007), conversational implicatures can be calculated based on the as
sumption that a given signal was optimal, i.e. that it was the sender's 
best choice if she assumes, purely hypothetically, a particular naive 
receiver interpretation behavior. This paper embeds the optimal as
sertions approach in a general signaling game setting and derives the 
notion of an optimal signal via a series of iterated best responses (cf. 
.Higer, 20(7). Subsequently, we will compare three different ways of 
interpreting such optimal signals. It turns out that under a natural 
a,'3sumption of expressibility (i) the optimal assertions approach, (ii) 
iterated best response and (iii) strong bidirectional optimality theory 
(Blutner, 1998, 20(0) all prove equiva.lent. We then proceed to show 
that, if we take the iterated best response sequence one step further, 
we can account for M-implicatures (Horn's division of pragmatic la
bor) standardly in terms of signaling games. 

Often we express more with the use of our words than what those words 
rnean literally. For example, if you were to say that this observation is 
not particularly new, T would clearly get the hint and understand that you 
meant to say that it is more than just not particularly new, indeed a working 
standard in linguistic pragmatics. Such con'ueTsat'lonal -implicai11Tes were 
first studied by Grice (1989) and still concern the community in various 
ways. Tn particular, recent years saw an increasing interest in garne-theoretic 
models of conversational implicature calculation, and this study belongs to 
this line of research. It provides a formal comparison of selected previous 
approaches which extends to a uniform synchronic account of different kinds 
of conversational implicatures. 

The paper is organized as follows. Section 1 briefly reviews the classifica
tion of conversational implicatures into 1-, Q- and M-implicatures. Section 2 
introduces a game-theoretical model of implicature calculation: a signaling 
game with exogenously meaningful signals. We will see in Section 2.3 that 
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the standard sol ution concept for signaling garnes is not strong enough to 
account for the empirical observations. The optimal asscr-tions appr-oach of 
Benz and van Rooij (2007), which is introduced in Section 3.1, is an at
tempt to solve this problem. According to the optimal assertions approach, 
conversational implicatures can be calculated based on the assumption that 
a given signal was optimal. Sections 3.2 and 3.3 then compare three ways 
of interpreting such optimal signals: (i) the pragmatic interpretation rule 
of Benz and van Rooij (2007), (ii) iterated best response and (iii) strong 
bidirectional optimality theory (Blutner, 1998, 2000). It turns out that if 
we assume a sufficiently expressible stock of possible signals, all three ap
proaches prove equivalent. However, it also turns out that !VI-implicatures 
(Horn's division of pragmatic labor) cannot be accounted for based solely 
on the assumption that the received form was optimal. We will conclude 
that sorne aid from the refinernent literature, in particular Cho's and Kreps' 
(1987) intuitive criterion, is necessary and suffkient to account uniformly 
for all T-, Q- and f.,1I-implicatures. 

1 Kinds of conversational implicatures 
Neo-Cjricean pragrnatics (Atlas and Levinson, 1981; Horn, 1984) distin
guishes I-implicatures (1) and Q-implicatures (2). 

(1) 

(')\ ~) 

John has a very efficient secretary. 
-v'-) John has a very efficient fcmalc secretary. 

John invited some of his friends. 
-v'-) John did not invite all of his friends. 

I-implicatures like (1) are inferences to a stereotype: the sentence is asso
ciated with the most likely situation consistent with its semantic meaning. 
Q-implicatures like (2), also called scalar implicatures, are a strengthening 
of the literal meaning due to the presence of more informative alternatives 
that were not used: since the speaker only said that some of John's friends 
were invited, we infer that the compatible stronger claim that all of John's 
friends were invited a claim that we may assume relevant if true does 
not hold, for otherwise the speaker would have said so-as she is assumed 
cooperative and informed. 

A third kind of implicature, called !VI-implicature by Levinson (2000), is 
given in (3). 

(3) The corners of Sue's lips turned slightly upwards. 
-v'-) Sue didn't smile genuinely, but faked a smile. 

In (3) we naturally infer that something about the way Sue smiled was ab
normal, non-stereotypical or non-standard, because the speaker used a long 
and complicated form where she could have used the simple expression (4). 
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(4) Sue smiled. 

M-implicatures were also discussed by Horn (1984) and have been addressed 
as Horn's di'vis'ion of pmgmatic labor- thereafter. It has become customary 
to assume that both sentences (3) and (4) are semantically equivalent, but, 
when put to use, the longer form (3) gets to be associated with the non
stereotypical situation, while the short form (4) gets to be associated with 
the stereotypical situation. 

2 Implicatures via signaling games 
2.1 Interpretation frames 

A fairly manageable set of contextual parameters plays a role in the neo
Gricean classification of implicatures: we distinguish various meanings that 
are more or less stereotypical and we compare different forms with respect 
to their semantic meaning and complexity. We can then capture any such 
configuration of contextual parameters that are relevant for the computation 
of implicatures in an interpr-etation fmme. 

Definition 2.1 (Interpretation Frame). An interpretation frame is a tuple 

F (W, P, F, c, [[.[1) 

where }l/ is a finite set of worlds or situations, P is a probability distribution 
over W with the usual properties, L F is a set of forms or signals which the 
sender may send, c : F ---+ 11{ is a cost function and ['I[ : F ---+ 9(W) is a 
semantic denotation function mapping forms to subsets of W. 

'vVe assume for convenience that P( w) / 0 for all worlds w E 1¥. We 
would also like to rule out certain rather pathological situations where there 
are worlds which simply cannot be expressed by any conventional signal: 

Assumption 2.2 (Semantic Expressibility). We only consider interpreta
tion frames in which all worlds are semantically expressible: for all worlds 
10 there has to be a form f such that 10 E [fll. 

1'he kinds of implicatures described in the previous section correspond 
to abstract interpretation fraInes as follows: 

• The I-frame is an interpretation frame F1 = (W, P, F, c, ['I[) where 
W = {w,v}, P(w) > P(v) # 0, F = {j,g,h}, c(f) < c(g),c(h) and 
[fll = W, [g] = {v} and [hll = {w}. The observed I-impUcat'UTe play 
is to interpret f as wand to send f in w only. 

I P('w) E [0,1]' for all 'W E W; P(A) = LWCA P('w), for all A <;;; W; P(W) = 1. 
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• 'fhe Q-fmme is an interpretation frame FQ = (lV,P,F,c, [.]) where 
W {w,v},P(w)?:P(v)/O,F {f,g},c(f) c(g) and lUll W, 
[g] = {v}. The observed Q-implicature play is to interpret f as wand 
to send I in w only . 

• The AI-Jmme is an interpretation frame F lvJ = (W, P, F, c, ['1]) where 
W = {w, v}, P(w) > P(v) / O,F = {f, g}, c(f) < c(g) and [f] = 

[gil = W. The observed lvI-implicature play is to interpret f as wand 
to send J in w only, as well as to interpret 9 as v and to send 9 in v 
only. 

2.2 Interpretation games 

Interpretation frames capture the relevant aspects of the situation in which 
communication takes place. Cl'he communication itself can best be imagined 
as a signaling game: nature selects a world w E W -call it the actual world 
in a given play-with probability P(w) and reveals it to the sender who 
in turn chooses a form f E F. The receiver does not observe the actual 
world, but observes the signal f.He then chooses an action A. Sender and 
receiver receive a payoff based on w, f and A. In the present context, we are 
interested in interpretation games: signaling games in which signals have 
a conventional, compelling meaning that the receiver tries to interpret by 
choosing an interpretation action 0 / A <;;; W. 

Definition 2.3 (Interpretation Game). An interpretation game is just an 
interpretation frame to which interpretation actions and utilities for sender 
and receiver are added, in other words a tuple 

9 def (F, Act, liS, liR) 

where F = (W, P, F, c, ['11) is an interpretation frame, Act clef ,0"(W) \ 0 is a 
set of interpTetation actions and It"; : F x Act x W ---* R are utility functions 
of sender and receiver: 2 

L~ 
if10 E A and 10 E [Ill 

ltn(f, A, w) 
dol' 

if10 if- A and 10 E [Ill 
otherwise 

lts(f, A, 711) 
d(-~f 

tiR(f,A,w) -c(f). 

2 These utilities reflect the mutual desire to communicate which world is actual: the 
more the re,ceiver narrows down a correct guess the better; miscommunication, on the 
other hand, is penalized so that if the chosen interpretation does not include the actual 
situation, the payoff is strictly smaller than when it does: a strong penalty is given 
for communication that deviates from the semantic mf'~.ning of messages to enforce 
the exogenous me.a.ning of signals. (This last point is objectionable, but it is also not 
strictly necessary. I adopt it for ease of exposition since space is limited.) 
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As usual, we identify the receiver's probabilistic beliefs with the probability 
distribution PC). Costs are assumed nominal: they are small enough to 
make a utility difference for the sender for any two different signals f and 
F only in case UR(f, A, w) = tlR(F, A, w). 

Definition 2.4 (Strategies). A sender strategy is a function IJ : W ----+ 

F) \ 0 that specifies a set lJ(w) <:;;; F of messages to be sent with equal 
probability when in world w. 'vVe call a sender strategy IJ tmth-r-cspecting 
iff for all wand f whenever f E lJ(w) we have w E [fJl. We define also 

IJ-l(f) {w E W I f E lJ(w)}. Finally, a receiver strategy is a function 
p : F ----+ Act specifying an interpretation for each message. 

'vVhether an action is preferable to another depends on what the other 
party is doing. If we fix a strategy for the other party we can define the 
expected utility of each action. 

Definition 2.5 (Expected Utilities). Since the sender knows the actual 
world w, his expected utility of sending the form f E F given that the 
receiver plays p is actually just his utility in 'W given f and the receiver's 
response p(f): 

EUs(f, (J, 711) ~ tls(f, p(f), 10). 

Given that the sender plays IJ, the receiver's expected utility of interpreting 
a form f for which 1J-

1 (f) # 0 as A E Act is: 3 

EUR(A,IJ,j) d"f L P(wllJ-1(f)) x liR(f,A,w) 
wCI-V 

For a truth-respecting sender strategy this simplifies to: 

EU R(A, IJ, j) 
P(AIIJ- 1 (f)) 

IAI 
(2.1) 

If the other party's strategy is given, rationality requires to maximize 
expected utility. A strategy X that maximizes expected utility in all its 
rnoves given the other party's strategy Y is called a bcst rcsponse to Y. 
For sorne sender strategies IJ and forrns f it rnay be the case that several 
actions maximize the receiver's expected utility, and that therefore there is 
no unique best response. Given Equation 2.1, it is easy to see that all (non
empty) sets that contain only worlds which are maximally likely according 
to P( ·11J- 1 (f)) are equally good interpretations in expectation:4 

MaxAcActEU R(A, IJ, j) 

3 We will corne back to the question how to interpret messages f in the light of sender 
stra.tegies a that never use f in Sections 3.2 a.nd 3.4. For the time being, a.ssume that 
EU R (A, a, f) = 0 is constant for all A if a 1 (J) = 0. 

4 We write MaxxExF(x) c~f {x E X I ~:3x' EX: < F(:r:')}, for arbitrary set X 
and function F : X -* lR. 



304 M. Franke 

Assumption 2.6 (Preferred Interpretation). \lVe assurne that the receiver 
selects as his best response to a truth-respecting (J and f the largest inter
pretation action IVIaxwEwP(wl(J-L(J)). This is because the receiver should 
not discard any possible interpretation without reason; one should not gam
ble on proper understanding.5 

The standard solution concept for rational play in a signaling game is a 
perfect Bayesian equilibrium: a pair of strategies that are best responses to 
one another. 

Definition 2.7 (Perfect Bayesian Equilibrium). A pair of strategies \(J, p) 
is a perfect Bayesian equilibrium iff 

(i) for all wE W: (J(w) E MaX!EFEUs(J, p, w) 

(ii) for all f E F: p(J) E MaxAEActEU R(A, (J, 1). 

2.3 Pragmatics & the problem of equilibrium selection 

It is easy to verify that 1-, Q- and lVI-implicature play are all perfect Bayesian 
Equilibria (PBEs) in the corresponding interpretation games, but not uni
quely so. Indeed, the straight-forward signaling garnes approach to impli
cature computation faces a problcm of cqu·ilibTium sclcction: why is it that 
particular PBEs are observed and not others? 

A natural way of answering this question is to formulate refinements of 
the assumed solution concept. An interesting proposal along these lines is 
given van Rooij (2008) who observes that the Q-implicature play can be 
singled out as the unique neolog'ism pTOof PBE (Farrell, 1993) and that the 
lVI-implicature play can be singled out with the help of Cho's and Kreps' 
intuitive criter'ton (Cho and Kreps, 1987). We will pick up this latter idea 
in Section 3.4. Notice, however, that van Rooij's approach deviates from 
a standard signaling game analysis, because in order to arrive at the de
sired prediction for the lVI-frame, van Rooij considers a transition from an 
interpretation frame with just the cheaper message f, to which at a later 
stage the rnore costly rnessage 9 is added. The question remains whether 
we cannot account for the observed implicature plays in more conservative 
terms. 

3 Association-optimal signaling 
A recent framework that seeks to give a positive answer to this question is 
Benz and van Rooij's (2007) optimal asseTtions appToach. The basic idea is 
that the receiver may compute implicatures based on the assumption that 
the signal he received was an optimal asseTtion. An optimal assertion in 
turn is the best response to a naive, hypothetical interpretation of messages 

5 This assumption replaces the tie-break rule of Benz and van Rooij (2007). 
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that takes into account only the semantic meaning of the message and the 
probabilities of worlds. Benz and van Rooij describe their set-up as a se
quence of decision problems: on the hypothesis that the receiver interprets 
signals in a certain, naive way, the sender will choose signals that are opti
mal given this receiver strategy and the receiver can then interpret messages 
as optimal. 

Another way of looking at this process is as a sequence of iterated best 
responses (d . .higer, 2007). To point out the connection, I will spell out 
the details of the optimal assertions approach in terms of iterated best 
responses in Section 3.l. I will then, in Section 3.2, show that Benz's and 
van Rooij's interpretation rule deviates slightly from the former iterated best 
response logic in general, but that for a natural subclass of interpretation 
frames-including 1- and Q-frarnes-the two approaches fall together. Tn 
Section 3.3, finally, I will connect both the optimal assertion and the iterated 
best response approach with strong bidirectional optimality theory. 

3.1 Association optimality 

\Ne start with the assumption that the sender says something true: 

(J 0 (w) = U E F I w E [fll} . 

We also assume that, given that the sender says something true, the receiver 
will interpret rnessages as true; in other words, as the sender starts with a 
naive 'truth-only' strategy (Jo, the receiver maxirnizes his expected utility 
based on that strategy and plays (as (Jo is truth-respecting): 

po(f) l\IIaxwEwP(wl(Jol(f)) 

= MaX
'
1!EWP (wl [f]l)· 

\Ne could think here of a spontaneous, first associative response to the mes
sage f: the most likely worlds in which f is true are chosen as the first in
terpretation strategy, because these are the worlds that spring to mind first 
when hearing f. We therefore call Po the receiver's association response. 

The association response Po is of course a bad interpretation strategy. In 
fact, it is not a pragmatic interpretation strategy at all, for it leaves out all 
considerations about the interpretation game except [·]1 and P(·): receipt 
of message f is treated as if it was the observation of the event lUll. But 
still the association response Po is the rational response to the-admittedly 
non-pragmatic-sender strategy (Jo. The guiding conviction here is that 
pragmatic reasoning takes semantic meaning as a starting point: if I want 
to know what you meant by a given linguistic sign, I first feed into the 
interpretation machine the conventional meaning of that sign. Therefore, 
as (Jo is a natural beginning, so is the association response PO.6 

6 An anonymous reviewer asks for the difference between Jager's (2007) evolutionary 
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But if this truly is the most reasonable beginning for pragrnatic inter
pretation, the sender may anticipate the receiver's association response Po 
and choose a best response to it: 

0"1('10) = Max!EpEUs(J,po,w) 

= {J E F ] -,jt E F : EUs(J, Po, 'w) < EUs(t, Po, 'w)} 

Forme; in 0"1 are optimal forms given the receiver's association response. We 
could therefore call them association optimal, or, for short, optimal: a form 
f E F is (association) optimal in a world w iff f E O"l(W). 

How should the receiver interpret an optimal signal? We'll next consider 
and compare three possible answers to this question. 

3.2 Optimal assertions and iterated best respon ... <;e 

Given semantic expressibility as stated in Assumption 2.2, association op
timality is equivalent to Benz's and van Rooij's (2007) notion of an optimal 
assertion. Although the latter notion requires truth of a message for its op
timality, it is easy to see that semantic expressibility and optimality entail 
truth. 

Observation 3.1. Given semantic expressibility, 0"1 is truth-respecting. 

Pmoj. Let some I E F be false in w E W. 1')'om semantic express
ibility there is a message t E F which is true in w. But then -1 = 

~iS(f, (Yo (f), 711) < 0 ::; {(s(fl, po(fl), w), so that I is not association optirnal 
in w. Q.E.D. 

If the sender sends an association optimal signal, i.e. if the sender sticks 
to 0"1, the receiver can again interpret accordingly. Benz and van Rooij 
propose the following interpretation rule based on the assumption that the 
received signal was an Optimal Assertion: p?A (f) = {w E [Ill ] I is optirnal 
in w}. Thich simplifies under Observation 3.1 to 

(3.1) 

Notice, however, that this may not be a well-defined receiver strategy in 
our present set-up, for it may be the case that 0"1 1(f) = 0, which is not 
a feasible interpretation action. The same problem also occurs for the best 
response to 0"1. It is clear what the best response to 0"1 is for messages that 
may be optimal somewhere: if O"j1(f) / 0, we have 

p~R(f) MaxwEwP(w]0"11(f)). (3.2) 

model, which also uses best response dynamics, and the present synchronic approach. 
One obvious difference is that the present model assumes that at e~.ch turn a best 
response is selected with probability 1. Another difference is the sta.rting point: in 
Jager's model it is the sender, while in the present model it is the receiver who responds 
first to a strategy that is given by the semantic mea.ning of the signals. 
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But how should a best response to <71 interpret rnessages that are never 
optimal? Since we defined (tentatively, in Footnote 3) expected utilities 
as constant for all A E Act whenever <7- 1 (f) = 0, any A E Act is an 
equally good interpretation for a non-optimal I. For our present purpose
the comparison of frameworks it is not important what to choose in this 
case, as long as we choose consistently. We therefore adopt the following 
assumption and reflect on it in Section 3.4 where it plays a crucial role. 

Assumption 3.2 (Uninterpretability Assurnption). We assurne that the 
receiver resorts to the mere semantic meaning in case a message is lminter-
pretable: if <711 (f) 0, then p?A(f) p¥R(f) [III-

With this we can show that ppR(f) entails p?A (f) for arbitrary I and 
interpretation frames. Moreover, p?A also entails ppR, if we assume stmng 

cxpTcs,sibility: 

Definition 3.3 (Strong Expressibility). An interpretation frame satisfies 
strong expressibility if each world is irnmediately associated with some mes
sage: for each world w there is a form I such that w E po(f). 

Observation 3.4. Under strong expressibility, association optimality im
plies inclusion in the association response: if I is association optimal in w, 
then w E po(f). 

Pmoj. Assume strong expressibility. If w f/- po(f), there is a form l' for 
which w E pa(fl). But then 0 llS(f, pa(f), w) < {(s(fl, pa(fl), w). So I is 
not association optimal in w. Q.E.D. 

Proposition 3.5. For arbitrary interpretation frarnes it holds that prR(f) 
<;;; p?A(f). For interpretation frames satisfying strong expressibility it holds 
that prR(f) p?A(f). 

Pmof. We only have to look at the non-trivial case where <71 1 (f) # 0. Let 
W E ppR(f). Since all worlds have non-zero probabilities we can conclude 
that W E <71

1 (f). Hence, wE p?A(f). 
Let W E p?A (f) and assume strong expressibility. Then W E [Il] and 

f E <71(10). From Observation 3.4 we then know that 10 E paU} That 
means that there is no 10' for which P(w'] [Il]) > P('w] [Il]). But since, by 
Observation 3.1, we know that <711(f) <;;; [III, we also know that there is no 
Wi for which P(wl ]<711(f)) > P(wl<71 1(f)). lIenee w E prR(f). Q.E.D. 

3.3 Strong bidirectional optimality theory 

A similar connection holds with strong Hi-O'T' (Blutner, 1998,2000). At first 
sight, Bi-OT looks rather different from garne-theoretic rnodels, because in 
Bi-O'T' we cornpare form-meaning pairs (j, w) with respect to a preference 
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order. 'I'he idea is that to express a given rneaning w with a form j, the 
form-meaning pair (j, w) has to be strongly optimal. Likewise, a form j 
will be associated with meaning w if and only if (j, w) is strongly optimal. 

Definition 3.6 (Strong bidirectional optimality). A form-meaning pair 
(j, is strongly optimal iff it satisfies both the Q- and the I-principle, 
where: 

(i) w) satisfies the Q-principle iff -,jF : (F, w) > 

(ii) (j, satisfies the I-principle iff -,jw' : (j, Wi) > (j, w) 

How should we define preference relations against the background of 
an interpretation garne? Recall that the Q-principle is a sender economy 
principle, while the I-principle is a hearer econorny principle. \lVe have 
already seen that each interlocutor's best strategy choice depends on what 
the other party is doing. So, given 0-0 and Po as a natural starting point we 
might want to define preferences simply in terms of expected utility: 

(j', w) > (j, w) iff EUs(f', Po, w) > EUs(f, Po, w) 

(j, Wi) > (j, w) iff EU R( {Wi} ,0-0, f) > EU R( {11)} ,0-0, f) 

This simplifies to: 7 

(j',W) > (j,w) iff lis(fl,po(f'),W» po(f),w) 

(j, Wi) > (j, iff P(w'IIUII) > P(wl [Ill). 

Observation 3.7. Interpretation based on optimal assertions 
strong Bi-OT's Q-principle: a form-meaning pair (j, w) satisfies 
principle iff o-j1(f) # 0 and w E p?A(J). 

(f) is 
the Q-

Pmoj. A form-meaning pair (f, w) satisfies the Q principle iff there is no II 
such that EUs(F,po,w) > EUs(f,po,w) iff j is association optimal in w 
iff 1(J) # 0 and w E p?A(f). Q.E.D. 

Let's capture interpretation based on strong optimality in an interpre
tation operator for ease of comparison. If 0-1

1 (f) 0, the uninterpretabil-
ity assumption holds, and we take p?T (f) lUll; otherwise: p?T (f) 
{w E W I (f, w) is strongly optimal}, which is equivalent to: 

7 Originally, B1utner (1998) defined preferences in terms of a function C that maps 
form-mf'~.ning pairs to rf'~l numbers, where C((f,'w)) = c(f) x -log2 P(,wl [f]ll. Form
mf'~.ning pairs were then ordered with respect to their C-value. Our formulation here 
amounts basically to the same, but further integrates the present assumption that 
costs are nominal and only sender relevant. 
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Proposition 3.8. For arbitrary interpretation frames it holds that p?T (f) 
<;;; p?A(f). For interpretation frames satisfying strong expressibility it holds 
that p?T (f) = (f). 

Proof. The first part is an immediate consequences of Observation :3.7. So 
assume strong expressibility and let 0-1

1 (f) # 0 and 10 E p?A(f), so that 
1 E 0-1 (w). From Observation 3.4 we know that therefore w E po(f). So 
there is no Wi for which P(w'IIUI) > P(wIIUI]). But that means that (1, w) 
also satisfies the I-principle, and therefore w E p?T(f). Q.E.D. 

Proposition 3.9. For arbitrary interpretation frames it holds that p?T (f) 
<;;; prR(f). For interpretation frames satisfying strong expressibility it holds 
that p?T (J) = prR (J). 

Proof. Let 0-11(f) # 0 and 10 E p?T(f). 'I'hen 711 E MaxvEWP(vl [Ill) 
and 1 E 0-1(711). Suppose that there was a Wi E W with P(W'10-11(f)) > 
P(wI0-1

1 (f)). 'I'hen Wi E 0-1 1 (f), but Wi tJ. [UI. This contradicts Observa
tion 3.1. The rest follows from Propositions 3.5 and 3.8. Q.E.D. 

3.4 Interpretation of optimal signals 

The results of the last sections are graphically represented in Figure l. What 
do these results tell us about the respective interpretation rules? In par
ticular, what are the conceptual differences between the approaches? Can 
we conclude that one is better than the other'? A quick glance at Equa
tions 3.1, 3.2 and 3.3 reveals that the only difference between frameworks 
lies in the treatment of probabilities 8 The optimal assertions approach does 
not take probabilities into account, iterated best response chooses the most 
likely interpretations where the received message was optimal and Bi-OT 
chooses all those most likely interpretations given the semantic meaning of 
the message where that message was optimal. 

The sirnplest case where predictions differ is where the to be interpreted 
message 1 is true in three worlds, [U[[ {w, V, li}, and optimal in two worlds, 
0-1

1 (f) {v, ti}, with varying degree of probability: P(w) > P(v) > P(ti). 
In this case, the optimal assertions approach selects p?A (J) = 0- jl (f) = 

{v, ti}, iterated best response selects prR(f) = {v}, while Bi-OT selects 
p?T (f) 0. 

This seems to speak for iterated best response, maybe for optimal as
sertions, but somehow against Hi-OT. On the other hand, we might also 
credit Hi-OT for its strict continuation of the idea that probabilities encode 
stereotypes in an associative salience ordering: upon hearing 1 the associa
tions po(f) spring to mind and those are checked for optimality, so that, if 

8 Clearly then, for uniform probability distributions strong expressibility collapses into 
semantic expressibility and all frameworks behave the exa.ct same. 
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SE 
OA< -'-BiOT 

.~~1 
-"IBR·· 

FICURE 1. Connection between (i) optimal assertions (OA), (ii) iter
ated best response (TBR) and (iii) (strong) bidirectional optimality theory 
(BiOT): a straight arrow indicates inclusion of interpretations of signals 
while a dotted arrow with label SE indicates inclusion given strong express
ibility. 

the received message is not optimal in any of the associated worlds in po(J), 
then the receiver is stuck at least for the time being; he might re-associate 
in a further step. 

Can we then make an ernpirical case for or against any candidate? A first 
observation is that all three approaches predict the 1- and Q-implicature 
play equally well. In particular, since 1- and Q-frames satisfy strong ex
pressibility, the predictions for these cases are exactly the same for all three 
approaches. The M-frarne, on the other hand, does not satisfy strong ex
pressibility, but nevertheless doesn't help judge frarneworks, because all of 
the present candidates rnispredict in this case. Take the M-frame as defined 
above. We then get: 

p?A(J) 

prR(J) 

p?T(f) 

{w,v} 

{w} 
{w} 

p?A(g) {1o, v} 

prR(g) = {1o, v} 

p?T(g) = {1o, v} 

The problem is that none of the interpretation rules that we considered 
handles the long form g correctly. Can we fix this problerre 

The most obvious idea to try is further iteration. So what would the 
sender's best response J2 be to the receiver's strategy Pl? The answer to this 
question now crucially depends on the uninterpretability Assurnption 3.2. It 
is easy to verify that as long as v E Pl (g), the sender's best response will be 
to send f in 10 and to send g in v. (Remember that costs are nominal.) To 
this, in turn, the receiver's best response is the inverse of the sender strategy. 
The resulting play is indeed the M-implicature play. This is a noteworthy 
result in the light of the problem of equilibrium selection: iterated best 
response starting from a 'truth-only' sender strategy can account for 1-, Q
and f.,1I-implicatures for sorne versions of the un interpretability assumption, 
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but not for others. (To wit, if Pl (g) = {w} iteration of best responses has 
reached a fixed-point different from the lVI-implicature play). 

So is the uninterpretability assumption in 3.2 defensible'? It does not 
have to be, since at present it suffices to defend that Pl(g) # {w}, which 
implies that v E Pl (g) as desired. And that Pl (g) # rw} can be argued for 
based on Cho's and Kreps' (1987) intuitive criterion, as has been demon
strated by van Rooij (2008) (see also the short discussion in Section 2.3). 
In simplified terms, the intuitive criterion gives a strong rationale why the 
receiver should not believe that a sender in 'W would send g: she has a 
message f that, given Pl(J), is always better in w than signal 9 no matteT 
hOVJ the receiver might react to g. (The signal 9 is cquilibTium-dominated 
for w.) This reasoning establishes that w tJ. Pl(g), which gives us the M
implicature play immediately. If we adopt a weaker version and only require 
that Pl(g) # {w}, we can account for M-implicatures after another round 
of iteration. 

4 Conclusion 
'faken together, we may say that, with only little help frorn the refinement 
literature, the present version of iterated best response provides a uniform, 
synchronic account of T-, Q- and f.,1I-implicatures. It also subsumes, as a stan
dard game-theoretical model, the optimal assertions approach and strong 
Bi-O'r. 'T'his does not discredit either of these latter approaches. For the 
optimal assertions approach is actually more general than presented here: 
its predictions were here only assessed for a special case, but the framework 
is not restricted to a sender who knows the actual world and a receiver who 
chooses interpretation actions. Similarly, strong optimality is not all there 
is to Bi-OT': there is also the notion of weak bidirectional optirnality which 
also handles M-implicatures. The connection between weak optimality and 
iterated best response is not obvious and remains an interesting topic of 
future research. At present, we may safely conclude that, if game-theoretic 
standards are a criterion for our selection of models of irnplicature calcula
tion, then iterated best response fares best in the neo-Gricean terrain. 
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Introduction 
Markov decision processes rnodel situations where a controller wishes to 
control optimally a system, taking her decisions in a sequential way and 
facing stochastic behaviour of the system. Step after step, the Markov deci
sion process goes through a sequence of states So, Sl, ... from a set of states 
S. At each step, the controller chooses an action a E A, which causes the 
process to change from state s to new state t with fixed probability p(tls, a). 
The probability that the decision process stops is 0, i.e., 2:tEsp(tls, a) = 1 
and the time horizon is not bounded hence the decision process never stops. 
A history is an infinite sequence h = sOa1s1 ... such that at each step 
n E N, the controller has chosen the action an+l, knowing the sequence 
So, s], ... , Sn of previous states. 

With each history h is associated a payoff cp(h) E lR given to the con
troller, and the goal of the controller is to maximize the expected value of 
her payoff. 

We are especially interested in these Markov decision processes where 
the controller can play optimally without having to memorize information 
about the history of the play: in this case the choice of an action an l1 at 
step n by the controller only depends on the current state Sn of the Markov 
decision process, t he controller is said to play with a p'ure and stat'ionary 
strategy. 

In this paper, we present a criterion about the payoff function which 
guarantees the existence of optimal strategies which are pure and stationary, 
in any Markov decision process with finitely many state and actions. 

Our result still holds in the broader framework of zero-sum perfect
information stochastic games, where the controller plays against an adver
sary which also chooses actions and tries to minimize the expected payoff. 
'I'his was proven in (Cirnbert, 2006a). However, we restrict here to the case 
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one-player garnes, Markov decision processes, since this framework is 
suffkient for giving some interesting applications of our result. 

Performances of reactive discrete-event systems can be measured in sev
eral ways and similarly Markov decision processes can be equipped with 
various payoff functions. Some well-known examples are the parity, the 
mean-payoff or the discounted payoff function, which were initially intro
duced in the broader context of zero-sum games. In Markov decision pro
cesses equipped with the d-isco'unted payoJf function, with each state .5 is 
associated a daily payoff T, and at each step the controller earns the daily 
payoff corresponding to the current state. Moreover there is an inflation 
phenomena: future payoffs are multiplied by a discount factor 0 ::: A < 1, 
and for a stream TO, Tl, ... of daily payoffs, the total payoff received by the 
controller is: 

LAnrn. 
nE[\J 

This payoff was introduced by Shapley (1953). Gilette (1957) considered 
the case where the controller seeks to maximize the average value of the 
stream of payoff, i.e., 

lim 
TO + ... +Tn 

n+1 

which defines the rnean-payoJJ ftmction. 
Whereas discounted and mean-payoff games are used for econornic 1nod

elling, parity games were introduced for totally different purposes: they 
appeared in the context of theoretical computer science as a tool for study
ing relations between a logic called the I-<-calculus and a class of computation 
models called tree automata (Emerson and Jutla, 1991; Gradel et al., 2002). 
The payoff computed by the parity payoff function depends on the set of 
states visited infinitely often. Other examples of payoff function are the 
limsup, liminf (Maitra and Sudderth, 1996) and the total (Thuijsman and 
Vrieze, 1987) payoff functions. 

Surprisingly, all these examples of payoff functions share a common non
trivial property. Indeed, in any Markov decision process equipped with one 
of these functions there exist optimal strategies of a very simple kind: they 
are at the same time p'UTe and stationary. A strategy is pure when the 
controller plays in a deterministic way and it is stationary when choices of 
the controller depend only on the current state, and not on the full past 
history. For the sake of concision, pure stationary strategies are called 
positional strategies, and we say that a payoff function itself is positional if 
in any Markov decision process equipped with this function, there exists an 
optimal strategy which is positional. 

Existence of positional optimal strategies has a strong algorithmic in
terest, since it makes the computation of optimal strategies easy. Indeed, 
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the class of positional strategies is finite, hence a naive algorithm consists 
in enumerating all the positional strategies and selecting the strategy that 
gives the highest expected payoff. This algorithm is quite inefficient in prac
tice, since its running time is at least exponential in the size of the Markov 
decision process, in the case where expected payoffs are computable in poly
nomial time. However, for the discounted, mean-payoff and parity functions, 
the existence of positional optimal strategies has been used to design poly
nomial time algorithms (Puterman, 1994; Filar and Vrieze, 1997). 

Content of the paper. This paper addresses the following question: what 
is the common property between the discounted, mean, Iimsup and parity 
payoff which explains why all of them are positional? For answering this 
question, we introduce the class of 8'ubrnixing payoff functions, and we prove 
that a payoff function which is submixing and prefix-independent is also po
sitional T'heorem 2.:3). '['his result partially solves our problem, since 
the parity, limsup and mean-payoff functions are prefix-independent and 
submixing (cf. Proposition 3.1). Our result has several interesting conse
quences. First, it unifies and shortens disparate proofs of positionality for 
the parity, lirnsup and rnean payofr function (Section :3). Second, it al
lows us to generate a bunch of new examples of positional payoff functions 
(Section 4). 

Plan. This paper is organized as follows. Tn Section 1, we introduce notions 
of controllable Markov chain, payoff function, Markov decision process and 
optimal strategy. In Section 2, we state our main result: prefix-independent 
and submixing payoff functions are positional (d. T'heorem 2.3). In the same 
section, we give elements of proof of Theorem 2.3. In Section 3, we show 
that our main result unifies various disparate proofs of positionality. In 
Section 4, we present new examples of positional payoff functions. 

1 lVlarkov decision processes 
Let S be a finite set. The set of finite (resp. infinite) sequences on S is 
denoted S* (resp. S~). A pTObabihty distr-ibut'ion on S is a function (j : S ---* 

lR such that If s E S, 0 :s; 5( s) :s; 1 and L:sFS 5( s) l. The set of probability 
distributions on S is denoted D(S). -

1.1 Controllable Markov chains and strategies 

Definition 1.1. A controllable Markov chain A (S, A, (A(S)JsES,P) is 
composed of: 

• a finite set of states S and a finite set of actions A, 

• for each state s E S, a set A( 8) ~ A of actions available in 8, 

• transition probabilities p : S x A ---* D(S). 
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When the current state of the chain is 8, then the controller chooses an 
available action a E A(8), and the new state is t with probability p(tI8,a). 

A triple (8,a,t) E S x A x S such that a E A(8) and p(tI8,a) > 0 is 
called a transition. 

A history in A is an infinite sequence h = 80alsl ... E S(AS)W such 
that for each n, (8 71 ' ant 1, 871 + 1) is a transition. State 80 is called the source 
of h. The set of histories with source s is denoted PA,s' A finite history 
in A is a finite prefix of a history. The set of finite histories (resp. of finite 
histories with source 8) is denoted P:4 (resp. PA). 

A stmtegy in A is a function 17 : P~4 ---* D(A) such that for any finite 
history h E P A with target t E S, the distribution 17(h) puts non-zero 
probabilities only on actions that are available in t, i.e., (17(h)(a) > 0) =} 

(a E A(t)). The set of strategies in A is denoted I:A. 
Certain types of strategies are of particular interest for us, these are p1tTe 

and stationary strategies. A strategy is PUTC when the controller plays in 
a deterministic way, i.e., without using any dice, and it is stationaTy when 
the controller plays without using any rnemory, i.e., her choices only depend 
on the current state of the Markov decision process, and not on the entire 
history of the play. Formally: 

Definition 1.2. A strategy 17 E I:A is said to be: 

• pure ifVh E P~l' (17(h)(a) > 0) ==} (17(h)(a) = 1), 

• stationary ifVh EPA with target t, 17(h) = 17(t), 

• posit'lonal if it is pure and stationary. 

In the definition of a stationary strategy, t E S denotes both the target 
state of the finite history h E P A and also the finite history t E P:4 t of 
length 1. ' 

1.2 Probability distribution induced by a strategy 

Suppose that the controller uses some strategy 17 and that transitions be
tween states occur according to the transition probabilities specified by 
pCI·, .). Then intuitively the finite history 80al ... an 8 n occurs with proba
bility 

1, an). 

In fact, it is also possible to measure probabilities of sets of infinite 
histories. For this purpose, we equip p~\,s with a 17-field and a probability 
measure. For any finite history h EPA,s, and action a, we define the sets 
of infinite plays with prefix h or ha: 

(h = {SaalSl'" EPA,s I ::In E N, Saal'" 8n = h}, 

aha = {soalSl'" E P A,8 I ::In E N, sOal'" 8n a71 +l = ha}. 
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p~\,s is equipped with the o--field generated by the collection of sets Oh and 
aha. A theorem of Ionescu Tulcea Bertsekas and Shreve, 1978) implies 
that there exists a unique probability measure JlD~ on PA,s such that for any 
finite history h E P:1.s with target t, and for every a E A(t), 

JlD~((ha I tJh) = o-(h)(a), 

JlD~(tJhar I tJha ) = p(Tlt, a). 

1.3 Payoff functions 

With each history is associated a real value, called the payoff and the con
troller seeks to maximize this payoff. Payoffs are computed by payoff func
tions, in this subsection we give several examples of such functions: the 
mean-payoff, the discounted and the parity payoff function. 

1.3.1 Mean payoff 

1'he mean-payoff function has been introduced by Gilette (1957). It is used 
to evaluate average performances of a system. Each transition (s, a, t) is 
labelled with a daily payoff r(8, a, t) E lR. A history sOa1s1'" gives rise 
to a sequence TOT1 ... of daily payoffs, where Tn = T(Sn, and, Sn+1). The 
controller receives the following payoff: 

1.3.2 Discounted payoff 

I n 

limsup -- LTi. 
nEN n + 1 i=O 

(l.l) 

The discounted payoff has been introduced by Shapley (HI5:J) and is used 
to evaluate short-term performances. Each transition (s, a, t) is labelled not 
only with a daily payoff a, t) E JR but also with a discount factor 0 S 
A(8, eL, t) < 1. 'fhe payoff associated with a sequence (ro, AO)(Tl' A])··· E 
(JR x 10, 11)w of daily payoffs and discount factors is: 

The discounted payoff has an intuitive interpretation. Suppose that each 
time a transition (s, eL, t) occurs, a biased coin is tossed to know if the system 
may halt or proceed. The system proceeds with probability A(s, a, t), and 
halts with probability 1 - A( 8, eL, t). If the system halts at step n then the 
payoff is the surn TO! . . . +rn of rewards seen so far. 'With that interpretation, 
CP~isc is exactly the expected sum of daily payoffs before the system halts. 

1.3.3 Limsup and liminf payoff 

The lirnsup and lirninf payoff functions can be used to measure the peak 
performances of a system. Let C ~ JR be a finite set of real numbers, and 
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COCL ... E Cw. 'fhen 

CPlsup (COC1 ... ) = lim sup Cn 
n 

CPlinf(COCL···) liminf Cn · 
n 

1.3.4 Parity payoff 

'fhe parity payoff function is used to encode temporal logic properties 
(Gradel et aI., 2002). Each transition (s, a, t) is labelled with some pri
ority a, t) E N. The controller receives payoff I if the highest priority 
seen infinitely often is odd, and 0 otherwise. For COCL ... EN''), 

... I 
J {

o ~f l~m sUPn Cn ~s even, 
1 If hmsuPn Cn IS odd. 

(l.3) 

Remark that since we only consider controllable Markov chains with finitely 
many states, lim sUPn Cn is always finite, hence the parity payoff function is 
well-defined. 

1.3.5 General payoffs 

Tn the sequel, we will give other examples of payoff functions. Observe that 
in the examples we gave above, the transitions were labelled with various 
kinds of data: real numbers for the mean-payoff, couple of real numbers for 
the discounted payoff and integers for the parity payoff. 

We wish to treat those examples in a unified framework. For this reason, 
we consider in general that a controllable Markov chain A cornes together 
with a finite set of colours C and a mapping col: S x A x S -4 C, which 
colours transitions. 

In the case of the mean payoff, transitions are coloured with real numbers 
hence C ~ IR, whereas in the case of the discounted payoff colours are 
couples C ~ IR x [0,1 [ and for the parity game colours are integers C ~ N. 

For a history (resp. a finite history) h = sOa1s1 ... , the colour of the 
history h is the infinite (resp. finite) sequence of colours 

col(h) COI(80, aL, 8]) Col(8], a2, 

After a history h, the controller receives payoff cp(col(h)), where pay is 
a payoff function which associates a payoff with each infinite sequence of 
colours: 

Definition 1.3. Let C be a finite set. A payoff function on C is a function 
cP : CuJ -4 IR which is bounded and measurable for the iT-field generated by 
the sets {uCW, l( E C*}. 

Boundedness and measurability of payoff functions guarantee that the 
expected payoff is well-defined. 
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1.4 Values and optimal strategies in Markov decision processes 

Definition 1.4. A Markov decision process is a couple (A, cp), where A is 
a controllable Markov chain coloured by a set C and cp is a payoff function 
on C. 

Let us fix a Markov decision process At = (A, cp). After history h, the 
controller receives payoff cp(col(h)) E R We extend the definition domain 
of cp to p~\,s: 

Vh EPA,s, cp(h) cp(col(h)). 

The expected value of cp under the probability IF'~ is called the expected 
payoff of the controller and is denoted IE~ [cpl. It is well-defined because cp is 
measurable and bounded. The value of a state s is the maximal expected 
payoff that the controller can get: 

val(M)(s) = sup 1E~[cp]. 
o-EY;A 

A strategy IJ is said to be optimal in ;\.1 if for any state s E S, 

val(M)(s ). 

2 Optimal positional control 
\Ne are interested in those payoff functions that ensure the existence of 
positional optimal strategies. 'T'hese are defined formally as follows. 

Definition 2.1. Let C be a finite set of colours. A payoff function cp on CW 
is said to be positional if for any controllable Markov chain A coloured 
C, there exists a positional optimal strategy in the Markov decision process 
(A, cp). 

Our main result concerns the class of payoff functions with the following 
properties. 

Definition 2.2. A payoff function cp on CW is prefix-·independent if for 
any finite word U E C* and infinite word v E C,u, cp(uv) cp(v). Pay
off function cp is submixing if for any sequence of finite non-empty words 
ltO,VO,li[,V[, ... E C*, 

cp(UOVOliJV["') :::; ma.x {cp(UOti["')' cp(vovJ ... )}. 

The notion of prefix-independence is classical. The submixing property 
is close to the notions of fairly-mixing payoff functions introduced in (Gim
bert and Zielonka, 2004) and of concave winning conditions introduced in 
(Kopczynski, 2006). We are now ready to state our main result. 
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Theorem 2.3. Any prefix-independent and submixing payoff function is 
posi tiona!. 

The proof of this theorem is based on the 0-1 law and an induction on 
the number of actions and can be found in (Gimbert, 2006b). We do not 
repeat this proof here as we prefer to present some of its applications, in 
the next two sections. 

3 Unification of classical results 
Thanks to Theorem 2.3, it is possible to give a unified proof of position
ality for the limsup, the liminf, the parity and the mean-payoff function. 
Indeed the positionality of these payoff functions is a simple corollary of the 
following proposition. 

Proposition 3.1. The payoff functions CPlsup, CPlinf, CPpar and CPmean are 
submixing. 

Proof. Consider a finite set of real numbers C ~ lR and a sequence of 
finite non-empty words lI0,VO,l!1,V1, ... E C*. Let t! llot!1'" E CW, 
V VOV['" E CW and W ltOVoti[v]··· E Cwo The following elementary 
fact irnmediately implies that CPlsup is submixing: 

CPlsup (w) max { CPlsup (l!), CPlsup (v)}. (3.1) 

In a similar way, CPlinf is submixing since 

13 '» \' .~ 

Now suppose that C = {O, ... ,d} happens to be a finite set of integers 
and consider function CPpar' Remember that (w) equals 1 if CPlsup(W) is 
odd and ° if CPlsup(W) is even. l'hen using (3.1 we get that if CPpar(w) has 
val ue 1 then it is the case of either CPpar (l!) or CPpar (v). It proves that CPpar 

is also submixing. 
Finally, we show that function CPmean is submixing. Again C ~ lR is a 

finite set of real numbers. For i E N let Ci E C be the ith letter of word 
W. Since word w is a shuffle of words l! and v, there exists a partition 
(Io,h) of N such that 11 = (Ci)icIo and v = (Ci)icIl' For any n E N, let 
10' = 10 n {O, ... , n} and 1'1' = h n {O, ... , n}. Then for n E N, 

1 'n 

- ...... LCi nil 
i=O 
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The inequality holds since 
inequality, we obtain CPmean 

CPmean is subrnixing. 

+ = l. Taking the superior limit of this 
:s; max { CPmean (It), CPmean (v) }. It proves that 

Q.E.D. 

Since CPlsup, CPlinf, CPpar and CPmean are clearly prefix-independent, Propo
sition 3.1 and Theorem 2.3 imply that those four payoff functions are posi
tional. 

This technique gives a uniform proof of several disparate results, and we 
compare it to existing proofs. 

The case of Markov decision processes equipped with a parity criterion 
was treated in (Courcoubetis and Yannakakis, 1990). The proof is by in
spection of strongly connected components whose maximal priority is odd. 
This proof is far more simple than the result of Gimbert (2006b) used in 
our argument. 

The case of limsup and liminf Markov decision processes was treated 
in (Maitra and Sudderth, 1996) in the broader framework of stochastic 
games with infinitely many states. In (Maitra and Sudderth, 1996) values 
Markov decision processes equipped with sup and linhsup payoff functions 
are characterized as fixpoints of some operators. The existence of pure and 
stationary optimal strategies in the case of finitely many states is derived 
from this characterization. The proof of iVfaitra and Sudderth and the proof 
given here use radically different techniques. '['he proof of Gimbert (2006b) 
is shorter since we do not rely on a fine study of values of limsup and liminf 
games. 

For mean-payoff iVfarkov decision process, there basically exists two 
proofs of the existence of pure and stationary optimal strategies. The first 
approach, that can be found for example in (Neyman, 200:3), consists in 
proving existence of such strategies in discounted Markov decision processes, 
and using the fact that values of discounted Markov decision processes are a 
rational function of discount factors. This implies existence of pure station
ary strategies that are optimal for every small values of discount factors, a 
phenomenon called Blackwell optimality. In particular, pure and stationary 
strategies that are Blackwell optimal are optimal in the limit mean-payoff 
Markov decision process. 

Another approach, in two steps, consists in first considering a weak fOnT] 
of mean-payoff Markov decision processes, where payoffs are computed tak
ing the average val ue of expectations of rewards rather than the expectation 
of the average value of rewards Puterman, 1994 for example). Using 
simple matrix calculation, it can be shown that for this weak form of mean
payoff Markov decision processes, there exists pure and stationary optimal 
strategies. Then one can conclude using a non-trivial result of Bierth (1987) 
that these strategies are also optimal for (not weak) mean-payoff Markov 
decision processes. 
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In our case, we directly prove the existence of pure and stationary op
timal strategies, under very weak hypothesis that include as special cases 
the classes of limsup, liminf, mean-payoff and parity Markov decision pro
cesses. The proof of Gimbert (2006b) is more elementary than the proofs 
above, since it uses only elementary probabilities and measure theory. The 
theorem of Gimbert (2006b) is also more powerful: in the next section we 
present several examples of payoff functions that can be proven to be po
sitional thanks to our result, but we do not know if it is possible to do so 
using existing techniques of Maitra and Sudderth (1996), Puterman (1994), 
Bierth (1987), and Neyman (2003). 

4 New examples of positional payoff functions 
In this section we present two new examples of positional payoff functions, 
namely the weighted payoff and the cornpromise payoff. We also present 
three operations on payoff functions, namely mixing with the liminf payoff 
function, approximation and hierarchical product. These operations have a 
nice property: the class of submixing and prefix-independent payoff func
tions is stable under these operations, hence these operations can be used 
to generate numerous new examples of positional payoff functions. 

4.1 The weighted payoff 

Weighted payoff functions were recently introduced by Gimbert and Zielonka 
(2007). Each transition is labelled with a couple of rewards and weights, 
the last being a strictly positive real number: the set of colours is C c 
{Cr,w) IT E iR,W E iR,'w > O}. A history sOalsl'" gives rise to a sequence 
(TO, WO) (T] , W]) . .. of rewards and weights and the controller receives the 
payoff: 

(4.1) 

This function generalizes the mean-payoff function: if all weights are 
taken to be I, then values of the rnean-payoff function and the weighted 
payoff function do coincide. 

Intuitively, weights used in the definition of the weighted payoff functions 
can be considered as time lengths, and rewards as instant performances. 
'With this interpretation, CPweight cornputes the average perforrnances over 
time. 

l'he weighted payoff function is positional. Indeed, it is sub-mixing, the 
proof is very similar to the proof of Proposition 3.1. Moreover, CPweight is 
also clearly prefix-independent, hence Theorem 2.3 implies that CPweight is 
posi tiona!. 
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'Weighted Markov decision processes have strong connections with dis
counted Markov decision processes with multiple discount factors (Gimbert 
and Zielonka, 2007), that extend the well-known connections between dis
counted and mean-payoff Markov decision processes (Gilette, 1957). 

4.2 The compromise payoff function 

The cornprornise function was introduced in (Gimbel't and Zielonka, 2004), 
and is defined as follows. We fix a factor ,\ E [0, 1], a finite set C c;;-; IR'. and 
for It E C W

, we define 

(4.2) 

This function generalizes the lirnsup and Iiminf payoff functions, which 
correspond to the case where ,\ = 0 or ,\ l. 

Intuitively, peak performances of a system can be evaluated using the 
Iimsup payoff, whereas its worst performances are computed using the liminf 
payoff. The cornpmrnise payoff function is used when the controller wants 
to achieve a trade-off between good peak performances and not too bad 
worst performances. 

4.3 Mixing with the liminf payoff 

Not only the Iimsup function CPlsup but any payoff function cP may be mixed 
with the lirninf function in a way sirnilar. 1'he nice property of this op
eration is that the submixing property is preserved, as stated in the next 
proposition. 

Proposition 4.1. Let C c;;-; IR'., 0 ::; ,\ ::; 1 and cP be a payoff function on 
C. Suppose that cP is prefix-independent and subrnixing. 'fhen the payoff 
function 

,\. cP + (1 -,\) . CPlinf (4.3) 

is also prefix-independent and submixing. 

Pmoj. Let C c;;-; IR'. be a finite set of real numbers and Ua, Vo, ttl, VI, ... E C* 
be a sequence of finite non-empty words over C. Let It ltoltl ... E CW, 
v = VOVl ... E CW and w = ttOVottl Vl ... E CW. Then since cP is submixing, 
cp(w) ::; max{ cp(li), cp(v)} and moreover CPlinf(W) = min{ CPlinf(tt), CPlinf(V)}. 

This proves that ,\ . cpt (1 - ,\) . CPlinf is submixing. Q.E.D. 

In particular, when in (4.3), cP is either CPmcan, CPpar or CPlsup, we obtain 
several new exarnples of positional payoff function. 

4.4 Approximating a payoff function 

Approximation of a payoff function cP : CuJ ---+ IR'. consists in composing cP 
with a non-decreasing function f : IR'. ---+ IR'.. For example, if f is the threshold 
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function 1;:'0, which associates 0 with strictly negative real numbers and 1 
with positive number, then JoCP indicates whether cP has positive or negative 
value. 

H cP is positional then of course f 0 cP also is, since a positional optimal 
strategy for some Markov decision process (A, cp) will be optimal for the 
Markov decision process (A, J 0 cp) as well. In fact, it is straightforward 
to check that approximation not only preserves positionality but also the 
submixing property. 

4.5 The hierarchical product 

Now we define a binary operator between payoff functions, which stabilizes 
the family of prefix-independent and submixing payoff functions. \lVe call 
this operator the hicTarchical product. 

Let CPo, CPl be two payoff functions on sets of colours Co and C l respec
tively. We do not require Co and C] to be identical nor disjoints. 

'['he hierarchical product CPo [> CPt of CPo and CPt is a payoff function on the 
set of colours CoUC t and is defined as follows. Let ti cac]' .. E (CaUCt)w 
and tiO and til the two projections of ti on Co and C l respectively. Then 

if tio is infinite, 

otherwise. 

This definition makes sense: although each word tiD and Vl can be either 
finite or infinite, at least one of them must be infinite. 

l'he parity payoff function has an alternative definition in term of the 
hierarchical product. For c E PiI, let Oe and 1 e be the payoff functions defined 
on the one-letter alphabet {c} and constant equal to 0 and 1 respectively. 
Let d be an odd number, and CPpar be the parity payoff function on {O, ... , d}. 
Then 

CPpar Id [> Odl [> ... [> h [> 00 . 

'['he submixing property is stable under the hierarchical product: 

Proposition 4.2. Let CPo and CPl be two payoff functions. If CPo and CPl are 
prefix-independent and subrnixing, then CPo [> CPl also is. 

Hierarchical products of weighted payoff functions are tightly linked 
with the discounted payoff function. Indeed, in a Markov decision pro
cess equipped with a discounted payoff function, when the discount factors 
converge to 0, then under weak hypothesis the values converge to the values 
of the same controllable Markov chain equipped with a hierarchical product 
of weighted payoff functions (Gimbert and Zielonka, 2007). 



Nlarkov Decision Processes with Pure Stationary Optimal Strategies 325 

5 Conclusion 
We introduced the class of prefix-independent and submixing payoff func
tions and proved that this class enjoys a nice property: in any Markov 
decision process equipped with one of these payoff functions, there exists 
optimal strategies that are pure and stationary. Moreover this class is robust 
since it contains several payoff functions that are central tools in economics 
(mean-payoff and limsup functions) and computer science (parity function). 
Based on these results, we were able to exhibit several new examples of po
sitional payoff functions. 

The results of the last section give rise to natural algorithmic questions. 
For Markov decision processes equipped with mean, Iimsup, Iiminf, parity or 
discounted payoff functions, the existence of optimal positional strategies is 
the key for designing algorithms that compute values and optimal strategies 
in polynomial time (Filar and Vrieze, 1997). For examples generated with 
the operator and the hierarchical product, it seems that values and 
optimal strategies are computable in exponential time, but we do not know 
the exact complexity. Also it is not clear how to obtain efficient algorithms 
when payoff functions are defined using approximation operators. 

Another interesting direction for future work is the definition of a good 
quantitative specification language for optimal controller synthesis of r"Cac
tive pTogmms, i.e., programs interacting with their environment. Temporal 
logics such as CTL * may be used for specifying logical properties about the 
behaviour of reactive programs, indeed CTL* enjoys nice properties such 
as closure under boolean operations and computational tractability. When 
the environment is modelled by stochastic and non-deterministic transitions, 
computing the minimal probability for a reactive program to satisfy a CTL * 
specification amounts to solving a Markov decision process equipped with 
a parity payoff function. The designer of a program may be less interested 
in the COTTectness of the program than in its performances, for example the 
expected RAM use. There does not exists a language for specifying quan
titative properties of prograrmi with the nice properties of CTL*, although 
there have already been several steps in this direction (Baier and Clarke, 
1998; McIver and Morgan, 2002: de Alfaro, 2003: Chatterejee et al., 2004: 
de Alfaro et al., 2004; L1uch-Lafuente and Montanari, 2005). Results of the 
present paper is another effort towards the definition of such a quantitative 
specification language. 

To conclude, we formulate the following conjecture about positional pay
off functions: "Any payoff function which is prefix-independent and posi
tional for the class of non-stochastic one-player games is positional for the 
class of Markov decision processes" . 
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