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Preface

The metaheuristics appeared in the eighties. These global optimization algorithms
are stochastic and can be applied to any problem, at the condition it is formulated as
a mono-objective or multiobjective optimization problem. They are called nature
inspired because their origin comes from the observation of natural behavior:
analogy with physics (simulated annealing, microcanonical annealing), with biol-
ogy (evolutionary algorithms) or with ethology (ant colonies, particle swarms).
They also can be extended, particularly to multiobjective optimization. Algorithms,
techniques, and methods based on metaheuristic paradigm have been successfully
applied to a wide range of complex problems. From the perspective of science
development, metaheuristics is an emerging interdisciplinary area between natural
sciences, biology, sociology, and computer science. Its rapid growth is a natural
product of the rapid development of interdisciplinary research today.

Medical imaging has established itself as a very important research area pri-
marily due to the rapid development of sensors, communication technologies,
databases, processors, etc. The phenomenal growth in the technologies and appli-
cations for medical imaging has allowed for many interesting results concerning,
Medical image acquisition, Medical image processing, and Telemedicine.

This book “Metaheuristics for Medicine and Biology” aims at providing a
review for researchers interested in the advances and applications of metaheuristics
to biomedical engineering. The book is oriented towards both theoretical and
applications aspects of metaheuristics to biomedical imaging.

Paris Amir Nakib
December 2016 El-Ghazali Talbi
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Chapter 1
Design of Static Metaheuristics for Medical
Image Analysis

Amir Nakib

1.1 Introduction

Medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance
Imaging (MRI), Ultrasound, and X-Ray, in standard DICOM (Digital Imaging and
Communications in Medicine) formats are often stored in Picture Archiving and
Communication Systems (PACS) and linked with other clinical information in clini-
cal management systems. Since 70’s research efforts have been devoted to processing
and analyzing medical images to extract meaningful information such as volume,
shape, motion of organs, to detect abnormalities, and to quantify changes in follow-
up studies. Automated image segmentation, which aims at automated extraction of
object boundary features, plays a fundamental role in understanding image content
for searching and mining in medical image archives. A challenging problem is to
segment regions with boundary insufficiencies, i.e., missing edges and/or lack of
texture contrast between regions of interest (ROIs) and background. To address this
problem, several segmentation approaches have been proposed in the literature, with
many of them providing rather promising results.

From the literature algorithms designed medical image segmentation are applica-
tion dependent, imaging modality and type of body part to be studied. For example,
requirements of brain segmentation are different from those of the thorax. The arti-
facts, which affect the brain image, are different partial volume effect is more promi-
nent in brain while in the thorax region it is motion artifact which is more prominent.
Thus while selecting a segmentation algorithm one is required to consider all these
aspects. The problems common to both CT and MR medical images are:

• Partial volume effect
• Different artifacts: example motion artifacts, ring artifacts, etc.
• Noise due to sensors and related electronic system.

A. Nakib (B)
Laboratoire LISSI, Université Paris Est, 122 Rue P. Armangot, 94400 Vitry-sur-Seine, France
e-mail: nakib@u-pec.fr

© Springer-Verlag GmbH Germany 2017
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2 A. Nakib

It is well known that there is no a standard algorithm for the segmentation of all
medical images. Each imaging system has its own specific limitations. For example,
in MR imaging (MRI) one has to take care of bias field noise (intensity inhomo-
geneities in the RF field). It is obvious that some methods are more general as
compared to specialized algorithms, and can be applied to a wider range of data. A
brief survey of three generations of medical image segmentation techniques can be
found in [24].

The motivation of using metaheuristics is to design a new image segmentation
techniques, that combine the flexibility of fitness functions with the power of meta-
heuristics for searching vast search spaces, in order to find the optimal solution. In
our work, metaheuristics were improved to solve the continuous and combinatorial
optimization problems.

1.2 Image Segmentation as an Optimization Problem

In this section, we show that the segmentation of an image can be reduced to an
optimization problem, usually NP-hard [14]. Hence the need to use a metaheuristic.
The segmentation of an image I using a homogeneity feature A is usually defined
as a partition P = R1, R2, . . . , Rn of I , where:

1. I = ⋃
Ri , i ∈ [1, n]

2. Ri is convex ∀i ∈ [1, n]
3. A(Ri ) = True,∀ [1, n]
4. A (Ri∪) = False,∀i ∈ [1, n] for all connected regions

(
Ri , R j

)
.

One can notice that the uniqueness of the segmentation is not guaranteed by these
four conditions. Indeed, the segmentation results depend not only on the information
contained in the image, but also on the method used to process these information
(method used to take a decision looking to the segmentation result). Generally, to
reduce the problem of non-uniqueness of the solution, the segmentation problem
is regularized by adding an optimization constraint function F characterizing the
quality of a good segmentation. Then, a fifth condition is added to the first four:

5. F(P∗) = Min
P∈PA(I )

F(P) where F is a decreasing function and PA(I ) is the set of

all possible partitions of I .

It is obvious that condition 5 does not entirely solve the problem of uniqueness
of the segmentation. There are still cases where multiple segmentations can have
the same optimal value. This explains the need to implement algorithms based on
metaheuristics.
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1.3 Metaheuristics’ Enhancement for Medical Image
Segmentation

1.3.1 Hybrid Ant Colony System (ACS)

In this work, a new formulation of the image thresholding problem as a shortest path
problem was proposed. Then, a hybrid ant colony system based algorithm to solve
was used to solver it. Moreover, a new segmentation criterion was proposed, named
the biased survival exponential entropy. This criterion considers the cumulative dis-
tribution of the gray level information and takes into account spatial quality of the
segmentation result. It is well known that the ant colony optimization algorithms are
slow; in order to solve this problem we enhanced the classical ant colony system
by hybridizing it with a local search algorithm. The original Ant Colony System
(ACS) [6] was applied in different real world applications. Since the formulation of
the problem as a graph optimization problem, ACS can be applied by associating
two measures to each arc: the closeness τ(i, j), and the pheromone trail η(i, j).
ACS uses a mechanism based on three main operations: (1) the state transition rule
provides a direct way to balance between exploration of new edges and exploitation
of a priori and accumulated knowledge about the problem. (2) The global updating
rule is applied only to edges that belong to the best ant tour. (3) While ants construct
a solution, a local pheromone updating rule (local updating rule, for short) is applied.

• ACS state transition rule

In ACS the state transition rule is as follows: an ant positioned at the node r chooses
the city v to move to by applying the rule given below.

v =
{
ArgMaxu∈Jk (r)

{
[τ(r, u)] · [η(r, u)]b

}
q ≤ q0

s Otherwise
(1.1)

where q is a random number uniformly distributed in [0, 1], q0 is a parameter 0 ≤
q0 ≤ 1. It determines the relative importance of exploitation versus exploration:when
an ant in node r has to choose a node s to move to, it samples a random number 0 ≤
q ≤ 1. b is a parameter that determines the relative importance of pheromones versus
distance. s is a random variable selected according to the probability distribution. It
is given by:

pk(r, s) =
{

[τ(r,s)][η(r,s)]b
∑

u∈Jk (r) [τ(r,s)][η(r,s)]b
s ∈ Jk(r)

0 Otherwise
(1.2)

Jk(r) is the set of the neighborhood solutions to the current ant r . The state transition
rule resulting from Eqs. (1.1) and (1.2) is called pseudo-random proportional rule.
This state transition rule, as with the previous random-proportional rule, favors
transitions towards nodes connected by short edges and with a large amount of
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pheromone. If q ≤ q0, then the best edge according to (1.1) is chosen (exploitation),
otherwise an edge is chosen according to (1.2) (biased exploration).

• ACS global updating rule

In ACS, only the globally best ant is allowed to deposit pheromone. The pheromone
level is updated by applying the following global updating rule:

τ(r, s) = (1 − μ) · τ(r, s) + μ · Δτ(r, s) (1.3)

where

Δτ(r, s) =
{(

Lgb
)−1

if(r, s) ∈ gb
0 Otherwise

(1.4)

0 < μ < 1 is a pheromone decay parameter, and Lgb is the length of the globally
best tour (gb) from the beginning of the trial.

• ACS local updating rule

After having crossed an edge (i, j) during the tour construction, the following local
update rule is applied:

τ(i, j) = (1 − ξ) + ξ · τ0 (1.5)

where 0 < ξ < 1, and τ0 are two parameters. The value for τ0 is suited to be the same
as the initial value for the pheromone trails. In order to apply the EACS to solve the
segmentation problem, it must be reformulated as a shortest path problem. Then,
we define a stochastic rule of local choice of transition to carry out the good path
research in this graph. It is also needed to fix the strategy of the deposit and the use
of the different traces of pheromone. In our case, the graph is related and balanced.
The nodes represent the various possible thresholds (255 thresholds). The weights
will be placed on the arcs. The weight on an edge represents the value of the BSEE
for the thresholds T bound by this edge (see Fig. 1.1). Then, we define:

• A set of components C = T .
• The whole L = T × T , either a total, simple and non controlled interconnection
between the objects.

• The function of transition cost J (i, j) = pi j .
• The set of the solutions, that correspond to all possible thresholds that allow to
segment the image, without violation of the sort constraint.

In order to solve the image segmentation problem, we specify the behavior of the
set of the colony guided by the ACS to minimize the segmentation criterion. Initially,
N ants are placed randomly on N nodes of the construction graph. Thus, each ant
adds, in an incremental way, the threshold that minimizes the total segmentation
criterion. Then, every ant moves to its neighborhood using a stochastic transition
rule. This rule depends on the quantity of pheromone and heuristic information
locally valid. In other terms, an ant having a constructed solution s chooses to move
toward a node j according to the rule (1.1). As we consider that the timeliness of
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Fig. 1.1 Illustration of the
problem formulation where
M is the maximum
gray-level in the image, Lo is
the lowest gray-level and t∗
is an example of an optimal
threshold. The dashed lines
correspond to the shortest
path

a solution depends on all the solutions (segmentation thresholds) already found,
the heuristic information and the pheromone represent a total relation between the
current solution and all the found solutions from the start S (all visited nodes).

τS( j) =
∑

i∈S τ(i, j) (1.6)

The heuristic information corresponds to the value of the segmentation criterion.
Then, the candidate is more desirable with the decrease of its fitness function.

The proposed algorithm (Fig. 1.2) consists in applying the proposed EACS
(hybridization of ACS with Tabu Search (TS)). The different steps of the proposed
segmentation algorithm are presented in the algorithm in Fig. 1.2. Indeed, the EACS
principle consists in applying a local search based on TS for 30% of the ant colony.
The aim of this local search is to accelerate the convergence of the algorithm and to
avoid the local optima. Indeed, the tabu search is used for the intensification procedure
as a local search and ACS is used with a specific fitting that allows a diversification.

1.3.1.1 Segmentation Criterion: Biased Survival Exponential Entropy

In this section, the information measure of random variables, called Survival Expo-
nential Entropy (SEE), is recalled. Here, we show how using a biased version of this
measure can allow to segment images.
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The EACS algorithm
Data: image histogram, number of classes (N)
for each ant do

Choose the first threshold randomly
for i= 2 to N−1 do

Build a list of the candidates thresholds
Choose a threshold that minimizes the segmentation criterion
r = rand
if r < 0.3 then

Apply a Tabu search in the neighbor of the current threshold
end
Local update of the pheromone

end
Global update of the pheromone

end
Retrun The best ant

Fig. 1.2 The EACS algorithm

Let X = (X1 . . . Xm) be a random vector in �m . Denoted by |X |, the random
vector with components |X1| , . . . , |Xm | and use the notation |X | > x to mean that
|Xi | > xi for xi ≥ 0, i = 1, . . . ,m.

The multivariate survival function F |X |(x) of the random vector |X | with an
absolutely continuous distribution with probability density function f (x) is
defined by:

F |X |(x) = P (|X1| > x1 , . . . , |Xm | > xm) (1.7)

where x ∈ Rm+ . For a discrete distribution, the survival cumulative distribution func-
tion can be expressed as:

F̄(x) = 1 −
x∑

i=0

p(i) (1.8)

For the random vector X in �m+, the survival exponential entropy of order α is
defined by:

Mα(X) =
⎛

⎜
⎝

∫

Rm+

F
α

|X |(x) dx

⎞

⎟
⎠

1/1−α

(1.9)

for α > 0 and α 	= 0, where m denotes the number of dimensions for X . The SEE
uses the density function with the cumulative distribution that is more regular than
the density function. The SEE has several advantages over the Shannon entropy
and differential entropy (extension of Shannon entropy to the continuous case): it
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is consistently defined in both the continuous and discrete domains, it is always
nonnegative and it is easy to compute fromsample data.Whereas theShannonentropy
is based on the density of the random variable, that may not exist in some cases and,
when it exists, must be estimated. For the application in image segmentation, we
use the well known property of measures of entropy, which states that the entropy
of the joint distribution is equal to the sum of entropies of the marginal distributions
under the assumption of independence.Thus the proposed biased survival exponential
entropies (BSEE) associated with different image classes’ distributions are defined
below:

• the BSEE of the class m − 1 can be computed through:

BM
(m−1)

α = ω(m−1) ·
⎛

⎝
tn−1∑

j=tn−1

(
F(i, j)

)α

⎞

⎠

1/(1−α)

(1.10)

• the BSEE of the class m can be computed through:

BM
(m)

α = ω(m) ·
⎛

⎝
tn+1−1∑

j=tn

(
F(i, j)

)α

⎞

⎠

1/(1−α)

(1.11)

where ω(m) = log(Ni ), so that the first term
(
ω(m) · M (m)

α

)
is high for

non-homogeneous regions (typically, the large ones), while Ni denotes the num-
ber of pixels in the class i , and ω(1) = 1. For the convenience of illustration, two
threshold values t0 = 1 and tN = 255 were added, where t0 < . . . < tN . Then the
total BSEE is:

BM
(T )

α =
N−1∑

i=0

BM
(i+1)

α (1.12)

According to theminimum survival exponential entropy principle that corresponds to
the maximum Shannon entropy principle, the optimal vector (t∗0 < . . . < t∗N ) should
meet:

BM
(T )

α = ArgMin
{
BM

(T )

α

}
(1.13)

where 1 < t1 < . . . < 255. In the case of one threshold (N = 2), the computational
complexity for determining the optimal vector t∗ is O(L2) where L is the total
number of gray level. However, it is too time-consuming in the case of multilevel
thresholding. For the n-thresholding problem, it requires O(Ln+2). In this work, we
used a the hybrid ACS, previously presented, for solving the problem formulated in
(1.13) efficiently.
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Fig. 1.3 Illustration of the segmentation results using BSEE-EACS on two different MRI (a) and
(b)

1.3.1.2 Results and Discussions

In our experiments, the value of α was equal to 100, in order to have stable per-
formances. The different values of the parameters of EACS algorithm were fixed
empirically as follows: Population size = 100, Number of Cycles = 2 × N , μ = 0.5,
b = 2, TL = 3 × N , Sn = 10. The different images were acquired using Siemens
Avento 1.5T, the resolution was 256 × 256 and the field of view equal to 250. The
Fig. 1.3 presents an illustration of a segmentation results obtained on two different
pathologicMRI cases. Indeed, in this paper the pathology studied the hydrocephalus,
that consists in atrophy in the ventricular system. Then, our goal was to calculate
the volume of the cerebrospinal fluid (CSF) inside only the ventricle. The proposed
algorithm was used as a pre-processing step to calculate the volume. The obtained
result through the application of the segmentation algorithm when N = 2, shows
that the use of the BSEE allows to segment satisfactorily the brain MR images.

1.3.2 Enhanced BBO for Image Segmentation

Biogeography is known as a popular method of studying geographical distribution of
biological organisms, whose earliest works can be traced back to the days of Alfred
Wallace and Charles Darwin [19]. The mathematical models of biogeography are
available which describe the governing laws about migration of specifies from one
island to another island, the arrival of new species and the extinction of some existing
species. However, only very recently a population based optimization technique has
been proposed employing the basic nature of biogeography and it has been named
biogeography based optimization (BBO) [19].
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The mathematical models of biogeography are available which describe the gov-
erning laws about migration of specifies from one island to another island, the arrival
of new species and the extinction of some existing species. However, only very
recently a population based optimization technique has been proposed employing
the basic nature of biogeography and it has been named biogeography based opti-
mization (BBO) [19]. In biogeography models, the fitness of a geographical area
(called “island” or “habitat”) is judged on the basis of habitat suitability index (called
HSI). A habitat with a high HSI indicates that it is more suited for species to reside
here. Similarly a habitat with a low HSI indicates that it is less suited for species to
reside there. It is natural that higher the HSI of a habitat, it is likely that more num-
ber of species will be present there. The variables that characterize habitability, e.g.
rainfall, vegetation, temperature etc., are called suitability index variables (SIVs).
The dynamics of the movement of the species among different habitats is mainly
governed by two parameters, called immigration rate (λ) and emigration rate (μ) and
these two parameters are functions of the species count in a habitat.

Figure1.4 shows the species model of a single habitat [12, 19]. The curve shows a
special case whenmaximum immigration rate (I ) andmaximum emigration rate (E)

are equal. However, strictly speaking, there is no such constraint and the condition
of equality can be easily relaxed. In this curve the maximum number of species that
a habitat can host is considered to be Smax . When the number of species (S) is small,
there is more possibility of immigration of species from neighboring habitats and
less possibility of emigration of species from this habitat to neighboring habitats.
With the increase in the population of species, the possibility of immigration to the
habitat decreases and the possibility of emigration from the habitat increases. This is
characterized by the two curves for immigration rate and emigration rate in Fig. 1.4.
When S = S0, the equilibrium condition is reached i.e. in a given time span, the same
number of species immigrate to and emigrate from the habitat.

Let the probability that the habitat contains S species at time t be given by Ps ,
then, the dynamic equations of the probabilities of species count in the habitat can
be defined using a matrix relation.

Ṗs =
⎧
⎨

⎩

− (λs + μs) Ps + μs+1Ps+1 S = 0
− (λs + μs) Ps + λs−1Ps−1 + μs+1Ps+1 1 ≤ S ≤ Smax − 1
− (λs + μs) Ps + λs−1Ps−1 S = Smax

(1.14)

As there is a possible maximum of Smax number of species in the habitat, one
can obtain a matrix relation governing the dynamic equations of the probabilities of
species count in the habitat:
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Fig. 1.4 Curves for
immigration and emigration
rates in basic BBO algorithm
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(1.15)

1.3.2.1 Enhancement of Biogeography Based Optimization (BBO)
Algorithm

These basic ideas of biogeography have been utilized to design a population based
optimization procedure that can be potentially used to solve many engineering and
other optimization problems. As there are a lot of similarities between the mathe-
matical model of biogeography and the population based optimization algorithms.
The BBO algorithm proposed in [19] designate each habitat H as a potential m × 1
decision variable vector, where H ∈ SI V m i.e. each habitat or solution comprisesm
SIV s. For each habitat H , its HSI corresponds to the fitness function in population-
based algorithms. A habitat with a higher HSI indicates that it is a better candidate
for the optimum solution. It is considered that the ecosystem has n habitats i.e. the
ecosystem is Hn . In the context of population based metaheuristics, it means there
are a total of n possible candidate solutions (i.e. the population size). The overall
scheme of BBO is presented in Fig. 1.5. In the basic BBO algorithm, the immigration
and emigration rates follow as linear variations of species count. They are described
using the following equations:
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BBO
Inputs: ItMax: maximum number of iterations
while i< ItMax do

Evaluate the HSI (fitness) of each solution
Compute S, ,and for each solution
Modify habitats (Migration) based on and
Mutation based on probability
Perform elitism to keep only the best solutions

end

Fig. 1.5 Classical biogeographic optimization algorithm

λS = I ∗
(

1 − S

Smax

)

(1.16)

and

μS = E ∗ S

Smax
(1.17)

In our work, we proposed an enhancement of BBO by implementing nonlinear
variations of immigration rate and emigration rate with the number of species in
a habitat. Indeed, the basic spirit of these variations will not violate the original
considerations i.e. the immigration rate should decrease and emigration rate should
increase with number of species. Our proposed variations for these two rates can be
described as:

λS = I ∗
(

1 − S

Smax

)p1

(1.18)

and

μSnlin = E ∗
(

S

Smax

)p2

(1.19)

Theoretically both p1 and p2 can be chosen in the range [0, ∞[. The basic BBO
algorithm is a special case of these improved variants proposed in (6) and (7), where
p1 = p2 = 1.0. Figure1.2 shows typical variations of these proposed immigration
and emigration rates for the case, when their maximum permissible values are same
i.e. E = I . However, this condition is not really a constraint and it can be relaxed, if
needed. The proposed modifications allows to have more flexibility and, depending
on the image(s) under consideration, one can choose an appropriate set accordingly.
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Fig. 1.6 Membership
function graph

1.3.2.2 The Segmentation Criterion: Overall Probability Error

The maximum fuzzy entropy measure was proposed in the works of Tao et al. [21,
22], which were inspired by an earlier work of Zhao et al. [27], where an entropy
function was used to measure the compatibility between the fuzzy c-partition (FP)
and the probability partition (PP). In Taos work [21] the entire image is classified into
three partitions of dark pixels, medium pixels and bright pixels and each partition is
characterized by a fuzzy membership function (MF). The dark pixels are character-
ized by a Z-shaped MF, the medium pixels are characterized by a

∏
-shaped MF and

the bright pixels are characterized by an S-shapedMF. An example of three member-
ship functions are shown in Fig. 1.6. In this method, the three classes are associated
to three membership functions, respectively, μd function of the class dark, the func-
tionμm , and tbeμb function. Then, the segmentation problem consists in finding the
optimal thresholds vector that allows to maximize the total fuzzy entropy.

1.3.2.3 Results and Discussions

The proposed segmentation method was used to segmentation CT-Scan images.
These images were acquired from the face CT scan of a volunteer in “Centre Hospi-
talier Universitaire (CHU) Henri Mondor, Créteil (France)”. The image acquisition
system employed was the PHILIPS famous multi-slice CT scanner. The resolution
was 0.4883mm per pixel, each slice was 0.9mm thick, and the spacing between the
consecutive slices is 0.45mm.

The obtained results are illustrated by the one in Fig. 1.7.More results can be found
in [5]. In this work, we demonstrated that some form of the enhanced BBO could
largely outperform both basic BBO and other metaheuristics for the posed problem.
It is recommended that the choice of a specific enhanced BBO based variant should
be carried out on a trial and error basis. However, our results have provided a thumb
rule which can be adopted in providing a possible search direction for choosing the
specific improved BBO based variant, where it is expected to obtain satisfactory
segmentation performance.
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Fig. 1.7 Illustration of the segmentation results using Enhanced BBO. a Original CT-Scan slice,
b Segmented image using Enhanced BBO

1.3.3 Enhanced DE for Image Thresholding

Differential Evolution algorithm (DE) [18] is one of the most popular metaheuristic
for solving continuous optimization problems. Recently, it has gained much popu-
larity in different kinds of applications, because of its simplicity and robustness in
comparison with other evolutionary algorithms [23]. DE has very few parameters
to adjust, making it particularly easy to implement for a diverse set of optimization
problems [2, 4, 11]. This work proposes the development of a new optimal multi-
level thresholding algorithm based on image histograms by employing an improved
version of DE called EDE. After fitting the Gaussian curves using EDE, the optimal
threshold is calculated by minimizing the overall probability error between these
Gaussian distributions.

In this section we briefly describe the EDE, an enhanced version of basic DE.
EDE uses the concepts of opposition based learning, random localization and has a
one population set structure. The working of EDE is as follows.

Population initialization
EDE starts with a population S = {X1, X2, . . . , XN P} of N P solutions:
Xi = (

x(1,i), x(2,i), x(n,i)
)
with i = 1, . . . , N P , where the index i denotes the i th

solution of the population. For this we randomly construct a population P1 of N P
solutions, using the following rule:

xi, j = xmin, j + rand(0, 1) × (xmax, j − xmin, j ) (1.20)

where xmin, j and xmax, j are lower and upper bound for j th component respectively
and rand(0, 1) is a uniform random number between 0 and 1. We construct another



14 A. Nakib

population P2 of N P opposite solutions to those in the population P1 using the
following rule:

yi, j = xmin, j + xmax, j − xi, j (1.21)

where xi, j is the component of solution Xi of population P1. Now the initial popu-
lation S is constructed by taking NP best solutions from union of P1 and P2.
Mutation
The mutation operator of EDE applies the vector difference between the existing
population members for determining both the degree and direction of perturbation
applied to the individual subject of the mutation operation. The mutation process at
each generation begins by randomly selecting three solutions {Xr1, Xr2, Xr3} from
the population corresponding to target solution Xi . A tournament is then held among
the three solutions and the region around the best point is explored. That is to say
if Xr1 is the point having the best fitness function value, then the region around it
is searched with the hope of getting a better solution. Assuming that Xtb = Xr1, the
mutation equation is given as:

Vi = Xtb + F × (Xr2 − Xr3) (1.22)

where r1, r2, r3 ∈ 1, . . . , N P are randomly selected such that r1 	= r2 	= r3 	= i , and
F is the control parameter such that F ∈ [0, 1]. This variation gradually transforms
itself into search intensification feature for rapid convergence, when the points in S
form a cluster around the global minima.

Crossover
The Crossover operator of EDE is same as that of DE. According to it, once the
perturbed individual Vi = (

v1,i , . . . , vn,i
)
is generated, it is subjected to crossover

operation with target individual Xi = (
x(1, i), x(2,i), x(n,i)

)
, that finally generates the

trial solution, Ui = (
u1,i , . . . , un,i

)
, as follows:

u j,i =
{
v j,i if rand j ≤ Cr ∨ j = k
x j,i Otherwise

(1.23)

where j = 1, . . . , n, k ∈ 1, . . . , n is a random parameter index, chosen once for each
i . The crossover rate, Cr ∈ [0, 1], is set by the user.

Selection The selection operator of EDE for new solutions is different from that of
DE. After the generation of a new solution, selection operation is performed between
it and its corresponding target solution by the following equation:

X ′
i =

{
Ui if f (Ui ) ≤ f (Xi )

Xi Otherwise
(1.24)

If the new solution is better than the target solution then it replaces the old one in
the current population. While in DE, the better one of these two solutions is added
to an auxiliary population, two populations (current and auxiliary) are considered
simultaneously in all the iterations,which results in the consumption of extramemory
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and CPU time. On the other hand, in EDE, only one population is maintained and
the individuals are updated when a better solution is found. Also, the newly found
better solution that enters the population instantly takes part in the creation of new
solution.

1.3.3.1 Segmentation Criterion

The segmentation criterion used in this work is based on the approximation of the
image histogram by a Gaussian mixture model. Indeed, over the years, many authors
have proposed several algorithms to solve Gaussian mixture model for multi-level
thresholding. Besides, Snyder et al. [20] presented an alternative method for fitting
curves based on a heuristic method called tree annealing; we also proposed a fast
scheme for optimal thresholding using simulated annealing algorithm [15, 16];
Zahara et al. [25] proposed a hybridNelder-MeadParticle SwarmOptimization (NM-
PSO)method andmore recently a hybridmethod based onExpectationMaximization
(EM) and Particle Swarm Optimization (PSO+EM) was proposed in [7]. All these
metaheuristics based methods are efficient in solving the multi-level thresholding
problem and could provide better effectiveness than the other traditional methods
(local search and deterministic methods). However, curve fitting is usually time-
consuming, which indicates that improved methods are yet needed to enhance the
efficiency, whilemaintaining effectiveness, and thesemethods havemany parameters
that must be well fitted.

This segmentation approach consists in two optimization problems: the first is
that of the Gaussian curve fitting problem. While the second is the minimization
the overall probability error of miss classification of the pixels. The first problem
is a continuous optimization problem, while the second is a discrete optimization
problem.

1.3.3.2 Results and Discussions

The proposed algorithm EDE has only 4 parameters that must be well fitted. We
have done preliminary testing for the purpose of getting suitable values of these
parameters and results are listed in Table1.1, and the initial population is generated

Table 1.1 Parameters of
EDE. N = 3 × D where D is
the number of classes (to be
fixed by the user)

Parameter Value

Population size 10 × N

Scaling factor F 0.25

Crossover rate Cr 0.25

Maximum number of
iterations

200
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Fig. 1.8 Illustration of the segmentation results using Enhanced DE. a Original pathologic MRI
2D image, b 5 classes segmented image using Enhanced DE

randomly under some considerations. Moreover, the stopping criterion we used for
the algorithm is the maximum number of iterations.

The obtained results through the application of our segmentation algorithm are
illustrated through the original brain MRI in Fig. 1.8. Figure1.8 shows the original
images and its multilevel classification (segmented) version when the number of
thresholds is 4 (5 classes segmentation). The number of classes is an input parame-
ter of the segmentation algorithm. A non-supervised technique for determining the
number of classes was proposed in [16] that can be used at initialization. Our goal is
to detect the different spaces and th white matter surrounding the ventricular space
quickly.

1.3.4 Metaheuristic for Contours Detection in 2D
Ultrasound Images

In Computer Assisted Orthopedic Surgery (CAOS) systems, the intra-operative
image modality of choice is often Computed Tomography (CT) or fluoroscopy (X-
rays projection). These image modalities are not completely safe for the patient, and
for the surgeon who uses them everyday. Within the last decade, ultrasounds (US)
became an interesting alternative for orthopedic surgeons. It is well known that US
devices are not too expensive, and portable; it also can be used in real-time intra-
operatively and it is non-invasive. However, the US images are difficult to analyze
for the surgeon, because of the high level of attenuation, shadow, speckle and signal
dropouts [10].

In the literature, the extraction of the bone surface inUS imageswas studied in [9].
The authors used a A-mode ultrasound pointer. The probe was tracked mechanically,
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and it was used to register the distal femur in total hip replacement. The A-mode
of ultrasound probes consists in using only one ultrasound beam. Then, the output
image is a one dimensional vector. Usually, the used mode is the B-mode, where the
resultant image is a matrix, and the number of beams is greater than one. In CAOS
systems, ultrasounds can be used to collect some sample points on bone surface [3],
or to perform intra-operative registration, extracting the full 3D model [26]. Manual
segmentation of the bone surface in US images is highly operator dependent and
time consuming [1]. Moreover, the thickness of the response can reach 4mm in
some cases [10], and it can lead to a high error. In [8] developed an automatic
segmentation method of bone surface in US images using dynamic programming.
This method depends on a threshold value, the obtained average error was between
2.10–2.67pixels at the comparison between automatic andmanual segmentation; the
average time of computation per image were 0.55 s.

In this work, our main interests lies in the use of US images in computer assisted
intramedullary nailing of tibia shaft fractures. If a surgeon choose to heal a tibia
shaft fracture using an intramedullary nail, then he has to lock the nail in the bone.
Normand et al. proposed to use some measures on the healthy symmetric tibia to
assist the surgeon during the locking of the nail [17]. To do so, the 3D position of
some anatomical landmarks is needed (malleolus, trochlea, femoral condyles, …),
and the healthy tibia should not be cut. Then, the authors proposed to use the US
probe as a subcutaneous pointer. The main goal of this new method is to extract
automatically, and in real-time, the bone surface from US images, and particularly,
the anterior femoral condyles.

The proposed method consists in two main steps. In the first step, a vertical
gradient is applied to extract potential segments of bone from 2D US images. In the
second step, a new method based on shortest path is used to eliminate all pixels that
do not belong to the final contour. Finally, the contour is closed using polynomial
interpolation.

1.3.4.1 Proposed Bone Contour Extraction Method Based
on Shortest Path

Let I : Ω ⊂ N
2 → I ⊂ N be an image (two dimensional (2D) real function). Seg-

menting bone surface in I consists in extracting {Pi |i = 1, . . . , n} a subset of con-
tiguous points in I , where Pi = (xi , yi ) ∈ Ω,∀i = 1, . . . , n. Considering ultrasound
properties of bones [10], we admit that ∀(i, j) ∈ [1, n]2 such that i 	= j , yi 	= y j .

Then, the proposed segmentation method consists in three steps: in the first step,
original images are filtered, a vertical gradient is computed, and an extraction of some
potential segments of bone contour is performed. Then, the second step consists in
characterizing these segments of contour, in order to eliminate those that a priori do
not belong to the bone contour. Final step consists in closing the contour using least
square polynomial approximation.

It is well known that ultrasound images are highly textured, mainly with speckle.
Then, the first step consists in a pre-processing step where a low-pass filter is applied
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Fig. 1.9 Original US image

to the original image (an example of images at hand is presented in Fig. 1.9) in order
to eliminate noise and to strengthen interesting features. Once the filtered image Is
is computed, the vertical gradient is applied to the filtered image, we denote the
result image Ig . The choice of the vertical gradient was motivated by ultrasound
propagation properties, where the bone contours are mainly horizontal. It was shown
in [10] that it is suitable that the bone contour lies on the top of the fiducial surface.
Then, we only keep high values of the gradient, we called this image IBW .

Then, using properties of ultrasound imaging on bones [10], we can extract from
IBW a first subset of potential contour points {Qi |i = 1, . . . , c}, where c is the number
of columns in the original image I . We denote Qi = (xi , i), ∀i = 1, . . . , c in the rest
of this section. The subset of Qi was built by taking the first non-zero point in
each column of IBW starting from the bottom of the image. The next step consists
in characterizing these points to determine whether or not they belong to the bone
contour.

1.3.4.2 False Alarm Elimination Using Shortest Path Formulation

The subset of points {Qi |i = 1, . . . , c} are potentially part of the bone contour.
To select those that belong to the bone contour, we consider them as segments by
grouping contiguous points. Two points are considered to be contiguous if they
belong to the same neighborhood. In this step, all small segments that are very likely
noise, and segments that are too close to the skin are eliminated automatically, and
not considered. For each segment k, where k = 1, . . . , M , the first point is designated
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Fig. 1.10 The construction of the graph G . We distinguish nodes called “start of segments” which
are the ak nodes and the nodes called “end of segments” which are the bk nodes

by Qak and the last point by Qbk , where ak and bk are the column of Qak and Qbk ,
respectively.

To define segments that belong to the bone contour, we define G (N ,E ) as an
oriented graph from the M segments (Fig. 1.10):

N = {ni | i = 1, . . . , 2M}
= {ak | k = 1, . . . , M} ∪ {bk | k = 1, . . . , M} (1.25)

is the set of all nodes in the graph, where the node index ni is defined by:

∀i ∈ [1, 2M], ni =
{
a i+1

2
if i is odd

b i
2

if i is even
(1.26)

We define also the set of edges in the graph as: ∀(i, j) ∈ [1, 2M]2,

E (i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (b j

2
− a j

2
) if i is odd and j = i + 1

‖Qb i+1
2

− Qa j+1
2

‖ if i and j are even, and if i < j ≤ min(2M, i + 6)

0 otherwise
(1.27)

Then, G is a graph with two types of node: the first nodes of segments, which are
{ak | k = 1, . . . , M} with an only one child, bk and the weight of the edge between
them is 1

2 (b j
2
− a j

2
), and the last nodes of segments which are {bk | k = 1, . . . , M}

with at most three children which are {bl | l = k + 1, . . . ,min(k + 3, M)}, and the
weight of edges between them are ‖Qb i+1

2
− Qa j+1

2

‖. We penalize the intra-segment

distance because the path to beminimized is the inter-segment one. For each segment
k, ak is used to include the segment length in the shortest path computation, and bk
is used to eliminate non-bone segments.

Then, to solve the shortest path problem any metaheuristic can be applied to solve
it. In our work, genetic algorithms, ant colony optimization algorithm and Dijkstra’s
algorithm were tested.
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Finally, the closure of the contour is performed by a polynomial approximation
using least square method. The contour is computed using points that belong to the
remaining set of segments.

1.3.4.3 Results and Discussions

To show the efficiency of the proposed method, different tests were performed on
several series of ultrasound images. The probe and the used beamformer were pro-
vided by Telemed (Vilnius, Lituania), and a software developed by Aesculap SAS
(Echirolles, France) was used for the acquisition. The acquisition protocol consists
in putting the probe under the patella, and to perform a scan of the femoral condylar
region rotating the probe up and down. Figure1.11 illustrates the different steps of
the proposed framework and especially the contours detection step. One can see that
the proposed approach to detect the contours is efficient and low complex because it
allows to track the contours in real time and quality of the results was validated on
large database. More details about this contribution can be found in [13].

(a) (b)

(d)(c)

(e)

Fig. 1.11 Extraction of femoral condyles and trochlea in an ultrasound image, after the calculation
of the bone contour using proposed method. a Ultrasound image of femoral condyles, b First
set of the potential bone contour pixels, c Results of the shortest path based step, d Result after
interpolation step, e Extraction of the femoral condyles and trochlea in an US image



1 Design of Static Metaheuristics for Medical Image Analysis 21

1.4 Conclusion

In this chapter, we first formulated the image segmentation problem as an ill posed
problem and its formulation as an optimization problem. Then, we outlined our main
contributions. Over the last few years, our work has focused on two areas: improving
the performance of metaheuristics and developing new segmentation criteria.

Our contributions presented in this chapter can be summarized on the following
points:

• New procedure for initializing metaheuristics based on lows discrepancy
sequences.

• Adding tabu memory to ACS.
• New formulation of the image thresholding problem as a graph cut problem.
• New formulation for contours detection based on shortest path optimization prob-
lem.

Moreover, a new segmentation criteria and formulation based on survival exponential
entropy and a newmethod to extract contours in the case ofUS imageswere proposed.
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Chapter 2
Multi-level Image Thresholding Based
on Hybrid Differential Evolution Algorithm.
Application on Medical Images

M. Ali, P. Siarry and M. Pant

2.1 Introduction

Image thresholding is definitely one of themost popular segmentation approaches for
extracting objects from the background, or for discriminating objects from objects
that have distinct gray-levels. It is typically simple and computationally efficient. It is
based on the assumption that the objects can be distinguished by their gray levels. The
optimal threshold is the one that can separate different objects fromeach other or from
the background to such an extent that a decision can bemadewithout further process-
ing [8, 13]. The automatic fitting of this threshold is one of the main challenges of
image segmentation. Sezgin and Sankur [18] have presented a survey of a variety of
thresholding techniques. There are a lot of approaches classifying thresholdingmeth-
ods. Authors in [18] labeled the method according to the information they exploit,
such as histogram shape, space measurement clustering, entropy, object attributes,
spatial information and local gray-level surface. Another classification approach con-
sists in dividing these techniques into parametric and non-parametric techniques. The
parametric thresholding methods exploit the first-order statistical characterization of
the image to be segmented. Weszka et al. [16] proposed a parametric method where
the gray-level distribution of each class is assumed to be a Gaussian distribution. An
attempt to find an estimate of the parameters of the distribution that best fit the given
histogram data is made by using the least-squares estimation method. Typically, it
leads to a nonlinear optimization problem, its solution is computationally expen-
sive and time consuming. Over the years, many researchers have proposed several
algorithms to solve the objective function of Gaussian curve fitting for multi-level
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thresholding. For example, Snyder et al. [10] presented an alternative method for
fitting curves based on a heuristic method called tree annealing; Nakib et al. [11, 19]
proposed a fast scheme for optimal thresholding using a simulated annealing algo-
rithm; Zahara et al. [7] proposed a hybridNelder–Mead Particle SwarmOptimization
(NM-PSO)method.More recently a hybridmethod based on ExpectationMaximiza-
tion (EM) and Particle Swarm Optimization (PSO+EM) is proposed in [14] and the
application of basic Differential Evolution (DE) for solving image segmentation
problem is shown in [6], and recently in [2]. Moreover, the application of the arti-
ficial bees algorithm can be found in [3]. All these metaheuristic based methods
are efficient in solving the multi-level thresholding problem and could provide better
effectiveness than the other traditional methods (local search and deterministic meth-
ods).However, curve fitting is usually time-consumingwhich indicates that improved
methods are needed to enhance the efficiency of existing methods while maintaining
quality effectiveness. Further, these methods also have many parameters that must
be well fitted. In the present study we have analyzed whether the thresholding tech-
niques can be further improved if we use a modified variant of DE. In the recent years
DE [15] [17] has gained much popularity in different kind of applications because
of its simplicity and robustness in comparison to other evolutionary algorithms [17].
DE has very few parameters to adjust, making it particularly easy to implement to a
diverse set of optimization problems [1, 5, 9]. This paper proposes the development
of a new optimal multilevel thresholding algorithm based on image histograms by
employing its improved version called Hybrid Differential Evolution (HDE). After
fitting the Gaussian curves using HDE, optimal threshold is calculated by minimiz-
ing the overall probability error between these Gaussian distributions. The paper is
outlined as follows. Section2.2 introduces the procedure of Gaussian curve fitting.
In Sect. 2.3, the overall probability of error for finding optimal thresholds from fitted
Gaussian curves is described. Section2.4, presents enhanced differential evolution
version. Section2.5 provides the experimental results and discussions, while Sect. 2.6
concludes this research.

2.2 Gaussian Curve Fitting

A properly normalized multimodal histogram h(x) of an image I , where x ∈
[0, L − 1] represents the gray levels and, and L is the total number of gray levels,
can be fitted with the sum of d probability density functions (pdf’s) for finding the
optimal thresholds for use in image segmentation [10]. The case where the Gaussian
pdf’s are used is defined by:

p(x) =
d∑

i=1

Pi exp

[

− (x − μi )
2

σ 2
i

]

(2.1)
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where Pi is the amplitude of the Gaussian pdf, μi is the mean and σ 2
i is the variance

respectively, ofmode i and d is number ofGaussians used to approximate the original
histogram and corresponds to the number of the segmentation classes. A pdf model
must be fitted to the histogram data, typically by using the maximum likelihood
or mean-squared error approach, in order to locate the optimal threshold. Given
the histogram data h( j) (observed probability of gray level j), it can be defined as
follows:

h( j) = g( j)
d∑

i=0
g(i)

(2.2)

where g( j) denotes the occurrence of gray-level j over a given image ranges
[0, L − 1]. Our goal is to find a set of parameters,Θ , that minimizes the fitting
error J , given by the following expression [11, 19]:

Min
Θ

J =
∑

i
|h(i)−p(Θ,xi )|

∑

i
h(i) (2.3)

where i ranges over the bins in the measured histogram. Here, J is the objective
function to be minimized with respect to, a set of parameters defining the Gaussian
pdfs and the probabilities, is given by:

Θ = {Pi , μi , σi } (2.4)

The standard process of setting the partial derivatives to zero results in a set of
non-linear coupled equations, the system usually being solved through numerical
techniques.

2.3 Overall Probability of Error

After fitting the multimodal histogram, the optimal threshold could be determined
by minimizing the overall probability of error, for two adjacent Gaussian pdfs, given
by

e(Ti ) = Pi

∫ Ti

in f t y
pi (x)dx + Pi+1

∫ ∞

Ti

(2.5)

with respect to the threshold Ti , where pi (x) is the ith pdf [8]. Then the overall
probability to minimize is:

E(T ) =
d−1∑

i=1

e(Ti ) (2.6)
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where T is the vector of thresholds: 0 < T1 < T2 < ... < Td−1 < L − 1. In our case
L is equal to 256

Tofind the thresholds values forwhich this error isminimal requires differentiating
e(Ti )with respect to Ti (using Leibniz’s rule) and equating the result to zero. It gives:

Pi × pi (Ti ) = Pi+1 × pi+1(Ti ) (2.7)

This equation is solved for Ti to find the optimum threshold. Using Eq.2.1 in the
general solution of Eq.9.6 results in the following solution for the threshold Ti :

AT 2
i + BTi + C = 0 (2.8)

where:
A = σ 2

i − σ 2
i+1

B = 2 × (μiσ
2
i+1 − μi+1σ

2
i )

C = μ2
i+1σ

2
i − μ2

i σ
2
i+1 + 4σ 2

i σ 2
i+1log

(
Piσ 2

i+1

Pi+1σ
2
i

)

Since a quadratic equation has two possible solutions, only one of them is a feasible
solution [6].

2.4 Hybrid Differential Evolution (HDE)

In this section we briefly describe HDE, an enhanced version of basic DE. HDE
uses the concepts of opposition based learning, random localization and has a one
population set structure. The working of HDE is as follows. Population initial-
ization: HDE starts with a population S = {X1, X2, . . . , XNP} of N P solutions:
Xi = (x1,i , . . . , xN P,i ), where the index i denotes the i th solution of the population.
For this we randomly construct a population P1 of N P solutions, using the following
rule:

xi, j = xmin, j + Sob(0, 1) × (xmax, j − xmin, j ) (2.9)

where xmin, j and xmax, j are lower and upper bounds respectively, for j th component,
respectively. Sob(0, 1) is a number between 0 and 1 from a low discrepancy sequence
generated using Sobol’s method [4].

We construct another population P2 of N P opposite solutions to the solutions in
population P1 using the following rule:

yi, j = xmin, j + xmax, j − xi, j (2.10)

where xi, j is the component of solution Xi of the population P1.

http://dx.doi.org/10.1007/978-3-662-54428-0_9
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Now the initial population S is constructed by taking the N P best solutions from
union of P1 and P2.

Mutation: The mutation operation of HDE applies the vector difference between
the existing population members for determining both the degree and direction of
perturbation applied to the individual subject of the mutation operation.

The mutation process at each generation begins by randomly selecting three solu-
tions Xr1, Xr2, Xr3 from the population corresponding to target solution Xi .

Unlike DE, HDE holds a tournament between the three solutions and the region
around the best point is explored. That is to say if Xr1 is the point having the best
fitness function value then the region around it is searched with the hope of getting
a better solution. Assuming that Xtb = Xr1, the mutation equation is given as:

Vi = Xtb + F × (Xr2 − Xr3) (2.11)

where r1, r2, r3 ∈ 1, . . . , N P are randomly selected such that r1 �= r2 �= r3 �= i ,
and F is the control parameter such that F ∈ [0, 1].

This variation gradually transforms itself into a search intensification feature for
rapid convergence once the points in S form a cluster around the global minima.
The Crossover: crossover operator of HDE is same as of DE. According to it, once
the perturbed individual Vi = (vi, j , . . . vn,i ) is generated, it is subjected to a crossover
operation with the target individual Xi = (x1,i , . . . , xn,i ), that finally generates the
trial solution, Ui = (u1, i, . . . , un, i), as follows:

ui j =
{
vi, j if rand j ≤ Cr or j = k
xi, j Otherwise

(2.12)

where, j = 1, . . . , n and k1, ..., n is a random parameters index, chosen once for
each i. The crossover rate, Cr ∈ [0, 1], is set by the user.

Selection: The selection operator used in HDE is same as that of the classical
DE, but the method of updating the solutions differs from that of it. After generation
of new solution a selection operation is performed between it and its corresponding
target solution by the following equation:

X ′
i =

{
Ui if f (Ui ) ≤ f (Xi )

Xi Otherwise
(2.13)

If new solution is better than target solution then it replaces target solution in
current population. This is in contrast to basic DE, where, the better one of the two
is added to an auxiliary population. In DE, two populations (current and auxiliary)
are considered simultaneously in all the iterations that result in the consumption of
extra memory and CPU time. On the other hand in HDE, only one population is
maintained and the individuals are updated when a better solution is found. Also, the
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newly found better solution that enters the population instantly becomes a variable
to take part in the creation of new solution.

2.5 Experimental Results

In this section, we evaluate the performance of the algorithm while implementing
Gaussian curve fitting for multi-level thresholding. The test images Sailboat is of
size 512 × 512, Cameraman and Lena, are of size pixels with 8 bit gray-levels, taken
under natural lighting without the support of any special light source. Test images
and their respective normalized histograms are given in Fig. 2.1. The algorithm is
implemented on a 2.4 GHz Intel Core i5 Macbook pro with 4GB RAM using Matlab
R2013a. The stopping criterion we used for the algorithm is the maximum number
of iteration. HDE has only 4 parameters that must be well fitted. We have done
preliminary testing for the purpose of getting suitable values of these parameters
and the fine tuned results are listed in Table2.1. The parameters Pi , μi and Σi are
randomly initialized along with some restrictions to each parameter (for example Pi
must be between 0 and 1, μi must be between 0 and 255).

The experimental results are listed in Table2.2. This shows the number of classes,
parameters of Gaussian curves, the threshold values and the CPU time achieved by
the proposed method. The CPU times recorded do not include computation times
of the threshold values. Figures 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 show the results of
individual Gaussian curves, fitting to a sum of Gaussian curves to the histograms of
the images of Fig. 2.1, and their corresponding segmented images, respectively.

We have conducted two experiments with every image. Experiments on images
Cameraman and Sailboat are performed taking three and four classes while in the
case of Lena it is three and five. The layout in Figs. 2.2b, 2.3b, 2.4b, 2.5b, 2.6b and
2.7b suggests an easy combination of the Gaussian functions which approaches to
shape of the histogram of the original image. Figures2.2c, 2.3c, 2.4c, 2.5c, 2.6c
and 2.7c show the segmented image, in these cases thresholds values are calculated
according to (2.7). It is evident that the resulting function approaches the original
histogram in all the cases.

In the above experiment, the number of iterations, which is used as stopping crite-
rion, was fixed and corresponding results are noted. However, in order to compare the
convergence time of HDE algorithm with basic DE, we have computed the number
of function evaluations (NFEs) and the corresponding CPU time for both the algo-
rithms. The run of each algorithm was stopped when the fitting error J of the best
solution reached ε. i.e. min f ≤ ε = 10−1, where ε is a threshold value which fixes
the accuracy of the measurement. Therefore, the stopping criterion is modified; it is
based on the value of the fitting and not on the number of iterations. Table2.3 gives
the NFEs and the CPU time taken by each algorithm to meet the stopping criteria.
From this Table we can clearly see the competitive performance of HDE.
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Fig. 2.1 Test images and their normalized histograms. a Sailboat, b Cameraman, c Lena, d his-
togram of Sailboat image, e histogram of Cameraman image and f histogram of Lena image
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Table 2.1 Parameters of HDE. nc = 3 − D, where D is the number of segmentation classes (to be
fixed by the user)

Parameter Value

Population size N P 10 × N

Scaling factor F 0.25

Crossover rate Cr 0.20

Maximum iteration 200

Table 2.2 Comparison of HDE with basic DE in terms of CPU time and NFE

Images No. of Classes DE HDE

Time NFE Time NFE

Silboat 3 5.9143 17280 5.8968 10110

4 9.6739 23280 9.2041 1630

Camera man 3 5.8034 16740 5.7876 10320

4 9.0024 22920 8.8609 16090

3 5.9675 17010 5.8968 11270

Lena 5 12.934 27750 12.8077 18300

5
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Fig. 2.2 Results of Sailboat image with three classes: a segmented image, b Gaussian function of
each class and c original histogram and corresponding Gaussian approximation
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Fig. 2.3 Results of Sailboat image with four classes: a segmented image, b Gaussian function of
each class and c original histogram and corresponding Gaussian approximation
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Fig. 2.4 Results of Cameraman image with three classes: a segmented image, bGaussian function
of each class and c original histogram and corresponding Gaussian approximation
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Fig. 2.5 Results of Cameraman image with four classes: a segmented image, b Gaussian function
of each class and c original histogram and corresponding Gaussian approximation

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01
Pixel class 1
Pixel class 2
Pixel class 3

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01
Image histogram
Gaussian approximation

(a) (b) (c)

Fig. 2.6 Results of Lena image with three classes: a segmented image, b Gaussian function of
each class and c original histogram and corresponding Gaussian approximation

To further quantitatively judge the quality of the algorithm with several other
thresholding-based segmentation algorithms [12], the uniformity measure is utilized
which has also been extensively used in the literature. This uniformity measure is
given by:

U = 1 − 2 × (nc − 1) ×
∑nc−1

j=0

∑
j∈R j

( fi − m j )
2

N × ( fmax − fmin)
(2.14)
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Fig. 2.7 Segmentation of brain MRI of the ventricles. a Original slice, b Segmented slide into 3
classes, t = (134; 187)

where, nc denotes number of classes, R j denotes the j th segmented region, fi indi-
cates the gray level of the pixel i , m j mean gray level of pixels in j th region, N
denotes the total number of thresholds in the given image, fmax gives the maximum
gray level of pixels in the given image and fmin gives minimum gray level of pixels
in the given image.

The value of the uniformity measure,U , should be a positive fraction i.e. it should
lie between 0 and 1.A higher value ofU indicates that there is better uniformity in the
thresholded image, depicting better quality of thresholding and vice versa. It can be
also seen fromTable2.4 that the proposedHDE algorithm could achieve significantly
better segmentation results as demonstrated by its higher values of U in each case,
compared to other methods

In order to analyze the obtained results from statistical point of view, we do a
Wilcoxon test. Then, the p-value obtained from the results of Table2.4 is equal to
0.0152 that indicates a significant different between the original DE and the enhanced
DE.

2.6 MRI Slices Segmentation

Magnetic resonance imaging (MRI) is amedical imaging technique used in radiology
to image the anatomy and the physiological processes of the body in both health and
disease. MRI devices or scanners are based on strong magnetic fields, radio waves,
and field gradients to form images of the body.
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Table 2.3 Results obtained by HDE for images given in Fig. 2.1

Image Size(in
number of
pixels)

Number of
classes

Parameters of
Gaussian
approximations

Time (s) Threshold

Sailboat 512×512 3 P(0.0102, 0.0078,
0.0065)

5.8968 117,205

μ(53, 182, 221)

σ(21.8457, 24.9995,
7.0544)

4 P(0.0090, 0.0035,
0.0071, 0.0062)

9.2041 95,121,205

μ(49,87,183,221)

σ(16.4485, 44.4340,
26.5073, 6.6560)

Camerman 256×256 3 P(0.0235, 0.0061,
0.0114)

5.7876 33,130

μ(13, 137, 169)

σ(4.3845, 39.2224,
15.4275)

4 P(0.0231, 0.0014,
0.0061, 0.0118)

8.8609 30,52,131

μ(13, 39, 136, 169)

σ(3.9712, 29.6954,
37.0420, 15.5644)

Lena 256×256 3 P(0.0079, 0.0081,
0.0029)

5.8968 53,170

μ(24, 104, 194)

σ(10.7663, 49.9796,
17.4342)

5 P(0.0084, 0.0070,
0.0066, 0.0074,
0.0032)

12.8077 46, 80,
114,176

μ(25, 63, 94, 131,
191)

σ(12.1269, 15.6615,
16.0053, 23.8994,
22.1594)

Since its early development in the 1970s and 1980s,MRI has proven to be a highly
versatile imaging technique. While MRI is most prominently used in diagnostic
medicine and biomedical research, it can also be used to form images of non-living
objects. MRIs are able to produce a variety of chemical and physical data, in addition
to detailed spatial images.

MRI is widely used in hospitals and clinics for medical diagnosis, staging of
disease and follow-up without exposing the body to ionizing radiation. For our work,
the data were from the CHU Henri Mondor, Créteil (France).
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Table 2.4 Comparison of HDE with basic PSO and GA

Image No. of
classes

Threshold Uniformity measure

PSO GA EDE PSO GA EDE

Sailboat 3 96,201 89,210 117,205 0.9632 0.9535 0.9697

4 90, 115,
208

88, 115,
205

95, 121,
205

0.9664 0.9681 0.9694

Camera
man

3 30, 135 30, 142 33, 130 0.9752 0.9744 0.9764

4 28, 48,
145

28, 50,
145

30, 52,
131

0.9735 0.9732 0.9736

Lena 3 61, 166 53, 178 53, 170 0.9597 0.9490 0.9533

5 46,84,
119, 186

46, 77,
115, 186

46, 80,
114, 176

0.9774 0.9758 0.9807

MRI has a wide range of applications in medical diagnosis and over 25000
scanners are estimated to be in use worldwide. MRI affects diagnosis and treatment
in many specialties although the effect on improved health outcomes is uncertain.
Since MRI does not use any ionizing radiation, its use is generally favored in pref-
erence to CT when either modality could yield the same information. For all these
reasons developing tools for analysis these data is very important.

To illustrate the performance of our segmentation algorithm for the analysis of
CT-Scan images. Twoexamples are presented inFigs. 2.7 and2.8. In thefirst example,
the region of interest was the ventricles and the goal was to extract the segment the

Fig. 2.8 Illustration of the Segmentation of a retinal angiography image where the goal is to extract
drusens. a Original pathologic Image, b Original histogram and its approximation, c Segmentation
on 2 classes, t = 150
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ventricular system represented by high intensity voxels. In this case, the presented
results consists in a segmentation on 3 classes to have more accuracy.

The second example presented here

2.7 Conclusions

In this paper, a modified DE algorithm namely HDE, is used for image segmenta-
tion. The objects and background components within the image are assumed to fit
into Gaussian distributions exhibiting non-equal means and standard deviations. The
histogram can thus be approximated by a mix of Gaussian probability functions. The
algorithm HDE is used to estimate the parameters for the mixing density function
as it seeks to get a minimum error between the density function and the original
histogram. Experimental results show that HDE produces satisfactory results, indi-
cating that it can be used for image segmentation in multi-thresholding due to its
computational efficiency. Additionally, HDE appears to be effective due to its qual-
ity performance. The proposed work can easily be extended in several directions.
In the future we intend to perform a formal comparison with other state-of-the-art
image segmentation techniques and also we will take a wider range of test images.
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Chapter 3
Fuzzy Edge Detection in Computed
Tomography Through Genetic
Algorithm Optimization

A.M.T. Gouicem, M. Yahi and A. Taleb-Ahmed

Abstract The ill posedness of the image reconstructionproblem requires approached
solution as a regularization of a specific criterion, in general, a penalty is imposed on
the solution. The challenge is to avoid the smoothing of edges which are very impor-
tant attributes of the image when it is regularized. The x-ray Tomography is classified
as sensing problems for which we do not know the equipment measurement transfer
function so it is considered as an ill posed inverse problem. Many studies have been
developed to solve this problem, among them the Bayesian inference which aims at
smoothing artifact in image. The problem for Bayesian methods is the edge penaliza-
tion. In this work, we first present a fuzzy inference model for the edge preservation.
Under this condition, we show that it is possible to find the best global solution to
the problem by introducing genetic algorithm optimization (GA).

3.1 Introduction

In many applications such as Non Destructive Testing (NDT) we seeks a defect. In
reality, we can’t directly measure a quantity as in our case the shape of the unknown
object. The image reconstruction approaches are very ill posed because the projec-
tions are in limited numbers. It is therefore essential to get a priori information to
regularize the problem. Many studies have been done to solve this problem, such as
the Bayesian inference which includes a penalty function to control the propagation
of noise and produce a satisfactory reconstruction. This method aims at smoothing
artifact in image. The problem for Bayesian methods is the edge penalization, that
is to say the choice of the distribution that models the prior information. Many non-
linear distributions were proposed to avoid the edge penalization. We can cite those
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Fig. 3.1 Projection
measures in x-ray
tomography

from A.M. Djafari [2, 3] where the MAP solution may be found by combining the
likelihood function by Gauss or Poisson estimation with the image priori. The MAP
algorithm has a disability in the local neighborhood to eliminate the noise and to
smooth the reconstructed image. There exist many others works that use the tech-
niques of edge preserving like the mean root prior (MRP) [6] and total variation
prior (TV) [10]. The penalty of TV reduces the contrast of the resulting image [6].
Recently, J. Fessler et al. [1] used the weighted least squares (WLS) method,where
he developed the WLS algorithm and proved that it converges rapidly and produce
imageswith best quality. For the fuzzy inference in the beginning (1996) F.Russo [10]
use the fuzzy model to filter noise in the sensor data. Rajan [7] in 2004 and Gouicem
A.M.T et al. [4] used the fuzzy inference system tomodel a priori information. In this
work we assume that the noise smoothing and, the edge detection and preservation
are well done with the fuzzy inference. Here we propose to solve the optimization
problem using an evolutionary algorithm, so this paper is organized as follows: first,
an introduction of inverse problems in tomography-x is presented, then a statistical
iterative method and Bayesian inference MAP EM are also presented. After that, our
contributions, fuzzy inference and implementation of fuzzy penalty FP EM, also the
fuzzy penalty genetic algorithm method FP GA, are described. Finally, a conclusion
and work under progress end this paper.

3.1.1 Problem Statement

X-ray computed tomography determines an object function f (x, y) from measures
known as projections p (Fig. 3.1).

f (x, y) =
∫ ∫

p(r, θ)e(r − xcosθ − ysinθ)drdθ (3.1)
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where (r; θ): are the relative coordinates of the object. For the ill posed problem
f ∗ = ArgMin−log (J ( f/p)) is the quasi solution with minimization of the criterion
J ( f ) chosen to be likelihood estimation.

J ( f ) = L( f ) + P( f ) (3.2)

where L( f ) is a likelihood function l( f ).

l( f ) =
n∑

i=1

⎛

⎝−
m∑

j=1

ai j f j + pi ln

⎛

⎝
m∑

j=1

(ai j f j ) − ln(pi !)
⎞

⎠

⎞

⎠ (3.3)

P( f ) is the priori information, the most used prior is the GIBBS distribution.

P( f ) = C−βU ( f ) (3.4)

U ( f ) is the potential function defined in Markov field, and C chosen to modulate
the importance of the prior value.

U ( f ) = | f − f0| ⇒ ∂

∂ f kj
U ( f kj ) =

∑

b∈N
w jb( f

k
j − f kb ) (3.5)

k iteration number, wN weight of pixel jN the nearest neighbor set of the pixel, f0 the
information image. So the final form of the criteria J ( f ) in the penalized-likelihood
estimation calledmaximumaposteriori expectationmaximization (MAPEM)method
is:

J ( f ) =
n∑

i=1

⎛

⎝−
m∑

j=1

ai j f j + pi ln

⎛

⎝
m∑

j=1

ai j f j

⎞

⎠ − ln(pi !)
⎞

⎠ − βU ( f ) + k (3.6)

J ( f ) must be optimized to reach the best solution of the inverse problem.

3.2 Applied Methods

Edge detection is used to identify different objects that make up the image scene.
There are many ways to find the edge of objects; most are based on the first and
second derivatives of the image (Fig. 3.2).
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(a) (b) (c)

Fig. 3.2 Edge Detection in Image, a original image, b edge with the first derivative, c edge with
the second derivative

3.2.1 Implementation of Fuzzy Inference

First we express the Value of the prior term in MAP criterion with fuzzy penalized
model.

U ( f ) = GN = | fi, j−1 − fi, j | (3.7)

U(f) is the prior law of penalty, which is chosen like a fuzzy distribution defined as the
first derivative of the pixel value (i, j).Where fi, j−1 represents the neighborhood pixel
in the direction N(North). To compute an edge E along a direction, three derivatives
G (which are perpendicular to this direction in the 3*3 windows) must be calculated
and summed.

Ek
W (i, j) = Gk

W (i, j) + Gk
W (i − 1, j) + Gk

W (i + 1, j) (3.8)

where k designs the iteration number and W designs the west direction. To express
the degree of smallest of the fuzzy derivative EN in one direction, we use the fuzzy
sets small instead of the hard computations. Now we must find the fuzzy model of
the Gibbs prior function, in two steps edge detection and penalization.

3.2.1.1 Detection Steps

If the difference GN between the pixel gray levels is large, then there is an edge, else
the region is smooth and the edge value EN is small. After application of conditions
to edge detection in Fuzzification step, we obtain the following rules base [4]:

If Gk
W (i, j) is small and Gk

W (i − 1, j) is small then Ek
W (i, j) is small

If Gk
W (i, j) is small and Gk

W (i + 1, j) is small then Ek
W (i, j) is small

If Gk
W (i − 1, j) is small and Gk

W (i + 1, j) is small then Ek
W (i, j) is small

If Gk
W (i, j) is large and Gk

W (i + 1, j) is large and Gk
W (i − 1, j) is large then

Ek
W (i, j) is large



3 Fuzzy Edge Detection in Computed Tomography … 41

3.2.1.2 Penalization Steps

The second step is the penalization of pixels for which we havent detected an edge
(smoothing region). Eight fuzzy rules of the FIS penalty-w are used to indicate the
correction in penalization of the eight directions.

If Ek
W (i, j) is small then Ck(i, j) = Ek

W (i, j) else Ck(i, j) = 0

Ck(i, j)
−→
N is the correction at site (i, j) due to the adjacent pixel in the direction N.

The total fuzzy correction CT is:

Ck
T (i, j) = 1

8

∑

N

Ck(i, j)
−→
N (3.9)

Replacing the error term (3.9) in (3.6) we obtain the fuzzy criterion to optimize by
GA to solve the inverse problem.

3.2.2 Genetic Algorithm (GA)

The GA is inspired from the natural selection mechanism. Where the potential solu-
tion to a problem is an individual who can be coded by a set of genes. Then, it can
be structured with a string of values in binary or real format. Positive values are used
to reflect the degree of fitness of the chromosome to solve the optimization problem,
and this value is really related to its objective value. In genetic evolution, we seeks
to produce a chromosome with a good quality, which means a good solution to the
problem. In application of the GA, a population of chromosomes must be initialized.
The population size changes from a problem to another. The parent chromosomes
are selected through a specific selection routine. The genes of the parents are mixed
and recombined to produce new chromosomes for the next generation. Good chro-
mosomes produce a generation with a high chance of survive, simulating the natural
survival mechanism. One of the best techniques used in selection is thewheel roulette
of selection [5]. To facilitate the evolutionary cycle of the GA, two basic operators
are created: crossover and mutation, also the wheel roulette of selection can be taken
as another kind of operator.

3.2.2.1 Encoding

The real encoding is widely used, especially in optimization of real variables prob-
lems [8]. Each variable represents a gene and all the values that can take this feature
represent the possible alleles for this gene, and concatenating all these genes to obtain
a chromosome representing a solution in its entirety. There are three main types of
usable encoding, and you can switch from one to another with relative ease.



42 A.M.T. Gouicem et al.

The Binary Encoding

It is the most used, each gene has the same binary alphabet {0, 1}, A gene is then
represented by a long integer (32 bits). Chromosomes which are sequences of genes
are represented by an array of genes and the individuals of our search space are
represented by chromosomes arrays.

The Real Encoding

This can be useful especially when you search for the maximum of a real function.

Gray Encoding

Gray encoding is a coding which has the property: between an element n and an
element n + 1, so neighbor in the search space, a single bit changes.

Algorithm 3.1: Genetic Algorithm

Initialize a population of size P

Evaluate the P individuals

while Stopping Conditions are not satisfied do
P ′ = Parents Selection in P

P ′ = Crossover Operator Applicated on P ′

P ′ = Mutation Operator Applicated on P ′

P = Replace the older of P by the Descendants in P ′

Evaluate P

end

3.2.2.2 Selection Operator

The selection operator define which individuals in P will be duplicated in the new
population P ′ and will serve as parents [9]. This operator is the most important since
it allows individuals in a population to survive, to reproduce or die. The probability
of survival of an individual will be directly related to its efficacy relative to the
population. Wheel Roulette is the most popular method. With this method every
individual has a chance of being selected proportional to its performance, so more
people have adapted to the problem, the more likely they are to be selected. In
this method, each individual is assigned a sector whose angle is proportional to
his adaptation (fitness). We turn the wheel and when it stop rotating it select the
individual.
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3.2.2.3 The Crossover Operator

The crossover is a computer transposition of the natural mechanism, this one is
the production of chromosomes which partially inherit the characteristics of the
parents.Its fundamental role is to allow the recombination of information in the gene
pool of the population. This operator is applied after applying the selection operator
P on the population; we end upwith a population P ′. It may be noted that the number
of crossover points and crossover probability pc allow the introduction ofmore or less
diversity. To simplify the process we choose a crossover mechanism with a random
point.

3.2.2.4 Mutation Operator

This operator is to change the value of an allele with a very low probability pm. A
mutation is simply the inversion of a bit. Themutation operator randomly changes the
characteristics of a solution, which allows introducing the diversity of our population
of solutions. This operator introduces “noise” in the population.

3.2.2.5 Selection (Fitness) Function

The selection function is used to create an evolutionary pressure. Chromosomes with
high performance have a great chance of surviving. The method of selection of the
lottery wheel is used to select the chromosomes from operators. A chromosome can
be selected well than another. Everything depends on luck in the roulette wheel,
which is adaptive.

3.2.3 Optimization by Genetic Algorithm

Our contribution takes the prior information as a fuzzy penalty and optimizes the
new criteria by the genetic algorithm, which is based on three steps reproduction,
evaluation and selection [4].

Initialization

An initial population is generated randomly with N chromosome. The best initial
population is the FBP (filtered back projection).

Coding

Each chromosome is decoded (coding elements of the population) to give the phe-
notype. Actually the real codes are now widely used, especially in the application
areas for optimizing real variables problems.
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Objective Function

This phenotype is used to evaluate the corresponding genotype by calculating the
objective function (cost) in R.

Selection

With these values a list of people likely to reproduce is established (new generation)
by a selection operator. The selection scheme used is that of the wheel of the lottery
(RWS).

Reproduction

Requires an inherited memory as genes. The genetic algorithm then diversify the
population i.e. improve the objective function of the population by reproduction.

Crossover

The Conventional crossover involves the exchange of genes between each parent
together (arithmetic crossover). We choose a crossover mechanism with random
point. It is applied with a high probability Pc.

Mutation

In our application a single chromosome is selected from each operation (uniform
mutation). It is applied with a probability Pm.

Fitness evaluation

The fitness function J chosen for maximization is defined in Eq.3.1 from which we
obtain:

J ( f ) =
n∑

i=1

⎛

⎝−
m∑

j=1

ai j f j + pi ln

⎛

⎝
m∑

j=1

(ai j f j ) − ln(pi !)
⎞

⎠

⎞

⎠ − βU ( f ) + k

(3.10)
with:

f rac∂∂ f kj U ( f kj ) = CT (i, j) ⇒ βU ( f kj ) = f jCT (i, j) (3.11)

In (3.10) we expressU ( f ) in function of CT Value of prior term in MAP [2] criteria.
We will express it with fuzzy model in the FP GAmethod by taking J ( f ) as a fitness
function to optimize. In order to avoids the local minimum and converged to the
global solution.

3.3 Results and Discussion

Data resulting from our Tomography Fein-Focus at the research center in welding
and NDT, are simple and degraded first by a Gaussian noise level with 5 added value
Fig. 3.3, then a Speckle product noise with 4 value. Images have been reconstructed
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3.3 Welding joint Image reconstructed with different algorithms, a, e, iOriginal image respec-
tively without noise andwith Gaussian, Speckle noise b, f, jMAPEMMethod c, g, k FPEMMethod
and d, h, l FPGA Method

with different algorithms: the maximum a posteriori-expectation maximization algo-
rithm MAP EM [2], the Maximum a Posterior reconstruction algorithm with fuzzy
Prior FP EM and the FP GA [3]. We measured the convergence rate by computing
the peak signal to noise ratio PSNR between the simulated noiseless activity distri-
bution and the image estimated as a function of the iteration number k. This item
expresses the dispersion between the reconstructed image and the original image.
The PSNR resulting for the MAP EM, FP EM and FP GA are in Table3.1 and, are
plotted in Fig. 3.4. To show the efficiency to use the GA in image reconstruction
you can see the increases of the resulting PSNR in case of the FP GA method for
the two kinds of images with and without noise. The image size is 256 × 256; we
can see the optimization given by the combined algorithm. We note that the CPU
characteristics are an I7 with 3.4 GHz and 16 Go of RAM. The number of iterations
choice is comprised between 10 and 100 to remove the accumulation of noise. The
parameter N number of projections is equal to 18, the size of image number of pixel
N = 256 × 256. The parameters for dimensioning the genetic problem are popu-
lation size (20), generation number (100), crossover probability (90) and mutation
probability (10).
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Table 3.1 PSNR Simulation quantitative results after N iterations for Welding joint image

Iteration 10 20 30 40 50 60 70 80 90 100

MAPEM None 5.05 7.86 7.49 9.35 10.25 11.57 12.01 12.1 13.16 14.09

Gauss 6.35 7.58 8.09 9.49 10.23 10.96 11.06 11.92 12.12 13.07

Speckle 6.05 6.74 7.09 7.74 8.23 8.876 9.063 9.920 10.125 11.09

FPEM None 6.70 7.92 8.52 9.72 10.96 11.83 12.58 12.66 13.73 14.25

Gauss 6.56 7.52 8.96 9.62 10.26 11.96 12.42 12.96 13.13 14.05

Speckle 6.21 7.35 8.41 9.70 10.74 11.32 12.08 12.52 13.85 14.05

FPGA None 7.96 8.97 9.12 10.25 11.7 12.25 13.85 14.12 15.38 16.75

Gauss 6.90 7.84 8.85 10.95 11.9 12.32 13.63 14.85 15.74 16.85

Speckle 6.86 7.7 8.92 9.4 10.9 11.6 13.5 14.7 15.3 16.2

Fig. 3.4 PSNR for MAPEM, FP EM and FP GA for Welding joint image with Speckle noise

3.4 Conclusion

The new iterative algorithm exploits the fuzzy reasoning to regularize the penalty
in terms of noise in the image, which accumulates for regularized iterative methods
(ML-EM, OS-EM ...) when the number of iterations increases. Introducing genetic
optimization gives a global solution and avoids blocking around local solutions to
the inverse problem. Our combined method minimizes the computational cost and
reduces the required memory capacity. The algorithm eliminates noise and preserves
the image edges. The algorithm minimizes the number of projections needed for
tomographic reconstruction. This reduces the number of practices by X-ray bom-
bardment. Results from the fusion of these two intelligent disciplines are encouraging
especially when the number and angles of the projections are limited.
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Chapter 4
Particle Swarm Optimization Based Fast
Chan-Vese Algorithm for Medical
Image Segmentation

Devraj Mandal, Amitava Chatterjee and Madhubanti Maitra

4.1 Introduction

Image segmentation is a very important part of image pre-processing and its appli-
cation towards computer vision. The basic objective of image segmentation is to
extract the constituent objects of interest from a given image, which can be used
for further processing on them. Several common methods such as edge-detection,
thresholding, histogram-based methods, region-based methods, region-growing or
split-merge methods have already been developed for this purpose. A novel idea to
detect objects in an image is by the use of active contours [3, 4, 35].

In this methodology, an initial active contour [3, 4, 35] is drawn on the image and
a fitness functional energy [6] is associated with it. The initial contour is evolved by
expanding or contracting it around the desired object of interest. The driving energy
that moves the initial contour is either edge-dependent [3, 37, 38, 49, 50] or region-
dependent [4, 51, 59, 61, 63, 64]. For edge-based models, the contour is attracted
towards the strongly-defined edges present in the image. This model however fails
to detect objects demarcated by weakly-defined or smoothened edges [3, 46, 47].
Region-based models, on the other hand, use specific region descriptors to drive the
curve towards the objects and are even quite successful in detecting objects defined
by weak edges.

Mathematically, the representation and evolution of active contours [35] can be
carried out in different ways. The classical approach [35] favours the parametric
representation of the curves and the evolution of the points in the curve in order to
minimize the energy associated with it. However, this formulation [35] fails to detect
interior contours within an image and cannot deal with cusps, shocks, triple junctions
or any such topological changes.
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A new formulation developed independently by Tsai [62] and Chan and Vese
[6, 60], instead utilizes the mathematical tool of level sets [50] to represent and
evolve the curve. In this methodology, the evolving curve is embedded into a higher
dimension, known as level sets [50]. The driving energy moves this level set and the
zero-level of this level set is known as the evolving contour. The numerous advantages
of this method include the ability to detect interior contours within the image, handle
topological changes such as breaks or merging, and the ease with which it can be
extended to higher dimensions.

The work carried out by Chan and Vese (popularly called the C-V model) [6, 60]
uses level sets [50] to reformulate the Mumford-Shah energy [49] into a new region-
based energy fitting functional to segment images for both the piecewise-constant
[6] (for homogeneous images) and the piecewise-smooth [60] (for images suffering
from intensity inhomogeneity) cases. The energy functional associated with the C-V
model detects the desired objects within an image by minimizing the dissimilarity
within each region. When the energy becomes minimum, the evolved curve i.e., the
zero-level curve of the level set, sits exactly on the boundary of the desired objects.

The C-V model suffers from its own set of limitations in spite of the abundant
advantages it provides in the field of image segmentation. The energy fitting func-
tional is non-convex and non-unique in nature and may have several local minimum
points [2, 6]. The level set framework is implemented by solving a partial differen-
tial equation (PDE), using the gradient descent search method [6, 60]. Although the
gradient descent based adaptation procedure is very easy to implement, as it only
involves the first order partial derivatives of the fitness energy functional, it suffers
from the problem of getting trapped at the first local minimum it encounters. Hence it
is of paramount importance in C-Vmodel that suitable initialization of an active con-
tour [2] is a requisite criterion to achieve the desired, accurate segmentation result.
In addition, the C-V model comprises various curve evolution parameters that need
to be properly tweaked to achieve satisfactory results.

In this work, we propose a new formulation of the C-Vmodel, wherewe search for
particular intensity values on the basis ofwhich the image canbe divided into different
classes based on the C-V energy fitting functional. Although the method reported in
[40] using discrete level sets employed a somewhat similar philosophy, however our
method has solved this problem in a novel manner, by employing different swarm
intelligence based optimization procedures, without utilizing level sets at all.

The swarm intelligence and evolutionary optimization based algorithms model
the problem at hand by randomly generating some candidate solutions and letting
them interact with each other locally as well as with the environment, in search for
better solutions to the problem. The interaction and movement of these candidate
solutions is often inspired by naturally occurring biological phenomenon such as
cross over and mutation of genes, as in Genetic Algorithm [33], flocking of birds in
search of food, as in Particle Swarm Optimization (PSO) [36, 49], or swimming and
tumbling of bacteria through a nutrient medium, as in Bacterial Foraging Algorithm
[41], etc. These kinds of evolutionary techniques are often useful in solving non-
gradient type optimization algorithms and have found major use in various problems
in image segmentation, image compression, image retrieval, image classification,
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etc. [10, 15, 16, 45, 52]. The present work has shown how such an algorithm can
be used to solve the C-V model with reduced computational time and we have used
PSO as a candidate swarm intelligence technique for solving such an algorithm.

The outline of this work is as follows: In Sect. 4.2 we describe the C-V model for
the piecewise-constant case in detail, for both the scalar and the vector-valued cases,
including itsmulti-phase level set extension.Adetailed account of the advantages and
disadvantages of this model is also included. Section4.3 presents the evolutionary
formulation of our proposed fast C-V model. In Sect. 4.4 we describe the basic PSO
algorithm and a few of its variants. Our proposed PSO based Fast C-Vmodel for both
scalar and vector-valued images is also presented here. In Sect. 4.5, we implement
our model for various grayscale and colour medical images and perform a detailed
performance analysis. Section4.6 presents the conclusions.

4.2 The C-V Model (Piecewise-Constant Model) for Image
Segmentation

The piecewise-constant model for image segmentation developed by Chan and Vese
[43] implements the evolving active contour in a level set framework.

The evolving curveC in�, is defined as the boundary of an open subsetω ofΩ (i.e.
ω ⊂ Ω , andC= ∂ω),whereΩ is the total image domain. Then the regionsω and�/�

are defined by the area inside and outside the curve C [6], respectively. The image
(u0)to be segmented, is assumed to consist of two regions of piecewise-constant
intensities ui0 (object) and u00 (background) with the object having a boundary or a
bounding contour C0.
Thus the C-V energy fitting term can be defined as [6]:

F(c1, c2,C) = v.Length(C) + μ.Area(inside(C))

+ λ1
∫
inside(c) | u0(x, y) − c1 |2 dxdy

+ λ2
∫
inside(c) | u0(x, y) − c2 |2 dxdy.

(4.1)

where, C is any curve that is being iteratively evolved, and the constants c1 and c2
[6] denote the average intensities of the image inside and outside the evolving curve,
C respectively. The free parameters in Eq. (4.1) must all be positive. The penalizing
terms in Eq. (4.1) such as Length(C) Area(C) and force the evolving active contour
C to be as smooth as possible. The minimization of energy in Eq. (4.1) occurs when,
C ≈ C0 i.e., the evolving contour sits exactly on the object boundary.

The above functional in Eq. (4.1) is quite similar to theMumford-Shah Functional
[65]. TheMumford-Shah Functional (FMS) tries to segment an image into its various
sub-regions by using region-based information. The C-V model tries to represent
each region or connected component Ri ofΩ/C using a constant intensity ci . This ci
represents the average intensity of the region i.e. ci = average(u0) on each connected
component Ri [6, 49]. This reduced case is called the minimal partition problem.
Here the values of the constants c1 and c2 [6] are:
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c1 = mean(inside(C))

c2 = mean(outside(C)).
(4.2)

4.2.1 Level Set Formulation of the Model

Level set methods [6, 50], a contour C ⊂ Ω is represented by the zero level set of
a Lipschitz function Φ : Ω → R. This is also called a level set function and it is
defined in such a way that

⎧
⎨

⎩

C = ∂ω {(x, y) ∈ Ω : 	(x, y) = 0}
inside(C) = ω = {(x, y) ∈ Ω : 	(x, y) > 0}

outside(C) = Ω/� = {(x, y) ∈ Ω : (x, y) < 0}
(4.3)

Using the level set function 	 and also the Heaviside function H and the one-
dimensional Dirac measure δ0 so as to use one-dimensional calculations, the energy
fitting terms F(c1, c2,C) in Eq. (4.1) can be reformulated as [6]:

F(c1, c2,	) = v.
∫

Ω

∂(	(x, y))|∇	(x, y)|dxdy + μ.

∫

Ω

H(	(x, y))dxdy

+ λ1

∫

Ω

|u0(x, y) − c1|2H(	(x, y))dxdy (4.4)

+ λ2

∫

Ω

|u0(x, y) − c2|2(1 − H(	(x, y)))dxdy

Keeping the level set function 	 fixed, and minimizing the energy functional
F(c1, c2, Φ) in Eq. (4.4) with respect to c1 and c2, the values of the constants c1 and
c2 in terms of Φ is derived as, [6]:

c1(	) =
∫
Ω
u0(x, y)H(	(x, y))dxdy
∫
Ω
H(	(x, y))dxdy

(4.5)

c2(	) =
∫
Ω
u0(x, y)(1 − H(	(x, y)))dxdy
∫
Ω

(1 − H(	(x, y)))dxdy
(4.6)

Keeping the constants c1, c2 fixed, andminimizing Fwith respect to	, the associ-
ated Euler–Lagrange equation for is deduced. To do so, regularized (smooth) versions
of the Heaviside function H and the one-dimensional Dirac function δ0, called Hε

and δε [43] respectively, as given in Eq. (4.7), are required to be used. This finally
gives rise to the partial differential equations (PDE) in Eqs. (4.8)–(4.10), that need
to be solved iteratively for the progressive evolution of the active contour C.

Hε(x) = 1

2
[1 + 2

Π
arctan(

x

ε
)] δε(x) = H

′
ε(x) = 1

Π

ε

ε2 + x2
(4.7)
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∂	

∂t
= δε(	)[v.div( ∇	

|∇	| ) − μ − λ1(u0 − c1)2 + λ2(u0 − c2)2] = 0 (4.8)

	(0, x, y) = 	0(x, y) in Ω (4.9)

δε(	)

|∇	| .
∂	

∂
−→n on ∂Ω (4.10)

One of the fundamental features of level sets is that, they can develop shocks and
progressively degrade with time. To rectify this, periodic re-initialization of the zero
level curve of 	 to the signed distance function is suggested in [3, 12, 18]. This
step involves computing the following Eq. (4.11) periodically so as to re-initialize
the level set 	, where sign(	) is the sign function.

∂	

∂t
= sign(	)(1 − |∇	|) (4.11)

Studies in [3] have however shown that this step of re-initialization introduces
further complications like moving the zero level set away from its original location
or increasing the computation time. In addition, this step is often applied in an ad-hoc
manner without any proper rationale for its implementation [3].

4.2.2 The C-V Algorithm

The steps of the basic C-V algorithm [43] can be summarized as given in
Fig. 4.1.

4.2.3 The Strengths and Drawbacks of the C-V Algorithm

The level set implementation of the C-V model enables it to detect interior contours
within the image [6]. As already pointed out in [2, 55], due to the non-unique and
non-convex nature of the energy fitting functional, suitable choice of the initial con-
tour is a mandatory requirement. Poor choices often lead to the functional getting
stuck at a local minimum or being unable to converge towards the global minimum
within the desired number of iterations. In fact, suitable initial position of the con-
tour is a necessity for the gradient descent based adaptation procedure to achieve
the final segmented result quickly, within a small number of iterations, and, for fast
convergence towards the global minimum.

The free parameters λ1, λ2, ν, μ, involved in the energy fitting functional of the
C-V model in Eq. (4.1) are also needed to be properly tuned to drive the energy to
its global minimum. Manual tuning, often a brute-force method, is an ill-advised
technique in practice due to its large time-complexity and high computational power
requirements.
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Fig. 4.1 The C-V algorithm for image segmentation using level set approach

The re-initialization step of the C-V model also introduces several extra compli-
cations that may give rise to erroneous segmentation results. A better approach is
discussed in [39], where the authors have added an extra regularization term to force
the level set to be as close to the signed distance function as possible. The metric
in Eq. (4.12) can be added to the energy fitting term in Eq. (4.1), to achieve such
a desired effect [39]. By adding this term, now Eq. (4.14) can be solved iteratively
without the need for any re-initialization of level set function. The mathematical
formulation can then be described as [39]:

p(	) =
∫

1

2
(|∇	| − 1)2dxdy (4.12)

E(	, c1, c2) = F(c1, c2,	) + P(	) (4.13)

∂	

∂t
=

(
∇2	 − div

( ∇	

|∇	|
))

+ δε(	)
[
v.div

(∇	

∇	

)
− μ − λ1(u0 − c1)

2 + λ2(u0 − c2)
2
]
.

(4.14)
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4.2.4 Extension of C-V Model for Vector-Valued Images

For segmentation of vector-valued images (such as RGB or multi-spectral images),
Chan and Vese simply extended their scalar model [5] by defining a fitness functional
energy that minimizes the fitting energy over each channels of the vector-valued
images. This model also has very strong de-noising capabilities.

Let u0,i be the i th channel of an image onΩ , with i = 1,2,3,...,N channels and C be
the evolving curve. The constant vectors are defined as c+ = (c+

1 , c+
2 , . . . , c+

N ) and
c− = (c−

1 , c−
2 , . . . , c−

N ) [5]. Then, similar to Eq. (4.1), for the vector-valued case, the
energy functional can be given as [17]:

F(c+, c−,C) = v.Length(C) + μ.Area(inside(C))

+ ∫
inside(c)

1

N

N∑

i=1
λ+
i |u0,i (x, y) − c+

i |2dxdy

+ ∫
outside(c)

1

N

N∑

i=1
λ−
i |u0,i (x, y) − c−

i |2dxdy
(4.15)

where λ+
i and λ−

i are the parameters for the i th channel and must be positive.
The constant c+ and c− vectors represent the average image intensities, inside and

outside the evolving contour C, for each channel of the vector-valued image. Similar
to the scalar case, it is prudent to use level set formulation for minimizing the above
functional for the vector valued case too. Also as given before, regularized (smooth)
version of the Heaviside function Hε and the one-dimensional Dirac function δε are
used in the formulation.

Minimizing the energy in Eq. (4.15) with respect to the constants c+ and c−, for
i = 1,2,3,…,N, we obtain [5]:

c+
i (	) =

∫
Ω
u0,i (x, y)H(	(x, y))dxdy
∫
Ω
H(	(x, y))dxdy

c−
i (	) =

∫
Ω
u0,i (x, y)(1 − H(	(x, y)))dxdy

∫
Ω

(1 − H(	(x, y)))dxdy

(4.16)

The extra regularizing term in Eq. (4.12) is added as in the scalar case to Eq. (4.15)
to avoid the necessity of the additional re-initialization phase. Similarly, the energy
functional in Eq. (4.15) can beminimized by the gradient descent search, with respect
to 	 by keeping the vectors c+ and c− constant. The following Euler–Lagrange
equation has been derived that needs to be solved iteratively so as to evolve the curve
[5]:

∂	

∂t
=

(
∇2	 − div

( ∇	

|∇	|
))

+δε(	)
[
vdiv

(∇	

∇	

)
− μ − 1

N

N∑

i=1
λ+
i |u0,i (x, y) − c+i |2 + 1

N

N∑

i=1
λ−
i |u0,i (x, y) − c−i |2

]
.

(4.17)
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4.2.5 Extension of C-V Model for Multi-phase Level
Set Implementation

One of the advantages of level sets is the ease with which it can be extended to higher
dimensions. The C-V model likewise in its level set implementation can be extended
to cater tomulti-phase image segmentation and is able to detectmore than two regions
within an image and also to deal with triple junctions [68]. For the multi-phase level
set implementation, the number of level sets required is directly proportional to the
number of regions into which the image has to be segmented. For segmenting an
image into a maximum of 2n number of regions, number of level sets is sufficient.
The formulations for the four-phase and three-phase level set implementations are
presented below.

The four-phase implementation can be stated as: Let us assume that the level sets
ϕ = (	1,	2) are being used to segment the given image. Then the fitting energy
functional [68] can be described as in Eq. (4.18):

F(c, ϕ) = v.
∫
Ω

|H(	1)|dxdy + v.
∫
Ω

|H(	2)|dxdy + ∫ 1

2
(|∇	1 − 1)2dxdy + ∫ 1

2
(|∇	2 − 1)2dxdy

+λ1M1(ϕ) + λ2M2(ϕ) + λ3M3(ϕ) + λ4M4(ϕ)

(4.18)

where,
M1(ϕ) = ∫ |u0 − c11|2H(	1)H(	2)dxdy
M2(ϕ) = ∫ |u0 − c10|2H(	1)(1 − H(	2))dxdy
M3(ϕ) = ∫ |u0 − c01|2(1 − H(	1))H(	2)dxdy
M4(ϕ) = ∫ |u0 − c11|2(H(	1))(H(	2))dxdy
and c = (c11, c10, c01, c00) is a constant vector. The first two penalizing terms force
the evolving contour to be as smooth as possible. The next two regularizing terms
are added so as to force the evolving curve to stay as close to a signed distance
function as possible. The constant vector c comprises the average intensities within
each particular region of the level sets.

Similar to the two-phase level set implementation, the associated Euler–Lagrange
equations as in Eqs. (4.19), (4.20) for ϕ can be deducedwhich are needed to be solved
iteratively for evolution of the curve [68].

∂Φ1

∂t
=

(
∇2Φ1 − div

( ∇Φ1

|∇Φ1|
))

+δε(Φ1)
[
vdiv

(∇Φ1

∇Φ1

)
− μ

]
− δε(Φ1)[(λ1(u0 − c11)2−

λ3(u0 − c01)2)H(	2)]
−δ(Φ1)[(λ2(u0 − c10)2 − λ4(u0 − c00)2(1 − H(Φ2))]

(4.19)
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∂	2

∂t
=

(
∇2	2 − div

( ∇	2

|∇	2|
))

+
δε(	2)

[
vdiv

(∇	2

∇	2

)
− μ

]
−

δε(	2)[(λ1(u0 − c11)2 − λ2(u0 − c10)2)H(	1)]
−δε(	2)[(λ3(u0 − c01)2 − λ4(u0 − c00)2(1 − H(	1))]

(4.20)

In a similar manner, the three-phase level set implementation [68] of the
C-V algorithm also utilizes two level sets ϕ = (	1,	2) to segment the image into
three distinct regions. The energy functional associated with this formulation is given
in Eq. (4.21) as:

F(c, ϕ) = v.
∫
Ω

|H(	1)|dxdy + v.
∫
Ω

|H(	2)|dxdy + ∫ 1

2
(|∇	1| − 1)2dxdy+

∫ 1

2
(|∇	2| − 1)2dxdy

+λ1M1(ϕ) + λ2M2(ϕ) + λ3M3(ϕ)

(4.21)
where,
M1(ϕ) = ∫ |u0 − c1|2H(	1)H(	2)dxdy
M2(ϕ) = ∫ |u0 − c2|2H(	2)(1 − H(	2))dxdy
M3(ϕ) = ∫ |u0 − c3|2(1 − H(	1))dxdy
and c = (c1, c2, c3) is a constant vector.

The PDEs that are needed to be solved to evolve the curve is given in Eqs. (4.22)
and (4.23).

∂	1

∂t
=

(
∇2	1 − div

( ∇	1

|∇	1|
))

+
δε(	1)

[
v.div

( ∇	1

|∇	1

)
− μ

]
− δε(	1)[λ1(u0 − c1)2H(	2)]

−δε(	1)[(λ2(u0 − c2)2(1 − H(	2)) − λ3(u0 − c3)2)]
(4.22)

∂	2

∂t
=

(
∇2	2 − div

( ∇	2

|∇	2|
))

+ (4.23)

δε(	2)
[
v.div

( ∇	2

|∇	2

)
− μ

]
− δε(	2)[(λ1(u0 − c1)

2 − λ2(u0 − c2)
2H(	1)]

However, it should be emphasized here that both these multi-phase level set for-
mulations (and, for that matter, any other multi-phase level set formulation) suffers
from the same problems as the two-phase ones as discussed above.
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4.3 Evolutionary Formulation of Our Fast C-V Model

TheC-Vmodel essentially attempts to divide the image into different segments during
the evolution of the contour. The evolving contour tries to minimize the fitting energy
functional as defined in Eqs. (4.1), (4.15), (4.18) or (4.21) by dividing the image into
the required number of class divisions, with each division having a distinct mean
intensity value denoted by ci . This division into different classes can be done by the
use of discrete level sets as was shown in [40].

For any particular intensity value L, the image can be divided into two regions
I1 and I2 where I L1 = {u0 < L} and I L2 = {u0 ≥ L}. The constants c1 and c2 are the
mean intensity values in the regions I L1 and I L2 , respectively.

The fitting energy functional for L can then be calculated by Eq. (4.1). For all
such values of L within the allowable intensity range L(min,max), the fitting energy
can be calculated as (FitLmin, ......., FitLi , ......., FitLmax ). Then the segmentation
of the image by the C-V model is to simply establish a search procedure to obtain
that value of for which the fitting energy functional in Eq. (4.1) becomes minimum.
A similar approach can also be adopted for the vector-valued images, where the only
difference arises in the calculation of the mean intensity values over all the channels
of the given image, so as to minimize the fitness functional energy in Eq. (4.15).

For the extension of this algorithm towards multiphase level set implementation,
the search procedure has to be simply extended to search for multiple levels or
classes. To segment the given image into K number of divisions, the search procedure
is executed to search for (K−1) number of levels. Using this technique, the fitting
energy in Eq. (4.18) or (4.21) has to be minimized for image segmentation into four-
class or three-class divisions.

The search procedure, in this case, can be implemented in various ways e.g. by
using the basic linear search method [40]. However, it is well known that linear
search is too slow to converge to its minimum value, if the search space is too large.
This occurs primarily for the cases in which more than two classes are required to
be detected. To overcome these limitations, in this work we propose a novel method
using PSO based swarm intelligence algorithm [30, 49] and some of its variants [18,
34, 42, 57, 58] which can obtain the required solution quickly and with sufficient
accuracy.

4.4 Particle Swarm Optimization (PSO) Based
Fast C-V Model

PSO [36, 54] is a very popular swarm intelligence based algorithm developed by
Kennedy and Eberhart. This model was inspired from the study of bird flocks or
fish schools searching for food and their interactions within the group. PSO has
been found to be efficient in finding optimal or near-optimal solutions for problems
involving large search spaces. The algorithm has carved out a niche for itself in
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solving high-dimensional, nonlinear, non-convex, optimization problems and has
been applied in a wide range of applications encompassing a variety of domains like
image processing [7, 44], robot navigation and control [8, 9, 11, 12, 14, 19], fuzzy
control [20, 53], instrumentation design problems [13] etc.

The simulation of the swarmmovement is implemented by assigning randomized
position and randomized velocity to each particle of the swarm and their respective
position and velocities are updated in each iteration by following certain heuristic
rules. The candidate solutions are allowed to fly through the search space, in search of
better positions, with attraction to positionswhich yield better results. Let a candidate
solutions position and velocity be denoted as xi = (xi1, xi2, xi3, ....., xiD) and vi =
(vi1, vi2, vi3, ....., viD), where i denotes the i th particle in the D-dimensional search
space. Each particle remembers its best performance i.e., the best position obtained
by it as Pi , and also the global best position of the swarm as a whole, as Pb.

The present velocity vi of the i th particle at iteration (t+1) is affected by a com-
bined effect of its old velocity, the particles distance from the global best position pb
and its distance from its own previous best position pi , as given in Eq. (4.24). Using
this new velocity, the position of the th particle can be updated using Eq. (4.25):

vid(t + 1) = wvid(t) + m1r1(Pid(t) − xid(t)) + m2r2(Pbd(t) − xid(t)) (4.24)

xid(t + 1) = xid(t) + vid(t + 1) (4.25)

where, d is the dth dimension in the dimensional search space, xid is the position
and vid is the velocity of the i th particle in the dth dimension, m1 and m2 are the
called the cognitive and social acceleration learning rates, r1 and r2 are two random
numbers between 0 and 1 with uniform distribution and is the inertia weight, which
is used to draw a balance between the local and the global searches [54].

The pseudo-code of the PSO algorithm is given in Fig. 4.2.
Till date, many different variants of the basic PSO algorithm have been proposed.

To name a few variants, PSO by Clerc [18], Quantum behaved PSO (QPSO) [42,
57, 58] and QPSO with Differential Mutation operator (QPSO-DM) [34] have been
devised and these variants can also be used in our proposed formulation of the C-V
model.

Now, Fig. 4.3 describes our proposed implementation of PSO based Fast C-V
algorithm.
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Fig. 4.2 The classical PSO algorithm
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Fig. 4.3 Implementation of PSO based Fast C-V algorithm
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4.5 Implementation and Results

Our proposedmodel has been implemented for several medical images and extensive
experimental investigations and analyses of the results obtained are carried out, as
discussed next.

4.5.1 Two-Class Implementation for Scalar Images

Figures4.5, 4.6, 4.7 and 4.8 show the implementation of our proposed model on
some sample medical images and their segmented results. The search procedure has
been implemented by using PSO and some of its variants.

The segmentation performance can be validated both by visual perception and
quantitative means. Among the common quantitative indices employed, Dice Coef-
ficient (DC) [21, 56] is a popular choice. To calculate theDC, themanually segmented
image (MSI) and ground truth (ASI) are compared for similarity by using Eq. (4.26)

DC = [2 ∗ (ASI
⋂

MSI )]/[|ASI | + |MSI |] (4.26)

where,
|ASI | = cardinality of automatically segmented image (segmentation output from
our proposed fast implementation of C-V algorithm)
|MSI | = cardinality of manually segmented image (can also be considered as the
ground truth)
(ASI

⋂
MSI ) = degree of correlation between the two image matrices.

Table4.1 shows the performance of our proposed model for image segmentation
results of Figs. 4.5 and 4.7. The segmentation performance is highlighted in the DC
value obtainedwith our proposedmodel. For an accurate segmentation, themaximum

Fig. 4.4 Implementation of our proposed algorithm on some sample gray-scale images: aAn image
showing Central pontine myelinolysis [30], b A CTscan of the brain with hydrocephalus [48], c
A brain MRI image [65], d MRI image showing sinusitis with edema and mucosal thickening
appearing in both maxillary sinuses [28], e An image showing a patient with normal pressure
hydrocephalus [22]
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Fig. 4.5 Segmentation result obtained with our proposed model on images of Fig. 4.4. All the
images are of 128 × 128 dimension

Fig. 4.6 Segmentation of some more sample medical images: a An image showing Coronal MRI
Flair [27] b MRI image showing veins [1] c A sample CT scan image [31] d A sample brain MRI
image e MRI image of brain [66]

Fig. 4.7 Segmentation result of images of Fig. 4.6. All the images are of 128 × 128 dimension

DCvalue that canbeobtained is 1. For our algorithm, theminimumDCvalue obtained
is 0.91 which highlights the high performance achieved by our proposed model.

The segmentation of all the images in Figs. 4.5 and 4.7 has also been carried
out using the basic C-V algorithm. The algorithm has been applied on each image
for 2000 iterations. Table4.2 highlights the fact that our PSO based C-V model is
much faster than the basic C-V model while achieving a comparable segmentation
performance.

Various variants of the PSO algorithm such as PSO-Clerc [18], QPSO [42, 57,
58] and QPSO-DM [34] have also been utilized to segment the images in Figs. 4.4
and 4.6. The swarm size for all the variants has been fixed at 10. To perform a suitable
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Table 4.1 The segmentation performance of our proposed algorithm for the images in Figs. 4.4
and 4.6

Figure4.2 DC Figure4.4 DC

(a) 0.9102 (a) 0.9577

(b) 0.9816 (b) 0.9845

(c) 0.9731 (c) 0.9935

(d) 0.9690 (d) 0.9905

(e) 0.9770 (e) 0.9833

Table 4.2 The computation time comparison between our proposed algorithm and the basic C-V
model for the images of Figs. 4.4 and 4.6

Figure4.2 C-V (s) PSO based
C-V (s)

Figure4.4 C-V (s) PSO based
C-V (s)

(a) 5.658 0.070 (a) 4.152 0.062

(b) 3.260 0.062 (b) 4.777 0.054

(c) 4.599 0.056 (c) 0.802 0.054

(d) 5.206 0.060 (d) 4.510 0.051

(e) 4.229 0.051 (e) 3.793 0.053

comparison, the search procedure has also been carried out using the linear search
method. Table4.3 gives a computation time-complexity comparison between these
competing methods as applied on the C-V algorithm. As it is evident from Table4.3,
it can be easily observed that our PSO based method and its variants are much faster
than the linear search based one.

The computation time-complexity comparison in Table4.3 shows that the PSO
basedmethod and its different variants are successful in segmenting the given images
within a very short time and are comparativelymuch faster than both the linear search
method and the basic C-V model implemented with level sets. For proper assess-
ment of the different algorithms, accuracy is also a very important criterion which
is highlighted in Table4.4. Table4.4 compares the accuracy of the result obtained
between PSO and its different variants. The error is calculated by computing the
difference of the value of “class” obtained by the linear method and those obtained
by the PSO based method and its different variants, where the result obtained by the
linear method is considered as the reference. It can be seen clearly that the error of the
QPSO-DM based method is negligible for almost all the cases and thus, QPSO-DM
emerges as the superior algorithm of choice, among different competing methods
considered.
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Table 4.3 The computation time comparison between the linear search method and the PSO based
methods (and its different variants) for our proposed algorithm for the images of Figs. 4.4 and 4.6

Image Linear search
(s)

PSO (s) PSO-Clerc (s) QPSO (s) QPSO-DM (s)

2(a) 0.128 0.070 0.074 0.073 0.076

2(b) 0.129 0.062 0.061 0.062 0.065

2(c) 0.134 0.056 0.055 0.056 0.057

2(d) 0.128 0.06 0.059 0.064 0.063

2(e) 0.102 0.051 0.053 0.053 0.052

4(a) 0.128 0.062 0.061 0.061 0.064

4(b) 0.118 0.054 0.053 0.053 0.053

4(c) 0.0987 0.054 0.056 0.056 0.056

4(d) 0.086 0.051 0.050 0.051 0.051

4(e) 0.098 0.053 0.054 0.053 0.058

Table 4.4 The accuracy of segmentation result obtained between the linear search method and the
PSO based methods for the images of Figs. 4.4 and 4.6

Image Class
by
linear
search

Class
by PSO

Error
by PSO

Class
by
PSO-
Clerc

Error
by
PSO-
Clerc

Classes
by
QPSO

Error
by
QPSO

Class
by
QPSO-
DM

Error
by
QPSO-
DM

2(a) 64 61 3 64 0 64 0 64 0

2(b) 67 71 4 69 2 67 0 67 0

2(c) 79 83 4 83 4 79 0 79 0

2(d) 71 65 6 70 1 71 0 71 0

2(e) 61 58 3 62 1 61 0 61 0

4(a) 83 83 0 83 0 83 0 83 0

4(b) 72 76 4 74 2 72 0 72 0

4(c) 144 146 2 150 6 145 1 144 0

4(d) 62 61 1 62 0 62 0 62 0

4(e) 44 43 1 44 0 44 0 44 0

4.5.2 Two-Class Implementation for Vector Valued Images

Figures4.8, 4.9, 4.10, 4.11 and 4.12 (Images courtesy [29], and Kieran Maher [43])
show the performances of our proposed C-V algorithm, when applied for segmenta-
tion of some vector-valued images. The results show that the segmentation achieved
is quite successful in each case.
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Fig. 4.8 An image showing subcutaneous lipoma in an arm MR image [23] (a), and its segmented
result (b). Class value detected is 93. Time taken for segmentation = 0.203s

Fig. 4.9 A PET slice of a patient’s brain, with a region of interest drawn to indicate skin surface
[43] (a) and its segmented result (b). Class value detected is 114. Time taken for segmentation =
0.179s

4.5.3 Multi-class Implementation of Our Proposed Model

Our proposed model can be very easily extended to the multi-class implementation
for segmentation of images. For the three-phase level set implementation, the required
number of classes i.e., K = 3 whereas for the four-phase level set implementation,
K= 4. Figures4.13, 4.14, 4.15, 4.16 and 4.17 show the segmentation result obtained
on some sample gray-scale images (each having dimension 512 × 512) for the
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Fig. 4.10 A color brain MRI showing mucosal thickening in both maxillary sinuses [24] (a) and
its segmentation (b). Class value detected is 77. Time taken for segmentation = 0.21 s

Fig. 4.11 A brain MR image [25] (a) and its segmentation result (b) by our proposed algorithm.
Class value detected is 83. Time taken for segmentation = 0.194s
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Fig. 4.12 A brain Magnetic Resonance image [26] (a) on which our algorithm has been applied
(b). Class value detected is 74. Time taken for segmentation = 0.228s

Fig. 4.13 A Magnetic Resonance Imaging scan of a head [68] (a), and its segmented result (b)
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Fig. 4.14 A sample MRI image [67] (a) and the three-phase segmented result (b) with different
colours showing the three different segmented regions

Table 4.5 The segmentation performance of our proposed algorithm for the images of Figs. 4.13,
4.14, 4.15, 4.16 and 4.17

Figure Class values detected

4.13 56 144

4.14 57 156

4.15 62 181

4.16 69 170

4.17 53 129

three-class implementation. Table4.5 shows the detected class values for all the
images of Figs. 4.13, 4.14, 4.15, 4.16 and 4.17. The performance enhancements
achieved with our proposed algorithm for higher number of classes is similar to the
case for the two-class implementation. It is quite evident from Table4.6 that the
speedup achieved by our PSO based algorithm is higher for larger number of classes,
compared to the linear search based method or the basic C-V model, because of
the larger search space, when more number of classes are required to be detected
(Figs. 4.15, 4.16 and 4.17).
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Fig. 4.15 A Normal CT scan of the head (a); this slice shows the cerebellum, a small portion of
each temporal lobe, the orbits, and the sinuses [17]. The segmentation result is on (b)

Fig. 4.16 A sample CT scan image [32] (a) and its segmentation result (b)
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Table 4.6 The speedup achieved by ourmethod compared to the linear searchmethod for Figs. 4.13,
4.14, 4.15, 4.16 and 4.17

Figure PSO based method (in
seconds)

Linear search method
(in seconds)

Speedup achieved

4.13 4.971 44.077 8.964

4.14 5.556 31.802 5.724

4.15 5.404 40.695 7.530

4.16 4.432 40.163 9.062

4.17 5.322 33.697 6.331

Fig. 4.17 An image showing Central pontine myelinolysis [30] (a) on which our algorithm has
been applied (b)

4.6 Conclusions

In this work, a new, fast implementation of theC-V algorithm for image segmentation
has been proposed. The problem has been reformulated into a new approach so that
it can be solved by swarm intelligence based optimization algorithms such as PSO.
The method has been employed for both scalar-valued and vector-valued images
and has also been extended for multi-class level image segmentation. The proposed
algorithm performs much faster than the original C-V model while also achieving
accurate segmentation results. Future works will also attempt to use this proposed
model to include local region information along-with the global information of the
C-V model so that, for images suffering from intensity in-homogeneity too, better
segmentation results can be achieved with reduced computation time.
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Chapter 5
Evidential Deformable Model for Contour
Tracking. Application on Brain Cine
MR Sequences

Sarra Naffakhi, Amir Nakib and Atef Hamouda

Abstract The goal of this paper is to introduce an efficient evidential particle filter
for complex shapes tracking. The particularity of that particle filter is not only the
fair use of the observation at the current time in the update step of it by performing
a curve evolution but also it represents a bridge between Probability function and
Evidence theory. This bridge can be illustrated by incorporating a data fusion step in
the update phase. This method builds a track by selecting the best particles between
the particle candidates. This re-sampling phase is based on choosing the particles
possessing the higher value of the basic belief assignment function. The values of
these basic belief assignment functions are resulting from the fusion process of two
distinctive sources of information. The first source is the energy functional and the
second one is the local sensitive histogram. The evaluation of our approach, which is
made on a realistic Brain cine RM sequences, aims at tracking themotion of the walls
of the third ventricle. Therefore, the latter shows its obvious and clear efficiency. In
order to validate our proposal, we present a comparative study between our proposal
and the state of the art methods. The obtained results are encouraging.

Keywords Complex shape tracking · Bayesian filtering · Particle filter · Evidence
theory · Transferable belief model

5.1 Introduction

Researchers in distinct fields such as video compression, visual servoing, human/
computer interaction and robotics have been interested in the topic of tracking object.
The purpose of tracking, moving and deforming objects is to generate their state and
positions at each frame of the video. For the non-rigid objects (or objects with com-
plex shapes), one of themost descriptive representations is the contour representation
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with either parametric or non-parametric models. Firstly, it is necessary to mention
that one of the most frequent approaches (used among the diverse approaches sug-
gested) for the state estimation is the Bayesian filtering. The oldest filter used is the
Kalman Filter. It was used because of its optimal estimation for normally distrib-
uted state. Particularly, it requires a linear system and measurement models with
Gaussian noises. Although this method allows obtaining good results in the case of
linear or Gaussian context. This limitation was addressed by the use of the Extended
Kalman Filter (EKF). In the first step the EKF linearizes the state and measurements
equations, then, it applies the Kalman Filter to obtain the estimation of the state.
However, the local linearization produced by the EKF does not fit estimations, par-
ticularly, when the state model is extremely non-linear. Similarly to the previous
filters, the particle filter (PF) is widely used and it has been developed in order to
represent the posterior density in terms of random samples and associated weights.
The PF was proposed for solving both linear and non-linear system without any
assumptions on the probability distribution.

In this paper, we are interested in the tracking of the movements of the walls of
the third ventricle during the cardiac cycle independently of the cerebrospinal fluid
(CSF). In the state of the art, there are other works related to the motion analysis
using CSF [16, 17, 21, 22]. This tracking problem can be seen as a tool for motion
estimation of the third ventricle and thus a tool for facilitating diagnostic and ther-
apeutic decision. In this work, we propose an algorithm called Evidential Particle
Filter For Complex Shapes Tracking (EPF-CSCT). This algorithm aims to exploit the
Evidence Theory in facing up to the drawbacks of the probability theory. Moreover,
the purpose of this paper is to compare the use of the enhanced Particle Filter, the
ExtendedKalman Filter and theKalman Filter in amedical image context. Analysing
accuracy and robustness against the noise presented in the cine RM images, we show
that the EPF-CSCT performs better than the KF and the EKF.

The rest of the paper is organized as follows: in Sect. 5.2, we present the related
work before introducing theBackground. Then, in Sect. 5.4, the proposed approach is
detailed. In Sect. 5.5, the validation of our approach on synthetic and real world data
is presented. Finally, conclusion and perspectives are presented in the last section.

5.2 Related Works

Numerous works on objects tracking were proposed in the literature andmany classi-
fications also were proposed as that in [11, 41] according to the shape or appearance
models of the tracked targets: (i) point tracking, (ii) kernel based tracking and (iii)
silhouette based tracking.

(i) The Point TrackingMethods: this is the most used approach due to its simplicity
and its easy manipulation with complex problems. The point tracking methods
are mainly used for point tracking in radar imagery [26], distributed point track-
ing [13] or for Monte Carlo techniques where the number of samples prohibits
heavy calculations [1, 6, 28]. The target is represented by set of pixels having
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some particular characteristics of interest in the object. It requires an efficient
algorithm to detect objects in each consecutive framed.

(ii) The Kernel Tracking: [32], the kernel or object can be a rectangular template or
an elliptical with a corresponding histogram. Then, the motion of the kernel in
consecutive frames is computed to track the object. This motion is usually in
the form of rigid transformation. The convergence of these algorithms depends
on the representation, the number of object tracked and the method used for
approximating the object motion. We can cite the most used techniques that use
this approach Simple Template Matching [30], The Mean Shift Method [3], the
Support Vector Machine [25], and the Layering based tracking [37].

(iii) Silhouette Tracking Methods: in the silhouette tracking methods, the tracking
is performed by using the information encoded within the segmented object
region. The encoded information can be: appearance density or shape models.
Then, the models are tracked by the contour evolution or shape matching.

Contour tracking methods deform iteratively an initial contour at t − 1 to its new
position at t . This contour evolution requires that some parts of the object in the
current frame overlap with the object region in the previous frame. In literature
two classes of contour representation can be distinguished: the explicit and implicit
representation. The explicit representation defines the boundary of the silhouette by
a set of control points, while, the implicit one defines the silhouette by means of a
function defined on a grid.

In [9] the authors use an explicit method where the B-spline representation for
contours of objects is used. They defined a propagation rule of shapes for inferring
a posterior state density from the data to provide a prior to learn. Then, the state is
updated using a particle filter. The image edges’ calculated in the normal direction
at the control points on the contour are used to define the current state (the measure-
ments) to update the state. The initialization of the particle filter algorithm is obtained
by computing the state variables from the contours extracted in consecutive frames
during a training phase. This work was extended in [19] to a particle filter-based
multiple object tracker by including the exclusion principle for handling occlusion.

In [14, 39] a particle filter framework is proposed besides the use of the prior
dynamical model on the deformation and on the similarity group parameters for
tracking the deformation and the global motion overtime. In [38], the authors pro-
posed an algorithm where the Kalman filter and active contours are combined to
track non-rigid objects, where the prominent B-spline method is again used for rep-
resentation.

In [24], the authors put dynamics into the geodesic active contour framework
for contour. In [27], the authors describe a unified approach for the detection and
tracking of moving objects by the propagation of curves. A scheme is proposed
that can be viewed as a geodesic active motion detection and tracking model which
basically attracts the given curves to the bottom of a potential well corresponding to
the boundaries of the moving objects. Yilmaz et al. model the object shape and its
changes by means of a level set based shape model in [40], where the grid points of
the level set hold the means and the standard deviations of the distances of points
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from the object boundary and the object occlusions are resolved during the course
of tracking. In [10], the authors propose a nonlinear model for tracking a slowly
deforming and moving contour despite significant occlusions. In [29], the authors
add Mumford-Shah model into the particle filter framework. Both of the contour
tracking methods and shape matching have the advantage of dealing with variety of
object shapes, handling occlusions and object split and merge.

5.3 The Evidence Theory

Evidence theory (ET) is known in the literature also under the terminology of
Dempster–Shafer theory or theory of belief functions. The ET was introduced first
by Shafer in the 1970s [31] as a reinterpretation of Dempster’s statistical infer-
ence, which led to define a theory particularly suitable for handling imprecise and
uncertain information. Since that different interpretations of its foundations have
been suggested. We have adopted, here, the interpretation proposed by Smets: called
the transferable belief Model (TBM) which is characterized by a non-probabilistic
appearance [33, 35, 36]. It is based on two levels of information perception. The
first consists in the credal level allows formatting and editing information. While the
second, it is the pignistic level which is completely dedicated to decision making and
it is clearly separated from the data modeling.

Let Ω be the frame of discernment which contains N hypothesis or solutions for
the problem to be solved: Ω = {H1, .., HN }. The set of propositions associated to
Ω is defined as 2Ω={∅, {H1},..,{HN },{H1

⋃
H2},..,Ω}. Under the TBM, a statement

of belief from a source S is characterised by a degree of belief, then, it is defined as
a basic belief assignment (bba) function m: 2Ω → [0, 1] that satisfies the following
conditions:

∑
A⊆Ω m(A) = 1. For each proposition A ∈ 2Ω , m(A) represents the

belief strictly placed in A at a given time t . Besides to the bba function m, there are
other representations for the same information such as the credibility, the plausibility
and it is possible to switch from one to the other by the Mobius transformations [15].
For the dynamic credal level and the pignistic level we will present only the items
that are used in this work. They are defined in the context of the application, and thus
are detailed in the next section.

5.4 Proposed Method

In this section, we present our approach and focus on the way of taking profit from
the evidence theory to enhance the quality of the prediction of the particle filter.
Especially, in the case of tracking an object with complex shape.

In order to enhance the performance, we formulated the problem of adding infor-
mation as a fusion information problem. Then, the evidence theory is exploited for
this procedure of fusion.
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In the classical formof the particle filter, the step after the prediction phase consists
in the update step. We propose to use not only one source of information but also
combine two sources to assign weights for particles. This proposal is motivated by:

1. The nature of data to treat: the cine-MRI sequences are noised due to physical phe-
nomena and to the acquisition system. Consequently, imprecision and uncertainty
are present, especially, when the resolution is poor (lack of information).

2. Regarding the particle filter: if a particle cannot be observedwhat is its likelihood?

To address these different problems, a method that is based on information fusion
using the evidence theory is proposed.

5.4.1 Description

In our context of contour tracking, the belief that the particle belongs to the contour
of the object of interest must be evaluated.

• Target and its state: the target of interest is the contour of the region of interest
ROI (such as walls of the third ventricle: ROI1, ROI2 see Fig. 5.1), so the state
is defined at each frame t as Xt = (x, y) where x , y are the coordinates in the
frame t .

• The observations Yt : the frame at t will be used to extract the set of features based
on the sources of information. Through the use of the final information drawn from
the combination of two sources, the posterior probability distribution p(Xt |Y1..t )
can be estimated.

Fig. 5.1 Example of the two ROI
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• The state transition density p(Xt |Xt−1): In our case, this density is chosen to be a
linear motion.

• Particles: In our case, we have chosen the particles as the scatter plot around the
contour detected at t = 0 with the model proposed by [18].

• The frame of discernment will be composed of two exclusive hypotheses Ω =
{H1, H2} such as:
H1: the particle is a pixel of the contour.
H2: the particle is a pixel of the background.

• Two sources of information are used {Sd}1≤d≤2:

– The energy functional: we considered the contour as a snake and used the energy
expression according toKass et al. [14]model.We recall that a snake is an elastic
curve, that from an initial state tries to adjust to the most significant features of
the scene. It is deformed due to external forces that attract it to suitable feature
of the image, and internal forces that try to preserve the condition of smoothness
in the shape of the curve. A final solution (the contour) is given by the minimum
total energy of the snake.

– The local sensitive histogram: the local sensitive histogram for an image I at a
pixel p is defined by:

HE
p (b) =

W∑

q=1

α|p−q|Q(Iq , b), b = 1, .., B (5.1)

where α ∈ [0, 1] is a parameter controlling the decreasing weight as a pixel
moves away from the target center. B is the total number of gray levels,W is the
number of pixels and Q(Iq , b) is zero except when intensity value Iq (at pixel
location q) belongs to a gray level b[7].

• Initialization: the initialization step of the algorithm differs from t = 1 to t > 1.
If t = 1, the position of the scatter point will be generated from the contour point
detected at t = 1. If t > 1, the position of the scatter point will be generated from
the estimated contour at t − 1.

5.4.2 Evidential Modeling

We propose the use of the distance-based model introduced by Denoeux [4, 42]. This
model requires the knowledge of a training set. Let L be a training set, then:

L = {(xi , Hq), x
i ∈ φs

k} (5.2)

with φs
k is the set of the K nearest neighbors to xs in the training set X , and X = {xs}

where xs is the pattern to be classified.
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As hypothesis Hq ∈ Ω is associated for each xi , and using the training set, we
can build a bba function for each pattern xs to be classified via the knowledge of
belonging of its k nearest neighbors.

The information provided by each neighbor is, then, modeled by a belief function
mi which is defined by:

⎧
⎨

⎩

mi (Hq) = αq exp{−γ 2
q d(xs, xi )2}

mi (Ω) = 1 − mi (Hq)

mi (A) = 0 ∀A ∈ 2Ω\{Ω, Hq}
(5.3)

where αq ∈ [0, 1] is a constant, γq is a parameter associated to the class Hq , and
d(xs, xi ) is the distance between xsand xi .

The first source, d(xs, xi ) is defined as the simple distance between the two
energy’s values. While the second source, is the distance between two local sensitive
histograms:

d(H1, H2) =
∑

b=1..B

| H1(b) − H2(b) | (5.4)

where H1 and H2 are the local sensitive histograms of the real particle and the
candidate, in the current frame. B is the number of gray levels.

The Eq. (5.3) reflect that the couple (xi , Hq) provides information about the class
membership of xs to the hypothesis Hq , because xi has only the information that it
belongs to the class Hq . So, the bba function calculated is only distributed on the
hypothesis Hq or on the frame of discernment Ω . These belief functions are, then,
combined to take a decision on the membership of the vector xs .

5.4.3 Combination Rule from Each Source

Smets [35] defined the conjunctive rule of combination, noted m∩ = m1 ∩ m2, by:

{
m∩ : 2Ω × 2Ω −→ [0, 1]
m∩(A) = ∑

B∩C=A m1(B).m2(C)∀A ⊆ Ω
(5.5)

However, two conditions must be satisfied to apply this combination rule:

• The combined bba should be independent.
• The bba function should be in [0, 1] and ∑

m(A) = 1.
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5.4.4 Decision Strategy

To take a decision, Smets and Kennes [34, 35] propose to use the pignistic trans-
formation that transforms the beliefs into optimum decisions. The Smets pignistic
probability transformation (Bet P) uses the bbs to assign a pignistic probability to
subsets. This transformation allows to build a uniform probability distribution for
each subset. It is defined by:

Bet P(Hk) = 1

1 − m(∅)

∑

A∈Hk

m(A)

|A| (5.6)

where |A| cardinality of A ⊆ Ω .
Moreover, the pignistic probability can be obtained from an infinite number of

bba functions. Indeed according to a bba function we can associate only one pignistic
probability. In our case, the important particles will be those with highest values of
the pignistic probability.

Fig. 5.2 The Evidential Particle Filter for Complex Shape’s Contour Tracking
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5.4.5 Proposed Algorithm

Our proposed method is explained in the next flowchart shown in Fig. 5.2.

Algorithm 6: The Evidentiel Particle Filter for Complex Shape Tracking
0. Initialisation:
if t = 1 then
Generate the position of the scatter point from the contour points detected at t=1.

else
Generate the position of the scatter point from the contour points estimated at t-1.

end if
for each frame do
1.Prediction Step:
Generate the set of particles {xit }Ni=1 in the current frame, at t, following the dynamic
model p(xt |xt−1).
2.Update Step:
for each particle xit do
2.1.Preprocessing : Perform M iterations of curve evolution depend on the
observation yt
2.2.EvidentialModeling :
Calculate its value from each source of information
Apply the K nearest Neighbor Algorithm
Compute the bba function for each nearest neighbor xit 1 ≤ i ≤ K
Apply the conjunctive rule of combination to get the bba function for each particle xit
2.3.Combination :
Input:Bba Function derived from each source {xit , S1} and {xit , S2}
Apply the conjunctive rule of combination again.
Output: Final bba function m(xit ).
2.4.Decision :
Input:m(xit )
311267 Calculate the pignistic probability
output: Pignistic probabilty of each xit
2.5.Resampling :
Resample from the above distribution to generate particles, then we have: the final
contour points’position to display.

end for
end for

5.5 Results

In this section, we are going now test our proposed approach on several synthetic and
real videos with dynamic objects and demonstrate the tracking performance of our
algorithm against the state-of-the-art. We are also going to compare our proposed
algorithm: the Evidential Particle Filter for Objects’Contour Tracking with Complex
Shape against traditional tracking methods such as the Kalman Filter (KF) and the
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Extended Kalman Filter (EKF). The different tracked states result from the proposed
Evidential Particle Filter, the Kalman Filter and the Extended Kalman Filter have
been validated by comparing them with the state of each region detected manually
in t . We would like to point out that despite taking a lot of care while testing active
contour segmentation methods, and getting in touch with some authors, we have not
been able to get accurate results. However, we are confident that ourmanual detection
is correct and accurate.

5.5.1 Tracking Synthetic Ball

We have set up experiments first using synthetic images to qualitatively evaluate the
proposed algorithm towards the Kalman Filter and the Extended Kalman Filter. For
our purpose, we have created a sequence of synthetic images. It has one dynamic
target object (white ball) surrounded by a black background. Because of most of the
complex dynamic trajectories cannot be modeled by lineal systems, which results in
that we have to use for the modeling nonlinear equations, we distinguish two cases:
the first one is a linear moving ball which is shown in Fig. 5.3 and the second case
is a non-linear motion. The latter is illustrated also in Fig. 5.4. To make it even more
complicated we have added to all the images a speckle noise and gaussian noise
so that all the images in general and the edges in particular become fuzzy. In order
to validate and so evaluate our proposal, we describe first the experiments models,
parameters for each filter, and second the preliminary results that we realized to this
aim.

Fig. 5.3 Ball in a linear motion
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Fig. 5.4 Ball in a non-linear motion

1. Kalman Filter:
In our case for the estimation of the contour motion tracking, we choose the
dynamic model as follow:

{
x(t) = x(t − 1) + v ∗ t + 1/2 ∗ u ∗2 t
v(t) = v(t − 1) + u ∗ t

(5.7)

where the state includes position in x and y direction, velocity v(t) and u is
the acceleration. For the ball’s contour tracking, u is fixed to the value 10−1. The
variance of the process noise is fixed to the value 10−2 and the measurement noise
is fixed to the value 10−3. The matrix F , G, H in equations defined in (5.15) and
(5.19) are derived from this supposed model, dt is fixed to 1, as follow:

F =

⎛

⎜
⎜
⎝

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠G =

⎛

⎜
⎜
⎝

dt2/2
dt2/2
dt
dt

⎞

⎟
⎟
⎠ and H =

(
1 0 0 0
0 1 0 0

)

2. ExtendedKalmanFilter:Wehave used the followingmodeling criterion to capture
the non-linear dynamics motion:

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = x2(t − 1) + 1/2x(t − 1)
y(t) = y2(t − 1) + 1/2y(t − 1)
vx (t) = v2x (t − 1)
vy(t) = v2y(t − 1)

(5.8)
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where the state include position in x and y direction, velocity v(t). For the ball’s
contour tracking, the variance of the process noise is fixed to the value 10−2 and
the measurement noise is fixed to the value 10−3. The matrix F for state and the
matrix H for measurement, in which we just measure the x and y position and
not the velocity, which are defined in Eqs. 5.29 and 5.30 and are derived from this
supposed model, as follow:

F =

⎛

⎜
⎜
⎝

2 ∗ x + 1/2 0 0 0
0 2 ∗ x + 1/2 0 0
0 0 2 ∗ x 0
0 0 0 2 ∗ x

⎞

⎟
⎟
⎠ and H =

(
1 0 0 0
0 1 0 0

)

3. Evidential Particle Filter For Contour Tracking:

First, we note that the parameters used are defined in Table5.1.
To carry out the comparative studies between the Kalman Filter and the Extended

Kalman Filter for the ball tracking. Figure5.5 represents the results obtaining with
the Kalman Filter and in which we consider the linear uniform movement defined in
Eq. (5.7). Next, Fig. 5.6 illustrates those results in which we consider the same linear

Table 5.1 Parameters of the Evidential particle filter for Complex Shape Tracking

� Number of particles � iterations � bin

Region 1 Region 2

Dataset1 288 264 50 32

Dataset2 408 432 50 32

Dataset3 432 408 50 32

Synthetic images 352 40 32

Fig. 5.5 Result of the Kalman Filter for the contour tracking of the ball in linear motion
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Fig. 5.6 Screenshots result of the Kalman Filter for the contour tracking of the ball in non-linear
motion

Fig. 5.7 Screenshots result of the Extended Kalman Filter for the contour tracking of the ball in
linear motion

uniform movement for tracking the non-linear motion of the ball. The real positions
are represented with blue point and the estimated one are represented with green
color. Then, Fig. 5.7 shows the results obtained with the Extended Kalman Filter
and in which we use the non-linear uniform movement described by the system
equations in Eq. (5.8) for tracking the linear motion of the ball. After, Fig. 5.8 shows
the results obtained with the Extended Kalman Filter using the same non-linear
uniform movement described in Eq. (5.8) for tracking the non-linear motion of the
ball. The estimated positions are represented with green color and the right ones with
magenta color.
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Fig. 5.8 Screenshots result of the Kalman Filter for the contour tracking of the ball in non-linear
motion

Fig. 5.9 Comparisons between the real state position and the obtained trajectories of the Center
ball along x-y axis from the different algorithms (the linear motion)

Finally, Figs. 5.9 and 5.10 illustrate the center of the target position is shown for
each instant as well as the real the real trajectory for the linear and non-linear motion
respectively. Therefore, both figures show the acting of the Extended Kalman Filter
and its ability to be adapted to any type of motion versus the poor performance of the
normal Kalman filter in the non-linear motion. In deed, the later loses good state’s
estimation at each time the object changes its direction of motion. From these obser-
vations, we can also conclude that the comparison of estimated trajectories from the
Extended Kalman Filter with the estimated trajectories from the Evidential Parti-
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Fig. 5.10 Comparisons between the real state position and the obtained trajectories of the Center
ball along x-y axis from the different algorithms (the non-linear motion)

cle Filter is reasonably good. However, in some cases, as illustrated, the Evidential
Particle Filter exhibits better performance than the EKF and it is more accurate.

5.5.2 Datasets and Data Acquisition

Here, after we describe the data sets used:

1. We used three brains Cine-MRI for testing and validating the proposed algorithm
and the other algorithms described earlier.

2. The image dataset is of type cine-MRI image. This technique of acquiring brain
Cine-MRI images was carried out by Professor P. Decq (neurosurgeon) and
Dr. J. Hodel (neuroradiologist) at Henri Mondor Hospital as part of the antenna
Analysis and Restoration of Movement (CNRS-ENSAM Paristech 8005). The
principle of this technique is to synchronize the MRI signal with the ECG sig-
nal (electrocardiogram). The MRI signal provides three-dimensional images and
anatomically precise. The ECG signal is the result of cardiac activity. A cine-MRI
brain image is constructed by averaging the MRI signal acquired during a period
of RR ECG signal. This technique allows good visualization of the movements
of the walls of the third ventricle and the turbulent flow of cerebro-spinal fluid
(LCS) in the cardiac cycle. The details of this technique are presented in [8]

3. The parameters of the acquisition are given in Table5.2.
4. Each sequence is composed of 20 frames. These frames are obtained using the

Cerebmov tool. It allows the user to load a sequence of Cine-MRI images, select a
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Table 5.2 Parameters of the MRI acquisition

Parameters Values

TR/TE 78 ms/3 ms

Number of excitations 7

Flip angle 82

Field of view 160mm

Matrix size 256 × 256

Slice thickness 2.5mm

Acquisition time From 2 to 4min

Phases during the R to R interval 20

region of interest and then quantify its movements and see the curves of displace-
ment of each point of the contour. It contains six steps that are: setup, resolution,
reference, preprocessing, segmentation and movement. In conclusion, it allows
the assessment and quantification of the movement of the walls of the third cere-
bral ventricles. Indeed, it may facilitate diagnosis of brain diseases. For more
details about the tool, you can see [23].

5.5.3 Tracking Real Dynamic Membrane of the Third
Ventricle

For consistency, tracks for Kalman filter, Extended Kalman Filter and Evidential
Particle Filter are shown in the above figures with black stars and the true state is
represented with white circles. To better illustrate the tracks, we have zoomed in to
the portion of the frame which represented the ROI. The images in the Figs. 5.11 and
5.14 are sequentially presented from left to right the tracking results obtained thanks
to the Kalman Filter Algorithm and using the parameters defined before. From these
figures, we see that the Kalman Filter Algorithm stays close to the right positions of
the dynamic membrane’s contour points in most frames.

Figure5.12 shows example frames from the experiments’ sequences with the
tracking results overlaid for the first region of interest. Additionally, Fig. 5.15 illus-
trates example results of the ExtendedKalman Filter for the second region of interest.
In these cases, the Extended Kalman Filter performs worse than the Kalman filter
and it loses track of the third ventricle’s dynamic membrane. More accurate results
have been obtained in some other experiments with the two other data sets, this is
can be illustrated in Figs. 5.21 and 5.22.

Figures5.13 and 5.16 provide the tracking results for the twoROI by theEvidential
Particle Filter. As expected and as it can be seen, the performance of our algorithm is
better than the one of the Kalman filter and the Extended Kalman Filter. Our proposal
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Fig. 5.11 Illustration of the first image of the original sequence with its first ROI and tracking
results of the Kalman Filter algorithm for the first region of interest ROI1
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Fig. 5.12 Illustration of the first image of the original sequence with its first ROI and tracking
results of the Extended Kalman Filter algorithm for the first region of interest ROI1
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Fig. 5.13 Illustration of the first image of the original sequence with its first ROI and tracked
outputs of the Evidential Particle Filter algorithm for the first region of interest ROI1
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Fig. 5.14 Illustration of the first image of the original sequence with its second ROI and tracking
results of the Kalman Filter algorithm for the second region of interest ROI2

Fig. 5.15 Illustration of the first image of the original sequence with its second ROI and tracking
results of the Extended Kalman Filter algorithm for the second region of interest ROI2

stays closest to the ground truth till the very end and more accurate than the Kalman
Filter’s results (Figs. 5.14 and 5.15).

5.5.4 Tracking Accuracy

To show the efficiency and accuracy of our tracking solution, we have calculated
the Mean Square Error (MSE), the Mean error, the Median error and the Standard
Deviation (SD) error of the estimated state vector in X direction and Y direction for
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Fig. 5.16 Illustration of the first image of the original sequence with its second ROI and tracked
outputs the Evidential Particle Filter algorithm for the second region of interest ROI2

each data set. Each one has its own number of point to track in each region of interest.
For the first region, 24 points is associated to the first data set DS1, 34 points for the
data set 2 DS2 and 36 points for the data set 3 DS3, while the second region has 24
points for the data set 1 DS1 36 points for the data set 2 DS2 and 34 points for the data
set 3 DS3. We estimated the state using our proposed method, Evidential Particle
Filter for Complex Shape Tracking (EPF-CST) shown in Black, Extended Kalman
Filter (EKF) shown in blue, red and green for DS1, DS2 and DS3 respectively, and
the Kalman Filter (KF) in orange, magenta and light green (Fig. 5.16).

For each moving region (Data Set (DS)), in both direction, a state error vector is
calculated at t in the following manner:
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where (xi , yi ) are the right coordinates of the i th point at t and (x̂i , ŷi ) are the
estimated coordinates at t .

Figures5.17 and 5.18 show the mean error in state estimation. The mean error
in X direction (Y direction) at t is the arithmetic average of Xt

error elements (Y t
error

elements), computed by dividing the total of all values by the number of values. As
we can see, at all time-instants, the state estimation error using our method remains
null. On the other hand, the KF remains close to the true state in most time. In X
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Fig. 5.17 Mean state estimation error of ROI1 in a X direction b Y direction across three data sets
(DS1: Data Set 1, DS2: Data Set 2, DS3: Data Set 3) using our proposal the Evidential Particle
Filter for Complex Shape Tracking (EPF-CST), Extended Kalman Filter (EKF) and Kalman Filter
(KF)

Fig. 5.18 Mean state estimation error of ROI2 in a X direction b Y direction across three data sets
(DS1: Data Set 1, DS2: Data Set 2, DS3: Data Set 3) using our proposal the Evidential Particle
Filter for Complex Shape Tracking (EPF-CST), Extended Kalman Filter (EKF) and Kalman Filter
(KF)

direction and for the ROI1, the mean error didn’t exceed ±0.02 for the three data
sets. In Y direction, the mean error is more reduced and it is in ±0.005. For the
second region ROI2, the KF performs with the same manner. In fact, the mean error
in X direction is greater than the mean error in Y direction. The EKF yields a higher
mean error in both directions compared to the KF for all the tested moving region.

Similar to the above evaluation, Figs. 5.19 and 5.20 show the median error in
state estimation, for the different initializations of the initial state, x0, for the same
dynamic contour regions. As we can see, the norm of the state error is very large
initially for the Kalman Filter, in some case it is equal to 0.02 for the X direction, but
for our proposed method, as time proceeds the state error is steady and equal to zero.
In beginning the Kalman Filter diverge from the true state then, as time proceeds,
it converges to the right state. In most cases, the EKF have the median error value
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Fig. 5.19 Median state estimation error of ROI1 in a X direction b Y direction across three data
sets (DS1: Data Set 1, DS2: Data Set 2, DS3: Data Set 3) using our proposal the Evidential Particle
Filter for Complex Shape Tracking (EPF-CST), Extended Kalman Filter (EKF) and Kalman Filter
(KF)

Fig. 5.20 Median Error state estimation error of ROI2 in a X direction b Y direction across three
data sets (DS1: Data Set 1, DS2: Data Set 2, DS3: Data Set 3) using our proposal the Evidential
Particle Filter for Complex Shape Tracking (EPF-CST), ExtendedKalman Filter (EKF) andKalman
Filter (KF)

remains constant for each separate case in both directions. The values varied in the
gap of [−0.03, 0] for the first region ROI1 and in the gap of [−0.008, 0] for the
second region ROI2

The plots of the MSE for ROI1 are shown in Fig. 5.21 and for ROI2 they are
shown in Fig. 5.22. The MSE is given by:

MSE(n) = 1/n
n∑

k=1

‖x(k) − x̂(k)‖2 (5.9)

where x̂(k) is the predicted state and the x(k) is the true state. Thenwe have compared
them together.
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Fig. 5.21 Mean Square Error state estimation error of ROI1 in a X direction b Y direction across
three data sets (DS1: Data Set 1, DS2: Data Set 2, DS3: Data Set 3) using our proposal the Evidential
Particle Filter for Complex Shape Tracking (EPF-CST), ExtendedKalman Filter (EKF) andKalman
Filter (KF)

Fig. 5.22 Mean Square Error state estimation error of ROI2 in a X direction b Y direction across
three data sets (DS1: Data Set 1, DS2: Data Set 2, DS3: Data Set 3) using our proposal the Evidential
Particle Filter for Complex Shape Tracking (EPF-CST), ExtendedKalman Filter (EKF) andKalman
Filter (KF)

In these plots, it can be observed that for the models described before, our method
has the smallest MSE. Kalman Filter may also have a good estimation as ours but the
difference may be clear in the state estimation of the second and third data set DS2
and DS3 in both directions for the first region ROI1. For the second region ROI2,
the difference is clear in the state estimation of the first and third data set DS1 and
DS3 in both directions. In the other cases, the KF diverge at beginning from the true
state then the its MSE error converges to zero.

On the other hand and for ROI1, the Extended Kalman Filter starts up with
very good estimation of the state, then it diverges to a constant value in the gap
of [0.04, 0.06]. For the second region ROI2, the EKF failed in all cases also. It fact,
it was exactly behaving as its behaviour for the first region ROI1.
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Fig. 5.23 Standard Deviation state estimation error of ROI1 in a X direction b Y direction across
three data sets (DS1: Data Set 1, DS2: Data Set 2, DS3: Data Set 3) using our proposal the Evidential
Particle Filter for Complex Shape Tracking (EPF-CST), ExtendedKalman Filter (EKF) andKalman
Filter (KF)

The standard deviation error s of the data vector Xt
error is defined as follow:

s =
√
√
√
√ 1

n − 1

n∑

i=1

(xi − x̄)2 (5.10)

where x̄ = 1
n

∑n
i=1 xi and n is the number of elements in the data vector Xt

error . It
provides an indication of how spread out the individual in Xt

error (also Y
t
error ) i.e. are

they concentrated around the mean, or scattered far and wide.
For the first class of moving region ROI1 Fig. 5.23 shows the shape of distribution

of the error values in Xt
error (also Y t

error ). From these shapes we note that: for the
data set 1 in both directions, the individual data values of the KF estimation is closer
than the individual data value of the EKF to the mean value. This doesn’t contradict
the fact that the error value of the KF at the first frames scatter far and wide the mean
value then it becomes more contracted around the mean value. For the two other
data sets, we can’t affirm the same interpretation. Indeed, the individual data value
of the EKF more or less constant compared to the individual data values of the KF
estimation. Likewise, for the second class of the moving region ROI2, Fig. 5.24 the
same interpretation can be done but for both KF and EKF the values of the SD are
more concentrated around the mean value. we can interpret also that the individual
data values of the EKF estimation is closer than the individual data value of the KF
to the mean value in Y direction. Summarizing, the above evaluation shows that the
proposed tracker performs favorably against the state of the art algorithms (Kalman
Filter and Extended Kalman Filter) as it carries out the best performance and in
practice it performs very well and always converge to the true state. The Extended
Kalman Filter performs worse than the Kalman Filter almost in all runs.
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Fig. 5.24 Standard Deviation Error state estimation error of ROI2 in a X direction b Y direction
across three data sets (DS1: Data Set 1, DS2: Data Set 2, DS3: Data Set 3) using our proposal the
Evidential Particle Filter for Complex Shape Tracking (EPF-CST), Extended Kalman Filter (EKF)
and Kalman Filter (KF)

5.6 Conclusion

In this paper, we proposed a new approach the evidential particle filter for
objects’contour tracking with complex shapes, specifically the contour of the third
cerebral ventricle tracking. The nature of our sequences induces specific sources
of information issues regarding notably highly imprecise or unreliable cine-RMI
images. The proposed particle filter algorithm for complex shape tracking makes use
of the conception of the Particle Filter and evidence theory. First of all, the integration
of the curve evolution in the update step makes a good use of the observation model
at current time t . Second, an evidential modeling step is achieved. It is based on the
integration of the fusion of two heterogeneous features which are the locality sensi-
tive histograms and the energy functional. Throughout our successive experiments,
we noticeably demonstrated that our tracking method outperforms state-of-the art
approaches in an Cine-RMI and synthetic sequences. Besides our method is robust
against noise in the sequences related to the RMI images. Hence, for future works,
it is intended to use the evidential particle filter for objects’contour tracking with
complex shape complex in a multiple object tracking context. The latter would be
used for the different regions of interest which are the ROIs of the third ventricle
cerebral contour and some other tracking objects, such as person tracking and vehicle
tracking.
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5.7 Annex

5.7.1 Bayesian Filtering

In the Bayesian filtering, the state of the object at time t is modeled by Xt , t = 1, .., n
which contains all the object properties such as the position, velocity, acceleration.
In order to estimate the state Xt , the Bayesian filtering recursively calculates some
degree of belief using different measurement information given up to time t and prior
state values. It requires so the construction of two stochastic models:

• The dynamic model: describes the state evolution via:

Xt = ft (Xt−1) + Wt (5.11)

where Wt is a white noise.
• The measurement model: describes the relationships between the measurement
and the state via:

Yt = ht (Xt , Nt ) (5.12)

where Nt is another white noise independent of Wt .

Besides these models, a set of densities is defined as follow:

• P(Xt |Xt−1): the transition density function which describes the dynamic model
• P(Yt |Xt ): the observation density function conditionally independent given the
states which describes the measurement model.

• And the distribution of interest is the filtering distribution P(Xt |Y1..t ) which can
be computed using two recursion steps:

1. The prediction step: here is the use of the dynamic model and the probability
density function at t − 1 P(Xt |Y1..t−1) to derive the prior probability density
function of the current state t P(X1..t |Y1..t ) based on:

P(Xt |Y1..t ) =
∫

Xt−1

P(Xt |Xt−1)P(Xt−1|Y1..t−1)dXt−1 (5.13)

2. The update step: employs the prior probability density function arising from the
prediction step and the likelihood function P(Yt |Xt ) of the current measurement
at t to calculate the posterior probability density function P(Xt |Y1..t ).

P(Xt |Y1..t ) = P(Yt |Xt ,Y1..t−1) ∗ P(Xt |Y1..t−1)

P(Yt |Y1..t−1)
(5.14)
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5.7.2 Kalman Filter

In [12], R.E Kalman published the origin of the concepts Linear filtering and predic-
tion problems. Then his research led him to describe a process that will be known as
the Kalman filter.

TheKalman filter is a set ofmathematical equations that provides a better estimate
of the future state of a system despite the imprecision measurements and modeling.

The Kalman filter is very powerful through the use of the control in feedback:
it considers the state of the system and improves its results with noisy information
provided by the observations system. In the prediction phase, it estimate the state xt
at t using the state’s updated estimation xt−1 at t − 1 using

x̃t = F ∗ xt−1 + G ∗ ut + ξt (5.15)

where ξt is sequences of white, zero mean, Gaussian noise, F ,G are know p × p and
p × r matrices. F is the state transition matrix.G is the control input matrix converts
the control vector ut into state space. ut is the vector containing any control inputs.
Besides to the in the prediction step, Kalman filter calculate the Error Covariance
Prediction using

P−
t = F ∗ Pt−1 ∗ FT + Q (5.16)

where Pt−1 is a matrix representing the error covariance in the state prediction at
t − 1. Q is the process noise covariance matrix. In Sect. 5.5.3, we will mention the
chosen model of moving object and the values used for the both matrix.

After predicting the state x̃t and its error covariance. The Kalman filter use the
Kalman Gain Kt to correct the state estimated x̃−

t in the last step using:

Kt = P−
t ∗ HT (H ∗ P−

t ∗ HT + Rt )
−1 (5.17)

where R is the measurement noise covariance and H is a matrix converting the state
space into measurement space

The state is then updated using

x̃t = x̃−
t + Kt (yt − H ∗ x̃−

t ) (5.18)

where yt is the measurement, generally derived from sensors:

yt = H ∗ xt + δt (5.19)

where δt : is sequences of white, zero mean, Gaussian noise.
The final step of the kalman filter is to update the error covariance P−

t using:

Pt = (I − Kt ∗ H)Pt (5.20)
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The performance of the kalman filter depends on these factors:

1. The value of the prediction error covariance: In fact, the higher is this later, the
more efficient is the predicted state.

2. The modeling of the process act on the value of the Prediction error covariance.
This last will be high if the process is not precisely modeled, so the entries of Q
are fairly high.

3. The value of the updated error covariance: In fact, this later decrease if the mea-
surements are accurate.

As such we can interpret that the equations of the Kalman filter can be classified
in two classes:

1. Time update equations or predictor equations: are responsible to obtain the a
priori estimates for the next time step.

2. Measurement update equations or corrector equations: are responsible to obtain
an improved a posteriori estimate by incorporating a new measurement into the
a priori estimate.

5.7.3 Extended Kalman Filter

As we mention before, when we want to apply a Kalman filter to estimate the para-
meters of a system, the first thing to do is to model the problem. It turns out that in
some cases the equations that model the problem are not linear. Thus, the Kalman
filter is not applicable as it is. The Extended Kalman Filter is the non-linear version
of the Kalman Filter. This filter makes it possible to locally linearize the problem and
therefore to apply the equations of classical Kalman filter. The state equations and
the equations linking the previous state to the next one at t + 1 which were linear
in the case of conventional Kalman filter is now nonlinear. It is impossible to write
them in a matrix form and are replaced by:

xt = f (xt−1, ut−1) + wt−1 (5.21)

yt = h(xt ) + vt (5.22)

where wt and vt are the process and the observation noises which are both assumed
to be zero meanmultivariate Gaussian noise with covariance Qt and Rt , respectively.
In the prediction phase, the state is predicted using:

˜x−
t = f (xt−1, ut−1) (5.23)

and the predicted covariance matrix is estimated by using:

Pt = Ft−1Pt−1F
T
t−1 + Qt−1 (5.24)
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The predicted state is updated using

x̂t = x̂−
t + Kt z̃t (5.25)

where Kt is the optimal Kalman gain, z̃t is the measurement residual and St is the
residual covariance

Kt = Pt H
T
t S−1

t (5.26)

z̃t = yt − h(x̂t ) (5.27)

St = Ht Pt H
T
t + Rt (5.28)

To use these equations, it is necessary that the functions f and h are locally linearized.
Thus, the transition matrix and the observation matrix are obtained by taking the
partial derivative of the nonlinear equations. The state transition and observation
matrices are defined to be the following Jacobians

Ft+1 = ∂ f (t, xt )

∂x
|x=x̂t (5.29)

Ht = ∂h(t, xt )

∂x
|x=x̂t (5.30)

As mentioned before, the linearisation of the equations is local which causes a
local convergence of the extended Kalman filter. This filter doesn’t guarantee, hence,
a global convergence unlike the Kalman filter. Therefore, it is harder to reach the
stability of the Extended Kalman Filter, and it usually depends on a convenient
initialization.

5.7.4 Particle Filter

Recently Particle Filter has become more and more popular. The Particle Filter is
a sequential MC approach. It was first introduced in [5] as the Bayesian Bootstrap
filter and it was first applied to object tracking in computer vision and known as the
Condensation algorithm [9].

The Monte Carlo (MC) method [2] constitutes the basis for most sequential MC
filters. This Sequential MC is a method to implement a recursive Bayesian filter
by MC simulation. The main objective is to represent the conditional state density
P(X1..t |Y1..t ) at time t by a set of particles with weights {xit ,wi

t }Ni=1.
The weights define the importance of a particle, that is, its observation frequency.

The new set of particles at time t are drawn from Xt1 = {(xit−1,w
i
t−1i = 1, .., N } and

a cumulative weight ct−1 to decrease the computational complexity at the previous
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time t − 1 step based on different sampling schemes [20]. The Importance sampling
is one of the most common sampling schemes and it can be resumed in three steps
as follows:

• Selection: Select N random particles from Xt−1 by generating a random number
r ∈ [0, 1], finding the smallest j such that c( j)

t−1 > r and x̂ (n)
t = x ( j)

t−1

• Prediction: Generate a new particle for each particles x̂ (n)
t using x (n)

t = f (x̂ (n)
t ,

W (n)
t )

• Correction: Computing the weights w(n)
t = p(yt |xt = x (n)

t ) where yt is the mea-
surement at t and p(.) can be modeled as a Gaussian density.
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Chapter 6
Microscopic Image Segmentation Based
on Based Branch and Bound
and Game Theory

Amira Kouzana, Amir Nakib and Narjes Dogaz

Abstract In this work a new family of image segmentation algorithms is proposed.
This paper is a generalization of the model proposed, called: Power Watershed seg-
mentation framework. Indeed, we extended it for cases: 2 < q < inf and p → inf.
To do so, we explore the segmentation a new formulation of the segmentation prob-
lem based on game theory is proposed optimization energy function as a game the-
ory problem. In this new formulation, The minimization can be, then, optimization
process is seen as a search of the Nash equilibrium of a non-cooperative strategic
game. Indeed, the computation of Nash equilibrium in finite game is equivalent to
a non linear optimization problem afterward. As the optimization problem thus for-
mulated the computation of the Nash equilibrium is an NP-hard problem, then, we
propose the use of the Branch and Bound method is used to solve it to find it in
reasonable time. In this study moreover, the uniqueness of the Nash equilibrium
is demonstrated using a potential game-theoretic approach. Then we propose a new
family of segmentation approachwith 2 < q < infand p → inf, namedGame-based
PW. The obtained results of the proposed approach, show are better than those given
by the original Power Watershed q = 2.

6.1 Introduction

Segmentation is a fundamental problem in image processing. It consists in partition-
ing an image into several meaningful objects. A great amount of literature on image
segmentation has been published and a lot of techniques have been applied. Among
these techniques, the graph-theory was applied to image segmentation problem. The
segmentation problem is then solved in a spatially discrete space by the efficient
tools from the graph theory [32]. Graph-based segmentation views the image as a
graphG = (V, E)where V = v1, . . . , vn is a set of nodes corresponding to the image
elements and E ⊆ V × V is a set of edges, with n = |V | and m = |E |. Each edge
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ei j = (vi , v j ), connects two neighboring nodes, has a real weight wi j = w(vi , v j )
which measures the degree of the connectivity between two nodes such that high
value means strong connection between the linked nodes and vice versa. Methods in
image segmentation can be divided into two categories: automatic (non-supervised)
image segmentation and interactive (supervised).Most segmentation algorithms have
focused on automatic segmentation grouping the elements of the image into disjoint
subsets according to a criterion such as color or homogeneity. While, interactive
methods, or seeded methods, allows to the user the ability to provide prior knowl-
edge about the result to improve the segmentation process. In this case, the user has
to mark areas of the image i.e. background and/or object(s) providing. Indeed, many
seeded image segmentation methods consider the image as a weighted graph and
minimize an energy function on a graph to produce a segmentation result. Among
these methods, we can cite: the watershed [3, 12, 13, 28, 34, 41], Kruskal [33], Prim
[4] algorithms for finding maximum spanning forest (MSF); Graph-Cuts (GC) based
methods were firstly proposed by Boykov and Jolly [4], RandomWalker (RW) based
is presented in [20], shortest paths [1, 2, 14, 16] introduced by Bai and Sapiro [2]
and, recently the Power Watershed (PW) model [11].

It is known that in the topographical surface, the watershed of a function is formed
by the locations from which a drop of water could flow towards different minima.
In the seeded image segmentation, the gradient of the image can be considered as
a relief map and seeds used to specify the segmentation of the image into desired
regions. The maximum spanning forest (MSF) is a watershed if the seeds correspond
to themaxima [13]. TheMSF based algorithm computes trees spanning among all the
nodes of the graph, each tree is connected to one connected seed component, and the
weight of the set of the trees is maximum. In the case of the Graph Cuts (GC) based
algorithms, the produced segmentation is determined by finding the minimum cut
between the foreground and the background seeds via a maximum flow computation.
The random walker (RW) algorithm can be interpreted as assigning the unlabeled
pixels to the seeds where there is a minimum diffusion of the distance [9], i.e. the
semi-supervised transduction learning algorithm [15], and the interactive version of
normalized cuts [21, 39]. In the case of the shortest path algorithm, each pixel is
assigned to the foreground label if the shortest path is from the current pixel to the
foreground seed. These paths are weighted by image content in as in the GC and RW
approaches.

Several image segmentation works, use game theory to deal with the optimization
problem. For instance, in [7], the game-theoretic integration was used to solve an
image segmentation problem. A two-person non-zero sum non-cooperative game is,
then, used for an integration region-based segmentation and gradient-based bound-
ary finding. This game is played out by a set of decision makers (or players), which
correspond to a two segmentation modules to integrate. This leads to a system where
the two modules operate in parallel. So, the outputs of each of the modules are
feedback to each other after every decision-making step. The game stops when
none of the modules can improve their positions, and the final solution pair con-
stitutes the Nash Equilibrium (NE). We recall that a Nash equilibrium is a set of
strategies such that each players strategy is an optimal response to the other players
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strategies [25, 29]. It can be seen as the point where none of the players involved in
the game can change their strategies for minimizing the payoff function [42].

In [22], the authors used the Nash-Game approach to joint image restoration and
segmentation. The game is a static game with complete information and the con-
sidered solution is the Nash equilibrium, which is computed by an iterative method
with relaxation. The authors define two players; one is restoration, with the image
intensity as strategy, and the other is segmentation with contour as strategy to find
the Nash equilibrium. Zeng et al. [24] used the game theory in image segmentation
to solve a multi-labeled segmentation problem. The input of this algorithm includes
the image to be segmented, as well as multi-labeling preferences called, seeds. The
output is the labeling of the input image. In this work, the authors design m parallel
games played on m separate layers. Each player on layer l is randomly assigned a
strategy of whether cooperate of defect, where one player is assigned to each label.
The players play the game on a graph to obtain the minimum energy of the graph via
maximize the total payoff.

Shen et al. [38] apply the evolutionary cluster game to image segmentation. In their
clustering game image segmentation (CGIS) approach, pixels clusters are derived
from the competition of individuals playing the clustering game. This game is a sym-
metric evolutionary game involving two players. Each player simultaneously selects
pixels that should be clustered and, after having revealed his choice, he receives a
payoff according to the similarity that the selected pixels have with respect to the
opponents’ ones. The evolutionary stable equilibrium (ESS) can determine a cluster
of pixels in the associated image.

In this work, a new formulation of the segmentation problem based on game
theory is proposed. In this new formulation, the optimization process is seen as a
search of the Nash equilibrium of a non-cooperative strategic game. Afterwards, the
optimization problem thus formulated is an NP-hard combinatorial problem, then,
we propose the Branch and Bound method to solve it. Moreover, the uniqueness
of the Nash equilibrium is demonstrated using a potential game-theoretic approach.
In this formulation, the segmentation problem is considered on a graph involving
two players. Each player selects pixels that should be clustered and, after having
revealed his choice, he receives a payoff according to the similarity that the selected
pixels have with respect to the adversaries ones. The segmentation model considered
is a generalization of the model called Power Watershed (PW) [11], to the case of
2 < q < ∞ and p → ∞. Hence, the segmentation problem is formulated as a non-
cooperative strategic-game and the energy minimization problem is solved by Nash
equilibrium.

The outline of the paper is as follows: in Sect. 6.2, we recall as preliminaries,
the Power Watershed (PW) graph-based segmentation algorithm based on energy
minimization. Section6.3 describes the proposed non-cooperative strategic game
formulation of the segmentation problem. In Sect. 6.4, we present the optimization
algorithm used to solve the posed problem, called branch and bound. In Sect. 6.5, the
experimentations and evaluation of the proposed approach are presented. Finally, we
conclude and give suggestions for future work in Sect. 6.6.
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6.2 Image Segmentation as a Graph-Cut Problem

The unified graph based segmentation model is known as Power Watershed (PW)
and was proposed by Couprie et al. [11]. It extends the common framework for
seeded images [40] that included Graph-Cuts, random Walkers and Shortest Path
Optimization algorithms. These algorithms consider the image as a graph (G), where
each pixel is considered as a node and the edges are weighted to reflect the gradient of
intensity, color or other features in the image. In the rest of the paper, we consider the
4-connected case. The PW segmentation model was obtained by introducing a new
parameter p in the generalized energy proposed in [40]. Then, the new segmentation
model is defined by:

6.3 Formulation of the Segmentation Problem
as Non-cooperative Strategic Game

In this section, a new formulation of the segmentation using graph cut and game
theory is presented. So, to solve the energy optimization problem formulated in the
equation (Eq.2.2) as a non-cooperative game, the search of the Nash Equilibrium
must be done. Indeed, the computation of Nash equilibrium in an n-player non coop-
erative finite game is equivalent to a non linear optimization problem. In this problem
the constraints and objective functions are polynomials. Moreover, the number of
variables is equal to the sum of the number of players and the number of the available
strategies in the game [8].

Before detailing our approach, some preliminary notions are introduced for more
clarity.

A Normal-Form Game:

A (finite, n-person) normal-form game is a tuple (N , X,C), where:

• N is a finite set of n players, indexed by i ;
• X = X1 × X2 × . . . Xn where Xi is a finite set of actions available to player i .
Each vector x = (x1, x2, . . . , xn) ∈ X is called: action profile;

• C = (C1,C2, . . . ,Cn)whereCi : X → � is a real-valued utility (or payoff) func-
tion for player i .

The game G = (N , X,C) is called finite, if the set N and all sets are finite.
Simple non-cooperative games assume that players have complete information. In
other terms, all players know the strategies and payoffs available to all other players.
Each rational player will select strategy that minimize his own payoff, depending on
the strategies selected by other players. This leads to an equilibrium state where the
gain of a player does not correspond to a loss of the other players. This kind of a
non-cooperative game, called non-zero sum game, can be solved by finding the Nash
equilibrium [5, 26].

http://dx.doi.org/10.1007/978-3-662-54428-0_2
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6.3.1 Formulation of the Segmentation Problem

Let state our segmentation problem that consists of optimizing Eq.2.2 as a non-
cooperative strategic game. We have then, to define the tuple, where N is the set
of nodes (pixels) of the plateau. Thus, each node of the plateau is considered as a
player. To play the game each player i ∈ N selects a strategy xi ∈ Xi . In our case, a
strategy for a player i, consists in selecting a value xi ∈ [0, 1]. This value allows the
classification of the node i as a foreground or a background.

Usually, the game theory is based on cost analysis for the payoff function of player
i depends on its strategy and those of other players. Then, for the payoff model, we
propose to use the global energy defined above as a local energy function Ci (x)
specific to the player i that involves its direct neighbors. This choice was motivated
by the fact that in game theory the participants follow a strategic interactions, and
according to the global energy function of the interaction, and the influence carried
on the node i by its direct neighbors. We propose, then, as a payoff function the
equation (Eq.3.1):

Minimizing the equation (Eq.3.1a) consists, then, in finding theNash equilibrium.
Nash equilibrium [29] is established to be the most important solution concept in
Game theory [31]. It represents a steady state of the play of a strategic game where
each player has an accurate opinion about the behavior of other players and acts
rationally. This equilibrium is a game of strategy, one per player, such that each
player minimizes its cost, depending on the activities of the other players. In other
words, the Nash equilibrium can be seen as the optimal operating point of the game.
Although, there are cases where we can find multiple Nash equilibrium, making
the choice of the best one difficult, it was proven that when the game is an exact
potential, and its corresponding potential function admits a global minimum; then
the convergence to a unique Nash-equilibrium is guaranteed [37].

A strategic-form game is an exact potential game if the incentive of all players
to change their strategy can be expressed in one global function, called the games
potential [5].

Definition of an Exact Game:

A game G = (N , X,C) is an exact potential game [27, 42], if it exists a function P
such that:

P : X → �
Ci (yi , x−i ) − Ci (zi , x−i ) =P(yi , x−i ) − P(zi , x−i ) (6.1)

where xi ∈ X−i all strategies except that of player i , ∀x−i ∈ X−i , yi ∈ Xi , zi ∈ Xi ,
and i ∈ N .

Theproposedpotential function P or the energy function tominimize is definedby:

P(X) =
∑

ei j∈plateau

∣
∣xi − x j

∣
∣q , q > 2 (6.2)

http://dx.doi.org/10.1007/978-3-662-54428-0_2
http://dx.doi.org/10.1007/978-3-662-54428-0_3
http://dx.doi.org/10.1007/978-3-662-54428-0_3
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This approach allowed us to extend the generalized model for image segmentation
by adding, a new segmentationmethod for the cases 2 < q < ∞ and p → ∞. More-
over, one can see that this case deals with the finite values of q and p = 0.

6.4 Branch and Bound Algorithm to Achieve the Nash
Equilibrium

The computation of a Nash equilibrium by classical methods is an NP-hard problem
[10, 17, 19]. Then, to find the Nash equilibrium, we propose to use the Branch
and Bound method. Indeed, the Branch and Bound is an effective technique used
for solving NP-hard combinatorial optimization problems [18, 23]. A Branch and
Bound algorithm for a minimization problem consists of three main components:

1. a branching rule,
2. a selection strategy,
3. a bounding function.

The branching rule
Allows determining if and how a subset of X can be split into subsets. Each subset

is split into a finite number of proper subsets that represents sub-problems to solve.
The bounding function provides for a given subspace a lower bound for the best
solution value reachable in the subspace.
The selection strategy

Allows the selection of the active subspace to be explored. In the literature, we
can find some applications [30] of the Branch and Bound method used to partition
a graph into sub graph with minimum cost knowing the potential of every node
in the graph [30]. In our case, we have to assign potentials to the nodes of the
plateau corresponding to the Nash equilibrium of the proposed game. Thus, for the
Branching part, we propose to split the strategy set X into two subsets, X ′

i and X ′′
i

with
∣
∣X ′

i

∣
∣ = ∣

∣X ′′
i

∣
∣ ± 1. In general case (more than 2 objects to extract), the strategy

set is split to M subsets, where M is the total number of objects to extract from the
image and the background.
The bounding step

The problem is relaxed and the upper and the lower estimated bounds are checked.
The proposed Branch and Bound algorithm is presented in Algorithm6.1. It takes as
input a set of strategies for every player i. Then, to reach the Nash equilibrium, this
algorithm requires 7 iterations at most for every player. Consequently, if there is N
players in our game, the algorithm needs between N × 7 iterations at most to find
the Nash equilibrium.
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Algorithm 6.1: Power Game based on B&B

Input:
• A plateau P(V, E), containing a set of foreground F , set of background B seeds, and a set

of unseeded nodes xi .
• The set of strategies X = X1 × X2 · · · × XN = 0, 0.01, 0.02, . . . , 1N .
• xi = 1 if the node i ∈ F , xi = 0 if the node i ∈ B, and the potential xi is unknown if

i /∈ (B ∪ F).

Output: A potential xi for every node of the plateau P .

while ∃Xi ⊂ X with |X | > 1 do

1. Branching: Branch the subset Xi into two subsets X ′
i and X ′′

i , where:∣
∣X ′

i

∣
∣ = ∣

∣X ′′
i

∣
∣ ± 1 and x ′

i < x ′′
i ∀x ′

i ∈ X ′
i ,∀x ′′

i ∈ X ′′
i .

X ′ = X ′
i × X j ∀i �= j

X ′′ = X ′′
i × X j ∀i �= j

2. Bounding:

• Bound X ′ looking for:
m1 = Min

xi ,x j∈I n f (X ′),Sup(X ′)
Ci (x)

• Bound X ′′ looking for:
m2 = Min

xi ,x j∈I n f (X ′′),Sup(X ′′)
Ci (x)

• Search strategy
if m1 < m2 then

Xi = X ′
i

end
else

Xi = X ′′
i

end

end

if xi > 0.5 then
si = 1

end

else
si = 0

end

Result: print out the final segmentation.

6.5 Results and Discussions

6.5.1 Evaluation on Synthetic Images

To test and evaluate our approach, we compare our results with those obtained by
PW q = 2, MSF Kruskal, MSF Prim. These methods belong to the same family of
the general scheme of Couprie with P → ∞. We have tested our method on different
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types of images. Thus, we have segmented some synthetic images, and microscopic
images. The different tests show that the proposed method outperforms PW q = 2,
MSF Kruskal and MSF Prim.

To evaluate objectively the performance of the tested methods, the Misclassifi-
cation Error (ME) (Eq. 6.3) is used. The ME reflects the percentage of background
pixels wrongly assigned to foreground and foreground pixels wrongly assigned to
background [36]:

ME =
(

1 −
( |BGT ∩ Bs | + |FGT ∩ Fs |

|BGT | + |FGT |
))

× 100 (6.3)

where BGT is the background, FGT the foreground of the Ground truth image, and Bs

and Fs are the Background and the foreground of the segmented image, respectively.
Figure6.1 shows the results on a synthetic image to which we add a Signal to

Noise ratio SNR = 9.9533. Results provided by PG are better than those given by
PW q = 2, MSF Kruskal and MSF Prim. Those results are confirmed by the ME
measure in Tables6.1, 6.2, and 6.3 from. Indeed, the values given by Game based
PW method are the lowest ones.

We have also applied our method on microscopic images (Fig. 6.2). The extracted
cells with PG are visibly better than those extracted with MSF Kruskal, MSF Prim
and PW q = 2. The ME measures confirm our observations. One can remark also
that the difference between segmentation results increase and is more noticeable if
the object to extract has small size compared with the size of the image.

Fig. 6.1 Illustration of the segmentation results on noised synthetic image

Table 6.1 Optimal values xi ’s at the corresponding energy, xs , at the Nash equilibrium with a
classical method for different values of q

q 3 4 5 10 25 50 100

x1 0.69 0.68 0.68 0.67 0.67 0.67 0.67

x2 0.71 0.69 0.69 0.68 0.67 0.67 0.67

x3 0.34 0.34 0.34 0.33 0.33 0.33 0.33

x4 0.41 0.38 0.37 0.35 0.34 0.34 0.34

Value 0.284023 0.09512002 0.03181364 0.0013201 9.38e−12 1.25e−23 3.23e−47

Iteration 1014 1014 1014 1014 1014 1014 1014
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Table 6.2 Optimal values xi ’s at the corresponding energy at the Nash equilibrium given by a
classical descent algorithm xNE for different values of q

q 3 4 5 10 25 50 100

x1 0.69 0.68 0.68 0.67 0.67 0.67 0.67

x2 0.71 0.69 0.69 0.68 0.67 0.67 0.67

x3 0.34 0.34 0.34 0.33 0.33 0.33 0.33

x4 0.41 0.38 0.37 0.35 0.34 0.34 0.34

Value 0.284023 0.09512002 0.03181364 0.0013201 9.38e−12 1.25e−23 3.23e−47

Iteration 14965 14454 14352 13943 13739 13739 13739

Table 6.3 Optimal values xi ’s at the corresponding energy at the Nash equilibriumwith the Branch
and Bound algorithm, xNE−B&B for different values of q

q 3 4 5 10 25 50 100

x1 0.689 0.689 0.689 0.689 0.689 0.689 0.657

x2 0.686 0.686 0.686 0.679 0.674 0.672 0.665

x3 0.686 0.686 0.686 0.679 0.674 0.672 0.665

x4 0.375 0.375 0.373 0.356 0.345 0.344 0.329

Value 0.286621 0.0946326 0.03196730 0.0013787 1.21e−11 3.15e−23 1.36e−46

Iteration 14965 14454 14352 13943 13739 13739 13739

Fig. 6.2 Illustration of the segmentation results on two microscopic images

In order to illustrate the performance of our algorithm, different kind of micro-
scopic images were considered from the cell library database [6]. For instance, the
image in Fig. 6.3 is well segmented and its area can be easily calculated.
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Fig. 6.3 Illustration of the segmentation results on microscopic images. a original image [6], b
segmentation seed, c superimposition of the segmentation result and the original image

6.6 Conclusion

In this paper, we extended the recent work of Power Watershed q = 2, and p →
∞. We studied the case of 2 < q < ∞ and p → ∞. The optimization problem is
not linear for 2 < q < ∞ and p → ∞. The energy minimization was formulated
as a non-cooperative strategic game problem and solved using B&B. Indeed, the
resolution of a non linear optimization problem is equivalent to the computation of
Nash equilibrium in non-cooperative strategic game. In addition, the proposed game
is proven to be an exact potential game which guarantees the convergence to unique
Nash equilibrium. As, the computation of Nash equilibrium is an NP-hard problem,
the Branch and Bound method allows to solve it in a reasonable time. In work under
progress, changing the final decision si and make it adaptive, in order to enhance the
segmentation results. A second direction would be to study the case of q finite and
p finite; this case can open a way to other segmentation results method.
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Chapter 7
Dynamic Metaheuristics for Brain
Cine-MRI

Amir Nakib

7.1 Introduction

Recently, a new technique for obtaining brain images of cine-MR (Magnetic
Resonance) type has been developed by Hodel et al. [8]. The principle of this tech-
nique is to synchronize the MRI signal with the ECG (Electrocardiographic) signal.
The MRI signal provides three dimensional images and cuts of high anatomical pre-
cision, and the ECG signal is obtained from the heart activity. An image of brain
cine-MRI is therefore built bymaking the average of theMRI signals acquired during
the R-R period of the ECG signal. This technique allows to have a good visualization
of themovements of thewalls of the third ventricle during the cardiac cycle. Formore
details about this method see. In this work, we were interested in the automation of
the assessment of themovements of the walls, which allows a better understanding of
physiological brain functioning and the provision of aid to diagnosis and therapeutic
decision. Here, we are not be interested in the cerebrospinal fluid (CSF), the reader
can have more details about analysis of the motion using CSF in [9, 10].

Several methods for the movement quantification have been proposed in the liter-
ature for myocardium images. This image processing application requires the parti-
tioning of the image into homogeneous regions. Then, the fundamental process used
is called image segmentation, that plays an important role in entire image analysis
system [14]. It is generally performed before the analysis and the decision-making
process in many image analyses, such as the quantification of tissue volumes, diag-
nosis, and localization of disease, the study of anatomical structures, the matching
and motion tracking. Since the segmentation is considered by many authors to be
an essential component of any image analysis system, this problem has received a
great deal of attention; thus any attempt to completely survey the literature would
be too space consuming. However, surveys of most segmentation methods may be
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found in [7, 19]; another review of thresholding methods is in [21]. In [4, 7, 22] the
authors proposed level set based methods to assess cardiac movements. These meth-
ods cannot be applied directly to our brain sequences. Indeed, firstly, the amplitude
of movements in the heart is much greater than that of the walls of the third ventricle.
Secondly, due to the presence of cerebrospinal fluid, one cannot properly segment
the entire ventricle and quantify its movements in the sequence, because the stopping
criteria are adapted to our images and the algorithmic complexity is high.

The goal in this work was to develop a low computation complexity method
to assess and quantify these movements to be used as a clinical routine. Then, we
proposed a framework that consists of two phases:

1. the extraction of contour of the walls of the 3rd ventricle is performed.
2. the contours’ registration is done to achieve the deformation model.

In the segmentation step (phase 1), images are segmented by a fractional differ-
entiation based method in [16, 17]. It is followed by a technique aimed at optimizing
the differentiation order. This phase allows to enhance the contrast and to extract
the contours of a selected region of interest (ROI) at different times of the cardiac
cycle. In the second step, the information provided by these contours is combined
through their mapping. This registration procedure allows us to track the movements
of each point of the contour of the ROI over time, and to obtain a better mathematical
modeling of the movement. The parameters of this model are calculated over all the
sequence. As we perform optimization several times for every couple of images, then
the landscape of the function to be optimized (objective function) changes. Thus, we
talk about dynamic optimization.

7.2 Problem Formulation

The goal behind this work is to build an atlas of the movements of the healthy ventri-
cles in the context of the hydrocephalus pathology. Then, in this paper, our objective
is to segment the walls of the third ventricle, and quantify their movements. We have
tested several image segmentation methods based on edge detection approach: the
method of Canny, derivative methods and more robust methods such as the Level-set
approach [7]. All these methods give similar unconvincing results because they do
not reproduce precisely the contours of the third ventricle on the images of the used
sequences. This is due to the fact that they are very noisy, due to the presence of CSF,
and variation of their contrasts on the same subject (third ventricle).

For our application, the segmentation of the entire walls is not possible (differ-
ences between the pathologic and sane cases) and is not necessary. Consequently,
we decided to work only on a region of interest (ROI). In Fig. 7.1a, we present an
example of an ROI: Lamina Terminalis (LT). It is the first image of a brain cine-
MRI sequence in a pathologic case (hydrocephalus). The sane case is presented in
Fig. 7.1b.
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Fig. 7.1 Illustration of the first image of the original sequence. Pathologic case (Hydrocephalus),
b sane case

Hydrocephalus is usually due to the blockage of CSF outflow in the ventricles.
Patients with hydrocephalus have abnormal accumulation of CSF in the ventricles.
This may be source of the increase of the intra-cranial pressure inside the skull and
progressive enlargement of the head, convulsion, and mental disability.

The goal of developing this framework is to contribute to the study of the diag-
nosis of endoscopic third ventriculostomy (ETV) patency. To validate the proposed
method, sixteen age-matched healthy volunteers were explored with the same MR
protocol (12 women, 4 men; average age 38.5 years, interquartile range: 25.554).
This study was approved by the local ethics committee; written informed consent
was obtained for all the patients.

7.3 Data Acquisition

Data were obtained using 1.5-T MR (Siemens, Avanto, Erlangen, Germany). The
protocol included a retrospectively gated cine true/Fast Imaging with Steady-state
Precession Magnetic Resonance (cine True FISP MR) sequence: mid-sagittal plane
was defined on a transverse slice from the center of the Lamina Terminalis to the
cerebral aqueduct [8]. This acquisition technique provides only a sequence of 2D
image, then a 3D image segmentation technique cannot be applied.
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7.4 Proposed Framework

In this sectionwe present the proposed framework that consists in two phases: the first
phase is the extraction of contours of the image ROI with a segmentation technique,
based on two dimensional digital-fractional integration (2D-DFI). In the second
phase, we combine the information provided by the contours of the image sequence
through a registration. The steps of our framework are illustrated in Fig. 7.2.

7.4.1 Segmentation Problem

7.4.1.1 Segmentation Based on Fractional Differentiation

In order to segment every image of the sequence, a segmentation method based
on two dimensional digital fractional integration (2D-DFI), where the fractional
order is negative (in the interval (−1, 0]). The fractional integration (also called
fractional differentiation (FD) with negative order) is based on the works of Leibniz
and Hospital in 1965. The applications of this method are numerous, it is used in
automatics [2, 12], in signal processing [15] and in image processing [13, 16, 17].
The FD of Riemann–Liouville is defined as follows:

D−α f (x) = 1

Γ (α)

∫ x

c
(x − ξ)α−1 f (ξ) dx . (7.1)

where f (x) is a real and causal function, x > 0, α the order of the FD, c the interval
of the integral and the function of Euler–Lagrange. In the case of integration, the
order α is negative and in the discrete domain, the approximation of the DFI is given

Fig. 7.2 Overall scheme of the cine-MRI framework analysis
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Fig. 7.3 Search for the optimal αopt

by:

gα(x) = D−α f (x) ≈ 1

hα

M∑

k=0

((βk)(α) f (x − kh)) (7.2)

where h is the sampling step, M the number of samples, x = M × h and βk(α) are
defined by:

β0(n) = 1, βk+1(α) = (k + 1) − α − 1

(k + 1)
βk(α), k = 0, 1, 2, M − 1 (7.3)

The Eq. (9.3) is equivalent to the Riemann–Liouville equation when h tends to
zero. The 2D-DFI is given, for a real and bounded function f (x, y) by:

D−α f (x, y) =
(

∂

∂x

)α (
∂

∂y

)α

f (x, y) ≈ 1

h2α

�−M/2�∑

k=�−M/2�

�−N/2�∑

l=�−N/2�
(p(k, l) f (x − hk, y − lh))

(7.4)

M and N are the number of elements of f taken into account for calculating the
differential image, M × N represents the size of the mask, p(k, l) = βk(α) × βl(α)

are the elements of the matrix, pα
M,N (p(k, l)) calculated from the Eq. (7.3), which

corresponds to the horizontal and vertical components, respectively. �x� denotes the
integer part of x .

The optimal segmentation of an image corresponds to finding the optimal 2D-
DFI order. In order to find the best value, a criterion that characterizes the best
segmentation was used, then the best value is that providing a segmentation that
optimizes the defined criterion (Fig. 7.3). Indeed, a good result means that all regions
(connected components) are homogeneous and their number will not be under 2 and
greater than 3. Less than 2 (equal to 1), it means that there is only one region; in
this case, the segmentation result is bad. Greater than 3, it means that there are too
many regions and the image is over segmented, thus the segmentation result is bad.

http://dx.doi.org/10.1007/978-3-662-54428-0_9
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In order to obtain the optimal order for the segmentation process, the well known
uniformity criterion is used [5].

7.4.1.2 Segmentation Based on Dynamic Optimization

Before using this criterion we must fit the histogram of the image to be segmented
to a sum of Gaussian probability density functions (pdf’s). This procedure is named
Gaussian curve fitting, more details about it are given below. The pdf model must be
fitted to the image histogram, typically by using the maximum likelihood or mean-
squared error approach, in order to find the optimal threshold(s). For the multimodal
histogram h(i) of an image, where i is the gray level, we fit h(i) to a sum of d
probability density functions. The case where the Gaussian pdf’s are used is defined
by:

p (x) =
d∑

i=1

Pi exp

[

− (x − μi )
2

σ 2
i

]

(7.5)

where Pi is the amplitude of Gaussian pdf onμi ,μi is themean and σ 2
i is the variance

ofmode i , andd is the number ofGaussian used to approximate the original histogram
and corresponds to the number of segmentation classes. Given an image histogram
h( j) (observed probability of gray level j), it can be defined as follows:

h( j) = g ( j)
∑L−1

i=0 g (i)
(7.6)

where g( j) denotes the occurrence of gray-level j over a given image ranges [0, L −
1]. Our goal is to find a vector of parameters, Θ , that minimizes the fitting error J ,
given by the following expression:

Minimize J =
∑

i

|h(i) − p(Θ, xi )|2 (7.7)

where i ranges over the bins in themeasured histogram. Here, J is the objective func-
tion to be minimized with respect to Θ , a set of parameters defining the Gaussian
pdf’s and the probabilities, given byΘ = {Pi , μi , σi ; i = 1, 2, . . . , d}. After
fitting the multimodal histogram, the optimal threshold could be determined by min-
imizing the overall probability of error, for two adjacent Gaussian pdf’s, given by:

e(Ti ) = Pi

∫ Ti

−∞
pi (x) dx + Pi+1

∫ ∞

Ti+1
pi+1 (x) dx (7.8)

with respect to the threshold Ti , where pi (x) is the i th pdf and i = 1, . . . , d − 1.
Then the overall probability to minimize is:
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E(T ) =
d−1∑

i=1

e(Ti ) (7.9)

where T is the vector of thresholds: 0 < T1 < T2 < · · · < T(d−1) < L − 1. In our
case L is equal to 256.

The criterion in (7.9) has to be minimized for each image, as we are in the case
of a sequence, then the fitting criterion becomes:

Minimize J (t) =
∑

i

|h(i, t) − p(Θ(t), xi )|2 (7.10)

where t is the number of the current image in the cine MRI sequence, Θ(t) is same
as Θ defined before but here is dependent on the image. h(i, t) is the histogram of
the image number t .

7.4.2 Geometric Matching of the Contours

The obtained contours in the segmentation phase will be used to assess themovement
of the contours of the ROI over time. This step requires matching these contours.
However, several false matches appear. To eliminate this problem, we have separated
the obtained contours after segmentation and indexing and we have only kept the
contour corresponding to the third ventricle (in the case of the Lamina Terminalis,
this is in the right side). To evaluate the ventricle deformation, a contour matching
operation is required after the segmentation phase in order to track the position of
points belonging to the contours of the region of interest (ROI) over time. This
operation is carried out in two steps: first, a rigid registration, called alignment, takes
into account the displacement of the global membrane. Then, a morphing process
performs accurate elastic matching of the successively aligned contours.

7.4.2.1 Contours’ Alignment

This step consists in looking, for each point in the curve of a reference image, at the
nearest point in the curve in the destination image, based on a predefined minimum
distance. The different steps of that phase matching are summarized as follows: For
each point of the source curve:

1. Calculate the distance between this point and all points of the destination curve.
2. Match this point with the nearest point of the destination curve.

In this step, the goal is to associate each point of the initial contour to one point of
the second contour. We assume that each point of the first contour can be associated
with at least one point of the second contour. The alignment procedure realizes a
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registration between these two curves through a geometrical transformation con-
trolled by a dissimilarity criterion based on 3 parameters. A non linear model can
also be considered as a deformation model.

In the matching phase, a point is mapped to the nearest point, but the direct
application of the matching method to the ROI contour without indexing produces
false matches. Other false matches are due to the presence of several equidistant
points from the point to match. Zhang [23] proposed a method using an adaptive
statistical threshold, which is based on the statistical characteristics of the distances
between matched points, such as the average and the standard deviation. We used
this method to eliminate false matches and to assess the quality of the registration
obtained. False matches of this type appear only if an alignment takes the first curve
as a reference, i.e. by matching the contour of each sequence with the first points of
the contour of the first image.

7.4.2.2 The Deformation Model

In order to approximate the deformation model, we use a registration technique. The
idea of the registration is to combine information from two (or more) images of
the same scene, but obtained at different moments, with different views or differ-
ent acquisition methods. Then, the aim of a registration system is to determine the
mapping information (positions, gray-scale, structures, etc.) representing a physical
reality on these different images.

The goal of image registration is to find the best transformation T ′ among all the
transformations T applied to an image I that looks at best like the image J . It is
quite difficult to review all the image registration methods that have been proposed
in the literature, a survey of many methods is presented in [24]. According to the
used primitives (attributes), in our work we considered the geometric approach of
image registration.

In this approach an extract of the geometric primitives (points, curves or sur-
faces) is performed, and then a geometric similarity criterion is used to find the best
correspondence. In the case where the primitives are points, the Euclidean distance
is usually the most used [18]. In the case of surfaces and curves, the most widely
used algorithm is the Iterative Closest Point (ICP) algorithm [3, 6, 11, 23]. Other
criteria are based on geometric calculations cards, Chamfer distances or Hausdorff
distance [1, 18]. Geometric approaches have the advantage of holding high-level
information, but remain vague regarding the extraction of primitives. The optimiza-
tion is a very important step in image registration. It aims at determining an optimum
processing according to a similarity criterion. The optimization process is itera-
tive. It must find at each stage the parameters T of the processing that ensure the
best match between the two images until the convergence to the optimal solution.
Broadly speaking, the optimization problem is formulated by:

Topt = argτeΩmaxζ(J, T (I )) (7.11)
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where: I is the original image, J the image to register, Ω:search space for possible
transformations, ζ : similarity criterion chosen, Topt : optimum processing.

Among the optimization methods, we find numerical methods (without use of the
gradient), such as Simplex and Powell [1] methods, and gradient based methods,
such as gradient descent, conjugate gradient, the method of Newton and Levenberg-
Marquardt [1, 18]. In our works, we proposed to use dynamic optimization meta-
heuristics to solve this optimization problem.Recently, static evolutionary algorithms
were also used to find the optimal registration model parameters’ [20].

In order to assess the deformation model, the contours of the indexed images of
the sequence were matched by taking at each time two contours of two successive
images. The similarity criterion that measures the distance between two successive
contours must be minimized.

Considering the distortion models that exist, we assume, for instance, that the
movements of the third ventricle are governed by an affine transformation. This
model is characterized by a rotation θ , two translations (tx , ty) and two scaling
factors (s1, s2) according to x and y:

⎛

⎝
x2
y2
1

⎞

⎠ =
⎛

⎝
S1 · cos θ −S2 · sinθ tx
S1 · sin θ S2 · cos θ ty

0 0 1

⎞

⎠ .

⎛

⎝
x2
y2
1

⎞

⎠ (7.12)

P1(x1, y1) is a point of the reference primitive and P2(x2,y2) is the point obtained
with the geometric model.

The parameters of this transformation are defined by minimizing the squared
error among all points of the curve and those obtained with the model given by this
function:

SE(X) =
N1∑

i=1

([C ′
2(i) − T x (C1(i))]2) (7.13)

N1 is the cardinal of all the points of the contour C1 and x ≡ (s1, s2, θ , tx , ty) is
the vector of parameters. Several authors such as [23] use an iterative local search
algorithm to solve this problem. To avoid local minima, the optimization criteria are
modified by adding weight terms inversely proportional to the distances between
matched points. This makes the optimization algorithm more complex.

7.4.3 Cine-MRI Registration as a DOP

The registration of a cine-MRI sequence can be seen as a dynamic optimization
problem. Then, the dynamic objective function optimized by a dynamic optimization
algorithm changes according to the following rules:

• The criterion in (9.6) has to be minimized for each couple of contours, as we are
in the case of a sequence, then the optimization criterion becomes:

http://dx.doi.org/10.1007/10.1007/978-3-662-54428-0_9
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MSE(
(t), t) =
Lt∑

j=1

[
C ′
t ( j) − T
(t)(Ct ( j))

]T [
C ′
t ( j) − T
(t)(Ct ( j))

]

Lt
(7.14)

where t is the index of the contours on which the transformation T
(t) is applied,
also equal to the index of the current couple of contours in the sequence. 
(t),
C ′
t ( j),Ct ( j) and Lt are the same as
,C ′

1,C1 and L1 defined before, respectively,
but here are dependent on the couple of contours.

• Then, the dynamic optimization problem is defined by:

Min MSE(
(t), t) (7.15)

• If the current best solution (transformation) found for the couple t cannot be
improved anymore (according to a stagnation criterion), the next couple (t + 1) is
treated.

• The stagnation criterion of the registration of a couple of successive contours is
satisfied if no significant improvement in the current best solution is observed.

• Thus, the end of the registration of a couple of contours and the beginning of the
registration of the next one constitute a change in the objective function.

This formulation (introduction of the time variable t to get an objective function
that changes over the time) allows the use of dynamic optimization algorithms to solve
this problem, rather than having to restart a static algorithm to register a sequence of
images. Then, information acquired on the objective function during the registration
of several couples of contours, in a sequence, can be used by the dynamic optimization
algorithm to accelerate the registration of the next couples (the correlations between
the images of the sequence can be taken into account).

7.5 Results and Discussions

In this section, we illustrate the results of the extraction of the ROIs contours (for the
Lamina Terminalis), followed by the results for the registration and the quantification
of the movement.

Finally, we will present the results obtained for the quantification of other ROIs
of the sequences. The results of the proposed quantification method have been clin-
ically validated by an expert and compared to those in [8] obtained using a manual
segmentation.

The first phase of the framework consists in the extraction of the ROI. It is carried
out in two steps: the segmentation and the indexation. We proposed two algorithms
to segment the different images of the sequence.

Then, only perimeters of the segmentation results are considered. In order to
illustrate this phase, we consider the original sequence in Fig. 7.4. The obtained
segmentation results are presented in Fig. 7.5.
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Fig. 7.4 Original sequence

From the segmentation results and after the matching process, the representation
of movement of the ROI can be shown. In Fig. 7.7, we present the case of the example
in Fig. 7.6.

The registration process allows to have all parameters of the deformation for all
the different couples of images (i.e. deformation of the contour in image1 towards
that of image 2, etc.).

To quantify the movement of the ROI, we have aligned all the contours of the
sequence with the contour of the first image. Figure7.7 shows the amplitudes of
displacements of each point over time in the case of the Lamina Terminalis (Fig. 7.4).

The movements that we are interested in this work are those that have maximum
amplitude. In the sequence used, the maximum movement is of 2.57mm. This has
been clinically validated by an expert in this study and is in the same range as
the results published in [8]. The horizontal and vertical displacements are given in
Table7.1.

Further tests were made on other image sequences of patients and sequences
of witnesses with no abnormalities in the third ventricle. We found that our method
depends on the spatial resolutionof images used.When the resolution is low, the quan-
tification result is better. After several tests, we noticed that, for a good quantification
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Fig. 7.5 Illustration of the segmentation result for the sequence in Fig. 7.4

Fig. 7.6 Overall scheme of the cine-MRI framework analysis

result of the movement of the walls of the third ventricle, it is necessary that the spa-
tial resolution of a pixel is smaller than or equal to 0.6mm. More details about these
contributions can found in the publications listed in the Sect. ??.
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Fig. 7.7 Overall scheme of the cine-MRI framework analysis

Table 7.1 Obtained set of parameters of the deformation model

Images s θ tx ty

imag01-02 0.9917 0.0023 0.615 1.4813

imag02-03 0.9999 0.0015 0.2151 −0.639

imag03-04 1.0044 0.0042 0.2884 0.4406

imag04-05 0.9985 0.0025 −0.2611 0.4406

imag05-06 0.9977 0.0028 0.0736 0.1055

imag06-07 1.0018 0.0117 0.5290 0.1088

imag07-08 0.9984 0.0076 0.3330 −0.1900

imag08-09 0.9985 −0.0016 0.1376 −0.2963

imag09-10 0.9967 −0.0011 0.1136 −0.1026

imag10-11 0.9959 −0.0015 0.2835 −0.3654

imag11-12 1.0018 −0.0004 −0.2613 −0.5670

imag12-13 1.0004 −0.0010 0.1992 −0.4103

imag13-14 1.0087 0.0085 0.1123 −0.6622

imag14-15 0.9843 0.0070 0.4257 0.7800

imag15-16 1.0033 −0.0033 −0.5332 −0.3712

imag16-17 1.0086 −0.0086 0.371 0.1734

imag17-18 1.0047 0.0047 0.1351 −0.1494

imag18-19 1.0028 0.0028 −0.1303 0.9025

imag19-20 1.0073 −0.0073 0.2596 0.9034
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7.6 Conclusion

In this work, we were interested in quantifying the movements of the third cerebral
ventricle in a cine-MRI sequence. To solve the problem of quantifying the move-
ments of the third cerebral ventricle, we proposed a method for quantification of
movement based on fractional integration and dynamic metaheuristics. A new seg-
mentation methods based on the fractional integration and a new formulation of the
segmentation problem as a dynamic optimization problem were proposed to seg-
ment “quickly” all sequences. In this step, the thresholding method provided good
results for detecting the contours of the images. For the registration step, a covariance
matrix adaptation evolution strategy, called D-CMAES and MLSDO were proposed
to allow, first, to build a distortion model representing the distortion of the ROI and,
secondly, to quantify itsmovements, without restarting the optimization process from
the beginning. The obtained results were considered good and represent the move-
ment of the ROI rather well. In order to take into account the third dimension, the
design of a new acquisition technique is under progress to enhance the quality the
cine-MRI.
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Chapter 8
Lexicographic Approach Based on Evidence
Theory for Blood Cell Image Segmentation

Ismahan Baghli and Amir Nakib

8.1 Introduction

The analysis of microscope cell blood images can provide useful information con-
cerning health of patients; the main different components of blood are White Blood
Cells (WBCs), Red Blood Cells (RBCs) and platelets. When a disease and foreign
materials infect human bodies, the number ofWBCs increases to respond and defend
infection. The decrease, of RBCs may for example, indicates a low rate of vitamins.
Thus, the blood cell image analysis is an important diagnostic tool that must be done
accurately.

In practice, cells are analyzed by an expert during a screening stage. Yet, visual
screening stage is a very difficult task, and the low number of abnormal cells com-
pared to high number of cells shows the difficulty of this task for an operator. Conse-
quently, false-negative detection can appear due to the subjective aspect of screening.
It is obvious that the use of an efficient image processing method will improve the
effectiveness of the analysis, the diagnostic, and save time.

Cell segmentation from background involves subtraction of blood cells and other
objects merged in the microscopic images. Nevertheless, illumination inconsisten-
cies, and cell occlusion have made cell segmentation very challenging. Many seg-
mentation methods were proposed in the literature to solve the cell segmentation
problem since 1960 [22]. However, most of them are based on few basic approaches:
thresholding, feature detection, deformable model fitting, morphological filtering,
and region accumulation. For example, the use of Mean Shift and GVF (Gradient
Vector Flow snake) in [17], the Gram–Schmidt orthogonalization with a snake algo-
rithm in [27] and a snake algorithm and Zack’s threshold in [28], in order to segment
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(a) (b)

Fig. 8.1 Cell’s extraction. a Original image b Segmented image

nucleus and cytoplasm separately. Two thresholds to remove RBC and background
and separate the detected WBC into nucleus and cytoplasm in [25], FCM (Fuzzy
C-Means) and evidence theory to segment cells in [4], and a segmentation of WBC
with an RBC size estimation and Otsu threshold preceded by nucleus enhancer in
[14]. In this paper, we have been more interested by the watershed transform, which
makes part of region accumulation approach. The watershed transformation segmen-
tation is considered as a powerful method. Its principle consists in iteratively adding
connected points from labelled region, initially marked by seed points. However, one
problem of this technique is the over-segmentation,which is caused by the existence
of numerous local minima in the image normally due to the presence of noise, and
thus, requires further processing [9, 34].

In this work, an hybridization of the watershed transformation and the classifica-
tion under uncertainty in a lexicographic order to extract from a microscopic image
blood cells, the Nucleus, the cytoplasm (both components of the WBC), and RBCs
(Red Blood Cell) from the background (see Fig. 8.1; Nucleus, Cytoplasm, RBC and
background are colored with green, yellow, red and black respectively). A short
description of this work was presented in [3]. A similar problem was already treated
in literature where a marker controlled watershed is applied to segment RBC in [30],
and to segment WBC in [11], the obtained regions were merged by granularity cri-
terion to segment WBC. However, the performance of the method depends on the
quality of the post processing procedure of binary image in [24]. A color watershed
growing after a clustering of color’s plane for cells segmentation was proposed in
[19], where the use of a hybrid gradient (Texture and intensity) as a marker for the
watershed transformation to segment WBC in [10], here in, the database should be
extended to have more concluded results. In [23] a hybrid method based on the sat-
uration of gradient extraction, the morphological reconstruction and the watershed
transform, was used, however, it requires the regularization of gradient magnitude
to locate the WBC. In [7, 8] two schemes for nucleus segmentation (watershed
transform and level set method) and two schemes of cytoplasm segmentation (gran-
ulometric analysis and morphological operators), the estimation of the cytoplasm
contour and the cytoplasm mask needs improvement. In [29] Otsu’s method was
used to segment RBC and the watershed transform to separate overlapping cells.
The marker-controlled watershed by internal and external markers to segment RBC
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from images acquired by a DHMcamera (Digital HolographicMicroscopy) was pro-
posed in [35], however, the regularization of the RBC storage parameters is need. In
[33] the internal marker was obtained by morphological operators (opening, erosion
and dilation) on binary image and the external marker was extracted by the distance
and the watershed transform; the morphological watersheds and the regions merging
are based on the dissimilarities of watershed regions to segment cells. This method
requires a threshold fit to avoid under-segmentation. In [31] three different masks
are used on three different watershed transform in order to segment WBC, RBC and
platelets, however, these masks need to be well fitted to have a good performance. In
[20, 21] the authors proposed a watershed based on map distances (closing and ero-
sion operations on binary image) for the final division of the image into catchment’s
basins, each corresponding to one cell.

In thiswork, the use information coming fromdifferent sources:watershed energy,
color information in different colors spaces’ in order to segment the blood cell images
is proposed. In this work, the problem related to the acquisition techniques are not
treated, we only focus on processing the image database at hand. The processed data
base is real images acquired from four different patients suffering from blood cancer.
In blood smear, number of red cells is manymore thanwhite blood cells. For example
an image may contain up to 100 red cells and only 1 to 3 white cells, which lead to
a great overlap of red blood cells. Moreover, image quality is dependent on blood
fixation over the blade (cells may be shredded), also microscope quality, i.e a bad
adjustment and/or maintenance gives noised images. The use of the lexicographic
allows to mix the different information hierarchically, therefore, at each step the
search of the optimal solution (optimal segmentation) is reduced. Moreover, we use
the evidence theory to add uncertainty about the solution provided by the different
sources’ before ending the segmentation process.

The rest of the paper is organised as follows. The motivation of our method
is introduced in Sect. 8.2. The Proposed method is exposed in Sect. 8.3, while the
experimental results, discussion, and comparison study are presented in Sect. 8.4.
We conclude this paper in Sect. 8.5.

8.2 Background

Segmentation is an important processing step inmanymedical researches and clinical
applications where decision making is critical. The watershed segmentation consider
the minima of the image as the objects of interest and the maxima as the separation
boundaries between objects. However, the existence of numerous local minima cause
an over-segmentation. Color features of the watershed regions offers the possibility
of merging those similar. The different color representation led to the handling of
the uncertainty resulting from imprecise, incomplete, vague and complementary
information. The data fusion process permit to take advantage of color uncertainty
related to the oversegmented region, and hence, get the best decision among the
considered hypothesis.
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(a) (b)

Fig. 8.2 a Original image b Image projection on Magenta channel (CMYK space)

(c)(b)(a)

Fig. 8.3 Illustration of the projection of the microscopic dataset in the different color spaces. a
Original image b Image projection on Magenta channel c Image projection on HSV color space

8.2.1 Projection on Different Color Spaces

Color descriptors are among the most important features used in image processing.
They provide powerful information that often simplifies object detection and identi-
fication. Each pixel of a color image is specified in a color space, which serves as a
color coordinate system, and the commonly used color space is the RGB color space.

It’s always difficult to predict the behavior of the method on a given color space,
since each color space has an interest with different stimulus [18].

In cell blood images, theRBCs have always the same appearance, however,WBCs
have diverse classes such as basophil, eosinophil etc. Those differences mainly con-
cern the shape of Nuclei and the color of Cytoplasm. We take advantage of different
color’s representation,which areRGB,HSVandCMYK, tomade distinction between
WBCs (nucleus and cytoplasm) and RBCs. See Fig. 8.2: RBCs are lighter than the
WBC on the Magenta channel. And see Fig. 8.3: all WBC’s cytoplasm are similar
to RBC in the Magenta Channel, but the difference is clearly made in the HSV
projection.

8.2.2 Recall on Evidence Theory

The aim of data fusion is to improve the quality of decisions by increasing the
amount of global information while decreasing its uncertainty, using the information
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redundancy and complementariness between sources. Therefore, it is a technique to
integrate heterogeneous data from different sources, in order to optimize the estima-
tion. The fusion is based on uncertain reasoning, developed in bayesian probability
theory, Dempster–Shafer evidence theory and other. The Bayesian approach has a
decision-making theory, but it requires complete knowledge of combined condi-
tional probabilities and specification of the priori knowledge of probability distrib-
ution proving that a piece of evidence is present. Besides, the main limitation of the
Bayesian approach is that it cannot model imprecision. That is, the Bayesian proba-
bility theory cannot measure a body of evidence with an imprecision on probability
measurement. The evidence theory is a general extension of Bayesian theory which
offers a number of advantages compared to bayesian theory that can robustly deal
with incomplete data [26]. There are three main reasons why the evidence theory
should be taken into account when it comes to information fusion. First of all, since
the evidence theory supports the representation of both imprecision and uncertainty,
it is considered to be a more flexible and general approach than the traditional prob-
ability theory. Secondly, the evidence theory offers the possibility of coming up with
the probabilities of a collection of hypotheses, whereas a classical probability theory
only deals with one single hypothesis. Finally, the major strength of the theory is its
ability to deal with ignorance and missing information.

The Dempster–Shafer evidence theory was originally developed by Dempster,
who concerned about the lower and upper probabilities, and later Shafer made his
contribution by offering belief functions to model uncertain knowledge on the basis
of mathematical foundations [13]. It is based on two main ideas: obtaining a degree
of belief on a hypothesis (called the “mass function”) from subjective probabilities,
and Dempster’s rule (orthogonal sum) for combining such degrees of beliefs when
they are based on independent items of evidence [12]. In a more formal way:

Let Ω be a finite set of mutually exclusive and exhaustive hypotheses, called the
frame of discernment:
Ω = {H1, . . . , Hn}

The power set P(Ω) composed with the 2n propositions of Ω defined by:
P(Ω) = {φ, {H1}, {H2}, . . . , {Hn}, {H1 ∪ H2}, {H1 ∪ H3}, . . . ,Ω}

When the frame of discernment is determined, the Basic Probability Assignment
(BPA) or mass function, is defined as a mapping of the power set P(Ω) to a number
between 0 and 1, i.e.: m : P(Ω) → [0, 1], that satisfies conditions below:

{
m(φ) = 0∑

A⊆Ω m(A) = 1
(8.1)

If A is considered as a subset ofΩ(A ⊆ Ω),m(A) indicates the degree of belief that
is assigned to the exact set A and not to any subsets of A.

There are also the belief and plausibility function, which are sometimes referred
to as the lower bound and upper bound on the probability of a subset, respectively,
such that:

Bel(A) ≤ Prob(A) ≤ Pl(A) (8.2)
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Those two functions are derived from mass function:
{
Bel(A) = ∑

B⊆Ω m(B)

Pl(A) = ∑
A∩B �=φ m(B)

(8.3)

Let a part from the ability of the evidence theory to compute a degree of uncertainty,
it is also used by combining different evidences to increase the certainty value, which
allows more accurate decisions.

The combination of the different evidences using Dempster’s rule in which two
independent information sources (m1 and m2) are fused to create a new belief func-
tion, is presented below:

m(C) =
∑

A∩B=C m1(A) × m2(B)

1 − ∑
A∩B=φ m1(A) × m2(B)

(8.4)

Where the denominator can be interpreted as a conflict criterion between independent
evidences to be combined [12]. The increase of m(A) corresponds to stronger the
belief on the proposition A.

An important keypointwhenusing evidence theory is towellmodel the knowledge
given by different sources of information S in order to initialize the associated BPA.
Moreover, modeling the belief on power sets may result in exponential complexity of
operations made on BPAs with respect to the number of classes. However, the BPA is
often interpreted as a piece of confidence associated with a certain hypothesis. Since
the definition of the BPA function in evidence theory remains a largely unsolved
problem and there is not one general solution.

8.3 The Proposed Framework

In this section, we present the proposed framework (Fig. 8.4), called ESA (Evidential
Segmentation Algorithm). Herein, we use the power of the evidence theory to clas-
sify the pixels of a given watershed transformed image. The well known watershed
segmentation gives an over-segmentation caused by the existence of numerous local
minima. However, considering both over-segmented regions and the different color
projection as shown in Sect. 8.2.1, i.e. combine the information coming from differ-
ent sources: watershed energy, color information in different colors spaces would
allow to enhance the segmentation of the blood cell images. Moreover, Evidence
theory is widely used in data fusion and pattern recognition because it provides
strong and native modeling of imprecision. The completeness and effectiveness of
the transformed representations for the underlying information of the source images
are crucial to the fusion quality. Therefore, the information extracted from any source
in favor of, or against, a given class assignment must be combined with that of avail-
able sources to infer the likelihood of this assignment.
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Fig. 8.4 The flowchart of the evidential segmentation algorithm

Thus, the added value of using the evidence theory instead of a traditional classi-
fication method, lies in its ability to integrate the colors and lightning uncertainties,
and hence, increasing the belief on a given hypothesis by computing the degree of
belief between the color distance.

8.3.1 Initial Segmentation Using Watersheds

At this step of the proposed algorithm, our goal is have an initial segmentation that
provides connected contours. To do so, the morphological watershed transform is
applied to the original image. Indeed, this method allows having an initial portioned
image into regions. In the following, the fast watershed detection algorithm [32].

Let I be the original image. The lines separating the catchment basins that belong
to different local minima define the Watersheds. In other terms, a local optimum M
at intensity level l in I is a connected set of pixels with intensity with intensity l, such
that it is impossible to reach a pixel of intensity l ′ without having to pass from a pixel
of intensity l ′′, where l ′ ≤ l ≤ l ′′. The catchment basin D(M) associated with the
minimum M is a set of pixels, such that, if a drop of water falls at any pixel in D(M),
then it will flow down to the minimum. The watersheds computation algorithm used
here is based on immersion simulations [32], that is, on the recursive detection
and fast labeling of the different catchment basins using queues. The algorithm
consists of two steps: sorting and flooding. At the first step, the image pixels are
sorted in increasing order according to their intensities. At the second step, the
pixels are quickly accessed in increasing intensity order (immersion) using the sorted
image and labels are assigned to catchment basins. The label propagation is based on
queues constructed using neighborhoods [32]. After the application of thewatersheds
algorithm a tessellation of the original image into its different catchment basins is
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obtained, where each one described by a unique label. Among the image watershed
points, only those located exactly half-way between two catchment basins are given
a special label [32]. Then, to obtain the final image tessellation, the watersheds
are removed by assigning their corresponding points to the neighboring catchment
basins.

The high sensitivity of the watersheds algorithm to the intensity variation yields
a very large number of catchment basins, leading to oversegmentation.

In the literature, most of the earlier attempts in oversegmentation reduction use
markers to select regional minima prior to the application of the watershed transform.
Although markers have been successfully used in segmenting many types of images,
their selection requires either careful user intervention or explicit prior knowledge
on the image structure. In our approach, image oversegmentation is viewed as an ini-
tial image partition to which an evidential region-merging procedure is applied (see
next section). The larger the initial oversegmentation, the higher the probability of
false region merges during merging. In addition, It is obvious that the computational
complexity of region merging depends on the size of this initial partition, and con-
sequently the smallest possible oversegmentation size is suitable. One way to limit
the size of the initial image partition is to prevent oversegmentation in homogeneous
regions, where the gradient magnitude is low.

8.3.2 Evidential Regions Merging

In this work, some models from the literature were tested: Denoeux [5], Shafer [12],
and Appriou [2]. Then, the Denoeux model (distances between samples, and class
center model the knowledge, on patterns) provided the best results for our blood cell
images.

Thus, the considered mass function is defined by:

m(Hi ) = αi × exp(−γi × dist (x, xi )) (8.5)

with αi ∈ [0, 1] is the weakening parameter, γi > 0 related to the hypothesis Hi ,
γi = 1

di
with, di the average distance between representatives samples of (Hi ), and

dist (x, xi ) the euclidian distance between average values of the processed zone x ,
and xi the average value of a representatives samples of Hi .

The proposed mergin region procedure is based on a lexicographic order that
allows to segmentation the different components. The three steps of the proposed
procedure are described below:

1. We associate to each labeled region a degree of belief for the hypothesis WBC
and RBC. Inmost cases, we noticed that themagenta component from the CMYK
color space allows to differentiate RBCs from others cells (see Fig. 8.2: RBCs are
lighter than the WBC). However, in some cases the cytoplasm is confused with
RBC.
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2. New projection is performed on theHSV (Hue, Saturation, Value) color space and
an evidential classification is applied. To do so, a new mass function that consists
in representing each region by its average value in the HSV space is considered:

m(Hi ) = 1


Ri�

Ri �∑

j∈Ri

I ( j) (8.6)

where Hi is the hypothesis on the region Ri , 
Ri� is the cardinal of the region
Ri , and I ( j) is the intensity of the pixel j belonging to the considered region.
(see Fig. 8.3: Cytoplasm of cell on top is similar to RBC, but difference is clearly
made in the HSV projection). Then, the following heuristic is applied:
if m(Hi ) > 0.5, then the region is reclassified as WBC, Else, it is left as RBC
region.

3. For each identified WBC, the average value of the green channel (observed that
the green channel represent as well the nucleus) is computed to separate Nucleus
and Cytoplasm.

8.4 Results and Discussion

The aim of our experiments is to apply the proposed method on a real image database
(87 images). The blood smears blades have been fixed by the MGG (May-Granwald
Giemsa) coloration. We have obtained 24-bits RGB images of 1024 × 768 pixels by
the use of LEICA environment (camera and microscope with a 100x magnification).

Eight blood smears images (Fig. 8.5a-1–a-8) are presented to illustrate the obtained
results of the proposed algorithm. Note that Nucleus, Cytoplasm, RBC and back-
ground are colored with green, yellow, red and black, respectively; as it can be seen
in Fig. 8.5b-1–b-8 and c-1–c-8.

In these experiments, the goal is to identify the red blood cell regions and the
white blood cell regions, especially, the white blood cells since, it remains important
for example for the diagnosis of the blood cancerous (our current project). Thus, we
do not deal with separating touching red blood cells. We handle with several kinds
of white blood cells, the difference may concern the shape of nucleus and the color
of cytoplasm. In Fig. 8.5, the shape of nucleus is circular or oval in images (a)-1,
bottom (a)-2, (a)-4, top and middle (a)-5, (a)-6, (a)-7, (a)-8, and has kidney shape in
top (a)-2 and (a)-3. Regarding the color of cytoplasm, one can notice the dark and
the light cytoplasm, in some cases within the same image (for example, image (a)-2).

The obtained segmentation results compared to the ground truth are good enough,
especially in the case of images (b)-1, (b)-3, (b)-4 and (b)-6: cells were totally recog-
nized. The proposed algorithm provides good results in the case overlapping cells
in all images (RBC vs. WBC and WBC vs. WBC), except in image (b)-5 where the
WBC in the middle is misclassified. Furthermore, some limitations can be observed:
a small part nucleus has been identified as cytoplasme in images (b)-2 (the top one)
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(a)-1 (a)-2 (a)-3 (a)-4

(b)-1 (b)-2 (b)-3 (b)-4

(c)-1 (c)-2 (c)-3 (c)-4

(a)-5 (a)-6 (a)-7 (a)-8

(b)-5 (b)-6 (b)-7 (b)-8

(c)-5 (c)-6 (c)-7 (c)-8

Fig. 8.5 ESA results: a Original image b ESA segmentation c Ground truth

and (b)-7 (the right one), and in the left of image (b)-8 a part of cytoplasm has been
identified as Nucleus. However, it does not affect the identification of the WBC.

One can remark that the same kind of WBC is present in images bottom of (a)-
2, (a)-4, middle of (a)-5, bottom of (a)-6, (a)-7 and (a)-8, this white blood cell,



8 Lexicographic Approach Based on Evidence Theory … 147

(a)-1 (a)-2 (a)-3 (a)-4

(b)-1 (b)-2 (b)-3 (b)-4

(c)-1 (c)-2 (c)-3 (c)-4

(d)-1 (d)-2 (d)-3 (d)-4

(e)-1 (e)-2 (e)-3 (e)-4

Fig. 8.6 Comparison results: aOriginal image bControlledwatershed (greenmarkers) c Stochastic
watershed d ESA segmentation e Ground truth

commonly named Plasma cell, is present in normal and distorted shape, fortunately,
the two shapes were well recognized, which is a promising results.

We have compared the performance of the ESA to those of others methods: sto-
chastic watershed [1] and controlled watershed [16]. To illustrate the comparison of
the performance, we present in Fig. 8.6 an example on four blood cell images ((a)-1
to (a)-4). The obtained edges of the controlled watershed, the stochastic watershed,
the ESA segmentation and the ground truth are superimposed on the originals images
of Fig. 8.6 on (b), (c), (d) and (e), respectively.

In order to obtain a good segmentation with the controlled watershed, the user
must mark each region, manually, sometimes several times: in Fig. 8.6b-1, the two
WBCs are segmented differently; the top one (one marker) is segmented as one
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region, i.e, cytoplasm and nucleus are not separated, while the nucleus of the bottom
one (two markers) is well segmented, unlike the cytoplasm whose the right part is
merged with the RBC below. So, many cells were skipped because they had not a
marker on them (clearly shown on Fig. 8.6b-1–b-4), thus, the segmentation quality of
the controlled watershed is closely linked to position, and to the number of markers.
The stochastic watershed (Fig. 8.6c-1–c-4), and even if it is not our aim) seems to
be suited to separate touching red blood cells, as it can bee seen also in image (c)-3.
However, it oversegments cytoplasm regions (see the two WBCs on image (c)-1)).
When applying the ESA (results in Fig. 8.6d-1–d-4), one can notice that the contours
are well detected, even if a slight overtaking between nucleus and cytoplasm on the
WBC in the bottom of image (d)-2, nevertheless, the big overlap between RBCs on
images (a)-(2) and (a)-4 are not confused with nucleus. Moreover, it is detected as
an RBC region.

It should be noticed that the images (a)-2 and (a)-4 of Fig. 8.6 are hard to be
segmented because of the big overlapping of red blood cells, which lead to be con-
fused with nucleus of white blood cells. This can be solved using geometric priori
approaches.

In summary, to obtain a good segmentation with the controlled watershed, it is
necessary tomark each regionmanually, sometimes several times, thus, this technique
cannot be non-supervised, and depends on the user expertise. In the other hand, for
the comparison with the stochastic watershed transform, we used 20 markers and 20
iterations. Then,wekept themost redundant arcs in order to achieve the segmentation.
The true edges are, therefore, enhanced and the false lines are weakened. However,
the number of realizations and the number of markers affect the result. So, if the
execution time of both techniques is similar after our optimization, increasing them
will dramatically increase the execution time when using a stochastic watershed.

8.4.1 Performances Evaluation

A performance metrics are required to determine the similarity between the ground
truth data and the segmentation results. We have evaluate our algorithm in terms of
Dice score [6] and Jaccard similarity [15]. Those metrics, were first developed to
measure similarities in ecological studies, but their nature of set operations made
them applicable for segmentation similarity.

The Dice score is a spatial overlap index and a reproducibility validation metric it
also known as the mean overlap. The Jaccard similarity is the ratio of the intersection
of segmented area A and ground truth area B, to the union of segmented area A
and ground truth area B. It takes the qualitative aspect overlap into account. The
corresponding formulas are given below:

Dice score = 2 ∗ T P

((T P + FP) + (T P + FN ))
(8.7)
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Jaccard similari t y = T P

(FP + T P + FN )
(8.8)

where, TP (True Positives): intersection between segmentation and ground truth),
FP (false positives): segmented parts not overlapping the ground truth, FN (false
negatives): missed parts of the ground truth, and TN (true negatives): part of the
image beyond the union between segmentation and ground truth).

These two metrics values range from 0, indicating no spatial overlap between two
sets of segmentation results, to 1, indicating complete overlap. When applied to all
our data, the Dice score and the Jaccard similarity have achieved a promising results:
0.93 and 0.87, respectively.

Figure8.7 points out a sensitivity analysis of segmentation quality against the
variations of the parameter γi = d−1

i defined in Eq. 8.5, where di is the average
distance between the samples of the class i . As it can be seen, the fitting of this
parameters is more important in the case of the magenta channel than in the HSV
space. Indeed, the HSV projection is made only to check if the quality of the RBC
classification.

The illustration of the analysis is presented in Fig. 8.7b–k where all cases are
reported. A summery of the experiments is below:

• Case (c) to case (e) the γi for RBC on Magenta channel is equal to 10 × 10−3

and γi for WBC is superior to 4.8 × 10−3, equal to 4.8 × 10−3 and inferior to
48 × 10−4, respectively.

• Case (e) to case (g), the γi for WBC on Magenta channel is fixed on the used
value 4.8 × 10−3 and γi f or RBC is superior to 16 × 10−3, between 11 × 10−3

and 15 × 10−3 and inferior to 9 × 10−3, respectively.
• Case (h) to case (k) the γi for RBC on HSV space is superior to 0.1, equal to 0.09,
between 0.05 and 0.08 and inferior to 0.04, respectively.

In visual terms, bad segmentations are clearly observed on cases (b), (d), (e), (f), (g),
(h) and (k). More on Magenta channel than on HSV space. Further more, case (j) is
the same to ours, illustrated on case (c) and case (i). And, in qualitative terms, we
have calculated TP rate and accuracy on both WBC data and RBC data of all cases
(Fig. 8.8). As we can see, on case (b), (d), (e), (f), (g), (h) and (k) accuracy is at the
cost of rate, i.e a good recognition but a bad accuracy and vice versa. However case
(f) is comparatively acceptable.

Taking the conclusion on magenta channel into account, we have analyzed all
possible values of degree of belief. To this end, we have calculated degrees of belief
on both examples of white blood cell and red blood cell with respect of all possible
values of the processed region. Figure8.9 show the different changes. As one can
see, the degrees of belief of red blood cell are decreasing faster than the degrees
of belief of white blood cell, we explain that by the observed closeness of nucleus
appearence on almost all images.
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(b)(a)

(e)(d)(c)

(h)(g)(f)

(k)(j)(i)

Fig. 8.7 Illustration of the sensitivity against the parameters γi RBC and γi for WBC: a Original
image, b Ground truth image, c–k Segmentation results for different values of γi for RBC, and γi
for WBC

The study of this case shows that evidence theory seems to be well suited for
blood cell segmentation problem. Moreover, the segmentation results are promising
and close to expert segmentation. However, some drawbacks were observed: errors
mostly consist of classification of some cytoplasms as RBCs. This is due mainly to
the diverse classes of WBCs (shape of Nucleus and the color of Cytoplasm), unlike
the RBCs which always have the same appearance. In our work, we focus on the
distinction made by color uncertainties. To this end, the power of evidence theory
was used on both the Magenta channel and the HSV color space to distinguish red
blood cells fromwhite blood cells. Afterwards, thewhite blood cellswere segmented,
using the green channel, into Nucleus and Cytoplasm.
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(a)

(b)

Fig. 8.8 Rate and accuracy: a White Blood Cell data b Red Blood Cell data
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Fig. 8.9 The impact of distances on the degree of the belief

8.5 Conclusion

In this work, a new lexicographic based segmentation approach, called ESA, was
proposed. This proposed method has allowed solving the segmentation problem of
blood microscopic images. In the application at hand, the goal is to extract cells’
component. The efficiency of the evidence theory was used to fuse information from
watershed transformation and different colour spaces. In work under progress the use
of geometric a priori to solve overlapping problem. Another issue that we dealing
with is to find BPA models.
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Chapter 9
Medical Image Denoising Using
Metaheuristics

Serdar Kockanat and Nurhan Karaboga

9.1 Introduction

In recent years, metaheuristic optimization techniques have attracted much attention
from researchers and practitioners and they have been widely used to solve complex
or specific optimization problems in all fields, from engineering area to finance [2].
The considerable advantage of metaheuristic algorithms is that they don’t need to be
adapted in detail for each optimization problem. Therefore, they can be easily used
to solve various optimization problems. Metaheuristic techniques play an important
role in optimization, because they are very useful in the usage of limited resources,
such as time,money and computational complexity. Inmetaheuristics, to date, a num-
ber of algorithms have been developed in the literature, such as the genetic algorithm
(GA) [5], simulated annealing (SA) [16], differential evolution (DE) [26], particle
swarm optimization (PSO) [15] and the artificial bee colony algorithm (ABC) [8].
In biomedical imaging systems, the common and most studied problem is noise [6].
Noise can occur due to the image acquisition systems or techniques used in biomed-
ical images. Noise elimination is of the almost importance in order to extract correct
and useful details from biomedical images for medical experts. To date many stud-
ies have dealt with medical image denoising in order to eliminate different types of
noise on noisy biomedical images. In the literature, many filtering and transformation
methods have been proposed [1, 19].

Spatial domain filtering is one of the methods used for image denoising in the
bio-medical imaging area. Spatial filters can be classified as linear and nonlinear
filters, such as linear Wiener, nonlinear median or mean filters [21, 28]. However,
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the disadvantage of linear filters is that they can cause blurring effects on the filtering
images and a number of studies have tried to overcome this situation [20, 24].Another
alternative approach is wavelet based methods which are more successful than spa-
tial filtering for noise elimination [4, 25]. Recently, two dimensional (2D) digital
filters have become increasingly important and they have been used in a wide range
of applications, such as image enhancement, biomedical image processing, noise
reduction and radar signal processing [22]. Normally, 2D digital filters are grouped
into two categories: finite impulse response (FIR) and infinite impulse response (IIR)
digital filters. The design of the FIR digital filter is easier than that of the IIR filter and
it is always stable. On the other hand, the stability is a very important and trouble-
some problem for IIR digital filters. However, 2D IIR filters can achieve very sharp
frequency responses. In the literature, many studies have been conducted in order
to design 2D digital filters and they have been used frequently for image denoising
[3, 17, 18, 23]. Mastorakis et al. proposed a novel constrained optimization method
to design 2D IIR filters. The design problemwas transformed into a constrained min-
imization problem and then it was solved using the genetic algorithm [23]. Das and
Konar used particle swarm optimization to optimize the constrained optimization
problem in the design of a 2D IIR filter [3]. Kockanat et al. proposed an approach to
optimize the filter coefficients of a 2D FIR digital filter using the artificial bee colony
algorithm for image denoising [17, 18]. Tzeng introduced an effective genetic algo-
rithm for the design of 2D FIR filters with specified magnitude and group delay
responses [27]. In this work, four well-known metaheuristics are used for ultrasound
image denoising and their performances compared. Two of these metaheuristics are
GA and DE which are evolutionary based algorithms and the other two are swarm
intelligence algorithmswhich are PSO andABC. The chapter is organized as follows.
Section9.2 explains the proposed noise elimination approach. Section9.3 describes
the parameter adaptation algorithms. Section9.4 shows the results of the proposed
noise elimination approaches. Finally, Sect. 9.5 gives the conclusions.

9.2 Noise Elimination Approach

Noise elimination is one of the most common research problems in digital image
processing. It can be explained as the process of removing noise from a noisy image.
Figure9.1 shows the scheme of the proposed noise elimination approach.

As shown in Fig. 9.1, d(n1, n2), x(n1, n2) and s(n1, n2) are the noisy, noise and
original signals, respectively. x(n1, n2) and x1(n1, n2) are the Gaussian noise signals
and they are produced synthetically. x1(n1, n2) is achieved by passing x(n1, n2)
through the 2D lowpass filter and both signals are correlated with each other. The
error signal e(n1, n2), is obtained by subtracting the 2DFIR digital filter output signal
y(n1, n2) from the noisy signal d(n1, n2). In Fig. 9.1, the relationship between the
input and output signals of the 2D FIR digital filter is expressed as in Eq.9.1
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Fig. 9.1 Block scheme of the proposed noise elimination approach

y(n1, n2) =
∑M−1

m=0

∑N−1

n=0
h(m, n)x1(n1 − m, n2 − n) (9.1)

where x1(n1, n2) and y(n1, n2) are the input and output signals of the 2D FIR digital
filter, respectively. h(m, n) is the filter coefficient which is represented generally as
a matrix and M and N are the filter orders. The noise signal is selected as Gaussian
noise due to the specification of the power spectrum. Gaussian noise is an additive,
statistical and uncorrelated noise with constant power spectral density. In theoretical
study, it has an infinite power which lies in the infinite frequency range. Random
fluctuations in the signal introduce the Gaussian noise. As seen in Fig. 9.1, the para-
meter adaptation algorithm has been used to optimize the coefficient matrix of the
2D FIR digital filter by minimizing the objective function. The objective function is
defined as

MSE = 1

N1N2

N1−1∑

n1=0

N2−1∑

n2=0

(d(n1, n2) − y(n1, n2))
2 (9.2)

where N1 and N2 are the size of the input digital images. Mean square error (MSE)
is employed as the error function. In order to analyze the quality after the denoising
approach, peak signal to noise ratio (PSNR) is calculated between the original signal
s(n1, n2) and error signal e(n1, n2). The formula of PSNR is given as

PSN R = 10 log10

(
R2

MSE

)

(9.3)

where R is the maximum possible value of the signal.
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9.3 Parameter Adaptation Algorithm

In this study, the artificial bee colony, particle swarm optimization, genetic algorithm
and differential evolution are employed as the parameter adaptation algorithm. These
algorithms optimize the coefficient matrix of the 2DFIR digital filter and find the best
solutions for the noise elimination problem. The employed algorithms are referred
to as metaheuristic methods and they are frequently used in many research areas,
such as electronics, construction and biology. The basic features of the ABC, PSO,
GA and DE are briefly discussed in following sections.

9.3.1 Artificial Bee Colony Algorithm

Karaboga introduced the artificial bee colony (ABC) for numerical optimization
problems in 2005 [8]. The ABC algorithm is a new swarm intelligence algorithm
based on the foraging behavior of honey bees for food. In later years, Basturk and
Karaboga compared the performance of ABC with that of some other well-known
population-based optimization algorithms [12]. To date, a number of studies have
shown the use of the ABC algorithm in solving different problems from digital filter
design to civil engineering problems [9–11, 13, 14]. The ABC algorithm is very
flexible and it has been found to be quite robust.

Three types of bees are considered in the algorithm: employed, onlooker and scout
bees. Employed bees exploit their food sources. Onlooker bees wait in the hive and
decide which food source should be exploited. Scout bees carry out random searches
for exploring new food sources. In the ABC algorithm, each solution in the problem
under consideration is called a food source and represented by an n-dimensional real
value vector.

In the ABC algorithm, we can describe procedures with an equation. Assume that
Wi is the position of the i th food source(i th solution to the problem) and f (Wi ) is the
nectar amount (the quality solution). The population number of food source points
P(c) = {Wi (c) |i = 1, 2, ..., s } (c: cycle, s: number of food sources around the hive)
is equal to the number of the solutions. We can calculate pi , the probability value of
the food source chosen by an onlooker bee, as

pi = f (Wi )
s∑

k=1
f (Wk)

(9.4)

In Eq.9.4, s is the number of food sources or the number of employed bees in the
colony since each food source has only one employed bee. If there is a new neighbor
food source which is better than the previous one in bee’s memory the neighbor
source is memorized and the previous one is forgotten. The standard ABC algorithm
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has the following neighbor production formula,

Wi (c + 1) = Wi (c) + ϕi (Wi (c) − Wk(c)) (9.5)

In Eq.9.5, ϕi is the random generated number in the interval [−1,+1] and k is a
randomly produced index different from i . If a food source position is not improved
through a predetermined number of trials which is called the limit; the employed bee
associated with that food source becomes a scout bee and tries to find a new source.
The main steps of the ABC algorithm are given as follows:

1. Initialize
2. Repeat
3. Move the employed bees onto their food source and evaluate fitness
4. Move the onlookers onto the food source and evaluate their fitness
5. Move the scouts to search for new food sources
6. Memorize the best food source found so far
7. Until (termination criteria are satisfied)

9.3.2 Particle Swarm Optimization Algorithm

In 1995, Kennedy and Eberhart proposed the particle swarm optimization (PSO)
algorithm [15]. The algorithm is based on simulated social behavior of bird and fish
flocks. The basic steps of PSO are below:

1. Initialize
2. Repeat
3. Compute fitness values of all particles
4. Replace the best particles in the swarm
5. Select the best particle
6. Compute the velocities of all particles
7. Memorize and update the particle positions
8. Until (termination criteria are met)

InPSO, control parameters are cognitive and social components (c1, c2) and inertia
weight (w). They play an important role in the change of the velocity and position for
particles. Each particle represents a single solution of the optimization problem in
search space. Populations of particlesmove in the search space by tracking the current
optimum particles and modifying the positions in order to find the best solution. The
particles update their velocities and positions according to Eqs.9.6 and 9.7. The
velocity update is defined as in Eq.9.6

v(l + 1) = wv(l) + c1rand(0, 1)(p(l) − x(l)) + c2rand(0, 1)(g(l) − x(l)) (9.6)
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where p(l) and g(l) are particle best and global best solutions, respectively. l is time
step and the particle is gone to a new position calculated by the velocity updated
at each time step. The new position updated using the new velocity and previous
position and it is calculated as in Eq.9.7

x(l + 1) = x(l) + v(l + 1) (9.7)

9.3.3 Genetic Algorithm

In 1975, Holland proposed the genetic algorithm (GA) which is the most popular
metaheuristic algorithm in the literature [7]. The genetic algorithm is an evolutionary
and population based algorithm inspired by biological evolution, which uses opera-
tors such as crossover, selection and mutation. The basic GA is presented below.

1. Initialize population
2. Repeat
3. Evaluation
4. Reproduction
5. Crossover
6. Mutation
7. Until (requirements are met)

At the start of the algorithm, the initial population consists of a collection of
chromosomes that represent a set of solutions for the problem. The best solution is
represented by the chromosome which achieves the minimum error function value.
The reproduction operator selects the chromosomes and then the chromosomes are
sent to the crossover operator. In the crossover operation, two new chromosomes
are produced from two existing chromosomes in the population. The common point
in the selected chromosomes is randomly chosen and their corresponding digits are
exchanged. Therefore, new chromosomes which represent the new solutions are
produced. The crossover operation is controlled by a crossover rate (CR). In the
mutation operation, the mutation operator randomly mutates some bits of the chro-
mosomes. The mutation rate (MR) determines the number of mutation operations.
The algorithm is realized by applying evaluation, reproduction, crossover and muta-
tion operations. At the end, the best chromosome is obtained for the solution of the
problem.

9.3.4 Differential Evolution

The differential evolution (DE) algorithm was presented by Storn and Price in 1997
[26]. The DE is an evolutionary algorithm like genetic algorithms and it uses similar
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operators, such as crossover and mutation. The main steps of the DE algorithm are
summarized as follows:

1. Initialize population
2. Evaluation
3. Repeat
4. Mutation
5. Recombination
6. Evaluation
7. Selection
8. Until (termination criteria are met)

The differential evolution algorithm is controlled by scaling factor and crossover
rate. In the mutation process, each of the K parameter vectors is mutated and the
search space is expanded with the mutation operation. A mutant solution vector X̂t

is produced by Eq.9.8
X̂t = Xr1 + F(Xr3 − Xr2) (9.8)

where F is the scaling factor and solution vectors Xr1 , Xr2 and Xr3 are randomly
selected and must satisfy the following condition as in Eq.9.9

Xr1 , Xr2 , Xr3

∣
∣
r1 �=r2 �=r3 �=t (9.9)

where t is the index of the current solution. In the crossover operation, the mutated
vector is scrambled with the parent vector to generate a trial vector by

yvt =
{
x̂ vt Rv ≤ CR
xvt Rv > CR

(9.10)

whereCR is the crossover constant and Rv is a randomly chosen real number between
[0,1] and v represents the v th component of the corresponding array. The perfor-
mances of the trial vector and its parent are compared and the best one is chosen. If
the parent is better, it is kept in the population.

9.4 Results and Discussion

In this section, firstly, a fetal ultrasound image was used as the training image in
the proposed noise elimination approach. It has 256× 256 pixels and was taken by
Samsung Medison equipment. Figure9.2 shows the noiseless and noisy ultrasound
training image. The noiseless fetal ultrasound image was corrupted by Gaussian
noise with zero mean and 0.75 variance.

In the proposed noise elimination approach, the ABC, PSO, GA and DE algo-
rithms were applied as the parameter adaptation algorithm. The control parame-
ters of the applied parameter adaptation algorithms are presented in Table9.1 and
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Fig. 9.2 Training images

(a) Noiseless

(b) Noisy

Table 9.1 Control parameter values of the ABC, PSO, GA and DE algorithms

ABC PSO DE GA

Colony size 20 Swarm size 20 Pop. size 20 Pop. size 20

Limit 27 Cognitive and
social component
(c1, c2)

1.8 Scaling
factor (F)

0.5 Crossover
rate (CR)

0.8

Inertia weight
(w)

0.6 Crossover
rate (CR)

0.9 Mutation rate
(MR)

0.01
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Table 9.2 The comparison of performances of the ABC, PSO, GA and DE algorithms

ABC PSO DE GA

Mean 0.0991 0.0992 0.0991 0.0993

Std 1.0033e − 07 1.1620e − 04 2.5848e − 006 2.7172e − 04

Best 0.0991 0.0991 0.0991 0.0991

Psnr (dB) 19.47 19.46 19.46 19.46

Time (s) 18.12 17.78 18.65 14.95

were determined experimentally. The order of the 2D FIR digital filter was set to
M = N = 3. Each algorithm was run 30 times with different random seeds. The
initial values of the parameters were selected randomly from the interval (−1, 1).
The colony size and the cycle number were selected as 20 and 150 for each of the
parameter adaptation algorithms, respectively. The simulation was carried out in a
personal computer with the following specification using MATLAB: Intel Pentium
Core2 Duo T7500 2.2 G CPU, 2048 MB RAM and XP OS.

In Table9.2, the values of the performance indicator parameters of the ABC, PSO,
GA and DE algorithms are tabulated. We see that the mean values obtained by all
algorithms are very similar to each other. The ABC has the best value of standard
deviation. It shows that ABC is the most robust algorithm among four algorithms.
The PSNR values are almost the same for all algorithms. The execution times of all
the competitor algorithms are less than twenty seconds. GA needs 4.45 s while DE
does 18.65 s.

The convergence characteristics of the ABC, PSO, GA and DE algorithms are
shown in Fig. 9.3. As seen from the Fig. 9.3, PSO initially shows the best performance
among the algorithms. However ABC demonstrates the best performance after 40
cycles.

Fig. 9.3 Convergence
characteristics of the ABC,
PSO, GA and DE algorithms



164 S. Kockanat and N. Karaboga

(a) Noisy training fetal ultrasound
image corrupted by Gaussian noise
with zero mean and 0.75 variance
(PSNRnoisy=2.47 dB)

(b) Denoised fetal ultrasound im-
age obtained by ABC algorithm
(PSNR denoised =19.47 dB)

Fig. 9.4 Fetal ultrasound images

In Fig. 9.4, the denoised fetal ultrasound image using theABC algorithm is shown.
The PSNR value obtained by the ABC algorithm is 19.47dB.

In order to examine the proposed noise elimination process, the ultrasound images
of different organs were also used, as seen in Fig. 9.5. The ultrasound images were
corrupted by Gaussian noise with zero mean and 0.1 − 1 variance. For the changing
noise variance, the ABC, PSO, GA and DE algorithms were employed for noise
elimination on ultrasound images.
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Fig. 9.5 Ultrasound images

(a) Right kidney ultrasound image

(b) Aortic valve ultrasound image

(c) Pancreas ultrasound image

(d) Fetal ultrasound image
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In Table9.3, the noise variances versus PSNR values are tabulated for the ABC,
PSO, GA and DE algorithms on different ultrasound images. From this table, it is
seen that the performances of the competitor algorithms are very similar but the best
values were achieved using the ABC and DE algorithms. From Table9.3, it is clear
that, when the noise variance increases, the image quality decreases.

In Fig. 9.6, the denoised ultrasound images which were obtained by the ABC
algorithm are shown. The biomedical images were corrupted by Gaussian noise with
zero mean and unit variance. In the proposed noise elimination approach, the ABC
algorithm was used and the PNSR values of the denoised right kidney, aortic valve,
pancreas and fetal ultrasound images are almost 17.00dB.

Table 9.3 Comparison of PSNR values produced by the ABC, PSO, GA and DE algorithms

Image Parameter adaptation
algorithm

Noise variance

0.1 0.3 0.5 0.7 0.9 1

Fetal ABC 36.83 27.43 23.01 20.09 17.90 16.99

PSO 36.76 27.42 23.00 20.07 17.89 16.98

DE 36.83 27.43 23.01 20.09 17.90 16.99

GA 36.73 27.40 22.99 20.06 17.78 16.98

Pancreas ABC 36.98 27.45 23.02 20.10 17.91 17.00

PSO 36.97 27.43 22.97 20.04 17.88 16.98

DE 36.98 27.45 23.02 20.10 17.91 17.00

GA 36.96 27.37 22.96 20.04 17.87 16.98

Aortic valve ABC 37.00 27.46 23.02 20.10 17.92 17.00

PSO 37.00 27.45 23.01 20.09 17.90 17.00

DE 37.00 27.46 23.02 20.10 17.92 17.00

GA 36.63 27.45 22.89 20.08 17.91 16.99

Right kidney ABC 37.00 27.46 23.02 20.10 17.91 17.00

PSO 36.96 27.43 23.01 20.03 17.90 16.92

DE 37.00 27.46 23.02 20.10 17.91 17.00

GA 36.89 27.42 23.01 19.97 17.88 16.82
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Fig. 9.6 Denoised
ultrasound images obtained
by ABC

(a) Denoised right kidney ultrasound image
by using ABC

(b) Denoised aortic valve ultrasound image
by using ABC

(c) Denoised pancreas ultrasound image by
using ABC

(d) Denoised fetal ultrasound image by us-
ing ABC
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9.5 Conclusion

Recently, metaheuristic techniques have been effectively used inmany research areas
and they have become the state of the art method for solving optimization problems.
In this chapter, metaheuristic algorithms were applied to optimize the 2D FIR filter
coefficient matrix for medical image denoising by using the proposed noise elimina-
tion approach. The ABC, PSO, GA and DE algorithms were the metaheuristic algo-
rithms employed as the parameter adaptation algorithm in the proposed approach.
The proposed noise elimination approach was successively used to remove Gaussian
noise on noisy ultrasound images. However, this approach can be applied only if the
reference noise from the detector or sensor is achieved. For this proposed approach
based on metaheuristic techniques, the good result obtained is an advantage, but gen-
erating the reference noise is also a disadvantage. However, the results show that the
ABC, PSO, GA and DE algorithms are very efficient and advantageous in the opti-
mization problem. At the same time, the metaheuristic techniques were efficiently
used in the design of a 2D FIR digital filter like 1D filter design.

Acknowledgements The authors are indebted to the reviewers for their constructive suggestions
which significantly helped in improving the quality of this paper. This work was supported by
Research Fund of Erciyes University. Project Number: FDK-2012-4156.
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Chapter 10
Medical Image Registration Based
on Metaheuristics: A Comparative Study

A. Nakib, E.-G. Talbi and S. Corniglion

10.1 Introduction

Image registration is the process of overlaying two or more images of the same scene
taken at different times, from different viewpoints, and/or by different sensors. It is a
critical step in all image analysis tasks in which the final information is gained from
the combination of various data sources like in image fusion or change detection.

It geometrically aligns two images: the source and the target images. It is done
by determining a transformation that maps the target image to the source one. Thus,
registering a sequence of images consists in determining, for each couple of succes-
sive images, the transformation that makes the first image of the couple match the
following image.

Comprehensive surveys of the registration approaches are available in the litera-
ture, we can cite [5, 12]. Registration approaches can be roughly based on:

• geometric image features (geometric registration), such as points, edges and sur-
faces;

• measures computed from the image grey values (intensity based registration), such
as mutual information.

In many cases, a satisfactory solution can be found by using a rigid or an affine
transformation (deformation model applied to the target image), i.e. the target image
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(b)(a)

Fig. 10.1 Two images from a brain cine-MRI sequence: a first image of the sequence, b sixth
image of the sequence

Fig. 10.2 A sequence of cine-MR images of the region of interest

is only translated, rotated and scaled to match the source image [6]. Elastic regis-
tration is required to register inter-patient images or regions containing non-rigid
objects. The goal is to remove structural variation between the two images to be reg-
istered. As stated in [5], most applications represent elastic transformations in terms
of a local vector displacement (disparity) field, or as polynomial transformations in
terms of the old coordinates.

In the problem at hand, each image of the region of interest (i.e. lamina terminalis)
is extracted from a brain cine-MRI sequence. An example of two images extracted
from a brain cine-MRI sequence is presented in Fig. 10.1. Hence, each sequence is
composed of 20 MR images. An example of sequence is illustrated in Fig. 10.2. The
goal is to register each couple of successive images of the sequence. Hence, for a
sequence of 20 images, 19 couples of successive images have to be registered. Then,
the transformations that result from this matching operation can be used to assess
the deformation movements of the third cerebral ventricle.

10.2 The Registration Process

A method inspired from [6] is proposed in this chapter to evaluate the movement
in sequences of cine-MR images. This operation is required in order to assess the
movements in the ROI over time. In [6], a segmentation process is performed on each
image of the sequence, to determine the contours (as a set of points) of the walls of the
third cerebral ventricle. Then, a geometric registration of each successive contours is
performed, based on an affine deformation model. In the present work, we propose
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to use an intensity based registration instead of a geometric registration process. This
way, we do not have to use a segmentation process anymore. Moreover, to evaluate
the pulsatile movements of the third cerebral ventricle more precisely, an elastic
deformation model is used in this chapter.

Let Im1 and Im2 be two successive images of the sequence. Let the transpose
of a matrix A be denoted by AT. Then, we assume that a transformation TΦ allows
to match Im1 with Im ′

1 = TΦ(Im2) and, for every pixel o2 = (x2 y2)
T of Im2, it is

defined by:

x ′
1 = c1 x2

2 + c2 y2
2 + c3 x2 y2 + (c4 |c4| + 1) x2 + c5 |c5| y2 + (c6)

3

y′
1 = c7 x2

2 + c8 y2
2 + c9 x2 y2 + c10 |c10| x2 + (c11 |c11| + 1) y2 + (c12)

3

(10.1)
where o′

1 = (
x ′

1 y′
1

)T = TΦ(o2). The set of parameters Φ = {c1, c2, . . . , c12} is esti-
mated through the maximization of the following criterion:

C(Φ) = NMI (Φ)

P(Φ) + 1
(10.2)

where NMI (Φ) computes the normalized mutual information [11] of Im1 and Im ′
1;

P(Φ) is part of a regularization term that penalizes large deformations of Im2, as
we are dealing with slight movements in the ROI. Besides, as the size of the ROI is
not constant, we have to normalize the coordinates of the pixels. Then, we make the
pixels in the ROI range in the interval [−0.5, 0.5]. The use of this interval transforms
discrete coordinates of the pixels into continuous ones. This interval was determined
empirically, and it is well fitted to the regularization term, and to the transformation
model used. NMI (Φ) and P(Φ) are defined as follows:

NMI (Φ) = H(Im1) + H(Im ′
1)

H(Im1, Im ′
1)

(10.3)

P(Φ) = max
o2 ∈ Im1 ∩ Im ′

1

(
o2 − o′

1

)T (
o2 − o′

1

)
(10.4)

where Im1 ∩ Im ′
1 is the overlapping area of Im1 and Im ′

1 (see Fig. 10.3); H(Im1)

and H(Im ′
1) compute the Shannon entropy of Im1 and Im ′

1, respectively, in their
overlapping area; H(Im1, Im ′

1) computes the joint Shannon entropy of Im1 and
Im ′

1, in their overlapping area. They are defined as follows:

H(Im1) = −
L−1∑

i=0

p(i) log2 (p(i)) (10.5)

H(Im ′
1) = −

L−1∑

j=0

p′( j) log2

(
p′( j)

)
(10.6)
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Fig. 10.3 Overlapping area (Im1 ∩ Im′
1) of the source image (Im1) and the transformed target

image (Im′
1) in the registration of a couple of successive images of a sequence

H(Im1, Im ′
1) = −

L−1∑

i=0

L−1∑

j=0

p(i, j) log2 (p(i, j)) (10.7)

where L is the number of possible grey values that a pixel can take; p(i), p′( j) and
p(i, j) are the probability of the pixel intensity i in Im1, the probability of the pixel
intensity j in Im ′

1 and the joint probability of having a pixel intensity i in Im1 and
j in Im ′

1, respectively. They are defined as follows:

p(i) = g (i)
∑L−1

k=0 g (k)
(10.8)

p′( j) = g′ ( j)
∑L−1

l=0 g′ (l)
(10.9)

p(i, j) = g (i, j)
∑L−1

k=0

∑L−1
l=0 g (k, l)

(10.10)

where g(i) is the histogram of the overlapping area of Im1 (occurrence of gray level
i in Im1); g′( j) is the histogram of the overlapping area of Im ′

1 (occurrence of
gray level j in Im ′

1); g(i, j) is the joint histogram of the overlapping area of Im1

and Im ′
1 (occurrence of having a grey value equal to i in Im1 and to j in Im ′

1, see
Eq. (10.11)). However, in this work, we apply a low-pass filter to these histograms,
using a convolution with a Gaussian function, in order to accelerate the convergence
of the optimization process. Applying this filter reduces indeed the number of local
optima in the objective function, by smoothing it. An illustration of the histogram
of an MR image from a sequence, and of its corresponding smoothed histogram, are
illustrated in Fig. 10.4.

In (10.11), the cardinal function is denoted by card, and the functions Im1(o)
and Im ′

1(o) return the grey values of a given pixel o in Im1 and Im ′
1, respectively.
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Fig. 10.4 Illustration of the histogram of an MR image: a original histogram,b smoothed histogram
used to accelerate the optimization process

g(i, j) = card
{
o ∈ Im1 ∩ Im ′

1, Im1(o) = i ∧ Im ′
1(o) = j

}
(10.11)

The registration problem can be formulated as an optimization problem defined
by:

max C(Φ) (10.12)

10.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a metaheuristic proposed in 1995 by Kennedy
and Eberhart [8]. The original PSO algorithm is inspired by the social behavior of
biological organisms. PSO is a population-based stochastic approach for solving
continuous and discrete optimization problems. In PSO, compared to EA, an indi-
viduals is are called particles, move in the search space. The position of a particle
represents its fitness. The particles fly over the search space, keeping in memory the
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best solution encountered. At each iteration, each particle adjusts its velocity vector,
based on its momentum, influences of its best solution and of the best solution of
its neighbors. Then, the new point is evaluated. Consequently, the displacement of a
particle is influenced by three components:

1. Physical component: the particle tends to keep its current direction of displace-
ment;

2. Cognitive component: the particle tends to move towards the best site that it has
explored until now;

3. Social component: the particle tends to rely on the experience of the swarm, then
moves towards the best site already explored by its neighbors.

In this work, the swarm size is denoted by s, and the search space is n-
dimensional. In general, the particles have three attributes: the current position
Xi = (xi,1, . . . , xi,n), the current velocity vector Vi = (vi,1, xi,2, . . . , vi,n) and the
past best position Pbesti = (pi,1, pi,1, . . . , pi,n). These attributes are used with the
global best position Gbest = (g1, g2, . . . , gn) of the swarm, to update iteratively the
state of each particle in the swarm. The objective function to be minimized is denoted
by f . The new velocity vector Vi of each particle is updated as follows:

vi, j (t + 1) = vi, j (t) + c1r1i, j (t)
[
Pbesti, j (t) − xi, j (t)

]+ (10.13)

c2r2i, j (t)
[
gbest j (t) − xi, j (t)

]

vi, j is the velocity of the i th particle (i ∈ 1, . . . , s) of the j th dimension
( j ∈ 1, 2, . . . , n) where: c1, c2 are the learning factors that will be fixed through-
out the whole process, called acceleration coefficients, r1 and r2 are two random
numbers in the range [0, 1] selected uniformly for each dimension at each itera-
tion, vi, j (t) is the physical component, c1r1i, j (t)

[
Pbesti, j (t) − xi, j (t)

]
is the cog-

nitive component, where c1 controls the cognitive behavior of the particle, and
c2r2i, j (t)

[
gbest j (t) − xi, j (t)

]
is the social component, where c2 controls the social

behavior of the particle.
The new position Xi of each particle is calculated as follows:

xi, j (t + 1) = xi, j (t) + vi, j (t + 1) (10.14)

xi, j is the position of the i th particle (i ∈ 1, 2, . . . , s) of the j th dimension ( j ∈
{1, 2, . . . , n}.
In case of minimization of f , the past best position Pbesti of each particle is updated
as follows:

Pbesti (t + 1) =
{
Pbesti (t + 1) if f (Xi (t + 1) ≥ Pbesti (t)
Xi (t + 1) Otherwise

(10.15)

The global best position Gbest , found by the evaluations of the particles during
each generation, is defined as:
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Gbest (t + 1) = min
Pbesti

f (Pbesti (t + 1)), 1 ≤ i ≤ s (10.16)

In the global version of PSO, the best particle Gbest is chosen among the whole
population. The information graph is completely connected. The information links
between the particles are defined only one time, we call this topology a static infor-
mation topology. The pseudo code of the original PSO is shown in Algorithm 1.
The velocity clamping is problem-dependent. In the original PSO, the particle veloc-
ities vi can be clamped in the range [?vmax, vmax] according to the problem at
hand. This clamping is used to prevent the particles from moving out of the search
space. Changing the values of c1r1 and c2r2 makes the velocity value increase, until
it reaches its maximal bound [3].

Algorithm 1: Classical PSO Algorithm

Input: Set the swarm size s

Initialize randomly the position x and the velocity v of each particle

set iteration = 1.

for i = 1 to s do
Pbesti == Xi

end

while The stopping criterion is not satisfied do
for i = 1 to s do

Update position Xi using 10.13 and 10.14

Evaluate the fitness f (Xi )

update Pbesti , Gbest using 10.15 and 10.16

end

i teration = i teration + 1

end

Result: Print out GBest

10.4 Differential Evolution

Differential Evolution (DE) is an optimization algorithm based on Darwinian evo-
lution [2], created by Storn and Price [9, 10]. Several variants to the DE algorithm
have been suggested, but the original algorithm is given in Algorithm 2.
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Several schemes of DE were proposed in the literature abs most of them are
based on different approaches to creating each of the temporary individuals, vi ,
and different approaches to the method of creating offspring. One of two crossover
schemes is typically used to create offspring. The first, binary crossover. The second
common approach is called exponential crossover.

By convention, schemes are labeled in the form DE/a/b/c, where a is the method
used to select the base vector, b is the number of difference vectors, and c is the
method used to create offspring. The scheme used in Algorithm 2 is referred to as
DE/rand/1/bin.

Several methods of selecting the base vector have been developed and can be used
with either of the crossover methods. Popular base vector selection methods include
(in each case the selected vectors are assumed to be unique):

• DE/rand/2: Two pairs of difference vectors are used:

vi = x1 + F × (x2 + x3 − x4 − x5) (10.17)

• DE/best/1: The best individual in the population is selected as the base vector:

vi = xbest + F × (x1 − x2) (10.18)

The Differential Evolution algorithm has several control parameters that can be
set. Ignoring extra parameters introduced by some DE schemes, the main DE control
parameters are population size, scale factor (F), and crossover factor (Cr ).

The scale factor (F) controls the magnitude of the difference vector and con-
sequently the amount by which the base vector is perturbed. Large values of F
encourage large scale exploration of the search space but could lead to premature
convergence, while small values result in a more detailed exploration of the local
search space while increasing convergence time. The crossover factor (Cr ) controls
the diversity of the population, since a large value of Cr will result in a higher proba-
bility that new genetic material will be incorporated into the population. Large values
of Cr result in fast convergence while smaller values improve robustness.

Suitable values for the parameters that allow to obtain a enough good performance
on a wide range of problems are known; however, for better results in terms of
accuracy, robustness, and speed the parameters must be tuned for each problem.

10.5 The CMA-ES Algorithm

Evolutionary algorithms are stochastic search methods inspired by the principles of
biological evolution. Evolution strategies (ES) are a class of evolutionary algorithms
typically using a multi-variate normal mutation distribution. CMA-ES is a kind of
the effective evolutionary optimization strategy based on the derandomized evolution
strategy with covariance matrix adaptation [4]. The covariance matrix adaptation is
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Algorithm 2: Classical DE Algorithm

Set the population size S

Generate a population, P , of S individuals by creating vectors of random candidate
solutions, xi, i = 1, . . . , S and |xi | = D

Evaluate the fitness, f (xi ), of all individuals

while Stoppring criteria not met do
foreach i ∈ {1, . . . , S} do

Select three individuals, x1, x2, and x3, at random from the current population such
that x1 �= x2 �= x3

Create a new trial vector vi using:

vi = x1 + F × (x2 − x3)

where F ∈ [0,∞[ is known as the scale factor and x1 is referred to as the base vector

Add vi to the trial population

end

foreach xi in the current population referred to as the target vector) do
Create offspring ui as follows:

ui, j =
{
vi, j if (U (0, 1) ≤ Cror j = idrand )
xi, j Otherwise

where Cr ∈ [0, 1] s the crossover probability and idrand is a randomly index.

if f (ui ) < f (xi ) then
xi ← ui

end

end

end

employed, which not only reduces the randomness of evolutionary strategy, but sig-
nificantly accelerates its convergence rate. In addition,the concept of cumulative evo-
lution path is introduced into CMA-ES, which can improve the overall performance
of CMA-ES. In CMA-ES, the behavior of the algorithm is defined by the follow-
ing vector of parameters: Θt = (Xt , σt ,Ct ,pt ,pσ

t ) ∈ (Rn × R+ × S(n, R) × Rn ×
Rn). Then, the evolution of the solution within the search space follows a normal
distribution N = (Xt , σtCt ), hence, only Xt , σt and Ct encode the sampling distrib-
ution with Xt representing the average or the spatial position of the distribution and
σtCt its covariance matrix, respectively. pt and pσ

t are the state variables used to
update Ct and pt , respectively. The parameter σt is the so-called step-size and can
be thought of as a global scaling factor for the multivariate normal distribution this
view is not fully accurate as Ct also plays on the scale since it is not normalized in
the algorithm and has been introduced such that the global scaling can be adapted
faster than the covariance matrix. The vectors pσ

t and pt are auxiliary state variables
used to update the step-size and the covariance matrix.
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Algorithm 3: Classical CMA-ES Algorithm

Input:

D dimension of the problem

λ Offspring population size (4.0 + 3.0 × Log(D))

μ or X Parent population for next generation �λ/2�
σstart Initial standard deviation

ccov Covariance learning raten

while Stoppring criteria not met do
Update the Covariance Matrix C (t+1) using covariance matrix adaptation principle [4]

Update the Step Size σt

Generate Sample Population for generation t + 1

Update the average for generation t + 1

Update the best solution found

end

Output: the best solution x∗

10.6 Experimental Results and Discussion

The registrations of two couples of slightly different images are illustrated in
Figs. 10.5 and 10.6, and the registrations of two couples of significantly different
images are illustrated in Figs. 10.7 and 10.8. As we can see in Figs. 10.5e and 10.5f,
as well as in Figs. 10.6e and 10.6f, if the movements in the ROI are not significant,
then only noise appears in the difference images. Hence, the transformation used
to register the couple of images (Figs. 10.5d and 10.6d) does not deform the sec-
ond image of the couple significantly. On the other hand, significant movements
in the ROI leave an important white trail in the difference images, as illustrated in
Figs. 10.7e and 10.8e. Then, a significant transformation (Fig. 10.7d and 10.8d) has
to be applied in order to eliminate the white trail (see Fig. 10.7f and 10.8f).

A comparison between the results obtained by MLSDO and those obtained by
several well-known static optimization algorithms is presented in this section. These
algorithms, and their parameter setting, empirically fitted to the problem at hand,
are defined below (see references for more details on these algorithms and their
parameter fitting):

• CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [4] using the rec-
ommended parameter setting, except for the initial step size σ , set to σ = 0.5. The
population size λ of children and the number of selected individuals μ are set to
λ = 11 and μ = 5;

• SPSO-07 (Standard Particle Swarm Optimization in its 2007 version) [1] using
the recommended parameter setting, except for the number S of particles (S = 12)
and for the parameter K used to generate the particles neighborhood (K = 8);
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(a) (b) (c)

(d) (e) (f)

Fig. 10.5 Illustration of the registration of a couple of slightly different images of a sequence: a the
first image of the couple, b the second image of the couple, c the second image after applying the
found transformation to it, d illustration showing the transformation applied on the second image of
the couple to register it, e illustration showing the difference, in the intensity of the pixels, between
the two images of the couple: a black pixel indicates that the intensities of the corresponding pixels
in the images are the same, and a white pixel indicates the highest difference between the images,
f illustration showing the difference, in the intensity of the pixels, between the first image and the
transformed second image

(a) (b) (c)

(d) (e) (f)

Fig. 10.6 Illustration of the registration of another couple of slightly different images of a sequence,
in the same way as in Fig. 10.5
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(a) (b) (c)

(d) (e) (f)

Fig. 10.7 Illustration of the registration of a couple of significantly different images of a sequence: a
the first image of the couple, b the second image of the couple, c the second image after applying the
found transformation to it, d illustration showing the transformation applied on the second image of
the couple to register it, e illustration showing the difference, in the intensity of the pixels, between
the two images of the couple: a black pixel indicates that the intensities of the corresponding pixels
in the images are the same, and a white pixel indicates the highest difference between the images,
f illustration showing the difference, in the intensity of the pixels, between the first image and the
transformed second image

(a) (b) (c)

(d) (e) (f)

Fig. 10.8 Illustration of the registration of another couple of significantly different images of a
sequence, in the same way as in Fig. 10.7
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Table 10.1 Transformations found for the registration of each couple of images. The value of the
objective function of the best solution found, denoted by C∗(Φ(t)), is also given
t c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 C∗

(Φ(t))

1 0.039 −0.022 0.005 0.105 −0.034 0.139 −0.039 0.017 0.025 0.091 0.132 0.090 1.199

2 −0.005 −0.029 0.025 0.085 −0.014 0.203 0.077 0.055 0.051 0.068 −0.077 −0.264 1.201

3 0.055 0.063 0.048 0.094 −0.104 −0.239 0.068 0.000 0.000 −0.074 −0.083 −0.256 1.192

4 0.021 0.031 −0.001 0.095 −0.077 −0.223 0.025 0.013 0.006 0.081 −0.144 −0.246 1.195

5 0.063 0.000 0.003 −0.074 −0.026 −0.089 −0.026 0.041 0.011 0.100 0.145 −0.128 1.218

6 0.002 −0.063 −0.033 −0.115 0.034 0.224 −0.019 −0.027 0.024 0.015 0.087 0.258 1.209

7 0.013 −0.092 0.016 0.036 0.080 0.253 −0.060 −0.045 −0.033 −0.077 0.131 0.247 1.208

8 0.003 −0.068 −0.004 −0.023 0.117 0.238 −0.069 −0.047 −0.032 −0.078 0.131 0.247 1.195

9 0.065 −0.020 −0.007 0.044 0.061 −0.046 −0.064 −0.047 −0.023 −0.081 0.131 0.251 1.201

10 0.050 −0.004 −0.017 0.072 0.056 −0.061 0.051 0.005 0.011 −0.052 0.135 −0.043 1.216

11 0.050 0.000 −0.012 −0.004 0.073 −0.053 −0.059 0.047 0.002 0.099 0.164 −0.178 1.216

12 0.060 0.011 0.003 0.080 −0.033 −0.191 −0.024 0.032 0.036 −0.068 0.108 0.048 1.225

13 0.042 0.000 0.000 0.050 −0.018 −0.060 −0.023 0.016 0.002 −0.085 −0.064 −0.218 1.232

14 0.064 −0.005 0.000 0.094 −0.021 −0.199 −0.016 0.075 0.065 −0.039 0.065 −0.210 1.232

15 0.025 −0.008 0.042 0.049 −0.072 0.172 0.037 0.029 0.000 0.104 0.107 −0.037 1.235

16 0.060 0.007 0.003 0.082 −0.026 −0.191 −0.024 0.032 0.034 −0.063 0.111 −0.049 1.216

17 0.050 −0.005 0.000 0.021 0.010 −0.071 −0.025 0.047 0.052 0.018 0.080 −0.170 1.226

18 0.052 −0.005 −0.017 0.083 0.108 −0.121 −0.018 0.042 −0.001 0.071 0.075 0.149 1.225

19 −0.006 0.056 −0.011 −0.080 0.072 −0.210 −0.025 0.076 0.033 −0.057 0.084 −0.158 1.214

• DE (Differential Evolution) [7] using the “DE/target-to-best/1/bin” strategy, a
number of parents equal to N P = 30, a weighting factor F = 0.8, and a crossover
constant CR = 0.9.

As these algorithms are static, we have to consider the registration of each couple
of successive images as a new problem to optimize. Thus, these algorithms are
restarted after the registration of each couple of images, using the stagnation criterion
defined in Sect. 7.4.3. The results obtained using MLSDO, as a static optimization
algorithm, are also given.

The parameters found for the elastic transformation model are given in Table 10.1.
In Table 10.2, the average number of evaluations among 20 runs of the algorithms
are given. The sum of the best objective function values (see Eq. (7.14)) of each
registration of the sequence is also given, averaged on 20 runs of the algorithms.
The convergence of MLSDO, and that of the best performing static optimization
algorithm on the problem at hand, i.e. CMA-ES, are illustrated by the curves in

Fig. 10.9. It shows the evolution of the relative error
(
C∗(Φ(t))−C(Φ(t))

C∗(Φ(t))

)
between the

value of the objective function of the best solution found (C∗(Φ(t))) and that of
the current solution (C(Φ(t))) for each couple of images (t). The presented curves
give an idea about the convergence of the algorithms to an optimal value. It can
also be seen as a stagnation metric of the algorithms. In this figure, the number of
evaluations per registration of a couple of images is fixed to 5000, in order to enable
the comparison of the convergence of the algorithms. For readability, a logarithmic
scale is used on the ordinates.

http://dx.doi.org/10.1007/978-3-662-54428-0_7
http://dx.doi.org/10.1007/978-3-662-54428-0_7
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Table 10.2 Average number of evaluations to register all couples of images, and average sum of
C∗(Φ(t)), obtained by each algorithm

Algorithm Evaluations
∑19

t=1 C
∗(Φ(t))

CMA-ES 7709.14 ± 467.75 1.21 ± 9.1E-4

SPSO-07 8007.21 ± 364.24 1.21 ± 8.8E-4

DE 9131.25 ± 279.20 1.21 ± 9.3E-4

MLSDO 9522.76 ± 648.87 1.21 ± 1.7E-3
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Fig. 10.9 Illustration of the convergence behaviour of CMA-ES and MLSDO

As we can see, the average sum of objective function values given in Table 10.2
shows that the algorithms have a similar average precision. However, we can see
in Table 10.2 that the number of evaluations of the objective function performed by
MLSDO, used as a dynamic optimization algorithm, is significantly lower than the
ones of the static optimization algorithms. A Wilcoxon-Mann-Whitney statistical
test has been applied on the numbers of evaluations performed by MLSDO and
CMA-ES, the best ranked algorithms in terms of number of evaluations. This test
confirms at a 99% confidence level that there is a significant difference between their
performances. It can be seen also in Fig. 10.9 that the convergence of MLSDO to an
acceptable solution is faster than CMA-ES for the registration of most of the couples
of contours, especially for the last ones.
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10.7 Conclusion

In this chapter, a registration process based on a dynamic optimization algorithm
is proposed to register quickly all the images of a cine-MRI sequence. It takes
profit from the effectiveness of the dynamic optimization paradigm. The process
is sequentially applied on all the 2D images. The entire procedure is fully automated
and provides an accurate assessment of the ROI deformation throughout the entire
cardiac cycle. Our work under progress consists in the parallelization of the MLSDO
algorithm using Graphics Processing Units.
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Chapter 11
Adaptive ECG Signal Filtering Using
Bayesian Based Evolutionary Algorithm

Thibaut Bernard and Amir Nakib

11.1 Introduction

Metaheuristics have been widely used to solve many different optimization prob-
lems, however, when the dimension of the problems increases the performance of
theses algorithms decreases. This decrease of the performance limited the use of this
approach,when the dimension is high, these problems are large scale problems.Many
authors proposed several approaches to enhance the performance of the algorithms.
The reader can see recent review papers as.

Indeed, find the global optimum of fitness function is very hard to find when all
variables have interaction with the decision. Then, this class of problems are called
non-separable problems. In large scale problems, the variable interaction increase the
total number of the evaluations of the objective function to find a correct solution, this
means that in this kind of problem a large number of fitness evaluations is required.

When designing a metaheuristic as an evolutionary algorithm, the choice of the
operators is crucial task in order to have the best possible performance. In the litera-
ture many evolutionary operators exist, but the rule of choosing is not established. It
depends on the expert. Moreover, as we said before, in the case of large-scale prob-
lems, the performance decreases after a certain number of generations. This paper,
tries to solve these two problems: the choice of operators and the decrease of the
performance by using Bayes theory.

In engineering, this problems have a real place and take difficult because the cost
of evaluating the objective function involves interaction with other modules such a
simulation software. For example obtain a good result for filter parameters is really
difficult but is important especially in medical imaging where the result permit to
the doctor to perform a diagnostic for the patient. An another example is the image
registration who resized and modified image on a reference for localize an anomaly
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and take a decision for an intervention with the surgeon. Precision and rapidity are
important for take a good decision faster.

A new representation of population was created in this paper, a image represen-
tation of population with color level. This representation show the evolution of the
population through the generation. This method is described in the section image
colour population display of this article and show the pertinence of this method.

The Purpose of this paper is to combinate bayesian theorem with a genetic algo-
rithm for choose quickly the best strategy use for evolve the next population and take
a good result in a little laps of time. We have been inspire by the work of Pelikan
et al.

Bayesian theoremusedmass function andprobability for create a table represented
the next evolution of the population. This solution permitted to used the best couple of
crossover andmutation for evolve the population. Thismethod need a lot of crossover
and mutation to create a “panel” of solution and enable a quickly convergence of the
algorithm. With this method we want to see if a best result was obtain using different
metrics and combine this for take the mass function.

11.2 Methods

11.2.1 State of the Art

Many existing Population-basedmeta-heuristics, in this part of this article we display
the most important algorithm.

11.2.1.1 Genetic Algorithm

TheGeneticAlgorithm is probably themost well-know andmostly used evolutionary
computation technique. It developed in the early 1970s at the university of Michigan
by John Holland and his students. This type of algorithm is based on the evolu-
tion theory of Darwin. The representation of solution, whose named chromosomes,
evolve in the course of generation. For evolve, require 3 step, one step of selection,
who select chromosomes for the next steps, crossover (stage of intensification), who
represent the reproduction of chromosomes and mutation (stage of diversification)
who represent the evolution of chromosome.

The step of crossover take two chromosomes “parents” ad produce two offspring,
if the fitness value of the offsprings are best, they replace in the population.

The step of mutation take one chromosomes and evolve it, and introduce in pop-
ulation for avoid to get stuck in local optima. If this step was not respected, the
algorithm converge in a “bad” solution who is not the best optima.
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Many criterion for interrupt the algorithm can take place: if we choose a number
of generation, the algorithm prevent at the end of this generation (or number of eval-
uation) and return the best value and the best chromosome, if we choose a precision,
algorithm don’t stop before this precision was not achieve.

This algorithm require most variables:

• size of population, type int, define the initial size of population used in algorithm
• crossover rate, type double, define the rate of the crossover after the selection.
• mutation rate, type double, define the rate of the mutation after the selection.
• number of generation or stopping criterion, type int for the number of generation
or number of evaluation, type double for the precision.

The motivations behind anticipating a decision: x is an array of variable to be
optimized, to choose a strategy for these variables and taking a decision, we evaluate
the result at tactual . The problem is that the decisions may have future consequences.
We have different issues and the next issues depend on previous decision x(t), t <

tactual . This decision was the optimal solution and the better choice with the actual
situation and data from the past. In the Fig. 11.1 we show the importance of this
decision, we learn the evolution on the past and evaluate the best decision in the
future.

Lot of theory are available for take a good decision, in this study, we implement
most possibility of crossover and mutation and use, the Bayes theorem or Dempster
Shaffer theorem for select the best method to evolve a population.

Fig. 11.1 Illustration of anticipation
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11.2.2 Choice on Our Algorithm

11.2.2.1 Crossovers

We have five crossovers in this algorithm, for a best use, Bayes probability choice the
best strategy of evolution (one strategy represent one crossover and one mutation)

Thefirst crossoverwhichused in this algorithm is theBLX-α. This crossover select
two individuals and crosses this with a α parameter who define at the beginning(for
this experimentation α = 0.3) finally this crossover define for each gene the cmax

and cmin and the difference I between the two genes [2, 4]. With this calcul each
childs are randomly draw between the two bound superior and inferior.

I nd1 and I nd2 two individuals, Child1 and Child2 the two child whose created,
(G1.1, . . . ,G1.N ) the N genes of the first individual (N = dimension), (Gc1.1, . . . ,
Gc1.N ) the N genes of the first child, bin f and bsup the two bound.

For each dimension:

cmax = max(G1.N ,G2.N ) (11.1)

cmin = min(G1.N ,G2.N ) (11.2)

I = cmax − cmin (11.3)

bin f = cmin − I × α (11.4)

bsup = cmax + I × α (11.5)

Gc1.N = rand(bin f , bsup) (11.6)

Gc2.N = rand(bin f , bsup) (11.7)

The second crossover is the discrete crossover, the method is close of the blx-α
method, the difference resides in the superior bound (Cmax ) and the inferior bound
is (Cmin) [4, 11].

I nd1 and I nd2 two individuals, Child1 and Child2 the two child whose created,
(G1.1, . . . ,G1.N ) the N genes of the first individual (N = dimension), (Gc1.1, . . . ,
Gc1.N ) the N genes of the first child, bin f and bsup the two bound.

For each dimension:

bin f = max(G1.N ,G2.N ) (11.8)

bsup = min(G1.N ,G2.N ) (11.9)
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Gc1.N = rand(bin f , bsup) (11.10)

Gc2.N = rand(bin f , bsup) (11.11)

The third crossover is the linear crossover,we generate 3 childswith different oper-
ation with the two parents and choose the two best child for the new population.this
3 childs was obtain with 3 different operation, if the two parents are identically, the
operation obtain the same individual [16].

I nd1 and I nd2 are the two parents, Child1, Child2 and Child3

Child1 = 0.5 × I nd1 + 0.5 × I nd2 (11.12)

Child2 = 1.5 × I nd1 − 0.5 × I nd2 (11.13)

Child3 = −0.5 × I nd1 + 1.5 × I nd2 (11.14)

The next crossover is a simple crossover, this is the one-point crossover describe
in [13]. We choose one point randomly in the space [1, N ] and exchange the gene
between the two parents before this point.

I nd1 and I nd2 are the two parents, (G1.1, . . . ,G1.N ) the N genes of the first indi-
vidual and (G2.1, . . . ,G2.N ) the N genes of the second individual, and Child1 and
Child2 the two child whose created.

select a point of crossover S in the space [1, N ]

Child1 = (G1.1, . . . ,G1.S,G2.S+1, . . . ,G2.N ) (11.15)

Child2 = (G2.1, . . . ,G2.S,G1.S+1, . . . ,G2.N ) (11.16)

The last crossover is a barycentric crossover. Barycentric crossover as more
adapted for continuous problem, with tw parents we build two childs with a “a”
parameter which choosen randomly.

I nd1 and I nd2 are the two parents,“a” a randomly parameter in [0, 1], andChild1
and Child2 the two child whose created.

Child1 = a × I nd1 + (1 − a) × I nd2 (11.17)

Child2 = (1 − a) × I nd1 + a × I nd2 (11.18)

11.2.2.2 Mutations

Manymutations are available for genetic algorithm, in this studywe used 4mutations
whose enumerate before this paragraph. The mutation are very important in your
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algorithm as the diversification method, the most important in hight dimension is to
retain a good diversification.

The first mutation used in this study are the levy mutation [8]. For this mutation,
we used a number provided to Levy distribution (a ∼ Levy(μ, c)). The individual
evolve with this number and he is accepted in the new population.

I nd is a individual select for mutation,G1, . . . ,GN are the gene of the individual,
N the dimension, “a” in number provide to Levy distribution, Mut is the mutant,
Gm1, . . . ,GmN are the genes of the individual for each dimension:

GmN = GN + a (11.19)

The second Mutation is the Gaussian mutation [5], this function used a number
provided to Gaussian distribution (a ∼ N (μ, σ 2)) and works as the Levy mutation.

I nd is a individual select for mutation,G1, . . . ,GN are the gene of the individual,
N the dimension, “b” in number provide to Gaussian distribution, Mut is the mutant,
Gm1, . . . ,GmN are the genes of the individual for each dimension:

GmN = GN + b (11.20)

The Third Mutation used in this study, is the scramble mutation. This mutation
take all genes of the individual selected formutation and replace it in newposition [7].

For example, for dimension 5:

I nd = (G1 G2 G3 G4 G5)

I nd = (G1 G2 G3 G4 G5)

The last mutation used is the DE/RAND/1/BIN mutation. This mutation require
3 individuals for generates one offspring. The new individual is composed by the
genes of the first parent individual and a part of the difference between two other
individuals. Mutation require a parameter F in the area [0, 2] who multiplied the
difference [14].

I nd1, I nd2 and I nd3 the three individuals selected, Off the offspring, (G1.1, . . . ,

G1.N ) the genes of the first individual, (Go1, . . . ,GoN ) the genes of the offspring
(N the number of dimension) and F the parameter define at 0.8.

For each dimension:

GoN = G1.N + F × (G2.N − G3.N ) (11.21)
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11.2.2.3 Metrics

Diversity measures the variety of or difference between objects compared. Diversity
can bemeasured at the gene level, chromosome level and population level and various
metric can be used to measure diversity at these levels.

The first metric used in this work is the euclidean distance between all individu-
als. The distance represent the space who separate individuals, if the value is hight,
the population have a good diversification, on the opposite, if the value is small, the
population has bad diversification, this is the phase of intensification, all vectors are
very close. A study of this metric learn evolution of our algorithm [10].

This is define by the equation:

Dist =
P−1∑

j=1

P∑

j ′= j+1

(

D∑

i=1

|Gi j − Gi j ′ |) (11.22)

With G a gene, P the size if the population, D the dimension, i the rating of the
gene and j and j’ the rating of the chromosome.

The secondmetric used is the Inertia, based on extension of the concept ofmoment
of inertia for measurement of mass distribution into arbitrarily high dimensionality
spaces [10]. The coordinates of the centroid of P equally weighted points in D-space
C = (C1,C2, . . . ,CD) and define like this:

Ci =
∑P

j=1 Gi j

P
(11.23)

and finally, the inertia equal to:

I =
D∑

i=1

P∑

j=1

(Gi j − Ci )
2 (11.24)

The third metric is the entropy. The concept of entropy, as a degree of thermo-
dynamic equilibrium, was used firstly by Clausius in 1865 in order to interpret the
irreversibility in some kinds of transformations. In the context of G, entropy repre-
sents the amount of disorder of the GP population.

E(P) = −
∑

k

pk × log(pk) (11.25)

With pk is the proportion of the population that have the fitness value in the fitness
partition kth .

The final metric is the convergence of the best fitness value. This metric represent
the evolution of the algorithm in the course of generation of population. The valuewas
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calculated with the fitness function and save at all generation for show the algorithm
convergence.

11.2.3 Bayes Theory

In probability theory and statistics, Bayes’s theorem is a result of mathematical
manipulation of conditional probabilities. He can be derived from basic axioms of
probability. The Bayesian probability measures a degree of belief.

We consider two event A and B, and we determinate the probability of A with B
known, the initial Bayes’s rule is:

P(A|B) = P(B|A) × P(A)

P(B)
(11.26)

with P(A) and P(B) the respectively probability of A and B (a priori probabilities),
P(A|B) the a posteriori probability of A with B known, she depend of B), P(B|A) the
likelihood function of A.

One solution is to create at the beginning a probability data for each metric with
twometrics (fusion). With this data we apply a Gaussian fit calculated with a Particle
Swarm Optimization.

When the Gaussian fit was calculated, we calculate the area with a Monte-Carlo
simulation. In a squarewemake theGaussian fit andwe generate a number of solution
in this square and evaluate the number of “shot” under the Gaussian fit and divide
by the total number of “shot”. The result is multiplied by the area of the square and
take the area of the Gaussian fit and the best result is taken for the next generation.

For example, we make a Gaussian fit in a square size 1× 1 and we make 1000
simulation of Monte-Carlo.

NbrUg

tt Nbr
× area (11.27)

with NbrUg the number of “shot” under the Gaussian, t t Nbr the total number of
“shot” and area the area of square.

In this study, we search to know the next strategy used for evolution with the data
of next population, the equation used is:

m(Sn|Gi ) = m(Sn|Gi−1) × M(Sn)
∑nbr S

j=1 (m(Sj |Gn−1) × m(Sj ))
(11.28)

withm(Sn) the initial mass function of strategy Sn ,m(Sn|Gi−1) the mass of Sn at the
generation Gi−1, nbr S the number of strategies, and m(Sn|Gi ) the future mass of Sn
for the next generation.

Finally, we select the best mass for select the strategy to use.
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11.2.4 Algorithm

Algorithm 11.1: Genetic algorithm
step 1: initialize the population
step 2: initialize the Probability of each strategy with metric on 50 generation
while stopping criterion is not satisfied do
step 3: choose the best strategy with Bayes
step 4: select the chromosomes
step 5: make crossover of strategy on selected chromosomes for crossover
step 6: calculate fitness value for new chromosome
step 7: insert chromosome have a better fitness
step 8: make mutation of strategy on selected chromosomes for mutation
step 9: calculate fitness value for new chromosome
step 10: insert new chromosome
end while
return the best solution

11.2.5 Image Color Population Representation

For see the population in hight dimension, representation with point is not available
after the third dimension. In this study, we create new method for see population
with a color image.

The size of image was separated in each area of the total number of genes in the
population for create a 2D matrix of colors. One line represent a chromosome and
one column represent a dimension (Figs. 11.2 and 11.3).

If the image is unified, all chromosomes are the same, if just a line is unified, all
genes of this chromosomes are the same and if a column is unified, all genes in this
dimension for all chromosomes are the same.

To show the relevance of this method, we have calculated the gradient of this
image for each crossover and mutation on 100 generations and compare this with
the evolution of inertia.

In this paper, we present two study in the BLX-α crossover and Levy mutation,
but for a good display, we work in dimension 30 and show the different results on 8
figures.

In genetic algorithm, the crossover represent the intensification phase and the
mutation represent the diversification phase. For the first results gradient and inertia
approach zero and in the second study, they do not approach zero (Fig. 11.4).

For the Figs. 11.5 and 11.9, chromosomes are classify in ascending order of fitness
value. The couple Figs. 11.6 and 11.7 and Figs. 11.10 and 11.11 show the same
evolution on generation (Fig. 11.8).
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Fig. 11.2 Flowchart of the
of initialization procedure
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Fig. 11.3 Flowchart of BEA
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Fig. 11.4 Initial population for BLX-α crossover in dimension 30

Fig. 11.5 Final population for BLX-α crossover in dimension 30
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Fig. 11.6 Evolution of gradient norm on 100 generation for BLX-α crossover

Fig. 11.7 Evolution of inertia on 100 generation for BLX-α crossover
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Fig. 11.8 Initial population for Levy mutation in dimension 30

Fig. 11.9 Final population for for Levy mutation in dimension 30
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Fig. 11.10 Evolution of gradient norm on 100 generation for Levy mutation

Fig. 11.11 Evolution of inertia on 100 generation for Levy mutation
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11.3 Results

11.3.1 Comparison on Test Functions

The algorithms used in the comparison [15] are the “standard EA” (SEA), the self-
organized criticality EA (SOCEA), the cellular EA (CEA), and the diversity-guided
EA (DGEA). The SEA uses Gaussian mutation with zero means and variance σ 2 =

1√
t+1

. The SOCEA is a standard EA with non-fixed and non-decreasing variance

σ 2 = POW(10), where POW(α) is the power-law distribution. The purpose of SOC-
mutation operator is to introduce many small, some mid-sized, and a few large
mutations [6]. The DGEA use the Gaussian mutation operator with variance σ 2 =
POW(1), the diversity boundaries were set to dlow = 5 × 10−6 and dhight = 0.25.

This table illustrate the average fitness of the SEA, SOCEA, the CEA, the DGEA
and our algorithm on 20D problem optimized for 1000 generation, 50D for 2500
generations and 100D for 5000 generation.

problem SEA SOCEA CEA DGEA BEA
Ackley 20D 2.49431 0.63380 0.23972 8.05E-4 2.90E-14
Ackley 50D 2.87039 1.52580 0.65169 4.61E-3 8.44E-15
Ackley 100D 2.89336 2.22080 1.14013 0.01329 2.63E-14
Griewank 20D 1.17195 0.93078 0.64280 7.02E-4 0
Griewank 50D 1.61642 1.14741 1.03284 4.40E-3 1.11E-17
Griewank 100D 2.25001 1.62948 1.17907 0.01238 2.22E-16
Rastrigin 20D 11.12678 2.87524 1.25016 2.21E-5 0
Rastrigin 50D 44.67488 22.46045 14.224 0.01664 0
Rastrigin 100D 106.21298 86.36449 58.38013 0.15665 0
Rosenbrock 20D 8392.320 406.490 149.056 96.007 13.09
Rosenbrock 50D 41425.674 4783.246 1160.078 315.395 40.18
Rosenbrock 100D 91250.3 30427.636 6053.870 1161.550 66.95

11.3.2 Interpretation

MLCC (multilevel cooperative co-evolution) [17] is a technique for large scale
non-separable function optimization, in the MLCC a set of problem decomposer
is constructed based on the random grouping strategy with different group sizes,
the evolution process is divided into a number of cycle, and at the start of each
cycle MLCC uses a self-adapted mechanism to select a decomposer according to
its historical performance. DECC-G [18] is a extend of MLCC by self-adapting the
subcomponent sizes. DECC-g relies on random grouping of decision variables into
subcomponents in order to increase the probability of grouping interaction variables
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in non-separable problems. It also evolve a weight vector for co-adaptation of sub-
components for further improving the solutions. A simpler andmore intuitive and yet
more efficient alternative to self-adaptation of subcomponent sizes which is used in
MLCC and is called DECC-ML [12]. DECC-NW [12] is a modification of DECC-G
who disabled the adaptive weighting subcomponent and conducted an experiment
with the same setting as DECC-G.

For each dimension, Rosenbrock ( f3) problem have a plateau, sometimes the
algorithm are in the plateau and it is in the best solution, this act show the importance
of diversification in this algorithm.With more diversification this algorithm finds the
best solution for most of the time. This function is really difficult to optimize, we see
lot of algorithm don’t have a good solution for this problem. Diversification permit
to have lot of point in the search space do not near each over, with this solution lot
of parents create a new point with more chance to have a best result and don’t have
a similar result with parents. The number of evaluation are 5000 × dimension.

Schwefel problem 2.21 are really hard problem too, the result is the most high-
ter chromosome of the solution. The evolution of the solution are really hard, the
crossover doesn’t have a good result for this function andwe have no really difference
between the dimension 100, 500 and 1000.

On Sphere( f1) and Rastrigin( f4), for all dimension the result are the best result,
0, the precision in C++ for a double is out of load, the convergence a really fast
and have a very good precision for all dimension. Some algorithm like DMS-PSO or
DECC-ML have 0 on this functions. They a really good result on bayes and dempster
shaffer theory.

On Ackley( f6), the result are better than the set of DECC algorithm or really near.
We have a good result for this function in all dimension. All algorithm have a near
result for this function and MTS take a zero. We have a good convergence for this
problem. In Fig. 11.12 shows the convergence of the algorithm for Ackley problem,
this convergence is really fast and take a good result faster.

On Griewank function ( f5), on dimension 100 the limit of C++ are achieving
because the result are 0, but on the other dimension, result are near of th other
algorithm like DECC-DML or JDEdynNP-F convergence of algorithm on Ackley
function.

11.4 BEA for Adaptive Signal ECG Signal Filtering

Filter permit an amelioration of signal, when the signal was degraded by the envi-
ronment, the electronic components or or the natural problem. The ECG signal
(wave form) shall be composed of different signal: wave P is a deflexion corre-
sponding of the depolarization of left and rigth auricle, wave Ta corresponding to the
re-polarization of auricles but is not visible, the complex QRS corresponding to a set
of deflexion due to depolarization of auricles, thewave T is a deflexion corresponding
to the ventricular re-polarization Fig. 11.13.
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Fig. 11.12 Convergence of algorithm for Bayes method

Fig. 11.13 Representation an ECG signal

The algorithm permit to calculate parameter for build analogical filter with a
gabarit, we have an initial gabarit we studied the LC electronic circuit of Chebyshev
on first order (Figs. 11.14 and 11.15).

Resistance value are fixed, R1 = 50Ohms and R2 = 99.2Ohms, the transfer func-
tion on electrical power is:
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Fig. 11.14 Representation of gabarit

Fig. 11.15 Representation
of electronic circuit

P2
Pm

= 4R1

R2

1
∣
∣
∣L1C1 p2 +

(
L1
R2

+ L1C1

)
p + R1

R2
+ 1

∣
∣
∣

(11.29)

We search to optimize the module the transfer function on electrical power of LC
filter with our algorithm? and we work on frequency inferior of 5GHz.

A(ω) = R2

4R1
| − L1C1ω

2 + (
L1

R2
+ L1C1) jω + R1

R2
+ 1| (11.30)

AdB(ω) = 10log(
R2

4R1
| − L1C1ω

2 + (
L1

R2
+ L1C1) jω + R1

R2
+ 1|2) (11.31)

example of attenuation function (Fig. 11.16).
For the optimization, we use the mean square error function and we introduce a

notion of weight, so the error on each sample doesn’t have the same importance, the
formula is:
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Fig. 11.16 Attenuation function with L1 = 14nH and C1 = 2pF

Table 11.1 Table of result on Bayes algorithm for 100 generations

run 1 2 3 4 5 means

L1
(×10−9H )

12.2343 12.2344 12.2346 12.2335 12.2333 12.2340

C1
(×10−12F)

2.46635 2.46635 2.46633 2.46658 2.46661 2.46644

Table 11.2 Table of result on Dempster Shafer algorithm for 100 generations

run 1 2 3 4 5 means

L1
(×10−9H )

12.2338 12.2338 12.2338 12.2338 12.2338 12.2338

C1
(×10−12F)

2.4665 2.4665 2.4665 2.4665 2.4665 2.4665

E(L ,C) =
(

n∑

i=1

Pi (e(ωi ))
2

) 1
2

(11.32)

with e(ωi ) the error of the attenuation function on ωi , Pi the weight of error on ωi .
The number of sample in the bandwidth go to 0 at 1GHz was less than the attenuate
band go to 2 at 5GHz, the relation increase between Pp (weight in the bandwidth)
and Pa (weight in the attenuate band). For the rest of our work, we choose Pp = 24
and Pa = 1 (Tables11.1 and 11.2).
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Fig. 11.17 Attenuation function with optimal results

Fig. 11.18 The first ECG on the database on 2s

With this method, we build an analogical filter and use this on the ECG pro-
vided from the MIT-BIH Arrhythmia Database [3] and we applicate a noise in hight
frequency for filter this (Figs. 11.17 and 11.18).
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11.5 Discussion and Conclusions

Genetic programming transfer the paradigm of evolutionary search to the space of
computer program in different evolve language with help of mutation and crossover,
many algorithm are established with Matlab or in c/c++ language.

We design an evolutionary algorithm for solving stochastic optimization problems
and want to perform anticipation using Bayes theory with past data, change strategy
of evolution permit to have a better convergence and perform the future decision.

This algorithm use floating-point representation for search space RD , real coded
GAs do not use techniques of self-adaptation, but might time-decreasing step size
[9] or change operator probabilities [1] based on their observed performance. In evo-
lutionary algorithms often aim it finding a precise solution and converging to this
solution. The choice of crossover and mutation is really important because permit to
have a good diversity in population, the initial choice for building data are make with
the criterion when using the metrics. In this paper we have focused on evolutionary
algorithms for solving continuous optimization problem. Different solution are avail-
able for Bayes Method like use a PSO for calculated a Gaussian fit with probability
and take a Monte-Carlo simulation for know the area of fitting, the biggest area are
selected for choose a strategy of evolving. Many crossover and mutation exist in the
literature, in this article we present many simple method but other may been imple-
mented. The long term goal of evolution consist in the maintenance of “evolvability”
of a population, guaranteed by mutation and a preservation of diversity within the
population (Figs. 11.19, 11.20, 11.21, 11.22 and 11.23).

Fig. 11.19 The first ECG with noise
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Fig. 11.20 ECG noisy after filtering

Fig. 11.21 The second ECG on the database on 2s
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Fig. 11.22 The second ECG with noise

Fig. 11.23 ECG noisy 2 after filtering
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Other future work includes another method of selection, other metrics for create
first data, more precise or more faster and extended this method to other problem,
more complex like an artificial intelligence or image Registration who require a hight
precision and multi-objective function or extend to another algorithms.
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